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Zusammenfassung

Die Betrachtung von biologischen Systemen mit Einzelzellauflösung ermöglicht die Ana-
lyse von Heterogenität in Zellpopulationen. Trotz dieser Heterogenität auf Einzelzellniveau,
zeigen Populationen ein robustes gemitteltes Antwortsignal gegenüber externen Reizen. In
der Systembiologie werden mathematische Modelle verwendet, um Netzwerke der Entschei-
dungsndung zu beschreiben, die für das Schicksal von Populationen verantwortlich sind.
Eine parallelisierbare Hochdurchsatz-Methode für Zellpopulation auf Einzelzellniveau oder
einer Population ist für die genaue Zuordnung von experimentellen Daten in den Modellen
von großem Nutzen. In der vorliegenden Arbeit haben wir ein Microwell-Array basier-
tes Lab-on-a-Chip (LoC) System entworfen, entwickelt und hergestellt. Microwell-Arrays
ermöglichen es, Zellen auf einem denierten Gitter zu lokalisieren und damit die Genauigkeit
und die Geschwindigkeit des automatisierten Verfolgens von einzelnen Zellen zu erhöhen.
Das Screening tausender einzelner Zellen wird dadurch ermöglicht. Durch die Kombinati-
on von LoC Systemen mit (einer) Lebendzell-Fluoreszenzmikroskopie kann die Dynamik
von biologischen Prozessen in Zeitraer-Studien untersucht werden. Mit Hilfe dieser Sy-
steme haben wir zwei prominente Prozesse in der Schicksalsentscheidung von Zellen un-
tersucht, nämlich Stammzelldierenzierung und Apoptose. Stammzelldierenzierungen sind
für die Ausbildung aller spezialisierten Zellen im Körper verantwortlich; das Apoptose-
Regelnetzwerk schützt gesunde Zellen, indem es beschädigte oder Krebszellen vollständig
abbaut.

Wir haben Microwell-Arrays dazu verwendet, um die Bewegung der Progenitorzelle der
Makrophagen über 20 Stunden lang zu verfolgen. Es ist allgemein bekannt, dass Makropha-
gen im Gegensatz zu Progenitorzellen auf Zellkultursubstrat haften. Durch das Verfolgen
des Brownschen Bewegungsregimes von Einzelzellen haben wir eine markierungsfreie Tech-
nik zur Dierenzierungs-Erkennung entwickelt. Wir konnten zeigen, dass die Differenzierung
unmittelbar nach dem Hinzufügen von M-CSF Cytokine beginnt. Innerhalb der ersten 20
Stunden differenzieren 80% der Zellen zu Makrophagen. Die Adhäsions-Detektionstechnik
korreliert sehr gut mit den charakteristischen Zeitverläufen von etablierten Fluoreszenz-
markern für Dierenzierung.

Die zweiten Mikroarrays wurden als Microslit entworfen. In den Microslit-Arrays haben
bis zu vier einzelne Zellen Platz, d.h. die Familie zweier Generationen von einem einzigen
Vorfahren stammend. Mit Hilfe dieser Plattform konnte direkt die Reaktion der Zelle mit
ihrem Alter, der sogenannten Zellphase, korreliert werden. Es wird im Allgemeinen an-
genommen, dass die Wirksamkeit chemotherapeutischer Medikamente mit der Zellzyklus-
phase korreliert. Als Modellsystem untersuchten wir das Apoptoseverhalten der Leukämie
Zelllinie MOLM-13 im Hinblick auf das Medikament Doxorubicin. Interessanterweise be-
obachteten wir, dass in diesem System das Auslösen der Apoptose nicht vom Zellzyklus
abhing. Die Anschaltzeiten der Apoptose folgten einer Gamma Verteilungsfunktion mit
einer Verzögerung von 3 Stunden und einer maximalen Sterberate von 5,5 Stunden. Die
synchronisierte Population wies eine breitere Verteilung mit der gleichen Verzögerung auf.
Wir sind überzeugt, dass die Microslit-Arrays den biologischen Prozess genauer beschreiben
können, da Zeitverläufe der Antwortreaktionen der einzelnen Zellen direkt gemessen wer-
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den. Über die vorgestellten Methoden hinaus wurde auch Raman-Spektroskopie an unseren
LoC Systemen durchgeführt. Wir konnten zeigen, dass diese Technik die Apoptosephasen
der einzelnen Zellen direkt identifizierbar macht und eine zuverlässige Methode für eine
automatisierbare markierungsfreie Apoptosedetektion ist.

In den Entwicklungsstudien von Einzelzellen wird gewünscht, einzelne Zellen aus der
Population zu isolieren. Um dies zu verwirklichen, integrierten wir die Microwell-Arrays-
Plattform mit Mikrouidikkanälen. Eine automatisierte Methode für das “drag-and-release”
von Zellen mit einer optischen Pinzette wurde vorgestellt, in der einzelne Zellen aus den
Microwells selektiert und entnommen werden. In einer ersten Machbarkeitsstudie wurde
die Technik verwendet, um haftende und nicht-haftende Zellen in den Microwells zu un-
terscheiden. Markierungsfreie Methoden in Verbindung mit Lab on Chip (LoC) Systemen
können verwendet werden, um die zugrunde liegende stochastische Dynamik von Einzel-
zellen in Erwiderung auf externe Reize, z.B. Cytokine oder Drogen aufzuklären. Die hier
in der Arbeit vorgestellten Methoden und die Reaktionsdynamik dienen als Grundlage für
die Entwicklung von personalisierten Medikamenten, sowohl in der regenerativen Medizin
durch Stammzellen als auch in der Krebsbehandlung.



Abstract

Looking at biological systems with single cell resolution reveals heterogeneity in pop-
ulations. Despite the heterogeneity at the single cell level, populations exhibit a robust
average response to external stimuli. In systems biology, the aim is to describe the decision
making networks responsible for the fate of populations with mathematical models. A high
throughput parallel investigation of populations at single cell level is highly beneficial for
the accurate mapping of experimental data to the models. In this thesis, we designed,
developed and fabricated lab on a chip (LoC) devices based on micro-well arrays. The
micro-well arrays localize the cells on a defined lattice, thus increasing the accuracy and
speed of the automated single cell tracking. It also enables the simultaneous screening of
thousands of single cells. Combining the LoC devices with live cell fluorescent microscopy
provides the possibility of investigating dynamics of biological processes in time lapse stud-
ies. Using these devices, we studied two prominent fate decision making systems, namely
stem cell differentiation and apoptosis. Stem cell differentiations give rise to all of special-
ized cells in the body and the apoptosis regulatory network protects the healthy cells by
clean removal of damaged or cancerous cells.

We have used micro-well arrays to track the motion of the macrophage’s progenitor
over 20 hours. It is known that macrophages adhere to tissue culture substrate while their
progenitors do not. By tracking the Brownian motion regimes of single cells, we established
a label free technique for differentiation detection. We showed that the differentiation starts
immediately after the addition of M-CSF cytokine, and within the first 20 hours 80% of
cells transition to macrophages. The adherence detection technique was correlated well
with the time course of known fluorescence markers of differentiation.

The second micro-arrays were designed as micro-slits which can hold up to four single
cells, i.e. a family of two generations from a single ancestor. In this platform we were able
to directly correlate the cells’ responses with their age, i.e. cell phase. It has been suggested
that the efficiency of chemotherapeutic drugs can correlated with cell phase. For our study,
we followed the apoptosis responses of a leukemia cell line, MOLM-13, to doxorubicin as
the model system. Interestingly, we observed that in this system, the apoptosis response
did not depend on the cell age. It followed a gamma distribution function with a lag time
of 3 hours and maximum killing rate at 5.5 hours. Artificially synchronized population
exhibited a broader distribution with the same lag time. We believe that by providing a
direct measure of time course of response, the micro-slit arrays can describe the biological
process more accurately.

Raman spectroscopy was also performed on our LoC devices. We showed that this
technique can directly identify the apoptosis stages in individual cells and is a reliable
method for an automated label-free detection of apoptosis.

In the single cell development studies it is desired to extract the cells of interest from
the populations. To achieve this functionality, we integrated the micro-array platform with
microfluidic channels. An automated method for drag-and-release of cells with optical
tweezers was introduced to select and extract individual cells from micro-well arrays. As
a proof of principle, the technique was used to distinguish the adherent and non-adherent
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cells in the micro-wells.
The label-free methods in combination with lab on a chip devices can be used to resolve

the underlying stochastic dynamics of single cells in response to external stimuli, e.g. a
cytokine or drug. The methods and response dynamics which were proposed here can
be used as a foundation for development of personalized medicine, both in regenerative
medicine through stem cells and in personalized cancer treatment plans.



Introduction

In the field of system biology, the complex interaction of cells in a population is investigated
and the dynamics of related biological processes are modeled. A precise mathematical
models of the system requires a detailed study of individual cells at a large scale. Hence
a high throughput single cell study of the population is required to describe the nonlinear
dynamics of biological processes [1]. The Fluorescent microscopy of cells in vitro has
significantly contributed to unravel the code of life or the origin of diseases [2]. There are
several end point analysis which can characterize large number of cells at the same time
and even sort them according to specific markers, e.g. fluorescence activated cell sorting
(FACS) and magnetic activated cell sorting (MACS). However, population studies lack the
detail description of the intrinsic dynamics of events or temporal resolution at single cell
level.

One of the the central questions in system biology is the cell fate decision making
process, e.g. stem cell differentiation, and apoptosis. Recently several studies have used
single cell microscopy to investigate the decision making circuits [3, 4, 5, 6]. The common
consensus is that the fate of a population rooted in the decisions of individual cells. The
variability at single cell level, which was considered noises before, is the necessity of evolu-
tion, i.e. fate, of population. The single cell studies confirmed the active role of stochastic
noise, in the biological processes and heterogeneity in the population [7, 6]. Colman-Lerner
et al. [8] showed that the stochasticity is originated from both the intrinsic and extrinsic
noises. The intrinsic noise is the result of stochastic fluctuation in biological process, e.g.
the level of expression of each reporter protein. The extrinsic noise is the difference in the
level of cellular components needed for expression a reporters. A time lapse microscopy at
single cell level provides the temporal resolution, which combined with a high throughput
automated system can be used for the modeling of a complex dynamic systems such as
biological processes.

The analytical framework which is used for data analysis must be considered at the
experimental design step. The average time scale of biological process under study defines
the interval of microscopy images. The image processing is the first step to map the
biological experiment into the analytical models. Automated tracking with minimum user
involvement, both decrease the analysis costs and is less prone to user biased errors. Several
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algorithms [9] and image processing softwares [10] has been developed for a rapid and
efficient single cell tracking. Buggenthin et al.[11] showed that an out-of-focus brightfield
image achieves a stable single cell tracking.

In fluorescent microscopy before any observation is possible, a set of specialized genes
must be identified and be fluorescent tagged before the dynamics of that process can be
analyzed. A robust label free detection can overcome this as well as common limitations
of fluorescent microscopy, such as number of colors and phototoxicity. Several label-free
techniques has been developed such as size and morphology classification, impedance [12,
13], and Raman spectroscopy [14, 15, 16].

Lab on a chip devices based on microfluidics have been increasingly used for in vitro
studies at single cell level [17, 18]. Active and passive microfluidics provide a high through-
put single cell screening platform [19]. Micro-arrays, the common passive microfluidics,
were used for single cell imaging of highly motile cells such as primary lymphocytes [20],
or hematopoietic stem cells [21]. In combination with live cell imaging, it is possible to
study the kinetics of biological processes on lab on chip devices. An on stage supply of in
vitro conditions, i.e. temperature, nutrient, and CO2 concentration, is required for a long
term live cell imaging.

Two of the prominent fate decisions of cells are the stem cell differentiation and apop-
tosis in cancer treatment. The single cell time lapse studies can identify dynamics of these
processes and explain how the population average emerges from this individual responses.

The stem cells differentiation is the corner stone of a highly controlled evolutionary
process in biological system. The development starts from a single embryonic stem cell and
gives rise to complete organism. The decision making circuits of single cells differentiation
ensure the correct development to a complex organism. And the biological networks of
stem cells, progenitors and specialized cells maintain a fully functional organism. In recent
year, there has been an increasing efforts in single cell time lapse microscopy of stem cells
[22]. A differentiation promoting molecule, e.g. a cytokine, can either instruct the cells to
differentiate to a specific lineage [23], or by blocking other possibilities favors the survival
of that lineage. While for a population both outcomes are the same, single cell time lapse
studies can resolve the distribution of the differentiation events. Stem cell research plots a
bright future for emerging field of regenerative medicine. The range of applications is from
an organ repair to treating neuro-degenerative diseases.

Another well controlled cell fate decision is the cell death. The apoptosis is a crucial
mechanism to keep the organism in a healthy and functional state by clean removal of
damaged cells. The fate of a cell is controlled through external and internal signaling
pathways. At the same time that Kerr et al. [24] coined the term “apoptosis”, they
proposed that a damaged apoptosis pathways leads to the development of tumors. Cotter
et al. [25] showed that a damages apoptosis pathways causes several type of cancers. The
single cell studies showed that the stochasticity and cell-to-cell variability has an effect on
the cell commitment to apoptosis [26, 27]. The dynamics of apoptotic pathway plays a big
role in cancer treatment.
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This thesis is organized in four chapters as follows:
The 1th chapter is about the design, development, and implementation of the in vitro
platform. We optimized micro-well arrays to obtain a high throughput automated acquisi-
tion platform for time lapse single cell studies. The fluorescent microscopy setup was also
upgraded to maintain an on-stage cell culture condition. The CO2 concentration, temper-
ature, and nutrients was maintained in this setup. We have also introduced an out-of-focus
imaging technique. A pipeline of the image processing and data analysis with our in house
softwares has also been established.

We have studies the differentiation dynamics of a progenitor cell in chapter 2. The
progenitor, granulocyte-macrophage progenitor (GMP), is from the family of hematopoietic
stem cells (HSCs) and gives rise to two types of white blood cells, namely macrophage and
granulocyte. In this chapter we introduced our label-free detection technique based on the
random motion of cells inside micro-well array. The differentiation is detected from the
motion transition from a non-adherent GMP to an adherent macrophages. The dynamics
of GMP to macrophage differentiation was investigated for hundreds of cells in parallel
using three fluorescent markers and our label-free technique. We proved that the label-free
technique can robustly identify the differentiation events of cells.

In chapter 3 we investigated the cell fate decision for apoptosis in the response of
cancer cell to chemotherapeutic drugs. MOLM-13 cells, a leukemia cell line, was treated
with doxorubicin drug. The micro-slit array in this study to confine a two-generations
family of cells from a single ancestor. This has two advantages, one the possibility to track
the cell cycle using only the first division time of cells, and two is to be able to compare the
difference in drug response between sister cells as apposed to non-related cells. We modeled
the dynamic response of population at single cell level in an intact, i.e. non-synchronized,
and a synchronized MOLM-13 cell lines. The synchronized population has a large mean
time of apoptosis with broader distribution. This dynamic suggests that the synchronized
cells have a higher chemoresistance to the drug than the intact cells. Interestingly we did
not observe a correlation between cell cycle and the efficiency of doxorubicin.

In parallel to fluorescent microscopy, we have included the single cell Raman spec-
troscopy as a non-invasive, label-free detection of apoptosis. The Raman spectra of a small
population of cell was taken at 3 time points after addition of apoptotic drug. The auto-
mated time lapse scanning of single cells was possible by using micro-well arrays. We have
shown that using principal component analysis Raman spectra has a reliable signature to
distinguish apoptotic from live cells.

The 4th Chapter discusses the micro-manipulation with optical tweezers. The optical
tweezers provide a non-invasive manipulation tool to select and move individual cells from
the population. We showed that the optical tweezers can be used for a high throughput
automated cell sorting microfluidics. The lab on a chip device integrates our micro-well
arrays with an active microfluidic channels for cell collection. A drag-and-release procedure
by optical tweezers is used for on-chip transportation of single cells of interest to the
collection channel. The cell sorting microfluidics combines the benefits of a time lapse
studies of dynamics of cell development on-chip and the single cell selection for further
off-chip studies. While the time lapse microscopy has inherent limits of the choice of target



4 Introduction

genes, we can collect the cells of interest and in the next steps used the genome sequencing
techniques for more in-depth study.



Chapter 1
A polymeric micro-array for single cell studies
of non-adherent cells

The single cell fluorescent microscopy techniques has been used for time lapse study of the
dynamic biological process at the single cell level [3, 4, 5, 6]. Several microfluidic devices
has been used to keep the spatio-temporal identity of single cells and at the same time,
follow their biological dynamics [18].

This chapter discusses the technical developments of the macro and micro platform that
was established here to facilitate the high-throughput parallel single cell studies. To begin
with, we introduce the microfluidics systems and more specifically our micro-patterns and
their parameters. Second section introduces a suitable in vitro condition for cell growth on
the microscope stage. At the final section we introduce the software for automated parallel
single cell analysis.

1.1 Microfluidics systems

Culturing and investigating cells in culture flasks and tubes has been a common way of in
vitro cell study in biology. While this is an effective way to see the average response of cell
population, it cannot resolve inter cellular interactions. A single cell study requires a well
separated population of cells with a precise micro-environment condition. The microfluidics
devices provide such conditions.

The field of single cell studies has developed rapidly when the microfabrication tech-
niques from the semi-conductor industry was modified and became available in biology
laboratories. The technology had long passed the micron scale barrier, yet the complexity
of design and fabrication prevented the wide-range use of them in biology. Softlithogra-
phy [28], a combination of photolithography from semi-conductor industry and wet bench
polymer chemistry, brought the microfabrication industry into the common chemistry lab-
oratory. This reduced the complexity of cleanroom facility which are not readily accessible
in biolabs. Early works in this field were done in Whitesides research group at Harvard
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[28, 29, 30].
The general term of microfluidics refers to a broad range of applications of micro devices

which hold and control the flow of a liquid, e.g. cell culture medium. Microfluidics systems
are divided into active and passive devices based on whether they can actively control
and manipulate the micro-niches. Active devices such as micro-valves [31] can perform
sophisticated chemical processes; even reactions at individual cell level [32]. While passive
devices, such as micro-arrays, provide a rapid parallel observation platform.

The microfluidic devices are able to miniaturize the cell culture conditions. Therefore,
they can precisely control, manipulate, and monitor the micro-environment [33, 18]. It
makes it possible to investigate the heterogeneity of single cell responses on a seemingly
homogeneous population under well defined conditions.

We selected passive microfluidics systems to separate individual cells and investigate
the stochasticity at single cell level under a defined condition. The environmental condition
for cell growth is controlled at micro-liter scale resulting in a homogeneous condition for
the whole population.

The tracking of cells becomes even more challenging when we deal with non-adherent
cells since they can easily float on the surface and small mechanical disturbance can push
them away from the field of view of microscope. While there are several chemical ways
to immobilize the cells on the surface, these techniques can put the cells in distress and
adversely affect their natural response to the other stimuli. Our microfluidic device localizes
the non-adherent cells in a confinement to reduce their motion while keeping them intact.

The automated acquisition system and passive localization of suspension cells enable us
to collect statistically significant data in a short time. This set of data is directly compa-
rable on the statistical average to the population studies. The following sections introduce
the criteria and choices for the materials, techniques, and geometrical characteristics of
micro-patterns.

1.1.1 Microfabrication

The goal of the micro-patterns is to localize non-adherent cells to a predefined lattice sites
for an automated microscopy investigation without altering their natural state. At the
same time, a parallel, high throughput acquisition, as well as analysis, is desired on this
platform. To achieve these goals we developed a micro-pattern substrate which is integrated
into a commercially available 6 channel slide (sticky slide VI, ibidi GmbH, Germany) (see
Figure 1.5). The standard substrate for this slides is either topas, a cyclic olefin copolymer,
or glass (D-263M Schott).

We have examined several common polymers in microfluidics for our micro-patterns.
There are four criteria to select target polymers: 1) Biocompatibility, 2) Strong binding
to the substrate and high stability under cell-culture condition, 3) Best image quality, 4)
Simple fabrication.

Biocompatibility
We tested three polymers: polydimethylsiloxane (PDMS), polyethyleneglycol dimethacry-
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late (PEGDMA), and polyethyleneglycol diacrylate (PEGDA). All of these polymers are
transparent and biocompatible. PDMS is common choice for microfluidic devices. PEG
has also been widely used as a hydrogel in biomedical applications [34, 35] e.g. for drug de-
livery. Recently, it has been used for microfluidics devices for single cell studies [36, 37, 38]
and stem cell niches [38, 39, 40].

Bindings and durability
PEGDMA structures adhere nicely to the dry topas substrate, however under the humid
conditions these structures peel off and detach from substrate [41]. PEGDA structures,
on the other hand, adhere to the substrate strongly and are stable for several weeks un-
der the cell-culture medium. We kept the samples under the cell-culture medium for 2
month and saw no changes in the structures. Both these polymers do not adhere to the
glass substrate. However, coating the glass with 3-(trimethoxysilyl)propyl methacrylate
(TMSPMA) monolayer introduces a covalent bond between PEGD(M)A and substrate
[42, 43, 44].

High durability under cell culture condition also requires low influence on the chemical
composition of medium. PEGDA has lower unspecific absorption than PDMS [45], which
in long term leads to lower unspecific nutrient depletion from medium.

Image quality
All of the mentioned polymers have an autofluorescent background signal which can in-
terfere with cell markers signals. Cesaro-Tadic et al. [46] measured the autofluorescent
of PDMS in visible light range and found out that it has a high fluorescent in ∼540-630
nm range which overlaps with some of the common fluorescent markers, e.g. Cy3. On
the other hand, a surface coated with polymers can introduce lens effect on the images.
For these reasons we decided to work with through-holes (stencils) of micro-patterns on
low autofluorescent substrate such as glass, or some polymers. Hawkins and Yager [47]
showed that topas has a similar autofluorescent characteristics as glass. This not only
improves the optical contrast for fluorescent microscopy, but also provides the possibility
to use substrate specific chemistry to functionalize the bottom of micro-patterns and keep
the rest of structure intact.

Microfabrication techniques
A wide variety of choices for microfabrication of stencils are available [42, 48, 49]. We looked
for a technique that is easily achievable in a common chemistry lab with minimum extra
infrastructure and maximum reproducibility. Making micro-array stencils with PDMS is
possible, however, it requires complicated fabrication steps. RIE etching of PDMS, uses
the photolithography techniques [50] to directly etch the pattern on the PDMS surface.
Using a silicon wafer with the SU-8 patterns as a stamp requires high vacuum [51] or high
pressure [52] to squeeze out PDMS from the substrate to form holes.

Micromolding in capillaries (MIMIC) uses the capillary forces to suck in the liquid in a
structured PDMS stamp on the surface. A CH4/He RF plasma surface treatment of PDMS
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Figure 1.1: Micromolding in capillaries.
a) A drop of PEGDA is put on the side of stamp which goes inside the structures with the
capillary forces. b) The sample is put under the UV light to cure PEGDA. c) The PDMS
stamp is removed and the PEGDA structure is left on the substrate.

stamp is required to mold PDMS [53]. However, it was shown that PEGDA polymers do
not adhere to the PDMS and can be mold using MIMIC. The MIMIC technique has initially
proposed in Whitesides research group in 1995 [54, 29] and further developed to be used
for PEGDA structures by other groups [37, 43]. In our lab, this technique was used [41]
and its compatibility and long term stability for single cell studies was proven. As it is
shown in Figure 1.1 a drop of PEGDA is put on the side of the PDMS stamp which is
sucked in the structures with capillary forces. This PEGDA liquid is then cured under the
UV light and form a solid polymer on the substrate.

