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Summary 

Frontotemporal dementia is the second most common neurodegenerative disease in 

people younger than 65 years. Patients suffer from behavioral changes, language 

deficits and speech impairment. Unfortunately, there is no effective treatment 

available at the moment. Cytoplasmic inclusions of the DNA/RNA-binding protein 

TDP-43 are the pathological hallmark in the majority of FTLD cases, which are 

accordingly classified as FTLD-TDP. Mutations in GRN, the gene coding for the 

trophic factor progranulin, are responsible for the majority of familiar FTLD-TDP 

cases. The first genome-wide association study performed for FTLD-TDP led to the 

identification of risk variants in the so far uncharacterized gene TMEM106B. Initial 

cell culture studies revealed intracellular localization of TMEM106B protein in 

lysosomes but its neuronal function remained elusive.  

Based on these initial findings, I investigated the physiological function of 

TMEM106B in primary rat neurons during this thesis. I demonstrated that 

endogenous TMEM106B is localized to late endosomes and lysosomes in primary 

neurons, too. Notably, knockdown of the protein does neither impair general 

neuronal viability nor the protein level of FTLD associated proteins, such as GRN or 

TDP-43. However, shRNA-mediated knockdown of TMEM106B led to a pronounced 

withering of the dendritic arbor in developing and mature neurons. Moreover, the 

strong impairment of dendrite outgrowth and maintenance was accompanied by 

morphological changes and loss of dendritic spines. To gain mechanistic insight into 

the loss-of-function phenotypes, I searched for coimmunoprecipitating proteins by 

LC-MS/MS. I specifically identified the microtubule-binding protein MAP6 as 

interaction partner and was able to validate binding. Strikingly, overexpression of 

MAP6 in primary neurons phenocopied the TMEM106B knockdown effect on 

dendrites and loss of MAP6 restored dendritic branching in TMEM106B knockdown 

neurons, indicating functional interaction of the two proteins. The link between a 

lysosomal and a microtubule-binding protein made me study the microtubule 

dependent transport of dendritic lysosomes. Remarkably, live cell imaging studies 

revealed enhanced movement of dendritic lysosomes towards the soma in neurons 

devoid of TMEM106B. Again, MAP6 overexpression phenocopied and MAP6 

knockdown rescued this effect, strengthening the functional link. The MAP6-
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independent rescue of dendrite outgrowth by enhancing anterograde lysosomal 

movement provided additional evidence that dendritic arborization is directly 

controlled by lysosomal trafficking.  

From these findings I suggest the following model: TMEM106B and MAP6 together 

act as a molecular brake for the retrograde transport of dendritic lysosomes. 

Knockdown of TMEM106B and (the presumably dominant negative) overexpression 

of MAP6 release this brake and enhance the retrograde movement of lysosomes. 

Subsequently, the higher protein turnover and the net loss of membranes in distal 

dendrites may cause the defect in dendrite outgrowth. The findings of this study 

suggest that lysosomal misrouting in TMEM106B risk allele carrier might further 

aggravate lysosomal dysfunction seen in patients harboring GRN mutations and 

thereby contribute to disease progression.  

Taken together, I discovered the first neuronal function for the FTLD-TDP risk 

factor TMEM106B: This lysosomal protein acts together with its novel, 

microtubule-associated binding partner MAP6 as molecular brake for the 

dendritic transport of lysosomes and thereby controls dendrite growth and 

maintenance.  
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Zusammenfassung 

Frontotemporale Demenz ist die zweithäufigste Form neurodegenerativer 

Erkrankungen bei Menschen unter 65 Jahren. Patienten leiden an 

Verhaltensauffälligkeiten und Sprach- sowie Artikulationsstörungen. Leider steht 

zurzeit keine wirksame medikamentöse Therapie zur Verfügung. Das pathologische 

Hauptmerkmal der meisten FTLD-Fälle sind zytoplasmatische Einschlüsse des 

DNA/RNA-bindenden Proteins TDP-43. Diese Fälle werden entsprechend als FTLD-

TDP klassifiziert. Für einen Großteil der familiären FTLD-TDP Fälle sind 

Mutationen in GRN, dem für den Wachstumsfaktor Progranulin kodierenden Gen, 

verantwortlich. Die erste für FTLD-TDP durchgeführte genomweite 

Assoziationsstudie führte zur Entdeckung von genetischen Varianten im bis dato 

uncharakterisierten Gen TMEM106B. Diese Varianten sind mit einem erhöten Risiko 

an FTLD zu erkranken assoziiert. Initiale Studien in Zellkultur zeigten eine 

Lokalisierung des TMEM106B Proteins in Lysosomen, die Frage nach der neuronale 

Funktion des Proteins blieb allerdings bisher unbeantwortet.  

Auf diesen ersten Ergebnissen aufbauend untersuchte ich während meiner 

Dissertation die physiologische Funktion von TMEM106B in primären Ratten-

neuronen. Ich konnte zeigen, dass endogenes TMEM106B auch in primären 

Neuronen in späten Endsosomen und Lysosomen lokalisiert ist. 

Beachtenswerterweise verminderte die Herunterregulierung (shRNA-vermittelter 

Gen-Knockdown) des Proteins weder das generelle Überleben der Neuronen noch 

die Level von anderen FTLD-assoziierten Proteinen, wie GRN oder TDP-43. Die 

Herunterregulierung von TMEM106B führte jedoch zu einem ausgeprägten Verlust 

von Dendriten in sich entwickelnden und ausgereiften Neuronen. Des Weiteren war 

die starke Beeinträchtigung dendritischen Wachstums und Aufrechterhaltung von 

einer morphologischen Veränderung und dem Verlust der Dornfortsätze begleitet. 

Um den Mechanismus dieser Phänotypen zu erklären, suchte ich nach TMEM106B 

coimmunopräzipitierenden Proteinen mittels Massenspektrometrie. Ich konnte das 

Mikrotubuli bindende Protein MAP6 als spezifischen Bindungspartner identifizieren 

und die Interaktion beider Proteine validieren. Hervorzuheben ist, dass die 

Überexpression von MAP6 in primären Neuronen den Effekt der Herunterregulation 

von TMEM106B auf die Dendriten kopierte und die Herunterregulation von MAP6 
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die dendritischen Verästelungen in TMEM106B depletierten Neuronen sogar 

wiederherstellen konnte. Diese Ergebnisse legen eine funktionelle Interaktion beider 

Proteine nahe. Die Verbindung zwischen einem lysosomalen und einem an die 

Mikrotubuli bindenden Protein brachte mich dazu, den Mikrotubuli abhängigen 

Transport von dendritischen Lysosomen zu untersuchen. Bemerkenswerterweise 

zeigten mittels Lebendzellmikroskopie erzeugte Aufnahmen eine erhöhte Bewegung 

dendritischer Lysosomen Richtung Zellsoma in TMEM106B depletierten Neuronen. 

Auch in diesem Kontext konnte die Überexpression von MAP6 den Effekt kopieren 

und die Herunterregulation von MAP6 den Effekt aufheben und somit die These 

einer funktionellen Interaktion festigen. Die MAP6 unabhängige Wiederherstellung 

des dendritischen Wachstums durch die Erhöhung des lysosomalen Transports in 

anterograder Richtung lieferte einen zusätzlichen Beweis dafür, dass das 

dendritische Wachstum direkt von lysosomalem Transport abhängt. 

Ausgehend von diesen Ergebnissen schlage ich folgendes Modell vor: TMEM106B 

und MAP6 wirken zusammen als molekulare Bremse für den retrograden Transport 

dendritischer Lysosomen. Die Herunterregulation von TMEM106B und die 

(wahrscheinlich dominant negative wirkende) Überexpression von MAP6 lösen diese 

Bremse und verstärken die retrograde Bewegung von Lysosomen. Daraufhin könnten 

der gestiegene Proteinumsatz und der Verlust von Plasmamembranbestandteilen zu 

einem Fehler im dendritischen Wachstum führen. Die Ergebnisse dieser Arbeit legen 

nahe, dass fehlerhafter, lysosomaler Transport in TMEM106B Risikoallelträgern zu 

einer Verstärkung der lysosomalen Fehlfunktion in Patienten mit GRN Mutation 

führt und dabei zur Krankheitsentwicklung beiträgt. 

Zusammengefasst habe ich die erste neuronale Funktion für den FTLD-TDP 

Risikofaktor TMEM106B entdeckt: Dieses lysosomale Protein wirkt zusammen 

mit seinem neuentdeckten, Mikrotubuli assoziierten Bindungspartner MAP6 als 

molekulare Bremse für den dendritischen Transport von Lysosomen und 

kontrolliert dadurch Wachstum und Aufrechterhaltung von Dendriten. 
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I. Introduction  

1. FTLD 

1.1 Clinical presentation 

Frontotemporal dementia (FTD) was first described by Czech neurologist and 

psychiatrist Arnold Pick in 1892. The patient, a 71-year old man, presented with 

gradual mental retardation and speech disturbances, autopsy revealed cerebral 

atrophy primarily in the left hemisphere (Pick, 1892). Two decades later, Alois 

Alzheimer found and stained characteristic inclusions in these patients, henceforth 

called Pick bodies (Alzheimer, 1911). However, not until the last 20 years 

pathological and mechanistic findings helped researchers to understand disease 

mechanisms and provided potential drug targets. 

1.1.1 Clinical Symptoms of FTLD 

Frontotemporal lobar degeneration (FTLD) is the pathological syndrome underlying 

a group of diseases classified by the overarching term of frontotemporal dementia. 

In the following the term FTLD is used to designate both disease and pathology. 

FTLD is a presenile neurodegenerative disease with an average onset of 58 years 

(Johnson et al., 2005). The clinical presentation of FTLD is subclassified into 

behavioral variant of FTD (bvFTD), progressive non fluent aphasia (PNFA) and 

semantic dementia (SD). More than 50 % of all cases group into the first category. 

Patients suffering from bvFTD usually present with changes in behavior and 

personality (disinhibition, apathy, loss of empathy and social competence, 

stereotypic behavior) while learning and memory are preserved (Rascovsky et al., 

2011). PNFA and SD as of late combined in the term ‘primary progressive aphasia’ 

(PPA) both occur in approximately similar probability in the rest of the patients 

(Gorno-Tempini et al., 2011). Main symptoms in patients suffering from PNFA are 

‘non fluent’, agrammatic speech and anomia. These are often accompanied by 

apraxia of speech, which designates the inability to plan and coordinate the 

movements necessary for speech (Josephs et al., 2011). In contrast, patients affected 

by semantic dementia develop impaired comprehension, impaired conceptual 
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knowledge and anomia while speech production is still functional (Sieben et al., 

2012). 

1.1.2 Epidemiology of FTLD  

FTLD is the second most common neurodegenerative disease in people under the 

age of 65 years (Harvey et al., 2003). The disease has a prevalence of 10-20 patients 

per 100,000 people and an incidence of 3.5-4.1 per 100,000 / year in the age group 

of 45 – 64 years (reviewed in (Van Langenhove et al., 2012)). FTLD has a strong 

genetic component, as between 30-50 % of all patients have at least one relative 

with similar clinical symptoms. And in up to 25 % of patients the disease actually 

segregates with an autosomal dominant pattern. Proteins whose underlying genes are 

found to be mutated in patients, often aggregate in the brain and exhibit the 

characteristic neuropathology (Goldman et al., 2007; Goldman et al., 2005). 

Interestingly, aggregates of these proteins are also found in sporadic cases without 

known mutations rendering these proteins a likely cause of the disease (Dormann 

and Haass, 2011). Moreover, just recently variants in the so far undescribed gene 

transmembrane protein 106B (TMEM106B) were discovered to increase the risk for 

a subclass of sporadic and familial cases of FTLD (Van Deerlin et al., 2010).  

FTLD has a pronounced overlap with another presenile neurodegenerative disease, 

amyotrophic lateral sclerosis (ALS). Both diseases share many genetic and 

pathological features. Transactive response (TAR)-DNA-binding protein 43 (TDP-

43) and Fused-in-sarcoma (FUS) inclusions are found in both diseases and TARDBP 

and FUS mutations – usually a cause for ALS – lead in rare cases to FTLD. And 

with the discovery of the C9orf72 hexanucleotide-repeat-expansion a common 

genetic denominator was found that can cause either disease or a combined form. 

Moreover, 15 % of ALS patient develop FTLD symptoms and vice versa thus 

suffering from a hybrid forms both diseases (Ringholz et al., 2005; Wheaton et al., 

2007). Remarkably, in up to 75 % of ALS patients cognitive symptoms are found in 

late stages of the disease (Strong et al., 2009). However, pure genetic forms of the 

disease are observed as well. For example progranulin (GRN) mutations lead 

exclusively to FTLD while superoxide dismutase 1 (SOD1) mutations cause always 

ALS. These observations render FTLD and ALS a disease continuum with the pure 
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forms as distinct ends (Ling et al., 2013; Morris et al., 2012; Van Langenhove et al., 

2012). 

1.1.3 Pathology of FTLD 

The gross pathological changes seen in almost all patients are selective atrophy in 

the frontal and temporal lobe, with neuronal degeneration or neuron loss, spongy 

changes of the brain structure, neuroinflammation, gliosis and intracellular 

proteinaceous inclusions. However, apart from the clinical sub-classification the 

disease can also be sub-grouped according to the aggregating proteins and the 

neuropathology seen in affected brain. FTLD-TAU, the subgroup which is defined 

by inclusions of hyperphosphorylated Tau protein accounts for approximately 40% 

of all FTLD cases (Joachim et al., 1987). Most of the remaining patients present 

with Tau-negative, ubiquitin-positive inclusions and thus are diagnosed with FTLD-

U. These cases can be further subdivided in mainly FTLD-TDP – patients show 

TDP-43 positive inclusions, and rarer cases of FTLD-FUS and FTLD-UPS – patients 

show FUS inclusions respectively inclusions whose only known constituents are 

components of the ubiquitin-proteasome system (UPS) such as p62. Other types or 

even dementia lacking distinctive histopathology are found but are very rare (Pan 

and Chen, 2013). An association between neuropathological and the clinical subtype 

is observed but is not very strict: FTLD-TDP mainly leads to bvFTD or SD whereas 

FTLD-Tau causes usually PNFA. If patients are additionally diagnosed with motor 

neuron disease (MND), it is very likely that a TDP-43 or FUS proteinopathy is 

observed (reviewed in (Pan and Chen, 2013; Rademakers et al., 2012)).  

1.1.4 Diagnosis of FTLD  

Consensus diagnostic criteria for FTLD were originally defined in 1998 by Neary 

and colleagues and later partially revised by Rascovsky et al., based on clinical 

inclusion and exclusion features, neuropsychological investigations and brain 

imaging. Core diagnostic features include insidious onset and gradual progression 

for each of the three subgroups of FTLD. Decline in social conduct and emotional 

blunting are key symptoms for bvFTD, non-fluent spontaneous speech for PNFA and 

language and perceptual disorder for SD. Furthermore clinicians examine patients 
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with neuropsychological examinations especially for frontal lobe function, speech 

and language abilities (Neary et al., 1998; Rascovsky et al., 2011). In contrast to 

patients suffering from stroke, individuals affected by FTLD have normal activity in 

the electroencephalography (EEG) but structural and functional brain imaging 

reveals often asymmetrical abnormalities and atrophy in the frontal or temporal 

lobe. While structural and functional magnetic resonance imaging (MRI) help to 

define the areas of atrophy, functional connectivity MRI (fcMRI) and diffusion 

tensor imaging (DTI) are used to sub-classify FTLD and to establish a differential 

diagnosis of bvFTD. Other imaging techniques such as fluordesoxyglucose-positron 

emission tomography (FDG-PET) and single-photon emission computed tomography 

(SPECT) can help to distinguish FTLD from other dementias (McGinnis, 2012). 

1.1.5 Therapy of FTLD  

So far no FDA approved treatment for FTLD exists, even though several studies are 

ongoing e.g. with the N-methyl-D-aspartic acid receptor (NMDAR) antagonist 

memantine, typically used for Alzheimer´s disease (AD) (Boxer et al., 2009). In the 

past also other AD drugs as the acetylcholinesterase inhibitors (AChEI) donepezil 

and rivastigmine were tested but with largely negative outcome (Mendez, 2009). 

Apart from that, FTLD patients primarily receive symptomatic treatment with 

psychotropic drugs as selective serotonin reuptake inhibitors (SSRI) or atypical 

antipsychotics for behavioral abnormalities (Mendez, 2009). Additional non-

pharmacological interventions, such as education, behavioral management and 

interventions, are an important relief for patients and caregivers (Manoochehri and 

Huey, 2012). Future, more causal treatment strategies may include interference with 

the expression and splicing of disease related proteins, the regulation of microtubule 

stability, the prevention of protein aggregation and the restoration of the cellular 

degradation systems (Trojanowski et al., 2008; Vossel and Miller, 2008).  
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1.2 Molecular genetics of the FTLD subtypes 

 

 
Figure 1: Genetic and pathological Classification of FTLD 

The disease is subcategorized according to the aggregating proteins. Disease subtypes are depicted in blue 
boxes, underlying mutations in yellow boxes and aggregating proteins in orange boxes. Gene in 
parentheses has no definite association with FTLD. Asterisk denotes that rare DPR-positive cases are 
observed without TDP-43 pathology. Adapted from (Dormann and Haass, 2013). 

 

1.2.1 FTLD-TAU 

The first gene identified causing FTLD was Microtubule-associated protein Tau 

(MAPT). Mutations in the MAPT gene result in hyperphosphorylated intracellular 

inclusions (neurofibrillary tangles) of the Tau protein and almost exclusively to 

FTLD-TAU (Hutton et al., 1998). Tau is a microtubule-binding protein expressed 

primarily in the nervous system. Apart from the stabilization of microtubules its 

main functions lie in regulation of microtubule-dependent transport and scaffolding 

of signaling complexes thereby controlling their activity (Morris et al., 2011). Most 

pathogenic MAPT mutations cluster around exon 9 to 13, which encode the 

microtubule binding domains of the protein. These mutations either change the ratio 

of the MAPT splice variants which consequentially leads to impaired microtubule 

binding of Tau or directly affect the binding. Numerous studies report that reduced 

binding to the cytoskeleton causes altered microtubule stability and disturbed 
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microtubule-dependent axonal transport by now unbound and eventually miss-

localized Tau (reviewed in (Pan and Chen, 2013; Rademakers et al., 2004; Sieben et 

al., 2012)). Additionally, aggregated Tau protein – depending on its phosphorylation 

status – as well as dendritically redistributed soluble tau seems to mediate toxic 

signaling (Haass and Mandelkow, 2010; Ittner et al., 2010).  

1.2.2 FTLD-TDP 

1.2.2.1 GRN 

The first causative gene for Tau negative FTLD was independently described by two 

groups in 2006. Interestingly, the mutations were found in GRN, a gene located 

close to the MAPT locus on chromosome 17 (Baker et al., 2006; Cruts et al., 2006). 

GRN mutations lead exclusively to and are one of the major causes of FTLD-TDP 

pathology (Nicholson et al., 2012). GRN is a secreted glycoprotein that can be 

further cleaved by extracellular proteases into 7.5 cysteine-rich granulin peptides. 

Although general, trophic functions of GRN in wound healing and tumorogenesis as 

well as its anti-inflammatory capacity are relatively well understood, the exact role 

in brain is not completely clear (He and Bateman, 2003). In dissociated neurons 

GRN seems to promote neurite outgrowth and neuronal survival (Gass et al., 2012; 

Van Damme et al., 2008). Especially the role of the small granulin peptides remains 

mostly elusive. They seem to antagonize some aspects of GRN function as they are 

proinflammatory (Zhu et al., 2002), but may act similarly to the full length protein 

in terms of neurite outgrowth and neuronal survival (Gass et al., 2012). Moreover, 

every granulin peptide acts differently and they seem to inhibit and antagonize each 

other (Cenik et al., 2012). GRN mutations are inherited in an autosomal dominant 

pattern. Most heterozygous mutations are null mutations due to nonsense mediated 

RNA decay, thus leading to GRN haploinsufficiency in patients. In rarer cases, 

mutations rather lead to mislocalization, reduced expression or impaired secretion of 

the protein than to a complete loss of the mRNA. The genetic findings argue for a 

loss of function pathogenesis in GRN mutation carriers (reviewed in (Nicholson et 

al., 2012; Ward and Miller, 2011)).  

To study the impact of GRN loss on FTLD, GRN knockout mice were generated. 

Similar to FTLD patients, mice show decreased survival and behavioral 
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abnormalities. Further phenotypes include pronounced microgliosis, especially in 

hippocampus and cortex and ubiquitinated protein aggregates in neurons (Kayasuga 

et al., 2007; Yin et al., 2010). More comprehensive analysis of the knockout animals 

revealed Cathepsin D pathology and lipofuscin aggregates in the brain – typically a 

sign of lysosomal deficiency (Ahmed et al., 2010; Wils et al., 2012). Strikingly, just 

recently two human siblings with homozygous GRN loss of function mutations have 

been identified. Both suffer from adult neuronal ceroid lipofuscinosis (NCL), a 

lysosomal storage disease, instead of FTLD-TDP as seen in heterozygous carriers 

(Smith et al., 2012). Another link between GRN and the lysosome is the recent 

identification of sortilin as scavenger receptor for the protein in neurons. Upon 

binding to sortilin, GRN is re-endocytosed and rapidly transported to the lysosome. 

In line with these findings, GRN level are elevated in the brain of sortilin knockout 

mice (Hu et al., 2010).  

In 2010, TMEM106B was identified as the first genetic risk factor for FTLD-TDP 

with GRN mutations. TMEM106B risk variants elevate the penetrance of GRN 

mutations and decrease the age of onset in mutation carriers (Van Deerlin et al., 

2010). It was suggested that these risk variant influence GRN mRNA or protein 

level (Cruchaga et al., 2011; Finch et al., 2011), but the physiological function of 

TMEM106B was unclear. 

1.2.2.2 TDP-43 

Although TDP-43 is the eponymous protein for FTLD-TDP, mutations in its coding 

gene TARDBP usually lead to ALS-TDP. Only in very rare cases these mutations 

cause FTLD-TDP ((Benajiba et al., 2009; Borroni et al., 2009; Gitcho et al., 2009; 

Tamaoka et al., 2010). TDP-43 is a DNA/RNA-binding protein with functions in 

transcription, RNA-splicing and microRNA processing (Sieben et al., 2012). 

TARDBP mutations cluster in the C-terminal glycine-rich domain involved in 

protein-protein interaction (Pesiridis et al., 2009). Major pathological hallmark of 

FTLD-TDP are TDP-43-positive, ubiquitin-positive, α-Synuclein-negative, Tau-

negative inclusions in neurons and glia cells (Arai et al., 2006; Neumann et al., 

2006). These inclusions contain full-length and C-terminal fragments of 

hyperphophorylated and ubiquitinated TDP-43 as well as proteins responsible for 



Introduction 

22 
 

stress granule formation, such as poly(A)-binding protein (PABA) and cytotoxic 

granule-associated RNA binding protein 1 (Tia1) (Fujita et al., 2008; Liu-

Yesucevitz et al., 2010). These findings suggest a possible pathomechanism: stress 

granules might be precursors of the insoluble aggregates and mediate toxicity 

(Dormann and Haass, 2011). Another possible disease mechanism leading to 

neurotoxicity of TDP-43 mutations are deficits in RNA splicing or metabolism as 

the inclusion bearing cells are mostly devoid of intra-nuclear TDP-43 (Arai et al., 

2006; Neumann et al., 2006). Notably, pronounced toxicity was observed in 

overexpression and knockout animal models (Feiguin et al., 2009; Johnson et al., 

2009). Therefore the question arises if loss of TDP-43 function or toxic gain of 

function of the aggregates is the disease causing mechanism. So far neither animal 

models nor cell culture experiments could answer this question satisfactorily 

(Sleegers et al., 2010). 

1.2.2.3 C9orf72 

The most common genetic cause for FTLD-TDP (as well as for ALS-TDP and 

overlapping forms of the disease) are mutations in C9orf72, coding for a so far 

uncharacterized protein. A GGGGCC hexanucleotide-repeat expansion in the 

promoter region or the first intron, depending on the transcript, was found in 

patients. In healthy controls 0 - 20 GGGGCC repeats are observed, whereas up to 

several thousand exist in patients. The classical FTLD-TDP pathology is 

accompanied by RNA foci and a reduction of the mRNA level of the longer isoform 

of C9orf72 (DeJesus-Hernandez et al., 2011; Renton et al., 2011). In most 

hexanucleotide-repeat-expansion carriers TDP-43-positive, p62-positive, Tau-

negative neuronal and glial inclusions in the cortex, the hippocampus and 

remarkably also the cerebellum – usually free of other aggregates in FTLD – are 

found (Al-Sarraj et al., 2011). Strikingly, many aggregates in the brain of C9orf72-

patients are TDP-43-negative and consist mainly of di-peptide-repeat-proteins 

(DPRs) which are ATG-independently translated from the repeat mRNA (Ash et al., 

2013; Mori et al., 2013c). So far three independent but not mutually exclusive 

scenarios for the pathomechanism of the C9orf72 hexanucleotide-repeat expansion 

have been proposed: haplo-insufficiency thus loss of function of the C9orf72 protein 
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(DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012), RNA mediated toxicity by 

sequestration of RNA binding proteins by the repeat RNA (Mori et al., 2013b) and 

ATG-independent translation of the repeat into aggregating dipeptide repeat proteins 

and DPR-toxicity (Mori et al., 2013c). Interestingly, so-called repeat associated 

non-ATG (RAN) translation was first described in another neurodegenerative 

disease, spinocerebellar ataxia type 8 (SCA8), where polyalanin, polyglutamine and 

polyserine peptides are translated from a trinucleotide-repeat expansion (Zu et al., 

2011). Rare C9orf72 FTLD cases without TDP-43 pathology suggest that primarily 

TDP-43 independent mechanisms cause disease in C9orf72-patients. Moreover, DPR 

aggregation might be a potential prerequisite for TDP-43 pathology in the C9orf72 

cases (Brettschneider et al., 2012; Mori et al., 2013a; Proudfoot et al., 2014).  

1.2.3 FTLD-FUS 

Another rare subgroup of FTLD cases was redefined in 2009 as FTLD-FUS with the 

discovery of FUS aggregates as a common pathological hallmark in patients with 

atypical FTLD with ubiquitin pathology (aFTLD-U), basophilic inclusion body 

disease (BIBD) and neuronal intermediate filament inclusion diseases (NIFID) 

(Mackenzie et al., 2010). Similar to TDP-43, FUS is a DNA/RNA-binding protein 

with main functions in transcriptional regulation, mRNA transport and splicing 

(Dormann and Haass, 2013). Although rare cases of FTLD-FUS with FUS/TLS  

mutations have been reported (Kwiatkowski et al., 2009; Vance et al., 2009), they 

usually cause ALS-FUS. FUS inclusions in FTLD are mainly observed in sporadic 

cases without mutations (Munoz et al., 2009; Neumann et al., 2009). FUS mutations 

causing FTLD or ALS cluster in the C-terminal region of the gene . This region 

encodes the non-canonical PY-nuclear localization signal (PY-NLS) whose function 

is consequently impaired by a reduced affinity to the nuclear import factor 

transportin (Dormann et al., 2010). Hence, redistribution of FUS from the nucleus to 

the soma and cytoplasmic aggregation of the protein is observed in patient brains. 

