Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Kinetics and Mechanisms of the Reactions of

 Nitrogen Ylides with Acceptor-Substituted OlefinsDominik Sebastian Allgäuer

aus

Wolfratshausen
2013

Erklärung

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Herbert Mayr betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.
München, den 17.12.2013
(Dominik Allgäuer)
Dissertation eingereicht am: 17.12.2013

1. Gutachter: Prof. Dr. Herbert Mayr
2. Gutachter: Prof. Dr. Manfred Heuschmann

Mündliche Prüfung am 12.02.2014

Für Anja

Scientific progress goes 'Boink'

-Calvin and Hobbes-

By Bill Watterson

Danksagung

Zu allererst gilt mein Dank natürlich meinem Doktorvater Prof. Dr. Herbert Mayr für die Möglichkeit meine Doktorarbeit bei ihm durchzuführen, die freie Hand bei meiner Themenwahl, die langen, ergiebigen Diskussionen, seine Hilfsbereitschaft und vor allem für seine Geduld.

Vielen Dank auch an die Mitglieder des Prüfungsausschusses für ihre Teilnahmebereitschaft.
Mein Dank gilt Dr. Armin Ofial (Dr. O), zum einen für die schnelle Durchsicht meiner Publikationen und die Freude über die dabei endeckten Fehler, zum anderen für seine stete Diskussions- und Hilfsbereitschaft. Außerdem natürlich für die schöne Zeit bei der ESOC auf Kreta.

Für den Anstoß zu den Ylid-Projekten und die Hilfe bei den ersten Schritten, schon während der MasterArbeit, sowie seine stete Diskussionsbereitschaft, Begeisterungsfähigkeit und Freundschaft möchte ich Dr. Sami Lakhdar danken.

Danke auch an Angel Puente, Alexander Wagner, Elija Wiedemann, Katharina Böck, Francisco Corral, und Johannes Ammer für die zügige Durchsicht dieser Arbeit.

Außerdem möchte ich natürlich unseren „Kindergärtnerinnen" Nathalie Hampel, Hildegard Lipfert und Brigitte Janker danken, die den Arbeitskreis am Laufen halten. Ein besonderes Dankeschön geht an Hildegard Lipfert für ihr Eintreten für mich. Nathalie Hampel möchte ich dafür danken, dass sie eine leiwand Laborkollegin ist mit der ich sehr viel Spaß hatte, und die nebenbei auch noch Zeit für die ein oder andere meiner Synthesen gefunden hat.

Ich möchte auch den von mir betreuten Auszubildenden Marie Kunze, Thomas Schmelmer und Sandra Konstantinou für ihr Engagement, ihre Lern- und Leistungsbereitschaft danken.

Natürlich möchte ich auch meinen Laborkollegen Alexander Wagner, Konstantin Troshin, Johannes Ammer, Jörg Bartl, Tobias Nigst, Katharina Böck, und den Stopped-Flow Geräten für das gute Miteinander und den Spaß danken. Besonderer Dank geht an Konstantin Troshin für die musikalische Untermalung meiner Arbeit.

Ich danke auch meinen übrigen Kollegen aus dem AK Mayr, allen voran Francisco Corral und Hans Laub, für die gute Zusammenarbeit. Ich möchte mich auch bei unseren ehemaligen AK-Mitgliedern, allen voran Nicolas Streidl, für die gute Zeit mit innen bedanken. Der Ball ist rund.

Ich danke unserer Kochgruppe Nathalie Hampel, Francisco Corral, Angel Puente und Hans Laub für die freitäglichen Schlemmereien.

Ich möchte meiner Familie herzlich danken! Sie hat mich immer unterstützt und ohne sie wäre ich nie so weit gekommen.

Zu guter Letzt möchte ich meiner Frau für ihre Unterstützung, den Rückhalt, die Aufbauarbeit und auch für alles andere danken, was sie für mich getan hat!

Publikationen

A Facile One-Pot Two-step Synthesis of 1-Ethoxycarbonyl-indolizines via Pyridinium Ylides

D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, 6379-6388.

Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analyses
D. S. Allgäuer, P. Mayer, H. Mayr, J. Am. Chem. Soc. 2013, 135, 15216-15224.

Electrophilicities of 1,2-Disubstituted Ethylenes

D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2014, in press.

Konferenzbeiträge

02/2013 Industrietag LMU München; Posterpräsentation: "Structure-Reactivity Relationships of Acrylates and Simple Michael-Acceptors"

07/2011 ESOC Chersonissos, Griechenland; Posterpräsentation: „Structure-Reactivity Relationships in Reactions via Nitrogen Ylides"

03/2011 SFB-Antrag LMU München; Posterpräsentation: „Nucleophilicity Parameters for Sulfur- and Nitrogen Ylides: Reference Compounds for Elucidating the Ambident Reactivities of α, β-Unsaturated Carbonyl Compounds"

07/2010 ISO μ Mühlheim; Posterpräsentation: „Structure-Reactivity Relationships in Reactions via Ammonium Ylides"

Table of Contents

0 Summary 1
0.1 General 1
0.2 The Wide Mechanistic Spectrum of Ammonium Ylide Mediated Cyclopropanations. 2
0.3 One-Pot Two-step Synthesis of 1-Ethoxycarbonyl-indolizines via Pyridinium Ylides 4
0.4 Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analysis 6
0.5 Electrophilicities of 1,2-Disubstituted Ethylenes 8
0.6 Quantification of the Ambident Electrophilicities of α, β-Unsaturated Aldehydes 10
0.7 Electrophilicities of Acceptor-Substituted Olefins 12
0.8 Applications of the Linear Free-Energy Relationship $\log k_{2}=s_{\mathrm{N}}(N+E)$ 14
1 Introduction and Objectives 17
1.1 Introduction 17
1.2 Objectives 18
1.3 References 21
2 The Wide Mechanistic Spectrum of Ammonium Ylide Mediated Cyclopropanations24
2.1 Introduction 24
2.2 General 27
2.3 Results 30
2.4 Discussion 52
2.5 Conclusion 58
2.6 Addendum 60
2.7 Experimental Section 63
2.8 References 142
3 One-Pot Two-Step Synthesis of 1-Ethoxycarbonyl-Indolizines via Pyridinium Ylides146
3.1 Introduction 146
3.2 Results and Discussion 148
3.3 Conclusion 157
3.4 Experimental Section 158
3.5 References 179
4 Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analyses 183
4.1 Introduction 183
4.2 Results and Discussion 185
4.3 Conclusion 198
4.4 Addendum 201
4.5 Experimental Section 204
4.6 Kinetics 235
4.7 References 254
5 Electrophilicities of 1,2-Disubstituted Ethylenes 258
5.1 Introduction 258
5.2 Results and Discussion 259
5.3 Conclusion 268
5.4 Experimental Section 270
5.5 References 288
6 Quantification of the Ambident Electrophilicities of α, β-Unsaturated Aldehydes. 292
6.1 Introduction 292
6.2 Results and Discussion 294
6.4 Conclusion 303
6.5 Experimental Section 305
6.6 References 317
7 Electrophilicities of Acceptor-Substituted Olefins 322
7.1 Introduction 322
7.2 Results and Discussion 323
7.3 Conclusion 331
7.4 Experimental Section 334
7.5 References 362
8 Applications of the Linear Free-Energy Relationship $\log \boldsymbol{k}_{2}=\boldsymbol{s} \mathbf{N}(N+E)$ 367
8.1 Introduction 367
8.2 Testing the Applicability of $\log k_{2}=s_{\mathrm{N}}(N+E)$ 369
8.3 Application of the Linear Free-Energy Relationship $\log k_{2}=s_{\mathrm{N}}(N+E)$ to Concerted Reactions 382
8.4 Conclusion 388
8.5 Experimental Section 389
8.6 References 393

0 Summary

0.1 General

The second-order rate constants $k_{20^{\circ} \mathrm{C}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ of nucleophile-electrophile combinations can be described by eq 0.1 , in which the nucleophile-specific slope parameter is s_{N}, N is the nucleophilicity parameter and E is the electrophilicity parameter.

$$
\begin{equation*}
\log k_{20^{\circ} \mathrm{C}}=s_{\mathrm{N}}(N+E) \tag{0.1}
\end{equation*}
$$

Based on this correlation a broad range of nucleophiles, including various phosphorous and sulfonium ylides, have been studied, while characterizations of the electrophilicities E of electrophiles other than colored cations and Michael acceptors with absorption maxima in the visible or near UV-vis range have hardly been attempted. Only recently the electrophilicity parameters of some colorless aldehydes, imines, and chalcones were determined.

The purpose of this thesis is to investigate the kinetics and mechanisms of the reactions of nitrogen ylides with acceptor-substituted olefins. Therefore, the reactions of ammonium ylides and pyridinium ylides with reference electrophiles were studied in order to quantify their reactivity by using eq 0.1 . The nucleophilicity parameters of pyridinium ylides derived in this way could then be used for the characterization of the electrophilicities of a large number of synthetically important colorless acceptor-substituted olefins, namely acceptor-substituted ethylenes, propylenes, and styrenes. The electrophilicity parameters of these compounds allowed us to test the applicability of eq 0.1 to reported second-order rate constants for the reactions of acceptor-substituted olefins with various nucleophiles, which were collected from the literature.

0.2 The Wide Mechanistic Spectrum of Ammonium Ylide Mediated

Cyclopropanations

Kinetics and mechanisms of the reactions of stabilized ammonium ylides with diarylcarbenium ions and several Michael acceptors have been determined by UV-vis and NMR spectroscopy in DMSO at $20^{\circ} \mathrm{C}$ (Scheme 0.1). The cyclopropanations of the Michael acceptors by ammonium ylides were found to proceed via intermediate betaines (Scheme 0.1), which could be observed and characterized in some cases.

The overall reaction, betaine formation and ring closure, was found to follow four different types of mechanisms depending on the nature of the Michael acceptor and the electronwithdrawing groups at the ylide.

The more basic, cyano, amido, and ester-substituted, ylides ($\mathrm{p} K_{\mathrm{aH}} \geq 20$ in DMSO) were found to form the intermediate betaines irreversibly with fast or slow subsequent ring closure depending on the Michael acceptor, while the less basic, acyl-substituted, ylides ($\mathrm{p} K_{\mathrm{aH}}=15$ 16) formed the intermediate betaines reversibly with rate determining ring closure.

The energy profiles of four different types of mechanisms for the cyclopropanations with ammonium ylides, i.e., irreversible betaine formation with fast (case 1a) and slow subsequent ring-closure (case 2a), and reversible formation of non-observable (case 1b) and observable betaines (case 2b) are constructed (Figure 0.2b).

Scheme 0.1. Reactions of ammonium ylides with diarylcarbenium ions and Michael acceptors.

a) 0-10 min
b) $10-120 \mathrm{~min}$

Figure 0.1. UV-vis spectra of the reaction of an ester-substituted ammonium ylide with a benzylidene malonate with formation of an intermediate betaine during the first $\mathbf{1 0} \mathbf{~ m i n}$ of the reaction (a) and of the ring-closure of the betaine to the cyclopropane in the following 120 min (b).

Figure 0.2. a) Plots of the observed second order rate constants $\boldsymbol{k}_{\mathrm{CC}}$ of the reactions of different ammonium ylides with benzhydrylium ions and Michael acceptors versus the corresponding electrophilcity parameters \boldsymbol{E}; b) Energy profiles for the four different mechanisms observed for the cyclopropanations of Michael acceptors (\mathbf{E}) by ammonium ylides ($\mathbf{N u}$) via intermediate betaines (B).

The correlations of $\log k_{2}$ for the reactions of the ammonium ylides with benzhydrylium ions and for the formation of betaines from ammonium ylides and Michael acceptors versus the electrophilicity parameters E were linear (Figure 0.2 a) and allowed us to determine the nucle-ophile-specific parameters N and s_{N} for the ammonium ylides, as defined by the eq 0.1 . By including them into our comprehensive nucleophilicity scale a direct comparison

Figure 0.3. Reactivity parameters N / s_{N} of ammonium ylides investigated in this work. with other types of nucleophiles was achieved (Figure 0.3).

0.3 One-Pot Two-step Synthesis of 1-Ethoxycarbonyl-indolizines via

Pyridinium Ylides

The pyridinium salts $\mathrm{Py}^{+}-\mathrm{CH}_{2}$-EWG were found to react with substituted Michael acceptors of the type $\mathrm{Ar}-\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)(\mathrm{Acc})$ at ambient temperature in the presence of base to give [3+2]-cycloadducts via stepwise [3+2]-cycloadditions of the intermediate pyridinium ylides (Scheme 0.2).

Oxidization of the intermediate [3+2]-cycloadduct in the crude reaction mixtures with 1 equivalent of chloranil in the presence of atmospheric oxygen and sodium hydroxide gave 1-ethoxycarbonyl-indolizines by dehydrogenation and elimination of the acceptor group (Acc). A mechanism for the formation of the 1-ethoxycarbonyl-indolizines was proposed as depicted in Scheme 0.3.

Scheme 0.2. Scope of the one-pot indolizine synthesis developed in this work.

Scheme 0.3. Proposed mechanism for the formation of 1-ethoxycarbonyl-indolizines.

The developed synthetic procedure was found to tolerate a broad range of electronwithdrawing groups and substituents on the ylides and the Michael acceptors as shown in Scheme 0.2. Structurally related isoquinolinium salts react with Michael acceptors analogously to give pyrrolo $[2,1-a]$ isoquinolines.

As also a 2-alkyl substituted indolizine was accessible from $\mathrm{Py}^{+}-\mathrm{CH}_{2} \mathrm{CN}$ and ${ }^{i} \mathrm{Pr}$ $\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$ by this method, this indicates that the protocol is not restricted to aromatic Michael acceptors.

0.4 Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analysis

The kinetics of the reactions of pyridinium, isoquinolinium, and quinolinium ylides with diarylcarbenium ions, quinone methides, and arylidene malonates (reference electrophiles) have been studied in DMSO solution by UV-Vis spectroscopy. The reactions of pyridinium ylides with benzhydrylium ions and quinone methides gave the simple alkylation products (Scheme 0.4).

Scheme 0.4. Reactions of pyrinium ylides with benzydrylium ions and quinone methides.

The measured second-order rate constants $\left(\log k_{2}\right)$ were found to correlate linearly with the electrophilicity parameters E of the reference electrophiles as required by eq 0.1 , allowing us to derive the nucleophile-specific parameters N and s_{N} for the investigated pyridinium ylides (Figure 0.4).

The measured rate constants for the 1,3-dipolar cycloadditions of pyridinium, isoquinolinium, and quinolinium ylides with acceptor substituted dipolarophiles (arylidene malononitrile and substituted chalcone) were found to agree with those calculated from E, N, and s_{N}, showing that the above correlation is a suitable tool for the prediction of absolute rate constants of stepwise or highly unsymmetrical concerted cycloadditions (Scheme 0.5). Changes of the reaction mechanism were demonstrated by deviations between calculated and experimental rate constants by a factor of 10^{6}.

Pyridinium-substitution is found to have a similar effect on the reactivity of carbanionic reaction centers as alkoxycarbonyl substitution (Figure 0.5).

Figure 0.4. Plots of $\log \boldsymbol{k}_{\mathbf{2}}$ for the reactions of pyridinium ylides with reference electrophiles in DMSO at $20{ }^{\circ} \mathrm{C}$ versus the corresponding electrophilicity parameters.

Scheme 0.5. Stepwise reactions of pyridinium ylides with benzylidene malononitriles (a) and chalcones (b).

Figure 0.5. Comparison of \boldsymbol{k}_{2}-values of the reactions of analogously substituted pyridinium, ammonium, sulfur, and phosphorous ylides and carbanions towards \boldsymbol{p}-NMe $\mathbf{N H}_{2}$-substituted diphenyl quinone methide. \boldsymbol{N} and s_{N}-values are given below each nucleophile (reactivities refer to DMSO as solvent). [a] Calculated by eq 0.1 from $s \mathrm{~s}, N$, and $E ;[b] \operatorname{In~} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

0.5 Electrophilicities of 1,2-Disubstituted Ethylenes

The kinetics of the reactions of maleic anhydride, N-methyl maleimide, fumaro nitrile, diethyl fumarate, and diethyl maleate with pyridinium and sulfonium ylides were studied in DMSO at $20^{\circ} \mathrm{C}$

Chart 0.1. 1,2-Disubstituted ethylenes investigated in this work. (Chart 0.1).

The reactions of pyridinium ylides with the 1,2-disubstituted ethylenes gave tetrahydroindolizines as initial products, which were isolated in case of the benzoyl-substituted isoquinolinium ylide (Scheme 0.6 a), or oxidized to the corresponding indolizines in case of the benzoyl-substituted pyridinium ylide (Scheme 0.6 b). The reactions of 1,2 -disubstituted ethylenes with sulfonium ylides gave cyclopropanes (Scheme 0.6 c).

Scheme 0.6. Reactions of 1,2-disubstituted etyhlenes with isoquinolinium, pyridinium, and sulfonium ylides.

All reactions follow a second-order rate law and can be described by the linear free energy relationship $\log k_{2}=s_{\mathrm{N}}(N+E)$ (Figure 0.6). The electrophilicity parameters E of the investigated dipolarophiles were derived from the linear correlations of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ versus N and range from $-19.8<E<-11.1$ (Figure 0.7).

Figure 0.6. Correlation of $\left(\log \boldsymbol{k}_{\mathbf{2}}\right) / s_{\mathrm{N}}$-values derived from the reactions of $\mathbf{1 , 2}$-disubstituted ethylenes with pyridnium and sulfonium ylide against the corresponding nucleophilicity parameters N of the ylides.

Figure 0.7. Reactivity ordering of the 1,2-disubstituted ethylenes investigated in this work.

0.6 Quantification of the Ambident Electrophilicities of α, β-Unsaturated

Aldehydes

The ambident reactivity of the α, β unsaturated aldehydes acrolein, crotonaldehyde, and cinnamaldehyde (Chart 0.2) was studied in their reactions with pyridinium and sulfonium ylides (Scheme 0.7).

Chart 0.2. α, β-unsaturated aldehydes investigated in this work.

The rate constants of their stepwise [3+2]-cycloadditions with pyridinium ylides, and their cyclopropanations or epoxidations by sulfonium ylides have been determined photometrically in DMSO at $20^{\circ} \mathrm{C}$.

Pyridinium ylides gave indolizines (after oxidation) which are the products of the conjugate attack at the enal. The reaction of benzoyl and acetyl substituted pyridinium ylides with 2 equiv. of acrolein gave the 3-(oxopropyl) indolizine-1-carbaldehyde after elimination of the acyl group from the intermediate. Stabilized sulfonium ylides exclusively gave cyclopropanes by conjugate attack, while the semi-stabilized ylides also formed epoxides by 1,2 -addition to the aldehyde (Scheme 0.7).

Scheme 0.7. Reactions of pyridinium and sulfonium ylides with α, β-unsaturated aldehydes.

Figure 0.8. Plots of the $\left(\log \boldsymbol{k}_{\mathbf{2}}\right) / \boldsymbol{s}_{\mathrm{N}}$ values for the $\mathbf{1 , 4 - a t t a c k}$ of pyridinium and stabilized sulfonium ylides at the α, β-unsaturated aldehydes versus the corresponding N-parameters. The slopes of the correlations were set to $\mathbf{1 . 0}$ as required by eq 0.1.

All investigated reactions were found to follow a second-order rate law and the rate constants refer to the initial formations of the intermediate betaines. The obtained rate constants $\left(\log k_{2}\right)$ were combined with the known nucleophilicity parameters N and s_{N} of the pyridinium and sulfonium ylides to derive the electrophilicities E of the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$-double bonds of the α, β-unsaturated aldehydes according to the linear free-energy relationship $\log k_{2}=s_{\mathrm{N}}(N+E)$ (Figure 0.8).

Reported rate constants for the reactions of substituted pyridines, morpholine, and cysteine dianion with the α, β-unsaturated aldehydes were collected from the literature and compared with those calculated by eq 0.1 from the E parameters of the α, β-unsaturated aldehydes determined in this work and the previously published s_{N} and N -parameters of the nucleophiles.

The investigation provides a quantitative description of the ambident electrophilicities of α, β-unsaturated aldehydes and allows us to include them into our comprehensive nucleophilicity scale (Figure 0.9).

Figure 0.9. Comparison of the electrophilicity parameters E of α, β-unsaturated aldehydes with those of Michael acceptors, aldehydes, imines, and iminium ions.

0.7 Electrophilicities of Acceptor-Substituted Olefins

The rate constants of the reactions of acceptor substituted olefins, in particular ethylenes, propylenes, and styrenes (Chart 0.3), with pyridinium and sulfonium ylides have been determined photometrically in dimethyl sulfoxide.

The reactions of pyridinium ylides with the acceptor-substituted olefins from Chart 0.3 gave dihydroindolizines or indolizines after oxidation, while the reactions of activated ethylenes with a sulfonium ylide gave cyclopropanes (Scheme 0.8).

All of these reactions were shown to follow a second-order rate law. Plots of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ versus the nucleophilicity parameters N of the ylides were linear with a slope of approximately 1.0 as required by eq 0.1 (Figure 0.10).

Chart 0.3. Acceptor-substituted olefins investigated in this work.

Scheme 0.8. Reactions of activated acceptor-substituted olefins with pyridnium and sulfonium ylides.

Figure 0.10. Correlation of $\left(\log k_{2}\right) / s_{N}$ with the nucleophilicity parameters N for the reactions of acceptorsubstituted olefins with pyridinium and sulfonium ylides.

The linear correlations allowed us to derive the electrophilicity parameters E of the Michael acceptors in Chart 0.3 according to eq 0.1 (Figure 0.11), which range from $-24.7<E<-15.2$. The derived electrophilicity parameters E of the acceptor-substituted olefins allow many comparisons with other Michael acceptors and can help to increase the understanding of the nucleophile independent ordering of electrophilic reactivities (Figure 0.11).

Figure 0.11. Comparison of the electrophilicities E activated ethylenes, propylenes, and styrenes with those of other Michael acceptors.

0.8 Applications of the Linear Free-Energy Relationship $\log k_{2}=s_{\mathrm{N}}(N+E)$

We collected 110 rate constants for reactions of the acceptor-substituted olefins investigated in this work (Charts $0.1-0.3$) with $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$, and P-nucleophiles from the literature. Subsequently we compared these experimental rate constants with those calculated by eq 0.1 using the known reactivity parameters of the reactants. In 96 cases we found that the rate constant could be predicted within the limit of confidence of eq 0.1 of two orders of magnitude. This agreement demonstrates the reliability of eq 0.1 for the prediction of rate constants of polar organic reactions.

The rate constants of the reactions of glutathione with Michael acceptors of known electrophilicity and the rate constants for the reactions of different activated ethylenes with amines, pyridines, and alkoxides, whose nucleophilicities are known, were collected from the literature to estimate the nucleophilicity parameters of glutathione and the electrophilicity parameters of the activated ethylenes. The comparison with the reactivity parameters of related compounds was used to analyze the reliability of these parameters.

Figure 0.12. Correlation of rate constants for the reactions of acrylonitrile with pyridinium and sulfonium ylides (black dots) used to draw the correlation line (the slope is set to $\mathbf{1 . 0}$). Colored dots refer to rate constants for its reactions with nucleophiles collected from the literature.

Although eq 0.1 cannot be used to predict the rates of pericyclic reactions, we collected the rate constants of the reactions of diazomethanes and dienes with the acceptor-substituted olefins investigated in this work (Charts $0.1-0.3$). The nucleophilicity parameters N and s_{N} of different diazomethanes and dienes were previously determined from their stepwise reactions with benzhydrylium ions. Plots of $\log k_{2}$ versus the electrophilicity parameters E and of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ versus the nucleophilicity parameters N showed that the reactions of diazomethanes and dienes deviate from the correlation lines for the stepwise reactions because these reactions proceed by a concerted mechanism in agreement with previous interpretations of these reactions. Although these reactions do not follow eq 0.1 , the rate constants still show a dependence on the reactivity parameters (Figure 0.13) as they increase with increasing reactivity of the reactants.

The concertedness of these reactions can be analyzed by calculating the "free enthalpies of concert" $\Delta G_{\text {concert }}=R T \ln k_{2}{ }^{\exp } / k_{2}{ }^{\text {calcd }}$ from the ratio of the experimental $\left(k_{2}{ }^{\text {exp }}\right)$ and calculated ($k_{2}{ }^{\text {calcd }}$, by eq 0.1) second-order rate constants for these pericyclic reactions.

Figure 0.13. a) Plot of the $\log k_{2}$ values of the reactions of diphenyl diazomethane with benzhydrylium tetrafluoroborates (filled dots, $\mathbf{C H}_{2} \mathbf{C l}_{2}, 20^{\circ} \mathrm{C}$) and Michael acceptors (open dots) versus the corresponding E parameters; b) Correlation of the $\left(\log k_{2}\right) / s_{N}$ values of the reactions of methyl acrylate with pyridinium ylides and sulfonium ylide (filled dots, DMSO, $20^{\circ} \mathrm{C}$), diazomethanes and dienes versus the corresponding N parameters.

1 Introduction and Objectives

1.1 Introduction

The numerous types of organic reactions described today facilitate a vast amount of possible nucleophile electrophile combinations. The sheer number of possible combinations leads to the need for simple and reliable tools to predict organic reactions. The development of such tools has been a great challenge to physical-organic chemists over the last decades.

A major progress to describe organic reactivity was made by Ingold in the 1930s as he found that organic reactions are in many case the combinations of electron-rich species, which he called "nucleophiles", with electron-poor species, which he named "electrophiles". ${ }^{[1]}$ This classification was the basis for the first systematic attempts by Swain and Scott ${ }^{[2]}$ to quantify organic reactivity by using kinetics. When they investigated the kinetics of $\mathrm{S}_{\mathrm{N}} 2$ reactions they found that their rate constants followed a linear free-energy relation (eq 1.1), in which nucleophiles are characterized by one parameter (n) and electrophiles by two parameters (s and $\left.\log k_{0}\right)$.

$$
\begin{equation*}
\log \left(k / k_{0}\right)=s \cdot n \tag{1.1}
\end{equation*}
$$

In 1972 Ritchie showed, that the rates of the reactions of nucleophiles with carbocations and diazonium ions can be described by a simple equation (2), in which the reactivity of the electrophile $\left(\log k_{0}\right)$ and the nucleophile $\left(N_{+}\right)$is described by one parameter. ${ }^{[3]}$ However, the applicability of eq 1.2 was found to be limited and a separate treatment of the different classes of electrophiles gave better correlations. ${ }^{[4]}$

$$
\begin{equation*}
\log \left(k / k_{0}\right)=N_{+} \tag{1.2}
\end{equation*}
$$

In 1994 Mayr and Patz developed a linear free-energy relationship (eq 1.3) based on the reaction rates of benzhydrylium ions, cationic metal- π-complexes, and diazonium ions with n, π, and σ-nucleophiles. ${ }^{[5]}$ In the three parameter equation $k_{20}{ }^{\circ} \mathrm{C}$ is the second-order rate constant $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right), s_{\mathrm{N}}$ is the nucleophile specific slope parameter, N is the nucleophilicity parameter, and E is the electrophilicity parameter.

$$
\begin{equation*}
\log k_{20^{\circ} \mathrm{C}}=s_{\mathrm{N}}(N+E) \tag{1.3}
\end{equation*}
$$

The application of eq 1.3 was simplified by defining benzhydrylium ions and quinone methides as reference electrophiles, what allowed broad variations of the reactivity at a constant reaction center by changing the substituents of the aromatic rings. Subsequently, various highly substituted Michael acceptors have been added to the reactivity scale, allowing the construction of a comprehensive nucleophilicity and electrophilicity scale with currently 947 nucleophiles and 249 electrophiles characterized. ${ }^{[6]}$

1.2 Objectives

Nitrogen ylides are known to be highly reactive nucleophiles and are used for the preparation of a wide range of products, e.g. cyclopropanes (from ammonium ylides) or indolizines (from pyridinium ylides). ${ }^{[7]}$

By studying the kinetics and mechanisms of the reactions of ammonium ylides with carbocations and Michael acceptors, a better understanding of their reactivity should become possible (Scheme 1.1a).

Similar investigations with the related pyridinium ylides should show, if their [3+2]cycloadditions to Michael acceptors proceed stepwise and follow eq 1.3 (Scheme 1.1b). The comparison of the reactivities of ammonium and pyridinium ylides with the reactivities of the recently characterized phosphonium ${ }^{[8]}$ and sulfonium ylides ${ }^{[9]}$ should show the effect of the onium moiety on the reactivities.

Scheme 1.1. Reactions of ammonium (a) and pyridinium ylides (b) with Michael Acceptors.

As mentioned, above four times more nucleophiles (947 examples) were characterized by means of eq $1.3\left(N, s_{\mathrm{N}}\right)$ than electrophiles (249 examples). ${ }^{[6 f]}$ Until now mainly the reactivity of colored carbocations (136 examples), including heteroatom substituted carbocations and cationic metal- π-complexes, have been quantified by eq 1.3. The quantification of Michael acceptors has been restricted to highly substituted systems, having absorption maxima in the visible or near UV-vis range. The reactivity of synthetically important colorless acceptorsubstituted olefins has not been investigated by our methods, as suitable colored reference nucleophiles were not available.

Applying the colored pyridinium ylides as reference nucleophiles should allow us to study the electrophilicities of such acceptors-substituted olefins, as the internal electrophile of the pyridinium ylide, the pyridinium moiety, should be able to trap the carbanion formed in the intermediate (cf. Scheme 1.1).

1,2-Disubstituted ethylenes are common electrophiles in pericyclic reactions. ${ }^{[10]}$ The kinetic investigation of their reactions with pyridinium ylides should allow us to analyze which substitution pattern of the ylide induces a concerted mechanism (Scheme 1.2).

It is known that semi-stabilized sulfonium ylides add to the formyl group of α, β-unsaturated aldehydes ${ }^{[9 b]}$ while pyridinium ylides add to the conjugate position (Scheme 1.3). Combining both reactivities should offer the possibility to quantify the electrophilicities of the formyl group and of the conjugate position of α, β-unsaturated aldehydes.

In further studies, the use of suitable pyridinium ylides as reference nucleophiles should allow us to quantify the electrophilic reactivities of other acceptor-substituted olefins (Scheme 1.4). Variations of their substituents should allow a systematic quantification of their electrophilicities.

Scheme 1.2. Stepwise and concerted reactions of pyridinium ylides with 1,2-disubstituted ethylenes.

Scheme 1.3. Reaction of α, β-unsaturated aldehydes with pyridinium and sulfonium ylildes.

Scheme 1.4. Reactions of pyridinium ylides with acceptor-substituted olefins.

Many rate constants for the additions of nucleophiles to acceptor-substituted olefins have been determined over the last decades (Figure 1.1a). ${ }^{[11-15]}$ The previous quantification of the electrophilicities of acceptor-substituted olefins should allow us to study the reliability of eq 1.3 by com-

a) $\log k_{20{ }^{\circ} \mathrm{C}}=s_{N}(N+E)$ always vaild?

Figure 1.1. Applications of the electrophilicity parameters of acceptor-substitued olefins investigated in this work. paring the reported experimental rate constants with those calculated by eq 1.3. Furthermore, many rate constants for the reactions of acceptor-substituted olefins with diazomethanes ([3+2]cycloaddition) ${ }^{[16]}$ and dienes (Diels-Alder reaction) ${ }^{[17]}$ have previously been reported (Figure 1.1b). The comparison of the experimental rate constants with those calculated by eq 1.3 should allow us to analyze the degree of concertedness ($\Delta G_{\text {concert }}$) of these reactions.

As parts of this thesis have been published or submitted for publication, individual introductions will be given at the beginning of each chapter. Some of the presented kinetics have been performed during the master thesis of the author as indicated in the experimental sections.

1.3 References

[1] (a) C. K. Ingold, J. Chem. Soc. 1933, 1120-1127; (b) C. K. Ingold, Chem. Rev. 1934, 15, 225-274.
[2] C. G. Swain, C. B. Scott, J. Am. Chem. Soc. 1953, 75, 141-147.
[3] C. D. Ritchie, Acc. Chem. Res. 1972, 5, 348-354.
[4] C. D. Ritchie, Can. J. Chem. 1986, 64, 2239-2250.
[5] H. Mayr, M. Patz, Angew. Chem. Int. Ed. Engl. 1994, 33, 938-957.
[6] (a) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512;
(b) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (c) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 1807-1821; (d) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584-595; (e) H. Mayr, S. Lakhdar, B. Maji, A. R. Ofial, Beilstein J. Org. Chem. 2012, 8, 1458-1478; (f) For a comprehensive database of nucleophilicity parameters $N, \quad s_{\mathrm{N}}$ and electrophilicity parameters E, see http://www.cup.lmu.de/oc/mayr/.
[7] (a) A. Kakehi, Heterocycles 2012, 85, 1529-1577; (b) M. J. Gaunt, C. C. C. Johanson, Chem. Rev. 2007, 107, 5596-5605.
[8] R. Appel, R. Loos, H. Mayr, J. Am. Chem. Soc. 2009, 131, 704-714.
[9] (a) S. Lakhdar, R. Appel, H. Mayr, Angew. Chem. Int. Ed. 2009, 48, 5034-5037; (b) R. Appel, N. Hartmann, H. Mayr, J. Am. Chem. Soc. 2010, 132, 17894-17900; (c) R. Appel, H. Mayr, Chem. Eur. J. 2010, 16, 8610-8614.
[10] (a) J. Sauer, R. Sustmann, Angew. Chem. Int. Ed. Engl. 1980, 19, 779-807; (b) R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry (Ed.: A. Padwa), Wiley, New York, 1984, p. 1-176.
[11] Reactions with C-Nucleophiles: K. T. Finley, D. R. Call, G. W. Sovocool, W. J. Hayles, Can. J. Chem. 1967, 45, 571-573.
[12] Reactions with N-Nucleophiles: (a) Y. Ogata, M. Okano, Y. Furuya, I. Tabushi, J. Am. Chem. Soc. 1956, 78, 5426-5428; (b) N. Ogata, T. Asahara, Bull. Chem. Soc. Jap. 1966, 39, 1486-1490; (c) M. Friedman, J. S. Wall, J. Org. Chem. 1966, 31, 2888-2894; (d) I. Šestáková, V. Horák, P. Zuman, Collect. Czech. Chem. Commun. 1966, 31, 3889-3902; (e) Z. Grunbaum, S. Patai, Z. Rappoport, J. Chem. Soc. B 1966, 1133-1137; (f) K. Sanui, N. Ogata, Bull. Chem. Soc. Jap. 1967, 40, 1727-1727; (g) H. Shenhav, Z. Rappoport, S. Patai, J. Chem. Soc. B 1970, 469-476; (h) G. J. Dienys, L. J. J. Kunskaite,
A. K. Vaitkevicius, A. V. Klimavicius, Org. Reactiv., Engl. Ed. 1975, 12, 275-282; (i) J. Szczesna, M. Kostecki, S. Kinastowski, Rocz. Akad. Roln. Poznaniu 1988, 192, 99104; (j) J. W. Bunting, A. Toth, C. K. M. Heo, R. G. Moors, J. Am. Chem. Soc. 1990, 112, 8878-8885; (k) C. K. M. Heo, J. W. Bunting, J. Org. Chem. 1992, 57, 3570-3578; (1) M. Kostecki, J. Szczesna, S. Kinastowski, Rocz. Akad. Roln. Poznaniu 1993, 256, 25-32; (m) K. L. Mallik, M. N. Das, Z. Phys. Chem. 1960, 25, 205-216; (n) M. Friedman, J. Am. Chem. Soc. 1967, 89, 4709-4713.
[13] Reactions with O-Nucleophiles: (a) N. Ferry, F. J. McQuillin, J. Chem. Soc. 1962, 103113; (b) B.-A. Feit, A. Zilkha, J. Org. Chem. 1963, 28, 406-410; (c) P. Carsky, P. Zuman, V. Horvak, Collect. Czech. Chem. Commun. 1965, 30, 4316-4336; (d) R. N. Ring, G. C. Tesoro, D. R. Moore, J. Org. Chem. 1967, 32, 1091-1094; (e) W. G. Davies, E. W. Hardisty, T. P. Nevell, R. H. Peters, J. Chem. Soc. B, Phys. Org. 1970, 998-1004; (f) J. P. Guthrie, Can. J. Chem. 1974, 52, 2037-2040; (g) B. A. Feit, R. Pazhenchevsky, B. Pazhenchevsky, J. Org. Chem. 1976, 41, 3246-3250; (h) O. Adomeniene, G. Dienys, Z. Stumbreviciute, Org. Reactiv., Engl. Ed. 1978, 15, 38-44; (i) J. P. Guthrie, K. J. Cooper, J. Cossar, B. A. Dawson, K. F. Taylor, Can. J. Chem. 1984, 62, 1441-1445; (j) J. P. Guthrie, J. Cossar, K. F. Taylor, Can. J. Chem. 1984, 62, 1958-1964.
[14] Reactions with S-Nucleophiles: (a) M. Morton, H. Landfield, J. Am. Chem. Soc. 1952, 74, 3523-3526; (b) M. Friedman, J. F. Cavins, J. S. Wall, J. Am. Chem. Soc. 1965, 87, 3672-3682; (c) T.-R. Kim, S.-J. Yun, B.-B. Park, Bull. Kor. Chem. Soc. 1986, 7, 25-29.
[15] Reactions with P-Nucleophiles: I. Petnehazy, G. Clementis, Z. M. Jaszay, L. Toke, C. D. Hall, J. Chem. Soc., Perkin Trans. 2 1996, 2279-2284.
[16] [3+2]-Cycloadditions: (a) R. Huisgen, H. Stangl, H. J. Sturm, H. Wagenhofer, Angew. Chem. 1961, 73, 170; (b) A. Ledwith, Y. Shih-Lin, J. Chem. Soc. B 1967, 83-84; (c) L. Fisera, J. Geittner, R. Huisgen, H.-U. Reissig, Heterocycles 1978, 10, 153-158; (d) J. Geittner, R. Huisgen, H.-U. Reissig, Heterocycles 1978, 11, 109-112; (e) G. Swieton, J. Von Jouanne, H. Kelm, R. Huisgen, J. Org. Chem. 1983, 48, 1035-1040; (f) T. Oshima, T. Nagai, Tetrahedron Letters 1985, 26, 4785-4788; (g) R. Huisgen, E. Langhals, Tetrahedron Lett. 1989, 30, 5369-5372.
[17] Diels-Alder reactions: (a) J. Sauer, D. Lang, A. Mielert, Angew. Chem., Int. Ed. Engl. 1962, 1, 268-269; (b) J. Sauer, H. Wiest, A. Mielert, Chem. Ber. 1964, 97, 3183-3207; (c) J. Sauer, D. Lang, H. Wiest, Chem. Ber. 1964, 97, 3208-3218; (d) B. Blankenburg, H. Fiedler, M. Hampel, H. G. Hauthal, G. Just, K. Kahlert, J. Korn, K. H. Müller, W. Pritzkow, Y. Reinhold, M. Röllig, E. Sauer, D. Schnurpfeil, G. Zimmermann, J. Prakt.

Chem. 1974, 316, 804-816; (e) M. W. Lee, W. C. Herndon, J. Org. Chem. 1978, 43, 518-518; (f) A. Meijer, S. Otto, J. B. F. N. Engberts, J. Org. Chem. 1998, 63, 8989-8994.

2 The Wide Mechanistic Spectrum of Ammonium Ylide Mediated Cyclopropanations

Dominik S. Allgäuer, Peter Mayer, Konstantin Troshin, and Herbert Mayr

2.1 Introduction

Ammonium ylides are important reagents in organic synthesis. ${ }^{[1-5]}$ They are intermediates in various rearrangements e.g., Stevens- and Sommeletrearrangements, ${ }^{[6]}$ and are used for the synthesis of epoxides from carbonyl compounds ${ }^{[2]}$ (Scheme 2.1). Catalytic enantioselective cyclopropanations of Michael acceptors by ammonium ylides have been described by Papageorgiou, Ley, and Gaunt ${ }^{[7]}$ to provide a straightforward stereoselective access to cyclopropanes (Scheme 2.2). Due to the large number of readily available chiral tertiary amines, this application has significantly increased the interest in ammonium ylides in recent years. ${ }^{[3 a, b, 4,5,7]}$

So far, relative reactivities of ylides have mostly been associated with the acidities of their precursor salts (Table 2.1), ${ }^{[8]}$ though the correlation between acidities and reactivities of carbon centered nucleophiles ${ }^{[9]}$ is known to be only moderate even when reactions at the same centers are compared. ${ }^{[10]}$

While the mechanisms of sulfonium ylide mediated epoxidations and cyclopropanations have intensely been studied, ${ }^{[11]}$ most kinetic and theoretical studies on reactions of ammonium ylides focused on rearrangement reactions, ${ }^{[12]}$ and only few studies dealt with the mechanisms of ammonium ylide mediated epoxidations ${ }^{[13]}$ or cyclopropanations. ${ }^{[14]}$ Quantitative data on the nucleophilic reactivities of ammonium ylides have so far not been reported. Aggarwal and others ${ }^{[15]}$ demonstrated that the leaving group abilities of $\mathrm{R}_{3} \mathrm{~N},{ }^{[2 \mathrm{bb}, 13-14,15 c]}$ as well as those of $\mathrm{R}_{2} \mathrm{~S},{ }^{[14,15 c]}$ and $\mathrm{R}_{3} \mathrm{P}^{[14,15 c]}$ have a big influence on the course of the reactions.

Scheme 2.2. Organocatalytic cyclopropanations of Michael acceptors by ammonium ylides. ${ }^{[7 c \mid}$

We recently studied the kinetics of the reactions of phosphonium, ${ }^{[16]}$ sulfonium, ${ }^{[17]}$ and pyridinium ylides. ${ }^{[18]}$ with carbocations and Michael acceptors and showed that the rates of these reactions can be described by eq 2.1 , where k_{CC} is the second-order rate constant in M^{-1} s^{-1} (at $20^{\circ} \mathrm{C}$), s_{N} is a nucleophile-specific sensitivity parameter, N is a nucleophilicity parameter, and E is an electrophilicity parameter. ${ }^{[16-18,19]}$

$$
\begin{equation*}
\log k_{\mathrm{CC}}=s_{\mathrm{N}}(N+E) \tag{2.1}
\end{equation*}
$$

In this way, ylides were included into the comprehensive nucleophilicity scale shown in ref. [19i] which provides a direct comparison of many different classes of nucleophiles.

We have now studied the kinetics and mechanisms of the reactions of the ammonium ylides $\mathbf{1 a - i}$ (Table 2.1) with benzhydrylium ions $\mathbf{2 a} \mathbf{a} \mathbf{d}$, quinone methides 3a-f, and benzylidene malonates 4a-d which we generally employ as reference electrophiles, as well as with other common Michael acceptors, such as the benzylidene indandiones 5a-c and the chalcone $\mathbf{6}$ (Chart 2.1). The results will be used to rationalize the changes of mechanism of ammonium ylide mediated cyclopropanations and to determine the nucleophilicity parameters of the ammonium ylides $\mathbf{1}$ as defined by eq 1 .

Table 2.1. Synthesis ${ }^{[7 a]}$ and $\mathrm{p} K_{\mathrm{a}}$ values of the ammonium salts $\mathbf{1 H} \mathbf{H}^{+} \mathbf{X}^{-}$employed as precursors for the ammonium ylides 1 and UV absorption maxima of the ylides 1.

NR_{3}		$\text { VG } \frac{\mathrm{T}}{20}$	$\begin{aligned} & \mathrm{R}_{3} \mathrm{~N}^{\oplus} \\ & \mathbf{x}^{\Theta}{ }_{\mathrm{EW}} \\ & \mathbf{1 \mathbf { H } ^ { + } \mathbf { x } ^ { - }} \end{aligned}$		 1		
NR_{3}	X	EWG	Salt	Yield/\%	$\mathrm{p} K_{\mathrm{a}}(\mathrm{DMSO})^{[\mathrm{a}]}$	Ylide	$\lambda_{\text {max }}(\mathrm{DMSO}) / \mathrm{nm}$
DABCO	Br	CN	$1 \mathrm{aH}^{+} \mathrm{Br}^{-}$	quant.	$(20.6)^{[\mathrm{cc}]}$	1 a	<256
DABCO	Cl	CONEt_{2}	$\mathbf{1 b H}{ }^{+} \mathrm{Cl}^{-}$	91	(24.9) ${ }^{[\mathrm{c}]}$	1b	<256
DABCO	Br	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathbf{1} \mathbf{c H}^{+} \mathrm{Br}^{-}$	quant.	(20.0) ${ }^{[\mathrm{cc]}}$	1c	<258
DABCO	Cl	COMe	$1 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	76	$(16.3)^{[\mathrm{cc]}}$	1d	<260
			$\mathbf{1 d H}{ }^{+} \mathbf{O T f}^{-}$	$83{ }^{[b]}$	$(16.3)^{[\mathrm{cc]}}$		
DABCO	Br	COPh	$1 \mathrm{eH}^{+} \mathrm{Br}^{-}$	80	$(14.6)^{[\mathrm{c}]}$	1 e	<257, 310
DABCO	Br	$\mathrm{CO}_{2}{ }^{\text {t }} \mathrm{Bu}$	$1 \mathrm{fH}^{+} \mathrm{Br}^{-}$	95	$(\sim 21)^{[d]}$	$1 f$	not determined
Quinuclidine	Br	$\mathrm{CO}_{2} \mathrm{Et}$	$1 \mathrm{gH}^{+} \mathrm{Br}^{-}$	71	(20.0) ${ }^{[\mathrm{c}]}$	1 g	not determined
NMe_{3}	Br	$\mathrm{CO}_{2} \mathrm{Et}$	$1 \mathrm{hH}^{+} \mathrm{Br}^{-}$	83	$20.0{ }^{\text {[c] }}$	1h	not determined
NMe_{3}	Br	COPh	$\mathbf{1 i H}{ }^{+} \mathrm{Br}^{-}$	quant.	$14.6{ }^{\text {[c] }}$	1 i	$<257,307$

[a] The $\mathrm{p} K_{\mathrm{a}}$-values of ${ }^{+} \mathrm{NMe}_{3}$-substituted salts were assumed to be good approximations for the structurally analogous DABCO^{+}-compounds. Since benzoyl-substituted ammonium salts with quinuclidinium- and ${ }^{+} \mathrm{NMe}_{3^{-}}$ moiety have the same $\mathrm{p} K_{\mathrm{a}}$-values ${ }^{[8 \mathrm{c}, \mathrm{d}]}$; [b] Synthesized by treatment of $\mathbf{1 d H ^ { + }} \mathbf{C l}^{-}$with TMS-OTf in MeCN under N_{2} at $20^{\circ} \mathrm{C}$ (for details see Experimental Section); [c] $\mathrm{p} K_{\mathrm{a}}$-value from ref. [8c]; [d] Estimated from the $\mathrm{p} K_{\mathrm{a}}$-value of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}$and $\Delta \mathrm{p} K_{\mathrm{a}} \approx 1$ of ethyl and tert-butyl phenylacetate. ${ }^{[20]}$.

2a $E=-7.02$

2b $E=-8.76$

2c $E=-9.45 \quad(\mathrm{n}=2)$
2d $E=-10.04 \quad(\mathrm{n}=1)$

3f $E=-17.90$

4a $E=-17.67\left(\mathrm{R}_{3}=p-\mathrm{NO}_{2}\right)$
4b $E=-18.98\left(R_{3}=m-\mathrm{Cl}\right)$
4c $E=-20.55\left(R_{3}=H\right)$
4d $E=-21.11\left(\mathrm{R}_{3}=p-\mathrm{Me}\right)$

5a $E=-10.11\left(R_{4}=H\right)$
5b $E=-11.32\left(R_{4}=\mathrm{OMe}\right)$

Chart 2.1. Electrophiles Employed in this Work. ${ }^{[11 \mathrm{~b}, 19 \mathrm{~b}, \mathrm{c}, \mathrm{f}, 21]}$

Because of their low stability at room temperature, the ylides $\mathbf{1 a} \mathbf{- i}$ were not isolated but generated in solution by treating their conjugate acids $\mathbf{1 H}^{+} \mathbf{X}^{-}$with a base. The ammonium salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$listed in Table 2.1 were obtained by a Menschutkin reaction from the corresponding tertiary amines and alkyl halides in THF, according to a recently reported procedure. ${ }^{[7 \mathrm{a}]}$

2.2 General

2.2.1 Mechanistic Scenarios

The ylides 1 have been reported to react with Michael acceptors via zwitterionic intermediates (Scheme 2.3), ${ }^{[3 a, b, 7,14]}$ which may be formed irreversibly or reversibly with the rate constant k_{CC} for the forward and the rate constant $k_{\text {-CC }}$ for the backward reaction. The ring closure proceeds with the rate constant $k_{\text {rc }}$ (Scheme 2.3; eqs 2.2-2.4).

Scheme 2.3. Mechanism of the reaction of ammonium ylides (Nu) with Michael acceptors (E) via intermediate betaines (I) to cyclopropanes (\mathbf{P}).

One can now differentiate four extreme cases, depending on the relative rates of the various steps:

In the first two cases the intermediate betaine \mathbf{I} is formed as a short-lived species and the steady state approximation holds (eq 2.5). In case 1a (eq 2.6), the backward reaction $k_{\text {-CC }}$ is much slower than the ring closure k_{r}, i.e., the intermediate betaine \mathbf{I} is formed irreversibly, and the rate constants which are derived from the decays of the absorbances of the Michael acceptors (\mathbf{E}) thus correspond to k_{CC}.

In case 1 b (eq 2.7), the backward reaction k-CC is much faster than the ring closure k_{rc}, i.e., the formation of the betaine is highly reversible, and the observed second-order rate constants $k_{20 b s}$, which are derived from the mono-exponential decays of the absorbances of the Michael acceptors (E), equal $K \cdot k_{\mathrm{rc}}$. These two cases (case 1a,b, eqs $2.6,2.7$) cannot simply be discriminated kinetically, as both cases follow a second-order rate law.

Case 1: $\frac{d[\mathbf{I}]}{d t}=0 \quad \Rightarrow \quad \frac{d[\mathbf{P}]}{d t}=-\frac{d[\mathbf{E}]}{d t}=\frac{k_{\mathrm{CC}} k_{\mathrm{rc}}[\mathbf{N u}][\mathbf{E}]}{k_{-\mathrm{CC}}+k_{\mathrm{rc}}}$
Case 1a: $k_{\mathrm{CC}} \ll k_{\mathrm{rc}} \quad \Rightarrow \quad \frac{d[\mathbf{P}]}{d t}=-\frac{d[\mathbf{E}]}{d t}=k_{\mathrm{CC}}[\mathbf{N u}][\mathbf{E}]$
Case $1 \mathrm{~b}: k_{-\mathrm{CC}} \gg k_{\mathrm{rc}} \quad \Rightarrow \quad \frac{d[\mathbf{P}]}{d t}=-\frac{d[\mathbf{E}]}{d t}=\frac{k_{\mathrm{CC}}}{k_{-\mathrm{CC}}} k_{\mathrm{rc}}[\mathbf{N u}][\mathbf{E}]=K k_{\mathrm{rc}}[\mathbf{N u}][\mathbf{E}]$
with the equilibrium constant $K=\frac{k_{\mathrm{CC}}}{k_{-\mathrm{CC}}}$

In cases 2 a and 2 b the formation of the intermediate betaine \mathbf{I} is much faster than its ring closure to cyclopropane \mathbf{P} and the backward reaction ($v_{\mathrm{CC}} \gg v_{-\mathrm{CC}}$ and $v_{\mathrm{CC}} \gg v_{\mathrm{rc}}$; as reactions of different order are compared, we have to refer to rates, not to rate constants). In both cases the intermediate betaine I accumulates, and the rate constant which is derived from the consumption of the Michael acceptor (E) equals the rate of the formation of the intermediate betaine $\mathbf{I}\left(k_{\mathrm{CC}}\right.$, eq 2.8). The backward reaction may be slower than the subsequent ring closure (case $2 \mathrm{a}, k_{-\mathrm{CC}}<k_{\mathrm{rc}}$), or the backward reaction may be faster than the ring closure (case $2 \mathrm{~b}, k_{\text {-CC }}$ $\left.>k_{\mathrm{rc}}\right)$. The rate of the formation of the cyclopropane $\mathbf{P}\left(k_{\mathrm{rc}}\right)$ by ring closure of the intermediate betaine I may be determined separately.

Case 2: $v_{\mathrm{CC}} \gg v$-CC, $v_{\mathrm{rc}} \quad \frac{d[\mathbf{I}]}{d t} \neq 0$
Case 2a: $k_{-\mathrm{CC}}<k_{\mathrm{rc}}$
Case 2b: $k_{-\mathrm{CC}}>k_{\mathrm{rc}}$
First step (Cases 2a,b): $\frac{d[\mathbf{I}]}{d t}=-\frac{d[\mathbf{E}]}{d t}=k_{\mathrm{CC}}[\mathbf{N u}][\mathbf{E}]$
Second step (Cases 2a, b): $-\frac{d[\mathbf{I}]}{d t}=\frac{d[\mathbf{P}]}{d t}=k_{\mathrm{rc}}[\mathbf{I}]$

2.2.2 Kinetic Methods

The kinetics of most reactions of the ammonium ylides $\mathbf{1}$ with the electrophiles 2-6 were monitored photometrically by following the disappearance of the colored electrophiles in the presence of more than 10 equiv. of the ylides 1 (pseudo-first-order conditions). Some kinetics were followed by ${ }^{1} \mathrm{H}$ NMR and GC as described in the Experimental Section.

Solutions of the ylides 1 were generated by combining freshly prepared solutions of the ammonium salts $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}(1.05 \mathrm{eq})$ in DMSO directly before the kinetic experiments. The formations of the ylides $\mathbf{1 a - e}, \mathbf{i}$ were verified by their UV-vis spectra (Table 2.1). To assure, that the ammonium salts $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$were quantitatively deprotonated under these conditions, the ammonium salt with the highest $\mathrm{p} K_{\mathrm{a}}$-value in the series ($\mathbf{1} \mathbf{b H}^{+} \mathbf{C l}^{-} ; \mathrm{p} K_{\mathrm{a}}=24.9$ in DMSO) ${ }^{[8 \mathrm{~d}]}$ was titrated with a solution of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO. Monitoring the absorbance of the ylide $\mathbf{1 b}$ at 256 nm (for details see Experimental Section) showed that complete deprotonation of $\mathbf{1 b} \mathbf{b H}^{+}$ was achieved with one equivalent of $\mathrm{KO}^{t} \mathrm{Bu}$, since further addition of $\mathrm{KO}^{t} \mathrm{Bu}$ did not lead to an increase of the absorbance due to an increase of the concentration of the ylide $\mathbf{1 b}$. Combination of the electrophiles 2-6 with more than 10 equivalents of the ammonium ylides $\mathbf{1}$ usually resulted in monoexponential decays of the UV-vis absorbances of the electrophiles (Figure 2.1a), from which first-order rate constants $k_{\text {obs }}$ were derived by least-squares fitting of the exponential function $A_{\mathrm{t}}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)$ to the time-dependent absorbances A_{t} of the electrophiles 2-6. Plots of $k_{\mathrm{obs}}\left(\mathrm{s}^{-1}\right)$ versus the concentrations of the nucleophiles $\mathbf{1}$ were linear with negligible intercepts in most cases, and the slopes of these plots gave the second-order rate constants (Figure 2.1b).

Figure 2.1. a) Decay of the absorbance of $3 \mathrm{~d}\left([3 \mathrm{~d}]_{0}=4.00 \times 10^{-5} \mathrm{M}\right)$ at 393 nm during its reaction with 1c $\left([1 \mathrm{c}]_{0}=8.00 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$. b) Linear correlation of $\boldsymbol{k}_{\text {obs }}$ with the concentration of 1 c .

Several kinetic experiments have been repeated by using only 0.5 equivalents of $\mathrm{KO}^{t} \mathrm{Bu}$ for the deprotonation of the salts $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$. In these experiments the concentrations of the ylides $\mathbf{1}$ correspond to the initial concentration of $\mathrm{KO}^{t} \mathrm{Bu}$, and the second-order rate constants agreed within 10% with those measured with 1.05 equivalents of $\mathrm{KO}^{t} \mathrm{Bu}$ (for details see Experimental Section).

2.3 Results

2.3.1 Reactions with the Benzhydrylium Salts 2-BF4

The bis(4-dimethylamino)benzhydrylium tetrafluoroborate $\mathbf{2 a - B F} 4$ was chosen as representative electrophile to examine the course of the reactions of the stabilized benzhydrylium ions with 1a-i. Slow addition of potassium tert-butoxide $\left(\mathrm{KO}^{t} \mathrm{Bu}\right)$ to equimolar solutions of the benzhydrylium tetrafluoroborate $\mathbf{2 a - B F} 4$ and the ammonium salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$in ($\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$)-mixtures at room temperature gave rise to the formation of the ammonium salts $\mathbf{7 (a - i} \mathbf{)}-\mathbf{B F} 4$, which were purified by recrystallization (Table 2.2). Most of the ammonium salts where obtained as tetrafluoroborates 7-BF4; only the ammonium salt 7d-OTf was isolated as triflate (verified by fluorine coupling in the ${ }^{13} \mathrm{C}$ NMR and by HRMS).

Table 2.2. Reaction of the ylides 1 with the benzhydrylium tetrafluoroborate $\mathbf{2 a - B F} 4$.

Salt	NR_{3}	EWG	Product	Yield/\% ${ }^{[\text {a] }}$
$\mathbf{1 a H}{ }^{+} \mathbf{B r}^{-}$	DABCO	CN	7a-BF4	21 (96)
$\mathbf{1 b H}^{+} \mathrm{Cl}^{-}$	DABCO	CONEt_{2}	7b-BF4 ${ }^{-}$	5 (91)
$1 \mathrm{cH}^{+} \mathrm{Br}^{-}$	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	$7 \mathrm{c}-\mathrm{BF}_{4}$	27
1dH ${ }^{+} \mathbf{O T f}^{-}$	DABCO	COMe	7d-OTf	73
$\mathbf{1 e H}{ }^{+} \mathrm{Br}^{-}$	DABCO	COPh	$7 \mathrm{e}-\mathrm{BF}_{4}$	45 (94)
$1 \mathrm{fH}^{+} \mathrm{Br}^{-}$	DABCO	$\mathrm{CO}_{2}{ }^{\text {b }} \mathrm{Bu}$	$7 \mathrm{f}-\mathrm{BF}_{4}$	78
$1 \mathrm{gH}^{+} \mathrm{Br}^{-}$	Quinuclidine	$\mathrm{CO}_{2} \mathrm{Et}$	$7 \mathrm{~g}-\mathrm{BF}_{4}$	77
1 $\mathrm{hH}^{+} \mathrm{Br}^{-}$	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	7h-BF4	51 (87)
$\mathbf{1 i H}{ }^{+} \mathrm{Br}^{-}$	NMe_{3}	COPh	$7 \mathrm{i}-\mathrm{BF}_{4}$	76

[a] After recrystallization from MeCN or $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$; Yields of the crude products in parentheses.

As mentioned above, the kinetics of these reactions were followed by monitoring the absorbances of the benzhydrylium ions $\mathbf{2}$ after adding >10 equiv. of the ylides $\mathbf{1}$. All reactions led to complete consumption of the benzhydrylium ions $\mathbf{2}$ and followed a second-order rate law with the second-order rate constants $k_{\text {CC }}$ listed in Table 2.3. The reactions of the ammonium ylides $\mathbf{1 a}, \mathbf{b}$ with the benzhydrylium ions $\mathbf{2}$ are too fast to be measured with our techniques.

Table 2.3. Rate constants for the reactions of the ammonium ylides 1 with the benzhydrylium ions $\mathbf{2}$ in DMSO at $20^{\circ} \mathrm{C}$.

$\begin{gathered} \ominus<{ }_{\oplus}^{\mathrm{EWG}} \\ \oplus \mathrm{NR}_{3} \end{gathered}$				
Ylide	NR_{3}	EWG	$\mathrm{Ar}_{2} \mathrm{CH}^{+}$(2)	$k_{\mathrm{CC}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$
1c	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	2d	5.92×10^{5}
1d	DABCO	COMe	2b	1.41×10^{5}
			2 c	3.69×10^{4}
1 e	DABCO	COPh	2 c	1.63×10^{5}
			2d	1.32×10^{5}
1f	DABCO	$\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}$	2d	2.52×10^{5}
1 g	Quinuclidine	$\mathrm{CO}_{2} \mathrm{Et}$	2d	7.31×10^{5}
1h	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	2c	6.88×10^{5}
			2d	6.77×10^{5}
1 i	NMe_{3}	COPh	2 c	4.08×10^{4}
			2d	3.24×10^{4}

2.3.2 Reactions with the Quinone Methides 3

In the reactions of the ylides $\mathbf{1}$ with the quinone methide $\mathbf{3 c}$, which was studied as a representative for $\mathbf{3 a - f}$, the spirocycles $\mathbf{9}$ were formed with variable stereoselectivity (Table 2.4), as derived from the NOESY correlations of the protons and the substituents of the cyclopropane rings. In addition, the structures of the spirocycles $\mathbf{9 b c}$ and $\mathbf{9 c c}$ were confirmed by the crystal structures of cis-9bc and trans-9cc as depicted in Figure 2.2.

While the reaction of the cyano-substituted ylide 1a with $\mathbf{3 c}$ gave $\mathbf{9 a c}$ as a 33:67 mixture of trans:cis isomers, the amido-substituted ylide 1b gave preferentially the trans-cyclopropane $\mathbf{9 b c}$, and the ester substituted ylides $\mathbf{1 c}, \mathbf{f}-\mathbf{h}$ gave the trans-cyclopropanes 9cc and $\mathbf{9 f c}$ exclusively (Table 2.4). The reactions of the benzoyl-substituted ylides $\mathbf{1 e}, \mathbf{i}$ with $\mathbf{3 c}$ yielded equal amounts of both diastereoisomers of $\mathbf{9 e c}$. In the reaction of $\mathbf{3 c}$ with the acetyl substituted ylide $\mathbf{1 d}$ no cyclopropanation product and only decomposition of the ylide was observed.

Table 2.4. Reactions of the ylides 1 with the quinone methide 3 c . The first letter of the product number refers to the employed ylide 1 , the second to the quinone methide 3.

Salt	NR_{3}	EWG	Conditions	Betaine 8	Spirocycle	Yield 9/\% $\%^{[\text {[]] }}$	(trans:cis) $\mathbf{-}^{9}{ }^{\text {b] }}$
$\mathbf{1 a H}^{+} \mathrm{Br}^{-}$	DABCO	CN	A	8ac	9 ac	52	33:67
			B	8 ac	9 ac	(58) ${ }^{[d]}$	33:67
$\mathbf{1 b H}^{+} \mathrm{Br}^{-}$	DABCO	CONEt_{2}	A	8bc	9 bc	65	75:25
			B	8be	9 bc	87	83:17
$\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}$	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	A	8 cc	9 cc	$83^{[\mathrm{c}]}$	>95:5
			$\mathrm{B}^{[\mathrm{cc}}$	8 cc	9 cc	$(56){ }^{[\mathrm{c}, \mathrm{d}]}$	>95:5
$1 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	DABCO	COMe	A	8 dc	9 dc	$0^{\text {[c] }}$	-
$\mathbf{1 e H}{ }^{+} \mathrm{Br}^{-}$	DABCO	COPh	A	8 ec	9 ec	64	50:50
			B	8 ec	9 ec	68	60:40
$1 \mathrm{fH}^{+} \mathrm{Br}^{-}$	DABCO	$\mathrm{CO}_{2}{ }^{\text {t }} \mathrm{Bu}$	A	8 fc	9fc $\cdot \mathrm{H}_{2} \mathrm{O}$	$76{ }^{[\mathrm{e}]}$	>95:5
$1 \mathrm{gH}^{+} \mathrm{Br}^{-}$	Quinuclidine	$\mathrm{CO}_{2} \mathrm{Et}$	A	8 gc	9gc ($=9 \mathrm{cc}$)	38	>95:5
$1 \mathrm{hH}^{+} \mathrm{Br}^{-}$	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	A	8hc	9hc (=9cc)	33	>95:5
$\mathbf{1 i H}{ }^{+} \mathrm{Br}^{-}$	NMe_{3}	COPh	A	8 ic	9ic (=9ec)	$57^{[\mathrm{c}]}$	50:50

[a] After recrystallization from EtOH; [b] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude product; [c] Reaction time 2 h ; [d] Yield of the crude product; the product decomposed during the attempted purification by crystallization from $\mathrm{MeOH} ;[\mathrm{e}]$ Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:iso-hexane.

Figure 2.2. ORTEP-drawing of the crystal structure of cis-9bc and trans-9cc (thermal ellipsoids are shown at the $\mathbf{5 0 \%}$ probability level).

Variation of the solvent (DMSO \rightarrow DMF) and temperature $\left(20^{\circ} \mathrm{C} \rightarrow-15^{\circ} \mathrm{C}\right)$ had little effect on the yields and stereoselectivities of the cyclopropanations (Table 2.4). Only for the reaction of $\mathbf{1 b}$ with $\mathbf{3 c}$, and for the reaction of $\mathbf{1 e}$ with $\mathbf{3 c}$ a small change of stereoselectivity was observed, when the reactions were carried out in DMF at $-15^{\circ} \mathrm{C}$ instead of DMSO at $20^{\circ} \mathrm{C}$ (Table 2.4, Conditions A $\rightarrow \mathrm{B}$).

As shown in Figure 2.1a, the absorbance of the quinone methide 3d decayed monoexponentially when combined with an excess of the ylide $\mathbf{1 c}$ (pseudo-first order conditions) to give the first-order rate constant $k_{\text {obs }}$ which increased linearly with the concentration of $\mathbf{1 c}$ (Figure 2.1b). The same behavior, i.e., second-order kinetics with complete consumption of the quinone methides was observed for all reactions of the cyano-substituted ylide $\mathbf{1 a}$, of the amidosubstituted ylide $\mathbf{1 b}$, and of the ester-substituted ylides $\mathbf{1 c}$ and $\mathbf{1 f}-\mathbf{h}$. The resulting second-order rate constants are listed in Table 2.5.

When the reactions of the ylides $\mathbf{1 a - c}$ with equimolar amounts of the quinone methide $\mathbf{3 c}$ were monitored by ${ }^{1} \mathrm{H}$ NMR in (DMSO- d_{6} : $\mathrm{CD}_{2} \mathrm{Cl}_{2}$)-mixtures at $20^{\circ} \mathrm{C}$, the cyclopropanes 9accc were observed immediately after mixing the reactants, and neither ylides $\mathbf{1 a - c}$ nor the intermediate betaines $\mathbf{8 a c}-\mathbf{c c}$ were observable. Monitoring the reaction of the ester-substituted trimethylammonium ylide $\mathbf{1 h}$ with quinone methide $\mathbf{3 f}$ by UV-vis spectroscopy showed a monoexponential decay of $\mathbf{3 f}$ and gave no evidence for the formation of a long-lived intermediate betaine $\mathbf{8 h f}$, indicating that the reaction proceeds according to case 1 . A mechanism according to case 1 can thus also be expected for the reactions of the other structurally related ester-substituted ammonium ylides $\mathbf{1 c , f}, \mathbf{g}$ with the quinone methide $\mathbf{3 f}$. Further evidence, which is presented below, indicates that case 1a, i.e., irreversible betaine formation with fast subsequent cyclization is also realized in the reactions of the cyano, amido, and ester-substituted ammonium ylides $\mathbf{1 a - c}, \mathbf{g}-\mathbf{h}$ with the quinone methides $\mathbf{3}$.

Table 2.5. Rate constants for the reactions of the ammonium ylides 1 with the quinone methides 3 in DMSO at $20^{\circ} \mathrm{C}$.

	$\stackrel{\Theta<}{\oplus \underbrace{\text { EWR }}}$							
1	NR_{3}	EWG	3	$k_{\mathrm{CC}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$K \cdot k_{\mathrm{rc}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	K / M^{-1}	$k_{\mathrm{rc}} / \mathrm{s}^{-1}$	Case ${ }^{\left[{ }^{[]}\right.}$
1a	DABCO	CN	3b	2.47×10^{5}				1a
			3c	1.43×10^{4}				1a
			3d	1.04×10^{4}				1a
			3 e	3.36×10^{3}				1a
			3 f	1.32×10^{3}				1a
1b	DABCO	CONEt_{2}	3a	$1.59 \times 10^{5[b]}$				1a
			3a	1.57×10^{5}				1a
			3b	$2.18 \times 10^{4[b]}$				1a
			3c	5.07×10^{3}				1a
			3d	2.87×10^{3}				1a
1c	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	3a	4.68×10^{4}				1a
			3b	9.69×10^{3}				1a
			3c	4.85×10^{2}				1a
			3d	2.87×10^{2}				1a
			3e	4.50×10^{1}				1a
			3 f	2.26×10^{1}				1 a
1d	DABCO	COMe	3a	$2.08 \times 10^{3[b]}$	-	-	${ }^{-}$	1b/2b
			3b	$3.45 \times 10^{2[b]}$	6.09	$\left(1.6 \times 10^{2}\right)$	$\left(3.8 \times 10^{-2}\right)^{[c]}$	1b/2b
1 e	DABCO	COPh	3a	3.82×10^{3}	-	-	-	1b/2b
			3b	3.60×10^{2}	2.45	2.79×10^{2}	8.79×10^{-3}	1b/2b
			3c		$\left(1.9 \times 10^{-3}\right)^{[d]}$			1 b
1f	DABCO	$\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}$	3b	9.51×10^{3}				1a
			3 c	6.49×10^{2}				1a
			3d	3.81×10^{2}				1a
			3e	6.80×10^{1}				1a
			3 f	2.49×10^{1}				1a
1 g	Quinuclidine	$\mathrm{CO}_{2} \mathrm{Et}$	3a	6.84×10^{4}				1a
			3b	6.33×10^{3}				1a
			3 c	3.49×10^{2}				1a
1h	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	3a	7.15×10^{4}				1a
			3b	1.12×10^{4}				1a
			3c	6.77×10^{2}				1a
			3d	4.67×10^{2}				1a
			3e	8.03×10^{1}				1a
			3 f	4.37×10^{1}				1a
1i	NMe_{3}	COPh	3b	2.25×10^{2}	$3.89{ }^{\text {[e] }}$	$\left(4 \times 10^{1}\right)$	$\left(1 \times 10^{-1}\right)^{[c]}$	1b/2b

[a] Assignment of the individual reactions to the different cases see below; [b] Deprotonation of the conjugate CHacids $\mathbf{1 H}^{+} \mathbf{X}^{-}$with 0.5 equiv. of $\mathrm{KO}^{t} \mathrm{Bu}$; [c] Estimated from $K \cdot k_{\mathrm{rc}}$; [d] $K \cdot k_{\mathrm{rc}}$ estimated from ${ }^{1} \mathrm{H}$ NMR monitoring (see Figure 2.5); [e] Kinetics were reproduced on a diode array spectrophotometer and conventionally evaluated (cf. Figure $2.1 ; K \cdot k_{\mathrm{rc}} \sim 3.1 \mathrm{M}^{-1} \mathrm{~s}^{-1}$).

In the reactions of the quinone methides $\mathbf{3 a}, \mathbf{b}$ with the less basic acetyl and benzoylsubstituted ylides $\mathbf{1 d}, \mathbf{e}, \mathbf{i}\left(\mathrm{p} K_{\mathrm{aH}}=15-16\right.$ in DMSO) we did not observe mono-exponential decays of the quinone methides $\mathbf{3 a}, \mathbf{b}$ when working under pseudo-first-order conditions. Instead, fast partial consumption of the absorbance of $\mathbf{3 a}, \mathbf{b}$ on the millisecond to second time scale was observed (Figure 2.3a, Inset), followed by complete consumption of the quinone methides $\mathbf{3 a}, \mathbf{b}$ on the minute to hour time scale (Figure 2.3a).

The initial fast and incomplete decays of the absorptions of the quinone methides $\mathbf{3 a}, \mathbf{b}$ were assigned to the reversible formations of the betaines $\mathbf{8}$, while the slow subsequent decays were attributed to the formation of the cyclopropanes 9 (Table 2.4).

From the fast initial decays of the absorbances of the quinone methides $\mathbf{3 a}, \mathbf{b}$ (e.g. Figure 2.3a, Inset) first-order rate constants $k_{\text {obs }}$ were derived as described above (see Figure 2.1). Plots of k_{obs} versus the concentration of the acyl-substituted ylides $\mathbf{1 d}, \mathbf{e}, \mathbf{i}$ gave linear correlations from which the rate of the formation of the betaines $\mathbf{8}\left(k_{\mathrm{CC}}\right)$ were derived.

The pseudo-first-order rate constants for the slow subsequent decays of the absorbances of the quinone methides $\mathbf{3 a}, \mathbf{b}$ depend on the equilibrium constant $K=k_{\mathrm{CC}} / k_{-\mathrm{CC}}(\mathrm{eq} 2.7)$ and k_{rc}, as expressed by eq 2.9, which is derived in the General Section of the Experimental Section.

Figure 2.3. a) Slow decay of the absorbance of $3 \mathrm{bb}\left([3 \mathrm{~b}]_{0}=1.80 \times 10^{-5} \mathrm{M}\right)$ at 533 nm during the reaction with $1 \mathrm{e}\left([1 \mathrm{e}]_{0}=9.01 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$ (conventional photometry). Inset: Fast decay of the absorbance of $3 \mathrm{~b}\left([3 \mathrm{~b}]_{0}=4.00 \times 10^{-5} \mathrm{M}\right)$ at 533 nm during the equilibrium reaction with $1 \mathrm{e}\left([1 \mathrm{e}]_{0}=2.40 \times 10^{-3} \mathrm{M}\right)$ in DMSO at $20{ }^{\circ} \mathrm{C}$ (Stopped-flow photometry); b) Plot of $\boldsymbol{k}_{\mathrm{obs}}{ }^{-1}$ of the second decay versus [1e] ${ }^{-1}$ for the determination of $\boldsymbol{k}_{\mathrm{rc}}$ and \boldsymbol{K}.

$$
\begin{equation*}
\frac{1}{k_{\mathrm{obs}}}=\frac{1}{K k_{\mathrm{rc}}} \cdot \frac{1}{[\mathrm{Nu}]}+\frac{1}{k_{\mathrm{rc}}} \tag{2.9}
\end{equation*}
$$

The plot of $1 / k_{\text {obs }}$ versus $1 /[\mathbf{1} \mathbf{e}$ for the reaction of the quinone methide $\mathbf{3 b}$ with ylide $\mathbf{1 e}$ was found to be linear (Figure 2.3b) with $1 / k_{\mathrm{rc}}$ as the intercept and $1 / K \cdot k_{\mathrm{rc}}$ as the slope, from which the rate of ring closure k_{rc} and the equilibrium constant K were derived as given in Table 2.5. The equilibrium constant K derived in this way agrees well with the equilibrium constant calculated from the ratio of the absorbances of $\mathbf{3 b}$ at $t=0$ and at the plateau of the A versus t correlation, which is reached when the initial equilibrium is established (for details see Experimental Section).

Plots of $1 / k_{\text {obs }}$ versus $1 /[\mathrm{Nu}]$ for the second part of the reactions of the acyl-substituted ylides $\mathbf{1 d}, \mathbf{i}$ with the quinone methide $\mathbf{3 b}$ are also linear, but the intercepts $1 / k_{\mathrm{rc}}$ are close to zero so that k_{rc} cannot reliably be derived from these plots. However, the slopes of these correlations, which correspond to $1 /\left(K \cdot k_{\mathrm{rc}}\right)$, could be used to calculate $K \cdot k_{\mathrm{rc}}$ and the separation into K and k_{rc} had to be achieved differently.

The equilibrium constants K of the reactions of the acyl-substituted ylides $\mathbf{1 d}, \mathbf{i}$ with the quinone methide $\mathbf{3 b}$ could be determined from the initial absorbances $\left(A_{0}\right)$ of the quinone methide 3b and the plateaus of the absorbances $\left(A_{\text {eq }}\right)$ observed when after the initial fast reaction on the millisecond to second timescale have reached equilibrium.

Figure 2.4 shows a linear correlation between $\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$ and $[\mathbf{1 d}]$, the slope of which corresponds to the equilibrium constant K as defined by eq 2.10 . As the equilibrium constants K determined in this way are not very precise, the rate constants for ring-closure k_{rc} which are obtained by dividing $K \cdot k_{\mathrm{rc}}$ by K are less accurate and are given in parentheses in Table 2.5.

$$
K=\frac{[\mathrm{I}]}{[\mathrm{E}][\mathrm{Nu}]}=\frac{A_{0}-A_{\mathrm{eq}}}{A_{\mathrm{eq}}[\mathrm{Nu}]}
$$

Figure 2.4. Determination of the equilibrium constant K for the reaction of 1 e with 3 b from plots of $\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$ vs [1d].
$\Rightarrow \quad K[\mathrm{Nu}]=\frac{A_{0}-A_{\mathrm{eq}}}{A_{\mathrm{eq}}}$

For the reactions of the acyl-substituted ylides $\mathbf{1 d}, \mathbf{e}$ with the quinone methide $\mathbf{3 a}$ only the first part, which corresponds to the reversible formations of the betaines 8da and 8ea, could be evaluated (k_{cc}; Table 2.5), since the decay of the absorbance in the second part of the reaction was not mono-exponential. A determination of the equilibrium constants K was not possible.

The kinetics of the reactions of the less basic acyl-substituted ylides $\mathbf{1 d}, \mathbf{e}, \mathbf{i}$ with the quinone methides 3a,b indicate the partial conversion of the reactants into the betaines $\mathbf{8}$ in a fast reversible initial reaction, i.e., $k-\mathrm{CC}>k_{\mathrm{rc}}$. According to eq 7 , case 1 b refers to reactions with infinitesimal concentrations of the intermediate betaine, while case $2 b$ refers to reactions with complete reversible conversion of the reactants into the intermediates, we are now dealing with borderline cases between 1 b and 2 b .
${ }^{1} \mathrm{H}$ NMR spectroscopic monitoring of the reaction of equimolar amounts of the benzoylsubstituted ylide $\mathbf{1 e}$ with the quinone methide $\mathbf{3 c}$ in DMSO- $d_{6} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$ showed the gradual decrease of the reactants $\mathbf{1 e}$ and $\mathbf{3 c}$ and the increasing amount of the cyclopropane $\mathbf{9 e c}$ and DABCO during 3 h , while the intermediate betaine 8 ec was not detectable. The progress of the reaction was derived from the ${ }^{1} \mathrm{H}$ NMR signals of liberated DABCO (for details see Experimental Section). The second-order rate law for reactions with equal concentrations of the reactants is given by eq $2.11,{ }^{[22]}$ and plots of $1 /[3 \mathbf{c}]$ versus time t gave a linear correlation for the first 20 min of the reaction with a slope of $k_{2 \text { obs }}$ and an intercept of $1 /[\mathbf{1 h}]_{0}$ (eq 2.11; Figure 2.5). For higher conversions the obtained data points deviate from the correlation line and were thus not included to determine $k_{20 b s}$.

From the non-observance of an intermediate betaine in the reaction of ylide 1e with quinone methide $3 \mathbf{c}$ we conclude that the reaction follows case 1 , and later we will show that it can be assigned to case 1 b (Table 2.5) and the measured second-order rate constant $k_{2 \text { obs }}$ corresponds to $K \cdot k_{\mathrm{rc}}$.

Figure 2.5. Determination of the second-order rate constant $k_{2 \text { obs }}\left(1.9 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ for the reaction of $1 \mathrm{e}\left(5.00 \times 10^{-2} \mathrm{M}\right)$ with $3 \mathrm{c}(4.98 \times$ $10^{-2} \mathrm{M}$) by ${ }^{1} \mathrm{H}$ NMR in DMSO- d_{6} at $20{ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \quad \frac{d[\mathrm{E}]}{d \mathrm{t}}=-k_{\text {2obs }}[\mathrm{E}] \quad \Rightarrow \quad \frac{1}{[\mathrm{E}]}-\frac{1}{[\mathrm{E}]_{0}}=k_{\text {2obs }} t \quad \Rightarrow \quad \frac{1}{[\mathrm{E}]}=k_{2 \mathrm{obs}} t+\frac{1}{[\mathrm{E}]_{0}} \\
& \text { when }[\mathrm{Nu}]_{0} \approx[\mathrm{E}]_{0} \\
& {[\mathrm{Nu}]=[\mathrm{Nu}]_{0}-[\mathrm{DABCO}]} \\
& {[\mathrm{E}]=[\mathrm{E}]_{0}-[\mathrm{DABCO}]}
\end{aligned}
$$

2.3.3 Reactions with Benzylidene Malonates 4

Addition of the benzylidene malonates $\mathbf{4 a}$ and $\mathbf{4 d}$ to solutions of the ylides $\mathbf{1}$ formed from $\mathbf{1 H}^{+} \mathbf{X}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO generally led to the formation of the cyclopropanes $\mathbf{1 1}$ (Table 2.6). The preference for the formation of the trans-diastereomers of $\mathbf{1 1}$ was derived from the vicinal coupling constants ${ }^{3} J=7.4-7.9 \mathrm{~Hz}$ (cis: ${ }^{3} J \sim 10 \mathrm{~Hz}$) of the cyclopropane protons. ${ }^{[12 \mathrm{a}, \mathrm{c}]}$ These assignments were confirmed by NOESY correlations of the protons and the substituents of the cyclopropane ring of trans-11ad,ba, cd and the X-ray structure of trans-11ca (Figure 2.6). The acetyl-substituted ylide $\mathbf{1 d}$ did not cyclopropanate the benzylidene malonate $\mathbf{4 a}$, but decomposed instead, in analogy to the attempted reaction of $\mathbf{1 d}$ with the quinone methide $\mathbf{3 c}$ described above (Table 2.4).

Table 2.7 shows that the reaction of the ammonium ylide $\mathbf{1 c}$ with the benzylidene malonate 4a gave better yields of the cyclopropane 11ca when longer reaction times or elevated temperatures were used, although TLC analysis indicated complete consumption of the reactants within 10 min at room-temperature. The trans:cis ratio of the cyclopropane 11ca was greater than 98:2 at short reaction times, but slow partial isomerization of trans-11ca into cis11 $\mathbf{c a}$ is observed when the product was kept in the presence of $\mathrm{KO}^{t} \mathrm{Bu}$ for several hours.

UV-vis monitoring of the reaction of the ester-substituted ylide $\mathbf{1 c}$ with the benzylidene malonate $\mathbf{4 a}$ showed the complete consumption of $\mathbf{4 a}\left(\lambda_{\max }=302 \mathrm{~nm}\right)$ within 10 min (Figure 2.7a). New bands at 264 nm and 445 nm were formed with the same rate constant as the 302 nm absorption of $\mathbf{4 a}$ disappeared.

The new absorption bands do not correspond to the UV-vis-spectrum of the cyclopropane 11ca ($\lambda_{\max }=277 \mathrm{~nm}$; for details see Experimental Section). While the 264 nm -band can be assigned to the intermediate betaine 10ca, the absorption band at 445 nm might correspond to a small concentration of zwitterionic p-nitro-benzyl anion 10ca' as depicted in Figure 2.7a. As p-nitrotoluene was reported to be four orders of magnitude less acidic than diethyl malonate ${ }^{[23]}$ one can rationalize the formation of a small concentration of $\mathbf{1 0} \mathbf{c} \mathbf{a}^{\prime}$ by a proton shift from $\mathbf{1 0} \mathbf{c a}$.

Table 2.6. Reaction of the ylides 1 with the benzylidene malonates $4 \mathrm{a}, \mathrm{d}$. The first letter of the product number refers to the employed Ylide 1, the second to the employed benzylidene malonate 4.

Salt	NR_{3}	EWG	4	R	$\begin{gathered} \text { Betaine } \\ \mathbf{1 0} \end{gathered}$	Cyclopropane 11	$\begin{aligned} & \text { Yield } \\ & \text { 11/\% } \end{aligned}$	(trans:cis)-11 ${ }^{\text {[a] }}$
$1 \mathrm{aH}^{+} \mathrm{Br}^{-}$	DABCO	CN	4d	Me	10ad	11ad	60	96:4
$1 \mathrm{bH}^{+} \mathrm{Cl}^{-}$	DABCO	CONEt_{2}	4a	NO_{2}	10ba	11ba	50	87:13 ${ }^{[b]}$
$\mathbf{1} \mathrm{CH}^{+} \mathrm{Br}^{-}$	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	4a	NO_{2}	10ca	11ca	$53^{[c]}$	97:3
$1 \mathrm{cH}^{+} \mathrm{Br}^{-}$	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	4d	Me	10cd	11cd	64	96:4
$1 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	DABCO	COMe	4a	NO_{2}	10da	11da	0	-
$\mathbf{1} \mathbf{H H}^{+} \mathrm{Br}^{-}$	DABCO	COPh	4d	NO_{2}	10ed	11ed	$43^{[c]}$	>98:2 ${ }^{[d]}$
$1 \mathrm{fH}^{+} \mathrm{Br}^{-}$	DABCO	$\mathrm{CO}_{2}{ }^{\text {t }} \mathrm{Bu}$	4d	Me	10fd	11fd	64	96:4
$1 \mathrm{gH}^{+} \mathrm{Br}^{-}$	Quinuclidine	$\mathrm{CO}_{2} \mathrm{Et}$	4d	Me	10gd	11gd (= 11cd)	63	96:4
$1 \mathrm{hH}^{+} \mathrm{Br}^{-}$	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	4a	NO_{2}	10ha	11ha (= 11ca)	29	>98:2 $2^{[d]}$
$\mathbf{1 h H}{ }^{+} \mathrm{Br}^{-}$	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	4d	Me	10hd	11hd (= 11cd)	63	96:4

[a] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude product; [b] Determined by GC-MS of the crude product; [c] After stirring for 2 h at ambient temperature; $[\mathrm{b}]$ After purification.

Figure 2.6. ORTEP-drawing of the crystal structure of trans-11ca (thermal ellipsoids are shown at the $\mathbf{5 0 \%}$ probability level).

Table 2.7. Time- and temperature dependence of the formation of cyclopropane 11ca by the reaction of the ylide 1 c with the benzylidene malonate 4a. ${ }^{[a]}$

Entry	Time	$T /{ }^{\circ} \mathrm{C}$	Yield $/ \%^{c}$	trans: $^{\text {cis }}{ }^{[\mathrm{b}]}$
1	10	20	32	$>98: 2$
2	30	20	41	$98: 2$
3	1 h	20	47	$98: 2$
4	2 h	20	53	$97: 3$
5	4 h	20	50	$92: 8$
6	5 min	100	65	$98: 2$
7	10	100	81	$95: 5$

[a] Conditions: $\mathbf{4 a}$ and $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(1.7 \mathrm{eq})$ were suspended in DMSO and treated with $\mathrm{KO}^{t} \mathrm{Bu}$ (1.7 eq); [b] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

Figure 2.7. a) UV-vis-spectra of the first 10 min of the reaction of $1 \mathrm{c}\left([1 \mathrm{c}]_{0}=4.20 \times 10^{-4} \mathrm{M}\right)$ with $4 \mathrm{a}\left([4 \mathrm{a}]_{0}=\right.$ $\left.7.30 \times 10^{-5} \mathrm{M}\right)$ following the decrease of the absorption of 4 a at $302 \mathrm{~nm}\left(k_{\mathrm{CC}}=2.21 \times 10^{1} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ and increase of the absorption the of 10 ca at $264 \mathrm{~nm}\left(k_{\mathrm{CC}}=2.27 \times 10^{1} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ and of $10 \mathrm{ca}{ }^{\prime}$ at $445 \mathrm{~nm}\left(k_{\mathrm{CC}}=2.55 \times 10^{1} \mathrm{M}\right.$ $\left.{ }^{-1} \mathrm{~s}^{-1}\right)$; b) UV-vis-spectra of the second part ($10-120 \mathrm{~min}$) of the reaction of $1 \mathrm{c}\left([1 \mathrm{c}]_{0}=5.71 \times 10^{-4} \mathrm{M}\right)$ with $4 \mathrm{a}\left([4 \mathrm{a}]_{0}=7.30 \times 10^{-5} \mathrm{M}\right.$) with the decrease of absorption of 10 ca at 264 nm and of $10 \mathrm{ca}{ }^{\prime}$ at $445 \mathrm{~nm}\left(k_{\mathrm{rc}}=\right.$ $6.28 \times 10^{-4} \mathrm{~s}^{-1}$) and increase of the absorption of 11 ca at $277 \mathbf{~ n m}$.

Similar proton-shifts have previously been observed in the reactions of phenylacetonitrile anions with benzylidene malonates $4 .{ }^{[19 \mathrm{~h}]} \mathrm{A}$ shift of the proton in 10ca to form another ammonium ylide may occur. However, the proton next to the DABCO^{+}group in 10ca is approximately $5 \mathrm{p} K_{\mathrm{aH}}$-units less acidic than the malonate moiety and the resulting ylide should not absorb above 400 nm (see Table 2.1).

The new bands at 264 nm and 445 nm , thus assigned to betaines 10ca and 10ca', are subsequently consumed within 120 min with the rate constant k_{rc}, yielding the UV spectrum of the cyclopropane 11ca (Figure 2.7b). From the decrease of the absorbance of betaine 10ca evaluated at 270 nm , the rate constant of ring closure ($k_{\mathrm{rc}}=5.96 \times 10^{-4} \mathrm{~s}^{-1}$) was derived. In line with this interpretation, the rate of ring closure k_{rc} was found to be independent of the concentration of the ylide $\mathbf{1 c}$ (Figure 2.8a)

The cyclization of betaine 10ca to cyclopropane 11ca was also monitored by ${ }^{1} \mathrm{H}$ NMR, by generating betaine 10ca from equimolar amounts of ylide $\mathbf{1 c}$ and benzylidene malonate $\mathbf{4 a}$ (Figure 2.8b). The spectra showed that the reactants were completely converted into the betaine 10ca immediately after mixing, which subsequently underwent cyclization into cyclopropane 11ca with expulsion of DABCO within 2 h (Figure 2.8b). Fitting of the concentrations of the evolved DABCO with an exponential function gave the rate constant of ring closure $k_{\mathrm{rc}}=6.29$ $\times 10^{-4} \mathrm{~s}^{-1}$ (for details see Experimental Section) which is in agreement with $k_{\mathrm{rc}}=5.96 \times 10^{-4}$ s^{-1} derived from the decrease of the UV-Vis absorbance of 10ca.

Figure 2.8. a) Plot of $k_{\mathrm{obs}} / \mathbf{s}^{\mathbf{- 1}}$ obtained from the decays of the absorption of 10 ca at 270 nm versus the concentration of 1 c . b) ${ }^{1} \mathrm{H}$ NMR monitoring of the evolution of DABCO from 10 ca in DMSO- d_{6} at $20{ }^{\circ} \mathrm{C}$.

The time-dependent absorbances at 264 nm and 302 nm due to the overlapping absorptions of benzylidene malonate $\mathbf{4 a}$, betaine 10ca, and cyclopropane 11ca were also simulated with MATLAB ${ }^{[24]}$ by solving the system of linear differential eqs 2-4 (Figure 2.9; for details see Experimental Section). ${ }^{[25,}{ }^{26]}$ The simulation, which showed excellent agreement between calculated and observed absorbances, provided the rate constants $k_{\mathrm{CC}}{ }^{\text {average }}=2.53$ $\times 10^{1} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k_{\mathrm{rc}}^{\text {average }}=7.23 \times 10^{-4} \mathrm{~s}^{-1}$ which are close to those derived from separate experients which were optimized for the determination of $k_{\text {CC }}$ (high resolution

Figure 2.9. Simulation of the absorbance change at 264 and 302 nm during the reaction of 1 c ([1c] $]_{0}$ $\left.=1.06 \times 10^{-3} \mathrm{M}\right)$ with $4 \mathrm{a}\left([4 \mathrm{a}]_{0}=4.25 \times 10^{-5} \mathrm{M}\right)$ by MATLAB (for details see Exerimental Section). [a] Average of two simulations at different concentrations (for details see Experimental Section). of the first stage) and the determination of k_{rc} (Figure 2.9).

The experimental observations reported so far are in accord with irreversible conversion of the reactants 1c and 4a into betaine 10ca (case 2a) as well as with reversible formation of a high concentration of 10ca (case 2b), in both cases followed by slow subsequent cyclization. In order differentiate these cases a DMSO solution of betaine 10ca, generated from equimolar amounts of ylide $\mathbf{1 c}$ and benzylidene malonate $\mathbf{4 a}$, was treated with a solution of quinone methide $\mathbf{3 c}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and kept for 1 h at ambient temperature (Scheme 2.4).

Scheme 2.4. Crossover experiment to test the reversibility of the formation of betaine 10ca.

If the betaine 10ca would undergo retroaddition $(k-\mathrm{CC})$ faster than cyclization $\left(k_{\mathrm{rc}}\right)$, the regenerated ylide $\mathbf{1 c}$ should be trapped by the quinone methide $\mathbf{3 c}$, which reacts 22 times faster with $\mathbf{1 c}$ than the benzylidene malonate $\mathbf{4 a}$. As the crossover product, the spirocycle $\mathbf{9 c c}$, was not observed and cyclopropane 11ca was isolated in 46% yield, which is similar to the yield of 11ca obtained from $\mathbf{1 c}$ and $\mathbf{4 a}$ after 1 h reaction time at ambient temperature (Table 2.7, entry 3), the reversible formation of betaine $\mathbf{1 0 a c}$ can be ruled out. Thus the reaction of $\mathbf{1 c}$ with $\mathbf{4 a}$ can be assigned to case 2 a (eq 2.8).

Monitoring of the reaction of the trimethylammonium-substituted ylide $\mathbf{1 h}$ with benzylidene malonate $\mathbf{4 a}$ by UV-vis spectrophotometry indicates the initial formation of the betaine $\mathbf{1 0 h a}$, which subsequently cyclizes to form the cyclopropane, similar to the reaction of ylide $\mathbf{1 c}$ with 4a described above. By analogy we assign the reaction of $\mathbf{1 h}$ with $\mathbf{4 a}$ to case 2 a, but we have not performed crossing experiments as described in Scheme 2.4 to differentiate between cases 2 a and 2 b .

GC-MS-monitoring of the reaction of the ester-substituted ammonium ylide $\mathbf{1 c}$ with benzylidene malonate $\mathbf{4 d}$ showed that the consumption of the electrophile $\mathbf{4 d}$ proceeds equally fast as the formation of the cyclopropane 11cd (Figure 2.10), indicating that the intermediate betaine $10 \mathbf{c d}$ is not accumulated. The reaction of ylide $\mathbf{1 c}$ with benzylidene malonate $\mathbf{4 d}$ can, therefore, be assigned to case 1 (eq 2.5). Further arguments which allow the assignment to case 1 a (eq 2.6), i.e., rate-determining irreversible betaine formation with fast subsequent ring closure, will be presented below.

Analogous results were found for the reactions of the quinuclidinium-substituted ylide $\mathbf{1 g}$ and the trimethylammonium-substituted ylide $\mathbf{1 h}$ with benzylidene malonate $\mathbf{4 d}$ (for details see Experimental Section) so that these reactions could also be assigned to case 1a.

Figure 2.10. Decrease of the concentration of the electrophile 4 d (filled dots; $[\mathbf{4 d}]_{0}=\mathbf{2 . 5 4} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{M}$) during the reaction with the nucleophile $1 \mathrm{c}\left([1 \mathrm{c}]_{0}=5.72 \times 10^{-2} \mathrm{M}\right)$ in DMSO at $20{ }^{\circ} \mathrm{C}$ and increase of the concentration of the product 11cd (open dots) monitored by GC-MS and GEPASI fit ${ }^{[27]}$ of the obtained data (black curves).

The reactions of the cyano-substituted ammonium ylide 1a with the most reactive p-nitrosubstituted benzylidene malonate $\mathbf{4 a}$ and the least reactive p-methyl-substituted $\mathbf{4 d}$ were studied by ${ }^{1} \mathrm{H}$ NMR.

When equimolar amounts of ylide 1a and benzylidene malonate $\mathbf{4 a}$ were combined in DMSO- d_{6}, complete consumption of the reactants and formation of a $67: 33$ mixture of the intermediate betaine 10aa and the cyclopropane 11aa were observed in a ${ }^{1} \mathrm{H}$ NMR spectrum taken 1 min after combining the reactants at ambient temperature. In the corresponding reaction of the less reactive benzylidene malonate $\mathbf{4 d}$, the reactants were completely consumed after 1 min and a 37:63 mixture of betaine 10ad and cyclopropane 11ad was formed. The accumulation of the intermediate betaines 10aa and 10ad is similar as in the reactions of the ester-substituted ylide $\mathbf{1 c}$ with benzylidene malonate $\mathbf{4 a}$ described above and allows to assign the reactions of the cyano-substituted ylide $\mathbf{1 a}$ with benzylidene malonates $\mathbf{4}$ to case 2 (eq 2.8).

The ${ }^{1} \mathrm{H}$ NMR spectrum taken immediately after mixing the amido-substituted ammonium ylide $\mathbf{1 b}$ with benzylidene malonate $\mathbf{4 a}$ showed complete conversion of the reactants to the cyclopropane 11ba. The linear free-energy relationships discussed in the next section suggest that the reaction follows case 1 a .
${ }^{1} \mathrm{H}$ NMR monitoring of the progress of the reaction of the less basic benzoyl-substituted ammonium ylide $1 \mathbf{e}\left(\mathrm{p} K_{\mathrm{aH}}=15\right.$ in DMSO) with benzylidene malonate $\mathbf{4 a}$ for 3.5 h showed decreasing amounts of the reactants $\mathbf{1 e}$ and $\mathbf{4 a}$ and increasing amounts of the cyclopropane $\mathbf{1 1} \mathbf{e a}$ and of DABCO, while the intermediate betaine 10ea was not detectable. From the increasing concentration of DABCO $k_{20 b s}$ was derived, as described above for the reaction of ylide $\mathbf{1 e}$ with quinone methide 3a (see Figure 2.5; for details see Experimental Section). Since the intermediate betaine 10ea did not accumulate, the reaction of the benzoyl-substituted ylide $\mathbf{1 e}$ with benzylidene malonate $\mathbf{4 a}$ must proceed according to case 1 (eq 2.5).

UV-vis monitoring of the reactions of the more basic cyano, amido, and ester-substituted ammonium ylides $\mathbf{1 a - c}, \mathbf{h}\left(\mathrm{p} K_{\mathrm{aH}} \geq 20\right.$ in DMSO) with the benzylidene malonates $\mathbf{4}$ showed the complete consumption of the absorbance of $\mathbf{4}$ by a mono-exponential decay from which the first-order rate constants k_{obs} for the formation of the betaines $\mathbf{1 0}$ were derived. The linear increase of the first-order rate constants $k_{\text {obs }}$ with increasing concentration of the ylides $\mathbf{1}$ was used to derive the second-order rate constants $k_{\text {CC }}$ listed in Table 2.8.

Table 2.8. Rate constants for the reactions of the ammonium ylides 1 with the benzylidene malonates 4 in DMSO at $20{ }^{\circ} \mathrm{C}$.

$\stackrel{\ominus}{\oplus} \stackrel{\mathrm{EWG}}{\oplus}$							
1	NR_{3}	EWG	4	$k_{\mathrm{CC}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$K \cdot k_{\mathrm{rc}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\mathrm{rc}} / \mathrm{s}^{-1}$	Case
1 a	DABCO	CN	4a	5.65×10^{3}		[b]	$2^{[\mathrm{c}]}$
			4b	2.23×10^{3}		[b]	$2^{[\mathrm{c}]}$
			4c	4.08×10^{2}		[b]	$2^{[\mathrm{c}]}$
			4d	2.32×10^{2}		[b]	$2^{[\mathrm{c}]}$
1b	DABCO	CONEt_{2}	4a	5.64×10^{2}			1 a
1c	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	4a	2.21×10^{1}		$5.96 \times 10^{-4}[\mathrm{~d}]$	2a
			4d	$2.16 \times 10^{-1[f]}$			1 a
1e	DABCO	COPh	4a		$\left(4.4 \times 10^{-4}\right)^{[\mathrm{e}]}$		1 b
1 g	Quinuclidine	$\mathrm{CO}_{2} \mathrm{Et}$	4d	$2.2 \times 10^{-1[f]}$			1 a
1h	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	4a	4.36×10^{1}		9.10×10^{-4}	2 a
			4d	$4.0 \times 10^{-1[f]}$			1a

[a] Assignment of the individual reactions to the different cases see below; [b] k_{rc} not determined; [c] Cross-over experiments to differentiate cases 2 a and 2 b were not made; [d] The rate constants were also derived from a simulation with MATLAB using the solution of the system of linear differential eqs $2-4\left(k_{\mathrm{Cc}}{ }^{\text {average }}=2.53 \times 10^{1}\right.$ $\left.\mathrm{M}^{-1} \mathrm{~s}^{-1} ; k_{\mathrm{rc}}{ }^{\text {average }}=7.23 \times 10^{-4} \mathrm{~s}^{-1}\right)$, and from following the evolution of DABCO by ${ }^{1} \mathrm{H}$ NMR $\left(k_{\mathrm{rc}}=6.29 \times 10^{-4}\right.$ s^{-1}); for details see Figure 2.10; [e] Kinetics measured by ${ }^{1} \mathrm{H}$ NMR (for details Experimental Section); [f] Kinetics monitored by GC (for details see Figure 2.10 and Experimental Section)

2.3.4 Reactions with Benzylidene Indandiones 5

${ }^{1} \mathrm{H}$ NMR spectra taken immediately after mixing equimolar amounts of the more basic cyano, amido, and ester-substituted ylides $\mathbf{1 a - c}\left(\mathrm{p} K_{\mathrm{aH}} \geq 20\right.$ in DMSO) with benzylidene indandione $\mathbf{5 b}$ in ($\mathrm{DMSO}-d_{6} / \mathrm{CDCl}_{2}$)-mixtures at ambient temperature showed complete conversion of the reactants into the intermediate betaines 12ab-12cb which are formed as $1: 1$ mixtures of the two diastereoisomers with complete conversion of the reactants (Table 2.9). The lifetimes of the betaines $\mathbf{1 2 a b} \mathbf{- 1 2} \mathbf{c b}$ were sufficient to allow their characterization by NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, 2 \mathrm{D}\right.$ NMR) ; a ${ }^{13} \mathrm{C}$ NMR signal at $\delta \sim 103 \mathrm{ppm}$ for the tertiary carbanionic center of the indandione fragment is in agreement with published ${ }^{13} \mathrm{C}$ NMR data for related tertiary carbanions derived from substituted indandiones. ${ }^{[28]}$

Table 2.9. Reaction of the ylides 1 with the benzylidene indandione 5 b . The first letter of the product number refers to the employed ylide 1 , the second to the employed benzylidene indandione 5 .

		$\begin{aligned} & \mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & 20^{\circ} \mathrm{C} \\ & \hline \mathrm{KO}^{t} \mathrm{Bu} / \mathrm{DMSO} \end{aligned}$	 $d r$ 1:1 for 12ba-cb			13
Salt	EWG	Conditions ${ }^{[a]}$	Betaine 12	Cyclopropane 13	Yield 12/\%	$\begin{gathered} \text { (trans:cis)- } \\ \mathbf{1 3}^{[b]} \end{gathered}$
$1 \mathrm{aH}^{+} \mathrm{Br}^{-}$	CN	A	12ab	13ab	19	25:75
		B	12ab	13ab	82	20:80
$\mathbf{1 b H}^{+} \mathrm{Cl}^{-}$	CONEt_{2}	C	12bb	13bb	22	66:33
		B	12bb	13bb	66	66:33
$\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}$	$\mathrm{CO}_{2} \mathrm{Et}$	A	12cb	13 cb	30	80:20
		B	12cb	13cb	50	89:11
$\mathbf{1 d H}{ }^{+} \mathrm{Cl}^{-}$	COMe	C	12 db	13db	53	66:33
$\mathbf{1 e H}{ }^{+} \mathrm{Br}^{-}$	COPh	B	12eb	13 eb	60	75:25

[a] Conditions A: A solution of $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$in DMSO was treated with $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO for 30 s , then $\mathbf{5 b}$ was added in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was stirred for 5 min at $20^{\circ} \mathrm{C}$; B: A solution of $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$and $\mathbf{5 b}$ in $\mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO and stirred for $0.5-1 \mathrm{~h}$ at $20^{\circ} \mathrm{C}$; C: Biphasic conditions $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{aq}$. $\mathrm{NaOH}(32 \%)$ for 2 h at $20^{\circ} \mathrm{C}$; [b] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

In line with these observations, the cyclopropanes 13ab and 13cb were obtained only in low yields, when mixture of $\mathbf{1 a}$ or $\mathbf{1 c}$ with $\mathbf{5 b}$ were quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution after 5 minutes reaction time at $20^{\circ} \mathrm{C}$ in DMSO (Table 2.9; Conditions A). The cyclopropanes 13ab-13cb were isolated in 50% to 82% yield, however, when the reaction mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$ (Table 2.9; Conditions B).

The stereochemistry of the spirocycles 13ab-cb was assigned on the basis of NOESY correlations of the protons and the substituents at the cyclopropane ring; the configuration of the spirocycle cis-13ab was furthermore confirmed by its X-ray structure (Figure 2.11).

Figure 2.11. ORTEP-drawing of the crystal structure of cis-13ab (thermal ellipsoids are shown at the $\mathbf{5 0 \%}$ probability level).

Table 2.9 shows that the trans:cis ratios of the cyclopropanes 13ab-13cb differed from the 1:1 diastereomeric ratios of the preceding betaines $\mathbf{1 2 a b} \mathbf{- 1 2} \mathbf{c b}$. This change of configuration may either arise from retroaddition of $\mathbf{1 2 a b} \mathbf{- 1 2} \mathbf{c b}$ to the reactants or from epimerization of the DABCO^{+}-substituted carbon center of these betaines by deprotonation and reprotonation.

To test whether the betaines $\mathbf{1 2 a b}-\mathbf{1 2 c b}$ undergo retroaddition $\left(-k_{\mathrm{CC}}\right)$ before cyclization $\left(k_{\mathrm{rc}}\right)$, the unsubstituted benzylidene indandione 5a was added to a solution of betaine 12ab in $\mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5:1) and kept for 1 h at ambient temperature (Scheme 2.5). After aqueous workup, the spirocycle 13ab was isolated in 46% yield and 90% of the benzylidene indandione $\mathbf{5 a}$ was recovered while the crossover product 13aa was not observed. If the betaine 12ab would undergo retroaddition parallel to the formation of $\mathbf{1 3} \mathbf{a b}$, the regenerated ylide $\mathbf{1 a}$ would rather react with the unsubstituted benzylidene indandione 5a to give the spirocycle 13aa than to recombine with the 16 -times less reactive p-methoxy-substituted benzylidene indandione $\mathbf{5 b}$.

For that reason we can to rule out the reversible formation of betaine 12ab, and assign the reaction of the cyano-substituted ammonium ylide $\mathbf{1 a}$ with benzylidene indandione $\mathbf{5 b}$ to case 2 a . As the reactions of the amido and ester-substituted ylides $\mathbf{1 b}, \mathbf{c}$ with benzylidene indandione $\mathbf{5 b}$ behave similarly, their reactions were also assigned to case 2 a .

Scheme 2.5. Crossover experiment to test the reversibility of the formation of betaine 12 ab .

${ }^{1} \mathrm{H}$ NMR-monitoring of the reactions of the less basic acyl-substituted ammonium ylides $\mathbf{1 d}, \mathbf{e}\left(\mathrm{p} K_{\mathrm{aH}}=15-16\right.$ in DMSO) with benzylidene indandione $\mathbf{5 b}$ for 1 h in (DMSO- $\left.d_{6} / \mathrm{CDCl}_{2}\right)$ mixtures at room temperature showed complete conversion of the reactants into the cyclopropanes $\mathbf{1 3 d b}$ and $\mathbf{1 3 e b}$ while the signals of the intermediate betaines $\mathbf{1 2 d b}$ and 12eb were not observable.

The assignment of the stereochemistry of the spirocycle trans-13eb was based on the NOESY correlations of the protons and the substituents at the cyclopropane ring. The assignment of cyclopropane trans-13db was based on its coupling constant ${ }^{3} J \sim 9 \mathrm{~Hz}^{[29]}$ for the cyclopropane protons, which is in the range of the coupling of the cyclopropanes trans-13ab-cb,eb assigned by NOESY.

The formation of the betaines $\mathbf{1 2 a b}-\mathbf{c b}$ from the more basic cyano, amido, and estersubstituted ammonium ylides $\mathbf{1 a - c}$ and benzylidene indandione $\mathbf{5 b}$ were monitored by UV-vis spectroscopy and the observed mono-exponential decays of the absorbance of $\mathbf{5 b}$ were used to derive the second-order rate constants k_{CC} listed in Table 2.10.

The rates of ring-closure k_{rc} of the intermediate betaines $\mathbf{1 2 a b}-\mathbf{c b}$ to the cyclopropanes 13ab-cb listed in Table 2.10 were determined by following the formation of DABCO by ${ }^{1} \mathrm{H}$ NMR spectroscopy (for details see Experimental Section).

In the reactions of the less basic acyl-substituted ylides $\mathbf{1 d}, \mathbf{e}, \mathbf{i}$ with benzylidene indandione $\mathbf{5 b}$ initial fast and incomplete decays of $\mathbf{5 b}$ were observed on the millisecond to second time scale, followed by slow complete decays of the absorbance of $\mathbf{5 b}$ on the minute time scale. An analogous behavior of the corresponding reactions of $\mathbf{1 d , e ,} \mathbf{i}$ with the quinone methides $\mathbf{3 a}, \mathbf{b}$ was described in Table 2.5 (see illustration in Figure 2.3a).

Table 2.10. Rate constants for the reactions of the ammonium ylides $\mathbf{1}$ with the benzylidine indandiones 5 in DMSO at $20^{\circ} \mathrm{C}$.

Ylide	NR_{3}	EWG	5	$k_{\text {CC }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$K \cdot k_{\mathrm{rc}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	K / M^{-1}	$k_{\mathrm{rc} /} / \mathrm{s}^{-1}$	Case ${ }^{[a]}$
1a	DABCO	CN	5b	1.60×10^{6}			$6.8 \times 10^{-4}[\mathrm{~b}]$	2a
1b	DABCO	CONEt_{2}	5b	2.75×10^{5}			$6.2 \times 10^{-4[b]}$	2a
1c	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	5b	2.22×10^{5}			$6.5 \times 10^{-4}[\mathrm{~b}]$	2a
1d	DABCO	COMe	5b	8.80×10^{3}	9.52×10^{1}	$\left(2 \times 10^{2}\right)$	$\left(5 \times 10^{-1}\right)^{[c]}$	1b/2b
			5c		3.41			1 b
1 e	DABCO	COPh	5b	1.20×10^{4}	3.40×10^{1}	$\left(2 \times 10^{2}\right)$	$\left(2 \times 10^{-1}\right)^{[c]}$	1b/2b
			5c		2.75×10^{-1}			1 b
1 i	NMe_{3}	COPh	5b	3.07×10^{3}	4.55×10^{1}	$\left(3 \times 10^{2}\right)$	$\left(2 \times 10^{-1}\right)^{[\mathrm{c}]}$	1b/2b

[a] Assignment of the individual reactions to the different cases see below; [b] Kinetics monitored by ${ }^{1} \mathrm{H}$ NMR.
[c] Estimated from $K \cdot k_{\mathrm{rc}} ; K$ determined individually.