From the aforementioned criteria in the beginning of this section, we concluded that
PEGDA structures is good candidate: 1) It is biocompatible and stable under cell culture
condition. 2) It has a strong bond to topas and covalently binds to silanized-glass. 3)
MIMIC microfabrication can easily produce stencils from it. 4) The autofluorescent is
similar to PDMS and the stencil eliminate the background signal inside the micro-wells.

1.1.2 Geometrical characteristics

The geometrical properties of micro-patterns, such as size and shape can have effect on
cell properties. Kurt et al [21] showed that confining hematopoietic stem cells (HSCs)
in adhesive micro-wells can affect their state. They showed that micro-wells with 15 µm
(average cell diameter) has higher fraction of quiescent stem cells in comparison to larger
micro-wells. On the other hand the micro-well diameter affect the distribution of single
cell occupancy of patterns [55]. This suggests that there is an optimum in geometrical
properties of micro-patterns for single cell studies. We have chosen three criteria for an
optimum micro-well diameter and depth:

a) Cells must be viable for 3 days with the same average doubling time as bulk.
b) Once cells settled inside the micro-well, they should not be washed away with the flow

of medium.
c) Maximum single cell occupancy.

To find the best dimension, we have examined diameter and depth of micro-wells ex-
perimentally and confirmed our findings with a simulation.
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Figure 1.2: This time lapse shows a bright field image of cells settling down into a micro-
well. The first pipetting put a single cell in the lower right well. The second row shows
a second flushing of cells into the channel which adds a single cell to the neighboring well
(green arrow) and an extra cell on top of first well (red arrow). This extra cell cannot
settle completely into the well because of the micro-well diameter and is washed away in
the consequent washing step.

Micro-well diameter optimization
We have tested a range of micro-well diameter (dW= 20, 25, 30, 35, 50 µm) on murine
erythroleukemia (MEL) cell-line with average diameter (dC) of 20 µm. MEL cells were
cultured on these patterns for three days. All the samples with dW > 1.5 × dC showed
high viability without a change in average doubling time compare to bulk. To measure the
maximum single cell occupancy we have counted the number of cell per well for each of
the samples. For micro-wells with dW > 1.8× dC , the probability of double cell occupancy
is increased. We have chosen micro-well diameters between 1.5− 1.8× dC for our studies.

Micro-well depth
Two depth of micro-patterns was tested: Shallow structures with 18 µm, and deep struc-
tures with 30 µm.

The shallow structure provide a pattered surface with can separate individual cells,
however, flow of new medium can easily wash the cells aways, thus it is not possible to
exchange medium or add additional components in the medium during the experiment.

The deep structures are able to keep the cells inside the micro-well even with the
flow. The maximum possible flow-rate on the channels of micro-well were tested with
a syringe pump. The cells will remain in micro-wells with the flow-rate of <720µm s−1.
The maximum rate corresponds to complete exchange of medium inside the channel in 5
minutes. The deep micro-wells are also not too deep to accommodate a stack of two cells,
and all the extra cells are washed away, see Figure 1.2.

To increase the level of micro-well occupancy further, we used a two-step protocol
followed by several washing steps. The optimal diameter of micro-wells is beneficial in
this approach. As it is shown in Figure 1.2, the initial cells sediment down into a single
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Figure 1.3: The 2D simulation of flow over micro-wells. The computational fluid dynamics
(CFD) was done in Elmer FEM software calculating the flow trajectory and velocity on top
of micro-wells. The color code is in arbitrary units to show the relative flow-rates. a) Flow
velocity over single well; b) Flow over series of three wells; c) The cell is approximated as
rigid body inside a single well.

well over few seconds. In following seeding steps, more single cells can settle into empty
micro-wells. At the final steps the loose cells on top of the structures or in double occupied
micro-wells are washed away.

2D simulation of flow
A 2D simulation of flow over a micro-well is performed to see the trajectory of flow on top
and near the micro-well. The computational fluid dynamics (CFD) simulation is done in
Elmer FEM (CSC - IT Centre for Science, Finland) software. The 2D model and finite
element mesh is produced in Gmsh [56] and exported to Elmer FEM for CFD analysis. A
constant inlet-outlet flow and no-slip walls have been used with transient analysis using
Navier stokes equations. The complete set of parameters on the Elmer solver is reported
in Appendix E. This set of simulation was only used to visualize the direction and relative
speed of flow on top of the micro-wells, hence the cell is simplifies as a fixed solid body.
Figure 1.3 shows the final results.

Our findings are in agreement with the previous simulations by Wang et al. [57]. They
used ComSol R© and concluded that this flow profile assures the placement of cells only
inside the micro-well. They called this phenomenon a passive hydrodynamic docking of
cells. In Figure 1.3.c we used a stationary object as a representative of cell, while this
could be not completely describe the situation, however the similarity of our simulations
with Wang et al. is assuring for our application purposes.

Maximum number of micro-wells in a single slide
The maximum coverage of substrate is an important factor to achieve highly parallel sin-
gle cell acquisition. The hexagonal lattice provides the minimum space between circular
objects, hence we chosen this lattice for the pattern of our micro-wells array. The unit-
cell of a micro-well array are shown in Figure 1.4. Two shapes of micro-structures are
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Figure 1.4: The dimensions of micro-array. The scale bar is 30 µm. a) Micro-wells with 35
µm diameter, b) Micro-slits with width of 30 µm.

designed and fabricated throughout this project: micro-well, the circular micro-patterns
and micro-slits, the elongated slit patterns with the length four times the width. The
optimal dimensions that are selected for final designs is shown in Figure 1.4.

We have already discussed the criteria for choosing the micro-well diameters. The 35
µm diameter of micro-well in Figure 1.4 is 1.5 × Dc of the average stem cells’ diameter
used in chapter 2. Their average diameters were 20 µm. The final distances between the
micro-patterns are defined by process constrains. The design and fabrication constrains
are imposed by photolithography and softlithography limitations. We selected for the
maximum resolutions at all the steps in fabrication.

We have used two methods for photolithography, UV-lithography and laser lithography.
The mask for UV-lithography is a high-resolution printed transparency mask. The resolu-
tion of the printer in this case is 20 µm. The laser lithography is done by a ProtoLaser LDI
device (LPKF Laser & Elektronika, Naklo, Slovenia), with a laser with 375 nm wavelength
and 1 µm spot diameter. The dose tests on this method showed that a structures with
minimum size of 10 µm can clearly be fabricated on a 30 µm thick resist.

The softlithography limits the aspect ratio of structures, e.g. well to well distance to
depth, or well’s diameter to depth. Very low aspect ratio can lead to pairing of pillars
of PDMS after release from SU-8 structures. Delamarche et al.[58] showed that this ratio
should stay between 0.2 to 2. This means that a the minimum distance should always be
bigger than 6 µm for a 30 µm thick resist.

With aforementioned resolutions we concluded that the photolithography resolution
with 10 µm minimum distance is the deciding factor for our design. The distances that
are shown in the Figure 1.4 has been chosen for microfabrication. The experimental tests
showed that with these parameters we get a reproducible PDMS and consequently PEGDA
structures.

The reuse of PDMS stamps was also checked. We found out that the stamps for high
aspect ratio structures (>35 µm micro-wells) can be used for up to 5 times. However,
for smaller micro-wells (25 µm) the micro-pillar broke off after the 3rd use of the same
stamp (see Appendix C). This can be explained with the fatigue forces which weakens of
sample quite dramatically over several use because of possible micro-fractures. This was
not considered in the study of Delamarche et al. [58]. It has been mentioned that PDMS
has a low fatigue resistance [59] but finding the exact reason of failure need more micro
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Pattern type: Dimension Area p. Slide Type # Patterns Cell Density
Array of (µm) pattern (µm2) ibidi p. Channel #Cell mL−1 ×104

micro-well 35 1370
I Leuer ≈ 146000 48.6
VI 0.4 ≈ 35000 14

Micro-slit 30 × 120 4550
I Leuer ≈ 44000 14.6
VI 0.4 ≈ 10500 4.2

Table 1.1: Number of micro-wells. The two microscopy slides from ibidi (ibidi GmbH,
Germany) has either 1 channel (I Leuer) or 6 channels (VI).

mechanical investigation of PDMS which was out of the scope of this project.

Micro-patterned substrate on the ibidi sticky slides
As mentioned before the micro-patterned surface is mounted to an ibidi sticky slide (ibidi
GmbH, Germany). The sticky slide VI has 6 individual channels each with 120 µl capacity
on a standard microscopy slide (25 × 75 mm). This provides a versatile platform for a
high throughput multi-variable (up to 6 variable) investigation per experiment. The one
channels slide (I Leuer) has bigger growth surface and can house higher number of micro-
wells per condition. Table 1.1 shows an overview of number of micro-wells per channel.
The slides have defined growth area (0.6 cm2 for 6 channels and 2.5 cm2) out of which
only ∼ 80% can be covered with micro-patterns. The whole area of microscope slide was
imaged using a computer controlled automated x-y stage (Tango XY Stage, Märzhäuser).
The microscope stage can raster scan 60-70 fields of views per minute which corresponds
to 2 channels per minute.

1.2 Cell Culture conditions

For survival of cells in vitro it is required to provide in vivo like conditions. The blood-
stream in the body provides nutrient and other metabolite to cells. The body also regulates
and keeps the temperature constant at 37◦C.

For our in vitro systems we have also designed the microscopy setup to provide the same
conditions on the stage. Figure 1.5.a shows an overview of the experimental microscopy
setup. A cell culture medium (RPMI 1640, lifetechnology, Germany) provides the nutrients
which are necessary for the cells. This medium requires a 5% atmospheric pressure of CO2

to balance the buffering condition [60] which is provided by a CO2 mixer device (Brick, ibidi
GmbH, Germany) to the observation chamber. The constant temperature is maintained in
a temperature and humidity controlled chamber (Heating system, ibidi GmbH, Germany)
on the microscope stage.

Despite above equipments, we have observed number of unexpected cell death in the in
vitro culture on our slide. In order to assess the reasons for this problem, we performed an
in depth investigation of the properties of samples and the incubator on the microscope.
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Figure 1.5: On stage live cell imaging setup.
A) The temperature of microscope stage and CO2 concentration are kept constant with
an ibidi heating system and CO2 mixer. B) micro-well arrays are housed in an ibidi sticky
slide VI. All the micro-wells in each of the channels is raster scanned over 5×14 fields of
view of 10x objective. The number of micro-wells is mentioned in Table 1.1

We have checked three parameters that are essentials for cell growth: nutrient, temperature
and CO2 concentration.

Nutrient
Cells were viable on the slide inside the common cell culture incubator for at least 3 days.
After that the test was stopped and a 90% viability of cells was confirmed with PI staining.
This test confirmed that the medium provides enough nutrients for cell growth for the whole
duration of experiment.

Temperature stability
The temperature of slide is controlled by ibidi heating system (ibidi GmbH, Germany). The
heating chamber is design for the microscopy slides and provides a constant temperature for
culture medium on the microscope. The plate warms the slide and keeps the temperature
constant. The heated lid of chamber keeps a warm and humid environment around the
slide while preventing the vapor condensation.

The temperatures of the controller was checked with an external thermometer as well
as an infra-red camera. While the average temperature shown by thermometer and con-
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Figure 1.6: Infra red images of heating system showing the temperature gradient. Sample
and stage was chalk sprayed to remove reflection effect in IR image. The temperature
of the center pointer is given on top left value, the temperature profile of the line is also
shown at the bottom of image. a) An overview image of the box with the lid on. b) Infra
red image of 6 channel slide right after removal of the lid a slight temperature gradient ∼
3 ◦C is observable here. c) Temperature gradient over the length of one channel . This
image was taken several minutes after the removal of lid. The actual temperatures maybe
higher with lower gradient (as visible in b).

troller agreed with each other, the IR images revealed some issues with the temperature
distribution. There is a visible temperature gradient from the sides to the center of slides.
This temperature difference is around 3◦C which can affect temperature sensitive studies
(see Figure 1.6).

If the low temperature caused the cell-death we expect to see a partial survival of
the population on the area with 37◦C. However, this phenomenon was not observed in
experiments. We have applied some other measures, e.g. the control of room temperature,
and minimized this gradient to 1-2◦C, but it did not prevent the unspecific cell death in
our time lapse movies.

The temperature may play a big role in more sensitive studies about the short term
dynamics of cells and this gradient must be characterized. However, we concluded that it
will not cause the cell death in the time-course that has been observed.

It is important to point out that Figure 1.6.a and .b was taken right after opening
the lid of the chamber. Hence, they show a reliable value of absolute temperatures. In
Figure 1.6.c the lid was removed several minutes before the image was taken. The sample
cooled down because of surrounding low-temperature which resulted in a higher gradient.
This also shows that it is important to keep the lid on at all time and keep the sample
away from the extreme changes in temperature, as well as keeping the whole room at a
moderate temperature. The warming elements of the heating system can equalize their
temperature fast in response to the environmental changes. However, the temperature lost
from the sample needs more time to equilibrate and may not be well maintained, as there
is no active element on the sample to warm it up.
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CO2 concentration
Cells were grown in normal RPMI medium which requires 5% ambient CO2 for buffer
conditions. The exchange and consumption of nutrients in cells induce high pH fluctuation
which is not healthy for the cells. In blood stream as well as several cell culture media,
CO2 in the form of bicarbonate (HCO3-) in solution provides the buffer to conserve pH
[61]. This concentration is provided by the CO2 mixer (Brick, ibidi GmbH, Germany).

In order to test the CO2 system, we have perform three types of experiment: using a
CO2 independent medium, increasing the CO2 concentration in the chamber, and changing
the substrate of structure.

The CO2 independent medium is achieved by supplementing the RPMI medium with
1mM sodium-pyruvate [60]. An overnight experiment with CO2 independent medium
showed no sign of sudden death.

In second set of experiment we increased the concentration of CO2 in chamber up to
10%. At this rate, the cell population in shallow micro-well arrays survived and proliferate
for two days. However, with the same condition in deep micro-well arrays, cells started
dying after 12 hours.

In the next test, the standard topas substrate of the µ-slides (ibidi, Germany) is sub-
stituted with a glass (D-263M Schott) substrate. In the same condition, e.g.10% CO2, the
cell population retain a normal proliferating behavior for two days in shallow as well as
deep micro-well arrays.

We have investigated the exact cause of the problem with respect to CO2 concentration.
The detail information of topas substrates, indicated that this material is permeable to
CO2. The design of heating chamber is such that the substrate is in contact with the
medium with high CO2 concentration on one side and room air on the other side. The
permeability results in an out-diffusion of the CO2 from the bottom of micro-well which
is faster than in-diffusion of CO2 from the CO2 containing chamber (see Figure 1.7). This
is in agreement with the observation of viable cells in incubator, because there topas is
in contact with 5% CO2 atmosphere. This phenomenon also explains the reason that the
glass substrate gave a better outcome.

We modeled the diffusion of CO2 in the channels as a one dimensional diffusion inside
the channel. The assumption is justified since the CO2 is provided through a fixed con-
centration at the inlet on the surface cross-section of the channel and diffuses through the
long channel in one direction. The Fick’s second law of diffusion (Equation 1.1) gives an
approximate on how long it takes for the CO2 to diffuse through the whole channel. The
solution of 1D Fick’s law is given in Equation 1.2.

∂y

∂x
= D

∂2y

∂2x
(1.1)

c(x, t) = c0

[
1− x√

Dπt

]
(1.2)

The diffusion of CO2 in water at 37◦C is 2.4 cm2 s−1 [62]. If the atmospheric concen-
tration is 5%, it takes 2:30 minutes to reach a same level of CO2 at a distance of 1mm
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Figure 1.7: The diffusion of 5% concentration of CO2 into the medium. a) Schematic of
the condition at the interface of gas and medium at the inlet of channels. The diffusion
condition for micro-patterned surfaces of CO2 permeable topas (b) and impermeable glass
(c) substrate.

inside the channel. Similarly, it takes 3 hours to have a same condition at the center of the
channel (9 mm). To get the 5% concentration in the center of channel, having a 10% atmo-
spheric conditions reduces the time 4 folds, meaning it reaches the desirable concentration
within 50 mins. The diffusion behavior can well explain the behavior we observed in our
experiments. In the absence of out-diffusion, i.e. glass substrate, 10% atmospheric con-
centration assure the enough diffusion speed for soluble CO2 to keep the buffer condition
over the whole channel within 50 mins. and preventing the build up of pH over time.

1.2.1 Cell density

The cells were seeded by pipetting the culture medium on top of the micro-well arrays.
Therefore, they are randomly distributed in the available micro-wells due to sedimentation.
The “filling factor” is the number of cells per micro-well. The filling factor is defined to
quantify the cell occupancy of micro-wells and its value depends on the cell density and
geometrical parameters. As explained in subsection 1.1.2, for deep micro-wells the density
is irrelevant while only filling factor 1 is possible and the rest of the cells can be washed
away (look at Figure 1.2). The best approach is to overfill the whole sample with the
number of cells 3 times the number of available wells.

For shallow micro-wells and micro-slits, only the initial seeding defines the random
distribution of sedimented cells. Therefore, the cell density is an important factor. We
have tested several cell density on these micro-patterns and counted the wells with filling
factor one. A distribution of around 30-40% of occupied micro-patterns proved to have
the highest filling factor 1. The number of cells must be 40% the number of available
micro-wells, the corresponding cell density is listed in Table 1.1.

Incidentally, the number of cells required for I-Leuer slides (ibidi GmbH, Germany) is
equal to the limits of harvested progenitor cells from a single mouse, which is close to 40000
cells (see chapter 2).
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1.2.2 Surface treatment

The properties of the surface of microfluidic device can have an effect on the natural state
of cells. It can induce some artificial in vitro stress on the cells that they would not have
in their natural in vivo state. The bio-compatibility of our substrate and microfluidics
materials are well-established [63]. However, in microfabrication process, each step can
potentially change the surface properties. These properties can be either mechanical (e.g.
roughness, softness, elasticity module) or chemical (e.g. oxidation, activation of surface
molecules). Hence, it is necessary to perform a viability test with the new structures or
when there is a change in the protocol.

In the majority of available microfabrication protocols, oxygen plasma is used to acti-
vate the surface and make it hydrophilic. While this is proved useful in fabrication steps,
one has to take into account that oxygen plasma also leaves free radicals on the surface
of the substrate. The reactive oxygen residue induces cell apoptosis [64, 65]. We have ob-
served the same phenomenon when introduced a short (10 sec) oxygen plasma, to increase
the wetting speed, before adding the medium and cells. This resulted in a rapid cell death
just after two hours from seeding the cells. The problems was resolved when the samples
were kept under the medium for two days before seeding the cells. This neutralizes the
oxygen radicals on the surface.

To remove this adverse effects, we substituted the plasma steps in protocol with other
treatments. The plasma with a neutral gas, e.g. Argon [66], was used to increase the hy-
drophilicity of the surface. The plasma cleaning steps were also replaced by the sonication
of samples in ethanol and water. In order to expel the air bubbles from micro-wells we
added a sonication under the medium. Sonication results in the breaking of the surface
tension at water/air boundary in micro-patterns and removing the air bubbles from the
patterns.

1.3 Time lapse single cell screening

The cell development and their response to external stimuli is a gradual process which
ultimately decides the fate of a population. In stem cells, external chemical and physical
signals drive them to the differentiation point and development to specialized cells. For
the tumorous cell, the internal and external conditions affect their response to the drugs
and radiation therapy. While the end point single cell studies (such as FACS) reveal the
outcome of the signal. The underlying processes cannot be explained with this method.
Different temporal dynamics at the single cell level can lead to a similar outcome at the
end point studies [67]. The dynamic response of cells which guide them to their fate plays
an important role in understanding the internal decision making machinery of cells.

Recent technological advances in microfluidic and microscopy systems provided the
possibilities to cultivate, label, and follow live cells in vivo and in vitro . The in vitro
observation of live cells with time lapse microscopy can resolve some of the underlying
mechanism of single cell decision making. The main parameter of time lapse study is the
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time-interval. While high frequency gives more detail on cell behavior, it may also adversely
influence the cell behavior, so the time-interval has to be chosen according to two main
factors: a) Phototoxicity b) Average time course of investigated biological system.

Phototoxicity in fluorescent microscopy is the effect of intense light on the molecular
machinery of cells which could be fatal for such cells. It is a crucial point in data acquisition
to prevent unwanted alteration of cell behavior [68, 69]. Phototoxicity is mainly due to
induction of reactive oxygen species [65] or other types of free radicals [70] in the cells,
hence activating the apoptosis pathways of the cells and killing them. To minimize this
effect the dose of light shined at the cell should be minimized, which means the time
interval, lamp intensity, and exposure time has to be adjusted.

Long time-interval can potentially mask the underlying dynamics of a biological process.
The chosen time-interval have to be lower that the expected time course of the reactions
in the system under investigation.

The brightfield imaging operates with a low intensity light which reduces the pho-
totoxicity risks dramatically. Therefore, it is a better candidate for short time-interval
experiments. We have employed phase-contrast, brightfield microscopy technique for mo-
tion tracking to keep the cell identity throughout the time lapse experiment; details are
explained in section 1.4.2. The high-intensity fluorescent images were limited to the max-
imum possible intervals to still be able to deduce the dynamic properties of the processes
under investigation.

1.4 Image processing

The data acquired with time lapse studies quickly reach hundreds of gigabyte. On the
one hand, we must make sure that enough acquisition points are present to resolve the
underlying dynamics. On the other hand, we should prevent the high acquisition frequency
which leads to a bulk mass of unnecessary data, or as discussed, phototoxicity. In both
cases, the manual analysis of images is out of question. To achieve these goals, we have
considered a “smart acquisition” technique. This method tailors the microscopy imaging
toward an goal specific acquisition which reduces the image processing costs at the next
step. Furthermore, it aims for a simplified, parallelized, and categorized sets of acquired
data which reduces the complexity of detection algorithms. One of these approaches for
simplifies cell tracking is out-of-focus brightfield microscopy.

1.4.1 Out-of-focus brightfield microscopy

We took brightfield and phase-contrast images of our samples and checked them with
several detection algorithms. The simplest and computationally cost effective algorithm
for image segmentation is thresholding analysis. Hence in the first step of design for “smart
acquisition”, we have checked several techniques to find the images that can be segmented
fastest using thresholding algorithm. We have tested different focal planes, as Buggenthin
et al. [11] has also suggested, for an optimum blurriness in an image to increase the
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Figure 1.8: The contrast difference in transmission microscopy images for Brightfield (a,b)
and Phase-contrasts (c,d) microscopy. The out-of-focus images (b,d) as oppose to in-focus
images (a,c) show a nice characteristic intensity profile for threshold detection algorithm.

contrast between cells and surrounding. We have tested 9 focal planes over 9µm shift with
sharp-focus being in the middle point. We have concluded that both in phase-contrast and
brightfield images, a focal point with a distance of less than average cell-diameter (here
20µm) results in high contrast images. A cell in the out-of-focus phase-contrast image
is represented by a bright-spot in black background which can easily be segmented and
tracked over-time, while in brightfield this contrast is lower and with a gray background.
Figure 1.8 shows the in-focus and out-of-focus images of cells in corresponding structures,
the top images are from brightfield and the bottom ones from phase-contrast microscopy.