So far known constituents of the ubiquitinated, p62-positive inclusions are the other 

two members of the FET family of proteins Ewing sarcoma protein (EWS) and 

TATA box-binding protein (TBP)-associated factor 15 (TAF-15) (Neumann et al., 

2011) and stress granule marker (Dormann et al., 2010). Nuclear clearance of FUS 
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and FUS aggregation in turn opens the question whether the pathomechanism of 

FTLD-FUS comprises loss of nuclear function of FUS or toxic gain of function of 

the aggregates. Similar to FTLD with TDP-43 pathology, the answer remains 

elusive. Loss-of-function studies suggest FUS as an important regulator of neuronal 

health (Fujii et al., 2005). Deficits seen in knockout neurons and animals may be 

due to an impairment of alternative splicing events since the level and splicing of 

many mRNAs are affected by depletion of FUS (Ishigaki et al., 2012; Lagier-

Tourenne et al., 2012; Rogelj et al., 2012). The misregulated mRNAs are enriched 

for neuronal targets, among them Tau, a protein already implicated in the 

pathogenesis of FTLD (Orozco et al., 2012).  

1.2.4 FTLD-UPS 

Other mutations leading to pure FTLD or ASL-FTLD have been reported in the 

genes coding for valosin containing protein (VCP) (Watts et al., 2004), charged 

multivesicular body protein 2b (CHMP2B) (Momeni et al., 2006b) and ubiquilin2 

(UBQLN2) (Deng et al., 2011; Synofzik et al., 2012). Since all these proteins are 

implicated in protein sorting and degradation, the dysfunction of the ubiquitin-

proteasome system leading to impaired protein degradation might be one of the key 

pathomechanisms of FTLD. Consequentially, all remaining cases, devoid of TDP-43, 

FUS or Tau pathology but positive for ubiquitin and p62 aggregates, are summarized 

in the term FTLD-UPS (Mackenzie et al., 2010). 

 

In summary three main pathomechanisms become evident for the FTLD-continuum: 

disturbed RNA-metabolism, toxicity of the aggregating proteins and dysfunction of 

the cellular degradation system.  
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1.3 TMEM106B 

1.3.1 Identification as risk factor 

In 2010, a single linkage disequilibrium (LD) block on chromosome 7p21 was 

identified as the first risk locus for FTLD. Three single nucleotide polymorphisms 

(SNPs) clustering in and around TMEM106B, a gene of unknown function, reached 

genome-wide significance. These variants increased the risk of developing FTLD-

TDP, especially in individuals with GRN mutations (GRN+/FTLD-TDP) (Van 

Deerlin et al., 2010). Most replication studies confirmed the association of 

TMEM106B SNPs with GRN+/FTLD-TDP risk (Cruchaga et al., 2011; Finch et al., 

2011; van der Zee et al., 2011). Homozygosity for the protective minor allele CC of 

the most statistically significant SNP rs1990622 - 7kb downstream of TMEM106B – 

was found in 2.6 % of patients and 19.1 % of controls (Finch et al., 2011). Some 

studies found even a correlation of the risk variants with disease age of onset or 

GRN plasma levels. The increased risk especially in GRN mutation carriers, 

changed GRN mRNA level and the additionally reported correlation between 

TMEM106B protein and GRN mRNA level strongly point to a functional 

relationship of both proteins (Cruchaga et al., 2011; Finch et al., 2011; Rollinson et 

al., 2011; van der Zee et al., 2011). The impact of the risk SNPs on TMEM106B 

mRNA or protein levels is still under debate. The original study showed elevated 

TMEM106B mRNA levels in risk SNP carriers whereas replications in other patient 

cohorts did not confirm this (Van Deerlin et al., 2010; van der Zee et al., 2011). 

Nicholson and colleagues reported that the protein level of the protective 

TMEM106B T185S variant is decreased compared to the wild-type (wt) protein. 

However, the SNP leading to the amino-acid exchange in the protein, although in 

perfect LD with rs1990622, is itself not statistically significant towards the risk of 

FTLD-TDP (Nicholson et al., 2013). Several recent studies suggest a role for 

TMEM106B not only in FTLD but also in broader field of neurodegeneration: 

Although TMEM106B risk variants are not genetically associated with ALS per se, 

they decrease the cognitive abilities in these patients (Vass et al., 2011). 

Furthermore, the protective allele of rs1990622 reduced the risk for TDP-43 

pathology and hippocampal sclerosis in AD patients (Rutherford et al., 2012). 
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Interestingly, the same polymorphism seems to influence – in interaction with 

apolipoprotein E (APOE) variant ε4 – the risk of late onset Alzheimer’s disease 

(LOAD) in a big Chinese population (Lu et al., 2013).  

1.3.2 Localization and function 

Busch et al. demonstrated that TMEM106B is expressed in neurons, glia and 

endothelial cells in cortex and parts of the hippocampus, but not in the dentate gyrus 

and the cerebellum of the human brain (Busch et al., 2013). Cell culture studies 

revealed that TMEM106B is an integral type 2 transmembrane protein which is 

highly N- but not O-glycosylated. Endoglycosidase-H-resistant complex 

glycosylation suggest transport of the protein beyond the early Golgi apparatus into 

the late secretory pathway. The glycosylation pattern influences targeting of the 

protein as mutations in the different glycosylation sites either led to retention in the 

ER or transport to the plasma membrane. Immunofluorescence (IF) studies in cell-

lines revealed that overexpressed as well as endogenous TMEM106B is located 

mainly in Lamp1-positive late-endosomes and lysosomes. Inhibiting lysosomal 

proteases by leupeptine or inhibiting the acidification of the lysosome by 

Bafilomycin A1 leads to an accumulation of TMEM106B, providing further proof of 

lysosomal targeting (Lang et al., 2012). Overexpression of TMEM106B is reported 

to increase lysosomal size and change lysosomal morphology. Additionally, 

lysosomal acidification and thus their degradative capacity are reduced (Brady et 

al., 2013; Chen-Plotkin et al., 2012). Interestingly, degradation of the wild type 

TMEM106B seems to be slower compared to protective T185S variant. The 

increased protein stability argues for elevated TMEM106B levels in risk SNP carrier 

since messenger RNA (mRNA) level remain similar. Nicholson and colleagues 

ascribe this effect to a different glycosylation pattern at the N-glycosylation site 

affected by the amino-acid exchange (Nicholson et al., 2013).  
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Figure 2: Domain structure and topology of TMEM106B 

Schematic representation of the domain structure and topology of the type-two transmembrane protein 
TMEM106B. TMD: transmembrane domain; N1-N5: confirmed N-glycosylation sites; Adapted from 
(Lang et al., 2012). 

 

Despite the genetic association, the effect of TMEM106B on GRN is not entirely 

clear. Although several studies reported an elevated GRN protein level or changes in 

GRN localization upon exogenous TMEM106B expression, this is possibly an 

unspecific effect attributed to lysosomal impairment as knockdown of TMEM106B 

does not influence GRN levels at all. Moreover, no differential effect of the 

TMEM106B T185S variant could be detected regarding these findings (Brady et al., 

2013; Chen-Plotkin et al., 2012; Lang et al., 2012; Nicholson et al., 2013).  

In FTLD-TDP patients with GRN mutations TMEM106B mRNA and protein levels 

are up-regulated and intracellular localization of the protein seems to be affected. 

The protein appears to be more disorganized and accumulated in the soma and the 

primary dendrites arguing for transport deficits of TMEM106B containing vesicles 

(Busch et al., 2013; Chen-Plotkin et al., 2012). 

 

Although the genetic association of TMEM106B to FTLD-TDP is undisputed and the 

intracellular localization of the protein is elucidated, only minor progress was made 

in unravelling the physiological function of the protein. Especially the role of the 

protein at the lysosome and the probable participation in cellular functions already 

implicated in the disease need further studies.  
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2. Lysosomes and lysosomal transport 

Lysosomes are an important part of the intracellular degradation system (Saftig and 

Klumperman, 2009). Deficits in this system are highly associated with 

neurodegenerative disease in general and FTLD in particular (Nixon, 2013; Pan and 

Chen, 2013). This association becomes especially apparent as TMEM106B a protein 

whose genetic variants influence the risk of many neurodegenerative diseases (Lu et 

al., 2013; van Blitterswijk et al., 2014; Van Deerlin et al., 2010) is demonstrated to 

localize to the lysosomal compartment (Lang et al., 2012). 

 

2.1 Function – degradative and non degradative 

The lysosome is the primary degradative compartment of the cell. More than 50 

different hydrolases degrade proteins, lipids, polysaccharides and nucleic acids. 

Extracellular substrates reach the lysosome through endocytosis, phagocytosis or 

pinocytosis, intracellular material through autophagy. Three types of autophagy are 

known: 1. Microautophagy, the direct engulfment of cytoplasm by the lysosome 

(Mijaljica et al., 2011); 2. Chaperone-mediated autophagy, the direct delivery of 

proteins by hsc70 and subsequent lysosomal degradation (Kaushik and Cuervo, 

2012); 3. Macroautophagy, the fusion of lysosomes with autophagosomes containing 

the material marked for degradation to autolysosomes (Ravikumar et al., 2010). 

Lysosomes control the ratio between biosynthesis and degradation thus overall cell 

metabolism, by regulating mammalian target of rapamycin complex 1 (mTORC1) 

(one of the key regulator of cell growth and autophagy (Laplante and Sabatini, 

2012)) activity and signaling (Sancak et al., 2010). However, lysosomes are 

implicated in other important cellular functions such as cholesterol homoeostasis, 

tissue remodeling, pathogen defense as well as cell death (reviewed in (Saftig and 

Klumperman, 2009)), Moreover, lysosomal exocytosis is a crucial step in plasma 

membrane repair (Rao et al., 2004; Reddy et al., 2001). Lysosomal exocytosis was 

long thought to be specific to secretory cells, that contain so called lysosome related 

organelles (LROs), but one and a half decades ago it was demonstrated that any cell 

can perform this task (Rodriguez et al., 1997). For example, the delivery of new 
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membranes to neurites in developing neurons relies on this process (Arantes and 

Andrews, 2006).  

 

2.2 Biogenesis 

Lysosomes are single membrane bounded vesicles with an acidic pH-optimum (pH: 

4.5-5) in which most biomolecules of the cell are degraded. The resident proteome 

of lysosomes consists of two major classes of proteins. The first category of 

lysosomal proteins is soluble hydrolases responsible for the degradation of specific 

substrates. Apart from their catabolic activity they play a role in antigen processing 

and initiation of apoptosis (Conus and Simon, 2008). The second group are integral 

lysosomal membrane proteins responsible for the acidification of the lysosomal 

lumen, protein import and export and membrane fusion and trafficking (Eskelinen et 

al., 2003).  

The biogenesis of lysosomes is a coordinated process arising from the endocytic and 

biosynthetic pathway. Newly synthesized lysosomal proteins are delivered directly 

through the trans-Golgi network (TGN) to the endocytic system and further to the 

lysosome. This direct pathway functions mainly through mannose-6-phosphate 

receptors (M6PR) trafficking (Kornfeld and Mellman, 1989). Proteins become 

tagged with Mannose-6-phosphate residues in the early Golgi, are recognized by 

M6PR in the TGN and are transported to endosomes. Other pathways involve 

indirect delivery through exocytosis at the plasma membrane and subsequent 

endocytosis and the targeting of lysosomal hydrolases by vacuolar protein sorting 

homolog receptor 10 (VPS10) family proteins such as sortilin (Canuel et al., 2009).  

The formation of the actual membrane vesicle is a continuous process. Early 

endosomes that bud from the TGN mature stepwise to late endosomes and lysosomes 

through a spatiotemporal sequence of intermediates. During the maturation a 

continuous exchange of cargo, membranes and regulating proteins occurs while the 

intraluminal pH value drops gradually from around 6 in early endosomes to 4.5 – 5 

in lysosomes (reviewed in (Saftig and Klumperman, 2009)). The lysosomal pH 

gradient is established and maintained mainly by v-Type H+ ATPases (Mindell, 

2012).  
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Figure 3: Secretory and endocytic pathway 

A cell with its secretory and endocytic transport pathways which build a complex network of vesicular 
trafficking and the localizations of selected Rab-GTPases. Secretory vesicles bud from the TGN and go 
directly to the plasma membrane to release their content into the extracellular space. Early endosomes 
receive their contents from endocytosis or from the TGN. During their life cycle, EE go through a 
continuous process of fusion events i.e. with clathrin-coated vesicles or other endosomal vesicles. The 
endosomes end up either as recycling endosomes and release their cargo again in the extracellular space or 
gradually develop an acidic environment and become late endosomes than lysosomes. Lysosomes in the 
end either fuse with the plasma membrane and release their contents in the extracellular space as well or 
fuse with autophagosomes to become autolysosomes one of the most important degradative compartments 
of the cell. Most transport and fusion events are mediated by distinct RAB-GTPases. 
 
TGN: Trans-Golgi-network; SV: secretory vesicle; EE: early endosome; CV: clathrin-coated vesicle; RE: 
recycling endosome; LE: late endosome; L: lysosome; EL: exocytosed lysosome; A: autophagosome; AL: 
autolysosome; Adapted from (Galvez et al., 2012; Lamb et al., 2013; Schwartz et al., 2007; Stenmark, 
2009). 
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2.3 Regulation 

Several classes of signaling molecules and regulatory proteins control endosomal or 

lysosomal fusion events and lysosomal maturation. Examples are the 

assembly/adaptor complexes adaptin 1-4 (AP1-4), which mediate vesicle formation, 

soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) proteins 

(e.g. Vesicle-associated membrane protein 7 (VAMP7) and synaptotagmin 7), which 

mediate vesicle fusion, and member RAS-oncogene family-GTPases (RAB-

GTPases), important regulators of vesicle transport (Ohya et al., 2009). Moreover, 

v-type ATPases are required for cargo transport into the lysosome in addition to 

their role to maintain the intravesicular pH (Reviewed in (Bagshaw et al., 2005)).  

Rab-GTPases are master regulators of membrane trafficking and vesicle fusion and 

fission events. Interestingly, Rab7 is the only lysosomal Rab-GTPase known so far. 

As for all other Rab-GTPases, GTP hydrolysis provides the biological energy for its 

downstream effects (Pfeffer, 1994). For lysosomal fusion, Rab7 acts in concert with 

the tethering homotypic fusion and protein sorting complex (HOPS) consisting of 

several VPS proteins (Zhu et al., 2009). In contrast, distribution and transport of 

lysosomes is controlled by the interaction of Rab7 with Rab-interacting lysosomal 

protein (RILP) and the dynein/dynactin complex (Jordens et al., 2001). The 

importance of tight lysosomal regulation becomes apparent through the functional or 

genetic link of Rab7 to a variety of neurological and non-neurological diseases (e.g. 

AD, Charcot-Marie-Tooth Type 2B (CMT2B) and cancer) (reviewed in (Zhang et 

al., 2009a)). Just recently, the main switch for the regulation of lysosomal processes 

was discovered: transcription factor EB (TFEB) promotes transcription of the 

coordinated lysosomal expression and regulation (CLEAR) network proteins which 

share a common target sequence in their promoter region. Almost all CLEAR 

network proteins are implicated in lysosomal biosynthesis, maintenance and 

function. By that TFEB provides a global transcriptional control of the coordinated 

synthesis and action of lysosomal proteins (Sardiello et al., 2009). Furthermore, 

TFEB promotes the transcription of proteins that are involved in the broader process 

of endosomal, autophagosomal and lysosomal function (Settembre et al., 2011). 
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Remarkably, both TMEM106B and GRN have one or more CLEAR target sequences 

in their predicted promoter regions (Sardiello et al., 2009). 

 

3. Microtubules and Microtubule-dependent transport 

Microtubules (MT) are important mediators of intracellular transport events and 

most organelles are transport along them through the cell. Already early in the 

research on neurodegeneration, malfunction of MT-dependent transport processes 

were implicated in the pathogenesis of various diseases (Breuer et al., 1987; 

Gajdusek, 1985; Praprotnik et al., 1996). In this thesis I could demonstrate that the 

FTLD-TDP risk factor TMEM106B affects the microtubule dependent transport in 

primary neurons. TMEM106B acts together with its novel interactor microtubule-

associated protein 6 (MAP6) as a molecular brake for lysosomes in dendrites. 

Lysosomes are already strongly implicated in the pathogenesis of FTLD and the 

misrouting of these organelles may further aggravate neurodegeneration in patients. 

  

3.1 Microtubules  

Microtubules form together with actin filaments and intermediate filaments the 

cytoskeleton of a cell. Fundamental cellular processes such as mitosis or organelle 

transport critically depend on microtubules. In neurons, microtubules act as rail 

tracks for directed intracellular transport into axons and dendrites. Moreover, they 

are regulators of neuronal polarization and differentiation and have a crucial role in 

spine remodeling and synaptic function (Jaworski et al., 2009). Microtubules are 

hollow fibers assembled from α- and ß-tubulin heterodimers. These dimers 

polymerize in a GTP consuming process end-to-end into long chains. Thirteen of 

these so called protofilaments form the actual microtubule, which can reach a length 

of up to 100 µm in axons. Microtubule nucleation starts from a γ-tubulin ring 

complex, the microtubule-organizing center (MTOC). Due to its heterodimeric 

composition, microtubules have distinct ends, a fast-growing plus-end, and a slow 

growing minus-end. Usually, elongation proceeds to the plus-end. However, this is a 

dynamic process - growth (rescue) and shrinkage (catastrophe) of microtubules are 

in a balanced ratio (Amos and Schlieper, 2005). The structure of microtubules is the 
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same in neuronal and non-neuronal cells. However, organization is different and 

much more complex in neurons, especially owed to their highly polarized shape and 

their complex function (Kapitein and Hoogenraad, 2011). The dynamics and 

organization of microtubules is tightly regulated by the expression of different 

tubulin isotypes, their post-translational modifications and microtubule-associated 

proteins (MAPs) (Amos and Schlieper, 2005). 

 

 
 

Figure 4: Microtubule assembly and dynamics 

Schematic representation of microtubule structure and dynamics. Microtubules are comprised of 13 
protofilaments that form a 24 nm wide hollow structure. They are polar structures due to the head to tail 
assembly of the ab-tubulin heterodimers. GTP bound tubulin dimers bind to the fast growing plus-end of 
microtubules and form the fiber (rescue). The last β-tubulin layer retains it GTP cap to maintain stability. 
All other layers hydrolyze the bound GTP during or directly after polymerization. As soon as the outer 
GTP cap is lost, microtubules depolymerize at the plus-end (catastrophe). Rescue and catastrophe are 
alternating and dynamic processes. Adapted from (Conde and Caceres, 2009) 
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Microtubules are located in the soma, the axon and dendrites and transiently in the 

actin rich spines (Hu et al., 2008). Axonal microtubules are uniformly orientated 

with all plus-ends to the tip, whereas dendritic microtubules have a mixed 

orientation but for the very distal part (Baas et al., 1988). However, this is not an 

irreversible process as neurons losing their axon can develop a new one out of an 

already existing dendrite, a process requiring major cytoskeletal reorganization 

(Bradke and Dotti, 2000). In mature neurons two distinct populations of 

microtubules exist: stable microtubules with a half live of several hours that are 

resistant to cold shock and depolymerizing drugs such as nocodazole and dynamic 

microtubules, prone to catastrophe with a half live of just minutes (Baas and Black, 

1990; Sahenk and Brady, 1987). Both populations differ in in the way tubulins are 

posttranslationally modified (Song et al., 2013) and in the abundance of cofactors 

such as MAP6 (Slaughter and Black, 2003). 

 

3.2 Microtubule dependent transport 

3.2.1 Motor and adaptor proteins 

Directed cargo transport is apart from maintenance of cell structure and shape one 

of the main function of microtubules. In mammalian cells three classes of transport 

proteins exist which carry organelles, proteins and RNAs in an ATP dependent 

manner along the microtubules: myosins, kinesins and cytoplasmic dyneins.  

Myosins are responsible for short range, actin-filament dependent transport. In 

neurons these transport events take place in dynamic structures as spines, 

presynaptic buttons and growth cones. There, myosins influence such important 

processes as remodeling of the actin cytoskeleton, synaptic plasticity or spine 

growth but also interact with MT-dependent events (Kneussel and Wagner, 2013). In 

contrast, kinesins and dyneins account for long-range microtubule-dependent 

transport.  

Kinesin superfamily proteins (KIFs) mainly promote microtubule plus-end-directed 

transport. In axons with their unipolar (plus-end out) microtubules, KIFs mediate 

anterograde trafficking of their respective cargos. All family members share a 

similar globular motor domain but have different class-specific cargo binding 
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domains (Akhmanova and Hammer, 2010). The different KIFs form homo- or 

heterodimers and in rare cases also monomeric KIFs exist (Hirokawa and Takemura, 

2005). 

Cytoplasmic dyneins exclusively promote microtubule minus-end-directed transport, 

and thereby mediate retrograde transport in axons. The multiprotein transport 

complex consists of heavy, intermediate, intermediate-light and light chains 

(Akhmanova and Hammer, 2010). All dynein family members have very similar 

isotypes however they interact with a variety of different adaptor proteins as 

dynactin, dynamitin, p150glued which are responsible for specific cargo recognition 

and interaction (Vallee et al., 2004). In dendrites, where microtubules are of mixed 

orientation, it is still unclear what transport complex conveys certain cargos in 

which direction. Although often the same motor proteins are used, distinct cargos 

have their specific adaptor proteins.  

Temporal and spatial control of cargo transport is a multifactorial process but the 

exact regulatory mechanisms are heavily debated: Microtubule stability, influenced 

by microtubule-associated proteins and posttranslational modification of tubulin, 

regulate motor protein activity (Westermann and Weber, 2003). Furthermore the 

availability of cargo and motor itself (Coy et al., 1999) and the cargo-motor 

interaction have an impact on microtubule-dependent transport: some motor proteins 

bind directly to their cargo e.g. membrane lipids or internalized receptors (Tai et al., 

1999), others can only bind via specific adaptor proteins such as scaffolding 

proteins (glutamate receptor-interacting protein (GRIP) for glutamate receptor 2 

(GluA2) (Setou et al., 2002) or RAB GTPases (RAB7/RILP for lysosomes (Jordens 

et al., 2001). Additional factors such as ion concentration affect transport locally, 

for example mitochondrial movement in axons is reduced upon Ca2+ influx (Chang 

et al., 2006) (or reviewed in (Akhmanova and Hammer, 2010; Schlager and 

Hoogenraad, 2009)).  

3.2.2 Bidirectional transport 

Bidirectional transport in neurites with frequent stopping and alternation between 

anterograde and retrograde transport is observed for almost all types of cargos. In 

axons with their unipolar microtubules, transport requires both, kinesins and 
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dyneins. In contrast, in dendrites bidirectional transport could also work with only 

one type of motor proteins due to the mixed polarity of microtubules. However, also 

in dendrites both protein families mediate bidirectional transport. Two possibilities 

have been proposed for these bidirectional transport events. On the one hand, the 

“tug-of-war”-model: kinesins and dyneins are simultaneously attached to the same 

cargo and pull in different directions. This leads to stalling of transport or saltatory 

movement in both directions where the stronger motor proteins determine the net 

direction (Muller et al., 2008; Soppina et al., 2009). On the other hand, the 

coordination-model also assumes both motors to be attached simultaneously to the 

cargo. However, one motor is shut off when the opposing motor is active. This 

theory is supported by the fact that either kinesin or dynein knockdown in cells 

leads to an impairment of both retrograde and anterograde transport (Jolly and 

Gelfand, 2011). Nevertheless, it is unclear at the moment which models or even both 

are physiological relevant. In conclusion, much evidence arose that bidirectional 

trafficking is a complex mechanism controlled by multiprotein complexes binding to 

adaptor proteins and the transported cargos (RAB GTPases, scaffolding proteins, 

kinases,…) (Franker and Hoogenraad, 2013). 

3.2.3 Neurite selective transport 

Selective sorting of cargo into axons and dendrites is important to maintain neuronal 

polarity. This is guaranteed by selective transport into or selective retention from 

the respective neurite depending on the cargo involved (Hirokawa and Takemura, 

2005). Motor and adaptor proteins determine the fate of the cargo as well: most 

kinesins steer to the axon, dyneins usually to the dendrites. The cytoskeletal 

organization in the axonal initial segment additionally serves as a control element 

(Kapitein et al., 2010; Song et al., 2009; van Spronsen et al., 2013). 

 

The complex and tight regulation of microtubule dependent transport is most 

important in highly polarized cells such as neurons where axons grow up to 1 m 

long. Especially since crucial processes as neuronal polarity, axonal guidance and 

outgrowth or synaptic plasticity are directly dependent on a highly efficient and 

dynamic transport system (Franker and Hoogenraad, 2013).  
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3.3 Microtubule associated proteins (MAPs) 

3.3.1 MAPs in general 

Microtubule-associated proteins directly interact with microtubules and regulate 

their dynamic and organization. They are grouped into microtubule dependent motor 

proteins, which were already discussed above, microtubule plus-end tracking 

proteins (+TIPs) and structural MAPs. +TIPs typically bind to the plus-end of 

growing microtubules and mediate interaction and binding of microtubules to other 

proteins or cellular structures (Akhmanova and Steinmetz, 2010). Structural MAPs 

assist microtubule nucleation, regulate growth and stability, and control the ratio 

between catastrophe and rescue. The most abundant structural MAPs in neurons are 

dendritic MAP2 and mainly axonal tau. Their activity and localization is regulated 

by post-translational modification e.g. phosphorylation by MAP/microtubule 

affinity-regulating kinases (MARKs). Both proteins are thought to maintain 

microtubule spacing. MAP2 is further implicated in dendritic remodeling and 

synaptic plasticity, whereas Tau is involved in axonal transport. 

Hyperphosphorylated Tau inclusions are the hallmark of a variety of so called 

tauopathies including Alzheimer´s disease and FTLD (Reviewed in (Hoogenraad and 

Bradke, 2009; Jordan and Wilson, 2004; Kapitein and Hoogenraad, 2011)). 

3.3.2 The microtubule-associated protein MAP6/STOP 

3.3.2.1 MAP6 structure 

MAP6/STOP (stable tubule-only polypeptide) is a microtubule-stabilizing protein 

located both in axons and dendrites of neurons. Similar to other microtubule-binding 

proteins like Tau and MAP2, several different splice variants of MAP6 exist. These 

are differentially expressed depending on cell type and in the case of neurons also 

on the developmental state of the cell. The most widely studied homologue of the 

protein is rat MAP6. In very young rodent neurons only isoform 2 (E-STOP (early 

STOP): NP_001041632.1) is expressed, later on the longer isoform 1 (N-STOP 

(neuronal STOP): NP_034967.2) becomes upregulated, too. In non-neuronal cells 

the shortest variant, isoform 3 (F-STOP (fibroblastic STOP): NP_001036820.2) is 

the major isoform (Denarier et al., 1998). Although all three isoforms mediate 
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microtubule stability to a similar extent, only the neuronal isoforms 1 and 2 seem to 

bind constitutively to the cytoskeleton under physiological conditions (Bosc et al., 

2003). The longest isoform consists of four distinct domains: The N-terminal 

domain, the central penta-repeat domain, a linker region and the C-terminal repeat 

domain with several 11 amino acid long imperfect repeats which is lacking in the 

shorter isoform 2 (Bosc et al., 1996). For human tissue, only two isoforms are 

annotated corresponding to mouse isoforms one and two. However, both isoforms 

have lost four of the five central repeats (Bosc et al., 2003). The microtubule 

stabilizing sites, thus probably also microtubule-binding sites are mainly located in 

the N-terminal and the central repeat domain. All these sites overlap with 

calmodulin-binding sites and upon interaction with Ca2+/calmodulin MAP6 loses its 

ability to mediate microtubule cold resistance (Bosc et al., 2001).  