The initial fast and incomplete decays were assigned to the reversible formation of the intermediate betaines $\mathbf{1 2 d b}, \mathbf{e b}, \mathbf{i b}$, with the rate constants k_{CC} and the subsequent complete decays of the absorbances of $\mathbf{5 b}$ were assigned to the formation of the cyclopropanes $\mathbf{1 3 d b}, \mathbf{e b}, \mathbf{i b}$. Because of the high reversibility of the formation of the betaines $\mathbf{1 2 d b}, \mathbf{e b}, \mathbf{i b}$, these intermediates were not observable by the NMR experiments described above.

The first-order rate constants $k_{\text {obs }}$ for the slow decays of the absorbances of benzylidene indandione $\mathbf{5 b}$ in the second part of its reactions with $\mathbf{1 d}, \mathbf{e}, \mathbf{i}$ depend on K and k_{rc} as described by eq 2.9. The slopes of the plots of $1 / k_{\mathrm{obs}}$ versus $1 /[\mathrm{Nu}]$ correspond to $1 / K \cdot k_{\mathrm{rc}}$, but the intercept, which equals $1 / k_{\mathrm{rc}}$, is almost zero, so that it cannot be used for the determination of k_{rc}. Therefore, the equilibrium constants K were derived from plots of $\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$ versus $[\mathrm{Nu}]$ according to eq 2.10 and combined with $K \cdot k_{\mathrm{rc}}$ to determine the rate constants of ring closure k_{rc} which are given in Table 2.10. The reactions of the ylides $\mathbf{1 d}, \mathbf{e}, \mathbf{i}$ with $\mathbf{5 b}$ thus follow a mechanism between the cases 1 b and 2 b .

In the reactions of the acyl-substituted ylides $\mathbf{1 d}, \mathbf{e}$ with benzylidene indandione $\mathbf{5 c}$ the intermediate betaines were not observable. Slow complete mono-exponential decays of the absorbances of $\mathbf{5 c}$ were observed, from which the pseudo-first-order rate constants k_{obs} were derived. The observation of isosbestic points allows to assign these reactions to case 1 (eq 5) and since $\mathbf{5 c}$ has a considerably lower Lewis acidity than $\mathbf{5 b}$, the equilibrium constant K for the formation of the betaines must be smaller than in the analogous reactions with $\mathbf{5 b}$, which allows us to assign the reactions of $\mathbf{1 d}$ and $\mathbf{1 e}$ with $\mathbf{5 c}$ to case 1 b . In line with these conclusions, the linear free-energy relationships discussed below also indicate that the observed second-order rate constants $k_{2 \text { obs }}$ correspond to $K \cdot k_{\mathrm{rc}}$.

2.3.5 Reactions with Chalcone 6

Mixtures of the three diastereoisomers $\mathbf{A}-\mathbf{C}$ of the cyclopropanes $\mathbf{1 5}$ were obtained from the reactions of the ylides $\mathbf{1}$ with chalcone $\mathbf{6}$ in $40-70 \%$ yield (Table 2.11).

The configurations of the diastereoisomers $\mathbf{1 5 - (A - C)}$ were assigned on basis of the NOESY correlations of the protons and substituents of the cyclopropane moiety. The preferred formation of the cyclopropanes 15a-A and 15a-B from the cyano-substituted ylide 1a and chalcone $\mathbf{6}$ was confirmed by the crystal structures of these diastereoisomers (Figure 2.12). The cyclopropanes $\mathbf{1 5 c} \mathbf{c}(\mathbf{A}-\mathbf{C})$ were recently described by Taylor and co-workers, and our assignments of their configurations are in agreement with these data. ${ }^{[30]}$ Cyclopropane 15 e is
preferentially formed as the meso-diastereoisomer $\mathbf{1 5 e - B}$, whose configuration was also verified by its crystal structure (Figure 2.12).

The diastereoisomer 15-C may be formed by the rotation of the former CC-double bond in the intermediate betaines $\mathbf{1 4}$ (Table 2.11), but also through base mediated epimerization of the cyclopropanes 15.

The ${ }^{1} \mathrm{H}$ NMR spectra taken immediately after combining the cyano, amido, and estersubstituted ylides 1a-c with chalcone $\mathbf{6}$ showed complete consumption of the reactants and formation of the cyclopropanes $\mathbf{1 5 a - c}$, but no signals of the intermediate betaines $\mathbf{1 4 a - c}$.

In the kinetics of the reactions of the cyano and ester-substituted ylides $\mathbf{1 a}, \mathbf{c}$ with chalcone 6 mono-exponential decays of the absorbance of $\mathbf{6}$ were observed and evaluated as described above to derive the second-order rate constants listed in Table 2.12. For the reaction of ylide 1b with chalcone 6 a bisexponential decay of the absorbance of chalcone $\mathbf{6}$ was observed, which could not be evaluated.

Table 2.11. Reaction of the ylides 1 with the chalcone 6.

Figure 2.12. ORTEP-drawing of the crystal structures of $15 \mathrm{a}-\mathrm{A}, 15 \mathrm{a}-\mathrm{B}$, and $15 \mathrm{e}-\mathrm{B}$ (thermal ellipsoids are shown at the $\mathbf{5 0 \%}$ probability level).

Table 2.12. Rate constants for the reactions of the ammonium ylides 1 with the chalcone 6 in DMSO at $20{ }^{\circ} \mathrm{C}$.

Ylide	EWG	$k_{\mathrm{CC}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$K \cdot k_{\mathrm{rc}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Case ${ }^{[a]}$
1a	CN	4.47×10^{3}		1a
1c	$\mathrm{CO}_{2} \mathrm{Et}$	3.09×10^{1}		1a
1d	COMe		$\left(9.6 \times 10^{-5}\right)^{[b]}$	1 b
1e	COPh		$\left(5.6 \times 10^{-4}\right)^{[\mathrm{b}]}$	1 b

[a] Assignment of the individual reactions to the different cases see below; [b] Kinetics monitored by ${ }^{1} \mathrm{H}$ NMR (for details see Experimental Section).

Monitoring the reactions of the less basic acyl-substituted ylides 1d,e with chalcone $\mathbf{6}$ for 4 h in (DMSO- $d_{6}: \mathrm{CD}_{2} \mathrm{Cl}_{2}$)-mixtures by ${ }^{1} \mathrm{H}$ NMR showed a decrease of the concentrations of the reactants, and increasing concentrations of the cyclopropanes $\mathbf{1 5 d} \mathbf{e}$ and DABCO, but no formation of the intermediate betaines $\mathbf{1 4 d}, \mathbf{e}$. The absence of observable betaines in the ${ }^{1} \mathrm{H}$ NMR spectra indicates that these cyclopropanations follow case 1 (eq 2.5).

The considerably smaller second-order rate constants for the reaction of the acetyl (1d) and benzoyl-substituted ylide (1e) with chalcone $\mathbf{6}$ were derived by ${ }^{1} \mathrm{H}$ NMR spectroscopy from the increase of the ${ }^{1} \mathrm{H}$ NMR signals of DABCO as described above (Figure 2.5).

The linear free-energy relationships discussed in the next section allow us to assign the measured second-order rate constants $k_{2 \text { obs }}$ for the first two entries of Table 2.12 to k_{CC} and the lower two entries to $K \cdot k_{\mathrm{rc}}$.

2.4 Discussion

2.4.1 Correlation Analysis

According to eq 1, plots of the second-order rate constants for the reactions of the ylides $\mathbf{1}$ with the benzhydrylium ions 2 and the Michael acceptors 3-6 versus the corresponding electrophilicity parameters E are expected to be linear, if the observed second-order rate constants $k_{2 \text { obs }}$ correspond to k_{CC}, the rate constant for the formation of the betaine.

Therefore, correlation analysis may allow to differentiate the cases $1 \mathrm{a}\left(k_{2 \mathrm{obs}}=k_{\mathrm{CC}}\right)$ and 1 b $\left(k_{2 \text { obs }}=K \cdot k_{\mathrm{rc}}\right)$, which could not be discriminated by formal kinetics, as both mechanisms are characterized by a second-order rate law.

Figure 2.13 shows a linear correlation between the $\log k_{\mathrm{CC}}$-values of the reactions of the ylides 1a-c and the Michael acceptors 3-6. Rate constants which can unequivocally be assigned to k_{CC}, because the formation of 7 (from 2d) or of the betaines was directly observable, are marked by filled symbols. As the observed second-order rate constants for the reactions of

Figure 2.13. Correlation of $\log k_{\text {2obs }}\left(D M S O, 20^{\circ} \mathrm{C}\right.$) for the reactions of the cyano, amido, and estersubstituted ammonium ylides $1 a-c$ with the electrophiles $2-6$ versus their electrophilicity parameters \boldsymbol{E}. Filled symbols refer to case 2 a reactions (including reaction with $2 d$); open symbols refer to of case 1 a reactions. Only the reactions of $1 \mathrm{a}-\mathrm{c}$ with the reference electrophiles $\mathbf{2 - 4}$ were used to draw the correlation lines. For the correlations of $\log \boldsymbol{k}_{20 b s}$ versus \boldsymbol{E} of $\mathbf{1 f} \mathbf{- i}$ see Experimental Section.

1a-c with the other Michael acceptors included in Figure 2.13 (open symbols) are on the same correlation lines, we concluded that these rate constants also correspond to $k_{\text {CC }}$ though the intermediate betaines were not observable. In these reactions, the rate-determining formation of the betaines is followed by fast subsequent cyclization, and the kinetics follow eq 6 (case 1a).

Analogous relationships were found between the rate constants of the reactions of the other ester-substituted ylides $\mathbf{1 f}-\mathbf{h}$ with the benzhydrylium ions $\mathbf{2}$ and the Michael acceptors $\mathbf{3}$ and $\mathbf{4}$ which are depicted in the Experimental Section. Thus, all measured second-order rate constants $k_{2 \text { obs }}$ for the reactions of the cyano (1a), amido (1b), and ester-substituted ylides (1c,f,g,h) with the electrophiles 2-6 correspond to the formation of one new CC bond, and therefore follow eq 1 .

Figure 2.14 analyzes the observed second-order rate constants $k_{20 b s}$ of the reactions of the less basic acetyl-substituted ammonium ylide $\mathbf{1 d}$ ($\mathrm{p} K_{\mathrm{aH}}=16$ in DMSO; squares) and the benzoyl-substituted ammonium ylide $\mathbf{1 e}\left(\mathrm{p} K_{\mathrm{aH}}=15\right.$ in DMSO; circles) with the electrophiles $\mathbf{2 - 6}$. One can see, that in the reactions of these ylides with the benzhydrylium ions $\mathbf{2 b} \mathbf{- d}$, the quinone methides $\mathbf{3 a}, \mathbf{b}$, and the benzylidene indandione $\mathbf{5 b}$, the second-order rate constants for the attack of ylides $\mathbf{1 d}$ and $\mathbf{1 e}$ at the electrophiles (i.e., $k_{2 \text { obs }}=k_{\mathrm{CC}}$) lie on the same correlation lines $\log k_{2 \text { obs }}$ versus E (filled symbols, Figure 2.14). This correlation confirms our interpretation of Figure 2.3a that in the reactions of the ylides $\mathbf{1 d}, \mathbf{e}$ with the quinone methides $\mathbf{3 a}, \mathbf{b}$ and the benzylidene indandione $\mathbf{5 b}$, small, but observable concentrations of the intermediate betaines are formed in a fast reversible process. Thus a situation between the cases 1 b and 2 b is encountered.

As the attack of the less basic acyl-substituted ylides $\mathbf{1 d}, \mathbf{e}$ at the quinone methides $\mathbf{3 a}, \mathbf{b}$ is reversible, one can expect that the degree of reversibility is even higher for the reactions of these ylides with the less electrophilic Michael acceptors $\mathbf{3 c}, \mathbf{4 a}, \mathbf{5 c}$, and $\mathbf{6}$. The strong deviations of $k_{20 b s}$ for these combinations (open symbols) reactions of the ylides $\mathbf{1 d}, \mathbf{e}$ with these Michael acceptors from the correlation lines in Figure 2.14 are, therefore, not surprising. The betaine intermediates are formed in small steady state concentrations, and the measured second-order rate constants correspond to $k_{2 \mathrm{obs}}=K \cdot k_{\mathrm{rc}}$ (case 1 b , eq 7), i.e., case 1 b is realized.

Analogous correlations were found for the corresponding reactions of the trimethylammonium-substituted ylide $\mathbf{1 i}$ with the benzhydrylium ions $\mathbf{2 c}, \mathbf{d}$ and the Michael acceptors $\mathbf{3 a}, \mathbf{b}$ and $\mathbf{5 b}$, which are described in the Experimental Section.

Figure 2.14. Correlation of $\log k_{20 b s}\left(D M S O, 20^{\circ} \mathrm{C}\right)$ for the reactions of the acyl-substituted ammonium ylides 1d,e with the electrophiles $2 \mathbf{- 6}$ versus the electrophilicity parameters E. Filled symbols refer to rate constants of CC-bond formations; open symbols correspond to $K \cdot \boldsymbol{k}_{\mathrm{rc}}$. Only the reactions of $\mathbf{1 d , e}$ with the reference electrophiles $\mathbf{2 b} \mathbf{- d}$, and $3 \mathrm{a}, \mathrm{b}$ were used to draw the correlation lines. For the analogous correlation of 1 i see Experimental Section.

2.4.2 Energy Profiles

By combining the Gibbs free energies ΔG^{0} and the activation free energies ΔG^{\neq}obtained from the different kinetic and mechanistic studies, energy profiles for the different types of reactions of ammonium ylides with Michael acceptors can be constructed. Figure 2.15 illustrates the different mechanistic scenarios for a representative highly basic ammonium ylide (1c) and a representative for a weakly basic ylide (1e).

As shown in the upper part of Figure 2.15 ylide 1c, a representative for highly basic ylides, reacts irreversibly with $\mathbf{3 b}, \mathbf{c}$ and $\mathbf{5 b}$, i.e., cyclization is faster than retroaddition. Whereas in the two upper left cases, we only know that the transition state for cyclization is below that for retroaddition, in the upper right case $(\mathbf{1} \mathbf{c}+\mathbf{5 b})$, the barrier for cyclization of the quantitatively generated betaine was directly measured.

As shown in the lower part of Figure 2.15, ylide 1e, a representative for less basic ylides, gives betaines with $\mathbf{3 b}, \mathbf{c}$ and $\mathbf{5 b}$, which cyclize more slowly than they undergo retroaddition. While the position of the first transition state for the reaction of $\mathbf{1 e}+\mathbf{3 c}$ (bottom left) cannot be determined experimentally, but reliably calculated by eq 1 , the position of the second transition
state can be derived from the measured value of $K \cdot k_{\mathrm{r} \mathrm{r}}$. Betaine 8ec was set at the same level as the reactants, which implies that the intermediate is not observable at the low concentrations of the reactants.

The bisexponential decays observed for the reactions of $\mathbf{1 e}$ with $\mathbf{3 b}$ and $\mathbf{5 b}$ allow us to construct the full energy profiles for the two reactions on the bottom right of Figure 2.15. The slightly exergonic formation of the betaines 8eb and 12eb implies that only small equilibrium concentrations of these intermediates are generated under the conditions of the kinetic experiments (high dilution).

Figure 2.15. Energy Profiles for ammonium ylide mediated cyclopropanations with irreversible (1c) and reversible (1e) betaine formations. Dotted lines indicate qualitatively assigned relative energies of the intermediates. [a] The corresponding second-order rate constant was calculated by eq 1 using the N and s_{N} parameters of 1 e in Table 2.14 and E from Chart 2.1.

2.4.3 Nucleophilicity Parameters and Reactivity Comparisons

From the correlations in Figures 2.13 and 2.14 the nucleophilicity parameters N and the sensitivities s_{N} for the ylides 1a-i listed in Table 2.14 were derived which allows us to include 1a-i into our comprehensive nucleophilicity scale. ${ }^{[19 j]}$

The strongly varying s_{N}-parameters of the nucleophiles $\mathbf{1 a - i}\left(0.70>s_{\mathrm{N}}>0.36\right.$; Table 2.14) indicate a significant dependence of the relative reactivities of the ammonium ylides on the electrophilicities of their reaction partners. We therefore use the rate constants of the reactions of the ammonium ylides $\mathbf{1 a} \mathbf{- i}$ with the quinone methide $\mathbf{3 b}$, for which rate constants with all ylides 1a-i have been determined, to compare the relative reactivities of the ammonium ylides 1a-i (Table 2.13), realizing that their order will change for different electrophiles.

As shown in Table 2.13, the acetyl-substituted ammonium ylide 1d has a similar reactivity towards $\mathbf{3 b}$ as the benzoyl-substituted ylide $\mathbf{1 e}$. The ethoxycarbonyl substituted analogue $\mathbf{1 c}$ is

Table 2.13. Relative reactivities of the DABCOsubstituted ammonium ylides 1a-f towards the quinone methide 3b (DMSO, $20{ }^{\circ} \mathrm{C}$).

	\ominus $@^{\mathrm{DABCO}}$	
Ylide	EWG	$k_{\mathrm{CC}}{ }^{\text {rel }}(\mathbf{3 b})$
$\mathbf{1 d}$	COMe	1.0
$\mathbf{1 e}$	COPh	2.2
$\mathbf{1 c}$	$\mathrm{CO}_{2} \mathrm{Et}$	28
$\mathbf{1 f}$	$\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}$	28
$\mathbf{1 b}$	CONEt_{2}	63
$\mathbf{1 a}$	CN	748

28 times more reactive than 1d. Exchanging the ethoxycarbonyl by the sterically more demanding tert-butoxycarbonyl (1f) has no effect on the reactivity. Replacement of the ester group by a carboxamido-group (1b) increases the reactivity by a factor of 2 . Though the cyano- group is generally considered to be a better electron acceptor than acyl-, alkoxycarbonyl-, and aminocarbonyl-groups according to Hammett's substituent constants σ_{p} and $\sigma_{\mathrm{p}}{ }^{-}$,

Table 2.14. N - and s_{N} parameters of the ammonium ylides 1 in DMSO at $20^{\circ} \mathrm{C}$.

$\begin{aligned} & \ominus \stackrel{\mathrm{EWG}}{\stackrel{\wedge}{\mathrm{NR}_{3}}} \end{aligned}$				
Ylide	NR_{3}	EWG	N	s_{N}
1a	DABCO	CN	27.43	0.37
1b	DABCO	CONEt_{2}	24.23	0.42
1c	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	20.15	0.58
1d	DABCO	COMe	18.21	0.54
1e	DABCO	COPh	17.22	0.69
1 f	DABCO	$\mathrm{CO}_{2}{ }^{\text {b }} \mathrm{Bu}$	21.05	0.50
1 g	Quinuclidine	$\mathrm{CO}_{2} \mathrm{Et}$	20.14	0.59
1h	NMe_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	21.06	0.52
1 i	NMe_{3}	COPh	17.36	0.60

the cyano substituted ylide 1a is by far the strongest nucleophile in this series. As it is even 10 times more reactive than the 10^{4} times stronger base $\mathbf{1 b},{ }^{[31]}$ one can again conclude, that nucleophiles with cyano-substituted reaction centers react with relatively small reorganization energies (low intrinsic barriers), as previously demonstrated for the reactions of malononitrile with benzhydrylium ions. ${ }^{[19 i]}$

Table 2.15 shows that the ester-substituted ammonium ylides $\mathbf{1 c}\left(k_{C C}{ }^{\text {rel }}=1.0\right), \mathbf{1 g}$, and $\mathbf{1 h}$ have almost the same reactivities (k_{CC}) toward the electrophiles $\mathbf{2 d}, \mathbf{3 b}$, and $\mathbf{4 d}$, indicating that the nucleophilicities of the ylides are only slightly affected by the nature of the ammonium moiety.

Table 2.16 compares the relative rate constants of ring closure ${k_{\mathrm{rc}}}^{\text {rel }}$ of the betaines $\mathbf{1 2 a b}$ $\mathbf{e b}, \mathbf{i b}$ with respect to the cyclization rate of betaine $\mathbf{1 2 b b}$ which is set to 1.0 . The cyclization rates of the cyano, amido, and ester-substituted betaines $\mathbf{1 2 a b} \mathbf{~ c b}$ are almost the same, while the acyl-substituted betaines $\mathbf{1 2 d b}$,eb,ib cyclize $\sim 300-800$ times faster than 12bb. While changing the leaving group from DABCO (12eb) to NMe_{3} (12ib) has no effect on the cyclization rate, the acetyl- substituted betaine $\mathbf{1 2 d b}$ cyclizes 2.5 times faster than its benzoylsubstituted analogue (12eb). The higher activating effect of vicinal acetyl and benzoyl groups compared to ethoxycarbonyl and cyano groups parallels that previously reported for intermolecular $\mathrm{S}_{\mathrm{N} 2}$ reactions of alkyl chlorides with I^{-}in acetone. ${ }^{[32]}$
Table 2.15. Relative reactivities of the ester-substituted ammonium ylides $1 \mathrm{c}, \mathrm{g}$ and 1 f towards the benzhydrylium ion 2d, the quinone methide 3 b and the benzylidene malonate 4 d (DMSO, $20{ }^{\circ} \mathrm{C}$).

$\begin{aligned} & \ominus<{ }_{e}^{E W G} \\ & \oplus \mathrm{NR}_{3} \end{aligned}$				
Ylide	NR_{3}	$k_{\text {CC }}{ }^{\text {rel }}$ (2d)	$k_{\text {CC }}{ }^{\text {rel }}(\mathbf{3 b})$	$k_{\text {CC }}{ }^{\text {rel }}(4 d)$
1c	DABCO	1.0	1.0	1.0
1 g	Quinuclidine	1.2	0.7	1.0
1h	NMe_{3}	1.1	1.2	0.9

Scheme 2.6. Relative rates of ring closure of the betaines 10 ca and 10 ha in DMSO at $20{ }^{\circ} \mathrm{C}$.

Scheme 2.6 shows that the relative cyclization rates if 10ca and 10ha depend only slightly on the nature of the nucleofuge. In accord with Aggarwal's conclusion, ${ }^{[13-14,}{ }^{15 c]}$ the slightly better leaving group ability of $\mathrm{NMe}_{3}\left(\mathrm{p} K_{\mathrm{aH}}=8.5\right.$ in DMSO) $)^{[33]}$ compared to DABCO ($\mathrm{p} K_{\mathrm{aH}}=$ 8.9 in DMSO), ${ }^{[34]}$ may be explained by the slightly smaller basicity of NMe_{3}.

Table 2.16. Relative rates of ring closure of the betaines $12 \mathrm{ab}-\mathrm{eb}, \mathrm{ib}$ in DMSO at $20^{\circ} \mathrm{C}$.

Betaine	NR_{3}	EWG	$k_{\mathrm{rc}}^{\text {rel }}$
$\mathbf{1 2 b b}$	DABCO	CONEt_{2}	1.0
$\mathbf{1 2 c b}$	DABCO	$\mathrm{CO}_{2} \mathrm{Et}$	1.1
$\mathbf{1 2 a b}$	DABCO^{2}	CN	1.1
$\mathbf{1 2 i b}$	NMe_{3}	COPh	322
$\mathbf{1 2 e b}$	DABCO	COPh	322
$\mathbf{1 2 d b}$	DABCO	COMe	806

2.5 Conclusion

Mechanistic investigations of the reactions of ammonium ylides with Michael acceptors have shown that the intermediate betaines are formed reversibly with ylides of low basicity and irreversibly with ylides of high basicity. Kinetic investigations have revealed the occurrence of four different mechanisms: The intermediate betaines are formed in low, but observable stationary concentrations by irreversible (case 1a) or reversible reactions (case 1b), or the intermediate betaines are formed in observable concentrations by irreversible (case 2a) or reversible reactions (case 2b).
The rates of the betaine formations in the reactions of ammonium ylides $\mathbf{1}$ with the Michael acceptors 3-6 can be described by eq 1 , which enables us to include these synthetically important, highly nucleophilic ammonium ylides in our comprehensive nucleophilicity scale. ${ }^{[19 \mathrm{j}]}$ Figure 2.16 compares the rates of attack of cyano (left) and ethoxycarbonylsubstituted (right) carbanions, ${ }^{[9 \mathrm{a}]}$ phosphonium, ${ }^{[16]}$ sulfonium, ${ }^{[17 \mathrm{a}]}$ pyridinium, ${ }^{[18]}$ and ammonium ylides at quinone methide $\mathbf{3 b}$. The cyano-substituted ammonium ylide 1a reacts roughly six orders of magnitude faster with the quinone methide $\mathbf{3 b}$ than the corresponding triphenylphosphonium ylide, and three orders of magnitude faster than the related dimethylsulfonium ylide. While the cyano substituted carbanions from malononitrile and cyanoacetate are significantly more nucleophilic than the structurally related phosphonium and sulfonium ylides, the reactivity of ammonium ylide $\mathbf{1 a}$ and the corresponding pyridinium ylide exceed those of the corresponding carbanions by one order of magnitude. The ethoxycarbonylstabilized ammonium ylide 1c behaves similarly, as it reacts almost five orders of magnitude
faster with $\mathbf{3 b}$ than the corresponding phosphonium ylide, and three orders of magnitude faster than the related sulfonium ylide. In contrast to the reactivity order on the left side of Figure 2.16, the ammonium ylide $\mathbf{1 c}$ reacts half an order of magnitude more slowly with $\mathbf{3 b}$ than the ethoxycarbonyl-substituted carbanions diethyl malonate and ethyl cyanoacetate, and even one order of magnitude more slowly than the ethoxycarbonyl-substituted pyridinium ylide.

As reactions of ammonium ylides in vicarious nucleophilic aromatic substitution have already been described in the literature, ammonium ylides are now considered to be ideal candidates for the quantification of the electrophilic reactivities of electron-deficient arenes. ${ }^{[5,35]}$

Figure 2.16. Comparison of the $\log k_{C C}$-values of analogous substituted ylides ${ }^{[16-17,18]}$ and carbanions ${ }^{[19 c]}$ towards the quinone methide 3b in DMSO at $20^{\circ} \mathrm{C}$. N and s_{N}-Values are given below each Nucleophile. [a] Log $k_{2}(3 b)$ calculated by eq 2.1 with E from Chart 2.1 and the given N and s_{N} values; [b] In $\mathbf{C H}_{2} \mathbf{C l}_{2}$.

2.6 Addendum

2.6.1 Reactions of Ammonium Ylides with Activated Styrenes

The reactions of the ammonium ylides $\mathbf{1 a}, \mathbf{b}$ with the activated styrenes $\mathbf{1 6 a}-\mathbf{d}$ gave the cyclopropanes $\mathbf{1 8}$ via intermediate betaines $\mathbf{1 7 a} \mathbf{a} \mathbf{d}$ (Table 2.17). While the cyclopropanes 18ac were formed in $34-57 \%$ yield at room temperature within $1 \mathrm{~h}, \mathbf{1 8 d}$ could only be obtained, when the ammonium salt $\mathbf{1 a H} \mathbf{H r}^{+}$and 4-phenyl-buten-2-one $\mathbf{1 6 d}$ were heated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMSO at $100{ }^{\circ} \mathrm{C}$ for 2 h .

The assignment of the diastereoisomers is preliminary as it is only based on the coupling constants of the protons in the cyclopropane ring and needs to be verified by 2D NMR (NOESY). The reactions selectively formed the diastereoisomers $\mathbf{1 8}-\mathrm{A}$, in which the transconfiguration of the substituents of the activated styrenes 16 was preserved (Table 2.17). In case of the cyclopropane 18c the formation of the meso-diastereomer 18c-B was observed, which could be unambiguously identified by the multiplicity (d, t) and coupling constant $\left(J^{3}=\right.$ 6.2 Hz) of the protons of the cyclopropane ring.

Table 2.17. Reaction of the ylides $1 \mathrm{a}, \mathrm{b}$ with the activated styrenes 16.

[a] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude product; [b] After purification, [c] Due to their symmetry $\mathbf{1 8 c} \mathbf{c} \mathbf{A}$ and $\mathbf{1 8 c}$ \mathbf{C} are enantiomers.

Rotation of the former CC-double bond in the intermediate betaines $\mathbf{1 7}$ seems not to take place as the diastereoisomers $\mathbf{1 8 - C}$ were not observed (Table 2.17).

Attempts to study the kinetics of the reactions of the ylides $\mathbf{1 a}, \mathbf{b}$ with the activated styrenes 16a-d by UV-vis spectrophotometry failed, due to an overlap of the UV-vis absorptions of the reactants. An assignment of the cyclopropanations of the activated styrenes $\mathbf{1 6}$ to one of the four mechanistic cases was thus not attempted.

2.6.2 Marcus Analysis

From the observed rate- and equilibrium constants, Marcus intrinsic barriers $\Delta G_{0}{ }^{\neq}$could be derived. The equilibrium constants K (Tables 2.5, 2.10) and rate constants k_{CC} (Tables 2.5, 2.10) for the CC-bond formation to the intermediate betaines were converted into ΔG^{0} and ΔG^{\neq}and inserted into the Marcus equation (eq 2.12) to calculate $\Delta G_{0}{ }^{\neq}$(Table 2.18). Substituent effects on ΔG^{0} and ΔG^{\neq}in the reactions of the less basic ylides $\mathbf{1 d}, \mathbf{e}$ with the Michael acceptors $\mathbf{3 b}$ and $\mathbf{5 b}$ are relatively small, as the acetyl-stabilized ylide $\mathbf{1 d}$ has only $\approx 1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ smaller intrinsic barriers than the benzoyl-substituted ylide $\mathbf{1 e}$ (Table 2.18). The additions of the ylides $\mathbf{1 d}, \mathbf{e}$ to 3b proceed with an intrinsic barrier which is $8-9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher than that for the analogous reaction with $\mathbf{5 b}$ (Table 2.18), which may be explained by the large reorganization energy when the resonance stabilization of the phenylogous amide $\mathbf{3 b}$ is destroyed.

$$
\begin{equation*}
\Delta G^{\neq}=\Delta G_{0}^{\neq}+0.5 \Delta G^{0}+\frac{\left(\Delta G^{0}\right)^{2}}{16 \Delta G_{0}^{\neq}} \tag{2.12}
\end{equation*}
$$

Table 2.18: Reaction free energies ($\Delta G^{\boldsymbol{0}}$), activation free energies ($\Delta \boldsymbol{G}^{\neq}$), and intrinsic barriers ($\Delta \boldsymbol{G}_{0}{ }^{\neq}$) for the reaction of the ylides 1 d and 1 e with the electrophiles $\mathbf{3 b}$ and 5 b (DMSO, $20^{\circ} \mathrm{C}$).

Nucleophile	Electrophile	$\Delta G^{0} / \mathrm{kJ} \mathrm{mol}^{-1[\mathrm{a}]}$	$\Delta G^{\not} / \mathrm{kJ} \mathrm{mol}^{-1[\mathrm{~b}]}$	$\Delta G_{0} \neq / \mathrm{kJ} \mathrm{mol}^{-1[\mathrm{c}]}$
$\mathrm{DABCO}_{\ominus}^{\oplus} \mathrm{C}$	3b	-12.4	57.5	63.5
	5b	(-13)	49.6	(56)
1d				
$\mathrm{DABCO}{\underset{\ominus}{\oplus}}_{\ominus}^{\oplus} \mathrm{COPh}$	3b	-13.7	57.4	64.1
	5b	(-13)	48.9	(55)
1e				

[^0]
2.6.3 pK K-Correlation

The structurally related benzoyl-substituted quinuclidinium and trimethylammonium $\left(\mathbf{1 i H}{ }^{+} \mathbf{B r}^{-}\right)$salts have the same $\mathrm{p} K_{\mathrm{a}}$ values (Table 2.1). ${ }^{[8 \mathrm{c}]}$ Hence the $\mathrm{p} K_{\mathrm{a}}$ values of trimethylammonium salts are assumed to be the same as these of the employed DABCO^{+}substituted salts $\mathbf{1 (a - e)} \mathbf{H}^{+} \mathbf{B r}^{-}$(refs. [8c,d]) A plot of these $\mathrm{p} K_{\mathrm{a}}$ values versus the $\log k_{\mathrm{CC}}$-values of the reactions of the ylides $\mathbf{1 a}-\mathbf{e}$ with the quinone methide $\mathbf{3 b}$ shows only a poor correlation (Figure 2.17), as it was shown for many other nucleophiles before (ref. [10]). Therefore, the $\mathrm{p} K_{\mathrm{a}}$ values of the ammonium ylides $\mathbf{1}$ cannot be used to predict their reactivity.

Figure 2.17. Plot of the $\mathrm{p} K_{\mathrm{a}}$ values ${ }^{[8 c, d]}$ of the ammonium salts $\mathbf{1}(\mathrm{a}-\mathrm{e}) \mathbf{H}^{+} \mathrm{X}^{-}$versus the $\log \boldsymbol{k} \mathbf{c C}$ values of the reactions of the corresponding ylides $1 \mathrm{a}-\mathrm{e}$ with quinone methide $\mathbf{3 b}$.

2.6.4 Correlation of the $\log \boldsymbol{k}_{2}$-values of the Ylides 1 with Chalcone 6

The plots $\left(\log k_{2 o b s}\right) / s_{\mathrm{N}}$ versus the nucleophilicity parameters N for the reactions of the cyano and ester-substituted ammonium ylides 1a,c and of the reactions with sulfonium and pyridinium ylides (Table 2.19) are linear (Figure 2.18). The rate constants of the reactions of the ammonium ylides 1a,c with chalcone $\mathbf{6}$ follow this correlation line confirming our interpretation of a rate determining betaine formation according to case 1 a (Table 2.19; filled dots). The ($\left.\log k_{2 \mathrm{obs}}\right) / s_{\mathrm{N}}$ values for the reactions of $\mathbf{1 d}, \mathbf{e}$ with $\mathbf{6}$, as well as the $\left(\log k_{2}\right) / s_{\mathrm{N}}$ value of the reaction of $\mathrm{Pyr}^{+} \mathrm{CH}^{-} \mathrm{COPh}$ with 6, deviate from this correlation, therefore, the observed rate constant can be assigned to $K \cdot k_{\mathrm{rc}}$ (case 1 b).

Figure 2.18. Plot of $\left(\log k_{20 b s}\right) / s_{N}$ versus N of the reactions of chalcone $6(E=-17.33)$ with the ammonium ylides $1 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, pyridinium ylides, ${ }^{[18]}$ and sulfonium ylides ${ }^{[11 \mathrm{bb}]}$ in DMSO at $20{ }^{\circ} \mathrm{C}$. Filled dots refer to reactions where $\boldsymbol{k}_{2 \mathrm{obs}}=\boldsymbol{k}_{\mathrm{CC}}$, open dots refer to reactions where $\boldsymbol{k}_{2 \mathrm{obs}}=\boldsymbol{K} \cdot \boldsymbol{k}_{\mathrm{rc}}$.

Table 2.19. Observed second-order rate constants of the reactions of ammonium, pyridinium, ${ }^{[18]}$ and sulfonium ${ }^{[11 b]}$ Ylides with chalcone 6.

Nucleophile	N	s_{N}	$k_{\text {2obs }}$
$\mathbf{1 a}$	27.39	0.37	4.47×10^{3}
$\mathbf{1 c}$	20.50	0.59	3.09×10^{1}
$\mathbf{1 d}$	18.47	0.52	$\left(9.6 \times 10^{-5}\right)$
1e	17.15	0.70	$\left(5.3 \times 10^{-4}\right)$
$\mathrm{Pyr}^{+} \mathrm{CH}^{-} \mathrm{CO}_{2} \mathrm{Et}^{[18]}$	26.71	0.37	4.82×10^{3}
$\mathrm{Pyr}^{+} \mathrm{CH}^{-} \mathrm{CONEt}_{2}{ }^{[18]}$	27.45	0.38	6.12×10^{3}
$\mathrm{Pyr}^{+} \mathrm{CH}^{-} \mathrm{CN}^{[18]}$	25.94	0.42	7.92×10^{3}
$\mathrm{Pyr}^{+} \mathrm{CH}^{-} \mathrm{COMe}^{[18]}$	20.24	0.60	2.55×10^{1}
$\mathrm{Pyr}^{+} \mathrm{CH}^{-} \mathrm{COPh}^{[18]}$	19.46	0.58	8.54×10^{-1}
$3-\mathrm{Cl}^{-\mathrm{Pyr}^{+} \mathrm{CH}^{-} \mathrm{COPh}^{[18]}}$	17.98	0.63	3.67
$\mathrm{Isoquin}^{+} \mathrm{CH}^{-} \mathrm{COPh}^{[18]}$	20.08	0.57	3.56×10^{1}
$\mathrm{Quin}^{+} \mathrm{CH}^{-} \mathrm{COPh}^{[18]}$	19.38	0.50	1.64×10^{1}
$\mathrm{Me}_{2} \mathrm{~S}^{+} \mathrm{CH}^{-}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}{ }^{[11 \mathrm{~b}]}$	18.42	0.56	3.46×10^{2}
$\mathrm{Me}_{2} \mathrm{~S}^{+} \mathrm{CH}^{-}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}^{[11 b]}$	21.17	0.67	5.22

2.7 Experimental Section

2.7.1 General

Analytics. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right),{ }^{[36 a]} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ $\left(\delta_{\mathrm{H}} 5.32, \delta_{\mathrm{c}} 53.84\right),{ }^{[36 \mathrm{~b}]}$ or DMSO- $d_{6}\left(\delta_{\mathrm{H}} 2.50, \delta_{\mathrm{c}} 39.52\right)^{[36 \mathrm{a}]}$ on $200,300,400$, or 600 MHz NMR spectrometers. The following abbreviations were used to designate chemical shift
multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. For reasons of simplicity, the ${ }^{1} \mathrm{H}$ NMR signals of AA'BB'-spin systems of p-disubstituted aromatic rings were treated as doublets. The assignments of individual NMR signals were based on additional 2D-NMR experiments (COSY, NOESY, HSQC, HMBC). Diastereomeric ratios ($d r$) were determined by ${ }^{1} \mathrm{H}$ NMR of the crude products if not stated otherwise. Integrals for mixtures of diastereoisomers are set to 1.0 for one proton of the minor diastereoisomer. HRMS and MS were recorded on a Finnigan MAT 95 Q (EI) mass spectrometer or Thermo Finnigan LTQ FT Ultra (ESI). The melting points were recorded on a Büchi Melting Point B-540 device and are not corrected. The UV-vis spectra were recorded on a diode array-spectrophotometer system (J\&M TIDAS DAD 2062) with 0.5 mm cuvette length in DMSO by generating the ylides $\mathbf{1}$ from their corresponding salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$by deprotonation with 1.05 equiv. $\mathrm{KO}^{t} \mathrm{Bu}$.

Chemicals. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over CaH_{2} and freshly distilled prior to use; DMSO $(99.7 \%$, extra dry, over molecular sieves, AcroSeal), and MeCN (99.9%, extra dry, over molecular sieves, AcroSeal) were purchased and used without further purification.

Kinetics. Individual reaction rates were determined by UV-vis spectroscopy in DMSO at $20^{\circ} \mathrm{C}$ by using stopped-flow spectrophotometer systems (Applied Photophysics SX. $18 \mathrm{MV}-\mathrm{R}$ and Hi-Tech SF-61DX2) as well as diode array-spectrophotometer systems (J\&M TIDAS DAD 2062). The temperature of the solutions during the kinetic studies was maintained at $20 \pm 0.2^{\circ} \mathrm{C}$ by using circulating bath cryostats. The ylides were generated in DMSO at $20^{\circ} \mathrm{C}$ immediately before each kinetic run by mixing DMSO solutions of the salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.00:1.05 equivalents). The kinetic runs were initiated by mixing DMSO solutions of the ylides and electrophiles with the ylide $\mathbf{1}$ in large excess over the electrophiles $\mathbf{2 - 6}$ (> 10 equivalents) to achieve first-order conditions. First-order rate constants $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ were obtained by fitting the single exponential $A_{t}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)+C$ (mono-exponential decrease) to the observed timedependent absorbances (average of at least three kinetic runs for each concentration for the stopped-flow method) of the electrophiles or ylides. Second-order rate constants $k_{2}\left(\mathrm{~L} \mathrm{~mol}^{-1}\right.$ s^{-1}) were derived from the slopes of the linear correlations of the obtained k_{obs} values vs. the concentrations of the ylide 1. Parts of the kinetic data have been determined during the master thesis of the author as indicated. ${ }^{[38]}$

For the kinetic studies on the ring-closure reactions of the intermediate betaines, the ylides $\mathbf{1 c}$ and $\mathbf{1 h}$ were generated from their corresponding salts $\mathbf{1}(\mathbf{c}, \mathbf{h}) \mathbf{H}^{+} \mathbf{X}^{-}$with 1.05 eq. $\mathrm{KO}^{t} \mathrm{Bu}$ (if not mentioned otherwise). The kinetics were monitored photometrically by following the disappearance of the benzylidene malonate $\mathbf{4 a}$ at or close to the absorption maxima of the intermediate betaines 10ca,ha under first-order conditions using at least 10 equiv. of the ylides
$\mathbf{1}$ over 2-6. From the exponential decays of the UV-Vis absorbances of the intermediate betaines 10ca,ha, the first-order rate constants k_{rc} were obtained. The simulation of the absorption during the reaction of $\mathbf{1 c}$ with $\mathbf{4 a}$ was performed by Dr. K. Troshin using a MATLAB program code. ${ }^{[24,39]}$

For evaluating the second slow decay of the absorbances of quinone methide $\mathbf{3 b}$ and benzylidene indandione $\mathbf{5 b}$ in the reactions with the acyl-substituted ylides $\mathbf{1 d}, \mathbf{e}, \mathbf{i}$ a rate law was derived as follows:

$$
K=\frac{[\mathrm{I}]}{[\mathrm{E}][\mathrm{Nu}]} \quad \Rightarrow \quad[\mathrm{I}]=K_{\Psi}[\mathrm{E}] \quad \Rightarrow \quad \frac{d[\mathrm{I}]}{d t}=K_{\Psi} \frac{d[\mathrm{E}]}{d t}
$$

with $K_{\Psi}=K[\mathrm{Nu}] \quad$ assuming a rapid pre-equilibrium.

$$
\begin{aligned}
& {[\mathrm{E}]_{0}=[\mathrm{E}]+[\mathrm{I}]+[\mathrm{P}] \quad \Rightarrow \quad 0=\frac{d[\mathrm{E}]}{d t}+\frac{d[\mathrm{I}]}{d t}+\frac{d[\mathrm{P}]}{d t} \quad \Rightarrow \quad \begin{array}{r}
0=\frac{d[\mathrm{E}]}{d t}+K_{\Psi} \frac{d[\mathrm{E}]}{d t} \\
+\frac{d[\mathrm{P}]}{d t}
\end{array}} \\
& \left(1+K_{\Psi}\right) \frac{d[\mathrm{E}]}{d t}=-\frac{d[\mathrm{P}]}{d t} \quad \Rightarrow \quad\left(1+K_{\Psi}\right) \frac{d[\mathrm{E}]}{d t}=-k_{\mathrm{rc}}[\mathrm{I}] \\
& \text { with } \frac{d[\mathrm{P}]}{d t}=k_{\mathrm{rc}}[\mathrm{I}] \\
& -\frac{d[\mathrm{E}]}{d t}=\frac{k_{\mathrm{rc}}}{1+K_{\Psi}}[\mathrm{I}]=\frac{k_{\mathrm{rc}}}{1+K_{\Psi}} K_{\Psi}[\mathrm{E}] \\
& -\frac{d[\mathrm{E}]}{[\mathrm{E}]}==\frac{k_{\mathrm{rc}} K_{\Psi}}{1+K_{\Psi}} d t \\
& k_{\mathrm{obs}}=\frac{k_{\mathrm{rc}} K_{\Psi}}{1+K_{\Psi}} \quad \text { or } \quad k_{\mathrm{obs}}=\frac{k_{\mathrm{rc}} K[\mathrm{Nu}]}{1+K[\mathrm{Nu}]} \\
& \text { for } K[\mathrm{Nu}] \ll 1 \Rightarrow \\
& k_{\mathrm{obs}}=k_{\mathrm{rc}} K[\mathrm{Nu}] \\
& \text { for } K[\mathrm{Nu}] \gg 1 \Rightarrow \\
& k_{\mathrm{obs}}=k_{\mathrm{rc}} * \\
& \Rightarrow \quad \frac{1}{k_{\mathrm{obs}}}=\frac{1}{K k_{\mathrm{rc}}} \frac{1}{[\mathrm{Nu}]}+\frac{1}{k_{\mathrm{rc}}}(1.10)
\end{aligned}
$$

[^1]The equilibrium constants for the reactions of the ammonium ylides $\mathbf{1 d}, \mathbf{e}, \mathbf{i}$ with the Michael acceptors 3b and 5a were determined by UV-Vis spectrophotometry in DMSO by using a stopped-flow spectrophotometer. The Michael acceptors 3b and 5a were treated with large excesses (>10 equiv.) of the ammonium ylides $\mathbf{1}$ in variable concentrations. From the initial absorbances $\left(A_{0}\right)$ and the absorbance plateaus in the ms or s time scale $\left(A_{\mathrm{eq}}\right)$, the equilibrium constants K were derived as defined in eq 2.10 , as the slopes of the linear correlations of ($A_{\text {eq }}-$ $\left.A_{0}\right) / A_{\text {eq }}$ with [1], assuming proportionality between the absorbances and the concentrations of the employed electrophiles. In most cases the CC-bond formations were the ring closure reactions of the intermediate betaines were too fast, to give clearly visible plateaus on the ms and s time scale. In these cases the equilibrium constants were determined from the initial absorbances A_{0} and the constant C obtained by fitting the monoexponential function $A_{t}=A_{0}$ $\exp \left(-k_{\mathrm{obs}} t\right)+C$ to the time-dependent absorbances.

The kinetics followed by NMR were performed on a 200 MHz NMR spectrometer. The experimental procedures for the ${ }^{1} \mathrm{H}$ NMR monitoring of the reactions of the ylides $\mathbf{1}$ with the Michael acceptors 3-6 are given below the analytical data of the corresponding reaction products in the Products Section; the corresponding kinetic measurements are given in the Kinetics Section. For the evaluation of the measurements, the $\mathrm{HO}^{t} \mathrm{Bu}$ formed by the deprotonation of $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$was used as internal standard to derive the concentrations of the evolving DABCO, if not mentioned otherwise. For measuring the rates of ring-closure from the intermediate betaines the concentrations of DABCO were plotted versus time and fitted with OriginPro 6.0 by using the monoexponential function $y=y_{0}+A_{1} e^{-x / t 1}$ with $t 1=1 / k_{1}$. For reactions following a second-order rate law the plots of the transient concentrations of the reactants $[1]$ and $[E]$ were calculated from the initial concentrations $[1]_{0}$ and $[E]_{0}$ and the concentration of the evolved DABCO. From the slopes of plots of $[\mathbf{1}]^{-1}$ or $[E]^{-1}$ versus t, the second-order rate constant $k_{2 \text { obs }}$ was determined according to eq 2.11 .

The kinetics followed by GC-MS were performed on an Agilent 5973 Network GC-MS. For performing these kinetics, the ylides 1 were generated by addition of solutions of $\mathrm{KO}^{t} \mathrm{Bu}$ $(128 \mathrm{mg}, 1.14 \mathrm{mmol})$ in DMSO $(4 \mathrm{~mL})$ to solutions of $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}(1.14 \mathrm{mmol})$ in DMSO (10 mL). After 30 s the electrophile $\mathbf{4 d}(200 \mathrm{mg}, 0.762 \mathrm{mmol})$ dissolved in DMSO $(6 \mathrm{~mL})$ was added and the reaction mixture was stirred for 15 min at $20^{\circ} \mathrm{C}$. Every minute a sample of the reaction mixture (1 mL) was taken and quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The mixtures were extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and filtrated through $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A sample of each organic layer was subjected to GC-MS analysis. After 15 min the remaining solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic layers were
washed with water (10 mL) and dried over MgSO_{4}. The solvent was evaporated and the corresponding cyclopropanes were obtained. For evaluation of the kinetics, the reactant/product ratios were converted into concentrations and fitted by a second-order rate law using the GEPASI (v. 3.30) software. The reaction was described as $[\mathbf{N u}]+[\mathbf{E}]->[\mathbf{I}]->[\mathbf{P}]$, with k_{CC} as the rate constant for the rate-determining, irreversible first, and k_{rc} as the rate constant for the fast subsequent reaction.

2.7.2 Preparation of the Ammonium Salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$

General Procedure A for the Preparation of the ammonium salts $\mathbf{1 H}+\mathbf{X}-$. The ammonium salts $\mathbf{1 H}+\mathbf{X}$ - were prepared from the corresponding α-alkylhalides and tertiary amines in THF. The amine was dissolved in THF and the α-alkylhalides was added dropwise at ambient temperature. After 30 min the resulting precipitate was removed, washed with $\mathrm{Et}_{2} \mathrm{O}$, and subsequently recrystallized from $\mathrm{MeOH}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$.

1-(Cyanomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide (1aH $\left.{ }^{+} \mathbf{B r}^{-}\right)$. From bromoacetonitrile ($1.7 \mathrm{~g}, 1.0 \mathrm{~mL}, 14 \mathrm{mmol}$) and DABCO ($1.6 \mathrm{~g}, 14 \mathrm{mmol}$) according to procedure $\mathbf{A} . \mathbf{1 a H}^{+} \mathbf{B r}^{-}$was obtained as colorless solid ($3.2 \mathrm{~g}, 14 \mathrm{mmol}$, quant.). $\mathbf{M p}$ $\left(\mathrm{MeOH}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right) 195{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=4.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.53-3.42\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 3.16-3.06\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{NCH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta=111.5(\mathrm{~s}, \mathrm{CN}), 52.6\left(\mathrm{t}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 50.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 44.5\left(\mathrm{t}, 3 \times \mathrm{NCH}_{2}\right)$. HRMS ${\underset{Q}{N} \sim c_{N}}_{N}^{N}$ (ESI+): m / z calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{3}\right]^{+}: 152.1182$, found 152.1183. DA131
1-(2-(Diethylamino)-2-oxoethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride ($\mathbf{1 b H}^{+} \mathbf{C l}^{-}$). From 2-chloro- N, N-diethylacetamide ($1.6 \mathrm{~g}, 11 \mathrm{mmol}$) and $\operatorname{DABCO}(1.2 \mathrm{~g}, 11 \mathrm{mmol})$ according to procedure $\mathbf{A} . \mathbf{1 b H} \mathbf{H l}^{+}$was obtained as colorless solid ($2.7 \mathrm{~g}, 10 \mathrm{mmol}, 91 \%$). $\mathbf{M p}$ (MeOH: $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right) 216^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.68-3.65\left(\right.$ br m, $\left.6 \mathrm{H}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 3.31-3.25\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2}\right.$, superimposed by $\mathrm{H}_{2} \mathrm{O}$ signal), N ${ }^{\mathrm{c} \mathrm{c}^{\ominus}{ }_{0}} 3.06-3.02\left(\mathrm{br}, \mathrm{m}, 6 \mathrm{H}, 3 \times \mathrm{NCH}_{2}\right), 1.12\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=163.0(\mathrm{~s}, \mathrm{CO}), 60.4(\mathrm{~d}$, CH_{2}), $52.5\left(\mathrm{t}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 45.0\left(\mathrm{t}, 3 \times \mathrm{NCH}_{2}\right), 41.55\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 40.4\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $13.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}\right]^{+}: 226.1914$, found 226.1912. DA181

1-(2-Ethoxy-2-oxoethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide (1 $\mathbf{c H}^{+} \mathbf{B r}^{-}$). From ethylbromoacetate $(2.0 \mathrm{~g}, 12 \mathrm{mmol})$ and $\mathrm{DABCO}(3.0 \mathrm{~g}, 27 \mathrm{mmol})$ according to procedure \mathbf{A}.
 (MeOH:C $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$) $235{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=4.40$
(br s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.23 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.52\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right.$), $3.13-3.03$ (m, $6 \mathrm{H}, 3 \times \mathrm{NCH}_{2}$), $1.25\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=164.4$ (s, CO_{2}), $61.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 60.7(\mathrm{t}, \mathrm{CHH}), 52.3\left(\mathrm{t}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 44.4\left(\mathrm{t}, 3 \times \mathrm{NCH}_{2}\right), 13.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 199.1441$, found 199.1435. DA62

1-(2-Oxopropyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride (1dH $\left.{ }^{+} \mathbf{C l}^{-}\right)$. From chloroacetone ($4.3 \mathrm{~g}, 5.0 \mathrm{~mL}, 47 \mathrm{mmol}$) and DABCO $(5.2 \mathrm{~g}, 47 \mathrm{mmol})$ according to procedure A. $\mathbf{1 d H}{ }^{+} \mathbf{C l}^{-}$was obtained as colorless solid ($7.2 \mathrm{~g}, 35 \mathrm{mmol}, 76 \%$). $\mathbf{M p} \quad(\mathrm{MeOH}$: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$) $160{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.53-$ $3.44\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 3.11-3.01\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{NCH}_{2}\right)$, $2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 $\left.{ }^{N} \mathcal{D i}^{\mathrm{c}}{ }^{\ominus} \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=200.37(\mathrm{~s}, \mathrm{CO}), 66.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 52.0\left(\mathrm{t}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 44.4(\mathrm{t}$, $3 \times \mathrm{NCH}_{2}$), $28.7\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 169.1335$, found 169.1335. DA168

1-(2-Oxopropyl)-1,4-diazabicyclo[2.2.2]octan-1-ium triflate (1dH ${ }^{+} \mathbf{O T f}^{-}$). Trimethylsilyl triflate ($0.82 \mathrm{~g}, 3.7 \mathrm{mmol}$) was added to a solution of $\mathbf{1 d H} \mathbf{C l}^{-}(0.50 \mathrm{~g}, 2.4 \mathrm{mmol})$ in MeCN $(5 \mathrm{~mL})$ under N_{2} at ambient temperature. After the evolution of HCl stopped, stirring was continued for 30 min . The solvent was evaporated and the crude product was recrystallized from $\mathrm{MeCN}: \mathrm{Et}_{2} \mathrm{O} . \mathbf{1 d H}^{+} \mathbf{O T f}^{-}$was obtained as colorless solid ($0.62 \mathrm{~g}, 2.0 \mathrm{mmol}, 83 \%$). Mp (MeCN:Et ${ }_{2}$ O) $201{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82$ -3.75 (br, m, $6 \mathrm{H}, 3 \times{ }^{+} \mathrm{NCH}_{2}$), $3.60-3.52\left(\mathrm{br}, \mathrm{m}, 6 \mathrm{H}, 3 \times \mathrm{NCH}_{2}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=200.3(\mathrm{~s}, \mathrm{CO}), 120.7\left(\mathrm{q}, J=322 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 67.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 51.7(\mathrm{t}$,
 $\left[\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 169.1335$, found $169.1335 ; m / z$ calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\left(2 \times \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)\right]^{-}$: 467.0387, found 467.0377. DA168

1-(2-Oxo-2-phenylethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide ($\mathbf{1 e H}^{+} \mathbf{B r}^{-}$). From bromoacetophenone $(0.50 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathrm{DABCO}(0.28 \mathrm{~g}, 2.5 \mathrm{mmol})$ according to procedure A. $\mathbf{1 e H}{ }^{+} \mathbf{B r}^{-}$was obtained as colorless solid ($0.62 \mathrm{~g}, 2.0 \mathrm{mmol}, 80 \%$). $\mathbf{M p}\left(\mathrm{MeOH}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ $255^{\circ} \mathrm{C}$; lit: $252-255^{\circ}{ }^{\circ}$. ${ }^{[37 \mathrm{cc}]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=8.07-7.98\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $7.79-7.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.65-7.57\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70-3.59$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 3.18-3.06\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{NCH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{DMSO-d} \mathrm{~d}_{6}$) $\delta=191.2$ (s, CO), $134.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 65.1\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $52.4\left(\mathrm{t}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 44.4\left(\mathrm{t}, 3 \times \mathrm{NCH}_{2}\right)$. HRMS (ESI +): m / z calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 231.1492$, found 231.1485. DA72

1-(2-(tert-Butoxy)-2-oxoethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide ($\mathbf{1 f H}{ }^{+} \mathbf{B r}^{-}$). From tert-butylbromoacetate ($4.68 \mathrm{~g}, 24.0 \mathrm{mmol}$) and DABCO (2.70 g , 24.0 mmol) according to procedure \mathbf{A}. $\mathbf{1 f} \mathbf{H}^{+} \mathbf{B r}^{-}$was obtained as colorless solid (7.01 g , $22.8 \mathrm{mmol}, 95 \%) . \mathbf{M p}\left(\mathrm{MeOH}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right) 250{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta=4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.53-3.44\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times^{+} \mathrm{NCH}_{2}\right), 3.11-3.03(\mathrm{~m}, 6 \mathrm{H}$, $3 \times \mathrm{NCH}_{2}$), $1.48\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=163.5(\mathrm{~s}, \mathrm{CO}), 84.0(\mathrm{~s}$, C_{q}), $61.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.2\left(\mathrm{t}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 44.4\left(\mathrm{t}, 3 \times \mathrm{NCH}_{2}\right), 27.6\left(\mathrm{q}, 3 \times \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 227.1754$, found 227.1747. DA54

1-(2-Ethoxy-2-oxoethyl)quinuclidin-1-ium bromide ($\mathbf{1 g H}^{+} \mathbf{B r}^{-}$). From ethylbromoacetate $(0.75 \mathrm{~g}, 4.5 \mathrm{mmol})$ and quinuclidine ($0.50 \mathrm{~g}, 4.5 \mathrm{mmol}$) according to procedure $\mathbf{A} \cdot \mathbf{1} \mathbf{g H}^{+} \mathbf{B r}^{-}$ was obtained as colorless solid ($0.89 \mathrm{~g}, 3.2 \mathrm{mmol}, 71 \%$). Mp ($\mathrm{MeOH}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$) $162{ }^{\circ} \mathrm{C}$; lit $162-163{ }^{\circ} \mathrm{C}^{[37 \mathrm{a}]}{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=4.34(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), $4.24\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.67-3.59\left(\mathrm{br} \mathrm{m}, 6 \mathrm{H}, 3 \times^{+} \mathrm{NCH}_{2}\right)$, 2.07-2.03 (br $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$), $1.92-1.85\left(\mathrm{br} \mathrm{m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.21\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- $\left.d_{6}\right) \delta=164.5\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 61.9\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 60.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CO}\right), 54.6\left(\mathrm{q}, 3 \times{ }^{+} \mathrm{NCH}_{2}\right), 23.1(\mathrm{t}$, $\left.3 \times \mathrm{CH}_{2}\right), 18.8(\mathrm{t}, \mathrm{CH}), 13.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m/z calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2}\right]^{+}$: 198.1489, found 198.1482. DA78

2-Ethoxy- $\mathbf{N , N , N}$-trimethyl-2-oxoethan-1-aminium bromide ($\mathbf{1} \mathbf{h H}^{+} \mathbf{B r}^{-}$). From ethylbromoacetate ($1.0 \mathrm{~g}, 6.0 \mathrm{mmol}$) and $\mathrm{NMe}_{3}\left(0.35 \mathrm{~g}, 5.9 \mathrm{mmol}, 50 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ according to procedure $\mathbf{A} . \mathbf{1 h H}^{+} \mathbf{B r}^{-}$was obtained as colorless solid ($1.1 \mathrm{~g}, 4.9 \mathrm{mmol}, 83 \%$). Mp (MeOH:C $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$): $156^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.20(\mathrm{q}, J=$ 7.1 Hz, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $3.24\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times{ }^{+} \mathrm{NCH}_{3}, 1.21\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}\right.$ NMR (100 MHz, DMSO- d_{6}) $\delta=165.3(\mathrm{~s}, \mathrm{CO}), 62.9\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 62.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 53.5(\mathrm{q}$, $3 \times{ }^{+} \mathrm{NCH}_{3}$), $14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI +): m / z calcd. for $\left[\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 146.1176$ found 146.1171. DA96
N, N, N-Trimethyl-2-oxo-2-phenylethan-1-aminium bromide (1iH $\left.{ }^{+} \mathbf{B r}^{-}\right)$. From bromoacetophenone ($1.0 \mathrm{~g}, 5.0 \mathrm{mmol}$) and $\mathrm{NMe}_{3}(0.31 \mathrm{~g}, 5.2 \mathrm{mmol}, 50 \mathrm{w} \%$ in water $)$ according to procedure \mathbf{A}. The precipitate was additionally washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathbf{1 i H}{ }^{+} \mathbf{B r}^{-}$was obtained as colorless solid ($1.29 \mathrm{~g}, 5.00 \mathrm{mmol}$, quant.). Mp (MeOH: $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right) 220{ }^{\circ} \mathrm{C}$; lit: $220{ }^{\circ} \mathrm{C} . .^{[37 \mathrm{~b}]}$ ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=8.05-7.96\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.79-7.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\right.$ H), $7.67-7.56\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{NMe}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO $-d_{6}$) $\delta=191.5(\mathrm{~s}, \mathrm{CO}), 134.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 134.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.9(\mathrm{~d}$,
 $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}\right]^{+}: 178.1226$ found 178.1222. DA95

2.7.3 Products of the Reactions of the Ammonium Ylides 1 with the Electrophiles 2-6

2.7.3.1 Reactions with Benzhydrylium Ion 2a-BF4

General procedure \mathbf{B} for the synthesis of the products $\mathbf{7 - B F} 4 . \mathrm{KO}^{t} \mathrm{Bu}$ (1.1 Equiv) in THF (5 mL) was added to a suspension of $\mathbf{2 a - B F} 4(147-294 \mu \mathrm{~mol})$ and $\mathbf{1 H}^{+} \mathbf{X}^{-}(147-294 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}(5 \mathrm{~mL}, 3: 2)$ at ambient temperature until discoloration of $\mathbf{2 a -} \mathbf{-} \mathbf{B F}_{4}$ was observed. The solvent was evaporated and the resulting solid was taken up in $\mathrm{MeCN}(10 \mathrm{~mL})$ and insoluble solids were removed. After removal of the solvent the crude product was obtained. The crude product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}(10: 1)$ or MeCN to give the ammonium salts $\mathbf{7 - B F} 4$. The ammonium salts $7-\mathrm{BF}_{4}$ are sensitive to moisture and acids and are decomposed easily.

1-(1-Cyano-2,2-bis(4-(dimethylamino)phenyl)ethyl)-1,4-diazabicyclo[2.2.2]octan-1ium tetrafluoroborate ($\mathbf{7 a - B F} 4$). From $\mathbf{2 a - B F} 4$ (100 mg , $294 \mu \mathrm{~mol}$), $\mathbf{1 a H}^{+} \mathbf{B r}^{-}$(68.2 mg , $294 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(35.0 \mathrm{mg}, 312 \mu \mathrm{~mol})$ according to procedure \mathbf{B}. The crude product was obtained in 96% yield ($139 \mathrm{mg}, 283 \mu \mathrm{~mol}$). After recrystallization from MeCN 7a-BF4 was obtained as a yellow solid ($30.1 \mathrm{mg}, 61.3 \mu \mathrm{~mol}, 21 \%$). Mp (MeCN) $133^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=7.38\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.30\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $6.66\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, CH), $3.51-3.42\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 3.04\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.84\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.83$ $\left(\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=150.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 149.9$
$\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 127.5(\mathrm{~s}$,
$\mathrm{Me}_{2} \mathrm{~N}$ $52.8\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 46.0(\mathrm{~d}, \mathrm{CH}), 44.9\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 40.7\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.3\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{5}\right]^{+}: 404.2809$, found 404.2807. DA164

1-(1-(Diethylamino)-3,3-bis(4-(dimethylamino)phenyl)-1-oxopropan-2-yl)-1,4-diazabi-cyclo[2.2.2]octan-1-ium tetrafluoroborate (7b-BF4). From 2a-BF4 ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 b H}^{+} \mathbf{C l}^{-}(77.0 \mathrm{mg}, 294 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(35.0 \mathrm{mg}, 312 \mu \mathrm{~mol})$ according to procedure \mathbf{B}. The crude product was obtained in 91% yield ($151 \mathrm{mg}, 267 \mu \mathrm{~mol}$). After recrystallization from MeCN 7b-BF4 was obtained as a yellow solid ($8.8 \mathrm{mg}, 16 \mu \mathrm{~mol}, 5 \%$).
 $\mathbf{M p}(\mathrm{MeCN}) 181^{\circ} \mathrm{C}$ (decomp.). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=7.54$ $\left(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.13\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.69$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $6.55\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 5.44(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 4.61(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.90-3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{b}\right), 3.59-3.41\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right)$,
3.33-3.28 (m, 1 H, CHH H^{b}), 3.15-3.08 (m, 1 H, CHH ${ }^{a}$), $3.01-2.91\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.86(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.73-2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH} \mathrm{H}^{a}\right), 1.09\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.38\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right) \delta=164.6(\mathrm{~s}, \mathrm{CO}), 150.0(\mathrm{~s}$, C_{Ar}), $149.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 113.0$ $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 71.1(\mathrm{~d}, \mathrm{CH}), 52.4\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 49.7(\mathrm{~d}, \mathrm{CH}), 45.1\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right)$, $45.0(\mathrm{t}, \mathrm{CHH}), 42.1(\mathrm{t}, \mathrm{CHH}), 40.7\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.4\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 13.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 11.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI +): m / z calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}\right]^{+}: 478.3540$, found 478.3538. DA189-2

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-ethoxy-3-oxopropan-2-yl)-1,4-diazabicyclo-[2.2.2]octan-1-ium tetrafluoroborate ($\mathbf{7 c}-\mathbf{B F}_{4}$). From 2a-BF4 ($50.0 \mathrm{mg}, 147 \mu \mathrm{~mol}$), $\mathbf{1 c H}^{+} \mathbf{B r}^{-}$ $(41.0 \mathrm{mg}, 147 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(25.0 \mathrm{mg}, 223 \mu \mathrm{~mol})$ according to procedure \mathbf{B}. The crude product was recrystallized from MeCN to give $\mathbf{7 c - B F} 4$ as a colorless solid ($21.7 \mathrm{mg}, 40.3 \mu \mathrm{~mol}$,
 27\%). Mp ($\left.\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right) 18{ }^{\circ}{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=$ $7.44\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.13\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $6.65\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.56\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $5.37(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.66(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.87-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.50-3.33\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 3.02-2.91\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.79(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{3}\right), 0.86\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=166.4(\mathrm{~s}, \mathrm{CO})$, $149.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 149.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 128.0(\mathrm{~s}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 113.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 76.4(\mathrm{~d}, \mathrm{CH}), 62.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.1\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 47.4$ $(\mathrm{d}, \mathrm{CH}), 45.0\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 40.5\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.4\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 13.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m/z calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+}: 451.3068$, found 451.3067. DA157-2

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxobutan-2-yl)-1,4-diazabicyclo[2.2.2]octan-1ium trifluoromethanesulfonate (7d-OTf). From 2a-BF4 ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 d H}^{+} \mathbf{O T f}^{-}$ $(93.6 \mathrm{mg}, 294 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(84.0 \mathrm{mg}, 749 \mu \mathrm{~mol})$ according to procedure B. After recrystallization from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}$ 7d-OTf was obtained as a colorless solid ($123 \mathrm{mg}, 216 \mu \mathrm{~mol}, 73 \%$). Mp ($\left.\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right) 176{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400
MHz, DMSO- $\left.d_{6}\right) \delta=7.45\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.14(\mathrm{~d}, J=$ $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.67\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.57\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $5.67(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.55(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.48-3.39(\mathrm{~m}, 3 \mathrm{H}$, $\left.3 \times \mathrm{CH} H^{b}\right), 3.32-3.25\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH} H^{a} \mathrm{H}\right), 3.02-2.85\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$, $2.80\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=205.4(\mathrm{~s}, \mathrm{CO})$, $149.73\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 149.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 127.0(\mathrm{~s}$, C_{Ar}), $121.1\left(\mathrm{q}, J=322.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 113.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 77.0(\mathrm{~d}, \mathrm{CH}), 65.3$
$(\mathrm{d}, \mathrm{CH}), 52.1(\mathrm{t}, 3 \times \mathrm{CHH}), 44.9\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 40.8\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.4\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 35.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 421.2962$, found 421.2962. DA173

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxo-3-phenylpropan-2-yl)-1,4-diazabicyclo-[2.2.2]octan-1-ium tetrafluoroborate (7e-BF4). From 2a-BF4 ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 e H}^{+} \mathbf{B r}^{-}$ $(91.6 \mathrm{mg}, 294 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(34.6 \mathrm{mg}, 308 \mu \mathrm{~mol})$ according to procedure \mathbf{B} to yield 94% of the crude product ($157 \mathrm{mg}, 275 \mu \mathrm{~mol}$). The crude product was recrystallized from MeCN to give $\mathbf{7 e - B F} 4$ as a give solid ($75.2 \mathrm{mg}, 132 \mu \mathrm{~mol}, 45 \%$). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right) 134{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, DMSO- d_{6}) $\delta=8.05\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.60-7.58\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $7.44\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.96\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.23\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.76(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.59-3.47\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.98-2.88(\mathrm{~m}, 6 \mathrm{H}$,
 $3 \times \mathrm{CH}_{2}$), $2.84\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.62\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, DMSO- d_{6}) $\delta=196.3(\mathrm{~s}, \mathrm{CO}), 149.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 149.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 137.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $134.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), 128.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 126.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), $113.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.4$ (d, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 72.6(\mathrm{~d}, \mathrm{CH}), 52.6$ (t , $\left.3 \times \mathrm{CH}_{2}\right), 49.3(\mathrm{~d}, \mathrm{CH}), 45.0\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 40.4\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.3\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 483.3118$, found 483.3116. DA158

1-(1-(tert-Butoxy)-3,3-bis(4-(dimethylamino)phenyl)-1-oxopropan-2-yl)-1,4-diaza-bicyclo[2.2.2]octan-1-ium tetrafluoroborate (7f-BF4). From 2a-BF4 ($50 \mathrm{mg}, 147 \mu \mathrm{~mol}$), $\mathbf{1 f H}^{+} \mathbf{B r}^{-}(45.3 \mathrm{mg}, 147 \mu \mathrm{~mol})$, $\mathrm{KO}^{t} \mathrm{Bu}(25.0 \mathrm{mg}, 223 \mu \mathrm{~mol})$ according to procedure B. After recrystallization from $\mathrm{MeCN} 7 \mathbf{f - B F} 4$ was obtained as a yellow solid ($64.6 \mathrm{mg}, 114 \mu \mathrm{~mol}, 78 \%$). Mp $166{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=7.41\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\right.$ H), $7.15\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.64\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.19(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.54(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.51-3.45$ $\left(\mathrm{m}, 3 \mathrm{H}, 3 \times \mathrm{CH} H^{b}\right), 3.38-3.30\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH} H^{a} \mathrm{H}\right), 3.00-2.94\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.82(\mathrm{~s}, 6 \mathrm{H}$,
 $2 \times \mathrm{CH}_{3}$), $2.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=165.4(\mathrm{~s}, \mathrm{CO}), 150.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 149.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}{ }^{-}\right.$ H), $129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 113.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $112.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 84.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 76.8(\mathrm{~d}, \mathrm{CH}), 52.1\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 47.9(\mathrm{~d}, \mathrm{CH}), 45.0\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right)$, $40.6\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.4\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 27.2\left(\mathrm{q}, 3 \times \mathrm{CH}_{3}\right)$. HRMS (ESI+): m/z calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+}: 479.3381$, found 479.33878. DA159

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-ethoxy-3-oxopropan-2-yl)quinuclidin-1-ium

 tetrafluoroborate ($\mathbf{7 g - B F} 4$). From 2a-BF 4 ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 g H}^{+} \mathbf{B r}^{-}(81.8 \mathrm{mg}, 294 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(35.0 \mathrm{mg}, 312 \mu \mathrm{~mol})$ according to procedure B. After recrystallization from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN} 7 \mathbf{7 - B F} 4$ was obtained as a yellow solid (121 mg, $225 \mu \mathrm{~mol}, 77 \%$). Mp $\left(\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right) 213{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=7.43\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $7.12\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.65\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.26(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.62(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.86-3.67(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.62-3.56\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CHH}^{b}\right), 3.51-3.40\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH}^{a} \mathrm{H}\right), 2.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$, $2.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.84-1.69\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 0.85(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=166.6(\mathrm{~s}, \mathrm{CO})$, $149.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 149.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $128.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 113.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 76.1$ (d, CH), $62.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 54.2(\mathrm{t}, 3 \times \mathrm{CHH}), 47.6(\mathrm{~d}, \mathrm{CH}), 40.5\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.4\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 23.7$ $\left(\mathrm{t}, 3 \times \mathrm{CH}_{2}\right), 19.1(\mathrm{~d}, \mathrm{CH}), 13.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m/z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$: 450.3115 , found 450.3115 . DA169

1,1-Bis(4-(dimethylamino)phenyl)-3-ethoxy- N, N, N-trimethyl-3-oxopropan-2-aminium tetrafluoroborate ($\mathbf{7 h}-\mathbf{B F} 4$). From 2a-BF4 ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 h H}^{+} \mathbf{B r}^{-}(90.6 \mathrm{mg}, 401 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(35.0 \mathrm{mg}, 312 \mu \mathrm{~mol})$ according to procedure B. After recrystallization from $\mathrm{MeCN}: \mathrm{Et}_{2} \mathrm{O} \mathbf{7 h}-\mathrm{BF}_{4}$ was obtained as a colorless solid ($61.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 51 \%$). Mp $\left(\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right) 148{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=7.45\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $7.16\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.66\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.46(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.55(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.94-3.69(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.06\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.82\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 0.83(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta=166.9(\mathrm{~s}, \mathrm{CO}), 150.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 149.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$,

$129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 127.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $113.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 76.4(\mathrm{~d}, \mathrm{CH}), 62.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 53.4$ $\left(\mathrm{q}, 3 \times \mathrm{CH}_{3}\right), 48.6(\mathrm{~d}, \mathrm{CH}), 40.5\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 40.4\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 13.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m / z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: 398.2802$, found 398.2801. DA161

1,1-Bis(4-(dimethylamino)phenyl)- N, N, N-trimethyl-3-oxo-3-phenylpropan-2-aminium tetrafluoroborate (7i-BF4). was synthesized from $\mathbf{2 a - B F} 4$ ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 i H}^{+} \mathbf{B r}^{-}$ ($76 \mathrm{mg}, 294 \mu \mathrm{~mol}$) and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(35.0 \mathrm{mg}, 312 \mu \mathrm{~mol})$ according to procedure B. The crude product was recrystallized from $\mathrm{MeCN}: \mathrm{Et}_{2} \mathrm{O}$ to yield $\mathbf{7 i}-\mathrm{BF}_{4}$ as a yellow solid (116 mg , $224 \mu \mathrm{~mol}, 76 \%$). Mp. (Et $2 \mathrm{O}: \mathrm{MeCN}$) $159^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=8.13-8.05$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.66-7.58\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.46\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.06-$ $7.00\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.75-6.68\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.40(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.32-$ $6.23\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.68(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.14\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.87(\mathrm{~s}, 6 \mathrm{H}$, $2 \times \mathrm{CH}_{3}$), $2.64\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=195.8(\mathrm{~s}, \mathrm{CO}), 149.5(\mathrm{~s}$,

C_{Ar}), $149.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 136.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 134.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $126.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 112.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 72.2(\mathrm{~d}, \mathrm{CH}), 53.4$ $\left(\mathrm{q}, 3 \times \mathrm{CH}_{3}\right), 49.9(\mathrm{~d}, \mathrm{CH}), 39.8\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 39.7\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right)$. HRMS (ESI+$): \mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}\right]^{+}: 430.2853$, found 430.2851. DA495-2

2.7.3.2 Reactions with Quinone Methide 3c

General procedure \mathbf{C} for the synthesis of the products $9 . \mathrm{KO}^{t} \mathrm{Bu}(0.39-1.0 \mathrm{mmol})$ in DMSO (2 mL) was added to $\mathbf{1 H}^{+} \mathbf{X}^{-}(0.4-1.0 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ at ambient temperature. After stirring for $1 \mathrm{~min} \mathbf{3 c}(0.2-0.5 \mathrm{mmol})$ dissolved $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. After 5 minutes reaction time aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$ dried over MgSO_{4}. The solvent was removed and the crude product was recrystallized from ethanol or purified by column chromatography (silica). The diastereomeric excess of $\mathbf{9}$ was determined from the crude product after aqueous work-up.

General procedure \mathbf{D} for the low temperature synthesis of the products 9. $\mathrm{KO}^{t} \mathrm{Bu}$
 DMF (5 mL) at $-15^{\circ} \mathrm{C}$. The solution was stirred for 1 min , then $\mathbf{3 c}(0.37-0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added dropwise and stirring was continued for 30 min . The reaction mixture was quenched with water $(5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ and allowed to warm to ambient temperature. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were washed with water ($3 \times 20 \mathrm{~mL}$). The solvent was evaporated and the crude was subjected to an NMR analysis. If possible, $\mathbf{9}$ was crystallized from EtOH or MeOH .

5,7-Di-tert-butyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carbonitrile (rac-9ac) From $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(90.3 \mathrm{mg}, 389 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(44 \mathrm{mg}, 0.39 \mathrm{mmol})$, and $\mathbf{3 c}(100 \mathrm{mg}, 324 \mu \mathrm{~mol})$ according to procedure \mathbf{C}. After purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$ pentane:EtOAc 25:1) rac-9ac was obtained in 2 fractions as colorless oils ($59 \mathrm{mg}, 170 \mu \mathrm{~mol}$,
 52%, trans:cis 33:67). rac-cis-9ac solidified slowly on treatment with EtOH. Fraction 1: rac-trans-9ac (obtained as mixture with 3c). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.08\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.41(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 3.35(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=185.3(\mathrm{~s}, \mathrm{CO}), 151.1(\mathrm{~s}, \mathrm{C}=\mathrm{CH}), 150.9$ (s, $C=\mathrm{CH}$), $138.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 138.0(\mathrm{~d}, \mathrm{C}=C \mathrm{H}), 136.4(\mathrm{~d}, \mathrm{C}=\mathrm{CH}), 130.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right) 129.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H) $128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 111.5(\mathrm{~s}, \mathrm{CN}), 39.7(\mathrm{~d}, \mathrm{CH}), 35.5\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.4\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.1$ ($\mathrm{s}, \mathrm{C}_{\mathrm{q}}$), $29.4\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.2\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 20.1(\mathrm{~d}, \mathrm{CH})$. Fraction 2: rac-cis9ac. Mp 101-102 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.22-7.15\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.18(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.02(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 3.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.62$ $(\mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.17(\mathrm{~s}$,
$\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=185.4(\mathrm{~s}, \mathrm{CO}), 151.2(\mathrm{~s}$,
$\mathrm{C=CH}), 150.4(\mathrm{~s}, \mathrm{C}=\mathrm{CH}), 139.8(\mathrm{~d}, \mathrm{C}=\mathrm{CH}), 138.5(\mathrm{~s}, \mathrm{C}), 135.8(\mathrm{~d}, \mathrm{C}=\mathrm{CH})$, $130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 116.4(\mathrm{~s}, \mathrm{CN}), 36.9(\mathrm{~d}, \mathrm{CH}), 35.7(\mathrm{~s}$, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.2\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 33.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 29.4\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.3\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, 20.9 (d, CH). HRMS (EI): m / z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}\right]^{+}: 347.2244$, found 347.2241 . MS (EI) $m / z=348$ (13), 347 (44), 320 (100), 305 (21), 276 (13), 189 (17). DA256-3

5,7-Di-tert-butyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carbonitrile (rac-9ac). From $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(132 \mathrm{mg}, 568 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(64 \mathrm{mg}, 0.57 \mathrm{mmol})$, and $\mathbf{3 c}(117 \mathrm{mg}, 379 \mu \mathrm{~mol})$ according to procedure D. rac-9a was obtained only as crude product ($76.4 \mathrm{mg}, 219 \mu \mathrm{~mol}, 58 \%$, trans:cis 33:67), and decomposed during the attempted recrystallization from MeOH . (Analytical data see above) DA504
${ }^{1} \mathbf{H}$ NMR Monitoring of the reaction of 1 a with $3 \mathbf{c}$. $\mathrm{KO}^{t} \mathrm{Bu}(28.1 \mathrm{mg}, 250 \mu \mathrm{~mol})$ in DMSO$d_{6}(1 \mathrm{~mL})$ was added dropwise to a stirred solution of $\mathbf{1 a H} \mathbf{B r}^{+}(58.0 \mathrm{mg}, 250 \mu \mathrm{~mol})$ and quinone methide $3 \mathbf{c}(77.1 \mathrm{mg} 250 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CD}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}, 1: 1)$ at ambient temperature over 1 min . After stirring for 1 min the solution was quenched by freezing at $20^{\circ} \mathrm{C}$. For NMR-analysis the solution was brought back to $20^{\circ} \mathrm{C}$. The reaction mixture showed only signals of the product $\mathbf{9 a c}$, but no signals of the intermediate betaine 8ac or ylide 1a. DA807

5,7-Di-tert-butyl- N, N-diethyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carboxamide ($\mathrm{rac}-\mathbf{9 b c}$). From $\mathbf{1 b H} \mathbf{H}^{+} \mathbf{C l}^{-}(262 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathrm{KO}^{t} \mathrm{Bu}(112 \mathrm{mg}, 998 \mu \mathrm{~mol})$ and $\mathbf{3 c}(154 \mathrm{mg}$, $499 \mu \mathrm{~mol})$ according to procedure \mathbf{C}. After column chromatography ($\mathrm{SiO}_{2} ; n$-Pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1) rac-9bc was obtained as light yellow oil ($137 \mathrm{mg}, 325 \mu \mathrm{~mol}, 65 \%$, trans:cis $75: 25$), from which cis-rac-9be solidified on treatment with EtOH. trans-rac-9bc. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.11\left(\mathrm{~s}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.52(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), 3.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.71-3.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}), 3.26-3.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHH}$, $2 \times \mathrm{CH} H), 3.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.15-1.01$ ($\mathrm{m}, 15 \mathrm{H}, 2 \times \mathrm{CH}_{3}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, signal superimposed by cis-isomer). ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=185.8(\mathrm{~s}, \mathrm{CO}), 166.8(\mathrm{~s}, \mathrm{CON}), 149.8(\mathrm{~s}, C=\mathrm{CH})$, $149.7(\mathrm{~s}, C=\mathrm{CH}), 139.5(\mathrm{~s}, \mathrm{C}=C \mathrm{H}), 139.3(\mathrm{~s}, \mathrm{C}=C \mathrm{H}), 137.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 132.7$ ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), $129.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 42.2(\mathrm{t}, \mathrm{CHH}), 41.2(\mathrm{t}, \mathrm{CHH}), 39.3(\mathrm{~d}, \mathrm{CH})$, $37.5(\mathrm{~d}, \mathrm{CH}), 37.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 35.3\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.2\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 29.5\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.4(\mathrm{q}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3\left(\mathrm{q}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{CH}_{3}\right), 14.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{2}\right]^{+}: 421.2975$, found 421.2967. MS (EI) $m / z=421$ (13), 176 (11), 100 (100).
cis-rac-9bc. Mp (EtOH) $130-132{ }^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.06\left(\mathrm{~s}, 4 \mathrm{H}, 4 \times \mathrm{CAr}^{-}\right.$ H), $6.86(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 3.53-3.14(\mathrm{~m}, 5 \mathrm{H}$, $2 \times \mathrm{CH}_{2}, \mathrm{CH}$, signal superimposed by trans-isomer), $2.79(\mathrm{~d}, J=9.7,1 \mathrm{H}, \mathrm{CH}), 2.29(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.27 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, signal superimposed by cis-isomer), 1.15 (s,
 $9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, signal superimposed by trans-isomer), $1.14-1.02(\mathrm{~m}, 6 \mathrm{H}$, $2 \times \mathrm{CH}_{3}$, signal superimposed by trans-isomer). ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=186.1(\mathrm{~s}, \mathrm{CO}), 166.0(\mathrm{~s}, \mathrm{CON}), 148.9(\mathrm{~s}, C=\mathrm{CH}), 148.4(\mathrm{~s}, C=\mathrm{CH}), 143.4(\mathrm{~d}, \mathrm{C}=\mathrm{CH}), 138.6$ $(\mathrm{d}, \mathrm{C}=\mathrm{CH}), 136.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 42.1\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $40.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.7(\mathrm{~d}, \mathrm{CH}), 36.4(\mathrm{~d}, \mathrm{CH}), 35.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 34.9\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.7\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.5$ $\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.4\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.2\left(\mathrm{q}, \mathrm{C}_{\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 14.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.1\left(\mathrm{q}, \mathrm{CH}_{3}\right) \text {. HRMS }}\right.$ (APCI): m / z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{2}\right]^{+}: 422.3054$, found 422.3052. DA324

Table 2.20. Crystallographic data rac-cis-9bc.

5,7-Di-tert-butyl- N, N-diethyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carboxamide

 ($\mathrm{rac}-\mathbf{9 b c}$). From $\mathbf{1 b H}^{+} \mathbf{C l}^{-}(146 \mathrm{mg}, 558 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(63 \mathrm{mg}, 0.56 \mu \mathrm{~mol})$, and $\mathbf{3 c}(114 \mathrm{mg}$, $370 \mu \mathrm{~mol})$ according to procedure \mathbf{D}. After recrystallization from MeOH rac- $\mathbf{9 b c}$ was obtained as colorless solid ($135 \mathrm{mg}, 320 \mu \mathrm{~mol}, 87 \%$, trans:cis $83: 17$ in crude product; trans:cis 1:6 after recrystallization from MeOH). (Analytical data see above). DA501NMR-Monitoring of the reactions of $\mathbf{1 b}$ and $\mathbf{3 c} . \mathbf{1 b H}^{+} \mathbf{C l}^{-}(32.3 \mathrm{mg}, 123 \mu \mathrm{~mol})$ and $\mathbf{3 c}$ ($38.2 \mathrm{mg}, 124 \mu \mathrm{~mol}$) were dissolved in DMSO- $d_{6}: \mathrm{CD}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}, 1.5: 1)$ and $\mathrm{KO}^{t} \mathrm{Bu}$ dissolved in DMSO- $d_{6}\left(900 \mu 1,2.57 \times 10^{-1} \mathrm{M}\right)$ was added at ambient temperature. After 30 s stirring the
solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show only the product $\mathbf{9 b c}$ and no formation of the intermediate betaine $\mathbf{8 b c}$ or ylide 1b. DA893

Ethyl 5,7-di-tert-butyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carboxylate (rac9cc). From $\mathbf{1 c} \mathbf{H}^{+} \mathbf{B r}^{-}(136 \mathrm{mg}, 487 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(55 \mathrm{mg}, 0.49 \mathrm{mmol})$, and $\mathbf{3 c}(100 \mathrm{mg}$, $324 \mu \mathrm{~mol})$ according to procedure C. After crystallization from EtOH rac-9cc was obtained as colorless needles ($106 \mathrm{mg}, 269 \mu \mathrm{~mol}, 83 \%$, trans:cis $>95: 5$). Mp (EtOH) $141{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.15-7.06\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.87(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.81$
 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.31-4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), $3.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{CH}_{3}\right), 1.32(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=185.9(\mathrm{~s}, \mathrm{CO}), 169.8\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 149.4(\mathrm{~s}, C=\mathrm{CH}), 149.4(\mathrm{~s}, C=\mathrm{CH}), 139.2$ $(\mathrm{d}, \mathrm{C}=C \mathrm{H}), 138.0(\mathrm{~d}, \mathrm{C}=\mathrm{CH}), 137.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 131.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ $\mathrm{H}), 61.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 40.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 38.2(\mathrm{~d}, \mathrm{CH}), 36.7(\mathrm{~d}, \mathrm{CH}), 35.4\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.2\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $29.5\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.3\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.4\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3}\right]^{++}: 394.2502$, found 394.2508. DA356

Ethyl 5,7-di-tert-butyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carboxylate (rac9cc). From $\mathbf{1 c H} \mathbf{H}^{+} \mathbf{B r}^{-}(148 \mathrm{mg}, 530 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(60 \mathrm{mg}, 0.53 \mathrm{mmol})$ and $\mathbf{3 c}(109 \mathrm{mg}$, $353 \mu \mathrm{~mol}$) according to procedure D. rac-9cc was obtained only as crude product (78 mg , $198 \mu \mathrm{~mol}, 56 \%$, trans:cis $>95: 5$), and decomposed during attempted recrystallization from MeOH. (Analytical data see above) DA515

NMR-Monitoring of the reaction of $\mathbf{1 c}$ with $\mathbf{3 c}$. $\mathrm{KO}^{t} \mathrm{Bu}$ dissolved in DMSO- $d_{6}(900 \mu \mathrm{l}$, $1.38 \times 10^{-1} \mathrm{M}$) was added to a solution of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(35.7 \mathrm{mg}, 128 \mu \mathrm{~mol})$ and $\mathbf{3 c}(36.8 \mathrm{mg}$, $119 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CD}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}, 1.5: 1)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show only the product 9 cc and no formation of an intermediate betaine $8 \mathbf{c c}$ or of ylide 1c. DA892

Table 2.21. Crystallographic data rac-trans-9cc.

1-Benzoyl-5,7-di-tert-butyl-2-(p-tolyl)spiro[2.5]octa-4,7-dien-6-one (rac-9ec). From $\mathbf{1 e H}^{+} \mathbf{B r}^{-}(151 \mathrm{mg}, 485 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(55 \mathrm{mg}, 0.49 \mathrm{mmol})$ and $\mathbf{3 c}(100 \mathrm{mg}, 324 \mu \mathrm{~mol})$ according to procedure \mathbf{C}. The reaction mixture was stirred for 2 h in this case. After recrystallization from EtOH rac-9ec was obtained as colorless solid ($89 \mathrm{mg}, 209 \mu \mathrm{~mol}, 64 \%$,
 trans:cis $50: 50$). $\mathbf{M p}$ (EtOH) $147-150^{\circ} \mathrm{C}$. The integral of one signal of one of the diastereoisomers of rac-9ec was set to $1.0 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.93\left(\mathrm{dd}, J=5.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.85(\mathrm{dd}, J=5.3$, $\left.3.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.63-7.54\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 7.53-7.43\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.14(\mathrm{~s} \text {, }}\right.$
$\left.4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.08\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.03(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.98(\mathrm{~d}$, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, $6.06(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.76(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.57(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.18-1.14\left(\mathrm{~m}, 27 \mathrm{H}, 3 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=194.8(\mathrm{~s}, \mathrm{CO}), 194.0(\mathrm{~s}, \mathrm{CO}), 186.1(\mathrm{~s}, \mathrm{CO}), 185.8(\mathrm{~s}, \mathrm{CO}), 150.1(\mathrm{~s}, C=\mathrm{CH}), 149.8(\mathrm{~s}$, $C=\mathrm{CH}$), 149.0 ($\mathrm{s}, C=\mathrm{CH}$), $148.8(\mathrm{~s}, C=\mathrm{CH}), 142.7(\mathrm{~d}, \mathrm{C}=\mathrm{CH}), 138.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 138.7(\mathrm{~d}, \mathrm{C}=C \mathrm{H})$, 137.9 (s, C_{Ar}), 137.7 (d, C=CH), $137.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 137.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 137.1(\mathrm{~d}, \mathrm{C}=\mathrm{CH}), 133.6$ (d, $\mathrm{C}_{\mathrm{Ar}}-$ $\mathrm{H}), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.3(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 42.0(\mathrm{~d}, \mathrm{CH}), 41.2(\mathrm{~d}, \mathrm{CH}), 40.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 40.0(\mathrm{~d}, \mathrm{CH}), 39.5(\mathrm{~d}$, $\mathrm{CH}), 37.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 35.6\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.3\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.3\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.1\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $29.5\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.4\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.4\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (APCI): m / z calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{2}\right]^{+}: 427.2632$, found 427.2629. MS (EI) $m / z=426$ (25), 309 (10), 105 (100). DA329

1-Benzoyl-5,7-di-tert-butyl-2-(p-tolyl)spiro[2.5]octa-4,7-dien-6-one (rac-9ec). From $\mathbf{e H}^{+} \mathbf{B r}^{-}(165 \mathrm{mg}, 530 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(59 \mathrm{mg}, 0.53 \mathrm{mmol})$, and $\mathbf{3 c}(109 \mathrm{mg}, 353 \mu \mathrm{~mol})$ according to procedure \mathbf{D}. The reaction mixture was stirred for 2 h in this case. After recrystallization from $\mathrm{MeOH} \mathrm{rac}-9 \mathrm{ec}$ was obtained as colorless solid ($103 \mathrm{mg}, 241 \mu \mathrm{~mol}, 68 \%$, trans:cis 60:40). (Analytical data see above) DA505

NMR-Monitoring of the reaction of $\mathbf{1 e}$ with $\mathbf{3 c}$. $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}\left(500 \mu \mathrm{~L}, 2.61 \times 10^{-1}\right.$ M) was added to a solution of $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(40.4 \mathrm{mg}, 130 \mu \mathrm{~mol})$ and $\mathbf{3 c}(36.6 \mathrm{mg}, 119 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CD}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL} ; 1: 1)$ at ambient temperature. After stirring for 30 s the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show decreasing signals of the reactants $\mathbf{1 e}$ and $\mathbf{3 c}$, and increasing signals of the product $\mathbf{9 e c}$, but now formation of an intermediate betaine 8ec. (Evaluation of the kinetics see Kinetics Section) DA894
tert-Butyl 5,7-di-tert-butyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carboxylate hydrate ($\mathrm{rac}-\mathbf{9 f c} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$). From $\mathbf{1 f H}^{+} \mathbf{B r}^{-}(149 \mathrm{mg}, 485 \mu \mathrm{~mol})$, $\mathrm{KO}{ }^{t} \mathrm{Bu}(55 \mathrm{mg}, 0.49 \mathrm{mmol})$ and 3c ($100 \mathrm{mg}, 324 \mu \mathrm{~mol}$) according to procedure C. After column chromatography (n pentane:EtOAc $25: 1$) and recrystallization from i-hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ rac-9fc was obtained as
 colorless solid ($109 \mathrm{mg}, 247 \mu \mathrm{~mol}, 76 \%$, trans:cis $>95: 5$). Mp (i-hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.92\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.72(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{C}=\mathrm{CH})$, 5.03 (s, 1 H, HOH--OC), 4.91 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.64 (d, $J=8.6 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{CH}), 3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HOH}), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31(\mathrm{~s}, 18 \mathrm{H}$, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.3\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 152.9(\mathrm{~s}, \mathrm{CO}), 138.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $137.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.5(\mathrm{~s}, C=\mathrm{CH}), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 126.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 126.5(\mathrm{~s}, C=\mathrm{CH})$, $125.2(\mathrm{~d}, 2 \times \mathrm{C}=\mathrm{CH}), 81.5\left(\mathrm{~s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 77.2(\mathrm{~d}, \mathrm{CH}$, superimposed by solvent), $60.7(\mathrm{~d}, \mathrm{CH})$, $34.3\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.3\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.9(\mathrm{~s}, \mathrm{C} \mathrm{q}), 28.2\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m / z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}\right]^{+}: 422.2815$, found 422.2812. MS (EI) $m / z=441$ (40), 425 (30), 422 (18), 367 (100). DA720

Ethyl 5,7-di-tert-butyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carboxylate (rac-9gc ($=$ rac- $\mathbf{9 c c}$)). From $\mathbf{1 g H} \mathbf{H r}^{-}(57 \mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathrm{KO}^{t} \mathrm{Bu}(26 \mathrm{mg}, 0.23 \mathrm{mmol})$, and $\mathbf{3 c}(51 \mathrm{mg}$, 0.17 mmol) according to procedure \mathbf{C}. After recrystallization from $\mathrm{EtOH} \mathrm{rac}-\mathbf{9 g c}$ ($=r a c-9 \mathrm{cc}$) was obtained as colorless solid ($25 \mathrm{mg}, 63 \mu \mathrm{~mol}, 38 \%$, trans:cis $>95: 5$). (Analytical data see above). DA911

Ethyl 5,7-di-tert-butyl-6-oxo-2-(p-tolyl)spiro[2.5]octa-4,7-diene-1-carboxylate (rac-9hc ($=$ rac- $9 \mathbf{c c}$)). From $\mathbf{1 h H} \mathbf{H}^{+} \mathbf{B r}^{-}(52.4 \mathrm{mg}, 232 \mu \mathrm{~mol}), \mathrm{KO}^{\dagger} \mathrm{Bu}(55 \mathrm{mg}, 0.49 \mathrm{mmol})$, and $\mathbf{3 c}(100 \mathrm{mg}$, $324 \mu \mathrm{~mol}$) according to procedure C. $\mathrm{rac}-\mathbf{9 h c}$ ($=$ rac-9cc) was obtained as colorless needles ($30.0 \mathrm{mg}, 76.0 \mu \mathrm{~mol}, 33 \%$, trans:cis >95:5). (Analytical data see above). DA250

1-Benzoyl-5,7-di-tert-butyl-2-(p-tolyl)spiro[2.5]octa-4,7-dien-6-one (rac-9ic (=rac9dc)). From $\mathbf{1 i H}^{+} \mathbf{B r}^{-}(142 \mathrm{mg}, 550 \mu \mathrm{~mol})$, $\mathrm{KO}^{t} \mathrm{Bu}(62 \mathrm{mg}, 0.55 \mathrm{mmol})$ and $\mathbf{3 c}(113 \mathrm{mg}$, $367 \mu \mathrm{~mol}$) according to procedure \mathbf{C}. The reaction mixture was stirred for 2 h in this case. After recrystallization from EtOH rac-9ic (=rac-9dc) was obtained as colorless solid (88.8 mg , $208 \mu \mathrm{~mol}, 57 \%$, trans:cis 50:50). (Analytical data see above). DA496

2.7.3.3 Reactions with Benzylidene Malonates 4

General procedure E for the synthesis of the Products 11. $\mathrm{KO}^{t} \mathrm{Bu}(0.6-1.2 \mathrm{mmol})$ dissolved in DMSO (5 mL) was added to a solution of $\mathbf{1 H}^{+} \mathbf{X}^{-}(0.6-1.2 \mathrm{mmol})$ in DMSO (5 mL) at ambient temperature. After $30 \mathrm{~s} 4(0.3-0.6 \mathrm{mmol})$ was added and the solution was stirred for $5-15 \mathrm{~min}$. The reaction mixture was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(25 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$, and dried over MgSO_{4}. The solvent was evaporated and if necessary the products where purified by flash column chromatography (n pentane:EtOAc, 20:1; oils and solids) and/or recrystallized from ethanol (solids).

Diethyl 2-cyano-3-(4-methylphenyl)cyclopropane-1,1-dicarboxylate (rac-11ad). A solution of $\mathrm{KO}^{t} \mathrm{Bu}(124 \mathrm{mg}, 1.11 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added dropwise to a suspension of $\mathbf{1 a H} \mathbf{H}^{+} \mathbf{B r}^{-}(244 \mathrm{mg}, 1.05 \mathrm{mmol})$ and $\mathbf{4 d}(250 \mathrm{mg}, 953 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$ and the solution was stirred for 5 min at ambient temperature. The reaction mixture was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water (20 mL) and dried over MgSO_{4}. The solvent was removed and the crude product was purified by chromatography (silica, n-pentane: $\mathrm{Et}_{2} \mathrm{O}=20: 1$) to give rac11ad as yellow oil ($130 \mathrm{mg}, 0.430 \mu \mathrm{~mol}, 45 \%, 93: 7$ trans:cis after work-

up). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.11\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $7.06\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.45-4.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.02-3.89$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.36\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=165.3\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 164.0\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 138.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.0$ ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), $116.2(\mathrm{~s}, \mathrm{CN}), 63.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 35.6(\mathrm{~d}, \mathrm{CH}), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $15.6(\mathrm{~d}, \mathrm{CH}) 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m / z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}\right]^{++}: 301.1309$, found 301.1306. DA198

Diethyl 2-cyano-3-(4-methylphenyl)cyclopropane-1,1-dicarboxylate (rac-11ad). From $\mathbf{1 a H}^{+} \mathbf{B r}^{-}$($332 \mathrm{mg}, 1.43 \mathrm{mmol}$), $\mathbf{4 d}(250 \mathrm{mg}, 953 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(160 \mathrm{mg}, 1.43 \mathrm{mmol})$ according to general procedure E. rac-11ad was obtained as yellow oil ($173 \mathrm{mg}, 574 \mu \mathrm{~mol}$, 60\%, trans:cis 96:4). (Analytical data see above). DA388
${ }^{1} \mathbf{H}$ NMR Monitoring of the Reaction of 1a with 4 a . A solution of $\mathrm{KO}^{t} \mathrm{Bu}(28.1 \mathrm{mg}$, $250 \mu \mathrm{~mol})$ in DMSO- $d_{6}(1 \mathrm{~mL})$ was added dropwise to a stirred solution of $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(58.0 \mathrm{mg}$, $250 \mu \mathrm{~mol})$ and $\mathbf{4 a}(73.3 \mathrm{mg} 250 \mu \mathrm{~mol})$ in DMSO- $d_{6}(1 \mathrm{~mL})$ over 1 min at ambient temperature. After stirring for 1 min the solution was quenched by freezing at $-20^{\circ} \mathrm{C}$. For NMR-analysis the solution was brought back to $20^{\circ} \mathrm{C}$. The reaction mixture showed signals of the intermediate betaine 10aa and the product rac-11aa, but no signals of ylide 1a. The ratio between 10aa and rac-11aa was 66:33. DA795
${ }^{1} \mathbf{H}$ NMR Monitoring of the Reaction of 1 a with $\mathbf{4 d}$. A solution of $\mathrm{KO}^{t} \mathrm{Bu}(28.1 \mathrm{mg}$, $250 \mu \mathrm{~mol})$ in DMSO- $d_{6}(1 \mathrm{~mL})$ was added dropwise to a stirred solution of $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(58.0 \mathrm{mg}$, $250 \mu \mathrm{~mol})$ and $4 \mathbf{d}(65.6 \mathrm{mg} 250 \mu \mathrm{~mol})$ in DMSO- $d_{6}(1 \mathrm{~mL})$ at ambient temperature over 1 min . After stirring at for 1 min the solution was quenched by freezing at $-20^{\circ} \mathrm{C}$. For NMR-analysis the solution was brought back to $20^{\circ} \mathbf{C}$. The spectrum showed signals of the reactants $\mathbf{1 a H} \mathbf{H r}^{+} \mathbf{B r}^{-}$ and $\mathbf{4 d}$, the intermediate betaine 11ad and the product 12ad. The ratio between 11ad and DABCO (corresponds to 12ad) is 37:63. DA806

Diethyl 2-(diethylcarbamoyl)-3-(4-nitrophenyl)cyclopropane-1,1-dicarboxylate (rac11ba). From $\mathbf{1 b H}^{+} \mathbf{C l}^{-}(618 \mathrm{mg}, 2.36 \mathrm{mmol}), \mathrm{KO}^{\dagger} \mathrm{Bu}(265 \mathrm{mg}, 2.36 \mathrm{mmol})$, and $\mathbf{4 a}(250 \mathrm{mg}$, 0.85 mmol) according to procedure \mathbf{E}. After purification chromatography (silica, i hexane:EtOAc $=20: 1$) rac-11ba was obtained as colorless oil $(172 \mathrm{mg}, 423 \mu \mathrm{~mol}, 50 \%$, trans:cis $87: 13$ by GC-MS). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.09\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $7.37\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CAr}_{\mathrm{Ar}}-\mathrm{H}\right), 4.22-4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.97-3.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.63-3.35\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 3.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $1.30-1.21\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.05\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=165.8(\mathrm{~s}, \mathrm{CO}), 165.6(\mathrm{~s}, \mathrm{CO}), 165.2(\mathrm{~s}, \mathrm{CO}), 147.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$,

$141.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 62.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.2$ (t, CH_{2}), $44.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 42.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.4(\mathrm{~d}, \mathrm{CH}), 31.2(\mathrm{~d}$, $\mathrm{CH}), 14.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{++}: 406.1735$, found 406.1732. MS (EI): $m / z 406,361,333,306,260,232,100$, 72. DA238-2

NMR-Monitoring of the reaction of $\mathbf{1 b}$ and $\mathbf{4 a} . \mathrm{KO}^{t} \mathrm{Bu}$ dissolved in DMSO- $d_{6}(900 \mu \mathrm{l}$, $\left.2.61 \times 10^{-1} \mathrm{M}\right)$ was added to a solution of $\mathbf{1 b} \mathbf{H}^{+} \mathbf{C l}^{-}(35.5 \mathrm{mg}, 136 \mu \mathrm{~mol})$ and $\mathbf{4 a}(36.1 \mathrm{mg}$, $123 \mu \mathrm{~mol})$ in DMSO- $d_{6}(1.5 \mathrm{~mL})$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show constant ratios of $\mathrm{HO}^{t} \mathrm{Bu}$ and DABCO and no signals of the reactants $\mathbf{1 b} \mathbf{H}^{+} \mathbf{C l}^{-}$and $\mathbf{4 a}$ or an intermediate betaine 10ba over 30 min . The product 11ba could not be unambiguously identified in the reaction mixture and may be decomposed by the excess of $\mathrm{KO}^{t} \mathrm{Bu}$ present in the reaction mixture. DA895

Triethyl 3-(4-nitrophenyl)cyclopropane-1,1,2-tricarboxylate. (rac-11ga (= rac-11ca)). From $\mathbf{1 g H}^{+} \mathbf{B r}^{-}(533 \mathrm{mg}, 1.92 \mathrm{mmol}), \mathrm{KO}^{t} \mathrm{Bu}(265 \mathrm{mg}, 2.36 \mathrm{mmol})$, and $\mathbf{4 a}(250 \mathrm{mg}, 852 \mu \mathrm{~mol})$ according to procedure \mathbf{E}. After purification by flash column chromatography (i hexane:EtOAc, 20:1) and recrystallization from ethanol rac-11ga (= rac-11ca) was obtained as colorless solid ($95.4 \mathrm{mg}, 0.25 \mathrm{mmol}, 29 \%$, trans:cis $>98: 2$ after purification). Mp (EtOH) $100-101{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.20-8.12\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.50-7.42(\mathrm{~m}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.21\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 4.09-3.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.3,3 \mathrm{H}), 1.06\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01$ $\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.4\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 165.4\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 165.0$
 $62.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 44.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 35.2(\mathrm{~d}, \mathrm{CH}), 31.4(\mathrm{~d}$, $\mathrm{CH}), 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{8}\right]^{+}$:
 $(D M S O)=276 \mathrm{~nm}$. DA236

Table 2.22. Crystallographic data rac-trans-11ca.

Figure 2.19. UV-vis spectrum of rac-11ca (c= $6.00 \times 10^{-5} \mathrm{M}$).

General procedure F for the Time- and Temperature Dependence of the Formation of 11 ca. $\mathrm{KO}^{t} \mathrm{Bu}$ ($64 \mathrm{mg}, 570 \mu \mathrm{~mol}, 1.7$ equiv) in DMSO $(2 \mathrm{~mL})$ was added dropwise to a solution
of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(160 \mathrm{mg}, 573 \mu \mathrm{~mol}, 1.7$ equiv) and $\mathbf{4 a}(100 \mathrm{mg}, 341 \mu \mathrm{~mol}, 1.0$ equiv) in DMSO $(5 \mathrm{~mL})$ at the temperature given in Table 2.23. For reactions performed at elevated temperature, the suspension of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}$and $\mathbf{4 a}$ was heated to $100^{\circ} \mathrm{C}$ prior to the addition of $\mathrm{KO}^{t} \mathrm{Bu}$. After the time indicated in Table $2.23, \mathrm{HCl}(2 \mathrm{M}, 15 \mathrm{~mL})$ was added to quench the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. If the crude product was solid after evaporation of the solvent, it was recrystallized from EtOH (Table 2.23). Otherwise it was subjected to a column chromatography (silica; n-pentane:EtOAc $=10: 1$; Table 2.23). (Analytical data see above). DA713-1-7

Table 2.23. Time- and Temperature Dependence of the Formation of 11ca.

t	$T /{ }^{\circ} \mathrm{C}$	m / mg	n / mmol	Purification method	Yield/\%	trans:cis ${ }^{[\text {a] }}$
10 min	20	40	0.11	column	32	$>98: 2$
30 min	20	52	0.14	recryst.	41	$98: 2$
1 h	20	59	0.16	column	47	$98: 2$
2 h	20	68	0.18	column	53	$97: 3$
4 h	20	64	0.17	recryst.	50	$92: 8$
5 min	100	83	0.22	recryst.	65	$98: 2$
10 min	100	105	0.277	column	81	$95: 5$

[a] Determined from crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR.
NMR-Monitoring of the reaction of $\mathbf{1 c}$ with $4 \mathbf{4}$. A solution of $\mathrm{KO}^{t} \mathrm{Bu}^{2}$ in DMSO- d_{6} $\left(500 \mu \mathrm{~L}, 2.61 \times 10^{-1} \mathrm{M}\right)$ was added to a solution of $\mathbf{1} \mathbf{c H} \mathbf{H r}^{+}(41.9 \mathrm{mg}, 150 \mu \mathrm{~mol})$ and $\mathbf{4 a}$ $(35.8 \mathrm{mg}, 122 \mu \mathrm{~mol})$ in DMSO- $d_{6}(2.00 \mathrm{~mL})$ at ambient temperature. After stirring for 30 s the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show constant decreasing signals of the intermediate betaine 10ca and increasing signals of the products rac-11ca and DABCO. The formation of ylide 1c was not observed. For details on the kinetic evaluation of the NMR data see Kinetics Section.