Cells change positions dramatically at the division point, making the difference between
frames of phase-contrast image large. Hence, we have only used phase contrast in micro-
well arrays (in chapter 2), where we follow each cell only up to division point. The tree
of cell family in micro-slit (in chapter 3) was obtained using more complex algorithms on
a low-contrast out-of-focus brightfield image which is less susceptible to large variation of
cell motion at division point. In both cases a focused image is captured for morphological
inspections.

1.4.2 Software: MicroWell Analysis

The efficient analysis of data plays a pivotal role in high throughput single cell research.
The image processing steps to produce the analytical data from the raw images constitute
the major computationally intensive part of analysis. We used the popular open source
image processing software ImageJ [71] as the base for our image processing and benefited
both from the large sum of available plug-ins as well as the possibility to develop a new
plug-in based on Java.

The work flow of our image analysis is shown in Figure 1.9. The preprocessing of images
are done to remove the experimental artifacts from the stack of microscopy images. The
motorized stage is used in scanning mode to cover big sample area over several fields of
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view simultaneously. However, the repositioning at each time-point had one to two µm
precision. The image stabilizer plug-in [72] is designed to align images based on the fixed
features over the stack. In our images the micro-patterns are the fixed features which are
aligned through an x-y transformation. This transformation also decouples the random
error from the repositioning of stage from the Brownian motion of the cells inside the
micro-wells.

The mercury lamp can have a slightly fluctuating intensity during 2 to 3 days exper-
iment. We have used “Correct Bleach” plug-in [73] to normalize the average background
values through all the frames of time lapse movie. This plug-in was used on brightfield
images as well as for qualitative inspection of fluorescent data. For quantitative analysis
of onset of fluorescent signals, a background correction algorithms based on the micro-
patterned structures was used.

We have developed an in-house, Java-based plug-in called MicroWell analysis (MWA).
After the preprocessing, the stack of images was imported to MWA. The plug-in is mod-
ularized into three steps: identification of micro-patterns, selection of regions of interests,
and tracking of the cells. The first module identifies and locates the position and orienta-
tion of the micro-patterns. A preset values for shape and size of patterns ensures is given
to increase the recognition algorithm. The patterned structures are then subtracted from
the images to keep the focus of following steps of image analysis only on a smaller area
with the cells to detect. In the second module, MWA automatically select the occupied
micro-wells and awaits the user input for correction of this selection. A manual verifi-
cation of automatic detection confirmed an 80% accuracy which suggests that in further
development this step can also be done without user supervision.

Once the selection is finalized, MWA tracks center of all cells through the time lapse
frame, simultaneously. The out-of-focus acquisition was designed to minimize the com-
putational cost of this step. As the final check-point for image processing, the detected
trajectory was overlaid on the original movie and a manual inspection can be performed.
The output of MWA is a structures raw datafile which include the position of center of
each cell and its corresponding micro-well.

The raw trajectory datafile, was imported into a customized Matlab module for fur-
ther analysis. The Matlab module contains several m-files to calculate and extract the
desired characteristics of single cells’ trajectory. The details required defers for each set of
experiment. The extracted properties of cells includes mean square displacement, cusum,
onset of adherence, onset of fluorescence, and . . . .

The final output of Matlab module is database file which contains all the informations
about an individual cell, such as the micro-well number, time-point, position of the center,
and . . . . The databased can then be imported to the desired data-presenting software, i.e.
Excel R© or OriginPro R©, for presentation or possible statistical analysis.
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Figure 1.9: Work-flow of image analysis module.
Pre-process: include ImageJ plug-ins called Image Stabilizer [72] and Correct Bleach[73].
MicroWell Analysis (MWA) is our in-house plug-in which is designed to detect and
track single cells and gives the trajectories as an output for Matlab.
Matlab module is a set of m-files which is written to read and extract the relevant
properties from the single cell tracks and finally analyze the single cell dynamics. The
output is specific for each project.
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Chapter 2
The dynamics of progenitor commitment: a
Label-free technique∗

Differentiation of stem cells is a well controlled fate decision of cells which is highly reg-
ulated and maintained. Time lapse single cell microscopy offers platforms and methods
to investigate the development of cells [75]. The micro-well array that we have developed
is a powerful platform for parallel observation of single cell events. In this chapter we
investigate the dynamics of differentiation of granulocyte macrophage progenitors (GMP)
to the macrophage lineage.

The first section is the introduction to stem cells, their developmental tree, and the
common differentiation detection technique. Furthermore, we discuss the obstacles of flu-
orescent microscopy in primary cells, and the need for a label free detection method for
differentiation. It is known that macrophages adhere to tissue culture plastic plastic (TCP)
substrate while their progenitors do not. In our micro-well array we tracks the Brownian
motion of single progenitor cells and report their transition to adherent mode as the dif-
ferentiation marker.

2.1 Stem cells: development and application

A Stem cell is a cell at early stages of body development which divides and gives rise to all
types of specialized cells in a body. Stem cell notion is commonly used for whole family of
cells with a potential to give rise to two or more specialized cells. Moreover, based on their
capabilities they are divided into three categories: totipotent, pluripotent, and multipotent
cells. Totipotent stem cells are the ones that differentiate to all types of cells. Pluripotent
cells are specific to part of body (Endoderm, Mesoderm, or Ectoderm), while multipotents
only give rise to some types of cells within the organ. The intermediate cell types are also
known as progenitors or precursors.

∗Part of this chapter and figures are adopted from Sekhavati et al. [74] with permission of The Royal
Society of Chemistry.
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Figure 2.1: The tree shows the main players of stem cell development in HSC branch up to
specialized macrophage or granulocyte cells. The titles in left describe the classes of stem
cell.

Stem cells are present not only in early development of embryo but also in adult body.
During the development, a population of cells stay in the potent stage and become adult
stem cells. Adult stem cells can proliferate without differentiating for a long period (long-
term self renewal) and when necessary give rise to mature cell types. The specialized cells
are identified with their characteristic shape, morphology, and functions.

Figure 2.1 shows an abstract version of stem cell tree with a focus on hematopoietic
stem cells (HSC) branch. Hematopoietic stem cells give rise to the lymphoid and Myeloid
cells that build up blood systems, such as red, white blood cells, natural killer cells, and B-
cells. The biological system that we are investigating in this chapter are types of specialized
white blood cells called macrophages. Macrophages are derived from a bipotent cell called
granulocyte-macrophage-progenitor (GMP).

The discovery of adult stem cells opened the opportunity for the regenerative medicine.
It is the branch of medicine which explores the possibilities to restore the functionality of an
organ using the regenerative capability of stem cells of the same person. For example, bone
marrow transplant for leukemia treatment substitutes the damaged marrow with a healthy
adult HSCs either from the same patient (autologous) or of a donor (allogeneic) [76]. The
new HSCs in transplanted bone narrow regenerate and restore the normal functionality
of the whole “blood” organ. The stem cell therapy could also lead to the cure for neuro-
degenerative diseases such as Alzheimer.

Takahashi and Yamanaka showed [77] that adult stem cells can be re-programmed to
become induced pluripotent stem (iPS) cells. This broadens the possibilities of stem cell
regenerative properties from a single organ to cross-organs [78].

Any progenitor of a developed cell needs the correct set of conditions and stimuli to
commit to one lineage. The key to applying stem cells as regenerative medicine is to
understand and control the dynamics of stem cells commitment into specialized cells.
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Stem cell development
Differentiation, the commitment of a stem cell to a specialized cell, is a gradual change
in gene activation/deactivation leading to variation in the composition of the proteins in
a cell and ultimately a new cell type. It is possible to identify some distinct intermediate
progenitors based on their morphological and functional characteristics. However, the
changes can happen within one or over few generations. On one hand, the time course
resolution is not always achievable in population and end-point studies such as FACS,
MACS or population gene-sequencing. On the other hand, a population change can result
from a single stochastic event in a homogeneous population which is amplified through
the intra cellular signaling and leads to a quorum decision for commitment to a specific
lineage. A high local and temporal resolution is required to investigate these effects.

Single cell time lapse studies provide the tools to investigate stem cell differentiation
[79, 22] and statistical analysis of heterogeneous population provides the models to under-
stand the single cell decision making processes [80]. The time lapse study shines light on
underlying mechanism of cell differentiation and the molecular pathways for commitment
of a progenitors.

Stem cell differentiation detection techniques
A range of detection techniques for single cell studies of stem cells has been proposed re-
cently, e.g. fluorescent microscopy, or impedance sensing [13]. The common way to identify
stem cells and isolate them from a tissue is to use FACS. It uses a detailed information
about the cell and sorts them based on the defined markers of stem cells. This markers
has been identified for a large part of stem cell family, for example hematopoietic stem
cells are selected for CD34+Thy1+Lin−/low [81]. The live cell studies, such as fluorescent
microscopy, additionally require a complex preparation steps for a suitable mouse models
with the tagged genes. It is desired to have a simpler detection methods with the same
properties as fluorescent microscopy.

Here, we proposed a new technique which the difference in the physical motion of non-
adherent versus adherent cells to identify the presence or absence of the family of surface
proteins. This preserve the advantages of live microscopy, such as time resolution, and
eliminate the need for the model mice, which is a complicated and time-consuming step.
In the next section we lay out the concepts of our new method.

2.2 Brownian motion for differentiation detection

The motion of a particle is a physical property which is a result of its interaction with
the surrounding. This motion can be characterized as diffusive, directional, constraint,
ballistic, etc. A living micro-organism can have a random or driven motion. Driven motion
is any active directional movement toward a beneficial condition, e.g. chemotaxis in a
gradient of nutrient, or moving to a protein coated part of a substrate [82]. In the absence
of gradient forces or active motion, cells exhibit a random walk. While adherent cells walk
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Figure 2.2: Single cell Brownian motion trajectories.
a) Schematic view of cells settling into micro-well arrays under gravity. b) Side view
schematic depiction of the three states of adherence: freely mobile, semi-adherent and
adherent. c) Corresponding phase-contrast image of a non-adherent GMP which differen-
tiates into an adherent macrophage. The dots indicate the position of the center of cell
over a period of 24 h. Elapsed time is coded in color from red to blue.

actively with their cytoskeleton and extra cellular matrices (ECMs), non-adherent cells
float freely in the medium.

The characteristics of the motion of the cell can be used as the indicator of their
response to the environmental stimuli. Stem cell differentiation results in up-regulation
of some proteins which can include membrane proteins responsible to surface adherence.
The GMP to macrophage differentiation is one of the instance that this happens. The up-
regulation of adherence proteins on the cell surface is used as an indicator of differentiation
event. Time lapse microscopy resolves the transition from non-adherent to adherent cells
without any fluorescent markers.

Figure 2.2 shows the overview of experimental plan for label free differentiation detec-
tion. The population of GMP cells are initially pipetted on the micro-well array substrate
as is shown in Figure 2.2.a and settle down individually in separate micro-well with the
gravitational forces. Non-adherent GMPs can freely move inside the micro-well. Upon
differentiation they adhere to the substrate, but keep their spherical shape, this is called
semi-adherent stage (Figure 2.2.b,.c). When the cell is fully developed to macrophage, they
flatten on the substrate and start their active motion, adherent stage in Figure 2.2.b.c. The
center of cell is automatically tracked over-time and is indicated as the colored dots in Fig-
ure 2.2.c, the color code indicates the time going from red to blue.

Considering the limitations of microscopy system and average distance a Brownian
particle can travel, we optimized the time-interval of imaging. The parallel data acquisition
is then possible by probing the sample with automated microscopy stage.

2.2.1 Mean square displacement

MSD represents the extent of random motion in space, which is commonly used for char-
acterization of the motion of a particle, e.g. diffusive motion, biased diffusive motion, and
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confined motion [83]. Diffusion on a surface is modeled as a 2D diffusion of a particle with a
slip boundary condition [84]. MSD is analytically derived from probability density function
of particles [85]. Experimentally, MSD is directly calculated from the x and y positions
of a particle at discrete time-points. If ri = r(ti) and ∆t is the acquisition interval, the
displacement after m time interval is:

∆ri(m∆t) = | ~ri+m − ~ri|

Where the mean square displacement at each time interval is calculated as:

MSD(tm) ≡ 〈(∆r(m∆t))2〉 =
1

n

n∑
i=1

∆r2
i (m∆t) (2.1)

The analytical expression of MSD, on the other hand, is deduced for a specific bound-
ary condition for the particle. Bickel [85] calculated the exact form of 2D diffusion of a
Brownian particle in a circular confinement with reflective walls:
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where D is the free diffusion coefficient, αnm is the mth root of Bessel prime function
(J ′n(αnm) = 0), and L is the maximum distance available for free motion. The available
space is defined as L = dW − dC . Where dW is the average micro-well diameter and dC
is the average cell diameter. A particle in confinement does not feel the constrains at
the short time-scale leading to a free diffusion behavior. When the particle reaches the
confining walls at long time-scale, the MSD plot reaches a plateau value, which for 2D
motion is equal to L2/4, i.e. Equation 2.2 when t→∞.

The plot of MSD function gives us two valuable informations, 1) it shows that the
motion of cells is indeed a 2D diffusion with a diffusion constant in the expected range,
and 2) it gives a value for effective diameter of the non-adherent cells.

We have compared this value to the value extracted from microscopy image of the cell.
As it is shown in Figure 2.3 the two values correlate very nicely. The smaller estimation
of diameter in microscopy image can be explained by the artifacts that the out-of-focus
(blurred) imaging induces on the diameter of the cell.

Assuming the cells as spherical object with average diameter of d=16µm in medium
(η = 0.72mPa.s), the Einstein relation for free diffusion (Equation 2.3) at 37◦C leads to
free diffusion coefficient of D = 0.04 µm2 s−1.

D =
KBT

6πηr
(2.3)

A complete scan of microscopy-slide takes 3 minutes. Using Equation 2.2, it corresponds
to an average displacement of 3 µm (5 pixels) for cells which can easily be resolved and
tracked in microscopy imaging.
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Figure 2.3: Mean square displacement.
Dots are experimental points and the three solid line shows the fit from the theoretical
expression. The plateau values reflect the cell diameter. The corresponding phase contrast
images of cells for colored solid lines are shown. Diameter calculated from fitted curves
are shown in the inset and the diameter calculated from image calibration is shown on the
corresponding image

2.2.2 Transition point detection

As we mentioned, the characteristic of the motion of GMP cells varies during their dif-
ferentiation to macrophages. The commitment to a specialized cell line, i.e. macrophage,
changes the course of motion from a confined random particle to a bounded particle. This
regime change reflects in the trajectory of individual cells. The displacement of an unbound
cell reduces or disappears after the transition to adherent stage. To detect this transition
we used two algorithms. First was using a threshold value on the standard deviation of
cell motion. Second was applying cusum on the displacement trajectory and detect the
change point. Figure 2.4 shows a exemplary trajectory of transition of single non-adherent
GMP cell to an adherent macrophage.

Local standard deviation of displacement.
The displacement-time graph of a single cell is a noisy random variable as a result either
image processing errors or sudden large motion in a cell. Figure 2.4.a shows a single
displacement trajectory. In order to analyze this trajectory, we calculated the dispersion
of displacement in short temporal window. Local standard deviation (σt) measure the local
dispersion of t points after each data point, which is calculated as shown in Equation 2.4

σt =

√
1

t− 1

∑N+t
N (∆Ri −∆Rt)

2 (2.4)

We selected local standard deviation over 5 frame, σ5, for our analysis. A threshold
value was set below which the cell is assumed to be adherent. If a cell any apparent motion
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for a short period of time, i.e. comes back to the same position after each time-interval, a
false positive signal can be reported by the thresholding approach. Therefore, we defined a
“consistency” parameter which checks the following values after each transition detection.
If there is no cross over to the higher value over the consistency period, the cell has indeed
adhered to the substrate at the detected transition point. The consistency parameter is
initially set to 5 and increases until only one transition point in detected by the program.
Figure 2.4.b shows σ5 plot where the threshold values is the blue line and the detected
transition point is marked with the red circle. We used the second algorithm to confirm
the detected transition point called cusum .

Cumulative sum
cusum is the sum of the difference of each data value from a defined target value. It was
first introduced by Page in 1947 [86] and ever since, has been used in variety of fields from
market response to health care [87]. When there is only random deviation from the target
value, cusum is around zero, but once there is a consistent deviation from the target, the
cusum value will progressively deviate from zero at a finite slope. In our experimental
setup the target value varies for each cell, therefore we chose the total time-average of
displacement (∆R) as the target value. The value of cusum at any step is calculated as
in Equation 2.5, for convenience the cusum is calculated from end to start.

cusumi = (∆R−∆R) + cusumi−1 (2.5)

The changes in motion regime in a cusum graph can be detected by locating the change
in slope. The highest change in slope is expected to be the transition point. Figure 2.4.c
shows the corresponding cusum graph of the trajectory. The blue lines are locally fitted
lines to the graph which enables the automatic detection of slopes. The detected transition
point is marked with the red circle. In our analysis, where there is a discrepancy between
the transition point detected by σ5 and cusum methods, the final decision was made
manually by the user.

The cusum algorithm can also be used as an online detection method. The online
detection for time lapse studies can be useful in cases that we are able to integrate analysis
and data acquisition together. This could be used for example when the fluorescent signal
is only needed after the adhesion has occurred.

2.3 Heterogeneity in differentiation

Differentiation of GMPs showed stochastic dynamics [88, 23]. With the help of micro-well
arrays we were able to capture and analyze the behavior of many cells in parallel. The
trajectory of 789 single cells was detected and the transition point was automatically ex-
tracted from them. The exact detail and growth condition of primary cells have already
been described [23, 74]. Figure 2.5.a shows the distribution of single cell adherence event
per half-an-hour in the time lapse experiment for 30 hours. Transportation of sample,
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Figure 2.4: Transition point detection.
a) Displacement ∆R of a single cell in each time interval is plotted over time. b) Time
course of the local standard deviation over a rolling time window of 5 frames, σ5. The
transition of GMP to macrophage is marked with a red circle, the blue line shows the
threshold value. c) cusum value for the same track. The transition point is identified by
the change in slope of cusum (red circle). The blue lines are the fitted lines for automatic
detection of slope change

adjustment of focus of ∼100 fields of view on the microscope, and the adjustment of flu-
orescent acquisition settings takes around 4 hours. Therefore, monitoring began 4 hours
after addition of M-CSF cytokine to the progenitors. Around 40% of cells showed adherent
trajectory by the start of imaging. The number of adherence events then drops expo-
nentially with time, and 80% of the cells have adhered to the substrate prior to the first
division.

The time course of differentiation was investigated via the onset of expression of the
EGFP-tagged Lyzosome2 (Lyz2) signal as well as the presence of MacI and F4/80 antibody
markers. The Lyzosome2 protein is up-regulated when GMPs commit to a lineage either
M or G (see Figure 2.1, Appendix A). The F4/80 and MacI markers are surface proteins
and distinct indicators of macrophage lineage. Fluorescent images were analyzed by setting
fluorescence thresholds for each marker and counting of the number of MacI and F4/80
positive and Lyz2-GFP expressing cells respectively. Figure 2.5.b shows the percentage of
adherent cells (black), together with the time course of MacI positive (red), Lyz2-expressing
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Figure 2.5: Distribution of adherence event.
a) Histogram of the number of adherence transitions in the time course of GMPs differ-
entiation into macrophages (data are from 789 single cells), red line shows a first order
exponential fit to the data. b) Percent of cells that adhered (black) and percent of cells
that exhibited MacI (red), LzyM (green), and F4/80 (blue) fluorescent signal versus time.

(green), and F4/80 positive (blue) cells over a period of 48 hours.
The time course of the onset of fluorescent signals are in agreement with the literature

[23]. The adherence transition shown to happen mainly after the MacI onset and before the
onset of the other two markers. The kinetics of the increase of total adherence, however,
is weaker than the steep increase of MacI expression. For this reason we calculated the
single cell correlations in more details with time correlations between the markers.

2.4 Time Correlation

The correlation of onset time of up-regulation of proteins opens a window into the dy-
namics of molecular pathways and their interconnections. Combining three fluorescent
channels and the label-free adherence detection, we were able to correlate four proteins.
The adherence proteins were not classified or marked but their presence was detected with
the label-free approach.

Figure 2.6 shows the correlation between all the markers for all cells individually. Fig-
ure 2.6.a and .b present the correlation of onset between the fluorescent markers. It is
clear that the order of onset of fluorescent markers at single cell level are the same as
observations in population studies. The heterogeneity at single cell level is also present
at the onset of proteins as well. While the order is preserved, the time-difference between
onsets are different in same population.

The colors indicate individual fluorescent markers and the intensity of color indicate
the number of cells. Figure 2.6.c shows the correlation of the onset of fluorescent markers
with respect to the adherence time points. Adherence occurs before the onset of the
differentiation markers as seen by the fact that most data points fall above the isochronic
dashed line. However, the correlation between these events are not very strong.

Our study demonstrated that the micro-well arrays enable single cell analysis of the
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Figure 2.6: Correlation of onset of markers.
a) Fluorescent data correlations with respect to LyzM onset. MacI is the earliest marker
while F4/80 expressed at the latest stage. b) The correlation of onsets between MacI and
F4/80. c) The single cell data correlations between the onset of fluorescent markers and
cell adherence. MacI (red) and F4/80 (blue) are tagged with anti-body, and LyzM (green)
is engineered in the cells. Dashed line is the isochronic line.

transition from a non-adherent to an adherent state utilizing Brownian motion as reporter.
GMPs exhibit heterogeneity in the timing of both the adhesion transition as well as dif-
ferentiation at the single cell level. In contrast to manual evaluation, our unsupervised
approach allows for high temporal resolution and increased statistical accuracy of the
adhesion time point. Clearly adhesion is an early indicator of differentiation. Yet, the
statistics of adherence events does not seem to strictly depend on the stage of differentia-
tion. Hence the molecular changes at the cell surface that allow for adhesion do not seem
to be directly timed within the differentiation process. Single cell analysis of Brownian
motion therefore provides a versatile label-free method for high-throughput detection of
the adherence transition. In principle, the only limitation on the observation time in our
approach is the point of cell division. We believe that the highly parallel analysis of single
cells by monitoring of Brownian motion is a powerful, high-throughput, label-free method,
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which is particularly promising for the time-resolved investigation of differentiation and
the detection of changes in cell-surface properties of non-adherent cells.
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Chapter 3
Dynamics of apoptosis in tumor cells

Cells in the human body constantly grow and replace old and damaged cells, replacing
50 to 70 billion cells a day in an adult human, approximately one body-weight per year
[89]. The tightly regulated apoptotic machinery in a cell plays an important role for clean
removal of cells to maintain a healthy organ. The cell-fate decision making process that
instruct the cells to follow an apoptotic pathway is of high interest.