 

 
Figure 5: Domain structure and isoforms of MAP6 

Schematic representation of the domain structure of rat (A) and human (B) isoforms of MAP6/STOP. 5R: 
penta-repeat domain; CTR: C-terminal repeat domain; R: single repeat in human orthologous; Adapted 
from (Bosc et al., 2001). 

 

3.3.2.2 MAP6 function 

The main functions of MAP6 are maintaining microtubule stability and their 

protection from cold induced depolymerization (Andrieux et al., 2002; Bosc et al., 

1996). However, MAP6 additionally interacts with the actin cytoskeleton e.g. at 

spines, dendritic branch points and the Golgi apparatus arguing for additional, 
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microtubule-independent functions of the protein. This interaction depends on post-

translational modifications as phosphorylation and palmitoylation and the overall 

protein level of MAP6 (Baratier et al., 2006; Gory-Faure et al., 2006). In line with 

these findings, recent studies implicate MAP6 in the control of cellular morphology 

and endocytosis (Arama et al., 2012; Morderer et al., 2012).  

MAP6/STOP knockout mice are used as a model for schizophrenia as the behavioral 

profile of these animals is reminiscent of this neurological disease. The transgenic 

mice have a lower synaptic vesicle density, thereby an impaired glutamate release 

resulting in decreased synaptic plasticity (Andrieux et al., 2002; Brenner et al., 

2007). Additionally, knockout animals show an imbalance in serotonergic and 

dopaminergic neurotransmission, leading to reduced anxiety but increased 

depressive behavior (Bouvrais-Veret et al., 2008; Fournet et al., 2010). 

Neuropathological examinations revealed enlarged ventricles in the knockout 

animals leading to a decrease in the size of the cortex, thalamus and striatum 

however not the hippocampus (Powell et al., 2007). Atypical antipsychotics seem to 

alleviate the cognitive deficits on the molecular as well as the behavioral level in 

MAP6 knockout mice (Delotterie et al., 2010). However, it is still not clear how loss 

of a microtubule-binding protein and reduced microtubule stability cause these 

neurological phenotypes. 
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II. Aim of the study 

Genetic variants in the so far uncharacterized gene TMEM106B increase the risk of 

developing FTLD-TDP especially in individuals harboring GRN mutations 

(Cruchaga et al., 2011; Finch et al., 2011; Van Deerlin et al., 2010). However, the 

exact mechanism behind and the physiological function of the encoded protein 

remained unknown.  

Based on these genetic findings, the aim of my thesis was to evaluate the 

physiological role of TMEM106B in primary neurons by knockdown studies.  

First, I aimed to confirm the lysosomal localization of TMEM106B previously 

described in cancer cells (Lang et al., 2012) also in primary neurons and to examine 

general neuronal viability and lysosomal function upon TMEM106B knockdown. 

Since neurite loss, intracellular transport deficits and changes in synaptic 

transmission are early signs of pathology in most neurodegenerative diseases 

(Luebke et al., 2010; Masliah et al., 2001; Millecamps and Julien, 2013), I focused 

on these incidents in the next steps of my work. Accordingly, the second aim of my 

thesis was the phenotypical characterization of TMEM106B knockdown neurons 

focusing on the morphological analysis of dendrites, axons and spines by confocal 

microscopy and the study of intracellular transport of lysosomes by live cell 

imaging. Moreover, to shed light on the cellular context of TMEM106Bs function 

and to interpret the identified neuronal phenotypes I purposed to find and validate 

novel TMEM106B-interacting proteins by LC-MS/MS analysis. Last, I intended to 

validate the interaction functionally, seeking shared phenotypes of TMEM106B and 

its interaction partners and rescuing them by simultaneous knockdown or 

coexpression. These experiments may help to integrate TMEM106B into cellular 

pathways already implicated in the pathogenesis of FTLD. 

Together, these insights might one day help to treat or even cure patients from this 

devastating disease. 
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III. Materials and Methods 

1. Materials 

1.1 Equipment 

1.1.1 General equipment 

equipment supplier 

analytical balance (0.0001 – 200 g) Mettler-Toledo 

autoclave Systec 

balance (0.01 – 2000 g) Mettler-Toledo 

fridge  Santo electronic 

freezer (-20°C) Liebherr 

freezer (-80°C) Heraeus 

glassware  VWR 

gloves (Latex) Semperit 

gloves (Nitrile) Meditrade 

Milli Q plus filtration system Merck Millipore 

Parafilm “M“ Pechiney Plastic Packaging 

pH meter Thermo Scientific 

pH indicator strips Merck Millipore 

pipette boy Integra 

pipettes Gilson, Raynon 

pipette tips (10 µl, 200 µl, 1000 µl) Sarstedt, VWR 

serological pipettes (2 ml, 5 ml, 10 ml, 

25 ml) 

Sarstedt 

thermomixer Eppendorf 

tubes (1.5 ml, 2 ml) Sarstedt 

tubes (15 ml, 50 ml) Sarstedt 

vortex Scientific Industries 

microsurgical instruments (Dumont 

forceps and scissors) 

FST 

Scanner Epson 
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1.1.2 Centrifuges 

equipment supplier 

5417R cooling centrifuge  Eppendorf 

Megafuge 40R Heraeus 

Megafuge 1.0 Heraeus 

Avanti J-20 XP centrifuge Beckmann Coulter 

Optima LE-80K ultracentrifuge Beckmann Coulter 

Optima MAX-XP ultracentrifuge Beckmann Coulter 

rotor (SW-41) Beckmann Coulter 

rotor (JA25.50) Beckmann Coulter 

rotor (TLA-55) Beckmann Coulter 

rotor (JA10) Beckmann Coulter 

rotor (TH-641) Sorvall 

centrifuge tubes (1.5 ml for TLA-55) Beckmann Coulter 

centrifuge tubes (30 ml for JA25.50) Nalgene 

centrifuge tubes Nalgene 

 

1.1.3 Molecular biology 

equipment  supplier 

electrophoresis Thermo Scientific 

incubator B. Braun Biotech International 

microwave Sharp 

Mastercycler Pro  Eppendorf 

PCR tubes, strips, 96 well plates Sarstedt 

CFX384 Real-Time System  Bio-Rad 

384 well plates Bio-Rad 

Power supply Bio-Rad 

ultraviolet (UV) Lamp Intas 

Nano Drop Implen 

heating cabinet Binder 
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1.1.4 Protein biochemistry 

equipment supplier 

Filter paper Schleicher & Schüll 

Heating block MR Hei-Tec Heidolph instrument 

Glass plates for electrophoresis gels Bio-Rad 

Immobilon-P membrane, PVDF, 0.45 µM Merck Millipore 

Electrophoresis gel casting system Bio-Rad 

Electrophoresis system (Mini-PROTEAN 

Tetra Cell) 

Bio-Rad 

Electrophoresis Transfer Cell (Mini-

PROTEAN Trans-Blot) 

Bio-Rad 

Foam Pads Bio-Rad 

dynabead magent Life technologies 

power supply Major Science 

shaker  Edmund Bühler GMBH 

Developer CaWo 

X-ray films Fuji 

X-ray film chamber G. Kisker 

scanner Epson 

Automated Potter Multifix Record Johann Gg Bachhofer 

Digital Sonifier 250 Branson 

 

1.1.5 Cell culture 

equipment supplier 

Cell culture hood Heraeus 

rubber policemen Corning Incorporated 

Bunsen burner Heraeus 

cell culture dish (3.5 cm, 6 cm, 10 cm) Nunc 

cell culture plate (12 well, 96 well) Nunc 

CO2-incubator Thermo Scientific 
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oven Memmert 

glass bottom dish (dglass = 20 mm, 3.5 

cm) 

Mattek 

Hemocytometer Optik Labor 

N2-tank Messer Griesheim 

PES membrane filter (0.45 µm) VWR International 

water bath GFL 

 

1.1.6 Imaging 

equipment supplier 

Confocal laser scanning microscope (LSM 510, LSM 710) Carl Zeiss 

Spinning disc microscope (Cellobserver SD) Carl Zeiss 

Epifluorescence microscope (Axiovert.A2) Carl Zeiss 

Objective (LD LCI Plan Apochromat, 25x/0.8 Oil, W, Gly) – 

LSM710 

Carl Zeiss 

Objective (Plan Apochromat, 40x/1.3 Oil DICII) – LSM510 Carl Zeiss 

Objective (Plan Apochromat, 40x/1.4 Oil DICII) – LSM710 Carl Zeiss 

Objective (Plan Apochromat, 63x/1.4 Oil DICII) – LSM710 Carl Zeiss 

Objective (Plan Apochromat, 63x/1.4 Oil DIC) – 

Cellobserver SD 

Carl Zeiss 

Objective (Plan Neofluar 40x/1.3 oil Ph3) – Axiovert.A2 Carl Zeiss 

climate chamber Pecon 

light microscope (Wilovert S) Hund Wetzlar 

Powerwave XS plate reader BioTek 

 

1.1.7 Mass spectrometry 

equipment supplier 

Proxeon Easy nLCII liquid 

chromatograph 

Thermo Scientific 
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2.4 µm C18 beads Dr. Maisch GmbH 

TQ Velos Orbitrap mass spectrometer Thermo Scientific 

 

1.1.8 Kits 

Kit supplier 

Amaxa primary culture kit P3  Lonza 

Cell Proliferation Kit II (XTT) Roche applied science 

NOVEX Colloidal Blue Staining Kit Life Technologies 

NucleoBond Plasmid kit Machery Nagel 

NucleoBond Xtra Midi EF kit Machery Nagel 

NucleoSpin Gel and PCR cleaning kit Machery Nagel 

RNeasy Mini Kit  Qiagen 

TaqMan MicroRNA Reverse 

Transcription Kit 

Applied Biosystems 

SsoFast™ EvaGreen Supermix Bio-Rad 

 

1.2 Chemicals, enzymes and antibodies 

1.2.1 Molecular biology 

Name  company 

Agarose Ultrapure Life Technologies 

restriction enzymes NEB 

Ampiciline Boehringer Mannheim 

deoxyribonucleic acid (DNA) polymerase (Pfu) Agilent 

DNA polymerase (Pwo) Roche Applied Science 

DNA polymerase (Taq) Roche Applied Science 

DNA polymerase (Pfu II Ultra) Agilent 

tetracycline Sigma-Aldrich 

dNTPs Roche Applied Sciences 

DNA ladder Life Technologies 
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Ethidiumbromide ROTH 

T4-Ligase NEB 

calf intestine phosphatase (CIP) NEB 

 

1.2.2 Cell culture 

Name company 

DMEM glutamax-I Life Technologies 

Neurobasal Life Technologies 

Fetal calf serum (FCS) Life Technologies 

l-glutamine Sigma-Aldrich 

l-glutamate Sigma-Aldrich 

DNase Sigma-Aldrich 

poly-D-lysine (PDL) Sigma-Aldrich 

laminine Roche Applied Science 

trypsin-EDTA Life Technologies 

trypsin (2.5 %) Life Technologies 

Penicillin/Streptomycin Life Technologies 

Non-essential amino acids (NEAA) Life Technologies 

Lipofectamine2000 Life Technologies 

B27 Life Technologies 

Bovine serum albumin (BSA) Sigma-Aldrich 

Nocodazole Sigma-Aldrich 

OptiMEM Life Technologies 

 

1.2.3 Biochemistry 

Name Company 

proteinase inhibitor Sigma-Aldrich 

phosphatase inhibitor Sigma-Aldrich 

ammonium persulfate (APS) Roche 
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tetramethylethylendiamin (TEMED) USB 

Acrylamid (19:1 / 40 % (w/v)) Bio-Rad 

ß-mercaptoethanol Merck Millipore 

SeaBlue Prestained Protein Ladder Plus 2 Life Technologies 

myc-beads Sigma-Aldrich 

Protein G Dynabeads  Life Technologies 

Protein A sepharose beads GE Healthcare 

iodixanol Sigma-Aldrich 

lysozyme Merck Millipore 

Isopropyl-β-D-1-thiogalactopyranoside (IPTG) ROTH 

glutathion sepharose 4B GE Healthcare 

Maltose beads  

Bis-sulfosuccinimidyl suberate (BS3) Sigma-Aldrich 

enhanced chemiluminescence (ECL) Thermo Scientific 

ECL plus Thermo Scientific 

I-Block Tropix 

dithiothreitol (DTT) Sigma-Aldrich 

 

1.2.4 Microscopy 

Name Company 

vectahield H-1000 mounting medium Vectorlabs 

Immersol 518 F Carl Zeiss 

Microscope Cover glasses (18 mm, 20 

mm) 

VWR 

Microscope slides Superfrost plus  Thermo Scientific 

 

1.2.5 General chemicals 

Name Company 

acetonitrile Merck Millipore 
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acetic acid Merck Millipore 

Bromophenol blue Merck Millipore 

boric acid Merck Millipore 

dimethyl sufoxide (DMSO) Roth 

ethylenediaminetetraacetic acid (EDTA) USB 

Ethanol Sigma-Aldrich 

formic acid Millipore 

gelatin powder Sigma-Aldrich 

Glycerol USB 

Glycine Biomol 

Hepes Biomol 

Isopropanol Merck Millipore 

KCl USB 

KH2PO4 Merck Millipore 

β-mercaptoethanol ROTH 

methanol Merck Millipore 

Na2[B4O5(OH)4] Sigma-Aldrich 

NaCl Merck Millipore 

NH4HCO3 Merck Millipore 

Na2HPO4 Merck Millipore 

NaH2PO4 Sigma-Aldrich 

NaOH Merck Millipore 

NaN3 Merck Millipore 

paraformaldehyde (PFA) Sigma-Aldrich 

sodium dodecylsulfate (SDS) Roth 

sucrose Sigma-Aldrich 

Staurosporine Sigma-Aldrich 

Tris AppliChem 

TritonX100 Merck Millipore 

Tryptone BD Biosciences 

Yeast extract BD Biosciences 
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1.2.6 Antibodies 

Primary antibodies 

Antigen Supplier Species Clone Dilution 

β-actin Sigma-Aldrich mouse 

monoclonal 

AC-15 WB: 

1:5,000 

γ-adaptin BD Biosciences mouse 

monoclonal 

88/Adaptin 

γ 

WB: 1:500 

calnexin Enzo Life 

Sciences 

rabbit 

polyclonal 

 WB: 

1:10,000 

FUS Bethyl mouse 

monoclonal 

A300-292A WB: 1:500 

green fluorescent 

protein (GFP) 

Neuromab mouse 

monoclonal 

N86/38 IF: 1:500 

LAMP1 Enzo Life 

Sciences 

mouse 

monoclonal 

Ly1C6 IF: 1:50 

Map6 (rat amino acids 

793 – 952 according to 

NP_058900) 

Immunization at 

Eurogentec 

rabbit 

polyclonal 

 IF: 5 µg / 

ml, WB: 1 

µg / ml 

MAP6 Cell Signaling 

Technologies 

mouse 

monoclonal 

175 IF: 1:50, 

WB: 1:500 

MAP6 Abcam mouse 

monoclonal 

ab78077 IF: 1:50, 

WB 1:500 

Myc Santa-Cruz-

Biotechnology 

mouse 

monoclonal 

9E10 IF: 1:250, 

WB: 

1:1,000 

Na+/K+-ATPase Developmental 

Studies 

Hybridoma 

Bank 

mouse 

monoclonal 

a2F WB: 

1:1,000 

postsynaptic density 

protein 95 (PSD-95) 

Neuromab mouse 

monoclonal 

K28/43 WB: 

1:1,000 
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Rab7 Cell Signaling 

Technologies 

mouse 

monoclonal 

2094 WB: 1:500 

Synaptophysin Millipore mouse 

monoclonal 

SY38 WB: 

1:1,000 

synaptic vesicle 

glycoprotein 2 (SV2) 

Developmental 

Studies 

Hybridoma 

Bank 

mouse 

monoclonal 

SP2/0 WB: 

1:2,000 

Tau Dako rabbit 

polyclonal 

A 0024 WB: 

1:10,000 

Tau-1 Millipore mouse 

monoclonal 

PC1C6 IF: 1:500 

TDP-43 Cosmo Bio rabbit 

polyclonal 

405-414 WB: 

1:1,000 

translocase of outer 

membrane 20 (TOM20) 

Santa-Cruz-

Biotechnology 

rabbit 

polyclonal 

FL-145 WB: 1:500 

TMEM106B (rat amino 

acids 1-91) 

Immunization at 

Eurogentec 

rabbit 

polyclonal 

344 IF: 5 µg / 

ml 

TMEM106B (rat amino 

acids 1-91) 

Immunization at 

Eurogentec 

rabbit 

polyclonal 

345 WB: 1 µg / 

ml 

Transferrin receptor 

(TfR) 

Life Technology mouse 

monoclonal 

H68.4 WB: 1:500 

βIII-tubulin Sigma-Aldrich mouse 

monoclonal 

SDL.3D10 IF: 1:500, 

WB: 

1:10,000 

Cathepsin D Santa-Cruz-

Biotechnology 

mouse 

monoclonal 

C-20 WB: 

1:1000 
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Secondary antibodies 

Antigen Supplier Species Labeled Dilution 

mouse IgG 

(H+L) 

Life technologies goat Alexa488, 555 or 647 IF: 1:500 

rabbit IgG 

(H+L) 

Life technologies goat Alexa488, 555 or 647 IF: 1:500 

rat IgG (H+L) Life technologies goat Alexa488, 555 or 647 IF: 1:500 

mouse IgG 

(H+L) 

Promega goat horse radish 

peroxidase (HRP) 

WB: 1:5,000 

rabbit IgG 

(H+L) 

Promega goat HRP WB: 1:5,000 

rat IgG (H+L) Santa-Cruz-

Biotechnology 

goat HRP WB: 1:5,000 

 

1.3 DNA oligonucleotides and plasmids 

1.3.1 Primer for cloning 

primer sequence sense sequence antisense 

rat TMEM106B  GGATCCGCCACCATGGGAAAGT
CTCTTTCTCATTTACC 

CATGAATTCATTGTTGTGGCTG
AAGGACATTTAGATAC 

shRNA resistant rat 

TMEM106B* 

GGGCACTGTGTAGTCGATCTGC
TTTTCATATCAAGTGGGCCAAT
G 

GCAGATCGACTACACAGTGCCC
ACAGTTATTGCCGAGG 

 GCGGCCGCAACACTACGTACCA
GTTGGCCCAGTCTG 

GGTACGTAGTGTTGCGGCCGCA
GTCAACATACTGGTACCTCTCC 

rat MAP6 isoform 1 GTGAGATCTGCCACCATGGCGT
GGCCGTGCATCACTAGG 

TGTGTCGACCTCCATGGCATTT
CAAGGGAATCAAGG 

human dnRILP (c33AA 

201-401) 

TAAGTCGACCCCGGGCACCAGC
ACGGACAGGAG 

CATGAATTCTAAGTCAGGCCTCTG
GGGCGGCTGAG 

human RAB7a-GFP AAAGGCGCGCCTATGACCTCTA
GGAAGAAAGTGTTGCTGAAGG 

CGAGAATTCTTAGCAACTGCAG
CTTTCTGCCGAGG 

human RAB7a-GFP GATTCTGGAGTTGGTAAAGCTT
CACTCATGAACCAGTATG 

CATACTGGTTCATGAGTGAATT
CTTACCAACTCCAGAATC 
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(dominant negative T22N) 

human RAB7a-GFP 

(constitutive active Q67L) 

CTGGGACACAGCAGGCCTAGAA
CGGTTCCAGTCCCTTG 

CAAGGGACTGGAACCGTTCTAG
GCCTGCTGTGTCCCAG 

GFP-TMEM-NT primer CCGCTCGAGCTGGAAAGTCTCT
TTCTCATTTGCC 

CGCGGATCCTTATGTTCTTCTT
GGCCTTAATCTCTG 

human Map6 isoform 1  CTAGTCTAGAGCCACCATGGCG
TGGCCGTG 

TTCCGCGGCCGCTATGGCCGAC
GTCGACTCAAGGGGAGCTCTCA
ATGTATTC 

human MAP6 isoform 2 CTAGTCTAGAGCCACCATGGCG
TGGCCGTG 

TTCCGCGGCCGCTATGGCCGAC
GTCGACTCACTCTTTCGCCTCA
GCCAG 

 

1.3.2 Short hairpin RNA (shRNA) 

Primers for shRNA cloning (BglII/HindIII into pSuper or pSuperSub), 19mer target 

sequence is marked in bold, reverse complement of target sequence in italic  

target sequence sense sequence antisense 

rm-

shTMEM106B#1 

gatccccGCAGATTGATTATACGGTA
ttcaagagaTACCGTATAATCAATCT
GCtttttggaaa  

agcttttccaaaaaGCAGATTGATTA
TACGGTAtctcttgaaTACCGTATAA
TCAATCTGCggg 

rm-

shTMEM106B#2 

gatccccGTGGAAGGAACACGACTTA
ttcaagagaTAAGTCGTGTTCCTTCC
ACtttttggaaa 

agcttttccaaaaaGTGGAAGGAACA
CGACTTAtctcttgaaTAAGTCGTGT
TCCTTCCACggg 

r-shMAP6 gatccccGGTGCAGATCAGCGTGACA
ttcaagagaTGTCACGCTGATCTGCA
CCtttttggaaa 

agcttttccaaaaaGGTGCAGATCAG
CGTGACAtctcttgaaTGTCACGCTG
ATCTGCACCggg 

shLuc gatccccCGTACGCGGAATACTTCGA
ttcaagagaTCGAAGTATTCCGCGTA
CGtttttggaaa 

agcttttccaaaaaCGTACGCGGAAT
ACTTCGAtctcttgaaTCGAAGTATT
CCGCGTACGggg 

r-shMAP2 gatccccCGAGAGGAAAGACGAAGGA
ttcaagagaTCCTTCGTCTTTCCTCT
CGtttttggaaa 

agcttttccaaaaaCGAGAGGAAAGA
CGAAGGAtctcttgaaTCCTTCGTCT
TTCCTCTCGggg 
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1.3.3 qPCR primers 

target sequence sense sequence antisense 

rm-TMEM106B actggaagagatagtgtcacttgtccca agccaatccagacaggagcaggc 

rm-YWHAZ tgagcagaagacggaaggtgctg tctgatggggtgtgtcggctgc 

 

1.3.4 Plasmids 

ß-actin-EGFP (XX3 – empty vector) Dieter Edbauer 

FhSynRedW-mCherry Dieter Edbauer 

FhSynW-rTMEM106B* (resistant to 

shTMEM106B #1 and #2)  

EcoRI/ BamHI into AD149 

GW1.2b-myc-rMAP6  BglII/SalI into XX7  

FhSynW-myc-rMAP6 AscI/EcoRV from GW1.2b-myc-rMap6 

into AD538 FhsynW1-myc 

pSUPER-mr-shTMEM106B#1  oligos BglII/HindIII into pSUPER 

pLL3.7-hSyn-shTMEM106B#1-pTag-

RFP  

XbaI/XhoI from pSuper into AD425 

pSUPER-mr-shTMEM106B#2  oligos BglII/HindIII into pSUPER 

pLL3.7-hSyn-shTMEM106B#2-pTag-

RFP 

XbaI/XhoI from pSuper into AD425 

pSUPERsub-r-shMAP6  oligos BglII/HindIII into pSUPERsub 

pLL3.7-hSyn-shMAP6-pTag-RFP XbaI/XhoI from pSUPERsub into AD425 

pSUPER-shLuc oligos BglII/HindIII into pSUPER 

pSUPERsub-shLuc oligos BglII/HindIII into pSUPERsub 

pLL3.7-hSyn-shLuc-pTag-RFP XbaI/XhoI from pSUPER in AD425 

GFP-TMEM-NT XhoI/BamHI Into pEGFP-C1 by 

Christina Lang 

hMap6 isoform 1 XbaI/SalI in XX7 

hMap6 isoform 2 XbaI/SalI in XX7 

hRab7a-GFP AscI/EcoRI in XX7 

MAP6-GFP GFP from XX8 AflII/AscI into GW1.2b-
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myc-rMap6 

Mito-RFP: mitochondrial targeting 

sequence of cyclooxygenase 8 (COX8) 

fused to red fluorescent protein (RFP) 

Anna Pilsl 

dnRilp c33 SalI/EcoRI into XX7 

GW1.2b-CMV-myc (XX7 – empty 

vector) 

Dieter Edbauer 

GW1.2b-CMV-EGFP (XX8 – empty 

vector) 

Dieter Edbauer 

Rab7a pEGFP-C1 Capell lab 

dn hRab7a-GFP (T22N) AscI/EcoRI in XX7 

ca hRab7a-GFP (Q67L) AscI/EcoRI in XX7 

pEYFP-C1 Sabina Tahirovic 

Lamp1-RFP Capell lab 

FhSynW2-ΔZeo (AD149 – empty vector) Dieter Edbauer 

AD538 FhsynW1-myc (AD538 – empty 

vector) 

Dieter Edbauer 

pSUPER (empty vector – H1 promoter 

for expression of shRNAs) 

Dieter Edbauer 

pLL3.7-hSyn-pTag-RFP (AD425 – empty 

vector for lentiviral expression of 

shRNAs) 

Dieter Edbauer 

FhSynW-rTMEM106B  EcoRI, BamHI into AD149 

pSUPERsub (empty vector – H1 

promoter for expression of shRNAs) 

Dieter Edbauer 

pSPAX2 (Salmon and Trono, 2007) 

pVSVg (Kuhn et al., 2010) 
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1.4 Buffer 

If not stated otherwise, components of buffers are dissolved in MilliQ water. 