Crossover experiment to test the reversibility of the formation of 10 ca . A solution of $\mathrm{KO}^{\dagger} \mathrm{Bu}(59 \mathrm{mg}, 0.53 \mathrm{mmol})$ in DMSO (2 mL) was added dropwise to a solution of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}$ $(147 \mathrm{mg}, 527 \mu \mathrm{~mol})$ and $\mathbf{4 a}(147 \mathrm{mg}, 501 \mu \mathrm{~mol})$ in DMSO $(5 \mathrm{~mL})$ over 1 min at ambient temperature. After 3 min reaction time a solution of $\mathbf{3 c}(154 \mathrm{mg}, 499 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the reaction mixture was stirred for 1 h at ambient temperature. The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was subjected to column chromatography (silica, n-pentane:EtOAc 10:1). 11ca was obtained
as colorless solid ($88 \mathrm{mg}, 232 \mu \mathrm{~mol}, 46 \%$); $73 \mathrm{mg}(0.25 \mathrm{mmol}, 50 \%)$ of $\mathbf{4 a}$ and $116 \mathrm{mg}(376$ $\mu \mathrm{mol}, 75 \%$) of 3c were reisolated. DA813

Triethyl 3-(4-Methylphenyl)cyclopropane-1,1,2-tricarboxylate (rac-11cd). From $\mathbf{1} \mathbf{C H}^{+} \mathbf{B r}^{-}$($319 \mathrm{mg}, 1.14 \mathrm{mmol}$), $\mathrm{KO}^{t} \mathrm{Bu}(128 \mathrm{mg}, 1.14 \mathrm{mmol}$), and $\mathbf{4 d}(200 \mathrm{mg}, 762 \mu \mathrm{~mol})$ according to procedure E. rac-11cd was obtained as colorless oil ($169 \mathrm{mg}, 485 \mu \mathrm{~mol}, 64 \%$; ${ }_{\mathrm{EtO}_{2} \mathrm{C}} \mathrm{CO}_{2}^{\mathrm{CEt}} \quad$ trans:cis 96:4). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{EHO}_{2} \mathrm{C}$ rac $4.00-3.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.29$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.30-1.26\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 0.96\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=169.2\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 166.1\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 165.5\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 137.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.0$
 (d, CH), $31.1(\mathrm{~d}, \mathrm{CH}), 21.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{6}\right]^{+}: 371.1465$, found 371.1464. MS (EI): m/z 348, 302, 275, 228, 201, 184, 173, 149, 129, 115, 91 . DA332

Triethyl 3-(4-Methylphenyl)cyclopropane-1,1,2-tricarboxylate (rac-11gd (= rac-11cd)). From $\mathbf{1 g H}{ }^{+} \mathbf{B r}^{-}(160 \mathrm{mg}, 575 \mu \mathrm{~mol})$, $\mathrm{KO}^{t} \mathrm{Bu}(64 \mathrm{mg}, 0.57 \mathrm{mmol})$, and $\mathbf{4 d}(100 \mathrm{mg}, 381 \mu \mathrm{~mol})$ according to procedure E. rac-11gd (= rac-11cd) was obtained as colorless oil (85 mg , $0.24 \mathrm{mmol}, 63 \%$, trans:cis 96:4). (Analytical data see above). DA334

Triethyl 3-(4-Methylphenyl)cyclopropane-1,1,2-tricarboxylate (rac-11hd (= rac-11cd)). From $\mathbf{1 h H}^{+} \mathbf{B r}^{-}(129 \mathrm{mg}, 571 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(64.2 \mathrm{mg}, 572 \mu \mathrm{~mol})$, and $\mathbf{4 d}(100 \mathrm{mg}, 381 \mu \mathrm{~mol})$ according to procedure E. rac-11hd (= rac-11cd) was obtained as colorless oil (84 mg , $0.24 \mathrm{mmol}, 63 \%$, trans:cis 96:4). (Analytical data see above). DA333

Diethyl 2-benzoyl-3-(4-nitrophenyl)cyclopropane-1,1-dicarboxylate (rac-11ea). From $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(318 \mathrm{mg}, 1.02 \mathrm{mmol}), \mathrm{KO}^{t} \mathrm{Bu}(115 \mathrm{mg}, 1.02 \mu \mathrm{~mol})$, and $\mathbf{4 a}(200 \mathrm{mg}, 682 \mu \mathrm{~mol})$ according to procedure \mathbf{E}. After purification by chromatography (silica; n-pentane:EtOAc $=$ 10:1) rac-11ea was obtained as colorless oil $(120 \mathrm{mg}, 292 \mu \mathrm{~mol}, 43 \%$, trans:cis $>98: 2$ after purification). ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.18\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.14-8.06$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.71-7.43\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 4.21-3.99\left(\mathrm{~m}, 5 \mathrm{H}, 2 \times \mathrm{CH}_{2}, \mathrm{CH}\right), 3.95(\mathrm{~d}, ~}^{\text {, }}\right.$ $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.13-1.03\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=192.9(\mathrm{~s}$, $\mathrm{EtO}_{2} \mathrm{C} \mathrm{CO}_{2} \mathrm{Et}{ }^{2}$ C_{Ar}), $134.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 62.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 46.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 35.2(\mathrm{~d}, \mathrm{CH}), 35.1(\mathrm{~d}$, $\mathrm{CH}), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{Cl}\right]^{-}: 446.1012$, found 446.1011. DA350

NMR-Monitoring of the reaction of $1 \mathbf{e}$ with $4 \mathrm{a} . \mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}\left(500 \mu \mathrm{~L}, 2.61 \times 10^{-1}\right.$ M) was added to a solution of $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(40.4 \mathrm{mg}, 130 \mu \mathrm{~mol})$ and $\mathbf{4 a}(36.6 \mathrm{mg}, 125 \mu \mathrm{~mol})$ in DMSO- $d_{6}(2.00 \mathrm{~mL})$ at ambient temperature. After stirring for 30 s the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show decreasing signals of the reactants $\mathbf{1 e}$ and $\mathbf{4 a}$, and increasing signals of the product rac-11ea, but no signals of the intermediate betaine 10ea. (Evaluation of the kinetics see Kinetics Section)

2-tert-Butyl 1,1-diethyl 3-(p-tolyl)cyclopropane-1,1,2-tricarboxylate (rac-11fd). From
 $\mathbf{1 f H}^{+} \mathbf{B r}^{-}(172 \mathrm{mg}, 560 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(64.2 \mathrm{mg}, 572 \mu \mathrm{~mol})$, and $\mathbf{4 d}(100 \mathrm{mg}$, $381 \mu \mathrm{~mol})$ according to procedure \mathbf{E}. rac-11fd was obtained as colorless oil ($91.5 \mathrm{mg}, 243 \mu \mathrm{~mol}, 64 \%$, trans:cis 96:4). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.07\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.36-4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.01-3.87(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48-$ $1.44\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32-1.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02-0.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.3\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 166.2\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 165.7\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 137.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 82.2\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 62.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 61.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 44.5(\mathrm{~s}$, C_{q}), $35.4(\mathrm{~d}, \mathrm{CH}), 32.2(\mathrm{~d}, \mathrm{CH}), 28.1\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}\right]^{+}: 399.1778$, found 399.1779. MS (EI): m/z 303, 275, 247, 230, 201, 129, 119, 105, 91, 57, 41. DA335

2.7.3.4 Reactions with Benzylidene Indandione 5b

General procedure \mathbf{G} for the synthesis of the products $13 . \mathrm{KO}^{t} \mathrm{Bu}(0.7 \mathrm{mmol})$ in DMSO $(2 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}(0.7 \mathrm{mmol})$ and benzylidene indandione $\mathbf{5 b}$ (0.4 mmol) in $\mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 2,5 \mathrm{~mL})$ at ambient temperature. After 30 min reaction time additional $\mathbf{1 H}^{+} \mathbf{X}^{-}(0.4 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.4 \mathrm{mmol})$ were added and stirring was continued for 30 min . Water (20 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and if necessary the products 13 were purified by filtration (EtOAc over silica). The diastereomeric excesses were determined from the crude products after aqueous work-up. General note: Benzylidene indandione $\mathbf{5 b}$ is labile under the employed basic reaction conditions and decomposes. One decomposition product is anisaldehyde, whose separation from the cyclopropanes $\mathbf{1 3}$ was not always successful.

2-(2-(1,4-Diazabicyclo[2.2.2]octan-1-ium-1-yl)-2-cyano-1-(4-methoxyphenyl)ethyl)-1,3-dioxo-2,3-dihydro- \mathbf{H}-inden-2-ide (12ab). $\mathrm{KO}^{t} \mathrm{Bu}\left(28.1 \mathrm{mg}, 250 \boldsymbol{\mu m o l}\right.$) in DMSO- d_{6} $(1 \mathrm{~mL})$ was added dropwise over 1 min to a solution of $\mathbf{1 a H} \mathbf{H}^{+} \mathbf{B r}^{-}(58.0 \mathrm{mg}, 250 \mu \mathrm{~mol})$ and $\mathbf{5 b}$ ($66.1 \mathrm{mg}, 250 \mu \mathrm{~mol}$) in DMSO- $d_{6} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(1: 1,2 \mathrm{~mL})$ at ambient temperature. During the addition of the base the solution turned deep red. After stirring at $20^{\circ} \mathrm{C}$ for approximately 5 min the solution was quenched by freezing at $-20^{\circ} \mathrm{C}$. For NMR-analysis the solution was brought back to $20^{\circ} \mathrm{C}$. The spectra showed a mixture of ratio 12ab:13ab (10:1) with full conversion of the reactants to $\mathbf{1 2 a b}$ ($d r$ 1:1). The amount of 13ab increased during the acquisition of the spectra. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=7.66\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $7.51\left(\mathrm{~d}, ~ J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.22-7.17\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.09-$ $7.03\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.85-6.78\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CHCN}), 5.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}), 4.58\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C}_{\mathrm{Ar}}\right), 4.46(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Car}_{\mathrm{Ar}}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.61\left(\mathrm{t}, J=6.3,6 \mathrm{H},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right)$, $3.53-3.47\left(\mathrm{~m}, 6 \mathrm{H},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.14-3.02\left(\mathrm{~m}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=187.8(\mathrm{~s}, 2 \times \mathrm{CO}), 187.4(\mathrm{~s}, 2 \times \mathrm{CO}), 158.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 157.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 140.0\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}\right)$, $139.8\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}\right), 134.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 133.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) 129.3(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 117.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 116.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 113.7(\mathrm{~s}, \mathrm{CN}), 113.6}\right.$
 $65.9(\mathrm{~d}, \mathrm{CHCN}), 55.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 51.7\left(\mathrm{t},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 51.5\left(\mathrm{t},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 44.7(\mathrm{t}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right)$, $44.7\left(\mathrm{t}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 38.0\left(\mathrm{~d}, \mathrm{CH}-\mathrm{C}_{\mathrm{Ar}}\right), 37.7\left(\mathrm{~d}, \mathrm{CH}-\mathrm{C}_{\mathrm{Ar}}\right)$. DA792

3-(4-Methoxyphenyl)-1',3'-dioxo-1',3'-dihydrospiro[cyclopropane-1,2'-indene]-2-
carbonitrile (rac-13ab). was synthesized according to procedure \mathbf{C} (stirring for 5 min at $20^{\circ} \mathrm{C}$) from $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(158 \mathrm{mg}, 681 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(76.5 \mathrm{mg}, 682 \mu \mathrm{~mol})$ and $\mathbf{5 b}(150 \mathrm{mg}, 568 \mu \mathrm{~mol})$. After chromatography (silica; n-pentane: $\mathrm{EtOAc}=5: 1$) and recrystallization from ethanol rac13ab was obtained as a colorless solid ($35 \mathrm{mg}, 0.11 \mathrm{mmol}, 19 \%$, trans:cis 25:75). (Analytical data see below). DA447

3-(4-Methoxyphenyl)-1',3'-dioxo-1',3'-dihydrospiro[cyclopropane-1,2'-indene]-2carbonitrile ($\mathrm{rac}-\mathbf{1 3 a b}$). From $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(155 \mathrm{mg}, 668 \mu \mathrm{~mol})$, 5b $(100 \mathrm{mg}, 378 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(76 \mathrm{mg}, 0.68 \mathrm{mmol})$ according to procedure \mathbf{G} (stirring for 60 min at $20^{\circ} \mathrm{C}$). After column filtration rac-13ab was obtained as colorless solid ($93 \mathrm{mg}, 0.31 \mathrm{mmol}, 82 \%$, trans:cis 20:80). Mp 212-213 ${ }^{\circ}$ C. rac-cis-13ab. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.07-7.94(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.89-7.85\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.35\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.89(\mathrm{~d}, J=$
 $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.52(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.04(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=194.7(\mathrm{~s}$,

CO), $191.0(\mathrm{~s}, \mathrm{CO}), 159.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 143.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 140.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 136.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 135.7(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 121.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 114.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), 114.2 (s, CN), $55.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 42.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 38.2(\mathrm{~d}, \mathrm{CH}), 19.8(\mathrm{~d}, \mathrm{CH})$. HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{3}\right]^{+}: 303.0890$, found 303.0874. MS (EI) $m / z=304$ (10), 303 (53), 272 (63), 203 (10), 133 (40), 104 (21), 58 (40), 43 (100). rac-trans-13ab. ${ }^{1} \mathbf{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.08-8.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.87-7.80\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by cisproduct), 7.17 (d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.85\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}, superimposed by rac-cis-13ab diastereoisomer), 3.75 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.20 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=192.7(\mathrm{~s}, \mathrm{CO}), 192.3(\mathrm{~s}, \mathrm{CO}), 160.0(\mathrm{~s}$, C_{Ar}), $142.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 135.9\left(\mathrm{~d}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $122.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 115.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 114.2(\mathrm{~s}, \mathrm{CN}), 58.6\left(\mathrm{t}, \mathrm{CH}_{3}\right), 43.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 41.6(\mathrm{~d}, \mathrm{CH}), 19.1$ (d, CH). DA447-3

NMR-Monitoring of the reaction of $\mathbf{1 a}$ with $\mathbf{5 b}$. $\mathrm{KO}^{t} \mathrm{Bu}$ dissolved in DMSO- $d_{6}(500 \mu \mathrm{l}$, $0.520 \mathrm{M})$ was added to a solution of $\mathbf{1 a H} \mathbf{B r}^{+}(53.3 \mathrm{mg}, 230 \mu \mathrm{~mol})$ and $\mathbf{5 b}(49.8 \mathrm{mg}, 188 \mu \mathrm{~mol})$ in DMSO- d_{6} : $\mathrm{CD}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL}, 5: 2)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show quantitative formation of the intermediate betaine 12ab, the signals of which decrease with time, while the signals of the product rac-13ab increase. The formation of ylide 1a was not observed. For a detailed kinetic analysis of the NMR data see kinetic section. DA876

Crossover experiment to test the reversibility of the formation of betaine 12ab. A solution of $\mathrm{KO}^{t} \mathrm{Bu}(59 \mathrm{mg}, 0.53 \mathrm{mmol})$ in DMSO $(2 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{1 a H}{ }^{+} \mathbf{B r}^{-}(122 \mathrm{mg}, 526 \mu \mathrm{~mol})$ and $\mathbf{5 b}(132 \mathrm{mg}, 499 \mu \mathrm{~mol})$ in $\mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 3: 2)$ over 1 min at ambient temperature. After 3 min reaction time a solution of $\mathbf{5 a}(117 \mathrm{mg}, 499 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the reaction mixture was stirred for 1 h at ambient temperature. The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was subjected to column chromatography (silica, n-pentane:EtOAc 10:1). 13ab was obtained as colorless solid ($70 \mathrm{mg}, 231 \mu \mathrm{~mol}, 46 \%$); 105 mg ($448 \mathrm{mmol}, 90 \%$) of $\mathbf{5 a}$ and 12 mg ($45 \mu \mathrm{~mol}, 9 \%$) of $\mathbf{5 b}$ were reisolated. DA815

Table 2.24. Crystallographic data for rac-cis-13ab.

net formula	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{3}$	
$M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}{ }^{-1}$	303.311	
crystal size $/ \mathrm{mm}$	$0.28 \times 0.04 \times 0.02$	
T / K	200(2)	
radiation	MoK α	
diffractometer	'KappaCCD'	
crystal system	monoclinic	
space group	$P 2_{1} / \mathrm{c}$	
a / \AA	5.8676(2)	
b / \AA	30.1350(12)	
c / \AA	8.1744(3)	
$\alpha /{ }^{\circ}$	90	180
$\beta /{ }^{\circ}$	92.707(2)	0 a
$\gamma /{ }^{\circ}$	90	C-2 af
V / \AA^{3}	1443.79(9)	1 - 10
Z	4	c) तो
calcd. density/ $\mathrm{g} \mathrm{cm}^{-3}$	1.39540(9)	1 \%
μ / mm^{-1}	0.095	(6)
absorption correction	none	
refls. measured	9074	
$R_{\text {int }}$	0.0593	
mean $\sigma(I) / I$	0.0547	
θ range	3.22-25.35	
observed refls.	1671	
x, y (weighting scheme)	0.0418, 0.3886	
hydrogen refinement	constr	
refls in refinement	2615	
parameters	209	
restraints	0	
$R\left(F_{\text {obs }}\right)$	0.0448	
$R_{\text {w }}\left(F^{2}\right)$	0.1106	
S	1.054	
shift/error ${ }_{\text {max }}$	0.001	
max electron density/e \AA^{-3}	0.159	
min electron density/e \AA^{-3}	-0.214	

NMR-Monitoring of the reaction of $\mathbf{1 a}$ with $5 \mathbf{b}$. $\mathrm{KO}^{t} \mathrm{Bu}$ dissolved in DMSO- $d_{6}(500 \mu \mathrm{l}$, $0.520 \mathrm{M})$ was added to a solution of $\mathbf{1} \mathbf{a H}^{-} \mathbf{B r}^{+}(53.3 \mathrm{mg}, 230 \mu \mathrm{~mol})$ and $\mathbf{5 b}(49.8 \mathrm{mg}, 188 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CD}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL}, 5: 2)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show quantitative formation of the intermediate betaine 12ab, the signals of which decrease with time, while the signals of the product rac-13ab increase. The formation of ylide 1a was not observed. For a detailed kinetic analysis of the NMR data see kinetic section. DA876

2-(2-(1,4-Diazabicyclo[2.2.2]octan-1-ium-1-yl)-3-(diethylamino)-1-(4-methoxyphenyl)-3-oxopropyl)-1,3-dioxo-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-inden-2-ide (12bb). A solution of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}(500 \mu \mathrm{l}, 415 \mathrm{mM})$ was added dropwise over 1 min to a solution of $\mathbf{1 b H} \mathbf{H}^{+} \mathbf{C l}^{-}(49.4 \mathrm{mg}$, $189 \mu \mathrm{~mol}$) and 5b ($50 \mathrm{mg} 189 \mu \mathrm{~mol}$) in DMSO $-d_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5: 1 ; 2.1 \mathrm{~mL})$ at ambient temperature. During the addition of base the solution turned deep red. After stirring for approximately 5 min at $20^{\circ} \mathrm{C}$ the solution was quenched by freezing at $-20^{\circ} \mathrm{C}$. For NMRanalysis the solution was brought back to $20^{\circ} \mathrm{C}$. The spectrum immediately taken after thawing showed a ratio of $\mathbf{1 2 b b}: \mathbf{1 3 b b} \sim 10: 1$ and two diastereoisomers of $\mathbf{1 2 b b}$ ($d r 1: 1$) with complete conversion of $\mathbf{5 b}$. The ratio of $\mathbf{1 2 b b} \mathbf{1 3} \mathbf{b b}$ changed to $4: 5$ during the time needed to perform a complete NMR analysis (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, COSY, HMBC, HSQC). One isomer of $\mathbf{1 2 b b}$ obviously forms 13bb faster than the other, so that after the complete the NMR analysis it becomes the minor diastereoisomer ($d r$ 1:18). *major diastereoisomer after thawing, ${ }^{\text {\# }}$ minor diastereoisomer after thawing; in the ${ }^{13} \mathrm{C}$ NMR "*" corresponds to the signals with lower intensity, as the initial major diastereoisomer is the minor diastereoisomer after the complete NMR measurements. For the ${ }^{1} \mathrm{H}$ NMR the integrals of the signals are not given. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=7.82$ $\left(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 7.46-7.37\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 7.20-7.16\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 7.12-7.03$

$\left(\mathrm{m}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*, \#} 6.99-6.92\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), * 6.82\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*}$
$6.67\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 5.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{CH}$, superimposed by solvent), ${ }^{*} 5.60(\mathrm{~d}, J=10.8 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 4.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}),{ }^{*} 4.46(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 3.97-3.75\left(\mathrm{~m},{ }^{+} \mathrm{N}(\mathrm{CHH})_{3}, 2 \times \mathrm{CHH}^{a}\right),{ }^{\#} 3.71\left(\mathrm{~s}, \mathrm{CH}_{3}\right),{ }^{*} 3.64\left(\mathrm{~s}, \mathrm{CH}_{3}\right),{ }^{\#} 3.53-3.32$ $\left(\mathrm{m},{ }^{+} \mathrm{N}(\mathrm{CHH})_{3}, 2 \times{ }^{+} \mathrm{N}(\mathrm{CH} H)_{3}\right),{ }^{* * \#} 3.32-3.03\left(\mathrm{~m}, \mathrm{CH} H^{a}, \mathrm{CHH}^{b}\right.$, superimposed by 13bb), *, 3.03 $-2.82\left(\mathrm{~m}, 2 \times \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right)$, ${ }^{*, \#} 2.82-2.65\left(\mathrm{~m}, \mathrm{CH} H^{b}\right.$, superimposed by 13bb), $1.11-1.00(\mathrm{~m}$, $2 \times \mathrm{CH}_{3}$, superimposed by 13bb), ${ }^{*, \#} 0.54\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$,* $0.45\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. ${ }^{\# 13} \mathbf{C}$ NMR (100 MHz , DMSO $-d_{6}$) $\delta=188.4$ (br s, $2 \times \mathrm{CO}$), ${ }^{\#} 187.3$ (br s, $2 \times \mathrm{CO}$), ${ }^{*} 165.2$ (br s, CON), ${ }^{\#} 164.7$ (br s, $\mathrm{CON}),{ }^{*} 157.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 157.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 140.6\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 140.0\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 136.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*}$ $134.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 130.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ $\mathrm{H}),{ }^{*} 116.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 116.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 112.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 112.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 103.8$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{q}}{ }^{-}\right),{ }^{\#} 103.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}{ }^{-}\right),{ }^{*} 71.1(\mathrm{~d}, \mathrm{CH}),{ }^{*} 68.7(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 54.7\left(\mathrm{q}, \mathrm{CH}_{3}\right) 52.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 51.3(\mathrm{brt}$, $\left.{ }^{+} \mathrm{N}(\mathrm{CHH})_{3}\right),{ }^{\#} 50.5\left(\mathrm{t},{ }^{+} \mathrm{N}(\mathrm{CHH})_{3}\right),{ }^{*} 44.8\left(\mathrm{t}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right),{ }^{*} 44.4\left(\mathrm{t}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right),{ }^{\#} 42.1(\mathrm{t}, \mathrm{CHH}),{ }^{*} 41.8$ (t, CHH), 38.7 (br t, CHH), ${ }^{\#} 38.6(\mathrm{t}, \mathrm{CHH}),{ }^{*} 38.4(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 37.7(\mathrm{~d}, \mathrm{CH}),{ }^{*} 13.5\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{*} 13.4$ $\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{\#} 11.2\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{\#} 11.1\left(\mathrm{q}, \mathrm{CH}_{3}\right) .{ }^{*}$ DA875

N,N-Diethyl-3-(4-methoxyphenyl)-1',3'-dioxo-1',3'-dihydrospiro[cyclopropane-1,2'-indene]-2-carboxamide (rac-trans-13bb). $\mathbf{1 b H}^{+} \mathbf{C l}^{-}(179 \mathrm{mg}, 684 \mu \mathrm{~mol})$ and $\mathbf{5 b}$ (101 mg , $382 \mu \mathrm{~mol})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and aq. $\mathrm{NaOH}(1 \mathrm{~mL}, 32 \%)$ was added at ambient temperature. After 30 min stirring another portion of $\mathbf{1 b H} \mathbf{C l}^{+}(50 \mathrm{mg}, 191 \mu \mathrm{~mol})$ was added and stirring was continued for 30 min . The reaction mixture was diluted with water $(20 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude product was subjected to a gradient column chromatography (silica, n-Pentane:EtOAc 5:1 $\rightarrow 1: 1$). rac-trans-13bb was obtained as yellow oil ($32 \mathrm{mg}, 85 \mu \mathrm{~mol}, 22 \%$, trans:cis $66: 33$). (Analytical data see below). DA498
N, N-Diethyl-3-(4-methoxyphenyl)-1',3'-dioxo-1',3'-dihydrospiro[cyclopropane-1,2'-indene)-2-carboxamide (rac-trans-13bb). From $\mathbf{1 b H}^{+} \mathbf{C l}^{-}(179 \mathrm{mg}, 684 \mu \mathrm{~mol}), \mathbf{5 b}(100 \mathrm{mg}$, $378 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(77 \mathrm{mg}, 0.69 \mathrm{mmol})$ according to procedure G. rac-trans-13bb was obtained as yellow oil ($95 \mathrm{mg}, 0.25 \mathrm{mmol}, 66 \%$, trans:cis $66: 33$). ${ }^{1} \mathbf{H} \mathbf{~ N M R ~ (~} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.96\left(\mathrm{dd}, J=6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.85-7.71\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.81\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.53-3.11\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.02\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=194.8(\mathrm{~s}, \mathrm{CO}), 194.6(\mathrm{~s}$,

CO), $164.1(\mathrm{~s}, \mathrm{CON}), 159.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 141.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.2(\mathrm{~d}$,
 H), $122.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 113.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 55.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 47.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 43.9$ (d, CH), $41.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 40.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.2(\mathrm{~d}, \mathrm{CH}), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m / z calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}\right]^{++}: 377.1622$, found 377.1624. MS (EI) $m / z=377$ (15), 276 (10), 100 (100), 72 (33). DA450-2
${ }^{\mathbf{1}} \mathbf{H}$ NMR Monitoring of the reaction of $\mathbf{1 b}$ with $\mathbf{5 b}$. $\mathrm{KO}^{\dagger} \mathrm{Bu}$ in DMSO- $d_{6}(1.00 \mathrm{~mL}, 2.54 \times$ $\left.10^{-1} \mathbf{M}\right)$ was added to a solution of $\mathbf{1 b H} \mathbf{H}^{+} \mathbf{C l}^{+}(32.7 \mathrm{mg}, 125 \mu \mathrm{~mol})$ and $\mathbf{5 b}(31.5 \mathrm{mg}, 119 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,2.00 \mathrm{~mL})$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show decreasing signals of the intermediate betaine 12bb and increasing signals of the product 13bb. The formation of ylide $\mathbf{1 b}$ was not observed. For a detailed kinetic analysis of the NMR data see kinetic section.

2-(2-(1,4-Diazabicyclo[2.2.2]octan-1-ium-1-yl)-3-ethoxy-1-(4-methoxyphenyl)-3-oxo-propyl)-1,3-dioxo-2,3-dihydro-1 \boldsymbol{H}-inden-2-ide (12cb). $\mathrm{KO}^{t} \mathrm{Bu}$ ($77 \mathrm{mg}, 0.69 \mathrm{mmol}$) dissolved in DMSO $(2 \mathrm{~mL})$ was added to a solution of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(191 \mathrm{mg}, 684 \mu \mathrm{~mol})$ and $\mathbf{5 b}(150 \mathrm{mg}$, $568 \mu \mathrm{~mol})$ in DMSO: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 2: 1)$ at ambient temperature. The reaction was stirred for 5 min , then water (30 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The solvent was removed and the crude product was subjected to NMR. The spectrum after work-up showed a $\sim 16: 1$ ratio of 12cb:13cb with two diastereoisomers of 12cb ($d r 1: 1$), and
 complete conversion of $\mathbf{5 b}$. After performing the complete NMR-analysis (${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ NMR, COSY, HMBC, HSQC) the ratio of $\mathbf{1 2 c b}: 13 \mathbf{c b}$ changed to 2:1 with only one diastereoisomer of $\mathbf{1 2 c b}$ remaining. ${ }^{1} \mathbf{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.49\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.20-7.14\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.62(\mathrm{~d}, J=$ $\left.8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.29(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.49(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.98-$ $3.88\left(\mathrm{~m}, 3 \mathrm{H},{ }^{+} \mathrm{N}(\mathrm{CHH})_{3}\right), 3.77-3.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, superimposed by $\left.\mathbf{1 3 c b}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.45-3.34\left(\mathrm{~m}, 3 \mathrm{H},{ }^{+} \mathrm{N}(\mathrm{CH} H)_{3}\right), 3.02-2.92\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 0.78\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=189.8(\mathrm{~s}, 2 \times \mathrm{CO}), 166.2\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 158.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 139.5(\mathrm{~s}$, $2 \times \mathrm{C}_{\mathrm{Ar}}$), $132.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 117.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 113.2(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 102.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}{ }^{-}\right), 74.6(\mathrm{~d}, \mathrm{CH}), 62.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 54.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 51.6\left(\mathrm{t},{ }^{+} \mathrm{N}(\mathrm{CHH})_{3}\right), 45.2$ (t, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 39.0(\mathrm{~d}, \mathrm{CH}), 13.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. DA439-2

Ethyl 3-(4-methoxyphenyl)-1',3'-dioxo-1', 3'-dihydrospiro[cyclopropane-1,2'-indene]-2-carboxylate (rac-trans-13cb). $\mathbf{1 c} \mathbf{H}^{+} \mathbf{B r}^{-}(191 \mathrm{mg}, 682 \mu \mathrm{~mol}$), $\mathbf{5 b}$ ($150 \mathrm{mg}, 568 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(77 \mathrm{mg}, 0.68 \mathrm{mmol})$ according to procedure $\mathbf{C}\left(5 \mathrm{~min}\right.$ stirring at $\left.20^{\circ} \mathrm{C}\right)$. After purification by chromatography (silica; n-Pentane:EtOAc, 5:1 $\rightarrow 2: 1$) rac-trans-13cb was obtained as yellow oil ($58 \mathrm{mg}, 0.17 \mathrm{mmol}, 30 \%$, trans:cis $80: 20$). (Analytical data see below). DA439

Ethyl 3-(4-methoxyphenyl)-1',3'-dioxo-1',3'-dihydrospiro[cyclopropane-1,2'-indene]-2-carboxylate (rac-trans-13cb) was synthesized according to procedure \mathbf{G} from $\mathbf{1 c H} \mathbf{H}^{+} \mathbf{B r}^{-}$ ($191 \mathrm{mg}, 684 \mu \mathrm{~mol}$), $\mathbf{5 b}(100 \mathrm{mg}, 378 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(77 \mathrm{mg}, 0.68 \mathrm{mmol})$. rac-trans-13cb is obtained as yellow oil ($66 \mathrm{mg}, 0.19 \mathrm{mmol}, 50 \%$, trans:cis $89: 11$). ${ }^{1} \mathbf{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.97-7.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.83-7.71\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.83-6.75\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.30-4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1$
 $\mathrm{H}, \mathrm{CH}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.27(\mathrm{q}, J=7.0$, $3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.9(\mathrm{~s}, \mathrm{CO}), 193.7(\mathrm{~s}, \mathrm{CO})$, $166.6\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 159.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 135.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $130.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 122.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 122.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 113.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 61.8$
$\left(\mathrm{t}, \mathrm{CH}_{2}\right), 55.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 46.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 42.3(\mathrm{~d}, \mathrm{CH}), 36.9(\mathrm{~d}, \mathrm{CH}), 14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m / z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5}\right]^{++}: 350.1149$, found 350.11476. MS (EI) $m / z=350$ (29), 305 (19), 304 (32), 277 (100), 276 (67), 262 (16), 234 (11), 178 (10), 58 (17), 43 (38). DA439-3

NMR-Monitoring of the reaction of $\mathbf{1 c}$ with $\mathbf{5 b}$. $\mathrm{KO}^{t} \mathrm{Bu}(26 \mathrm{mg}, 0.23 \mu \mathrm{~mol})$ dissolved in DMSO- $d_{6}(0.50 \mathrm{~mL})$ was added to a solution of $\mathbf{1} \mathbf{c H} \mathbf{H}^{-} \mathbf{B r}^{+}(64 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\mathbf{5 b}(50 \mathrm{mg}$, $0.19 \mathrm{mmol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL}, 1.6: 1)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show decreasing amounts of the intermediate betaine $\mathbf{1 2 c b}$ and increasing amounts of the product 13cb. The formation of ylide $\mathbf{1 c}$ was not observed. For a kinetic analysis of the NMR data see kinetic section. DA653

2-Acetyl-3-(4-methoxyphenyl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (rac-trans13db). Aq. $\mathrm{NaOH}(5 \mathrm{~mL}, 32 \%)$ was added to suspension of $\mathbf{1 d \mathbf { d H } ^ { + } \mathbf { C l } ^ { - } (1 1 6 \mathrm { mg } , 5 6 7 \mu \mathrm { mol }) \text { and }}$ $\mathbf{5 b}(100 \mathrm{mg}, 378 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and at ambient temperature. After 30 min stirring another portion of $\mathbf{1} \mathbf{d H}^{+} \mathbf{C l}^{-}(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ was added and stirring was continued for 30 min . The reaction mixture was diluted with 20 mL water and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with brine $(2 \times 30 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude was subjected to chromatography (silica; n-Pentane:EtOAc 5:1 $\rightarrow 1: 1$). rac-trans-13db was obtained as brown oil ($64 \mathrm{mg}, 200 \mu \mathrm{~mol}, 53 \%$, trans:cis $66: 33$) contaminated by 5b. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.00-7.96\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.83-$

$7.80\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.55\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.93(\mathrm{~d}, J=$ $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 3.99(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.66(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=198.7(\mathrm{~s}, 2 \times \mathrm{CO}), 198.1(\mathrm{~s}, \mathrm{CO}), 161.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.0\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}\right), 135.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H) $130.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 123.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 114.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 55.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $47.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 44.2(\mathrm{~d}, \mathrm{CH}), 42.8(\mathrm{~d}, \mathrm{CH}), 24.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4}\right]^{+}$: 320.1043 , found 320.1044 . DA500

NMR-Monitoring of the reaction of $\mathbf{1 d}$ with $\mathbf{5 b}$. $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}\left(500 \mu \mathrm{~L}, 2.61 \times 10^{-1}\right.$ M) was added to a solution of $\mathbf{1 d H} \mathbf{C l}^{+}(26.7 \mathrm{mg}, 130 \mu \mathrm{~mol})$ and $\mathbf{5 b}(31.5 \mathrm{mg}, 119 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL}, 1: 1)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show constant signals of the product $\mathbf{1 3 d b}$, but no betaine 12db. For a kinetic evaluation of the NMR data see Kinetic Section.

2-Benzoyl-3-(4-methoxyphenyl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (rac-trans13eb). From $\mathbf{1 e H}{ }^{+} \mathbf{B r}^{-}(265 \mathrm{mg}, 851 \mu \mathrm{~mol})$, $\mathrm{KO}^{\dagger} \mathrm{Bu}(96 \mathrm{mg}, 0.85 \mathrm{mmol})$ and $\mathbf{5 b}(150 \mathrm{mg}$, $568 \mu \mathrm{~mol}$) according to procedure \mathbf{C}. After purification by chromatography (n-Pentane:EtOAc, $5: 1 \rightarrow 2: 1$) rac-trans-13eb was obtained as brown oil ($131 \mathrm{mg}, 343 \mu \mathrm{~mol}, 60 \%$, trans:cis $75: 25$). ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.97-7.91\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.88-7.81\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $7.78-7.72\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.51\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.29\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.85\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.26(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $4.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $\delta=194.4(\mathrm{~s}, \mathrm{CO}), 194.2(\mathrm{~s}, \mathrm{CO}), 190.7(\mathrm{~s}, \mathrm{CO}), 159.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.1(\mathrm{~s}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 142.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 136.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 135.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{H}\right), 130.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}-1 .\right.}\right.$ H), $124.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 123.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 122.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 113.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 55.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 47.8$ (s, C_{q}), $42.6(\mathrm{~d}, \mathrm{CH}), 41.0(\mathrm{~d}, \mathrm{CH})$. HRMS (EI): m / z calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{4}\right]^{+}: 382.1200$, found 382.1199. DA435

NMR-Monitoring of the reaction of $\mathbf{1 e}$ with $\mathbf{5 b} . \mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}\left(500 \mu \mathrm{~L}, 2.61 \times 10^{-1}\right.$ M) was added to a solution of $\mathbf{1} \mathbf{e H}^{-} \mathbf{B r}^{+}(39.3 \mathrm{mg}, 126 \mu \mathrm{~mol})$ and $\mathbf{5 b}(30.2 \mathrm{mg}, 114 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL}, 1: 1)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show constant signals of the product 13eb, but no formation of the intermediate betaine 12eb. For a kinetic evaluation of the NMR data see Kinetic Section. DA898

2-(3-Ethoxy-1-(4-methoxyphenyl)-3-oxo-2-(trimethylammonio)propyl)-1,3-dioxo-2,3-dihydro- \mathbf{H}-inden-2-ide ($\mathbf{1 2 h b}$). $\mathrm{KO}^{t} \mathrm{Bu}(21 \mathrm{mg}, 0.19 \mathrm{mmol})$ in DMSO- $d_{6}(1 \mathrm{~mL})$ was added to a solution of $\mathbf{1} \mathbf{h} \mathbf{H}^{+} \mathbf{B r}^{-}(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\mathbf{5 b}(43 \mathrm{mg}, 0.16 \mathrm{mmol})$ in DMSO- $d_{6}: \mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL}, 2: 1)$ at ambient temperature. After $10 \mathrm{~min} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under reduced pressure and the remaining solution was subjected to NMR analysis. The spectrum after evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ shows a $>20: 1$ ratio of $\mathbf{1 2 h b}: \mathbf{1 3 h b}(=\mathbf{1 3} \mathbf{c b}$) and two diastereoisomers of $\mathbf{1 2 h b}(d r 1: 1)$. After performing the complete NMR analysis (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, COSY, HMBC, HSQC) the ratio of $\mathbf{1 2 h b}: \mathbf{1 3 h b}$ changed to $1: 1$ with only one diastereoisomer of $\mathbf{1 2 f}$ remaining.
 The spectrum is contaminated by $\mathbf{1 h} \mathbf{H}^{+} \mathbf{B r}^{-} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=7.48\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.20-7.19\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.06$ $-7.04\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.74\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 5.13(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.29(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.13\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$,
 $\delta=188.0(\mathrm{~s}, 2 \times \mathrm{CO}), 167.3\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 158.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 139.9\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right) 130.5(\mathrm{~d}$,
 $\mathrm{CH}), 61.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 55.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 53.0\left(\mathrm{q},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right) 40.2(\mathrm{~d}, \mathrm{CH}), 13.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. DA479

2.7.3.5 Reactions with Chalcone 6

If not mentioned otherwise the reactions of the ylides $\mathbf{1}$ with the chalcone $\mathbf{6}$ were performed according to general procedure \mathbf{C}. All products 15 where purified by flash-column chromatography (silica; n-Pentane:EtOAc, 10:1). The diastereomeric excesses were determined from the crude products after aqueous work-up.

2-Benzoyl-3-(4-nitrophenyl)cyclopropanecarbonitrile (rac-15a). From $\mathbf{1 a H}^{+} \mathbf{B r}^{-}$ ($200 \mathrm{mg}, 0.86 \mathrm{mmol}$), 6 ($200 \mathrm{mg}, 790 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(134 \mathrm{mg}, 1.19 \mathrm{mmol})$ according to procedure C. After column chromatography rac-15a (overall: $134 \mathrm{mg}, 458 \mu \mathrm{~mol}, 58 \%$; $d r$ A:B:C 70:27:3) was obtained in two fractions as yellow solid (fraction 1: rac-15a-A, 67.0 mg , $229 \mu \mathrm{~mol}, 29 \%$) and red solid (fraction 2: rac-15a-B, rac-15a-C, $67.0 \mathrm{mg}, 229 \mu \mathrm{~mol}, 29 \%, d r$ 15a-B:15a-C 5:1). Fraction 1: rac-15a-A. Mp (acetone) $134-135{ }^{\circ} \mathrm{C}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.31-8.22\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.09-8.03$
$\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.73-7.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.59-7.52\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $3.71(\mathrm{dd}, J=5.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.17(\mathrm{dd}, J=9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $2.78(\mathrm{dd}, J=9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=193.4(\mathrm{~s}, \mathrm{CO}), 147.9(\mathrm{~s}$, $\mathrm{C}_{\text {Ar }}$), 140.9 ($\mathrm{s}, \mathrm{C}_{\text {Ar }}$), 135.9 ($\mathrm{s}, \mathrm{C}_{\text {Ar }}$), $134.6\left(\mathrm{~d}, \mathrm{C}_{\text {Ar }}-\mathrm{H}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\text {Ar- }}-\mathrm{H}\right.$), 124.2 (d, $2 \times \mathrm{C}_{\text {Ar }}-\mathrm{H}$), 116.8 (s, CN), 32.0 (d, CH), 30.8 (d, CH), 15.9 (d, CH). HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{3}\right]^{-}: 327.0542$, found 327.0555. Fraction 2: rac-15a-B. Signals of minor diastereoisomer rac-15a-C not given, due to overlap with the major diastereoisomer rac-15a-B. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.23-8.16\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\right.$ $\underbrace{N} \mathrm{H}), 8.09-8.02\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.69-7.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.56-7.50(\mathrm{~m}, 2$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.42-7.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 3.55-3.46(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 2.49(\mathrm{dd}$, $J=8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=191.9(\mathrm{~s}, \mathrm{CO}), 147.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 143.2$ ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 136.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 134.4 (d, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.7$ (d, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 124.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 116.2(\mathrm{~s}, \mathrm{CN}), 31.4(\mathrm{~d}, \mathrm{CH}), 31.3(\mathrm{~d}, \mathrm{CH}), 16.3(\mathrm{~d}, \mathrm{CH})$. HRMS (EI): m / z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 292.0842$, found 292.0851. MS (EI) $m / z=293$ (10), 292 (40), 291 (19), 265 (32), 245 (18), 189 (17), 141 (86), 140 (100). DA424

Table 2.25. Crystallographic data for rac-15a-A.
net formula
$M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$
crystal size $/ \mathrm{mm}$
T / K
radiation
diffractometer
crystal system space group
$a / \AA ̊$
b / \AA
c / \AA
$\alpha /{ }^{\circ} \quad 90$
$\beta /{ }^{\circ} \quad 94.576(2)$
$\begin{array}{ll} \\ \gamma & { }^{\circ} \quad 90\end{array}$
$V / \AA^{3} \quad 1366.72(19)$
Z
calcd. density $/ \mathrm{g} \mathrm{cm}^{-3}$
1.42052(20)
μ / mm^{-1}
absorption correction
transmission factor range refls. measured
$R_{\text {int }}$
mean $\sigma(I) / I$
θ range
observed refls.
x, y (weighting scheme)
hydrogen refinement Flack parameter refls in refinement parameters restraints
$R\left(F_{\text {obs }}\right)$
$R_{\mathrm{w}}\left(F^{2}\right)$
S
shift/error ${ }_{\text {max }}$
max electron density/e \AA^{-3}
min electron density/e \AA^{-3}

NMR-Monitoring of the reaction of 1a with 6. $\mathrm{KO}^{t} \mathrm{Bu}$ in $\mathrm{DMSO}-d_{6}\left(1.00 \mathrm{~mL}, 2.54 \times 10^{-1}\right.$ M) was added to a solution of $\mathbf{1 a H} \mathbf{H}^{+} \mathbf{B r}^{-}(58.0 \mathrm{mg}, 250 \mu \mathrm{~mol})$ and $\mathbf{6}(63.3 \mathrm{mg}, 250 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL}, 1: 1)$ at ambient temperature. After 1 min stirring the solution the solution was quenched by freezing at $-20^{\circ} \mathrm{C}$. The solution was brought back to ambient temperature and subjected to ${ }^{1} \mathrm{H}$ NMR. The spectrum shows only signals of the product $\mathbf{1 5 a}$. The formation of an intermediate betaine $\mathbf{1 4 a}$ or ylide $\mathbf{1 a}$ was not observed. DA900

Table 2.26. Crystallographic data for rac-15a-B.
net formula
$M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$ crystal size $/ \mathrm{mm}$ T / K
radiation diffractometer crystal system space group $a / \AA \AA$ b / \AA c / \AA $\alpha{ }^{\circ} \quad 90$ $\beta /{ }^{\circ} \quad 99.0411(17)$

γ	${ }^{\circ} \quad 90$

Z
calcd. density $/ \mathrm{g} \mathrm{cm}^{-3}$
μ / mm^{-1}
absorption correction transmission factor range refls. measured
$R_{\text {int }}$ mean $\sigma(I) / I$ θ range observed refls.
x, y (weighting scheme)
hydrogen refinement
refls in refinement
parameters restraints
$R\left(F_{\text {obs }}\right)$
$R_{\mathrm{w}}\left(F^{2}\right)$
S
shift/error ${ }_{\text {max }}$
max electron density/e \AA^{-3}
min electron density/e \AA^{-3}
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
292.289
$0.144 \times 0.143 \times 0.083$
173(2)
'MoK α
'Bruker D8Venture'
monoclinic
$P 2{ }_{1} / n$
10.6057(6)
9.0729(6)
14.7093(9)

90
1397.81(15)

4
1.38893(15)
0.097
multi-scan
0.9206-0.9585

28066
0.0384
0.0194
3.15-26.43

2315
0.0460, 0.6158
constr
2867
199
0
0.0397
0.1072
1.039
0.001
0.259
-0.180

2-Benzoyl-N,N-diethyl-3-(4-nitrophenyl)cyclopropane-1-carboxamide
(rac-15b).
$\mathbf{1 b H} \mathbf{C l}^{-}(312 \mathrm{mg}, 1.19 \mathrm{mmol})$ and $\mathbf{6}(200 \mathrm{mg}, 790 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and aq. $\mathrm{NaOH}(1 \mathrm{~mL}, 32 \%)$ was added at ambient temperature. After 30 min the reaction mixture was diluted with water (20 mL) and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layer was washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude product was subjected to chromatography (silica, n-pentane:EtOAc 5:1). After column chromatography rac-15b (overall: $151 \mathrm{mg}, 0.41,52 \% d r \mathbf{A}: \mathbf{B}: \mathbf{C} \sim 50: 50: 0$) was obtained in two fractions as yellow oils (fraction 1: rac-15b-A: $69 \mathrm{mg}, 0.19 \mathrm{mmol}, 24 \%$; fraction 2: rac-15b-

B: $82 \mathrm{mg}, 0.22 \mathrm{mmol}, 28 \%)$. Fraction 1. $\mathrm{rac} \mathbf{- 1 5 b - A} \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.19-$ $8.07\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.65-7.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.56-7.48\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.47-$ $7.40\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.10(\mathrm{dd}, J=5.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.65-3.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}^{a} \mathrm{H}\right)$, $3.32-3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{CH} H^{b}\right), 3.12-2.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{b}\right), 2.94(\mathrm{dd}, J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}$,
 $\mathrm{CH}), 1.13\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=197.2(\mathrm{~s}, \mathrm{CO}), 165.1(\mathrm{~s}, \mathrm{CON}), 147.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 143.5(\mathrm{~s}$, C_{Ar}), $137.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 41.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 40.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.4(\mathrm{~d}, \mathrm{CH}), 33.8(\mathrm{~d}, \mathrm{CH})$, $30.4(\mathrm{~d}, \mathrm{CH}), 14.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 12.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$: 366.1574, found 366.1580. Fraction 2. rac-15b-B. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.11-$ $8.00\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.97-7.89\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.58-7.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.46-$ $7.40\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.35\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 3.69-3.51(\mathrm{~m}$,

rac-15b-B $\left.3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 3.51-3.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}, 2 \times \mathrm{CH}\right), 1.32\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.16\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=193.9(\mathrm{~s}, \mathrm{CO})$, 168.8 (s, CON), 147.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 142.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 137.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 133.7 ($\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $129.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 42.7\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $41.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 35.4(\mathrm{~d}, \mathrm{CH}), 34.9(\mathrm{~d}, \mathrm{CH}), 25.3(\mathrm{~d}, \mathrm{CH}), 15.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}: 366.1574$, found 366.1577. DA494
${ }^{\mathbf{1}} \mathbf{H}$ NMR Monitoring of the reaction of $\mathbf{1 b}$ with $\mathbf{6} . \mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}(1.00 \mathrm{~mL}, 2.54 \times$ $\left.10^{-1} \mathrm{M}\right)$ was added to a solution of $\mathbf{1 b} \mathbf{H}^{+} \mathbf{C l}^{-}(32.7 \mathrm{mg}, 125 \mu \mathrm{~mol})$ and $\mathbf{6}(31.5 \mathrm{mg}, 124 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL}, 1: 1)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show only signals of the product $\mathbf{1 5 b}$. The formation of an intermediate betaine 14b or ylide 1b was not observed. DA900

Ethyl 2-benzoyl-3-(4-nitrophenyl)cyclopropane-1-carboxylate (rac-15c). From $\mathbf{1 c H} \mathbf{H r}^{+}$

 ($322 \mathrm{mg}, 1.15 \mathrm{mmol}$), 6 ($190 \mathrm{mg}, 750 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(134 \mathrm{mg}, 1.19 \mathrm{mmol})$ according to procedure \mathbf{C} by stirring for 1 h at ambient temperature. After 30 min stirring another portion of $\mathbf{1 c H}^{+} \mathbf{B r}^{-}(322 \mathrm{mg}, 1.15 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(134 \mathrm{mg}, 1.19 \mathrm{mmol})$ was added. After chromatography rac-15c (overall: $171 \mathrm{mg}, 504 \mu \mathrm{~mol}, 67 \%, d r \mathbf{A}: \mathbf{B}: \mathbf{C}$ 40:40:20) was obtained in two fractions as yellow oils (fraction 1: rac-15c-A: $65 \mathrm{mg}, 0.19 \mathrm{mmol}, 25 \%$; fraction 2: rac-15c-B and rac-15c-C: $106 \mathrm{mg}, 312 \mu \mathrm{~mol}, 42 \%, d r$ 15c-B:15c-C 2.5:1). Fraction 1. Spectrum also contains small amounts of the minor diastereoisomers. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.21-8.14\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.13-8.07$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.67-7.62\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.53-7.48\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by minor diastereoisomer), $4.07-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88(\mathrm{dd}, J=6.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$,
superimposed by minor diastereoisomer), 3.33 (dd, $J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 2.88 (dd, $J=9.9$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.12\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=195.9(\mathrm{~s}$, $\mathrm{CO}), 168.5\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 147.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 136.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 134.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.1(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 61.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.0(\mathrm{~d}$, $\mathrm{CH}), 32.5(\mathrm{~d}, \mathrm{CH}), 29.9(\mathrm{~d}, \mathrm{CH}), 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. Fraction $2 \mathrm{rac}-\mathbf{1 5 c}-\mathrm{B}$ and $\mathrm{rac}-\mathbf{1 5 c}-\mathrm{C}$. *-signals of major diastereoisomer rac-15c-B; ${ }^{\#}$-signals of minor diastereoisomer rac-15c-C. For the analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum no integral are given due to the odd ratio of $\mathbf{1 5 c} \mathbf{c} \mathbf{C}: \mathbf{1 5 c - B}$, which results in confusing dimensions of the integrals. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.22-$ $8.15\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 8.09-7.99\left(\mathrm{~m}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*}{ }^{\#} 7.95-7.89\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 7.63-7.53(\mathrm{~m}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*, \#} 7.52-7.43\left(\mathrm{~m}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*, \#} 7.41-7.34\left(\mathrm{~m}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$,*, ${ }^{*} 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right),{ }^{\#} 4.13-4.01\left(\mathrm{~m}, \mathrm{CH}_{2}\right)^{*}, 3.66(\mathrm{dd}, J=10.1,4.9 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}), * 3.38$ $(\mathrm{dd}, J=10.1,6.3 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 3.25(\mathrm{dd}, J=6.3,4.9 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 3.17(\mathrm{dd}, J=$
$9.7,6.4 \mathrm{~Hz}, \mathrm{CH}),{ }^{*} 2.73(\mathrm{dd}, J=9.7,6.0 \mathrm{~Hz}, \mathrm{CH}),{ }^{*} 1.34\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right),{ }^{\#}$
 192.7 (s, CO), ${ }^{*} 171.5\left(\mathrm{~s}, \mathrm{CO}_{2}\right),{ }^{\#} 168.4\left(\mathrm{~s}, \mathrm{CO}_{2}\right),{ }^{*} 147.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 147.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*}$ $146.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 141.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 137.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 136.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#}$ $133.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\right.$ H), ${ }^{\#} 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 128.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 127.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 124.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*}$ $123.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 61.8\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{\#} 61.6\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{*} 35.6(\mathrm{~d}, \mathrm{CH}),{ }^{*} 34.9(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 34.8(\mathrm{~d}, \mathrm{CH}),{ }^{\#}$ 32.3 (d, CH), $28.9(\mathrm{~d}, \mathrm{CH}),{ }^{*} 26.7(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{\#} 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.* HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5}\right]^{+}: 339.1101$, found 339.1119. MS (EI) $m / z: 267$ (17), 266 (100), 105 (52), 77 (25). $\lambda_{\text {max }}(\mathrm{rac}-15 \mathrm{c}, \mathrm{DMSO})=285 \mathrm{~nm}$. DA426

Figure 2.20. UV-Vis spectrum of $\mathrm{rac}-15 \mathrm{c}\left(\mathrm{c} \sim 1 \times 10^{-4} \mathrm{M}\right)$.

NMR-Monitoring of the reaction of $1 \mathbf{c}$ and 6 . A solution of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}(500 \mu \mathrm{~L}$, $\left.2.54 \times 10^{-1} \mathrm{M}\right)$ was added to $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(27 \mathrm{mg}, 98 \mu \mathrm{~mol})$ and $\mathbf{6}(30.2 \mathrm{mg}, 119 \mu \mathrm{~mol})$ in DMSO$d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,2.00 \mathrm{~mL})$ at ambient temperature. After 30 s stirring the reaction mixture was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show only constant signals of the product $\mathbf{1 5 c}$. The formation of the intermediate betaine $\mathbf{1 4 c}$ or ylide $\mathbf{1 c}$ was not observed. DA901

1-(2-Benzoyl-3-(4-nitrophenyl)cyclopropyl)ethan-1-one (rac-15d). Aq. NaOH (1 mL , 32%) was added to solutions of $\mathbf{1 d H}^{+} \mathbf{O T f}^{-}(379 \mathrm{mg}, 1.19 \mathrm{mmol})$ and $\mathbf{6}(200 \mathrm{mg}, 790 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at ambient temperature. After 30 min stirring another portion of $\mathbf{1 b H} \mathbf{O T f}^{+}$ ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added and stirring was continued till TLC-analysis showed a complete conversion ($\sim 2 \mathrm{~h}$). The reaction mixture was diluted with water $(20 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layer was washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude product was subjected to chromatography (silica; n pentane:EtOAc 5:1 $\rightarrow 1: 1$). rac-15d (over all: $97 \mathrm{mg}, 314 \mu \mathrm{~mol}, 40 \%, d r \mathbf{A}: \mathbf{B}: \mathbf{C} 78: 28: 2$ after work-up) was obtained in two fractions as brown oils (fraction 1: rac-15d-B $31 \mathrm{mg}, 100 \mu \mathrm{~mol}$, 13\%; fraction 2: rac-15d-A, $66 \mathrm{mg}, 214 \mu \mathrm{~mol}, 27 \%$,). Fraction 1: rac-15d-A. ${ }^{\mathbf{1}} \mathrm{H}$ NMR
 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.20-8.14\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CAr}_{\mathrm{Ar}} \mathrm{H}\right), 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.68-7.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.59-7.52\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.46-$ $7.42\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.02(\mathrm{dd}, J=6.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.42(\mathrm{dd}, J=9.8$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.19(\mathrm{dd}, J=9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=201.5(\mathrm{~s}, \mathrm{CO}), 196.1(\mathrm{~s}, \mathrm{CO}), 147.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 136.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 134.1(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 40.2$ (d, CH), 36.2 (d, CH), 31.8 (q, CH_{3}), 30.4 (d, CH). HRMS (EI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{3}\right]^{+}$ $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right): 291.0895$, found 291.0882. MS (EI) $m / z=291$ (17), 266 (15), 254 (13), 204 (63), 158 (10), 105 (100), 77 (42), 58 (10), 43 (44). Fraction 2 rac-15d-B. ${ }^{1} \mathbf{H}$ NMR (400 MHz ,
 CH), $3.37(\mathrm{dd}, J=10.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=204.9(\mathrm{~s}, \mathrm{CO}), 193.1(\mathrm{~s}, \mathrm{CO}), 147.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 141.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 137.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 133.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $129.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 123.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 37.1(\mathrm{~d}, \mathrm{CH})$, 36.7 (d, CH), $33.6(\mathrm{~d}, \mathrm{CH}), 31.7\left(\mathrm{q}, \mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}): m / z=309,291,266,220,204,192,105$, 77. DA497-2

NMR-Monitoring of the reaction of $\mathbf{1 d}$ with $6 . \mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}\left(500 \mu \mathrm{~L}, 2.54 \times 10^{-1}\right.$ M) was added to a solution of $\mathbf{1 d H} \mathbf{C l}^{-}(27.4 \mathrm{mg}, 134 \mu \mathrm{~mol})$ and $\mathbf{6}(31.5 \mathrm{mg}, 124 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL}, 1: 1)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show decreasing amounts of the reactants $\mathbf{1 d H}{ }^{+} \mathbf{C l}^{-}, \mathbf{6}$, and ylide 1d, and increasing amounts of the product 15d. No formation of an intermediate betaine 14d was observed. For a kinetic analysis of the NMR data see kinetic section. DA903
(3-(4-Nitrophenyl)cyclopropane-1,2-diyl)bis(phenylmethanone) (rac-15e). From $\mathbf{1 e H}{ }^{+} \mathbf{B r}^{-}(370 \mathrm{mg}, 1.19 \mathrm{mmol}), 6(200 \mathrm{mg}, 790 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(134 \mathrm{mg}, 1.19 \mathrm{mmol})$ according to procedure C. rac-15e was obtained as pale yellow needles ($258 \mathrm{mg}, 695 \mu \mathrm{~mol}$, 88%, $d r$ A:B:C 8:92:0). 15e-B. Mp. (EtOH) $169-170^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $8.27-8.21\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.01-7.95\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.59-7.52\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, 7.49 - 7.39 (m, $\left.6 \mathrm{H}, 6 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 3.65(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.48(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=193.3(\mathrm{~s}, 2 \times \mathrm{CO}), 147.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 146.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 136.9\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{Ar}}\right)$, $133.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~d}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 124.3(\mathrm{~d}$,
 $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $37.4(\mathrm{~d}, 2 \times \mathrm{CH}$), $30.3(\mathrm{~d}, \mathrm{CH})$ HRMS (EI): m / z calcd. for (M-2 H) $\left[\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{NO}_{4}{ }^{+}: 369.0996\right.$, found 369.1009. MS (EI) $m / z=369$ (3), 339 (10), 266 (61), 220 (12), 105 (100), 77 (49). DA418-2

NMR-Monitoring of the reaction of $1 \mathbf{e}$ with $6 . \mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}(500 \mu \mathrm{~L}, 2.54 \times$ $\left.10^{-1} \mathrm{M}\right)$ was added to a solution of $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(40.4 \mathrm{mg}, 130 \mu \mathrm{~mol})$ and $\mathbf{6}(30.7 \mathrm{mg}, 121 \mu \mathrm{~mol})$ in DMSO- $d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL}, 1: 1)$ at ambient temperature. After 30 s stirring the solution was subjected to ${ }^{1} \mathrm{H}$ NMR. The spectra show decreasing signals of the ylide $\mathbf{1 e}$ and $\mathbf{6}$, and increasing signals of the product $\mathbf{1 5 e}$, but no formation of the intermediate betaine $\mathbf{1 4 e}$ was observed. DA902

Table 2.27. Crystallographic Data of rac-15e-B.

net formula	$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{4}$	
$M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$	371.385	
crystal size $/ \mathrm{mm}$	$0.156 \times 0.096 \times 0.056$	
T / K	200(2)	
radiation	'MoK α	
diffractometer	'Bruker D8Quest'	$q \quad 1$
crystal system	monoclinic	$1 P T$
space group	$P 2_{1} / n$	O-
a / \AA ¢	13.8242(17)	- 1
b / \AA	6.0419(7)	-
c / \AA	22.426(3)	01
$\alpha /{ }^{\circ}$	90	-0
$\beta /{ }^{\circ}$	100.387(4)	-
γ°	90	,
V / \AA^{3}	1842.4(4)	,
Z	4	
calcd. density/ $\mathrm{g} \mathrm{cm}^{-3}$	1.3389(3)	0
μ / mm^{-1}	0.092	\square
absorption correction	multi-scan	,
transmission factor range	0.8778-0.9280	,
refls. measured	10224	\bigcirc
$R_{\text {int }}$	0.0652	(1)
mean $\sigma(I) / I$	0.0690	1
θ range	2.90-25.07	,
observed refls.	1875	
x, y (weighting scheme)	0.0462, 0.0250	
hydrogen refinement	constr	
refls in refinement	3231	
parameters	299	
restraints	0	
$R\left(F_{\text {obs }}\right)$	0.0508	
$R_{\mathrm{w}}\left(F^{2}\right)$	0.1131	
S	1.024	
shift/error ${ }_{\text {max }}$	0.001	
max electron density/e \AA^{-3}	0.181	
min electron density/e \AA^{-3}	-0.179	
One phenyl ring disordered,	split model applied, so	The figure shows the main component.

2.7.3.6 Reactions with the Activated Styrenes 16

General Procedure H for the Synthesis of Cyclopropanes rac-18. $\mathrm{KO}^{t} \mathrm{Bu}(1.1 \mathrm{eq})$ in DMSO (3 mL) was added dropwise to solutions of $\mathbf{1 H}^{+} \mathbf{X}^{-}(0.6 \mathrm{mmol})$ and $\mathbf{1 6}(0.5 \mathrm{mmol})$ in DMSO (5 mL) at room temperature over $1-2 \mathrm{~min}$. The reaction mixture was stirred for 1 h and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(3 \times 15 \mathrm{~mL})$, the combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by column chromatography (silica, n-pentane:EtOAc 20:1-10:1).

Ethyl 2-cyano-3-phenylcyclopropanecarboxylate (rac-18a). From 1aH ${ }^{+} \mathbf{B r}^{-}(140 \mathrm{mg}$, $603 \mu \mathrm{~mol}), \mathbf{1 6 a}(88 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(67 \mathrm{mg}, 0.60 \mathrm{mmol})$ according to procedure B. rac-18a was obtained as colorless oil ($61 \mathrm{mg}, 283 \mu \mathrm{~mol}, 57 \%, d r \mathbf{A}: \mathbf{B}: \mathbf{C} 66: 33: 0$). * major rac-18a-A, ${ }^{\text {\# minor }}$ diastereoisomer rac-18a-B; one integral of a signal of the minor
 diastereoisomer was set to $1.0 .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.19-1.32(\mathrm{~m}, 9 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{3}\right)$,*, $2.02(\mathrm{dd}, J=8.5,6.3,1 \mathrm{H}, \mathrm{CH}), \# 2.32-2.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH})$,, , $2.53-$ $2.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), * 2.89(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}),{ }^{*} 3.08(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}),{ }^{\#} 4.10-4.28\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right),{ }^{*, \#} 7.01-7.08\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 7.17-7.36$ $\left(\mathrm{m}, 13 \mathrm{H}, 8 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by solvent). ${ }^{*, \#}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0$ $\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{*} 14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{*} 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{\#} 14.3\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{\#} 27.2(\mathrm{~d}, \mathrm{CH}),{ }^{*} 28.0(\mathrm{~d}, \mathrm{CH}),{ }^{\#}$ 30.7 (d, CH),* $31.1(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 62.1\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{\#} 62.2\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{*} 116.8(\mathrm{~s}, \mathrm{CN}),{ }^{\#} 117.0(\mathrm{~s}, \mathrm{CN}) *$, $126.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 128.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.9(\mathrm{~d}$, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), ${ }^{*} 129.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 133.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 135.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 168.2\left(\mathrm{~s}, \mathrm{CO}_{2}\right),{ }^{\#} 169.9\left(\mathrm{~s}, \mathrm{CO}_{2}\right)$.* HRMS (EI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}\right]^{+} 215.0941$, found 215.0936. MS (EI) m/z: 215 (14), 170 (15), 156 (17), 143 (100), 142 (68), 115 (73). DA678
$\boldsymbol{N}, \boldsymbol{N}$-Diethyl-2-phenyl-3-tosylcyclopropanecarboxamide (rac-18b). From $\quad \mathbf{1 b H} \mathbf{H}^{+} \mathbf{C l}^{-}$ ($157 \mathrm{mg}, 600 \mu \mathrm{~mol}$), 16b ($129 \mathrm{mg}, 470 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(67 \mathrm{mg}, 0.60 \mathrm{mmol})$ according to procedure B. rac-18b was obtained as colorless oil (over all $90 \mathrm{mg}, 0.23 \mathrm{mmol}, 49 \%, d r \mathbf{A}: \mathbf{B}: \mathbf{C}$ 92:8:0 after work-up). The NMR-signals of the minor diastereoisomer could not be assigned unambiguously due to overlap with the major diastereoisomer. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.74\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.79-2.97$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{C} H \mathrm{H}^{a}$), $3.09-3.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}^{B}\right), 3.32(\mathrm{dd}, J=10.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.51$
($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH} H^{a}$, superimposed by minor diastereoisomer), $3.51-3.68$ (m, 1 H , $\left.\mathrm{CH} H^{b}\right), 3.81(\mathrm{dd}, J=6.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.08\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.16-7.23$ ($\mathrm{m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $7.35\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by minor diastereoisomer), $7.80-$ $7.87\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.5\left(\mathrm{t}, \mathrm{CH}_{3}\right), 14.5\left(\mathrm{t}, \mathrm{CH}_{3}\right), 21.8(\mathrm{t}$, CH_{3}), $28.9(\mathrm{~d}, \mathrm{CH}), 30.1(\mathrm{~d}, \mathrm{CH}), 40.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.5(\mathrm{~d}, \mathrm{CH}), 127.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $127.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 133.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, 137.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 144.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 163.7 (s, CON). HRMS (EI): calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\right]^{+}$371.1550, found 371.1543. MS (EI) $m / z: 371$ (<1), 217 (12), 216 (100), 115 (12). DA684

3-Phenylcyclopropane-1,2-dicarbonitrile (rac-18c). From 1aH ${ }^{+} \mathbf{B r}^{-}(140 \mathrm{mg}, 603 \mu \mathrm{~mol})$, $\mathbf{1 6 c}(65 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(67 \mathrm{mg}, 600 \mu \mathrm{~mol})$ according to procedure B. rac-18c was
 obtained as colorless solid ($29 \mathrm{mg}, 0.17 \mathrm{mmol}, 34 \%, d r \mathbf{A}: \mathbf{B}: \mathbf{C} 50: 50: 0 ; \mathbf{A}$ and \mathbf{C}
 $\left.\mathrm{CDCl}_{3}\right) \delta 2.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}), * 2.43(\mathrm{dd}, J=6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}),{ }^{\#} 2.52(\mathrm{dd}, J=$
 $\left(\mathrm{m}, 6 \mathrm{H}, 6 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{*}{ }^{\# 13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.5(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 13.2(\mathrm{~d}, 2 \times \mathrm{CH}),{ }^{*} 13.9$ (d, CH), \# 30.0 (d, CH),* 31.6 (d, CH), \# 115.2 (s, CN), 116.0 (s, $2 \times \mathrm{CN}$), 117.1 (s, CN), 126.7 $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 129.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, ${ }^{*}$ or \# $129.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, ${ }^{*}$ or \# $129.3(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 131.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*}$ or \# $133.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$. ${ }^{\text {or } \#}$ HRMS (EI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2}\right]^{+} 168.0682$, found 168.0672. MS (EI) m/z: 169 (13), 168 (100), 141 (95), 140 (53), 91 (18). DA680

2-Acetyl-3-phenylcyclopropane-1-carbonitrile ($\mathrm{rac}-\mathbf{1 8 d}$): $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(140 \mathrm{mg}, 603 \mu \mathrm{~mol})$, $\mathbf{1 6 d}(73 \mathrm{mg}, 500 \mu \mathrm{~mol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}, 1.50 \mathrm{mmol})$ were dissolved in DMSO (5 mL) and heated at $100{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to room temperature and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}\left(25 \mathrm{~mL}\right.$, aq.). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 25 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue was subjected to a column chromatography (silica, n pentane:EtOAc 15:1). rac-18d was obtained as colorless oil ($71 \mathrm{mg}, 383 \mu \mathrm{~mol}, 77 \%, d r \mathbf{A}: \mathbf{B}: \mathbf{C}$ 33:66:0, 13:87:0 after work-up). *major rac-18d-B, " minor diastereoisomer rac-18d-A; the integral of one signal of the minor diastereoisomer was set to $1.0 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.43\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{CH}_{3}\right)$, ${ }^{* \#} 2.46(\mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}), * 2.74(\mathrm{dd}, J=$ $6.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), ${ }^{\#} 2.84-2.94(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{CH}),{ }^{*} 2.98(\mathrm{dd}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, ${ }^{\#}$ (1) n $_{\text {como }} 3.19(\mathrm{dd}, J=10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}),{ }^{\#} 7.09-7.15\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 7.26-7.32$
 $\delta 9.0(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 15.4(\mathrm{~d}, \mathrm{CH}),{ }^{*} 31.2\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right),{ }^{*}{ }^{\#} 32.6(\mathrm{~d}, \mathrm{CH}),{ }^{*} 33.8(\mathrm{~d}, \mathrm{CH}),{ }^{*} 33.9(\mathrm{~s}, \mathrm{CH})$, $35.8(\mathrm{~s}, \mathrm{CH}), 117.1(\mathrm{~s}, \mathrm{CN}),{ }^{*} 119.2(\mathrm{~s}, \mathrm{CN}), \# 127.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 128.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.3(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 128.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 131.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 133.2$ (s, C CAr), ${ }^{*} 199.1$ (s, CO), ${ }^{\#} 202.5$ (s, CO).* HRMS (EI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}\right]^{+}$184.0757, found 184.0752. MS (EI) $m / z: 184$ (4), 143 (92), 115. (84), 89 (16), 43 (100). DA690-2

2.7.4 Kinetics of the Reactions of the Ylides 1 with the Electrophiles 2-6

2.7.4.1 Kinetics of the Reactions of Ylide 1a

Figure 2.21. Absorption spectrum of $1 \mathrm{a}\left(\lambda_{\max }=256 \mathrm{~nm}, \mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$).

Table 2.28. Determination of the nucleophilicity parameters N and s_{N} for 1 a with the electrophiles $\mathbf{3 , 4}$ (filled dots). Open dots refer to the reactions with $5 \mathrm{~b}, 6$ and were not used for the determination of N and s_{N}.

Electrophile	E	$\log k_{2}$
$\mathbf{3 b}$	-13.39	5.39
$\mathbf{3 c}$	-15.83	4.15
$\mathbf{3 d}$	-16.11	4.02
$\mathbf{3 e}$	-17.29	3.53
$\mathbf{3 f}$	-17.90	3.12
$\mathbf{4 a}$	-17.67	3.75
$\mathbf{4 b}$	-18.89	3.35
$\mathbf{4 c}$	-20.55	2.61
$\mathbf{4 d}$	-21.11	2.37
$\mathbf{5 b}$	-11.32	6.20
$\mathbf{6}$	-17.32	3.65

Nucleophilicity parameters for 1a in DMSO: $N=27.43, s_{\mathrm{N}}=0.37$.

Table 2.29. Kinetics of the reaction of 1a with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da131s6-1	4.00×10^{-5}	4.00×10^{-4}	6.19×10^{1}
da131s6-4	4.00×10^{-5}	5.00×10^{-4}	8.63×10^{1}
da131s6-2	4.00×10^{-5}	6.00×10^{-4}	1.13×10^{2}
da131s6-5	4.00×10^{-5}	7.00×10^{-4}	1.31×10^{2}
da131s6-3	4.00×10^{-5}	8.00×10^{-4}	1.63×10^{2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.47 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.30. Kinetics of the reaction of 1a with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 371 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da131s1-2	2.00×10^{-5}	3.00×10^{-4}	2.31
da131s1-3	2.00×10^{-5}	4.00×10^{-4}	3.93
da131s1-4	2.00×10^{-5}	5.00×10^{-4}	5.34
da131s1-5	2.00×10^{-5}	6.00×10^{-4}	6.60
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.43 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.31. Kinetics of the reaction of 1a with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 393 nm).

Table 2.32. Kinetics of the reaction of 1 a with 3 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 486 nm).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da131s3-1	2.00×10^{-5}	5.00×10^{-4}	1.07
da131s3-2	2.00×10^{-5}	6.00×10^{-4}	1.26
da131s3-4	2.00×10^{-5}	8.00×10^{-4}	2.08
da131s3-5	2.00×10^{-5}	9.00×10^{-4}	2.34
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.36 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.33. Kinetics of the reaction of 1a with $3 f$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 521 nm).

No.	$[\mathbf{3 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da131s2-1	4.00×10^{-5}	5.00×10^{-4}	4.90×10^{-1}
da131s2-2	4.00×10^{-5}	6.00×10^{-4}	5.90×10^{-1}
da131s2-3	4.00×10^{-5}	8.00×10^{-4}	8.50×10^{-1}
da131s2-4	4.00×10^{-5}	9.00×10^{-4}	1.02
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.32 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.34. Kinetics of the reaction of 1 a with 4 (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 302 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da131s5-1	4.00×10^{-5}	1.00×10^{-3}	5.06
da131s5-2	4.00×10^{-5}	1.20×10^{-3}	6.16
da131s5-3	4.00×10^{-5}	1.40×10^{-3}	7.35
da131s5-4	4.00×10^{-5}	1.60×10^{-3}	8.43
$k_{2}\left(20^{\circ} \mathrm{C}\right)=5.65 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.35. Kinetics of the reaction of 1 a with 4 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 277 nm).

Table 2.36. Kinetics of the reaction of 1 a with 4 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 283 nm).

Table 2.37. Kinetics of the reaction of 1 a with 4 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 295 nm).

No.	$[\mathbf{4 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da131s9-1	6.00×10^{-5}	6.00×10^{-4}	6.92×10^{-2}
da131s9-2	6.00×10^{-5}	7.50×10^{-4}	1.08×10^{-1}
da131s9-3	6.00×10^{-5}	9.00×10^{-4}	1.48×10^{-1}
da131s9-4	6.00×10^{-5}	1.05×10^{-3}	1.73×10^{-1}
da131s9-5	6.00×10^{-5}	1.20×10^{-3}	2.11×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.32 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.38. Kinetics of the reaction of 1a with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 388 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da131s11-1	1.00×10^{-5}	2.00×10^{-4}	1.17×10^{2}
da131s11-2	1.00×10^{-5}	2.50×10^{-4}	2.09×10^{2}
da131s11-3	1.00×10^{-5}	3.00×10^{-4}	3.09×10^{2}
da131s11-4	1.00×10^{-5}	3.50×10^{-4}	3.71×10^{2}
da131s11-5	1.00×10^{-5}	4.00×10^{-4}	4.36×10^{2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.60 \times 10^{6} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.39. ${ }^{1} \mathrm{H}$ NMR monitoring of the kinetics of the formation of 13aa (DMSO-d $\mathbf{6}: \mathrm{CD}_{2} \mathrm{Cl}_{\mathbf{2}} ; 2{ }^{\circ}{ }^{\circ} \mathrm{C}$; evolution of DABCO followed; Experimental procedure see Products section).

$[\mathbf{H O} \mathbf{t} \mathbf{B u}]=8.84 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$	
t / s	$[\mathbf{D A B C O}] / \mathrm{mol} \mathrm{L}^{-1}$
0	7.15×10^{-3}
2.40×10^{2}	7.96×10^{-3}
7.80×10^{2}	8.77×10^{-3}
9.00×10^{2}	8.99×10^{-3}
1.08×10^{3}	8.91×10^{-3}
1.26×10^{3}	8.99×10^{-3}
1.38×10^{3}	9.13×10^{-3}
3.66×10^{3}	9.95×10^{-3}
4.32×10^{3}	1.01×10^{-2}
5.46×10^{3}	1.02×10^{-2}
8.46×10^{3}	1.04×10^{-2}
1.16×10^{4}	1.05×10^{-2}
1.34×10^{4}	1.06×10^{-2}
$k_{\mathrm{rc}}\left(20{ }^{\circ} \mathrm{C}\right)=$	

The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore $[\mathrm{DABCO}] \neq 0 \mathrm{M}$ at $t=0 \mathrm{~s}$.

Table 2.40. Kinetics of the reaction of 1 a with 6 (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 325 nm).

No.	$[\mathbf{6}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da131s10-2	1.00×10^{-5}	2.50×10^{-4}	4.63×10^{-1}
da131s10-4	1.00×10^{-5}	3.50×10^{-4}	9.69×10^{-1}
da131s10-5	1.00×10^{-5}	4.00×10^{-4}	1.42
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.47 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

2.7.4.2 Kinetics of the Reactions of Ylide 1b

UV-Vis monitoring of the titration of $\mathbf{1 b H}^{+} \mathbf{C l}^{-}$with $\mathbf{K O}^{\dagger} \mathbf{B u}$. The formation of the ylide 1b from its conjugate $\mathrm{CH}-\mathrm{acid} \mathbf{1 b} \mathbf{H}^{+} \mathbf{C l}^{-}$was recorded by using a diode array UV-Vis spectrometer. The temperature during the experiment was kept constant by using a circulating bath $\left(20.0 \pm 0.02{ }^{\circ} \mathrm{C}\right)$. The CH acid $\mathbf{1} \mathbf{b H} \mathbf{H}^{+} \mathbf{C l}^{-}\left(c=3.39 \times 10^{-4} \mathrm{M}\right)$ was dissolved in DMSO and subsequently treated with $160 \mu l$ portions of $\mathrm{KO}^{t} \mathrm{Bu}$ dissolved in $\operatorname{DMSO}\left(5.25 \times 10^{-2} \mathrm{M}\right)$.

Figure 2.22. UV-Vis spectrum of 1 b in DMSO at $20^{\circ} \mathrm{C}\left(\lambda_{\max }=256 \mathrm{~nm}, \mathrm{DMSO}, 20{ }^{\circ} \mathrm{C}\right.$; left); Monitoring of the UV-Vis absorption band (256 nm) of 1 b during its generation from $\mathbf{1 b H}^{+} \mathrm{Br}^{-}$by addition of $\mathrm{KO}^{\dagger} \mathbf{B u}$ (right). The experiment was performed by adding $160 \mu \mathrm{l}$ portions of a solution of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO (dashed

Table 2.41. Determination of the nucleophilicity parameters N and s_{N} for 1 b with the electrophiles $\mathbf{3 , 4}$ (filled dots). Open dot refers to the reaction with 5 b and was not used for the determination of N and s_{v}.

Electrophile	E	$\log k_{2}$
3a	-12.18	5.20
$\mathbf{3 b}$	-13.39	4.34
$\mathbf{3 c}$	-15.83	3.71
$\mathbf{3 d}$	-16.11	3.46
$\mathbf{3 e}$	-17.29	2.85
$\mathbf{4 a}$	-17.67	2.75
$\mathbf{5 b}$	-11.32	5.44

Nucleophilicity parameters for 1b in DMSO: $N=24.23, s_{\mathrm{N}}=0.42$.

Table 2.42. Kinetics of the reaction of 1 b with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 422 nm).

Table 2.43. Kinetics of the reaction of 1 b with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 422 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da181s6r-1	4.00×10^{-5}	4.00×10^{-4}	2.10×10^{1}
da181s6r-3	4.00×10^{-5}	6.00×10^{-4}	5.14×10^{1}
da181s6r-4	4.00×10^{-5}	7.00×10^{-4}	6.30×10^{1}
da181s6r-5	4.00×10^{-5}	8.00×10^{-4}	8.60×10^{1}
$k_{2 \mathrm{r}}\left(20^{\circ} \mathrm{C}\right)=1.57 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			
$k_{\text {repro }} / k_{2}=0.99$			

Table 2.44. Kinetics of the reaction of 1 b with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	[3b]/mol L ${ }^{-1}$	$\left[\mathrm{KO}^{t} \mathrm{Bu}\right] / \mathrm{mol} \mathrm{L}^{-1}$	$\left[\mathbf{1 b H}^{+} \mathrm{Cl}^{-}\right] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	$y=21808 x-4$
da181s2-1	4.00×10^{-5}	4.20×10^{-4}	8.00×10^{-4}	$\begin{gathered} \hline 5.43 \pm \\ 0.02 \end{gathered}$	
da181s2-2	4.00×10^{-5}	6.30×10^{-4}	1.20×10^{-3}	1.00×10^{1}	-
da181s2-3	4.00×10^{-5}	8.40×10^{-4}	1.60×10^{-3}	1.32×10^{1}	0.0
da181s2-5	4.00×10^{-5}	1.26×10^{-3}	2.40×10^{-3}	2.39×10^{1}	$0.00 \mathrm{E}+007.50 \mathrm{E}-041.50 \mathrm{E}-03$
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.18 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					

Table 2.45. Kinetics of the reaction of 1 b with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 371 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da181s3-1	4.00×10^{-5}	4.00×10^{-4}	4.65×10^{-1}
da181s3-2	4.00×10^{-5}	6.00×10^{-4}	1.42
da181s3-3	4.00×10^{-5}	8.00×10^{-4}	2.34
da181s3-4	4.00×10^{-5}	1.00×10^{-3}	3.29
da181s3-5	4.00×10^{-5}	1.20×10^{-3}	4.60
$k_{2}\left(20^{\circ} \mathrm{C}\right)=5.07 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.46. Kinetics of the reaction of 1 b with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 393 nm).

Table 2.47. Kinetics of the reaction of 1 b with 4 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 302 nm).

Table 2.48. Kinetics of the reaction of 1 b with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 388 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da181s10-1	1.00×10^{-5}	2.50×10^{-4}	5.75×10^{1}
da181s10-2	1.00×10^{-5}	3.00×10^{-4}	7.15×10^{1}
da181s10-3	1.00×10^{-5}	3.50×10^{-4}	8.16×10^{1}
da181s10-4	1.00×10^{-5}	4.00×10^{-4}	1.00×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.75 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.49. ${ }^{1} \mathrm{H}$ NMR monitoring of the formation of $\mathbf{1 3 b a}\left(\mathrm{DMSO}-d_{6}: \mathrm{CH}_{2} \mathrm{Cl}_{\mathbf{2}} ; 2 \mathbf{2 0}^{\circ} \mathrm{C}\right.$; evolution of DABCO followed, Experimental procedure see Products section)

$\left[\mathbf{H O}^{t} \mathbf{B u}\right]=8.82 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$	
t / s	$[\mathbf{D A B C O}] / \mathrm{mol} \mathrm{L}^{-1}$
0	8.60×10^{-3}
6.60×10^{2}	1.36×10^{-2}
9.60×10^{2}	1.71×10^{-2}
1.68×10^{3}	2.23×10^{-2}
2.04×10^{3}	2.48×10^{-2}
4.74×10^{3}	2.97×10^{-2}
7.86×10^{3}	3.03×10^{-2}
9.66×10^{3}	3.04×10^{-2}
$k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=5.76 \times 10^{-4} \mathrm{~s}^{-1}$	

The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore $[\mathrm{DABCO}] \neq 0 \mathrm{M}$ at $t=0 \mathrm{~s}$.

2.7.4.3 Kinetics of the Reactions of Ylide 1c

Figure 2.23. Absorption spectrum of $1 \mathrm{c}\left(\lambda_{\max }=258 \mathrm{~nm}\right)$.

Table 2.50. Determination of the nucleophilicity parameters N and s_{N} for 1 c with the electrophiles 2-4 (filled dots). Open dots refer to the reactions with $5 \mathrm{~b}, 6$ and were not used for the determination of N and s_{N}.

Electrophile	E	$\log k_{2}$
$\mathbf{2 d - B F}$	$\mathbf{4}$	-10.04
5.77		
3a	-12.18	4.67
3b	-13.39	3.99
3c	-15.83	2.69
3d	-16.11	2.46
3e	-17.29	1.65
3f	-17.90	1.35
4a	-17.67	1.34
4d	-21.11	-0.67
$\mathbf{5 b}$	-11.32	5.35
$\mathbf{6}$	-17.32	1.50

Table 2.51. Kinetics of the reaction of 1 c with $2 \mathrm{~d}-\mathrm{BF}_{4}$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 630 nm).

No.	$[\mathbf{2 d - B F} \mathbf{4}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da62s7-1	1.00×10^{-5}	1.00×10^{-4}	4.16×10^{1}
da62s7-2	1.00×10^{-5}	1.10×10^{-4}	4.74×10^{1}
da62s7-3	1.00×10^{-5}	1.20×10^{-4}	5.44×10^{1}
da62s7-4	1.00×10^{-5}	1.30×10^{-4}	5.94×10^{1}
da62s7-5	1.00×10^{-5}	1.40×10^{-4}	6.52×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=5.92 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.52. Kinetics of the reaction of 1 c with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 422 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da62s6-1	2.00×10^{-5}	4.00×10^{-4}	1.97×10^{1}
da62s6-2	2.00×10^{-5}	6.00×10^{-4}	3.17×10^{1}
da62s6-3	2.00×10^{-5}	8.00×10^{-4}	3.87×10^{1}
da62s6-4	2.00×10^{-5}	1.00×10^{-3}	4.75×10^{1}
da62s6-5	2.00×10^{-5}	1.20×10^{-3}	5.86×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.68 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.53. Kinetics of the reaction of 1 c with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm ; from ref. [38]).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da62s5-1	2.00×10^{-5}	2.00×10^{-4}	1.50
da62s5-2	2.00×10^{-5}	3.00×10^{-4}	2.41
da62s5-3	2.00×10^{-5}	4.00×10^{-4}	3.27
da62s5-4	2.00×10^{-5}	5.00×10^{-4}	4.26
da62s5-5	2.00×10^{-5}	6.00×10^{-4}	5.42
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=9.69 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.54. Kinetics of the reaction of 1 c with $3 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 371 nm ; from ref. [38]).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da62s1-1	4.00×10^{-5}	8.00×10^{-4}	3.04×10^{-1}
da62s1-2	4.00×10^{-5}	1.60×10^{-3}	8.01×10^{-1}
da62s1-3	4.00×10^{-5}	2.40×10^{-3}	1.14
da62s1-4	4.00×10^{-5}	3.20×10^{-3}	1.51
da62s1-5	4.00×10^{-5}	4.00×10^{-3}	1.89
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.85 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.55. Kinetics of the reaction of 1 c with $3 \mathrm{~d}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 393 nm ; from ref. 38).

Table 2.56. Kinetics of the reaction of 1 c with 3 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 486 nm ; from ref. [38]).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da62s3-1	4.00×10^{-5}	8.00×10^{-4}	2.72×10^{-2}
da62s3-2	4.00×10^{-5}	1.60×10^{-3}	6.83×10^{-2}
da62s3-3	4.00×10^{-5}	2.40×10^{-3}	1.03×10^{-1}
da62s3-4	4.00×10^{-5}	3.20×10^{-3}	1.33×10^{-1}
da62s3-5	4.00×10^{-5}	4.00×10^{-3}	1.75×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.50 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.57. Kinetics of the reaction of 1 c with 3 f (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 521 nm ; from ref. [38]).

For the determination of the pseudo first-order rate constants of the reaction of $\mathbf{1 c}$ with $\mathbf{4 a}$ the decrease of the absorption of $\mathbf{4 a}$ at 302 nm and the increases of the absorption of 11ca at 263 and 446 nm were monitored by UV-Vis spectroscopy.

Table 2.58. Kinetics of the reaction of 1 c with $4 \mathrm{a}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}, \mathrm{J} \mathrm{\& M}\right.$ method, detection at 302 nm).

$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
4.20×10^{-5}	4.20×10^{-4}	9.63×10^{-3}
3.99×10^{-5}	5.99×10^{-4}	1.43×10^{-2}
4.04×10^{-5}	8.08×10^{-4}	1.84×10^{-2}
1.69×10^{-5}	1.06×10^{-3}	2.51×10^{-2}
1.66×10^{-5}	1.24×10^{-3}	2.74×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.21 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		

Table 2.59. Kinetics of the reaction of 1 c with 4 a ($\mathrm{DMSO}, 20^{\circ} \mathrm{C}$, J\&M method, detection at 263 nm).

$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
4.20×10^{-5}	4.20×10^{-4}	1.21×10^{-2}
3.99×10^{-5}	5.99×10^{-4}	1.77×10^{-2}
4.04×10^{-5}	8.08×10^{-4}	2.24×10^{-2}
1.69×10^{-5}	1.06×10^{-3}	2.81×10^{-2}
1.66×10^{-5}	1.24×10^{-3}	3.08×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.27 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		

Table 2.60. Kinetics of the reaction of 1c with 4 a (DMSO, $20^{\circ} \mathrm{C}, \mathbf{J \& M}$ method, detection at 446 nm).

$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
4.20×10^{-5}	4.20×10^{-4}	1.12×10^{-2}
3.99×10^{-5}	5.99×10^{-4}	1.66×10^{-2}
4.04×10^{-5}	8.08×10^{-4}	1.99×10^{-2}
1.69×10^{-5}	1.06×10^{-3}	2.73×10^{-2}
1.66×10^{-5}	1.24×10^{-3}	3.26×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.55 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		

For the determination of the first-order rate constants of the formation of 11ca the decrease of the absorption of 10ca at 270 and 440 nm was monitored by UV-Vis spectroscopy. $\boldsymbol{k}_{\mathrm{rc}}$ was determined from the intercept.

Table 2.61. Kinetics of the formation of 11ca (DMSO, $20^{\circ} \mathrm{C}, \mathbf{J \& M}$ method, detection at 270 nm).

Table 2.62. Kinetics of the formation of 11ca (DMSO, $20^{\circ} \mathrm{C}, \mathbf{J \& M}$ method, detection at 445 nm).

$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
4.21×10^{-5}	4.21×10^{-4}	6.99×10^{-4}
4.12×10^{-5}	6.17×10^{-4}	9.15×10^{-4}
4.17×10^{-5}	8.34×10^{-4}	9.81×10^{-4}
4.25×10^{-5}	1.06×10^{-3}	9.31×10^{-4}
$k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=6.28 \times 10^{-4} \mathrm{~s}^{-1}$		

Table 2.63. MATLAB fit of the UV-Vis absorptions of the reaction of 1 c with 4 a (DMSO, $20{ }^{\circ} \mathrm{C}, \mathrm{J} \& M$ method, detection at 264 and 302 nm ; from ref [39]).

No.	da62j3-1	da62j3-4
[1c]/ $\mathrm{mol} \mathrm{L}^{-1}$	4.21×10^{-4}	1.06×10^{-3}
[4a]/ $\mathrm{mol} \mathrm{L}^{-1}$	4.21×10^{-5}	4.25×10^{-5}
$k_{\mathrm{CC}} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	1.35×10^{1}	3.71×10^{1}
$k_{\text {-CC }} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	2.51×10^{-36}	2.19×10^{-36}
$k_{\mathrm{rc} / \mathrm{s}} \mathrm{s}^{-1}$	8.35×10^{-4}	6.11×10^{-4}
f_{1}	7.72×10^{-1}	7.72×10^{-1}
f_{2}	2.34×10^{-1}	1.67×10^{-1}
f_{3}	5.54×10^{-1}	4.05×10^{-1}
f_{4}	2.67×10^{-1}	1.71×10^{-1}
c_{0}	7.09×10^{-1}	9.75×10^{-1}
t_{0} / s	1.68×10^{2}	8.43×10^{2}
$k_{\mathrm{CC}} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	1.35×10^{1}	3.71×10^{1}
$k_{\mathrm{CC}}{ }^{\text {average }} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	2.53×10^{1}	
$k-\mathrm{CC} / \mathrm{s}^{-1}$	2.51×10^{-36}	2.19×10^{-36}
$k_{\text {-CC }}{ }^{\text {average }} / \mathrm{s}^{-1}$	2.35×10^{-36}	
$k_{\text {rc }} / \mathrm{s}^{-1}$	8.35×10^{-4}	6.11×10^{-4}
$k_{\mathrm{rc}}{ }^{\text {average } / \mathrm{s}^{-1}}$	7.23	10^{-4}

f_{1} proportionality between extinctions of intermediate 10ca and substrate $\mathbf{4 a}$.
f_{2} proportionality between extinctions of final product 11 ca and substrate $\mathbf{4 a}$.
f_{3} proportionality between extinctions of intermediate 10ca and final product 11ca.
f_{4} proportionality between extinctions of the intermediate $\mathbf{1 0} \mathbf{c a}$ and substrate $\mathbf{4 a}$.
c_{0} dead-time correction factor for the concentration.
t_{0} dead-time.
The symbolic form of the kinetic equations Symsol was derived from eqs (2) and (4)
according to ref. [26].
Function [AC, ACB]=symsol(kcc, kmcc, krc, c0, t);
$A C=1 / 2^{*} c 0^{*}\left(\exp \left(1 / 2^{*}(-k m c c-k r c-\right.\right.$
$\mathrm{kcc}+\left(\mathrm{kmcc}{ }^{\wedge} 2+2 * \mathrm{kmcc} * \mathrm{krc}+2^{*} \mathrm{kmcc} * \mathrm{kcc}+\mathrm{krc}{ }^{\wedge} 2-\right.$
$\left.\left.\left.2 * \mathrm{kcc} * \mathrm{krc}+\mathrm{kcc}{ }^{\wedge} 2\right)^{\wedge}(1 / 2)\right) * \mathrm{t}\right) * \mathrm{kmcc}+\exp \left(1 / 2^{*}(-\mathrm{kmcc}-\mathrm{krc}-\right.$
$\mathrm{kcc}+\left(\mathrm{kmcc} \wedge 2+2 * \mathrm{kmcc} * \mathrm{krc}+2 * \mathrm{kmcc} * \mathrm{kcc}+\mathrm{krc}{ }^{\wedge} 2-\right.$
$\left.\left.\left.2 * \mathrm{kcc} * \mathrm{krc}+\mathrm{kcc}{ }^{\wedge} 2\right)^{\wedge}(1 / 2)\right)^{*} \mathrm{t}\right) * \mathrm{krc}-\exp \left(1 / 2^{*}(-\mathrm{kmcc}-\mathrm{krc}-\right.$
$\mathrm{kcc}+\left(\mathrm{kmcc} \wedge 2+2 * \mathrm{kmcc} * \mathrm{krc}+2 * \mathrm{kmcc} * \mathrm{kcc}+\mathrm{krc}^{\wedge} 2-\right.$
$\left.\left.\left.2^{*} \mathrm{kcc} * \mathrm{krc}+\mathrm{kcc} \wedge 2\right)^{\wedge}(1 / 2)\right)^{*} \mathrm{t}\right) * \mathrm{kcc}+\exp \left(1 / 2^{*}(-\mathrm{kmcc}-\mathrm{krc}-\right.$
kcc+(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
$\left.\left.\left.2 * \mathrm{kcc} * \mathrm{krc}+\mathrm{kcc}{ }^{\wedge} 2\right)^{\wedge}(1 / 2)\right) * \mathrm{t}\right) *\left(\mathrm{kmcc}{ }^{\wedge} 2+2 * \mathrm{kmcc} * \mathrm{krc}+2 * \mathrm{kmcc} * \mathrm{kcc}+\mathrm{krc}{ }^{\wedge} 2-\right.$
2*kcc*krc+kcc^2)^(1/2)-exp(-
1/2*(kmcc+krc+kcc+(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
$\left.\left.\left.2 * \mathrm{kcc} * \mathrm{krc}+\mathrm{kcc}{ }^{\wedge} 2\right)^{\wedge}(1 / 2)\right)^{*} \mathrm{t}\right) * \mathrm{kmcc}-\exp (-$
1/2* (kmcc+krc+kcc+(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
$\left.\left.\left.2^{*} \mathrm{kcc} * \mathrm{krc}+\mathrm{kcc}{ }^{\wedge} 2\right)^{\wedge}(1 / 2)\right)^{*} \mathrm{t}\right) * \mathrm{krc}+\exp (-$
1/2* (kmcc+krc+kcc+(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
$\left.\left.\left.2^{*} \mathrm{kcc} * \mathrm{krc}+\mathrm{kcc}^{\wedge} 2\right)^{\wedge}(1 / 2)\right) * \mathrm{t}\right) * \mathrm{kcc}+\exp (-$

```
1/2*(kmcc+krc+kcc+(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
2*kcc**krc+kcc^2)^(1/2))*t)*(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
2*kcc*krc+kcc^2)^(1/2))/(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
2*kcc**kr+kcc^2)^(1/2);
ACB=-c0*kcc*(-exp(1/2*(-kmcc-krc-
kcc+(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
2*kcc**krc+kcc^2)^(1/2))*t)+exp(-
1/2*(kmcc+krc+kcc+(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
2*kcc*krc+kcc^2)^(1/2))*t))/(kmcc^2+2*kmcc*krc+2*kmcc*kcc+krc^2-
2*kcc**kr+kcc^2)^(1/2);
The program code }\mp@subsup{}{}{[39]}\mathrm{ below was used to calculate the fit for both wavelengths:
function ssd=ssddom(k,inp,inps,nu,tr);
[r,c]=size(inp);
[r2,c2]=size(inps);
j=1;
ssd=0;
for i=[1:1:length(k)]
    if k(i)<0
    ssd=100500;
end
end
if ssd<100500
for i=[1:2:c-1]
    kcc=nu(j)*k(1);
    kmcc=k(2);
    krc=k(3);
    c0=k(8+i-1);
    t0=k(9+i-1);
    f1=k(4);
        %proportionality between extinctions of intermediate and
substrate
    f2=k(5);
    %proportionality between extinctions of final product and
substrate
    f3=k(6);
    %proportionality between extinctions of intermediate and final
product
    f4=k(7);
    %proportionality between extinctions of the intermediate and
substrate
    %at the wavelength of the substrate
    for b=[1:tr:r]
        t=inp(b,i)+t0;
        [A I] = symsol(kcc,kmcc,krc,c0,t);
        Acalc= A+(c0-A-I)*f2+I*f4;
    ssd=ssd+(Acalc-inp(b,i+1))^2;
    end
    for b=[1:tr:r2]
        t=inps(b,i)+t0;
```

```
        [A I] = symsol(kcc,kmcc,krc,c0,t);
        Icalc= f1*I+(c0-A-I)*f3;
        ssd=ssd+(Icalc-inps(b,i+1))^2;
        end
    j=j+1;
end
end
```

Table 2.64. ${ }^{1} \mathrm{H}$ NMR monitoring of the formation of 11 ca (DMSO- $d_{6}, \mathbf{2 0}^{\circ} \mathrm{C}$, evolution of DABCO followed; experimental procedure see Products section).

$\left[\mathrm{HO}^{t} \mathrm{Bu}\right]=6.53 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$	
t / s	$[\mathrm{DABCO}] / \mathrm{mol} \mathrm{L}^{-1}$
0	6.75×10^{-3}
3.60×10^{2}	1.23×10^{-2}
1.02×10^{3}	1.80×10^{-2}
2.10×10^{3}	2.41×10^{-2}
2.88×10^{3}	2.64×10^{-2}
4.26×10^{3}	2.86×10^{-2}
6.54×10^{3}	2.99×10^{-2}
1.22×10^{4}	3.04×10^{-2}
1.40×10^{4}	3.04×10^{-2}
$k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=6.29 \times 10^{-4} \mathrm{~s}^{-1}$	

The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore $[\mathrm{DABCO}] \neq 0 \mathrm{M}$ at t $=0 \mathrm{~s}$.

The kinetics of the reaction of $\mathbf{1 c}$ with $\mathbf{4 d}$ were monitored by GC as outlined in the General Section with concentrations of $[\mathbf{1} \mathbf{c}]_{0}=5.72 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ and $[\mathbf{4 d}]_{0}=3.81 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$.

Table 2.65. Experimental ($[4 \mathrm{~d}]^{\text {exp }}$) and calculated ($[4 \mathrm{~d}]^{\text {calcd }}$) decrease of the time-dependent concentrations of $4 d$ during the reaction of 1 c with 4 d (DMSO, $\left.20^{\circ} \mathrm{C}, \mathrm{GC}-M S-m e t h o d s\right)$.

t / s	$[\mathbf{4 d}]^{\text {exp }} / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{4 d}]^{\text {calcd }} / \mathrm{mol} \mathrm{L}^{-1}$	$\Delta[\mathbf{4 d}]^{\text {exp-calcd }}$
0	3.81×10^{-2}	3.81×10^{-2}	0
60	2.32×10^{-2}	2.07×10^{-2}	2.49×10^{-3}
120	1.29×10^{-2}	1.31×10^{-2}	-1.23×10^{-4}
180	7.62×10^{-3}	8.88×10^{-3}	-1.26×10^{-3}
240	4.91×10^{-3}	6.30×10^{-3}	-1.39×10^{-3}
300	3.90×10^{-3}	4.59×10^{-3}	-6.92×10^{-4}
360	2.86×10^{-3}	3.41×10^{-3}	-5.53×10^{-4}
420	2.17×10^{-3}	2.57×10^{-3}	-3.99×10^{-4}
480	1.97×10^{-3}	1.95×10^{-3}	2.01×10^{-5}
540	1.91×10^{-3}	1.49×10^{-3}	4.23×10^{-4}
600	1.56×10^{-3}	1.15×10^{-3}	4.16×10^{-4}
660	1.54×10^{-3}	8.84×10^{-4}	6.55×10^{-4}
720	1.42×10^{-3}	6.84×10^{-4}	7.37×10^{-4}
780	1.31×10^{-3}	5.31×10^{-4}	7.78×10^{-4}
840	1.29×10^{-3}	5.31×10^{-4}	7.61×10^{-4}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.16 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.66. Experimental ([11ca] ${ }^{\text {exp }}$) and calculated ($[11 \mathrm{ca}]^{\text {calc }}$) increase of the time-dependent concentrations of 11 ca during the reaction of 1 c with 4 d (DMSO, $20{ }^{\circ} \mathrm{C}, \mathrm{GC}-\mathrm{MS}-\mathrm{method}$).

t / s	$[\mathbf{1 1 c a}]^{\text {exp }} / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 1 c a}]^{\text {calcd }} / \mathrm{mol} \mathrm{L}^{-1}$	$\Delta[\mathbf{1 1 c a}]^{\text {exp-calcd }}$
0	0	0	0
60	1.48×10^{-2}	1.73×10^{-2}	-2.48×10^{-3}
120	2.51×10^{-2}	2.49×10^{-2}	1.24×10^{-4}
180	3.04×10^{-2}	2.91×10^{-2}	1.26×10^{-3}
240	3.31×10^{-2}	3.17×10^{-2}	1.40×10^{-3}
300	3.41×10^{-2}	3.34×10^{-2}	6.93×10^{-4}
360	3.51×10^{-2}	3.46×10^{-2}	5.54×10^{-4}
420	3.58×10^{-2}	3.54×10^{-2}	4.00×10^{-4}
480	3.60×10^{-2}	3.61×10^{-2}	-1.95×10^{-5}
540	3.61×10^{-2}	3.65×10^{-2}	-4.22×10^{-4}
600	3.64×10^{-2}	3.69×10^{-2}	-4.15×10^{-4}
660	3.65×10^{-2}	3.71×10^{-2}	-6.55×10^{-4}
720	3.66×10^{-2}	3.73×10^{-2}	-7.37×10^{-4}
780	3.67×10^{-2}	3.75×10^{-2}	-7.77×10^{-4}
840	3.67×10^{-2}	3.75×10^{-2}	-7.61×10^{-4}

Table 2.67. Kinetics of the reaction of 1 c with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 388 nm).

Table 2.68. ${ }^{1} \mathrm{H}$ NMR monitoring of kinetics of the formation of $12 \mathrm{ca}\left(\mathrm{DMSO}-d_{6}, 2{ }^{\circ} \mathrm{C}\right.$, evolution of DABCO followed; experimental procedure see Products Section.

$\left[\mathrm{HO}^{\mathrm{t}} \mathrm{Bu}\right]=1.09 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$	
t / s	$[\mathrm{DABCO}] / \mathrm{mol} \mathrm{L}^{-1}$
0	1.19×10^{-3}
3.00×10^{2}	3.03×10^{-3}
7.20×10^{2}	4.86×10^{-3}
1.92×10^{3}	9.17×10^{-3}
3.42×10^{3}	1.16×10^{-2}
5.58×10^{3}	1.24×10^{-2}
8.76×10^{3}	1.24×10^{-2}
$k_{1}\left(20^{\circ} \mathrm{C}\right)=6.52 \times 10^{-4} \mathrm{~s}^{-1}$	

The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore [DABCO] $\neq 0 \mathrm{M}$ at $t=0 \mathrm{~s}$.

Table 2.69. Kinetics of the reaction of 1 c with 6 (DMSO, $20^{\circ} \mathrm{C}$, $\mathbf{J \& M}$ method, detection at 325 nm).

No.	$[\mathbf{6}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da62j2-1	3.60×10^{-5}	3.75×10^{-4}	7.30×10^{-3}
da62j2-2	3.71×10^{-5}	5.64×10^{-4}	1.18×10^{-2}
da62j2-3	3.64×10^{-5}	7.29×10^{-4}	1.77×10^{-2}
da62j2-5	3.67×10^{-5}	1.12×10^{-4}	3.03×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.09 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

2.7.4.4 Kinetics of the Reactions of Ylide 1d

General note: If not mentioned otherwise $\mathbf{1 d H}^{+} \mathbf{O T f}^{-}$was used as precursor salt.

Figure 2.24. Absorption spectrum of $1 \mathrm{~d}\left(\lambda_{\max }=260 \mathrm{~nm}\right)$.

Table 2.70. Determination of the nucleophilicity parameters N and s_{N} for $1 d$ with the electrophiles $\mathbf{2 , 3}$ (filled dots). Open dots refer to the reactions with 5,6 and were not used for the determination of N and s_{N}.

Nucleophilicity parameters for 1d in DMSO: $N=18.21, s_{\mathrm{N}}=0.54$.

Table 2.71. Kinetics of the reaction of 1 d with $2 \mathrm{~b}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 627 nm).

No.	$[\mathbf{2 b - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da168s4-1	4.00×10^{-5}	4.00×10^{-4}	7.19×10^{1}
da168s4-6	4.00×10^{-5}	5.00×10^{-4}	8.75×10^{1}
da168s4-3	4.00×10^{-5}	8.00×10^{-4}	1.21×10^{2}
da168s4-4	4.00×10^{-5}	1.00×10^{-3}	1.60×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.41 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.72. Kinetics of the reaction of 1 d with $2 \mathrm{c}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 635 nm).

No.	$[\mathbf{2 c - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	
da168s4-7	4.00×10^{-5}	6.00×10^{-4}	3.45×10^{1}
da168s4-1	4.00×10^{-5}	8.00×10^{-4}	4.52×10^{1}
da168s4-3	4.00×10^{-5}	1.20×10^{-3}	5.77×10^{1}
da168s4-4	4.00×10^{-5}	1.40×10^{-3}	6.51×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.69 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.73. Kinetics of the reaction of 1 d with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 422 nm).

No.	[3a]/mol L ${ }^{-1}$	$\left[\mathrm{KO}^{t} \mathrm{Bu}\right] / \mathrm{mol} \mathrm{L}^{-1}$	$\left[\mathbf{1 d H}^{+} \mathbf{O T f}^{-}\right] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	10	\longrightarrow
da168s2r2-1	4.00×10^{-5}	4.20×10^{-4}	8.00×10^{-4}	6.23		
da168s2r2-2	4.00×10^{-5}	8.40×10^{-4}	1.60×10^{-3}	6.68	$\stackrel{i n}{8}_{5}^{8} 5$	
da168s2r2-3	4.00×10^{-5}	1.26×10^{-3}	2.40×10^{-3}	7.92		$y=2080.3 \mathrm{x}+5.2023$
da168s2r2-5	4.00×10^{-5}	2.10×10^{-3}	4.00×10^{-3}	9.59	0	
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.08 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$						$\begin{aligned} & 1.25 \mathrm{E}-03 \quad 2.50 \mathrm{E}-03 \\ & {[1 \mathrm{~d}] / \mathrm{mol} \mathrm{~L}^{-1}} \end{aligned}$

Table 2.74. Kinetics of the reaction of 1 d with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

Table 2.75. Kinetics of the formation of $9 \mathrm{db}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}, \mathbf{J \& M}\right.$ method, detection at 533 nm).

No.	$[\mathbf{3 b}] / \mathrm{M}$	$[\mathbf{1 d}] / \mathrm{M}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	$[\mathbf{1 d}]^{-1} / \mathrm{M}^{-1}$	$k_{\mathrm{obs}}-1 / \mathrm{s}$
da168j4-1	1.80×10^{-5}	3.60×10^{-4}	2.17×10^{-3}	2.78×10^{3}	4.61×10^{2}
da168j4-2	3.53×10^{-5}	7.06×10^{-4}	3.89×10^{-3}	1.42×10^{3}	2.57×10^{2}
da168j4-3	3.98×10^{-5}	1.19×10^{-3}	6.68×10^{-3}	8.40×10^{2}	1.50×10^{2}
da168j4-4	3.78×10^{-5}	1.51×10^{-3}	8.80×10^{-3}	6.61×10^{2}	1.14×10^{2}
da168j4-5	3.82×10^{-5}	1.91×10^{-3}	1.09×10^{-2}	5.24×10^{2}	9.17×10^{1}
$1 / K \cdot k_{\mathrm{rc}}=1.64 \times 10^{-1} \mathrm{M} \mathrm{s}=>K \cdot k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=6.09 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					

Table 2.76. Determination of the equilibrium constant of the reaction of 1 d with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stoppedflow method, detection at $533 \mathbf{~ n m}$).

No.	[3b]/mol L ${ }^{-1}$	[1d]/mol L ${ }^{-1}$	A_{0}	$A_{\text {eq }}{ }^{\text {[a] }}$	$\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$			
da168s1-1	4.00×10^{-5}	4.00×10^{-4}	0.998	0.924	0.080		$\begin{aligned} & y=155.66 x+0.0021 \\ & R^{2}=0.9879 \end{aligned}$	
da168s1-2	4.00×10^{-5}	8.00×10^{-4}	1.004	0.895	0.122			
da168s1-3	4.00×10^{-5}	1.20×10^{-3}	1.003	0.838	0.197			
da168s1-4	4.00×10^{-5}	1.60×10^{-3}	1.002	0.818	0.225			
da168s1-7	4.00×10^{-5}	2.80×10^{-3}	0.998	0.702	0.422			
da168s1-8	4.00×10^{-5}	3.20×10^{-3}	0.992	0.651	0.524	$\begin{aligned} & 0.0 \\ & 0.00 \mathrm{E}+00 \end{aligned}$	$1.60 \mathrm{E}-03$	3.20E-03
$K\left(20{ }^{\circ} \mathrm{C}\right)=1.6 \times 10^{2} \mathrm{M}^{-1}$							[1d]/mol L-	

[a] The equilibrium absorbances have been determined from the constant C obtained by fitting the monoexponential function $A=A_{0} e^{-k o b s} t+C$ to the time-dependent absorbances.

Table 2.77. Kinetics of the reaction of 1 d with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 388 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da168s5-2	2.00×10^{-5}	3.00×10^{-4}	1.76×10^{1}
da168s5-3	2.00×10^{-5}	4.00×10^{-4}	1.84×10^{1}
da168s5-4	2.00×10^{-5}	5.00×10^{-4}	1.91×10^{1}
da168s5-5	2.00×10^{-5}	6.00×10^{-4}	2.03×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=8.80 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.78. Kinetics of the formation of $13 \mathrm{da}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 388 nm).