In cancer treatment with chemotherapy, the goal is to activate the apoptotic pathways
of cancerous cells to cleanly remove the tumor from an organ. The complete eradication
of cancerous cells are very important, since even a ∼2% remains of cells could result in a
recurrence of cancer [90]. The cells of a tumor can form several subpopulation which have
different sensitivity to the chemotherapy. In order to completely eradicate the cancer, it
is necessary to characterize chemosensitive and chemoresistant subpopulations. Single cell
studies of cancer cells can shine light on the key components in cell fate-decision making
machinery which contribute to the response to chemotherapeutic drugs. The findings can
be used to attack the cancer populations at their most susceptible state, hence increasing
the efficiency of chemotherapy and reducing the side effects. This goes hand in hand with
the selective tumor targeting studies.

In the first two sections of this chapter we introduce the biological background of the
apoptosis pathways and cancer treatments. We have developed a microfluidic platform
and microscopy setup for single cell time-lapse studies of cancer cells. The properties of
this setup is shown in section three.

In the fourth section we report the results of our study on the effects of doxorubicin on
the leukemia cells and the single cell correlations. We showed the high correlation between
the division of sister cells. We have also provided the evidence that the drug-response in
an artificially synchronized population is different from the intact, i.e. non-synchronized,
population.

In the final section we introduce the Raman spectroscopy as a label free apoptosis
detection technique. We showed that this technique can be used on our high throughput
single cell platform and give a reliable detection for apoptotic stages of cells.
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3.1 Pathways to cell death

Cells in the human body are constantly regenerated and replaced by new cells. There
are two mechanisms that damage a cell, either an external physical or chemical stress, or
internal failures in cell machinery. In both cases, the cells response is to adapt, repair,
or die depending on the extend of the damage. The internal damages can be a result of
accumulation of small damages, e.g. old cell, which in turn can lead to an irregular cell.
The highly compromised cell must be removed from the organ to prevent further damage
to the tissue and open space for growth of healthy cells. The old and damaged cells go
through well regulated death pathways and are removed from the organs.

There are several pathways that each cell chooses or is forced into which leads to a dead
cell. The cell death is a well regulated procedure with internal signaling pathways as well
as external morphological signatures. The mechanisms are categorized into three major
groups based on morphological changes, they are called apoptosis, necrosis, and autophagic
[91, 92].

In an apoptotic cell the plasma membrane keeps its integrity until the late stages of the
process. During apoptosis, cytoskeleton proteins are cleaved and subcellular components
collapse, the chromatin condenses and the plasma membrane produce blobs, i.e. apoptosis
bodies, which carry the debris out of the cell for disposal [64].

An autophagic cell has a high vacuolization of organelles in cytoplasm and no chro-
matin condensation. This process initially helps prevent cell death due to starvation, by
digesting the unnecessary components in the cell, however, if self-digesting, i.e. autophagy,
continues for a long time, the cell cannot recover and function anymore and dies [91].

A necrotic cell initially opens its plasma membrane channels leading to an influx of
surrounding medium. This results in the distinct morphology change such as an increase
of cell volume, organelle swelling, and the membrane rupture. Necrosis is also defined as a
lack of the features of autophagy or apoptosis death [93, 94].

While apoptotic and autophagic cells are easily cleaned from organs by macrophages,
necrotic cells rupture rapidly before macrophages could contain the residue. This can
damages the neighboring cells and lead to local inflammation and irritation. The apoptotic
pathway to cell death is a complex system with some interconnection to necrotic or survival
pathways [95]. We have reconstructed the apoptotic pathway from literature [96, 97, 98, 99]
as is shown in Figure 3.1.

Recent finding on molecular pathways of cell death changed our perspective on the
cell death mechanism. For an in-depth description of the new realization of different
mechanisms please see the works by Broker et al. [98] and Lavrik et al. [100]. A widely
accepted phenomenon in early studies of cell death was that necrosis is an “accidental cell
death” and there is no regulation. However, recent studies showed that it has indeed a
highly regulated pathway [101]. The second widely believed phenomenon was that the
caspase molecular system is always present in apoptosis. However, it has been shown that
in response to a single death stimulus, more than one death program is accessible. The
alternative pathways, e.g. AIF or EndoG in Figure 3.1, can override the caspase pathway
and induce a caspase independent cell death (CICD) [98].
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Figure 3.1: A summary of several apoptotic pathways. Extrinsic pathways are either
activated by death receptors on the membrane (e.g. CD95, TRAIL) or cytotoxic chemicals
from natural killer (NK) cells (e.g. Perforin, Granzyme). Intrinsic pathways are activated
through malfunction of the cell system or chemical imbalance in cell (ischaemia, DNA
damage, etc.)

3.2 Apoptosis in cancer treatment

Cancerous cells form a tumor generally because they have a malfunctioning growth and
turnover pathway. Kerr, Wyllie and Currie [24] coined the term “apoptosis” as a pro-
grammed cell death and at the same time proposed that a damaged apoptosis pathways
leads to the development of tumors. The subsequent studies showed that Bcl-2 (B-cell
lymphoma) family of proteins has a key role in controlling the apoptosis pathway [102]. At
the same time, miss-expression of Bcl-2 family was found to be the cause of several types
of cancers (e.g. lymphoma) [103]. These findings proved that a malfunction in apopto-
sis machinery plays a crucial role in cancerous behaviors of cells. Hence identifying and
reprogramming the damaged genes in apoptotic pathways can be used to attack tumors.

Cotter’s chronological review of apoptosis and cancer research [25] illustrates how re-
pairing the abnormalities in the apoptosis pathway of tumorous cell on the one hand, and
targeting the surface triggers of apoptosis, on the other hand, provides two effective ways
to attack tumors. For example, reactivating Bcl-2 family of proteins or triggering CD95
family of receptors shrink tumors (see Figure 3.1). Many target drugs for membrane re-
ceptors of apoptosis pathways have been developed as chemotherapeutic drugs, e.g. for
CD95L receptors [25]. Several other drugs are under development which are targeting
outer mitochondrial membrane, P53 and other death receptors. Green and Kroemer [104]
investigated the studies on a comprehensive list of targeted chemotherapeutic drugs and
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found that the method and applications are indeed promising for future cancer treatments.

3.2.1 Chemotherapy: Inducing programmed cell death

Paul Ehrlich, who coined the term “chemotherapy” defined it as the use of chemicals to
treat diseases. Nowadays, chemotherapy is specifically used for the application of chemi-
cals in cancer treatment. The introduction of chemotherapy in cancer treatment has had
ups and downs as discussed by DeVita and Chu [105]. The success of chemotherapeutic
drugs in cancer treatment in the early 1960s made this technique a standard treatment
for cancers. The advances in chemotherapeutic drugs, protocols for its administrations,
and its combination with other types of cancer therapy, such as surgery and radiation,
increased the success rates in cancer treatment. The cure, i.e. more than 90% success, for
acute lymphocyte leukemia and Hodgkin, and high success rates in other types of cancers
[105], reinforce chemotherapy approaches.

Cancerous tumors are recognized by the uncontrolled growth of cells, commonly due to
abnormality in the cell cycle or growth inhibitory machinery of cells. Normally, cell growth
in tissue is controlled by number of extra-cellular chemical and mechanical signal. One of
the mechanical signals is the “contact inhibition”, which happens when two similar cells
come into contact with each other and because of this interaction they stop dividing. When
this mechanism is damaged in cells, they keep dividing and grow into the abnormal mass of
cells, a tumor. The abnormality in the cycle of growth in tumorous cells suggests a target
point for the attack of chemotherapeutic drugs. The drugs can attack the abnormalities
in machinery to specifically kill the compromised cell. The efficiency of chemotherapy in
this scenario is based on their capability to attack the cell cycle (See Appendix F for brief
description of cell cycle).

Two of prominent chemotherapeutic drugs are doxorubicin and chondramide. Doxoru-
bicin is an anthracycline (antitumor antibiotic) drug that interferes with enzymes involved
in DNA replication and attacks the cells at any phase and is considered a cell-cycle specific
drug. Chondramide, a myxobacterial cyclodepsipeptide, binds to actin cytoskeleton and
leads to hyperpolymerization [106] and subsequently arrests the cells in G2/M phase. It
has been recently shown that chondramide can specifically target cytoskeleton of tumorous
cells [107] and inhibit angiogenesis [108].

3.2.2 Combinatorial chemotherapy

Combinatorial chemotherapy is the combined administration of different drugs at specific
time-points according to a defined protocol. One of the main issues in chemotherapy is
the relapse, reappearance of cancer from untreated or chemoresistant cancer cells. Miwa
et al. [90] showed that in response to chemotherapy some chemoresistant subpopulation
of a tumor are only arrested in a cell phase and continue proliferation after drug release.
Combinatorial chemotherapy increases the chance of killing the cancerous cells by attacking
them at different points in a cell cycle.
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On the other hand, a detailed knowledge of behavior of heterogeneous population can
be beneficial for chemotherapy. Knowing the dynamics, one can use an initial drug to
arrest the chemoresistant cells at a vulnerable cell phase and with a second drug attack
and kill the cells at this point. [109] showed that an arrested tumor cell is more susceptible
to the TRAIL-induced apoptosis. The use of multiple drugs and at different time-points
decrease the chance of drug resistance and untreated cells dramatically and is shown to
reduce the relapse probability. Time lapse single cell microscopy is an important approach
to reveal the source of underlying heterogeneity and the cancer cell relapse.

3.2.3 Cell-to-cell variability in drug-response

Population heterogeneity in a single type of cell arises from different sources: genetic,
epigenetic or temporal variation. Genetic variation happens over several generations
of cells mainly through mutation and changes in DNA. Epigenetic variation is at the
level of protein transcription which is inherited by daughter cells and have long term
effects. Cell-to-cell variation, i.e. temporal variation, is a result of stochastic variation
in protein production. It has been shown that inherent stochasticity in cell machinery leads
to observable cell-to-cell variability even between two sister cells [110]. The heterogeneity
at all levels can result in different responses to chemotherapy, hence the fractional killing
of tumorous and future relapse of cancer can occur.

New findings showed that the cell-to-cell variation, rather than genetic or epigenetic
variation, plays a more important role in heterogeneity than it was thought before. Spencer
et al. [110] showed that the protein level, as well as a single reaction rate in a cell can
have a notable effect on the response time to the TRAIL-induced apoptosis. Raychaudhuri
[111] applied a Monte Carlo simulations on the in silico single cell data and showed that
the kinetics of apoptosis is better explained when including a cell-to-cell variation in the
analysis.

The heterogeneous tumor population can affect the efficiency of a chemotherapy and
result in fractional kills. Albeck et al. [112] used fluorescent single cell microscopy to
quantitatively measure the caspase activation dynamics in relation to other components
of extrinsic apoptosis pathways, e.g. MOMP or Bcl-2. A more detailed investigation of
the effects of population heterogeneity in drug response is needed to design an optimal
(combinatorial-) chemotherapy protocol for complete eradication of tumors.

Single cell time lapse studies of cancer population over the course of drug treatment
can shine light on the heterogeneity in population and quantitatively measure the drug
response dynamics. With time-lapse single cell studies we can address issues like dose
dependence, time of drug-administration dependence, effects of intrinsic stochasticity, cell
cycle dependency, . . . . In the next section, we introduce our single-cell time-lapse study of
the dynamics of apoptosis under the influence of chemotherapeutic drugs.
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3.3 Single cell study of the dynamics of chemotherapy

The study of the effects of chemotherapeutic drugs on the tumor population is a crucial
step to find an effective chemotherapy with complete tumor eradication capability. Single
cell studies are required to resolve the subpopulations and their heterogeneities in drug
response. Single cell studies clarify the interplay between different parameters in tumor
development as well its response to drug.

The fluorescent markers are primary method of single cell studies. Molecular markers
at different points of apoptotic pathway death has been constructed and used for the
detection of cell death [113]. The endpoint single-cell studies such as fluorescence activated
cell sorting (FACS) shows the percent of cells at one time point. Time-lapse fluorescent
microscopy, on the other hand, is able to resolve the inter cellular dynamics. Time-lapse
single cell studies has shown that the speed and response dynamics varies at different
points of apoptotic pathways. Time lapse single cell studies are able to evaluate the
heterogeneity in response to chemotherapeutic drugs with respect to different dynamics
along the apoptotic pathways. We have studied this phenomenon in subsection 3.2.3.

The ability to target, manipulate, or repair cell death pathways depend on the correct
understanding the dynamics of molecular machinery. A single cell study of tumor cells can
shine light on the key components in apoptotic pathways and dynamics of cancer treatment
methods. Time lapse fluorescent microscopy is helpful in identifying the subpopulation and
characterizing the type of heterogeneity in drug response.

Here we have developed an in vitro system to study the population response to drug
at single cell level. A family of cell from a single ancestor is confined to a single micro-slit.
This micro-slit arrays have two advantages in single cell studies. By confining the family,
we can easily detect the variation between sister cells. Since sister cells are genetically
identical, we are able to directly observe the epigenetic and cell-to-cell variabilities in the
system. Additionally, the exact division time of each cell is known. The division point is
used to achieve a non-invasive synchronized data. This was used to observe the effect of
artificial population synchronization on the drug-response characteristics of cells.

3.3.1 Micro-slits: localization of single family of cells

In order to track non-adherent cells over several generations, we have designed and fab-
ricated micro-slits which can accommodate only 4 to 6 cells. Full description of micro-
structure was already mentioned in chapter 1. These structures can localize cells in a
small area and separate single cells from the population. A low-density seeding of cells
will give high probability of initial single-cell occupation, hence the possibility to analyze
a family of daughter cells from a single ancestor cell. Figure 3.2 shows the schematic of
micro-slits and the cell generation tracking. The ratio of the width of micro-slit to the
diameter of cell which is around 1.5-2 prevents any confinement stress on the cell while
still localizing it. As shown, a single cell can be tracked for two generations while keeping
all the daughter cells in one compartment.

As previously discussed, the cell phase have a key role in the efficiency of a chemothera-
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Figure 3.2: Single family micro-slits.
a) 3D model of micro-slit on surface with cells inside. b) Composition of family tree,
keeping the identity of all daughter cells. t0 indicate the first division and tdiv is the second
division. c) An overview of micro-slit structures with the cells seeded.

peutic drug. Hence, an important aspect of chemotherapy studies is to know the cell phase
during the experiments. There are three standard methods to identify the phase of a cell:
morphological characteristics, fluorescent tagging, and cell synchronization. Each of these
methods have advantages and disadvantages.

While the morphology of different phases of a cell is distinguishable for adherent cells,
for non-adherent spherical cells it is hard to identify the cell phase solely from the mor-
phology. Fluorescent tags such as FUCCI cell cycle sensor (lifetechnology, Germany) can
identify the cell phases [114], however they use two channels in fluorescent microscopy
and limits the fluorescent tags to investigate the correlations with for example apoptotic
pathway.

The common cell cycle synchronization methods are based on arresting the cells in a
specific phase and then releasing all of them at the same time. These methods have two
drawbacks. At single cell level all the cells are not in the exact cell phase, but have a
distribution around the arrested time point. Additionally, this method affects the natural
state of cell, and as it was shown an arrested cell have different susceptibility to the
chemotherapy [109].

A non-invasive method of cell cycle detection is desirable. We showed the single family
tracking as a reliable label-free technique to identify the cell-cycle. With the single family
tracking over two generation, the time after first division (t0) is known. This time can be
used as a proxy, i.e. a label-free indicator, of cell age. Correlating the age and morphological
characteristics of the cell, the phase of a cell can be revealed for non-adherent cells. We
have compared the responses from this intact, i.e. non-synchronized, population with a
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drug synchronized population.

3.3.2 Cell line

The model system is a non-adherent acute leukemia (AML-M5a) cell line called MOLM-13
[115]. They have round shape morphology and grow in suspension. The cell lines used here
are grown in RPMI 1640 medium with stable L-glutamin (Biochrom, Germany) and sup-
plemented with 10% Fetal Bovine Serum (FBS). 1mM Sodium pyruvate (c.c.pro, Germany)
is added to compensate for low diffusion of CO2 in channels and act as a CO2 independent
medium [60]. Throughout this report we refer to this composition as ExpMedium.

The synchronized population was made according to “double thymidine block” as de-
scribed by Jackman et al. [116]. The detailed description of method is given in Appendix F.
Double thymidine block arrests the cells at the border of G1/S-phase.

3.3.3 Apoptosis detection

Based on the aforementioned discussion in section 3.1, we use the definition of apoptosis
based on its morphological classification. The fluorescent signal of apoptosis is from the
activation of caspase 3/7 and the signal of necrosis is from the diffusion of PI into the cell.
The “caspase 3/7 positive” cells are indicated by a green fluorescent signal of CellEventTM

Caspase 3/7 Green marker (Lifetechnologies, USA). The CellEventTM substrate has to
be cleaved by an activated caspase-3 or -7 to be able to bind to DNA and produce a
fluorescent signal. A necrotic/late apoptotic cell is also defined as “PI positive cell”,
indicated by propidium iodide nucleic acid marker (Novus Biological, CO, USA). PI is
membrane impermeable and can only enter the cell and bind to DNA when the membrane
is damaged which happen in necrotic cells or late apoptotic cells.

3.3.4 Fluorescent microscopy

We have used the time lapse brightfield images with 5 minutes interval to track individ-
ual cells over 48 hours. The raw movie of out-of-focus images was preprocessed using
thresholding-based algorithm [11] (built around the maximally stable extremal regions
(MSER) [117] algorithm). The processed movie is then imported to TrackMate [118] (an
ImageJ plugin) for individual cell tracking over time. The trajectory of individual cells
were analyzed for the intensity of fluorescent markers in two fluorescent channels to detect
the cell death signal.

A fluorescent image is taken every hour using a Zeiss Axiovert 100M inverted micro-
scope. The CellEventTM marker is mixed with a ratio of 20 µl per 1 ml of ExpMedium. The
PI marker is mixed with a ratio of 5 µl per 1 ml of ExpMedium. It has been shown that PI
presence in medium is not toxic for cells [119]. The fluorescence is detected in green with
“Zeiss Filterset-10”, with a band pass excitation filter (450-490 nm) and bandpass emission
filter (515-565 nm) and in red with “Zeiss Filterset-00”, with a bandpass excitation filter
(530-585 nm) and longpass emission filter (616 nm).
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Figure 3.3: Single family tracking in micro-slit.
a) Family tree of four daughters from a single ancestor. b) Corresponding brightfield
images. The detected single cells are in purple circles and the trajectory of cells are color
coded with the last 10 steps visible in each frame. The properties of single cells are
extracted from their tracks. The cell size (c) is estimated from the bright field image. The
intensity of fluorescent signal is also obtained for the Caspase 3/7 marker (d) and PI signal
(e).

Figure 3.3 shows all the major steps for tracking one family of cells in one micro-slit.
Figure 3.3.a is the family tree from a single ancestor in one micro-slit which give rise
to four granddaughters as shown in the corresponding brightfield image in Figure 3.3.b.
The cell detection and tracking is done automatically and in parallel for the complete
array of the micro-slits. Figure 3.3.c-e shows the three signals that are automatically
obtained from the samples plotted against time. Cell size is used as a representative of cell
morphology (Figure 3.3.c), caspase is the early apoptotic signal (Figure 3.3.d) and PI is
the late apoptotic signal (Figure 3.3.e).

The background correction was performed using and in house software based on earlier
work in our collaborator’s group [120]. After background correction, the signal from the
fluorescent channels has been measured as presented in Figure 3.3.c. While both fluorescent
signals show an increase at cell death, the intensity was not strong enough for an automatic
and decisive indication of cell death. On the other hand, the cell-shrinkage during the
apoptosis provides a distinct signature for cell death. Here we used this signal for further
analysis.
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3.3.5 Chemotherapeutic drug

We have chosen the proposed drug combination from [107] and, in the initial set of experi-
ments, followed the dynamics of cells in response to doxorubicin. The stock concentration
of 25 µM of Doxorubicin hydrochloride (VWR, Germany) in PBS is diluted in ExpMedium
for final drug concentrations in the experiments, i.e. 250 nM. Drug is added at 20 hours
after start of imaging to the whole micro-array. This means that for each individual cell,
the relative time of drug administration and cell-cycle is different. From the single cell
tracking over the first generation, we are able to calculate the exact time from the cell
devision, hence we know the cell phase at the time of the administration of the drug.

3.4 Statistical correlation analysis of single cell events

The dynamics of cells and their machinery is a stochastic phenomenon and a simple analysis
of microscopy data can not elucidate the process behind it. The statistical models and
analysis of data can give us a better understanding of the fate-decision making of cells.
Dingli et al. [88] applied a stochastic analysis on the behavior of the tumor cells and
proved that including the stochastic dynamic in the analysis can explain both remission
and rapid expansion in tumors. A study of heterogeneity in stem cell populations provides
clues about the dynamics of differentiation [121]. We have also showed in chapter 2 [74]
that the statistical analysis of motion can substitute the fluorescent markers.

Besides the fluorescent signal, single family tracks contain several descriptive features of
trajectory and morphology of cells such as their temporal and spatial proximity. Through
these data, we are not only able to extract the heterogeneity of population, but also the
correlations between the response of unrelated-neighboring cells, sister cells or cells at
different cell phase.

3.4.1 Doubling time

In our studies, we followed the family of single ancestors over two generation using micro-
slit arrays. This way we could directly resolve the doubling times of cells at single cell
level. Figure 3.4.a shows an exemplary track of one cell which gives rise to four cells within
the first 30 hours. The doubling times of a cell (tdiv) was measured from the difference of
the first t0 and second divisions. Without the loss of generality we called the first daughter
cell that divides number 1, with doubling time of tdiv(C1).

The model system, MOLM-13 cells was observed for 40 hours to allow for a minimum
of two division. Figure 3.4.b shows the experimental results from a population of 320 cells.

Doubling time distribution
The doubling time of cells is an important factor in prediction and the control of size
of a population, e.g. tumor growth [122], therefore, it has been modeled and described.
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Gregory et al. [123] has modeled the distribution of tumor doubling time for leukemia
tumors.

The base of almost all of mathematical model present is the von Foerster equation for
age density function [124]. Von Foerster proposed the model as a way to describe the
behaviors of cells in a population. The equation,Equation 3.1, describes the variation of
the number of cells n(a, t) at each cell phase in a given time:

δ(n)

δ(t)
+
δ(n)

δ(a)
= −λ(a)n (3.1)

Here, a is cell age, t is the time, and λ(a) is the cell loss factor, which can be due to
cell division or death. Assuming that the loss factor λ is only due to division, a probability
density function (pdf) ω(a) can be used to describe doubling time at single cell level.
Several studies used a gamma distribution function [125, 126, 127] as pdf. This choice has
been suggested by postulating a stochastic birth process in theory [128] and empirically on
bacterial populations [129].

On one hand, a gamma distribution can be described as a sum of exponential functions.
On the other hand, cell division is a consequence of several inter and intra-cellular steps
which in turn can be described by exponential functions. Therefore, as Baranyi et al. [130]
also argued, a gamma distribution can better explain the doubling time over other types
of distributions. Equation 3.2 shows gamma distribution for a population of N single cells.
Where β and α are the rate and the shape parameters of equation, respectively.