1.4.1 Buffer for antibody generation 

buffer composition 

homogenization buffer 0.32 M sucrose,  

4 mM Hepes,  

2 mM EDTA  

pH 7.4 

STE-buffer 10 mM Tris–HCl  

150 mM NaCl  

1 mM EDTA 

pH 8.0 

conjugation buffer 20 mM Na2HPO4 

0.15 M NaCl 

pH 8.0 

column buffer 0.2 M Tris-HCl  

0.5 M NaCl 

pH 8.0 

glycine elution buffer 0.1 M Glycine-HCl 

0.5 M NaCl 

pH 2.5 

neutralization buffer 1 M Tris 

pH 9.5 

 

1.4.2 Buffer for Molecular Biology: 

buffer composition 

lysogeny broth (LB) medium 1 % Tryptone 

0.5 % Yeast extract 

86 mM NaCl 
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LB agar 1.5 % agar in LB medium 

5x DNA loading buffer 50 % Glycerol 

50 mM Na2EDTA 

0.05 % Bromophenol blue  

pH 8.0 

Sodium borate buffer 5mM Na2[B4O5(OH)4] x 10 H2O 

pH 8.0 (adjusted with H3BO3) 

1.4.3. Buffer for cell culture 

buffer composition 

phosphate-buffered saline (PBS) 0.14 M NaCl 

10 mM Na2HPO4 

2.8 mM KH2PO4 

2.7 mM KCl 

pH 7.4 

Hepes buffer 0.3 M Hepes 

pH 7.3 

Hank´s buffered salt solution (HBSS) 0.14 M NaCl 

5.4 mM KCl 

0.25 mM Na2HPO4 

5.6 mM glucose 

0.44 mM KH2PO4 

1.3 mM CaCl2 

1.0 mM MgSO4 

4.2 mM NaHCO3 

borate buffer 40 mM boric acid 

10 mM sodium tetra borate 

pH 8.5 
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1.4.4 Buffer for protein biochemistry 

buffer composition 

4x Lämmli sample buffer 4% SDS,  

20% glycerol,  

5% β-mercaptoethanol,  

200 mM Na2HPO4 

pH 7.4 

RIPA buffer 50 mM TrisHCl  

150 mM NaCl  

2 mM EDTA  

1% NP-40  

0.1% SDS 

pH 7.4 

stacking gel buffer 0.5 M Tris 

0.4 % (w/v) SDS 

pH 6.8 

separating gel buffer 1.5 M Tris  

0.4 % (w/v) SDS 

pH 8.8 

running buffer 25 mM Tris 

0,2 M Glycine 

0.1 % SDS 

blotting buffer 25 mM Tris 

0,2 M Glycine 

TBSTx 20 mM Tris 

0.14 M NaCl 

0.2 % TritonX100 

pH 7.6 

Coomassie fixing solution 10 % acetic acid 

50 % methanol 

Coomassie staining solution 20 % stainer A (Colloidal Blue 
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Staining Kit) 

5 % stainer B (Colloidal Blue Staining 

Kit) 

20 % methanol 

 

1.4.5 Buffer for immunofluorescence 

buffer composition 

4 % PFA fixing solution 4 % PFA 

0.15 mM NaOH 

0.13 mM NaH2PO4 

0.12 mM sucrose 

pH 7.6 

2x GDB buffer 0.2 % Gelatine powder 

0.33 M Na2HPO4 

0.9 M NaCl 

0.6 % TritonX100 

pH 7.4 

HBSS/Hepes buffer 7 mM Hepes in HBSS 

 

1.4.6 Buffer for mass spectrometry 

buffer composition 

ammonium bicarbonate buffer 100 mM NH4HCO3 

Coomassie destaining solution 50 % ammonium bicarbonate buffer 

50 % acetonitrile 

tryptic digest solution 13 ng / µl trypsin 

10 mM NH4HCO3 

10 % acetonitrile 

extraction buffer 1.7 % formic acid 

67 % acetonitrile 

 



Material and Methods 
 

59 
 

1.5 Services 

Service Supplier 

DNA Sequencing GATC Biotech AG 

Antibody production Eurogentec SA 

Oligonucleotide synthesis Sigma-Aldrich 

 

1.6 Software and Online tools 

Software Supplier 

ImageJ / Fiji National Institutes of Health 

MS Office Microsoft 

GraphPad Prism GraphPad Software 

Adobe Photoshop CS5 Adobe 

Adobe Acrobat Professional Adobe 

MetaMorph Molecular Devices 

Carl Zeiss Axiovision Carl Zeiss 

CLC Main Workbench 6 CLC bio 

BioRad CFX manager  Bio-Rad 

NCBI databases 

(http://www.ncbi.nlm.nih.gov)  

National Institutes of Health 

ensembl (http://www.ensembl.org)  EMBL-EBI and Wellcome Trust 

Sanger Institute 

APE – A plasmid editor v1.17 Wayne Davis 

i-score designer (http://www.med.nagoya-

u.ac.jp/neurogenetics/i_Score/i_score.html) 

(Ichihara et al., 2007) 

 

Spidey web tool 

(http://www.ncbi.nlm.nih.gov/spidey/).  

National Institutes of Health 

Primer3 web tool 

(http://bioinfo.ut.ee/primer3/) 

(Untergasser et al., 2007) 

Proteome Discoverer 1.2  Thermo Scientific 

The International Protein Index database EMBL-EBI and Wellcome Trust 

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
http://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html
http://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html
http://www.ncbi.nlm.nih.gov/spidey/
http://bioinfo.ut.ee/primer3/
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for rat (version 3.87) Sanger Institute 

 

1.7 Cell lines and bacteria strains 

 supplier 

DH5α chemically competent Escherichia coli (E. coli)  Life Technologies 

TOP10 Chemically competent E.coli Life Technologies 

HEK293-FT  Life Technologies 
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2. Methods 

2.1 Molecular Biology 

2.1.1 Molecular cloning 

Cloning strategy  

For cloning of complete complementary DNAs (cDNAs) or cDNA fragments, the 

region of interest was either excised with restriction enzymes from a plasmid based 

vector or PCR amplified from a cDNA library or a plasmid based vector. Restriction 

sites in the donor construct for subcloning or sites attached with primers to PCR 

products were chosen according to the available restriction sites in the acceptor 

plasmid. For cloning of shRNAs, oligonucleotides containing the desired sequence 

were ordered and hybridized as follows: 

Component amount 

Forward oligonucleotide 

(100µM) 

1 µl 

Reverse oligonucleotide 

(100µM) 

1 µl 

NEB buffer 4 2 µl 

MilliQ water Ad 20µl 

 

The mixture was incubated at 95°C for 4 min and let cool down slowly to RT. The 

acceptor plasmid was digested with the corresponding restriction enzymes but not 

dephosphorylated prior to ligation with the annealed oligonucleotides. 

shRNA design  

Oligonucleotides with a length of 25 nucleotides binding to ideally unique seed 

region on the target of interest were designed using the iScore designer 

(http://www.med.nagoyau.ac.jp/neurogenetics/i_Score/i_score.html) and the NCBI 

Blast web tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Usually, shRNAs were 

initially tested in HEK293-FT cells coexpressing an overexpression construct. 

Knockdown efficiency was tested on protein level using immunoblotting. All 

constructs were verified by DNA sequencing.  
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Polymerase chain reaction (PCR)  

For standard PCR reaction Pfu DNA polymerase was used and the PCR mix was set 

as follows: 

Component amount 

DNA template 100 ng 

Forward primer (20 µM) 1 µl 

Reverse primer (20 µM) 1 µl 

dNTPs (10 mM each) 1 µl 

10x Pfu buffer 5 µl 

Pfu DNA polymerase 1 µl 

MilliQ water ad 50 µl 

 

Standard protocol comprised 30 PCR cycles, annealing temperature 𝑇𝑎 = 𝑇𝑚(𝑝𝑝𝑝𝑚𝑝𝑝) −

5°𝐶 and elongation time of 1 min per 1000 base pairs.  

 

Step Temperature 

[°C] 

Time # of 

cycles 

Initial 

denaturation 

95 2 min 1 

Denaturation 95 20 s  

30 Annealing 𝑇𝑚(𝑝𝑝𝑝𝑚𝑝𝑝) − 5 20 s 

Extension 72 1 min / 1kb 

Final Extension 72 8 min 1 

 

For special applications other polymerases (Taq, PWO, Pfu II Ultra) were used 

according to the manufacturer’s instructions. 

Restriction digest and dephosphorylation  

Plasmid based vectors (3 µg) were cut with the respective restriction enzymes 

typically at 37°C for 1 h. PCR products were cut typically at 37°C overnight. The 

amount of the restriction enzymes, conditions and buffer system was chosen 

according the manufacturer´s instruction or the NEB double digest finder 
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(https://www.neb.com/tools-and-resources/interactive-tools/double-digest-finder). 

The ends of plasmid backbones were dephosphorylated with calf intestine 

phosphatase (CIP) for 1 hour at 37°C after the restriction digest in order to prevent 

self-ligation. To purify the digested and dephosphorylated DNA, the plasmid was 

subjected to agarose gel electrophoresis, the respective bands excised, purified and 

eluted in 50µl MilliQ water (see chapter: Agarose-gelelectrophoresis).  

Ligation  

The digested, dephosphorylated vector backbone was incubated with the digested 

PCR product or vector fragment, Ligase buffer and Ligase added for at least 1 hour 

at room temperature. The ligation mix was set as follows: 

Component amount 

vector backbone 3 µl 

PCR product / plasmid 

fragment 

9 µl  

10x ligase buffer 2 µl 

ligase 2 µl 

MilliQ water ad 20 µl 

 

Transformation  

The complete ligation mixture was gently mixed with 100 µl freshly thawed 

chemical competent DH5α E. coli bacteria. Bacteria were incubated for 25 min on 

ice, heat shocked for 1 min at 42°C to facilitate uptake of the DNA and put back on 

ice for 1 min. Afterwards, 500 µl LB medium was added and the transformation mix 

incubated at 37°C under gentle shaking for 1 h. After incubation, the whole ligation 

mix was plated on LB plates containing selection antibiotics and incubated for 8 to 

12 h at 37°C. 

DNA preparation  

To prepare DNA from E.coli bacteria, single clones were picked with sterile pipette 

tips and added to 5 ml antibiotics containing LB medium (miniprep) or to 100 ml 

antibiotic containing LB medium (midiprep). The liquid culture was incubated under 

https://www.neb.com/tools-and-resources/interactive-tools/double-digest-finder
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gentle shacking at 37°C overnight. Afterwards, the culture was centrifuged with xx 

g for 5 min (miniprep) or 10 min (midiprep) at 4°C and the supernatant discarded. 

The bacteria pellet was resuspended and plasmid DNA was purified with the 

NucleoBond Plasmid kit (miniprep) or the NucleoBond Xtra Midi EF kit (midiprep) 

according to the manufacturer´s instructions. 

Control digestion 

To verify successful cloning purified plasmids were control digested. One or several 

restriction enzymes were chosen to ensure a distinct restriction pattern. The amount 

of the restriction enzymes, conditions and buffer system was chosen according the 

manufacturer´s instruction or the NEB double digest finder 

(https://www.neb.com/tools-and-resources/interactive-tools/double-digest-finder). 

Agarose-gelelectrophoresis  

To purify digested plasmid fragments or PCR products, to separate several DNA 

fragments from a single digestion mix or to visualize the restriction pattern after 

control digestion one dimensional electrophoresis was used. DNA was mixed with 

the respective amount of 5x DNA loading buffer and applied to agarose gels (0.7 % 

to 2 % agarose in SB buffer) containing 0.2 µg/ml ethidiumbromide. Electrophoresis 

was performed in sodium borate buffer at a constant voltage of 300 V. Gels were 

examined under UV light (xx nm).  

Sequencing  

To further verify successful cloning and check for small deletions, insertions or 

point mutations in the insert purified plasmids were sequenced at GATC Biotech AG 

(Konstanz). One or several primers which bound to or upstream of the region of 

interest were used to sequence each construct. 

2.1.2 Reverse transcription and quantitative PCR (RT-qPCR) 

RNA isolation 

RNA from primary neurons was isolated using the Qiagen RNAeasy kit following 

the manufacturer's instructions. For storage RNA was kept at -80°C. To avoid 

https://www.neb.com/tools-and-resources/interactive-tools/double-digest-finder
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interference of residual genomic DNA, a DNase digest step was performed during 

RNA extraction, according to manufacturer's instructions. 

Reverse transcription-PCR (RT-PCR) 

To generate complementary DNA (cDNA) isolated RNA was reversely transcribed 

with random hexamer primers (N6) using TaqMan MicroRNA Reverse Transcription 

Kit following the manufacturer’s instructions. For the cDNA standard curve, equal 

amounts of all RNA samples were pooled and the mixture was serially diluted in a 

1:10 ratio. The reaction mix was set as follows. For each reaction the RNA sample 

was diluted in 15µl nuclease-free H2O and combined with 30μL reaction mix. 

Component amount 

100 mM dNTPs 0.45 µl 

MultiScribe™ Reverse Transcriptase (50 

U/μL) 

3 µl  

RNase inhibitor 0.56 µl 

10X RT buffer 4.5 µl 

N6 primer (50 ng/μl) 4.5 µl 

diluted RNA 15 µl 

nuclease-free H2O ad 45 µl 

 

The standard program for the RT-PCR reaction was: 

time temperature 

30 min 16 °C 

30 min 42 °C  

5 min 85 °C 

hold 4 °C 

 

Quantitative PCR (qPCR) 

The qPCR reaction was performed using the SsoFast™ EvaGreen (BioRad) reaction 

mix according to the manufacturer’s instructions. cDNA was diluted in a ratio of 1:1 

in nuclease free H2O, was mixed with the reaction mix and gene specific primers 
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were added. Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 

protein, zeta (YWHAZ) was usually as housekeeping gene. The relative mRNA 

expression was calculated using the BioRad CFX manager software with the Δ- Δ -

Ct method. The reaction mix was set as follows: 

Component amount 

SsoFast™ EvaGreen 2.5 µl 

Forward primer (400 nM) 0.05µl 

Reverse primer (400 nM) 0.05 µl 

cDNA template 2 µl 

Nuclease free H2O ad 5µl 

 

The qPCR was performed in a CFX384 Real-Time System quantitative PCR 

(BioRad) with the following program: 

Step Temperature [°C] Time # of cycles 

Initial 

denaturation 

95 30 s 1 

Denaturation 95 5 s  

50 Annealing and 

extension 

60 5 s 

Extension 95 10 s 

Melt curve 65 - 95 5 s (increment 0.5 °C) 1 

 

Quantitative PCR primer design 

qPCR primers were design based on the genomic and mRNA sequences of the gene 

of interest provided by the NCBI database. A multiple alignment between sequences 

was generated using the Spidey web tool (http://www.ncbi.nlm.nih.gov/spidey/). To 

avoid detection of genomic DNA, intron spanning primers (intron size >1000 bp) 

were selected using the Primer3 web tool (http://bioinfo.ut.ee/primer3/). Primers 

were chosen for a product size of 200-300 bp and for PCR temperature of 60°C. 

 

  

http://www.ncbi.nlm.nih.gov/spidey/
http://bioinfo.ut.ee/primer3/


Material and Methods 
 

67 
 

2.2 Cell biology  

2.2.1 HEK293 cells 

Cultivation of HEK293 cells 

Human embryonic kidney cells (HEK293FT) were cultivated in DMEM-Glutamax 

medium supplemented with 10% FCS, 1% Penicillin/streptomycin and 1% NEAA at 

37°C / 5 % CO2. At a confluency of 80-90% HEK293FT cells were split in a ratio of 

1:1 to 1:10. For that purpose the medium was removed, cells were washed once with 

PBS, 2ml 0.05% Trypsin/EDTA was added and cells were incubated for 1 min at 

37°C. Afterwards, 2 ml medium was added to stop trypsin activity, cells were 

carefully detached and centrifuged for 5 min at 1000 rpm. The cell pellet was 

resuspended in 10 ml medium and plated in the desired concentration in cell culture 

dishes.  

Transfection of HEK293 cells 

For transfection HEK293FT cells were split in a ratio of 1:1 on day one. On day 

two, 1,000,000 - 2,000,000 cells were plated in a 10 cm dish and transfected with 

Lipofectamin 2000 on day three following the manufacturer`s instruction:  

Component Amount 

Total DNA 10 µg 

in OptiMEM 1.5 ml 

After 5 min combine with: 

Lipofectamin 2000 30 µl 

in OptiMEM 1.5 ml 

 

The transfection mix incubated for 20 min at room temperature. Meanwhile, medium 

was removed from the cells and replaced by 5 ml prewarmed OptiMEM. After 

incubation, the transfection mix was added to the cells for 4 to 8 h before OptiMEM 

was replaced by normal culture medium. Cells were harvested and analyzed 36 to 48 

h later.  
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Lentivirus production  

For production of lentivirus, low passage HEK293FT cells were used as packaging 

cell line. Full confluency of HEK293-FT cells was avoided to increase virus titer. 

Three 10 cm dishes per virus with 5.5 million cells each were plated 24 hours prior 

to transfection with Lipofectamin 2000. Transfection mix was set as follows: 

Component Amount 

LTR vector 18.6 µg 

pSPAX2 11 µg 

pVSVg 6.4 µg 

Total DNA 36 µg 

in OptiMEM 4.5 ml 

After 5 min combine with: 

Lipofectamin 2000 108 µl 

in OptiMEM 4.5 ml 

 

LTR vector contains the lentiviral expression construct, pSPAX2 and pVSVg allow 

packaging of the virus particles. Transfection mix was incubated for 20 min at room 

temperature. In the meantime, media was exchanged with 5 ml OptiMEM 

supplemented with 10 % FCS per 10 cm dish. After incubation, 3 ml transfection 

mix was added drop-wise to each plate. After 24 h incubation, the medium was 

changed to DMEM Glutamax supplemented with 10 % FCS, 1 % penicillin 

/streptomycin, 1 % NEAA and 1.3 % BSA for another 24 hours and collected 

subsequently. The virus containing medium was centrifuged with 600 g for 10 min 

at room temperature (RT) and the resulting supernatant filtered through a sterile 

0.45 µm PES membrane filter. The filtrate was centrifuged with 66,000 g for 2 h at 

4°C, the supernatant discarded and the resulting virus containing pellet resuspended 

in 160 µl Neurobasal medium. Virus was stored in aliquots at -80°C until usage. 

2.2.2 Primary neuron culture 

Preparation of neurons  

Embryonic day 18 (E18) to E19 pregnant Sprague-Dawly rats were sacrificed with 

CO2 treatment and subsequent cervical dislocation. The abdomen of the mother was 
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opened, pubs were removed, decapitated and the heads placed in ice cold HBSS. The 

brain was detached from the skull, the meninges were removed and hippocampi and 

cortices prepared and washed four times with ice cold HBSS under a cell culture 

hood. Hippocampi were incubated for 15 min at 37°C with 150 µl 2.5 % trypsin in 5 

ml HBSS. Cortices were incubated for 20 min at 37°C with 300 µl 2.5 % trypsin and 

500 µl DNAse (2,000 U/mg) in 5 ml HBSS. Afterwards, hippocampi and cortices 

were washed four times with prewarmed HBSS and neurons dissociated by gently 

pipetting up and down several times. The concentration of neurons was determined 

in a hemocytometer and 85,000 hippocampal neurons respectively 400,000 cortical 

neurons in 1 ml medium for 12 well plates, 14,000 hippocampal neurons in 100 µl 

medium for 96 well plates or 50,000 hippocampal neurons in 3 ml medium for 3.5 

cm glass bottom dishes were plated. Following electroporation 500,000 hippocampal 

neurons for a 6 cm dish were plated on astrocyte feeder cells in N2 medium.  

Preperation of coverslips  

18 mm coverslips were treated with 65 % nitric acid for 2 days to remove lipids and 

washed four times with milliQ-water afterwards. For subsequent sterilization, 

coverslips were incubated at least 6 h at more than 200°C in a heating cabinet. 

Preparation of cell culture dishes  

Plastic dishes were coated with 1.5% PDL in 0.1 M borate buffer glass bottom 

dishes and dishes with cover slips with 1.5% PDL and 0.625% laminin in 0.1 M 

borate buffer for at least 4 h. After coating, dished were washed four times with 

sterile MilliQ water and equilibrated with neurobasal medium in the cell culture 

incubator until plating the neurons.  

Cultivation of primary neurons 

Primary rat neurons were cultivated with Neurobasal medium supplemented with 2 

% B27, 1% Penicillin/streptomycin, 0.25 % glutamine (cortical neurons) 

respectively Neurobasal medium supplemented with 2 % B27, 1% 

Penicillin/streptomycin, 0.25 % glutamine, 0.125% glutamate (hippocampal 

neurons) at 37°C / 5 % CO2. After seven days in culture or one day prior to 

transfection neurons were fed: 300 µl medium was exchanges with 500 µl fresh 
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medium per well for 12 well plates or 100 µl fresh medium was added per well for 

96 well plates. 

Transfection of primary neurons 

Neurons were transfected with Lipofectamin 2000. Transfection mix was set as 

follows and incubated for 20 min:  

Component Amount 

Total DNA 1.8 µg 

in OptiMEM 100 µl 

After 5 min combine with: 

Lipofectamin 2000 3.2 µl 

in OptiMEM 100 µl 

 

In the meantime, coverslips with neurons were dipped once in prewarmed 

Neurobasal medium and transferred to a new well with 1 ml prewarmed Neurobasal 

medium supplemented with 1 % Penicillin/streptomycin and 0.25% glutamine. After 

incubation, 200 µl transfection mix was added drop-wise to the coverslips. After 45 

min, coverslips were dipped twice in prewarmed Neurobasal medium and transferred 

back into the original medium. Neurons were analyzed three or five days after 

transfection. 

Transduction of primary neurons 

For neurons grown in 12 well plates, 500 µl medium was withdrawn and stored in 

the cell culture incubator to avoid pH value changes. The desired amount of virus 

was added to the neurons and incubated for 6 to 8 h. Thereafter, medium was 

discarded and replaced by the previously withdrawn medium. 500 µl of freshly 

prepared Neurobasal medium supplemented with 2 % B27, 1% 

Penicillin/streptomycin, 0.25 % glutamine was added to each well. Neurons were 

analyzed five or six days after transduction. For rescue experiments with 

TMEM106B virus, transduction was performed one day prior to transfection. 
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Electroporation of primary neurons 

Neurons were electroporated with the Amaxa 4D-Nucleofector and the primary 

culture kit P3 according to the manufacturer`s instructions prior to plating. Briefly, 

500,000 neurons were centrifuged for 5 min with 80 g at room temperature. 

Supernatant was removed and replaced by 100 µl Amaxa Rat Neuron Nucleofector 

Solution, up to 5 µg DNA was added and neurons were resuspended. After transfer 

to the cuvette, neurons were electroporated with the program EM110, resuspended 

in 500 µl prewarmed N2 medium and plated. 

Nocodazole treatment  

Neurons were treated every 36 h with 10 nM freshly thawed nocodazole (stock 

solution: 10µM in DMSO) or the same volume of DMSO as control. 

2.2.3 Cell viability Assay 

XTT-assay  

For the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide 

(XTT)-assay, hippocampal neurons were cultivated in a 96 well plate. The assay was 

performed according to the manufacturer´s instructions: freshly thawed XTT 

labeling reagent and Electron-coupling reagent were mixed in the ratio of 50:1. 50 

µl of the mix was added per well and the plate incubated for 18 to 24 h in the cell 

culture incubator. Absorbance was measured in a plate reader at a wavelength of 480 

nm and a reference wavelength at 650 nm. Relative cell viability was calculated by 

subtraction of A650nm from A480nm Untreated or control treated neurons were set as 

100 % viable, while staurosporine treatment (1 µM for 4 h) was used as positive 

control. 

 

2.3 Protein biochemistry 

2.3.1 Generation and affinity purification of rabbit polyclonal antibodies 

Antigen purification for immunization  

For affinity purification with the corresponding maltose-binding-protein (MBP)-

fusion protein, 800 ml LB liquid culture of E.coli bacteria transformed with MBP 

tagged antigen coding vectors was expanded and induced with 1 mM IPTG 30°C 
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when bacteria suspension reached an OD600 = 0.6. After centrifugation with 600 g 

for 10 min at 4°C the resulting pellet was resuspended in STE buffer. 100 µg / ml 

lysozyme was added and incubated for 15 min on ice to disrupt the cells and extract 

the antigen. Afterwards, 5 mM DTT and was added and the lysate sonicated for 1 

min. After centrifugation with 10,000 g for 10 min at 4°C the supernatant was 

incubated with 4 ml maltose beads under vigorous shacking for 30 min. Afterwards 

beads were washed three times with in STE buffer. Antigen was eluted using. The 

antigen was eluted with glycine elution buffer and collected in 1 ml fractions. 

Fractions were neutralized with 100 µl 1M Tris pH 9.5. Protein concentration was 

measured using OD280. Samples from all steps of the purification protocol were 

taken to check purity of the antigen by SDS-PAGE and subsequent commassie 

staining (see sections 2.4.2 and 2.4.4). Protease and phosphatase inhibitor were 

present in all steps of the purification.  

Antibody production  

Polyclonal antibodies were generated by immunizing rabbits with MBP-tagged 

antigens at Eurogentec SA, Belgium. The serum of several large bleeds and the final 

bleed were collected and stored at -20°C until affinity purification of the antibodies 

 

Antibody antigen for immunization 

polyclonal TMEM106B antibodies 344 

and 345 

MBP fused withrat TMEM106B AA1-91: 

MGKSLSHLPLHSNKEDGYDGVTSTDNMR

NGLVSSEVRNEDGRSGDVSQFPYVEFTG

RDSVTCPTCQGTGRIPRGQENQLVALIP

YSDQRLR 

for polyclonal MAP6 antibody MBP fused with rat MAP6 AA793-952: 

NASIMASLKNEAPVASESVKNQGLGGPE

PAKDTGTDLKGHGSVFVAPVKSQGPVVP

EPTKGQDPIIPALAKDQGPILPEPPKNQ

GPPVVLGPIKNQDPVIPVPLKGQDPVVP

APTKDPGPTAPDPLKSQGPRGPQLPTVS

PSPPVMIPTVPHAEYIEGSP* 
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Antigen generation and crosslinking for affinity purification  

For affinity purification of the antibodies glutathione-S-transferase (GST)-fusion 

proteins with the corresponding antigen were generated. 800 ml LB liquid culture of 

E.coli bacteria transformed with GST tagged antigen coding vectors was expanded 

and induced with 1 mM IPTG 30°C when bacteria suspension reached an OD600 = 

0.6. After centrifugation with 600 g for 10 min at 4°C the resulting pellet was 

resuspended in STE buffer. 100 µg / ml lysozyme was added and incubated for 15 

min on ice to disrupt the cells and extract the antigen. Afterwards, 5 mM DTT and 1 

% TritonX100 was added and the lysate sonicated for 1 min. After centrifugation 

with 10,000 g for 10 min at 4°C the supernatant was incubated with 4 ml glutathione 

beads under vigorous shacking for 30 min. Afterwards beads were washed three 

times with 0.5 % TritonX100 in STE buffer. Washed beads were poured into a 

column, washed another four times with conjugation buffer and crosslinked to the 

antigen with 5 mM BS3. Protease and phosphatase inhibitor were present in all steps 

of the purification.  

Antibody purification  

For affinity purification, serum from immunized rabbits was diluted 1:1 with PBS 

and passed three times over the column described above. Beads were washed three 

times with column buffer. The antibody was eluted with glycine elution buffer and 

collected in 1 ml fractions. Fractions were neutralized with 100 µl 1M Tris pH 9.5. 

Protein concentration was measured using OD280. Samples from all steps of the 

purification protocol were taken to check purity of the antibody by western blotting. 

2.3.2 Immunoblotting 

Lysate preparation 

Neurons in 12 well plates were washed with PBS, directly lysed in 250 µl 2x 

Lämmli sample buffer and boiled for 10 min at 96°C. HEK293FT cells were scraped 

in PBS, centrifuged with 5000 rpm for 5 min at 4°C. The cell pellet was lysed in 

RIPA buffer or 1% TritonX100 in PBS for 15 min at 4°C. The lysate was 



Material and Methods 

74 
 

centrifuged with 17,000 g for 20 min at 4°C, the supernatant subsequently diluted 

with 2x Lämmli sample buffer in a ratio of 1:1 and boiled at 96°C for 10 min. 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE)  

Proteins in the cell lysate were separated under denaturizing conditions using a 

discontinuous SDS polyacrylamide gel electrophoresis system. Acrylamide 

concentration was 4% for the stacking gel and 7.5 to 12.5 % for the separating gel 

depending on the hydrodynamic radius of the denatured proteins. Gels were cast as 

described below (mixture for 4 10 % gels): 

Stacking gel 6.5 ml H2O  

2.5 ml stacking gel buffer 

1 ml acrylamide 

added for polymerization: 

100 µl 10% APS 

10 µl TEMED 

Seperating gel 10 ml H2O  

5 ml separating gel buffer  

5 ml acrylamide  

added for polymerization: 

200 µl 10% APS 

20 µl TEMED 

 

Between 10 µl and 15 µl total protein lysate was used per lane. Electrophoresis was 

carried out in running buffer with a voltage of 90 V for the first 15 min and 120 to 

180 V until the dye front reached the end of the gel. 

Immunoblotting (IB) 

For immunodetection, proteins separated by SDS-PAGE were blotted onto 

previously ethanol activated polyvinylidene difluoride (PVDF) membranes. Protein 

transfer was performed in methanol free blotting buffer at a constant current of 400 

mA per blotting chamber for 75 min.  
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Immunodetection of proteins  

PVDF membranes were blocked in 0.8 % I-Block in TBSTx for at least 1 h and 

incubated with primary antibodies in 0.8 % I-Block in TBSTx overnight at 4°C. 