Table 2.79. Determination of the equilibrium constant of the reaction of 1 d with 5 bb (DMSO, $20^{\circ} \mathrm{C}$, Stoppedflow method, detection at 388 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	A_{0}	$A_{\mathrm{eq}}{ }^{[\text {a] }}$	$\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$
da168s5-1	2.00×10^{-5}	2.00×10^{-3}	1.18	0.828	0.425
da168s5-3	2.00×10^{-5}	4.00×10^{-4}	1.15	0.773	0.488
da168s5-4	2.00×10^{-5}	5.00×10^{-4}	1.13	0.776	0.456
da168s5100	2.00×10^{-5}	2.00×10^{-3}	1.03	0.596	0.728
da168s5110	2.00×10^{-5}	2.20×10^{-3}	1.04	0.578	0.799
da168s5140	2.00×10^{-5}	2.80×10^{-3}	1.04	0.548	0.898

$K\left(20^{\circ} \mathrm{C}\right)=2 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1}$
[a] The equilibrium absorbances have been determined from the constant C obtained by fitting the monoexponential function $A=A_{0} e^{-k o b s t}+C$ to the time-dependent absorbances.

The large positive intercept shows the uncertainty of the method. If the values $\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$ obtained with the highest concentration of $\mathbf{1} \mathbf{e}$ is divided by [1e], one obtains an equilibrium constant of $K=3 \times 10^{2}$.

Table 2.80. Kinetics of the reaction of 1 d with $5 \mathrm{c}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, J\&M method, detection at 523 nm).

No.	$[\mathbf{5 c}] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	
da168j2-12	3.61×10^{-5}	7.23×10^{-4}	5.28×10^{-3}
da168j2-1	3.72×10^{-5}	9.30×10^{-4}	5.89×10^{-3}
da168j2-22	3.71×10^{-5}	1.11×10^{-3}	6.67×10^{-3}
da168j2-42	3.44×10^{-5}	1.38×10^{-3}	7.38×10^{-3}
da168j2-5	3.72×10^{-5}	1.67×10^{-3}	8.54×10^{-3}
$K \cdot k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=3.41 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.81. Kinetics of the reaction of 1 e and $3 \mathrm{c}\left(\mathrm{DMSO}, 20{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}\right.$ NMR method, evolution of DABCO and consumption of 3c followed). For the experimental procedure Products Section.

	$\left[\mathrm{KO}^{t} \mathrm{Bu}\right]=5.08 \times 10^{-2} \mathrm{M}$	$[\mathbf{1 d}]^{0}=5.36 \times 10^{-2} \mathrm{M}$	$[\mathbf{6}]^{0}=4.96 \times 10^{-2} \mathrm{M}$	
t / s	$[\mathrm{DABCO}] / \mathrm{M}$	$[\mathbf{1 d}] / \mathrm{M}$	$[\mathbf{6}] / \mathrm{M}$	$[\mathbf{6}]^{-1} / \mathrm{M}^{-1}$
0	3.05×10^{-3}	5.06×10^{-2}	4.66×10^{-2}	2.15×10^{1}
6.60×10^{2}	3.18×10^{-3}	5.04×10^{-2}	4.64×10^{-2}	2.15×10^{1}
1.20×10^{3}	3.30×10^{-3}	5.03×10^{-2}	4.63×10^{-2}	2.16×10^{1}
3.96×10^{3}	3.85×10^{-3}		4.97×10^{-2}	4.57×10^{-2}
	$K \cdot k_{\mathrm{rc}}=9.6 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$			

The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore $[\mathrm{DABCO}] \neq 0 \mathrm{M}$ at $t=0 \mathrm{~s}$.

2.7.4.5 Kinetics of the Reactions of Ylide 1e

Figure 2.25. Absorption spectrum of $1 \mathrm{e}\left(\lambda_{\max }=257,310 \mathrm{~nm}\right)$.

Table 2.82. Determination of the nucleophilicity parameters N and $s_{\mathbf{N}}$ for 1 e with the electrophiles $\mathbf{2 , 3}$ (filled dots). Open dots refer to the reactions with 4-6 and were not used for the determination of N and s_{N}.

Nucleophilicity parameters for $1 \mathbf{e}$ in DMSO: $N=17.22, s_{\mathrm{N}}=0.69$.

Table 2.83. Kinetics of the reaction of 1 e with $2 \mathrm{c}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 635 nm ; from ref. [38]).

No.	$[\mathbf{2 c - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da72s1-1	4.00×10^{-5}	4.00×10^{-4}	6.70×10^{1}
da72s1-2	4.00×10^{-5}	6.00×10^{-4}	8.80×10^{1}
da72s1-3	4.00×10^{-5}	8.00×10^{-4}	1.31×10^{2}
da72s1-4	4.00×10^{-5}	1.00×10^{-3}	1.61×10^{2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.63 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.84. Kinetics of the reaction of 1e with $2 \mathrm{~d}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 630 nm ; from ref. [38]).

No.	$[\mathbf{2 d - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da72s2-1	8.00×10^{-6}	4.00×10^{-4}	4.10×10^{1}
da72s2-2	8.00×10^{-6}	6.00×10^{-4}	6.98×10^{1}
da72s2-3	8.00×10^{-6}	8.00×10^{-4}	9.38×10^{1}
da72s2-4	8.00×10^{-6}	1.00×10^{-3}	1.23×10^{2}
da72s2-5	8.00×10^{-6}	1.20×10^{-3}	1.46×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.32 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.85. Kinetics of the reaction of 1 e with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 422 nm ; from ref. [38]).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da72s4-1	2.00×10^{-5}	8.00×10^{-4}	3.96
da72s4-3	2.00×10^{-5}	2.40×10^{-3}	1.04×10^{1}
da72s4-4	2.00×10^{-5}	3.20×10^{-3}	1.25×10^{1}
da72s4-5	2.00×10^{-5}	4.00×10^{-3}	1.65×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.82 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.86. Kinetics of the reaction of 1 e with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da72s3r-1	2.00×10^{-5}	4.00×10^{-4}	2.13
da72s3r-2	2.00×10^{-5}	8.00×10^{-4}	2.24
da72s3r-3	2.00×10^{-5}	1.20×10^{-3}	2.40
da72s3r-4	2.00×10^{-5}	1.60×10^{-3}	2.59
da72s3r-5	2.00×10^{-5}	2.00×10^{-3}	2.64
da72s3r-6	2.00×10^{-5}	2.40×10^{-3}	2.81
da72s3r-7	2.00×10^{-5}	2.80×10^{-3}	3.03
da72s3r-8	2.00×10^{-5}	3.20×10^{-3}	3.11
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.60 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.87. Kinetics of the formation of $9 \mathrm{eb}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, J\&M method, detection at 533 nm).

No	$[\mathbf{3 b}] / \mathrm{M}$	$[\mathbf{1 e}] / \mathrm{M}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	$[\mathbf{1 e}]^{-1} / \mathrm{M}^{-1}$	$k_{\mathrm{obs}}{ }^{-1} / \mathrm{s}$
da72j6-1	1.80×10^{-5}	9.01×10^{-4}	1.76×10^{-3}	1.11×10^{3}	5.68×10^{2}
da72j6-2	1.82×10^{-5}	1.38×10^{-3}	2.47×10^{-3}	7.25×10^{2}	4.05×10^{2}
da72j6-3	1.81×10^{-5}	1.81×10^{-3}	2.96×10^{-3}	5.52×10^{2}	3.38×10^{2}
da72j6-4	1.80×10^{-5}	2.26×10^{-3}	3.40×10^{-3}	4.42×10^{2}	2.94×10^{2}
da72j6-5	1.79×10^{-5}	2.69×10^{-3}	3.74×10^{-3}	3.71×10^{2}	2.67×10^{2}
$1 / K \cdot k_{\mathrm{rc}}=4.08 \times 10^{-1} \mathrm{M} \mathrm{s}=>K \cdot \mathrm{k}_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=2.45 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					
$\quad 1 / k_{\mathrm{rc}}=1.14 \times 10^{1} \mathrm{M} \mathrm{s}=>k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=8.79 \times 10^{-3} \mathrm{~s}^{-1}$					
$\mathrm{C})=2.79 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1}$					

Table 2.88. Determination of the equilibrium constant of the reaction of 1 e with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stoppedflow method, detection at 533 nm).

The negative intercept of the correlation shows the uncertainty of the method.

Table 2.89. Kinetics of the reaction of 1e and $3 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C},{ }^{1} \mathrm{H}\right.$ NMR method, evolution of DABCO and consumption of 3c followed). For the experimental procedure Products Section.

		$[\mathbf{1 e}]_{0}=5.00 \times 10^{-2} \mathrm{M}$	$[\mathbf{3 c}]_{0}=4.98 \times 10^{-2} \mathrm{M}$	
t / s	equiv. DABCO	$[\mathbf{1 e}] / \mathrm{M}$	$[\mathbf{3 c}] / \mathrm{M}$	$[\mathbf{3 c}]^{-1} / \mathrm{M}^{-1}$
0	0.217	3.92×10^{-2}	3.90×10^{-2}	2.56×10^{1}
3.60×10^{2}	0.349	3.25×10^{-2}	3.24×10^{-2}	3.09×10^{1}
7.20×10^{2}	0.479	2.60×10^{-2}	2.59×10^{-2}	3.86×10^{1}
9.00×10^{2}	0.52	2.40×10^{-2}	2.39×10^{-2}	4.19×10^{1}
1.02×10^{3}	0.538	2.31×10^{-2}	2.30×10^{-2}	4.35×10^{1}

The ratio of the signals of CDHCl_{2} (residual in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) and of DABCO was used to determine the decrease of the concentration of the reactants by $[\mathbf{1 e} / \mathbf{3 c}]=[\mathbf{1 e} / \mathbf{3 c}]_{0}-$ $[\mathbf{1 e} / \mathbf{3 c}] \times$ (equiv. DABCO). The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore $[\mathrm{DABCO}] \neq 0 \mathrm{M}$ at $t=0 \mathrm{~s}$.

Table 2.90. Kinetics of the reaction of 1 e and 4 a (DMSO, $20{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR method, evolution of DABCO followed; experimental procedure see Products Section).

$\left[\mathrm{HO}^{t} \mathrm{Bu}\right]=5.05 \times 10^{-2} \mathrm{M}$	$[\mathbf{1 e}]_{0}=6.49 \times 10^{-2} \mathrm{M}$	$[\mathbf{4 a}]_{0}=6.24 \times 10^{-2} \mathrm{M}$			
t / s	$[\mathrm{DABCO}] / \mathrm{M}$	$[\mathbf{e}] / \mathrm{M}$	$[\mathbf{4 a}] / \mathrm{M}$	$[\mathbf{4 a}]^{-1} / \mathrm{M}^{-1}$	
0	6.73×10^{-4}	6.42×10^{-2}	6.17×10^{-2}	1.62×10^{1}	
3.60×10^{2}	1.56×10^{-3}	6.33×10^{-2}	6.08×10^{-2}	1.64×10^{1}	
7.80×10^{2}	2.57×10^{-3}	6.23×10^{-2}	5.98×10^{-2}	1.67×10^{1}	
1.14×10^{3}	3.07×10^{-3}	6.18×10^{-2}	5.93×10^{-2}	1.69×10^{1}	
2.16×10^{3}	4.71×10^{-3}	6.02×10^{-2}	5.77×10^{-2}	1.73×10^{1}	
4.74×10^{3}	8.42×10^{-3}	5.65×10^{-2}	5.40×10^{-2}	1.85×10^{1}	
1.01×10^{4}	1.41×10^{-2}	5.08×10^{-2}	4.83×10^{-2}	2.07×10^{1}	
1.26×10^{4}	1.65×10^{-2}	4.84×10^{-2}	4.59×10^{-2}	2.18×10^{1}	

The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore $[\mathrm{DABCO}] \neq 0 \mathrm{M}$ at t $=0 \mathrm{~s}$.

Table 2.91. Kinetics of the reaction of 1e with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 388 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da72s5-2	2.00×10^{-5}	3.00×10^{-4}	1.79×10^{1}
da72s5-3	2.00×10^{-5}	4.00×10^{-4}	1.90×10^{1}
da72s5-4	2.00×10^{-5}	5.00×10^{-4}	2.05×10^{1}
da72s5-5	2.00×10^{-5}	6.00×10^{-4}	2.14×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.20 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.92. Kinetics of the formation of 13 ea (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 388 nm).

No	$[\mathbf{5 b}] / \mathrm{M}$	$[\mathbf{1 e}] / \mathrm{M}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	$[\mathbf{1 e}]^{-1} / \mathrm{M}^{-1}$	$k_{\mathrm{obs}}{ }^{-1 / \mathrm{s}}$
da72s5-22	2.00×10^{-5}	3.00×10^{-4}	1.02×10^{-2}	3.33×10^{3}	9.80×10^{1}
da72s5-32	2.00×10^{-5}	4.00×10^{-4}	1.33×10^{-2}	2.50×10^{3}	7.52×10^{1}
da72s5-42	2.00×10^{-5}	5.00×10^{-4}	1.57×10^{-2}	2.00×10^{3}	6.37×10^{1}
da72s5-52	2.00×10^{-5}	6.00×10^{-4}	1.91×10^{-2}	1.67×10^{3}	5.24×10^{1}
da72s5-1002	2.00×10^{-5}	2.00×10^{-3}	6.94×10^{-2}	5.00×10^{2}	1.44×10^{1}
	$1 / K \cdot k_{\mathrm{rc}}=2.94 \times 10^{-1} \mathrm{M} \mathrm{s}=>K \cdot k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=3.40 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				

Table 2.93. Determination of the equilibrium constant of the reaction of 1 e with 5 b (DMSO, $20{ }^{\circ} \mathrm{C}$, Stoppedflow method, detection at 388 nm).

No.	$[\mathbf{5 b}] / \mathrm{M}$	$[\mathbf{1 e}]_{0} / \mathrm{M}$	A_{0}	$A_{\text {eq }}{ }^{[\text {a] }}$	$\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$
da72s5-1	2.00×10^{-5}	2.00×10^{-4}	1.11	0.866	0.305
da72s5-2	2.00×10^{-5}	3.00×10^{-4}	1.11	0.848	0.309
da72s5-3	2.00×10^{-5}	4.00×10^{-4}	1.11	0.798	0.391
da72s5-100	2.00×10^{-5}	2.00×10^{-3}	1.11	0.653	0.700
da72s5-110	2.00×10^{-5}	2.20×10^{-3}	1.11	0.634	0.751
da72s5-120	2.00×10^{-5}	2.40×10^{-3}	1.11	0.624	0.779
da72s5-130	2.00×10^{-5}	2.60×10^{-3}	1.11	0.592	0.875
$\left[20^{\circ} \mathrm{C}\right)=2 \times 10^{2} \mathrm{M}^{-1}$					

[a] The equilibrium absorbances have been determined from the constant C obtained by fitting the monoexponential function $A=A_{0} e^{-k o b s} t+C$ to the time-dependent absorbances.

If the values $\left(A_{0^{-}} A_{\text {eq }}\right) / A_{\text {eq }}$ obtained with the highest concentration of $\mathbf{1 e}$ is divided by [1e], one obtains an equilibrium constant of $K=3 \times 10^{2}$. The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore $[\mathrm{DABCO}] \neq 0 \mathrm{M}$ at $t=0 \mathrm{~s}$.

Table 2.94. Kinetics of the reaction of 1 e with $5 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}, \mathrm{J} \mathrm{\& M}\right.$ method, detection at 523 nm).

Table 2.95. Kinetics of the reaction of 1 e and $6\left(\mathrm{DMSO}, 20{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}\right.$ NMR method, evolution of DABCO followed; experimental procedure see Products Section).

	$\left[\mathrm{HO}^{\prime} \mathrm{Bu}\right]=5.08 \times 10^{-2} \mathrm{M}$	$[\mathbf{1 e}]_{0}=5.08 \times 10^{-2} \mathrm{M}$	$[\mathbf{6}]_{0}=4.84 \times 10^{-2} \mathrm{M}$	
t / s	$[\mathrm{DABCO}] / \mathrm{M}$	$[\mathbf{e}] / \mathrm{M}$	$[\mathbf{6}] / \mathrm{M}$	$[\mathbf{1 e}]^{-1} / \mathrm{M}^{-1}$
0	3.43×10^{-3}	4.74×10^{-2}	4.50×10^{-2}	2.22×10^{1}
6.60×10^{2}	4.28×10^{-3}	4.65×10^{-2}	4.41×10^{-2}	2.27×10^{1}
1.26×10^{3}	4.91×10^{-3}	4.59×10^{-2}	4.35×10^{-2}	2.30×10^{1}
4.56×10^{3}	8.13×10^{-3}	4.27×10^{-2}	4.03×10^{-2}	2.48×10^{1}
$K \cdot k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=5.64 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$				

The time at which the first spectrum was taken equals $t=0 \mathrm{~s}$. Therefore [DABCO] $\neq 0 \mathrm{M}$ at t
$=0 \mathrm{~s}$.

2.7.4.6 Kinetics of the Reactions of Ylide if

Table 2.96. Determination of the nucleophilicity parameters N and s_{N} for $1 f$ with the electrophiles 2,3 .

Electrophile	E	$\log k_{2}$
$\mathbf{2 d - B F}$	-10.04	5.40
$\mathbf{3 b}$	-13.39	3.98
$\mathbf{3 c}$	-15.83	2.81
$\mathbf{3 d}$	-16.11	2.55
$\mathbf{3 e}$	-17.29	1.83
$\mathbf{3 f}$	-17.90	1.40

Nucleophilicity parameters for $\mathbf{1 f}$ in DMSO: $N=21.05, s_{\mathrm{N}}=0.50$.

Table 2.97. Kinetics of the reaction of 1 f with $2 \mathrm{~d}-\mathrm{BF}_{4}$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 630 nm).

No.	$[\mathbf{2 d - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	
da54s6-1	1.00×10^{-5}	$1.00 \times 10^{-4} 3.79 \times 10^{1}$	
da54s6-2	1.00×10^{-5}	$1.10 \times 10^{-4} 3.96 \times 10^{1}$	
da54s6-3	1.00×10^{-5}	$1.20 \times 10^{-4} 4.26 \times 10^{1}$	
da54s6-4	1.00×10^{-5}	$1.30 \times 10^{-4} 4.53 \times 10^{1}$	
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.52 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.98. Kinetics of the reaction of 1 f with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm ; from ref. [38]).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da54s5-1	2.00×10^{-5}	2.00×10^{-4}	1.46
da54s5-2	2.00×10^{-5}	3.00×10^{-4}	2.07
da54s5-3	2.00×10^{-5}	4.00×10^{-4}	3.05
da54s5-4	2.00×10^{-5}	5.00×10^{-4}	4.06
da54s5-5	2.00×10^{-5}	6.00×10^{-4}	5.22
$k_{2}\left(20^{\circ} \mathrm{C}\right)=9.51 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.99. Kinetics of the reaction of 1 f with $3 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 371 nm ; from ref. [38]).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da54s1-1	4.00×10^{-5}	8.00×10^{-4}	1.91×10^{-1}
da54s1-2	4.00×10^{-5}	1.20×10^{-3}	5.35×10^{-1}
da54s1-3	4.00×10^{-5}	1.60×10^{-3}	7.82×10^{-1}
da54s1-5	4.00×10^{-5}	2.40×10^{-3}	1.25
$k_{2}\left(20^{\circ} \mathrm{C}\right)=6.49 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.100. Kinetics of the reaction of 1f with 3 d (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at 393 nm ; from ref. [38]).

No.	$[\mathbf{3 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da54s2-1	4.00×10^{-5}	8.00×10^{-4}	2.39×10^{-1}
da54s2-2	4.00×10^{-5}	1.20×10^{-3}	3.83×10^{-1}
da54s2-3	4.00×10^{-5}	1.60×10^{-3}	5.40×10^{-1}
da54s2-4	4.00×10^{-5}	2.00×10^{-3}	6.68×10^{-1}
da54s2-5	4.00×10^{-5}	2.40×10^{-3}	8.58×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.81 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.101. Kinetics of the reaction of 1 f with $3 \mathrm{e}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 486 nm ; from ref. [38]).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da54s3-1	4.00×10^{-5}	1.20×10^{-3}	6.68×10^{-2}
da54s3-2	4.00×10^{-5}	1.60×10^{-3}	9.65×10^{-2}
da54s3-3	4.00×10^{-5}	2.00×10^{-3}	1.24×10^{-1}
da54s3-4	4.00×10^{-5}	2.40×10^{-3}	1.54×10^{-1}
da54s3-5	4.00×10^{-5}	2.80×10^{-3}	1.74×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=6.80 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.102. Kinetics of the reaction of 1 f with $3 \mathrm{f}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 521 nm ; from ref. [38]).

No.	$[\mathbf{3 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da54s4-1	2.00×10^{-5}	1.60×10^{-3}	4.40×10^{-2}
da54s4-2	2.00×10^{-5}	2.40×10^{-3}	7.32×10^{-2}
da54s4-3	2.00×10^{-5}	3.20×10^{-3}	8.55×10^{-2}
da54s4-4	2.00×10^{-5}	4.00×10^{-3}	1.08×10^{-2}
da54s4-5	2.00×10^{-5}	4.80×10^{-3}	1.26×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.49 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

2.7.4.7 Kinetics of the Reactions of Ylide 1 g

Table 2.103. Determination of the nucleophilicity parameters \boldsymbol{N} and s_{N} for 1 g with the electrophiles $\mathbf{2 , 3}$ (filled dots). Open dot refers to the reaction with 4 d and was not used for the determination of N and s_{N}.

Electrophile	E	$\log k_{2}$
$\mathbf{2 d - B F}$	4	-10.04
5.86		
$\mathbf{3 a}$	-12.18	4.83
$\mathbf{3 b}$	-13.39	3.80
$\mathbf{3 c}$	-15.83	2.54
$\mathbf{4 d}$	-21.11	-0.66

Nucleophilicity parameters for $\mathbf{1 g}$

in DMSO $N=20.14, s_{\mathrm{N}}=0.59$.

Table 2.104. Kinetics of the reaction of 1 g with $2 \mathrm{~d}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 630 nm).

No.	$[\mathbf{2 d - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da78s4-1	5.00×10^{-6}	1.00×10^{-4}	3.37×10^{1}
da78s4-2	5.00×10^{-6}	1.10×10^{-4}	3.95×10^{1}
da78s4-3	5.00×10^{-6}	1.20×10^{-4}	4.69×10^{1}
da78s4-4	5.00×10^{-6}	1.30×10^{-4}	5.46×10^{1}
da78s4-5	5.00×10^{-6}	1.40×10^{-4}	6.27×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=7.31 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.105. Kinetics of the reaction of 1 g with $3 \mathrm{a}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 422 nm ; from ref. [38]).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da78s1-1	4.00×10^{-5}	4.00×10^{-4}	2.52×10^{1}
da78s1-2	4.00×10^{-5}	8.00×10^{-4}	5.51×10^{1}
da78s1-3	4.00×10^{-5}	1.20×10^{-3}	8.33×10^{1}
da78s1-4	4.00×10^{-5}	1.60×10^{-3}	1.11×10^{2}
da78s1-5	4.00×10^{-5}	2.00×10^{-3}	1.34×10^{2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=6.84 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.106. Kinetics of the reaction of 1 g with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm ; from ref. [38]).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da78s2-1	4.00×10^{-5}	4.00×10^{-4}	2.07
da78s2-2	4.00×10^{-5}	8.00×10^{-4}	4.34
da78s2-3	4.00×10^{-5}	1.20×10^{-3}	6.77
da78s2-4	4.00×10^{-5}	1.60×10^{-3}	9.41
da78s2-5	4.00×10^{-5}	2.00×10^{-3}	1.22×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=6.33 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.107. Kinetics of the reaction of 1 g with $3 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 371 nm ; from ref. [38]).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da78s3-1	8.00×10^{-5}	8.00×10^{-4}	1.69×10^{-1}
da78s3-2	8.00×10^{-5}	1.60×10^{-3}	4.95×10^{-1}
da78s3-3	8.00×10^{-5}	2.40×10^{-3}	7.74×10^{-1}
da78s3-4	8.00×10^{-5}	3.20×10^{-3}	9.84×10^{-1}
da78s3-5	8.00×10^{-5}	3.50×10^{-3}	1.15
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.49 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

The kinetics of the reaction of $\mathbf{1 g}$ with $\mathbf{4 d}$ were monitored by GC as outlined on in the General Section with concentrations of $[\mathbf{1 g}]_{0}=5.72 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ and $[\mathbf{4 d}]_{0}=3.81 \times 10^{-2} \mathrm{~mol}$ L^{-1}. The deviations between the experimental and calculated concentrations are a result of the uncertainty of the method.

Table 2.108. Experimental ($[4 \mathrm{~d}]^{\text {exp }}$) and calculated ($[4 \mathrm{~d}]^{\text {calcd }}$) decrease of the time-dependent concentrations of 4 d during the reaction of 1 g with 4 d (DMSO, $20^{\circ} \mathrm{C}$, GC-method).

t / s	[4d] ${ }^{\text {exp }} / \mathrm{mol} \mathrm{L}^{-1}$	[4d] ${ }^{\text {calc }} / \mathrm{mol} \mathrm{L}^{-1}$	$\Delta[\mathbf{4 d}]^{\text {exp-calcd }}$
0	3.80×10^{-2}	3.80×10^{-2}	0
60	3.04×10^{-2}	2.06×10^{-2}	9.74×10^{-3}
120	1.40×10^{-2}	1.30×10^{-2}	1.01×10^{-3}
180	4.20×10^{-3}	8.84×10^{-3}	-4.64×10^{-3}
240	1.05×10^{-3}	6.27×10^{-3}	-5.22×10^{-3}
300	1.07×10^{-3}	4.56×10^{-3}	-3.50×10^{-3}
360	6.29×10^{-4}	3.39×10^{-3}	-2.76×10^{-3}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.2 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.109. Experimental ([11gd] ${ }^{\text {exp }}$) and calculated ($[11 \mathrm{gd}]^{\text {calcd }}$) increase of the time-dependent concentrations of 11 gd during the reaction of 1 h with 4 d (DMSO, $20^{\circ} \mathrm{C}$, GC-method).

2.7.4.8 Kinetics of the Reactions of Ylide 1 h

Table 2.110. Determination of the nucleophilicity parameters N and s_{N} for $\mathbf{1 h}$ with the electrophiles 2-4 (filled dots). Open dot refers to the reaction with $4 d$ and was not used for the determination of N and s_{N}.

Electrophile	E	$\log k_{2}$
$\mathbf{2 c - B F}$	-9.45	5.84
2d-BF4	-10.04	5.83
3a	-12.18	4.85
3b	-13.39	4.05
3c	-15.83	2.83
3d	-16.11	2.67
3e	-17.29	1.90
3f	-17.90	1.64
4a	-17.67	1.64
4d	-21.11	-0.70

Table 2.111. Kinetics of the reaction of 1 h with $2 \mathrm{c}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 635 nm).

No.	$[\mathbf{2 c - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	
da96s2-2	2.00×10^{-5}	2.40×10^{-4}	1.05×10^{2}
da96s2-3	2.00×10^{-5}	2.80×10^{-4}	1.34×10^{2}
da96s2-4	2.00×10^{-5}	3.20×10^{-4}	1.54×10^{2}
da96s2-5	2.00×10^{-5}	3.60×10^{-4}	1.90×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=6.88 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.112. Kinetics of the reaction of 1 h with $2 \mathrm{~d}-\mathrm{BF}_{4}$ (DMSO, $\mathbf{2 0}^{\circ} \mathrm{C}$, Stopped-flow method, detection at 630 nm).

No.	$\left[\mathbf{2 d - B F} \mathbf{B}_{4}\right] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	
da96s $7-1$	5.00×10^{-6}	1.00×10^{-4}	4.45×10^{1}
da96s7-2	5.00×10^{-6}	1.10×10^{-4}	5.17×10^{1}
da96s7-3	5.00×10^{-6}	1.20×10^{-4}	6.01×10^{1}
da96s $7-5$	5.00×10^{-6}	1.40×10^{-4}	7.15×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=6.77 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.113. Kinetics of the reaction of 1 h with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 422 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	
da96s6-1	2.00×10^{-5}	2.00×10^{-4}	1.28×10^{1}
da96s6-2	2.00×10^{-5}	3.00×10^{-4}	2.02×10^{1}
da96s6-3	2.00×10^{-5}	4.00×10^{-4}	2.74×10^{1}
da96s6-4	2.00×10^{-5}	5.00×10^{-4}	3.47×10^{1}
da96s6-5	2.00×10^{-5}	6.00×10^{-4}	4.13×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=7.15 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.114. Kinetics of the reaction of 1 h with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	
da96s1-1	2.00×10^{-5}	2.00×10^{-4}	1.21
da96s1-2	2.00×10^{-5}	4.00×10^{-4}	4.27
da96s1-3	2.00×10^{-5}	6.00×10^{-4}	5.40
da96ss -4	2.00×10^{-5}	8.00×10^{-4}	8.29
da96s1-5	2.00×10^{-5}	1.00×10^{-3}	1.04×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.12 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.115. Kinetics of the reaction of 1 h with 3 c (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at 371 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da96s3-1	4.00×10^{-5}	8.00×10^{-4}	3.82×10^{-1}
da96s3-2	4.00×10^{-5}	1.60×10^{-3}	$9.30 \times 10^{-}$
da96s3-3	4.00×10^{-5}	2.40×10^{-3}	1.58
da96s3-4	4.00×10^{-5}	3.20×10^{-3}	2.11
da96s3-5	4.00×10^{-5}	4.00×10^{-3}	2.50
$k_{2}\left(20^{\circ} \mathrm{C}\right)=6.77 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.116. Kinetics of the reaction of 1 h with 3 d (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at 393 nm).

No.	$[\mathbf{3 d}] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da96s4-1	2.00×10^{-5}	4.00×10^{-4}
1.17×10^{-1}		
da96s4-3	2.00×10^{-5}	8.00×10^{-4}
3.53×10^{-1}		
da96s4-4	2.00×10^{-5}	1.00×10^{-3}
4.23×10^{-1}		
da96s4-5	2.00×10^{-5}	1.20×10^{-3}
$k_{2} .87 \times 10^{-1}$		
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.67 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		

Table 2.117. Kinetics of the reaction of 1 h with 3 e (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at 486 nm).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	
da96s5r-1	2.00×10^{-5}	2.00×10^{-3}	1.85×10^{-1}
da96s5r-2	2.00×10^{-5}	2.40×10^{-3}	2.17×10^{-1}
da96s5r-3	2.00×10^{-5}	2.80×10^{-3}	2.47×10^{-1}
da96s5r-4	2.00×10^{-5}	3.20×10^{-3}	2.92×10^{-1}
da96s5r-5	2.00×10^{-5}	3.60×10^{-3}	3.08×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=8.03 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.118. Kinetics of the reaction of 1 h with 3 f (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 521 nm).

No.	$[\mathbf{3 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da96j1-3	3.95×10^{-5}	3.95×10^{-4}	1.23×10^{-2}
da96j1-1	4.24×10^{-5}	4.24×10^{-4}	1.42×10^{-2}
da96j1-4	4.06×10^{-5}	6.09×10^{-4}	2.40×10^{-2}
da96j1-5	4.06×10^{-5}	1.02×10^{-3}	4.00×10^{-2}
da96j1-2	4.16×10^{-5}	1.25×10^{-3}	5.04×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.37 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

The for the determination of the pseudo first-order rate constants of the reaction of $\mathbf{1 h}$ with $\mathbf{4 a}$ the decrease of the absorption of $\mathbf{4 a}$ at 302 nm and the increases of the absorption of 10ha at 263 and 446 nm were monitored by UV-Vis spectroscopy.

Table 2.119. Kinetics of the reaction of 1 h with 4 a (DMSO, $20^{\circ} \mathrm{C}, \mathrm{J} \& M$ method, detection at 302 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da96j2-1	4.12×10^{-5}	4.24×10^{-4}	1.75×10^{-2}
da96j2-2	4.09×10^{-5}	6.13×10^{-4}	2.80×10^{-2}
da96j2-3	3.90×10^{-5}	7.80×10^{-4}	3.65×10^{-2}
da96j2-4	4.05×10^{-5}	1.01×10^{-3}	4.44×10^{-2}
da96j2-5	4.10×10^{-5}	1.23×10^{-3}	5.38×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.36 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.120. Kinetics of the reaction of 1 h with 4 a (DMSO, $20^{\circ} \mathrm{C}, \mathrm{J} \& M$ method, detection at 263 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da96j2-1	4.12×10^{-5}	4.24×10^{-4}	2.12×10^{-2}
da96j2-2	4.09×10^{-5}	6.13×10^{-4}	3.45×10^{-2}
da96j2-3	3.90×10^{-5}	7.80×10^{-4}	4.53×10^{-2}
da96j2-4	4.05×10^{-5}	1.01×10^{-3}	5.88×10^{-2}
da96j2-5	4.10×10^{-5}	1.23×10^{-3}	7.40×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=6.38 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

The deviation between the rate constant of the consumption of $\mathbf{4 a}$ (302 nm , see above) and the formation of 10 ha (263 nm) may be caused by an absorption overlap.

Table 2.121. Kinetics of the reaction of 1 h with 4 a (DMSO, $\mathbf{2 0}^{\circ} \mathrm{C}$, $\mathbf{J \& M}$ method, detection at 446 nm).

No.	[4a]/mol L ${ }^{-1}$	[1h]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	8.00E-02	$y=44.007 x+0.0031$	
da96j2-1	4.12×10^{-5}	4.24×10^{-4}	1.95×10^{-2}	8.00E-02 $y=4$		
da96j2-2	4.09×10^{-5}	6.13×10^{-4}	3.05×10^{-2}	$\begin{aligned} & \text { in } \\ & \stackrel{n}{8} 4.00 \mathrm{E}-02 \\ & \underset{\sim}{2} \end{aligned}$	$\mathrm{R}^{2}=0.9854$	
da96j2-3	3.90×10^{-5}	7.80×10^{-4}	3.99×10^{-2}			
da96j2-4	4.05×10^{-5}	1.01×10^{-3}	4.81×10^{-2}			
da96j2-5	4.10×10^{-5}	1.23×10^{-3}	5.57×10^{-2}	$0.00 \mathrm{E}+00$ 0.00	$500 \mathrm{E}-041$ -	50E-03
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.40 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					[1h]/mol l-1	

Table 2.122. Kinetics of the formation of $11 \mathrm{ha}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}, \mathrm{J} \mathrm{\& M}\right.$ method, detection at 270 nm$)$.

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da96j3-2	4.22×10^{-5}	6.33×10^{-4}	9.10×10^{-4}
da96j3-3	4.02×10^{-5}	8.03×10^{-4}	9.07×10^{-4}
da96j3-4	4.18×10^{-5}	1.05×10^{-3}	9.10×10^{-4}
$k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right)=9.10 \times 10^{-4} \mathrm{~s}^{-1}$			

The kinetics of the reaction of $\mathbf{1 h}$ with $\mathbf{4 d}$ were monitored by GC as outlined on in the General Section with concentrations of $[\mathbf{1 h}]_{0}=5.72 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ and $[\mathbf{4 d}]_{0}=3.81 \times 10^{-2} \mathrm{~mol}$ L^{-1}. The deviations between the experimental and calculated concentrations are a result of the uncertainty of the method.

Table 2.123. Experimental ($[4 \mathrm{~d}]^{\text {exp }}$) and calculated ($[4 \mathrm{~d}]^{\text {calcd }}$) decrease of the time-dependent concentrations of 4 d during the reaction of 1 h with 4 d (DMSO, $20^{\circ} \mathrm{C}$, GC-method).

t / s	$[\mathbf{4 d}]^{\text {exp }} / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{4 d}]^{\text {calc }} / \mathrm{mol} \mathrm{L}^{-1}$	$\Delta[\mathbf{4 d}]^{\text {exp-calcd }}$
0	3.80×10^{-2}	3.80×10^{-2}	0
60	1.84×10^{-2}	2.13×10^{-2}	-2.90×10^{-3}
120	4.64×10^{-3}	1.37×10^{-2}	-9.09×10^{-3}
180	1.25×10^{-3}	9.47×10^{-3}	-8.22×10^{-3}
240	8.60×10^{-4}	6.81×10^{-3}	-5.95×10^{-3}
300	4.92×10^{-4}	5.03×10^{-3}	-4.54×10^{-3}
360	4.23×10^{-4}	3.78×10^{-3}	-3.36×10^{-3}
420	2.35×10^{-4}	2.88×10^{-3}	-2.65×10^{-3}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.0 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.124. Experimental ([11hd ${ }^{\text {exp }}$) and calculated ([11hd] $]^{\text {calcd }) ~ i n c r e a s e ~ o f ~ t h e ~ t i m e-d e p e n d e n t ~}$ concentrations of 11 hd during the reaction of 1 h with 4 d (DMSO, $20^{\circ} \mathrm{C}$, GC-method).

t / s	[11hd] ${ }^{\text {exp } /} / \mathrm{mol} \mathrm{L}^{-1}$	[11hd ${ }^{\text {calc }} / \mathrm{mol} \mathrm{L}^{-1}$	$\Delta[11 \mathrm{hd}]^{\text {exp-calcd }}$
0	0	0	0
60	1.96×10^{-2}	2.41×10^{-2}	-4.47×10^{-3}
120	3.34×10^{-2}	3.10×10^{-2}	2.35×10^{-3}
180	3.68×10^{-2}	3.41×10^{-2}	2.66×10^{-3}
240	3.71×10^{-2}	3.57×10^{-2}	1.45×10^{-3}
300	3.75×10^{-2}	3.66×10^{-2}	9.12×10^{-4}
360	3.76×10^{-2}	3.71×10^{-2}	4.45×10^{-4}
420	3.78×10^{-2}	3.75×10^{-2}	3.08×10^{-4}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.0 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			
	- 0	$\begin{array}{ll} 200 \\ t / s \end{array} \quad 300$	

2.7.4.9 Kinetics of the Reactions of Ylide $\mathbf{1 i}$

Figure 2.26. Absorption spectrum of $1 \mathrm{i}\left(\lambda_{\max }=257,307 \mathrm{~nm}\right)$.

Table 2.125. Determination of the nucleophilicity parameters \boldsymbol{N} and $\boldsymbol{S N}_{\mathrm{N}}$ for 1 i with the electrophiles $\mathbf{2 , 3}$ (filled dots). Open dot refers to the reaction with 5 b and was not used for the determination of N and s_{N}.

Electrophile	E	$\log k_{2}$
$\mathbf{2 c - B F}_{4}$	-9.45	4.61
$\mathbf{2 d - B F}_{4}$	-10.04	4.51
$\mathbf{3 b}$	-13.39	2.35
$\mathbf{5 b}$	-11.32	3.49

Nucleophilicity parameters for $\mathbf{1 i}$
in DMSO: $N=17.36 ; s_{\mathrm{N}}=0.60$.

Table 2.126. Kinetics of the reaction of 1 i with $2 \mathrm{c}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 635 nm).

No.	$[\mathbf{2 c - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	
da95s $1-1$	2.00×10^{-5}	$3.00 \times 10^{-4} 4.00 \times 10^{1}$	
da95s 1-2	2.00×10^{-5}	$4.00 \times 10^{-4} 4.33 \times 10^{1}$	
da95s1-4	2.00×10^{-5}	$6.00 \times 10^{-4} 5.30 \times 10^{1}$	
da95s $1-5$	2.00×10^{-5}	$7.00 \times 10^{-4} 5.56 \times 10^{1}$	
da95s1-3	2.00×10^{-5}	$8.00 \times 10^{-4} 6.02 \times 10^{1}$	
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.08 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.127. Kinetics of the reaction of 1 i with $2 \mathrm{~d}-\mathrm{BF}_{4}$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 630 nm).

No.	$[\mathbf{2 d - B F} 4] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da95s2-1	1.00×10^{-5}	2.50×10^{-4}	1.05×10^{1}
da95s2-2	1.00×10^{-5}	3.00×10^{-4}	1.23×10^{1}
da95s2-3	1.00×10^{-5}	3.50×10^{-4}	1.38×10^{1}
da95s2-4	1.00×10^{-5}	4.00×10^{-4}	1.54×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.24 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.128. Kinetics of the reaction of 1 i with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

Table 2.129.Kinetics of the formation of 9ib (DMSO, $20^{\circ} \mathrm{C}$, Stopped flow method, detection at 533 nm).

Table 2.130. Reproduction of the kinetics of the formation of 9ib (DMSO, $20^{\circ} \mathrm{C}$, $\mathbf{J \& M}$ method, detection at 533 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da95j1-2	1.79×10^{-5}	3.58×10^{-4}	1.16×10^{-3}
da95j1-3	1.83×10^{-5}	5.49×10^{-4}	1.92×10^{-3}
da95j1-4	1.81×10^{-5}	7.25×10^{-4}	2.44×10^{-3}
da95j1-5	1.83×10^{-5}	9.15×10^{-4}	2.90×10^{-3}
$K \cdot k_{\mathrm{rc}}\left(20^{\circ} \mathrm{C}\right) \approx\left(3.1 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$			

Evaluated by plotting $k_{\text {obs }}$ versus as the evaluation according to eq 9 gave a poor fit.

Table 2.131. Determination of the equilibrium constant of the reaction of 1 i with 3 b ($\mathrm{DMSO}, 20^{\circ} \mathrm{C}$, Stoppedflow method, detection at $533 \mathbf{~ n m}$).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	A_{0}	$A_{\text {eq }}{ }^{[\text {a] }]}$	$\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$
da95s4-1	1.00×10^{-5}	2.50×10^{-4}	0.489	0.453	0.077
da95s4-3	1.00×10^{-5}	7.50×10^{-4}	0.487	0.440	0.098
da95s4-6	1.00×10^{-5}	1.25×10^{-3}	0.483	0.434	0.113
$K\left(20^{\circ} \mathrm{C}\right)=4 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1}$					

[a] The equilibrium absorbances have been determined from the constant C obtained by fitting the monoexponential function $A=A_{0} e^{-k o b s} t+C$ to the time-dependent absorbances.

If the values $\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$ obtained with the highest concentration of $\mathbf{1 e}$ is divided by [1e], one obtains an equilibrium constant of $K=9 \times 10^{1}$.

Table 2.132. Kinetics of the reaction of 1 i with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 388 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da95s3-1	2.00×10^{-5}	2.50×10^{-4}	1.38×10^{1}
da95s3-2	2.00×10^{-5}	5.00×10^{-4}	1.44×10^{1}
da95s3-3	2.00×10^{-5}	7.50×10^{-4}	1.55×10^{1}
da95s3-5	2.00×10^{-5}	1.25×10^{-3}	1.68×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.07 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 2.133. Kinetics of the formation of $13 i a\left(D M S O, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 388 nm).

Table 2.134. Determination of the equilibrium constant of the reaction of 1 i with 5 bb (DMSO, $20^{\circ} \mathrm{C}$, Stoppedflow method, detection at $388 \mathbf{n m}$).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	A_{0}	$A_{\text {eq }}{ }^{[\text {a] }}$	$\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$
da95s3-1	2.00×10^{-5}	2.50×10^{-4}	0.792	0.662	0.193
da95s3-2	2.00×10^{-5}	5.00×10^{-4}	0.797	0.639	0.246
da95s3-5	2.00×10^{-5}	1.25×10^{-3}	0.803	0.531	0.507
$K\left(20^{\circ} \mathrm{C}\right)=3 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1}$					

[a] The equilibrium absorbances have been determined from the constant C obtained by fitting the monoexponential function $A=A_{0} e^{-k \mathrm{obs} t}+C$ to the time-dependent absorbances.

The large intercept shows the uncertainty of the method. If the values $\left(A_{0}-A_{\text {eq }}\right) / A_{\text {eq }}$ obtained with the highest concentration of $\mathbf{1 e}$ is divided by [$\mathbf{1 e}]$, one obtains an equilibrium constant of $K=4 \times 10^{2}$.

2.8 References

[1] I. Zugravescu, M. Petrovanu, N-Ylid Chemistry, McGraw-Hill, New York, 1976.
[2] (a) M. Waser, R. Herchl, N. Müller, Chem. Comm. 2011, 47, 2170-2172; (b) M. Waser, R. Herchl, N. Müller, Org. Biomol. Chem. 2011, 7023-7027; (c) S. Aichhorn, G. N. Gururaja, M. Reisinger, M. Waser, RSC Advances 2013, 3, 4552-4557; (d) T. Kimachi, H. Kinoshita, K. Kusaka, Y. Takeuchi, M. Aoe, M. Ju-Ichi, Synlett 2005, 5, 842-844;
(e) A. Alex, B. Larmanjat, J. Marrot, F. Couty, O. David, Chemical Communications 2007, 2500-2502.
[3] (a) A. Jonczyk, A. Konarska, Synlett 1999, 1085-1087; (b) S. S. Bhattacharjee, H. Ila, H. Junjappa, Synthesis 1982, 301-303; (c) A. Kowalkowska, D. Suchołbiak, A. Jończyk, Eur. J. Org. Chem. 2005, 5, 925-933.
[4] (a) X. L. L. Guo, W. Liu, Y Liang, Synthesis 2005, 391-396; (b) Z. Yang, M. Fan, R. Mu, W. Liua, Y. Liang, Tetrahedron Lett. 2005, 61, 9140-9146.
[5] A. Kowalkowska, A. Jończyk, Synthesis 2002, 5, 674-680.
[6] (a) M. Sommelet, Compt. rend. 1913, 157, 852-854; (b) T. S. Stevens, E. M. Creighton, A. B. Gordon, K. MacNicol, J. Chem. Soc. 1928, 50, 3193-3197; (c) J. Clayden, M.

Donnard, J. Lefranc, D. J. Tetlow, Chem. Commun. 2011, 47, 4624-4639; (d) A. Kowalkowska, A. Jonczyk, Syn. Comm. 2011, 41, 3308-3317.
(a) C. D. Papageorgiou, S. V. Ley, M. J. Gaunt, Angew. Chem. Int. Ed. 2003, 43, 2681-2684; (b) C. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley, M. J. Gaunt, Angew. Chem. 2004, 4741-4744; (c) M. J. Gaunt, C. C. C. Johanson, Chem. Rev. 2007, 107, 5596-5605.
[8] (a) W. G. Phillips, K. W. Ratts, J. Org. Chem. 1970, 35, 3144-3147; (b) K. W. Ratts, J. Org. Chem. 1972, 37, 848-851; (c) F. G. Bordwell, X. Zhang, J. Org. Chem. 1990, 55, 6078-6079; (d) X.-M. Zhang, F. G. Bordwell, M. Van Der Puy, H. E. Fried, J. Org. Chem. 1993, 58, 3060-3066; (e) X. M. Zhang, F. G. Bordwell, M. Van Der Puy, H. E. Fried, J. Am. Chem. Soc. 1994, 116, 968-972; (f) J.-P. Cheng, B. Liu, X.-M. Zhang, J. Org. Chem. 1998, 63, 7574-7575; (g) B. L. J.-P. Cheng, Y. Zhao, Y. Sun, X.-M. Zhang, Y. Lu, J. Org. Chem. 1999, 64, 604-610; (h) Y. Fu, H.-J. Wang, S.-S. Chong, Q.-X. Guo, L. Liu, J. Org. Chem. 2009, 74, 810-819; (i) For a comprehensive database of $\mathrm{p} K_{\mathrm{a}}$-values in DMSO see http://www.chem.wisc.edu/areas/reich/pkatable/
[9] (a) F. G. Bordwell, A. Cripe, D. L. Hughes, in Nucleophilicity (Eds.: J. M. Harris, S. P. McManus), American Chemical Society, Washington, DC, 1987, p. 137-154; (b) W. P. Jencks, in Nucleophilicity (Eds.: J. M. Harris, S. P. McManus), American Chemical Society, Washington, DC, 1987, p. 155-168.
[10] (a) S. T. A. Berger, A. R. Ofial, H. Mayr, J. Am. Chem. Soc. 2007, 129, 9753-9761; (b) T. A. Nigst, A. Antipova, H. Mayr, J. Org. Chem 2012, 77, 8142-8155.
[11] (a) A. Solladié-Cavallo, L. Bouérat, M. Roje, Tetrahedron Lett. 2000, 41, 7309-7312; (b) R. Appel, H. Mayr, J. Am. Chem. Soc. 2011, 113, 8240-8251; (c) O. Illa, M. Arshad, A. Ros, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 1828-1830; (d) V. K. Aggarwal, I. Bae, H.-Y. Lee, J. Richardson, D. T. Williams, Angew. Chem., Int. Ed. 2003, 42, 3274-3278; (e) D. J. Phillips, A. E. Graham, Synlett 2010, 2010, 769773; (f) D. Janardanan, R. B. Sunoj, Org. Biomol. Chem. 2011, 9, 1642-1652; (g) Y. L. Stanc, M. L. Corre, Can. J. Chem. 1985, 63, 2958-2960; (h) A. Solladié-Cavallo, A. Diep-Vohuule, T. Isarno, Angew. Chem. Int. Ed. 1998, 37, 1689-1691; (i) V. K. Aggarwal, S. Calamai, J. Gair Ford, J. Chem. Soc., Perkin Trans. 1 1997, 593-600; (j) D. R. Edwards, P. Montoya-Peleaz, C. M. Crudden, Org.Lett. 2007, 9, 5481-5484.
[12] (a) R. Bonneau, I. Reuter, M. T. H. Liu, J. Am. Chem. Soc. 1994, 116, 3145-3146; (b) G. L. Heard, B. F. Yates, J. Org. Chem. 1996, 61, 7276-7284; (c) E. M. Arnett, P. C. Wernett, J. Org. Chem. 1993, 58, 301-303.
[13] R. Robiette, M. Conza, V. K. Aggarwal, Org. Biomol. Chem. 2006, 4, 621-623.
[14] S. L. Riches, C. Saha, N. F. Filgueira, E. Grange, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 7626-7630.
[15] (a) F. Volatron O. Eisenstein, J. Am. Chem. Soc. 1987, 109, 1-14; (b) T. Naito, S. Nagase, H. Yamataka, J. Am. Chem. Soc. 1994, 116, 10080-10088; (c) V. K. Aggarwal, J. N. Harvey, R. Robiette, Angew. Chem., Int. Ed. 2005, 44, 5468-5471.
[16] R. Appel, R. Loos, H. Mayr, J. Am. Chem. Soc. 2009, 131, 704-714.
[17] (a) R. Appel, H. Mayr, Chem. Eur. J. 2010, 16, 8610-8614; (b) R. Appel, N. Hartmann, H. Mayr, J. Am. Chem. Soc. 2010, 132, 17894-17900; (c) S. Lakhdar, R. Appel, H. Mayr, Angew. Chem., Int. Ed. 2009, 48, 5034-5037.
[18] D. S. Allgäuer, P. Mayer, H. Mayr, J. Am. Chem. Soc. 2013, 135, 15216-15224.
[19] (a) H. Mayr, M. Patz, Angew. Chem. Int. Ed. Engl. 1994, 33, 938-957; (b) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512; (c) R. Lucius, R. Loos, H. Mayr, Angew. Chem. Int. Ed. 2002, 41, 91-95; (d) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (e) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 1807-1821; (f) S. T. A. Berger, F. H. Seeliger, F. Hofbauer, H. Mayr, Org. Biomol. Chem. 2007, 5, 3020-3026; (g) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584-595; (h) O. Kaumanns, R. Appel, T. Lemek, F. Seeliger, H. Mayr, J. Org. Chem. 2009, 75-81; (i) Bug, T.; Mayr, H. J. Am. Chem. Soc. 2003, 125, 12980-12986; (j) For a comprehensive database of nucleophilicity parameters N, s_{N} and electrophilicity parameters E, see http://www.cup.lmu.de/oc/mayr/.
[20] F. G. Bordwell, H. E. Fried, J. Org. Chem. 1981, 46, 4327-4331.
[21] O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682.
[22] R. Schmid, V. N. Sapunov, Non-Formal Kinetics, Verlag Chemie GmbH, Weinheim, 1982.
[23] (a) F. G. Bordwell, D. Algrim, N. R. Vanier, J. Org. Chem. 1977, 42, 1817-1819; (b) W. N. Olmstead, F. G. Bordwell, J. Org. Chem. 1980, 45, 3299-3305.
[24] MATLAB v 7.10 The Mathwork Inc.
[25] K. Troshin, H. Mayr, J. Am. Chem. Soc. 2013, 135, 252-265.
[26] R. A. Alberty, W. G. Miller, J. Chem. Phys. 1957, 26, 1231-1237.
[27] Gepasi v 3.30 Copyright P. Mendes 1989, 1992, 1993, 1996-1999, 2002.
[28] M. V. Petrova, E. Liepins, J. Paulins, E. Gudriniece, Magn. Reson. Chem. 1992, 30, 216-220.
[29] The cyclopropanes cis-13 have a coupling constant of ${ }^{3} J \sim 10 \mathrm{~Hz}$.
[30] M. F. Oswald, S. A. Raw, R. J. K. Taylor, Org. Lett. 2004, 6, 3997-4000.
[31] For a plot of $\mathrm{p} K_{\mathrm{aH}}$ versus $\log k_{\mathrm{CC}}(\mathbf{3 b})$ see Experimental Section.
[32] D. J. McLennan, A. Pross, J. Chem. Soc., Perkin Trans. 2 1984, 981-984.
[33] I. A. Koppel, J. B. Koppel, L. T. Muuga, V. O. Pihl, Org. Reactiv., Engl. Ed. 1988, 25, 131-146.
[34] M. R. Crampton, I. A. Robotham, J. Chem. Res., Synop. 1997, 22-23.
[35] F. Seeliger, S. Błażej, S. Bernhardt, M. Mąkosza, H. Mayr, Chem. Eur. J. 2008, 14, 6108-6118.
[36] a) H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515; b) G. F. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179..
$[37]$ a) W. E. von Doering, L. H.Knox, J. Am. Chem. Soc. 1961, 83, 1989-1992; b) J. R. Boissier, E. Renier Chimica Therapeutica, 1969, 4, 224-227; a) V. I. Vysochin, G. V. Shishkin, Chem. Heterocyc. Compd. 1985, 21, 559-563.
[38] D. S. Allgäuer, Master Thesis, Ludwig-Maximilian-Universität, München (Germany) 2009.
[39] K. Troshin, unpublished results 2013.

3 One-Pot Two-Step Synthesis of 1-EthoxycarbonylIndolizines via Pyridinium Ylides

Dominik S. Allgäuer, Peter Mayer, and Herbert Mayr
Eur. J. Org. Chem. 2013, 6379-6388.

3.1 Introduction

Since their discovery by Kröhnke in 1935, ${ }^{[1]}$ the properties and reactions of pyridinium ylides have been intensively studied. ${ }^{[2,3]}$ In recent years, pyridinium ylides have attracted a lot of attention, as they react with various electrophiles to form a great variety of products, ${ }^{[4]}$ including indolizines. ${ }^{[5]}$ The indolizine scaffold has a broad pharmacological profile, as it can act as calcium-channel blocker ${ }^{[6]}$ or aromatase inhibitor, ${ }^{[7]}$ and it is found in agents with antibiotic, ${ }^{[8]}$ antitumor, ${ }^{[9]}$ anti-inflammatory, ${ }^{[10]}$ and antiviral activities. ${ }^{[11]}$ Moreover, several indolizines are potent, inexpensive, and easily modifiable fluorescent probes. ${ }^{[12]}$ Reactions of pyridinium ylides with benzylidenemalononitriles and other unsaturated nitriles have already been reported. ${ }^{[4 b-4 f, 40]}$ Cyclopropanes $\mathbf{3}$ have been obtained from the reactions of pyridinium salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$with benzylidenemalononitriles $\mathbf{2}$ and related compounds under basic conditions (Scheme 3.1). ${ }^{[4]}$ At least one of the two acceptor groups of the Michael acceptor has to be a cyano group, however. ${ }^{[4 b, 4 d-4 f]}$ The corresponding reactions of isoquinolinium salts $\mathbf{4 H} \mathbf{H}^{+} \mathbf{B r}^{-}$ with Michael acceptors 2 under basic conditions produced pyrrolo[2,1-a]isoquinolines $\mathbf{5}$ after oxidative work-up (Scheme 3.2). ${ }^{[40]}$

Scheme 3.1. Cyclopropanations of benzylidene malononitriles and related compounds 2 via pyridinium ylides. ${ }^{[4 f]}$

Scheme 3.2. Reaction of isoquinolinium ylide 4 with benzylidene cyanoactetates and cyanoacetamides $2 .{ }^{[40]}$

The same pyrrolo[2,1-a]isoquinolines (i.e., 5) were obtained from the reaction of isoquinolinium salt $\mathbf{4 H}^{+} \mathbf{B r}^{-}$with either of the two electrophiles $\mathbf{2}$ shown in Scheme 3.2

The nitrile group was preserved in these products, while the amide or the ester group was eliminated during the oxidative aromatization. The different reaction course for pyridinium and isoquinolinium ylides has been explained by the $a b$ initio MO calculations of Matsumura and co-workers. ${ }^{[3 i]}$ They showed that the addition of pyridinium and isoquinolinium ylides to alkylidenemalononitriles proceeds stepwise, and not in a concerted manner. As cyclization of the intermediate betaine to give the [3+2]-cycloadduct leads to a greater loss of aromaticity for the pyridinium ylides than for the isoquinolinium ylides, only the latter ylides undergo [3+2]cycloadditions with Michael acceptors 2. In contrast, the betaines formed from pyridinium ylides undergo intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reactions that result in the formation of cyclopropanes and the elimination of pyridine. We now report that in contrast to cyano-substituted Michael acceptors 2, benzylidene-malonates $\mathbf{6}$ undergo [3+2]-cycloaddition with pyridinium ylides. Subsequent oxidation provides a simple and straightforward access to indolizines.

This investigation is part of our program to determine the nucleophile-specific parameters N and s_{N} by studying the rates of reactions with benzylidene-malonates $\mathbf{6}$, which have been introduced as reference electrophiles $\left(-24<E<-17 \text { for } p-\mathrm{NMe}_{2} \text { to } p-\mathrm{NO}_{2}\right)^{[13]}$ for the characterization of strong nucleophiles by the linear-free-energy relationship given in eq 3.1. ${ }^{[14]}$

$$
\begin{equation*}
\log k_{20}{ }^{\circ} \mathrm{C}=s_{\mathrm{N}}(N+E) \tag{3.1}
\end{equation*}
$$

3.2 Results and Discussion

As most pyridinium (1) and isoquinolinium ylides (4) are unstable compounds, we made no attempts to isolate them. Instead we used their conjugate acids $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$or $\mathbf{4} \mathbf{H}^{+} \mathbf{B r}^{-}$, which were obtained by nucleophilic substitution from the corresponding pyridines or from isoquinoline in THF in moderate to high yields (Table 3.1). ${ }^{[3 \mathrm{c}, 15]}$

Treatment of $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$or $\mathbf{4 H}^{+} \mathbf{B r}^{-}$with a base in the presence of arylidene-malonates $\mathbf{6 a - i}$ or alkylidenemalonate $\mathbf{6 j}$ (Scheme 3.3) gave ylides $\mathbf{1}$ and $\mathbf{4}$, which subsequently reacted with Michael acceptors 6. As shown by Table 3.3, entries $1-5$ Michael adduct M-1a was formed exclusively when an equimolar mixture of $\mathbf{1 a H} \mathbf{H r}^{+}$and $\mathbf{6 f}$ was treated with an excess of $\mathrm{HNMe}_{2}, \mathrm{NEt}_{3}$, or $\mathrm{KO}^{t} \mathrm{Bu}$ in various solvents at ambient temperature. Analogous reactions with NEt_{3} (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(2: 1)$ at ambient temperature gave mixtures of Michael adduct M-1a and [3+2]-cycloadduct $\mathbf{C - 1 a}$ within 15 min (Table 3.1), entries 6 and 7). [3+2]-Cycloadduct $\mathbf{C - 1 a}$, contaminated by traces of 7a, was observed exclusively, when the mixture of $\mathbf{1 a H} \mathbf{B r}^{+}$and $\mathbf{6 f}$ was combined with $\mathrm{KO}^{\prime} \mathrm{Bu}$ (1.1 equiv.) in THF (Table 2, entry 8) or with NaOH (32% aq.) under biphasic conditions (Table 3.3, entry 9).

Table 3.1. Synthesis of the pyridinium $1 \mathbf{H}^{+} \mathbf{X}^{-}$and isoquinolinium salts $\mathbf{4 H ^ { + }} \mathbf{B r}^{-}$employed as precursors for the pyridinium ylides 1.

R	X	EWG	Product	Yield/\%
H	Br	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathbf{1 a H}{ }^{+} \mathrm{Br}^{-}$	82
H	Br	CONEt_{2}	$\mathbf{1 b H}^{+} \mathrm{Br}^{-}$	83
H	Br	CN	$1 \mathrm{cH}^{+} \mathrm{Br}^{-}$	quant.
H	Cl	COMe	$1 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	$45^{[\mathrm{a}]}$
H	Br	COPh	$1 \mathrm{eH}^{+} \mathrm{Br}^{-}$	94
$3-\mathrm{Cl}$	Br	CN	$1 \mathrm{fH}^{+} \mathrm{Br}^{-}$	31
$4-\mathrm{NMe}_{2}$	Br	CN	$1 \mathrm{gH}^{+} \mathrm{Br}^{-}$	97
Isoquinoline	Br	CN	$4 \mathrm{aH}^{+} \mathrm{Br}^{-}$	49
Isoquinoline	Br	COPh	$\mathbf{4 b H}{ }^{+} \mathrm{Br}^{-}$	93

[^2]Although [3+2]-cycloadduct $\mathbf{C - 1 a}$ was a labile compound that could not be purified, [3+2]-cycloadduct $\mathbf{C - 4 a}$, from the reaction of $4 \mathbf{a}$ and $\mathbf{6 f}$, was purified and characterized by 2D NMR spectroscopy and HRMS (Scheme 3.4). The ratio of the diastereoisomers was determined from the ${ }^{1}$ H NMR spectrum of the crude product, and the stereochemistry was assigned on basis of NOESY-correlation of the protons at the $2-, 3-$, and $10 b-$ positions of the adduct. From the configuration of the stereocenters, one can conclude that the major diastereoisomer of $\mathbf{C - 4 a}$ shown is preferentially formed by an anti-2-endo ap-

Table 3.2. Electrophilicity parameters E of the arylidene ($\mathbf{6 a - i}$) and alkylidene malonate ($\mathbf{6 j}$). ${ }^{\text {[a] }}$

No.	R	$E^{[\mathrm{b}]}$
6 a	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$	-17.67
6 b	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	-18.06
6 c	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Br}$	-
6d	$\mathrm{C}_{6} \mathrm{H}_{4}-m-\mathrm{Cl}$	-18.98
6 e	$\mathrm{C}_{6} \mathrm{H}_{5}$	-20.55
6 f	$\mathrm{C}_{6} \mathrm{H}_{4}-p$-Me	-21.11
6 g	$\mathrm{C}_{6} \mathrm{H}_{4}-p$-OMe	-21.47
6 h	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NMe}_{2}$	-23.10
$6 \mathbf{1}$		-23.80
6j	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	-
	by Knoeve s. [13, 16]; [b]	ondensat neters ta

To find the best conditions for the conversion of [3+2]- cycloadduct $\mathbf{C - 1 a}$ into indolizine $\mathbf{7 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature, we tested different oxidants. Catalytic amounts of Pd-C under an O_{2} atmosphere, di-tert-butyl hydroperoxide (4 equiv.), or N -chlorosuccinimide (4 equiv.) did not promote the oxidation of $\mathbf{C - 1 a}$ into indolizine $7 \mathbf{a}$ within 18 h at $20^{\circ} \mathrm{C}$ (Table 3.4, entries $1-3$). The formation of indolizine 7 a was observed when DDQ was used as an oxidant (Table 3.4, entry 4). Chloranil gave a significantly higher conversion into indolizine 7 a

Scheme 3.3. Base induced reactions of the pyridinium salt $1 \mathrm{aH}^{+} \mathrm{Br}^{-}$with the arylidene malonate 6 f .

Table 3.3. Base induced reactions of the pyridinium salt $1 \mathrm{aH}^{+} \mathrm{Br}^{-}$with the arylidene malonate 6 f at ambient temperature ($B=$ betaine; $M=$ Michael adduct, $C=[3+2]$-cycloadduct).

Entry	Base	Equiv. base	Solvent	Conv. of $\mathbf{6 f} / \%^{[a]}$	Ratio M-1a/C-1a ${ }^{\text {b] }}$
1	aq. HNMe_{2} (30\%)	36	DMSO	$75^{\text {c }}$	>98/2
2	NEt_{3}	2.0	DMSO	$40^{\text {c }}$	>98/2
3	$\mathrm{KO} t \mathrm{Bu}$	1.2	DMSO	$93^{\text {c }}$	>98/2
4	NEt_{3}	1.4	MeOH	78	>98/2
5	NEt_{3}	2.0	MeCN	88	>98/2
6	NEt_{3}	1.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	92	72/28
7	NEt_{3}	1.5	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}^{[\mathrm{d}]}$	86	34/66
8	$\mathrm{KO} t \mathrm{Bu}$	1.1	THF	99	$>2 / 98{ }^{\text {[e] }}$
9	aq. NaOH (32\%)	32	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$97{ }^{[f]}$	>2/98

[a] By ${ }^{1} \mathrm{H}$ NMR as ratio of $(\mathbf{M}-1 \mathbf{a}+\mathbf{C}-\mathbf{1 a}) /\left(\mathbf{6 f}+\mathbf{M - 1 a + C - 1 a) ; ~ [b] ~ B y ~}{ }^{1} \mathrm{H}\right.$ NMR; [c] After aqueous work-up; [d] $\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}=2: 1$; [e] Contaminated by traces of indolizine 7a; [f] After filtration through silica (n pentane:EtOAc:NEt ${ }_{3}$ 5:1:1).
(Table 3.4, entry 5). When the amount of chloranil was reduced and the reaction time was decreased from 18 to 3 h , a further increase in the conversion to indolizine 7 a was observed (Table 3.4, entry 6). After a reaction time of 1 h , the conversion to 7 a was the same as after 3 h , but decreasing the reaction time further led to a decrease in the conversion (Table 3.4, entries 7 and 8). Under all the conditions examined, the oxidation of $\mathbf{C - 1 a}$ to $7 \mathbf{a}$ was accompanied by regeneration of $\mathbf{6 f}$, which indicates that the formation of $\mathbf{C - 1 a}$ by cyclization of betaine $\mathbf{B - 1 a}$ must be a reversible process (Table 3.3). The existence of the base-mediated equilibrium between Michael adduct M-1a and [3+2]-cycloadduct $\mathbf{C - 1 a}$ was proved by the formation of indolizine $7 \mathbf{7 a}$ when the solution obtained under the conditions of Table 3.3, entry 2 was heated with MnO_{2} at $100{ }^{\circ} \mathrm{C}$ for 3 h in DMSO (for details, see Experimental Section).

Scheme 3.4. Formation of the [3+2]-cycloadduct C-4a.

Table 3.4. Oxidant-screening for the formation of indolizine 7a.

[a] Under O_{2}-atmosphere; [b] By TLC; [c] TBPO = Di-tert-butyl-peroxide; [d] NCS = N-Chlorosuccinimide; [e] DDQ $=2,3$-Dichloro-5,6-dicyano-1,4-benzoquinone; [f] By ${ }^{1} \mathrm{H}$ NMR as ratio of $\mathbf{7 a} /(\mathbf{6 f}+7 \mathbf{a})$; [g] After filtration through silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

To clarify why 1 equiv. of chloranil is sufficient to promote the full oxidation of [3+2]cycloadduct $\mathbf{C - 1 a}$ into indolizine $\mathbf{7 a}$ (Table 3.4, entries 6-8), isolated [3+2]-cycloadduct $\mathbf{C - 4 a}$ (Table 3.5) was treated with 1 equiv. of chloranil under different conditions. When the reaction with chloranil was performed under a nitrogen atmosphere, only 21% of C-4a was converted into indolizine 8a (Table 3.5, entry 1), whereas in an open flask, the oxidation of $\mathbf{C - 4 a}$ with 1 equiv. of chloranil gave a 58% conversion of $\mathbf{C} \mathbf{- 4 a}$ into $\mathbf{8 a}$ (Table 3.5, entry 2). Addition of a small amount of $\mathrm{NaOH}(32 \% \mathrm{aq}$.) to the reaction mixture significantly lowered the conversion of $\mathbf{C}-\mathbf{4 a}$ into indolizine $\mathbf{8 a}$ (Table 4, entry 3). When $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with NaOH ($32 \% \mathrm{aq}$.) for 1 h , the aqueous layer was subsequently removed, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before dissolving C-4a and chloranil, complete conversion of C-4a into 8a was achieved (Table 3.5 , entry 4). These experiments show that air and traces of anhydrous hydroxide are favorable to promote the oxidation of the [3+2]-cycloadduct into the indolizine.

A mechanism for the conversion of [3+2]-cycloadduct \mathbf{C}-1a into indolizine $\mathbf{7 a}$ that requires only 1 equiv. of chloranil is proposed Scheme 3.5 . Chloranil abstracts a hydride from the 8 aposition of $\mathbf{C}-1$ a to give pyridinium ion $\mathbf{9}$. One ester group of $\mathbf{9}$ is subsequently hydrolyzed by traces of hydroxide to give intermediate 10, which decarboxylates in a Grob-type fragmentation ${ }^{[17]}$ to give 2,3-dihydroindolizine 11. Oxidation of the initially generated hydrochloranil anion (redox potential of hydrochloranil -0.71 V in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$) ${ }^{[18]}$ with oxygen (redox potential +0.65 V) ${ }^{[19]}$ regenerates chloranil and produces a hydroperoxide anion

Table 3.5. Direct oxidation of the [3+2]-cycloadduct C-4a with chloranil to indolizine 8a under various conditions.

Entry	Atmosphere	Additive	Conversion/\% $\%^{[a]}$
1	$\mathrm{~N}_{2}$	-	21
2	air	-	58
3	air	aq. $\mathrm{NaOH}(32 \%)$	17
4	air	$\mathrm{NaOH}^{[b]}$	quant.

[a] Determined by ${ }^{1} \mathrm{H}$ NMR; [b] $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with aq. NaOH (32%) for 1 h ; the aqueous layer was removed and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before C-4a and chloranil were dissolved.
that might also attack the ethyl ester. Hydride abstraction from dihydroindolizine $\mathbf{1 1}$ by chloranil forms pyridinium ion 12, which loses a proton to form indolizine 7a and dihydrochloranil (whose formation was verified by GC-MS). Direct oxidation of dihydroindolizine $\mathbf{1 1}$ into indolizine 7 a by air seems unlikely, as the closely related dihydroindolizines derived from cyanoacetamides 2 and isoquinolinium ylides $\mathbf{4}$ are airstable. ${ }^{[40]}$

Scheme 3.5. Proposed mechanism for the formation of indolizine 7a.

Table 3.6. Dependency of indolizine formation on the stabilization of ylides $\mathbf{1}$ and $\mathbf{2}$.

1. $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$
aq. NaOH (32\%)

Entry	Salt	R ${ }^{1}$	EWG	Electrophile	R^{2}	Product	Yield/\%
1	$1 \mathbf{1 H}^{+} \mathrm{Br}^{-}$	H	$\mathrm{CO}_{2} \mathrm{Et}$	$6 f$	Me	7 a	65
2	$\mathbf{1 b H}^{+} \mathrm{Br}^{-}$	H	CONEt_{2}	$6 f$	Me	7b	52
3	$\mathbf{1} \mathbf{C H}^{+} \mathrm{Br}^{-}$	H	CN	6 f	Me	7c	74
4	$1 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	H	COMe	6 f	Me	7d	52
5	$\mathbf{1 e H}{ }^{+} \mathrm{Br}^{-}$	H	COPh	6 a	NO_{2}	7 e	(21) ${ }^{[\mathrm{a]}}$
6	$1 \mathrm{fH}^{+} \mathrm{Br}^{-}$	$3-\mathrm{Cl}$	CN	6 f	Me	7 f	54
7	$\mathbf{1 9 H}{ }^{+} \mathrm{Br}^{-}$	$4-\mathrm{NMe}_{2}$	CN	6 f	Me	7 g	19
8	$\mathbf{4 a H}^{+} \mathrm{Br}^{-}$	-	CN	6 f	Me	8 a	89

[a] Purification not successful.

As shown in Table 3.6, indolizines can be analogously synthesized from other pyridinium and isoquinolinium ylides. Exchanging the ester group in 1a for an N, N-diethylamido group (in 1b) or an acetyl group (in 1d) led to slightly decreased yields of the corresponding indolizines (i.e., $\mathbf{7 b}$ and $\mathbf{7 d}$), while a cyano substituent led to indolizine $\mathbf{7 c}$ in a higher isolated yield (Table 3.6, entries 1-4). With benzoyl-substituted ylide $\mathbf{1 e}$, indolizine formation was only observed when p-nitro-substituted benzylidene-malonate $\mathbf{6 a}$ was used as the electrophile, and even then, indolizine 7 e was only observed in low conversion (Table 3.6, entry 5). The reason for this behavior will be discussed below.

As cyano-substituted ylide 1c gave the best results, cyano-substituted ylides were used to investigate substituent effects in the pyridine ring (Scheme 6, entries 6-8). A 3-chloro substituent (in 1f) was tolerated and led regioselectively to indolizine $7 \mathbf{f}$ with chlorine in the 6position, as shown by the $\mathrm{dd}\left({ }^{3} J=1.8\right.$ and 0.9 Hz) of $5-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 3.6, entry 6). In contrast, a strong electron donor such as the $4-\mathrm{NMe}_{2}$ substituent in ylide $\mathbf{1 g}$ resulted in a reduced yield of indolizine $7 \mathbf{g}$ (Table 3.6, entry 7). Probably, the decreased electrophilicity of the pyridinium ring retarded the cyclization of betaine $\mathbf{B - 1 g}$ to give [3+2]-cycloadduct $\mathbf{C - 1 g}$ (see Table 3.3). The reaction of isoquinolinium ylide $\mathbf{4 h}$ with benzylidene malonate $\mathbf{6 f}$ resulted in an almost quantitative formation of indolizine $\mathbf{8 a}$ (Table 3.6, entry 8), which can be explained by the smaller loss of aromaticity in the cyclization step.

Scheme 3.6. Reaction of salt $1 \mathrm{eH}^{+} \mathrm{Br}^{-}$with benzylidene malonates 6 in ethanol and proposed mechanism for the formation of the salts 13 .

To rationalize the low yield of indolizine $7 \mathbf{e}$, we examined the reactions of benzoylsubstituted ylide $\mathbf{1 e}$ more closely. When $\mathbf{1 e H} \mathbf{H}^{+} \mathbf{B r}^{-}$was combined with benzylidene-malonate $\mathbf{6 a}$ in EtOH at $20^{\circ} \mathrm{C}$ in the presence of NEt_{3}, debenzoylated pyridinium salt $\mathbf{1 3 a}$ was formed in 99% yield (Scheme 3.6). This product was unambiguously identified by NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis (see Experimental Section). Its formation may be explained by the mechanism shown in Scheme 3.6. The initially generated ylide (i.e., 1e) undergoes a 1,4 -addition to Michael acceptor $\mathbf{6 a}$ to form betaine $\mathbf{B}-\mathbf{1 e}$. This intermediate is protonated by $\mathrm{HNEt}_{3}{ }^{+} \mathrm{Br}^{-}$to give Michael adduct $\mathbf{M}-\mathbf{1 e}$. Obviously, nucleophilic attack by ethoxide and elimination of the benzoyl group (the formation of ethyl benzoate was detected by GC-MS) is faster than the generation of [3+2]-cycloadduct $\mathbf{C - 1 e}$ by cyclization of betaine $\mathbf{B}-\mathbf{1} \mathbf{e}$. This process seems to be general, as debenzoylated pyridinium salt $\mathbf{1 3} \mathbf{b}$ was obtained under the same conditions from the reaction of ylide $\mathbf{1 e}$ with p methylbenzylidenemalonate $\mathbf{6 f}$.

An easier cyclization step, as had previously been observed in the isoquinolinium series, was now also found with benzoyl-substituted ylides, and a good yield of [3+2]- cycloadduct $\mathbf{C - 4 b}$ was obtained when isoquinolinium salt $\mathbf{4} \mathbf{b H} \mathbf{H}^{+} \mathbf{B r}^{-}$was combined with benzylidene-malonate $\mathbf{6 a}$ in DMSO under basic conditions (Scheme 3.7). The diastereomeric ratio was determined from the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product. Recrystallization of $\mathbf{C}-\mathbf{4 b}$ from EtOH resulted in the formation of needle-shaped and prismatic crystals, which were separated for analysis (see Experimental Section). The needle-shaped crystals were composed of all three diastereoisomers, whereas the prismatic crystals were composed of a single diastereoisomer (by

Scheme 3.7. Reaction of $4 \mathrm{bH}^{+} \mathrm{Br}^{-}$with benzylidene malonate 6a in DMSO at $20{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}$ NMR spectroscopy). Solutions of this single diastereoisomer in CDCl_{3} slowly isomerized to give a mixture of three diastereoisomers, which prevented an unambiguous assignment of the stereochemistry. The isomerization may be due to a deprotonation of the proton α to the benzoyl group or reversible opening of the pyrrolidine ring of $\mathbf{C - 4 b}$.

As shown in Table 3.7, the indolizine synthesis presented in this work tolerates strongly electron-withdrawing and electron-donating groups on the phenyl ring of the electrophile. The most electrophilic and the least electrophilic arylidene-malonates tested (i.e., 6a and 6i, respectively) gave the corresponding indolizines (i.e., 7h and 7o) in lower yields (Table 3.7, entries 1 and 9). It was even possible to replace the aryl ring in the arylidene-malonates by an isopropyl group (in $\mathbf{6 j}$) and obtain 83% of the corresponding indolizine (i.e., $\mathbf{7 p}$; Table 3.7, entry 10). Product $\mathbf{7 p}$ has an isopropyl group in the 2-position, as does the calcium-channel blocker fantofarone. ${ }^{[6]}$

Indolizine $7 \mathbf{1}$ was not only obtained as described in Table 3.7, but also when pyridinium bromide $\mathbf{1 c H}^{+} \mathbf{B r}^{-}$was combined with Michael acceptors $\mathbf{1 4 a}$ or $\mathbf{1 4 b}$ under the conditions described above, followed by oxidation with chloranil (1 equiv.) in air (Scheme 9). The yield of $\mathbf{7 1}$ decreased from 34 to 22% when 2 equiv. of chloranil was used for the oxidation of [3+2]cycloadduct 15b. Indolizine $\mathbf{7 q}$ was obtained from pyridinium bromide $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}$and $\mathbf{1 4 c}$ under the same conditions.

While the selective formation of $\mathbf{7 1}$ from 15a, i.e., the preferential elimination of the acetyl group over the ethoxycarbonyl group, can be explained by the mechanism described in Scheme 3.5 (nucleophilic attack at COCH_{3} is easier than that at $\mathrm{CO}_{2} \mathrm{Et}$), the preferential cleavage of the $\mathrm{SO}_{2} \mathrm{Me}$ group can be explained by the high nucleofugality of this group, which has recently been quantified (Scheme 3.9). ${ }^{[20]}$

The preferential cleavage of the formamido group over the ethoxycarbonyl group, which has previously been observed in the isoquinolinium series, ${ }^{[40]}$ may be explained by the elimination of isocyanic acid, as shown in Scheme 3.10. ${ }^{[21]}$

In agreement with literature reports, ${ }^{[40]}$ the leaving-group abilities of different electron-with-
drawing substituents in the oxidative aromatizations of the [3+2]-cycloadducts to give indolizines can roughly be ordered: $\mathrm{CN}^{[40]}<\mathrm{CO}_{2} \mathrm{Me} \approx \mathrm{CO}_{2} \mathrm{Et}<\mathrm{COMe}, \mathrm{SO}_{2} \mathrm{Me}, \mathrm{CONH}_{2}$.

The preliminary results shown in Scheme 3.11 illustrate that less activated Michael acceptors like ethyl methacrylate could also be used for this reaction sequence, although the isolated yields of indolizine $\mathbf{1 8}$ were low.

Table 3.7. Indolizines $7 \mathbf{c}, \mathbf{h}-\mathbf{p}$ from pyridinium salt $\mathbf{1 c H}{ }^{+} \mathrm{Br}^{-}$and the Michael acceptors $\mathbf{6 a - j}$.

Entry	Reactant	R	Product	Yield/ $\%$
1	$\mathbf{6 a}$	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$	$\mathbf{7 h}$	48
2	$\mathbf{6 b}$	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	$\mathbf{7 i}$	82
3	$\mathbf{6 c}$	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Br}$	$\mathbf{7 j}$	81
4	$\mathbf{6 d}$	$\mathrm{C}_{6} \mathrm{H}_{4}-m-\mathrm{Cl}$	$\mathbf{7 k}$	77
5	$\mathbf{C _ { 6 }} \mathrm{H}_{5}$	$\mathbf{7 l}$	69	
6	$\mathbf{6 e}$	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Me}$	$\mathbf{7 c}$	74
7	$\mathbf{6 f}$	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{OMe}^{2}$	$\mathbf{7 m}$	78
8	$\mathbf{6 g}$	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NMe}_{2}$	$\mathbf{7 n}$	80
9	$\mathbf{6 h}$	julolidyl	$\mathbf{7 o}$	53
10	$\mathbf{6 i}$	$\mathrm{CH}_{(}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathbf{7 p}$	83

Scheme 3.8. Reaction of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}$with $\mathbf{1 4 a} \mathbf{- c}$ to indolizine 71 and $\mathbf{7 q}$.

Electrophile	R	EWG	$[3+2]-C y c l o a d d u c t ~$	Product	Yield/ $\%$
$\mathbf{1 4 a}$	Et	COMe	$\mathbf{1 5 a}$	$\mathbf{7 1}$	56
$\mathbf{1 4 b}$	Et	$\mathrm{SO}_{2} \mathrm{Me}$	$\mathbf{1 5 b}$	$\mathbf{7 1}$	$34^{[\mathrm{aa}]}$
$\mathbf{1 4 c}$	Me	CONH_{2}	$\mathbf{1 5 c}$	$\mathbf{7 q}$	56

[a] 2 equiv. chloranil: 22 \% yield.

Scheme 3.9. Elimination of the ${ }^{-} \mathrm{SO}_{2} \mathrm{Me}$ group during the formation of indolizine 71.

Scheme 3.10. Cleavage of the formamido group in the formation of indolizine 7q.

Scheme 3.11. Reaction of $1 \mathrm{eH}^{+} \mathrm{Br}^{-}$and ethyl methacrylate to indolizine 18.

3.3 Conclusion

In contrast to arylidene malononitriles and other cyano-substituted Michael acceptors, which are cyclopropanated by pyridinium ylides $\mathbf{1}$, arylidene-malonates $\mathbf{6}$ undergo stepwise [3+2]cycloaddition with pyridinium ylides $\mathbf{1}$ to give [3+2]-cycloadducts $\mathbf{C}-\mathbf{1}$. Under certain conditions, intermediate Michael adducts M-1 can be observed. In the presence of air and sodium hydroxide, only 1 equiv. of chloranil is needed to convert [3+2]-cycloadducts $\mathbf{C - 1}$ into indolizines 7 by hydride abstraction and degradation of the ethoxycarbonyl group. Michael acceptors $\mathbf{1 4 a - c}$, in which one ester group of the benzylidene-malonates (i.e., $\mathbf{6}$) is replaced by an acetyl, methylsulfonyl, or amidocarbonyl group, behave similarly, and yield the same indolizines (i.e., 7), because the latter groups are eliminated faster than are alkoxycarbonyl groups. As isoquinolinium ylides react analogously, the sequence of [3+2]-cycloaddition and oxidation provides a simple one-pot synthesis of indolizines 7 and benzindolizines 5 from readily accessible pyridinium salts $\mathrm{Py}^{+}-\mathrm{CH}_{2}-\mathrm{EWG}$ or isoquinolinium salts $\mathrm{IQ}^{+}-\mathrm{CH}_{2}-\mathrm{EWG}$ and a variety of Michael acceptors.

3.4 Experimental Section

3.4.1 General

Chemicals. Solvents and chemicals were used as purchased without further purification. The diethyl benzylidene and alkylidenemalonates were synthesized according to ref. [12, 15].

Analytics. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right),{ }^{[22 a]} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ $\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right){ }^{[22 \mathrm{~b}]}$ or DMSO- $d_{6}\left(\delta_{\mathrm{H}} 2.50, \delta_{\mathrm{c}} 39.52\right)^{[22 \mathrm{a}]}$ on $200,300,400$, or 600 MHz NMR spectrometers and are given in ppm. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. For reasons of simplicity, the ${ }^{1} \mathrm{H}$ NMR signals of $\mathrm{AA}^{\prime} \mathrm{BB}$ '-spin systems of p disubstituted aromatic rings were treated as doublets. The assignments of individual NMR signals were based on additional 2D-NMR experiments (COSY, NOESY, HSQC, HMBC). Diastereomeric ratios ($d r$) were determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction products if not stated otherwise. HRMS and MS were recorded on a Finnigan MAT 95 Q (EI) mass spectrometer or Thermo Finnigan LTQ FT Ultra (ESI). An Elementar Vario Micro Cube or an Elementar Vario EL device was used for elemental analysis. The melting points were recorded on a Büchi Melting Point B-540 device and are not corrected. IR-spectra were recorded on a PerkinElmer FT-IR-BX spectrometer with ATR probe.

3.4.2 Synthesis of the Pyridinium Salts $1 \mathbf{H}^{+} \mathbf{X}^{-}$

Procedure A for the Synthesis of the Pyridinium Salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$. An equimolar amount of the halo compound was added to a solution of the corresponding pyridine in THF. The solution was stirred at room temperature over night. The solvent was evaporated and the residue was washed with ether. Recrystallization from $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{MeOH} /$ toluene afforded the salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$.

1-(2-Ethoxy-2-oxoethyl)pyridin-1-ium bromide ($\mathbf{1 a H}^{+} \mathbf{B r}^{-}$). The title compound was synthesized by procedure \mathbf{A} from ethyl bromoacetate ($15.5 \mathrm{~g}, 90.0 \mathrm{mmol}$) and pyridine (7.12 g , 90.0 mmol). $\mathbf{1 a H}{ }^{+} \mathbf{B r}^{-}$was obtained as colorless solid ($18.1 \mathrm{~g}, 73.6 \mathrm{mmol}, 82 \%$). Mp $135-$ $136{ }^{\circ} \mathrm{C}$; lit.: $135-136^{\circ} \mathrm{C} .{ }^{[15 \mathrm{a}]}{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=1.22\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.20\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 8.24(\mathrm{dd}, J=7.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}$,

$\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.71\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 9.08-9.16\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. ${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}) $\delta=14.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 128.3(\mathrm{~d}$,
$2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $146.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 147.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 166.9$ (s, CO). HRMS (ESI+): m/z $\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}\right]^{+}$: calcd.: 166.0863, found: 166.0857. DA79

1-(2-(Diethylamino)-2-oxoethyl)pyridin-1-ium bromide ($\mathbf{1 b H}^{+} \mathbf{B r}^{-}$). The title compound was synthesized by procedure \mathbf{A} from 2-bromo- N, N-diethylacetamide ${ }^{[24]}(2.00 \mathrm{~g}, 10.3 \mathrm{mmol})$ and pyridine $(8.14 \mathrm{~g}, 10.3 \mathrm{mmol}) . \mathbf{1 b H}^{+} \mathbf{B r}^{-}$was obtained as colorless wax $(2.33 \mathrm{~g}, 8.53 \mathrm{mmol}$, $83 \%, d r$ (amide) 1:12) which solidified slowly at $-18^{\circ} \mathrm{C}$ in $\mathrm{Et}_{2} \mathrm{O} . \mathbf{M p}<20^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ MHz, DMSO- d_{6}) $\delta=1.04\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.31(\mathrm{q}, J=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 8.16-8.22\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$
 H), $8.66\left(\mathrm{tt}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.97-9.01\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}$ $\mathbf{1 b H}^{+} \mathrm{Br}^{-}$ $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=13.2\left(\mathrm{q}, \mathrm{CH}_{3}\right) 14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 40.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.2(\mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 61.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 127.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 146.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 146.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 163.9(\mathrm{~s}, \mathrm{CO})$. HRMS (ESI+): $m / z\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}:$calcd.: 193.1335, found: 193.1335. DA191

1-(Cyanomethyl)pyridin-1-ium bromide ($\mathbf{1 c H}^{+} \mathbf{B r}^{-}$). The title compound was synthesized by procedure A from bromoacetonitrile ($1.71 \mathrm{~g}, 14.3 \mathrm{mmol}$) and pyridine $(1.47 \mathrm{~g}, 18.6 \mathrm{mmol})$. $\mathbf{1 a H}{ }^{+} \mathbf{B r}^{-}$was obtained as colorless solid ($2.85 \mathrm{~g}, 14.3 \mathrm{mmol}, 100 \%$). Mp $164-165^{\circ} \mathrm{C}$; lit.: $166-$ $167{ }^{\circ} \mathrm{C} .{ }^{[3 \mathrm{~b}]}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=6.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) 8.18-8.43\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $8.75\left(\mathrm{tt}, J=7.9 \mathrm{~Hz}, 1.3,1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 9.24\left(\mathrm{dd}, J=6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=47.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 114.3(\mathrm{~s}, \mathrm{CN}), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 145.5(\mathrm{~d}$,
$\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 147.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. HRMS (ESI+$): m / z\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}\right]^{+}$: calcd.: 119.0604, found: 119.0604. DA130

1-(2-Oxopropyl)pyridinium chloride ($\mathbf{1 d H}^{+} \mathbf{C l}^{-}$). The title compound was synthesized by procedure \mathbf{A} from chloroacetone ($4.3 \mathrm{~g}, 46 \mathrm{mmol}$) and pyridine ($3.7 \mathrm{~g}, 47 \mathrm{mmol}$) under reflux in THF for $4 \mathrm{~h} . \mathbf{1 d H} \mathbf{C l}^{+}$was obtained as colorless solid ($3.6 \mathrm{~g}, 21 \mathrm{mmol}, 45 \%$). Mp 208$209{ }^{\circ} \mathrm{C}$; lit.: $201{ }^{\circ} \mathrm{C}$. (decomp.). ${ }^{[15 a]}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $6.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 8.18-8.25\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.66\left(\mathrm{tt}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 9.06$
 1dutcr CH_{3}), $68.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 128.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 146.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 146.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 200.0$ (s, CO). HRMS (ESI+): $m / z\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}\right]^{+}$: calcd.: 136.0757, found: 136.0757. DA167

1-(2-Oxo-2-phenylethyl)pyridin-1-ium bromide ($\mathbf{1 e H}^{+} \mathbf{B r}^{-}$). The title compound was synthesized by procedure A from bromoacetophenone ($500 \mathrm{mg}, 2.51 \mathrm{mmol}$) and pyridine ($289 \mathrm{mg}, 3.65 \mathrm{mmol}$). $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}$was obtained as needle-shaped crystals ($657 \mathrm{~g}, 2.36 \mathrm{mmol}$,

$1 \mathrm{eH}^{+} \mathrm{Br}$ 94\%). Mp $201{ }^{\circ} \mathrm{C}$; lit.: 204-206 ${ }^{\circ} \mathrm{C} .{ }^{[15 \mathrm{a}]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=$ $6.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.63\left(\mathrm{dd}, J=10.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.72-7.81(\mathrm{~m}, 1$
$\mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $8.01-8.08\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.22-8.31\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.68-8.77(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $9.05\left(\mathrm{dd}, J=6.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=66.7(\mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 128.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.2(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 146.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 146.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 191.2(\mathrm{~s}, \mathrm{CO})$. HRMS (ESI+$): m / z\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}^{+}\right]^{+}$ calcd.: 198.0913, found: 198.0908. DA71

3-Chloro-1-(cyanomethyl)pyridin-1-ium bromide ($\mathbf{1 f H}^{+} \mathbf{B r}^{-}$). The title compound was synthesized by procedure A from 3-chloropyridine ($815 \mathrm{mg}, 7.18 \mathrm{mmol}$) and bromoacetonitrile

${ }_{1 \text { thtrer }} \quad 31 \%$). Mp 201-202 ${ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=6.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $8.31\left(\mathrm{dd}, J=8.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.92\left(\mathrm{ddd}, J=8.5,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 9.25(\mathrm{dt}$, $J=6.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $9.63\left(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta=47.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 113.8(\mathrm{~s}, \mathrm{CN}), 129.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 144.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 145.1(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 147.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. HRMS (ESI +): $\left[\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClN}_{2}\right]^{+}$calcd.: 153.0214; found: 153.0213; HRMS (ESI-): $\left[\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{ClN}_{2}\right]^{-}$calcd.: 310.8592; found: 310.8594. Da727

1-(Cyanomethyl)-4-(dimethylamino)pyridin-1-ium bromide ($\mathbf{1 g H}^{+} \mathbf{B r}^{-}$). The title compound was synthesized by procedure A from 4-(dimethylamino)pyridine (DMAP) (877 mg , $7.18 \mathrm{mmol})$ and bromoacetonitrile ($861 \mathrm{mg}, 7.18 \mathrm{mmol}$). $\mathbf{1 g H ^ { + }} \mathbf{B r}^{-}$was obtained as colorless solid ($1.68 \mathrm{~g}, 6.94 \mathrm{mmol}, 97 \%$). Mp 241-242 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=3.23$ (s,
 $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.11-7.17\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.36-8.42$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=40.0\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $43.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 108.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 115.4(\mathrm{~s}, \mathrm{CN}), 141.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 156.2$ (s, C A_{Ar}). HRMS (ESI+): $\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3}\right]^{+}$calcd.: 162.1026; found: 162.1025. Da730

2-(Cyanomethyl)isoquinolin-2-ium bromide (4aH $\left.{ }^{+} \mathbf{B r}^{-}\right)$. The title compound was synthesized by procedure \mathbf{A} from isoquinoline ($927 \mathrm{mg}, 7.18 \mathrm{mmol}$) and bromoacetonitrile
 208-209 ${ }^{\circ} \mathrm{C}$; lit.: 207-209. ${ }^{[23]}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=6.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 8.13(\mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.34\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$,
 $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.60\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.70\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.90(\mathrm{dd}$, $\left.J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 10.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=47.5$ ($\mathrm{t}, \mathrm{CH}_{2}$), $114.3(\mathrm{~s}, \mathrm{CN}), 126.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $131.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 137.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 138.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 151.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. HRMS (ESI+): $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+}$calcd.: 169.0760; found: 169.0759. Da729

2-(2-Oxo-2-phenylethyl)isoquinolin-2-ium bromide ($\mathbf{4 b H}^{+} \mathbf{B r}^{-}$). The title compound was synthesized by procedure \mathbf{A} from bromoacetophenone ($4.00 \mathrm{~g}, 20.1 \mathrm{mmol}$) and isoquinoline $(2.60 \mathrm{~g}, 20.1 \mathrm{mmol}) . \mathbf{4 b H B r}{ }^{-}$was obtained as colorless solid ($6.15 \mathrm{~g}, 18.5 \mathrm{mmol}, 93 \%$).

Mp 207-208 ${ }^{\circ} \mathrm{C}$; lit.: 209-210. ${ }^{3 \mathrm{~b}}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=6.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $7.61-7.74\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.75-7.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.09-8.16\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, 8.34 (ddd, $J=8.3,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $8.43\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.53-8.59(\mathrm{~m}, 1$ H, C $\mathrm{A}_{\mathrm{Ar}}-\mathrm{H}$), $8.70\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.77\left(\mathrm{dd}, J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 10.07(\mathrm{~s}, 1$ H, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=66.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 125.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\right.$ $\mathrm{H}), 126.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$,
 C_{Ar}), $137.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 137.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 151.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 190.9(\mathrm{~s}, \mathrm{CO})$. HRMS (ESI +): m / z [$\left.\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}\right]^{+}$: calcd.: 248.1070, found: 248.1071. Da448

3.4.3 System Development

3.4.3.1 Base and Solvent Dependence

Synthesis of Michael Adduct M-1a in DMSO with HNMe $\mathbf{2}$ ($\mathbf{3 0 \%} \mathbf{~ a q .) . ~} \mathbf{1 a H}^{+} \mathbf{B r}^{-}$(62 mg , 0.25 mmol) and $\mathbf{6 f}(66 \mathrm{mg}, 0.25 \mathrm{mmol})$ were dissolved in DMSO $(2 \mathrm{~mL})$ and $\mathrm{HNMe}_{2}(2 \mathrm{~mL}$, 30% aq.) was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred for 15 min at $20^{\circ} \mathrm{C}$. Brine was added $(20 \mathrm{~mL})$ and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water (20 mL) and brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude material was subjected to ${ }^{1}$ H NMR: 75:25 mixture of M-1a ($d r$ 2:1) and $\mathbf{6 f}$. Da629-1

Synthesis of Michael Adduct M-1a in DMSO with NEt $\mathbf{3}_{3}$. $\mathbf{a H}^{+} \mathbf{B r}^{-}(123 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and $\mathbf{6 f}(131 \mathrm{mg}, 500 \mu \mathrm{~mol})$ were dissolved in DMSO $(2 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(140 \mu \mathrm{~L}, 102 \mathrm{mg}$, 1.01 mmol) was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred for 15 min at $20^{\circ} \mathrm{C}$. Then TFA ($80 \mu 1,54 \mathrm{mg}, 0.47 \mathrm{mmol}$) was added to quench the reaction. Brine was added (20 mL) and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water (20 mL) and brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude material was subjected to ${ }^{1} \mathrm{H}$ NMR: 40:60 mixture of M-1a ($d r \sim 1: 1$) and $\mathbf{6 f}$. Da626-1

Synthesis of Michael Adduct M-1a in DMSO with KO'Bu. 1-(1,5-Diethoxy-4-(ethoxycarbonyl)-1,5-dioxo-3-(p-tolyl)pentan-2-yl)pyridin-1-ium bromide (M-1a). $\mathbf{1 a H} \mathbf{H r}^{-}(123 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and $\mathbf{6 f}(131 \mathrm{mg}, 500 \mu \mathrm{~mol})$ were dissolved in DMSO $(2 \mathrm{~mL})$ and $\mathrm{KO}^{t} \mathrm{Bu}(67 \mathrm{mg}, 0.60 \mathrm{mmol})$ in 2 mL DMSO was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred for 15 min at $20^{\circ} \mathrm{C}$. Then TFA $(80 \mu 1,54 \mathrm{mg}$, $0.47 \mathrm{mmol})$ was added to quench the reaction. Brine was added $(20 \mathrm{~mL})$ and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude
 material was subjected to ${ }^{1} \mathrm{H}$ NMR: 93:7 mixture of M-1a ($d r \sim 1: 1.2$) and $\mathbf{6 f}$. Tentative assignment of the ${ }^{1} \mathrm{H}$ NMR-signals in the mixture of diastereoisomers. ${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.64-0.77\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right), 0.83$ $\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.18-1.10\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right.$, superimposed by $\left.\mathbf{6 f}\right)$, $2.00\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 3.53-3.68\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 3.76-3.91\left(\mathrm{~m}, 2 \times \mathrm{CH}, 2 \times \mathrm{CH}_{2}\right), 4.01-$ $4.19\left(\mathrm{~m}, 3 \times \mathrm{CH}, 2 \times \mathrm{CH}_{2}\right), 4.50(\mathrm{~d}, J=10.6 \mathrm{~Hz}, \mathrm{CH}), 6.77\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.94-7.00$ $\left(\mathrm{m}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.06-7.11\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.82\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.01(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.38\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.62\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 9.21\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $9.36\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. Da626-2

Synthesis of Michael Adduct M-1a in Methanol with NEt3. $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(62 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathbf{6 f}(66 \mathrm{mg}, 0.25 \mathrm{mmol})$ were dissolved in methanol (2 mL) and $\mathrm{NEt}_{3}(37 \mathrm{mg}, 0.37 \mathrm{mmol})$ was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred for 15 \min at $20^{\circ} \mathrm{C}$. The solvent was evaporated and the crude material was subjected to ${ }^{1} \mathrm{H}$ NMR: 78:22 mixture of M-1a ($d r$ 1:1) and $\mathbf{6 f}$. Da629-2

Synthesis of Michael Adduct M-1a in MeCN with NEts. $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(123 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and $\mathbf{6 f}(131 \mathrm{mg}, 500 \mu \mathrm{~mol})$ were dissolved in $\mathrm{MeCN}(2 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(102 \mathrm{mg}, 1.01 \mathrm{mmol})$ was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred for 15 min at $20^{\circ} \mathrm{C}$. Then the solvent was evaporated and the crude material was subjected to ${ }^{1}$ H NMR: 88:12 mixture of M-1a ($d r$ 2:1) and $\mathbf{6 f}$. Da626-3

Synthesis of Michael Adduct M-1a in $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ with $\mathbf{N E t} \mathbf{3}_{3}$. $\mathbf{1 a H} \mathbf{H}^{+} \mathbf{B r}^{-}(59 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathbf{6 f}\left(62 \mathrm{mg}, 0.24 \mathrm{mmol}\right.$) were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(37 \mathrm{mg}, 0.37 \mathrm{mmol})$ was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred for 15 min at $20^{\circ} \mathrm{C}$. Then the solvent was evaporated and the crude material was subjected to ${ }^{1} \mathrm{H}$ NMR: 8:92 mixture of $\mathbf{6 f}$ and M-1a ($d r$ 3:1)/C-1a ($d r$ not determined) in a 72/28 ratio. Da649-roh

Synthesis of [3+2]-Cycloadduct C-1a in Et $\mathbf{2} \mathbf{O} / \mathbf{M e C N}$ with $\mathbf{N E t}_{\mathbf{3}} . \mathbf{1 a H}^{+} \mathbf{B r}^{-}(59 \mathrm{mg}$, $0.24 \mathrm{mmol})$ and $\mathbf{6 f}(62 \mathrm{mg}, 0.24 \mathrm{mmol})$ were suspended in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(3 \mathrm{~mL}, 2: 1)$ and NEt_{3} $(50 \mu \mathrm{~L}, 37 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred for 15 min at $20^{\circ} \mathrm{C}$. Then the solvent was evaporated and the crude material was subjected to ${ }^{1} \mathrm{H}$ NMR: 14:86 mixture of $\mathbf{6 f}$ and $\mathbf{M - 1 a}(d r$ 1:1)/C-1a (dr 3:2) in a 342/66 ratio. Da649-2

Synthesis of [3+2]-Cycloadduct C-1a in THF with $\mathbf{K O}^{t} \mathbf{B u}^{\mathbf{1 a n}} \mathbf{1 a H}^{+} \mathbf{B r}^{-}(59 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathbf{6 f}(62 \mathrm{mg}, 0.24 \mathrm{mmol})$ were suspended in THF (2 mL) and $\mathrm{KO}^{t} \mathrm{Bu}(28 \mathrm{mg}, 0.25 \mathrm{mmol})$ in 1 mL THF was added. The solution turned immediately red and was stirred for 5 min at $20^{\circ} \mathrm{C}$. The solvent was evaporated and the crude material was subjected to ${ }^{1} \mathrm{H}$ NMR: 99:1 mixture of C-1a (dr 1:1) and 6f. Da649-4

Synthesis of [3+2]-Cycloadduct $\mathbf{C - 1 a}$ in $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ with $\left.\mathbf{N a O H} \mathbf{(3 2 \%}\right) . \mathbf{1 a H}{ }^{+} \mathbf{B r}^{-}(59 \mathrm{mg}$, $0.24 \mathrm{mmol})$ and $\mathbf{6 f}(62 \mathrm{mg}, 0.24 \mathrm{mmol})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{NaOH}(1 \mathrm{~mL}$, 32%) was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred
 for 15 min at $20^{\circ} \mathrm{C}$. Water was added $(20 \mathrm{~mL})$ and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, the crude material was filtrated over SiO_{2} (n-pentane:EtOAc: $\mathrm{NEt}_{3} 5: 1: 1$) and subjected to ${ }^{1} \mathrm{H}$ NMR: 97:3 mixture of $\mathbf{C - 1 a}\left(d r\right.$ 1.7:1) and $\mathbf{6 f}$. Tentative assignment of the ${ }^{1} \mathrm{H}$ NMR-signals in the
 $=0.68\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), \# 0.83-0.97\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right),{ }^{\#} 1.11-1.24\left(\mathrm{~m}, 3 \times \mathrm{CH}_{3}\right), * 2.18\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, ${ }^{\#}$ $2.23\left(\mathrm{~s}, \mathrm{CH}_{3}\right),{ }^{*} 3.45-3.97\left(\mathrm{~m}, 3 \times \mathrm{CH}_{2}\right)$, ${ }^{*, \#} 4.00-4.34\left(\mathrm{~m}, 3 \times \mathrm{CH}_{2}, 2 \times 2-\mathrm{H}, 3-\mathrm{H}, 8^{a}-\mathrm{H}\right)$, ,*\# 4.52 $-4.65\left(\mathrm{~m}, 8^{a}-\mathrm{H}\right),{ }^{\#} 4.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3-\mathrm{H}),{ }^{\#} 4.91-5.18(\mathrm{~m}, 5-\mathrm{H}, 8-\mathrm{H})$, , ${ }^{\#} 5.66(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $7-\mathrm{H}), \# 5.69-5.76(\mathrm{~m}, 8-\mathrm{H}),{ }^{\#} 5.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 5-\mathrm{H}, 7-\mathrm{H}),{ }^{*}{ }^{\#} 5.85(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6-\mathrm{H}),{ }^{\#} 5.92$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 6-\mathrm{H}), * 6.92\left(\mathrm{~s}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right),{ }^{\#} 6.98-7.04\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), * 7.07-7.18\left(\mathrm{~m}, 2 \times \mathrm{C}_{\mathrm{ar}-\mathrm{H}}\right) .{ }^{*}$ Da649-6

Oxidation by MnO2. $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(59 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathbf{6 f}(62 \mathrm{mg}, 0.24 \mathrm{mmol})$ were dissolved in DMSO (2 mL) and $\mathrm{NEt}_{3}(76 \mathrm{mg}, 0.75 \mathrm{mmol})$ were added at $20^{\circ} \mathrm{C}$ in one portion under stirring, After $5 \mathrm{~min} \mathrm{MnO}_{2}(55 \mathrm{mg}, 0.63 \mathrm{mmol}, 2.6 \mathrm{eq})$ was added and the solution was stirred for 3 h at $100^{\circ} \mathrm{C}$. Then $2 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ was added and the mixture was extracted against EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude material was
subjected to ${ }^{1} \mathrm{H}$ NMR. 7 a was obtained with 50% conversion (by NMR) with ethyl (4-methyl) cinnamate (50%) formed from $\mathbf{6 f}$ by degradation to EtOH and CO_{2} as byproduct. Da645-2

Synthesis of [3+2]-Cycloadduct rac-C-4a in $\mathbf{C H}_{2} \mathbf{C l}_{2}$ with $\mathbf{N a O H}$ (32\%). Diethyl 3-cyano-2-(p-tolyl)-2,3-dihydropyrrolo $[2,1-a]$ isoquinoline-1,1(10bH)-dicarboxylate (rac-C$\mathbf{4 a}): \mathbf{4 a H}{ }^{+} \mathbf{B r}^{-}(159 \mathrm{mg}, 6382 \mu \mathrm{~mol})$ and $\mathbf{6 f}(132 \mathrm{mg}, 503 \mu \mathrm{~mol})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ and $\mathrm{NaOH}(1 \mathrm{~mL}, 32 \%)$ was added at $20{ }^{\circ} \mathrm{C}$ in one portion. The solution turned immediately orange and was stirred for 15 min at $20^{\circ} \mathrm{C}$. Water was added (20 mL) and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude material was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$. rac-C-4a was obtained as orange solid ($213 \mathrm{mg} ; 495 \mu \mathrm{~mol} ; 98 \% ; d r$ 4:9:100 for anti-exo approach). Mp (anti-exo-C-4a): $132-135{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (anti-exo-C-4a, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.69\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.74\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), 3.34 - $3.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.71-3.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.37(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ H), $4.53(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 5.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.68\left(\mathrm{~s}, 1 \mathrm{H}, 10^{b}-\mathrm{H}\right), 6.53$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 6.98 (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), $7.06-7.17$ (m, $5 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$, 8 - or $9-\mathrm{H}), 7.21(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 8$ - or $9-\mathrm{H}), 7.32(\mathrm{dd}, J=7.6,1.4,1 \mathrm{H}, 10-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR

(anti-exo-C-4a, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.2(\mathrm{q}$, CH_{3}), 54.7 (d, C-1), $59.2(\mathrm{~d}, \mathrm{C}-2), 61.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 67.0(\mathrm{~d}, \mathrm{C}-$ 10^{b}), 70.9 (s, C-3), 103.7 (d, C-6), 115.7 (s, CN), 124.5 (d, C-7), 125.9 (d, C-8), 126.9 ($\mathrm{s}, \mathrm{C}-10^{a}$), 128.6 (d, C-10), 128.8 (d, C-9), 129.5 ($\mathrm{d}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 131.3 (d, C-5), 131.5 ($\mathrm{s}, \mathrm{C}-6^{a}$), 132.1 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 138.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 168.5 ($\mathrm{s}, \mathrm{CO}_{2}$), 169.3 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ calcd.: 430.1893; found: 430.1894. MS (EI) $m / z=430.13$ (2), 262.03 (8), 217.00 (9), 169.00 (10), 167.99 (100), 144.00 (10), 116.01 (18), 115.00 (11). Da884-4

3.4.3.2 Oxidant-Screening

$\mathbf{P d} / \mathbf{C} / \mathbf{O}_{2}$. $\mathbf{1 a H}{ }^{+} \mathbf{B r}^{-}(62 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathbf{6 f}(66 \mathrm{mg}, 0.25 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ and aq. $\mathrm{NaOH}(1 \mathrm{~mL}, 30 \%)$ was added at $20^{\circ} \mathrm{C}$ in one portion. The solution turned immediately red and was stirred till all of $\mathbf{6 f}$ was consumed (by TLC). Then 20 mL water was added, the organic layer was separated and the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The dried solution was transferred to a Schlenk-flask and Pd/C ($20 \mathrm{mg} \operatorname{Pd} / \mathrm{C} \hat{=} 2 \mathrm{mg} \mathrm{Pd}(10 \%)$) was added. The flask was set under O_{2} and stirred for 18 h at $20^{\circ} \mathrm{C}$. No conversion of $\mathbf{6 f}$ to $7 \mathbf{7 a}$ was observed by TLC. Da654-3

DTBPO. A solution of DTBPO ($146 \mathrm{mg}, 1.00 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added to a dried solution of $\mathbf{C}-1 \mathbf{1 a}$ generated as described for $\mathrm{Pd} / \mathrm{C} / \mathrm{O}_{2}$ (see above) at $20^{\circ} \mathrm{C}$ and stirred for 18 h . Only $\mathbf{6 f}$ and not a trace of $7 \mathbf{a}$ was observed by TLC. Da654-5

NCS. NCS ($133 \mathrm{mg}, 1.00 \mathrm{mmol}, 4 \mathrm{eq}$) was added to a dried solution of $\mathbf{C - 1 a}$ generated as described in 0 at $20^{\circ} \mathrm{C}$ and stirred for 18 h . Only $\mathbf{6 f}$ and not a trace of $7 \mathbf{7 a}$ was observed by TLC. Da654-5

DDQ. DDQ ($80 \mathrm{mg}, 352 \mu \mathrm{~mol}, 1.4 \mathrm{eq}$) was added to a dried solution of $\mathbf{C}-1 \mathbf{1 a}$ generated as described for $\mathrm{Pd} / \mathrm{C} / \mathrm{O}_{2}$ (see above) at $20^{\circ} \mathrm{C}$ and stirred for 18 h . The solvent was evaporated and the crude material was filtrated over SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The solvent was evaporated and the product was subjected to ${ }^{1} \mathrm{H}$ NMR. 7 a was obtained with 54% conversion (by NMR; as ratio of $7 \mathbf{a} /(\mathbf{6 f}+7 \mathbf{a})$). Da654-1
2.0 equiv. Chloranil for $18 \mathbf{h}$. Chloranil ($122 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added was added to a dried solution of $\mathbf{C - 1 a}$ generated as described for $\mathrm{Pd} / \mathrm{C} / \mathrm{O}_{2}$ (see above; double amount of reactants) at $20^{\circ} \mathrm{C}$ and stirred for 18 h . The solvent was evaporated, the crude material was filtrated over SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The solvent was evaporated and the product was subjected to ${ }^{1} \mathrm{H}$ NMR. 7a was obtained with 69% conversion (by NMR, as ratio of $\mathbf{7 a} /(\mathbf{6 f}+\mathbf{7 a})$). Da654-2

Oxidation by 1.0 equiv. Chloranil for $3 \mathbf{h}$. Chloranil ($62 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added to a dried solution of \mathbf{C}-1a generated as described for $\mathrm{Pd} / \mathrm{C} / \mathrm{O}_{2}$ (see above) at $20^{\circ} \mathrm{C}$ and stirred for 3 h . The solvent was evaporated and subjected to ${ }^{1} \mathrm{H}$ NMR. $7 \mathbf{a}$ was obtained with 74% conversion (by NMR, as ratio of $7 \mathbf{a} /(\mathbf{6 f}+7 \mathbf{7 a})$). Da654-8

Oxidation by 1.0 equiv. Chloranil for $1 \mathbf{h}$. Chloranil ($62 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added to a dried solution of \mathbf{C}-1a generated as described for $\mathrm{Pd} / \mathrm{C} / \mathrm{O}_{2}$ (see above) at $20^{\circ} \mathrm{C}$ and stirred for 1 h . The solvent was evaporated and the crude material was subjected to ${ }^{1} \mathrm{H}$ NMR. $7 \mathbf{a}$ was obtained with 74% conversion (by NMR; as ratio of $7 \mathbf{a} /(\mathbf{6 f}+7 \mathbf{a})$). Da654-6

Oxidation by $\mathbf{1 . 0}$ equiv. Chloranil for $\mathbf{0 . 5} \mathbf{h}$. Chloranil ($62 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added to a dried solution of \mathbf{C}-1a generated as described for $\mathrm{Pd} / \mathrm{C} / \mathrm{O}_{2}$ (see above) at $20^{\circ} \mathrm{C}$ and stirred for 0.5 h . The solvent was evaporated and the crude material was subjected to ${ }^{1} \mathrm{H}$ NMR. $7 \mathbf{a}$ was obtained with 65% conversion (by NMR; as ratio of $7 \mathbf{a} /(\mathbf{6 f}+7 \mathbf{a})$). Da654-7

3.4.3.3 Mechanistic Studies

Oxidation of C-4a under inert atmosphere. C-4a ($80 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under N_{2}-atmosphere. Under N_{2} at $20^{\circ} \mathrm{C}$ chloranil ($45.7 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added and the solution was stirred for 1 h . After 1 h the reaction mixture was subjected to ${ }^{1} \mathrm{H}$ NMRanalysis. $\mathbf{2 1 \%}$ of $\mathbf{C}-\mathbf{4 a}$ were converted to indolizine $\mathbf{5 a}$.