Nω(a) = N
βα (a− a0)α−1

Γ(α)
e−(a−a0)β (3.2)

Where in Equation 3.2, the mean value is τave. = α
β

and the standard deviation σ =√
α/β2.
In Figure 3.4.b the single cell distribution has been fit with the gamma distribution,

shown as dashed blue line. The average doubling time here is τave. = 19.7 hours which is
in good agreement with population average. The standard deviation in this population is
σ = 2.6 hours.

Log-normal or gamma distribution
Some of the population studies on tumor cell propose the log-normal distribution for mod-
eling of doubling time in different colonies [131, 123]. Hosoda et al. [131] also showed
that the log-normal distribution is widely present in several fields of science with similar
characteristics, suggesting a global model behind it. However, most of these studies lack
the comparison to the gamma distribution.

We have included this comparison between gamma distribution and log-normal distri-
bution on our single cell data. In Figure 3.4.b the red dotted line is the fit with log-normal
distribution. The statistical tests on both fit did not show any great difference between
two functions. The average doubling time from the log-normal fit is xc = 19.7 hours, same
as before.
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Figure 3.4: Distribution of doubling time of MOLM-13 cells.
a) Exemplary track of a single family of cells with corresponding brightfield images at se-
lected time-points. tdiv is the doubling time of individual cells. b) Distribution of doubling
time tdiv from 320 cells with an average of 19.7 hours. The log-normal fit is the dotted red
line and gamma distribution fit is the dashed blue line. c) Distribution of the difference
between doubling time of sister cells ∆tdiv. The dashed blue line shows the gamma distri-
bution with mean value of τave. = 2 hours. Inset: Correlation plot of tdiv for sister cells
(black dots) and randomly-paired cells (red triangles). The Pearson Correlation Coefficient
for sister cells is r = 0.85, and for random-paired cells is r = 0.25.

The variation in doubling time can be due to genetic mutation of cells as well as a
cell-to-cell variation. The sister cells have same genetic background, therefore it is possible
to only observe the effects of cell-to-cell variations. In the next section we introduce
the correlation between sister cells to investigate whether the distribution arise from the
intrinsic stochasticity of cells.
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3.4.2 Sister cell correlation

The cell-to-cell variation stemming from non-genetic intrinsic stochasticity of cells. It can
be observed by looking at the sister cells in individual micro-slits. Here, we compared
the doubling time of the sister cells inside the micro-slits. Figure 3.4.c shows a histogram
of the difference of doubling time between 160 pairs of sister cells (∆tdiv = tdiv(C2) −
tdiv(C1)). In order to compare and model this data we looked at the data correlations and
a mathematical equation for ∆tdiv.

Definition of correlation
Correlation is a scale that defines the relation between two variables, it is used as an
indicator of whether two variables happen at the same time or condition. A common value
that described the degree of correlation between two variables is the “Pearson’s Correlation
Coefficient” or “Pearson’s r” which was introduced in 1895 [132]. Rogeres et al. described
13 ways that the correlation coefficient can interpret data, e.g. mean values, regression line
slope, etc [133]. Here we used the original definition of the Pearson correlation as shown
in Equation 3.3

Pearson’s r = ρx,y =
cov(x, y)

σxσy
=

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
(3.3)

Where cov(x, y) is the covariance of the data-sets and σ is the standard deviation of
data. To use this correlation, data should come from paired observations and the variables
are normally distributed.

Gamma difference diffusion
Assuming the doubling time has a gamma distribution function, the difference in the
doubling time between sister cells is a difference of two gamma functions. This difference,
called gamma difference distribution (GDD) function, is calculate from the convolution
of two gamma distributions functions. Originally Mathai [134] and recently Klar [135]
calculated the exact formula of GDD. This complex formula as shown in Equation 3.4 is
mixture of several gamma functions. A detailed derivation of formula and applications in
our case in done in Appendix G.

f(z) = 2α−1β2α Γ(1− 2α)

Γ(α)Γ(1− α)
z2α−1 + 2αβ

Γ(2α− 1)

Γ(α)2
, z > 0 (3.4)

Stewart et al. [136] showed that the convolution of two gamma functions can be ap-
proximated with a new gamma function.

To model our data we approximated the data with a single gamma distribution function.
The dashed blue line in Figure 3.4.c shows this fit for ∆tdiv with an average of 2 hours.

To distinguish between the population heterogeneity and intrinsic stochasticity we com-
pared two sets of correlation of doubling time. The first set correlates the doubling time
of sister cells with each other. For the second set, we paired two random single cells and
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correlate the doubling time of these pairs. In both sets, the condition of tdiv(C2) > tdiv(C1)
applies. The inset of Figure 3.4.c shows these two correlations. The black dots are com-
parison of two sister cells with a Pearson’s correlation of r = 0.85. The red triangles are
from random-pairs with a Pearson’s correlation of r = 0.25.

The high Pearson correlation in sister cell doubling time indicates that division happens
at approximately same time. However, the variation shows that the non-genetic stochastic
variations can already have effects on the first generation. Other studies [137, 138, 139]
also confirmed that the intrinsic stochastic variations in protein numbers in sister cells
leads to uncorrelated behaviors.

On the other hand, the uncorrelated doubling time (r=0.25) in random-paired cells
suggest that the background history of cells has induce a high variability in a seemingly
homogeneous population.

3.4.3 Dynamics of response to doxorubicin

The response of MOLM-13 cells to the doxorubicin, a candidate chemotherapeutic drug, is
investigated using the cell division as a label-free indicator of cell cycle. Cells are observed
for ∼20 hours (approximately one cell cycle) prior to the administration of the drug. This
is to assure that the majority of cells have already divided once. The cell mitosis, i.e.
division time t0, is used as the reference point for cell-phase indication. Doxorubicin is
added after 20 hours from start of imaging. For each individual cell the age of cell from
division to the time of drug administration is noted by Tc. The time it takes for the drug
to kill the cell is Td. See Figure 3.5.a for a schematic of the experimental procedure. The
difference between the time of death of sister cells is indicated by ∆Td.

As explained before (see Figure 3.3.c), Td is detected with three signals, by Caspase
3/7 marker Td−c, by PI marker Td−p, and by the collapse of cell size Td−s. However, after
the experimental data was analyzed we observed a poor fluorescent signal in comparison
to the clear signal from the shrinkage of cell upon apoptosis. The manual investigation of
these signals show a close time-agreement between the three events, with the sequence as
first onset of caspase, second cell shrinkage and finally onset of PI marker.

We have also compared the automatic image processing of the fluorescent signals Td−c
and Td−p and the brightfield channels. In both experiments, i.e. synchronized and non-
synchronized populations, the morphological changes and degradation of cells were visible
much earlier than the presence of detectable fluorescence signal. We believe this is due
to the time that the fluorescent markers needs to aggregate on the DNA for a visible
signal. This leads us to consider other label-free technique for apoptosis detection. In the
automatic detection for statistical analysis, Td−s is used.

Figure 3.5.b shows the scattering of the time to death Td vs the age of the cell tc for
the single cell events. If the drug would only affect the cells at a specific time in cell
cycle, the scatter plot would have concentrated at a specific tc. The shown scatter plot
is evenly distributed at all cell phases. Hence, there is no obvious correlation between
the doxorubicin and a cell phase. Spencer et al. [110] observed the similar no-cell-cycle
dependency in TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand)



3.4 Statistical correlation analysis of single cell events 49

Figure 3.5: Single cell response to doxorubicin.
a) Experimental procedure for drug administration. The chemotherapeutic drug is added
after ∼20 hours to let all the cells divide once. The cell age at the time of drug administra-
tion is a. The time from the administration of drug to the cell death is Td. The difference
in time to death between sister cells is indicated by ∆Td. b) Distribution of apoptotic
cells in response to drug administration. c) The distribution of time to death (Td). The
minimum lag time for the onset of drug effect on the cells τmin is 3 hours and the maximum
killing happens at τave. 5.5 hours.

induced apoptosis of Hela cells.

Figure 3.5.c is the number of death events per hours after the administration of drug.
There is an onset time before the effect of drug can be seen on the cells which is indicated
as τmin.. The response of MOLM-13 leukemia cells to the doxorubicin in Figure 3.5.c has a
3 hours onset time. The average time to kill the cell τave. corresponds to the mean value of
the fitted gamma distribution function which is τave. = 5.5 hours. The lag time has been
observed in all of the apoptosis studies which depending on the part of apoptosis pathways
under investigation can be dose independent or dependent [140].

3.4.4 Dynamics of response to doxorubicin: synchronized popu-
lation

We have repeated the experiment with exact same conditions on a population of synchro-
nized cells. A “double thymidine block” synchronization [116] was applied to population
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Figure 3.6: The distribution of cell apoptosis from 472 synchronized single cells.
a) Time course of experiment. t0 is the time of mitosis. Double thymidine block arrest the
cells must at G1/S border. The time difference is on average ∼8 hours, i.e. the length of
G1 phase. Fluorescent imaging started 3 hours after release and doxorubicin was added at
4 hours time-point. b) The number of apoptotic cells per hour (caspase 3/7 positive cells).
The fitted blue line is the gamma distribution with mean value 17.4 hours which results in
τave. = 13.4. The onset of doxorubicin effect is τmin. = 4 hours.

and then released 3 hours prior to the start of imaging. The synchronized cells are ar-
rested at the border of G1/S-phase. Doxorubicin drug was added 1 hours after the start
of imaging.

Figure 3.6.a illustrate the time-line of events and how it is compared to the experiment
with non-synchronized cells. The arresting point of synchronized cell, e.g. G1/S border, is
later than the division point, t0, with the length of G1 phase. The length of G1 phase can
be ∼8 hours [141]. In Appendix F we have a brief description of cell phases. Hence, the
age a for synchronized cell is the time from G1/S border tGS plus ∼8 hours.

Figure 3.6 shows the number of cell death event per hour after adding the drug. In the
analysis, we only included the cells that have died within the observation time-window (22
hours) which is around 95% (estimated qualitatively) of all the observed population.

The onset of doxorubicin effect on the synchronized cells, τmin., is 4 hours. This value
is close to τmin. of non-synchronized cells, suggesting that the onset of drug effect on
most susceptible cells is constant. There is a heterogeneity in susceptibility of population,
however, it does not have a clear correlation to the cell cycle.
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The average killing time for synchronized cells τave. is 13.4 hours. In comparison to the
non-synchronized population (τave.= 5.5 hours), it takes longer to kill the population of
synchronized cells.

The shape of response to drug is also different in two populations. The synchronized
cells exhibit broader distribution in response to doxorubicin. The standard deviation of
the distribution for non-synchronized cells σnon−sync. is 3.6 hours while for synchronized
cells σsync. is 5.1 hours.

In order to explain this phenomenon, we must remember two intrinsic characteristics
of synchronized cells. First, the synchronized cells are not arrested at a precise moment,
but rather have a distribution around the blocking point. Additionally, upon removing
the blocking agents and releasing the cells, it is possible that individual cell starts the
normal cell cycle at different time-point, which adds another stochastic parameter into the
response equation. Both effects can broaden the response distribution.

Miwa et al. [90] showed that in a chemotherapy treatment the arrested cell survive
the treatment, and form a chemoresistant subpopulation. In case of delayed release in our
MOLM-13 cells, the late cell death can be explain by this phenomenon. The arrested cells,
i.e. synchronized but yet not released cells, can survive the attack of doxorubicin. The
constant presence of drug in our sample on the other hand assures that onces the cell start
their cycle, they will be hit and killed by the drug.

The two aforementioned explanations can explain the broadening and more resistance
in the response of synchronized cells, however it does not exclude other artifacts that can be
introduced to the population through the synchronization. From our study we could clearly
conclude that the synchronization process introduce artifacts in the population response.
We believe that our label-free cell cycle detection analysis which uses the division time t0,
do not introduce any artifact in the system and therefor, is closer to in vivo conditions.

In the next section we describe a novel idea that come from spectroscopy field and can
be used as a label free apoptosis detector.
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3.5 Raman spectroscopy & apoptosis signature

The Raman microscopy of a single cell over time can be used to track the development
of single cell. The time-lapse fluorescent study of apoptosis has already been shown in
previous section, here we propose Raman microscopy as a label free technique to study the
response of leukemia cells to the chemotherapeutic drug. Before introducing our apoptosis
study, the concept behind Raman spectroscopy and the data analysis is described in the
following subsections.

3.5.1 Raman spectroscopy

Raman spectroscopy is based on the inelastic scattering of a monochromatic light. The
incident light interact with a molecule to excite it to a virtual energy state, an inelastic
photon is emitted when the molecule returns back to a higher energy state (Stokes Raman
scattering) or lower energy state (anti-Stokes Raman scattering). The resulted shift in
photon frequency is detected for the Raman spectrum (Raman shift). This shift is normally
reported as an inverse of wavelength and is called wavenumber. The Raman spectrum of
each material has specific signatures corresponding to vibrational and rotational modes of
molecule. This is a clear non-destructive signal that is able to identify the composition of
materials.

High intensity lasers can nowadays easily be integrated in an optical microscope system
and be used to analyze and detect the material composition in micro-particles. It has
been extensively used in solid state physics and geology for surface characterization. The
coupling of a Raman laser into a confocal microscopy system, enables a raster scan of a
bigger area. By selecting for a material and plotting the intensity of their Raman signature
on the scanned area, one can produce a micro-graph of distribution of material over a special
area, e.g. a cell.

3.5.2 Raman signatures of single cells

Raman micro-graphs is used more and more in cell biology as a label free detection tech-
nique. It can identify and map co-localization of bacteria and minerals in magnetotactic
bacteria [142], or calcifying bacteria [143, 144].

Klein et al. [15] used the “mutual information” methods on fluorescent image and
Raman micro-graph and were able to identify the regions of interest in Raman spectra for
cell organelles such as nucleus, mitochondria, cytoskeleton, and . . . .

The construction of micro-graph takes a long time, from several minutes to hours,
therefore the whole-cell averaged spectra is used for live cell imaging. A Raman tweezers
is able to trap a cell and collect the Raman spectra from the cell as an ensemble. While
the sub-cell spatial resolution is lost, a temporal resolution is achievable. The time-lapse
Raman microscopy provides the possibility to investigate the cell development at single
cell level. Raman tweezers has already been used to detect cell type in Hodgkin disease
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[145], apoptotic versus healthy cells [146, 147], oxygenation cycle in a single blood cells
[148], and developmental stages of stem cells [149].

3.5.3 Data analysis: Raman spectra

Raman spectra contains information from individual molecules in the form of intensity and
shape of spectrum at each wavenumber. The significance of this information is not imme-
diately visible and a robust analysis and data-interpretation is needed. The multivariable
data analysis techniques provide several tools and directions to extract useful information
from the Raman spectra.

Background correction
Since all materials, from cell and microfluidic sample, contribute to the Raman signal, the
first step is to subtract the background information from the signal of interest. The back-
ground correction can either be done by analyzing the spectra with background correction
algorithms or use a blanked baseline reference.

The software of our Raman microscopy system, BioRam R© (Celltool, Germany), uses
an internal background correction algorithm based on Whittaker smoother [150]. The
Whittaker smoother is based on a discrete penalized least square algorithm which balances
the fidelity of the data and roughness of fitted curve. The Whittaker baseline correction
and its implementation on Matlab and R codes are available, e.g. see [151, 152, 153].
Unfortunately, no more detail on the method of implementation of Whittaker smoother in
the BioRam R© software is given.

The manual background correction uses the raw Raman spectra from empty parts of
the sample, e.g. without the cells but including the exact medium and substrate. The
empty sample is used as a reference baseline which is subtracted from the raw data.

We tested both background correction on our experimental data and saw no significant
difference on corrected spectra and consequently in the output of the multivariable data
analysis.

Multivariable analysis
Multivariable analysis is necessary for interpretation of Raman spectra of complex systems
especially biological samples [154]. There are two categories for analysis of a composite
spectrum: first is to find the linear combination of known spectra to make up the final
spectrum of the sample; second is to deduce the original spectra from final spectrum of the
sample by training an algorithm with enough exemplary data points. This methods, i.e.
inverse least square, need one spectrum per Raman wavenumber, e.g. around 1000 data
points for one sample. Advance algorithms can be used to reduce the the number of sample,
such as multi linear regression or principal component regression. Here, we introduce two
methods that has been used for analysis of biological samples in recent Raman studies:
principal component analysis (PCA) and biochemical component analysis (BCA).
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Principal component analysis
Principal component analysis method is a non-parametric method which analyze the sets
of data and transform them to a new orthogonal set of variables. The new set of variables
are uncorrelated and based on statistical variance of initial dataset. The first component
is the one with highest variance and the following components has the lowest variance and
orthogonal to first set.

The Raman spectra of a cell embeds detail information about the composition of cell
material. While the big part of information is identical for every cell only specific parts
of data varies in the cells at different conditions. This variation is shown as a change in
intensity or position of peaks. The power of PCA analysis can be well used in this situation
to reduce the variables, i.e. intensity of wavenumber, to only simple underlying variables
(PCs) with significant variance. Plotting the PCs on a x-y coordinate provide a power-
ful and simple representation for classification of biological samples into the separated,
distinguished groups.

PCA has been extensively used in Raman spectroscopy of biological systems, either as
a stand alone method or in combination with other analytical methods like neural network
learning algorithms [155] or least square analysis [153].

Biochemical component analysis
When working with biomaterial another approach is to use the known set of spectra of pure
biochemical components as the basis component for analysis. This is called biochemical
component analysis (BCA) [156] or direct classical least-squares (DCLS). The spectra basis
for cell consist of spectra of biological components such as DNA, RNA, proteins, and lipids.
BCA algorithm looks for a best fit of a linear combination of the basis component that
matches the Raman spectrum of sample. The changes in cell components will affect the final
spectrum. BCA can directly identify the changes in chemical and biological components
of cell. However one has to keep in mind that this analysis is sensitive to the initial choice
of basis set.

In comparing PCA and BCA, Ong et al. [157] concluded that there is no significant
difference in classification accuracy on apoptosis study. However, if the correct set of
initial spectra is available, BCA gives a better insight to the biological changes, while PCA
provide no information about the chemical or biological bases of classifications. For our
studies, since the complete set of information for a BCA analysis is not ready we chosen the
PCA analysis. We borrowed the idea from BCA analysis and chosen the parts of spectra
that has already been shown to show a significant changes during the apoptosis.

3.5.4 Label free detection of apoptotic stages with Raman mi-
croscopy

It has been shown that the apoptosis and necrotic stages of cells affect the Raman spectrum
of cells [147, 14, 158]. The specific Raman peaks can be used as a non-invasive label-free
indicator of apoptosis. Here we introduce a structured surface to localize non-adherent
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cells for time-lapse investigation apoptosis.
Our model system was doxorubicin induced apoptosis on MOLM-13 leukemia cells. The

condition of drug administration and sample is the same as described before. The only
difference is the shape of micro-patterns which is similar to those of chapter 2, a circular
patterns with diameter of 30 µm and depth of 30 µm.

The Raman spectrum was obtained with a commercially available Raman microscopy
system (The BioRam R©, Celltool GmbH, Germany) at CellTool company (CellTool GmbH,
Bernried, Germany). Raman excitation laser has a 785 nm wavelength. While the BioRam R©

system includes an automated stage with a standard brightfield microscope, it does not
have an on-stage incubation capability, nor the possibility of simultaneous fluorescent mi-
croscopy. Therefore, we have to run two separate identical experiments, one time-lapse
fluorescent microscopy and one time-lapse Raman spectroscopy. For a comparable results,
we used the synchronized population.

Figure 3.7 shows the results of apoptosis detection with Raman spectroscopy. Due to
technical limitation, the measurements were done only at tree time-points, before drug (t0,
black), after 3 hours (t1, red) and after 5 hours (t2, green). Comparing the spectra of a
single cell over time shows a trend in some peaks. Movasaghia et al. [159] extracted the
relevant peaks for biological and biochemical components from the literature, we have used
their suggestions in defining the range of interest as the apoptosis specific wavenumbers.
Here we chose these domains 864-888 cm−1, 1038-1051 cm−1, 1100-1131cm−1 which are
shown in Figure 3.7.a as blue shaded areas. Some of the other peaks corresponding to the
cell components, such as proteins, RNA, and nucleic acid are shown as gray shaded areas
in Figure 3.7.a.

PCA scatter plot for PC-1 and PC-2 is shown on the full spectra (Figure 3.7.b) and
exemplary apoptosis specific domains (Figure 3.7.c, .d). As it is shown in the PC analysis,
Raman spectra can distinguish alive, early apoptosis, and late apoptosis (i.e. secondary
necrotic) cells. While the cells are colored based on the time that the Raman spectra is
taken, one can see that some of the cells go through the apoptosis stages much faster and
already after 3 hours of adding the drug (t1, red) show the signature of a late apoptotic cell
(t2, green). The corresponding cell morphology for these points from brightfield images
confirmed that these cells had already reached a late apoptotic stage after 3 hours.

The higher PC values has also shown the possibility for separation of cells in apoptosis
stages. However, PC-1 and -2 cover most of the spectra information, as it is shown by
the percentage of data coverage, i.e. the percent value in parentheses of axis headers in
Figure 3.7.b-d.

The results showed that Raman spectroscopy can be used as a stand alone label-free
apoptosis detection technique. Using micro-well patterns assures the localization of the
cells under investigation, hence enabling the automated time-lapse Raman microscopy on
single cells. The limiting factor for single cell data collection is the time needed to celled an
spectra per cell which now is minimum 30 seconds. This study can be used as a label free
detection of cancer cells’ response to chemotherapeutic drugs at single cell level. A machine
learning algorithm with a well training sets for each type of cells can make the prediction
even more precise. Raman Tweezers, a Raman microscopy system combined with optical
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Figure 3.7: A Raman spectrum of 50 single cells is obtained at three time-points: before
(t0, black), after 3 hours (t1, red) and after 5 hours (t2, green) of the administration of
doxorubicin. a) The biologically significant part of the spectra of an exemplary cell, the
domain of apoptosis (blue shade) and other cell components (gray shade) are obtained
from literature [159, 145]. The principal component analysis (PCA) of Raman spectrum
is calculated and the PC-1 and PC-2 is plotted in for b) full spectra, c) spectra in range of
864-888 cm−1, and d) spectra in range of 1038-1051cm−1. The percentages show the part
of spectrum that is used in that PC value.

tweezers, [155] can be used as an online detection system to sort and classify the cells.
Next chapter introduces the optical tweezers and the possible cell sorting capabilities.



Chapter 4
Optical tweezers for cell sorting

Laser based techniques have been used in clinical context in wide range of applications.
In single cell studies, an optical tweezers can be used to select and move individual cells.
We used this tools to develop a lab on a chip device for single cell sorting. The single cell
sorting can be used for a detailed analysis of special cells in a population. For example a
drug resistant cancer cell or a non-differentiating adult stem cell.

In this chapter we introduce two aspect of laser application in biology: 1) Actuator/De-
tector; 2) Cell sorting. We used an optical tweezers to grab and move single cells. This
was used in The first section describes the application of optical tweezers as a tool for cell
adhesion detection. In the second section a drag-and-release of single cells with optical
tweezers was used for a cell sorting device. We designed and fabricated a chip which inte-
grated our micro-well arrays platform with a flow system and enables us to track hundreds
of cells in parallel and at any time select and extract individual cells from the population
for off-chip analysis.