After five washing steps with TBSTx for ten min each, a HRP coupled secondary 

antibody in 0.8 % I-Block in TBSTx, appropriate for the species of the primary 

antibody used, was incubated for 1 h at room temperature. Membranes were washed 

another five times with TBSTx and incubated with 2 ml of the chemiluminescence 

substrates ECL or ECLplus depending on the expected intensity of the emitted 

signal. For detection of the signal, X-ray films were exposed to the membrane in 

complete darkness and developed using a CaWo X-ray film processor. Signals on 

the films were quantified densitometrically using ImageJ software. 

2.3.3 Immunoprecipitation (IP) 

Immunoprecipitation from rat brain 

Three P15 Sprague-Dawley rat brains were extracted and immediately snap frozen. 

The frozen brains were homogenized with an automated potter cell homogenizer in 

20 ml homogenization buffer and centrifuged with 1,000 g for 10 min in a JA25.50 

rotor at 4°C. The supernatant S1 was further centrifuged with 75,465 g for 30 min at 

4°C, the resulting pellet P2 (membrane fraction) resuspended in 15 ml PBS and after 

addition of 1 % Triton X100 lysed for 15 min on ice. The lysate was centrifuged 

with 100,000 g for 20 min rotor at 4°C in a TLA55. The supernatant was 

immunoprecipitated with 10 µg of the respective antibodies crosslinked with BS3 to 

50 µl protein G dynabeads for 1.5 h at room temperature. Input was taken right 

before the immunoprecipitation. Beads were washed five times for 5 min each with 

lysis buffer at 4°C. Protein was eluted for 5 min with 30 µl glycine elution buffer at 

room temperature, diluted in a ratio of 1:1 with 4x Lämmli sample buffer and boiled 

for 10 min at 96°C. Samples were subjected to SDS-PAGE and either western 

blotting or colloidal Coomassie staining and subsequent mass spectrometric 

analysis. Protease and phophatase inhibitors were present in all steps of the 

immunoprecipitation. 
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Immunoprecipitation from HEK293FT cells  

HEK293FT cells were washed and scraped in PBS, centrifuged with 5000 rpm for 5 

min at 4°C and lysed in 1% Triton X100 in PBS for 15 min at 4°C. The lysate was 

centrifuged with 17,000 g for 40 min at 4°C, the resulting supernatant subsequently 

diluted with PBS to a concentration of 0.5 % TritonX100 and precleared with 

protein A sepharose beads for 30 min at 4°C under light agitation. The cleared 

lysate was subjected to immunoprecipitation with 30 µl myc-agarose beads for 1 h at 

4°C. Input samples were taken directly before beginning the immunoprecipitation. 

Beads were washed five times for 5 min each with 0.5 % Triton X100 in PBS at 4°C 

and boiled in 2x Lämmli sample buffer for 10 min at 96°C to elute the proteins. 

Samples were subjected to SDS-PAGE and western blotting. Protease and 

Phophatase inhibitors were present in all steps of the immunoprecipitation.  

2.3.4 Other protein biochemistry techniques 

Colloidal Coomassie  

For detection of total proteins, SDS polyacrylamide gels were stained with the 

NOVEX Colloidal Blue Staining Kit according to the manufacturer´s instruction. 

Gels were lightly agitated in fixing solution for at least 2 h, incubated with staining 

solution for 3 h and washed several times with MilliQ water until protein bands 

appeared. 

Subcellular fractionation  

The brain of an adult female Sprague-Dawley rat was extracted and immediately 

snap frozen. The frozen brain was homogenized with a manual potter cell 

homogenizer in 20 ml homogenization buffer and centrifuged with 1,500 g for 10 

min at 4°C. The postnuclear supernatant was further centrifuged in a TH641 rotor 

with 100,000 g for 30 min at 4°C and the pellet (membrane fraction) was 

resuspended in homogenization buffer. A 10 % volume fraction was loaded on 15 ml 

of a discontinuous iodixanol gradient (2.5 %, 5 %, 7,5 %, 10 %, 12.5 %, 15 %, 17.5 

%, 20 %, 30 % in homogenization buffer). The gradient was centrifuged at 274,044 

g for 2.5 h at 4°C in a TH-641 rotor. Fractions (1 ml each) were collected manually 
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by puncturing the bottom of the centrifugation tube with a needle and further 

processed for SDS-PAGE and western blotting as described above. 

 

2.4 Imaging techniques 

2.4.1 Immunofluorescence 

Fixation 

Hippocampal neurons grown on coverslips were washed with PBS and fixed with 4% 

PFA fixing solution for 15 min at RT. 

Immunostaining  

Fixed neurons were washed three times for at least 5 min each with PBS. Neurons 

were incubated with the respective primary antibody in 1x GDB buffer overnight at 

4°C. After additional three washing steps with PBS, neurons were incubated with 

the appropriate Alexa-488, Alexa-555 or Alexa-647 coupled secondary antibody in 

1x GDB buffer for 1 h at RT and washed another three times with PBS. If necessary, 

nuclei were stained with 1:1000 TO-PRO 3 in PBS for 10 min at room temperature 

directly before mounting the immunostained coverslips. All incubation steps were 

conducted in a light-protected, humidified incubation chamber. 

Mounting 

Directly after staining, coverslips were dipped in MilliQ water and mounted on 

microscope slides with Vectashield mounting medium. Excess mounting medium 

was aspirated and coverslips were sealed with clear nail polish.  

Image acquisition  

Confocal images were taken on a confocal laser scanning Carl Zeiss LSM510 or 

LSM710 system. 40x or 63x oil immersion objectives (NA=1.3/1.4) were used. 

Pinhole was set to 1 Airy unit for the longest wavelength used and maintained for 

all other wavelengths. For filter sets, excitation and emission wavelengths precast 

parameters for the respective Alexa dyes were used. Laser intensity and detector 

gain was chosen that all pixels were in linear range and not oversaturated. Distance 

between two adjacent confocal planes of a z stack was set that every pixel was 

covered by two confocal planes to get an optimal resolution in z direction. The x-y-
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Resolution of confocal images was set to at least 1024 x 1024 pixels. Scanning 

speed was chosen according to the purpose of the experiment. For quantitative and 

semi quantitative measurements all settings were maintained for every image of the 

respective experiment.  

For analysis of axonal length, images were taken on a Carl Zeiss Axio imager.A2 

epifluorescence microscope with a 40x oil immersion objective (NA=1.3). 

2.4.2 Live imaging 

Movie acquisition 

For Time-lapse microscopy a Carl Zeiss Cell observer SD spinning disc system was 

used. Images were taken with a 63x oil immersion objective (NA=1.4) on an air 

cooled Evolve 512 electron-multiplying charged-coupled device (EMCCD) camera 

with a frame rate of 1 Hz for 5 min. For filter sets, excitation and emission 

wavelengths precast parameters for the respective fluorescent proteins were used. 

Velocity of the spinning disc was 5000 rpm. Laser intensity and gain was set that all 

pixels in the region of interest were in linear range and not oversaturated. The x-y 

resolution of the images was set to 512 x 512 pixels due to camera limitations. For 

live imaging Neurons were grown in 3.5 cm glass bottom dishes and imaged either 

in their normal culture medium or in prewarmed and equilibrated HBSS/Hepes 

buffer. During image acquisition neurons were kept at 37°C/5 % CO2 in a climate 

chamber. 

2.4.3 Image analysis 

Image processing  

Confocal images were processed with ImageJ software. Z-stacks and color channels 

were separated and if required a maximum intensity projection from a z-stack or a 

merged image from different color channels generated. 

Quantitative analysis of colocalization 

Colocalization of pixels in different channels of the same confocal plane of an 

image was analyzed using the JaCoP plugin of ImageJ software (Bolte and 

Cordelieres, 2006). As quantitative parameter for the correlation of two channels 

Pearson´s coefficient Rr was used: 
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𝑅𝑝 =  
∑(𝑅𝑝 − 𝑅�) ∗ (𝐺𝑝 − �̅�)

�∑(𝑅𝑝 − 𝑅�)2 ∗ ∑(𝐺𝑝 − �̅�)2
 

For every pixel i in the images, R and G are intensities of the red and green channel 

respectively. At which 𝑅𝑝 = 1 denotes perfect colocalization, 𝑅𝑝 = 0 denotes random 

localization and 𝑅𝑝 = −1 denotes perfect exclusion. 

Morphological analysis  

For the analysis of axonal length, the longest tau1 positive neurite of a developing 

neuron kept 4 days in vitro (DIV4) was chosen. Its length was measured using the 

Carl Zeiss Axio Vision software. For the analysis of the length of the longest 

dendrite mature neurons (DIV19) were analyzed. The longest dendrites were 

identified morphologically and measured using ImageJ software.  

Sholl analysis (Sholl, 1953) was used to assess the complexity of the total dendritc 

arbor of a growing (DIV12) or mature (DIV19) neuron. To that end, a mask with 

nine concentric circles in distances between 12.5 µm and 112.5 µm (12.5 µm 

intervals) was laid around the center of the cell soma in MetaMorph software. For 

each circle the number of dendrite crossings was counted and plotted against the 

respective distance to the soma.  

Spine length, width and density (spine number per 100 µm) was measured using 

MetaMorph software. Two dendrite segments per neuron (DIV19) with preferably no 

axonal crossings and a total length of at least 150 µm were chosen. Maximal length 

and width and the total number of every structure below 10 µm on these segments 

were determined with the software.  

All analysis were done manually and blinded to the experimental conditions 

2.4.4 Movie analysis  

Generation of kymographs  

5 min time laps movies from single neurons were used to analyze organelle 

movement with ImageJ software. Kymographs were generated along a line (width: 3 

pixels) from dendrite tip to soma in at least four dendritic segments per neuron. The 

Kymograph-plugin (http://www.embl.de/eamnet/html/body_kymograph.html) was 

used to generate the kymographs. 

http://www.embl.de/eamnet/html/body_kymograph.html
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Analysis of organelle dynamics  

The dynamics of organelle movement was manually analyzed in kymographs. The 

numbers of stationary (horizontal lines in the kymograph), moving (sloped lines in 

the kymograph) and the total number of organelles were determined. The direction 

of moving organelles was assigned and classified as retrograde movement (net 

movement to the soma), anterograde movement (net movement to the dendrite tip) or 

no net movement. Speed (𝑣 = 𝑙𝑟𝑟𝑟
𝑡𝑟𝑟𝑟

) and run length 𝑙𝑝𝑟𝑟 of all movement events longer 

than 5 µm was determined as shown below and mean values calculated.  

 

Co-migration assay  

For co-migration assays of two fluorescently labeled proteins time laps movies with 

two different wavelengths were acquired. Kymographs were generated as explained 

above for each wavelength individually and merged images generated. 

 

2.5 Mass spectrometry (in collaboration with Sebastian Hogl) 

Sample preparation  

Bands cut from colloidal Coomassie stained SDS-polyacrylamide gels were excised 

and tryptic in-gel digestion of the proteins was performed (Shevchenko et al., 2006). 

Gel fragments were destained with 100 µl 100 mM ammonium 

bicarbonate/acetonitrile (1:1, v/v) for 30 min and subsequent addition of 500 µl 

acetonitrile. After withdrawal of the destaining solution at least 50 µl trypsin buffer 

were added and incubated for 2 h on ice to saturate the gel pieces. To cover the gel 

piece up to 20 µl ammonium bicarbonate buffer was added and the whole mixture 

was incubated at 37°C overnight for the tryptic digest. To extract the digested 
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proteins 100 µl extraction buffer was added, incubated for 15 min at 37°C under 

light agitation. The supernatant was withdrawn and analyzed. 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)  

The trypsin digested peptides were analyzed on a LC-MS/MS setup. A Proxeon Easy 

nLCII (Thermo Fisher Scientific) with 15 cm columns (2.4 µm C18 beads, Dr. 

Maisch GmbH) was coupled to a LTQ Velos Orbitrap mass spectrometer (Thermo 

Fisher Scientific). A bilinear gradient of 60 to 85 min was applied for peptide 

separation. MS1 scans were acquired in the orbitrap massanalyzer applying a target 

value of 1,000,000 and a resolution of 60,000. Subsequently, collision induced 

dissociation (CID) fragmentation was performed for the 14 most intensive ions of 

the MS1 spectrum using an isolation width of 2 Da. Centroid MS2 spectra were 

acquired for the TOP 14 peptides in the linear ion trap with a target value of 10,000 

in the normal scanning mode. Enabled charge state screening, a monoisotopic 

precursor selection, 35% normalized collision energy, an activation time of 10 ms, 

wide band activation and a dynamic exclusion list were applied.  

Data analysis  

Peptide identification was performed using the Proteome Discoverer 1.2 software 

with the embedded SEQUEST algorithm. The International Protein Index database 

for rat (version 3.87) was used for the database search with carbamidomethylation 

of cysteine as a static and oxidation of methionine as a dynamic modification. Only 

full tryptic peptides with a maximum of 2 missed cleavages and an false discovery 

rate (FDR) below 5 % were included in the analysis. 

 

2.6 Statistical analysis  

Statistical analysis with Student’s t-test were calculated with MS Excel software, 

analysis with One-way and Two-way Analysis of Variance (ANOVA)-tests were 

calculated with GraphPad Prism software. Statistical significance was indicated as: 

* p<0.05, ** p<0.01, *** p<0.001. 
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IV. Results 

1. Generation and validation of TMEM106B shRNA and antibodies 

In order to investigate the role of TMEM106B in primary neurons, I used shRNA 

mediated knockdown of the endogenous protein using either transfection or 

lentiviral transduction. I generated two shRNAs against TMEM106B and compared 

the knockdown efficiency to a control shRNA (shLuc). qPCR analysis of transduced 

neurons (DIV7+5) demonstrated a knockdown of almost 90% for shT106b#1 and 

more than 95% for shT106b#2 (Figure 6A). Moreover, it was essential for all 

localization and functional studies to use antibodies which reliably detect the 

endogenous protein in immunoblot and immunofluorescence. Thus, polyclonal 

antibodies specific for the N-terminus of rat TMEM106B were generated. To this 

end, two rabbits were immunized with a peptide consisting of the first 91 amino 

acids of rat TMEM106B fused to MBP. The antibodies were affinity purified from 

rabbit serum with a homologous GST fusion protein (compare method section). In 

order to test the antibodies, primary cortical neurons (DIV7+5) were transduced 

with a shRNA against TMEM106B or a control shRNA. In the immunoblot, the 

signal for endogenous TMEM106B was drastically reduced for in TMEM106B 

knockdown samples compared to control samples (Figure 6B). In order to test the 

TMEM106B antibody additionally in immunofluorescence, primary hippocampal 

neurons (DIV7+5) were transfected with two different shRNAs against TMEM106B 

or the control shRNA. In shT106b transfected neurons – identified by cotransfected 

EGFP – TMEM106B staining was strongly reduced whereas a strong staining was 

still visible in the control cells. These experiments confirm good specificity of the 

antibodies in immunoblot and immunofluorescence (Figure 6C).  
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Figure 6: Validation of polyclonal TMEM106B antibodies 

(A) Primary rat cortical neurons (DIV7+5) were transduced with a lentivirus expressing control shRNA 
(shCtrl), TMEM106B shRNA (shT106b#2), empty vector control or rat TMEM106B. Immunoblots with 
two different polyclonal antibodies against the first 91 N-terminal amino acids of rat TMEM106B. Arrow 
points to correct bands. (B) Primary hippocampal neurons were transfected with a control shRNA, 
shT106b#1 or shT106b#2 and GFP as transfection marker. Neurons were stained with an antibody against 
TMEM106B (red). Staining confirms TMEM106B knockdown in the two dimensional projection. Scale 
bar represents 50 µm in the overview or 10 µm in the magnification of the nucleus. 

A B 

C 
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2. Effects of TMEM106B knockdown in primary neurons 

2.1 TMEM106B knockdown does not affect viability of primary neurons 

Next, I tested whether the knockdown of TMEM106B had any influence on FTLD 

related proteins. As above, I transduced cortical neurons (DIV7) with TMEM106B 

shRNA #1, #2 or the control shRNA for 6 days and assessed the levels of GRN, 

TDP-43, FUS and Tau by immunoblotting. No change was detected in the overall 

expression levels comparing knockdown cell lysates with the control lysates. 

Moreover, the protein levels of the important neuronal marker ß-III-tubulin 

remained unchanged, too (Figure 7A).  

 

 
Figure 7: TMEM106B knockdown does not affect general neuron viability 

(A) Primary rat cortical neurons (DIV7+6) were transduced with a lentivirus expressing either 
TMEM106B shRNA (shT106b) #1 or #2 or a control shRNA (shCtrl). Immunoblots with the indicated 
antibodies for neuronal marker proteins or FTLD associated proteins. Protein levels are not changed. (B) 

A B 
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Primary rat cortical neurons (DIV7+6 or DIV 14+6) were transduced with the indicated lentivirus. Cell 
viability upon TMEM106B knockdown was measured using an XTT assay. TMEM106B knockdown had 
no statistically significant effect (one-way ANOVA). n≥3 independent experiments, mean +/- SEM. 

 

Additionally, I performed a metabolic-based XTT-cell-viability assay, to assess if 

the knockdown of TMEM106B had any influence on neuronal survival. Young 

neurons (DIV7+5) as well as fully mature neurons (DIV14+5) were transduced with 

both shRNAs for TMEM106B and the control shRNA and incubated with the XTT 

reagents. Notably, loss of TMEM106B protein exhibited no obvious toxicity in this 

context (Figure 7B). Altogether this data demonstrates that loss of TMEM106B 

protein in primary neuronal culture influences neither the protein levels of several 

FTLD-associated proteins nor the general viability of the cell and thus likely 

contributes to FTLD pathogenesis by other mechanisms.  

 

2.2 TMEM106B is mainly localized in dendritic lysosomes 

In order to determine the subcellular compartment of TMEM106B in a disease 

relevant cell type, I performed colocalization experiments for the endogenous 

protein in primary hippocampal neurons. Hence, I stained untransfected neurons 

after seven days in vitro with antibodies against TMEM106B and several organelle 

marker among them, lysosomal-associated membrane protein 1 (LAMP1). 

Endogenous TMEM106B showed a vesicular pattern which overlapped to a high 

extent with the lysosomal marker LAMP1. In the merged image a substantial overlap 

of the two color signals verifies the predominantly late endosomal / lysosomal 

localization (Figure 8A). The TMEM106B staining was especially abundant in soma 

and the main dendrites. This finding could be confirmed later on by others in tumor 

cell lines and primary neuronal culture (Brady et al., 2013; Chen-Plotkin et al., 

2012; Lang et al., 2012) 
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Figure 8: TMEM106B is localized in late endosomes / lysosomes of primary neurons 

(A) Primary rat hippocampal neurons (DIV12) were stained with antibodies against TMEM106B (green) 
and the lysosomal marker LAMP1 (red). Scale bar represents 50 µm in the overview or 10 µm in dendrite 
segments. Merged image indicates widespread co-localization in a single confocal plane. (B) Primary 
hippocampal neurons (DIV12) were stained with antibodies against TMEM106B (red) and LAMP1 for 
lysosomes, SV2 for synaptic vesicles or transferrin receptor TfR for early endosomes (green). Scale bar 
represents 50µm. The amount of colocalization was analyzed in at least 15 confocal fields using the JaCoP 
plugin of ImageJ. (C) Quantitative analysis of colocalization using the Pearson´s coefficient. (Mean +/- 
SEM). Substantial Colocalization was detected only for TMEM106B with the lysosomal marker LAMP1. 

A 

B C 
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In order to confirm this observation I quantified the amount of colocalization 

between TMEM106B and various organelle markers. To this end, I stained primary 

hippocampal neurons with an antibody against TMEM106B and antibodies against 

LAMP1, against SV2, a marker for synaptic vesicles or against Transferrin Receptor 

(TfR), a marker for early- and recycling-endosomes. The correlation of the intensity 

distribution between the individual color channels was calculated using the 

Pearson’s coefficient 𝑅𝑝. The correlation coefficient between TMEM106B and 

LAMP1 staining was in the expected range for a pronounced colocalization (𝑅𝑝 =

 0.66 ±  0.02) (Zinchuk and Grossenbacher-Zinchuk, 2011) and thereby significantly 

higher than the correlation between TMEM106B and the other two vesicular marker 

proteins (𝑅𝑝 =  0.15 ±  0.01 for SV2 and 𝑅𝑝 =  0.31 ±  0.02 for TfR) (Figure 8B and 

8C). 

Axonal architecture is quite complex in mature neurons and it is often impossible to 

trace the full length of an axon. Thus I focused the analysis of TMEM106B 

localization in axons on an earlier time-point (DIV4) when functional dendrites are 

not established yet but the axon is already formed. Axons were defined 

morphologically as the longest neurite or by the presence of a gradient of 

unphosphorylated tau (Tau-1 staining) (Mandell and Banker, 1996). Costaining of 

TMEM106B with Tau-1 or LAMP1 showed clear overlap of the signals, indicating 

that TMEM106B is also found in axonal lysosomes, although to a lesser extent 

compared to dendritic lysosomes (Figure 9). 

Taken together these findings demonstrate a strong late endosomal / lysosomal 

localization of TMEM106B in neurons especially in the soma and the main dendrites 

and to a lesser extent in the axonal compartment.  
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Figure 9: TMEM106B is also occurring in axons of primary neurons 

Primary rat hippocampal neurons (DIV4) were stained with antibodies against TMEM106B (red) and the 
axonal marker Tau-1 (green) or the lysosomal marker LAMP1 (green). Scale bar represents 50 µm in the 
overview or 10 µm in axonal segments. Merged images indicate widespread co-localization in a single 
confocal plane.  

 

2.3 TMEM106B knockdown does not change lysosomal parameters 

Since it was previously described that overexpression of TMEM106B in HeLa and 

N2a cells resulted in enlarged lysosomes and vacuolar structure (Brady et al., 2013; 

Chen-Plotkin et al., 2012), I aimed to test morphology, localization and degradative 

function of lysosomes in primary neuronal culture. However, plasmid-based 

overexpression of TMEM106B in neurons leads to large vacuoles with TMEM106B 

aggregates in soma and dendrites with little resemblance to endogenous staining 

(data not shown). Thus, I used shRNA mediated knockdown to examine the 

influence of TMEM106B on lysosomal parameters. TMEM106B shRNA transfected 

hippocampal neurons (DIV7+5) were stained with an antibody against the lysosomal 
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marker LAMP1. There was no obvious change visible in the appearance and size of 

the vesicles in comparison to control transfected neurons (Figure 10).  

 
Figure 10: Lysosomal morphology is unchanged upon TMEM106B knockdown 

Primary rat hippocampal neurons (DIV7+5) were cotransfected with shCtrl, shT106b#1 or shT106#2 and 
GFP as transfection marker. Immunofluorescence of neurons stained with an antibodies against LAMP1 
(red). Scale bar represents 50 µm in the overview or 10 µm in the magnification of the soma. No obvious 
change in morphology and a slight tendency to perinuclear distribution of lysosomes was detected.  

 

Next, I assessed lysosomal function by measurement of the intravesicular pH value 

directly with Lysotracker staining and indirectly by measuring the pH-dependent 

maturation of the lysosomal protease Cathepsin D. Live labeling of lysosomes 

revealed bright Lysotracker staining in shT106B#2 transfected neurons as well as in 

control neurons demonstrating acidic environment under both conditions (Figure 

11A). Additional evidence for working lysosomes was provided by the unaltered pH 

dependent proteolytic processing of Cathepsin D. Total lysates of TMEM106B 

shRNA and control transduced neurons showed no difference in the band pattern on 

immunoblot (Figure 11B. Taken together, my results show no obvious difference in 
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lysosomal localization and function in TMEM106B knockdown neurons and thereby 

rather argue for other defects than in lysosomal degradation. 

 

 
 

A 

B 



Results 
 

91 
 

Figure 11: Lysosomal pH-value is unchanged upon TMEM106B knockdown 

(A) Primary rat hippocampal neurons (DIV7+5) were cotransfected with shCtrl, shT106b#1 or shT106#2 
and RFP as transfection marker. Neurons were live labeled with Lysotracker green and imaged 
immediately. Scale bar represents 50 µm in the overview or 10 µm in the magnification of the soma. No 
obvious change in Lysotracker staining was detected. (B) Primary cortical neurons (DIV7+6) were 
lentivirally transduced with shCtrl or shT106b#2. Immunoblot with the indicated antibodies. No change in 
the pH-dependent maturation of Cathepsin D was detected.  

 

3. Effect of TMEM106B knockdown on neuronal morphology 

3.1 TMEM106B knockdown inhibits dendritic branching 

Interestingly, knocking down TMEM106B in primary neurons, although not toxic, 

led to a dramatic reduction in dendritic branching (compare Figure 6B). To examine 

this observation in more detail and to quantify the effect I utilized Sholl analysis, a 

technique which analyzes dendritic complexity by combined measurement of 

dendrite length and branching (Sholl, 1953). For this analysis, Hippocampal neurons 

were transfected at DIV7 with the TMEM106B shRNAs or the control shRNA and a 

filler protein (EGFP) to visualize neuron morphology. Five days after transfection, 

neurons were fixed and confocal images of individual cells acquired. On each image 

nine concentric circles at intervals of 12.5 µm were placed around the cell soma and 

the number of crossings between the dendrites and each circle was counted. The 

quantification clearly confirmed the initial impression: with both shRNAs, dendrite 

branching is drastically reduced compared to control transfected neurons, especially 

in the proximal part of the dendrite (Figure 12A and 12B). Next, I set out to 

elucidate if this effect reflects a deficiency only in dendrite outgrowth – which 

indicates the phenotype seen in the still developing neurons at DIV7+5 – or also a 

deficit in dendrite maintenance. Therefore mature neurons (DIV14+5) were 

transfected likewise with TMEM106B shRNAs or the control shRNA. Again, the 

complexity of the dendritic arbor was drastically reduced with both shRNAs 

compared to control shRNA transfected neurons (Figure 12C and 12D), clearly 

pointing to impairment in both, dendrite outgrowth and maintenance.  
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Figure 12: TMEM106B knockdown impairs dendrite branching and maintenance 

(A, B) Primary rat hippocampal neurons (DIV7+5 and DIV14+5) were cotransfected with the indicated 
shRNAs and GFP to visualize cell morphology. Dendritic arborization was quantified manually and 
blinded to the experimental condition by Sholl analysis using MetaMorph software. Neurons transfected 
with either TMEM106B shRNA #1 or #2 show significantly reduced branching pattern compared to 
control shRNA transfected cells (Analysis at DIV7+5: shT106b#1: from 25 µm to 62.5 µm radius 
p<0.001, 100 µm and 112.5 µm p<0.001; shT106b#2: from 25 µm to 75 µm p<0.001; Analysis at 
DIV14+5: shT106b#1: from 37.5 µm to 62.5 µm p<0.001, at 75 µm p<0.05; shT106b#2: 37.5 µm to 62.5 
µm p<0.001, at 25 µm and 87.5 µm p<0.05). n>38 neurons per condition, 3 independent experiments, 
mean +/- SEM. Two-way ANOVA. Scale bar represents 100 µm.  