Oxidation of C-4a under air. C-4a ($80 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved at $20^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under air and chloranil ($45.7 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added and the solution was stirred for 1 h . After 1 h the reaction mixture was subjected to ${ }^{1} \mathrm{H}$ NMR-analysis. 58% of $\mathbf{C}-4$ a were converted to indolizine 5a.

Oxidation of C-4a under air with aq. $\mathbf{N a O H}$ ($\mathbf{3 2 \%}$). C-4a ($166 \mathrm{mg}, 0.39 \mathrm{mmol}$) was dissolved at $20{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under air, chloranil ($93 \mathrm{mg}, 0.38 \mathrm{mmol}$) and $20 \mu \mathrm{laq} . \mathrm{NaOH}$ (32%) were added and the solution was stirred for 1 h . After 1 h the reaction mixture was subjected to ${ }^{1} \mathrm{H}$ NMR-analysis. $\mathbf{1 7 \%}$ of $\mathbf{C}-\mathbf{4 a}$ were converted to indolizine $\mathbf{5 a}$.

Oxidation of C-4a under air with $\mathbf{N a O H}$ saturated $\mathbf{C H}_{2} \mathbf{C l}_{2} .5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1 mL aq. $\mathrm{NaOH}(32 \%)$ were stirred for 1 h at $20^{\circ} \mathrm{C}$, then water was added and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then $\mathbf{C}-\mathbf{4 a}(47 \mathrm{mg}, 0.11 \mathrm{mmol})$ was dissolved in the NaOH sat. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ under air, chloranil ($27 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added and the solution was stirred for 1 h. After 1 h the solvent was evaporated and the crude reaction mixture was subjected to ${ }^{1}$ H NMR-analysis. 100\% of C-4a were converted to indolizine 5a.

3.4.4 Synthesis of the Products 5, 7, 12, C-4b, and 18

Procedure B for the Synthesis of the Indolizines 5, 7. The Michael acceptor 6a-j or 13a-c ($0.25-0.50 \mathrm{mmol})$ and the salt $\mathbf{1 a}-\mathbf{h} \mathbf{H}^{+} \mathbf{X}^{-}$or $\mathbf{4} \mathbf{a H}^{+} \mathbf{B r}^{-}(0.25-1.00 \mathrm{mmol})$ were suspended in dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{M}\right.$), and 1 mL of NaOH (aq. $30 \%, 1 \mathrm{~mL}$) was added at room temperature. The suspension was stirred till the Michael acceptor was completely consumed (monitored by TLC; $15 \mathrm{~min}-1 \mathrm{~h}$). Water (30 mL) was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chloranil (1 eq .) was added and the solution was stirred at room temperature for 30 min to 3 h . The solvent was evaporated and the residue was subjected to column chromatography (n pentane : EtOAc 15:1-3:1, depending on R_{f}). The resulting solids were dissolved in CHCl_{3}, and insoluble precipitates were removed by filtration. After evaporation the products were further purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.

3.4.4.1 Variation of the Ylides 1

Diethyl 2-(p-tolyl)indolizine-1,3-dicarboxylate (7a). According to procedure \mathbf{B} from $\mathbf{1 a H}{ }^{+} \mathbf{B r}^{-}(62 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathbf{6 f}(60 \mathrm{mg}, 0.23 \mathrm{mmol})$ and chloranil ($56 \mathrm{mg}, 0.23 \mathrm{mmol}$). $7 \mathbf{a}$ was obtained as colorless crystalline solid ($53 \mathrm{mg}, 0.15 \mathrm{mmol}, 65 \%$).
$\boldsymbol{R}_{\mathbf{f}}=0.51$ (i-Hexane:EtOAc 5:1). Mp $116-117^{\circ} \mathrm{C} . \mathbf{I R}$ (neat) $\tilde{v}=3329,3148,2981,1727$, $1664,1628,1499,1401,1384,1334,1257,1200,1187,1175,1118,1092,1054,1037 \mathrm{~cm}^{-1}$. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.88\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.05\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $6.98(\mathrm{td}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.09-7.21\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, 7.32 (ddd, $J=9.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 8.33-8.44(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 9.60(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 59.6(\mathrm{t}$, CH_{2}), $60.0\left(\mathrm{t}, \mathrm{CH}_{2}\right.$), 105.3 ($\mathrm{s}, \mathrm{C}-1$), 113.9 ($\mathrm{s}, \mathrm{C}-3$), 114.4 (d, C-6), 119.8 (d, C-8), 125.9 (d, C7), $127.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.1(\mathrm{~d}, \mathrm{C}-5), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 133.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 136.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 138.7$ ($\mathrm{s}, \mathrm{C}-8^{a}$), 140.4 (s, C-2), 162.0 (s, CO_{2}), 164.5 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$ calcd.: 351.1471; found: 351.1463. MS (EI) $m / z=351$ (100), 323 (5), 306 (10), 279 (22), 207 (12). Da659

Ethyl 3-(diethylcarbamoyl)-2-(p-tolyl)indolizine-1-carboxylate (7b). According to procedure \mathbf{B} from $\mathbf{1 b H}^{+} \mathbf{B r}^{-}(163 \mathrm{mg}, 597 \mu \mathrm{~mol}), \mathbf{6 f}(131 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil (123 mg , $500 \mu \mathrm{~mol}$). 7b was obtained as colorless solid ($98 \mathrm{mg}, 0.26 \mathrm{mmol}, 52 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.21$ ($i-$ Hexane:EtOAc 5:1). Mp $100-101{ }^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=2975,2931,1695,1617,1542,1502$, 1439, 1382, 1266, 1230, 1218, 1171, 1148, 1133, $1048 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 0.61 (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.05 (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.24\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{\mathrm{a}}\right), 3.04-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} H^{\mathrm{a}}, \mathrm{C} H \mathrm{H}^{\mathrm{b}}\right), 3.74\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH} H^{\mathrm{b}}\right), 4.13-4.35$
$\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.75-6.81(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 7.11-7.17\left(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\right.$
H), $7.30-7.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.20(\mathrm{dt}, J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.27$ $(\mathrm{dt}, J=9.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.5\left(\mathrm{br} \mathrm{q}, \mathrm{CH}_{3}\right), 14.1(\mathrm{br} \mathrm{q}$, $\left.\mathrm{CH}_{3}\right), 14.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 38.9(\mathrm{t}$ br, CHH$), 42.8(\mathrm{t} \mathrm{br}, \mathrm{CHH}), 59.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 101.6(\mathrm{~s}$, C-1), 113.3 (d, C-6), 118.6 (s, C-3), 120.3 (d, C-8), 123.6 (d, C-7), 125.3 (d, C-5), 128.4 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 130.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), $130.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$), 130.9 ($\mathrm{s}, \mathrm{C}-2$), 137.1 ($\mathrm{s}, \mathrm{C}-8^{a}$), 137.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 163.1 (s, CO), 165.0 (s, CO). HRMS (EI): $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ calcd.: 378.1943; found: 378.1939. MS (EI) $m / z=378$ (56), 279 (100), 234 (28), 204 (12). Da726-5

Ethyl 3-cyano-2-(p-tolyl)indolizine-1-carboxylate (7c). According to procedure \mathbf{B} from $\mathbf{1 c H} \mathbf{H r}^{+}(149 \mathrm{mg}, 750 \mu \mathrm{~mol}), \mathbf{6 f}(131 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($\left.123 \mathrm{mg}, 500 \mu \mathrm{~mol}\right) .7 \mathbf{c}$ was obtained as colorless solid ($112 \mathrm{mg}, 370 \mu \mathrm{~mol}, 74 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.36$ (i-Hexane:EtOAc 5:1). Mp $128-129^{\circ} \mathrm{C}$. IR (neat) $\tilde{v}=3402,2920,2201,1747,1680,1502,1446,1401,1264,1243,1153$, $1055,1012,991 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.22\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.42(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.26\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.03(\mathrm{td}, J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.22-7.29(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$, superimposed by solvent), 7.34 (ddd, $J=9.1,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), $7.39-7.47$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.31-8.41(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.3(\mathrm{q}$, CH_{3}), $21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 97.4(\mathrm{~s}, \mathrm{CN}), 103.8(\mathrm{~s}, \mathrm{C}-1), 113.2(\mathrm{~s}, \mathrm{C}-3), 115.0(\mathrm{~d}, \mathrm{C}-6)$, 120.9 (d, C-5 or C-8), 125.6 (d, C-5 or C-8), 126.3 (d, C-7), 128.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 128.8 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$),
 130.0 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 138.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 138.7 ($\mathrm{s}, \mathrm{C}-8^{a}$), 141.6 ($\mathrm{s}, \mathrm{C}-2$), 163.7 (s , CO_{2}). HRMS (EI): $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd.: 304.1212; found: 304.1205. MS (EI) $m / z=304$ (100), 276 (16), 259 (55), 232. (41). Da665

Diethyl 3-acetyl-2-(p-tolyl)indolizine-1-carboxylate (7d). According to procedure B from $\mathbf{1 d H} \mathbf{C l}^{-}(162 \mathrm{mg}, 944 \mu \mathrm{~mol}), \mathbf{6 f}(131 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil $(123 \mathrm{mg}, 500 \mu \mathrm{~mol}) .7 \mathbf{d}$ was obtained as colorless solid ($82 \mathrm{mg}, 0.26 \mathrm{mmol}, 52 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.50$ (i-Hexane:EtOAc 5:1). Mp $145{ }^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=3405,2921,2852,1747,1553,1445,1400,1372,1256,1196,1172$, 1012, $991 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.03\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.10\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.02(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, $7.19\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.23\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.40(\mathrm{ddd}, J=8.9,6.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 8.41(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 10.04(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 59.7\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 106.0 ($\mathrm{s}, \mathrm{C}-1$), 115.3 (d, C-6), 119.6 (d, C-8), 122.7 (s, C-3), 127.5 (d, C-7), 128.8 (d, $2 \times \mathrm{CAr}^{-}$ H), 129.2 (d, C-5), 129.3 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 133.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 137.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 138.7 ($\mathrm{s}, \mathrm{C}-8^{a}$), 141.5 (s ,

Ethyl 3-benzoyl-2-(4-nitrophenyl)indolizine-1-carboxylate (7e). According to procedure B from $\mathbf{1 e H} \mathbf{H}^{+} \mathbf{B r}^{-}(105 \mathrm{mg}, 378 \mu \mathrm{~mol}), \mathbf{6 a}(73 \mathrm{mg}, 249 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). $7 \mathbf{e}$ was obtained as impure yellow solid ($22 \mathrm{mg}, 53 \mu \mathrm{~mol}, 21 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.26$ (i-Hexane:EtOAc 5:1). ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.11\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $7.03\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.18$ $\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.22-7.28\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by
solvent), $7.30-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.45-7.52(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 104.9(\mathrm{~s}, \mathrm{C}-1), 115.7(\mathrm{~d}, \mathrm{C}-6), 120.1(\mathrm{~d}, \mathrm{C}-8), 122.0$ (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $122.4(\mathrm{~s}, \mathrm{C}-3), 127.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.0(\mathrm{~d}, \mathrm{C}-7), 128.4(\mathrm{~d}, \mathrm{C}-5), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $131.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 137.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 139.3\left(\mathrm{~s}, \mathrm{C}-8^{a}\right), 139.4(\mathrm{~s}, \mathrm{C}-2), 141.7$ ($\mathrm{s}, \mathrm{C}_{\text {Ar }}$), 146.8 ($\mathrm{s}, \mathrm{C}_{\text {Ar }}$), 164.0 ($\mathrm{s}, \mathrm{CO}_{2}$), 187.9 (s, CO). HRMS (EI): $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ calcd.: 414.1216; found: 414.1214. MS (EI) $m / z=414$ (100), 369 (12), 342 (10). Da688

Ethyl 6-chloro-3-cyano-2-(p-tolyl)indolizine-1-carboxylate (7f). According to procedure B from $\mathbf{1 f H}{ }^{+} \mathbf{B r}^{-}(175 \mathrm{mg}, 750 \mu \mathrm{~mol}), \mathbf{6 f}(132 \mathrm{mg}, 503 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). $7 \mathbf{f}$ was obtained as colorless solid ($92 \mathrm{mg}, 0.27 \mathrm{mmol}, 54 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.47$ ($i-$
 Hexane:EtOAc 5:1). Mp 126-127 ${ }^{\circ} \mathrm{C}$. IR (neat) $\tilde{v}=3364,2916,2208,1771$, 1685, 1501, 1433, 1423, 1379, 1324, 1264, 1241, 1180, 1098, 1060, $1031 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.19\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $7.21-7.30\left(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by solvent), $7.34-7.44\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\right.$ H), 8.31 (dd, $J=9.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.37(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 97.7(\mathrm{~s}, \mathrm{CN}), 104.6(\mathrm{~s}, \mathrm{C}-1), 112.6$ ($\mathrm{s}, \mathrm{C}-3$), 121.3 (d, C-8), 123.5 (d, C-5), 123.6 ($\mathrm{s}, \mathrm{C}-6$), 127.6 (d, C-7), 128.1 ($\mathrm{s}, \mathrm{C}_{\text {Ar }}$), 128.9 (d, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 136.7\left(\mathrm{~s}, \mathrm{C}-8^{a}\right), 139.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 141.7(\mathrm{~s}, \mathrm{C}-2), 163.3\left(\mathrm{~s}, \mathrm{CO}_{2}\right)$. HRMS (EI): $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}$ calcd.: 338.0822; found: 338.0813. MS (EI) $m / z=340$ (31), 338 (100), 295 (24), 293 (75), 266 (63), 229 (15). Da733

Ethyl 3-cyano-7-(dimethylamino)-2-(p-tolyl)indolizine-1-carboxylate (7g). According to procedure \mathbf{B} from $\mathbf{1} \mathbf{g H}^{+} \mathbf{B r}^{-}(151 \mathrm{mg}, 624 \mu \mathrm{~mol}), \mathbf{6 f}(132 \mathrm{mg}, 503 \mu \mathrm{~mol})$ and chloranil (123 mg , $500 \mu \mathrm{~mol}$). 7 g was obtained as colorless solid ($34 \mathrm{mg}, 98 \mu \mathrm{~mol}, 19 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.19$ ($i-$ Hexane:EtOAc 5:1). Mp 190-191 ${ }^{\circ} \mathrm{C}$. IR (neat) $\tilde{v}=3485,2980,2194,1692,1647,1513,1492$, 1433, 1301, 1226, 1179, 1143, 1066, $1034 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.17(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.12\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.19\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.72(\mathrm{dd}, J=7.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.23\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.48(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 40.6\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 59.6\left(\mathrm{CH}_{2}\right), 94.7(\mathrm{~s}, \mathrm{C}-1), 97.8(\mathrm{br}$
 d, C-8), 99.7 (s, CN), 105.4 (d, C-6), 114.4 (s, C-3), 126.2 (d, C-5), 128.6 (d, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 138.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 141.7(\mathrm{br} \mathrm{s}, \mathrm{C}-$ 8^{a}), 142.6 (s, C-2), 148.1 ($\mathrm{s}, \mathrm{C}-7$), 164.4 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ calcd.: 347.1634; found: 347.1626. MS (EI) $m / z=347$ (100), 319 (35), 302 (25), 275 (35). Da732

Ethyl 3-cyano-2-(p-tolyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate hydrate ($8 \mathrm{a} \cdot \mathrm{H}_{2} \mathrm{O}$). According to procedure \mathbf{B} from $\mathbf{4 a H}^{+} \mathbf{B r}^{-}(175 \mathrm{mg}, 703 \mu \mathrm{~mol}), \mathbf{6 f}(132 \mathrm{mg}, 503 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). $8 \mathbf{a} \cdot \mathrm{H}_{2} \mathrm{O}$ was obtained as light yellow solid ($165 \mathrm{mg}, 443 \mu \mathrm{~mol}$, 89%). $\boldsymbol{R}_{\mathbf{f}}=0.53$ (i-Hexane:EtOAc 5:1). Mp 143-144 ${ }^{\circ} \mathrm{C}$. IR (neat) $\tilde{v}=3403,2931,2924$, 2208, 1748, 1701, 1508, 1401, 1369, 1265, 1209, 1190, 1113, 1095, $1027 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.08\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.26$
(q, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.41\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.57-7.64(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}$, $9-\mathrm{H}), 7.69-7.78$ (m, $1 \mathrm{H}, 7-\mathrm{H}), 8.11$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.74-8.82(\mathrm{~m}$, $1 \mathrm{H}, 10-\mathrm{H}) \cdot{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 97.7$ (s, CN), 110.0 ($\mathrm{s}, \mathrm{C}-1$), 113.3 ($\mathrm{s}, \mathrm{C}-3$), 115.4 (d, C-6), 122.3 (d, C-5), 124.6 ($\mathrm{s}, \mathrm{C}-6^{a}$), 125.5 (d, C-7), 127.7 (d, C-10), 128.7 (d, C-8 or C-9), 129.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 129.0 (d, C-8 or C-9), 129.1 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $129.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.5\left(\mathrm{~s}, \mathrm{C}-10^{a}\right), 132.9\left(\mathrm{~s}, \mathrm{C}-10^{b}\right), 138.6(\mathrm{~s}, \mathrm{C}-2), 138.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, 166.4 (s, CO_{2}). HRMS (EI): $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd.: 354.1368; found: 354.1368. MS (EI) $m / z=$ 354 (100), 326 (12), 309 (73), 282 (83), 266 (25). Da731-2

3.4.5 Reactions of Benzoyl Substituted Ylides with Benzylidene Malonates 6

1-(4-Ethoxy-3-(ethoxycarbonyl)-2-(4-nitrophenyl)-4-oxobutyl)pyridin-1-ium bromide (13a). $\mathbf{1 e H}{ }^{+} \mathbf{B r}^{-}(73 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathbf{6 a}(70 \mathrm{mg}, 0.24 \mathrm{mmol})$ were dissolved in ethanol $(10 \mathrm{~mL})$ and triethylamine ($73 \mathrm{mg}, 721 \mu \mathrm{~mol}$) was added at room temperature. The mixture was stirred for 1 h and the solvent was evaporated. The crude product was recrystallized from ethanol to yield 13a as colorless needles ($112 \mathrm{mg}, 240 \mu \mathrm{~mol}, 100 \%$). Mp 206-207 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.95\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81-$ $3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.13-4.31\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{CH}_{2}\right), 5.49(\mathrm{dd}, J=13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH})$, 6.01 (dd, $J=13.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 7.75\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.90$ $-8.02\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.08\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.45(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 9.39\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=13.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 47.3(\mathrm{~d}, \mathrm{CH}), 54.7(\mathrm{~d}, \mathrm{CH}), 62.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.4(\mathrm{brt}, \mathrm{CHH}), 62.9$ $\left(\mathrm{t}, \mathrm{CH}_{2}\right), 124.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 142.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 145.5(\mathrm{~d}$, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $145.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 148.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}-\mathrm{H}} \text {), } 166.7\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 167.5\left(\mathrm{~s}, \mathrm{CO}_{2}\right) . \text { HRMS (ESI): }\right.}\right.$ $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}$calcd.: 387.1551; found: 387.1548. Elemental analysis: calcd.: N 5.99 , C 51.40, H 4.96; found: N 5.91, C 51.23, H 4.93. DA630-4

1-(4-Ethoxy-3-(ethoxycarbonyl)-4-oxo-2-(p-tolyl)butyl)pyridin-1-ium bromide (12b). $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(146 \mathrm{mg}, 525 \mu \mathrm{~mol})$ and $\mathbf{6 f}(131 \mathrm{mg}, 500 \mu \mathrm{~mol})$ were dissolved in ethanol $(10 \mathrm{~mL})$ and triethylamine ($146 \mathrm{mg}, 1.44 \mathrm{mmol}$) was added at room temperature. The mixture was then stirred for 1 h and the solvent was evaporated. The reaction crude was recrystallized from EtOH and from acetone to yield 13b as colorless solid ($151 \mathrm{mg}, 346 \mu \mathrm{~mol}, 69 \%$). The product is contaminated by $\mathbf{1 e H ^ { + }} \mathbf{B r}^{-} . \mathbf{M p} 183{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=0.91\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.22(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.76(\mathrm{td}, J=10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.87\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.03$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.16-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.25(\mathrm{dd}, J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH})$, $5.62(\mathrm{dd}, J=12.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 6.97-7.04\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.04-7.12(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.86-7.95\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.45\left(\mathrm{tt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.91-9.00(\mathrm{~m}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $47.8(\mathrm{~d}, \mathrm{CH}), 55.0(\mathrm{~d}, \mathrm{CH}), 61.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 64.1(\mathrm{t}, \mathrm{CHH}), 128.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 138.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 145.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 145.8$ (d, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 166.9$ (s, CO_{2}), 168.0 (s, CO_{2}). HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}$calcd.: 356.1856; found: 356.1856. DA881

Diethyl 3-benzoyl-2-(4-nitrophenyl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1(10bH)dicarboxylate (C-4b). $\mathbf{4 b H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and $\mathbf{6 a}(147 \mathrm{mg}, 500 \mu \mathrm{~mol})$ were dissolved in 5 mL of DMSO^{2} and $\mathrm{NEt}_{3}(73 \mathrm{mg}, 0.72 \mathrm{mmol})$ was added. The reaction mixture was stirred for 5 min at room temperature, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added and the solution was poured onto brine (25 mL). The organic layer was separated and the aqueous layer was washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated at room temperature. The resulting solid was recrystallized from ethanol to give $\mathbf{C}-\mathbf{4 b}$ ($202 \mathrm{mg}, 374 \mu \mathrm{~mol}, 75 \%, d r$ 1:6:9) as a mixture of orange needles ($d r$ 1:4:6) and red prisms (single diastereoisomer), which isomerize slowly in solution. Mp (EtOH).: 148-149 ${ }^{\circ} \mathrm{C}$. (mixture). Mixture C-4b ($d r \sim 1: 4: 6$). Tentative assignment of the ${ }^{1} \mathrm{H}$ NMR-signals in the mixture of diastereoisomers; \quad *-major, \#first minor diastereoisomer, ${ }^{+}$-second minor diastereoisomer. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $0.65-0.76\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right),{ }^{*} 0.82-0.95\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right),{ }^{\#} 1.19-1.30\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right),{ }^{+} 3.27-3.45(\mathrm{~m}$,
 $\left.\mathrm{CH}_{2}\right),{ }^{*} 3.47-4.07\left(\mathrm{~m}, 4 \times \mathrm{CH}_{2}\right)$, ${ }^{*, \#,+} 4.20-4.41\left(\mathrm{~m}, \mathrm{CH}_{2}\right),{ }^{+} 4.49(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3-\mathrm{H}),{ }^{+} 4.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3-\mathrm{H}),{ }^{\#} 5.00(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3-\mathrm{H}),{ }^{*} 5.10$ (d, $J=10.4 \mathrm{~Hz}, 2-\mathrm{H}),{ }^{*} 5.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2-\mathrm{H}),{ }^{+} 5.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2-\mathrm{H}),{ }^{\#}$ $5.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 6-\mathrm{H}),{ }^{*} 5.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6-\mathrm{H}),{ }^{+} 5.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 5-\mathrm{H}),{ }^{*} 5.87\left(\mathrm{~s}, 10^{b}-\right.$
H), $5.91(\mathrm{~d}, ~ J=8.6 \mathrm{~Hz}, 6-\mathrm{H}),{ }^{\#} 5.98\left(\mathrm{~s}, 6 \mathrm{H}, 10^{b}-\mathrm{H}\right)$, ${ }^{*} 6.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 5-\mathrm{H}),{ }^{\#} 6.20(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 5-\mathrm{H}),{ }^{+} 6.24\left(\mathrm{~s}, 10^{b}-\mathrm{H}\right), 6.81-6.88(\mathrm{~m}, 2 \times 8-\mathrm{H}$ or $9-\mathrm{H}),{ }^{*,+} 6.90-7.02(\mathrm{~m}, 3 \times 8-\mathrm{H}$ or $9-$ H), ${ }^{*, \#,+} 7.05-7.71\left(\mathrm{~m}, 3 \times 7-\mathrm{H}, 8-\mathrm{H}\right.$ or $9-\mathrm{H}, 3 \times 10-\mathrm{H}, 16 \times \mathrm{Car}-\mathrm{H}$, superimposed by solvent), ${ }^{, *,++}$ $7.82-7.94\left(\mathrm{~m}, 4 \times \mathrm{C}_{\mathrm{ar}-} \mathrm{H}\right),{ }^{\#,+} 8.05-8.21\left(\mathrm{~m}, 6 \times \mathrm{Car}^{\mathrm{r}-\mathrm{H})} .^{*,}{ }^{\#,+13} \mathrm{C}\right.$ NMR-Signals of the minor diastereoisomers \#, are partially superimposed by the major diastereoisomer *. The multiplicicity assignment of the aromatic carbon-atoms $\mathrm{C}_{\text {ar }}$ was not unambiguous. ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=13.3$ (q), 13.4 (q), 13.7 (q), 14.1 (q), 51.5 (d), 51.6 (d), 51.9 (d), 61.6 (t), 61.7 (t), 61.9 (t), 62.2 (t), 62.3 (t), 64.7 (d), 68.4 (d), 70.3 (d), 70.5 (d), 71.1 (d), 71.2 (d), 73.1 (d), 73.4 (d), 99.2 (d), 100.1 (d), 104.4 (d), 123.0 ($\mathrm{C}_{\text {ar }}$), 123.2 ($\mathrm{C}_{\text {ar }}$), 123.5 ($\left.\mathrm{C}_{\mathrm{ar}}\right), 124.1$ ($\mathrm{C}_{\text {ar }}$),

 $128.8\left(\mathrm{C}_{a r}\right), 129.1\left(\mathrm{C}_{a r}\right), 129.4\left(\mathrm{C}_{a r}\right), 130.0\left(\mathrm{br}, \mathrm{C}_{a r}\right), 131.1\left(\mathrm{C}_{a r}\right), 131.4\left(\mathrm{C}_{a r}\right), 131.5\left(\mathrm{C}_{a r}\right), 132.0$ $\left(\mathrm{C}_{\text {ar }}\right), 132.6\left(\mathrm{C}_{a r}\right), 132.7\left(\mathrm{C}_{a r}\right), 133.5\left(\mathrm{Carar}\right.$, $134.0\left(\mathrm{C}_{\mathrm{ar}}\right), 134.6$ (Car$), 134.6\left(\mathrm{C}_{a r}\right), 135.2\left(\mathrm{C}_{a r}\right), 135.5$ (C_{ar}), 135.8 ($\mathrm{C}_{\text {ar }}$), 136.3 (s$), 143.2$ (s$), 144.2$ (s$), 146.5$ (s), 147.2 (s$), 147.4$ (s$), 167.4$ (s), 168.1 (s), 169.2 (s), 169.3 (s), 169.6 (s), 169.9 (s), 193.3 (s), 196.5 (s), 196.9 (s). HRMS (EI): $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$ calcd.: 540.1897; found: 540.1887. MS (EI) $m / z=540$ (1), 465 (1), 435 (1), 293 (10), 248 (37), 247.12 (61), 246 (100), 203 (22), 147 (12), 129 (17), 115 (16). Prisms C-4b (1 diastereoisomer). ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.79-0.99\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 3.42-4.09(\mathrm{~m}$, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $4.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 6.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.86\left(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}{ }^{-}\right.$ H), $6.92-7.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.05-7.20\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.21-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by solvent), $7.36-7.50\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.59\left(\mathrm{dd}, J=5.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\right.$ H), 7.74-8.00 (m, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. HRMS (EI): $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$ calcd.: 540.1897; found: 540.1895. MS (EI) $m / z=540$ (2), 464 (2), 435 (2), 293 (12), 248 (45), 247 (65), 246 (100), 203 (30), 147 (15), 129 (32), 115 (20). Da622

3.4.6 Variation of the Methylidene Malonates 6

Ethyl 3-cyano-2-(4-nitrophenyl)indolizine-1-carboxylate (7h). According to procedure B from $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(149 \mathrm{mg}, 749 \mu \mathrm{~mol}), \mathbf{6 a}(147 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). 7h was obtained as colorless solid ($80 \mathrm{mg}, 0.24 \mathrm{mmol}, 48 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.25$ (i-Hexane:EtOAc 5:1). Mp $162-163{ }^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=3107,2982,2206,1692,1633,1602,1516,1507,1436,1381$, 1348, 1323, 1268, 1244, 1192, 1183, 1153, 1133, 1109, 1061, 1033, 1017 $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.21\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.26$
(q, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.12(\mathrm{td}, J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-6), 7.42(\mathrm{dd}, J=9.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, C-7), $7.67-7.78\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.28-8.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.36-8.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-5$, $\mathrm{C}-8) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 97.5(\mathrm{~s}, \mathrm{CN}), 104.0(\mathrm{~s}, \mathrm{C}-$ 1), 112.3 ($\mathrm{s}, \mathrm{C}-3$), 115.8 ($\mathrm{d}, \mathrm{C}-6$), 121.1 (d, C-5 or C-8), $123.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$), 125.7 (d, C-5 or $\mathrm{C}-8), 127.1(\mathrm{~d}, \mathrm{C}-7), 131.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$), $138.6\left(\mathrm{~s}, \mathrm{C}-2\right.$ and C_{Ar}), 138.6 ($\mathrm{s}, \mathrm{C}-8{ }^{a}$), 148.1 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 163.1 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ calcd.: 335.0906; found: 335.0907. MS (EI) $\mathrm{m} / \mathrm{z}=$ 335 (100), 307 (33), 290 (53), 263 (42), 244 (35), 215 (50), 188 (20). Da735

Ethyl 3-cyano-2-(4-cyanophenyl)indolizine-1-carboxylate (7i). According to procedure B from $\mathbf{1 c} \mathbf{H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 628 \mu \mathrm{~mol}), \mathbf{6 b}(137 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil
 ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). 7i was obtained as colorless solid ($130 \mathrm{mg}, 412 \mu \mathrm{~mol}$,
82%). $\boldsymbol{R}_{\mathbf{f}}=0.14$ (i-Hexane:EtOAc 5:1). Mp 226-227 ${ }^{\circ} \mathrm{C} . \mathbf{I R}$ (neat) $\tilde{v}=2952$, 2921, 2849, 2219, 2206, 1680, 1631, 1607, 1499, 1432, 1381, 1241, 1194, 1176, 1115, 1059,
 $4.19\left(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.17(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-6), 7.48$ (ddd, $J=9.1,6.9$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-7), 7.67-7.72\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.80-7.85\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.36(\mathrm{dt}, J=$ $9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.44(\mathrm{dt}, J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{CDCl}_{3}\right.$ 20:1) $\delta=14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 61.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 104.3(\mathrm{~s}, \mathrm{C}-1), 112.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 113.2(\mathrm{~s}, \mathrm{CN}), 116.6(\mathrm{~d}, \mathrm{C}-$ 6), 118.1 (s, CN, superimposed by solvent), 119.5 ($\mathrm{s}, \mathrm{C}-3$), 121.1 ($\mathrm{d}, \mathrm{C}-5$), 127.3 (d, C-8), 128.3 (d, C-7), $131.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 137.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 139.2\left(\mathrm{~s}, \mathrm{C}-8{ }^{a}\right), 139.4(\mathrm{~s}, \mathrm{C}-2)$, 163.8 (s, CO_{2}). HRMS (EI): $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ calcd.: 315.1008; found: 315.1006. MS (EI) m/z $=315.12$ (91), 287.10 (33), 270.10(100), 243.11 (51), 215.08 (20). DA723

Ethyl 2-(4-bromophenyl)-3-cyanoindolizine-1-carboxylate (7j). According to procedure B from $\mathbf{1 c H} \mathbf{H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 625 \mu \mathrm{~mol}), \mathbf{6 c}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). $7 \mathbf{j}$ was obtained as colorless solid ($150 \mathrm{mg}, 406 \mu \mathrm{~mol}, 81 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.40$ (i-Hexane:EtOAc 5:1). Mp $122-123{ }^{\circ} \mathrm{C}$. IR (neat) $\tilde{v}=3088,2981,2206,1992,1494,1434,1377,1324,1271,1236$, $1188,1150,1074,1060,1031,1011 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}$,
 $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.25\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.07(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, $7.30-7.48\left(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.53-7.66\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.29-8.45$ $(\mathrm{m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 97.3(\mathrm{~s}, \mathrm{CN})$, 103.8 ($\mathrm{s}, \mathrm{C}-1$), 112.8 ($\mathrm{s}, \mathrm{C}-3$), 115.4 (d, C-6), 121.0 (d, C-5 or C-8), 123.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 125.6 (d, C5 or C-8), 126.7 (d, C-7), $130.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 138.7(\mathrm{~s}, \mathrm{C}-$ 8^{q}), 140.0 ($\mathrm{s}, \mathrm{C}-2$), 163.4 (s, CO_{2}). HRMS (EI): $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}$ calcd.: 368.0160; found: 368.0154. HRMS (EI): $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{2}$ calcd.: 370.0140; found: 370.0129. MS (EI) $\mathrm{m} / \mathrm{z}=$
370.15 (98), 368.15 (100), 340.11(25), 323.10 (33), 296.11 (45), 244.16 (100), 216.15 (42). Da756

Ethyl 2-(3-chlorophenyl)-3-cyanoindolizine-1-carboxylate (7k). According to procedure B from $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 625 \mu \mathrm{~mol}), \mathbf{6 d}(141 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil $(123 \mathrm{mg}$,
 $500 \mu \mathrm{~mol}) .7 \mathbf{k}$ was obtained as colorless solid ($125 \mathrm{mg}, 385 \mu \mathrm{~mol}, 77 \%$). $\boldsymbol{R}_{\mathbf{f}}=$ 0.16 (i-Hexane:EtOAc 5:1). Mp 141-142 ${ }^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=2212,1698,1596$, 1564, 1499, 1440, 1388, 1323, 1271, 1235, 1178, 1147, 1130, 1080, $1030 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.19\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.24\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.08(\mathrm{td}, J=$ $6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-6), 7.35-7.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-7,3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.49-7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.36$ (dt, $J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-5), 8.42(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-8) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.3\left(\mathrm{~d}, \mathrm{CH}_{2}\right), 97.4(\mathrm{~s}, \mathrm{CN}), 104.0(\mathrm{~s}, \mathrm{C}-1), 112.7(\mathrm{~s}, \mathrm{C}-3), 115.5(\mathrm{~d}, \mathrm{C}-6)$, 121.0 (d, C-8), 125.6 (d, C-5), 126.7 (d, C-7), 128.2 (d, CAr-H), 128.9 (d, C Arr^{-H}), 129.4 (d, CArH), 130.5 ($\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 133.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 133.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 138.7 ($\mathrm{s}, \mathrm{C}-8^{a}$), 139.5 ($\mathrm{s}, \mathrm{C}-2$), 163.4 (s , CO_{2}). HRMS (EI): $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$ calcd.: 324.0666; found: 324.0660. MS (EI) $m / z=326.09$ (35), 324.09 (100), 279.07 (91), 252.09 (58), 216.09 (48). Da719

Ethyl 3-cyano-2-phenylindolizine-1-carboxylate (71). According to procedure B from $\mathbf{1} \mathbf{C H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 628 \mu \mathrm{~mol}), \mathbf{6 e}(124 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($\left.123 \mathrm{mg}, 500 \mu \mathrm{~mol}\right) .7 \mathbf{l}$ was obtained as colorless solid ($100 \mathrm{mg}, 344 \mu \mathrm{~mol}, 69 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.45$ (i-Hexane:EtOAc 5:1). $\mathbf{M p}$ $122-123{ }^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=2204,1683,1630,1501,1429,1395,1380,1319,1268,1242,1188$, $1155,1129,1096,1060,1031 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $4.23\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.05(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.36(\mathrm{ddd}, J=9.1$, $6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.41-7.55\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.36(\mathrm{dt}, J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.39$ $(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.2\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 97.4 (s, CN), 103.9 (s, C-1), 113.1 ($\mathrm{s}, \mathrm{C}-3$), 115.2 (d, C-6), 120.9 (d, C-8), 125.6 (d, C-5), 126.4 (d, C-7), $128.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.7$ (s, C_{Ar}), 138.7 ($\mathrm{s}, \mathrm{C}-$ $\stackrel{8}{8}$ ${ }_{5}^{6}{ }_{51}{ }^{3} \mathrm{cN}$ found: 290.1051. MS (EI) $m / z=290.15$ (100), 262.12 (18), 245.12 (100), 218.11 (47), 216.09 (29). Da718

Ethyl 3-cyano-2-(4-methoxyphenyl)indolizine-1-carboxylate (7m). According to procedure \mathbf{B} from $\mathbf{1 c} \mathbf{H}^{+} \mathbf{B r}^{-}(128 \mathrm{mg}, 625 \mu \mathrm{~mol}), \mathbf{6 g}(139 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil (123 mg , $500 \mu \mathrm{~mol}$). 7 m was obtained as colorless solid ($125 \mathrm{mg}, 390 \mu \mathrm{~mol}, 78 \%$). $\boldsymbol{R}_{\mathrm{f}}=0.36$ ($i-$ Hexane:EtOAc 5:1). Mp $122-123{ }^{\circ} \mathrm{C} . \operatorname{IR}$ (neat) $\tilde{v}=3105,2976,2202,1690$, $1614,1538,1503,1465,1432,1393,1378,1295,1239,1187,1172,1126$,

1112, 1058, $1025 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $4.26\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.67-7.07\left(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.34$ (ddd, $J=9.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-7), 7.45-7.53\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.31-8.40(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 55.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 97.3(\mathrm{~s}, \mathrm{CN}), 103.7$ ($\mathrm{s}, \mathrm{C}-1$), 113.3 ($\mathrm{s}, \mathrm{C}-3$), 113.6 ($\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 115.0 (d, C-6), 120.9 (d, C-5 or C-8), 123.7 (s , C_{Ar}), 125.6 ($\mathrm{d}, \mathrm{C}-5$ or C-8), 126.4 (d, C-7), $131.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$), 138.8 ($\mathrm{s}, \mathrm{C}-8^{a}$), 141.3 ($\mathrm{s}, \mathrm{C}-2$), 160.2 (s, $\mathrm{C}_{\text {Ar }}$), 163.8 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ calcd.: 320.1161; found: 320.1156. MS (EI) $m / z=320.14$ (100), 292.12 (20), 275.12 (71), 248.13 (50), 232.10 (18), 191.18 (8). DA716

Ethyl 3-cyano-2-(4-(dimethylamino)phenyl)indolizine-1-carboxylate (7n). According to procedure \mathbf{B} from $\mathbf{1 c} \mathbf{H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 625 \mu \mathrm{~mol}), \mathbf{6 h}(146 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil (123 mg ,

$500 \mu \mathrm{~mol}$). 7 n was obtained as light yellow solid ($133 \mathrm{mg}, 399 \mu \mathrm{~mol}, 80 \%$).
$\boldsymbol{R}_{\mathbf{f}}=0.35$ (i-Hexane:EtOAc 5:1). Mp 150-151 ${ }^{\circ} \mathrm{C}$. $\mathbf{I R}$ (neat) $\widetilde{v}=2915,2210$, 1693, 1611, 1541, 1490, 1437, 1390, 1356, 1320, 1268, 1229, 1203, 1166, 1146, 1060, 1030 $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.28\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $4.29\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.73-6.83\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.00(\mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 7.31(\mathrm{ddd}, J=9.0,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.43-7.51\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.29-8.38(\mathrm{~m}$, $2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 40.5\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 60.1\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 97.0 (s, CN), 103.3 ($\mathrm{s}, \mathrm{C}-1$), 111.7 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 113.8 ($\mathrm{s}, \mathrm{C}-3$), 114.7 (d, C-6), 118.7 (s, C_{Ar}), 120.8 (d, C-5 or C-8), 125.5 (d, C-5 or C-8), 126.1 (d, C-7), 131.2 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 138.9 ($\mathrm{s}, \mathrm{C}-$ 8^{a}), 142.2 ($\mathrm{s}, \mathrm{C}-2$), 150.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), $164.0\left(\mathrm{~s}, \mathrm{CO}_{2}\right)$. HRMS (EI): $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ calcd.: 333.1477; found: 333.1471. MS (EI) $m / z=333.18$ (100), 304.14 (21), 288.15 (12), 216.09 (10). Da722

Ethyl 3-cyano-2-(julolidyl)indolizine-1-carboxylate (70). According to procedure B from $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(149 \mathrm{mg}, 749 \mu \mathrm{~mol}), \mathbf{6 i}(172 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). $7 \mathbf{0}$ was obtained as yellow solid ($102 \mathrm{mg}, 265 \mu \mathrm{~mol}, 53 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.30$ (i-Hexane:EtOAc 5:1). Mp $188-189{ }^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=2939,2913,2831,2203,1679,1630,1608,1504,1466,1443,1384$, $1309,1233,1210,1174,1127,1095,1057,1033 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.28$ $\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95-2.05\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.80\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 3.16$ $-3.23\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 4.29\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-6), 7.02(\mathrm{~s}$, $2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $7.24-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-7$, superimposed by solvent), $8.31-8.36$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}-5, \mathrm{C}-8) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 22.2(\mathrm{t}$, $\left.2 \times \mathrm{CH}_{2}\right), 27.9\left(\mathrm{t}, 2 \times \mathrm{CH}_{2}\right), 50.2\left(\mathrm{t}, 2 \times \mathrm{CH}_{2}\right), 60.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 96.8(\mathrm{~s}, \mathrm{CN}), 103.2(\mathrm{~s}$, $\mathrm{C}-1$), 114.1 ($\mathrm{s}, \mathrm{C}-3$), 114.7 (d, C-6), 117.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 120.7 (d, C-5 or C-8), 120.7 ($\mathrm{s}, 2 \times \mathrm{C}_{\mathrm{Ar}}$),
125.6 (d, C-5 or C-8), 126.1 (d, C-7), $129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$), 139.2 ($\mathrm{s}, \mathrm{C}-8^{a}$), 142.3 (s, C-2), 143.6 (s, C_{Ar}), 164.2 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ calcd.: 385.1790; found: 385.1781. MS (EI) $m / z=385.26$ (100). Da724

Ethyl 3-cyano-2-iso-propylindolizine-1-carboxylate (7p). According to procedure B from $\mathbf{1 c H} \mathbf{H r}^{+}(149 \mathrm{mg}, 749 \mu \mathrm{~mol}), \mathbf{6 j}(107 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($\left.123 \mathrm{mg}, 500 \mu \mathrm{~mol}\right) .7 \mathbf{p}$ was obtained as colorless solid ($107 \mathrm{mg}, 417 \mu \mathrm{~mol}, 83 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.63$ (i-Hexane:EtOAc 5:1). Mp $79-80^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=1965,2204,1687,1508,1498,1467,1436,1391,1378,1326,1217$, $1178,1125,1069,1026 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.41-1.50\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right)$, 4.06 (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $4.40\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.97(\mathrm{td}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}-6), 7.21-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-7), 8.21-8.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-5, \mathrm{C}-8) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$

Abstract

${ }^{8}{ }^{\mathrm{s}^{\mathrm{g}}, \mathrm{Co}_{2} \mathrm{Et}} 14.6\left(\mathrm{~m}, \mathrm{CH}_{3}\right), 22.7\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 26.2(\mathrm{~d}, \mathrm{CH}), 60.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 95.5(\mathrm{~s}, \mathrm{CN}), 103.2(\mathrm{~s}$, 126.1 (d, C-7), 138.4 ($\mathrm{s}, \mathrm{C}-8^{a}$), 149.7 ($\mathrm{s}, \mathrm{C}-2$), 164.1 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd.: 256.1212; found: 256.1192. MS (EI) $m / z=256.20$ (93), 211.16 (44), 209.14 (69), 195.12 (35), 184.17 (12). Da742

3.4.7 Leaving Group Studies

Ethyl 2-benzylidene-3-oxobutanoate (14a). Ethyl acetoacetate ($4.66 \mathrm{~g}, 35.8 \mathrm{mmol}$) and benzaldehyde ($3.80 \mathrm{~g}, 35.8 \mathrm{mmol}$) were dissolved in ethanol (50 mL) and piperidine ($300 \mu \mathrm{l}$) and benzoic acid (100 mg) were added as catalysts. The solution was stirred at $20^{\circ} \mathrm{C}$ for 18 h , then the solvent was removed and the crude material was subjected to distillation. 14a was obtained as slightly yellow liquid ($4.25 \mathrm{~g}, 19.5 \mathrm{mmol}, 54 \%, d r 3: 1$). Bp $130^{\circ} \mathrm{C}, 9.2 \times 10^{-1} \mathrm{mbar}$;
 of the minor diastereoisomer are set to 1.0 for the integral of one proton. ${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=1.41-1.18\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, ${ }^{*}{ }^{\#} 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, ${ }^{\#} 2.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right),{ }^{*} 4.15-4.42$ $\left(\mathrm{m}, 8 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right),{ }^{*, \#} 7.31-7.51\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, ${ }^{*, \#} 7.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH})$, $7.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$. ${ }^{\#}$ DA744

Ethyl 3-cyano-2-phenylindolizine-1-carboxylate (71). According to procedure B from $\mathbf{1} \mathbf{C H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 628 \mu \mathrm{~mol}), \mathbf{1 4 a}(109 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). $7 \mathbf{l}$ was obtained as colorless solid ($81 \mathrm{mg}, 0.28 \mathrm{mmol}, 56 \%$). Mp $121-122^{\circ} \mathrm{C}$. (Analytical data see 3.4.6). Da750
(\boldsymbol{E})-Ethyl 2-(methylsulfonyl)-3-phenylacrylate (14b). To a solution of ethyl methylsulfonylacetate ($590 \mathrm{mg}, 3.55 \mathrm{mmol}$) and benzaldehyde ($360 \mu \mathrm{l}, 376 \mathrm{mg}, 3.547 \mathrm{mmol}$) in toluene piperidine ($43 \mathrm{mg}, 505 \mu \mathrm{~mol}$) and trifluoroacetic acid ($50 \mu \mathrm{l}, 74 \mathrm{mg}, 649 \mu \mathrm{~mol}$) was (1) $\mathrm{Y}^{\mathrm{SO}_{2} \mathrm{~N}_{\mathrm{E}}}$ ${ }_{13 \mathrm{~S}^{\mathrm{O} 2 \mathrm{Et}}}$ added. The reaction was heated under reflux for 2 h and the water formed was collected in a Dean-Stark trap. The reaction was quenched with $100 \mathrm{~mL} \mathrm{HCl}(2 \mathrm{~N})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with aq. NaHCO_{3} (sat.; 100 mL), water (100 mL) and dried over MgSO_{4}. The solvent was removed and the crude product was recrystallized from n-pentane: $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathbf{1 4 b}$ as colorless solid (682 mg , $2.68 \mathrm{mmol}, 76 \%)$. Mp $57^{\circ} \mathrm{C}$; lit $53-55^{\circ} \mathrm{C} .{ }^{[26]} \mathbf{~} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.27(\mathrm{t}, J=7.1$, $0.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.35\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-7.53(\mathrm{~m}, 5 \mathrm{H}$, $5 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 7.83 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$). DA755

Ethyl 3-cyano-2-phenylindolizine-1-carboxylate (71). According to procedure \mathbf{B} from $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 628 \mu \mathrm{~mol}), \mathbf{1 4 b}(127 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$). $7 \mathbf{1}$ was obtained as colorless solid ($50 \mathrm{mg}, 0.17 \mathrm{mmol}, 34 \%$). Mp $121-122^{\circ} \mathrm{C}$. (Analytical data see 3.4.6). Da759

Ethyl 3-cyano-2-phenylindolizine-1-carboxylate (71). According to procedure B from $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 625 \mu \mathrm{~mol}), \mathbf{1 3 b}(127 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$). $7 \mathbf{1}$ was obtained as colorless solid ($32 \mathrm{mg}, 0.11 \mathrm{mmol}, 22 \%$). Da759-2

Methyl 2-carbamoyl-3-phenylacrylate (14c). Methylmalonate monoamide (3.00 g, $25.6 \mathrm{mmol})$ was dissolved in 20 mL of ethanol. To the solution benzaldehyde (1.81 g , $17.1 \mathrm{mmol})$, piperidine $(600 \mu \mathrm{~L})$ and TFA $(200 \mu \mathrm{~L})$ were added. The reaction mixture was stirred for 18 h at room temperature. The reaction was quenched with 100 mL HCL (2 N) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was evaporated and the residue was subjected to a vacuum distillation with a Büchi distillation apparatus. 14c was obtained as viscous, yellow oil ($1.66 \mathrm{~g}, 8.09 \mathrm{mmol}, 47 \%, d r 3: 1 ; 1: 1$ after distillation.). Bp $260{ }^{\circ} \mathrm{C}, 1.2^{-2}$ mbar. IR (neat) $\tilde{v}=3330,3183,2952,1708,1655,1626,1496,1434,1320$, $1199,1105,1083,1062,1028,1001 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.81-5.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N} H \mathrm{H}^{a}, \mathrm{NHH}^{b}\right), 6.04\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} H^{a}\right), 7.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH} H^{b}$), $7.29-7.43\left(\mathrm{~m}, 8 \mathrm{H}, 8 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.61\left(\mathrm{dd}, J=4.7,2.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.75(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=52.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 52.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 125.8$

[^3]$134.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 142.9(\mathrm{~d}, \mathrm{CH}), 146.7(\mathrm{~d}, \mathrm{CH}), 164.6(\mathrm{~s}, \mathrm{CO}), 165.4(\mathrm{~s}, \mathrm{CO}), 168.4(\mathrm{~s}, \mathrm{CO}), 169.3$ (s, CO). HRMS (EI): $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$ calcd.: 205.0739; found: 205.0714; $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{3}\right]^{-}$calcd.: 204.0661; found: 204.0655. MS (EI) $m / z=205.17$ (35), 204.16 (100), 172.12 (22), 129.10 (37), 102.10 (25), 77.08 (18). DA818

Methyl 3-cyano-2-phenylindolizine-1-carboxylate (7q). According to procedure B from $\mathbf{1} \mathbf{C H}^{+} \mathbf{B r}^{-}(125 \mathrm{mg}, 628 \mu \mathrm{~mol}), \mathbf{1 4 c}(127 \mathrm{mg}, 619 \mu \mathrm{~mol})$ and chloranil ($\left.123 \mathrm{mg}, 500 \mu \mathrm{~mol}\right) .7 \mathbf{q}$ was obtained as colorless solid ($96 \mathrm{mg}, 0.35 \mathrm{mmol}, 56 \%$). $\boldsymbol{R} \mathbf{f}=0.25$ (i-Hexane:EtOAc 5:1). Mp
 $143-144{ }^{\circ} \mathrm{C}$. IR (neat) $\widetilde{v}=3340,2207,1695,1535,1493,1457,1438,1418$, $1405,1374,1327,1288,1234,1172,1149,1134,1066,1018 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.06(\mathrm{td}, J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.37(\mathrm{ddd}, J=9.1$, $6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.41-7.50\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.51-7.56\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.34-$ $8.41(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=51.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 97.6(\mathrm{br} \mathrm{s}, \mathrm{CN}), 103.5$ ($\mathrm{s}, \mathrm{C}-1$), 113.1 ($\mathrm{s}, \mathrm{C}-3$), 115.2 (d, C-6), 121.0 (d, C-5 or C-8), 125.6 (d, C-5 or C-8), 126.6 (d, $\mathrm{C}-7), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 138.7\left(\mathrm{~s}, \mathrm{C}-8^{a}\right)$, 141.4 (s, C-2), 164.1 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd.: 276.0899; found: 276.0892. MS (EI) $m / z=277.27$ (16), 276.27 (82), 245,23 (100), 216.20 (25), 190.17 (10). DA822
(1-Methylindolizin-3-yl)(phenyl)methanone (18). $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(140 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and ethyl methacrylate (17) ($228 \mathrm{mg}, 2.00 \mathrm{mmol}$) were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{NEt}_{3}(146 \mathrm{mg}$, 1.44 mmol) was added. The suspension was stirred at room temperature till it cleared off (~ 1 h). Then chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$) was added and stirring was continued for 1 h .18 was obtained after column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane:EtOAc 10:1) as yellow oil (40 mg , $0.17 \mathrm{mmol}, 34 \%$). $\boldsymbol{R}_{\mathbf{f}}=0.58$ (i-Hexane:EtOAc 5:1). IR (neat) $\widetilde{v}=3056,2915,1593,1569$, $1465,1418,1359,1298,1232,1155,1092,1055,1016 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.92(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.09-7.23(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 7-\mathrm{H}), 7.40-$ $7.59\left(\mathrm{~m}, 4 \mathrm{H}, 8-\mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.72-7.86\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 9.97(\mathrm{dd}, J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H). ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 111.8(\mathrm{~s}, \mathrm{C}-1), 113.8(\mathrm{~d}, \mathrm{C}-6), 116.9(\mathrm{~d}, \mathrm{C}-$ 8), 121.3 ($\mathrm{s}, \mathrm{C}-3$), 123.7 (d, C-7), 126.7 (d, C-2), 128.2 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 129.0 (d, C-5), 129.0 (d,
 235.22 (100), 234.22 (41), 206.21 (21), 158.15 (22), 130.14 (25), 77.09 (20). Da741
(1-Methylindolizin-3-yl)(phenyl)methanone (18). $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(140 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and ethyl methacrylate (17) ($228 \mathrm{mg}, 2.00 \mathrm{mmol}$) were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then NEt_{3} (146 mg , 1.44 mmol) was added. The suspension was stirred at room temperature till it cleared off ($\sim 1 \mathrm{~h}$).

Then chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added and stirring was continued for 1 h .18 was obtained after column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane:EtOAc 10:1) as yellow oil (18 mg , $76.5 \mu \mathrm{~mol}, 15 \%)$. Da741-2

3.5 References

[1] F. Kröhnke, Ber. Dtsch. Chem. Ges. 1935, 68, 1177-1195.
[2] For reviews, see: a) A. G. Mikhailovskii, V. S. Shklyaev, Chem. Heterocylc. Compd. 1997, 33, 243-265; b) J. Jacobs, E. Van Hende, S. Claessens, N. De Kimpe, Curr. Org. Chem. 2011, 15, 1340-1362; c) A. Kakehi, Heterocyles 2012, 85, 1529-1577.
[3] For selected publications, see: a) W. G. Phillips, K. W. Ratts, J. Org. Chem. 1970, 35, 3144-3147; b) O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3137-3157; c) O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3320-3336; d) A. R. E. Carey, S. Al-Quatami, R. A. More O’Ferrall, B. A. Murray, J. Chem. Soc., Chem. Commun. 1988, 1097-1098; e) A. R. E. Carey, R. A. More O’Ferrall, B. A. Murray, J. Chem. Soc. Perkin Trans. 2 1993, 2297-2302; f) X.-M. Zhang, F. G. Bordwell, M. Van Der Puy, H. E. Fried, J. Org. Chem. 1993, 58, 30603066; g) P. Karafiloglou, G. Surpateanu, Int. J. Quantum Chem. 2004, 98, 456-464; h) Y. Fu, H.-J. Wang, S.-S. Chong, Q.-X. Guo, L. Liu, J. Org. Chem. 2009, 74, 810-819; i) S. Matsumura, R. Takagi, S. Kojima, K. Ohkata, M. Abe, Heterocycles 2010, 81, 2479-2495.
[4] For selected publications, see: a) O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1987, 60, 1489-1495; b) A. M. Shestopalov, V. P. Litvinov, L. A. Rodinovskaya, Y. A. Sharanin, Bull. Acad. Sci. USSR Chem. 1991, 40, 129-138; c) A. M. Shestopalov, Y. A. Sharanin, V. N. Nesterov, L. A. Rodinovskaya, V. E. Shklover, Y. T. Struchkov, V. P. Litvinov, Chem. Heterocycl. Compd. 1991, 27, 1006-1011; d) S. Kojima, K. Fujitomo, Y. Shinohara, M. Shimizu, K. Ohkata, Tetrahedron Lett. 2000, 41, 98479851; e) S. Yamada, J. Yamamoto, E. Ohta, Tetrahedron Lett. 2007, 48, 855-858; f) Q.-F. Wang, X.-K. Song, J. Chen, C.-G. Yan, J. Comb. Chem. 2009, 11, 1007-1010; g) K.-P. Chen, Y.-J. Chen, C.-P. Chuang, Eur. J. Org. Chem. 2010, 5292-5300; h) Y. Han, J. Chen, L. Hui, C.-G. Yan, Tetrahedron 2010, 66, 7743-7748; i) N. Kanomata, R. Sakaguchi, K. Sekine, S. Yamashita, H. Tanaka, Adv. Synth. Catal. 2010, 352, 29662978; j) S. Muthusaravanan, S. Perumal, P. Yogeeswari, D. Sriram, Tetrahedron Lett.

2010, 51, 6439-6443; k) Q.-F. Wang, L. Hui, H. Hou, C.-G. Yan, J. Comb. Chem. 2010, 12, 260-265; 1) N. Fernández, L. Carrillo, J. L. Vicario, D. Badía, E. Reyes, Chem. Commun. 2011, 47, 12313-12315; m) J. L. García Ruano, A. Fraile, M. R. Martín, G. González, C. Fajardo, A. M. Martín-Castro, J. Org. Chem. 2011, 76, 3296-3305; n) M. Ghandi, A. H. Jameà, Tetrahedron Lett. 2011, 52, 4005-4007; o) Y. Han, H. Hou, Q. Fu, C.-G. Yan, Tetrahedron 2011, 67, 2313-2322; p) A. Kumar, G. Gupta, S. Srivastava, Org. Lett. 2011, 13, 6366-6369; q) D. Belei, C. Abuhaie, E. Bicu, P. G. Jones, H. Hopf, L. M. Birsa, Synlett 2012, 23, 545-548; r) C.-P. Chuang, K.-P. Chen, Tetrahedron 2012, 68, 1401-1406; s) P. Gunasekaran, K. Balamurugan, S. Sivakumar, S. Perumal, J. C. Menéndez, A. I. Almansour, Green Chem. 2012, 14, 750-757; t) S. M. Rajesh, S. Perumal, J. C. Menendez, S. Pandian, R. Murugesan, Tetrahedron 2012, 68, 5631-5636; u) I. Yavari, G. Khalili, F. Sadeghizadeh, Synlett 2012, 23, 557-558; v) J. H. Lee, I. Kim, J. Org. Chem. 2013, 78, 1283-1288.
[5] For selected publications, see: a) A. R. Katritzky, G. Qiu, B. Yang, H.-Y. He, J. Org. Chem. 1999, 64, 7618-7621; b) F. Dumitraşcu, M. Vasilescu, C. Drăghici, M. T. Căproiu, L. Barbu, D. G. Dumitreşcu, ARKIVOC 2011, 10, 346-358; c) A. Hazra, S. Mondal, A. Maity, S. Naskar, P. Saha, R. Paira, K. B. P. Sahu, P. S. Ghosh, C. Sinha, A. Samanta, S. Banerjee, N. B. Mondal, Eur. J. Med. Chem. 2011, 46, 2132-2140; d) E. Kim, M. Koh, B. J. Lim, S. B. Park, J. Am. Chem. Soc. 2011, 133, 6642-6649; e) F. Proença, M. Costa, Tetrahedron 2011, 67, 1071-1075; f) I. Dorange, R. Forsblom, I. Macsari, M. M. Svensson, J. Bylund, Y. Besidski, J. Blid, D. Sohn, Y. Gravenfors, Bioorg. Med. Chem. Lett. 2012, 22, 6888-6895; g) H. Hu, J. Feng, Y. Zhu, N. Gu, Y. Kan, RSC Adv. 2012, 2, 8637-8644; h) M. Kucukdisli, T. Opatz, Eur. J. Org. Chem. 2012, 4555-4564; i) Z. Mao, X. Li, X. Lin, P. Lu, Y. Wang, Tetrahedron 2012, 68, 8591; j) Y. Shang, L. Wang, X. He, M. Zhang, RSC Adv. 2012, 2, 7681-7688; k) Q. Cai, Y.-P. Zhu, Y. Gao, J.-J. Sun, A.-X. Wu, Can. J. Chem. 2013, 91, 414-419.
[6] J. Gubin, J. Lucchetti, J. Mahaux, D. Nisato, G. Rosseels, M. Clinet, P. Polster, P. Chatelain, J. Med. Chem. 1992, 35, 981-988.
[7] P. Sonnet, P. Dallemagne, J. Guillon, C. Enguehard, S. Stiebing, J. Tanguy, R. Bureau, S. Rault, P. Auvray, S. Moslemi, P. Sourdaine, G.-E. Séralini, Bioorg. Med. Chem. 2000, 8, 945-955.
[8] L.-L. Gundersen, C. Charnock, A. H. Negussie, F. Rise, S. Teklu, Eur. J. Pharm. Sci. 2007, 30, 26-35.
[9] Y.-M. Shen, P.-C. Lva, W. Chen, P.-G. Liua, M.-Z. Zhang, H.-L. Zhu, Eur. J. Med. Chem. 2010, 45, 3184-3190.
[10] K. Kitadokoro, S. Hagishita, T. Sato, M. Ohtani, K. Miki, J.Biochem. 1998, 123, 619623.
[11] L. De Bolle, G. Andrei, R. Snoeck, Y. Zhang, A. Van Lommel, M. Otto, A. Bousseau, C. Roy, E. De Clercq, L. Naesens, Biochem. Pharmacol. 2004, 67, 325-336.
[12] a) W. Rettig, B. Strehmel, S. Schrader, H. Seifert, Applied Fluorescence in Chemistry, Biology, and Medicine, Springer, New York, 1999; b) J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, 2006.
[13] O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682.
[14] a) For a comprehensive database of nucleophilicity parameters N and $s \mathrm{~N}$, and electrophilicity parameters E, see: http://www.cup.lmu.de/oc/mayr/; b) H. Mayr, M. Patz, Angew. Chem. 1994, 106, 990-1010; Angew. Chem. Int. Ed. Engl. 1994, 33, 938957; c) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 95009512.
$[15]$ a) F. Kröhnke, Ber. Dtsch. Chem. Ges. 1933, 66, 604-610; b) F. Kröhnke, Ber. Dtsch. Chem. Ges. 1937, 70, 543-547.
[16] W. Fraser, C. J. Suckling, H. C. S. Wood, J. Chem. Soc. Perkin Trans. 1 1990, 31373144.
[17] a) A. Eschenmoser, A. Frey, Helv. Chim. Acta 1952, 35, 1660-1666; b) C. A. Grob, J. Csapilla, G. Cseh, Helv. Chim. Acta 1964, 47, 1590-1602; c) G. Köbrich, H. Fröhlich, Chem. Ber. 1965, 98, 3637-3651; d) G. W. Fischer, Chem. Ber. 1969, 102, 2609-2620; e) C. A. Grob, Angew. Chem. 1969, 81, 543-554; Angew. Chem. Int. Ed. Engl. 1969, 8 , 535-546; f) T. Damiano, D. Morton, A. Nelson, Org. Biomol. Chem. 2007, 5, 27352752; g) A. Krief, S. Jeanmart, A. Kremer, Bioorg. Med. Chem. 2009, 17, 2555-2575.
[18] A. Aumüller, S. Hünig, Liebigs Ann. Chem. 1986, 119, 165-176.
[19] W. Peter, J. Phys. Chem. Ref. Data 1989, 18, 1637-1755.
[20] M. Baidya, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2010, 132, 4796-4805.
[21] a) W. E. McEwen, I. C. Mineo, Y. H. Shen, J. Am. Chem. Soc. 1971, 93, 4479-4484; b) T. Nishio, K. Katahira, Y. Omote, Tetrahedron Lett. 1980, 21, 2825-2826.
[22] (a) H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515; (b) G. F. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg Organometallics 2012, 29, 2176-2179.
[23] B. Wang, X. Zhang, J. Li, X. Jiang, Y. Hu, H. Hu J. Chem. Soc., Perkin Trans. 1 1999, 1571-1575.
[24] Synthezised according to: J. Pospísil, M. Potácek Tetrahedron 2007, 63, 337-346.
[25] S. S. Al-Hassan, R. J. Kulick, D. B. Livingstone, C. J. Suckling, H. C. S. Wood, R. Wrigglesworth, R. Ferone, J. Chem. Soc., Perkin Trans.I 1980, 2645-2656.
[26] D. A. R. Happer, B. E. Steenson, Synthesis 1980, 806-807.

4 Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analyses

Dominik S. Allgäuer, Peter Mayer, Herbert Mayr
J. Am. Chem. Soc. 2013, 135, 15216-15224.

4.1 Introduction

Pyridinium ylides are readily accessible nucleophiles and their chemistry has been studied intensively. ${ }^{[1-6]}$ They undergo various reactions, e. g., 1,3-dipolar cycloadditions, ${ }^{[7-9]}$ Michael additions, ${ }^{[10]}$ or cyclopropanations ${ }^{[11]}$ depending on the nature of the employed electrophile. The nucleophilic reactivities of pyridinium ylides have mostly been rationalized by the $\mathrm{p} K_{\mathrm{a}}$ values of the corresponding pyridinium ions, ${ }^{[2 a, c]}$ although it is known that $\mathrm{p} K_{\mathrm{a}}$ values are not a reliable gauge of relative reactivities of nucleophiles, ${ }^{[12]}$ even when the reaction center is kept constant. ${ }^{[13]}$ While some kinetic studies on the formation ${ }^{[3]}$ and reactions ${ }^{[4]}$ of pyridinium ylides have been performed, their reactivities have, to our knowledge, not been analyzed in relationship with other nucleophiles, such as carbanions. In previous work we have shown that the rates of the reactions of carbocations and Michael acceptors with n-, π-, and σ-nucleophiles, including various ylides, ${ }^{[14]}$ can be described by eq 4.1 , where $k_{20^{\circ} \mathrm{C}}$ is the second-order rate constant in $\mathrm{M}^{-1} \mathrm{~s}^{-1}, s_{\mathrm{N}}$ is a nucleophile-specific sensitivity parameter, N is a nucleophilicity parameter, and E is an electrophilicity parameter. ${ }^{[15,16]}$ The reactivity parameters N and E were used to develop comprehensive reactivity scales, which provide direct comparisons of many different classes of nucleophiles and electrophiles.

We recently reported that the [3+2]-cycloaddition reactions of pyridinium ylides with benzylidene malonates proceed stepwise. ${ }^{[9]}$ This observation encouraged us to analyze the kinetics of reactions of pyridinium ylides with various electrophiles, including electrondeficient ethylenes, by eq 4.1, in order to include the ylides 1 (Table 4.1) into our comprehensive nucleophilicity scale. We now report on the kinetics of the reactions of the pyridinium ylides $\mathbf{1 a - g}$, the isoquinolinium ylide $\mathbf{1 h}$, and the quinolinium ylide $\mathbf{1 i}$ with the benzhydrylium ions $\mathbf{2}$, the quinone methides $\mathbf{3}$, and the benzylidene malonates $\mathbf{4}$, which were

$$
\begin{equation*}
\log k_{20^{\circ} \mathrm{C}}=s_{\mathrm{N}}(N+E) \tag{4.1}
\end{equation*}
$$

Table 4.1. Synthesis and $\mathrm{p} K_{\mathrm{a}}$ values of the pyridinium salts $\mathbf{1 H ^ { + }} \mathbf{X}^{-}$employed as precursors for the pyridinium ylides 1 and visible absorption maxima of the ylides 1.

Pyr	EWG	X	Salt	Yield/\%	$\mathrm{p} K_{\mathrm{a}}$ (DMSO)	Ylide	$\lambda_{\max }(\mathrm{DMSO})^{[\mathrm{ab}} / \mathrm{nm}$
Pyridine	$\mathrm{CO}_{2} \mathrm{Et}$	Br	$1 \mathrm{aH}^{+} \mathrm{Br}^{-}$	$82^{[b]}$	$14.1{ }^{\text {[c] }}$	1a	425
Pyridine	CONEt_{2}	Br	$\mathbf{1 b H}^{+} \mathrm{Br}^{-}$	$83^{[b]}$	$\sim 20^{\text {[d] }}$	1b	425
Pyridine	CN	Br	$\mathbf{1 c H}{ }^{+} \mathrm{Br}^{-}$	quant. ${ }^{[b]}$	$16.5{ }^{\text {[c] }}$	1c	433
Pyridine	COMe	Cl	$1 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	$45^{[b]}$	$11.8{ }^{[\mathrm{cc]}}$	1d	425
Pyridine	COPh	Br	$\mathbf{1 e H}{ }^{+} \mathrm{Br}^{-}$	$94{ }^{[b]}$	$10.7{ }^{\text {[c] }}$	1e	443
4-Me ${ }_{2} \mathrm{~N}$-Pyridine	COPh	Br	$\mathbf{1 f H}^{+} \mathrm{Br}^{-}$	98	$13.2{ }^{\text {[e] }}$	1 f	425
3-Cl-Pyridine	COPh	Br	$1 \mathrm{gH}^{+} \mathrm{Br}^{-}$	88	-	1 g	453
Isoquinoline	COPh	Br	$1 \mathrm{hH}^{+} \mathrm{Br}^{-}$	$93^{[b]}$	$\sim 10^{[f]}$	1h	479
Quinoline	COPh	Br	$\mathbf{1 i H}^{+} \mathrm{Br}^{-}$	85	-	1i	516

[a] Absorption maximum in the visible range; full UV-Vis spectra are given in the Experimental Section. [b] From ref. [9]. [c] From ref. [2c]. [d] Estimated from the average difference of $\Delta \mathrm{p} K_{\mathrm{a}} \sim 4.5$ between pyridinium and analogously substituted trimethylammonium salts. ${ }^{[2 c]}$ [e] In $\mathrm{H}_{2} \mathrm{O}$; from ref. [2d]; [f] Estimated from the difference of $\Delta \mathrm{p} K_{\mathrm{a}} \sim 3$ between the $\mathrm{p} K_{\mathrm{a}}\left(\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}\right)$and $\mathrm{p} K_{\mathrm{a}}\left(\mathbf{1 a H}^{+} \mathbf{B r}^{-}\right)$, and $\mathrm{p} K_{\mathrm{a}}$ of the analogously substituted isoquinolinium salt Isoquin ${ }^{+} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathrm{Br}{ }^{-}\left(\mathrm{p} K_{\mathrm{a}}=13.5\right.$ in DMSO). ${ }^{[2 \mathrm{cc}]}$
commonly used as reference electrophiles (Chart 4.1). ${ }^{[14-16]}$ Subsequently we investigated the kinetics of the reactions of pyridinium ylides with benzylidene malononitrile 5a and chalcone $\mathbf{5 b}$ to examine whether the N and s_{N} parameters for pyridinium ylides derived from the reactions of $\mathbf{1 a - i}$ with reference electrophiles can also be employed for predicting the rates of the reactions of pyridinium ylides with other types of Michael acceptors, which undergo diverse subsequent reactions after a common initial rate-determining $\mathrm{C}-\mathrm{C}$ bond-forming step.

$2 \mathrm{a}-\mathrm{BF}_{4} \quad \mathrm{E}=-7.02$
3a $\quad E=-13.39$

4a $\quad E=-17.67 \quad\left(\mathrm{R}^{2}=p-\mathrm{NO}_{2}\right)$
4b $\quad E=-18.98 \quad\left(R^{2}=m-\mathrm{Cl}\right)$
4c $\quad E=-20.55 \quad\left(\mathrm{R}^{2}=\mathrm{H}\right)$
4d $\quad E=-21.11 \quad\left(\mathrm{R}^{2}=p-\mathrm{Me}\right)$

3e $E=-17.90$
PhOC

5b $E=-17.33$

Chart 4.1. Electrophiles employed in this work (electrophilicities E from refs. [15b,c, 16]).

4.2 Results and Discussion

4.2.1 Products

The pyridinium $\left(\mathbf{1}(\mathbf{a}-\mathbf{g}) \mathbf{H}^{+} \mathbf{X}^{-}\right)$, the isoquinolinium $\left(\mathbf{1} \mathbf{h H}^{+} \mathbf{B r}^{-}\right)$, and the quinolinium salts ($\mathbf{1 i H}^{+} \mathbf{B r}^{-}$) were obtained by nucleophilic substitution from the corresponding pyridines, isoquinoline, or quinoline in tetrahydrofuran (THF) as described previously (Table 4.a). ${ }^{[9]}$ As most ylides $\mathbf{1 a - i}$ are unstable compounds, we made no attempts to isolate them but generated them in solution by treating their conjugate acids $\mathbf{1 H}^{+} \mathbf{X}^{-}\left(\mathrm{X}^{-}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}\right)$with

Figure 4.1. ORTEP-drawing of the crystal structure of $6 \mathrm{e}-\mathrm{BF}_{4}$. a base.

The benzhydrylium tetrafluoroborate $\mathbf{2 a - B F} 4$ was chosen as representative to study the products of the reactions of the ylides $\mathbf{1}$ with the benzhydrylium ions $\mathbf{2}$. Slow addition of a solution of potassium tert-butoxide $\left(\mathrm{KO}^{t} \mathrm{Bu}\right)$ in THF to a suspension of equimolar amounts of benzhydrylium tetrafluoroborate $\mathbf{2 a - B F} \mathbf{4}$ and $\mathbf{1}(\mathbf{a}-\mathbf{i}) \mathbf{H}^{+} \mathbf{X}^{-}$in acetonitrile/dichloromethane (5:1)

Table 4.2. Reactions of the ylides 1 with the benzhydrylium tetrafluoroborate 2a-BF4.

Salt	Pyr	EWG	Product	Yield/ $/ \%^{[a]}$
$\mathbf{1 a H}{ }^{+} \mathrm{Br}^{-}$	Pyridine	$\mathrm{CO}_{2} \mathrm{Et}$	6a-BF4	39
$\mathbf{1 b H}{ }^{+} \mathrm{Br}^{-}$	Pyridine	CONEt_{2}	6b-BF4	98
$\mathbf{1} \mathbf{C H}^{+} \mathrm{Br}^{-}$	Pyridine	CN	6c-BF4	88
$\mathbf{1 d H}^{+} \mathrm{Cl}^{-}$	Pyridine	COMe	6d-BF4	69
$\mathbf{1 e H}{ }^{+} \mathrm{Br}^{-}$	Pyridine	COPh	6e-BF4	quant. ${ }^{[b]}$
$\mathbf{1} \mathbf{f H}^{+} \mathbf{B r}^{-}$	4-NMe 2 -Pyridine	COPh	6f-BF4	quant.
$\mathbf{1 g H}{ }^{+} \mathrm{Br}^{-}$	3-Cl-Pyridine	COPh	6g-BF4	$\text { (quant. }^{[\mathrm{cc]}}$
$\mathbf{1 h H}{ }^{+} \mathrm{Br}^{-}$	Isoquinoline	COPh	6h-BF4	57
$\mathbf{1 i H}{ }^{+} \mathrm{Br}^{-}$	Quinoline	COPh	$6 \mathrm{i}-\mathrm{BF}_{4}$	63

[a] After recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}$ or MeCN . [b] $\mathbf{1 e H ^ { + }} \mathbf{B r}^{-}$was dissolved in aq. $\mathrm{KOH}(0.1 \mathrm{M})$, and the resulting ylide $\mathbf{1 e}$ was extracted with CHCl_{3}. The benzhydrylium tetrafluoroborate $\mathbf{2 a -} \mathbf{-} \mathbf{B F}_{4}$ (1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the CHCl_{3} solution of $\mathbf{1 e}$ at room temperature. [c] Yield of the crude product; purification by crystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}$ failed due to decomposition of $\mathbf{6 g - B F} \mathbf{4}$.
at room temperature gave rise to the formation of the pyridinium salts $\mathbf{6}(\mathbf{a}-\mathbf{i})-\mathbf{B F} 4$, which were purified by crystallization and isolated in 39% to quantitative yields (Table 4.2). The structures of the products were identified by NMR spectroscopy (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and HRMS as well as by the crystal structure of $\mathbf{6 e - B F} 4$ (Figure 4.1).

Electrophile 3b was chosen as a representative example for investigating the course of the reactions of the ylides $\mathbf{1}$ with the quinone methides 3 . The salts $\mathbf{1}(\mathbf{a}-\mathbf{i}) \mathbf{H}^{+} \mathbf{X}^{-}$and quinone methide 3b were suspended in acetonitrile at room temperature and treated with triethylamine (2.2 equiv). This procedure afforded the Michael adducts $7 \mathbf{a}-\mathbf{h}$ in excellent yields and modest diastereoselectivities (Table 4.3). The quinolinium derivative $7 \mathbf{i}$ could not be isolated from the reaction of ylide $\mathbf{1 i}$ with quinone methide $\mathbf{3 b}$, and only decomposition was observed.

As already mentioned above, we recently reported on the reactions of the ylides $\mathbf{1}$ with benzylidene malonates 4 (Scheme 4.2). ${ }^{[9]}$ We observed that in polar solvents, such as dimethylsulfoxide (DMSO), addition of ylide 1a to benzylidene malonate $\mathbf{4 d}$ gave the Michael adduct $\mathbf{9 a}$ via the intermediate betaine $\mathbf{8 a} \cdot{ }^{[9]}$ Carrying out the reaction of $\mathbf{1 a}$ with $\mathbf{4 d}$ in a non-

Table 4.3. Synthesis of the Michael adducts 7a-h.

Salt	Pyr	EWG	Product	Yield/\%	$d r^{[a]}$
$\mathbf{1 a H}^{+} \mathrm{Br}^{-}$	Pyridine	$\mathrm{CO}_{2} \mathrm{Et}$	7 a	94	1:2
$\mathbf{1 b H}{ }^{+} \mathrm{Br}^{-}$	Pyridine	CONEt ${ }^{2}$	7b	quant.	1:2
$\mathbf{1} \mathbf{C H}^{+} \mathrm{Br}^{-}$	Pyridine	CN	7c	quant.	1:2
$1 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	Pyridine	COMe	7 d	quant.	2:3
$\mathbf{1 e H}{ }^{+} \mathrm{Br}^{-}$	Pyridine	COPh	7e	quant.	1:7
$\mathbf{1} \mathbf{f H}^{+} \mathbf{B r}^{-}$	4-NMe 2 -Pyridine	COPh	7 f	quant.	1:5
$1 \mathrm{gH}^{+} \mathrm{Br}^{-}$	3-Cl-Pyridine	COPh	7 g	quant.	1:5
$1 \mathrm{hH}^{+} \mathrm{Br}^{-}$	Isoquinoline	COPh	7 h	quant.	1:3
$\mathbf{1 i H}{ }^{+} \mathbf{B r}^{-}$	Quinoline	COPh	7 i	0	-

[a] Determined by ${ }^{1} \mathrm{H}$ NMR of the isolated product.
polar solvent, such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, led to the formation of the [3+2]-cycloadduct 10a, ${ }^{[9]}$ which was subsequently oxidized to the indolizine 11a. The scope of this indolizine formation was tested for a broad variety of differently substituted pyridinium ylides (including 1a-e) and Michael

Scheme 4.1. Solvent dependence of the reaction of the ylide 1 a with benzylidene malonate 4d. ${ }^{[9]}$

acceptors (including $\mathbf{4 a}-\mathbf{d}$). ${ }^{[9]}$ The reaction of isoquinolinium ylide $\mathbf{1 h}$ with benzylidene malonate 4 a did not give a Michael adduct in DMSO but the [3+2]-cycloadduct, which was isolated in 75% yield. ${ }^{[9]}$

4.2.2 Kinetic Investigations

The kinetics of the reactions of the ylides $\mathbf{1}$ with the electrophiles $\mathbf{2 - 4}$ in DMSO at $20^{\circ} \mathrm{C}$ were monitored photometrically by following the disappearance of one of the two reagents at or close to their absorption maxima (see Experimental Section). Because of the low stabilities of the ylides $\mathbf{1}$, they were generated in solution by combining freshly prepared solutions of the salts $\mathbf{1}(\mathbf{a}-\mathbf{i}) \mathbf{H}^{+} \mathbf{X}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.05 equiv) in DMSO directly before the kinetic experiments. The formation of the ylides $\mathbf{1 a}-\mathbf{i}$ was confirmed by their UV-vis spectra (see Table 4.1 and Experimental Section). In order to ensure that the pyridinium ions $\mathbf{1}\left(\mathbf{a}^{-} \mathbf{i}\right) \mathbf{H}^{+}$were quantitatively deprotonated, the pyridinium ion with the highest $\mathrm{p} K_{\mathrm{a}}$ value in the series $\left(\mathbf{1} \mathbf{b H}{ }^{+}\right.$, Table 4.1) was titrated with a solution of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO, while the absorbance of the ylide $\mathbf{1 b}$ was monitored by UV-vis spectroscopy at 425 nm . After the addition of 1 equiv. of $\mathrm{KO}^{t} \mathrm{Bu}$, addition of further portions of $\mathrm{KO}^{t} \mathrm{Bu}$ did not lead to an increase of the absorbance of ylide $\mathbf{1 b}$, indicating the complete deprotonation of $\mathbf{1 b H}^{+}$by 1 equiv. of $\mathrm{KO}^{t} \mathrm{Bu}$ (see Experimental Section). To simplify the kinetics, one of the two components, nucleophile or electrophile, was used in high excess (≥ 10 equiv), which resulted in monoexponential decays of the UV-vis absorbances of the minor component. From the decays of the UV-vis absorbances, the firstorder rate constants $k_{\mathrm{obs}}\left(\mathrm{s}^{-1}\right)$ were derived by least-squares fitting of the exponential function $A_{\mathrm{t}}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)$ to the time-dependent absorbances A_{t} of the minor component (Figure 4.2). Plots of k_{obs} against the concentrations of the excess compound were linear, mostly with negligible intercepts (Figure 4.2, insert). From the slopes of these plots, the second-order rate constants k_{2} for the reactions of the ylides 1 with the reference electrophiles $2-4$ could be derived as listed in Table 4.4. Errors given refer to standard deviations of the correlations k_{obs} versus concentration of the compounds used in excess.

Figure 4.2. Decay of the absorbance of 3a $\left([3 a]_{0}=2.00 \times 10^{-5} \mathrm{M}\right)$ at 533 nm during its reaction with 1 e ([1e] 0 $=1.00 \times 10^{-3} \mathbf{M}$) in DMSO at $20^{\circ} \mathbf{C}$. Insert: Linear correlation of $\boldsymbol{k}_{\text {obs }}$ with increasing concentration of 1 e .

Table 4.4. Second-order rate constants $\boldsymbol{k}_{\mathbf{2}}$ for the reactions of the ylides 1 with the reference electrophiles 2(b-c)-BF4, 3, and 4 in DMSO at $20^{\circ} \mathrm{C}$.

Nucleophile N / s_{N}	Electrophile	Excess of	$\lambda / \mathrm{nm}^{\text {[a] }}$	$k_{2}\left(20{ }^{\circ} \mathrm{C}\right) / \mathrm{M}^{-1} \mathrm{~s}^{-1}$
	3a	1 a	533	$(9.00 \pm 0.30) \times 10^{4}$
	3b	1 a	371	$(9.68 \pm 0.37) \times 10^{3}$
	3 e	1 a	521	$(1.09 \pm 0.04) \times 10^{3}$
	4 a	1 a	302	$(1.37 \pm 0.09) \times 10^{3}$
	4b	4b	445	$(1.08 \pm 0.02) \times 10^{3}$
26.71/0.37	4c	4c	445	$(1.97 \pm 0.03) \times 10^{2}$
	4d	4d	445	$(1.13 \pm 0.01) \times 10^{2}$
$27.45 / 0.38$	3a	1b	533	$(2.99 \pm 0.26) \times 10^{5,[\mathrm{~b}]}$
	3b	1b	371	$(3.21 \pm 0.23) \times 10^{4,[\mathrm{~b}]}$
	3d	1b	486	$(7.94 \pm 0.64) \times 10^{3,[\mathrm{~b}]}$
	3 e	1b	521	$(3.79 \pm 0.26) \times 10^{3,[\mathrm{~b}]}$
	4 a	4 a	425	$(4.23 \pm 0.30) \times 10^{3}$
	4c	4c	425	$(6.10 \pm 0.50) \times 10^{2}$
	3a	1c	533	$(2.34 \pm 0.10) \times 10^{5}$
	3b	1c	371	$(2.03 \pm 0.11) \times 10^{4}$
	3d	1c	486	$(2.67 \pm 0.09) \times 10^{3}$
	3 e	1c	521	$(2.13 \pm 0.12) \times 10^{3}$
	4 a	1c	302	$(2.08 \pm 0.11) \times 10^{3}$
	4b	1c	277	$(6.26 \pm 0.49) \times 10^{2}$
	4c	1c	283	$(1.77 \pm 0.14) \times 10^{2}$
	4d	1c	295	$(1.77 \pm 0.05) \times 10^{2}$
$20.24 / 0.60$	3a	1d	533	$(1.09 \pm 0.07) \times 10^{4}$
	3a	1d	533	$(1.07 \pm 0.08) \times 10^{4,[\mathrm{c}]}$
	3b	1d	371	$(5.02 \pm 0.30) \times 10^{2}$
	3c	1d	393	$(4.13 \pm 0.22) \times 10^{2}$
	3d	1 d	486	$(7.18 \pm 0.51) \times 10^{1}$
	4a	4 a	425	$(2.26 \pm 0.01) \times 10^{1}$

Table 4.4. Continued.

Nucleophile $\mathrm{N} / \mathrm{s}_{\mathrm{N}}$	Electrophile	Excess of	$\lambda / \mathrm{nm}^{\text {[a] }}$	$k_{2}\left(20{ }^{\circ} \mathrm{C}\right) / \mathrm{M}^{-1} \mathrm{~s}^{-1}$
	2b-BF4	1e	635	$(7.08 \pm 0.31) \times 10^{5}$
	2c-BF4	1 e	630	$(3.85 \pm 0.14) \times 10^{5}$
	3a	1 e	533	$(2.00 \pm 0.08) \times 10^{3}$
	3b	1 e	371	$(1.29 \pm 0.10) \times 10^{2}$
	3 e	1e	521	$(1.03 \pm 0.03) \times 10^{1}$
	3a	1 f	533	$(5.51 \pm 0.32) \times 10^{4}$
	4a	4 a	425	$(1.77 \pm 0.09) \times 10^{2}$
	4b	4b	425	$(3.39 \pm 0.24) \times 10^{1}$
	2b-BF4	1 g	630	$(2.49 \pm 0.13) \times 10^{5}$
	3a	1 g	533	$(5.73 \pm 0.31) \times 10^{2}$
	4a	4a	476	1.78 ± 0.16
	2b-BF4	1h	630	$(1.51 \pm 0.11) \times 10^{6}$
	3a	1h	533	$(3.88 \pm 0.28) \times 10^{3}$
	4a	4 a	482	$(3.05 \pm 0.12) \times 10^{1}$
	2b-BF4	1 i	630	$(1.17 \pm 0.08) \times 10^{5}$
	3a	1 i	533	$(7.54 \pm 0.31) \times 10^{2}$
	4a	4a	530	8.48 ± 0.43

19.38/0.50
[a] Monitored wavelength. [b] Excess of pyridinium salt, that is, $\mathbf{1 b H}^{+} \mathbf{C l}^{-}: \mathrm{KO}^{t} \mathrm{Bu}=1.9: 1.0$. [c] Reproduction with excess of pyridinium salt $\left(\mathbf{1} \mathbf{d H}^{+} \mathbf{C l}^{-}: \mathrm{KO}^{t} \mathrm{Bu}=1.9: 1.0\right)$.

Plots of $\log k_{2}$ for the reactions of the pyridinium ylides $\mathbf{1 a}, \mathbf{b}$ and $\mathbf{1 d}, \mathbf{e}$ with the reference electrophiles 2-4 against the corresponding electrophilicity parameters E are linear, as depicted for some representative examples in Figure 4.3 (for ylides 1c,f-i see Experimental Section). From the linearity of these correlations one can deduce that the additions of pyridinium ylides to benzhydrylium ions 2, quinone methides 3, and benzylidene malonates 4 in DMSO have analogous rate-limiting steps despite leading to different reaction products. Since the E parameters for 2-4 were derived from reactions of benzhydrylium ions with $\pi_{\mathrm{C}-\mathrm{C}-\mathrm{nucleophiles}}$ and from reactions of quinone methides and benzylidene malonates with carbanions, i.e., reactions in which one new $\mathrm{C}-\mathrm{C}$-bond is formed in the rate-determining step, we conclude that the rate constants listed in Table 4.4 also correspond to the formation of one $\mathrm{C}-\mathrm{C}$-bond by attack of the ylides $\mathbf{1}$ at one carbon of the benzhydrylium ions 2 or the Michael acceptors 3,4. From the slopes of the linear correlations, the nucleophile-specific slope parameters s_{N} can be derived, and the negative intercepts on the abscissa give the nucleophilicity parameter N of the pyridinium ylides 1 (Figure 4.3; Table 4.3).

Figure 4.3. Plots of $\log \boldsymbol{k}_{2}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right)$ for the reactions of the pyridinium ylides $1 \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}$ with the reference electrophiles 2-4 versus their electrophilicity parameters \boldsymbol{E}. For the sake of clarity, the correlation lines for 1c and 1f-i are not shown (see Exerimental Section).

Figure 4.4. Reactivities $\left(\log k_{2}\right.$ towards 3a) for the reactions of ylides $1 \mathbf{a}-\mathbf{i}$ with the quinone methide $3 a$ in DMSO at $20^{\circ} \mathrm{C}$.

The different sensitivities s_{N} of the various ylides $\mathbf{1 a - i}$ imply that their relative reactivities are significantly affected by the nature of the electrophilic reaction partner. As shown in Figure 4.4 for $\mathbf{3 a}$ as reference electrophile, the reactivities of the ylides $\mathbf{1 a - i}$ toward the quinone
methide 3a differ by almost a factor of 500 . While the pyridinium ylides $\mathbf{1 a - c}$ with $\mathrm{CO}_{2} \mathrm{Et}$, CONEt_{2}, and CN substituents are the most reactive nucleophiles, the acetyl and benzoyl substituted ylides 1d,e are 1 to 2 orders of magnitude less reactive. Comparison of the benzoyl substituted ylides $\mathbf{1 e}, \mathbf{1 h}$, and $\mathbf{1 i}$ shows that variation of the heterocyclic ring has little influence on the nucleophilicity. Nevertheless, one can see that the isoquinolinium ylide $\mathbf{1 h}$ is more reactive than the pyridinium ylide $\mathbf{1 e}$ and the quinolinium ylide 1i. An interpretation of this ranking will not be attempted because of the small differences in reactivity that can even be inverted when other electrophiles are used as references.

4.2.3 Applications to Mechanistic Analyses

To investigate the applicability of the N and s_{N} parameters in Table 4.4 to reactions with other types of electrophiles, the kinetics of the reactions of the ylides $\mathbf{1}$ with the benzylidene malononitrile 5a and chalcone $\mathbf{5 b}$ were studied.

4.2.3.1 Benzylidene Malononitrile 5a

Table 4.5 lists the experimental ($k_{\text {exp }}$) and calculated ($k_{\text {calde }}$ by eq 4.1) second-order rate constants for the reactions of the ylides $\mathbf{1 d}-\mathbf{i}$ with $\mathbf{5 a}$, which were determined by following the consumption of the ylides $\mathbf{1}$ in DMSO at $20^{\circ} \mathrm{C}$. While the experimental and calculated secondorder rate constants for the reactions of ylides $\mathbf{1 d , f , h}, \mathbf{i}$ with $\mathbf{5 a}$ agree within a factor of 7 (i.e., within the confidence limit of eq 4.1), $\mathbf{1 e}$ and $\mathbf{1 g}$ react 10^{6} times more slowly than calculated (Table 4.5). This behavior prompted us to investigate the reactions of pyridinium ylides $\mathbf{1 a}-\mathbf{i}$ with the benzylidene malononitrile 5a more closely.

The reactions of the ylides $\mathbf{1}$ with benzylidene malononitrile 5a may either give the betaines 12, the cyclopropanes 13, or the tetrahydroindolizines 14, as summarized in Scheme 4.2.

Table 4.5. Experimentally determined ($k_{\text {exp }}$) and calculated ($k_{\text {calcd }}$) second-order rate constants for the reactions of the ylides 1 d - i with the electrophile 5 a in DMSO at $20^{\circ} \mathrm{C}$.

Ylide	$k_{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\text {caldd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1,[\text { a] }}$	$k_{\text {exp }} / k_{\text {calcd }}$	$k_{\text {exp }}=$
$\mathbf{1 d}$	$(2.14 \pm 0.07) \times 10^{5}$	4.86×10^{5}	0.44	k_{2}
$\mathbf{1 e}$	$(2.19 \pm 0.15) \times 10^{-1}$	1.05×10^{5}	2.09×10^{-6}	$K \cdot k_{\mathrm{rc}}$
$\mathbf{1 f}$	$(4.27 \pm 0.25) \times 10^{5}$	1.70×10^{6}	0.25	k_{2}
$\mathbf{1 g}$	$(2.02 \pm 0.08) \times 10^{-1}$	3.11×10^{4}	6.50×10^{-6}	$K \cdot k_{\mathrm{rc}}$
$\mathbf{1 h}$	$(2.95 \pm 0.06) \times 10^{4}$	1.96×10^{5}	0.15	k_{2}
$\mathbf{1 i}$	$(5.73 \pm 0.13) \times 10^{3}$	2.07×10^{4}	0.28	k_{2}

[^4]Scheme 4.2. Reactions of ylides 1 with benzylidene malonate 5a in DMSO.

When an equimolar solution of the 4-dimethylaminosubstituted pyridinium salt $\mathbf{1 f H}{ }^{+} \mathbf{B r}^{-}$and benzylidene malononitrile 5a in DMSO- d_{6} was treated with 1,5,7-triazabicyclo- [4.4.0]dec-5ene (TBD) as base, quantitative formation of the betaine $\mathbf{1 2 f}$ was observed with moderate diastereoselectivity (Scheme 4.3). The structure of betaine $\mathbf{1 2 f}$ could be assigned by 2D-NMR, but attempts to isolate $\mathbf{1 2 f}$ failed. The ${ }^{13} \mathrm{C}$ NMR signal at $\delta=16.0 \mathrm{ppm}$ was assigned to a carbanionic center, in agreement with published data for betaines derived from carboxamidosubstituted pyridinium ylides and benzylidene malononitriles. ${ }^{[11 a]}$ As the pyridinium ring is stabilized by the dimethylamino group in 4-position, $\mathbf{1 2 f}$ does not undergo subsequent cyclizations, and the measured rate constant corresponds to k_{2}.,

As expected from the large rate constant for the reaction of $\mathbf{1 d}$ with $\mathbf{5 a}$ reported in Table 4.5, complete consumption of the reactants was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum taken immediately after mixing $\mathbf{1 d} \mathbf{H}^{+} \mathbf{C l}^{-}$with benzylidene malononitrile $\mathbf{5 a}$ and $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSOd_{6} at ambient temperature. ${ }^{1} \mathrm{H}$ NMR spectra taken after 5,30 , and 60 min showed $40 / 60,21 / 79$, and $0 / 100$ mixtures of betaine $\mathbf{1 2 d}$ and cyclopropane 13d, respectively, indicating that the fast

Scheme 4.3. Reaction of the ylide 1 f with benzylidene malononitrile 5 a in DMSO- \boldsymbol{d}_{6}.

formation of the betaine 12d is followed by a slow cyclization step. The cyclopropane 13d was isolated in 53% yield when the mixture obtained from $\mathbf{1 d H} \mathbf{C l}^{+}, \mathbf{5 a}$, and $\mathrm{KO}^{t} \mathrm{Bu}$ was worked up after a reaction time of 60 min (Table 4.6). The exclusive formation of trans-13d was derived from a NOESY experiment. ${ }^{[17]}$

A different behavior was observed for the ylides $\mathbf{1 e}, \mathbf{g}$. When the reaction of $\mathbf{1 e H} \mathbf{H}^{+} \mathbf{B r}^{-}$with $\mathbf{5 a}$ and 1.8 equiv. triethyl-

Figure 4.5. ORTEP-drawing of the crystal structure of 13 e . The asymmetric unit contains two formula units.
amine was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy in DMSO- d_{6}, the intermedite betaine $\mathbf{1 2 e}$ was not observable, and the reaction mixture showed signals of the reactants $\mathbf{1 e H}{ }^{+} \mathbf{B r}^{-}$and $\mathbf{5 a}$, the ylide $\mathbf{1 e}$, and the cyclopropane $\mathbf{1 3 e}$, the yield of which increased from 41% after 5 min to 81%
 DMSO at ambient temperature yielded cyclopropane 13e with complete trans-selectivity within 30 min (Table 4.6), as confirmed by the crystal structure of 13e (Figure 4.5). Analogously, combination of the 3 -chloro-substituted ylide $\mathbf{1 g}$ with 5a afforded cyclopropane $\mathbf{1 3 g}(=\mathbf{1 3 e})$ with complete trans-selectivity within 30 min .

The non-observance of the intermediate betaines $\mathbf{1 2 e}, \mathbf{g}$ in the reactions of $\mathbf{1 e}, \mathbf{g}$ with $\mathbf{5 a}$ implies that in the reactions of these less Lewis-basic ylides ($\mathrm{p} K_{\mathrm{a}}$ in Table 4.1), the equilibrium depicted on top of Scheme 4.2 is completely shifted to the left side, with the consequence that the experimentally determined rate constants $k_{\text {exp }}$ correspond to $K \cdot k_{\mathrm{rc}}$, which explains the large deviation of $k_{\text {exp }}$ from $k_{\text {calcd }}$ for these two combinations in Table 4.5.

The reactions of the ylides $\mathbf{1 h}, \mathbf{i}$ with benzylidene malononitrile $\mathbf{5 a}$ in DMSO yielded 88% and 68% of the [3+2]-cycloadducts $\mathbf{1 4 h}, \mathbf{i}$, respectively (Scheme 4.4). The stereochemistry of $\mathbf{1 4 h}, \mathbf{i}$ was assigned on the basis of NOESY correlations between the protons and the substituents of the pyrrolidine rings. From the stereochemistry of the [3+2]-cycloadducts one can deduce that the depicted major diastereoisomers of $\mathbf{1 4 h}, \mathbf{i}$ were formed via an endo approach of electrophiles to the anti ylides (Scheme 4.4), in agreement with literature reports for similar [3+2]-cycloadducts obtained from isoquinolinium ylides and benzylidene malononitriles. ${ }^{[7 \mathrm{~b}, \mathrm{c}]}$ The stereochemistry of the minor diastereoisomers could not be assigned unambiguously.

Table 4.6. Formation of the cyclopropanes 13 in DMSO.

Salt	R	EWG	Base	Betaine	Cyclopropane	Yield $/ \%$
$\mathbf{1 d H}^{+} \mathbf{C l}^{-}$	H	COMe	$\mathrm{KO}^{t} \mathrm{Bu}$	$\mathbf{1 2 d}$	$\mathbf{1 3 d}$	$53^{[\mathrm{ab}]}$
$\mathbf{1 e H}^{+} \mathbf{B r}^{-}$	H	COPh	NEt_{3}	$\mathbf{1 2 e}$	$\mathbf{1 3 e}$	$67^{[\mathrm{b}]}$
$\mathbf{1 g H}^{+} \mathbf{B r}^{-}$	$3-\mathrm{Cl}$	COPh	NEt_{3}	$\mathbf{1 2 g}$	$\mathbf{1 3 g}(=\mathbf{1 3 e})$	$95^{[\mathrm{bb}]}$

[a] After column chromatography over silica (n-pentane : EtOAc $\widehat{=} 5: 1$). [b] After recrystallization from EtOH.
The formation of the $[3+2]$-cycloadducts $\mathbf{1 4 h}, \mathbf{i}$ from isoquinolinium and quinolinium ylides, instead of betaines or cyclopropanes as obtained with pyridinium ylides (see above), can be explained by the lower aromaticity of the heterocyclic ring of the bicyclic reactants $\mathbf{1 h}, \mathbf{i}$, which facilitates the cyclization of the intermediate betaine. ${ }^{[56]}$

In line with quantum chemical calculations by Matsumura, which indicated a barrier of only $2.9 \mathrm{~kJ} / \mathrm{mol}$ for the cyclization of a betaine generated from an isoquinolinium ylide and $1,1-$ dicyanoethylene, ${ }^{[5 b]}$ one can conclude that the betaines formed from $\mathbf{5 a}$ and $\mathbf{1 h}, \mathbf{i}$ undergo fast subsequent ring closures with formation of the [3+2]-adducts $\mathbf{1 4 h}, \mathbf{i}$ (Scheme 4.4), with the consequence that in these cases $k_{\text {exp }}$ corresponds to k_{2}. The observation $k_{\text {exp }} \approx k_{\text {calcd }}$ also excludes concerted 1,3-dipolar cycloadditions $\mathbf{5 a}+\mathbf{1 h}, \mathbf{i}$ with a high energy of concert, because in this case $k_{\text {exp }}$ should be considerably larger than $k_{\text {calcd. }}{ }^{[18]}$

Scheme 4.4. Formation of the tetrahydroindolizines $14 \mathrm{~h}, \mathrm{i}$ in DMSO.

[a] By ${ }^{1} \mathrm{H}$ NMR of the crude product.

Anti-2-endo approach of $\mathbf{1 i}$ to 5 .

4.2.3.2 Chalcone 5b

All ylides $\mathbf{1}$ underwent [3+2]-cycloadditions with $\mathbf{5 b},{ }^{[19]}$ as evidenced by the isolation of the indolizines 16a-i, obtained by oxidation of the initially generated tetrahydroindolizines $\mathbf{1 5 a}-\mathbf{i}$ with tetrakispyridinocobalto(II)-dichromate (TPCD; Table 4.7).

Because of the low stabilities of the initially formed tetrahydroindolizines $\mathbf{1 5 a}-\mathbf{i}$, which were already reported in the literature, ${ }^{[7 b]}$ their isolation was generally not attempted. Only the tetrahydroindolizine $\mathbf{1 5 i}$ was obtained in low yield by the reaction of ylide $\mathbf{1 i}$ with chalcone $\mathbf{5 b}$, analyzed by 1H NMR spectroscopy, and identified as a 5:27:68 mixture of diastereoisomers. The stereochemistry of the depicted major diastereoisomer of $\mathbf{1 5 i}$ (Scheme 4.5) was derived from the NOESY correlations between the protons and the substituents at the pyrrolidine ring. Its formation can be explained by the 1 -endo-2-exo approach of the electrophile $\mathbf{5 b}$ to the anticonfiguration of ylide 1i, in agreement with Tsuge's interpretation of the stereoselectivities of the reactions of isoquinolinium ylides with several different chalcones. ${ }^{[7 b]}$ The stereochemistry of the other diastereoisomers could not be assigned unambiguously. The purification of the

Table 4.7. Synthesis of the indolizines 16.

Salt	R	EWG	Product	Yield $/ \%$
$\mathbf{1 a H}^{+} \mathbf{B r}^{-}$	H	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathbf{1 6 a}$	54
$\mathbf{1 b H}^{+} \mathbf{B r}^{-}$	H	CONEt_{2}	$\mathbf{1 6 b}$	$63^{[\mathrm{a}]}$
$\mathbf{1 c H}^{+} \mathbf{B r}^{-}$	H	CN	$\mathbf{1 6 c}$	95
$\mathbf{1 d H}^{+} \mathbf{C l}^{-}$	H	COMe	$\mathbf{1 6 d}$	50
$\mathbf{1 e H}^{+} \mathbf{B r}^{-}$	H	COPh	$\mathbf{1 6 e}$	93
$\mathbf{1 g H}^{+} \mathbf{B r}^{-}$	$3-\mathrm{Cl}$	COPh	$\mathbf{1 6 g}$	$85^{[\mathrm{bb]}}$
$\mathbf{1 h H}^{+} \mathbf{B r}^{-}$	Isoquinoline	COPh	$\mathbf{1 6 h}$	91
$\mathbf{1 i H}^{+} \mathbf{B r}^{-}$	Quinoline	COPh	$\mathbf{1 6 i}$	$77^{[\mathrm{a}]}$

[a] 1. $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ aq. $\mathrm{NaOH}(32 \%), 20^{\circ} \mathrm{C}$; 2. Chloranil (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$; [b] Mixture of isomers; $\mathbf{1 6 g - (8 - C l) ~ : ~}$ $\mathbf{1 6 g}-\mathbf{(6 - C l})=4: 1$.

Scheme 4.5. Reaction of salt $1 \mathrm{iH}^{+} \mathrm{Br}^{-}$with chalcone 5 b in DMSO.

[3+2]-cycloadduct 15i failed due to its decomposition during workup, which may also explain the low yield.

For the [3+2]-cycloadditions of the ylides $\mathbf{1}$ with the chalcone $\mathbf{5 b}$, concerted or stepwise mechanisms have to be considered (Scheme 4.6). In case of a stepwise mechanism with ratedetermining formation of the intermediate betaine 18, the experimentally determined rate constant $k_{\exp }$ should correspond to k_{2} and agree with the calculated rate constant $k_{\text {calcd }}$ within the general confidence limit of eq 4.1 ($1-2$ orders of magnitude). ${ }^{[15 a, b]}$

The kinetics of the reactions of the ylides $\mathbf{1}$ with chalcone $\mathbf{5 b}$ were studied by monitoring the consumption of the ylides $\mathbf{1 a - i}$. Table 4.8 lists the experimental ($k_{\text {exp }}$) and calculated secondorder rate ($k_{\text {calcd }}$ by eq 4.1) for these reactions in DMSO at $20^{\circ} \mathrm{C}$. For 7 of the 8 reactions of the ylides $\mathbf{1}$ with chalcone $\mathbf{5 b}$ experimental and calculated second-order rate constants agree within a factor of 2.5 , indicating a stepwise mechanism with rate-determining formation of the betaine $\mathbf{1 8}$ (Table 4.8). Only the reaction of ylide $\mathbf{1 e}$ with chalcone $\mathbf{5 b}$ proceeds 20 times more slowly than calculated by eq 4.1. This deviation might be due to a partial reversibility of the betaine

Scheme 4.6. Concerted and stepwise 1,3-dipolar cycloaddition of ylides 1 with chalcone $\mathbf{5 b}$.

Table 4.8. Experimentally determined ($k_{\text {exp }}$) and calculated ($\boldsymbol{k}_{\text {calcd }}$) second-order rate constants for the [3+2]cycloadditions of the ylides $1 \mathrm{a}-\mathrm{i}$ with the \boldsymbol{p} - NO_{2}-chalcone 5 b in DMSO at $20^{\circ} \mathrm{C}$.