We showed that an automated lift-and-release of cells with optical tweezers can be used
as a label-free detection for adherence of cells in micro-well arrays. Based on this lift-and-
release approach, we designed and perform the preliminary experiments on the single cell
sorting device.

4.1 Optical tweezers: Manipulation and measurement

at nano-scale

Laser, light amplification by stimulated emission of radiation, is an intense spatiotempo-
rally coherent beam. The first functional laser was introduced by Maiman in 1960 [160].
The unique properties, like high intensity and monochromatic light, became a powerful tool
in solid state and quantum physics. These properties with the intrinsically sterile prop-
erties of light lead to the extensive application of lasers in medical and clinical platform.
Main application includes the use of intense light as a minimal damage scalpel, wound
cauterization, or removal of kidney stones.
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In 1970 Ashkin [161] introduced the possibility of confining and moving a micron-size
particles with a laser beam. The idea of micromanipulation grow rapidly in the coming
years by introducing a single beam optical trap, i.e. optical tweezers [162]. The optical
tweezers can confine a micro-particle in a minimum of the potential force field. The princi-
ple of a single beam optical trap is based on a focused Gaussian laser beam, which induces
balanced scattering and reflecting optical forces on a transparent spherical-particle which
consequently holds it in the center of focal point of laser. An optical tweezers can have sub-
nanometer resolution with forces ranging from sub-piconewton to nanonewton [163, 164].
The force measurement of optical tweezers rely on the interplay between properties of laser
beam and sensitivity of detector.

The technical definition of optical tweezers refers only to the optical traps that are
achieved by a single laser beam, however as it is widely common in literature we used the
terms “optical tweezers” and “optical trap” interchangeably.

4.1.1 Forces and displacement in an optical tweezers

In his original paper [161] Ashkin showed that a transparent microparticle with higher
refractive index than surrounding medium is pulled toward the center of a zero mode laser.
This laser has a beam with a cross section profile of a single peak 2D Gaussian, which
is the lowest order of transverse electromagnetic (TEM) mode called TEM00. The main
characteristics of an optical tweezers is defined by the mode, wavelength and intensity of
laser beam, the shape and size of trapped particle, and optical characteristics of surrounding
medium. An optical tweezers can be approximated with a Hookean spring with a spring
constant representing the strength of electromagnetic well. The resolution and accuracy
of the force and displacement measurement relies on the interplay between properties of
laser beam and sensitivity of the detector.

There are two categories of optical forces on a transparent particle in the trap, scattering
and gradient. Scattering forces are due to reflection of light from the interfaces which
pushes the particle away in direction of light. Gradient forces are due to the changes in
momentum of the light passing through the particle which pulls the spherical particle to
the high intensity regions. Figure 4.1.a and .b shows the vector representation of the forces
and how the resultant force guide the bead to the center of focal point. Both types of forces
are present in all optical regimes and depending on the ratio of microparticle’s diameter (d)
to wavelength of laser (λ) an analytical calculation is available. The optical system can be
in Rayleigh (d� λ), ray-optics (d� λ), or Mie (d ≈ λ) regimes. Ashkin [162] showed the
detailed calculation for the forces in ray-optic regime which are valid for particle diameters
at least 10 times larger that the wavelength of laser (d > 10λ).

The analytical solution in Rayleigh regime is possible when assuming the particle as
a dipole in inhomogeneous electric field of laser. Measuring the electromagnetic forces on
the dipole [165] and the effect of gradient and scattering forces on sphere [166] results in a
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Figure 4.1: The forces in optical tweezers and the trap stiffness calibration.
In (a) and (b), the exemplary rays m and n go through the focal point of laser beam. The
transparent bead deflect the rays when a) beads displaced in direction of the beam b) bead
is displaced in across the beam. This results in a net force which pushed the bead back to
the center of focal point (adopted from [162]). In (c), (d), and (e) the different methods for
measuring the trap stiffness is shown. These are all exemplary data-points for a) a bead
deflected with a known laminar flow with speed v, b) thermal fluctuation of bead in the
center of trap, c) Power spectrum Sx of the Brownian motion of trapped bead.

simple Lorenz force on dipole as in Equation 4.1.

~F = q

(
~E1 − ~E2 +

d(x1 − x2)

dt
× ~B

)
(4.1)

Where the change of electric field long the dipole is ~E1 − ~E2 = ((x1 − x2) · ∇) ~E and

dipole moment ~p = q(x1 − x2) = α~E. This leads to Equation 4.2.

~F = α ∇
(

1

2
E2

)
(4.2)

For the Mie regime which the particle size and wavelength are close, Nieminen et al.
developed a Matlab toolbox based on Lorenz-Mie theory [167].

While the analytical and numerical calculation is now available for an accurate com-
putational model of a trap, the force measurement and calibration must always be done
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empirically as a step before the experiment starts. The quality of optical instruments as
well as environmental conditions such as temperature and electrical instability affect the
shape and intensity of laser beam. For example, The minimum size of the focal point
of laser in TEM00 mode is theoretically equals to the wavelength of the beam, however,
it changes depending on optics (change in mode, divergence) or environmental distortion
(temperature). The (bio-)chemical composition and temperature can also affect the refrac-
tive index of medium hence changing the gradient and scattering forces.

For empirical calibration, the optical tweezers is approximated by a Hookean spring
and the trap stiffness κ is measured from the calibration. The trap stiffness sums up the
effect from parameters such as NA of microscope objective, wavelength of the laser, laser
power at the focus, laser-beam profile and polarization, refractive index of particle and
medium, and shape and size of the particle. Several ways has been suggested to calibrate
the stiffness of the trap [168, 169, 170]. The calibration can be done with one of these
methods: 1) Stokes drag force. 2) Thermal fluctuations. 3) Power spectra.

1) Stokes drag force
This method records the displacement of spherical microparticle under the influence of a
known laminar flow. At different speed the bead has different deflection from the center
of optical tweezers which in short-distance has a linear dependency (see Figure 4.1.c). If
the particle radius (r) and flow velocity (v) is known, the trap stiffness (κ) can be easily
derived from the Stokes’ law for frictional force shown in Equation 4.3.

κx = 3πµdv (4.3)

2) Thermal fluctuations
The thermal fluctuation, or Brownian motion, of the bead in a steady state condition is
compensated by trap forces (see Figure 4.1.d). This equilibrium can be shown by a simple
formula as Equation 4.4. This method does not need prior knowledge about the fluidic
system. However, it is prone to error induced to the system from other vibrational sources
or inaccuracy in positioning resulting is positional drifts.

κ =
KBT

〈x2〉
(4.4)

3) Power spectra
This method investigate the characteristics of Brownian motion in frequency domain. Berg-
Sørensen et al. [171] showed that the power spectra density Sx(f) of a Brownian particle
can be approximated by a Lorentzian as Equation 4.5

Sx(f) =
KBT

2 ∗ π2γ0(f 2 + f 2
c )

(4.5)
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where f is the frequency, fc = κ/(2πγ0) is the corner frequency, and γ0 is the friction
coefficient of Brownian particle. By fitting the equation to the power spectra, corner fre-
quency gives the trap stiffness. One important note here is the consideration for fitting algo-
rithm. The power spectra points are distributed exponentially about the theoretical value.
On the other hands, the least-square fitting algorithm assumes a Gaussian-distribution
about theoretical value. Using “blocking” of data points, as suggested by Berg-Sørensen
et al. [171], transforms the exponential distribution to a Gaussian distribution (see Fig-
ure 4.1). The new set of data then is fitted using least square algorithm.

All of the mentioned methods have advantages and disadvantages based on the available
components on the optical setup. While drag coefficient calculation is straight forward,
controlling the flow velocity and avoiding the wall effects on the bead motion need a careful
microfluidic design. On the other hand the other two techniques rely on a fast and accurate
detection of Brownian motion of a particle. This requires a sensitive CCD camera or four
quadrant diode sensor.

The polystyrene bead is a prime candidate for a trapped particle in optical tweezers
because of its shape and refractive index. It is used as a trapped object with linkers to
the bio-molecules which are involved in interactions, this way the forces and displacements
can be measured and applied indirectly. However, recently it was shown that some bio-
materials also have similar refractive index, hence can be confined and manipulated by
optical tweezers, see Table 4.1 for some examples [172]. In the next section we introduce
the application of optical tweezers in biology and single cell studies.

4.1.2 Optical tweezers on biological samples

With the introduction of transparent microfluidics and single molecule studies, the optical
tweezers was used to investigate cellular and molecular properties of biological samples.
It has been used to move macromolecule and proteins and measure the interaction forces
precisely. For example the forces and motion of myosin [173] and kinesin [174] motors was
characterized by an optical tweezers. However, one always has to keep the photo-damages
from laser intensity in mind. The adverse effect can be high even at some hundred mili-
Watt intensity. The bio-molecules are linked to the trapped polystyrene beads to prevent
the direct photo-toxicity effect from a high intensity beam.

As it was mentioned the physical properties of biomaterials (refractive index, shape, etc)

Material η
polystyrene sphere 1.59
proteins 1.51
lipids 1.48
mitochondria 1.42

Table 4.1: Refractive index (η) of some common material in biological research.
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is close to the polystyrene and can in principle be directly trapped. Recently the research
studies showed that, with correct considerations, it is possible to directly trap a cell. The
most prominent effect is the absorption of laser that results in heating and destroying the
tissue. Water is the major absorbent medium in this system, hence avoiding the maximum
absorption peaks of water reduces the heating effects. The 1064 nm and 760 nm lasers
meet the minimum absorption criteria, and has been successfully used in tissues and single
molecule studies [175]. The 760 nm trap showed low photo-damage in the cell and cell
organelles, e.g. mitochondria [176].

Non-adherent spherical shaped cells are good candidates for a direct cell-trapping in
an optical tweezers. In the next section we used MOLM-13 cells line with spherical shape
and average diameter of 20µm and trapped them in an optical tweezers built on a 1064 nm
laser.

4.1.3 Optical tweezers to detect the cell adherence

We used the optical tweezers to identify whether a cell is adhered to surface. The MOLM-13
cells are naturally non-adherent spherical cells. It is possible to attach MOLM-13 cells to a
functionalized substrate. Here, we used Poly-L-Lysin (PLL) coated surface to immobilized
cells.

Our optical tweezers is built with an Nd:YAG laser with 1064 nm wavelength (DPY
301 II OEM, Coherent, Germany) on a Zeiss 100M inverted microscope. The laser is
connected to the computer through an Arduino Uno board and the whole microscopy
and optical setup is controlled through a custom written program on the MicroManager
platform [6]. A simplified schematic of laser beam path is shown in Figure 4.2.a. A short
pass filter is set in front of camera to block the scattering signals of high-intensity laser to
prevent the saturation of brightfield image. The beam expander in Figure 4.2.a increase
the diameter of laser beam in-order to fill the backplane of objective which results in a
better focused optical trap.

At the current state of setup, the trap cannot be calibrated, however, the qualitative
measurement of strength of cell adherence is possible. We were able to trap and move
polystyrene beads with diameter of 15µm, as well as, MOLM-13 cells with average diameter
of 20 µm. Figure 4.2.b shows a successful trapping and moving of a single cell. The stage
motion and image acquisition was automatically adjusted. The stationary bead on the left
side was used here as a reference for motion of the cell.

The viability of the cells under the exposure of laser light has been tested using exper-
imentally relevant exposure times. In four separate experiments, cells were trapped for 10
or 20 seconds every 10 or 20 minutes for total of 2 hours. A brightfield image was taken
on each trapping time as well as after 2, 4 and 6 hours after exposure. The viability of
the cells was measured based on their morphology. It was shown that for the experiments
with 10 seconds exposures, more than 80% of cells survived. At 20 seconds exposure only
<50% of cells were viable.

The automatic cell adherence detection which is described in chapter 2 can detect an
adhered cell on a time-lapse movie. However, Brownian motion detection is not able to
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Figure 4.2: Optical tweezers’ setup.
a) This is a schematic of beam path for an optical tweezers microscopy system which is
coupled to a fluorescent microscope. b) Trapping and moving a cell on the glass substrate,
the red circle indicate the position of laser center, Bead is used as a reference for the
motion.

show the strength of adherence forces or deduce the adherence at a single time point. Here
we proposed a lift-and-release of cell with optical tweezers to indicate the adherence. A
non-calibrated OT can indicate whether a cell is bond to surface and do so for hundreds
of cells in parallel. A fully calibrated optical tweezers is able to measure an exact force
needed to detach a cell.

In the adherence experiments, we seeded the cells on a micro-well array substrate.
Figure 4.3 shows the experimental steps for an automatic detection of cell adhesion in
micro-wells. We have imaged the cells for 2 hours, on an uncoated and a PLL-coated
substrate. Four images are taken per lift-and-release of a cell. The position of focal planes
are shown in Figure 4.3 with FP#. The initial detection was done manually by comparing
FP1 and FP3. If the cell is lifted up it will be out of focus in FP3 while in focus in FP1.
This process can easily be integrated in an automated image analysis by correlating images
of FP1 and FP3.

The percent of successful lift-up cells over time is shown in Figure 4.3 for uncoated
substrate (.d) and coated substrate (.h). The error bars are the standard deviation of
mean of two separate experiments. The imaging started 30 minutes after the cells were
seeded on the substrate, this time is needed for the cells to settle down and transfer the
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Figure 4.3: The experimental procedure for single cell adherence test with optical tweezers.
Four brightfield images are taken per single cell, focal planes (FP) indicate the planes that
the images are taken. FP4 is taken 4 seconds after FP3 so the cell can settle down. The
procedure is as follow: Optical tweezers grabs the cell inside the micro-well (a,e), then trap
moves upward (b,f) and at the highest point laser is turned off (c,g). Non-adherence cell
follows the trap and falls back to the well (a,b,c) while adherent cell cannot follow the trap
and stays in the same position (e,f,g). The microscopy images are exemplary bright-field
images corresponding to the FPs. The results is shown as the percent of successful lift-up
of cells by optical tweezers for uncoated substrate (d) and PLL coated substrate (h). The
error bar is from 2 individual experiments. Notice that in (h) the y axis shows only to 9%.

sample to the microscope. The non-adherent MOLM-13 cells start to adhere to the PLL
coated substrate almost immediately after seeding the cells.

Cells on uncoated substrate remain non-adherent for the whole duration of experiment
with an average of 80% success rate. However, we also observed a 20% unsuccessful lift-
and-release events. These events can be explained considering two aspects, one is the
mis-alignment of optical tweezers on the time-lapse, two is the non-specific binding of cells
to the substrate.

The mis-alignment of OT happens because of the random motion of cells in micro-well.
The diameter of the micro-well (35µm) was chosen with the criteria described in chapter 1,
which allows the cells to move around inside the micro-well. The random motion of cell
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could push them out of the focal point of the optical trap which is a always a defined point
at each scanning position of the stage. Choosing a smaller micro-well will fix this problem
for a short term time-lapse studies. However, the effect of the small micro-well on the cell
behavior, e.g. proliferation rate, has to be investigated.

The non-specific bindings was shown to occur for the cells that are attached to the
micro-well walls (PEGDA polymers). The characteristics of these cells is that they fail in
lift-and-release in one step but succeed in the following step, hence no specific binding.
The non-specific binding can be either due to the surface roughness or interaction with
PEG polymers. A similar affect was observed for adherent cells, it was shown that they
can partially adhere to a PLL-PEG coated surfaces which has brushed PEG layers [177].

Here we have shown a simple label-free technique based on optical tweezers to detect
the cell adherence characteristics. The optical tweezers could distinguished an artificially
bond population from a non-adherent population. In future work, with combination of sur-
face functionalization and optical tweezers calibration, it will be possible to quantitatively
measure the development of surface proteins on the cell membrane.

4.2 Cell sorting: an integrated microfluidic system.

The time lapse study of cell decision making process with fluorescent markers provides an
insight on the developmental dynamics of cells based on the tagged genes. In diagnostics
and therapeutic studies it is also important to the overall composition of genes in a target
cell. The cell of interest or target cell can be a cancer resistance cell, a cancer stem cell, or
a differentiated stem cell. The gene composition analysis can reveal new candidate genes
for drug targets. To achieve this goals, it is required to sort and collect the target cells
from the microchip.

The isolation of sub-population and scarce cells from a blood sample, such as stem
cells, progenitors, or white blood cells, is the first step in many diagnostic and therapeutic
methods. The flow cytometry methods (e.g. FACS) is used for large populations. For single
cell studies, similar methods has been developed in microfluidic devices. For example, Baret
et al. [178] developed a fluorescent activated droplet sorting (FADS) microfluidic system.
The single cells were trapped in droplets and sorted using dielectrophoresis forces. They
were able to reach a with a speed of 300 droplet per second and accuracy of <1 per 104.

In recent years both active (e.g. droplet microfluidics [179]) and passive (e.g. microwell
arrays [180]) microfluidic systems has been developed to sort and separate cells. Bhagat
et al. [181] reviewed a variety of microfluidics devices. These devices sort the cells using
the biophysical characteristics of single cells such as size, shape, surface properties, surface
and bulk proteins, or polarity. Detection and classification of cells was done using both
fluorescent signals and label free methods such as gravitational, electrodynamic, acoustic,
or hydrodynamic forces [182]. All of the active microfluidics serially separate the cells
based on a single selection signal. However, in micro-well arrays it is possible to use both
spatial and temporal information to select the cells.

The optical manipulation of cells is another way to select and sort the cells.The use of
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optical tweezers for cell sorting was first proposed by Buican et al. [183] soon after the first
report on trapping of cells [184]. The optical forces can either push the cells to a collecting
compartments [185, 186] or pick them completely with optical tweezers. One single cell
drag and drop microchip was developed by Wang et al. [180]. They have successfully move
two individual cell in one micro-well and diffused them together. Some other studies also
used optical force to push a cell into the the constant flow on top of microwells and collect
them down stream [187, 57].

Here, we have developed a chip to combine the principle of simple collecting methods
from an active microfluidic channels with the temporal resolution from long term obser-
vation in micro-well arrays. This provides the possibility of further interrogations of cells
off-chip or in combination with other Lab-on-chip (LoC) devices. The review by Huang et
al. [188] provide an invaluable reference for combination possibility to analyze the selected
cells. The off-chip analysis could range from a simple FACS analysis, to colony formation
capability, or applying different condition for a reverse evolution of a stem cell. A genome
sequencing in normal PCR (polymerase chain reaction) or micro-chip based PCR [189] can
also be integrate at the out-put of our micro-chip for genome investigation. This bring the
possibility to correlate the dynamic behavior of the cell to possible intrinsic changes on the
cell not only in the fluorescently marked genes, but also on the other genes.

We have used the combination of a microfluidic system, a micro-well array, and an
optical tweezers for a “cell sorting” device for long term experiments. The microfluidic has
three channel with separate inlet-outlet. Figure 4.4.a shows an overview of the micro-chip
design. The center channel, “culture channel”, is for the long-term observation of cells and
in the micro-well arrays on the substrate (see Figure 4.4.b & .c). Cells are seeded only
to culture channel and captured by the micro-wells. The design of micro-wells prevent
the captured cell to flow out (See simulation in chapter 1). This way a constant flow of
medium can be used to initially wash away loose cells and further provide nutrients for a
long term experiment.

The two side-channels, “collection channels”, are used for collecting the cells and trans-
porting them out of microfluidic system. Figure 4.4.d shows the cross section of the chan-
nels, each channel has a width of 100 µm and a hight of 70 µm. There is a hanging wall
between the channels (with the width of 50 µm) which reduces the cross flow between the
channels while providing a narrow opening in the bottom. This 30 µm opening is used for
cell transport from the culture channel to the collection channels. An optical tweezers is
used to drag-and-release the cell of interest from the micro-well into the collection channel.

We have checked the flow rate in the channels. Figure 4.5 shows an example of flow
in the intersection of three channels, the fluorescent dye is used in the center channel to
visualize the flow lines. The proper combination of flow rate in all the channels is essential
to have a stable system for delivery and extraction of single cells. We have tested several
flow-rate and concluded that the equal values with maximum flow-rate of 10 µm min−1 for
all the channels gives the best result.

The cell-sorting microfluidic device is developed as a highly integrated manipulation,
detection and treatment LoC system. This device is capable of hosting cells for long-term
time-lapse investigation and select the candidate cells for further off-chip investigation. All
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Figure 4.4: Cell sorting micro-chip.
a) A three channel microfluidic for cell sorting. The center channel (green) has micro-well
substrate to hold and analyze the cells, i.e. culture channel. The two side channels (red)
are separate sorting channels for two types of cells, i.e. collection channel. Cells are selected
based on fluorescent signal, Raman signal (as in 3.5.4), or label-free motion technique (as
in 2) and moved using optical tweezers. b) Phase contrast image of junction of three
channels. c) Phase contrast image of the middle part of the channels showing the center
patterned channels and two sorting side channels. d) Cross section of micro-channels. The
half walls separates the channels to reduce the possibility that a sorted cell goes back to
the micro-wells down stream the channel.

the observation, detection, and selection process can be automatized hence minimizing the
user involvement and increasing the single cell data analysis. This microfluidic system has
a promising capability to study the dynamics and genetics of a drug resistant cancer cell
and the final selection mode for a PCR analysis.
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Figure 4.5: The experimental flow profile inside the cell sorting LoC device. The flow speed
in the center channel and side channels are the same. The green fluorescent dye is added
in the center channel for visualization.
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The kinetics of stem and progenitor cell differentiation at the single-cell level provides essential clues to

the complexity of the underlying decision-making circuits. In many hematopoietic progenitor cells,

differentiation is accompanied by the expression of lineage-specific markers and by a transition from a

non-adherent to an adherent state. Here, using the granulocyte-macrophage progenitor (GMP) as a

model, we introduce a label-free approach that allows one to follow the course of this transition in

hundreds of single cells in parallel. We trap single cells in patterned arrays of micro-wells and use

phase-contrast time-lapse movies to distinguish non-adherent from adherent cells by an analysis of

Brownian motion. This approach allowed us to observe the kinetics of induced differentiation of primary

bone-marrow-derived GMPs into macrophages. The time lapse started 2 hours after addition of the

cytokine M-CSF, and nearly 80% of the population had accomplished the transition within the first 20 h.

The analysis of Brownian motion proved to be a sensitive and robust tool for monitoring the transition,

and thus provides a high-throughput method for the study of cell differentiation at the single-cell level.

Introduction

Single-cell studies are increasingly being used in the biological

and biophysical characterization of living cells. In contrast to

population studies, which uncover only the average behavior of

many cells, single-cell studies examine the underlying dynamics of

the responses of individual cells to external triggers.1,2 Such

experiments shed light on phenomena ranging from early signaling

and responses at the level of protein synthesis to cell division and

cell fate choices.3 Single-cell analysis has also revealed phenotypic

heterogeneity in isogenic populations.4,5 Stem cell fate decisions

are prominent examples of heterogeneous system responses.

The unique ability of stem cells to give rise to many kinds of

differentiated cells makes them prime candidates for regenerative

medicine. Thus, single-cell analysis of hematopoietic stem cell

(HSC) decision-making promises to further our understanding of

the regulatory factors underlying fate decisions, with potential

impact on clinical medicine.