 

In order to exclude that the dendritic phenotype is due to off-target effects of the 

short hairpin, I used two shRNAs with different target sites which both led to the 

same phenotype (Figure 12A-12D). Moreover, I generated a TMEM106B 

overexpression construct (TMEM106B*) with silent mutations rendering the mRNA 

resistant to both TMEM106B shRNAs used, to perform rescue experiments. Since 

already mild overexpression of TMEM106B in the neurons leads to unphysiological 

aggregation of the exogenously expressed protein (Brady et al., 2013; Chen-Plotkin 

A B 
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et al., 2012), I used lentivirus to titrate the shRNA resistant construct back to 

endogenous protein levels (Figure 13A). This careful reintroduction of TMEM106B 

into shT106b transfected neurons prevented unphysiological aggregation of the 

exogenous protein. Under these conditions, I achieved a complete prevention of the 

dendrite loss for shRNA #1 and a partial prevention for the more potent shRNA #2 

(Figure 13B and 13C, compare Figure 6), confirming the specificity of the short 

hairpin sequences used.  

 
Figure 13: Validation of the TMEM106B knockdown phenotype by expression of a shRNA resistant 
mutant 

(A) Primary cortical neurons (DIV7+6) were transduced with a shRNA-expressing lentivirus (shCtrl or 
shT106b#2) and a lentivirus expressing shRNA-resistant TMEM106B (T106b*) or GFP as control to 
titrate TMEM106B expression. (B, C) Primary rat hippocampal neurons were virally infected (DIV6) with 
either mCherry (RFP) or shRNA-resistant TMEM106B mutant (T106b*) and cotransfected (DIV7+5) 
with either a control shRNA or the indicated TMEM106B shRNA and GFP to outline neuron morphology. 
Sholl analysis was done as above. ShRNA-resistant TMEM106B overexpression fully rescued the 
phenotype of the less potent TMEM106B shRNA #1 and partially rescued the more potent shRNA #2. 
(Analysis of shT106b#1: shCtrl+RFP vs. shT106b+RFP: from 25 µm to 50 µm p<0.001, shT106b+RFP 
vs. shT106b+T106b*: 25 µm and 62.5 µm p<0.05, 37.5 µm and 50 µm p<0.001; Analysis of shT106b#2: 
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shCtrl+RFP vs. shT106b+GFP: from 12.5 µm to 50 µm p <0.001, shT106b+RFP vs. shT106b+T106b*: 
from 12.5 µm to 25 µm p<0.001, at 37.5 µm p<0.05). n>38 neurons per condition, three independent 
experiments, mean +/- SEM, two-way ANOVA. Scale bar represents 100 µm.  

 

Since the observed dendrite loss affected primarily the proximal arborization (see 

Figure 12B and 12D), I specifically tested if the length of the main (longest) 

dendrite was also affected upon TMEM106B knockdown. Notably, the main dendrite 

of shTMEM106B #1 or #2 transfected neurons (DIV14+5) was about 30 % longer 

than the main dendrite of shCtrl transfected neurons (Figure 14), suggesting that 

especially secondary and higher order dendrites are affected by the loss of 

TMEM106B. 

 
 

Since I observed a strong dendritic phenotype upon knockdown of a lysosomal 

protein, I set out to test if general defects in lysosomal activity can alter dendritic 

architecture. I expressed the dominant negative mutant of RAB7A to block of 

lysosomal function. This GDP/GTP exchange factor is important for cargo transport 

to the lysosome, endosomal/lysosomal fusion events and lysosomal biogenesis in 

general. The T22N mutation of the protein, which impairs the affinity for GTP and 

the nucleotide exchange acts dominant negative and inhibits these functions (Bucci 

et al., 2000; Mukhopadhyay et al., 1997; Spinosa et al., 2008). Primary hippocampal 

neurons (DIV7+5) were transfected with either wild type (wt) RAB7A, dominant 

negative (dn) RAB7A T22A or constitutive active (ca) RAB7A Q67L together with 

Figure 14: TMEM106B knockdown increases length of the 
main dendrite 

Primary hippocampal neurons (DIV7+5) were transfected with 
either of the two shRNAs against TMEM106B or a control 
shRNA and GFP to visualize the cell morphology. In projections 
of confocal z-stacks the length of the longest dendrite of each 
neuron was measured using ImageJ software. Image acquisition 
and analysis was done blinded to the experimental condition. 
Dendrites of shRNA treated neurons were significantly longer 
than of ctrl treated neurons. 40 neurons per condition were 
analyzed. Mean +/- SEM, one-way ANOVA: *** denotes 
p<0.001.  
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EGFP as transfection marker and to outline neuronal morphology. The dendritic 

branching of these transfected neurons was assessed with Sholl analysis as described 

above. Whereas neurons expressing constitutive active RAB7A had only a slightly 

but not significantly increased dendrite complexity compared to wt RAB7A 

overexpressing neurons, neurons expressing RAB7A T22N showed a significant 

decrease in dendrite branching (Figure 15A and 15B). This finding argues for a 

causal link between lysosomal function and the growth and maintenance of 

dendrites. 

 
Figure 15: Dominant-negative RAB7a impairs dendritic arborization 

(B, C) Primary rat hippocampal neurons (DIV7+5) were cotransfected with the indicated RAB7a wild-
type or mutant constructs and GFP to visualize the neuronal morphology. Dendritic arborization was 
quantified by Sholl analysis as above. Neurons transfected with dominant negative RAB7a T22N (dn) are 
significantly different from wild-type RAB7a (wt) or constitutive active RAB7a Q67L (ca) transfected 
cells (wt RAB7a vs. dn RAB7a: from 50µm to 75µm radius p<0.05). n>40 neurons per condition, three 
independent experiments, mean +/- SEM, two-way ANOVA. Scale bar represents 100 µm. 

 

3.2 TMEM106B knockdown impairs spines and synaptic markers 

Since changes in dendrite morphology and function are often accompanied by 

alterations in dendritic protrusions / spines (Koleske, 2013), the previous findings 

raised the question if also spine morphology is affected by TMEM106B knockdown 
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in primary neurons. Hence, I analyzed spine density and morphology in mature 

neurons (DIV14+5) treated with shRNA against TMEM106B. On these images I 

quantified the overall density of dendritic spines as well as their width and length 

from a total of 100-200 / µm dendrite segments per neuron. Spine size and 

morphology is a good correlate of their function. The width of the spine head is 

proportional to the number of postsynaptic receptors and thereby to the strength of 

the transmission. Especially mushroom-shaped protrusions are a sign for strong 

synaptic activity (Hering and Sheng, 2001). As can be seen on the representative 

images (Figure 16A), the control shRNA transfected neurons exhibited normal spine 

density and most protrusions were mushroom shaped. In contrast, spines in 

shTMEM106B #1 or #2 transfected neurons were significantly less dense and were 

much thinner and more filopodia like – a sign for reduced synaptic strength (Figure 

16A and 16B). Again, this effect was more pronounced in neurons treated with the 

stronger shRNA #2. Moreover, also the length of the protrusions was reduced by 

approximately 20 percent upon TMEM106B knockdown (Figure 16B).  

Next, I confirmed these findings on a biochemical level. Cortical neurons (DIV7+6) 

were transduced with a lentivirus expressing either TMEM106B shRNA #2 or the 

control shRNA. The levels of the presynaptic marker protein synaptophysin and the 

postsynaptic density protein PSD-95 were analyzed by immunoblotting (Figure 

16C). Synaptophysin and PSD-95 levels, normalized on the housekeeping protein ß-

actin, were reduced by 60 percent and 40 percent, respectively, upon TMEM106B 

knockdown (Figure 16D) corroborating the morphological data.  

 

3.3 TMEM106B knockdown increases axonal length 

For a complete picture of neuronal morphology upon TMEM106B knockdown, 

axonal length was measured additionally. For axonal analysis, neurons were used at 

an early stage of development to avoid the complex architecture at later time points, 

which hinders tracing of neurites (compare Figure 9B). Neurons were nucleofected 

with the shRNA constructs directly before plating and axonal length was measured 

four days later. The criteria for identifying axons were the same as described above 

(see chapter 2.2). ShT106b#2 nucleofected neurons had about 30 percent longer 
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axons than control shRNA nucleofected neurons (Figure 16E and 16F). Together 

with the data from the XTT-assay (compare Figure 7B) and the increased length of 

the main dendrite (compare Figure 14D), the above finding provides an additional 

sign for unaltered neuronal viability since decrease in axonal length is often an early 

sign of toxicity in neurons. 
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Figure 16: Changes in spine and axon morphology upon TMEM106B knockdown 

(A, B) Hippocampal neurons were co-transfected with the indicated shRNAs and GFP (DIV14+5). Spine 
morphology (length and width) and density was assed manually and blinded to the experimental condition 
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using MetaMorph software. Neurons show shorter, thinner and less dense dendritic protrusions upon 
TMEM106B knockdown. (n>38 per condition; one-way ANOVA; *: p<0.05, ***: p<0.001). (C) Primary 
cortical neurons were transduced with the lentivirus expressing the indicated shRNAs. Immunoblots with 
antibodies against presynaptic synaptophysin and postsynaptic PSD-95 show a reduction of protein levels 
upon TMEM106B knockdown. (D) Quantification of the immunoblots from (C) normalized to β-actin. 
(n=4, mean +/- SEM, Student´s t-test, ** denotes p<0.01). Reduction of synaptic marker proteins 
corroborates synapse loss at the biochemical level. (E, F) Primary rat hippocampal neurons were 
nucleofected with either TMEM106B shRNA #2 or control shRNA together with YFP to outline neuron 
morphology prior to plating (DIV0+4). Neurons were immunostained with antibodies against YFP (green) 
and the axonal marker Tau-1 (red). Axonal length was measured using AxioVision software blinded to the 
experimental condition. Increased axonal length in TMEM106B knockdown cells indicates that 
TMEM106B knockdown does not cause unspecific toxicity. (n>80 per condition, three independent 
experiments; Student´s t-test, ** denotes p<0.01). Scale bar represents 100 µm.  

 

Taken together I was able to demonstrate that knockdown of TMEM106B in primary 

neurons leads to a pronounced inhibition of dendritic branching and maintenance. 

Although this is accompanied by dramatic changes in spine morphology and density, 

no overall neurotoxicity is observed. This point is further strengthened by the 

increase in the length of the developing axon and the main dendrite observed upon 

loss of TMEM106B. 

 

4. TMEM106B interacts with MAP6 

4.1 Identification of MAP6 as TMEM106B binding partner in rat brain 

To further elucidate the cellular context of TMEM106Bs function and to identify the 

underlying mechanisms of the dendrite loss I set out to identify TMEM106B 

interacting proteins. Thus, I established a protocol for immunoprecipitation from rat 

brain samples. The protein was immunoprecipitated from the lysate (1% Triton 

X100) of a crude membrane fraction by the polyclonal TMEM106B antibody cross-

linked to magnetic protein-G-coupled beads. The eluted precipitates were subjected 

to SDS-PAGE and the proteins thereon stained with colloidal coomassie dye (Figure 

17A). TMEM106B-IP specific bands and their corresponding areas in the control 

lanes were excised, the containing proteins subjected to tryptic digest and 

subsequently identified by LC-MS/MS. The only protein found specifically in 

TMEM106B immunoprecipitates in all three independent experiments (with a total 
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of five biological replicates) was the MT-binding protein MAP6. This protein, also 

referred to as stable tubule-only polypeptide (STOP), is known to mainly interact 

with and stabilize microtubules (Bosc et al., 1996). However, additional targeting to 

the actin cytoskeleton and the Golgi apparatus is reported (Baratier et al., 2006; 

Gory-Faure et al., 2006). LC-MS/MS specifically identified eleven unique peptides 

(table 1) of the protein with a total sequence coverage of 23 % in IP samples (Figure 

17B).  

 
Figure 17: MAP6 peptides identified by LC-MS/MS 

(A) Proteins coimmunoprecipitating with TMEM106B in rat brain (P15) were analyzed. Colloidal 
coomassie stained SDS-PA gel of control and TMEM106B immunoprecipitates. Boxed regions were cut 
out and further processed for LC-MS/MS. BSA served as marker for amount of recovered protein. 
Asterisk denotes TMEM106B band. Brightness/contrast in the image was adjusted in a linear manner to 
better identify bands on the gel. (B) Proteins coimmunoprecipitating with TMEM106B in rat brain (P15) 
were analyzed by LC-MS/MS. MAP6 was identified by 11 peptides highlighted in green throughout the 
whole protein sequence. The region with five tandem repeats binding microtubules is underlined. Mass 
spectrometry was performed by Sebastian Hogl.  

A B 
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Table 1: Unique peptides for MAP6 identified by LC-MS/MS 

 

peptide sequence charge m/z [Da] MH+ [Da] 

TEGHEETPLPPAQSQTQEGGPAAGK 3 839.73142 2517.17969 

AVAIETQPAQGESDAVAR 2 906.95901 1812.91074 

YSEATEHPGAPPQPPAPPQPGLAPPSR 3 916.12646 2746.36484 

GPIQLSADARDPEGAGGAGVPAAGK 3 754.72241 2262.15268 

DPEGAGGAGVPAAGK 2 627.31016 1253.61304 

AQSPLLPEPLKNQSPVVPAR 3 714.40826 2141.21024 

SEYQPSDAPFER 2 713.32019 1425.63310 

NKDSVPLAPAK 2 570.32367 1139.64006 

EEVTSTVSSSYR 2 672.81799 1344.62871 

AGPAWMVTR 2 494.75421 988.50115 

AVADALNR 2 415.23001 829.45275 

 
 

Moreover, the endogenous interaction of both proteins could also be corroborated on 

immunoblot level. With this method, I confirmed the specific interaction of 

TMEM106B and MAP6 in both directions (Figure 18A and 18B). 

 

 
Figure 18: TMEM106B interacts with MAP6 in rat brain 

TMEM106B (A) and MAP6 (B) were immunoprecipitated from P15 rat brain. Immunoblots with the 

indicated antibodies demonstrate MAP6 coimmunoprecipitating in TMEM106B IP and TMEM106B 

coimmunoprecipitating in MAP6 IP. 
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In order to provide further evidence for the interaction of TMEM106B and MAP6 in 

a shared cellular compartment, subcellular fractionation from adult rat brain was 

performed. The 100,000 g membrane fraction of homogenized brain was further 

separated via a discontinuous iodixanol density gradient. Mitochondrial and 

endoplasmic reticulum (ER) components (identified by their marker proteins 

translocase of outer mitochondrial membrane 20 (TOM20) and calnexin 

respectively) accumulated in denser fractions of the gradient whereas plasma 

membrane components (Na+-K+-ATPase) and remaining microtubule components 

(βIII-tubulin) accumulated in light fractions. Remarkably, TMEM106B and MAP6 

peaked together with markers for the secretory and endocytic pathway (γ-adaptin for 

the Golgi apparatus and RAB7 for late-endosomes and lysosomes) in the middle 

fractions (Figure 19). This finding suggests close contact between TMEM106B and 

MAP6 in the same subcellular compartments, including lysosomes. 
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4.2 Mapping of the MAP6/TMEM106B interaction domain in HEK293 cells 

In the next step, I aimed to map the protein domains crucial for the interaction of 

TMEM106B and MAP6. For that purpose several deletion mutants were generated 

and expressed in HEK293 cells. Due to the type II transmembrane topology of 

TMEM106B (Lang et al., 2012), it was predicted that only the extravesicular N-

terminal part (AA 1-97) of the protein is able to take part in the binding. For better 

expression and stability a GFP-tagged human TMEM106B N-terminal fragment 

(GFP-TMEM106B-NT, AA1-93) was cloned. Additionally, three different myc-

tagged MAP6 constructs were generated as potential binding partner: full length rat 

MAP6 (NP_058900.1), human MAP6 isoform 1 (NP_149052.1) lacking four of the 

five central repeats and human isoform 2 (NP_997460.1) lacking additionally the c-

Figure 19: TMEM106B and MAP6 
peak in the lysosomal fraction of a 
density gradient 

Subcellular compartments from adult 
rat brain were fractionated using a 
discontinuous iodixanol density 
gradient (2.5 – 30%). Immunoblots of 
1 ml fractions with the indicated 
antibodies. TMEM106B and MAP6, 
both peak in the same, RAB7-positive 
fractions. 

 

http://www.ncbi.nlm.nih.gov/protein/NP_058900.1
http://www.ncbi.nlm.nih.gov/protein/NP_149052.1
http://www.ncbi.nlm.nih.gov/protein/NP_997460.1
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terminal repeat domain (Figure 18C). As expected, full length rat MAP6 co-

immunoprecipitated GFP-TMEM106B-NT that was co-expressed in HEK293 cells. 

The same was true for coIP experiments with human MAP6 isoform 1. However, the 

shorter, c-terminally truncated isoform two of human MAP6 did not bind to the 

TMEM106B N-terminal domain. This result indicates binding of the cytoplasmic N-

terminus of TMEM106B to the C-terminal repeat region of MAP6 (Figure 18C and 

18D). Taken together these results confirm the interaction of TMEM106B and 

MAP6 which is mediated by the N-terminus of TMEM106B and the C-terminus of 

the MAP6.  

 

 
Figure 21: TMEM106B N-terminus binds to MAP6 C-terminus 

(A) Deletion mutants of TMEM106B and MAP6 used for analysis of interaction domains. The 
cytoplasmic N-terminal domain (NT) of TMEM106B fused to GFP. Transmembrane domain (TMD) and 
C-terminal domain (CT) were removed to avoid aggregation. MAP6 contains a central repeat domain, 
consisting of five repeats (R) of a 46 amino acid motif in rat but only one repeat in humans. The shorter 
isoform 2 lacks the C-terminal repeat domain (CTR) consisting of up to 28 imperfect repeats. (B) GFP-
TMEM106B-NT and the indicated myc-tagged MAP6 variants were co-expressed in HEK293FT cells. 
MAP6 variants were immunoprecipitated with myc-beads. Immunoblots with the indicated antibodies 
show coimmunoprecipitation of TMEM106B with CTR containing MAP6 variants. Figure 21B in 
collaboration with Christina M Lang. 

 

  

A B 
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5. MAP6 function in dendrites  

5.1 MAP6 affects dendritic branching 

In my previous experiments I could demonstrate that TMEM106B and MAP6 

physically interact with each other. However, the functional relevance of this 

interaction remained elusive. In order to provide evidence for a functional 

cooperation, I transfected hippocampal neurons (DIV7+5) with a rat MAP6 

overexpression construct and analyzed the morphology of the dendritic arbor as 

described before. Strikingly, MAP6 overexpression led to a substantial decrease in 

dendritic complexity to almost the same extent as TMEM106B knockdown (Figure 

22A, compare Figure 12), as quantified by Sholl analysis (Figure 22B). Again, the 

most pronounced effect occurred in the proximal part of the dendrites. This 

similarity of MAP6 overexpression with TMEM106B knockdown suggested that the 

reduction of MAP6 would lead to the opposite effect. For this purpose, I generated a 

shRNA expression vector specific for rat MAP6. Lentiviral transduction of this 

shRNA in cortical neurons (DIV7+5) and subsequent immunoblotting clearly 

demonstrated a reduction of MAP6 protein level and confirmed the good knockdown 

efficiency of the short hairpin (Figure 23). However, loss of MAP6 in these neurons 

did not affect the protein level of TMEM106B (data not shown). Strikingly, 

knockdown of MAP6 in hippocampal neurons (DIV7+5) led to an increase in 

dendrite outgrowth compared to the control situation (Figure 22C and 22D).  
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Figure 22: Effects of MAP6 overexpression and knockdown on dendritic branching 

(A, B) Primary rat hippocampal neurons (DIV7+5) were cotransfected with either a MAP6 overexpression 
construct or an empty vector control and GFP. Dendritic arborization was analyzed by Sholl analysis as 
above. Neurons overexpressing MAP6 are significantly less branched than controls (at 12.5 µm, 25 µm, 
75 µm and 87.5 µm radius p<0.05, from 37.5 µm to 62.5 µm p<0.001). n>40 per condition, three 
independent experiments, mean +/- SEM, Two-way ANOVA. Scale bar represents 100 µm. (C, D) 
Primary rat hippocampal neurons (DIV7+5) were cotransfected with either with ctrl shRNA or MAP6 
shRNA and GFP. Dendritic arborization was analyzed by Sholl analysis as above. MAP6 knockdown 
neurons are significantly more branched than controls in distal parts of dendrites (at 62.5 µm and 75 µm 
radius p<0.05, at 87.5 µm and 112.5 µm p<0.01, at 100 µm radius p<0.001). n>40 per condition, three 
independent experiments, mean +/- SEM, Two-way ANOVA. Scale bar represents 100 µm. 

 

Figure 23: Knockdown of MAP6 in primary neurons 

Primary hippocampal neurons (DIV7+5) were transduced 
with MAP6 shRNA or a Ctrl shRNA lentivirus. Immunoblot 
with the indicated antibodies indicates specific MAP6 
knockdown. 

 

A B 

C D 
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To control also the MAP6 shRNA induced phenotype for unspecific off-target 

effects, I performed rescue experiments using the human MAP6 (isoform 1) 

overexpression construct, which is resistant to the shRNA targeting rat MAP6. 

Hence, I transfected hippocampal neurons with combinations of shCtrl or shMAP6 

and human MAP6 or an empty vector control. Yet again, dendritic branching was 

measured by Sholl analysis in DIV7+5 neurons. While shMAP6 transfected neurons 

cotransfected with an empty vector control, showed as expected increased dendrite 

outgrowth (Figure 24A and 24B, compare to Figure 22C and D), the cotransfection 

of human MAP6 led to a loss of dendrites comparable to the transfection of human 

MAP6 alone. These results are a clear indication for the specificity of the MAP6 

shRNA regarding the dendrite outgrowth phenotype. 

 
 

Figure 24: Validation of MAP6 shRNA using human MAP6 

(A, B) Primary rat hippocampal neurons (DIV7+5) were cotransfected with combinations of control 
shRNA (shCtrl), shRNA targeting rat MAP6 (shMAP6) and human MAP6 (hMAP6) or an empty vector 
(Ctrl) together with GFP. Dendritic complexity was quantified using Sholl analysis as above. MAP6 
knockdown increases distal branching while overexpression of human MAP6 prevents this effect 
(shCtrl+Ctrl vs shMAP6+Ctrl: 62.5 µm: p<0.05, from 75 µm to 112.5 µm radius p<0.001; shCtrl+Crtl vs. 
shCtrl+hMAP6 at 25 µm, 50 µm and 62.5 µm radius p<0.05, at 37.5 µm radius p<0.001; shMAP6+Ctrl vs 
shMAP6+hMAP6: from 12.5 µm to 112.5 µm radius p<0.001). n=25 neurons per condition, 3 
independent experiments, mean +/- SEM, two-way ANOVA. Scale bar represents 100 µm. 
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5.2 MAP6 depletion rescues TMEM106B knockdown phenotype 

Since MAP6 knockdown increased dendritic branching, I further speculated that the 

combination of both shRNAs, shMAP6 and shT106b, should consequently alleviate 

the TMEM106B knockdown phenotype. For these shMAP6 rescue experiments, I 

cotransfected shT106B #2 or shCtrl together with shMAP6 or shCtrl in the same 

settings as above. Importantly, the coexpression of both, TMEM106B shRNA and 

MAP6 shRNA, led to a complete rescue of dendrite loss compared to only 

TMEM106B shRNA treated neurons. Moreover, shMAP6 expression increased distal 

branching in both groups (shCtrl + shMAP6 and shT106b + shMAP6) compared to 

control shRNA only expressing neurons (Figure 25A and 25B) and thereby led to an 

“overrescue” of the TMEM106B knockdown phenotype.  

 

 
Figure 25: MAP6 knockdown rescues the branching effect of TMEM106B knockdown 

(A, B) Primary rat hippocampal neurons (DIV7+5) were cotransfected with combinations of control 
shRNA (shCtrl), TMEM106B shRNA #2 (shT106b) and MAP6 shRNA (shMAP6) together with GFP. 
Sholl analysis as above. MAP6 knockdown restores branching in TMEM106B knockdown neurons 
(shCtrl vs shT106b#2+shCtrl: from 25 µm to 62.5 µm radius p<0.001. shT106b#2+shCtrl vs 
shT106b#2+shMAP6: from 25 µm to 100 µm p<0.001, at 112.5 µm p<0.05. shCtrl vs shMAP6 + shCtrl: 
at 87.5µm p<0.05, from 100 µm to 112.5 µm p<0.001). n>40 per condition, 3 independent experiments, 
mean +/- SEM, two-way ANOVA. Scale bar represents 100 µm. 
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MAP6 belongs to the family of microtubule-associated proteins, among others 

responsible for the stabilization of microtubules. In order to test if the promotion of 

dendrite outgrowth is a common phenotype also seen upon loss of other microtubule 

stabilizing proteins, I analyzed dendrite arborization after shRNA mediated 

knockdown of the related microtubule-binding protein, MAP2. Hippocampal neurons 

(DIV7+5) were transfected with a shRNA targeting rat MAP2 and GFP to outline 

cellular morphology. Sholl analysis revealed that, in contrast to MAP6 knockdown, 

loss of MAP2 severely impaired dendrite outgrowth (compare Figure 20). Moreover, 

shMAP2 was not able to restore dendritic branching when cotransfected with the 

TMEM106B knockdown construct (Figure 26A and 26B).  

 

 
Figure 26: Validation of the specificity of shMAP6 rescue using shMAP2 

(A, B) Primary rat hippocampal neurons (DIV7+5) were cotransfected with combinations of control 
shRNA (shCtrl), shRNA targeting rat MAP2 (shMAP2) and TMEM106B shRNA #2 together with GFP. 
Dendritic complexity was quantified using Sholl analysis as above. MAP2 knockdown decreased 
branching and combination of shMAP2 and shT106b#2 did not alleviate branching defects (shCtrl vs. 
shT106b#2 + shCtrl: from 12.5 µm to 37.5 µm radius p<0.001, at 50 µm radius p<0.05; shCtrl vs. 
shMAP2 + shCtrl: at 12.5 µm radius p<0.001, at 25 µm radius p<0.05, at 37.5 µm radius p<0.01; 
shT106b#2 + shCtrl vs. shT106b#2 + shMAP2: no significant difference). n=40 neurons per condition, 3 
independent experiments, mean +/- SEM, two-way ANOVA. Scale bar represents 100 µm. 
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Taken together my data provides evidence for a specific function of TMEM106B 

interacting protein MAP6 in dendrite outgrowth and branching and thus for a 

functional interaction of both proteins in the same cellular pathway.  

 

6. Role of TMEM106B in lysosomal Transport 

6.1 TMEM106B knockdown affects lysosomal transport 

Microtubules are the major tracks on which organelles are transported through the 

cell (Hirokawa and Takemura, 2005). Since the results presented above demonstrate 

that a lysosomal protein interacting with a microtubule-binding protein affects 

dendrite outgrowth, I speculated that TMEM106B and MAP6 might influence the 

microtubule dependent transport of dendritic lysosomes. 