Ylide	$k_{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1[\text { a] }}$	$k_{\text {exp }} / k_{\text {calcd }}$
$\mathbf{1 a}$	$(4.82 \pm 0.10) \times 10^{3}$	2.68×10^{3}	1.80
$\mathbf{1 b}$	$(6.12 \pm 0.28) \times 10^{3}$	7.80×10^{3}	0.78
$\mathbf{1 c}$	$(7.92 \pm 0.37) \times 10^{3}$	4.13×10^{3}	1.92
$\mathbf{1 d}$	$(2.55 \pm 0.09) \times 10^{1}$	5.61×10^{1}	0.45
$\mathbf{1 e}$	$(8.54 \pm 0.45) \times 10^{-1}$	1.72×10^{1}	0.05
$\mathbf{1 g}$	3.67 ± 0.12	2.56	1.43
$\mathbf{1 h}$	$(3.56 \pm 0.22) \times 10^{1}$	3.70×10^{1}	0.96
$\mathbf{1 i}$	$(1.64 \pm 0.05) \times 10^{1}$	1.08×10^{1}	1.52

[a] Calculated by eq 4.1 from E (Chart 1) and N, s_{N} from Table 4.4
formation followed by rate-determining cyclization, but since the deviation is within the confidence limit of eq 4.1, we do not want to speculate.

In case of concerted cycloadditions $k_{\text {exp }} / k_{\text {calcd }}$ should be >1, depending on the degree of concertedness. ${ }^{[18]}$ Because of the large error limits of eq 4.1, the kinetic data do not allow us to differentiate stepwise cycloadditions from concerted processes with highly unsymmetrical transition states and a small energy of concert. As none of the experimental rate constants $k_{\text {exp }}$ in Table 4.8 is considerably faster than $k_{\text {calcd }}$, we conclude that none of these cycloadditions proceeds with a high energy of concert, which implies that eq 4.1 , which has been derived for one-bond forming reactions of electrophiles with nucleophiles, can also be employed for predicting absolute rate constants for stepwise cycloadditions or concerted cycloadditions with highly unsymmetrical transition states. As the E parameters used for these calculations have previously been derived from the rate constants of carbanion additions $(E \text { for } \mathbf{5 a})^{[16 a]}$ or from stepwise cyclopropanations with sulfonium ylides $(E$ for $\mathbf{5 b}),{ }^{[16 c]}$ the general power of this approach has thus been corroborated.

4.3 Conclusion

The rates of the reactions of the pyridinium ylides $\mathbf{1}$ with benzhydrylium ions 2, quinone methides 3, and arylidene malonates $\mathbf{4}$ follow the linear free-energy relationship (eq 4.1), which allows us to characterize the synthetically important pyridinium ylides by the reactivity parameters N and s_{N} and to include them in our comprehensive nucleophilicity scale. ${ }^{[15 \mathrm{~h}]}$

Figure 4.6. Comparison of the $\log k_{2}$-values (towards 3a) of analogously substituted ylides ${ }^{[14 a, c]}$ and carbanions ${ }^{[15 c]}$ towards electrophile 3 Ba . N and s_{N}-values are given below each nucleophile (reactivities refer to DMSO as solvent).

Figure 4.6 compares the reactivities of the ethoxycarbonyl-substituted pyridinium ylide 1a (left) and the cyano-substituted pyridinium ylide $\mathbf{1 c}$ (right) with those of analogously substituted carbanions as well as with those of phosphorus and sulfonium ylides. Both columns show that pyridinium ylides are approximately a million times more reactive than analogously substituted triphenylphosphonium ylides and about thousand times more reactive than the corresponding dimethylsulfonium ylides. The close similarity of the reactivities of the pyridinium ylides and of diethyl malonate and ethyl cyanoacetate anions shows that pyridinium substitution affects the reactivities of nucleophilic reaction centers to a similar extent as ethoxycarbonyl and cyano substitution. Because of the smaller sensitivities s_{N} of the pyridinium ylides compared to the other C-nucleophiles, the relative reactivities of the pyridinium ylides with respect to the other nucleophiles of Figure 4.6 will depend on the nature of the electrophilic reaction partner. Pyridinium ylides will show a lower relative reactivity toward reaction partners which are more
electrophilic than 3a $(E>-13)$, while they will show an even higher relative reactivity toward less reactive electrophiles $(E<-13)$.

As correlation eq 4.1 allows one to calculate the rate constants for the formation of the zwitterions (betaines) from pyridinium ylides $\mathbf{1}$ and Michael acceptors, it can be employed for the analysis of reaction mechanisms. From the agreement between calculated (eq 4.1) and experimental rate constants for the 1,3-dipolar cycloadditions of the isoquinolinium (1h) and quinolinium ylide (1i) with the benzylidenemalononitrile $\mathbf{5 a}$ and of all investigated ylides $\mathbf{1}$ with the chalcone $\mathbf{5 b}$, we have concluded that these cycloadditions proceed stepwise or in a concerted way with negligible energy of concert.

In two cases, i.e., in the reactions of the benzylidenemalononitrile $\mathbf{5 a}$ with the pyridinium ylides $\mathbf{1 e}, \mathbf{g}$, the experimental rate constants were found to be a million times smaller than calculated by eq 4.1. NMR spectroscopic monitoring of these reactions showed that they proceed with reversible formation of the intermediate betaines, which undergo subsequent slow, rate-determining ring-closure with formation of cyclopropanes. The large deviation between experimental and calculated rate constants thus was indicative of a change of the reaction mechanism, illustrating the value of eq 4.1 for mechanistic analyses.

The differentiation of concerted and stepwise 1,3-dipolar cycloadditions ${ }^{[20]}$ has been a challenge for mechanistic chemistry for many decades. ${ }^{[21]}$ While mechanistic investigations indicate a concerted pathway for most 1,3-dipolar cycloadditions, ${ }^{[22]}$ stepwise processes via zwitterionic intermediates have been observed in reactions of thiocarbonyl ylides (electron-rich 1,3-dipoles) with electron-deficient dipolarophiles. ${ }^{[23]}$

Our observation that eq 4.1 allows one to predict absolute rate constants for 1,3-dipolar cycloadditions of pyridinium, isoquinolinium, and quinolinium ylides with the electron-poor dipolarophiles $\mathbf{4 a}-\mathbf{d}$ and $\mathbf{5 a}, \mathbf{b}$ implies a remarkable extension of the validity range of eq 4.1. It now appears feasible that eq 4.1 can generally be employed for predicting absolute rate constants of cycloadditions of highly nucleophilic 1,3-dipoles with highly electrophilic dipolarophiles as well as of electrophilic 1,3-dipoles with electron-rich dipolarophiles. In view of the great recent interest in the mechanisms of 1,3-dipolar cycloadditions using the distortion/interaction energy model ${ }^{[24]}$ or activation strain model, ${ }^{[25]}$ we expect that these data will significantly broaden the experimental basis of these models and assist the further development of this theoretical approach.

4.4 Addendum

The [3+2]-cycloaddition of ylide $\mathbf{1 i}$ with nitrostyrene $\mathbf{5 c}$ in DMSO gave the tetrahydroindolizine 19i which was isolated in moderate yield as a single diastereoisomer after recrystallization (Scheme 4.7). The stereochemistry, assigned on basis of the NOESY correlations of the protons and substituents of the pyrrolidine ring, indicated that 19i is formed by an anti-1-endo-2-exo approach of the ylide $\mathbf{1 i}$ to nitrostyrene $\mathbf{5 c}$ (Scheme 4.7), in agreement with Tsuge's ${ }^{[7 b]}$ report on the reactions of isoquinolinium ylides with nitrostyrenes.

Tetrahydroindolizines $\mathbf{1 9 a} \mathbf{-}$, the alleged initial adducts from ylides $\mathbf{1 a - g}$ to nitrostyrene $\mathbf{5 c}$, could not be isolated by this method because they are too unstable. By subsequent oxidation of the product (19c) formed by the reaction of ylide $\mathbf{1 c}$ with $\mathbf{5 c}$, using one equivalent of dichlordicyanobenzoquinone (DDQ) in air, we obtained 48\% of the dihydroindolizine 20c after 30 min (Scheme 4.7). The initial diastereomeric ratio after recrystallization of 20c is cis : trans $=1: 24$, but 20c epimerizes in CDCl_{3} solution to give a $1: 1$ mixture within a day. Under the same conditions the reaction of ylide 1 g with nitrostyrene $\mathbf{5 c}$ and subsequent oxidation by one equivalent of DDQ in air produced only the fully oxidized indolizine $\mathbf{1 9 g}$ (Table 4.9).

Scheme 4.7. Synthesis of tetrahydroindolizine 19i and dihydroindolizine 20c in DMSO.

[a] Determined by ${ }^{1} \mathrm{H}$ NMR after recrystallization.

Table 4.9. Synthesis of the indolizines 21.

Salt	R	EWG	Solvent	Base	Oxidant	$T /{ }^{\circ} \mathrm{C}$	Product	Yield/\%
$1 \mathrm{aH}^{+} \mathrm{Br}^{-}$	H	$\mathrm{CO}_{2} \mathrm{Et}$	DMSO	NEt_{3}	MnO_{2}	$100{ }^{\text {[a] }}$	21a	54
$\mathbf{1 b H}{ }^{+} \mathrm{Br}^{-}$	H	CONEt_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	aq. NaOH	Chloranil ${ }^{[b]}$	20	21b	10
$1 \mathrm{cH}^{+} \mathrm{Br}^{-}$	H	CN	DMSO	NEt_{3}	MnO_{2}	$100^{[\mathrm{a}]}$	21c	64
$\mathbf{1 d H}{ }^{+} \mathrm{Cl}^{-}$	H	COMe	DMSO	NEt_{3}	MnO_{2}	$100^{[\mathrm{a]}}$	21d	70
$1 \mathrm{eH}^{+} \mathrm{Br}^{-}$	H	COPh	DMSO	$\mathrm{KO}^{\prime} \mathrm{Bu}$	TPCD ${ }^{[c]}$	$100^{[a]}$	21e	68
			DMSO	NEt_{3}	MnO_{2}	$100^{[a]}$	21e	48
			DMSO	$\mathrm{KO}^{\prime} \mathrm{Bu}$	$\mathrm{KMnO}_{4} / \mathrm{MnO}_{2}{ }^{[\mathrm{dd}}$	$100^{[\mathrm{a}]}$	21e	54
$\mathbf{1 g H}{ }^{+} \mathbf{B r}^{-}$	$3-\mathrm{Cl}$	COPh	DMSO	NEt_{3}	MnO_{2}	$100^{[\mathrm{a}]}$	21g	$67{ }^{\text {[e] }}$
			DMSO	NEt_{3}	TPCD ${ }^{[c]}$	$100^{[a]}$	21g	$54{ }^{[\text {e] }}$
			DMSO	NEt_{3}	DDQ ${ }^{[f]}$	20	21g	$55^{\text {[e] }}$

[a] By microwave irradiation (5 W); [b] 2 equivalents; [c] Tetrakispyridinocobalto(II)dichromate; [d] Grounded $\mathrm{KMnO}_{4}: \mathrm{MnO}_{2}(1: 3$ by weight); [e] 4:1 mixtures of $\mathbf{2 1 g}$-($\mathbf{8 - C l}$) and $\mathbf{2 1 g}$-($\mathbf{5 c} \mathbf{c} \mathbf{- C l}$); [f] 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone.

As many of the tetrahydroindolizines $\mathbf{1 9}$ and dihydroindolizines $\mathbf{2 0}$ are unstable compounds, the crude cycloadducts 19a-i were converted into the corresponding indolizines $\mathbf{2 1}$ by oxidation (Table 4.9). In a first step, the ylides $\mathbf{1}$ were generated by treating DMSO solutions of the salts $\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$in the presence of nitrostyrene $\mathbf{5 c}$ with a base, which led to the formation of the tetrahydroindolizines 19. Their oxidation with MnO_{2} or tetrakispyridinocobalto(II) dichromate (TPCD) at $100^{\circ} \mathrm{C}$ (microwave irradiation, $5 \mathrm{~W}, 1 \mathrm{~h}$) gave the indolizines 21 in moderate yields (Table 4.9). The carboxamido substituted 21b could only be obtained in low yield by a biphasic generation of the tetrahydroindolizine 21b and its subsequent oxidation by 2 equiv. of chloranil. The low yield may be due to a reaction of nitrostyrene $\mathbf{5 c}$ with NaOH . The indolizine 21e was obtained in 68% yield when the oxidation was performed with TPCD, while oxidations with MnO_{2} or ground mixtures of $\mathrm{KMnO}_{4}: \mathrm{MnO}_{2}$ (1:3 by weight) resulted in lower yields of around 50%. Indolizine $\mathbf{2 1 g}$ was obtained as $4: 1$ ratio of the $8-\mathrm{Cl}$ over the 6-Cl regioisomer by oxidation of the tetrahydroindolizine $\mathbf{2 1 g}$ by MnO_{2} at $100^{\circ} \mathrm{C}, \mathrm{TPCD}$ or as $2: 1$ mixture by oxidation with one equiv. of DDQ in air at $20^{\circ} \mathrm{C}$ (Table 4.9).

Scheme 4.8. Synthesis of the indolizines $21 \mathrm{~h}, \mathrm{i}$ and $22 \mathrm{~h}, \mathrm{i}$.

Indolizines derived from the ylides $\mathbf{1 h}, \mathbf{i}$ and the nitrostyrene $\mathbf{5 c}$ were obtained as mixtures of the NO_{2} substituted indolizines $\mathbf{2 1 h}, \mathbf{i}$ and the corresponding denitrated derivatives $\mathbf{2 2 h}, \mathbf{i}$ (Scheme 4.8). The indolizines 22h,i may be formed by base-induced elimination of HNO_{2} from the initially generated tetrahydroindolizines $\mathbf{1 9 h}, \mathbf{i}$ instead of oxidative removal of hydrogen from the 1-position and 3-position, respectively, which eventually yields the nitro-substituted indolizines 21h,i. Pure $\mathbf{2 2 h}$ was obtained in 11% yield by stirring $\mathbf{1} \mathbf{h H}^{+} \mathbf{B r}^{-}$and $\mathbf{7}$ with 2.9 equiv. triethylamine at $20^{\circ} \mathrm{C}$ for 5 h . Similar eliminations of HNO_{2} from nitro-substituted tetrahydroindolizines have previously been employed to synthesize a broad variety of indolizines. ${ }^{[8 c, 26]}$

As illustrated in Schemes 4.7, 4.8 and Table 4.9 the ylides 1 exclusively underwent [3+2]cycloadditions with nitrostyrene 5c. As mentioned in the main section concerted or stepwise mechanisms have to be considered for such [3+2]-cycloadditions (Scheme 4.6). In case of a stepwise mechanism with rate-determining formation of the intermediate betaine, the observed rate constants k_{2} and the calculated rate constants $k_{\text {calcd }}$ should agree within the general confidence limit of equation 1 (one to two orders of magnitude). ${ }^{[15 a, b]}$

For 6 of the 8 reactions of the ylides $\mathbf{1}$ with nitrostyrene $\mathbf{5 c}$ experimental and calculated second-order rate constants agree within a factor of 3.5 indicating a rate-determining formation of a betaine (Table 4.10). The remaining 2 reactions proceed up to 12 times more slowly than calculated by equation 1 . This deviation is within the confidence limit of equation 1 , but might also be due to a partial reversibility of the betaine formation followed by rate-determining cyclization. In case of concerted cycloadditions $k_{\text {exp }} / k_{\text {calcd }}$ should be greater than 1 , depending on the degree of concertedness. ${ }^{[18 b]}$ As $k_{\text {exp }}$ is never considerably faster than $k_{\text {calcd }}$, we conclude that all cycloadditions listed in Table 4.10 proceed stepwise or in a concerted manner with a negligible energy of concert.

Table 4.10. Observed ($k_{\text {exp }}$) and calculated ($\left.k_{\text {calce }}\right)^{[\text {a] }]}$ second-order rate constants for the [3+2]-cycloaddition reactions of the ylides $1 \mathrm{a}-\mathrm{i}$ with the nitrostyrene $5 \mathrm{c}(E=-14.70)^{[27]}$ in DMSO at $20^{\circ} \mathrm{C}$.

Ylide	$k_{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\text {exp }} / k_{\text {calcd }}$
$\mathbf{1 a}$	4.52×10^{4}	2.46×10^{4}	1.84
$\mathbf{1 b}$	9.90×10^{3}	8.01×10^{4}	0.12
$\mathbf{1 c}$	7.01×10^{4}	4.88×10^{4}	1.44
$\mathbf{1 d}$	8.02×10^{2}	2.13×10^{3}	0.38
$\mathbf{1 e}$	1.87×10^{2}	5.77×10^{2}	0.32
$\mathbf{1 g}$	4.78×10^{1}	1.13×10^{2}	0.42
$\mathbf{1 h}$	1.01×10^{2}	1.17×10^{3}	0.09
$\mathbf{1 i}$	9.66×10^{1}	2.27×10^{2}	0.43

[a] By eq. 1 using s_{N} and N for the ylides $\mathbf{1}$ from Table 4.4 and $E=-14.70$ of $\mathbf{5 c}$ from ref. [27].

4.5 Experimental Section

4.5.1 General

Chemicals. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over CaH_{2} and freshly distilled prior to use; DMSO $(99.7 \%$, extra dry, over molecular sieves, AcroSeal) was purchased and used without further purification.

Devices. For the microwave assisted synthesis a CEM Discover 908010 microwave oven was used.

Analytics. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right),{ }^{[28 \mathrm{a}]} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ $\left(\delta_{\mathrm{H}} 5.32, \delta_{\mathrm{c}} 53.84\right),{ }^{[28 \mathrm{~b}]}$ or DMSO- $d_{6}\left(\delta_{\mathrm{H}} 2.50, \delta_{\mathrm{c}} 39.52\right)^{[28 \mathrm{a}]}$ on $200,300,400$, or 600 MHz NMR spectrometers and are given in ppm. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. For reasons of simplicity, the ${ }^{1} \mathrm{H}$ NMR signals of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ '-spin systems of p disubstituted aromatic rings were treated as doublets. The assignments of individual NMR signals were based on additional 2D-NMR experiments (COSY, NOESY, HSQC, HMBC). Diastereomeric ratios ($d r$) were determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction products if not stated otherwise. Integrals for mixtures of diastereoisomers are set to 1.0 for one proton of the minor diastereoisomer. HRMS and MS were recorded on a Finnigan MAT 95 Q (EI) mass spectrometer or Thermo Finnigan LTQ FT Ultra (ESI). The melting points were recorded on a Büchi melting point B-540 device and are not corrected. The UV-vis spectra were recorded on a diode array-spectrophotometer system (J\&M TIDAS DAD 2062) with 5 mm cuvette length
or a spectrophotometer (JASCO v630) with 1.0 cm cuvette length in DMSO by generating the ylides $\mathbf{1}$ from their corresponding salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$by deprotonation with 1.05 equiv. $\mathrm{KO}^{t} \mathrm{Bu}$.

Kinetics. The rates of all reactions were determined by UV-vis spectroscopy in DMSO at $20^{\circ} \mathrm{C}$ by using stopped-flow spectrophotometer systems (Applied Photophysics SX.18MV-R and Hi-Tech SF-61DX2) as well as diode array-spectrometer systems (J\&M TIDAS DAD 2062). The temperature of the solutions during the kinetic studies was maintained at $20 \pm 0.2^{\circ} \mathrm{C}$ by using circulating bath cryostats. The ylides were generated in DMSO at $20^{\circ} \mathrm{C}$ immediately before each kinetic run by mixing DMSO solutions of the salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.00:1.05 equivalents). The kinetic runs were initiated by mixing DMSO solutions of the ylides and electrophiles under pseudo first-order conditions with one of the two reaction partners in large excess over the other (≥ 10 equivalents). Pseudo first-order rate constants $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ were obtained by fitting the single exponential $A_{t}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)+C$ (mono-exponential decrease) to the observed time-dependent absorbances (average of at least three kinetic runs for each concentration for the stopped-flow method) of the electrophiles or ylides. Second-order rate constants $k_{2}\left(\mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$ were derived from the slopes of the linear correlations of the obtained $k_{\text {obs-}}$-values against the concentrations of the excess reaction partner. Parts of the kinetics experiments have been performed during the master thesis of the author as indicated. ${ }^{[30]}$

4.5.2 Preparation of the Salts $1 \mathrm{H}^{+} \mathrm{X}^{-}$

General Procedure A for the Preparation of the Ylide Precursors. The salts $1 \mathbf{a H}^{+} \mathbf{X}^{-}-$ $\mathbf{1 i H} \mathbf{X}^{+}$were prepared from α-alkylhalides ($10-16 \mathrm{mmol}$) and pyridines ($10-16 \mathrm{mmol}$) in THF. The pyridine was dissolved in $5-15 \mathrm{~mL}$ of THF and the α-alkylhalide was added dropwise. After 30 min to 24 h the resulting precipitate was filtered off, washed with $10-50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and recrystallized from $5-10 \mathrm{~mL}$ methanol/toluene (1:1).

The synthesis of all other salts $\mathbf{1 H}^{+} \mathbf{X}^{-}$listed in Scheme 1 has been reported in ref. [8e].
4-(Dimethylamino)-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide (1fH ${ }^{+} \mathbf{B r}^{-}$) was synthesized according to general procedure A from bromoacetophenone ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$) and 4-(dimethylamino)-pyridine ($1.1 \mathrm{~g}, 9.2 \mathrm{mmol}$) by stirring for 30 min . $\mathbf{1 f H}^{+} \mathbf{B r}^{-}$was obtained as ${ }^{\mathrm{Me}_{2} \mathrm{~N}} \mathrm{OBr}^{\text {cr }}$ colorless solid $(2.9 \mathrm{~g}, 9.0 \mathrm{mmol}, 98 \%) . \mathbf{M p}(\mathrm{MeOH}:$ toluene $1: 1): 227^{\circ} \mathrm{C} ; \mathrm{Lit}$: $(\mathrm{MeOH}) 228-229{ }^{\circ} \mathrm{C} .{ }^{[29 b]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=8.23(\mathrm{~d}, J=$ $\left.7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.07-8.02\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.83-7.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.69-7.59$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.14\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.24(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=192.3(\mathrm{~s}, \mathrm{CO}), 156.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 143.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$
H), $134.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 133.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 107.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $62.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.8\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal). HRMS (ESI+): m/z [$\left.\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: calcd. 241.1335, found: 241.1334. DA201

3-Chloro-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide ($\mathbf{g H H}^{+} \mathbf{B r}^{-}$) was synthesized according to general procedure A from bromoacetophenone ($3.2 \mathrm{~g}, 16 \mathrm{mmol}$) and 3-chloropyridine ($1.8 \mathrm{~g}, 16 \mathrm{mmol}$) by stirring for $24 \mathrm{~h} . \mathbf{1 g H}^{+} \mathbf{B r}^{-}$was obtained as colorless solid (4.3 g , $14 \mathrm{mmol}, 88 \%$). Mp (MeOH:toluene 1:1): $183{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=9.46$ (s, $1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $9.09\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.95\left(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.35$ (dd, $\left.J=8.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.15-8.01\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $7.67\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=$ 190.1 (s, CO), $146.1\left(\mathrm{~d}, \mathrm{C}_{a r}-\mathrm{H}\right), 145.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 145.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 134.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $133.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 133.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}{ }^{-}\right.$ $\mathrm{H}), 66.4\left(\mathrm{t}, \mathrm{CH}_{2}\right)$. HRMS (ESI+): $m / z\left[\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClNO}\right]^{+}$: calcd. 232.0524, found: 232.0523. DA277

1-(2-Oxo-2-phenylethyl)quinolin-1-ium bromide (1iH ${ }^{+} \mathbf{B r}^{-}$) was synthesized according to general procedure A from bromoacetophenone ($2.6 \mathrm{~g}, 13 \mathrm{mmol}$) and quinoline ($1.7 \mathrm{~g}, 13 \mathrm{mmol}$) by stirring for $24 \mathrm{~h} . \mathbf{1 i H}^{+} \mathbf{B r}^{-}$was obtained as light yellow solid ($3.5 \mathrm{~g}, 11 \mathrm{mmol}, 85 \%$). $\mathbf{M p}$ (MeOH:toluene 1:1): $195{ }^{\circ} \mathrm{C}$; Lit: $\mathrm{Mp}(\mathrm{EtOH}): 196-197^{\circ} \mathrm{C} .{ }^{[29 a]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta=9.56\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 9.46\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.46\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.34\left(\mathrm{dd}, J=8.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.22(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $8.17\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.07\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.83$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.70\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=190.7(\mathrm{~s}, \mathrm{CO}), 151.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 148.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 138.6$
 (d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 135.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 134.8 (d, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 133.6$ ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 130.59 (d, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.0(\mathrm{~d}$, $\left.\mathrm{C}_{a r}-\mathrm{H}\right), 129.4\left(\mathrm{~s}, \mathrm{C}_{a r}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 122.2\left(\mathrm{~d}, \mathrm{C}_{a r}-\mathrm{H}\right), 119.1$ (d, CarH), $63.2\left(\mathrm{t}, \mathrm{CH}_{2}\right)$. HRMS (ESI+): $m / z\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}\right]^{+}$: calcd. 248.1070, found: 248.1069. DA279

4.5.3 Product studies

General Procedure B for the Synthesis of 6-BF4. The benzhydrylium tetrafluoroborate 2a (147-294 $\mu \mathrm{mol}$) was dissolved in dichloromethane (1 mL). Acetonitrile (5 mL) and pyridinium salt $\mathbf{1 H}^{+} \mathbf{X}^{-}(147-294 \mu \mathrm{~mol})$ were added to the solution and the resulting suspension was titrated at room temperature with a solution of $\mathrm{KO}^{t} \mathrm{Bu}(223-312 \mu \mathrm{~mol})$ in THF (5 mL) till discoloration of the blue 2a. The solvent was evaporated and the solid residue was dissolved in 10 mL of acetonitrile. Insoluble precipitates were removed by filtration. The solvent was evaporated, and the crude products were obtained. The crude products were recrystallized from $\mathrm{Et}_{2} \mathrm{O}$:acetonitrile (10:1) or pure acetonitrile to give the products $\mathbf{6}-\mathrm{BF}_{4}$. The products $\mathbf{6}-\mathrm{BF}_{4}$ are very sensitive to moisture and acids, thus they decompose easily.

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-ethoxy-3-oxopropan-2-yl)pyridin-1-ium tetrafluoroborate ($\mathbf{6 a - B F} \mathbf{4}$) was synthesized according to general procedure B from $\mathbf{2 a}$ (50.0 mg , $147 \mu \mathrm{~mol}), \mathbf{1 a H}^{+} \mathbf{B r}^{-}(36.2 \mathrm{mg}, 147 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(25.0 \mathrm{mg}, 223 \mu \mathrm{~mol})$. Recrystallization from acetonitrile gave $\mathbf{6 a - B F} 4$ as a green solid ($29.4 \mathrm{mg}, 58.2 \mu \mathrm{~mol}, 39 \%$). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right.$ 10:1): $148{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=9.37(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Carar}-\mathrm{H}), 8.58-$ $8.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.12-8.06\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}$,
 $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.22\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.68(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}, \mathrm{CH}), 6.42\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}^{-}\right.$ H), $4.92(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.99-3.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.82(\mathrm{~s}, 6$ $\left.\mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.81\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=167.3\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 149.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 149.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 147.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 145.0(\mathrm{~d}, 2 \times \mathrm{Cara}$ H), $128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 125.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right)$, $112.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 73.0(\mathrm{~d}, \mathrm{CH}), 62.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 52.3(\mathrm{~d}, \mathrm{CH}), 40.2(\mathrm{q}$, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, superimposed by solvent signal), $39.8\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $13.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI +): $m / z\left[\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$: calcd. 418.2489, found 418.2487. DA162

1-(1-(Diethylamino)-3,3-bis(4-(dimethylamino)phenyl)-1-oxopropan-2-yl)pyridin-1ium tetrafluoroborate ($\mathbf{6 b}-\mathbf{B F}_{4}$) was synthesized according to general procedure B from $\mathbf{2 a}$ ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 b H}^{+} \mathbf{B r}^{-}(80.3 \mathrm{mg}, 294 \mu \mathrm{~mol})$, and $\mathrm{KO}^{\dagger} \mathrm{Bu}(35.0 \mathrm{mg}$, $312 \mu \mathrm{~mol})$. The crude product was recrystallized from acetonitrile/ $\mathrm{Et}_{2} \mathrm{O}$ to furnish $\mathbf{6 b} \mathbf{- B F} 4$ as a red solid ($154 \mathrm{mg}, 253 \mu \mathrm{~mol}, 98 \%$). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right.$ 10:1): $155{ }^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=9.52-9.47\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Cara}_{\mathrm{ar}}-\mathrm{H}\right.$), $8.54-8.48$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.10-8.03\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.39\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.28(\mathrm{~d}, J=$
$\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.80(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.66\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.46$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}$), $4.94(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.66-3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}^{a}\right), 3.42$ $-3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}^{b}\right.$, superimposed by solvent signal), $3.20-3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{a}\right), 2.97-$ $2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{b}\right), 2.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $0.75\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=164.9$ (s, CON), $149.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 149.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 146.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 144.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.9(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 125.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 112.3(\mathrm{~d}, 2 \times \mathrm{Car}-\mathrm{H}), 112.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\right.$ H), $68.8(\mathrm{~d}, \mathrm{CH}), 53.2(\mathrm{~d}, \mathrm{CH}), 41.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 40.4\left(\mathrm{t}, \mathrm{CH}_{2}\right.$, superimposed by solvent signal), $40.1\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $39.9\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $14.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 12.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): $m / z\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}\right]^{+}$: calcd. 445.2962, found 445.2961. DA199

1-(1-Cyano-2,2-bis(4-(dimethylamino)phenyl)ethyl)pyridin-1-ium tetrafluoroborate ($\mathbf{6 c}-\mathbf{B F}_{4}$) was synthesized according to general procedure B from $\mathbf{2 a}$ ($50.0 \mathrm{mg}, 147 \mu \mathrm{~mol}$), $\mathbf{1} \mathbf{C H}^{+} \mathbf{B r}^{-}(29.3 \mathrm{mg}, 147 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(25.0 \mathrm{mg}, 223 \mu \mathrm{~mol})$. The crude product was recrystallized from acetonitrile/Et ${ }_{2} \mathrm{O}$ to give $\mathbf{6 c - B F} 4$ as a yellow solid $(59.0 \mathrm{mg}, 129 \mu \mathrm{~mol}$, 88\%). Mp ($\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN} 10: 1$): $211^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=9.25(\mathrm{~d}$, $\left.J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.62\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.17\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $7.39\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.25(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.75\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$,
 $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 5.00(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.73(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=150.4$ (s, Car), 149.9 (s, Car), $148.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 144.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.0(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 125.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 124.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 115.8(\mathrm{~s}, \mathrm{CN}), 113.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $112.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 63.1(\mathrm{~d}, \mathrm{CH}), 53.8(\mathrm{~d}, \mathrm{CH}), 40.2\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $40.0\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal). HRMS (ESI +): $m / z\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{4}\right]^{+}$: calcd. 371.2230, found 371.2229. DA166

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxobutan-2-yl)pyridin-1-ium

tetrafluoroborate ($\mathbf{6 d - B F} 4$) was synthesized according to general procedure B from $\mathbf{2 a}$ ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $\mathbf{1 d H}^{+} \mathbf{C l}^{-}(50.5 \mathrm{mg}, 294 \mu \mathrm{~mol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(34.6 \mathrm{mg}$,
 $308 \mu \mathrm{~mol})$. The crude product was recrystallized from acetonitrile/ $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathbf{6 d}-\mathrm{BF}_{4}$ as a green solid ($96.3 \mathrm{mg}, 203 \mu \mathrm{~mol}, 69 \%$). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN}\right)$: $197{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=9.27\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.46$ $\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.13-7.95\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.39\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$,
$7.25\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.02(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.42\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 4.82(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.84(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.69\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right) \delta=$ $202.1(\mathrm{~s}, \mathrm{CO}), 149.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 149.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 146.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 145.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $128.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.5\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 112.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $77.3(\mathrm{~d}, \mathrm{CH}), 51.8(\mathrm{~d}, \mathrm{CH}), 40.0\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $39.8(\mathrm{q}$, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, superimposed by solvent signal), $31.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+ $)$: $m / z\left[\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$: calcd. 388.2383, found. 388.2383. DA172

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxo-3-phenylpropan-2-yl)pyridin-1-ium tetrafluoroborate ($\mathbf{6 e - B F 4} \mathbf{-}$). The pyridinium salt $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(81.8 \mathrm{mg}, 294 \mu \mathrm{~mol})$ was added to aq. $\mathrm{KOH}(25 \mathrm{~mL}, 0.1 \mathrm{~m})$ and the solution was stirred for 5 min . The resulting yellow ylide $\mathbf{1 e}$ was extracted with 25 mL of chloroform. The benzhydrylium tetrafluoroborate 2a (100 mg , $294 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the solution of the ylide $\mathbf{1 e}$ at room temperature, and immediate discoloration of $\mathbf{2 a}$ was observed. The solvent was evaporated and the crude product was recrystallized from acetonitrile/Et $\mathrm{t}_{2} \mathrm{O}$ to give $\mathbf{6 e - B F} 4$ as a green solid with a metallic luster (158 mg, $294 \mu \mathrm{~mol}$, quant.). Mp ($\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeCN} 10: 1$): $135{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \delta=9.41\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.51-8.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.10-$ $8.00\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.61-7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}$,
 $1 \mathrm{H}, \mathrm{CH}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.15\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.43\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 4.99(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.74(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.69\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=194.0(\mathrm{~s}, \mathrm{CO}), 149.5$
 $129.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $126.1\left(\mathrm{~s}, \mathrm{C}_{a r}\right), 125.7\left(\mathrm{~s}, \mathrm{C}_{a r}\right), 112.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 112.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 72.0(\mathrm{~d}, \mathrm{CH}), 52.9(\mathrm{~d}$, $\mathrm{CH}), 40.0\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $39.9\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal). HRMS (ESI +): $m / z\left[\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}\right]^{+}:$calcd. 450.2540, found 450.2541. DA123

Table 4.11. Crystallographic data of $\mathbf{6 e}-\mathrm{BF}_{4} \cdot \mathbf{C H}_{2} \mathrm{Cl}_{2}$.

net formula	$\mathrm{C}_{30.50} \mathrm{H}_{3} \mathrm{BClF}_{4} \mathrm{~N}_{3} \mathrm{O}$	
$M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$	579.865	
crystal size/mm	$0.17 \times 0.11 \times 0.06$	
T/K	200(2)	
radiation	MoK α	${ }^{2} 28$
diffractometer	'KappaCCD'	
crystal system	monoclinic	$1 \int^{c 5}$
space group	$P 2_{1} / \mathrm{c}$	
$a / \AA{ }^{\text {a }}$	10.9080(2)	C
b / \AA	18.0229(3)	1.028
${ }_{\text {c/ }}$ Å	30.2720(5)	I
α^{10}	90	-
$\beta /{ }^{\circ}$	98.2496(9)	${ }^{17}$ - ${ }^{15}$
γ°	90	
V / \AA^{3}	5889.71(17)	C21
Z	8	
calcd. density/g cm ${ }^{-3}$	1.30791 (4)	
μ / mm^{-1}	0.184	
absorption correction	none	
refls. measured	37065	
$R_{\text {int }}$	0.0582	
mean $\sigma(t) / I$	0.0606	
θ range	3.18-25.33	
observed refls.	5645	
x, y (weighting scheme)	0.1520, 4.0092	
hydrogen refinement	constr	
refls in refinement	10732	
parameters	740	
restraints	8	
$R\left(F_{\text {obs }}\right)$	0.0897	
$R_{\text {w }}\left(F^{2}\right)$	0.3056	
S	1.045	
shift/error $_{\text {max }}$	0.001	
max electron density/e \AA^{-3}	1.228	
min electron density/e \AA^{-3}	-0.716	
All B-F distances refined to	1.34 A.	

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxo-3-phenylpropan-2-yl)-4-(dimethylamino)

pyridin-1-ium tetrafluoroborate ($\mathbf{6 f - B F 4}$) was synthesized according to general procedure B from 2a ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $1 \mathrm{fH}^{+} \mathrm{Br}^{-}(94.4 \mathrm{mg}, 294 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(34.6 \mathrm{mg}, 308 \mu \mathrm{~mol})$. The crude product was recrystallized from acetonitrile/ $\mathrm{Et}_{2} \mathrm{O}$ to give $6 \mathrm{f}-\mathrm{BF}_{4}$ as orange solid ($170 \mathrm{mg}, 293 \mu \mathrm{~mol}$, quant.). The product decomposed to large degree in DMSO- d_{6} at room temperature within a day. Mp. (Et $\left.\mathrm{E}_{2} \mathrm{O}: \mathrm{MeCN}\right): 114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=8.60$ (d, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.19-8.13\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.68-7.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$,
superimposed by decomposition product), $7.50-7.42\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.17(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.90\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.56-6.49$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $6.47\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 4.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.07(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.71\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR
 (100 MHz, DMSO-d d_{6}) $\delta=195.1$ (s, CO), 155.7 (s, Car), 149.2 (s, Car), 149.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 141.1 (br d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 134.5 (d, $\mathrm{Car}_{\mathrm{ar}}-\mathrm{H}$), 134.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 129.1 (d, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$ superimposed by decomposition product), 127.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 127.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 112.4 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $112.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, superimposed by decomposition product), $107.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 67.7(\mathrm{~d}, \mathrm{CH})$, $50.9(\mathrm{~d}, \mathrm{CH}), 40.0\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $39.9\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), 39.8 ($\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, superimposed by solvent signal). HRMS (ESI+): $m / z\left[\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}\right]^{+}$: calcd. 493.2962, found 493.2959. DA284

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxo-3-phenylpropan-2-yl)-3-chloropyridin-1ium tetrafluoroborate ($6 \mathbf{g}-\mathbf{B F}_{4}$) was synthesized according to general procedure B from 2 a ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $1 \mathrm{gH}^{+} \mathrm{Br}^{-}(91.9 \mathrm{mg}, 294 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(34.6 \mathrm{mg}, 308 \mu \mathrm{~mol})$ to give 183 mg ($320 \mu \mathrm{~mol}$, quant) of the dark green crude product. A recrystallization of $6 \mathrm{~g}-\mathrm{BF}_{4}$ from acetonitrile/ $\mathrm{Et}_{2} \mathrm{O}$ failed due to decomposition of $6 \mathrm{~g}-\mathrm{BF}_{4}$. Therefore the crude material was used for spectroscopic characterization. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=9.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $9.55\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.70\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.15(\mathrm{dd}, J=8.5,6.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{Car}-\mathrm{H}), 8.05(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Carar}-\mathrm{H}), 7.64-7.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.46-$ $7.39\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.15\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.52\left(\mathrm{br}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}^{-}\right.$ H), 6.43 (br d, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 5.08(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.71\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=193.5(\mathrm{~s}, \mathrm{CO})$, 149.3 (br s, C_{ar}), 149.0 (br s, C_{ar}), 146.2 (d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 144.5 (d, Car-H), 144.4 (d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 134.9 (d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 134.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 133.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 129.4 (d, $2 \times \mathrm{C}_{\mathrm{ar}}$ H), $128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 128.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $128.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.5\left(\mathrm{br} \mathrm{d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.3\left(\mathrm{br} \mathrm{d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 72.4(\mathrm{~d}, \mathrm{CH}), 53.0(\mathrm{~d}, \mathrm{CH}), 40.0$ (q, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, superimposed by solvent signal), $39.8\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal).HRMS (ESI +): $m / z\left[\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{ClN}_{3} \mathrm{O}\right]^{+}$: calcd. 484.2150, found 484.2148. DA285

2-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxo-3-phenylpropan-2-yl)isoquinolin-2-ium

tetrafluoroborate ($\mathbf{6 h}-\mathrm{BF}_{4}$) was synthesized according to general procedure B from 2 a ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $1 \mathrm{hH}^{+} \mathrm{Br}^{-}(96.5 \mathrm{mg}, 294 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(34.6 \mathrm{mg}, 308 \mu \mathrm{~mol})$. The crude product was recrystallized from acetonitrile/Et $\mathrm{E}_{2} \mathrm{O}$ to give $6 \mathrm{~h}-\mathrm{BF}_{4}$ as dark green crystals ($98.3 \mathrm{mg}, 167 \mu \mathrm{~mol}, 57 \%$). Mp. (Et2 $\mathrm{O}: \mathrm{MeCN}$): $180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=$
 8.52 (d, $\left.J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.28-8.19\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{H}, \mathrm{Car}^{-}-\mathrm{H}\right), 8.17(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}$), 8.05 (ddd, $\left.J=8.2,6.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.77(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.64$ $-7.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.50-7.42\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.26\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.48$ (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.43\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 5.19(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$,

CH), $2.71\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.67\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=194.0(\mathrm{~s}, \mathrm{CO}), 150.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 149.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 149.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right)$, 137.6 (d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 137.1 ($\mathrm{s}, \mathrm{Car}_{\mathrm{ar}}$), 135.1 (br d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 134.7 (d, $\mathrm{Car}_{\mathrm{ar}}-\mathrm{H}$), 134.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 131.4 (d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 130.7 (d, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 129.4 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 128.8 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 128.6 (d, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 127.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 125.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 125.4$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 71.7(\mathrm{~d}, \mathrm{CH}), 53.1(\mathrm{~d}, \mathrm{CH}), 40.0\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), $39.8\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal). HRMS (ESI +): $m / z\left[\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$: calcd. 500.2696, found 500.2701. DA478

1-(1,1-Bis(4-(dimethylamino)phenyl)-3-oxo-3-phenylpropan-2-yl)quinolin-1-ium

tetra-fluoroborate ($\mathbf{6 i - B F} 4$) was synthesized according to general procedure B from 2 a
 ($100 \mathrm{mg}, 294 \mu \mathrm{~mol}$), $1 \mathrm{iH}^{+} \mathrm{Br}^{-}(96.5 \mathrm{mg}, 294 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(34.6 \mathrm{mg}$, $308 \mu \mathrm{~mol})$. The crude product was recrystallized from acetonitrile/ $\mathrm{Et}_{2} \mathrm{O}$ to give $6 \mathrm{i}-\mathrm{BF}_{4}$ as brown solid ($109 \mathrm{mg}, 186 \mu \mathrm{~mol}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta=10.07\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 9.27(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.42\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.32\left(\mathrm{ddd}, J=8.7,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.22$ (dd, $J=8.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $8.16-8.07(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{Carar} \mathrm{H}, \mathrm{CH}), 8.05-7.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\right.$ H), $7.60\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.44\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}$, $\left.4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.49\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.40\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 5.28(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.69\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO$\left.d_{6}\right) \delta=193.6(\mathrm{~s}, \mathrm{CO}), 149.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right) 149.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 149.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 148.8\left(\mathrm{br} \mathrm{d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 138.0$ ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), $136.5\left(\mathrm{~d}, \mathrm{C}_{a r}-\mathrm{H}\right), 134.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 134.3\left(\mathrm{~s}, \mathrm{C}_{a r}\right), 131.3$ (d, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.9$ (br, d, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 129.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $125.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 125.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 121.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 118.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.1(\mathrm{~d}$,
$\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 66.3(\mathrm{~d}, \mathrm{CH}), 53.2(\mathrm{~d}, \mathrm{CH}), 40.0\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal), 39.8 $\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by solvent signal). HRMS (ESI+): m/z $\left[\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$: calcd. 500.2696 , found 500.2693 . DA286

4.5.4 Synthesis of the Michael Adducts 7

General Procedure C for the Synthesis of Michael Adducts 7. The quinone methide 3b (1 equiv.) and the pyridinium salt ($\mathbf{1} \mathbf{H}^{+} \mathbf{X}^{-}$, 1 equiv.) were mixed in dry acetonitrile (0.03 M). Triethylamine (2.2 equiv.) was added to the suspension and the mixture was stirred at room temperature till all $\mathbf{1 H}^{+} \mathbf{X}^{-}$was dissolved ($\sim 15 \mathrm{~min}$). The solvent was evaporated and the products 7 were obtained as colorless solids. In some cases the crude products 7 were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed once with water and/or 2 M HCl , and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent the products 7 were obtained.

Annotation for the NMR-analysis: \# corresponds to signals of the major diastereoisomer, * to signals of the minor diastereoisomer. Integrals for mixtures of diastereoisomers are set to 1.0 for one proton of the minor diastereoisomer.

1-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-ethoxy-3-oxo-1-(p-tolyl)propan-2-
$\mathbf{y l}$)pyridin-1-ium bromide (7a) was synthesized according to general procedure C from $\mathbf{3 b}$ ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(40 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu \mathrm{l}, 0.36 \mathrm{mmol})$. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water $(1 \times 20 \mathrm{~mL})$. The solvent was evaporated and $\mathbf{7 a}$ was obtained as colorless solid ($82 \mathrm{mg}, 0.15 \mathrm{mmol}, 94 \%, d r 1: 2$). ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.96^{\#}\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 9.86^{*}\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $8.48-8.38^{\#,{ }^{*}}\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}-\mathrm{H}}\right.$), $8.03-7.96^{\#}\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.96-7.87^{*}(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.63^{*}\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.50^{\#}\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.45^{*}(\mathrm{~d}, J=$
 $12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}), 7.36^{\#}\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.31^{\#}(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH})$, $7.14^{*}(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.02^{*}\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.97^{\#}(\mathrm{~d}, J=$ $\left.7.9 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 5.21^{\#}(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 5.09^{\#}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.64-4.52^{\#, *}$ $(\mathrm{m}, 3 \mathrm{H}, 2 \times \mathrm{CH}), 4.15-3.79^{\#,{ }^{*}}\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.27^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12^{\#}\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.42^{\#}$ (s, $\left.36 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.28^{*}\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88^{*}\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.81^{\#}(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.2^{\#}\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 167.8^{*}\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 153.8^{\#}(\mathrm{~s}$, C_{ar}), 153.4* $\left(\mathrm{s}, \mathrm{C}_{\mathrm{ar}}\right), 146.4^{\#}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 146.0^{*}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 145.6^{*}(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}), 145.3^{\#}(\mathrm{~d}, 2 \times \mathrm{Carar}$ H), 137.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$) , 137.6 ${ }^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.8^{*}\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 136.6^{\#}\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 134.9^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.2^{\#}(\mathrm{~s}$, C_{ar}), $130.2^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.7^{*}(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}), 128.7^{*}(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}), 128.0^{\#}(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}), 128.0^{\#}$ $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.8^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 127.8^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 127.6^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 125.3^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 124.7^{*}(\mathrm{~d}$,
$\left.2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 73.3^{*}(\mathrm{~d}, \mathrm{CH}), 73.2^{\#}(\mathrm{~d}, \mathrm{CH}), 63.3^{*}\left(\mathrm{t}, \mathrm{CH}_{2}\right), 63.1^{\#}\left(\mathrm{t}, \mathrm{CH}_{2}\right), 57.7^{\#}(\mathrm{~d}, \mathrm{CH}), 57.5^{*}(\mathrm{~d}$, $\mathrm{CH}), 34.6^{\#}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.5^{*}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.5^{\#}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.4^{*}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $21.1^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.0^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.5^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.4^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): m/z $\left[\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{3}\right]^{+}$: calcd. 474.3003, found 474.3006. DA601

1-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-(diethylamino)-3-oxo-1-(p-tolyl)propan-2-

 $\mathbf{y l}$)pyridin-1-ium bromide (7b) was synthesized according to general procedure C from $\mathbf{3 b}$ $(50 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathbf{1} \mathbf{b H}^{+} \mathbf{B r}^{-}(44 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu 1,0.36 \mathrm{mmol})$. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water $(1 \times 20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. $7 \mathbf{b}$ was obtained as colorless solid $(92 \mathrm{mg}, 0.16 \mathrm{mmol}$, quant., $d r 1: 2) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.19^{*}(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2$ $\mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}$), $10.12^{\#}\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 8.32-8.22^{\#, *}\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.80-$ $7.70^{\#,{ }^{*}}\left(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}-}-\mathrm{H}\right), 7.67^{*}\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.60^{\#}\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $7.51^{*}(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.41^{\#}(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 7.35^{*}(\mathrm{~s}$, $\left.2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.13^{\#}(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.04^{\#}\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right)$, $6.95^{*}\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 5.16^{*}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.06^{\#}(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$, 4.76^{*} (d, $\left.J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.71^{\#}(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 3.90^{\#}(\mathrm{dq}$, $\left.J=14.2,7.0, \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H \mathrm{H}^{a}\right), 3.84-3.72^{*}\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}^{a}\right), 3.64-3.44^{\#,{ }^{*}}\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{CHH}^{b}\right)$, $3.36^{\#}\left(\mathrm{dq}, J=14.2 \mathrm{~Hz}, 7.2,2 \mathrm{H}, \mathrm{CH} H^{a}\right), 3.31-3.17^{*}\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{a}\right), 3.13-3.94^{\#, *}(\mathrm{~m}, 3 \mathrm{H}$, $\left.2 \times \mathrm{CHH} H^{b}\right), 2.25^{\#}\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.09^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.38^{*}\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27^{\#}(\mathrm{~s}, 36 \mathrm{H}$, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88^{*}\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.79^{\#}\left(\mathrm{td}, J=7.1,4.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=165.8^{*}(\mathrm{~s}, \mathrm{CO}), 165.4^{\#}(\mathrm{~s}, \mathrm{CO}), 153.7^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 153.2^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 145.6^{\#}(\mathrm{~d}$, $\left.2 \times \mathrm{Car}_{\mathrm{ar}} \mathrm{H}\right), 145.5^{*}(\mathrm{~d}, 2 \times \mathrm{Car}-\mathrm{H}), 145.1^{\#, *}(\mathrm{~d}, 2 \times \mathrm{Car}-\mathrm{H}), 137.7^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 137.1^{*}\left(\mathrm{~s}, \mathrm{Car}\right.$), 136.5${ }^{\#}(\mathrm{~s}$, $2 \times \mathrm{C}_{\mathrm{ar}}$), $136.5^{*}\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 134.8^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.3^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 129.9^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.8^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $129.0^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.8^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.7^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 127.5^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 127.1^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), 126.8 ${ }^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 125.9^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 125.4^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 69.3^{\#}(\mathrm{~d}, \mathrm{CH}), 68.9^{*}(\mathrm{~d}, \mathrm{CH})$, $58.1^{\#}(\mathrm{~d}, \mathrm{CH}), 57.6^{*}(\mathrm{~d}, \mathrm{CH}), 43.7^{*}\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.6^{\#}\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.4^{*}\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.3^{\#}\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.6^{*}$ $\left(\mathrm{s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.5^{\#}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.5^{\#}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.4^{*}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.1^{\#}(\mathrm{q}$, $\left.\mathrm{CH}_{3}\right), 21.0^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.9^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.8^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 12.5^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 12.1^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): $m / z\left[\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$: calcd. 501.3476, found 501.3477. DA606

1-(1-Cyano-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(p-tolyl)ethyl)pyridin-1-ium

bromide (7c) was synthesized according to general procedure C from $\mathbf{3 b}(50 \mathrm{mg}, 0.16 \mathrm{mmol})$, $\mathbf{1} \mathbf{C H}^{+} \mathbf{B r}^{-}(40 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu \mathrm{l}, 0.36 \mathrm{mmol})$. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water $(1 \times 20 \mathrm{~mL})$. The solvent was evaporated and $\mathbf{7 c}$ was obtained as beige solid ($81 \mathrm{mg}, 0.16 \mathrm{mmol}$, quant., $d r 1: 2$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) δ $=9.36^{*}(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 9.23^{\#}\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 8.69-8.64^{\#,{ }^{\#}}(\mathrm{~m}, 3$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.23-8.13^{\#,{ }^{*}}\left(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.62^{\#}\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.57^{\#}(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 7.49^{*}(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.33^{*}\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.30^{\#}(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $4 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.23^{*}\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}\right.$), $7.12^{*}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.02^{*}(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.92^{\#}(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 6.87^{\#}\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 5.23^{*}(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.17^{\#}$ (d, $J=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$), $2.33^{\#}\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40^{*}\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.21^{\#}\left(\mathrm{~s}, 36 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \cdot{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=153.7^{*}(\mathrm{~s}$,
 C_{ar}), $153.3^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 148.2^{*}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 147.9^{\#}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 144.3^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $144.2^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 139.8^{*}\left(\mathrm{~s}, 2 \times \mathrm{Carar}\right.$, $139.5^{\#}\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 137.4^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 137.1^{*}$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{ar}}\right), 134.7^{\#}\left(\mathrm{~s}, \mathrm{Car}_{\mathrm{ar}}\right), 133.8^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 129.7^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.5^{*}(\mathrm{~d}, 2 \times \mathrm{Car}$ H), $128.8^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}-\mathrm{H}}\right), 128.5^{*}(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}), 128.0^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.0^{*}(\mathrm{~d}, 2 \times \mathrm{Car}-\mathrm{H}), 127.6^{*}$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{ar}}\right), 126.9^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 124.6^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 124.1^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 115.1^{\#}(\mathrm{~s}, \mathrm{CN}), 115.1^{*}(\mathrm{~s}, \mathrm{CN})$, $62.5^{*}(\mathrm{~d}, \mathrm{CH}), 62.4^{\#}(\mathrm{~d}, \mathrm{CH}), 54.6^{\#}(\mathrm{~d}, \mathrm{CH}), 54.1^{*}(\mathrm{~d}, \mathrm{CH}), 34.7^{*}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.5^{\#}(\mathrm{~s}$, $\left.2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.4^{*}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.1^{\#}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.6^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 20.5^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+): $m / z\left[\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: calcd. 427.2744, found 427.2748. DA605

1-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-oxo-1-(p-tolyl)butan-2-yl)pyridin-1-ium

chloride (7d) was synthesized according to general procedure C from 3b ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\mathbf{1 d H} \mathbf{H l}^{-}(29 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu \mathrm{l}, 0.36 \mathrm{mmol})$. The solvent was evaporated and $7 \mathbf{d}$ was obtained as colorless solid ($79 \mathrm{mg}, 0.16 \mathrm{mmol}$, quant., $d r 2: 3$). ${ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=9.91^{\#}\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 9.84^{*}\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.50-8.23$ \#, ${ }^{*}\left(\mathrm{~m}, 5 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}-} \mathrm{H}, 2 \times \mathrm{CH}\right), 7.88-7.73^{\#,{ }^{*}}\left(\mathrm{~m}, 5 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}-} \mathrm{H}\right), 7.69^{*}(\mathrm{~d}, J=$ $\left.8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.46^{\#}\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.39^{\#}\left(\mathrm{~s}, 3 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}\right.$ H), $7.15^{*}\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.11^{\#}\left(\mathrm{~s}, 3 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.93^{\#}(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 3 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}-\mathrm{H}}$), $5.25^{\#}(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 5.05^{*}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.51-4.32^{\#,{ }^{*}}(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH})$, $2.24^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.16^{\#}\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{3}\right), 2.09^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.99^{\#}\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39^{\#}(\mathrm{~s}, 27 \mathrm{H}$, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.26^{*}\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=204.1^{\#}(\mathrm{~s}, \mathrm{CO}), 203.7^{*}$ (s, CO) $, 153.8^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 153.0^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 145.8^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 145.4^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 145.2^{*}(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 137.9^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 137.3^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 137.2^{\#}\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 136.8^{*}\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 135.2^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right)$,
$134.9^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 130.2^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.0^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6^{*}$,\# $\left(\mathrm{s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 128.5^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $127.7^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.3^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.8^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 125.3^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 124.5^{*}$ $\left(\mathrm{d}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 76.3^{*}(\mathrm{~d}, \mathrm{CH}), 76.1^{\#}(\mathrm{~d}, \mathrm{CH}), 57.0^{\#}(\mathrm{~d}, \mathrm{CH}), 56.8^{*}(\mathrm{~d}, \mathrm{CH}), 34.6^{\#}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.4^{*}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 32.2^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 31.7^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.4^{\#}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.3^{*}(\mathrm{q}$, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.1^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 20.9^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS $(\mathrm{ESI}+): m / z\left[\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{2}\right]^{+}:$calcd. 444.2897, found 444.2899. DA604-2

1-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-oxo-3-phenyl-1-(p-tolyl)propan-2-

$\mathbf{y l}$)pyridin-1-ium bromide ($\mathbf{7 e}$) was synthesized according to general procedure C from ($\mathbf{3 b}$) ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\mathbf{1} \mathbf{e H}^{+} \mathbf{B r}^{-}(47 \mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu \mathrm{l}, 0.36 \mathrm{mmol})$. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water $(1 \times 20 \mathrm{~mL})$. The solvent was evaporated, the residue was washed with diethyl ether, and $\mathbf{7 e}$ was obtained as colorless solid $(94 \mathrm{mg}, 0.15 \mathrm{mmol}$, quant., $d r 1: 7){ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.10^{\#}(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 14$ $\mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 9.98^{*}(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Carar}-\mathrm{H}), 8.49-8.40^{\#,{ }^{*}}\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 8.37-$ $8.21^{\#,{ }^{*}}(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}, 2 \times \mathrm{Car}-\mathrm{H}), 8.30-8.25^{\#}\left(\mathrm{~m}, 14 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.89-7.80^{\#,{ }^{*}}\left(\mathrm{~m}, 16 \mathrm{H}, 6 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $7.72^{\#}\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 14 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.43-7.33^{\#, *}\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.29^{*}(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.23^{\#}\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 14 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}-} \mathrm{H}\right.$, , superimposed by solvent signal), $7.16^{\#}$ (s , $\left.14 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.08^{*}\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.97^{\#}\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 14 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.88^{*}(\mathrm{~d}, J=$ $\left.7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 5.08^{*}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.91^{\#}(\mathrm{~s}, 7 \mathrm{H}, \mathrm{OH}), 4.70^{*}(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $4.64^{\#}(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 7 \mathrm{H}, \mathrm{CH}), 2.09^{\#}\left(\mathrm{~s}, 21 \mathrm{H}, \mathrm{CH}_{3}\right), 2.07^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27^{*}(\mathrm{~s}, 18 \mathrm{H}$, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.21^{\#}\left(\mathrm{~s}, 126 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Major ${ }^{\#}: \delta=195.4$ (s,
 CO), $153.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 145.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 145.4(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}), 137.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.3$ $\left(\mathrm{s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 134.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 134.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 130.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 127.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $125.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 72.5(\mathrm{~d}, \mathrm{CH}), 58.0(\mathrm{~d}, \mathrm{CH}), 34.3\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.1\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $20.9\left(\mathrm{q}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR-signals corresponding to the minor diastereoisomer ${ }^{*}$ could not be assigned unambiguously due to their low intensity. HRMS (ESI +): $m / z\left[\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{2}\right]^{+}$: calcd. 506.3054, found 506.3056. DA603-2

1-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-oxo-3-phenyl-1-(p-tolyl)propan-2-yl)-4-di-methylamino)pyridin-1-ium bromide (7 f) was synthesized according to general procedure C from 3b ($50 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathbf{1} \mathbf{f H}^{+} \mathbf{B r}^{-}(47 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu \mathrm{l}, 0.36 \mathrm{mmol})$. The solvent was evaporated and $7 \mathbf{f}$ was obtained as colorless solid ($94 \mathrm{mg}, 0.16 \mathrm{mmol}$, quant., $d r$ 1:5). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.17^{\#}(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 10 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 8.92^{*}(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}-}-\mathrm{H}\right), 8.44^{*}\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.23-8.16^{\#}\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.66^{\#}(\mathrm{dd}$,
 $\left.J=11.7,8.1 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{CH}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.50-7.32^{\#,{ }^{*}}\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}, 6 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $7.28-7.22^{\#}\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, , superimposed by solvent signal), $7.05-$ $6.98^{\#}$ (s, $10 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.02^{\#,{ }^{*}}\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$), $6.88^{*}(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2$ $\mathrm{H}, 2 \times \mathrm{C}_{\text {ar }}-\mathrm{H}$), $6.63-6.57^{\#,,^{*}}\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{C}_{\text {ar }}-\mathrm{H}\right), 5.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.86^{\#}(\mathrm{~s}, 5 \mathrm{H}, \mathrm{OH}), 4.63^{*}(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.53^{\#}(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{CH}), 3.08^{*}\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.04^{\#}(\mathrm{~s}, 30 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13^{\#}\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30^{*}\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.20^{\#}(\mathrm{~s}, 90 \mathrm{H}$, $\left.2 \times\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major ${ }^{\#} \delta=197.4$ (s, CO), 156.1 ($\mathrm{s}, \mathrm{Car}^{2}$), 153.0 (s ,
 $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 127.7$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{ar}}\right), 125.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 107.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 68.8(\mathrm{~d}, \mathrm{CH}), 56.6(\mathrm{~d}, \mathrm{CH}), 40.2\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $34.3\left(\mathrm{~s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.2\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.0\left(\mathrm{q}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR-signals corresponding to the minor diastereoisomer ${ }^{*}$ could not be assigned unambiguously due to their low intensity. HRMS (ESI+): $m / z\left[\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$: calcd. 549.3476, found 549.3479. DA608

3-Chloro-1-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-oxo-3-phenyl-1-(p-tolyl)propan-

$\mathbf{2 - y l})$ pyridin-1-ium bromide ($\mathbf{7 g}$) was synthesized according to general procedure C from $\mathbf{3 b}$ $(50 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathbf{1 g H}^{+} \mathbf{B r}^{-}(51 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu \mathrm{l}, 0.36 \mu \mathrm{~mol})$. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water $(1 \times 20 \mathrm{~mL})$. The solvent was evaporated and 7 g was obtained as colorless solid ($100 \mathrm{mg}, 0.16 \mathrm{mmol}$, quant., $d r 1: 5$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.54^{\#}(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{Car}-\mathrm{H}), 10.38^{*}(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{\mathrm{ar}-\mathrm{H}}$), $9.96-9.83^{\#,{ }^{*}}\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}} \mathrm{H}\right.$), $8.57^{\#}(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{CH}), 8.51$
 $-8.43^{*}\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.33^{\#}\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.31-8.22^{\#}$ (m, $10 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.96^{\#}\left(\mathrm{dd}, J=8.1,6.4 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.87^{*}(\mathrm{dd}, J=8.0$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.74^{\#}(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 10 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.52^{*}(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H})$, $7.42^{*}(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.37^{\#}\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.31^{\#}(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 5 \mathrm{H}$, $\mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.27-7.18^{\#}\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, , superimposed by solvent signal), $7.19^{*}(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.16^{\#}\left(\mathrm{~s}, 10 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.12^{*}\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.02^{\#}(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.10 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}-}-\mathrm{H}\right), 6.92^{*}\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 5.13^{*}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.93^{\#}(\mathrm{~s}, 5 \mathrm{H}, \mathrm{OH})$,
$4.63-4.55^{\#^{*}{ }^{*}}(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}), 2.34^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.14^{\#}\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30^{*}(\mathrm{~s}, 18 \mathrm{H}$, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22^{\#}\left(\mathrm{~s}, 90 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Major ${ }^{\#} \delta=195.0(\mathrm{~s}$, CO), $153.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 145.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 144.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 143.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 137.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.5(\mathrm{~s}$, $2 \times \mathrm{C}_{\mathrm{ar}}$), $135.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 134.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 130.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.2$ $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 125.8(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 72.9(\mathrm{~d}, \mathrm{CH}), 58.4(\mathrm{~d}, \mathrm{CH}), 34.3\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.1\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR-signals corresponding to the minor diastereoisomer ${ }^{*}$ could not be assigned unambiguously due to their low intensity. HRMS (ESI +): m/z $\left[\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{ClNO}_{2}\right]^{+}$: calcd. 540.2664, found 540.2674. DA607

2-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-oxo-3-phenyl-1-(p-tolyl)propan-2-

$\mathbf{y l}$)isoquin-olin-2-ium bromide ($\mathbf{7 h}$) was synthesized according to general procedure C from $\mathbf{3 b}(50 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathbf{1 h H}^{+} \mathbf{B r}^{-}(53 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(50 \mu 1,0.36 \mathrm{mmol})$. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water ($1 \times 20 \mathrm{~mL}$), and 2 N HCl $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. 7h was obtained as colorless solid ($103 \mathrm{mg}, 0.16 \mathrm{mmol}$, quant., $d r 1: 3$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=11.83^{\#,{ }^{*}}\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 9.43^{\#}\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 9.00^{*}(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.74^{\#}(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}), 8.66^{*}\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.55^{*}(\mathrm{~d}, J=$ $\left.8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.51^{*}(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 8.43^{\#}\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right)$, (Bu $8.06-7.90^{\#, *}\left(\mathrm{~m}, 13 \mathrm{H}, 5 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.86-7.74^{\#,{ }^{*}}\left(\mathrm{~m}, 11 \mathrm{H}, 7 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.62^{*}(\mathrm{~d}$, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.48-7.24^{\#,{ }^{*}}(\mathrm{~m}, 22 \mathrm{H}, 8 \times \mathrm{Car}-\mathrm{H}$, superimposed by $6.97^{\#}\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}} \mathrm{H}\right), 5.27^{*}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.94^{\#}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OH}), 4.83-4.72^{\#^{\#,}}{ }^{*}(\mathrm{~m}, 4$ $\mathrm{H}, 2 \times \mathrm{CH}$), $2.16^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05^{\#}\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28^{\#}\left(\mathrm{~s}, 54 \mathrm{H}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.17^{*}(\mathrm{~s}, 18 \mathrm{H}$, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=196.5^{\#}(\mathrm{~s}, \mathrm{CO}), 195.0^{*}(\mathrm{~s}, \mathrm{CO}), 153.3^{\#}(\mathrm{~s}, \mathrm{Car})$, $153.1^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 151.4^{\#}\left(\mathrm{br} \mathrm{d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 152.3^{*}\left(\mathrm{brd}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 137.5^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 137.4^{\#}\left(\mathrm{~s}, \mathrm{Car}_{\mathrm{ar}}\right), 137.3^{*}$ (d, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 137.1^{*}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 136.9^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.4^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.4^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.3^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 135.0^{\#}$ $\left(\mathrm{s}, \mathrm{C}_{\mathrm{ar}}\right), 135.0^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.9^{*}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 134.9^{\#}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.8^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.4^{\#}\left(\mathrm{~d}, \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 134.1^{\#}$ (br d, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 132.3^{*}\left(\mathrm{br} \mathrm{d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 131.8^{\#}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 131.7^{*}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 131.1^{*}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.9^{*}$ $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.8^{\#}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}-\mathrm{H}}\right), 130.5^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 130.4^{\#}(\mathrm{~d}, 2 \times \mathrm{Carar} \mathrm{H}), 130.0^{\#}(\mathrm{~d}, 2 \times \mathrm{Carar} \mathrm{H}), 129.8^{*}$ $\left(\mathrm{d}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 129.7^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 129.2^{\#}(\mathrm{~d}, \mathrm{Carar}-\mathrm{H}), 128.7^{\#}(\mathrm{~d}, 2 \times \mathrm{Car}-\mathrm{H}), 128.7^{*}(\mathrm{~d}, 2 \times \mathrm{Carar} \mathrm{H}), 128.5^{\#}$ $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.4^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.5^{*}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 127.4^{\#},\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right) 127.3^{\#,{ }^{*}}\left(\mathrm{~s}, 2 \times \mathrm{C}_{\mathrm{ar}}\right), 126.8^{\#}(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.6^{*}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 125.8^{\#}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 125.2^{*}\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 124.7^{\#}\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 72.1^{\#}(\mathrm{~d}$, $\mathrm{CH}), 71.9^{*}(\mathrm{~d}, \mathrm{CH}), 58.0^{\#}(\mathrm{~d}, \mathrm{CH}), 57.3^{*}(\mathrm{~d}, \mathrm{CH}), 34.4^{\#}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.3^{*}\left(\mathrm{~s}, 2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right)$,
$30.2^{\#}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.2^{*}\left(\mathrm{q}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.0^{*}\left(\mathrm{q}, \mathrm{CH}_{3}\right), 20.9^{\#}\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (ESI+$): m / z$ $\left[\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{NO}_{2}\right]^{+}$: calcd. 556.3210, found 556.3214. DA610

4.5.5 Reactions with Benzylidene Malononitrile 5a

1,1-Dicyano-3-(4-(dimethylamino)pyridin-1-ium-1-yl)-2-(4-methoxyphenyl)-4-oxo-4-

 phenylbutan-1-ide (12f) was generated by mixing from $\mathbf{5 a}$ ($46 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathbf{1 f H}{ }^{+} \mathbf{B r}^{-}$ ($80 \mathrm{mg}, 0.25 \mathrm{mmol}$), and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, $35 \mathrm{mg}, 0.25 \mathrm{mmol}$) in DMSO- d_{6} at room temperature. The reaction mixture was analyzed by NMR. 12f was obtained as a mixture of diastereoisomers (quant. conversion, $d r$ 1:3). ${ }^{\#}$ corresponds to signals of the major diastereoisomer, * to signals of the minor diastereoisomer. Integrals for the minor diastereoisomer* are set to 1.0 for one proton of the minor diastereoisomer** The Spectra are contaminated by traces of $\mathbf{1} \mathbf{f H}^{+} \mathbf{B r}^{-}$and one equiv. of $\mathrm{TBDH}^{+} \mathrm{Br}^{-} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta=3.03^{\#}\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.19^{*}\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, superimposed by $\mathrm{TBDH}^{+} \mathrm{Br}^{-}$signal), $3.58^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65^{\#}\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85^{*}(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.00^{\#}(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}), 6.25^{*}(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.49^{\#}(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}), 6.65^{*}(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, H), $7.34-7.40^{\#,{ }^{*}}\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.58-7.63^{\#,{ }^{*}}\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.69-$ $7.74^{\#, *}\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.34-8.40^{\#}\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.53-8.59^{\#, *}\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. ${ }^{13}$ C NMR (100 MHz , DMSO- d_{6}) Major ${ }^{\#} \delta=16.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}{ }^{-}\right), 39.7\left(\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right) 2\right.$, superimposed by $\mathrm{TBDH}^{+} \mathrm{Br}^{-}$and solvent signal), $45.3(\mathrm{~d}, \mathrm{CH}), 54.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 67.2(\mathrm{~d}, \mathrm{CH}), 107.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $107.3(\mathrm{~s}, 2 \times \mathrm{CN}), 113.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 141.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 155.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 157.6$ ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}$), 195.6 (s, CO). ${ }^{13} \mathrm{C}$ NMR-signals corresponding to the minor diastereoisomer ${ }^{*}$ could not be assigned unambiguously due to their low intensity. DA837

General Procedure D for the Synthesis of Products 13-14. Pyridinium salt 1 ($0.25-0.50 \mathrm{mmol}$), benzylidene malononitrile 5a ($0.25-1.00 \mathrm{mmol}$), and base ($0.721-1.00 \mathrm{mmol}$) were dissolved in DMSO $(0.2 \mathrm{M})$ at room temperature and stirred for the time indicated. Brine (20 mL) was added to the reaction mixture and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to obtain the crude products. The products 13-14 were recrystallized from ethanol.

2-Acetyl-3-(4-methoxyphenyl)cyclopropane-1,1-dicarbonitrile (13d) was synthesized according to general procedure D from $\mathbf{5 a}(184 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{1 d H}^{+} \mathbf{C l}^{-}(172 \mathrm{mg}, 1.00 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(112 \mathrm{mg}, 1.00 \mathrm{mmol})$ by stirring for 1 h . The crude product was purified by column chromatography (silica gel, n-pentane:EtOAc $=5: 1$). 13d was obtained as colorless solid ($128 \mathrm{mg}, 533 \mu \mathrm{~mol}, 53 \%$). A small sample of $\mathbf{1 3 d}$ was recrystallized from EtOH for the determination of the melting point. $\mathbf{M p}(\mathrm{EtOH}): 161{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.25$ $-7.17\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 6.98-6.90\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$,
 3.60 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.33 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 2.56 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=197.3(\mathrm{~s}, \mathrm{CO}), 160.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{~d}, 2 \times \mathrm{Car}^{-}\right.$ H), $120.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 114.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 112.3(\mathrm{~s}, \mathrm{CN}), 111.6(\mathrm{~s}, \mathrm{CN}), 55.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 38.7(\mathrm{~d}, \mathrm{CH})$, $38.6(\mathrm{~d}, \mathrm{CH}), 31.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 15.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$: calcd. 240.0899, found 240.0904. MS (EI) $m / z=240$ (2), 198 (24), 155 (8), 127 (7), 43 (100). DA839-3
${ }^{\mathbf{1}} \mathbf{H}$ NMR monitoring of the formation of $\mathbf{1 3 d} .5 \mathbf{5 a}(46 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathbf{1 d H}^{+} \mathbf{C l}^{-}(43 \mathrm{mg}$, 0.25 mmol), and $\mathrm{KO}^{t} \mathrm{Bu}(34.2 \mathrm{mg}, 305 \mu \mathrm{~mol})$ were combined in 2.5 mL DMSO- d_{6} at room temperature. The reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR after 5,30 , and 60 min with $\mathrm{HO}^{\dagger} \mathrm{Bu}$ as internal standard. DA839-2

Conversion $5 \mathrm{~min}: \mathbf{5 a} 0 \%$, 12d $\sim 40 \%$, 13d $\sim 60 \%$. Conversion 30 min: 5a 0%, 12d $\sim 21 \%$, 13d ~ 79\%. Conversion 60 min : 5a 0%, 12d $\sim 0 \%, ~ 13 d \sim 100 \%$.

2-Benzoyl-3-(4-methoxyphenyl)cyclopropane-1,1-dicarbonitrile (13e) was synthesized according to general procedure D from $\mathbf{5 a}(92 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathbf{1 e H}^{+} \mathbf{B r}^{-}(140 \mathrm{mg}, 503 \mu \mathrm{~mol})$,
 and $\mathrm{NEt}_{3}(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$ by stirring for 30 min . 13e was obtained as colorless needles ($102 \mathrm{mg}, 337 \mu \mathrm{~mol}, 67 \%$). Mp (EtOH): $164^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.10\left(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.78-7.68$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $7.65-7.55\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.30\left(\mathrm{dd}, J=9.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.01$

- $6.93\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 4.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.83$
$\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=189.1(\mathrm{~s}, \mathrm{CO}), 160.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 135.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $135.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 121.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $114.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 112.5(\mathrm{~s}, \mathrm{CN}), 111.8(\mathrm{~s}, \mathrm{CN}), 55.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 38.7(\mathrm{~s}, \mathrm{CH}), 35.9(\mathrm{~d}, \mathrm{CH})$, $15.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$: calcd. 302.1055, found 302.1052. MS (EI) $\mathrm{m} / \mathrm{z}=$ 302 (10), 105 (100), 77 (35). DA613

Table 4.12. Crystallographic data of 13 e .

${ }^{1} \mathbf{H}$ NMR monitoring of the formation of $\mathbf{1 3 e} .5 \mathbf{5}(30 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathbf{1 e H} \mathbf{H r}^{+}(43 \mathrm{mg}$, $0.15 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(40 \mu \mathrm{l}, 29 \mathrm{mg}, 0.29 \mathrm{mmol})$ were dissolved in $1 \mathrm{~mL} \mathrm{DMSO}-d_{6}$ and the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR after 5 , and 30 min . The conversion was determined from the ratio of the integrals over the methoxy $\left(\mathrm{OCH}_{3}\right)^{1} \mathrm{H}$ NMR signals of $\mathbf{5 a}$ and $\mathbf{1 3 e}$, respectively. DA591-2

Conversion 5 min: 5a 59\%, 13e 41%.
Conversion 30 min : 5a 18%, 13e 82%.

2-Benzoyl-3-(4-methoxyphenyl)cyclopropane-1,1-dicarbonitrile (13g = 13e) was synthesized according to general procedure D from $\mathbf{5 a}(92 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathbf{1} \mathbf{g H}^{+} \mathbf{B r}^{-}(140 \mathrm{mg}$, $448 \mu \mathrm{~mol})$, and $\mathrm{NEt}_{3}(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$ by stirring for $30 \mathrm{~min} . \mathbf{1 3 g}(=\mathbf{1 3 e})$ was obtained as colorless needles ($128 \mathrm{mg}, 424 \mu \mathrm{~mol}, 95 \%$). DA620
$\mathbf{M p}(\mathrm{EtOH}): 164^{\circ} \mathrm{C}$. (spectral data see above).
3-Benzoyl-2-(4-methoxyphenyl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1(10bH)-dicar-bonitrile (14h) was synthesized according to general procedure D from 5a (46 mg , $0.25 \mathrm{mmol}), \mathbf{1 h H}^{+} \mathbf{B r}^{-}(82 \mathrm{mg}, 0.25 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$ by stirring for 5 min . 14h was obtained as orange needles ($94 \mathrm{mg}, 0.22 \mathrm{mmol}, 88 \%, d r$ 10:1). 14h decomposes slowly in CDCl_{3} at room temperature. Mp. (anti-endo-14h; EtOH): $130-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.84-7.77\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.62-7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.49-7.39(\mathrm{~m}, 5 \mathrm{H}, 7-$ $\left.\mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.30(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.19(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.07(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 6.96\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 6.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.58$ ($\mathrm{s}, 1 \mathrm{H}, 10^{b}-\mathrm{H}$), $5.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.33(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=195.1(\mathrm{~s}, \mathrm{CO}), 160.7$ ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 134.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 134.4 (d, $\mathrm{Car}_{\mathrm{ar}}-\mathrm{H}$), 133.1 (d, C-5), 132.3 ($\mathrm{s}, \mathrm{C}-6^{a}$), 130.1 (d, C-8), 130.1 (d, $\left.2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.9(\mathrm{~d}, \mathrm{C}-9), 126.4(\mathrm{~d}, \mathrm{C}-7), 125.6(\mathrm{~d}, \mathrm{C}-$ 10), 124.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), $123.6\left(\mathrm{~s}, \mathrm{C}-10^{a}\right), 115.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 114.6(\mathrm{~s}, \mathrm{CN}), 113.5(\mathrm{~s}, \mathrm{CN}), 101.6$ (d,
 C-6), 70.6 (d, C-10 ${ }^{b}$), 70.6 (d, C-3), $55.5\left(\mathrm{q}, \mathrm{OCH}_{3}\right.$), 54.3 (d, C-2), 50.1 (s, C-1). HRMS (EI): $m / z(\mathrm{M}-2 \mathrm{H})\left[\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}\right]$: calcd. 429.1477, found 429.1471. MS (EI) $m / z=429$ (4), 247 (13), 246 (25), 185 (14), 184 (100), 141 (23), 129 (84), 105 (50), 77 (34). DA615

1-Benzoyl-2-(4-methoxyphenyl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-
dicarbo-nitrile (14i) was synthesized according to general procedure D from 5a $\mathbf{(9 2 \mathrm { mg } \text { , }}$ $0.50 \mathrm{mmol}), \mathbf{1 i H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, and $\mathrm{NEt}_{3}(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$
 by stirring for 5 min . 14i was obtained as red needles ($146 \mathrm{mg}, 338 \mu \mathrm{~mol}$, $68 \%, d r$ 10:1). Mp. (anti-endo-14i; EtOH): $130-131^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75-7.67\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.60-7.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.49-7.41(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}$), $7.39-7.31(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.02-6.90(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}, 9-\mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 6.78-$ 6.65 (m, $2 \mathrm{H}, 8-\mathrm{H}, 4-\mathrm{H}), 5.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.80\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 3^{a}-\mathrm{H}\right), 5.52$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=197.7(\mathrm{~s}, \mathrm{CO}), 161.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 141.0\left(\mathrm{~s}, \mathrm{C}-9^{a}\right), 134.6(\mathrm{~d}, \mathrm{Car}-\mathrm{H}), 134.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 131.1$ (d, C-8), $130.3(\mathrm{~d}, \mathrm{C}-7), 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.5(\mathrm{~d}$, C-6), 123.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 119.8 ($\mathrm{s}, \mathrm{C}-5^{a}$), 119.4 (d, C-4), 115.7 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 115.1 (d, C-5), 112.9 (s, CN), 112.2 (s, CN), 109.9 (d, C-9), 70.5 (d, C-3 ${ }^{a}$), 65.6 (d, C-1), 57.1 (d, C-2), 55.5 (q, OCH_{3}), 49.2 (s, C-3). HRMS (EI): $m / z\left[\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}\right]$: calcd. 431.1634, found 431.1646. MS (EI) $m / z=246$ (4), 185 (15), 184 (100), 141 (20), 129 (47), 114 (27), 105 (14), 43 (20). DA6212

4.5.6 Reactions with \boldsymbol{p} - NO_{2}-Chalcone $\mathbf{5 b}$

2-(4-Nitrophenyl)-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-1,3-

diyl)bis(phenylmeth-anone) (15i) was synthesized in analogy to procedure D from chalcone 5b ($127 \mathrm{mg}, 504 \mu \mathrm{~mol}$), pyridinium salt $\mathbf{1 i H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, and $\mathrm{NEt}_{3}(100 \mu \mathrm{l}$, $721 \mu \mathrm{~mol})$ in DMSO $(5 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. $\mathbf{1 5 i}$ was obtained as orange solid ($68.9 \mathrm{mg}, 138 \mu \mathrm{~mol}$, 34% determined from ratio of $\mathbf{5 b} \mathbf{\mathbf { b }} \mathbf{1 5 i}$ by ${ }^{1} \mathrm{H}$ NMR, $d r$ 5:27:68 after recrystallization for anti-1-endo-2-exo adduct), but it partially decomposed to $\mathbf{5 b}$ during work-up and recrystallization. Spectra are contaminated by $\mathbf{5 b}$ due to the decomposition of $\mathbf{1 5 i}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta=8.02-7.97\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.89-7.84\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.72-7.70\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$
 H), $7.66-7.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, superimposed by 5b), $7.58-7.50(\mathrm{~m}, 2 \mathrm{H}$, $2 \times \mathrm{C}_{\text {ar- }} \mathrm{H}$, superimposed by 8), $7.50-7.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.35-7.28(\mathrm{~m}$, $\left.4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.94(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.88(\mathrm{dd}, J=7.4$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.63(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 6.27(\mathrm{dd}, J=9.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $6.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 5.94\left(\mathrm{dt}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{a}-\mathrm{H}\right), 5.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}), 5.25(\mathrm{dd}, J=10.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.89(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.61(\mathrm{dd}, J=$ $8.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=200.3(\mathrm{~s}, \mathrm{CO}), 198.6(\mathrm{~s}, \mathrm{CO}), 145.2$
($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), $142.3\left(\mathrm{~d}, \mathrm{C}-9^{a}\right), 137.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 137.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 133.6(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.2(\mathrm{~d}, \mathrm{C}-8), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.9(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.3(\mathrm{~d}, \mathrm{C}-6), 127.1(\mathrm{~d}, \mathrm{C}-5), 125.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 123.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\text {ar }}-\mathrm{H}\right), 121.4$ (s , C5^{a}), 120.1 (d, C-4), 118.2 (d, C-7), 111.7 (d, C-9), 68.5 (d, C-1), 61.9 (d, C-3 ${ }^{a}$), 55.8 (d, C-3), 48.6 (d, C-2). HRMS (EI): $m / z[\mathrm{M}-\mathrm{H}]\left[\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{-}$: calcd. 499.1663, found 499.1644. MS (EI): $m / z=499$ (8), 253 (59), 236 (38), 178 (25), 130 (17), 105 (100), 77 (77). DA886

General Procedure E for the Synthesis of Indolizines 16. Pyridinium salt $\mathbf{1 H}^{+} \mathbf{X}^{-}$ ($500 \mu \mathrm{~mol}$), chalcone $\mathbf{5 b}(500 \mu \mathrm{~mol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.75 \mathrm{mmol})$ were dissolved in DMSO $(0.1 \mathrm{M})$ at room temperature and stirred for 5 min . $\mathrm{TPCD}(821 \mu \mathrm{~mol})$ was added and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$. The reaction mixture was cooled to room temperature and EtOAc (5 mL) was added. The resulting precipitate was filtered off and washed with EtOAc $(20 \mathrm{~mL})$. The filtrate was concentrated in vacuo and subjected to column chromatography (silica, n-pentane : $\mathrm{EtOAc}=5: 1$). The products were recrystallized from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOAc}_{\text {or }} \mathrm{Et}_{2} \mathrm{O}$.

Ethyl 1-benzoyl-2-(4-nitrophenyl)indolizine-3-carboxylate (16a) was synthesized according to general procedure E from $\mathbf{1 a H}^{+} \mathbf{B r}^{-}(123 \mathrm{mg}, 500 \mu \mathrm{~mol})$, chalcone $\mathbf{5 b}$ (128 mg , $505 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(186 \mathrm{mg}, 1.75 \mathrm{mmol})$, and TPCD ($500 \mathrm{mg}, 821 \mu \mathrm{~mol}$). 16a was obtained as brownish solid ($112 \mathrm{mg}, 270 \mu \mathrm{~mol}, 54 \%$). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right): 154^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=9.67(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.02-7.94\left(\mathrm{~m}, 3 \mathrm{H}, 8-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.47(\mathrm{ddd}, J=7.1$, $2.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.40-7.27\left(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}, 3 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.20-7.13\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $7.07(\mathrm{td}, J=7.0 \mathrm{~Hz}, 1.4,1 \mathrm{H}, 7-\mathrm{H}), 4.12\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}). ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=192.0(\mathrm{~s}, \mathrm{CO}), 161.4\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 146.9$
 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 142.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 139.8 ($\mathrm{s}, \mathrm{Carar}$), 138.9 ($\mathrm{s}, \mathrm{C}-8^{a}$), 136.5 ($\mathrm{s}, \mathrm{C}-2$), 131.9 (d,
 $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.6(\mathrm{~d}, \mathrm{C}-7), 122.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 119.6(\mathrm{~d}, \mathrm{C}-8), 115.5(\mathrm{~d}, \mathrm{C}-6), 115.4$ (br s, C-3), 114.8 (br s, C-1), $60.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 13.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}\right]$: calcd. 414.1216, found 414.1211. MS (EI): $m / z=415$ (28), 414 (100), 342 (18), 337 (23), 309 (24), 265 (17), 263 (10), 77 (10). DA541

1-Benzoyl-N,N-diethyl-2-(4-nitrophenyl)indolizine-3-carboxamide (16b). The pyridinium salt $\mathbf{1 b H} \mathbf{H}^{+} \mathbf{B r}^{-}(150 \mathrm{mg}$, $549 \mu \mathrm{~mol})$, and chalcone $\mathbf{5 b}(128 \mathrm{mg}, 505 \mu \mathrm{~mol})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and aq. $\mathrm{NaOH}(32 \%, 1 \mathrm{~mL})$ was added. The reaction mixture was stirred till $\mathbf{5 b}$ was consumed (monitored by TLC, $\sim 30 \mathrm{~min}$), then water $(20 \mathrm{~mL})$ was added and the organic layer was separated. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added to the extracts and the reaction mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$. The solvent was evaporated and the crude product was subjected to column chromatography (silica; n pentane:EtOAc $=10: 1$). 16b was obtained as yellow solid ($140 \mathrm{mg}, 317 \mu \mathrm{~mol}, 63 \%$). Mp ($\mathrm{Et}_{2} \mathrm{O}$): $199{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.18(\mathrm{dt}, J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.11(\mathrm{dt}$, $J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.99-7.86\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.55-7.43\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.37$ $-7.31\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.29-7.16\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, superimposed by solvent signal), $7.13-7.06\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.90(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.72\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHH}^{a}\right), 3.26$
 (br s, $1 \mathrm{H}, \mathrm{CH} H^{a}$), 3.01 (s, br, $1 \mathrm{H}, \mathrm{CHH}^{b}$), 2.59 (br s, $1 \mathrm{H}, \mathrm{CH} H^{b}$), 1.10 (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.60\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=191.8(\mathrm{~s}$, CO), 162.4 (s, CON), 146.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 140.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 139.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 137.3 ($\mathrm{s}, \mathrm{C}-$ $\left.8^{a}\right), 131.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 131.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.0(\mathrm{~s}, \mathrm{C}-$ 2), 124.8 (d, C-7), 124.7 (d, C-5), $123.0\left(\mathrm{~d}, 2 \times \mathrm{Carar}^{-H}\right), 120.1(\mathrm{~d}, \mathrm{C}-8), 118.6(\mathrm{~s}, \mathrm{C}-3), 114.7(\mathrm{~d}$, C-6), 111.3 ($\mathrm{s}, \mathrm{C}-1$), $43.0\left(\mathrm{brt}, \mathrm{CH}_{2}\right.$), 39.3 (br t, CH_{2}), 14.3 (br q, CH_{3}), 12.5 ($\mathrm{brq}, \mathrm{CH}_{3}$). HRMS (EI): $m / z\left[\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}\right]$: calcd. 441.4785, found 441.1682. MS (EI): $m / z=442$ (16), 441 (56), 369 (12), 343 (25), 342 (100), 336 (13), 266 (11), 265 (40), 246 (13), 219 (11), 105 (19). DA766

1-Benzoyl-2-(4-nitrophenyl)indolizine-3-carbonitrile hydrate (16c $\left.\cdot \mathbf{H}_{2} \mathrm{O}\right)$ was synthesized according to general procedure E from $\mathbf{1 c} \mathbf{H}^{+} \mathbf{B r}^{-}(100 \mathrm{mg}, 502 \mu \mathrm{~mol})$, chalcone $\mathbf{5 b}$ ($128 \mathrm{mg}, 505 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(186 \mathrm{mg}, 1.75 \mathrm{mmol})$, and TPCD ($500 \mathrm{mg}, 821 \mu \mathrm{~mol}$). 16c was obtained as yellow solid ($183 \mathrm{mg}, 475 \mu \mathrm{~mol}, 95 \%$). Mp (Et $2 \mathrm{O}: E t O A c 2: 1$): $191{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.19-8.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.84(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.56-7.45\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.38-7.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.31-7.16$
 (m, $3 \mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$, superimposed by solvent signal), $7.01(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.33\left(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 191.6 (s, CO), 147.6 ($\mathrm{s}, \mathrm{Carar}$, 140.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 139.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 138.3 ($\mathrm{s}, \mathrm{C}-8^{a}$), 132.6 ($\mathrm{s}, \mathrm{C}-2$), 132.0 (d, $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 131.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.5(\mathrm{~d}, \mathrm{C}-5), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.4(\mathrm{~d}$, C-7), 123.6 (d, $2 \times \mathrm{C}_{\mathrm{ar}-\mathrm{H}}$), 123.5 (br s, C-3), 119.4 (d, C-8), 115.2 (br s, C-1), 115.1 (d, C-6),
113.9 (s, CN). HRMS (EI): $m / z\left[\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}\right]$: calcd. 385.1063, found 385.1059. MS (EI): m / z $=386$ (24), 385 (100), 309 (12), 308 (60), 262 (18), 77 (11), 43 (13). DA540

1-(1-Benzoyl-2-(4-nitrophenyl)indolizin-3-yl)ethanone (16d) was synthesized according to general procedure E from $\mathbf{1 d H} \mathbf{C l}^{+}(86 \mathrm{mg}, 501 \mu \mathrm{~mol})$, chalcone $\mathbf{5 b}$ ($128 \mathrm{mg}, 505 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(186 \mathrm{mg}, 1.75 \mathrm{mmol})$, and TPCD ($500 \mathrm{mg}, 821 \mu \mathrm{~mol}$). $\mathbf{1 6 d}$ was obtained as yellow, needle-shaped crystals ($98 \mathrm{mg}, 0.25 \mathrm{mmol}, 50 \%$). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right): 168{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=10.04(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 1.0,1 \mathrm{H}, 5-\mathrm{H}), 8.15-8.07\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.85-7.77$
 (m, $1 \mathrm{H}, 8-\mathrm{H}), 7.52-7.43\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.41-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\right.$ H), $7.26-7.19\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.10(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 1.95$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=191.9(\mathrm{~s}, \mathrm{CO}), 189.4(\mathrm{~s}, \mathrm{CO})$, 147.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), $142.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 139.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 138.5\left(\mathrm{~s}, \mathrm{C}-8^{a}\right), 137.3(\mathrm{~s}, \mathrm{C}-2), 132.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $131.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.0(\mathrm{~d}, \mathrm{C}-5), 128.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.9(\mathrm{~d}, \mathrm{C}-7), 123.2$ (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 122.2 ($\mathrm{s}, \mathrm{C}-3$), 119.2 (d, C-8), 116.1 (d, C-6), 115.5 ($\mathrm{s}, \mathrm{C}-1$), 31.1 ($\mathrm{q}, \mathrm{CH}_{3}$). HRMS (EI): $m / z\left[\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\right]$: calcd. 384.1110, found 384.1105. MS (EI): $m / z=385$ (24), 384 (100), 369 (17), 307 (41). DA538-2
(2-(4-Nitrophenyl)indolizine-1,3-diyl)bis(phenylmethanone) (16e) was synthesized according to general procedure E from $\mathbf{1 e \mathbf { H } ^ { + }} \mathbf{B r}^{-}(140 \mathrm{mg}, 503 \mu \mathrm{~mol})$, chalcone $\mathbf{5 b}$ (128 mg , $505 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(186 \mathrm{mg}, 1.75 \mathrm{mmol})$, and TPCD ($500 \mathrm{mg}, 821 \mu \mathrm{~mol}$). 16e was obtained as yellow solid ($209 \mathrm{mg}, 468 \mu \mathrm{~mol}, 93 \%$). Mp ($\mathrm{Et}_{2} \mathrm{O}$): 225-226 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=9.67(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.49-7.38\left(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.38-7.30\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.29-7.19(\mathrm{~m}, 1$
 $\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$, superimposed by solvent signal), $7.19-6.94\left(\mathrm{~m}, 8 \mathrm{H}, 7-\mathrm{H}, 7 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H). ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=192.12$ (s, CO), 187.9 (s, CO), 146.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 140.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 139.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 139.1 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 139.1 ($\mathrm{s}, \mathrm{C}-8{ }^{a}$), 136.4 ($\mathrm{s}, \mathrm{C}-2$), 132.3 (d, CarH), $132.2\left(\mathrm{~d}, \mathrm{C}_{a r}-\mathrm{H}\right), 131.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{a r}-\mathrm{H}\right), 128.1(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.0(\mathrm{~d}, \mathrm{C}-5), 127.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.8(\mathrm{~d}, \mathrm{C}-7), 122.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 121.5(\mathrm{~s}, \mathrm{C}-$ 3), 119.6 (d, C-8), 116.0 (d, C-6), 114.4 ($\mathrm{s}, \mathrm{C}-1$). HRMS (EI): $m / z\left[\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right]$: calcd. 446.1267, found 446.1256. MS (EI): $m / z=447$ (33), 446 (100), 369 (42), 341 (10), 105 (36), 58 (23). DA539
(8-Chloro-2-(4-nitrophenyl)indolizine-1,3-diyl)bis(phenylmethanone) (16g) was synthesized according to general procedure E from $\mathbf{1 g \mathbf { H } ^ { + }} \mathbf{B r}^{-}(155 \mathrm{mg}, 496 \mu \mathrm{~mol})$, chalcone $\mathbf{5 b}$ $(128 \mathrm{mg}, 505 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(186 \mathrm{mg}, 1.75 \mathrm{mmol})$, and TPCD ($\left.500 \mathrm{mg}, 821 \mu \mathrm{~mol}\right) . \mathbf{1 6 g}$ was obtained in 85% yield ($204 \mathrm{mg}, 424 \mu \mathrm{~mol}, \mathbf{1 6 g}-(\mathbf{8 - C l}): \mathbf{1 6 g}-(6-\mathbf{C l}) 4: 1$ determined from crude product) after column chromatography. Pure $\mathbf{1 6 g} \mathbf{- (8 - C l})$ was obtained as yellow solid after recrystallization ($125 \mathrm{mg}, 260 \mu \mathrm{~mol}, 52 \%$). Mp 16g-(8-Cl) (Et 2 O$): 241{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.65(\mathrm{dd}, J=7.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.69(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Carar}-\mathrm{H}), 7.67$ - $7.62\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.47-7.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Carar}-\mathrm{H}), 7.31-$ $7.27\left(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.21-7.12\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.03(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=193.5(\mathrm{~s}, \mathrm{CO}), 187.4$ (s, CO), 146.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 140.1 ($\mathrm{s}, \mathrm{C}-8^{a}$), 139.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 138.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 135.0 ($\mathrm{s}, \mathrm{C}-2$), 133.7 (d,
 $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 132.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 132.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 131.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $129.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 126.5(\mathrm{~d}, \mathrm{C}-$ 5), 125.5 (d, C-7), 124.7 (s, C-8), 122.6 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 121.4 (s, C-3), 116.3 (s, C-1), 114.4 (d, C-6). HRMS (EI): $m / z\left[\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4}\right]$: calcd. 480.0877, found 480.0871. MS (EI): $m / z=482$ (34), 481 (28), 480 (100), 405 (22), 404 (17), 403 (65), 331 (13), 231 (14), 181 (17), 119 (24), 105 (42), 44 (94). DA543
(2-(4-Nitrophenyl)pyrrolo[2,1-a]isoquinoline-1,3-diyl)bis(phenylmethanone) (16h) was synthesized according to general procedure E from $\mathbf{1} \mathbf{h H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, chalcone $\mathbf{5 b}$ ($128 \mathrm{mg}, 505 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(186 \mathrm{mg}, 1.75 \mathrm{mmol})$, and TPCD ($500 \mathrm{mg}, 821 \mu \mathrm{~mol}$). 16h was obtained as orange solid ($227 \mathrm{mg}, 457 \mu \mathrm{~mol}, 91 \%$). Mp ($\mathrm{Et}_{2} \mathrm{O}$): 203-204 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 7.78-7.63$ (m, $\left.5 \mathrm{H}, 7-\mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.57-7.49(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 7.46\left(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $7.43-7.35(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}, \mathrm{Car}-\mathrm{H}), 7.27-7.10(\mathrm{~m}, 6 \mathrm{H}, 6-\mathrm{H}, 5 \times \mathrm{Car}-\mathrm{H}$, superimposed by solvent signal), $7.03(\mathrm{dd}, J=10.5,4.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=195.8(\mathrm{~s}$, CO), 187.7 (s, CO), 146.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 140.7 ($\mathrm{s}, \mathrm{C}-10^{b}$), 139.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 138.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 134.0 (d, CarH), 133.3 (s, C-2), 132.3 (d, Car-H), 132.2 (s, Car), $131.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.8$ (s, C-10 ${ }^{a}$), $129.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.8(\mathrm{~d}, \mathrm{C}-8), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.4$ (d,
 C-9), 128.0 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 127.5 (d, C-7), 125.0 (d, C-10), 124.4 (d, C-5), $124.0\left(\mathrm{~s}, \mathrm{C}-\mathrm{b}^{a}\right), 122.53(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}), 122.5(\mathrm{~s}, \mathrm{C}-3), 117.7(\mathrm{~s}, \mathrm{C}-1), 115.2$ (d, C-6). HRMS (EI): $m / z\left[\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\right]$: calcd. 496.1423, found 496.1417. MS (EI): $m / z=497$ (37), 496 (100), 466 (16), 419 (39), 105 (28), 77 (15). DA546
(2-(4-Nitrophenyl)pyrrolo[1,2-a]quinoline-1,3-diyl)bis(phenylmethanone) (16i). The pyridinium salt $\mathbf{1 i H}{ }^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, and chalcone $\mathbf{5 b}(128 \mathrm{mg}, 500 \mu \mathrm{~mol})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and aq. $\mathrm{NaOH}(32 \%, 1 \mathrm{~mL})$ was added. The reaction mixture was stirred till $\mathbf{5 b}$ was consumed (monitored by TLC, $\sim 30 \mathrm{~min}$), then water (20 mL) was added and the organic layer was separated. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added to the extracts, and the mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$. The solvent was evaporated, and the crude product was subjected to column chromatography (silica; n-pentane:EtOAc $=$ 10:1). 16i was obtained as yellow solid ($192 \mathrm{mg}, 387 \mu \mathrm{~mol}, 77 \%$). Mp ($\mathrm{Et}_{2} \mathrm{O}$): $225^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.84(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.78-7.66(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Car}-\mathrm{H}), 7.64-$ $7.49\left(\mathrm{~m}, 5 \mathrm{H}, 6-\mathrm{H}\right.$ or $\left.9-\mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.47(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}$ or $9-\mathrm{H}, 7-\mathrm{H}$ or $\left.8-\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.28-7.06\left(\mathrm{~m}, 7 \mathrm{H}, 7-\mathrm{H}\right.$ or $8-\mathrm{H}, 6 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$, superimposed by solvent signal). ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=192.2$ (s, CO), 190.3 (s, CO), 146.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 140.1 (s ,
 C_{ar}), 139.3 ($\mathrm{s}, \mathrm{C}-5^{a}$ or $\mathrm{C}-9^{a}$), 137.6 ($\mathrm{s}, \mathrm{C}-5^{a}$ or $\mathrm{C}-9^{a}$), 136.6 ($\mathrm{s}, \mathrm{C}-3^{a}$), 134.2 (d, C-7 or C-8), 132.6 (s, Car), 132.4 (d, C-7 or C-8), 131.9 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $131.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 129.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $129.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.1(\mathrm{~d}, \mathrm{C}-5), 125.6(\mathrm{~d}, \mathrm{C}-6$ or $\mathrm{C}-9)$, 125.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), $125.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 122.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 118.6$ (d, C-6 or C-9), 118.0 (d, C-4), 115.8 (s , C_{ar}). C-1, C-2, and C-3 could not be assigned unambiguously and are therefore given as C_{ar}. HRMS (EI): $m / z\left[\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\right]$: calcd. 496.1423, found 496.1416. MS (EI): $m / z=497$ (37), 496 (100), 420 (10), 419 (32), 391 (10), 315 (10), 105 (37), 77 (19), 44 (24), 43 (32). DA5452

4.5.7 Reactions with Nitrostyrene 5c

(2-(4-Methoxyphenyl)-3-nitro-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinolin-1-
$\mathbf{y l}$)(phenyl)methanone (19i). $\mathrm{NEt}_{3}(160 \mu 1,1.15 \mathrm{mmol})$ was added to a solution of $\mathbf{1 i H}^{+} \mathbf{B r}^{-}$ ($368 \mathrm{mg}, 1.12 \mathrm{mmol}$) and nitrostyrene $\mathbf{5 c}(200 \mathrm{mg}, 1.12 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. The solution was stirred for 30 min , then water $(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$, and
 dried over MgSO_{4}. The solvent was evaporated, and the resulting solid was recrystallized from CHCl_{3}. 19i was obtained as yellow solid (280 mg , $655 \mu \mathrm{~mol}, 59 \%$, single diastereoisomer). Mp (Et2O): $166-167{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.76(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Carar}-\mathrm{H}$), $7.55-7.45(\mathrm{~m}, 1$
$\left.\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.33\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.99-6.93\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.92-6.84(\mathrm{~m}, 2$ H, $5-\mathrm{H}, 6-\mathrm{H}), 6.59-6.46\left(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.05(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 5.92(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.88-5.80\left(\mathrm{~m}, 1 \mathrm{H}, 3^{a}-\mathrm{H}\right), 5.59(\mathrm{dd}, J=10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 5.53$ (dd, $J=5.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.76(\mathrm{dd}, J=9.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. ${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}) $\delta 198.4$ (s, CO), 158.3 (s, Car), 141.7 ($\mathrm{s}, \mathrm{C}-4^{a}$), 135.6 (s, Car), $133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.6(\mathrm{~d}, 2 \times \mathrm{Car}-\mathrm{H}), 129.6(\mathrm{~d}, \mathrm{C}-6), 128.4(\mathrm{~d}, 2 \times \mathrm{Car}-\mathrm{H}), 128.2(\mathrm{~d}, \mathrm{C}-7), 128.0$ (d, $2 \times{ }^{\text {Car-H }}$), 127.5 (d, C-7 ${ }^{a}$), 127.3 (s, C-8), 119.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 117.6 (d, C-9), 117.2 (d, C-5), 113.4 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 109.8 (d, C-4), 95.5 (d, C-1), 66.8 (d, C-3), 64.4 (d, C-3 ${ }^{a}$), 55.0 (q, OCH3), 47.9 (d, C-2). DA323

2-(4-Methoxyphenyl)-1-nitro-2,3-dihydroindolizine-3-carbonitrile (20c). $\mathrm{NEt}_{3}(180 \mu \mathrm{l}$, $1.30 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{1} \mathbf{c H}^{+} \mathbf{B r}^{-}(245 \mathrm{mg}, 1.23 \mu \mathrm{~mol})$ and $\mathbf{5 c}(200 \mathrm{mg}$, $1.12 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred until $\mathbf{5 c}$ was consumed
 (monitored by TLC; ~ 15 min). DDQ ($280 \mathrm{mg}, 1.23 \mathrm{mmol}$) was added and stirring was continued for 30 min at $20^{\circ} \mathrm{C}$. Water was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 20 \mathrm{ml})$, and dried over MgSO_{4}. The solvent was evaporated and the crude reaction product was recrystallized from CHCl_{3}. 20c was obtained as yellow solid ($159 \mathrm{mg}, 538 \mu \mathrm{~mol}, 48 \%$, $d r 1: 24$ after crystallization). 20c isomerized in DMSO- $d_{6}: \mathrm{CDCl}_{3}-$ solution (93:7) to $d r$ 1:1. ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- $d_{6}: \mathrm{CDCl}_{3} 100: 7$) $\delta=8.24-8.19$ (m, 2 $\mathrm{H}, 2 \times 5-\mathrm{H}), 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}, 2 \times 8-\mathrm{H}), 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}, 2 \times 7-\mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}, 2 \times 6-\mathrm{H}), 6.90-6.87(\mathrm{~m}, 4 \mathrm{H}$, $\left.4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.38(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.90(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.94-4.87(\mathrm{~m}, 2 \mathrm{H}$, $2 \times 2-\mathrm{H}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}: \mathrm{CDCl}_{3}$) $\delta=$ 158.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 158.9 ($\mathrm{s}, \mathrm{Car}_{\mathrm{ar}}$), 148.7 ($\mathrm{s}, \mathrm{C}-8^{a}$), 148.6 ($\mathrm{s}, \mathrm{C}-8^{a}$), 143.9 (d, C-5), 143.6 (d, C-5), 137.5 (d, C-7), 137.4 (d, C-7), 130.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 129.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 129.2 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 128.9 (d, $2 \times \mathrm{C}_{\mathrm{ar}}$ H), 117.8 (d, C-6), 117.6 (d, C-6), 116.4 (s, C-1), 115.7 (d, C-8), 115.5 (d, C-8), 114.3 (s, C-1), $114.1(\mathrm{~s}, \mathrm{CN}), 114.0(\mathrm{~s}, \mathrm{CN}), 113.7\left(\mathrm{~d}, 4 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 60.6(\mathrm{~d}, \mathrm{C}-3), 59.8(\mathrm{~d}, \mathrm{C}-3), 55.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $55.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 48.3$ (d, C-2), 45.5 (d, C-2). DA321

General Procedure \mathbf{E} for the Synthesis of Indolizines 21. Pyridinium salt $\mathbf{1 H}^{+} \mathbf{X}^{-}$ ($0.50-0.60 \mathrm{mmol}$), nitrostyrene $\mathbf{5 c}(500 \mu \mathrm{~mol})$, and $\mathrm{NEt}_{3}(0.7 \mathrm{mmol})$ were dissolved in DMSO $(0.1 \mathrm{M})$ at room temperature and stirred for $5 \mathrm{~min} . \mathrm{MnO}_{2}(1.25 \mathrm{mmol})$ or TPCD ($821 \mu \mathrm{~mol}$) were added and the suspension was heated in a microwave reactor at $100^{\circ} \mathrm{C}(5 \mathrm{~W})$ for 1 h . The reaction mixture was cooled to room temperature and EtOAc (5 mL) was added. The resulting precipitate was filtered off and washed with EtOAc (20 mL). Brine (50 mL) was added to the filtrate and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and subjected to a column chromatography (silica, n-pentane:EtOAc $=10: 1$). The products were recrystallized from $E t_{2} \mathrm{O}: E t O A c$ or $\mathrm{Et}_{2} \mathrm{O}$.