In recent years it has been recognized that, for single-cell

analysis of stem cells in particular, there is a need for micro-

scopy platforms that allow isolated cells to be cultured under

conditions that enable precise control over the mechanical and

chemical properties of their micro-environment.3,6 This is because

population studies have shown that the signaling molecules pre-

sent7 and themechanical properties of the environment8,9 can have

a marked impact on stem-cell fates.10 Microfluidic devices offer a

highly accurate and flexible platform for this purpose, allowing

both cell screening and micro-patterning.11,12 However, for most

primary cells, and for non-adherent cells generally, isolation and

tracking is difficult and time-consuming.13,14 Various microfluidic

approaches have been developed to hold cells in place and facilitate

long-term experiments. Active systems use e.g. hydrodynamic

forces to create single-cell traps at the ends of microchannels15

or cell-sized, semi-circular barriers,16 while passive systems such

as micro-arrays of 3D micro-wells topologically trap the cells on

the surface.17,18 In such devices, single-cell observations require

the availability of fluorescent markers for the properties of

interest. Fluorophore instability, bleaching, background noise

and phototoxicity limit the application of fluorescence micro-

scopy.6 A label-free technique, which bypasses these limitations,

is therefore highly desirable for time-lapse imaging of cells.

Here, we introduce a novel approach to follow the fate of

isolated cells over time without the need to label them. The

technique monitors the Brownian motion of single non-adherent
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cells to determine the timepoint at which they attach to the

surface. Brownian motion of spherical objects is well understood

and has been used as a sensitive probe for particle–substrate

interaction in the case of microbeads.19–21 We used image-based

fluctuation analysis to resolve the heterogeneity of adherence

transition times at the single-cell level. Cells are confined to

arrayed micro-wells and their motion is tracked over time using

phase-contrast microscopy. As a proof of principle, we investigated

the differentiation of granulocyte-macrophage progenitors in

response to the cytokine M-CSF. During hematopoiesis, multi-

potent HSCs give rise to several lineage-restricted progenitors,

which ultimately produce all the different mature blood-cell

types.22 Thus the bipotent granulocyte-macrophage progenitor

(GMP) population gives rise to the monocyte/macrophage (M)

and the granulocyte (G) lineages.23 In vitro, GMPs can be instructed

to adopt the Ms or Gs fate by exposure to the cytokines macrophage

colony-stimulating factor (M-CSF) or granulocyte colony-stimulating

factor (G-CSF), respectively.24 Of these three types of cells, Ms are

adherent while GMPs and Gs are non-adherent. We compare the

timing of adherence of macrophages with the up-regulation of

Lysozyme 2 (Lyz2), F4/80, and MacI, myeloid commitment/

differentiation markers. We find that the adherence transition

precedes the up-regulation of MacI, Lyz2 and F4/80 expression,

hence following the general behavior observed by Rieger et al.24

We demonstrate that the label-free technique is capable of

robustly detecting the adherence transition, and discuss its

potential for studying the kinetics of differentiation.

Results
Micro-structure fabrication

We fabricated micro-structured patterns on a tissue-culture

plastic (TCP) substrate, which was then attached to the under-

side of a bottomless slide (I-Luer sticky slide; ibidi, Germany) to

form the floor of a channel with walls 400 mm high. The pattern

consists of an array of 3Dmicro-wells whose walls are 12 mmhigh.

We tested different well diameters ranging from 15 to 50 mm and

selected for the best single-cell coverage and maximum space for

free diffusion. For GMPs (mean diameter 15 mm), micro-wells with

a diameter of 35 mmwere resulted in 90% viability and 60% single

coverage. The micro-array pattern is fabricated from cell-repelling

PEGDA polymer on a tissue culture plastic substrate.25 Each slide

carries an array of 45 � 750 micro-wells. Compared to conven-

tional cell-culture flasks, the limited depth of the channel and the

thinner layer of medium on top of the cells results in reduced

background fluorescence, while still supplying enough nutrients

for up to two days.

Cells in micro-wells

GMPs carrying an EGFP-tagged Lyz2 gene (see Methods) were

induced to differentiate into macrophages by adding M-CSF as

previously described.24 Cells were pipetted into the channel

and allowed to settle into the micro-well arrays (Fig. 1a).

Three distinct states in the differentiation of GMPs into macro-

phages could be distinguished: a freely diffusive state subject to

Brownian motion, a semi-adherent state, and a fully adherent

state (Fig. 1b).

Non-adherent cells diffuse freely, ranging over the whole

area of a micro-well. Semi-adherent cells attach to the surface

and become immobile. Fully adherent cells spread out on the

substrate and display active, crawling motion. Fig. 1c shows

phase-contrast images of a representative cell going through

each of the three states. For the purpose of differentiation

detection, we followed the positions of cells until just before

division or until the transition to the fully adherent state. While

the former breaks the symmetry in label-free detection, the latter

is characteristic for a late stage of differentiation. The adherent

state was observed to confirm that the cell had successfully

reached the fully developed macrophage state, which could

occur either in the same generation or after division.

Most of the cells in the non-adherent state ranged over the

whole well area. In others, a tendency to remain close to the wall

was observed. These latter cells show less difference in motion

between the two states, but the switch to the adherent state is

still distinguishable.

Time-lapse imaging

Time-lapse microscopy was performed using an inverted Axiovert

100M Zeiss microscope, taking advantage of the out-of-focus

phase-contrast image, in which cells have bright centers. This

accelerates cell recognition in image processing. Each sample is

imaged at 3 min intervals for 24 h, producing a time-lapse

sequence of cell motion (Fig. 2a). An interval of 3 min allows a

cell of 15 mm diameter to be displaced by B3 mm, which equals

the B5 pixel resolution in our microscopy setup.

Fig. 1 (a) Schematic view of cells settling into micro-wells under gravity.
(b) Schematic depiction of the three states of adherence: freely mobile,
semi-adherent and adherent. (c) Corresponding phase-contrast image of
a non-adherent GMP which differentiates into an adherent macrophage.
The dots indicate the position of the center of cell over a period of 24 h
(elapsed time is coded in color from red to blue; see Fig. 2c). The transition
point is the time at which the cell enters a semi-adherent state.
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Cell centers were tracked with an in-house ImageJ26 plug-in.

The software locates the micro-well array and automatically

tracks the center of the cell until cell division or differentiation.

For more details of the recognition algorithm see the ESI.†

Fig. 2b shows an example of one cell in a micro-well (red) and

the cell contour (green) as detected by the software. Fig. 2c is

the resulting trajectory of the center of the cell. All tracking data

were processed simultaneously, decreasing the time required

for analysis.

Confined Brownian motion in micro-wells

We used the mean square displacement (MSD) of cell position

to characterize Brownian motion in confinement. As shown in

Fig. 3, the plot of MSD vs. time is linear at short time-scales,

indicating free diffusion with a defined diffusion coefficient. In

the case of confinement, as with cells in micro-wells, the MSD

reaches a plateau value at large time-scales. As explained in

more detail in the ESI,† we used an explicit expression for the

MSD for 2D diffusion in a circular confinement.27 The plateau

value (P) in this case is given by P = L2/4, where L denotes the

clearance L = dwell ÿ dcell between a cell with diameter dcell and

the wall of a micro-well with diameter dwell.

Fig. 3a shows the MSD for 10 individual GMPs exhibiting the

characteristic shape of MSD for confined Brownian motion

with the plateau value corresponding to the clearance. Three

individual MSDs shown in color are compared to the theoretical

expression (fits shown as lines). The cell diameters derived from

the plateau of the MSD graphs (inset of Fig. 3a) and the images

(values in Fig. 3b) are compatible with each other, as the out-of-

focus image shrinks the apparent diameter of the cells, which

accounts for the difference between the two values.

Transition point from non-adherent to adherent state

The transition from the non-adherent to the adherent state

serves as a marker for the timepoint of GMP differentiation. To

detect it, we monitored the Brownian displacement of cells

between successive frames (DR = |Ri+1 ÿ Ri|) (Fig. 4a). This

displacement depends on the diffusion coefficient and the

physical constraints on motion. A non-adherent cell diffuses

freely within the well, and thus shows a larger displacement per

unit time than adherent cells, which are no longer subject to

Brownian motion. Fig. 4a shows representative displacement

records for 8 cells and the difference between the non-adherent

state in the beginning and the adherent state at the end. For

high-throughput parallel investigation of single cells, it is

important that this transition point be automatically detectable.

The standard deviation of displacement over a rolling time-

window of 5 frames, s5, was used for automatic determination

of the transition point. The standard deviation s is an indicator

Fig. 2 (a) Three frames from a time-lapse sequence of phase-contrast
images of a single field at 10� magnification. The field containsB250 wells
and 50 single cells. (b) Selected frames from a time-lapse sequence
of phase-contrast images of a single well. Contours are detected auto-
matically, the yellow contour indicates the micro-well and green contour
indicates the center of the cell. (c) Trajectory of the center of cell over a
period of 14 h, (elapsed time coded in color as indicated), This cell adheres
to the surface after around 12 h.

Fig. 3 (a) Mean square displacement of cell center. The dots are experimental
points and the solid line shows the fit from the explicit expression (See ESI†).
The different plateau values reflect differences in cell diameter. (b) The
corresponding phase contrast images of cells for solid lines are shown.
Diameters calculated from fitted curves are shown in the inset and the
diameter calculated from image calibration is shown on the corresponding
image.

Fig. 4 (a) Graph of cell displacement vs. time for a set of 8 single cells,
showing how a non-adherent GMP cell differentiates into an adherent
macrophage. (b) Evolution of the local standard deviation s over a rolling
time window of 5 frames.
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of the degree of variation in the motion of a particle over the

course of the time-window. A threshold value was chosen in

such a way that s5 value drops below it after adherence. This

value is manually chosen for one cell and used for the whole

experiment. The time-point at which s persistently drops below

this threshold is taken as the transition point (red circle in

Fig. 4b). Monitoring of the persistence of the transition to the

low-motion regime permits one to distinguish the actual transition

to adherence from short-term fluctuations in Brownian motion.

The cumulative sum (cusum) algorithm was used to confirm

detection of the transition point. The cusum algorithm checks

the global behavior of a system at each time-point and reports if

there is a persistent regime change in the system.28,29 The

algorithm yields transition points in agreement with the values

obtained by the standard deviation approach. Both the cusum and

standard deviation algorithm are described in detail in the ESI.†

Heterogeneity in time to adherence

Differentiation of GMPs shows stochastic dynamics,24,30 with

each individual cell behaving differently (e.g. Fig. 4a). With the

help of micro-well arrays we are able to capture and analyze the

behavior of many cells in parallel. The transition point detec-

tion technique was used to identify the adherence of 789 cells

in parallel. This represents a physical marker of differentiation

of non-adherent GMPs into adherent macrophages. Fig. 5a

shows the temporal distribution of single-cell adherence over

a period of 30 h. All the cells were cultured under the same

conditions. Monitoring began 4 h after addition of M-CSF to

the progenitors. Around 40% of cells were adherent by the start

of imaging. The number of adherence events then drops

exponentially with time, and 80% of the cells have adhered to

the TCP substrate prior to the first division.

The time course of differentiation was investigated via the

onset of expression of the EGFP-tagged lyz2 signal as well as the

presence of MacI and F4/80 antibody markers. Fluorescent

images were analyzed by setting fluorescence thresholds for

each marker and counting of the number of MacI and F4/80

positive and Lyz2-GFP expressing cells respectively. Fig. 5b

shows the percentage of adherent cells (black), together with

the time course of MacI positive (red), Lyz2-expressing (green),

and F4/80 positive (blue) cells over a period of 48 h. It can be

clearly seen that Lyz2 and F4/80 expression follows the expres-

sion of MacI. In contrast most adherence events occur slightly

before MacI expression. The kinetics of the increase of total

adherence, however, is weaker than the steep increase of MacI

expression. For this reason we show the single cell correlations

in more detail. Fig. 5c shows the correlation between the

adherence timepoints and the onset of the differentiation

markers for all cells individually. Again there is a clear order

in the expression of the differentiation markers, while their

correlation with the adherence time points is weak. Adherence

typically occurs before the onset of the differentiation markers

(as seen by the fact that most data points fall above the dashed

line indicating the isochronic events). However, there are

individual cells that show MacI or even Lyz2 expression before

the onset of adherence.

Discussion

Our study demonstrates that arrays of micro-wells enable

single-cell analysis of the transition from a non-adherent to

an adherent state utilizing Brownian motion as reporter. GMPs

exhibit heterogeneity in the timing of both the adhesion

transition as well as differentiation at the single-cell level.

Rieger et al.24 previously observed by manual cell tracking

and classification of adherence that the transition to the

adherent state precedes up-regulation of the Lyz2 marker protein

in most cases. Our study reproduces these data quantitatively. In

contrast to manual evaluation, our unsupervised approach allows

for high temporal resolution and increased statistical accuracy of

the adhesion time point. In addition we observe the temporal

sequences of differentiation markers MacI, Lyz2 and F4/80. How-

ever, the correlation of these markers with the time-point of

adherence is weak. Clearly adhesion is an early indicator of

differentiation. Yet, the statistics of adherence events does not

seem to strictly depend on the stage of differentiation. Hence the

molecular changes at the cell surface that allow for adhesion do not

seem to be directly timed within the differentiation process. In

future studies with surface functionalized micro-wells more refined

Fig. 5 (a) Histogram of the number of adherence transitions in the time
course of GMPs differentiation into macrophages (data are from 789 single
cells), red line shows a first order exponential fit to the data. (b) Percent of
cells that adhered (black) and percent of cells that exhibited MacI (red),
LzyM (green), and F4/80 (blue) fluorescent signal versus time. (c) Correla-
tion between the timepoint of cell adherence and the onset of the
fluorescent signals. The dashed line indicates simultaneous events. The
color intensity map indicates the number of cells.
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adhesion studies can be carried out. Single-cell analysis of

Brownian motion therefore provides a versatile label-free

method for high-throughput detection of the adherence transi-

tion. In particular, in future work the micro-wells could be

functionalized with specific antibodies in order to detect

the expression of surface molecules and selectively modify

adherence of cells to the micro-well surface. In this case,

time-resolved studies on single cell surface protein expression

could be carried out without the adverse effects of intense

illumination for fluorescence imaging. The time interval chosen

for phase-contrast imaging in our study was several minutes, but

could be further reduced. Potentially, Brownian motion analysis

is capable of resolving single molecule binding as shown by

Wong et al. for latex particles.31 Hence, single-cell adhesion

arrays open up the possibility of single-surface-molecule studies

on living cells for protein and membrane characterization31–33

and quantitative evaluation of numbers of adhesion sites. In

principle, the only limitation on the observation time in our

approach is the point of cell division. We believe that the highly

parallel analysis of single cells by monitoring of Brownian

motion is a powerful, high-throughput, label-free method, which

is particularly promising for the time-resolved investigation of

differentiation and the detection of changes in cell-surface

properties of non-adherent cells.

Methods
Device fabrication

Our microfluidics devices are based on inert PEGDA (polyethyl-

eneglycol diacrylate).34 The template for the micro-well array is

fabricated on a standard plastic tissue-culture (TCP) foils,

which is attached to the underside of an I-Luer sticky slide

(ibidi, Munich, Germany). The slide as supplied is patterned

with a cut-out 400 mm deep channel that can be accessed from

each end. The attached template thus serves as the floor of the

channel.

The fabrication process has been described previously.25 In

short, the PDMS precursor is mixed with curing agent at a 10 : 1

(Sigma-Aldrich) ratio. The mixture is degassed for 15 min and

then poured onto a patterned silicon wafer. After a subsequent

degassing step for 15 min, PDMS is cured for B3 h at 50 1C in

an oven. The PDMS mold is peeled from the wafer and cut

along the structures to form an open network. PDMS and TCP

substrate are exposed to argon plasma for 30 sec, then brought

into contact with each other. A drop of PEGDA polymer (poly-

mer solution containing 2% of photoinitiator 2-hydroxy-2-

methylpropiophenone (v/v) (Sigma-Aldrich, Germany)) is placed

at the open end of the PMDS mold. The empty space of the

mold is filled with PEGDA by capillary force-induced flow. The

polymer is then cured under UV light for 15 min. The PDMS

mold is removed and the patterned PEGDA substrate is cured

overnight at 50 1C. The substrate is then sonicated in ethanol

for 10 min, followed by a 10 min sonication in deionized water.

Afterwards, it is blow-dried and attached to the ibidi I-Luer

sticky slide and stored under sterile conditions.

Cell preparation

FACS purification of GMPs23 from LysM:EGFP mice35 was

performed as described.24 Briefly, femora, tibiae, humeri, hip

bones and vertebrae were dissected from 8- to 12-week-old

mice, crushed in ice-cold 2% FCS/PBS, and cells were isolated

by passage through a 40 mm filter (BD). All experiments were

performed according to Swiss federal law and institutional

guidelines of ETH Zuerich and approved by local animal ethics

committee of Basel-Stadt (license number 2655).

For erythrocyte lysis, cells were resuspended in ACK buffer

(Lonza) for 2 min. Cells were then stained with biotinylated

antibodies against lineage-specific markers (B220, CD3e, CD19,

CD41, CD11b, Gr-1, Ter119 (all eBioscience)) followed by incubation

with streptavidin-coated magnetic beads (Roth). After magnetic

depletion of labeled lineages, cells were stained with streptavidin-

APC-eFluor780, c-kit-PE-Cy7, CD34-eFluor660 (all eBioscience),

Sca-1-Pacific Blue (Biolegend) and CD16/32-PE (BD) for at least

30 min on ice. Cell sorting was done on a FACSAriaIII (Becton-

Dickinson). Sorted GMPs were resuspended in SFEM (Stem Cell

Technologies) containing 20 mg mlÿ1 of M-CSF, 10 ng mlÿ1 F4/80

and 10 ng mlÿ1 MacI after markers. Time-lapse imaging was

initiated 2 h after sorting and addition of cytokine, this time is

necessary for transportation, seeding cells into micro-well arrays,

and preparation of image acquisition setting.

The microscopy slide incubated at 37 1C in an ibidi heating

system chamber with 5% CO2 and high humidity (ibidi,

Munich, Germany). The chamber is mounted on an inverted

microscope and a phase-contrast image is taken every 3 min and

a fluorescent image every 3 h. Image acquisition is programmed

to take a fluorescence picture of a subset of positions for each

interval of phase-contrast imaging. Hence, we have fluorescent

data at every time-point.
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Supplementary Information: 

Marker-Free Detection of Progenitor Cell Differentiation by Analysis of 

Brownian Motion in Micro-Wells 

Optimization of micro-well dimension 

We chose the diameter of micro-wells in order to minimize double occupancy of micro-well and at the 5 

same time maximize space for free diffusion inside the well. A set of wells with diameters of 15 to 50 

was examined. We concluded that 35 µm diameters of the well is optimal for GMP cell line. In these 

micro-wells, cells showed 90% viability and 60% occupancy of single-cell per well. Given an average 

diameter of 16 for GMPs the clearance between cell diameter and well diameter (L) is 19 µm.  

Mean square displacement (MSD) 10 

Mean square displacement is commonly used to characterize random motion of a particle and the 

diffusion coefficient and confinement. In our setup, there is no flow and gravitational forces cancel 

random motion in z direction in our time-intervals. In our analysis, we have decoupled the z-motion 

from the random motion in x and y, while, cells exhibit an almost constant distance from the substrate  

at all time. Hence, as in many other studies on colloids at the surface, we can treat the x-y motion as 15 

effective 2D diffusion. The MSD for free diffusion in 2D is given by: 

Dtx 4
2



    SI.Eq.1 

Confinement affects the diffusion of particle
1
, we have used the MSD equation derived by Bickel 

2
 for 

2D diffusion in circular domain. Since the diameter of cell is comparable to diameter of micro-well, 

we have substituted the diameter of micro-well with the clearance L (Fig.SI.1).: 20 
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Here 02

nm   mth root of Bessel prime function,   0
nmnJ  . We have used the first two expression 

of summation and fitted the MSD values from experiment with the equation SI.Eq.2. D is the free 

diffusion coefficient, from Einstein relation for spheres: 

r

TK
=D b

6
   SI.Eq.3 25 

assuming T=    C and approximating viscosity of medium with water        C, mPa.s0.7225=η  and 

average diameter of cell r=8µm, we derive the diffusion constant: )(04.0 2 sm=D  .  

Image acquisition 

The image acquisition was perform with 10x objective on Zeiss Axiovert 100M microscope equipped 

with a sensicam (PCO imaging) camera. The configuration has a resolution of 0.65 µm/pixel. Image 30 

acquisition was done in a multi-position mode collecting 120 fields of views in sequence using  macros 

within the image software MicroManager
4
. A complete scan takes 3 minutes. Hence in the time-lapse 



 

series cells typically exhibit an average displacement of 3 µm (5 pixels) within the scanning time 

intervals (from SI.Eq.2). The setting is good compromise between acquisition of a large number of cell 

data and a reasonable time resolution for tracking individual cells inside micro-wells. 

To facilitate image processing, we have adopted a technique by Buggenthin et al.
5
 and used out of 

focus images. While cells show a bright halo in the periphery when imaged in the focal plane by 5 

phase-contrast microscopy, in an out of focus image cells exhibit a bright center spot.  

The microscope setup and heating system was turned on for at least 2 hours prior to experiment to 

equilibrate the temperature which minimizes the z drift. We observed a 1-2 µm z-shift over 3 days 

experiment which does not affect the image quality and cell-tracking.  

Image processing 10 

For cell tracking and image analysis, we have developed an in-house Java-based plug-in for ImageJ 

called MicroWellAnalysis (MWA). First module of MWA identifies the micro-well array, intensity 

threshold and micro-well size are given as inputs and software fit a smooth circle to the boundaries of 

micro-well. The second module automatically detects the wells with only single cell inside. An "Image 

stabilizer", a freely available plug-in
6
 of ImageJ

7
 software, corrects for scanning positioning errors by 15 

realigning all frames with respect to the micro-well pattern. In these wells, using a threshold value and 

average cell size, software tracks the position of the center of the cell with respect to the center of the 

well. The cell-recognition algorithm has an online threshold-value update and circularity check 

parameter to eliminate temporary changes in phase-contrast signal due to small morphological changes 

in cell. Trajectories of cells is exported into a customized Matlab code for change point analysis.  20 

Change point analysis 

Two separate methods were used to automatically detect the time point when cell change from non-

adherent state to adherent.  The displacement of cells by diffusion is analyzed by either Local standard 

deviation or a CUSUM analysis in order to determine the change point. 

1- Local standard deviation 25 

In our data-set, local standard deviation (σt) indicates the dispersion of displacement values for a 

defined number of steps (t) and is calculated from SI.Eq.4: 

  ) R-R(
1

 1
 =

tN

N

2
tit 




t
  SI.Eq.4 

where N is the N
th 

data point and tR is the local average of selected displacement ( R ) values from 

N to N+t. We have selected an arbitrary number of 5 data-points to automatically find change point in 30 

the displacement data. In non-adherent state, cells more freedom in motion, hence their displacement 

values have higher deviation from mean, while in adherent state this deviation is much smaller.  

Threshold v lue is defined for e ch experimen  sep r  ely by user. I  is possible  h   σ5 drops 

temporarily below the threshold before the actual transition point. To discard these points, we 

introduced persistency criterion which checks if values below the threshold stays below the threshold 35 

for specific number of steps. If the algorithm finds more than one transition point, it automatically 



 

increases the persistency steps. The point with longest persistence crossover of σ5 from a threshold 

value to a lower value is reported as the transition point.  