In order to test this hypothesis I performed live cell imaging experiments to analyze 

the movement of RAB7A-GFP labeled vesicles (late endosomes and lysosomes) in 

dendrites of hippocampal neurons. The neurons were cotransfected with RAB7A-

GFP and TMEM106B shRNA #2 or the control shRNA on DIV6. Time laps movies 

were taken from single neurons three days later (DIV6+3). Path-time diagrams 

(kymographs) were generated for every recorded neuron depicting the movement of 

RAB7A-GFP-positive vesicles in several dendritic segments (Figure 27A). In these 

kymographs, the total number of RAB7A-GFP labeled vesicles, the number of 

moving or stationary RAB7A-GFP labeled vesicles and the direction of the 

respective transport events was analyzed. While the total number of RAB7A-labeled 

vesicles remained constant in dendrites of knockdown and control neurons, the 

number of moving vesicles was significantly increased in neurons devoid of 

TMEM106B (Figure 27B and 27C). In the control situation only about 10 % of all 

vesicle did move in the 5 min time frame, however, in shT106b #2 transfected 

neurons almost 30 % of vesicles were mobile. Interestingly, a specific increase in 

the number of retrogradely transported lysosomes was primarily responsible for the 

overall change while the number of anterogradely transported lysosomes and 

lysosomes without any net-movement remained almost unchanged (Figure 27D).  
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Figure 27: TMEM106B controls retrograde trafficking of dendritic late endosomes/lysosomes  

(A) Primary hippocampal neurons (DIV6+3) were transfected with either TMEM106B shRNA #2 or a 
Ctrl shRNA and RAB7a-GFP to visualize late endosomal / lysosomal trafficking in dendrites and live 
imaged for 5 minutes with a frequency of 1 Hz. Dendrite segments and the corresponding representative 
kymographs of dendritic movement of RAB7a-GFP labeled vesicles are shown. Scale bar represents 60 s 
(vertical) and 20 µm (horizontal). (B) Quantitative analysis of vesicle number in the dendrites of 
transfected neurons. The number of RAB7a-labeled vesicles per 100 µm of dendrite length did not 
change. (C) Quantitative analysis of vesicle movement from 5 minute kymographs. Vesicles were 
manually classified according to their movement. TMEM106B knockdown significantly increased overall 
and specifically retrograde movement of RAB7a-GFP labeled vesicles. Between five and eleven neurons 
per condition were analyzed per experiment in at least three independent experiments, mean +/- SEM, 
unpaired t-test: * denotes p<0.05, ** denotes p<0.01. 

 

To evaluate this process in more detail, velocity and run length of the RAB7A-GFP 

labeled vesicles was additionally determined from the kymographs. In the 5 min 

time frame of the movies, both parameters were increased upon loss of TMEM106B. 

Velocity of late endosomes / lysosomes increased from approximately 25 µm/s to 34 

µm/s. Remarkably, this elevation by more than 35 % was primarily due to enhanced 

velocity in retrogradely transported vesicles (Figure 28A and 28B). The speed of 
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lysosomal movement is in the expected range for organelle transport in dendrites 

(Bannai et al., 2004; Kwinter et al., 2009; van Spronsen et al., 2013). The increase 

in run length upon TMEM106B knockdown was in a similar range (approx. 40 %, 

from 7.3 µm to 10.5 µm). Also in this case only the run length of retrogradely 

moving vesicles was increased while the run length of anterogradely moving 

vesicles did not change (Figure 28C and 28D). 

 
Figure 28: TMEM106B knockdown enhances retrograde movement of late endosomes/lysosomes  

(A-C) Primary hippocampal neurons (DIV6+3) were transfected with either TMEM106B shRNA #2 or a 
Ctrl shRNA and RAB7a-GFP. Live cell imaging of RAB7a-GFP labeled vesicles was used to visualize 
late endosomal / lysosomal trafficking in dendrites. Velocity (A, B) and total run length (C, D) of 
individual moving vesicles in total (A, C) or separated for anterograde and retrograde movements (B, D) 
was analyzed from kymographs (compare Figure 17). At least 80 moving vesicles per condition were 
analyzed.  
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I tested the specificity of the TMEM106B shRNA additionally regarding the effect 

on dendritic trafficking of lysosomes. Similar to the rescue experiments before 

(compare Figure 13), the neurons were transduced with lentivirus expressing 

TMEM106b* or empty vector control one day before transfection of the shRNAs. 

Trafficking of RAB7A-GFP-labeld lysosomes was assessed as described above on 

DIV6+3. As expected, neurons expressing shT106b#2 and control virus showed an 

increased transport in retrograde direction compared to control neurons. However, 

viral expression of TMEM106b* together with shT106b#2 led to a complete 

rebalancing of anterograde and retrograde trafficking (Figure 29A and 29B). 
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Figure 29: Reintroduction of shRNA-resistant TMEM106B rescues impaired lysosomal trafficking  

(A) Primary rat hippocampal neurons were virally infected (DIV5) with either mCherry (RFP) or shRNA-
resistant TMEM106B mutant (T106b*) and cotransfected (DIV6+3) with either a control shRNA or the 
indicated TMEM106B shRNA and RAB7a-GFP to visualize late endosomal / lysosomal trafficking. 
Dendrite segments and the corresponding representative kymographs of dendritic movement of RAB7a-
GFP-labeled vesicles are shown. Scale bars represent 60 s and 15 µm. (B) Quantitative analysis of vesicle 
movement from 5 min kymographs. Vesicles were manually classified according to their movement. 
Expression of the shRNA-resistant TMEM106B mutant prevents the induction of retrograde lysosomal 
transport. Between five and nine neurons per condition were analyzed per experiment in at least three 
independent experiments, mean +/- SEM, unpaired t-test: *** denotes p<0.001. 
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As TMEM106B could be detected also in axons of primary neurons (compare Figure 

9) and the length of the axons was altered in neurons devoid of the protein (compare 

Figure 16), I wanted to investigate if trafficking of RAB7A-GFP labeled neurons 

was changed as well. I used developing neurons (DIV0+4), because at this early 

stage of development axons could be easily traced and image acquisition at the same 

axonal region for every neuron could be ensured. The neurons were nucleofected as 

described above with shCtrl or shT106B #2 and RAB7A-GFP to identify the desired 

vesicles. The overall motility of late endosomes and lysosomes in axons was higher 

than the motility in dendrites for both groups. However, there was no difference in 

total, anterograde or retrograde movement between control and TMEM106B 

knockdown neurons (Figure 30A and 30B).  

 
Figure 30: TMEM106B knockdown does not change trafficking of axonal lysosomes 

(A) Primary hippocampal neurons (DIV0+4) were nucleofected with either TMEM106B shRNA #2 or a 
Ctrl shRNA and RAB7a-GFP to visualize late endosomal / lysosomal trafficking and live imaged every 
second for 5 minutes. Axonal segments and the corresponding representative kymographs of axonal 
movement of RAB7a-GFP labeled vesicles are shown. Scale bar represents 60 s (vertical) and 25 µm 
(horizontal). (B) Quantitative analysis of vesicle movement from 5 minute kymographs. Vesicles were 
manually classified according to their movement. Overall motility and direction of transport does not 
change upon TMEM106B shRNA transfection. At least seven neurons per condition were analyzed per 
experiment in at least three independent experiments, mean +/- SEM.  
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As an additional control for a specific lysosomal effect of TMEM106B knockdown, 

the dendritic transport of mitochondria was analyzed. I visualized mitochondria in 

primary hippocampal neurons with a construct expressing the mitochondrial 

targeting sequence of cyclooxygenase 8 (COX8) fused to red fluorescent protein 

(RFP) (mitoRFP). In the 5 min time frame analyzed approximately 50 % of mitoRFP 

labeled mitochondria were moving in control shRNA transfected neurons whereas 

the other half remained stationary. In contrast to the dendritic transport, no change 

of this 1:1 ratio could be detected in shT106b #2 transfected neurons (Figure 31A 

and 31B). Moreover, the total number of mitochondria remained constant in both 

groups investigated (Figure 31C).  

 
 

Figure 31: TMEM106B knockdown does not change mitochondrial trafficking in dendrites 

(A) Primary rat hippocampal neurons were transfected (DIV6+3) with either a control shRNA or 
TMEM106B shRNA #2 and mito-dsRed to visualize mitochondrial trafficking in dendrites. Dendrite 
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segments and the corresponding representative kymographs of dendritic movement of mitochondria are 
shown. Scale bars represent 60 s and 25 µm. TMEM106B knockdown had no effect on mitochondrial 
density (B) and movement (C) in dendrites. At least seven neurons per condition were analyzed per 
experiment in at least three independent experiments, mean +/- SEM.  

 

Taken together I demonstrated that the dendritic trafficking of lysosomes is affected 

by TMEM106B knockdown. Particularly the number of retrogradely transported 

RAB7A-GFP labeled vesicles is increased, as is the speed and length of their 

individual movements. In contrast, movement of mitochondria in dendrites as well 

as late endosomes / lysosomes in axons is not changed upon TMEM106B 

knockdown.  

 

6.2 MAP6 affects lysosomal transport 

Since TMEM106B and its interaction partner MAP6 both regulate dendrite 

outgrowth and knockdown of MAP6 even compensates for loss of TMEM106B, the 

question arose if overexpression of MAP6 would also phenocopy the impact of 

TMEM106B knockdown on lysosomal trafficking. Therefore, I transfected 

hippocampal neurons (DIV6+3) with rat MAP6 or an empty vector control and 

RAB7A-GFP to identify late endosomes and lysosomes. The trafficking of these 

vesicles was analyzed as described above. Strikingly, the number of retrogradely 

transported vesicles was similarly increased by almost two-fold, reminiscent of the 

TMEM106B knockdown effect. However, in the case of MAP6 overexpression the 

overall movement of RAB7A-GFP labeled vesicles in dendrites showed only a slight 

and non-significant elevation. This discrepancy to TMEM106B knockdown could be 

explained by the slight decrease observed in anterograde trafficking (Figure 32A, 

32C and 32D). Also in these experiments, similar to the situation in TMEM106B 

knockdown neurons, the total number of RAB7A-GFP labeled vesicles in dendrites 

remained constant for both groups (Figure 32B, compare Figure 27). 
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Figure 32: MAP6 regulates retrograde trafficking of late endosomes / lysosomes in dendrites 

(A) Primary hippocampal neurons were transfected (DIV6+3) with either rat MAP6 or empty vector and 
RAB7a-GFP to visualize late endosome / lysosome trafficking in dendrites. Dendrite segments and the 
corresponding representative kymographs are shown. Scale bar represents 60 s and 20 µm. (B) 
Quantitative analysis of vesicle number in the dendrites of transfected neurons. The number of RAB7a-
labeled vesicles per 100 µm of dendrite length did not change. (C) Analysis of RAB 7a-positive vesicle 
movement as above. Expression of MAP6 enhances retrograde mobility of RAB7a-GFP labeled vesicles. 
Between five and eleven neurons per condition were analyzed per experiment in at least three independent 
experiments, mean +/- SEM, unpaired t-test: * denotes p<0.05, ** denotes p<0.01.  

 

6.3 MAP6 depletion rescues TMEM106B knockdown effect on lysosomal 
transport 

Next, I tested if knockdown of MAP6 could - similar to the rescue of the dendrite 

outgrowth phenotype - also compensate for the enhanced retrograde trafficking in 

TMEM106B knockdown neurons. Hippocampal neurons (DIV6+3) were either 

transfected with shCtrl, shT106b#2 or shMAP6 individually or in combinations. 

RAB7A-GFP was used to visualize late endosomes and lysosomes in the dendritic 

compartment. On the one hand, neurons transfected with shT106b#2 alone exhibited 
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enhanced retrograde transport of the fluorescently labeled vesicles when compared 

to control neurons, as expected from the previous experiments. On the other hand, 

MAP6 knockdown alone slightly increased trafficking of both retrogradely and 

anterogradely transported vesicles. Strikingly, co-transfection of TMEM106B and 

MAP6 shRNA increased anterograde transport of late endosomes / lysosomes when 

compared to TMEM106B knockdown alone, thereby rebalancing the ratio of both 

directions (Figure 33A and 33B).  

Altogether, these results further strengthen the connection between TMEM106B and 

MAP6 as they provide another cellular function affected by both proteins. 

Moreover, MAP6 knockdown also compensates the unbalanced dendritic trafficking 

of lysosome upon TMEM106B knockdown. 
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Figure 33: MAP6 knockdown rebalances lysosomal trafficking in TMEM106B knockdown neurons 

(A) Primary hippocampal neurons (DIV6+3) were transfected with either shCtrl, shT106b#2+shCtrl, 
shCtrl+shMAP6 or shT106b#2+shMAP6 and RAB7a-GFP to visualize late endosomal / lysosomal 
trafficking. Dendrite segments and the corresponding representative kymographs of dendritic movement 
of RAB7a-GFP-labeled vesicles are shown. Scale bars represent 60 s and 20 µm. (B) Quantitative analysis 
of vesicle movement from 5 min kymographs. Vesicles were manually classified according to their 
movement. Coexpression of MAP6 shRNA rebalances altered retrograde trafficking upon TMEM106B 
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knockdown. Between six and ten neurons per condition were analyzed per experiment in at least three 
independent experiments, mean +/- SEM, unpaired t-test: * denotes p < 0.05, *** denotes p<0.001. 

 

6.4 Overexpressed MAP6 co-migrates with dendritic lysosomes 

My results indicate that TMEM106B and MAP6 together regulate late endosomal / 

lysosomal transport in dendrites and thereby influence dendrite morphology. This 

mechanism would require close contact of TMEM106B and MAP6 on microtubule 

and / or lysosomes. Above, I have already demonstrated that both proteins 

physically interact and that they are present in the same subcellular fraction as 

RAB7 (compare Figures 17, 18 and 20). Remarkably, live imaging of MAP6-GFP 

and LAMP1-RFP coexpressed in primary neurons (DIV6+3) displayed comigration 

of MAP6-GFP with some LAMP1-RFP-positive lysosomes in dendrites (Figure 

34A). Although endogenous MAP6 shows - as expected for a microtubule-binding 

protein - a wide-spread distribution in axons and dendrites (Figure 34B), the 

comigration of MAP6-GFP with a fraction of moving lysosomes indicated that 

excess, non-MT-bound MAP6 can still bind to TMEM106B on lysosomes. This 

suggests a dominant negative effect of overexpressed MAP6.  
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Figure 34: MAP6-GFP comigrates with some LAMP1-RFP-positive lysosomes in dendrites 

(A) Primary hippocampal neurons (DIV6+3) were transfected with MAP6-GFP and LAMP1-RFP and live 
cell imaged for 5 min with a frequency of 1 Hz to visualize movement of the fluorescently tagged 
proteins. Dendrite segments and the corresponding representative kymographs are shown. Merged images 
show excess MAP6 bound to moving LAMP1-positive late-endosomes/lysosomes in dendrites. Scale bars 
represent 60 s and 15 µm. (B) Primary rat hippocampal neurons (DIV12) were immunostained with 
antibodies against MAP6 (green) and TMEM106B (red) or LAMP1 (red). A commercial mouse 
monoclonal and a home-made rabbit polyclonal anit-MAP6 antibody were used in the upper and lower 
panel, respectively. Confocal images show cytoskeletal staining in dendrites and axon and some vesicular 
staining in the soma for MAP6 and vesicular staining pattern for TMEM106B and LAMP1. Scale bar 
represents 50 µm. 
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6.5 Low dose Nocodazole rebalances lysosomal trafficking and partially rescues 
dendrite withering 

Since it was reported that stabilizing the microtubule network is a major function of 

MAP6 (Bosc et al., 1996), it seems likely that reduction of the protein would 

increase the dynamics of the very same network. Thus, pharmacological 

enhancement of microtubule dynamics might also rescue lysosomal trafficking 

defects and the dendrite loss upon TMEM106B knockdown. Nocodazole is an anti-

neoplastic agent, which inhibits polymerization of microtubules and thereby 

destroys the cytoskeletal network. However, Giannakakou and colleagues could 

demonstrate that subtherapeutical doses of nocodazole apparently enhance the 

dynamics of microtubules without destroying them, thus enhancing nucleus directed 

(that is retrograde) transport of adenovirus particles (Giannakakou et al., 2002).  

With this in mind, I tried to restore the alterations in dendritic trafficking of 

lysosomes as well as the deficiency in dendrite outgrowth and maintenance upon 

loss of TMEM106B with chronic treatment of low dose nocodazole. Neurons 

(DIV6+3) were transfected with either a shRNA against TMEM106B or a control 

shRNA. Both groups were treated either with DMSO or 10 nM nocodazole every 36 

h starting with transfection. The relative number of anterogradely and retrogradely 

moving RAB7A-GFP labeled vesicles was measured as described above. Again, 

vesicles in shCtrl transfected neurons exhibited an evenly balanced ratio of both 

types of movements whereas shT106b#2 transfected neurons showed an increase in 

retrograde trafficking (compare Figure 27). Upon addition of nocodazole, the 

balanced ratio between anterograde and retrograde movement was restored (Figure 

35A and 35B), comparable to MAP6 knockdown. 
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Figure 35: Nocodazole treatment rebalances lysosomal trafficking in TMEM106B knockdown 
neurons 

(A) Primary hippocampal neurons (DIV6+3) were transfected with either shCtrl or shT106b#2 and 
RAB7a-GFP. After transfection fresh nocodazole (10nM) was added every 36 hours to neurons of the 
treatment group. Dendrite segments and the corresponding representative kymographs of RAB7a-labeled 
vesicle movement are shown. (B) Quantitative analysis of vesicle movement from 5 min kymographs. 
Vesicles were manually classified according to their movement. Low dose nocodazole treatment 
rebalances altered retrograde lysosomal trafficking upon TMEM106B knockdown. Between six and ten 
neurons per condition were analyzed per experiment in at least three independent experiments, mean +/- 
SEM, unpaired t-test: * denotes p < 0.05 
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If both phenotypes – dendritic vesicle trafficking and dendrite outgrowth – were in 

fact connected, rebalancing anterograde and retrograde transport would naturally 

lead also to an attenuation of the deficits in arborization. In order to test this, 

hippocampal neurons were transfected on DIV7 with shCtrl or shT106b #2 for five 

days. All shRNA transfected neurons co-expressed EGFP to visualize the dendritic 

morphology. As described above, images of individual neurons were taken and 

dendritic branching quantified by Sholl analysis. Neurons transfected with shRNA 

against TMEM106B showed deficits in dendritic arborization, as expected. 

Remarkably, neurons additionally treated with 10 nM nocodazole every 36 h, 

showed an alleviation of this phenotype albeit not a full restoration (Figure 36A and 

36B).  

 

 
Figure 36: Nocodazole treatment rescues the branching effect of TMEM106B knockdown 

(A, B) Primary rat hippocampal neurons (DIV7+5) were cotransfected with either shCtrl or shT106b#2 
and GFP to visualize dendritic morphology. 10 nM nocodazole was added freshly every 36 hours for a 
total of 5 days to the neurons in the treatment group. Nocodazole-treated neurons branched significantly 
more than untreated T106b#2 transfected neurons (shCtrl vs shT106b#2: from 12.5 µm to 50 µm p<0.001, 
62.5 µm p<0.05. shT106b#2 vs shT106b#2+Noco: from 12.5µm to 25 µm p<0.001, at 37.5 µm p<0.01). 
n>40 cells per condition, three independent experiments, mean +/- SEM, two-way ANOVA. Scale bar 
represent 100 µm. 
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Taken together, enhancing microtubule dynamics pharmacologically by low dose 

treatment with nocodazole is able to rebalance lysosomal trafficking and restore 

dendritic outgrowth in TMEM106B knockdown neurons comparable to MAP6 

knockdown. 

 

6.6 Enhancing anterograde transport by dnRILP stimulates dendrite growth 
and rescues TMEM106B knockdown phenotype 

Endosomal and lysosomal trafficking, microtubule dynamics and dendrite 

morphology are tightly connected (Conde and Caceres, 2009; Dehmelt and Halpain, 

2005; Kapitein and Hoogenraad, 2011; Villarroel-Campos et al., 2014). Therefore it 

is tempting to speculate that in the case of TMEM106B knockdown the misbalanced 

dendritic transport of lysosomes causes the decreased dendrite arborization. In order 

to provide evidence that such a mechanism is responsible for the observed 

phenotypes I searched for a way to manipulate lysosomal trafficking independent of 

TMEM106B and MAP6 and studied the subsequent impact on dendrite outgrowth. I 

took advantage of the dominant negative c-terminal fragment of Rab-Interacting-

Lysosomal-Protein (RILP). Several studies have demonstrated that upon expression 

of wild-type RILP, dynein-dynactin motor protein complexes are recruited to 

lysosomes. As a consequence, this recruitment induces trafficking toward the minus-

end of microtubules and the MTOC whereas the expression of dnRILP leads to 

dispersion of lysosomes throughout the cell (Cantalupo et al., 2001; Jordens et al., 

2001).  

In my experimental context (DIV6+3), overexpression of dnRILP increases the 

number of anterograde moving RAB7A-GFP labeled vesicles. In contrast, the 

number of late endosomes / lysosomes which moved retrogradely or exhibited no net 

movement did not change (Figure 37A and 37B). Next, I analyzed dendrite 

branching in hippocampal neurons (DIV7+5) upon dnRILP expression. Strikingly, 

neurons transfected with dnRILP showed a significantly higher complexity of the 

dendritic arbor compared to control transfected cells as quantified by Sholl analysis 

(Figure 37C and 37D), indicating that anterograde lysosomal transport promotes 

dendritic branching.  
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Figure 37: Overexpression of dominant negative RILP increases anterograde movement of 
lysosomes and dendritic branching  

(A) Primary hippocampal neurons (DIV6+3) were transfected with either empty vector (Ctrl) or dnRILP 
and RAB7a-GFP to visualize late endosomal / lysosomal trafficking in dendrites and live imaged every 
second for 5 minutes. Dendrite segments and the corresponding representative kymographs of dendritic 
movement of RAB7a-GFP labeled vesicles are shown. Scale bar represents 60 s (vertical) and 15 µm 
(horizontal). (B) Quantitative analysis of vesicle movement from 5 minute kymographs. Vesicles were 
manually classified according to their movement. Anterograde movement of RAB7a-GFP labeled vesicles 
is increased upon dnRILP expression. Mean +/- SEM, unpaired t-test: *** denotes p<0.001. (C, D) 
Primary hippocampal neurons (DIV7+5) were cotransfected with an empty vector (Ctrl) or dnRILP 
together with GFP. Sholl analysis as above to quantify dendritic complexity which is increased upon 
dnRILP expression (50 µm p<0.001, 62.5 µm p<0.01, 75 µm p<0.05). n=25 per condition, 3 independent 
experiments, mean +/- SEM, two-way ANOVA Scale bar represents 100 µm.  

 

Therefore, I asked whether promoting anterograde transport with dnRILP may 

rescue impaired branching in TMEM106B knockdown neurons. ShRNA-mediated 

knockdown of TMEM106B in hippocampal neurons (DIV6+3) led to the expected 

induction of lysosomal transport (compare Figure 23). Remarkably, the coexpression 

of dnRILP in these cells restored the increased number of retrogradely transported 

late endosomes / lysosomes to the control level. Coexpression of dnRILP with 
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shCtrl even slightly increased the number of anterogradely transported late 

endosomes / lysosomes, similar to the effect of shMAP6 (Figure 38A and 38B). 

Importantly, the coexpression of dnRILP in TMEM106B knockdown neurons 

(DIV7+5) alleviated the branching defect in line with my proposed mechanism 

(Figure 38C and 38D). 

Taken together, the functional rescue with dnRILP implicates that dendritic 

trafficking of late endosomes / lysosomes is indeed directly controlling dendrite 

outgrowth.  

 
Figure 38: dnRILP restores dendritic branching in TMEM106B knockdown neurons. 

(A) Primary hippocampal neurons (DIV6+3) were transfected with combinations of control shRNA 
(shCtrl) or TMEM106B shRNA#2 (shT106b) and dnRILP or an empty vector (Ctrl) and RAB7a-GFP to 
visualize late endosomal / lysosomal trafficking in dendrites. Dendrite segments and the corresponding 
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representative kymographs are shown. Scale bars represent 60 s and 15 µm. (F) Quantitative analysis of 
vesicle movement from 5 min kymographs. Vesicles were manually classified according to their 
movement. Coexpression of dnRILP restores balance of anterograde and retrograde vesicle movement in 
TMEM106B knockdown neurons. At least seven neurons per condition were analyzed per experiment in 
at least three independent experiments, mean +/- SEM, unpaired t-test: ** denotes p < 0.01. (G, H) 
Primary rat hippocampal neurons (DIV7+5) were cotransfected with combinations of control shRNA 
(shCtrl) or TMEM106B shRNA#2 (shT106b) and dnRILP or an empty vector (Ctrl) together with GFP. 
Sholl analysis as above to quantify dendritic complexity. Coexpression of dnRILP ameliorates the 
branching phenotype upon TMEM106B knockdown (shCtrl+Ctrl vs shT106b#2+Ctrl: from 12.5 µm to 50 
µm radius p<0.001. shT106b#2+Ctrl vs shT106b#2+dnRILP: from 12.5 µm p<0.001, 25 µm p<0.01. 
shCtrl+Ctrl vs shCtrl+dnRILP: from 62.5µm to 75 µm p<0.01). n>25 per condition, 3 independent 
experiments, mean +/- SEM, two-way ANOVA. Scale bar represents 100 µm. 

 

In summary, I could show on a biochemical and cell biological level that the FTLD 

risk factor TMEM106B functionally interacts with microtubule-associated-protein 6 

(MAP6) at the lysosome. Together, both proteins regulate dendrite outgrowth and 

maintenance by controlling lysosomal trafficking in dendrites. Moreover, I could 

corroborate this causal link between trafficking and outgrowth by manipulating 

lysosomal transport independent of TMEM106B/MAP6. 
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V. Discussion 

1. Genome-wide association study identified TMEM106B risk variants  

The identification of TMEM106B as a risk factor for FTLD-TDP was based on a 

genome-wide association study (GWAS) (Van Deerlin et al., 2010). This type of 

study links certain SNPs in and around a gene to a disease, a syndrome or clinical 

symptoms. However, identified SNPs do not necessarily provide a direct and causal 

link between the gene and the disease but are sometimes only marker for other, still 

unidentified alterations (Manolio, 2010). The first genome-wide association study 

was conducted in 2005 in patients with aged-related macular degeneration (ARMD) 

and successfully identified two SNPs which exhibit altered allele frequency 

compared to controls (Haines et al., 2005). The challenge of such studies consists in 

the translation of a genetic association between a genomic region and a disease into 

mechanistic insight in the disease and benefit for the patient. Thus following the 

identification of genes in the GWAS, candidate based studies are needed to address 

such questions. Nevertheless, sceptics criticize the often small odd ratios thus the 

consequentially small impact of the SNP on the disease penetrance (Ku et al., 2010) 

and that associations rather exist between the disease and a certain genetic 

haploblock and not necessarily a distinct gene. However, several GWAS have been 

successfully transformed into better understanding the disease (Budarf et al., 2009). 

Moreover, other results have already been adopted in the clinics for example in the 

prevention of adverse effects of widely used remedies such as antiviral drugs and 

statins (Fellay et al., 2010; Maggo et al., 2011). Hence linking TMEM106B to FTLD 

was the first step of a long process that may lead eventually to the development of 

new, evidence-based pharmaceuticals. The study presented here is an effort to 

clarify the physiological role of the encoded protein and linking it also 

mechanistically to the disease. 