Ethyl 2-(4-methoxyphenyl)-1-nitroindolizine-3-carboxylate (21a). From $\mathbf{1 a H}^{+} \mathbf{B r}^{-}$ $(123 \mathrm{mg}, 500 \mu \mathrm{~mol})$, nitrostyrene $5 \mathbf{5}(90 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{NEt}_{3}(80 \mu 1,0.58 \mathrm{mmol})$, and MnO_{2} $(109 \mathrm{mg}, 1.25 \mathrm{mmol})$ according to general procedure E. 21a was obtained as orange needles ($91 \mathrm{mg}, 0.27 \mathrm{mmol}, 54 \%) . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 142{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.70(\mathrm{dt}, J=$ $7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.59(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.57(\mathrm{ddd}, J=9.1,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.29-7.19\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, superimposed by solvent signal), $7.15(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}$,
 $1 \mathrm{H}, 6-\mathrm{H}), 7.01-6.92\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 4.08\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=161.6\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 159.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 134.3\left(\mathrm{~s}, \mathrm{C}-8^{a}\right), 130.5$ (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 129.4 (d, C-7), 128.4 (d, C-5), 125.0 ($\mathrm{s}, \mathrm{C}-2$), 124.8 (br s, C-1), 119.4 (d, C-8), 116.2 (d, C-6), 113.7 (s, C-3), $113.3\left(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}\right.$), $60.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 55.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.7\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}\right]$: calcd. 340.1059, found 340.1054. MS (EI) $m / z=341$ (18), 340 (100), 268 (10), 78 (11). DA575

N, N-Diethyl-2-(4-methoxyphenyl)-1-nitroindolizine-3-carboxamide

hydrate ($\mathbf{2 1 b} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$). Aq. $\mathrm{NaOH}(1 \mathrm{~mL}, 32 \%)$ was added to a suspension of $\mathbf{1 b H}^{+} \mathbf{B r}^{-}(150 \mathrm{mg}, 550 \mu \mathrm{~mol})$ and $\mathbf{5 c}(90 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at ambient temperature. The reaction was stirred until $\mathbf{5 c}$ was consumed (monitored by TLC, $\sim 30 \mathrm{~min}$). Water (20 mL) was added, the organic layer was separated, and the aqueous layer was washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chloranil ($244 \mathrm{mg}, 992 \mathrm{mmol}$) was added to the extract and the reaction was stirred for 3 h . The solvent was evaporated and the crude product was purified by column chromatography over silica (n -
 pentane:EtOAc $=10: 1$). 21b $\cdot \mathbf{H}_{2} \mathbf{O}$ was obtained as red solid (20 mg , $52 \mu \mathrm{~mol}, 10 \%) . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 180^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.54$
(dt, $J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.26(\mathrm{dt}, J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}$, $\left.2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 7.03-6.91(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.83-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}^{a}\right)$, $3.27-3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}{ }^{a}, \mathrm{CH} H^{b}\right), 2.75-2.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H^{b}\right), 1.70\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 1.08(\mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.66\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.7$ (s, CON), 160.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 133.6 ($\mathrm{s}, \mathrm{C}-8^{a}$), 131.9 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 128.1 (d, C-7), 125.9 (d, C-5), 125.7 ($\mathrm{s}, \mathrm{Car}_{\mathrm{ar}}$), 125.6 ($\mathrm{br} \mathrm{s}, \mathrm{C}-1$), 123.1 ($\mathrm{s}, \mathrm{C}-2$), 120.0 (d, C-8), 118.6 ($\mathrm{s}, \mathrm{C}-3$), 115.5 (d, C-6), $113.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 55.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 43.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 12.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}\right]$: calcd. 367.1532, found 367.1546. MS (EI) $m / z=367$ (51), 278 (32), 268 (100), 238 (15), 178 (9). DA768

2-(4-Methoxyphenyl)-1-nitroindolizine-3-carbonitrile (21c). From 1cH ${ }^{+} \mathbf{B r}^{-}$(100 mg, $502 \mu \mathrm{~mol}), 5 \mathrm{c}(90.0 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{NEt}_{3}(100 \mu \mathrm{l}, 724 \mu \mathrm{~mol})$, and $\mathrm{MnO}_{2}(109 \mathrm{mg}, 1.25 \mathrm{mmol})$ according to general procedure E. 21c was obtained as beige solid ($94 \mathrm{mg}, 0.32 \mathrm{mmol}, 64 \%$). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 175^{\circ} \mathrm{C}$ (decomp.). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.59(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 8.43(\mathrm{dt}, J=6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.62$ (ddd, $J=9.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.58-7.49$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.27-7.19(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}$, superimposed by solvent signal), $7.08-6.99(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}-}-\mathrm{H}$), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 136.3(\mathrm{~s}, \mathrm{Car})$, 134.4 ($\mathrm{s}, \mathrm{C}-8^{a}$), 131.5 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 130.1 (d, C-7), 125.9 (d, C-5), 121.0 (br s, C-1), 120.7 (s ,
 C-2), 120.4 (d, C-8), 116.9 (d, C-6), 114.2 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 112.0 (s, CN), 97.4 (s, C-3), $55.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): $m / z[\mathrm{M}+\mathrm{H}]^{+} ;\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}\right]$: calcd. 294.0879, found 294.1815. MS (EI) $m / z=294$ (21), 293 (100), 263 (31), 233 (20), 203 (22), 193 (14), 78 (21), 43 (15). DA581

1-(2-(4-Methoxyphenyl)-1-nitroindolizin-3-yl)ethanone (21d). From $\mathbf{1 d H}^{+} \mathbf{C l}^{-}(86 \mathrm{mg}$, 0.50 mmol), nitrostyrene $5 \mathbf{c}(90.0 \mathrm{mg}, 0.50 \mathrm{mmol})$, $\mathrm{NEt}_{3}\left(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol}\right.$), and MnO_{2} ($109 \mathrm{mg}, 1.25 \mathrm{mmol}$) according to general procedure E. 21d was obtained as yellow solid $(108 \mathrm{mg}, 0.35 \mathrm{mmol}, 70 \%) . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 173^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.07(\mathrm{dt}, J=$ $7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.62(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.64(\mathrm{ddd}, J=8.9,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.33-7.26\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.18(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=191.0(\mathrm{~s}, \mathrm{CO})$, 160.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 135.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 134.2 ($\mathrm{s}, \mathrm{C}-8^{\mathrm{a}}$), 130.7 (d, C-7), 130.6 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 129.4 (d, C-5),
 125.1 (br s, C-1), 124.7 ($\mathrm{s}, \mathrm{C}-2$), 121.9 ($\mathrm{s}, \mathrm{C}-3$), 119.1 (d, C-8), 116.9 (d, C6), $114.3\left(\mathrm{~d}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 55.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 30.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): m/z [$\left.\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right]$: calcd. 310.0954, found 310.0947. MS (EI) $m / z=311$ (20), 310 (100), 278 (34), 248 (10), 78 (10). DA580
(2-(4-Methoxyphenyl)-1-nitroindolizin-3-yl)(phenyl)methanone (21e). From $\mathbf{1 e H}^{+} \mathbf{B r}^{-}$ ($140 \mathrm{mg}, 503 \mu \mathrm{~mol}$), nitrostyrene $\mathbf{5 c}(90.0 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{NEt}_{3}(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$, and TPCD ($500 \mathrm{mg}, 821 \mu \mathrm{~mol}$) according to general procedure E. 21e was obtained as orange solid $(127 \mathrm{mg}, 341 \mu \mathrm{~mol}, 68 \%) . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 147{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.48(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.70-7.57(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}$), $7.27-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Car}-\mathrm{H}$, , superimposed by solvent signal), $7.17(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 7.11-7.03\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.58\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
 ($\mathrm{s}, \mathrm{C}-8^{a}$), $132.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 132.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.4$ (d, C-6), 129.4 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 128.2 (d, C5), $127.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 124.0$ (br s, C-1), 123.0 (s, C-2), 121.6 ($\mathrm{s}, \mathrm{C}-3$), 119.6 (d, C-8), 116.5
 (d, C-7), $113.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 55.4\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\right]$: calcd. 372.1110, found 372.1104. MS (EI) $m / z=373$ (26), 372 (100), 342 (22), 254 (11), 105 (31), 77 (19). DA578

2-(4-Methoxyphenyl)-1-nitroindolizin-3-yl)(phenyl)methanone (21e). 21e was also synthesized by employing $\mathrm{MnO}_{2}(109 \mathrm{mg}, 1.25 \mathrm{mmol}, 2.5$ equiv.; Yield 21e: $90 \mathrm{mg}, 0.24 \mathrm{mmol}$, 48\%, 4:1 21e-(8-Cl): 21e-(6-Cl)) or $\mathrm{KMnO}_{4}: \mathrm{MnO}_{2}(1: 3$ by weight, grounded, 150 mg ; Yield 21e: $99 \mathrm{mg}, 0.27 \mathrm{mmol}, 54 \%, 4: 1 \mathbf{2 1 e -}(\mathbf{8 - C l}): \mathbf{2 1 e}-(\mathbf{6}-\mathbf{C l})$) as oxidants according to procedure \mathbf{E} with the same amounts of the reactants $\mathbf{1 e H} \mathbf{H r}^{+}$and $\mathbf{5 c}$ as above, but with $\mathrm{KO}^{\dagger} \mathrm{Bu}(57 \mathrm{mg}$, 0.51 mmol) as base. (Analytical data see above) DA578-2,3
(8-Chloro-2-(4-methoxyphenyl)-1-nitroindolizin-3-yl)(phenyl)methanone (21g-(8-Cl)) and (6-chloro-2-(4-methoxyphenyl)-1-nitroindolizin-3-yl)(phenyl)methanone (21g-(6$\mathbf{C l})$). $\mathbf{1 g H}^{+} \mathbf{B r}^{-}(375 \mathrm{mg}, 1.20 \mathrm{mmol})$ and nitrostyrene $\mathbf{5 c}(200 \mathrm{mg}, 1.12 \mathrm{mmol})$ were dissolved in DMSO (5 mL), and $\mathrm{NEt}_{3}(180 \mu \mathrm{l}, 1.30 \mathrm{mmol})$ was added at ambient temperature. The mixture was stirred till the reaction was completed ($\sim 30 \mathrm{~min}$; monitored by TLC), then DDQ (279 mg , $1.23 \mu \mathrm{~mol})$ in DMSO (2 mL) was added and the reaction was stirred for 3 h . Water (10 mL) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was evaporated and the crude material was subjected to a column chromatography (silica, n-pentane:EtOAc $=$
 5:1). 21g was obtained in two fractions in 55% over all yield. Fraction 1: 21g-(8-Cl), yellow solid ($65.9 \mathrm{mg}, 162 \mu \mathrm{~mol}, 14 \%$); Fraction $2: \sim 1: 1$ mixture (by ${ }^{1} \mathrm{H}$ NMR) of 21g-(6-Cl) and 21g-(8-Cl), red solid, (184 mg , $452 \mu \mathrm{~mol}, 41 \%$). Mp 21g-(8-Cl) ($\left.\mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOAc}\right) 9{ }^{\circ} \mathrm{C}$. Only NMR-signals of $\left.\mathbf{2 1 g} \mathbf{- (8 - C l}\right)$ are given. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.48(\mathrm{dd}, J=7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.46-7.37(\mathrm{~m}, 3$
$\mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.28-7.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.12-7.03\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.97(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.63-6.54\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=187.8(\mathrm{~s}, \mathrm{CO}), 159.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 138.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 132.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 132.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$, $129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 128.1$ (br s, C-1), $127.8(\mathrm{~d}, \mathrm{C}-7), 127.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.3$ ($\mathrm{s}, \mathrm{C}-\mathrm{B}^{a}$), 126.1 (d, C-5), 123.5 ($\mathrm{s}, \mathrm{C}-8$), 121.9 ($\mathrm{s}, \mathrm{C}-2$), 119.6 ($\mathrm{s}, \mathrm{C}-3$), 114.5 (d, C-6), 113.5 (d, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 55.3\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4}\right]$: calcd. 406.0720, found 406.0709. MS (EI) $m / z=409$ (10), 408 (39), 406 (100), 376 (10), 105 (19), 77 (11). DA372
(8-Chloro-2-(4-methoxyphenyl)-1-nitroindolizin-3-yl)(phenyl)methanone (21g-(8-CI)) and (6-chloro-2-(4-methoxyphenyl)-1-nitroindolizin-3-yl)(phenyl)methanone (21g-(6CI) $). \mathbf{2 1 g}$ was also synthesized by employing $\mathrm{MnO}_{2}(109 \mathrm{mg}, 1.25 \mathrm{mmol}, 2.5$ equiv.; Yield $\mathbf{2 1 g}$: $135 \mathrm{mg}, 332 \mu \mathrm{~mol}, 67 \%, \mathbf{2 1 g}(\mathbf{8 - C l}): \mathbf{2 1 g}(\mathbf{6 - C l}) 4: 1)$ or TPCD ($500 \mathrm{mg}, 846 \mu \mathrm{~mol}$; Yield: $109 \mathrm{mg}, 268 \mu \mathrm{~mol}, 54 \%, \mathbf{2 1 g}(\mathbf{8 - C l}): \mathbf{2 1 g}(\mathbf{6 - C l}) 4: 1)$ as oxidants according to procedure E using $\mathbf{1 g H}^{+} \mathbf{B r}^{-}(155 \mathrm{mg}, 496 \mu \mathrm{~mol})$, $\mathbf{5 c}:(90 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{NEt}_{3}:(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$ as reactants in each experiment. (Analytical data see above) DA582-1+2
(2-(4-Methoxyphenyl)-1-nitropyrrolo[2,1-a]isoquinolin-3-yl)(phenyl)methanone (21h) \& (2-(4-methoxyphenyl)pyrrolo[2,1-a]isoquinolin-3-yl)(phenyl)methanone (22h). From $\mathbf{1 h} \mathbf{H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol}), \mathbf{5 c}(90 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{NEt}_{3}(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$, and TPCD $(500 \mathrm{mg}, 821 \mu \mathrm{~mol})$ according to general procedure E. 21h and 22h were not separated and obtained as yellow solid in a $1: 2$ mixture (over all: $133 \mathrm{mg}, 326 \mu \mathrm{~mol}, 65 \%$). Signals marked with \# refer to $\mathbf{2 2 h}$, signals marked with * refer to $\mathbf{2 1 h}$. Integrals for $\mathbf{2 1 h}$ are set to 1.0 for one
 proton of $\mathbf{2 1 h} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.29^{\#}(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2$ $\mathrm{H}, 5-\mathrm{H}), 9.02^{*}(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.45^{*}(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H})$,

$8.17^{\#}(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}), 7.78^{*}(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.70^{\#}(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 7.66^{*}(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.64-7.60^{*}$ (m, $1 \mathrm{H}, 9-\mathrm{H}), 7.59-7.46^{\#,{ }^{*}}(\mathrm{~m}, 10 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}, 4 \times \mathrm{Car}-\mathrm{H}), 7.29-7.25^{*}$
($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$, superimposed by solvent signal), $7.25-7.18^{\#,{ }^{*}}\left(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.13-$ $7.01^{\#, *}(\mathrm{~m}, 16 \mathrm{H}, 1-\mathrm{H}, 6-\mathrm{H}, 8 \times \mathrm{Car}-\mathrm{H}), 6.65-6.53^{\#, *}\left(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 3.71^{\#}\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.69^{*}\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=188.2(\mathrm{~s}), 187.7(\mathrm{~s}), 159.6$ (s), 158.6 (s), 139.8 (s), 138.3 (s), 138.0 (s), 134.9 (s), 132.3 (s), 132.2 (d), 131.3 (d, $3 \times \mathrm{C}$), 130.8 (d), 130.4 (d), 130.2 (br s), 130.0 (d), 129.8 (d), 129.7 (d), 129.0 (s), 128.6 (d), 128.3 ($2 \times \mathrm{C}, \mathrm{s}$), 128.0 (d), 127.9 (d), 127.8 (d), 127.6 (d), 127.6 (d), 127.0 (d), 125.5 (d), 125.1 (d), 124.7 (s$), 123.8$ (d), 123.6 (d), 122.7 (s), 122.3 (s), 122.0 (s$), 115.6$ (d), 113.5 (d), 113.4 (d), 112.9 (d), 103.5 (d), 55.4 (q), 55.3 (q). ${ }^{13} \mathrm{C}$ NMR signals could be assigned unambiguously. 21h. HRMS (EI): m / z
[$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$]: calcd. 422.1267, found 422.1263. MS (EI): $m / z=422$ (12), 392 (17), 378 (29), 377 (100), 348 (28), 300 (26), 228 (14), 189 (18), 105 (10), 77 (12). DA584-2
(2-(4-Methoxyphenyl)pyrrolo[2,1-a]isoquinolin-3-yl)(phenyl)methanone (22h) was synthesized from $\mathbf{1} \mathbf{h H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, nitrostyrene $\mathbf{5 c}\left(90.0 \mathrm{mg}, 0.50 \mathrm{mmol}^{2}\right), \mathrm{NEt}_{3}$ ($200 \mu \mathrm{l}, 1.45 \mathrm{mmol}$) by stirring in DMSO $(5 \mathrm{~mL})$ in air at $20^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathbf{2 2 h}$ was obtained as yellow solid ($20 \mathrm{mg}, 53 \mu \mathrm{~mol}, 11 \%$). Mp (Et $\left.\mathrm{E}_{2} \mathrm{O}\right) 185-186^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=9.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.17(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 7.71(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 7.61-7.47$ (m, $4 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}, 2 \times \mathrm{Car}-\mathrm{H}$), $7.25-7.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.12-6.96$ (m, $\left.6 \mathrm{H}, 1-\mathrm{H}, 6-\mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.66-6.51\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$) $=187.7(\mathrm{~s}, \mathrm{CO}), 158.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 139.8(\mathrm{~s}, \mathrm{C}-2), 138.0\left(\mathrm{~s}, \mathrm{Car}^{2}\right), 135.0\left(\mathrm{~s}, \mathrm{C}-10^{a}\right)$, $131.3\left(\mathrm{~d}, 3 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~s}, \mathrm{C}-6^{a}\right), 128.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 128.0(\mathrm{~d}, \mathrm{C}-8$ or -9$), 127.8$ (d, C-8 or -9), $127.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 127.0(\mathrm{~d}, \mathrm{C}-7), 125.5(\mathrm{~d}, \mathrm{C}-5), 124.8$
(s, C-10 ${ }^{b}$), 123.6 (d, C-10), 122.0 (s, C-3), 113.4 (d, $2 \times{ }_{\mathrm{C}}^{\mathrm{ar}} \mathrm{-H}$), 112.9 (d, C-6), 103.5 (d, C-1), 55.4 (q, CH_{3}). HRMS (EI): $m / z\left[\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{2}\right]$: calcd. 377.1416, found. 377.1397 MS (EI): $m / z=378$ (28), 377 (100), 348 (23), 300 (22), 228 (12), 189 (14). DA584-3
(2-(4-Methoxyphenyl)-3-nitropyrrolo[1,2-a]quinolin-1-yl)(phenyl)methanone (21i) \& (2-(4-Methoxyphenyl)pyrrolo[1,2-a]quinolin-1-yl)(phenyl)methanone (22i) were synthesized according to general procedure E from $\mathbf{1 i H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, nitrostyrene $\mathbf{5 c}(90.0 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{NEt}_{3}(100 \mu \mathrm{l}, 721 \mu \mathrm{~mol})$, and TPCD ($\left.500 \mathrm{mg}, 821 \mu \mathrm{~mol}\right) .22 \mathbf{i}$ was
 eluted as first fraction and obtained as yellow solid ($60 \mathrm{mg}, 0.16 \mathrm{mmol}$, 32\%). 21i was eluted as second fraction and obtained as red solid (45 mg , $0.11 \mathrm{mmol}, 22 \%$). 21i. Mp ($\mathrm{Et}_{2} \mathrm{O}$) $164{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=8.52(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.83(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.79$
 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 7.73\left(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.64$ $-7.58(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 7.49-7.41\left(\mathrm{~m}, 3 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.29-7.25$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $7.17\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.70\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 3.71$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=190.1$ (s, CO), 159.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), 137.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), $134.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.6$ ($\left.\mathrm{s}, \mathrm{C}-5^{a}, \mathrm{C}-9^{a}\right), 132.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 131.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.5(\mathrm{~s}, \mathrm{C}-3), 130.1$ (d, C-7), $130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\text {Ar }}-\mathrm{H}\right), 129.6$ (d, C-9), 129.2 (d, C-8), 128.7 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 126.1 (d, C-5), 125.4 ($\mathrm{s}, \mathrm{C}-3^{a}$), 122.6 (d, C-2), 118.8 (d, C-4), 117.3 (d, C-6), 114.7 ($\mathrm{s}, \mathrm{C}-1$), 113.4 (d, $2 \times \mathrm{C}_{\mathrm{ar}}$ H), $55.3\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right]$: calcd. 422.1267, found 422.1253. MS (EI) $m / z=423$ (32), 422 (100), 105 (10). 22i. $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 150^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
$7.74\left(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.64-7.62(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 7.60(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1$ H, $6-\mathrm{H}$), $7.39-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 7.30-7.18\left(\mathrm{~m}, 7 \mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}, 4 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, superimposed by solvent signal), $6.77-6.69\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 6.65(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 3.72(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=190.0(\mathrm{~s}, \mathrm{CO}), 158.8\left(\mathrm{~s}, \mathrm{Car}^{\mathrm{ar}}\right.$), $138.8\left(\mathrm{~s}, \mathrm{Car}^{2}\right), 135.4$ ($\mathrm{s}, \mathrm{C}-2$) , $134.6\left(\mathrm{~s}, \mathrm{C}-3^{a}\right), 133.5\left(\mathrm{~s}, \mathrm{C}-9^{a}\right), 133.0\left(\mathrm{~d}, \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 130.8\left(\mathrm{~d}, 2 \times \mathrm{Car}_{\mathrm{ar}}-\mathrm{H}\right), 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\right.$ H), $128.9(\mathrm{~d}, \mathrm{C}-9), 128.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 128.0(\mathrm{~d}, \mathrm{C}-8), 127.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 125.0\left(\mathrm{~s}, \mathrm{C}-5^{a}\right), 124.1(\mathrm{~d}$, C-7 \& br s, C-1), 123.3 (d, C-4), 118.6 (d, C-6), 118.2 (d, C-5), 113.5 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 105.0 (d, $\mathrm{C}-3), 55.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. HRMS (EI): $m / z\left[\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NO}_{2}\right]$: calcd. 377.1416, found 377.0477. MS (EI) $m / z=378$ (26), 377 (100), 348 (18), 300 (18), 228 (15), 188 (10). DA583-2

4.5.8 Kinetics

4.5.8.1 Kinetics of the Reactions of 1a with the Electrophiles 3-5

Figure 4.7. UV-Vis spectrum of $1 \mathrm{a}\left(\mathrm{c} \sim 5 \times 10^{-5} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.
Table 4.13. Determination of the nucleophilicity parameters N and s_{N} for 1 a with the electrophiles 3,4 (filled dots) and 5 (open dot; not used for the determination of N and s_{N}).

Electrophile	E	$\log k_{2}$
$\mathbf{3 a}$	-13.39	4.95
$\mathbf{3 b}$	-15.83	3.99
$\mathbf{3 e}$	-17.90	3.04
$\mathbf{4 a}$	-17.67	3.14
$\mathbf{4 b}$	-18.89	3.03
$\mathbf{4 c}$	-20.55	2.29
$\mathbf{4 d}$	-21.11	2.05
$\mathbf{5 b}$	-17.33	3.68

Table 4.14. Kinetics of the reaction of 1 a with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm). ${ }^{[30]}$

Table 4.15. Kinetics of the reaction of 1 a with 3 b (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at $371 \mathrm{~nm}) .{ }^{[30]}$

Table 4.16. Kinetics of the reaction of 1 a with 3 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at $521 \mathbf{n m}){ }^{[30]}$

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da79s3-1	2.00×10^{-5}	2.00×10^{-4}	1.80×10^{-1}
da79s3-2	2.00×10^{-5}	4.00×10^{-4}	3.71×10^{-1}
da79s3-3	2.00×10^{-5}	6.00×10^{-4}	6.23×10^{-1}
da79s3-4	2.00×10^{-5}	8.00×10^{-4}	8.59×10^{-1}
da79s3-5	2.00×10^{-5}	1.00×10^{-3}	1.03×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.09 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.17. Kinetics of the reaction of 1 a with 4 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 302 nm).

Table 4.18. Kinetics of the reaction of 1a with $4 b$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

No.	$[\mathbf{4 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da79s5-1	4.00×10^{-3}	4.00×10^{-4}	4.17
da79s5-2	5.00×10^{-3}	4.00×10^{-4}	5.41
da79s5-3	6.00×10^{-3}	4.00×10^{-4}	6.41
da79s5-4	7.00×10^{-3}	4.00×10^{-4}	7.51
da79s5-5	8.00×10^{-3}	4.00×10^{-4}	8.51
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.08 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.19. Kinetics of the reaction of 1 a with 4 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

Table 4.20. Kinetics of the reaction of 1a with 4 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

Table 4.21. Kinetics of the reaction of 1a with 5 bb (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da79s1-1	1.00×10^{-3}	1.00×10^{-4}	4.76
da79s1-2	1.50×10^{-3}	1.00×10^{-4}	7.18
da79s1-3	2.00×10^{-3}	1.00×10^{-4}	9.78
da79s1-4	2.50×10^{-3}	1.00×10^{-4}	1.22×10^{1}
da79s1-5	3.00×10^{-3}	1.00×10^{-4}	1.43×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.82 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

4.5.8.2 Kinetics of the Reactions of $\mathbf{1 b}$ with the Electrophiles 3-5

Figure 4.8. UV-Vis spectrum of $1 \mathrm{~b}\left(c \sim 1 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20{ }^{\circ} \mathrm{C}$ (left). Monitoring of the UV-Vis absorption band (425 nm) of $\mathbf{1 b}$ during its generation from $\mathbf{1 b H}^{+} \mathrm{Br}^{-}$by addition of $\mathrm{KO}^{\boldsymbol{t}} \mathbf{B u}$ (right). The
experiment was performed by adding $250 \mu \mathrm{l}$ portions of a solution of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO (dashed lines; $\left[\mathrm{KO}^{t} \mathrm{Bu}\right]=1.00 \times \mathbf{1 0}^{-\mathbf{2}} \mathrm{M}$) to an $8.61 \times \mathbf{1 0}^{-5} \mathrm{M}$ solution of $\mathbf{1 b H}^{+} \mathrm{Br}^{-}$in DMSO ($\mathbf{2 3 . 8} \mathbf{~ m L}$).

Table 4.22. Determination of the nucleophilicity parameters N and s_{N} for 1 b with the electrophiles 3,4 (filled dots) and 5b (open dot; not used for the determination of \boldsymbol{N} and s_{N}).

Electrophile	E	$\log k_{2}$
3a	-13.39	5.48
3b	-15.83	4.51
3d	-17.29	3.90
$\mathbf{3 e}$	-17.90	3.58
$\mathbf{4 a}$	-17.67	3.63
$\mathbf{4 c}$	-20.55	2.79
$\mathbf{5 b}$	-17.33	3.79

Table 4.23. Kinetics of the reaction of 1 b with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

Table 4.24. Kinetics of the reaction of 1 b with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 371 nm).

Table 4.25. Kinetics of the reaction of 1 b with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 486 nm).

No.	[3d] $/ \mathrm{mol} \mathrm{L}^{-1}$	$[\mathrm{KOt} t \mathrm{Bu}] / \mathrm{mol} \mathrm{L}$	$\left.\mathbf{H}^{+} \mathbf{B r}^{-}\right] / \mathrm{mol}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	$\begin{array}{r} 4.00 \\ \overline{\text { in }}_{\substack{\circ \\ \text { cin }}} 2.00 \end{array}$	$\begin{gathered} y=7940.1 x-1.7157 \\ R^{2}=0.9871 \end{gathered}$			
da191s4-1	4.00×10^{-5}	4.20×10^{-4}	8.00×10^{-4}	1.62					
da191s4-3	4.00×10^{-5}	6.30×10^{-4}	1.20×10^{-3}	3.17					
da191s4-4	4.00×10^{-5}	7.35×10^{-4}	1.40×10^{-3}	4.35					
da191s4-5	4.00×10^{-5}	8.40×10^{-4}	1.60×10^{-3}	4.84	$0.00 \mathrm{E}+00$		4.00E-04 $8.00 \mathrm{E}-04$ [1b]/mol L-1		
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=7.94 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$									

Table 4.26. Kinetics of the reaction of 1 b with 3 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 521 nm).

No.	[3e]/ $\mathrm{mol} \mathrm{L}^{-1}$	$[\mathrm{KO} t \mathrm{Bu}] / \mathrm{mol} \mathrm{L}$	$\left.\mathbf{H}^{+} \mathrm{Br}^{-}\right] / \mathrm{mol}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	$\begin{gathered} 3.00 \\ \hline 00=3790.5 x-0.203 \\ R^{2}=0.9903 \end{gathered}$		
da191s5-1	4.00×10^{-5}	4.20×10^{-4}	8.00×10^{-4}	1.45			
da191s5-2	4.00×10^{-5}	5.25×10^{-4}	1.00×10^{-3}	1.69	$\underbrace{\overbrace{8}}_{\substack{n \\ 8}} 1.00$		
da191s5-4	4.00×10^{-5}	7.35×10^{-4}	1.40×10^{-3}	2.63			
da191s5-5	4.00×10^{-5}	8.40×10^{-4}	1.60×10^{-3}	2.97	$\begin{aligned} & 0.00 \text { 0.00E+00 } \end{aligned}$	5.00E-04	$1.00 \mathrm{E}-03$
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.79 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$						[1b]/mol L-	

Table 4.27. Kinetics of the reaction of 1 b with 4 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da191s10-1	2.00×10^{-3}	2.00×10^{-4}	1.20×10^{1}
da191s10-2	3.00×10^{-3}	2.00×10^{-4}	1.51×10^{1}
da191s10-4	4.00×10^{-3}	2.00×10^{-4}	1.95×10^{1}
da191s10-5	5.00×10^{-3}	2.00×10^{-4}	2.30×10^{1}
da191s10-5	6.00×10^{-3}	2.00×10^{-4}	2.92×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.23 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.28. Kinetics of the reaction of 1 b with 4 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{4 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da191s12-1	2.00×10^{-3}	2.00×10^{-4}	5.17×10^{-1}
da191s12-2	3.00×10^{-3}	2.00×10^{-4}	9.47×10^{-1}
da191s12-4	4.00×10^{-3}	2.00×10^{-4}	1.66
da191s12-5	5.00×10^{-3}	2.00×10^{-4}	2.50
da191s12-5	6.00×10^{-3}	2.00×10^{-4}	2.79
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=6.10 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.29. Kinetics of the reaction of 1 b with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da191s9-1	1.00×10^{-3}	1.00×10^{-4}	4.83
da191s9-2	1.50×10^{-3}	1.00×10^{-4}	7.66
da191s9-4	2.00×10^{-3}	1.00×10^{-4}	1.02×10^{1}
da191s9-5	2.50×10^{-3}	1.00×10^{-4}	1.43×10^{1}
da191s9-5	3.00×10^{-3}	1.00×10^{-4}	1.68×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=6.12 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

4.5.8.3 Kinetics of the Reactions of 1 c with the Electrophiles 3-5

Figure 4.9. UV-Vis spectrum of $1 \mathrm{c}\left(\mathrm{c} \sim 5 \times 10^{-5} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.

Table 4.30. Determination of the nucleophilicity parameters N and s_{N} for 1 c with the electrophiles $\mathbf{3 , 4}$ (filled dots) and 5 (open dot; not used for the determination of N and s_{N})

Electrophile	E	$\log k_{2}$
3a	-13.39	5.37
3b	-15.83	4.31
3d	-17.29	3.43
3e	-17.90	3.33
4a	-17.67	3.32
4b	-18.89	2.80
4c	-20.55	2.25
4d	-21.11	2.25
$\mathbf{5 b}$	-17.33	3.90

Table 4.31. Kinetics of the reaction of 1 c with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	[3a]/ $\mathrm{mol} \mathrm{L}^{-1}$	[1c]/mol L ${ }^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$			$y=233829 x-3.5429$	\longrightarrow
da130s4-1	4.00×10^{-5}	4.00×10^{-4}	8.84×10^{1}				
da130s4-3	4.00×10^{-5}	6.00×10^{-4}	1.40×10^{2}				
da130s4-4	4.00×10^{-5}	7.00×10^{-4}	1.62×10^{2}				
da130s4-5	4.00×10^{-5}	8.00×10^{-4}	1.81×10^{2}	$0.00 \mathrm{E}+00$		$4.00 \mathrm{E}-04$	8.00E-04
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.34 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$						$[1 \mathrm{c}] / \mathrm{mol} \mathrm{L}^{-1}$	

Table 4.32. Kinetics of the reaction of 1 c with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 371 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da130s1-1	2.00×10^{-5}	2.00×10^{-4}	3.78
da130s1-2	2.00×10^{-5}	3.00×10^{-4}	6.00
da130s1-3	2.00×10^{-5}	4.00×10^{-4}	7.86
da130s1-4	2.00×10^{-5}	5.00×10^{-4}	1.05×10^{1}
da130s1-5	2.00×10^{-5}	6.00×10^{-4}	1.17×10^{1}
$\left(20^{\circ} \mathrm{C}\right)=2.03 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.33. Kinetics of the reaction of 1 c with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 486 nm).

No.	$[\mathbf{3 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da130s5-1	2.00×10^{-5}	1.72×10^{-4}	6.56×10^{-1}
da130s5-3	2.00×10^{-5}	3.45×10^{-4}	1.13
da130s5-4	2.00×10^{-5}	4.31×10^{-4}	1.32
da130s5-5	2.00×10^{-5}	5.17×10^{-4}	1.59
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.67 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.34. Kinetics of the reaction of 1 c with 3 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 521 nm).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da130s3-1	2.00×10^{-5}	2.00×10^{-4}	7.02×10^{-1}
da130s3-2	2.00×10^{-5}	4.00×10^{-4}	1.10
da130s3-3	2.00×10^{-5}	6.00×10^{-4}	1.40
da130s3-4	2.00×10^{-5}	8.00×10^{-4}	1.98
da130s3-5	2.00×10^{-5}	1.00×10^{-3}	2.39
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.13 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.35. Kinetics of the reaction of 1 c with 4 a ($\mathrm{DMSO}, 20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 302 nm).

Table 4.36. Kinetics of the reaction of 1 c with 4 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 277 nm).

Table 4.37. Kinetics of the reaction of 1 c with 4 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 283 nm).

No.	$[\mathbf{4 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da130s $7-1$	8.00×10^{-5}	8.00×10^{-4}	2.50×10^{-1}
da130s7-2	8.00×10^{-5}	1.00×10^{-3}	2.70×10^{-1}
da130s7-4	8.00×10^{-5}	1.40×10^{-3}	3.55×10^{-1}
da130s $7-5$	8.00×10^{-5}	1.60×10^{-3}	3.85×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.77 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.38. Kinetics of the reaction of 1 c with 4 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 295 nm).

No.	$[\mathbf{4 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da130s6-1	6.00×10^{-5}	6.00×10^{-4}	1.33×10^{-1}
da130s6-2	6.00×10^{-5}	7.50×10^{-4}	1.55×10^{-1}
da130s6-3	6.00×10^{-5}	9.00×10^{-4}	1.85×10^{-1}
da130s6-5	6.00×10^{-5}	1.20×10^{-3}	2.38×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.77 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.39. Kinetics of the reaction of 1 c with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

4.5.8.4 Kinetics of the Reactions of 1 d with the Electrophiles 3-5

Figure 4.10. UV-Vis spectrum of $1 \mathrm{~d}\left(c \sim 1 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.
Table 4.40. Determination of the nucleophilicity parameters N and s_{N} for 1 d with the electrophiles 3,4 (filled dots) and 5 (open dots, not used to calculate N and s_{N}).

Electrophile	E	$\log k_{2}$
$\mathbf{3 a}$	-13.39	4.04
3b	-15.83	2.70
$\mathbf{3 d}$	-17.29	2.62
$\mathbf{3 e}$	-17.90	1.86
$\mathbf{4 a}$	-17.67	1.35
$\mathbf{5 a}$	-10.80	5.35
$\mathbf{5 b}$	-17.33	1.41

Table 4.41. Kinetics of the reaction of 1 d with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da167s1-1	2.00×10^{-5}	2.00×10^{-4}	1.79
da167s1-2	2.00×10^{-5}	3.00×10^{-4}	2.57
da167s1-3	2.00×10^{-5}	4.00×10^{-4}	3.82
da167s1-4	2.00×10^{-5}	5.00×10^{-4}	5.00
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.09 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.42. Kinetics of the reaction 1 d with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}[\mathrm{KOt} t \mathrm{Bu}] / \mathrm{mol} \mathrm{L}^{-1}$	$\left[\mathbf{1 d \mathrm { dH } ^ { + } \mathrm { Cl } ^ { - }] / \mathrm { mol } \mathrm { L } ^ { - 1 }}\right.$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$	
da167s1r-1	2.00×10^{-5}	1.05×10^{-4}	2.00×10^{-4}	1.00
da167s1r-2	2.00×10^{-5}	1.58×10^{-4}	3.00×10^{-4}	1.43
da167s1r-3	2.00×10^{-5}	2.10×10^{-4}	4.00×10^{-4}	2.01
da167s1r-4	2.00×10^{-5}	2.63×10^{-4}	5.00×10^{-4}	2.69
$k_{2 \mathrm{r}}\left(20^{\circ} \mathrm{C}\right)=1.07 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				
$k_{2} / k_{2 \mathrm{r}}=0.99$				

Table 4.43. Kinetics of the reaction of 1 d with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 371 nm).

Table 4.44. Kinetics of the reaction of 1 d with $3 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 393 nm).

Table 4.45. Kinetics of the reaction of 1 d with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 486 nm).

Table 4.46. Kinetics of the reaction of 1 d with 4 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da167s9-1	5.00×10^{-4}	5.00×10^{-5}	1.31×10^{-2}
da167s9-2	1.00×10^{-3}	5.00×10^{-5}	2.45×10^{-2}
da167s9-3	1.50×10^{-3}	5.00×10^{-5}	3.55×10^{-2}
da167s9-4	2.00×10^{-3}	5.00×10^{-5}	4.70×10^{-2}
da167s9-5	2.50×10^{-3}	5.00×10^{-5}	5.84×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.26 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.47. Kinetics of the reaction of 1 d with 5 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da167s8-1	5.50×10^{-4}	5.00×10^{-5}	1.73×10^{2}
da167s8-2	6.00×10^{-4}	5.00×10^{-5}	1.84×10^{2}
da167s8-3	6.50×10^{-4}	5.00×10^{-5}	1.93×10^{2}
da167s8-5	7.50×10^{-4}	5.00×10^{-5}	2.16×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.14 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.48. Kinetics of the reaction of 1 d with 5 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da167s $7-1$	1.00×10^{-3}	5.00×10^{-5}	1.59×10^{-2}
da167s7-2	1.50×10^{-3}	5.00×10^{-5}	2.87×10^{-2}
da167s $7-3$	2.00×10^{-3}	5.00×10^{-5}	3.93×10^{-2}
da167s $7-4$	2.50×10^{-3}	5.00×10^{-5}	5.28×10^{-2}
da167s7-5	3.00×10^{-3}	5.00×10^{-5}	6.77×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.55 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

4.5.8.5 Kinetics of the Reactions of 1 e with the Electrophiles 2-5

Figure 4.11. UV-Vis spectrum of $1 \mathrm{e}\left(c \sim 1 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.
Table 4.49. Determination of the nucleophilicity parameters N and s_{N} for 1 e with the electrophiles 2,3 (filled dots) and 5 (open dots, not used to calculate N and s_{N}).

Electrophile	E	$\log k_{2}$
$\mathbf{2 b - B F}$	-9.45	5.85
$\mathbf{2 c - B F}$	-10.04	5.58
$\mathbf{3 a}$	-13.39	3.30
$\mathbf{3 b}$	-15.83	2.11
$\mathbf{3 e}$	-17.90	1.01
$\mathbf{5 a}$	-10.80	-0.66
$\mathbf{5 b}$	-17.33	-0.07

Table 4.50. Kinetics of the reaction of 1 e with $2 \mathrm{bb}-\mathrm{BF}_{4}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at $635 \mathrm{~nm}) .{ }^{[30]}$

No.	$\left[\mathbf{2 b}-\mathbf{B F}_{4}\right] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da71s1-2	2.00×10^{-5}	2.00×10^{-4}	1.74×10^{2}
da71s1-3	2.00×10^{-5}	4.00×10^{-4}	3.18×10^{2}
da71s1-4	2.00×10^{-5}	6.00×10^{-4}	4.96×10^{2}
da71s1-5	2.00×10^{-5}	8.00×10^{-4}	6.08×10^{2}
da71s1-6	2.00×10^{-5}	1.00×10^{-3}	7.37×10^{2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=7.08 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.51. Kinetics of the reaction of 1 e with $2 \mathrm{c}-\mathrm{BF}_{4}$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at $630 \mathrm{~nm}) .{ }^{[30]}$

Table 4.52. Kinetics of the reaction of 1 e with 3 a (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at $533 \mathrm{~nm}) .{ }^{[30]}$

No.	[3a]/mol L ${ }^{-1}$	[12]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	2.40	$y=1997.5 x-0.0103$
da71s3r-1	2.00×10^{-5}	2.00×10^{-4}	3.93×10^{-1}	1.8	
da71s3r-2	2.00×10^{-5}	4.00×10^{-4}	8.29×10^{-1}	${ }_{\mathrm{S}}^{\mathrm{s}}$	
da71s3r-3	2.00×10^{-5}	6.00×10^{-4}	1.12	\bigcirc	
da71s3r-4	2.00×10^{-5}	8.00×10^{-4}	1.59	0.00	
da71s3r-4	2.00×10^{-5}	1.00×10^{-3}	2.01	$0.00 \mathrm{E}+00$	$4.00 \mathrm{E}_{[10}=04 / \mathrm{mol} \text { L }$

Table 4.53. Kinetics of the reaction of 1 e with 3 b (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at 371 nm). ${ }^{[30]}$

Table 4.54. Kinetics of the reaction of 1 e with $3 \mathrm{e}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, $\mathbf{J \& M}$ method, detection at 521 nm). ${ }^{[30]}$

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da71j1-1	3.97×10^{-5}	4.17×10^{-4}	4.52×10^{-3}
da71j1-2	3.97×10^{-5}	8.33×10^{-4}	9.42×10^{-3}
da71j-3	3.97×10^{-5}	1.26×10^{-3}	1.41×10^{-2}
da71j1-4	4.01×10^{-5}	1.68×10^{-3}	1.75×10^{-2}
da71j1-5	4.00×10^{-5}	2.09×10^{-3}	2.20×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.03 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.55. Kinetics of the reaction of 1e with 5 a (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 445 nm).

No.	[5a]/mol L ${ }^{-1}$	[1e]/mol L ${ }^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da71j10-1	7.37×10^{-4}	7.37×10^{-5}	1.34×10^{-4}
da71j10-5	1.46×10^{-3}	7.28×10^{-5}	3.54×10^{-4}
da71j10-4	2.19×10^{-3}	7.30×10^{-5}	5.13×10^{-4}
da $71 \mathrm{j} 10-3$	2.83×10^{-3}	7.08×10^{-5}	6.02×10^{-4}
da71j10-2	3.63×10^{-3}	7.26×10^{-5}	7.92×10^{-4}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.19 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.56. Kinetics of the reaction of 1 e with 5 b (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 445 nm).

No.	[5b]/mol L ${ }^{-1}$	[1e]/mol L ${ }^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	$5.00 \mathrm{E}-03 \quad \mathrm{y}=$		
da71j9-5	2.17×10^{-3}	7.23×10^{-5}	2.78×10^{-3}		$\begin{gathered} y=0.8539 x+0.0009 \\ R^{2}=0.9917 \end{gathered}$	
da71j9-4	2.54×10^{-3}	7.27×10^{-5}	3.05×10^{-3}			
da71j9-3	2.83×10^{-3}	7.08×10^{-5}	3.34×10^{-3}			
da71j9-2	3.28×10^{-3}	7.29×10^{-5}	3.79×10^{-3}	0.00E+00		
da71j9-1	3.68×10^{-3}	7.37×10^{-5}	4.02×10^{-3}	0.00E+00	$2.00 \mathrm{E}-03$	$4.00 \mathrm{E}-03$
$k_{2}\left(20^{\circ} \mathrm{C}\right)=8.54 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					[5b]/ma	

4.5.8.6 Kinetics of the Reactions of 1 f with the Electrophiles 3-5

Figure 4.12. UV-Vis spectrum of $1 \mathrm{f}\left(c \sim 1 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.
Table 4.57. Determination of the nucleophilicity parameters N and s_{N} for 1 f with the electrophiles $\mathbf{3 , 4}$ (filled dots) and 5 (open dot, not used to calculate N and s_{N}).

Electrophile	E	$\log k_{2}$
3a	-13.39	4.74
4a	-17.67	2.25
4b	-18.98	1.53
5a	-10.80	5.63

Table 4.58. Kinetics of the reaction of 1 f with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da201s2-1	2.00×10^{-5}	2.00×10^{-4}	1.41×10^{1}
da201s2-2	2.00×10^{-5}	3.00×10^{-4}	1.79×10^{1}
da201s2-3	2.00×10^{-5}	4.00×10^{-4}	2.50×10^{1}
da201s2-5	2.00×10^{-5}	6.00×10^{-4}	3.56×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=5.51 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.59. Kinetics of the reaction of 1 f with 4 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da201s3-1	4.00×10^{-3}	1.00×10^{-4}	7.35×10^{-1}
da201s3-2	5.00×10^{-3}	1.00×10^{-4}	9.32×10^{-1}
da201s3-3	6.00×10^{-3}	1.00×10^{-4}	1.13
da201s3-4	7.00×10^{-3}	1.00×10^{-4}	1.31
da201s3-5	8.00×10^{-3}	1.00×10^{-4}	1.43
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.77 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.60. Kinetics of the reaction of 1 f with 4 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{4 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da201s1-1	4.00×10^{-3}	1.00×10^{-4}	1.56×10^{-1}
da201s1-2	5.00×10^{-3}	1.00×10^{-4}	1.85×10^{-1}
da201s1-3	6.00×10^{-3}	1.00×10^{-4}	2.09×10^{-1}
da201s1-4	7.00×10^{-3}	1.00×10^{-4}	2.50×10^{-1}
da201s1-5	8.00×10^{-3}	1.00×10^{-4}	2.93×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.39 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.61. Kinetics of the reaction of 1 f with 5 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da201s6-1	1.10×10^{-3}	1.00×10^{-4}	6.00×10^{2}
da201s6-2	1.20×10^{-3}	1.00×10^{-4}	6.45×10^{2}
da201s6-3	1.30×10^{-3}	1.00×10^{-4}	6.96×10^{2}
da201s6-4	1.40×10^{-3}	1.00×10^{-4}	7.20×10^{2}
da201s6-5	1.50×10^{-3}	1.00×10^{-4}	7.76×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.27 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

4.5.8.7 Kinetics of the Reactions of $\mathbf{1 g}$ with the Electrophiles 2-5

Figure 4.13. UV-Vis spectrum of $1 \mathrm{~g}\left(c \sim 1 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.
Table 4.62. Determination of the nucleophilicity parameters \boldsymbol{N} and s_{N} for 1 g with the electrophiles 2-4 (filled dots) and 5 (open dots, not used to calculate N and s_{N}).

$$
N=17.98 ; s_{\mathrm{N}}=0.63
$$

Electrophile	E	$\log k_{2}$
$\mathbf{2 b - B F} 4$	-9.45	5.40
$\mathbf{3 a}$	-13.39	2.76
$\mathbf{4 a}$	-17.67	0.25
$\mathbf{5 a}$	-10.80	-0.70
$\mathbf{5 b}$	-17.33	0.56

Table 4.63. Kinetics of the reaction of 1 g with $2 \mathrm{~b}-\mathrm{BF}_{4}$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 635 nm).

Table 4.64. Kinetics of the reaction of 1 g with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da277s1-1	4.00×10^{-5}	4.00×10^{-4}	2.40×10^{-1}
da277s1-2	4.00×10^{-5}	6.00×10^{-4}	3.53×10^{-1}
da277s1-3	4.00×10^{-5}	8.00×10^{-4}	4.88×10^{-1}
da277s1-4	4.00×10^{-5}	1.00×10^{-3}	5.77×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=5.73 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.65. Kinetics of the reaction of 1 g with $4 \mathrm{a}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}, \mathrm{J} \& M\right.$ method, detection at 476 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da277j1-1	1.02×10^{-3}	1.02×10^{-4}	2.99×10^{-3}
da277j1-3	2.05×10^{-3}	8.22×10^{-5}	5.24×10^{-3}
da277j1-4	2.56×10^{-3}	8.13×10^{-5}	5.88×10^{-3}
da277j1-5	3.03×10^{-3}	8.08×10^{-5}	6.56×10^{-3}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.78 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.66. Kinetics of the reaction of 1 g with 5 a (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 476 nm).

No.	$[\mathbf{5 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da277j3-1	8.22×10^{-4}	8.22×10^{-5}	2.85×10^{-4}
da277j3-2	1.62×10^{-3}	8.10×10^{-5}	4.58×10^{-4}
da277j3-3	2.45×10^{-3}	8.18×10^{-5}	6.06×10^{-4}
da277j3-4	3.23×10^{-3}	8.07×10^{-5}	7.43×10^{-4}
da277j3-5	4.00×10^{-3}	8.00×10^{-5}	9.46×10^{-4}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.02 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.67. Kinetics of the reaction of 1 g with 5 bb (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 476 nm).

4.5.8.8 Kinetics of the Reactions of 1 h with the Electrophiles 2-5

Figure 4.14. UV-Vis spectrum of $1 \mathrm{~h}\left(c \sim 5 \times 10^{-5} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.
Table 4.68. Determination of the nucleophilicity parameters \boldsymbol{N} and s_{N} for 1 h with the electrophiles 2-4 (filled dots) and 5 (open dots, not used to calculate N and s_{N}).

Electrophile	E	$\log k_{2}$
$\mathbf{2 b - B F}$	-9.45	6.18
$\mathbf{3 a}$	-13.39	3.59
$\mathbf{4 a}$	-17.67	1.48
$\mathbf{5 a}$	-10.80	4.47
$\mathbf{5 b}$	-17.33	1.55

Table 4.69. Kinetics of the reaction of 1 h with $2 \mathrm{~b}-\mathrm{BF}_{4}$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 635 nm).

No.	[2b- BF_{4}] $/ \mathrm{mol} \mathrm{L}^{-1}$	[1h]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	300	$\begin{gathered} y=1512000 x-45.800 \\ R^{2}=0.985 \end{gathered}$	
da448s1-1	2.00×10^{-5}	1.00×10^{-4}	1.06×10^{2}			
da448s1-2	2.00×10^{-5}	1.25×10^{-4}	1.50×10^{2}	$\mathrm{in}_{\substack{\mathrm{in}}} 150$		
da448s1-3	2.00×10^{-5}	1.50×10^{-4}	1.73×10^{2}			
da448s1-4	2.00×10^{-5}	1.75×10^{-4}	2.12×10^{2}			
da448s1-5	2.00×10^{-5}	2.00×10^{-4}	2.64×10^{2}	$0.00 \mathrm{E}+00$	1.00E-04	$2.00 \mathrm{E}-04$
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.51 \times 10^{6} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					[1h]/mol L- ${ }^{-1}$	

Table 4.70. Kinetics of the reaction of 1 h with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

Table 4.71. Kinetics of the reaction of 1 h with $4 \mathrm{a}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}, \mathrm{J} \mathrm{\& M}\right.$ method, detection at 482 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da448j1-1	9.21×10^{-4}	9.21×10^{-5}	3.03×10^{-2}
da448j1-4	1.02×10^{-3}	9.12×10^{-5}	3.33×10^{-2}
da448j1-2	1.11×10^{-3}	9.22×10^{-5}	3.59×10^{-2}
da448j1-5	1.24×10^{-3}	9.65×10^{-5}	3.92×10^{-2}
da448j1-3	1.34×10^{-3}	9.61×10^{-5}	4.35×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.05 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.72. Kinetics of the reaction of 1 h with 5 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 482 nm).

Table 4.73. Kinetics of the reaction of 1 h with 5 bb (DMSO, $20^{\circ} \mathrm{C}$, $J \& M$ method, detection at 482 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da448j2-1	9.21×10^{-4}	9.21×10^{-5}	4.02×10^{-2}
da448j2-3	1.15×10^{-3}	9.62×10^{-5}	4.85×10^{-2}
da448j2-4	1.18×10^{-3}	9.10×10^{-5}	5.05×10^{-2}
da448j2-5	1.35×10^{-3}	9.64×10^{-5}	5.53×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.56 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

4.5.8.9 Kinetics of the Reactions of 1 i with the Electrophiles 3-5

Figure 4.15. UV-Vis spectrum of $1 \mathrm{i}\left(c \sim 5 \times 10^{-5} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$.
Table 4.74. Determination of the nucleophilicity parameters N and s_{N} for 1 i with the electrophiles 2-4 (filled dots) and 5 (open dots, not used to calculate N and s_{N}).

Electrophile	E	$\log k_{2}$
$\mathbf{2 b - B F}$	-9.45	5.07
$\mathbf{3 a}$	-13.39	2.88
$\mathbf{4 a}$	-17.67	0.93
$\mathbf{5 a}$	-10.80	3.76
$\mathbf{5 b}$	-17.33	1.22

Table 4.75. Kinetics of the reaction of 1 i with $2 \mathrm{~b}-\mathrm{BF}_{4}$ (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 635 nm).

No.	[2b-BF4] $/ \mathrm{mol} \mathrm{L}^{-1}$	[1i]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$		$\begin{gathered} y=116703 x+1.3129 \\ R^{2}=0.9896 \end{gathered}$	
da279s2-1	2.00×10^{-5}	2.00×10^{-4}	2.51×10^{1}			
da279s2-3	2.00×10^{-5}	3.00×10^{-4}	3.49×10^{1}		-	
da279s2-4	2.00×10^{-5}	3.50×10^{-4}	4.31×10^{1}			
da279s2-5	2.00×10^{-5}	4.00×10^{-4}	4.80×10^{1}	0		$4.00 \mathrm{E}-04$
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.17 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. 0	$[1 i \mathrm{i}] / \mathrm{mol} \mathrm{L}^{-1}$	

Table 4.76. Kinetics of the reaction of 1 i with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 533 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da279s1-2	2.00×10^{-5}	3.00×10^{-4}	1.48×10^{-1}
da279s $1-3$	2.00×10^{-5}	3.50×10^{-4}	1.83×10^{-1}
da279s1-4	2.00×10^{-5}	4.00×10^{-4}	2.27×10^{-1}
da279s $1-5$	2.00×10^{-5}	4.50×10^{-4}	2.59×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=7.54 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.77. Kinetics of the reaction of 1 i with 4 a (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 530 nm).

No.	$[\mathbf{4 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
da279j1-1	9.06×10^{-4}	9.06×10^{-5}	9.89×10^{-3}
da279j1-2	1.38×10^{-3}	9.07×10^{-5}	1.48×10^{-2}
da279j1-3	1.80×10^{-3}	9.02×10^{-5}	1.73×10^{-2}
da279j1-5	2.70×10^{-3}	9.01×10^{-5}	2.54×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=8.48 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.78. Kinetics of the reaction of 1 i with 5 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 530 nm).

No.	$[\mathbf{5 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da279s5-1	2.00×10^{-3}	1.00×10^{-4}	1.14×10^{1}
da279s5-2	3.00×10^{-3}	1.00×10^{-4}	1.69×10^{1}
da279s5-3	4.00×10^{-3}	1.00×10^{-4}	2.33×10^{1}
da279s5-4	5.00×10^{-3}	1.00×10^{-4}	2.90×10^{1}
da279s5-5	6.00×10^{-3}	1.00×10^{-4}	3.40×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=5.73 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.79. Kinetics of the reaction of 1 i with 5 b (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 530 nm).

No.	$[\mathbf{5 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da279j2-1	7.26×10^{-4}	9.07×10^{-5}	1.16×10^{-2}
da279j2-2	1.16×10^{-3}	9.09×10^{-5}	1.91×10^{-2}
da279j2-3	1.38×10^{-3}	9.06×10^{-5}	2.30×10^{-2}
da279j2-4	1.60×10^{-3}	9.11×10^{-5}	2.64×10^{-2}
da279j2-5	1.82×10^{-3}	9.09×10^{-5}	2.94×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.64 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

4.5.8.10 Kinetics of the Reactions of the Ylides 1 with Nitrostyrene 5c

Table 4.80. Kinetics of the reaction of 1 a with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da79s8-4	5.00×10^{-4}	1.00×10^{-4}	3.02×10^{1}
da79s8-5	6.30×10^{-4}	1.00×10^{-4}	3.26×10^{1}
da79s8-1	2.00×10^{-3}	1.00×10^{-4}	8.89×10^{1}
da79s8-2	2.50×10^{-3}	1.00×10^{-4}	1.19×10^{2}
da79s8-3	3.00×10^{-3}	1.00×10^{-4}	1.43×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.52 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.81. Kinetics of the reaction of 1 b with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da191s8-2	1.60×10^{-3}	1.00×10^{-4}	3.28×10^{1}
da191s8-4	2.40×10^{-3}	1.00×10^{-4}	4.02×10^{1}
da191s8-5	3.20×10^{-3}	1.00×10^{-4}	4.86×10^{1}
da191s8-5	4.00×10^{-3}	1.00×10^{-4}	5.64×10^{1}

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=9.90 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
$$

Table 4.82. Kinetics of the reaction of 1 c with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{5 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
da130s9-1	5.00×10^{-4}	1.00×10^{-4}	3.13×10^{1}
da130s9-2	6.30×10^{-4}	1.00×10^{-4}	4.00×10^{1}
da130s9-3	7.50×10^{-4}	1.00×10^{-4}	4.88×10^{1}
da130s9-4	8.80×10^{-4}	1.00×10^{-4}	5.78×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=7.01 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 4.83. Kinetics of the reaction of 1 d with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at $\mathbf{4 2 5} \mathrm{nm}$).

Table 4.84. Kinetics of the reaction of 1 e with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

The positive intercept may be caused by a reversible betaine formation.

Table 4.85. Kinetics of the reaction of 1 g with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 476 nm).

Table 4.86. Kinetics of the reaction of 1 h with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 482 nm).

Table 4.87. Kinetics of the reaction of 1 i with 5 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 530 nm).

4.6 References

[1] For reviews see: (a) I. Zugravescu, M. Petrovanu, N-Ylid Chemistry, McGraw-Hill, New York, 1976; (b) A. G. Mikhailovskii, V. S. Shklyaev, Chem. Heterocycl. Compd. 1997, 33, 243-265; (c) J. Jacobs, E. Van Hende, S. Claessens, N. De Kimpe, Curr. Org. Chem. 2011, 15, 1340-1362; (d) A. Kakehi, Heterocycles 2012, 85, 1529-1577.
[2] For $\mathrm{p} K_{\mathrm{a}}$ studies see: (a) W. G. Phillips, K. W. Ratts, J. Org. Chem. 1970, 35, 3144-3147; (b) A. R. E. Carey, S. Al-Quatami, R. A. More O'Ferrall, B. A. Murray, J. Chem. Soc., Chem. Comтun. 1988, 1097-1098; (c) X.-M. Zhang, F. G. Bordwell, M. Van Der Puy, H. E. Fried, J. Org. Chem. 1993, 58, 3060-3066; (d) A. R. E. Carey, R. A. More O'Ferrall, B. A. Murray, J. Chem. Soc., Perkin Trans. 2 1993, 2297-2302; (e) Y. Fu, H.-J. Wang, S.-S. Chong, Q.-X. Guo, L. Liu, J. Org. Chem. 2009, 74, 810-819.
[3] For deprotonation studies see: (a) Z. Dega-Szafran, G. Schroeder, M. Szafran, J. Phys. Org. Chem. 1999, 12, 39-46; (b) Z. Dega-Szafran, G. Schroeder, M. Szafran, A. Szwajca, B. Łeska, M. Lewandowska, J. Mol. Struct. 2000, 555, 31-42; (c) M. Szafran, A. Szwajca, B. Łęska, G. Schroeder, Z. Dega-Szafran, J. Mol. Struct. 2002, 643, 55-68; (d) A. Szwajca, B. Łęska, G. Schroeder, M. Szafran, J. Mol. Struct. 2004, 708, 87-95.
[4] For kinetic studies see: (a) J. E. Jackson, N. Soundararajan, M. S. Platz, M. T. H. Liu, J. Am. Chem. Soc. 1988, 110, 5595-5596; (b) R. Bonneau, M. T. H. Liu, R. Lapouyade, J. Chem. Soc., Perkin Trans. 1 1989, 1547-1548.
[5] For computational studies see: (a) P. Karafiloglou, G. Surpateanu, Int. J. Quantum Chem. 2004, 98, 456-464; (b) S. Matsumura, R. Takagi, S. Kojima, K. Ohkata, M. Abe, Heterocycles 2010, 81, 2479-2495.
[6] Examples of dihydrofuran synthesis: (a) S. M. Rajesh, S. Perumal, J. C. Menendez, S. Pandian, R. Murugesan, Tetrahedron 2012, 68, 5631-5636; (b) P. Gunasekaran, K. Balamurugan, S. Sivakumar, S. Perumal, J. C. Menéndez, A. I. Almansour, Green

Chem. 2012, 14, 750-757; (c) V. A. Osyanin, D. V. Osipov, Y. N. Klimochkin, J. Org. Chem. 2013, 78, 5505-5520.
[7] Examples of [3+2]-cycloadduct synthesis: (a) O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3137-3157; (b) O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3320-3336; (c) A. M. Shestopalov, Y. A. Sharanin, V. N. Nesterov, L. A. Rodinovskaya, V. E. Shklover, Y. T. Struchkov, V. P. Litvinov, Chem. Heterocycl. Compd. 1991, 27, 1006-1011; (d) N. Fernández, L. Carrillo, J. L. Vicario, D. Badía, E. Reyes, Chem. Commun. 2011, 47, 12313-12315.
[8] Examples of indolizine synthesis: (a) A. R. Katritzky, G. Qiu, B. Yang, H.-Y. He, J. Org. Chem. 1999, 64, 7618-7621; (b) E. Kim, M. Koh, J. Ryu, S. B. Park, J. Am. Chem. Soc. 2008, 130, 12206-12207; (c) E. Kim, M. Koh, B. J. Lim, S. B. Park, J. Am. Chem. Soc. 2011, 133, 6642-6649; (d) Y. Yang, C. Xie, Y. Xie, Y. Zhang, Org. Lett. 2012, 14, 957-959; (e) M. Kucukdisli, T. Opatz, Eur. J. Org. Chem. 2012, 4555-4564.
[9] D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, 6379-6388.
[10] Examples for synthesis of stable betaines: (a) Y. Han, J. Chen, L. Hui, C.-G. Yan, Tetrahedron 2010, 66, 7743-7748; (b) Q.-F. Wang, L. Hui, H. Hou, C.-G. Yan, J. Comb. Chem. 2010, 12, 260-265; (c) A. Kumar, G. Gupta, S. Srivastava, Org. Lett. 2011, 13, 6366-6369.
[11] Examples for cyclopropanations: (a) A. M. Shestopalov, V. P. Litvinov, L. A. Rodinovskaya, Y. A. Sharanin, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1991, 40, 129-138; (b) N. H. Vo, C. J. Eyermann, C. N. Hodge, Tetrahedron Letters 1997, 38, 7951-7954; (c) S. Kojima, K. Fujitomo, Y. Shinohara, M. Shimizu, K. Ohkata, Tetrahedron Lett. 2000, 41, 9847-9851; (d) S. Yamada, J. Yamamoto, E. Ohta, Tetrahedron Lett. 2007, 48, 855-858; (e) Q.-F. Wang, X.-K. Song, J. Chen, C.-G. Yan, J. Comb. Chem. 2009, 11, 1007-1010; (f) N. Kanomata, R. Sakaguchi, K. Sekine, S. Yamashita, H. Tanaka, Adv. Synth. Catal. 2010, 352, 2966-2978.
[12] (a) F. G. Bordwell, A. Cripe, D. L. Hughes, in Nucleophilicity (Eds.: J. M. Harris, S. P. McManus), American Chemical Society, Washington, DC, 1987, p. 137-154; (b) W. P. Jencks, in Nucleophilicity (Eds.: J. M. Harris, S. P. McManus), American Chemical Society, Washington, DC, 1987, p. 155-168.
[13] (a) S. T. A. Berger, A. R. Ofial, H. Mayr, J. Am. Chem. Soc. 2007, 129, 9753-9761; (b) T. A. Nigst, A. Antipova, H. Mayr, J. Org. Chem 2012, 77, 8142-8155.
[14] (a) R. Appel, R. Loos, H. Mayr, J. Am. Chem. Soc. 2009, 131, 704-714; (b) S. Lakhdar, R. Appel, H. Mayr, Angew. Chem., Int. Ed. 2009, 48, 5034-5037; (c) R. Appel, H. Mayr, Chem. Eur. J. 2010, 16, 8610-8614; (d) R. Appel, N. Hartmann, H. Mayr, J. Am. Chem. Soc. 2010, 132, 17894-17900.
[15] For reviews see: (a) H. Mayr, M. Patz, Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957; (b) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512; (c) R. Lucius, R. Loos, H. Mayr, Angew. Chem., Int. Ed. 2002, 41, 91-95; (d) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (e) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 1807-1821; (f) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584-595; (g) H. Mayr, S. Lakhdar, B. Maji, A. R. Ofial, Beilstein J. Org. Chem. 2012, 8, 1458-1478; (h) For a comprehensive database of nucleophilicity parameters N, s_{N} and electrophilicity parameters E, see http://www.cup.lmu.de/oc/mayr/.
[16] (a) T. Lemek, H. Mayr, J. Org. Chem. 2003, 68, 6880-6886; (b) O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682; (c) R. Appel, H. Mayr, J. Am. Chem. Soc. 2011, 113, 8240-8251.
[17] The trans-selectivity of pyridinium ylide mediated cyclopropanations of a broad variety of benzylidene malononitriles and related Michael acceptors was already reported in different solvents, e.g. in MeCN or EtOH. ${ }^{[11]}$
[18] (a) Hartnagel, M.; Grimm, K.; Mayr, H. Liebigs Ann. 1997, 71-80. (b) Mayr, H.; Ofial, A. R.; Sauer, J.; Schmied, B. Eur. J. Org. Chem. 2000, 2013-2020. (c) Fichtner, C.; Mayr, H. J. Chem. Soc., Perkin Trans. 2 2002, 1441-1444.
[19] In case of the reaction of chalcone $\mathbf{5 b}$ with the $4-\mathrm{NMe}_{2}$ substituted pyridinium ylide $\mathbf{1 f}$ complicated kinetics were observed, which may be caused by a reversible formation of the intermediate betaine (compare Scheme 4.3). As it is unclear, which reaction step was observed in the kinetic measurement, we excluded $\mathbf{1 f}$ from the studies with chalcone 5b.
[20] (a) R. Huisgen, Angew. Chem., Int. Ed. Engl. 1963, 2, 565-598; (b) R. Huisgen, Angew. Chem., Int. Ed. Engl. 1963, 2, 633-645.
[21] (a) R. A. Firestone, J. Org. Chem. 1968, 33, 2285-2290; (b) R. Huisgen, J. Org. Chem. 1968, 33, 2291-2297.
[22] R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry (Ed.: A. Padwa), Wiley, New York, 1984, p. 1-176.
[23] (a) R. Huisgen, G. Mloston, E. Langhals, J. Am. Chem. Soc. 1986, 108, 6401-6402; (b) R. Huisgen, G. Mloston, E. Langhals, Helvetica Chimica Acta 2001, 84, 1805-1820; (c) R. Huisgen, G. Mloston, H. Giera, E. Langhals, Tetrahedron 2002, 58, 507-519; (d) G. Mloston, R. Huisgen, H. Giera, Tetrahedron 2002, 58, 4185-4193; (e) R. Huisgen, H. Giera, K. Polborn, Tetrahedron 2005, 61, 6143-6153; (f) R. Huisgen, P. Pöchlauer, G. Mlostoń, K. Polborn, Helv. Chim. Acta 2007, 90, 983-998.
[24] (a) D. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2007, 129, 10646-10647; (b) D. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2008, 130, 10187-10198; (c) L. Xu, C. E. Doubleday, K. N. Houk, J. Am. Chem. Soc. 2010, 132, 3029-3037; (d) Y. Lan, L. Zou, Y. Cao, K. N. Houk, J. Phys. Chem. A 2011, 115, 13906-13920; (e) S. A. Lopez, M. E. Munk, K. N. Houk, J. Org. Chem. 2013, 78, 1576-1582.
[25] (a) W.-J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118-3127; (b) I. Fernández, F. P. Cossío, F. M. Bickelhaupt, J. Org. Chem. 2011, 76, 2310-2314.
[26] S. Muthusaravanan, S. Perumal, P. Yogeeswari, D. Sriram, Tetrahedron Lett. 2010, 51, 6439-6443.
[27] I. Zenz, H. Mayr, J. Org. Chem. 2011, 76, 9370-9378.
[28] a) H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515; b) G. F. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
[29] a) I. C. Calder, Q. N. Porter, C. M. Richards, Aust. J. Chem. 1972, 25, 345 - 351; b) A. Szwajca, B. Leska, G. Schroeder, M. Szafran, J. Mol. Struct. 2004, 708, 87 - 95.
[30] D. S. Allgäuer, Master Thesis, Ludwig-Maximilian-Universität, München (Germany) 2009.

5 Electrophilicities of 1,2-Disubstituted Ethylenes

Dominik S. Allgäuer and Herbert Mayr

Eur. J. Org. Chem. 2014 in press (DOI: 10.1002/ejoc.201301779).

5.1 Introduction

The acceptor-substituted ethylenes $\mathbf{1 a}^{-\mathbf{e}}$ (Scheme 5.1) are frequently used in organic syntheses, ${ }^{[1]}$ for example as reagents in Michael additions, ${ }^{[2]}[3+2]$-cycloadditions, ${ }^{[3,4]}$ and Diels-Alder reactions, ${ }^{[5,6]}$ which can be promoted by metals ${ }^{[7,8]}$ or organocatalysts. ${ }^{[9, ~ 10]}$

Although the relative reactivities of the acceptor-substituted ethylenes $\mathbf{1 a - e}$ in 1,3-dipolar cycloadditions ${ }^{[3,4 \mathrm{~b}, 11]}$ and Diels-Alder reactions ${ }^{[6, \mathrm{~b}, 12]}$ have been correlated with their LUMO energies, a general quantification of their electrophilicities has, to the best of our knowledge, not been reported.

We have previously shown, that a multitude of reactions of nucleophiles with carbocations and Michael acceptors can be described by eq 5.1, in which electrophiles are characterized by one parameter E (electrophilicity), and nucleophiles are characterized by the solvent-dependent parameters s_{N} (sensitivity) and N (nucleophilicity). ${ }^{[13]}$ From the linearity of the plots of the second-order rate constants $\log k_{2}$ versus the electrophilicity parameters E, and from the plots of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ versus the nucleophilicity parameters N, reactivity parameters for many types of nucleophiles and electrophiles were derived. ${ }^{[13]}$

We recently quantified the nucleophilic reactivities N and s_{N} of colored pyridinium ylides $2^{[14]}$ (Table 5.1) and sulfonium ylides $3^{[15]}$ (Table 5.2) based on the kinetics of their reactions with benzhydrylium ions, quinone methides, and benzylidene malonates. These N and s_{N} parameters will now be used to quantify the electrophilic reactivities of colorless Michael acceptors, such as $\mathbf{1}$, so that these synthetically important electrophiles may be included into our comprehensive reactivity scale.

$$
\begin{equation*}
\log k_{2}=s_{\mathrm{N}}(N+E) \tag{5.1}
\end{equation*}
$$

Scheme 5.1. Michael acceptors $1 \mathrm{a}-\mathrm{e}$ investigated in this work.

Table 5.1. Pyridinium ylides 2 employed in this work (N and s_{N} parameters in DMSO from ref. [14]).

Ylide	R	EWG	N / s_{N}
$\mathbf{2 a}$	H	$\mathrm{CO}_{2} \mathrm{Et}$	$26.71 / 0.37$
$\mathbf{2 b}$	H	CONEt_{2}	$27.45 / 0.38$
$\mathbf{2 c}$	H	CN	$25.94 / 0.42$
$\mathbf{2 d}$	H	COMe	$20.24 / 0.60$
$\mathbf{2 e}$	H	COPh	$19.46 / 0.58$
$\mathbf{2 f}$	$p-\mathrm{NMe}$	COPh	$21.61 / 0.58$
$\mathbf{2 g}$	$m-\mathrm{Cl}$	COPh	$17.98 / 0.63$
$\mathbf{2 h}$			$20.08 / 0.57$
$\mathbf{2 i}$			$19.38 / 0.50$

Table 5.2. Sulfonium ylides 3 employed in this work (N and s_{N} parameters in DMSO from ref. [15b]).

Ylide	R	N / s_{N}
3a	$p-\mathrm{CN}^{-\mathrm{C}_{6} \mathrm{H}_{4}}$	$21.07 / 0.68$
3b	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	$18.42 / 0.65$
3c	$p-\mathrm{Me}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$	$15.68 / 0.65$
3d	$p-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$	$14.48 / 0.71$

5.2 Results and Discussion

5.2.1 General

Pyridinium ylides 2 undergo [3+2]-cycloadditions with dipolarophiles 1 (Scheme 5.2). ${ }^{[16,17]}$ These reactions can either be concerted ($k_{\text {conc }}$) or stepwise via intermediate betaines $\left(k_{2}\right)$ with a subsequent ring closure (k_{rc}) to the tetrahydroindolizines (Scheme 5.2). For certain substitution patterns, stepwise mechanisms via diradical intermediates have also to be considered. ${ }^{[4 \mathrm{c},} 18$, 19] We recently reported that the 1,3-dipolar cycloadditions of pyridinium ylides with substituted benzylidene malononitriles and chalcones proceed in a stepwise manner via zwitterionic intermediates. ${ }^{[14]}$

Sulfonium ylides $\mathbf{3}$ generally react in a stepwise manner with Michael acceptors, with initial irreversible formation of intermediate betaines (k_{2}), which usually undergo a fast subsequent ring closure ($k^{\prime}{ }_{\text {rc }}$) to cyclopropanes (Scheme 5.3). ${ }^{[15,20]}$

Scheme 5.2. Concerted (upper path) and stepwise cycloadditions (lower path) of the pyridinium ylides 2 with the dipolarophiles 1 .

In reactions of alkoxycarbonylsubstituted sulfonium ylides with cyclopentenone, the intermediate betaines are formed irreversibly, and may undergo base-mediated epimerization before they cyclize to cyclopropanes. ${ }^{[21]}$ In contrast, the formation of cyclopropanes from Michael acceptors and aminosulfoxonium ylides was concluded to proceed via reversible

Scheme 5.3. Schematic mechanism for the reaction of sulfonium ylides 3 with the Michael acceptors 1.
 formation of the intermediate betaines as diethyl maleate was observed to isomerize to diethyl fumarate when combined with the ylide. ${ }^{[22]}$

5.2.2 Products

The products of the reactions of the dipolarophiles $\mathbf{1}$ with isoquinolinium, quinolinium, and pyridinium ylides were studied with $\mathbf{2 h}$ and $\mathbf{2 e}$ as representative examples.

Treatment of DMSO solutions of the dipolarophiles 1a-e and the isoquinolinium salt $\mathbf{2} \mathbf{h H}^{+} \mathbf{B r}^{-}$with NEt_{3} at ambient temperature gave the tetrahydroindolizines $\mathbf{4 a}-\mathbf{e}$ in $65-\mathbf{9 4 \%}$ yield with variable diastereoselectivities (Scheme 5.4). The stereochemistry of the products was assigned on the basis of NOESY correlations of the protons and substituents at the pyrrolidine ring, and was found to be consistent with previous investigations of similar tetrahydroindolizines. ${ }^{[17]}$ The major diastereoisomers of $\mathbf{4 a - e}$ shown in Scheme 5.4 originate from 1-endo approach of $\mathbf{1 a - e}$ to the anti-form of the ylide $\mathbf{2 h}$ (Figure 5.1). The selectivity for this approach is higher for the 1,2-cis disubstituted ethylenes 1a,b,e than for the trans-com-

Scheme 5.4. Formation of the tetrahydroindolizines 4a-e in DMSO.

[a] By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude products.

anti-endo approach
1a $X=0$
1b $X=N M e$

anti-1-endo-2-exo approach

$$
\text { 1c } E W G=C N
$$

$$
\text { 1d EWG }=\mathrm{CO}_{2} \mathrm{Et}
$$

anti-endo approach
1e
Figure 5.1. Endo-approaches of $1 \mathrm{a}-\mathrm{e}$ to the ylide $\mathbf{2 h}$.
pounds $\mathbf{1 c}$ and $\mathbf{1 d}$; anti-endo-tetrahydroindolizines $\mathbf{4 b}$ and $\mathbf{4 e}$ were even formed exclusively. The reaction of $\mathbf{2} \mathbf{e H}^{+} \mathbf{B r}^{-}$with maleic anhydride (1a) in DMF in presence of tetrakispyridinocobalto(II) dichromate (TPCD) was recently reported to give indolizine 6a by oxidative decarboxylation of the intermediate tetrahydroindolizine (i.e., 5a; Scheme 5.5). ${ }^{[23]}$ Our attempts to perform this synthesis in DMSO under otherwise identical conditions failed.

Scheme 5.5. Reaction of maleic anhydride 1a with $2 \mathrm{eH}^{+} \mathrm{Br}^{-}$under oxidative conditions (from ref. [23]).

When we treated a mixture of the pyridinium bromide $\mathbf{2} \mathbf{e H}^{+} \mathbf{B r}^{-}$and maleimide $\mathbf{1 b}$ with triethylamine in DMSO at $20{ }^{\circ} \mathrm{C}$, the tetrahydroindolizine $\mathbf{5 b}$ was obtained as a single diastereoisomer in quantitative yield, as shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction mixture (Scheme 5.6). The formation of $\mathbf{5 b}$ has previously been reported by Tsuge and coworkers, ${ }^{[24]}$ who also determined the stereochemistry of $\mathbf{5 b}$ to be that shown in Scheme 5.6. ${ }^{[24 a]}$

Our attempts to purify $\mathbf{5 b}$ by chromatography on silica gel with chloroform as eluent led to the formation of (E)-itaconimide $\mathbf{7 b}$ in 51% yield. The configuration of the double bond was verified by the NOESY correlation of the protons and substituents at the double bond, and is in agreement with reported data. ${ }^{[24]}$ The formation of $\mathbf{7 b}$ can be rationalized by the mechanism shown in Scheme 5.6. In this mechanism, the weak bond between C-9a and C-9b in tetrahydroindolizine $\mathbf{5 b}$ cleaves to regenerate the betaine $\mathbf{8 b}$, which is protonated to give Michael adduct 9b. Elimination of a proton and pyridine from 9b by an E2 or E1cB mechanism gives the E-itaconimide $7 \mathbf{7 b}$.

Combination of the Michael acceptors $\mathbf{1 c} \mathbf{-} \mathbf{e}$ with the pyridinium salt $\mathbf{2} \mathbf{e H}^{+} \mathbf{B r}^{-}$and base led to the formation of the tetrahydroindolizines $\mathbf{5 c} \mathbf{c}$ e, which were not characterized but were oxidized in a one-pot procedure by 2 equiv. of chloranil to the indolizines $\mathbf{1 0 c} \mathbf{- d}$ in $63-88 \%$ yield (Scheme 5.7). The cycloaddition of $\mathbf{2 e}$ with $\mathbf{1 c}$ was achieved by treatment of a mixture of $\mathbf{2} \mathbf{e H}^{+} \mathbf{B r}^{-}$and $\mathbf{1 c}$ with NEt_{3}, whereas attempts to perform this reaction under biphasic conditions $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{aq} \text {. } \mathrm{NaOH}(32 \%)\right]^{[25]}$ only led to polymerization of $\mathbf{1 c}$. However, biphasic conditions were successfully used for the reactions of $\mathbf{2} \mathbf{e H}^{+} \mathbf{B r}^{-}$with $\mathbf{1 d}$ and $\mathbf{1 e}$ to give indolizine $\mathbf{1 0 d}$ after oxidation.

The reaction of the sulfonium ylides $\mathbf{3 c}, \mathbf{d}$ with $\mathbf{1 b}, \mathbf{c}$ as representative examples resulted in the formation of the cyclopropanes 11b and 11c with complete stereocontrol in 46% and 62% yields, respectively (Scheme 5.8). ${ }^{[26]}$ The stereochemistry of the cyclopropanes 11b,c was assigned on basis of NOESY correlations of the protons and substituents at the cyclopropane ring.

Scheme 5.6. Base induced reaction of $2 \mathrm{eH}^{+} \mathrm{Br}^{-}$with N-Mmethylmaleimide $\mathbf{1 b}$. Stereochemistry of $\mathbf{5 b}$ according to ref. [24a].

Scheme 5.7. Synthesis of indolizines $10 \mathrm{c}-\mathrm{d}$.

The reactions of the sulfonium ylides $\mathbf{3 a}, \mathbf{b}$ with $\mathbf{1 b}, \mathbf{c}$ did not lead to isolable products, possibly due to polymerization of $\mathbf{1 b}, \mathbf{c}$ initiated by the high $\mathrm{KO}^{t} \mathrm{Bu}$ concentrations required to generate the ylides $\mathbf{3 a}, \mathbf{b}$. For the kinetic investigations of these reactions dilute solutions of the ylides $\mathbf{3 a}, \mathbf{b}$ and the ethylenes $\mathbf{1 b}, \mathbf{c}$ were used. Clean second-order reactions were observed under these conditions, possibly because in highly dilute solutions the base induced polymerization of the ethylenes was suppressed. The kinetics of the reaction of maleic anhydride $\mathbf{1 a}$ with the sulfonium ylide $\mathbf{3 b}$ followed a second-order rate law, but we were not able to isolate a product from the reaction. Thus a definite interpretation of the determined second-order rate constant $k_{2}{ }^{\exp }$ (see below) will not be attempted.

The reaction of diethyl fumarate 1d with sulfonium ylide 3a gave the cyclopropane 11d in 81% yield with exclusive formation of the diastereoisomer with the ester groups trans to each other (stereochemistry verified by NOESY as described above; Scheme 5.8). The preferred formation of the cyclopropane 11d with the ester groups in a trans configuration to each other
was also found inthe reaction of diethyl maleate $\mathbf{1 e}$ with sulfonium ylide 3a (Scheme 5.8), which indicates that the cis-configuration of the double bond of diethyl maleate $\mathbf{1 e}$ was eroded during the cyclopropanation process. This observation can be rationalized by the intermediate formation of the betaine 12e, which has sufficient life-time for the rotation around the σ bond between C-1 and C-2 to take place before cyclization with elimination of dimethyl sulfide leads to the diastereoisomer of cyclopropane 11d shown in Scheme 5.9. ${ }^{[20 \mathrm{a}, 22 \mathrm{a}]}$ Non-stereospecific cyclopropanations have previously been observed in the reaction of diethyl maleate $\mathbf{1 e}$ with aminosulfoxonium ylides. ${ }^{[22 a]}$ As diethyl maleate $\mathbf{1 e}$ isomerized to diethyl fumarate $\mathbf{1 d}$ in the presence of aminosulfoxonium ylides it was concluded that the betaine formation from diethyl maleate $1 \mathbf{e}$ and aminosulfoxonium ylides was a reversible process. ${ }^{[22 a]}$ To clarify, whether the formation of betaine 12e from diethyl maleate 1e and the sulfonium ylide 3a is a reversible or irreversible process, the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR in DMSO- d_{6} at ambient temperature.

Scheme 5.8. Cyclopropanations of the Michael acceptors 1b-e with the sulfonium ylides 3a-d.

[a] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

Scheme 5.9. Mechanism of the cyclopropanation reaction of diethyl maleate 1 e with 3a.
When 1 equiv. of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- d_{6} was added to a solution of $\mathbf{3 a H}^{+} \mathbf{B F}_{4}^{-}$and $\mathbf{1 e}$ in DMSO- d_{6} the cyclopropane 11d, $\mathrm{SMe}_{2},{ }^{t} \mathrm{BuOH}$ and decomposition products of the ylide 3a, but also non-converted $\mathbf{3 a H} \mathbf{H}^{+} \mathbf{B F}_{4}{ }^{-}, \mathbf{1 e}$, and traces of $\mathbf{1 1 e}$ were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum taken immediately after mixing the reagents. The ${ }^{1} \mathrm{H}$ NMR spectrum did not change during 13 \min (for details see Experimental Section). As betaines 12d and 12e were not observable, one can exclude fast formation of $\mathbf{1 2 d}$ and $\mathbf{1 2 e}$, which would then undergo subsequent slow cyclization. The ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture also allowed excluding reversible formation of the betaines 12d and 12e, because diethyl fumarate 1d was not observed in the reaction mixture.

5.2.3 Kinetic Investigations

The kinetics of the reactions of $\mathbf{1 a - e}$ with the ylides $\mathbf{2}$ and $\mathbf{3}$ were investigated in DMSO solution at $20^{\circ} \mathrm{C}$ and monitored photometrically by following the disappearance of the ylides $\mathbf{2}$ and $\mathbf{3}$ at or close to their absorption maxima. Due to their low stabilities, the ylides 2a-i and $\mathbf{3 a}, \mathbf{b}$ were generated directly before each kinetic experiment in the flask used for the kinetic experiment by combining DMSO solutions of the salts $\mathbf{2 (a} \mathbf{a} \mathbf{- i}) \mathbf{H}^{+} \mathbf{X}^{-}$or $\mathbf{3}(\mathbf{a}, \mathbf{b}) \mathbf{H}^{+} \mathbf{B F}_{4}^{-}$with $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.05 equivalents). To perform the kinetic measurements under pseudo-firstorder conditions an excess of at least 10 equivalents of the Michael acceptors $\mathbf{1 a}-\mathbf{e}$ with respect to the ylides $\mathbf{2}$ and $\mathbf{3}$ was used.

Figure 5.2. a) Decay of the absorbance of $2 \mathrm{e}\left([2 \mathrm{e}]_{0}=5 \times 10^{-5} \mathrm{M}\right)$ at 445 nm during its reaction with 1 c ([1c] $]_{0}$ $=4.00 \times 10^{-3} \mathrm{M}$) in DMSO at $20^{\circ} \mathrm{C}$. b) Correlation of k_{obs} with the concentration of 1 c .

Table 5.3. Experimental ($\left.k_{2}{ }^{\text {exp }}\right)$ and calculated ($\left.k_{2}{ }^{\text {calcd }}\right)^{[\text {[a] }}$ second-order rate constants for the reactions of the Michael acceptors 1a-e with the ylides 2a-i and 3a,b in DMSO at $20{ }^{\circ} \mathrm{C}$.

Electrophile	Ylide	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd } / ~} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
	2d	3.69×10^{5}	2.27×10^{5}	1.6
	2e	4.74×10^{4}	5.32×10^{4}	0.89
	2 g	1.16×10^{4}	1.59×10^{4}	0.73
	2h	$\approx 2.1 \times 10^{5[\mathrm{~b}]}$	9.94×10^{4}	2.1
	2 i	$\left.\approx 1.8 \times 10^{4} \mathrm{~b}\right]$	1.08×10^{4}	1.7
$E=-11.31$	3b	4.00×10^{4}	4.17×10^{4}	1.0
	2d	7.84×10^{3}	5.04×10^{3}	1.6
	2 e	1.15×10^{3}	1.34×10^{3}	0.86
	2 f	2.07×10^{4}	2.37×10^{4}	0.88
	2h	$1.81 \times 10^{4[\mathrm{c}]}$	2.67×10^{3}	6.8
	2 i	$2.44 \times 10^{4[\mathrm{c}]}$	4.53×10^{2}	54
	3b	5.80×10^{2}	6.74×10^{2}	0.86
$E=-15.71$	2 a	$\approx 1.6 \times 10^{5}[\mathrm{~b}]$	1.17×10^{4}	14
	2 c	$\approx 1.5 \times 10^{5[\mathrm{~b}]}$	2.51×10^{4}	5.9
	2d	6.18×10^{2}	5.22×10^{2}	1.2
	2e	4.69×10^{1}	1.50×10^{2}	0.31
	2 g	2.29×10^{1}	2.69×10^{1}	0.85
	2h	4.73×10^{2}	3.10×10^{2}	1.5
	3a	8.42×10^{3}	4.41×10^{3}	1.9
	2a	$8.83 \times 10^{3}[\mathrm{cc]}$	1.99×10^{3}	4.4
	2b	$\approx 7.1 \times 10^{3[\mathrm{~b}]}$	4.67×10^{3}	1.5
	2 c	$\approx 1.4 \times 10^{4}[\mathrm{~b}]$	2.64×10^{3}	5.3
	2 d	4.73×10^{1}	2.93×10^{1}	1.6
	2 e	4.54	9.25	0.49
$E=-17.79$	2h	5.68×10^{2} [c]	2.01×10^{1}	28
	3a	2.03×10^{2}	1.69×10^{2}	1.2
	2 c	9.28×10^{2}	5.09×10^{2}	1.8
	2d	$3.12{ }^{\text {[d] }}$	2.80	1.1
	2 e	5.53×10^{-1}	9.54×10^{-1}	0.58
	2h	$1.47 \times 10^{1[\mathrm{cc}]}$	2.05	7.2
$E=-19.49$	3a	$(\approx 3.4)^{[\mathrm{ec]}}$	1.18×10^{1}	0.29

$\overline{[\mathrm{a}] \text { Calculated by eq } 1 \text { using the } N \text { and } s_{\mathrm{N}} \text { parameters from Tables } 1 \text { and } 2 \text { and } E \text { in this Table; [b] As the } k_{\text {obs }} \text { versus }}$
[1] plots for these reactions, which proceed on the $<10 \mathrm{~ms}$ time scale, do not have negligible intercepts, these data are considered to be less reliable and were not used for the determination of $E(\mathbf{1 a}, \mathbf{c}, \mathbf{d})$ according to eq 1 ; [c] These rate constants possibly correspond to concerted, but highly unsymmetrical processes and were thus exempted from the determination of E; [d] By stopped-flow method; reproduction by a spectrometer using fiber optics gave $k_{2}{ }^{\exp }$ $=3.48 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (details see Supporting Information); [e] Kinetics deviate slightly from second-order rate law, and thus k_{2} not employed for the determination of E.

The first-order rate constants k_{obs} were obtained by least squares fitting of the exponential function $A_{t}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)+C$ (mono-exponential decrease) to the observed time-dependent absorbances (Figure 5.2a). Most of the Correlations of $k_{\text {obs }}$ with the concentrations of the Michael acceptors 1a-e were linear with negligible intercepts, as required by the relation $k_{\mathrm{obs}}=$ k_{2} [1] (Figure 5.2b). From the slopes of the linear correlations, the second-order rate constants for the reactions of the Michael acceptors $\mathbf{1 a}-\mathbf{e}$ with the ylides $\mathbf{2 , 3}$ were obtained (Table 5.3).

When the reactions of the pyridinium ylides $\mathbf{2}$ and the sulfonium ylides $\mathbf{3}$ with the acceptorsubstituted ethylenes 1 proceed stepwise with rate-determining formation of the zwitterionic intermediates $\mathbf{8}$ and 12, the measured rate constants correspond to k_{2}, as specified in Schemes 5.2 and 5.3. As k_{2} refers to the formation of one new CC-bond without breaking a σ-bond, as the reactions employed for the parameterization of eq 5.1, this correlation may also apply for the rate constants listed in Table 5.3. A linear correlation was found (Figure 5.3) when (log $\left.k_{2}{ }^{\exp }\right) / s_{\mathrm{N}}$ was plotted against the previously published nucleophilicity parameters N, which had been derived from the reactions of the ylides 2 and $\mathbf{3}$ with benzhydrylium ions, quinone methides, and benzylidene malonates.

Using the constants from Table 5.3, which could unambiguously be assigned to k_{2} (see footnotes of Table 5.3 and the text below) the electrophilicity parameters E of the 1,2disubstituted ethylenes $\mathbf{1 a}-\mathbf{e}$ were calculated by least square-fitting, i.e., by minimizing $\Delta^{2}=$ $\sum\left(\log k_{2}-s_{\mathrm{N}}(N+E)\right)^{2}($ Table 5.3).

Figure 5.3. Correlation of $\left(\log k_{\mathbf{2}}\right) / s_{\mathrm{N}}$-values derived from the reactions of the dipolarophiles 1 with the ylides 2,3 against the corresponding nucleophilicity parameters N of the ylides $\mathbf{2 , 3}$ (the slopes are fixed to $\mathbf{1 . 0}$ as required by eq 5.1). \boldsymbol{k}_{2} Values not used for the determination of E are not shown but are listed in Table 5.3.

Table 5.3 compares the experimental rate-constants for the reactions of the ylides $\mathbf{2}$ and $\mathbf{3}$ with the acceptor-substituted ethylenes $\mathbf{1}$ with the values calculated by eq 5.1 using the nucleophile-specific parameters s_{N} and N from Tables 5.1 and 5.2 , and the electrophilicity parameters E listed in Table 5.3, which were obtained by the described least-squares minimization. The 19 second-order rate constants used to derive the electrophilicity parameters E of the activated ethylenes $\mathbf{1}$, as well as four rate constants which were not used for the parameterization because of their lower precision, agreed with the calculated values within a factor of 3 .

The remaining eight reactions proceed 4 to 54 times faster than calculated by equation 1 . Though these deviations are within the confidence limit of equation 1, these rate constants have not been used for deriving the electrophilicity parameter E , as the positive deviations might also be due to a low degree of concertedness of these [3+2]-cycloaddition reactions.

The fact that all rate constants listed in Table 5.3 agree with the values calculated by eq 5.1 within two orders of magnitude, 28 out of the 31 values even within one order of magnitude, indicates that all reactions, even though they led to different final products tetrahydroindolizines (from 2) and cyclopropanes (from 3) - share a common rate determining step, i.e., formation of one new CC-bond with generation of an intermediate betaines. However, as discussed above, concerted processes with highly unsymmetrical transition states cannot be excluded for some 1,3-dipolar cycloadditions.

5.3 Conclusion

The correlation (5.1), $\log k_{2}=s_{\mathrm{N}}(N+E)$, where electrophiles are characterized by one (E), and nucleophiles are characterized by two parameters $\left(N, s_{\mathrm{N}}\right)$ was found to describe the rates of the stepwise 1,3-dipolar cycloadditions of pyridinium ylides 2 with the 1,2-diacceptor substituted ethylenes $\mathbf{1 a}-\mathbf{e}$ as well as the rates of the stepwise cyclopropanations of $\mathbf{1 a} \mathbf{a} \mathbf{e}$ with the sulfonium ylide 3. From the fact that the same electrophilicity parameters E can be used for both types of reaction of the acceptor-substituted ethylenes $\mathbf{1 a - e}$, we conclude that all reactions proceed with analogous rate-determining steps, i.e., formation of one new CC-bond leading to a zwitterionic intermediate, that subsequently undergoes fast reactions to give either [3+2]cycloadducts or cyclopropanes.

Figure 5.4. Comparison of the electrophilicity parameters \boldsymbol{E} of the $\mathbf{1 , 2 - d i s u b s t i t u t e d}$ ethylenes $\mathbf{1 a - e}$ (Table 5.3) and other Michael acceptors (E from refs. [27-30, 32-35]).

For that reason, the Michael acceptors 1a-e can be integrated in our comprehensive electrophilicity scale (Figure 5.4), which shows that the electrophilicity parameters E for the dipolarophiles $\mathbf{1}$ cover almost 9 orders of magnitude. The most reactive Michael acceptor in this series, maleic anhydride $\mathbf{1 a}$, has a similar electrophilic reactivity as diethyl azodicarboxylate, ${ }^{[27]}$ benzylidene indandione, ${ }^{[28]}$ or acylazolium ions, ${ }^{[29]}$ but it is less electrophilic than the gem-substituted di(phenylsulfonyl)ethene. ${ }^{[30]}$ The reactivity of the double bond decreases by approximately 3 orders of magnitude, when the bridging oxygen in $\mathbf{1 a}$ is substituted by a methylimino group in N-methyl maleimide 1b, that has a similar reactivity as palladium-stabilized arylallyl cations, ${ }^{[31]}$ 1,2-diaza-1,3-diene, ${ }^{[32]}$ or β-nitrostyrene. ${ }^{[33]}$ Fumaronitrile 1c is approximately 2 orders of magnitude less reactive than $\mathbf{1 b}$ with an electrophilicity similar to that of a phosphinoyl-substituted imine. ${ }^{[34]}$ Exchanging the cyano groups in fumaronitrile $\mathbf{1 c}$ by ethoxy carbonyl groups (1d) decreases the electrophilic reactivity by two more orders of magnitude, making 1d similarly reactive as chalcone. ${ }^{[34]}$ The activated $\mathrm{C}=\mathrm{C}$-double bond in ethyl fumarate $\mathbf{1 d}$ is almost 8 orders of magnitude less electrophilic, than the analogously substituted $\mathrm{N}=\mathrm{N}$-double bond in diethyl azodicarboxylate. A change of the double bond geometry of the dipolarophile from trans (1d) to cis in diethyl maleate $\mathbf{1 e}$ decreases the reactivity by 2 orders of magnitude, ${ }^{[4 a]}$ that $\mathbf{1 e}$ adopts a similar electrophilicity as diethyl benzylidenemalonate. ${ }^{[35]}$ Attempts to rationalize this nucleophile-independent order of electrophilicities are in progress. ${ }^{[36]}$

5.4 Experimental Section

5.4.1 General

Chemicals. The pyridinium salts $\mathbf{2} \mathbf{H}^{+} \mathbf{X}^{-}$were synthesized as described in ref. [25]; the sulfonium salts $\mathbf{3}(\mathbf{a}, \mathbf{b}) \mathbf{H}^{+} \mathbf{B F}_{4}{ }^{-}$were synthesized as described in ref. [15b], and the sulfonium ylides $\mathbf{3 c}, \mathbf{d}$ as described in ref. [15a].

Analytics. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right),{ }^{[37 \mathrm{a}]} \mathrm{CD}_{3} \mathrm{CN}$ $\left(\delta_{\mathrm{H}} 1.94, \delta_{\mathrm{c}} 118.26\right),{ }^{[37 \mathrm{~b}]}$ or DMSO- $d_{6}\left(\delta_{\mathrm{H}} 2.50, \delta_{\mathrm{c}} 39.52\right)^{[37 \mathrm{a}]}$ on $200,300,400$, or 600 MHz NMR spectrometers. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. For reasons of simplicity, the ${ }^{1} \mathrm{H}$ NMR signals of AA'BB'-spin systems of p-disubstituted aromatic rings were treated as doublets. The assignments of individual NMR signals were based on additional 2D NMR experiments (COSY, NOESY, HSQC, HMBC). Diastereomeric ratios ($d r$) were determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction products if not stated otherwise. HRMS and MS were recorded on a Finnigan MAT 95 Q (EI) mass spectrometer or Thermo Finnigan LTQ FT Ultra (ESI). The melting points were recorded on a Büchi Melting Point B-540 device and are not corrected.

Kinetics. DMSO (99.7\%, extra dry, over molecular sieves, AcroSeal) was purchased and used without further purification. The rates of all reactions were determined by UV-vis spectroscopy in DMSO at $20^{\circ} \mathrm{C}$ by using stopped-flow spectrophotometer systems (Applied Photophysics SX.18MV-R and Hi-Tech SF-61DX2) as well as diodearray-spectrophotometer systems (J\&M TIDAS DAD 2062). The temperature of the solutions during the kinetic studies was maintained at $20 \pm 0.2^{\circ} \mathrm{C}$ by using circulating bath cryostats. The ylides were generated in DMSO at $20^{\circ} \mathrm{C}$ immediately before each kinetic run by mixing DMSO solutions of the pyridinium $\mathbf{2} \mathbf{H}^{+} \mathbf{X}^{-}$or sulfonium salts $\mathbf{3} \mathbf{H}^{+} \mathbf{B F}^{-}$, and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.05 equiv). The kinetic runs were initiated by mixing DMSO solutions of the Michael acceptors $\mathbf{1}$ and the ylides $\mathbf{2 , 3}$ under first-order conditions with $\mathbf{1}$ in large excess over 2,3 (>10 equiv). First-order rate constants $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ were obtained by fitting the single exponential $A_{t}=A_{0} \exp \left(-k_{\text {obs }} t\right)+C$ (monoexponential decrease) to the observed time-dependent absorbances (average of at least three kinetic runs for each concentration for the stopped-flow method) of the electrophiles or ylides. Second-order rate constants $k_{2}\left(\mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$ were derived from the slopes of the linear plots of $k_{\text {obs }}$ against the concentrations of the Michael acceptors $\mathbf{1 a}-\mathbf{e}$ used in excess.

5.4.2 Product Studies

5.4.2.1 Syntheses of the [3+2]-Cycloadducts 4

Procedure A for the Synthesis of [3+2]-Cycloadducts 4. $\mathrm{NEt}_{3}(0.72 \mathrm{mmol})$ was added to a solution of $\mathbf{2} \mathbf{h H}^{+} \mathbf{B r}^{-}(0.50 \mathrm{mmol})$ and $\mathbf{1 a -} \mathbf{e}(0.50 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ at room temperature. The mixture was stirred for 5 min , then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and water $(25 \mathrm{~mL})$ were added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ $15 \mathrm{~mL})$, the combined organic layers were washed with brine $(2 \times 25 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated at room temperature and the residue was recrystallized from ethanol, ethanol/ $\mathrm{Et}_{2} \mathrm{O}$, or $\mathrm{Et}_{2} \mathrm{O}$. Solutions of all [3+2]-cycloadducts 4 in CDCl_{3} or DMSOd_{6} are slowly oxidized by air when stored at room temperature.

8-Benzoyl-8,8a-dihydrofuro[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(11aH,11bH)-

 dione (rac-4a). From 2hH ${ }^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol}), \mathbf{1 a}(49 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}$, $73 \mathrm{mg}, 0.72 \mathrm{mmol})$ according to procedure $\mathbf{A}: 113 \mathrm{mg}(327 \mu \mathrm{~mol}, 65 \%, d r 7: 1$, major diastereoisomer is depicted), yellow solid ($\left.\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 157-159{ }^{\circ} \mathrm{C}\right)$. The NMR-signals of the minor diastereoisomer could not be assigned unambiguously due to overlap with the major diastereoisomer. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=3.81(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 11^{a}-\mathrm{H}\right), 4.22\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 8^{a}-\mathrm{H}\right), 4.67\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 11^{b}-\mathrm{H}\right), 5.37$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.91(\mathrm{~d}, J=7.44 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1$ $\mathrm{H}, 1-\mathrm{H}), 7.54\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.64\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=46.3\left(\mathrm{~d}, \mathrm{C}-8^{a}\right), 51.9\left(\mathrm{~d}, \mathrm{C}-11^{a}\right), 61.7(\mathrm{~d}$, $\mathrm{C}-11^{b}$), 72.3 (d, C-8), 102.1 (d, C-5), 124.1 (d, C-4), 125.6 (d, C-2), 125.6 ($\mathrm{s}, \mathrm{C}-1^{a}$), 127.7 (d, $\mathrm{C}-1), 128.3(\mathrm{~d}, \mathrm{C}-3), 128.7\left(\mathrm{~d},\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.9\left(\mathrm{~s}, \mathrm{C}-4^{a}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}^{-}}\right.\right.$ H), 133.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 135.3 (d, C-6), 170.3 (s, C-9), 173.8 (s, C-11), 194.0 (s, CO). HRMS (EI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{4} 345.1001$, found 345.0991 . DA845
8-Benzoyl-10-methyl-11a,11b-dihydro-8H-pyrrolo[3',4':3,4]pyrrolo[2,1-

 \boldsymbol{a}]isoquinoline-9,11(8aH,10H)-dione (rac-4b). From $\mathbf{2 h H}{ }^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, 1b $(56 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}, 73 \mathrm{mg}, 0.72 \mathrm{mmol})$ according to procedure $\mathbf{A}: 162 \mathrm{mg}$ ($452 \mu \mathrm{~mol}, 90 \%, d r>95: 5$, major diastereoisomer is depicted), yellow solid ($\mathbf{M p}$ (EtOH) $\left.105-106{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=2.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.44$ ($\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 11^{a}-\mathrm{H}$), $3.97\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 8^{a}-\mathrm{H}\right), 4.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,$\left.1 \mathrm{H}, 11^{b}-\mathrm{H}\right), 5.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, 6.93 (ddd, $J=7.6,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.11-7.23(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 7.43-7.56(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $7.57-7.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.06-8.13\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=25.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 46.0\left(\mathrm{~d}, \mathrm{C}-8^{a}\right), 51.4\left(\mathrm{~d}, \mathrm{C}-11^{a}\right), 62.1\left(\mathrm{~d}, \mathrm{C}-11^{b}\right), 72.8(\mathrm{~d}, \mathrm{C}-8)$, 102.8 (d, C-5), 124.8 (d, C-4), 126.1 (s, C-1 ${ }^{\text {a }}$), 126.4 (d, C-1, or C-2, or C-3), 127.6 (d, C-1, or
 $\mathrm{C}-4^{a}$), $134.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 134.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 135.0(\mathrm{~d}, \mathrm{C}-6), 175.2(\mathrm{~s}, \mathrm{C}-11), 178.3$ ($\left.\mathrm{s}, \mathrm{C}-9\right), 193.8(\mathrm{~s}$, CO). HRMS (EI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} 358.1317$, found 358.3118. MS (EI) m/z: 359 (5), 358 (21), 357 (7), 253 (64), 246 (34), 239 (15), 168 (35), 167 (27), 105 (11), 77 (15), 58 (22), 43 (100). DA831

3-Benzoyl-1,2,3,10b-tetrahydropyrrolo $[2,1-a]$ isoquinoline-1,2-dicarbonitrile (rac-4c). From $\mathbf{2 h H} \mathbf{H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol}), \mathbf{1 c}(39 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}, 73 \mathrm{mg}$, $0.72 \mathrm{mmol})$ according to procedure A: $108 \mathrm{mg}(332 \mu \mathrm{~mol}, 66 \%, d r 4: 1$, major diastereoisomer is depicted), yellow solid ($\mathbf{M p}(\mathrm{EtOH}) 179-181{ }^{\circ} \mathrm{C}$; lit $\left.179-182{ }^{\circ} \mathrm{C}^{[17]}\right)$. The NMR-signals of the minor diastereoisomer could not be assigned unambiguously due to overlap with the major diastereoisomer. Major: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=4.32(\mathrm{dd}, J=7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-$
 - $7.25(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}, 10-\mathrm{H}), 7.55-7.64\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.69-7.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.08-$ $8.18\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. Major: ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=32.6(\mathrm{~d}, \mathrm{C}-2), 40.3(\mathrm{~d}, \mathrm{C}-$ 1), 61.1 (d, C-10 ${ }^{b}$), 67.7 (d, C-3), 100.2 (d, C-6), 117.5 (s, CN), 118.1 (s, CN), 124.1 (d, C-7), 125.5 ($\mathrm{s}, \mathrm{C}-10^{a}$), 125.7 (d, C-9), 126.9 (d, C-8 or C-10), 128.7 (d, C-8 or C-10), 128.9 (d, $2 \times \mathrm{C}_{\mathrm{Ar}^{-}}$ H), $128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.8\left(\mathrm{~s}, \mathrm{C}-6^{a}\right), 134.1(\mathrm{~d}, \mathrm{C}-5), 134.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 193.6$ (s, CO). HRMS (ESI): calcd. for [$\left.\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}\right]^{+} 326.1288$, found 326.1286. DA780

Diethyl 3-benzoyl-1,2,3,10b-tetrahydropyrrolo[2,1-a]isoquinoline-1,2-dicarboxylate

 ($\mathrm{rac}-\mathbf{4 d}$). From $\mathbf{2 h} \mathbf{H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, $\mathbf{1 d}(86 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}$, $73 \mathrm{mg}, 0.72 \mathrm{mmol})$ according to procedure $\mathbf{A}: 139 \mathrm{mg}(331 \mu \mathrm{~mol}, 66 \%, d r 3: 1$ decreases upon standing to 2:1, major diastereoisomer is depicted), yellow solid ($\mathbf{M p}(\mathrm{EtOH}) 119-123{ }^{\circ} \mathrm{C}$).

The NMR-signals of the minor diastereoisomer could not be assigned unambiguously due to overlap with the major diastereoisomer. Major: ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.81-0.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19-1.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.77-3.84(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}$, superimposed by minor diastereoisomer), $3.90(\mathrm{dd}, J=8.8,6.6 \mathrm{~Hz}$,
$1 \mathrm{H}, 1-\mathrm{H}), 4.08\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.13-4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.10^{b}-\mathrm{H}\right), 5.38$ (dd, $\left.J=7.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 5.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}$, superimposed by minor diastereoisomer), $6.84-6.88(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 6.89-7.19(\mathrm{~m}$, $3 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}, 10-\mathrm{H}$, superimposed by minor diastereoisomer), $7.43-7.52\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by minor diastereoisomer), $7.55-7.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.98-8.04(\mathrm{~m}, 2 \mathrm{H}$, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$, superimposed by minor diastereoisomer). Major: ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $13.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 47.8(\mathrm{~d}, \mathrm{C}-2), 53.8(\mathrm{~d}, \mathrm{C}-1), 61.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 61.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 61.9(\mathrm{~d}$, $\left.10^{b}-\mathrm{H}\right), 70.8$ (d, C-3), 102.5 (d, C-6), 124.5 (d, C-7), 125.5 (d, C-8 or C-9 or C-10), 126.9 (s, $\mathrm{C}-10^{a}$), 128.3 (d, C-8 or C-9 or C-10), 128.4 (d, C-8 or C-9 or C-10), $128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0$ (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $131.9\left(\mathrm{~s}, \mathrm{C}-6^{a}\right), 133.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.8(\mathrm{~d}, \mathrm{C}-5), 135.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 170.9\left(\mathrm{~s}, \mathrm{CO}_{2}\right)$, 173.5 (s, CO_{2}), 194.1 (s, CO). HRMS (ESI): calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{5}\right]^{+} 420.1805$, found 420.1804. DA778

Diethyl 3-benzoyl-1,2,3,10b-tetrahydropyrrolo[2,1-a]isoquinoline-1,2-dicarboxylate

 ($\mathrm{rac}-\mathbf{4 e}$). From $\mathbf{2 h} \mathbf{h H}^{+} \mathbf{B r}^{-}(164 \mathrm{mg}, 500 \mu \mathrm{~mol})$, $\mathbf{1 e}(86 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}$, $73 \mathrm{mg}, 0.72 \mathrm{mmol}$) according to procedure A: $198 \mathrm{mg}(472 \mu \mathrm{~mol}, 94 \%, d r>95: 5$, major diastereoisomer is depicted), yellow solid ($\left.\mathbf{M p}\left(\mathrm{EtOH}: \mathrm{Et}_{2} \mathrm{O}\right) 91-92{ }^{\circ} \mathrm{C}\right) . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.75-0.81\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05-1.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.52-3.59(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H})$, $3.68-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.95-4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.94(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.25\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 10^{b}-\mathrm{H}\right), 5.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.01(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$ or $10-\mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H})$, $6.93-7.01(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}$ or $10-\mathrm{H}), 7.40-7.50\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.50-7.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, $7.98-8.09\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, 45.3 (d, C-2), $53.9(\mathrm{~d}, \mathrm{C}-1), 60.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 61.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 64.5\left(\mathrm{~d}, \mathrm{C}-10^{b}\right), 66.6(\mathrm{~d}, \mathrm{C}-3), 97.6(\mathrm{~d}$, C-6), 124.1 ($\mathrm{d}, \mathrm{C}-7$ or C-10), 125.2 (d, C-8 or C-9), 126.3 ($\mathrm{s}, \mathrm{C}-10^{a}$), 127.3 (d, C-8 or C-9), $128.2(\mathrm{~d}, \mathrm{C}-7$ or $\mathrm{C}-10), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.5\left(\mathrm{~s}, \mathrm{C}-6{ }^{a}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), 135.4 (d, C-5), 136.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 170.8 ($\mathrm{s}, \mathrm{CO}_{2}$), 171.8 ($\mathrm{s}, \mathrm{CO}_{2}$), 197.5 (s, CO). HRMS (EI):

5.4.2.2 Synthesis of (E)-1-methyl-3-(2-oxo-2-phenylethylidene)pyrrolidine-2,5-dione

 (7b)$\mathrm{NEt}_{3}(0.10 \mathrm{~mL}, 73 \mathrm{mg}, 0.72 \mathrm{mmol})$ was added to a solution of $\mathbf{2} \mathbf{e H}^{+} \mathbf{B r}^{-}(139 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and $\mathbf{1 b}(55 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ at room temperature. After 5 min water (20 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue, which is $\mathbf{5 b}$ (quant. conversion, $d r>95: 5,{ }^{1} \mathrm{H}$ NMR in agreement with ref. [24b]), was subjected to a column chromatography (silica; CHCl_{3}). After recrystallization from $\mathrm{Et}_{2} \mathrm{O} / i$ hexane 7b was obtained ($59 \mathrm{mg}, 0.26 \mathrm{mmol}, 51 \%, E$-configuration) as colorless solid (Mp Phoc ${ }^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} / i\right.$-hexane $) 144-146{ }^{\circ} \mathrm{C}$, lit $144{ }^{\circ} \mathrm{C}^{[25 \mathrm{~b}]}$). $\boldsymbol{R}_{\mathrm{f}}\left(\right.$ silica, $\left.\mathrm{CHCl}_{3}\right)=0.69 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 7.49-$ $7.57\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.60-7.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.92(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 8.04(\mathrm{dt}$, $\left.J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=25.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 34.9(\mathrm{t}, \mathrm{C}-3)$, $123.3(\mathrm{~d}, \mathrm{CH}), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 137.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 139.8$ (s, C-4), 170.0 (s, C-2), 174.3 (s, C-5), 189.8 (s, CO). HRMS (ESI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{3}\right]^{-}$ 228.0666, found 228.0667. DA868

5.4.2.3 Syntheses of the Indolizines 10

Procedure B for the Synthesis of the Indolizines 10. Aq. $\mathrm{NaOH}(1 \mathrm{~mL}, 30 \%)$ or NEt_{3} (0.72 mmol) was added to suspensions of $\mathbf{1 c} \mathbf{c} \mathbf{e}(0.50 \mathrm{mmol})$ and $\mathbf{2} \mathbf{e H}^{+} \mathbf{X}^{-}(0.50-0.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the mixture was stirred for $30-60 \mathrm{~min}$ at room temperature. Water (30 mL) was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chloranil (1.00 mmol) was added to the solution and stirring at room temperature was continued for $30-60 \mathrm{~min}$ until all chloranil was consumed as monitored by TLC. The solvent was evaporated and the residue was subjected to column chromatography (n-pentane:EtOAc $=15: 1-3: 1$, depending on R_{f}). The resulting solids were dissolved in CHCl_{3} and insoluble precipitates were removed by filtration. After evaporation, the products were further purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.