2- Cusum  

Cusum
8
 indicates the deviation of data from a global target value. In our data-set cusum cumulatively 

sums the difference of  displacement of cell and its time-average, SI.Eq.5.  5 

1-ii cusum+R)-R(=cusum    SI.Eq.5 

displacement ΔR is the distance cell moves at each time-interval. The global time-average of 

displacement R  was chosen as the reference value. Each state of motion has distinct distance from 

average value resulting in a constant slope for each state. A partial linear fit was fitted to the cusum 

data and all the changes in slopes were flagged. We select the prominent change in slope as the change 10 

point.  

The cusum outcome confirmed that of σ5 in most cases, and where discrepancies arose, the final 

decision was made manually by the user. 

 

 15 

Fig.SI.1. Schematic of mean square displacement of a spherical particle confined inside a circulars domain. The red line is the fit to short time-

scale values indicating the free diffusion coefficient and the blue line indicates the plateau value.  
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Appendix B
Photolithography of SU-8 wafer

The pattern is designed according to guidelines and suggestions for microfluidic fabrication
foundry of Harvard and softlithography fabrication [48]. All the photolithography steps are
done in our in house cleanroom. The lithography step is done by ProtoLaser LDI (LPKF
Laser & Elektronika, Naklo, Slovenia), with a laser with 375 nm wavelength and 1 µm spot
diameter. The exposure time per spot and the distance between each exposed spots must
be chosen, which was selectd with a dose-test pattern.

B.1 Single layer SU8 structure

The fabrication protocols for structures of ∼25 µm height is as follows:

1. Spin coat TI-prime:
Spin speed Acceleration Time
500 rpm 100 rpm/s 10 s
5000 rpm 1000 rpm/s 30 s

2. Bake at hotplate 120◦C 2 min

3. Spin coat SU8 10:
Spin speed Acceleration Time
500 rpm 200 rpm/s 10 s
1000 rpm 300 rpm/s 30 s

4. Let the wafer rest on bench for ∼7 min.

5. Softbake on hotplate: @65◦C for 3 min. :: @95◦C for 7 min.

6. Follow the steps for ProtoLaser LDI, with this exposure parameters:
600 mJ/cm2 :: Coarse tool :: 0.3 point distance.

7. Postbake on hotplate: @65◦C for 1 min :: @95◦C for 3 min
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8. Let the wafer cool down on bench for ∼2 min.

9. Develop in SU8-Dev 600 for 3 min. Divide the developer into two beakers with equal
time.

10. Hardbake on hotplate:
@65◦C for 2 min. :: @95◦C for 2 min. :: @160◦C for 15 min. :: @65◦C for 5 min. ::
Cool down for 5 min.

B.2 Double layer SU8 structure

For cell sorting structures we used two thickness of SU-8 on two layers to make multi-
thickness structures. The important issue in multi-layer structures are the baking temper-
ature of SU8 layers, since too much or too low baking time could lead to cracks on the
structure or layer lift off respectively. below is the complete protocol that worked for our
sample.

First layer with SU8 10 (∼25 µm thickness)

1. Spin coat TI-prime:
Spin speed Acceleration Time
500 rpm 100 rpm/s 10 s
5000 rpm 1000 rpm/s 30 s

2. Bake at hotplate 120◦C 2 min

3. Spin coat SU8 10:
Spin speed Acceleration Time
500 rpm 200 rpm/s 10 s
1000 rpm 300 rpm/s 30 s

4. Let the wafer rest on bench for ∼ 7 min.

5. Softbake on hotplate: @65◦C for 3 min. :: @95◦C for 7 min.

6. Follow the steps for ProtoLaser LDI, with this exposure parameters:
500 mJ/cm2 :: Fine tool :: 0.3 point distance.

7. Postbake on hotplate: @65◦C for 50 s. :: @95◦C for 2 min.

Second layer with SU8 100 (∼75 µm thickness)

1. Spin coat SU8 100:
Spin speed Acceleration Time
500 rpm 200 rpm/s 10 s
5000 rpm 1000 rpm/s 40 s
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2. Let the wafer rest on bench for ∼ 10 min.

3. Softbake on hotplate: @65◦C for 4 min. :: @95◦C for 10 min.

4. Follow the steps for ProtoLaser LDI, with this exposure parameters:
500 mJ/cm2 :: Fine tool :: 0.3 point distance.

5. Postbake on hotplate: @65◦C for 1min.. :: @95◦C for 5 min.

6. Let the wafer cool down on bench for ∼2 min.

7. Develope in SU8-Dev 600 for 10 min. Devide the developer into two beakers with
equal time.

8. Hardbake on hotplate:
@65◦C for 2 min. :: @95◦C for 2 min. :: @160◦C for 15 min. :: @65◦C for 5 min. ::
Cooldown for 5 min.
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Appendix C
Softlithography and micromolding in capillary

PDMS was used to replicate the structures on the wafer and use them as the master for
micromolding in capillaries (MIMIC) fabrication of PEGDA replica. PDMS is used in ratio
of 10:1 of polymer:curing agent. Normally a less than 1 mm layer of PDMS is casted on
top of the structured wafer and cured for more than 5 hours in 50◦C convection oven.

The micro-pattern structures from PEGDA polymer is fabricated either on topas or
glass substrates. Topas substrate (ibidi, Germany), are bio-compatible and durable under
cell-culture medium condition. The glass slides with two thickness has been used for differ-
ent sample preparation; 1mm thick glass are normal microscope slides (Roth, Germany),
180 µm thick glasses are typical microscopy cover slips (Roth, Germany). The dimensions
of all of the substrates are ∼ 75× 25 mm.

After the PDMS cured, follow below steps for MIMIC fabrication of PEGDA micropat-
terns on the substrate.

Important note: work under the hood or cleanroom environment as much as possible,
it gives you cleaner final structure.

1. Clean substrates before use:
Sonicate 10 min with 70% ethanol
Sonicate 10 min with distilled water
Blow dry with Pressurized air gun

2. Peal off PDMS from the silicon wafer, place it on cutting mat with structures up,
cut the extra PDMS up to the edge of structurs.

3. Plasma treat surfaces of both PDMS and substrare (skip for glass substrates):
Argon, 5 , 20mW for 30s

4. Prepare PEGDA by mixing 2% photo-initiator (2-Hydroxy-2-methylpropiophenone
(Sigma-Aldrich, Germany)) to PEGDA monomer.

5. Place the plasma treated surfaces of PDMS on the substrate and add a drop of
PEGDA precursor on the side of structure. Wait until it diffuses into the whole
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Figure C.1: a) A brightfield image of detached pillars from a PDMS stamps with 25 µm. b)
Pillars on a 35 µm PDMS stamp was detached with force using tweezers. The arrows point
to an example of intact pillar (green), place that a pillar is missing (red), and a detached
pillar (blue).

structure.

6. Put the sample under UV light for 15 min to polymerize PEGDA.

7. Remove PDMS master from the structure and let it fully polymerize in the 50◦C
convection oven for another 6 hours.

8. Clean the structure as step 1 again, or do a plasma treatment as step 3.

9. Attach the ibidi sticky slide on top of the structures and let it cure in the the 50◦C
convection oven overnight.

10. Sample is ready, add the medium at least 2 hours before the experiment and make
sure there is no bubble in structures. If you see the bubble, sonicate the sample for
2-3 min.

The glass substrates has to be silanized before PEGDA could adhere to it [36]. For
silanization, put a drop of TMSPMA (3-(Trimethoxysilyl)propyl methacrylate) on a small
tissue in a petri-dish together with the glass and let is rest under the hood overnight.
Plasma treatment could harm the silanization, however it is good to do the plasma treat-
ment after PEGDA polymerization is finished.

Reuse of PDMS master stamps
We has tested the reuse of PDMS master stamps after curing PEGDA and detaching the
stamp from the substrate. The reusing was tested for up to 5 times, while the master with
bigger structures (>35 µm) showed very little to no sign of wear, the smaller structures
showed large scale fractures. After the 3rd reuse of 25 µm micro-wells, some of the stamps
showed a visible irregularity in the structures. Light-microscopy inspection of patterns
showed that PDMS pillars had been torn off from the PDMS (see Figure C.1). We speculate
that this wearing is due to fatigue and micro-fractures in the micro-pillar over several use.
It has been confirmed that PDMS has a low fatigue resistance [59].
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We recommend that the PDMS not be used more than 3 times, especially with small
patterns. However, a stamp with higher elastic modulus (lower than 10:1 base:linker ratio)
could result in more robust stamps. While we observed some improvement in 5:1 PDMS
ratio, we did not systematically check this properties.
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Appendix D
Cell Fixation for SEM imaging

D.1 Buffer and fixture preparations

Phosphate buffer
For a pH of 7.2, have 72.6 % of buffer B and and 27.4 % of buffer A.
A) Potassium dihydrogen phosphate (KH2PO4): 9.078g per 1L of destilled water.
B) Disodium hydrogen phosphate (Na2HPO4 ·2 H2O): 11.876g per 1L of destilled water.
Prepare this buffer with double concentration (mix with 500 ml instead of 1L) to be

used in diluting the stuck of Glutaraldehyde.

Glutaraldehyde fixative
Normally the Glutaraldehyde vials are 25% concentrated but we need 2.5% concentra-

tion which is achieved by mixing:

• 1 ml of Glutaraldehyde stuck (25%).

• 4 ml of distilled water.

• 5 ml of Phosphate buffer (double concentration).

D.2 Fixation protocol

Aceton and HMDS (Hexamethyldisiloxane C6H18OSi2) is corrosive for plastic, so you have
to switch to ethanol step-dehydration and glass substrate.

To exchange the medium or wash the samples in ibidi-channels, we have followed the
“Three times rule”:

• Aspirate medium from the reserviors of channel, only leave medium inside the channel
to cover the substrate.

• Add 100 µl of new medium from one reserve and discard 100 µl from the other side.

• Add 100 µl of new medium again. wait for minimum 30 second (or start with the
next channels), then discard the 100 µl.
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• Add enough new medium (80-100 ul) to fill the reservoirs till half of them.

Follow these steps to fixate and de-hydrate your cells properly, keep in mind that
samples should never dry-out untill the final step.

1. Exchange medium with the buffer solution.

2. Exchange the buffer with Glutaraldehyde solution. 1 × 30 mins.

3. Exchange the solution back to buffer solution. 1 × 10 mins.

4. Wash with distilled water. 3 × 10 mins.

5. Wash with Ethanol 25%. 1 × 10 mins.

6. Wash with EtOH 50%. 1 × 10 mins.

7. Wash with EtOH 75%. 1 × 10 mins.

8. Wash with EtOH 95%. 1 × 10 mins.

9. Wash with EtOH 100%. 2 × 10 mins.

10. Use a sharp diamond cutter, scratch the sample from bottom: right before first
channel, between 3rd and 4th and right after the last channel.

11. Put the whole sample under 100% EtOH and break the glass in that 3 lines (1 mm
glass slides worked very nicely). Detach the sticky slide glued on top of structure
with the help of your tweezers.

12. Still under EtOH, once the glass slides are free, remove the rest of the glue from glass
(it should come off very easily).

13. Aspirate EtOH until there is only a thin film left on the slide.

14. Pour HMDS solution in a glass petri dish, and transfer the slides quickly into this
dish.

15. Leave the sample overnight to slowly dry-out.

16. Store the sample in vacuum oven.

Figure D.1: SEM image of a single MOLM-13 suspension cell fixed by Glutaraldehyde
inside a micro-slit structure.



Appendix E
Finite element analysis conditions

Elmer .sif file:

Header
CHECK KEYWORDS Warn
Mesh DB ”.” ” .”
Inc lude Path ””
Resu l t s Di rec to ry ””

End

Simulat ion
Max Output Leve l = 5
Coordinate System = Cartes ian
Coordinate Mapping (3 ) = 1 2 3
Simulat ion Type = Trans ient
Steady State Max I t e r a t i o n s = 200
Output I n t e r v a l s = 2
Timestepping Method = BDF
BDF Order = 2
Timestep i n t e r v a l s = 400
Timestep S i z e s = $ 40/400
So lve r Input F i l e = case . s i f
Post F i l e = case . ep

End

Constants
Gravity (4 ) = 0 −1 0 9 .82
Ste fan Boltzmann = 5.67 e−08
Pe rmi t t i v i t y o f Vacuum = 8.8542 e−12
Boltzmann Constant = 1.3807 e−23
Unit Charge = 1.602 e−19
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End

Body 1
Target Bodies (1 ) = 1
Name = ”Body 1”
Equation = 1
Mater ia l = 1

End

So lve r 1
Equation = Navier−Stokes
Var iab le = Flow So lu t i on [ Ve loc i ty : 2 Pres sure : 1 ]
Procedure = ” FlowSolve ” ” FlowSolver ”
Exec So lve r = Always
S t a b i l i z e = True
Bubbles = False
Lumped Mass Matrix = False
Optimize Bandwidth = True
Steady State Convergence Tolerance = 1 .0 e−5
Nonl inear System Convergence Tolerance = 1 .0 e−7
Nonl inear System Max I t e r a t i o n s = 200
Nonl inear System Newton After I t e r a t i o n s = 3
Nonl inear System Newton After Tolerance = 1 .0 e−3
Nonl inear System Relaxat ion Factor = 0 .5
Linear System So lve r = I t e r a t i v e
Linear System I t e r a t i v e Method = BiCGStab
Linear System Max I t e r a t i o n s = 500
Linear System Convergence Tolerance = 1 .0 e−7
Linear System Precond i t i on ing = ILU0
Linear System ILUT Tolerance = 1 .0 e−3
Linear System Abort Not Converged = False
Linear System Res idual Output = 1
Linear System Precond i t ion Recompute = 1

End

Equation 1
Name = ”Navi”
NS Convect = False
Active So l v e r s (1 ) = 1

End

Mater ia l 1
Name = ” Air ( room temperature )”
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V i s c o s i t y = 1.983 e−5
Heat expansion C o e f f i c i e n t = 3 .43 e−3
Heat Conduct iv i ty = 0.0257
Sound speed = 343 .0
Heat Capacity = 1005.0
Density = 1.205

End

Boundary Condit ion 1
Target Boundaries (1 ) = 1
Name = ” wa l l s ”
Ve loc i ty 1 = 0 .0
Ve loc i ty 2 = 0 .0

End

Boundary Condit ion 2
Target Boundaries (1 ) = 2
Name = ” i n l e t ”
Ve loc i ty 1 = 200
Ve loc i ty 2 = 0 .0

End

Boundary Condit ion 3
Target Boundaries (1 ) = 3
Name = ” o u t l e t ”
Ve loc i ty 2 = 0 .0

End
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Appendix F
Cell Synchronization

F.1 Cell phases

Each individual cell goes through several stages to growth and divide to two daughter cells.
The time from the birth of a single cell until it divides to two cells called cell cycle. The
cell cycle consist of several phases:

G0 the resting phase where cells do neither divide nor grow;
G1 once the cell receives a signal to divide, it goes to this phase and starts growing;
S phase is when the chromosome (with DNA) is duplicated;
G2 phase is when the cell performs the final checks of DNA and prepares for division;
M phase is when the cell actually divides into two identical daughter cells.

These phases are shown in Figure F.1.

F.2 Protocol: Double Thymidine Block

In a normal cell population, each single cell can be at different cell phase. In order to
bring all the cells in a specific cell phase, a process called cell synchronization is done. In
our experiments we used a cell synchronization method based on thymidine drug. The

Figure F.1: Cell phases in one cell cycle.
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double thymidine block which is used here follows the suggestions from Jackman et al.’s
[116] methods report.

Medium

• Normal medium: RPMI 1640 (Lifetechnology, US) with stable glutamine. This sup-
plements are added: 10% FCS, 1 mM Sodium Pyruvate.

• Blocking medium: Normal medium plus 2 mM Thymidine.

Thymidine stock
Prepare Thymidine stock solution with 100 mM concentration from powder (CAS 50-89-5,
Calbiochem) by adding 242.2 mg of powder in 10 ml of PBS, after steering the solution,
filter it using 0.22 µm filter.

1. First Block: Centrifuge an exponentially growing cell population and resuspend them
in blocking medium. Incubate them for 24 hours.

2. Release: Centrifuge the medium, get rid of the medium as much as possible and
resuspend in normal medium for 7-8 hours.

3. Second Block: Centrifuge and resuspend the cells in the blocking medium for 12
hours.

4. Synchronized population: Centrifuge and resuspend the cells in normal medium.



Appendix G
Gamma Convolutions

G.1 Gamma difference distribution

The difference of two gamma distributions is in principle a convolution of two gamma
distributions. Mathai [134] and Klar [135] derived the solution for this distribution. The
final equation can be either represented as an integral of exponential or with respect to
Whittaker’s W function. The below derivation is adopted from [134, 135].

X1 and X2 are two independent random variable with gamma functions Γ(α1, β1) and
Γ(α2, β2), respectively. The difference is X = X1 - X2, the distribution of which is called
gamma difference distribution (GDD) and to be derived here.

The sum of two variables is the convolution of their density functions. In this case fX1

and f−X2 where fX is the gamma distribution function as in Equation G.1. Equation G.1
is the general form of Equation 3.2.

fX1(x) =
βα1

1 xα1−1eβ1x

Γ(α1)
(G.1)

Same equation applies for f−X2 substituting x with −y. The covariance is calculated
as:

fX(z) =
∫∞
∞ fX1(x)fX2(x− z)dx (G.2)

Inserting the Equation G.1 in Equation G.2 and simplifying the equations will give us
the final form in integral representation, this is equation 4 in [135]. Here c = βα1

1 βα2
2 /(Γ(α1)Γ(α2)):

f(z) =

{
ceβ2z

∫∞
z
xα1−1 (x− z)(α2−1) e−(β1+β2)xdx z > 0

ce−β1z
∫∞
−z x

α2−1 (x− z)(α1−1) e−(β1+β2)xdx z < 0
(G.3)

Using the integral relation 3.383(4) (Equation G.4) from Gradshteyn et al. [190] the
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integral equations can be written in Whittaker’s W function (Equation 5 in [135])

∫ u

0

xv−1(x− u)µ−1e−βxdx = β−
µ+v
2 u

µ+v−2
2 Γ(µ)exp

(
−βu

2

)
W v−µ

2
, 1−µ−v

2
(βu) (G.4)

f(z) =


c̃

Γ(α1)
z
α1+α2

2
−1e

β2−β1
2

zWα1−α2
2

,
1−α1−α2

2
((β1 + β2)z) z > 0

c̃
Γ(α1)

(−z)
α1+α2

2
−1e

β1−β2
2

(−z)Wα1−α2
2

,
1−α2−α1

2
((β1 + β2)(−z)) z < 0

(G.5)

where c̃

c̃ =
βα1

1 βα2
2

(β1 + β2)(α1+α2)/2
(G.6)

We assume some simplifying conditions to get to an analytical expression for GDD.
Since we are dealing with the sister cells, it is reasonable to assume that the initial gamma
distributions has same parameters, hence β1 = β2 = β and α1 = α2 = α. With this,
c̃ = βα/2 and Equation G.5 for z > 0 becomes:

f(z) =
βα

2Γ(α)
zα−1W0, 1

2
−α (2βz) , z > 0, z > 0 (G.7)

And approximating the Whittaker W function at z → 0 for α > 0 with:

Wκ,µ(z) =
Γ(2µ)

Γ
(

1
2

+ µ− κ
)z 1

2
−µ +

Γ(−2µ)

Γ
(

1
2
− µ− κ

)z 1
2

+µ +O(z
3
2
−µ) (G.8)

For the case of similar distributions κ = 0 and µ = 1
2
− α:

W0, 1
2
−α(2βz) =

Γ(1− 2α)

Γ(1− α)
(2βz)α +

Γ(2α− 1)

Γ(α)
(2βz)1−α (G.9)

The GDD equation becomes:

f(z) = 2α−1β2α Γ(1− 2α)

Γ(α)Γ(1− α)
z2α−1 + 2αβ

Γ(2α− 1)

Γ(α)2
, z > 0 (G.10)

G.2 Gamma-normal distribution

Assuming the distribution of synchronized cells to be a normal distribution around the
point of synchronization. We showed that the single cell response to chemotherapeutic
drug has a gamma distribution. We proposed that in case of synchronized cell the drug-
response curve would be a convolution of normal and gamma function.

There is no analytical solution for this convolution. However, Plancade et al. [191]
showed a numerical approximation based on the Fast Fourier Transform of the data. The
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convolution and it’s representation with respect to Kummer’s special function (kum) is
shown in Equation G.12

fngµ,σ,α,β(x) =

∫
f gamα,β (t)fnormµ,σ (x− t)dt (G.11)

f gamα,β is the gamma distribution function and fnormµ,σ is a normal distribution function
with parameters µ and σ

fngµ,σ,α,β(x) = 2(1+α/2)

(
σ

β

)α
fnormµ,σ (x)[

Γ
(α

2

)
kum

(
α

2
,
1

2
,
y2

2

)
−
√

2yΓ

(
α + 1

2

)
kum

(
α + 1

2
,
3

2
,
y2

2

)]
(G.12)

y =
σ2 + β(µ− x)

σβ
(G.13)
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Symbols & Abbreviations

BCA Biochemical component analysis
CFD Computational fluid dynamics
DCLS Direct classical least-squares
FACS Fluorescence activated cell sorting
GDD Gamma difference distribution
GMP Granulocyte macrophage progenitor.
HSC Hematopoietic stem cell.
iPS induced pluripotent stem
LoC Lab on a chip
MACS Magnetic activated cell sorting
MEL Murine erythroleukemia
MIMIC Micromolding in capillaries
MOMP Mitochondrial outer membrane permeabilization
MSD Mean square displacement
MWA MicroWell Analysis software
NA Numerical aperture
NK Natural killer cells
PCA Principal component analysis
PCR Polymerase chain reaction
pdf Probability density function
PDMS Polydimethylsiloxane
PEGDA Polyethyleneglycol diacrylate
PEGDMA Polyethyleneglycol dimethacrylate
PI Propidium iodide
PLL Poly-L-Lysine
TCP Tissue culture plastic
TRAIL Tumour necrosis factor (TNF)-related apoptosis-inducing ligand
cusum Cumulative sum algorithm
∆t Image acquisition interval
η Refractive index
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γ0 Friction coefficient of a Brownian particle
κ Stiffness of the optical trap
λ(a) Loss factor of cell, due to division or death.
µ Dynamic viscosity
σ Standard deviation
σt Local standard deviation of displacement of t steps
τave. Average time it take for drug to kill cells.
τmin. Onset of effect of drug.
a Cell age, time from the division.
cov(x, y) Covariance of the set of x and y data
D Free diffusion coefficient
d Particle diameter
dC Average diameter of single cell
dW Diameter of micro-well
L Available distance of free motion
n Cell number density
r Pearson Correlation Coefficient
ri Position at time-point i
Td−c Onset of Caspase 3/7 marker for cell death.
Td−s Onset of cell size as a marker for cell death.
tdiv Doubling time of a cell
Td Time for drug to kill a cell.
v Flow velocity
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