 

2. Neuronal Phenotype: Loss of TMEM106B impairs dendrite and spine growth 
and maintenance 

Previous work in cell lines uncovered basic biochemical properties as protein 

topology and glycosylation pattern (Lang et al., 2012) but neuronal function of 
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TMEM106B remained largely unknown. In this study I combined knock-down 

experiments in primary neuron culture, proteomics and live cell imaging to 

investigate the physiological role of TMEM106B and tie it to cellular functions 

affected in FTLD (reviewed in (Ling et al., 2013)). I demonstrate that TMEM106B 

is almost completely localized in late endosomes and lysosomes in primary neurons. 

This confinement to the late endocytic pathway was also reported in several other 

publications (Brady et al., 2013; Chen-Plotkin et al., 2012; Lang et al., 2012; 

Nicholson et al., 2013). Some of these studies claim that overexpression of 

TMEM106B influences lysosomal properties – for example an increase in lysosomal 

pH leading to impairment in maturation of lysosomal proteases or an enlarged and 

altered morphology (Brady et al., 2013; Chen-Plotkin et al., 2012). However, 

accumulation and probably aggregation of TMEM106B in lysosomes has been 

observed in neurons upon overexpression of the protein probably causing the 

lysosomal phenotype (Chen-Plotkin et al., 2012). Also in my hands plasmid-based 

overexpression of TMEM106B in primary neurons led to the formation of 

aggregates, especially in dendrites. Moreover, shRNA-mediated knockdown of the 

protein did not affect the aforementioned lysosomal features, both pointing towards 

an unphysiological effect of the highly overexpressed protein. TMEM106B similar 

to many other transmembrane proteins (Kopito, 2000) tends to aggregate when 

overexpressed due to its hydrophobic transmembrane domain thus questioning the 

relevance of the published findings. Therefore, I titrated the protein carefully back 

to endogenous protein levels in all rescue experiments to avoid unphysiological 

TMEM aggregation.  

Overexpression and knockdown of many FTLD related proteins as TDP-43, FUS, 

and TAU lead to marked toxicity in cellular or animals models (Igaz et al., 2011; 

Shahani et al., 2006; Sun et al., 2011; Zhang et al., 2009b). However, loss of 

TMEM106B in primary neurons did not affect cellular viability in a metabolic 

assay. This finding and the increase in axonal length, despite the loss of dendrites, 

argue for a modifying role of TMEM106B on FTLD pathogenesis rather than a 

direct impact on neuronal survival. 

The most obvious phenotype upon knockdown of TMEM106B was a pronounced 

loss of dendrites. The morphology of the dendrites was evaluated with Sholl 
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analysis, which measures the dendritic complexity combining length and branching 

(Sholl, 1953). The experiments in younger neurons and mature neurons with an 

already completely established dendritic arbor show that TMEM106B is required 

both for the growth and maintenance of dendrites. The decrease in dendrite 

complexity was especially marked in proximal dendrites in TMEM106B knockdown 

neurons while the main dendrite was in all cases protected from the shRNA 

treatment and even was increased in its length. This was not entirely unexpected as 

the main dendrite seems to be particularly resilient (Hoogenraad et al., 2005).  

Emerging evidence points to an involvement of endosomes and lysosomes in neurite 

outgrowth and maintenance (Sann et al., 2009), for instance impairing the function 

of recycling endosomes by dominant negative RAB11 caused a collapse of 

developing axons in drosophila larvae (Bhuin and Roy, 2009). In order to confirm 

that lysosomes are indeed involved in neurite outgrowth, I inhibited lysosomal 

biogenesis by expressing dominant-negative RAB7 and observed a defect in 

dendritic arborization. Effectively, these experiments prove that compromising 

lysosomal function is actually able to impair dendrite architecture. Importantly, 

enhancing transport of lysosomes by dominant-negative RILP, a binding partner of 

RAB7, increased dendritic branching compared to control conditions. Together these 

findings point towards a direct impact of TMEM106B on dendrite morphology by 

modulating dendritic trafficking of lysosomes. 

In line with the often observed phenomenon that function and morphology of 

dendrites and spines are regulated through overlapping pathways (reviewed in 

(Koleske, 2013)), a dramatic decrease in spine number is seen upon TMEM106B 

knockdown. Moreover the remaining dendritic protrusions are much smaller and 

thinner than their control counterparts. The density and morphology of spines 

correlates with synaptic strength and is often used as surrogate marker for a 

functional neuronal transmission (reviewed in (Hering and Sheng, 2001; Lamprecht 

and LeDoux, 2004)). I also observed a reduction of pre- and postsynaptic marker 

proteins, which corroborates the morphological findings on a biochemical level. 

Dysfunction and loss of synapses is a major hallmark of many neurodegenerative 

diseases such as AD (Davies et al., 1987; Masliah et al., 2001; Spires-Jones and 

Knafo, 2012), and might be also a common feature in FTLD (Petkau et al., 2012). 
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However, the role of synapses and synaptic plasticity still needs to be studied more 

comprehensively in this disease. 

Taken together the data obtained in primary neurons clearly demonstrate that loss of 

the lysosomal protein TMEM106B lead to severely blunted dendrites and reduced 

spines number and dimensions without mediating obvious toxicity at the time point 

the experiments were done.  

 

3. Interaction of TMEM106B with MAP6 

To link TMEM106B to known cellular pathways and to the morphological phenotype 

observed, I sought to identify interacting proteins by coimmunoprecipitation and 

subsequent LC-MS/MS analysis of individual Coomassie stained bands that were 

enriched compared to the negative control. The only protein found in all three 

experiments was the microtubule-binding protein MAP6. Importantly, I could 

confirm the interaction by immunoblotting afterwards. Furthermore, I managed to 

map the interaction to the cytoplasmic N-terminus of TMEM106B and the C-

terminal region of MAP6 by using deletion mutants and different isoforms of the 

proteins. The binding on the cytoplasmic part of TMEM106B excludes the 

possibility that intravesicular MAP6, designated for lysosomal degradation, 

mediates the interaction. Subcellular fractionations showing MAP6 and TMEM106B 

in the same (RAB7 and LAMP1 positive lysosomal) fractions further corroborate the 

interaction of these proteins in the lysosomal compartment. Interestingly, MAP6 was 

found to interact with another vesicular protein, the endocytic adaptor intersectin 1 

(ITSN1) (Morderer et al., 2012). Moreover, depending on posttranslational 

modifications MAP6 is associated with other non-MT compartments such as the 

Golgi apparatus, actin rich spines and dendritic branch points (Baratier et al., 2006; 

Gory-Faure et al., 2006). 

Moreover, I also provide evidence for a functional cooperation of TMEM106B and 

MAP6. While the overexpression of MAP6 phenocopies the blunted dendritic 

arborization, the additional knockdown of MAP6 in TMEM106B shRNA transfected 

neurons is able to rescue the knockdown effect and even increase dendritic 

branching. Although the main cellular function of MAP6 is regulating microtubule 
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stability, a study by Arama and colleagues demonstrates, in line with my results, a 

role for the protein in the regulation of cell morphology (Arama et al., 2012). 

Furthermore, MAP6 was found to coaggregate in spheroid neurofilaments in ALS 

patients already providing a connection to neurodegenerative diseases (Letournel et 

al., 2003). 

Drawing a functional link between MAP6 and the control of dendrite outgrowth is 

very appealing, since microtubule-dependent processes and neurite outgrowth are 

tightly connected (reviewed in (Georges et al., 2008)). There is ample evidence of a 

huge impact of other structural MAPs such as MAP1B and MAP2 on both 

microtubule dynamics and neurite outgrowth (Caceres et al., 1992; Meixner et al., 

2000). Moreover, axonal growth is a direct consequence arising from the ability of 

Collapsin Response Mediator Protein-2 (CRMP2) to bind and stabilize microtubules 

(Hensley et al., 2011). Notably, I provided additional experimental evidence for the 

connection of both processes, since I was able to rescue dendrite loss in TMEM106B 

knockdown neurons also by pharmacological enhancement of microtubule dynamics 

with low doses of nocodazole. However, whole proteome analysis of TMEM106B 

immunoprecipitate will probably reveal additional interacting proteins which may 

also contribute to the TMEM106B dependent regulation of dendritic outgrowth. 

Taken together I provide here ample evidence for a physical and functional 

interaction of TMEM106B with the microtubule-binding protein MAP6. 

 

4. Dendritic trafficking of lysosomes is affected by TMEM106B and MAP6 

Microtubules and vesicles converge on the level of microtubule dependent organelle 

transport, a tightly regulated process influencing almost all functions in neurons 

(reviewed in (Hirokawa et al., 2010)). Thus it was intuitive to analyze this crucial 

process in the context of TMEM106B knockdown in primary neurons, especially as 

experiments from TMEM106B siRNA treated HeLa-cells show lysosomal clustering 

at the MTOC ((Schwenk et al., 2014) data by Christina Lang). 

I analyzed lysosomal transport in dendrites by acquiring time-laps movies from 

RAB7-GFP labeled vesicles that were converted into kymographs (path-time 

diagrams) (Chen et al., 2012; Zhang et al., 2013). Previously, little was known on 
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the mechanisms of dendritic trafficking of lysosomes and no data on direction and 

velocity was available. However, my results (0.24 μm/s for control and 0.35 μm/s 

for TMEM106B knockdown neurons) fall in the range of values reported for 

comparable transport events such as endosome movement in axons or mitochondrial 

movement in dendrites (Bannai et al., 2004; Kwinter et al., 2009; van Spronsen et 

al., 2013). Soon after transfection, at a time point before dendrite blunting became 

apparent, lysosomal trafficking in TMEM106B knockdown neurons was enhanced 

compared to controls. However, I observed not only an increase in the number of 

moving vesicles but also in the mean velocity and distance traveled. Interestingly, 

the increased vesicle trafficking could be attributed to enhanced retrograde transport 

(to the soma) whereas anterograde transport (to the dendrite tip) and transport 

events without net movement stayed roughly the same. Under control conditions the 

ratio of directions was balanced, while under knockdown conditions up to three 

times more vesicles moved towards the soma. The observed increase in organelle 

transport is a most unexpected finding in a neurodegenerative disease, as usually 

reduced organelle transport is found under pathological conditions (reviewed in 

(Franker and Hoogenraad, 2013; Millecamps and Julien, 2013)). Consistent with a 

functional interaction of MAP6 with TMEM106B, MAP6 overexpression had also an 

effect on lysosomal transport in dendrites. Similar to TMEM106B knockdown, 

retrograde transport was increased three days after transfection thus already before 

dendrite loss became apparent. In line with that, double knockdown of TMEM106B 

and MAP6 ameliorated this effect and reestablished the balance between anterograde 

and retrograde trafficking. The same was true for treatment with low doses of 

nocodazole which also rebalanced directed transport of lysosomes in TMEM106B 

knockdown neurons. Higher amounts of the anti-cancer drug nocodazole inhibit the 

polymerization of microtubules thus blocking MT-dependent transport (Samson et 

al., 1979). However, a study by Giannakakou et al. finds that subtherapeutical doses 

of this compound enhances transport presumably by increasing the dynamics of MT 

without causing complete collapse (Giannakakou et al., 2002). Moreover, 

knockdown of MAP6 or nocodazole treatment not only rebalanced the direction of 

lysosomal transport but mildly increased the number of total transport events in both 

directions. 
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The control of lysosomal trafficking and dendrite outgrowth by the same factors and 

the chronological order of the two phenotypes (lysosomal trafficking before dendrite 

withering), suggests that the first causes the latter. Neurite outgrowth relies heavily 

on the secretory and endocytic pathway (Horton et al., 2005; Jan and Jan, 2010; 

Sann et al., 2009) and also the involvement of lysosomes has been reported 

(Martinez-Arca et al., 2000). Furthermore, the fusion of lysosomes with the plasma 

membrane during lysosomal exocytosis provides lipids and other membrane 

components during cell growth and wound sealing (Chakrabarti et al., 2003; Huynh 

et al., 2004; Reddy et al., 2001). Moreover, ALS causing mutations in VABP, an ER 

targeted protein, diminish membrane delivery to dendrites and by that restrain 

dendritic outgrowth (Kuijpers et al., 2013; Nishimura et al., 2004). Thus, imbalance 

and the shift of lysosomal transport to the soma in the case of TMEM106B 

knockdown might affect the membrane and protein turnover in the dendrites and 

dendritic protrusions and directly lead to the observed loss of dendrites and spines. 

To corroborate a causal link between misbalanced lysosomal transport and dendrite 

growth, I manipulated lysosomal movement in neurons independently of 

TMEM106B/MAP6 with dnRILP. When overexpressed in cell-lines, wild-type RILP 

leads to lysosomal clustering near the nucleus, while dnRILP disperses lysosomes 

throughout the cell body (Cantalupo et al., 2001; Jordens et al., 2001). In contrast to 

TMEM106B knockdown, dnRILP promotes anterograde transport of lysosomes in 

dendrites and consequently elevates the complexity of the dendritic arbor compared 

to control cells. Importantly, in a functional rescue experiment I could reestablish 

the equilibrium of directed transport in TMEM106B knockdown neurons with 

dnRILP and by this achieve a partial rescue of the dendritic withering.  

Taken together I provide here several lines of evidence supporting that TMEM106B 

knockdown impairs dendritic arborization by enhancing retrograde trafficking of 

lysosomes in dendrites: First, The interaction partners TMEM106B and MAP6 

influence both phenotypes, trafficking and outgrowth. Second, lysosomal transport 

defects precede the dendrite loss. Third, altering directed lysosomal transport 

independently of TMEM106B and MAP6 changes dendrite growth. 

It is of course not possible to exclude that additional factors influence this process. 

Lysosomal misrouting might affect growth factor signaling such as GRN signaling 
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via sortilin and tumor necrosis factor receptor (TNFR) (Hu et al., 2010; Tang et al., 

2011) or nerve growth factor (NGF) via neurotrophic tyrosine kinase receptor type 1 

(TrKA) (Snider, 1988) by impairing the availability of the respective receptors on 

the cell surface. Furthermore, MAP6 might play an additional role in intracellular 

transport by its binding to MTs and the Golgi apparatus or by directly affecting MT-

stability (Gory-Faure et al., 2006). In line with this assumption MAP6 interacts with 

ITSN1, a protein which affects endocytosis and signal transduction by receptor 

tyrosine kinases (Morderer et al., 2012; Tsyba et al., 2011).  

 

5. Axonal phenotype 

Fast axonal transport of organelles is one of the most widely studied transport 

process in neurons and neurodegenerative disorders (reviewed in (Hinckelmann et 

al., 2013; Millecamps and Julien, 2013). Thus investigating the effect of 

TMEM106B on axonal transport was only consequential given the dramatic changes 

in dendritic trafficking of lysosomes. Colocalization experiments revealed that 

TMEM106B is present in axonal lysosomes as well, even though to a lesser extent 

than in dendritic lysosomes. Surprisingly, I could not detect any changes in the total 

number and more important in the direction of lysosomes transported in axons upon 

knockdown of TMEM106B, although at this time point, axons were 40 % longer 

than in controls. Several reasons could explain that discrepancy. First, dendrites and 

axons rely on largely different mechanisms to promote their growth. While axons 

are strongly dependent on guidance cues, dendritic growth is mainly regulated by 

limited membrane supply from the secretory and the endocytic pathway (Ye et al., 

2007). Second, different motor proteins and regulatory factors are needed for 

organelle transport in axons and dendrites (Kapitein and Hoogenraad, 2011). Thus, 

it might be possible that, while TMEM106B and MAP6 control outgrowth in 

dendrites, other proteins regulate axonal growth by a comparable mechanism. Third, 

due to the fast growth of axons, I analyzed axonal length and axonal transport in 

still developing neurons at DIV4, when dendrites are not yet established. It might be 

possible that axonal transport or axonal morphology is regulated differently in older 

neurons, at a time the dendritic phenotypes were observed. However, this scenario is 
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not very likely as the crucial machinery for axonal growth is already established 

early in neurodevelopment (da Silva and Dotti, 2002; Neukirchen and Bradke, 

2011).  

6. Model 

All findings in this study combined are compatible with a model describing 

TMEM106B as a molecular brake for the retrograde transport of lysosomes in 

dendrites thereby regulating dendrite growth and maintenance: TMEM106B – at the 

lysosomal membrane – binds with its cytoplasmic N-terminus to the C-terminus of 

microtubule-bound MAP6. This interaction apparently inhibits transport and stalls 

most dendritic lysosomes to the microtubule. Thus, only a limited amount of 

vesicles move retrogradely through the dendrite under control conditions (Figure 

39A). In the case of TMEM106B knockdown, this interaction is not possible any 

more and more lysosomes move undisturbed towards the soma. In the case of MAP6 

overexpression, the protein has a dominant negative effect. Excess MAP6 

molecules, not attached to the saturated binding sites on the microtubule, will bind 

to TMEM106B impeding its interaction with microtubule-bound MAP6. This 

dominant negative effect of overexpressed MAP6 thus mimics TMEM106B 

knockdown. This hypothesis is corroborated by live cell imaging experiments 

demonstrating that overexpressed MAP6-GFP occasionally moves together with 

lysosomes along dendrites. In contrast, anterograde transport, presumably regulated 

by different factors, remains constant upon manipulation of TMEM106B or MAP6. 

Due to the shift towards retrograde lysosomal transport, a net loss of lipid 

membranes and protein may occur that leads to loss off dendrite and spines (Figure 

39B). Knockdown of MAP6 mildly enhances dendritic trafficking of lysosomes in 

both directions but maintains the balance of anterograde and retrograde movement. 

Therefore, dendrite arborization is restored despite the loss of TMEM106B (Figure 

39C). Why loss of MAP6 also enhances anterograde transport is not completely 

clear, but may involve other interaction partners of MAP6. Another important factor 

might be enhanced microtubule dynamics upon knockdown of MAP6 - a widely 

reported phenomenon (Bosc et al., 1996; Delphin et al., 2012). This is supported by 

the fact that also nocodazole, a drug that decreases microtubule stability, is able to 
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increase both retrograde and anterograde lysosomal transport. Such additional 

factors might also explain why the overexpression of dominant-negative RILP only 

partially rescues the TMEM106B knockdown phenotype although lysosomal 

transport is completely rebalanced. 

A similar brake mechanism has already been reported for the axonal transport of 

mitochondria. Syntaphilin, like TMEM106B an integral membrane protein, halts 

mitochondrial transport in axons. When syntaphyilin is inserted in the mitochondrial 

outer membrane, it can interact with dynein light chain LC8 and thereby bind to the 

axonal cytoskeleton. This interaction which is completely independent of the motor 

function of LC8 stalls mitochondria at their current position on the microtubule 

(Chen et al., 2009; Kang et al., 2008). 
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 Figure 39 Model of the effects of TMEM106B and MAP6 on lysosomal transport 

(A) Interaction of TMEM106B and MAP6 inhibits retrograde transport of lysosomes in dendrites.  
(B) TMEM106B knockdown and MAP6 overexpression specifically enhance retrograde transport of 
lysosomes.  
(C) MAP6 knockdown moderately enhances trafficking of lysosomes in both direction and rescues 
TMEM106B knockdown. 
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None the less, the mechanism by which TMEM106B and MAP6 control vesicular 

transport and neurite outgrowth seems to be very specific for lysosomes and 

dendrites. On the one hand, dendritic trafficking of mitochondria is not affected 

upon TMEM106B knockdown, consistent with predominant lysosomal localization 

of the protein. On the other hand, no change in axonal transport of lysosomes could 

be detected. Additionally, knockdown of another microtubule stabilizing protein 

(microtubule-associated protein 2 (MAP2)) could not rescue the effect of 

TMEM106B knockdown on dendritic arborization but rather aggravated the 

branching defect. 

 

7. Implications for FTLD and other neurodegenerative diseases 

Although the association of TMEM106B with FTLD-TDP is now well accepted, the 

exact mechanism by which the lysosomal protein increases the risk of developing 

the disease is still unclear. Loss of neuronal TMEM106B does not obviously change 

the levels of FTLD associated proteins GRN, TDP-43, FUS and Tau. Although a 

slight elevation in GRN levels is reported for TMEM106B overexpression (Brady et 

al., 2013), this might also be caused by unspecific lysosomal impairment due to 

aberrant aggregation of the exogenous TMEM106B (Brady et al., 2013; Chen-

Plotkin et al., 2012). Just recently, it was discovered that TMEM106B variants 

increase the risk of developing also other forms of FTLD and even different 

neurodegenerative disease such as late onset Alzheimer´s disease (LOAD) 

(Gallagher et al., 2014; Lu et al., 2013; van Blitterswijk et al., 2014). Thus, it is 

likely that these variants rather render the neurons more vulnerable to general stress 

due to impaired protein homoeostasis than induce direct neurotoxicity.  

Although long debated at the beginning (van der Zee et al., 2011), emerging 

evidence suggest now that TMEM106B risk SNPs increase its mRNA and protein 

levels (Nicholson et al., 2013; Van Deerlin et al., 2010). Nevertheless, loss-of-

function studies are an appropriate way to elucidate the physiological function of a 

protein and its potential role in the disease. With knockdown experiments I was able 

to demonstrate an important contribution of TMEM106B to the regulation of 

lysosomal trafficking. This finding fits perfectly into the emerging concept that 
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lysosomal dysfunction is an important part in the pathogenesis of FTLD per se and 

especially of cases with GRN involvement. Several lines of evidence support this 

hypothesis: 

1. Mutations in the genes coding for VCP and CHMP2B, proteins involved in 

the maturation of endosomes and endolysosomal sorting and fusion events, 

are responsible for a small number of familial FTLD cases (FTLD-UPS) 

(Momeni et al., 2006a; Watts et al., 2004).  

2. The v-type ATPase inhibitor bafilomycin A1 and other agents that inhibit 

lysosomal acidification increase GRN expression and secretion in GRN +/- 

mice and lymphoblasts from GRN haploinsufficiency patients (Capell et al., 

2011).  

3. Homozygous GRN knockout mice exhibit apart from aberrantly 

phosphorylated TDP-43 and shorter life expectancy, a strong lysosomal 

dysfunction as mRNA and protein level of the lysosomal protease cathepsin D 

are highly elevated (Wils et al., 2012). Vice versa, in cathepsin D knockout 

mice, GRN mRNA level are almost doubled (Ahmed et al., 2010).  

4. Additionally, severe accumulation of lipofuscin aggregates is found in the 

brain of the GRN knockout animals, suggesting an impairment of the 

lysosomal system (Ahmed et al., 2010). While heterozygous GRN mutations 

carriers develop FTLD-TDP, humans with homozygous GRN mutations thus 

complete loss of the protein develop, in line with the findings from the 

knockout mice, neuronal ceroid lipofuscinosis (NCL) a lysosomal storage 

disorder (Smith et al., 2012). Another juvenile onset form of this syndrome – 

Batten disease - is caused by mutations in CLN3 (Tuxworth et al., 2009). 

Expression of mutated CLN3 in HeLa cells induces perinuclear clustering of 

lysosomes (Uusi-Rauva et al., 2012), reminiscent of the clustering phenotype 

seen in HeLa cells, treated with TMEM106B siRNA ((Schwenk et al., 2014) 

data by Christina Lang).  

All these facts argue for a strong lysosomal component in FTLD-TDP pathogenesis, 

especially in GRN mutation carriers, in whom TMEM106B SNPs have the strongest 

impact (Van Deerlin et al., 2010). Strikingly, TMEM106B, presumably together 

with lysosomes, accumulates in the soma and main dendrites of neurons in FTLD-
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TDP patients with GRN mutation (Busch et al., 2013; Chen-Plotkin et al., 2012) 

supporting the data of the present study. The aforementioned connection between 

lysosomes and FTLD, together with the findings of this study strongly indicates that 

lysosomal dysfunction is a crucial step in the pathological cascade leading to the 

disease. This dysfunction may easily be aggravated by lysosomal misrouting in 

TMEM106B risk carriers. 

 

8. Summary, open questions and future perspectives 

Taken together I demonstrated that the FTLD-TDP risk factor TMEM106B is located 

in late endosomes and lysosomes in primary neurons. Together with its interaction 

partner MAP6, TMEM106B acts as a molecular brake controlling the retrograde 

transport of lysosomes in the dendrite. Releasing that brake by knockdown of 

TMEM106B or the dominant negative effect of overexpressed MAP6 leads to 

increased transport of lysosomes to the soma and thus presumably to a higher and 

faster membrane and protein turnover in dendrites and spines. This could lead to a 

net loss of membranes and ultimately to pronounced withering of dendrites and 

spines. However, rebalancing the lysosomal transport by knockdown of MAP6, 

overexpression of dominant-negative RILP or treatment with low dose nocodazole 

can overcome the TMEM106B knockdown effect and restore dendritic branching.  

However, many questions remain:  

1. Further cell culture experiments are needed to clarify if and how altered 

microtubule dynamics contributes to the regulation of lysosomal transport by 

TMEM106B as suggested by rescue experiments with nocodazole. Moreover, 

it remains unclear if also other vesicular organelles (apart from lysosomes) 

are affected by TMEM106B or if comparable regulatory mechanisms exist 

which are affected in other familial forms of the disease. And although initial 

studies have been conducted to elucidate the role of TMEM106B in protein 

degradation and autophagy (Brady et al., 2013; Lang et al., 2012), it is 

unclear how the misrouting of lysosomes influences both processes.  

2. Electrophysiology experiments in primary neurons and slice cultures from 

disease models will need to confirm whether the transport phenotype by 
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TMEM106B knockdown indeed affects neurotransmission and synaptic 

strength as predicted by the loss of dendrites and spines. These model 

systems might also be helpful to identify and validate additional interaction 

partner for TMEM106B or MAP6 to generate a more complete insight into the 

mechanism by which the two proteins regulate vesicular transport and neuron 

morphology. 

3. TMEM106B knock-out animal models should be generated to confirm the 

findings from cell lines and primary neurons in vivo and identify additional 

phenotypes. Another useful approach to model the role of TMEM106B in the 

disease might be to introduce the T185S variant at the endogenous 

TMEM106B locus (Barger, 2013). A full examination including especially the 

analysis of lysosomal transport and function will eventually reveal if the 

knock-in is already enough to trigger certain disease related symptoms and if 

crossing with other FTLD models, such as the GRN knockout mouse, 

aggravates their symptoms.  

4. More studies in patients are needed to clarify the role of TMEM106B SNP in 

other sub classes of FTLD and in different neurodegenerative diseases (Lu et 

al., 2013; van Blitterswijk et al., 2014). Larger studies should also resolve 

the controversy how the risk variants affect RNA and protein levels of 

TMEM106B and GRN (Van Deerlin et al., 2010; van der Zee et al., 2011). 

Careful neuropathological assessment of patient brain samples is needed to 

evaluate the exact impact of the risk variants on vesicular localization and 

neuron morphology in affected brain regions. State-of-the-art techniques such 

as proteomics and transcriptomics from serum or cerebrospinal fluid (CSF) 

might identify additional dysregulated pathways in risk carriers. 

5. Finally, all approaches should focus on the identification of new rationale-

based drugs which have to proof their efficacy and safety in large clinical 

trials.  

 

In the end, mechanistic data from cell culture and animals, genetic and pathological 

data from patients and –omics data have to be combined to understand how 
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TMEM106B influences neurodegeneration in general and FTLD in particular and to 

diagnose and cure patients suffering from these devastating diseases. 
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