3-Benzoylindolizine-1,2-dicarbonitrile (10c). From $\mathbf{2 e H} \mathbf{H}^{+} \mathbf{B r}^{-}(139 \mathrm{mg}, 500 \mu \mathrm{~mol}$), $\mathbf{1 c}$
 ($78 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}, 73 \mathrm{mg}, 0.72 \mathrm{mmol})$, and chloranil (246 mg , $1.00 \mathrm{mmol})$ according to procedure B: $86 \mathrm{mg}(0.32 \mathrm{mmol}, 63 \%)$, colorless solid $\left(\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 215-216{ }^{\circ} \mathrm{C}\right) . \boldsymbol{R}_{\mathbf{f}}$ (silica, n-pentane:EtOAc 2:1) $0.14 . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO-
$\left.d_{6}\right) \delta=7.47(\mathrm{td}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.60\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.70-7.80(\mathrm{~m}$, $\left.2 \mathrm{H}, 7-\mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.81-7.90\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.05(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.42(\mathrm{dt}$, $J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) . \mathrm{S}$ The signals of the quaternary carbons C-1, C-2, C-3, and the cyano groups were not assigned, as these nuclei show no correlations in the HMBC spectra. ${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}) $\delta=87.8$ (s), 107.2 (s), 111.8 (s), 112.8 (s$), 117.8$ (d, C-8), 118.1 (d, C-6), 125.3 (s), 128.6 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 128.9 (d, C-5), 129.4 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 130.0 (d, C7), 133.4 (d, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 137.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 139.1 ($\mathrm{s}, \mathrm{C}^{a} 8^{a}$), 184.2 (s, CO). HRMS (EI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ 271.0746, found 271.0748. MS (EI) m/z: 272 (20), 271 (100), 243 (24), 194 (10), 105 (83), 77 (67), 43 (23). DA776

Diethyl 3-benzoylindolizine-1,2-dicarboxylate (10d). From $\mathbf{2 e H}^{+} \mathbf{B r}^{-}(167 \mathrm{mg}, 600 \mu \mathrm{~mol})$, 1d ($86 \mathrm{mg}, 0.50 \mathrm{mmol}$), aq. $\mathrm{NaOH}(1 \mathrm{~mL}, 32 \%)$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure B: $161 \mathrm{mg}(441 \mu \mathrm{~mol}, 88 \%)$, colorless solid $\left(\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 110-111^{\circ} \mathrm{C}\right) . \boldsymbol{R}_{\mathrm{f}}$ (silica,
 $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.34(\mathrm{q}$, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.08(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.38-7.51\left(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $7.51-7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.64-7.77\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.41(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 9.62(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.4$ $\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 61.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 104.4(\mathrm{~s}, \mathrm{C}-1$, or $\mathrm{C}-2$, or $\mathrm{C}-3), 116.0(\mathrm{~d}, \mathrm{C}-6), 120.1(\mathrm{~d}$, C-8), 120.8 ($\mathrm{s}, \mathrm{C}-1$, or C-2, or C-3), 128.0 (d, C-5), 128.2 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 128.6 (d, C-7), 128.9 (d, $2 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 131.9\left(\mathrm{~s}, \mathrm{C}-1 \text {, or } \mathrm{C}-2 \text {, or } \mathrm{C}-3 \text {), } 132.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 138.6\left(\mathrm{~s}, \mathrm{C}-8^{a}\right), 139.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right) \text {, }\right.}$ 163.1 (s, CO_{2}), $165.0\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 186.9$ (s, CO). HRMS (ESI): calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}\right]^{+}$ 388.1155, found 388.1154. DA769

Diethyl 3-benzoylindolizine-1,2-dicarboxylate (10d): From 2eH ${ }^{+} \mathbf{B r}^{-}(167 \mathrm{mg}, 750 \mu \mathrm{~mol})$, $\mathbf{1 e}(86 \mathrm{mg}, 0.50 \mathrm{mmol})$, aq. $\mathrm{NaOH}(1 \mathrm{~mL}, 32 \%$,), and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure B: 142 mg , ($389 \mu \mathrm{~mol}, 78 \%$), colorless solid $\left(\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right): 110-111^{\circ} \mathrm{C}\right)$. (analytical data see above). DA773

5.4.2.4 Syntheses of the Cyclopropanes 11

Procedure C for the Synthesis of Cyclopropanes 11. 1b,c ($0.50-0.60 \mathrm{mmol}$) in DMSO $(5 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{3 c}, \mathbf{d}(0.41-0.47 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ over 510 min at room temperature. The reaction mixture was stirred for additional 5 min then aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The
solvent was evaporated and the residue was purified by column chromatography over silica (11b) or alox (11c) with n-pentane: $E t O A c=3: 1-2: 1$, and recrystallized from EtOH.

6-(4-Methoxybenzoyl)-3-methyl-3-azabicyclo[3.1.0]hexane-2,4-dione (11b). From 1b $(55 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathbf{3 d}(87 \mathrm{mg}, 0.41 \mathrm{mmol})$ according to procedure $\mathbf{C}: 49 \mathrm{mg}(0.19 \mathrm{mmol}$, $46 \%, d r>95: 5)$; colorless solid (Mp (EtOH) $156-157{ }^{\circ} \mathrm{C}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
 $2.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.00(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 3.31(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO})$, $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.89-7.03\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.05-7.87\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=24.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 28.1(\mathrm{~d}, 2 \times \mathrm{CH}), 35.7(\mathrm{~d}, \mathrm{CH}), 55.8$ $\left(\mathrm{q}, \mathrm{CH}_{3}\right), 114.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 131.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 164.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 173.3(\mathrm{~s}$, $2 \times \mathrm{CO}$), 190.2 (s, CO). HRMS (ESI): calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{4}\right]^{-}$258.0772, found 258.0774. DA864

3-(4-(Dimethylamino)benzoyl)cyclopropane-1,2-dicarbonitrile (rac-11c). From 1c ($44 \mathrm{mg}, 0.56 \mathrm{mmol}$) and $\mathbf{3 c}(105 \mathrm{mg}, 470 \mu \mathrm{~mol})$ according to procedure C: $70 \mathrm{mg}(292 \mu \mathrm{~mol}$, $62 \%, d r>95: 5$), colorless solid ($\mathbf{M p}(\mathrm{EtOH}) 188-189{ }^{\circ} \mathrm{C}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=$ 2.75 (dd, $J=9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.86(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.07(\mathrm{~s}, 6 \mathrm{H}$,
 $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.73-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.71-6.81\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.89-7.97(\mathrm{~m}$, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=12.0(\mathrm{~d}, \mathrm{CH}), 14.3(\mathrm{~d}, \mathrm{CH}), 28.9$ (d, CH), $40.3\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 111.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 116.3(\mathrm{~s}, \mathrm{CN}), 118.1(\mathrm{~s}, \mathrm{CN}), 124.0$ (s, C_{Ar}), $131.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 155.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 187.6$ (s, CO). HRMS (ESI): calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}\right]^{+} 240.1131$, found 240.1130. DA863

Procedure D for the Synthesis of Cyclopropanes 11. $\mathrm{KO}^{t} \mathrm{Bu}(0.75 \mathrm{mmol})$ in DMSO (5 mL) was added dropwise to a solution of $\mathbf{3 a H}^{+} \mathbf{B F}_{4}{ }^{-}(0.75 \mathrm{mmol})$ and $\mathbf{1}(0.50 \mathrm{mmol})$ in DMSO (5 mL) over $5-10 \mathrm{~min}$ at room temperature. The reaction mixture was stirred for additional 5 min and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by column chromatography over silica (n-pentane:EtOAc $=20: 1-10: 1$).

Diethyl 3-(4-cyanophenyl)cyclopropane-1,2-dicarboxylate (rac-11d). From 1d (86 mg, 0.50 mmol), $\mathbf{3 a H}^{+} \mathbf{B F}_{4}{ }^{-}(200 \mathrm{mg}, 754 \mu \mathrm{~mol})$, and $\mathrm{KO}^{\dagger} \mathrm{Bu}(84 \mathrm{mg}, 0.75 \mathrm{mmol})$ according to
 procedure D: $116 \mathrm{mg}(404 \mu \mathrm{~mol}, 81 \%, 11 \mathrm{~d}: 11 \mathrm{e}>95: 5)$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.03\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.65(\mathrm{dd}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.84(\mathrm{dd}, J=6.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.07(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.89-3.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.16-4.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$,
 $=14.1\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 26.1(\mathrm{~d}, \mathrm{CH}), 30.1(\mathrm{~d}, \mathrm{CH}), 32.2(\mathrm{~d}, \mathrm{CH}), 61.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 61.7(\mathrm{t}$, CH_{2}), $111.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 118.7(\mathrm{~s}, \mathrm{CN}), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 139.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $168.0\left(\mathrm{~s}, \mathrm{CO}_{2}\right), 170.9\left(\mathrm{~s}, \mathrm{CO}_{2}\right)$. HRMS (EI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$ 287.1158, found 287.1147. MS (EI) $m / z: 287$ (2), 242 (8), 215 (15), 214 (100), 186 (60), 158 (24), 140 (64). DA666

Diethyl 3-(4-cyanophenyl)cyclopropane-1,2-dicarboxylate (rac-11d + 11e). From 1e ($86 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathbf{3 a H}^{+} \mathbf{B F}_{4}^{-}(200 \mathrm{mg}, 754 \mu \mathrm{~mol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(84 \mathrm{mg}, 0.75 \mathrm{mmol})$ according to procedure D: $81 \mathrm{mg}(0.28 \mathrm{mmol}, 56 \%$, 11d:11e $80: 20$), colorless oil. The amount of 11e obtained after purification was too small to be reliably analyzed by NMR. Analytical data of rac-11d see above. DA669
${ }^{1} \mathbf{H}$ NMR-Monitoring. A solution ($1.00 \mathrm{~mL}, 1.0$ equiv) of $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO- $d_{6}(253 \mathrm{mM})$ was added in one portion to a solution of $\mathbf{3} \mathbf{a H}^{+} \mathbf{B F}^{-}(73.0 \mathrm{mg}, 275 \mu \mathrm{~mol})$ and $\mathbf{1 e}(42.7 \mathrm{mg}$, $248 \mu \mathrm{~mol})$ in DMSO- $d_{6}(2.00 \mathrm{~mL})$ at ambient temperature. A sample was taken, which was monitored by ${ }^{1} \mathrm{H}$ NMR for 13 min . Another 0.5 equiv., and after 28 min additional 0.3 equiv. of $\mathrm{KO}^{t} \mathrm{Bu}$ solution were added (dashed lines in Figure 5.5), and the reaction was monitored for 6 h . The time-dependent concentrations of $\mathrm{SMe}_{2}, \mathbf{1 1 d}, \mathbf{1 e}$, and $\mathbf{3 a H} \mathbf{B F}^{+} \mathbf{B F}^{-}$were derived by using ${ }^{t} \mathrm{BuOH}$ as internal standard (Table 5.5, Figure 5.5). The spectra show traces of cyclopropane 11e which were not analyzed due to their low intensity.
50% of 1 e was isomerized to 1 d the by excess of base after 6 h . To have a reliable measure of the stability of sulfonium ylide 3a its decomposition was monitored by ${ }^{1} \mathrm{H}$ NMR by generating 3a from $\mathbf{3 a H}^{+} \mathbf{B F}_{4}^{-}(29 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{KO}^{\dagger} \mathrm{Bu}(11 \mathrm{mg}, 98 \mu \mathrm{~mol})$ in DMSO- d_{6}. After 15 min the ${ }^{1} \mathrm{H}$ NMR spectrum showed no ylide 3a, but only decomposition products which were not identified.

Table 5.4. Time-dependent concentrations of $\mathrm{KO}^{t} \mathrm{Bu}, \mathrm{SMe}_{2}, 11 \mathrm{~d}$, 1 e , and $\mathbf{3 a H}^{+} \mathrm{BF}_{4}{ }^{-}$during the reaction of 3a with 1 e in DMSO- \boldsymbol{d}_{6} at ambient temperature.

$t /$ min	$\left[\mathrm{KO}^{t} \mathrm{Bu}\right] / \mathrm{M}$	$\left[\mathrm{SMe}_{2}\right] / \mathrm{M}$	$[\mathbf{1 1 d}] / \mathrm{M}$	$[\mathbf{1 e}] / \mathrm{M}$	$\left[\mathbf{3 a H}^{+} \mathbf{B F}_{4}{ }^{-}\right] / \mathrm{M}$
2	8.42×10^{-2}	2.65×10^{-2}	2.27×10^{-2}	5.85×10^{-2}	3.66×10^{-2}
5	8.42×10^{-2}	2.67×10^{-2}	2.27×10^{-2}	5.85×10^{-2}	3.66×10^{-2}
7	8.42×10^{-2}	2.64×10^{-2}	2.27×10^{-2}	5.81×10^{-2}	3.62×10^{-2}
9	8.42×10^{-2}	2.68×10^{-2}	2.27×10^{-2}	5.81×10^{-2}	3.62×10^{-2}
13	8.42×10^{-2}	2.68×10^{-2}	2.27×10^{-2}	5.81×10^{-2}	3.62×10^{-2}
20	1.08×10^{-1}	3.32×10^{-2}	2.60×10^{-2}	3.36×10^{-2}	1.73×10^{-2}
28	1.20×10^{-1}	3.61×10^{-2}	2.99×10^{-2}	1.50×10^{-2}	5.98×10^{-2}
31	1.20×10^{-1}	3.61×10^{-2}	2.99×10^{-2}	1.50×10^{-2}	5.98×10^{-2}
297	1.20×10^{-1}	3.61×10^{-2}	3.11×10^{-2}	4.79×10^{-2}	2.99×10^{-2}

Figure 5.5. Plot of the time-dependent concentrations of SMe_{2}, 11 d , 1 e , and $3 \mathrm{aH}^{+} \mathrm{BF}^{-}$during the reaction of 3a with 1 e in DMSO- d_{6} at ambient temperature. Above each dashed line the equivalents of $\mathrm{KO}^{\boldsymbol{t}} \mathrm{Bu}$ regarding to $3 \mathrm{aH}^{+} \mathrm{BF}^{-}$at the corresponding time are given.

5.4.3 Kinetics of the Reactions of Electrophiles 1a-e with Ylides 2,3

5.4.3.1 Kinetics of Reactions of Maleic Anhydride 1a

Table 5.5. Kinetics of the reaction of 1 a with 2 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[1a]/ $\mathrm{mol} \mathrm{L}^{-1}$	[2d]/mol L ${ }^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	$\begin{array}{r} 600 \\ \text { in } 400 \end{array}$	$\begin{gathered} y=368718 x-26.632 \\ R^{2}=0.9955 \end{gathered}$	
MAN2-1	1.06×10^{-3}	1.00×10^{-4}	3.69×10^{2}			
MAN2-4	1.27×10^{-3}	1.00×10^{-4}	4.35×10^{2}			
MAN2-2	1.59×10^{-3}	1.00×10^{-4}	5.63×10^{2}	0		
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.69 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				0.00E+00	$5.00 \mathrm{E}-04 \mathrm{Ca} / \mathrm{mol}^{1} \cdot \mathbf{\mathrm { L }} \mathrm{~L}^{-1} \mathrm{E}-03$	$1.50 \mathrm{E}-03$

Table 5.6. Kinetics of the reaction of 1 a with 2 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

No.	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MAN1-1	1.06×10^{-3}	5.00×10^{-5}	4.81×10^{1}
MAN1-2	1.59×10^{-3}	5.00×10^{-5}	7.58×10^{1}
MAN1-3	2.12×10^{-3}	5.00×10^{-5}	9.79×10^{1}
MAN1-4	2.65×10^{-3}	5.00×10^{-5}	1.23×10^{2}
MAN1-5	3.18×10^{-3}	5.00×10^{-5}	1.50×10^{2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.74 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.7. Kinetics of the reaction of 1 a with 2 g (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 476 nm).

No.	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MAN3-1	1.06×10^{-3}	5.00×10^{-5}	1.38×10^{1}
MAN3-2	1.59×10^{-3}	5.00×10^{-5}	2.10×10^{1}
MAN3-3	2.12×10^{-3}	5.00×10^{-5}	2.68×10^{1}
MAN3-4	2.65×10^{-3}	5.00×10^{-5}	3.32×10^{1}
MAN3-5	3.18×10^{-3}	5.00×10^{-5}	3.83×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.16 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.8. Kinetics of the reaction of 1 a with 2 h (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 480 nm).

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 5.9. Kinetics of the reaction of 1 a with 2 i (DMSO, $20{ }^{\circ} \mathrm{C}$, Stopped-flow method, detection at 530 nm).

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 5.10. Kinetics of the reaction of 1a with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 520 nm).

Table 5.11. Calculation of the Electrophilicity Parameter E for 1 a using the N and s_{N} Parameters of 2,3, eq 5.1, and the Second-Order Rate Constants for the Reactions of 1a with 2,3 (filled dots).

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
$\mathbf{2 d}$	$20.24 / 0.60$	3.69×10^{5}
$\mathbf{2 e}$	$19.46 / 0.58$	4.74×10^{4}
$\mathbf{2 g}$	$17.98 / 0.63$	1.16×10^{4}
$\mathbf{3 b}$	$18.42 / 0.65$	4.00×10^{4}
$E^{[\mathrm{a}]}=-11.31$		
$\mathbf{2 h}$	$19.38 / 0.50$	2.10×10^{5}
2i	$20.08 / 0.57$	1.75×10^{4}

[a] Calculated by least square minimization according to eq 5.1.

5.4.3.2 Kinetics of Reactions of \boldsymbol{N}-Methylmaleimide 1b

Table 5.12. Kinetics of the reaction of 1 b with 2 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MMI2-1	2.53×10^{-4}	5.00×10^{-5}	1.88
MMI2-2	3.84×10^{-4}	5.00×10^{-5}	2.84
MMI2-3	5.05×10^{-4}	5.00×10^{-5}	3.72
MMI2-4	6.37×10^{-4}	5.00×10^{-5}	4.84
MMI2-5	7.58×10^{-4}	5.00×10^{-5}	5.83
$k_{2}\left(20^{\circ} \mathrm{C}\right)=7.84 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.13. Kinetics of the reaction of 1 b with 2 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MMI1-1	2.53×10^{-4}	5.00×10^{-5}	2.64×10^{-1}
MMI1-2	3.84×10^{-4}	5.00×10^{-5}	4.08×10^{-1}
MMI1-3	5.05×10^{-4}	5.00×10^{-5}	5.42×10^{-1}
MMI1-4	6.37×10^{-4}	5.00×10^{-5}	7.02×10^{-1}
MMI1-5	7.58×10^{-4}	5.00×10^{-5}	8.42×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.15 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.14. Kinetics of the reaction of 1 b with 2 f (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 456 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MMI3-1	2.53×10^{-4}	5.00×10^{-5}	5.34
MMI3-2	3.84×10^{-4}	5.00×10^{-5}	7.86
MMI3-3	5.05×10^{-4}	5.00×10^{-5}	1.01×10^{1}
MMI3-4	6.37×10^{-4}	5.00×10^{-5}	1.29×10^{1}
MMI3-5	7.58×10^{-4}	5.00×10^{-5}	1.59×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.07 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.15. Kinetics of the reaction of 1 b with 2 h (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 480 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MMI4-1	2.53×10^{-4}	5.00×10^{-5}	4.45
MMI4-2	3.84×10^{-4}	5.00×10^{-5}	6.70
MMI4-3	5.05×10^{-4}	5.00×10^{-5}	8.83
MMI4-4	6.37×10^{-4}	5.00×10^{-5}	1.13×10^{1}
MMI4-5	7.58×10^{-4}	5.00×10^{-5}	1.36×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.81 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.16. Kinetics of the reaction of 1 b with 2 i (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 530 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MMI6-1	5.00×10^{-4}	5.00×10^{-5}	1.05×10^{1}
MMI6-2	7.50×10^{-4}	5.00×10^{-5}	1.62×10^{1}
MMI6-3	1.00×10^{-3}	5.00×10^{-5}	2.27×10^{1}
MMI6-4	1.25×10^{-3}	5.00×10^{-5}	2.89×10^{1}
MMI6-5	1.50×10^{-3}	5.00×10^{-5}	3.47×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.44 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.17. Kinetics of the reaction of 1 b with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 520 nm).

Table 5.18. Calculation of the Electrophilicity Parameter E for 1 b using the \boldsymbol{N} and s_{N} Parameters of 2,3, eq 5.1, and the Second-Order Rate Constants for the Reactions of 1b with 2,3 (filled dots; open dots refer to rate constants not used for the determination of \boldsymbol{E}).

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
2d	$20.24 / 0.60$	7.84×10^{3}
2e	$19.46 / 0.58$	1.15×10^{3}
$\mathbf{2 f}$	$21.61 / 0.58$	2.06×10^{4}
3b	$18.42 / 0.65$	5.80×10^{2}
$E^{[a]}=-14.07$		
$\mathbf{2 h}$	$20.08 / 0.57$	1.81×10^{4}
$\mathbf{2 i}$	$19.38 / 0.50$	2.45×10^{4}

[a] Calculated by least square minimization according to eq 5.1.

5.4.3.3 Kinetics of Reactions of Fumaronitrile 1c

Table 5.19. Kinetics of the reaction of 1 c with 2 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
FN1-1	1.00×10^{-3}	1.00×10^{-4}	1.32×10^{2}
FN1-2	1.10×10^{-3}	1.00×10^{-4}	1.52×10^{2}
FN1-3	1.20×10^{-3}	1.00×10^{-4}	1.67×10^{2}
FN1-4	1.30×10^{-3}	1.00×10^{-4}	1.79×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right) \approx 1.6 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 5.20. Kinetics of the reaction of 1 c with 2 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 5.21. Kinetics of the reaction of 1 c with 2 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 5.22. Kinetics of the reaction of 1 c with 2 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

No.	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
FN5-1	1.00×10^{-3}	5.00×10^{-5}	4.62×10^{-2}
FN5-2	2.00×10^{-3}	5.00×10^{-5}	9.35×10^{-2}
FN5-3	3.00×10^{-3}	5.00×10^{-5}	1.41×10^{-1}
FN5-4	4.00×10^{-3}	5.00×10^{-5}	1.87×10^{-1}
FN5-5	5.00×10^{-3}	5.00×10^{-5}	2.34×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.69 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.23. Kinetics of the reaction of 1 c with $2 \mathrm{~g}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, diode array-spectometer method, detection at 476 nm).

No.	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
FN8-1	1.89×10^{-3}	9.37×10^{-5}	4.92×10^{-2}
FN8-2	2.40×10^{-3}	9.29×10^{-5}	5.91×10^{-2}
FN8-3	2.89×10^{-3}	9.41×10^{-5}	7.13×10^{-2}
FN8-4	3.20×10^{-3}	9.01×10^{-5}	8.06×10^{-2}
FN8-5	3.74×10^{-3}	9.26×10^{-5}	9.02×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.29 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.24. Kinetics of the reaction of 1 c with 2 h (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 480 nm).

No.	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
FN6-1	1.00×10^{-3}	1.00×10^{-4}	5.07×10^{-1}
FN6-2	2.00×10^{-3}	1.00×10^{-4}	9.67×10^{-1}
FN6-3	3.00×10^{-3}	1.00×10^{-4}	1.42
FN6-4	4.00×10^{-3}	1.00×10^{-4}	1.91
FN6-5	5.00×10^{-3}	1.00×10^{-4}	2.40
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.73 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.25. Kinetics of the reaction of 1 c with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 379 nm).

No.	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
FN7r-1	1.03×10^{-3}	5.00×10^{-5}	9.37
FN7r-3	3.10×10^{-3}	6.00×10^{-5}	2.57×10^{1}
FN7r-4	4.14×10^{-3}	6.00×10^{-5}	3.50×10^{1}
FN7r-5	5.17×10^{-3}	6.00×10^{-5}	4.43×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=8.42 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.26. Calculation of the Electrophilicity Parameter E for 1 c using the \boldsymbol{N} and s_{N} Parameters of 2,3, eq 5.1, and the Second-Order Rate Constants for the Reactions of 1 c with $\mathbf{2 , 3}$ (filled dots; open dots refer to rate constants not used for the determination of \boldsymbol{E}).

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
$\mathbf{2 d}$	$20.24 / 0.60$	6.18×10^{2}
$\mathbf{2 e}$	$19.46 / 0.58$	4.69×10^{1}
$\mathbf{2 g}$	$17.98 / 0.63$	2.29×10^{1}
$\mathbf{2 h}$	$19.38 / 0.50$	4.73×10^{2}
3a	$21.07 / 0.68$	8.42×10^{3}
$E^{[a]}=-15.71$		
$\mathbf{2 a}$	$26.71 / 0.37$	1.6×10^{5}
2c	$25.94 / 0.42$	1.5×10^{5}

[a] Calculated by least square minimization according to eq 5.1.

5.4.3.4 Kinetics of Reactions of Diethyl Fumarate 1d

Table 5.27. Kinetics of the reaction of 1 d with 2 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 5.28. Kinetics of the reaction of 1 d with 2 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[1d]/ $\mathrm{mol} \mathrm{L}^{-1}$	[2b]/mol L ${ }^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$		$\begin{gathered} y=7045.1 x+69.654 \\ R^{2}=0.9912 \end{gathered}$	
FU8-1	8.12×10^{-3}	4.00×10^{-4}	1.26×10^{2}			
FU8-2	8.93×10^{-3}	4.00×10^{-4}	1.34×10^{2}	$\underset{\substack{\mathrm{in} \\ \underset{y}{\circ} \\ \hline}}{ } 80$		
FU8-3	9.74×10^{-3}	4.00×10^{-4}	1.38×10^{2}			
FU8-4	1.06×10^{-2}	4.00×10^{-4}	1.44×10^{2}			
FU8-5	1.14×10^{-2}	4.00×10^{-4}	1.50×10^{2}	$0.00 \mathrm{E}+00$	$\begin{aligned} & 6.00 \mathrm{E}-03 \\ & {[1 \mathrm{~d}] / \mathrm{mol} \mathrm{~L}^{-1}} \end{aligned}$	1.20E-02
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right) \approx 7.1 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$						

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 5.29. Kinetics of the reaction of 1 d with 2 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
FU9-1	8.12×10^{-3}	4.00×10^{-4}	1.47×10^{2}
FU9-2	8.93×10^{-3}	4.00×10^{-4}	1.64×10^{2}
FU9-3	9.74×10^{-3}	4.00×10^{-4}	1.72×10^{2}
FU9-4	1.06×10^{-2}	4.00×10^{-4}	1.83×10^{2}
FU9-5	1.14×10^{-2}	4.00×10^{-4}	1.94×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right) \approx 1.4 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 5.30. Kinetics of the reaction of 1 d with 2 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[1d]/ $\mathrm{mol} \mathrm{L}^{-1}$	[2d]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	0.6$-\quad$	$\begin{gathered} y=47.254 x-0.0086 \\ R^{2}=0.9985 \end{gathered}$	
FU3-1	5.23×10^{-3}	5.00×10^{-5}	2.41×10^{-1}			
FU3-2	6.27×10^{-3}	5.00×10^{-5}	2.85×10^{-1}	$\underbrace{i_{0}^{2}}_{n} 0.3$		
FU3-3	7.32×10^{-3}	5.00×10^{-5}	3.38×10^{-1}			
FU3-4	8.36×10^{-3}	5.00×10^{-5}	3.83×10^{-1}			
FU3-5	9.41×10^{-3}	5.00×10^{-5}	4.39×10^{-1}	$0.00 \mathrm{E}+00$	5.00E-03	$1.00 \mathrm{E}-02$
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.73 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					[1d]/ $\mathrm{mol} \mathrm{L}^{-1}$	

Table 5.31. Kinetics of the reaction of 1 d with 2 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

No.	[4]/ $\mathrm{mol} \mathrm{L}^{-1}$	$[6 e] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	0.08	$\begin{gathered} y=4.5436 x+0.0158 \\ R^{2}=0.986 \end{gathered}$		
FU1-1	5.23×10^{-3}	5.00×10^{-5}	3.90×10^{-2}				
FU1-2	6.27×10^{-3}	5.00×10^{-5}	4.57×10^{-2}	$\underbrace{0.04}_{\substack{i n \\ 7 \\ 7}}$			
FU1-3	7.32×10^{-3}	5.00×10^{-5}	4.81×10^{-2}				
FU1-4	8.36×10^{-3}	5.00×10^{-5}	5.40×10^{-2}				
FU1-5	9.41×10^{-3}	5.00×10^{-5}	5.86×10^{-2}	$\begin{gathered} 0 \\ 0.00 \mathrm{E}+00 \end{gathered}$	5-00E-03	100E-02	
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.54 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					[1d]/mol L-	100E-02	

The positive intercept may be caused by a slightly reversible betaine formation.
Table 5.32. Kinetics of the reaction of 1 d with $2 \mathrm{~h}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, diode array-spectometer method, detection at 480 nm).

No.	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
FU5-3	4.53×10^{-4}	9.32×10^{-5}	2.93×10^{-1}
FU5-2	5.27×10^{-4}	9.28×10^{-5}	3.25×10^{-1}
FU5-5	6.10×10^{-4}	9.40×10^{-5}	3.76×10^{-1}
FU5-4	6.77×10^{-4}	9.28×10^{-5}	4.19×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=5.68 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.33. Kinetics of the reaction of 1 d with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 379 nm).

No.	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
FU6-1	1.10×10^{-2}	2.00×10^{-4}	2.80 ± 0.02
FU6-2	1.32×10^{-2}	2.00×10^{-4}	3.31 ± 0.02
FU6-3	1.54×10^{-2}	2.00×10^{-4}	3.58 ± 0.02
FU6-4	1.75×10^{-2}	2.00×10^{-4}	4.07
FU6-5	1.97×10^{-2}	2.00×10^{-4}	4.34
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.84 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.34. Calculation of the Electrophilicity Parameter \boldsymbol{E} for 1 d using the N and s_{N} Parameters of 2,3, eq 5.1, and the Second-Order Rate Constants for the Reactions of 1 d with $\mathbf{2 , 3}$ (filled dots; open dots refer to rate constants not used for the determination of \boldsymbol{E}).

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
$\mathbf{2 d}$	$20.24 / 0.60$	4.73×10^{1}
2e	$19.46 / 0.58$	4.54
3a	$21.07 / 0.68$	1.84×10^{2}
$E^{[a]}=-17.76$		
$\mathbf{2 a}$	$26.71 / 0.37$	8.83×10^{3}
2b	$27.45 / 0.38$	7.05×10^{3}
2c	$25.94 / 0.42$	1.39×10^{4}
2h	$20.08 / 0.57$	5.68×10^{2}

[a] Calculated by least square minimization according to eq 5.1.

5.4.3.5 Kinetics of Reactions of Diethyl Maleate 1e

Table 5.35. Kinetics of the reaction of 1 e with 2 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 5.36. Kinetics of the reaction of 1 e with 2 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MA4-1	2.00×10^{-3}	2.50×10^{-5}	7.29×10^{-3}
MA4-2	3.01×10^{-3}	2.50×10^{-5}	1.03×10^{-2}
MA4-3	4.01×10^{-3}	2.50×10^{-5}	1.38×10^{-2}
MA4-4	5.01×10^{-3}	2.50×10^{-5}	1.65×10^{-2}
MA4-5	6.01×10^{-3}	2.50×10^{-5}	1.98×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.12 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.37. Reproduction of the Kinetics of the reaction of 1 e with 2 d (DMSO, $20{ }^{\circ} \mathrm{C}$, diode arrayspectometer method, detection at 425 nm).

No.	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MA8-5	2.02×10^{-3}	9.32×10^{-5}	6.60×10^{-3}
MA8-4	2.61×10^{-3}	9.39×10^{-5}	8.98×10^{-3}
MA8-2	3.56×10^{-3}	9.32×10^{-5}	1.22×10^{-2}
MA8-1	4.00×10^{-3}	9.22×10^{-5}	1.35×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.48 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.38. Kinetics of the reaction of 1 e with $2 \mathrm{e}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, diode array-spectometer method, detection at 445 nm).

Table 5.39. Kinetics of the reaction of 1 e with 2 h (DMSO, $20^{\circ} \mathrm{C}$, diode array-spectometer method, detection at 480 nm).

No.	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MA5-2	9.16×10^{-4}	9.21×10^{-5}	1.20×10^{-2}
MA5-4	1.35×10^{-3}	9.35×10^{-5}	1.91×10^{-2}
MA5-5	1.55×10^{-3}	9.20×10^{-5}	2.24×10^{-2}
MA5-1	1.91×10^{-3}	9.51×10^{-5}	2.65×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.47 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 5.40. Kinetics of the reaction of 1 e with $3 \mathrm{a}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, diode array-spectometer method, detection at 379 nm).

No.	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MA9-1	1.03×10^{-3}	9.30×10^{-5}	4.37×10^{-3}
MA9-2	1.53×10^{-3}	9.44×10^{-5}	5.38×10^{-3}
MA9-3	2.00×10^{-3}	9.36×10^{-5}	6.92×10^{-3}
MA9-4	2.46×10^{-3}	9.32×10^{-5}	8.84×10^{-3}
MA9-5	3.03×10^{-3}	9.34×10^{-5}	1.09×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right) \approx 3.4 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Estimated k_{2} value; the decays of the absorption of ylide 3a deviate from pseudo-first-order kinetics.
Table 5.41. Calculation of the Electrophilicity Parameter E for 1 e using the N and s_{N} Parameters of 2,3, eq 5.1, and the Second-Order Rate Constants for the Reactions of 1e with $\mathbf{2 , 3}$ (filled dots; open dots refer to rate constants not used for the determination of E).

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
2c	$25.94 / 0.42$	9.28×10^{2}
2d	$20.24 / 0.60$	3.12
2e	$19.46 / 0.58$	5.53×10^{-1}
$E^{[a]}=-19.49$		
2h	$20.08 / 0.57$	1.47×10^{1}
3a	$21.07 / 0.68$	(≈ 3.4)

[a] Calculated by least square minimization according to eq 5.1.

5.5 References

[1] For reviews see: (a) S. Patai, Z. Rappoport, in The Chemistry of Alkenes (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1964, p. 469-584; (b) C. Bianchi, C. De Micheli, R. Gandolfi, in The Chemistry of Double-Bonded Functional Groups, Vol. 1 (Eds.: S. Patai, Z. Rappoport), Wiley, London, 1977, p. 369-533; (c) Z. Rappoport, in Nucleophilicity (Eds.: J. M. Harris, S. P. McManus), American Chemical Society, Washington, DC, 1987, p. 399-424; (d) D. A. Oare, C. H. Heathcock, in Topics in Stereochemistry, Vol. 20 (Eds.: E. L. Eliel, S. H. Wilen), Wiley-Interscience, Hoboken, NJ 1991, p. 87-170; (e) I. Chataigner, A. Harrison-Marchand, J. Maddaluno, in Science of Synthesis, Vol. 26 (Ed.: J. Cossy), Georg Thieme Verlag, Stuttgart, Germany, 2005, p. 1123-1286; (f) F. Fringuelli, O. Piermatti, F. Pizzo, L. Vaccaro, in Science of Synthesis, Vol. $47 b$ (Ed.: A. de Meijere), Georg Thieme Verlag, Stuttgart, Germany, 2010, p. 561-722.
[2] For reviews on conjugate additions see: (a) W. Nagata, M. Yoshioka, Org. React. 1977, 25, 255-476; (b) P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Vol. 9, Pergamon, Oxford, 1992; (c) A. Córdova, Catalytic asymmetric conjugate reactions, Wiley-VCH, Weinheim, 2010.
[3] A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, John Wiley and Sons, New York, 1985.
[4] For reviews on 1,3-dipolar cycloadditions see: (a) R. Huisgen, Angew. Chem. Int. Ed. Engl. 1963, 2, 565-598; (b) R. Huisgen, Angew. Chem. Int. Ed. Engl. 1963, 2, 633-645; (c) R. Huisgen, J. Org. Chem. 1976, 41, 403-419; (d) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484-4517.
[5] F. Fringuelli, A. Taticchi, The Diels-Alder Reaction: Selected Practical Methods, Wiley, Chichester, 2002.
[6] For reviews on Diels-Alder reactions see: (a) R. Sustmann, Pure Appl. Chem. 1974, 40, 569-593; (b) J. Sauer, R. Sustmann, Angew. Chem. Int. Ed. Engl. 1980, 19, 779-807; (c) H. B. Kagan, O. Riant, Chem. Rev. 1992, 92, 1007-1019; (d) K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem., Int. Ed. 2002, 41, 1668-1698.
[7] D. A. Oare, C. H. Heathcock, in Topics in Stereochemistry, Vol. 18 (Eds.: E. L. Eliel, S. H. Wilen), Wiley-Interscience, New York, 1989, p. 227-407.
[8] (a) W. Zeng, G.-Y. Chen, Y.-G. Zhou, Y.-X. Li, J. Am. Chem. Soc. 2007, 129, 750-751;
(b) I. López, G. Silvero, M. J. Arévalo, R. Babiano, J. C. Palacios, J. L. Bravo, Tetrahedron 2007, 63, 2901-2906.
[9] (a) A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, Weinheim 2005; (b) A. Ting, J. M. Goss, N. T. McDougal, S. E. Schaus, in Asymmetric Organocatalysis, Top. Curr. Chem. Vol. 291 (Ed.: B. List), Springer, Berlin, 2010, p. 145-201; (c) J. L. Vicario, Organocatalytic enantioselective conjugate addition reactions - A powerful tool for the stereocontrolled synthesis of complex molecules Vol. 5, RCS Publ., Cambridge 2010.
[10] For organo catalytic applications see: (a) J. L. Vicario, D. Badía, L. Carrillo, Synthesis 2007, 2065-2092; (b) D. Almasi, D. A. Alonso, C. Nájera, Tetrahedron: Asymmetry 2007, 18, 299-365; (c) Z.-W. Ma, Y. Wu, B. Sun, H.-L. Du, W.-M. Shi, J.-C. Tao, Tetrahedron: Asymmetry 2013, 24, 7-13.
[11] (a) W. Bihlmaier, R. Huisgen, H.-U. Reissig, S. Voss, Tetrahedron Lett. 1979, 20, 2621-2624; (b) R. Huisgen, L. Xingya, Tetrahedron Lett. 1983, 24, 4185-4188.
[12] B. Blankenburg, H. Fiedler, M. Hampel, H. G. Hauthal, G. Just, K. Kahlert, J. Korn, K. H. Müller, W. Pritzkow, Y. Reinhold, M. Röllig, E. Sauer, D. Schnurpfeil, G. Zimmermann, J. Prakt. Chem. 1974, 316, 804-816.
[13] For reviews see: (a) H. Mayr, M. Patz, Angew. Chem. Int. Ed. Engl. 1994, 33, 938-957; (b) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512; (c) R. Lucius, R. Loos, H. Mayr, Angew. Chem. Int. Ed. 2002, 41, 91-95; (d) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (e) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 1807-1821; (f) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584-595; (g) H. Mayr, S. Lakhdar, B. Maji, A. R. Ofial, Beilstein J. Org. Chem. 2012, 8, 1458-1478; (h) For a comprehensive database of nucleophilicity parameters N, s_{N} and electrophilicity parameters E, see http://www.cup.lmu.de/oc/mayr/.
[14] D. S. Allgäuer, P. Mayer, H. Mayr, J. Am. Chem. Soc. 2013, 135, 15216-15224.
[15] (a) R. Appel, H. Mayr, Chem. Eur. J. 2010, 16, 8610-8614; (b) R. Appel, N. Hartmann, H. Mayr, J. Am. Chem. Soc. 2010, 132, 17894-17900.
[16] For reviews on pyridinium ylide chemistry see: (a) I. Zugravescu, M. Petrovanu, N-Ylid Chemistry, McGraw-Hill, New York, 1976; (b) A. G. Mikhailovskii, V. S. Shklyaev, Chem. Heterocycl. Compd. 1997, 33, 243-265; (c) J. Jacobs, E. Van Hende, S.

Claessens, N. De Kimpe, Curr. Org. Chem. 2011, 15, 1340-1362; (d) A. Kakehi, Heterocycles 2012, 85, 1529-1577.
[17] O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3137-3157.
[18] (a) R. A. Firestone, J. Org. Chem. 1968, 33, 2285-2290; (b) R. A. Firestone, J. Org. Chem. 1972, 37, 2181-2191.
[19] R. Huisgen, J. Org. Chem. 1968, 33, 2291-2297.
[20] For articels on sulfonium ylide chemistry see: (a) A.-H. Li, L.-X. Dai, V. K. Aggarwal, Chem. Rev. 1997, 97, 2341-2372; (b) S. L. Riches, C. Saha, N. F. Filgueira, E. Grange, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 7626-7630.
[21] V. K. Aggarwal, E. Grange, Chem. Eur. J. 2006, 12, 568-575.
[22] (a) C. R. Johnson, C. W. Schroeck, J. Am. Chem. Soc. 1968, 90, 6852-6854; (b) C. R. Johnson, C. W. Schroeck, J. Am. Chem. Soc. 1971, 93, 5303-5305; (c) C. R. Johnson, C. W. Schroeck, J. R. Shanklin, J. Am. Chem. Soc. 1973, 95, 7424-7431.
[23] Y. Liu, Y. Zhang, Y.-M. Shen, H.-W. Hua, J.-H. Xu, Org. Biomol. Chem. 2010, 8, 2449-2456.
[24] (a) O. Tsuge, S. Kanemasa, S. Takenaka, S. Kuraoka, Chem. Lett. 1984, 465-468; (b) O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1987, 60, 1489-1495.
[25] D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, 6379-6388.
[26] The kinetics of the reactions of the sulfonium ylides $\mathbf{3 c}, \mathbf{d}$ with $\mathbf{1 b}, \mathbf{c}$ could not be investigated photometrically because of overlapping UV-vis absorptions of reactants and products.
[27] T. Kanzian, H. Mayr, Chem. Eur. J. 2010, 16, 11670-11677.
[28] S. T. A. Berger, F. H. Seeliger, F. Hofbauer, H. Mayr, Org. Biomol. Chem. 2007, 5, 3020-3026.
[29] R. C. Samanta, B. Maji, S. De Sarkar, K. Bergander, R. Fröhlich, C. Mück-Lichtenfeld, H. Mayr, A. Studer, Angew. Chem. Int. Ed. 2012, 51, 5234-5238.
[30] H. Asahara, H. Mayr, Chem. Asian J. 2012, 7, 1401-1407.
[31] K. Troshin, P. Mayer, H. Mayr, Organometallics 2012, 31, 2416-2424.
[32] T. Kanzian, S. Nicolini, L. De Crescentini, O. A. Attanasi, A. R. Ofial, H. Mayr, Chem. Eur. J. 2010, 16, 12008-12016.
[33] I. Zenz, H. Mayr, J. Org. Chem. 2011, 76, 9370-9378.
[34] R. Appel, H. Mayr, J. Am. Chem. Soc. 2011, 113, 8240-8251.
[35] O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682.
[36] For previous theoretical approaches to electrophilicity and nucleophilicity parameters, as defined by eq 5.1 see: (a) P. Pérez, A. Toro-Labbé, A. Aizman, R. Contreras, J. Org. Chem. 2002, 67, 4747-4752; (b) L. R. Domingo, P. Pérez, R. Contreras, Tetrahedron 2004, 60, 6585-6591; (c) E. Chamorro, M. Duque-Noreña, P. Pérez, J. Mol. Struct. THEOCHEM 2009, 896, 73-79; (d) E. Chamorro, M. Duque-Noreña, P. Pérez, J. Mol. Struct. THEOCHEM 2009, 901, 145-152; (e) C. Wang, Y. Fu, Q.-X. Guo, L. Liu, Chem. Eur. J. 2010, 16, 2586-2598; (f) L.-G. Zhuo, W. Liao, Z.-X. Yu, Asian J. Org. Chem. 2012, 1, 336-345; (g) S.-i. Kiyooka, D. Kaneno, R. Fujiyama, Tetrahedron 2013, 69, 4247-4258; (h) E. Chamorro, M. Duque-Noreña, R. Notario, P. Pérez, J. Phys. Chem. A 2013, 117, 2636-2643.
$[37] \quad$ a) H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem 1997, 62, 7512-7515; b) G. F. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2012, 29, 2176-2179.

6 Quantification of the Ambident Electrophilicities of $\alpha, \beta-$ Unsaturated Aldehydes

Dominik S. Allgäuer and Herbert Mayr

6.1 Introduction

α, β-Unsaturated aldehydes like acrolein (1a), crotonaldehyde (1b), and cinnamaldehyde (1c) (Chart 6.1) are common building blocks in organic synthesis, ${ }^{[1]}$ which are frequently activated by secondary amines (iminium catalysis). ${ }^{[1-h]}$ Various kinetic studies on the electrophilic reactivities of α, β-unsaturated aldehydes are available, which focus on their reactions with biomimetic sulfur nucleophiles ${ }^{[2]}$ and their hydrogenation using metal catalysts. ${ }^{[3]}$ Only recently the kinetics of iminium activated reactions of α, β-unsaturated aldehydes with cyclopentadiene were reported. ${ }^{[4]}$ Some kinetic studies also compare 1,2 versus 1,4 reactivity ${ }^{[5]}$ of the α, β-unsaturated aldehydes $\mathbf{1}$, others the addition of nucleophiles to their conjugate position. ${ }^{[6]}$

Our earlier investigations of ambident systems focused on ambident nucleophilicity. ${ }^{[7,8]}$ In these studies we used eq 6.1, in which the nucleophile is described by two solvent- dependent parameters s_{N} (sensitivity) and N (nucleophilicity), ${ }^{[9]}$ and the electrophile is described by one parameter E (electrophilicity). We now report on the determination of the electrophilicity parameters E of the β-positions and the carbonyl groups of the α, β-unsaturated aldehydes $\mathbf{1}$ and include them into our comprehensive electrophilicity scale. ${ }^{[9 \mathrm{~h}]}$ In this way we are able to quantify the magnitude of iminium activation of α, β-unsaturated aldehydes as of the electrophilicities of several iminium ions derived from cinnamaldehyde 1c were already described by our group. ${ }^{[9 \mathrm{~g}, 10]}$

Chart 6.1. α, β-Unsaturated aldehydes 1a-c investigated in this work.

The electrophilicity of the formyl group of cinnamaldehyde $\mathbf{1 c}$ was recently quantified along with the electrophilicities of other aldehydes through their reactions with sulfur ylides, ${ }^{[11]}$ but the electrophilicity of its β-position is still unknown as appropriate reference nucleophiles for its determination have not been available.

The recently described colored pyridinium ylides 2 (Table 6.1$)^{[12]}$ prefer the 1,4 over the 1,2addition to α, β-unsaturated aldehydes $\mathbf{1},{ }^{[13]}$ a behavior which has been utilized in Kröhnke condensations. ${ }^{[14]}$ As pyridinium ylides only rarely react with the formyl groups of aldehydes, they are ideal candidates for studying the electrophilicities of the β-position of the enals $\mathbf{1}$. ${ }^{[15]}$

The outcome of the reactions of sulfonium ylides 3 (Table 6.2) with α, β-unsaturated aldehydes $\mathbf{1}$ strongly depends on the substituent of ylide $\mathbf{3}$. Semi-stabilized sulfonium ylides (R $=$ aryl), like 3a,b, preferentially add to the carbonyl group of α, β-unsaturated aldehydes to form epoxides, ${ }^{[16]}$ while stabilized sulfonium ylides $(\mathrm{R}=\mathrm{EWG})$, like $\mathbf{3 c}$, add to the β-position to form cyclopropanes. ${ }^{[17]}$ In contrast, stabilized sulfonium ylides rarely react with aliphatic and aromatic aldehydes. ${ }^{[18]}$ In recent years the mechanism of epoxide formation in the reactions of sulfonium ylides and aldehydes has been studied in detail, ${ }^{[16 \mathrm{a}, \mathrm{ce}, \mathrm{h}, \mathrm{i}, 19]}$ and was used for the determination of the electrophilic reactivities of aldehydes and imines. ${ }^{[11]}$

Combination of the α, β-unsaturated aldehydes $\mathbf{1}$ with either pyridinium ylides $\mathbf{2}$ or semistabilized sulfonium ylides $\mathbf{3}$ allowed us to address the conjugate position and the carbonyl moiety of the α, β-unsaturated aldehydes 2 individually. In this way, we were able to derive the electrophilicity parameters E for both reaction sites from the second order-rate constants of their reactions with the ylides $\mathbf{2}$ and $\mathbf{3}$ and the corresponding nucleophilicity parameters N and s_{N}.

Table 6.1. Pyridinium Ylides 2 used as reference nucleophiles in this Study and their N and s_{N} parameters in DMSO at $20^{\circ} \mathrm{C}$.

	Ylide	EWG
$\mathbf{2 a}$	$\mathrm{CO}_{2} \mathrm{Et}$	$26 / 71 / 0.37$
$\mathbf{2 b}$	CN	$25.92 / 0.42$
$\mathbf{2 c}$	COMe	$20.24 / 0.60$
$\mathbf{2 d}$	COPh	$19.47 / 0.60$
2a] From ref. $[12]$		

Table 6.2. Sulfonium ylides 3 used as reference nucleophiles in this Study and their N and s_{N} parameters in DMSO at $20^{\circ} \mathrm{C}$.

$\begin{gathered} \mathrm{Me}_{2} \mathrm{~S}_{-}^{\oplus} \\ 3 \end{gathered}$		
Ylide	R	$\mathrm{N} / \mathrm{S}^{[1]}$
3 a	$p-\mathrm{CN}-\mathrm{C}_{6} \mathrm{H}_{4}$	21.07/0.68
3b	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	18.42/0.65
3c	$p-\mathrm{Me}_{2} \mathrm{~N}-$	15.68/0.65

[a] From ref. [20].

6.2 Results and Discussion

6.2.1 General

The pyridinium ylides $\mathbf{2}$ can add to the CC-double bond of the α, β-unsaturated aldehydes $\mathbf{1}$ either in a concerted way or stepwise via betaine 4 . Both pathways result in the formation of the tetrahydroindolizines 5 (Scheme 6.1). A stepwise formation of tetrahydroindolizines with rate determining betaine formation was found for the reactions of pyridinium ylides 2 with various acceptor-substituted olefins. ${ }^{[12,22,23]}$

As outlined above, the reactions of sulfonium ylides $\mathbf{3}$ with the α, β-unsaturated aldehydes $\mathbf{1}$ can either lead to epoxides $\mathbf{7}$ or cyclopropanes $\mathbf{9}$, depending on the stabilization of the ylide. The different pathways for the formation of these two types of products are depicted in Scheme 6.2. The formation of the anti-betaine $\mathbf{6}$ formed by 1,2 -attack and the formation of the synbetaine $\mathbf{8}$ formed by 1,4-attack are presumably only slightly reversible or irreversible, as these betaines should be stabilized through attractive ionic interactions. ${ }^{[16 f, g, j, ~ 17,24]}$ The subsequent ring-closures $\left(k_{\mathrm{rc}}{ }^{1,4}\right)$ are reported to be fast processes for the anti-betaine $\mathbf{6}$ and for the synbetaine 8, but may be slower for the syn-betaine $\mathbf{6}$ and the anti-betaine $\mathbf{8}\left(k_{\mathrm{rc}}{ }^{2,3}\right.$, Scheme 6.2). ${ }^{[16]}$

Scheme 6.1. Concerted and stepwise [3+2]-cycloaddition of pyridinium ylides 2 with the α, β-unsaturated aldehydes 1 .

Scheme 6.2. Schematic mechanisms for the reactions of sulfonium ylides 3 with the α, β-unsaturated aldehydes 1. Syn and anti terminology in the intermediate betaines 6 and 8 refers to the relations of the substituents around the newly formed CC-bond.

6.2.2 Products

Combination of the Michael acceptors 1a-c with the pyridinium ylides $\mathbf{2}$ under basic conditions leads to the formation of tetrahydroindolizines 5 (Scheme 6.1). As the corresponding cycloadducts derived from isoquinolinium ylides and α, β-unsaturated aldehydes, including crotonaldehyde 1b and cinnamaldehyde 1c were reported to be unstable, ${ }^{[13]}$ we made no attempts to isolate the tetrahydroindolizines $\mathbf{5}$ and oxidized them to indolizines instead.

The reaction of acrolein $\mathbf{1 a}$ with $\mathbf{2} \mathbf{d H}^{+} \mathbf{B r}^{-}$under basic conditions afforded two different products after oxidation, the 3-benzoyl-substituted indolizine 10d and the 3-alkyl-substituted indolizine 11. Their ratio depended on the quantity of acrolein 1a employed in the reaction (Scheme 6.3).

With one equivalent of acrolein 1a the reaction with ylide 2d gave the indolizine 10d in 58\% yield after oxidation (Scheme 6.3). Indolizine 10d is formed by conjugate addition of the ylide $\mathbf{2 d}$ to acrolein 1a, giving the intermediate betaine $\mathbf{4 d}$ which cyclizes to the tetrahydroindolizine $\mathbf{5 d}$, and its oxidation results in the formation of indolizine $\mathbf{1 0 d}$ (Scheme 6.3).

Scheme 6.3. Proposed mechanism for the formation of the indolizines 10 d and 11.

When two equivalents of acrolein 1a were used in the reaction with ylide 2d, the indolizine $\mathbf{1 1}$ (identified by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-, 2 \mathrm{D}-\mathrm{NMR}$, HRMS) was obtained in 78% yield. The formation of $\mathbf{1 1}$ can be rationalized by the mechanism depicted in Scheme 6.3. The initially formed betaine $\mathbf{4 d}$ must be in equilibrium with the tetrahydroindolizine 5 d (gives indolizine 10 d after oxidation) and with the ylide 12d. ${ }^{[25,26]}$ Ylide 12d can add to a second molecule of acrolein 1a to form the betaine $\mathbf{1 3 d}$, which cyclizes to the [3+2]-cycloadduct $\mathbf{1 4 d}$. The cycloadduct $\mathbf{1 4 d}$ may also be formed by deprotonation of the tetrahydroindolizine $\mathbf{5 d}$ and subsequent Michael addition of the formed carbanion to acrolein (1a). Hydride abstraction from the [3+2]-cycloadduct 14d by one equivalent of chloranil gives the dihydroindolizine $\mathbf{1 5 d}$, which is oxidized by a second equivalent of chloranil to the pyridinium ion $\mathbf{1 6 d}$. The benzoyl group of the pyridinium ion $\mathbf{1 6 d}$ is attacked by OH^{-}and the subsequent elimination of benzoic acid gives the indolizine 11. A similar base-induced elimination of an acyl-group from a pyridinium ion resulting in the formation of an indolizine was recently reported by our group. ${ }^{[27]}$

Table 6.3. Synthesis of the indolizines 10 and 11.

Aldehyde	Salt	EWG	Equiv. 1	Product	Yield $/ \mathbf{\%}$
$\mathbf{1 a}(\mathrm{R}=\mathrm{H})$	$\mathbf{2 a H}^{+} \mathbf{B r}^{-}$	$\mathrm{CO}_{2} \mathrm{Et}$	2	$\mathbf{1 0 a}$	32
	$\mathbf{2 b H}^{+} \mathbf{B r}^{-}$	CN	2	$\mathbf{1 0 b}$	36
	$\mathbf{2 c H}^{+} \mathbf{C l}^{-}$	COMe	1	$\mathbf{1 0 c}$	40
			2	$\mathbf{1 1}$	86
	$\mathbf{2 d H}^{+} \mathbf{B r}^{-}$	COPh	1	$\mathbf{1 0 d}$	58
			2	$\mathbf{1 1}$	78
$\mathbf{1 b}(\mathrm{R}=\mathrm{Me})$	$\mathbf{2 a H}^{+} \mathbf{B r}^{-}$	$\mathrm{CO}_{2} \mathrm{Et}$	2	$\mathbf{1 0 e}$	56
	$\mathbf{2 d H}^{+} \mathbf{B r}^{-}$	COPh	2	$\mathbf{1 0 f}$	88
$\mathbf{1 c}(\mathrm{R}=\mathrm{Ph})$	$\mathbf{2 b H}^{+} \mathbf{B r}^{-}$	CN	2	$\mathbf{1 0 g}$	41
	$\mathbf{2 c H}^{+} \mathbf{C l}^{-}$	COMe	1.5	$\mathbf{1 0 h}$	54

Table 6.3 shows that all tested combinations of the α, β-unsaturated aldehydes $\mathbf{1 a} \mathbf{a}-\mathbf{c}$ with the pyridinium ylides $\mathbf{2 a}-\mathbf{d}$ resulted in the formation of indolizines $\mathbf{1 0}$ in $32-88 \%$ yield. The [2:1]product $\mathbf{1 1}$ was only obtained when the acyl-substituted pyridinium ylides $\mathbf{2 c}$ and $\mathbf{2 d}$ were combined with an excess of acrolein.

A [2:1]-product, analogous to 11, was neither observed in the reactions of crotonaldehyde ($\mathbf{1 b}$) and cinnamaldehyde ($\mathbf{1 c}$) with the ylides $\mathbf{2 c}$ and $\mathbf{2 d}$ nor in the reactions of the ester and cyano-substituted ylides $\mathbf{2 a}$ and $\mathbf{2 b}$ with 2 equiv. of acrolein (1a). The reactions of equimolar mixtures of acrolein (1a) and crotonaldehyde (1b), or acrolein (1a) and cinnamaldehyde (1c) and one of the pyridinium ylides $\mathbf{2 c}$ or $\mathbf{2 d}$ did not lead to indolizines corresponding to $\mathbf{1 1}$. The limitations in the formation of the indolizine $\mathbf{1 1}$ may be caused by an unfavorable equilibrium between the betaines $\mathbf{4}$ and the tetrahydroindolizines 5 (Scheme 6.3).

In line with earlier findings the regioselectivity of the attack of sulfonium ylides $\mathbf{3 a}-\mathbf{c}$ at acrolein (1a) was found to be strongly dependent on the nature of the employed ylide. Furthermore the regioselectivity of the attack of the sulfonium ylide was found to be influenced by the employed solvent. As shown in Table 6.4 the reaction of acrolein $\mathbf{1 a}$ with the semistabilized p-cyano-benzyl-substituted sulfonium ylide 3a preferentially gave the 1,2-adduct, epoxide 7a, under biphasic reaction conditions (Conditions A), while the corresponding reaction in DMSO (Conditions B) preferentially gave cyclopropane 9a. The reaction of acrolein (1a) with the less nucleophilic p-nitro-benzyl-substituted ylide 3b gave the 1,4-adduct, cyclopropane 9b preferentially, even under biphasic reaction conditions. ${ }^{[28]}$ The reaction of
acrolein $\mathbf{1 a}$ with the stabilized ylide $\mathbf{3 c}$ resulted in the exclusive formation of cyclopropane $\mathbf{9 c}$. On the other hand, the reactions of ylide $\mathbf{3 a}$ with crotonaldehyde $\mathbf{1 b}$ and cinnamaldehyde $\mathbf{1 c}$ led to the formation of the trans-epoxides $\mathbf{7 d}$ and $\mathbf{7 e}$ selectively, regardless of the employed solvent. A concurrence of epoxidation and cyclopropanation in reactions of α, β-unsaturated aldehydes with semi-stabilized sulfonium ylides was recently reported for a similar series α, β-unsaturated aldehydes in THF at $-78{ }^{\circ} \mathrm{C} .{ }^{[16 \mathrm{~d}]}$

The stereochemistry of the trans-epoxides 7 and the cyclopropanes 9 was assigned on basis of NOESY correlations of the protons and substituents of the three-membered rings. The epoxides 7 were exclusively obtained as the trans-isomers. The cyclopropanes 9 were preferentially formed with a trans-configuration between the carbonyl group and R^{2}.

In all cases ${ }^{1} \mathrm{H}$ NMR monitoring of the reactions of ylide 3a with the enals $\mathbf{1 a - c}$ in DMSOd_{6} showed a complete conversion of the reactants immediately after mixing. While in the reaction of $\mathbf{3 a}$ with acrolein (1a) 1:4 mixtures of epoxide $\mathbf{7 a}$ and cyclopropane $\mathbf{9 a}$ were formed, the corresponding reaction of $\mathbf{3 a}$ with crotonaldehyde (1b) and cinnamaldehyde (1c) resulted in the exclusive formation of the epoxides $\mathbf{9 d}$ and $\mathbf{9 e}$. As the betaines $\mathbf{6}$ and $\mathbf{8}$ (Scheme 6.2) were not observable, rapid formations of $\mathbf{6}$ and $\mathbf{8}$ with slow subsequent ring-closures can be ruled out.

Table 6.4. Synthesis of the epoxides 7 and the cyclopropanes 9 in DMSO.

		$\begin{aligned} & S_{\oplus}^{\oplus} \underbrace{\ominus} R^{2} \\ & \text { or } 3 \end{aligned}$	Conditions A, B, C $\xrightarrow[-\mathrm{SMe}_{2}]{20^{\circ} \mathrm{C}}$					
Aldehyde	$\begin{gathered} \text { Yli- } \\ \text { de } \end{gathered}$	R^{2}	Conditions ${ }^{[a]}$	transEpoxide 7	$\begin{gathered} \hline \text { Yield } \\ 7 / \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Cyclopro } \\ \text {-pane } 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Yield } \\ \mathbf{9 / \%} \\ \hline \end{gathered}$	$\begin{aligned} & \text { trans:cis } 9 \\ & \left(\mathrm{R}^{1}=\mathrm{H}\right)^{[\mathrm{bb]}} \end{aligned}$
1a ($\left.\mathrm{R}^{1}=\mathrm{H}\right)$	3a	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	A	7 a	54	9 a	(25) ${ }^{[\mathrm{cc]}}$	6:1
	3a	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	B	7a	(20) ${ }^{[d]}$	9 a	68	3:1
	3b	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$	A	7b	36	9b	60	5:1
	3 c	$\mathrm{COC}_{6} \mathrm{H}_{4}-p-\mathrm{OMe}$	C	7c	0	9 c	70	5:1
1b ($\mathrm{R}^{1}=\mathrm{Me}$)	3a	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	A	7d	70	9d	0	-
	3a	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	B	7d	quant. ${ }^{[\mathrm{e}]}$	9d	0	-
1c $\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$	3a	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	A	7e	93	9 e	0	-
	3a	$\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}$	B	7e	quant. ${ }^{[\mathrm{e}]}$	9 e	0	-

[a] Conditions A: $\mathrm{CHCl}_{3} /$ aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (sat.), 2 h ; Conditions B: $\mathrm{KO}{ }^{t} \mathrm{Bu}$ (1.1 equiv), DMSO, 5 min ; Conditions C: DMSO, 15 min ; [b] The diastereoselectivities were determined by ${ }^{1} \mathrm{H}$ NMR of the crude products; [c] Calculated from the $3: 1$ ratio of $\mathbf{7 a}: \mathbf{9 a}$ in the crude reaction mixture; 7a was not isolated; [d] From the 1:4 Ratio of 7a:9a in the crude product; 9a was not isolated; [e] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture.

6.2.3 Kinetic Investigations and Discussion

The kinetics of the reactions of the α, β-unsaturated aldehydes $\mathbf{1 a - c}$ with the pyridinium ylides 2a-d and the sulfonium ylides 3a,c were studied in DMSO solution at $20{ }^{\circ} \mathrm{C}$ and monitored photometrically by following the disappearance of the ylides $\mathbf{2}$ and $\mathbf{3}$ at or close to their absorption maxima. Due to their low stabilities the ylides $\mathbf{2 a}-\mathbf{d}$ and $\mathbf{3 a}$ were generated in DMSO by combining DMSO solutions of the salts $\mathbf{2 (a - d)} \mathbf{H}^{+} \mathbf{X}^{-}$or $\mathbf{3 a H}^{+} \mathbf{B F}_{4}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.05 equivalents) directly before each kinetic experiment. The sulfonium ylide $\mathbf{3 c}$ is a stable compound and thus stock solutions of this ylide were prepared. For the kinetic measurements 10 or more equivalents (pseudo first-order conditions) of the enals $\mathbf{1 a}-\mathbf{c}$ over the ylides $\mathbf{2}$ and $\mathbf{3}$ were used. First-order rate constants $k_{\text {obs }}$ were obtained by least-squares fitting of the single exponential function $A_{t}=A_{0} \exp \left(-k_{\text {obs }} t\right.$) (mono-exponential decay) to the observed time-dependent absorbances (Figure 6.1a). Plots of $k_{\text {obs }}$ versus the concentrations of the Michael acceptors $\mathbf{1 a}-\mathbf{c}$ were linear with negligible intercepts in most cases, as required by $k_{\mathrm{obs}}=k_{2}[\mathbf{1}]$ (Figure 6.1b). From the slopes of the linear correlations the second-order rate constants of the reactions of the Michael acceptors $\mathbf{1 a - c}$ with the ylides $\mathbf{2}$ and $\mathbf{3}$ were obtained (Table 6.5).

Equation 1 implies a slope of 1.0 for the plots of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ versus the nucleophilicity parameters N. Figure 6.2 shows that this requirement is roughly fulfilled for the reactions of the α, β-unsaturated aldehydes $\mathbf{1 a}-\mathbf{c}$ with pyridinium ylides $\mathbf{2 a}-\mathbf{d}$ and the sulfonium ylide $\mathbf{3 c}$. The reaction of acrolein (1a) with the ethoxy carbonyl-substituted pyridinium ylide 2a proceeds 4.5 times faster than expected from the correlation. This deviation is small and within the limit of confidence of eq 6.1 (two orders of magnitude), but might also be due to a low degree of concertedness of the [3+2]-cycloaddition reaction. Therefore, the rate constant of the reaction of acrolein (1a) with pyridinium ylide 2a was excluded for the determination of the electrophilicity parameter E. The deviations of the other rate constants for the reactions of the pyridinium ylides $\mathbf{2 a}-\mathbf{d}$ and the sulfonium ylide $\mathbf{3 c}$ with the enals $\mathbf{1 a}-\mathbf{c}$ from the correlation lines stay below a factor of four, thus they were used to determine the electrophilicity parameter E by least squares-fitting, i.e., minimization of $\Delta^{2}=\sum\left(\log k_{2}-s_{\mathrm{N}}(N+E)^{2}\right)($ Table 6.5).

Figure 6.1. a) Decay of the absorbance of $2 \mathrm{~d}\left([2 \mathrm{~d}]_{0} \sim 5 \times 10^{-5} \mathrm{M}\right)$ at 445 nm during its reaction with 1a ([1a] 0 $\left.=7.89 \times 10^{-4} \mathrm{M}\right)$ in DMSO at $20^{\circ} \mathrm{C}$. b) Plot of the $k_{\text {obs }}$-values versus the concentration of 1 a .

Table 6.5. Experimental $\left(k_{2}{ }^{\text {exp }}\right)$ and calculated $\left(k_{2}{ }^{\text {calcd }}\right)^{[a]}$ second-order rate constants for the 1,2- and 1,4additions of the ylides 2,3 to the α, β-unsaturated aldehydes $1 \mathrm{a}-\mathrm{c}$ in DMSO at $20{ }^{\circ} \mathrm{C}$.

Electrophile/ E	Ylide	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\exp } / k_{2}{ }^{\text {calcd }}$
$E=-14.65$	2 a	$1.25 \times 10^{5[\mathrm{~b}]}$	2.9×10^{4}	4.5
	2b	1.08×10^{5} [c]	5.51×10^{4}	2.22
	2c	2.86×10^{3}	2.26×10^{3}	1.27
	2d	5.53×10^{2}	6.15×10^{2}	0.90
	3a	$9.73 \times 10^{2}[\mathrm{~d}]$	2.30×10^{4}	0.04
	3c	2.46	4.66	0.53
$E=-19.10$	2b	2.86×10^{3}	7.48×10^{2}	3.83
	2c	4.01	4.85	0.83
	2d	7.47×10^{-1}	1.62	0.46
$E=-20.52$	3 a	2.35	Identical ${ }^{\text {[e] }}$	-
	2 a	4.11×10^{2}	4.06×10^{2}	1.01
	2b	1.16×10^{3}	4.34×10^{2}	2.67
-	2c	1.11	2.23	0.50
$E=-19.66$				
$\begin{array}{r} \mathrm{O} \\ \rightarrow \quad 1 \end{array}$	3a	$6.03{ }^{[f]}$	Identical ${ }^{[\mathrm{e}]}$	-

$\overline{[\mathrm{a}] ~ C a l c u l a t e d ~ b y ~ e q ~} 6.1$ using N and s_{N} from Tables 7.1, 7.2 and E; [b] Exempted from the determination of E due to a possible small degree of concertedness; [c] The k_{obs} vs. [1a] plot for this reaction, which proceeds on the $>20 \mathrm{~ms}$ timescale, does not have a negligible intercept; [d] Bisexponential decays of the absorbance of ylide 3a at low concentrations of acrolein 1a were observed; the second-order rate constant corresponding to the slow decays of 3a measured at high concentrations of 1a must refer to more complex kinetics; Not used for the determination of E; [e] Only one k_{2}-value used for the determination of $E ;[\mathrm{f}] E$ and k_{2} value from ref. [11].

Figure 6.2. Plots of the $\left(\log \boldsymbol{k}_{2}\right) / s_{\mathrm{N}}$-values derived from the reactions of the α, β-unsaturated aldehydes 1 with the ylides $2 \mathrm{a}-\mathrm{d}$ and 3 c versus the corresponding nucleophilicity parameters N (the slopes are fixed to $\mathbf{1 . 0}$ as required by eq 6.1). The rate of the reaction of 1 a with 2 a was not used for the determination of E and is thus not displayed.

The four experimental second-order rate constants for the reactions of the acrolein (1a) with the pyridinium ylides $\mathbf{2 b} \mathbf{-} \mathbf{d}$ and the sulfonium ylide $\mathbf{3 c}$ agree with those calculated by eq 6.1 within a factor of two, indicating a common rate-determining step, i.e., the formation of the intermediate betaines 4 and 6 .

In the reaction of acrolein $\mathbf{1 a}$ with the ylide $\mathbf{3 a}$ the epoxide $\mathbf{7 a}$ and the cyclopropane $\mathbf{9 a}$ were formed (Table 6.4). The kinetics of the reaction showed bisexponential decays at low concentrations of acrolein 1a, which are suppressed at higher concentrations. The second-order rate constant $k_{2}{ }^{\exp }$ in Table 6.5 was derived from the $k_{\text {obs }}$ values measured at higher concentrations of $\mathbf{1 a}$. As it is unclear, which reaction step was followed in this case the derived second-order rate constant was not used for the calculation of E of acrolein (1a).

The rates of the reactions of the enals $\mathbf{1 b}$ and $\mathbf{1 c}$ with the sulfonium ylide $\mathbf{3 a}$ only deviate slightly from the correlation lines of the corresponding reactions with pyridinium ylides $\mathbf{2}$. However, considering the exclusive formations of the epoxides in the product studies (Table 6.4), the measured rate constants of the reactions of the aldehydes $\mathbf{1 b}$ and $\mathbf{1 c}$ with the sulfonium

Scheme 6.4. Transformation of hydroxy sulfides 16 to epoxides 19. ${ }^{[29]}$

ylide 3a can be assigned to the attack of 3a at the formyl-group, what would allow us to derive the corresponding electrophilicity parameters E.

In a previous investigation, ${ }^{[29]}$ the hydroxysulfides 16 were S-alkylated to give the sulfonium salts 17. Its treatment with a base gave the intermediate betaines $\mathbf{1 8}$ which cyclized to the epoxides 19 (Scheme 6.4). This reaction sequence proceeded without erosion of the diastereomeric ratios of the starting materials $\mathbf{1 6}$, indicating that the intermediate betaines $\mathbf{1 8}$, which are closely related to the betaines $\mathbf{6}$ formed from the aldehydes $\mathbf{1 b}$ and $\mathbf{1 c}$ and ylide 3a, do not undergo retroaddition. The irreversible formation of betaine $\mathbf{1 8}$ in combination with the non-observance of the betaines $\mathbf{6}$ by ${ }^{1} \mathrm{H}$ NMR monitoring allows one to conclude that the intermediate betaines $\mathbf{6}$ must be formed irreversible and the subsequent ring-closures are fast processes. Therefore, the observed second-order rate constants $k_{2}{ }^{\text {exp }}$ for the reactions of ylide $\mathbf{3 a}$ with the aldehydes $\mathbf{1 b}$ and $\mathbf{1 c}$ can be assigned to the 1,2 -addition and the electrophilicity parameter E of the carbonyl group of crotonaldehyde (1b) and cinnamaldehyde $(\mathbf{1 c})^{[11]}$ can be derived as given in Table 6.5 using eq 6.1.

Reported rate constants for reactions of acrolein (1a), crotonaldehyde (1b), and cinnamaldehyde (1c) with substituted pyridines, morpholine, and cysteine dianion in $\mathrm{H}_{2} \mathrm{O}$ or MeOH , were collected from the literature (Table 6.7). ${ }^{[3 a, 5 b, 6 b]}$ The nucleophilicity parameters N and s_{N} of these nucleophiles in the solvents employed for the kinetic measurements are known (Table 6.6), what allows a comparison of the experimental rate constants ($k_{2}{ }^{\exp }$) and those calculated by eq 6.1 using E from Table 6.5 and the N and s_{N} values of the nucleophiles listed in Table 6.6. The small differences between the temperatures used to determine the rate constants and the reactivity parameters s_{N}, N, and E are neglected in this comparison.

The observed ($k_{2}{ }^{\text {exp }}$) and calculated ($k_{2}{ }^{\text {calcd }}$) rate constants agree within two orders of magnitude, which is within the limit of confidence of eq 6.1. In four of eight cases the rate constants agree with a factor better than four, supporting the derived electrophilicity parameters E for the β-position of the α, β-unsaturated aldehydes $\mathbf{1}$. The assumption of a stepwise addition of the pyridinium ylides $\mathbf{2}$ to the α, β-unsaturated aldehydes $\mathbf{1}$ is also verified in this way

Table 6.6. N and s_{N}-parameters of substituted pyridines, morpholine, and cysteine dianion at $20{ }^{\circ} \mathrm{C} .{ }^{[30]}$

Nucleophile	Abbreviation	Solvent	N / s_{N}	
4-Pyridone anione	$4-\mathrm{PyO}^{-}$	$\mathrm{H}_{2} \mathrm{O}$	$14.76 / 0.48$	[a]
4-NMe2-Pyridine	DMAP^{2}	$\mathrm{H}_{2} \mathrm{O}$	$13.19 / 0.56$	[b]
4-Morpolino-Pyridine	MorAP	$\mathrm{H}_{2} \mathrm{O}$	$12.39 / 0.66$	[b]
4- NH_{2}-Pyridine	AP	$\mathrm{H}_{2} \mathrm{O}$	$12.19 / 0.66$	[b]
3-Br-4- NH_{2}-Pyridine	$3-\mathrm{BrAP}$	MeCN	$12.96 / 0.67$	[c]
Morpholine	Mor	$\mathrm{MeOH} / \mathrm{MeCN}$	$15.40 / 0.64$	[d]
Cysteine Dianion	Cys^{2-}	$\mathrm{H}_{2} \mathrm{O}$	$23.43 / 0.42$	[e]

[a] From ref. [31d]; [b] From ref. [31b]; [c] From ref. [31e]; [d] From ref. [31a]; [e] From ref. [31c].
Table 6.7. Rates of the Michael addition of nucleophiles to the 4-positions of $\mathbf{1 a}-\mathbf{c}(\mathbf{f r o m}$ refs. $[\mathbf{3 a}, \mathbf{5 b}, \mathbf{6 b}]$).

Elec.	Nuc.	Solvent	$T /{ }^{\circ} \mathrm{C}$	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd } / M^{-1} \mathrm{~s}^{-1[\mathrm{a}]}}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$	
$\mathbf{1 a}$	$4-\mathrm{PyO}^{-}$	$\mathrm{H}_{2} \mathrm{O}$	25	0.96	1.12	0.86	$[\mathrm{~b}]$
	DMAP	$\mathrm{H}_{2} \mathrm{O}$	25	2.39	1.51×10^{-1}	15.8	[b]
	MorAP	$\mathrm{H}_{2} \mathrm{O}$	25	1.04	3.19×10^{-2}	32.6	[b]
	AP	$\mathrm{H}_{2} \mathrm{O}$	25	1.65	2.36×10^{-2}	83.2	[b]
	$3-\mathrm{BrAP}$	$\mathrm{H}_{2} \mathrm{O}$	25	1.10×10^{-1}	7.51×10^{-2}	1.51	[b]
	Mor	MeOH	30	1.25	2.99	0.42	[c]
1b	DMAP	$\mathrm{H}_{2} \mathrm{O}$	25	8×10^{-3}	4.92×10^{-4}	16.3	[b]
1c	Cys $^{2-}$	$\mathrm{H}_{2} \mathrm{O}$	25	1.22×10^{1}	3.83×10^{1}	0.32	[d]

[a] Calculated by eq. 1 from N, s_{N} in Table 6.6 and E in Table 6.5; [b] From ref. [6b]; [c] From ref. [5b] [d] From ref. [3a].
(Scheme 6.1). The remaining four rate constants of the reactions of acrolein $\mathbf{1 a}$ and crotonaldehyde $\mathbf{1 b}$ with 4-amino-pyridines proceed 16 to 83 times faster than calculated what is within the limit of confidence of eq 6.1 of two orders of magnitude.

6.3 Conclusion

In this work we present the first access to 1-carbaldehyde substituted indolizines synthesized by a [3+2]-cycloaddition/oxidation-protocol from pyridinium ylides and α, β-unsaturated aldehydes under mild conditions. ${ }^{[31]}$ The addition of two molecules of the Michael acceptor to one pyridinium ylide giving a 3-alkyl substituted indolizine ${ }^{[32]}$ after oxidation has, to our knowledge, not been reported before. Both methods, the single and double addition of $\alpha, \beta-$ unsaturated aldehydes to pyridinium ylides, provide a simple access to 1-carbaldehyde substituted indolizines from readily accessible materials.

The linear free-energy correlation eq 6.1 was found to describe the rates of reactions of the α, β-unsaturated aldehydes acrolein $\mathbf{1 a}$, crotonaldehyde $\mathbf{1 b}$, and cinnamaldehyde $\mathbf{1 c}$ with pyrid-

Figure 6.3. Comparison of the electrophilicity parameters of the α, β-unsaturated aldehydes 1 with other related Michael acceptors and aldehydes. ${ }^{10 a}$ a, 11, 23, 33-35]
inium ylides $\mathbf{2}$ and sulfonium ylides $\mathbf{3}$. From these rate constants the electrophilicity parameters for the β-position and the carbonyl carbon of the enals $\mathbf{1 a - c}$ could be derived, what allowed us to include them into our comprehensive reactivity scale. The fair agreement of the previously reported rate constants for the addition of amines, pyridines, and cysteine to the α, β-unsaturated aldehydes 1 with those calculated by eq 6.1, demonstrates the general utility of the electrophilicity parameters E for predicting reactivities towards a wide variety of nucleophiles.

The ambident reactivities of α, β-unsaturated aldehydes can now be compared to the electrophilicities of other acceptor substituted $\mathrm{C}=\mathrm{C}$-double (Figure 6.3, left) and carbon heteroatom ($\mathrm{C}=\mathrm{Het}$) double bonds (Figure 6.3, right).

The reactivity of the $\mathrm{C}=\mathrm{C}$-double bond of acrolein (1a) is similar to that of nitrostyrene ${ }^{[33]}$ while the related methylvinylketone ${ }^{[23]}$ is 66 times less reactive (Figure 6.3; left). Addition of a methyl-group in the 4-position of acrolein (1a) decreases the reactivity by a factor of $\sim 26,000$, so that crotonaldehyde (1b) is less reactive than chalcone ${ }^{[11]}$ or diethyl fumarate. ${ }^{[22]}$ Exchanging the methyl (1b) by a phenyl group (1c) leads to a slight decrease of reactivity by a factor of 4 .

The carbonyl groups of the investigated α, β-unsaturated aldehydes $\mathbf{1 b}$ and $\mathbf{1 c}$ have a similar reactivity as the corresponding conjugated double bonds (Figure 6.3; right). The reduction of the conjugated double bond in crotonaldehyde (1b) to n-butana ${ }^{[11]}$ increases the reactivity of the carbonyl group by a factor of 63 . The formyl group of cinnamaldehyde $\mathbf{1 c}$ is two times less
reactive than benzaldehyde. ${ }^{[11]}$ Iminium activation of cinnamaldehyde and benzaldehyde leads to a $\sim 10^{10}$ fold increase of the reactivity in both cases, ${ }^{[10 a, 35]}$ so that the reactivity of the iminium activated cinnamaldehyde towards 1,4 -attack is similar to the reactivity of iminium activated benzaldehyde towards 1,2-attack.

One major drawback of the derived reactivity parameters for the carbonyl groups of α, β unsaturated aldehydes is that they may only be representative for their reactions with carboncentered nucleophiles. In reactions with oxygen- or nitrogen-centered nucleophiles, the anomeric stabilization ${ }^{[36]}$ of the resulting products may probably affect the transition state of the reaction resulting in an enhanced reaction rate which cannot be described by eq 6.1. ${ }^{[11]}$ Furthermore the electrophilicity parameters E determined in this work might not be independent from the solvent, as found for benzhydrylium ions. ${ }^{[9]}$

6.4 Experimental Section

6.4.1 General

Chemicals. The pyridinium salts $\mathbf{2 H}^{+} \mathbf{X}^{-}$were synthesized according to ref. [12], the sulfonium salts $\mathbf{3} \mathbf{H}^{+} \mathbf{X}^{-}$according to ref. [20], and the sulfonium ylides $\mathbf{3 c}, \mathbf{d}$ according to ref. [21].

Analytics. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right),{ }^{[37 \mathrm{a}]} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ $\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right),{ }^{[37 \mathrm{~b}]}$ or DMSO- $d_{6}\left(\delta_{\mathrm{H}} 2.50, \delta_{\mathrm{c}} 39.52\right)^{[37 \mathrm{a}]}$ on $200,300,400$, or 600 MHz NMR spectrometers and are given in ppm. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. For reasons of simplicity, the ${ }^{1} \mathrm{H}$ NMR signals of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ '-spin systems of p disubstituted aromatic rings were treated as doublets. The assignments of individual NMR signals were based on additional 2D-NMR experiments (COSY, NOESY, HSQC, HMBC). Diastereomeric ratios ($d r$) were determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction products if not stated otherwise. HRMS and MS were recorded on a Finnigan MAT 95 Q (EI) mass spectrometer or Thermo Finnigan LTQ FT Ultra (ESI). The melting points were recorded on a Büchi Melting Point B-540 device and are not corrected.

Kinetics. DMSO (99.7\%, extra dry, over molecular sieves, AcroSeal) was purchased and used without further purification. The rates of all reactions were determined by UV-vis spectroscopy in DMSO at $20^{\circ} \mathrm{C}$ by using stopped-flow spectrophotometer systems (Applied

Photophysics SX.18MV-R and Hi-Tech SF-61DX2) as well as diodearray-spectrophotometer systems (J\&M TIDAS DAD 2062). The temperature of the solutions during the kinetic studies was maintained at $20 \pm 0.2^{\circ} \mathrm{C}$ by using circulating bath cryostats. The ylides were generated in DMSO at $20^{\circ} \mathrm{C}$ immediately before each kinetic run by mixing DMSO solutions of the salts $\mathbf{2 H}^{+} \mathbf{X}^{-}$or $\mathbf{3 \mathbf { a H } ^ { + }} \mathbf{B F}_{4}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.00:1.05 equivalents). Ylide $\mathbf{3 c}$ is a stable compound and thus stock solutions of it were prepared. The kinetic runs were initiated by mixing DMSO solutions of the ylides and electrophiles under pseudo first-order conditions with one of the two reaction partners in large excess over the other (>10 equivalents). Pseudo firstorder rate constants $k_{\mathrm{obs}}\left(\mathrm{s}^{-1}\right)$ were obtained by fitting the single exponential $A_{t}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)$ $+C$ (mono-exponential decrease) to the observed time-depended absorbances (average of at least three kinetic runs for each concentration for the stopped-flow method) of the electrophiles or ylides. Second-order rate constants $k_{2}\left(\mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$ were derived from the slopes of the linear correlations of the obtained k_{obs}-values against the concentrations of the excess reaction partner.

6.4.2 Product Studies

6.4.2.1 Reactions of the α, β-Unsaturated Aldehydes 1 with the Pyridinium Ylides 2

Procedure A for the Synthesis of the Indolizines 10 and 11. $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.50 \mathrm{mmol})$ was added to a solution of $\mathbf{1}(0.50-1.00 \mathrm{mmol})$ and $\mathbf{2} \mathbf{H}^{+} \mathbf{X}^{-}(500 \mu \mathrm{~mol})$ in DMSO $(0.2 \mathrm{M})$ at room temperature. The reaction was stirred until $\mathbf{1}$ was completely consumed as monitored by TLC ($15 \mathrm{~min}-1 \mathrm{~h}$). Chloranil (2 equiv) was added and the solution was stirred at room temperature for $30 \mathrm{~min}-1 \mathrm{~h}$ until all chloranil was consumed as monitored by TLC. The reaction was quenched with 2 M HCl and extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 25 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was subjected to a column chromatography (silica; n-pentane:EtOAc 15:1-3:1, depending on R_{f}). The products were subsequently recrystallized from $\mathrm{Et}_{2} \mathrm{O}$.

Ethyl 1-formylindolizine-3-carboxylate (10a). From 1a ($56 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathbf{2 a H}^{+} \mathbf{B r}^{-}$ ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol}$), and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 10a was obtained as colorless solid ($35 \mathrm{mg}, 0.16 \mathrm{mmol}, 32 \%$). The product is contaminated by traces of $2,3,5,6$-tetrachlorobenzene-1,4-diol (reduced chloranil). $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 138-139{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.41$

(dt, $J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.4(\mathrm{q}$, CH_{3}), $60.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 114.5(\mathrm{~s}, \mathrm{C}-1), 115.8$ (d, C-6), 116.1 ($\mathrm{s}, \mathrm{C}-3$), 119.6 (d, C-8), 125.7 (d, C2), 127.5 ($\mathrm{d}, \mathrm{C}-7$), 128.2 ($\mathrm{d}, \mathrm{C}-5$), 138.3 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 161.0 ($\mathrm{s}, \mathrm{CO}_{2}$), 184.7 (s, CHO). HRMS (EI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}\right]^{+} 217.0733$, found 217.0734. DA909

1-Formylindolizine-3-carbonitrile (10b). From 1b ($56 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathbf{2 b H}^{+} \mathbf{B r}^{-}(123 \mathrm{mg}$, $500 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($53 \mathrm{mg}, 0.50 \mathrm{mmol}$), and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 10b was obtained as colorless solid ($30 \mathrm{mg}, 0.18 \mathrm{mmol}, 36 \%$). ${ }^{1} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.47$ (dddd, $J=9.0,7.0,1.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.36-8.49(\mathrm{~m}, 2 \mathrm{H}, 5,8-\mathrm{H}), 9.99(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 105.6(\mathrm{~s}, \mathrm{CN}), 112.2(\mathrm{~s}, \mathrm{C}-3), 115.0(\mathrm{~s}, \mathrm{C}-1), 116.4(\mathrm{~d}, \mathrm{C}-6), 120.4(\mathrm{~d}, \mathrm{C}-$
 HRMS (EI): calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$170.0475, found 170.0477. MS (EI) m/z: 170 (71), 169 (100), 141 (12), 89 (24). DA905

3-Acetylindolizine-1-carbaldehyde hydrate ($\mathbf{1 0 c} \cdot \mathbf{H}_{2} \mathbf{O}$). From $\mathbf{1 a}(27 \mathrm{mg}, 0.5 \mathrm{mmol})$, $\mathbf{2 c H} \mathbf{C l}^{+} \mathbf{C l}^{-}(139 \mathrm{mg}, 500 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$)
 according to procedure A. 10c was obtained as brown solid ($40 \mathrm{mg}, 0.20 \mathrm{mmol}$, 40%). The product is contaminated by traces of an unknown by-product. $\boldsymbol{R}_{\mathbf{f}}(n-$ pentane:EtOAc 10:1) $=0.8 . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 109-110{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71(\mathrm{br}$ $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.14(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.52(\mathrm{ddd}, J=8.8,6.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.45(\mathrm{dt}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.93(\mathrm{dt}, J=7.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 114.9(\mathrm{~s}, \mathrm{C}-1)$, 116.6 (d, C-6), 119.2 (d, C-8), 123.8 (s, C-3), 127.2 (d, C-2), 129.0 (d, C-7), 129.4 (br d, C-5), 138.7 (s, C-8a) 184.4 (s, CHO), 187.9 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}\right]^{+}$187.0628, found 187.0624. MS (EI) $m / z: 188$ (12), 187 (100), 172 (91), 121 (33), 105 (30), 77 (13), 43 (38). DA906

3-Benzoylindolizine-1-carbaldehyde (10d). From 1a ($29 \mathrm{mg}, 0.53 \mathrm{mmol}$), $\mathbf{2 d H}^{+} \mathbf{B r}^{-}$ ($139 \mathrm{mg}, 500 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 10d was obtained as colorless solid ($71 \mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%$). $\boldsymbol{R}_{\mathbf{f}}$ (n pentane:EtOAc 5:1) $=0.12 . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 129-130^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.40-7.57\left(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.69(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.76(\mathrm{ddd}, J=3.7$,
$1.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 8.43 (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right), 9.81-10.04(\mathrm{~m}, 2 \mathrm{H}, 5-$ $\mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 115.5$ ($\mathrm{s}, \mathrm{C}-1$), 116.9 (d, C-6), 119.6 (d, C8), $123.8(\mathrm{~d}, \mathrm{C}-3), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.6(\mathrm{~d}, \mathrm{C}-5$ or $\mathrm{C}-7)$,
129.6 (br d, C-5 or C-7), 130.5 (d, C-2), 131.9 (d, C $\mathrm{Cr}_{\mathrm{Ar}}-\mathrm{H}$), 139.3 ($\mathrm{s}, \mathrm{C}-8^{a}$), 139.8 (s , $\mathrm{C}_{\text {Ar }}$), 184.8 (d, CHO), 185.9 (s, CO). HRMS (ESI): calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{2}\right]^{+}$ 250.0863 , found 250.0860 . DA800-3

Ethyl 1-formyl-2-methylindolizine-3-carboxylate (10e). From 1b ($70 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathbf{2 a H}{ }^{+} \mathbf{B r}^{-}(123 \mathrm{mg}, 500 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure \mathbf{A}. 10e was obtained as a colorless solid ($64 \mathrm{mg}, 0.28 \mathrm{mmol}, 56 \%$). $\boldsymbol{R}_{\mathrm{f}}$ (n-pentane:EtOAc 5:1) $=0.39 . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 140-141{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45$ (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.44\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.02(\mathrm{td}, J=7.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.40(\mathrm{ddd}, J=8.8,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 8.45(\mathrm{dt}, J=8.9,1.2 \mathrm{~Hz}$,
$1 \mathrm{H}, 8-\mathrm{H}), 9.62(\mathrm{dt}, J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathbf{C}$ NMR (75
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 113.3(\mathrm{~s}, \mathrm{C}-3), 114.2$ (s, C-2), 115.4 (d, C-6), 118.8 (d, C-8), 127.9 (d, C-7), 128.5 (d, C-5), 138.5 ($\mathrm{s}, \mathrm{C}-1$), 138.9 (s , $\mathrm{C}-8^{a}$), 162.3 (s, CO_{2}), 184.4 (d, CHO). HRMS (EI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}\right]^{+}$231.0890, found 231.0890. MS (EI) $m / z: 231$ (15), 202 (15), 159 (10), 58 (32), 43 (100). DA791

3-Benzoyl-2-methylindolizine-1-carbaldehyde (10f). From 1b (70 mg, 1.0 mmol), $\mathbf{2 d H} \mathbf{H}^{+} \mathbf{B r}^{-}(139 \mathrm{mg}, 500 \mu \mathrm{~mol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure \mathbf{A}. 10f was obtained as colorless solid ($116 \mathrm{mg}, 441 \mu \mathrm{~mol}, 88 \%$). $\boldsymbol{R}_{\mathbf{f}}$ (n pentane:EtOAc 1:1) $=0.24 . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 108-110{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.13$ (d, $J=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 6.99 (tdd, $J=7.0 \mathrm{~Hz}, 2.1,1.5,1 \mathrm{H}, 6-\mathrm{H}$), $7.35-7.46$ (m, $3 \mathrm{H}, 7-\mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.47-7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.62\left(\mathrm{ddd}, J=6.8,3.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.30-$ 8.43 (m, $1 \mathrm{H}, 8-\mathrm{H}), 9.47$ (ddt, $J=7.0,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 10.10$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=12.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 113.8(\mathrm{~s}, \mathrm{C}-1), 115.8(\mathrm{~d}, \mathrm{C}-6), 118.7(\mathrm{~d}, \mathrm{C}-8)$, 122.9 ($\mathrm{s}, \mathrm{C}-2$), 128.7 (d, C-5), 128.7 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 128.8 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 129.2 (d, C-7), 132.2 (d, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 137.8 ($\mathrm{s}, \mathrm{C}-3$), 139.4 ($\mathrm{s}, \mathrm{C}-8^{a}$), 140.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 184.3 (d, CHO), 187.8 (s, CO). HRMS (EI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2}$ 263.0946, found 263.0944. MS (EI) m/z: 264 (20), 263 (83), 262 (100), 234 (49), 186 (15), 158 (10), 105 (10), 77 (21), 43 (53). DA848

1-Formyl-2-phenylindolizine-3-carbonitrile (10g). From 1c (99 mg, 0.75 mmol), $\mathbf{2 b H} \mathbf{H r}^{-}(86 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. $\mathbf{1 0 g}$ was obtained as a brown solid ($50 \mathrm{mg}, 0.20 \mathrm{mmol}, 51 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.44-7.67(\mathrm{~m}, 6 \mathrm{H}$, $\left.7-\mathrm{H}, 5 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.42(\mathrm{dt}, J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.58(\mathrm{dt}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H})$, $9.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 96.3$ (s, CN), 112.1 ($\mathrm{s}, \mathrm{C}-1$), 112.6 ($\mathrm{s}, \mathrm{C}-3$), 116.5 (d, C-5), 120.8 (d, C-8), 125.6 (d, C-5), 128.5 (d, C-7), 129.1 (d, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), 129.3 (s, Car),
$129.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 130.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 137.6$ ($\left.\mathrm{s}, \mathrm{C}-8 \mathrm{a}\right), 142.7$ ($\mathrm{s}, \mathrm{C}-2$), 185.2 (s, CHO). HRMS (EI): calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$246.0788, found 246.0772. MS (EI) m/z: 264 (18), 263 (95), 248 (35), 187 (14), 186 (100), 105.15 (11), 89 (15), 58 (14), 43 (42). DA904

3-Acetyl-2-phenylindolizine-1-carbaldehyde (10h). From 1c (99 mg, 0.75 mmol), $\mathbf{2} \mathbf{c} \mathbf{H}^{+} \mathbf{C l}^{-}(86 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 10h was obtained as brown solid ($78 \mathrm{mg}, 0.27 \mathrm{mmol}, 54 \%$). $\boldsymbol{R}_{\mathbf{f}}$ (n pentane:EtOAc 5:1) $=0.33 . \mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right) 96-97^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 7.16 (td, $\left.J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 7.41-7.61\left(\mathrm{~m}, 7 \mathrm{H}, 2-\mathrm{H}, 7-\mathrm{H}, 5 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.60(\mathrm{dt}$, $J=8.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 10.07(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 114.8(\mathrm{~d}, \mathrm{C}-1), 116.9(\mathrm{~d}, \mathrm{C}-6), 119.6(\mathrm{~d}, \mathrm{C}-8), 122.3$ ($\mathrm{s}, \mathrm{C}-$ 3), $128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0(\mathrm{~d}, \mathrm{C}-7), 129.6(\mathrm{~d}, \mathrm{C}-5), 129.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, 133.0 ($\mathrm{s}, \mathrm{C}_{\text {Ar }}$), 137.7 ($\mathrm{s}, \mathrm{C}-8^{a}$), 143.1, 186.3 (d, CHO), 189.8 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2}\right]^{+}$263.0941, found 263.0943. MS (EI) m/z: 264 (18), 263 (95), 248 (35), 187 (14), 186 (100), 105.15 (11), 89 (15), 58 (14), 43 (42). DA797

3-(3-Oxopropyl)indolizine-1-carbaldehyde (11). From 1a ($56 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathbf{2 d H}^{+} \mathbf{B r}^{-}$ ($139 \mathrm{mg}, 500 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 11 was obtained as a brown solid ($79 \mathrm{mg}, 0.39 \mathrm{mmol}, 78 \%$). (Analytical data see below). DA800-2

3-(3-Oxopropyl)indolizine-1-carbaldehyde (11). From 1a (56 mg, 1.0 mmol), $\mathbf{2} \mathbf{c H}^{+} \mathbf{C l}^{-}$ ($86 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($53 \mathrm{mg}, 0.50 \mathrm{mmol}$), and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure \mathbf{A}. 11 was obtained as a brown solid ($86 \mathrm{mg}, 0.43 \mathrm{mmol}, 86 \%$). $\boldsymbol{R}_{\mathbf{f}}$ (n pentane:EtOAc 1:1) = 0.20. Mp (Et2O) $148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.97-$ $3.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CHO}\right), 3.13\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.99(\mathrm{~s}$, $1 \mathrm{H}, 2-\mathrm{H}), 7.15-7.24(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.22(\mathrm{br}, \mathrm{d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 9.93$ (s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}$), 9.99 (s, $1 \mathrm{H}, \mathrm{CHO}$). ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.2\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CHO}\right), 113.7$ ($\mathrm{s}, \mathrm{C}-1$), 114.2 (d, C-6), 119.2 (br, d, C-8), 123.1 (d, C-5), 123.9 (d, C-2, C-7), 125.4 ($\mathrm{s}, \mathrm{C}-3$), 136.8 (br, s, C-8 ${ }^{a}$), 183.4 (d, CHO), 200.2 (d, $\mathrm{CH}_{2} \mathrm{CHO}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}\right]^{+}$201.0784, found 201.0783. MS (EI) m/z: 201 (28), 159 (11), 158 (100), 145 (18), 58 (20), 43 (60). DA847

6.4.2.2 Reactions of the α, β-Unsaturated Aldehydes 1 with the Sulfonium Ylides $\mathbf{3}$

Procedure B for the Synthesis of the Epoxides 7. Aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL}$, sat.) was added to solutions of $\mathbf{1}(2.5-5.0 \mathrm{mmol})$ and $\mathbf{3 a H}^{+} \mathbf{B F}_{4}^{-}(500 \mu \mathrm{~mol})$ dissolved in $\mathrm{CHCl}_{3}(0.1 \mathrm{M})$. The emulsion was stirred for 2 h , then water $(20 \mathrm{~mL})$ was added and the organic layer was separated. The aqueous layer was successively washed with $\mathrm{CHCl}_{3}(2 \times 20 \mathrm{~mL})$, the combined organic layers were washed with water $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residues were subjected to a column chromatography (Alox, neutral, activity III; n pentane:EtOAc) according to their R_{f}-value.
trans-4-(3-Vinyloxiran-2-yl)benzonitrile (trans-7a). From 1a ($280 \mathrm{mg}, 5.00 \mathrm{mmol}$) and $\mathbf{3 a H}^{+} \mathbf{B F}_{4}{ }^{-}(132 \mathrm{mg}, 500 \mu \mathrm{~mol})$ according to procedure B. $\mathbf{7 a}$ was obtained as a yellow oil $(67 \mathrm{mg}, 0.27 \mathrm{mmol}, 54 \%$, trans). The spectrum of the crude product showed signals of cyclopropane 9a ($d r$ 6:1; ratio 7a:9a $\sim 3: 1$). $\boldsymbol{R}_{\mathbf{f}}$ (n-pentane:EtOAc 5:1) $=0.23$. ${ }^{1} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.28-3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.80\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C}_{\mathrm{ar}}\right), 5.33-5.42(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH} H), 5.47-5.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHH}), 5.72(\mathrm{ddd}, J=17.4,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHH}), 7.35-7.41\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.59-7.67\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR (75 MHz ,回 $\left.\mathrm{CDCl}_{3}\right) \delta=59.4\left(\mathrm{~d}, \mathrm{CH}-\mathrm{C}_{\mathrm{Ar}}\right), 63.4(\mathrm{~d}, \mathrm{CH}), 112.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 118.7(\mathrm{~s}, \mathrm{CN}), 120.6(\mathrm{~d}$, $\left.{ }_{\text {ac }}{ }^{\text {cw }} \mathrm{CH}=C H \mathrm{H}\right), 126.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 134.35569(\mathrm{~d}, \mathrm{CH}=\mathrm{CHH})$, 142.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}\right]^{+}$171.0679, found 171.0679. MS (EI) m / z : 171 (14), 170 (29), 143 (12), 142 (61), 115 (39), 102 (15), 85 (65), 83 (100), 54.98 (10), 44 (22). DA856

4-(2-Formylcyclopropyl)benzonitrile (trans-9a). A solution of $\mathrm{KO}^{t} \mathrm{Bu}(29 \mathrm{mg}, 0.26 \mathrm{mmol}$) in 2.6 mL of DMSO was added dropwise to a solution of $\mathbf{1 a}(45 \mathrm{mg}, 0.80 \mathrm{mmol})$ and $\mathbf{3 a H}^{+} \mathbf{B F}^{-}$ $(66 \mathrm{mg}, 0.25 \mathrm{mmol})$ in 10 mL of DMSO at $20^{\circ} \mathrm{C}$. After the addition was completed brine $(40 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was wahed with water $(3 \times 20 \mathrm{~mL})$ and brine $(3 \times 20 \mathrm{~mL})$ and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude product was purified by column chromatography (silica; n-pentane:EtOAc 5:1). 9a was obtained as yellow oil ($29 \mathrm{mg}, 0.17 \mathrm{mmol}, 68 \%$, trans:cis 3:1). The spectrum of the crude product showed signals of epoxide 7a (trans; ratio 7a:9a 1:4). $\boldsymbol{R}_{\mathbf{f}}\left(n\right.$-pentane:EtOAc 5:1) $=0.15 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50-1.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH})$,
 superimposed by minor diastereoisomer), $9.41(\mathrm{dd}, J=4.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$. Only signals of
the major diastereoisomer are given due to overlapping. ${ }^{\text {\#}}$-major diastereoisomer, ${ }^{*}$-minor diastereoisomer, ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{*} 17.2\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{\#} 26.4(\mathrm{~d}, \mathrm{CH}),{ }^{\#}$ 27.0 (d, CH), ${ }^{*} 30.1$ (d, CH), ${ }^{*} 34.0(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 110.7$ (s, CN), ${ }^{\#} 111.2$ (s, CN), ${ }^{*} 118.7$ (s, Car) ${ }^{*}, 118.8$ (s, C_{ar}), ${ }^{\#} 127.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right),{ }^{\#} 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right),{ }^{*} 132.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right),{ }^{*} 132.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right),{ }^{\#}$ 141.5 (s, Car), ${ }^{*} 144.9$ (s, Car), ${ }^{\#} 198.8$ (d, CHO), 199.5 (d, CHO). ${ }^{*}$ HRMS (EI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}\right]^{+}$171.0679, found 171.0629. MS (EI) m/z: 171 (40), 170 (38), 142 (100), 141 (36), 116 (52), 115 (63), 89 (21), 63 (16), 55 (20). DA920

NMR-Monitoring of the reaction of 1a with 3a. A solution of $\mathrm{KO}^{t} \mathrm{Bu}(37 \mathrm{mg}, 0.33 \mathrm{mmol})$ in 1.0 mL of DMSO- d_{6} was added to a solution of $\mathbf{1 a}(22 \mathrm{mg}, 0.39 \mathrm{mmol})$ and $\mathbf{3 a H}^{+} \mathbf{B F}_{4}^{-}(66 \mathrm{mg}$, 0.25 mmol) in 2.0 mL of DMSO- d_{6} at $20^{\circ} \mathrm{C}$. The spectra taken immediately after mixing of the reactants showed complete conversion of the reactants to epoxide 7a and cyclopropane 9d (7a:9a 1:4; trans:cis (7a) 3:1).
trans-2-(4-Nitrophenyl)-3-vinyloxirane (7b) and 2-(4-nitrophenyl)cyclopropanecarbaldehyde (9b). From 1a ($280 \mathrm{mg}, 5.00 \mathrm{mmol}$) and $\mathbf{3 b H}^{+} \mathbf{B F}_{4}{ }^{-}(143 \mathrm{mg}, 500 \mu \mathrm{~mol})$ according to procedure B. $\mathbf{7 b}$ was obtained as a colorless oil ($34 \mathrm{mg}, 0.18 \mathrm{mmol}, 36 \%$, trans). 9b was obtained as yellow oil ($57 \mathrm{mg}, 0.30 \mathrm{mmol}, 60 \%$, trans:cis $5: 1$). The ratio of $\mathbf{7 b}: 9 \mathbf{b}$ in
 the crude product was 3:2.7b. $\boldsymbol{R}_{\mathbf{f}}\left(n\right.$-pentane:EtOAc 5:1) $=0.23 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.34(\mathrm{ddd}, J=7.1,1.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}-\mathrm{C}_{\mathrm{ar}}$), $5.35-5.46(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHH}), 5.50-5.63(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH} H), 5.74$ (dddd, $J=17.3$, $10.1,7.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 7.39-7.51\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 8.15-8.27\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right)$. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=59.3\left(\mathrm{~d}, \mathrm{CH}-\mathrm{C}_{\mathrm{ar}}\right), 63.5(\mathrm{~d}, \mathrm{CH}), 120.8(\mathrm{t}, \mathrm{C}=\mathrm{CHH}), 124.0(\mathrm{~d}$, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $126.4\left(\mathrm{~d}, 2 \times \mathrm{Carar}-\mathrm{H}\right.$), $134.3(\mathrm{~d}, \mathrm{CH}=), 144.7\left(\mathrm{~s} \mathrm{br}, \mathrm{C}_{\mathrm{ar}}\right), 148.0(\mathrm{~s}, \mathrm{Car}$). MS (EI) m/z: 191 (4), 178 (11), 175 (17), 174 (35), 162 (10), 145 (13), 144 (48), 117 (16), 116 (100), 115 (48), 91 (15), 89 (43), 70 (17), 63 (24), 55 (18). 9b. Only signals of the major diastereoisomer are given due to overlapping. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.52(\mathrm{ddd}, J=8.4,6.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}$,
 $\mathrm{C} H \mathrm{H}), 1.78(\mathrm{dt}, J=9.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 2.15-2.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CHO}), 2.64$ (ddd, $J=9.1,6.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C}_{\mathrm{ar}}$), $7.13-7.24\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right.$, superimposed by solvent), $8.04-8.14\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 9.37(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=17.5(\mathrm{t}, \mathrm{CHH}), 26.2\left(\mathrm{~d}, \mathrm{CH}-\mathrm{C}_{\mathrm{ar}}\right), 34.1(\mathrm{~d}, \mathrm{CH}-\mathrm{CHO}), 124.0(\mathrm{~d}$, $2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}$), $127.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 146.9\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{\mathrm{ar}}\right), 147.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right), 198.7$ (d, CHO). HRMS (EI): calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}\right]^{+}$191.0577, found 191.0579. MS (EI) m/z: 191 (13), 174 (35), 162 (14), 144 (33), 115 (100), 91 (11), 63 (12). DA889
trans-4-(3-((E)-Prop-1-en-1-yl)oxiran-2-yl)benzonitrile (7d). From 1b (350 mg, $5.00 \mathrm{mmol})$ and $\mathbf{3 a H}^{+} \mathbf{B F}_{4}{ }^{-}(132 \mathrm{mg}, 500 \mu \mathrm{~mol})$ according to procedure $\mathbf{B} .7 \mathbf{d}$ was obtained as a yellow oil ($64 \mathrm{mg}, 0.35 \mu \mathrm{~mol}, 70 \%$, trans). No formation of the corresponding cyclopropane 9d was observed. $\boldsymbol{R}_{\mathbf{f}}\left(n\right.$-pentane:EtOAc 5:1) $=0.41 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.70(\mathrm{dd}$, $\left.J=6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.20(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.72(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-$ C_{ar}), 5.26 (ddq, $\left.J=15.4,8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}\right), 5.85-6.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH})$, $7.27-7.34\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.51-7.58\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=18.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 59.3\left(\mathrm{~d}, \mathrm{CH}-\mathrm{C}_{\mathrm{Ar}}\right), 63.5(\mathrm{~d}, \mathrm{CH}), 111.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 118.7(\mathrm{~s}, \mathrm{CN}), 126.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), $127.5(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}), 132.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 133.1(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}), 143.0$ (s, $\mathrm{C}_{\text {Ar }}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}\right]^{+} 185.0835$, found 185.0836. MS (EI) $m / z: 184$ (10), 170 (18), 156 (100), 130 (55), 129 (26), 102 (22), 83 (31), 69 (12). DA854

NMR-Monitoring of the reaction of $\mathbf{1 b}$ with $\mathbf{3 a}$. A solution of $\mathrm{KO}^{t} \mathrm{Bu}(40 \mathrm{mg}, 0.36 \mathrm{mmol})$ in 2.0 mL of DMSO- d_{6} was added to a solution of $\mathbf{1 b}(18 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathbf{3 a H}^{+} \mathbf{B F}_{4}{ }^{-}$ ($66 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 2.0 mL of DMSO $-d_{6}$ at $20^{\circ} \mathrm{C}$. The spectra taken immediately after mixing of the reactants showed complete conversion of the reactants to epoxide $\mathbf{7 d}$ without formation of cyclopropane 9d. DA918
trans-4-(3-((E)-Styryl)oxiran-2-yl)benzonitrile (7e): From 1c (360 mg, 2.50 mmol) and $\mathbf{3 a H}^{+} \mathbf{B F}_{4^{-}}(132 \mathrm{mg}, 500 \mu \mathrm{~mol})$ according to procedure B. After recrystallization from n pentane:EtOAc 7e was obtained as yellow needles ($115 \mathrm{mg}, 465 \mu \mathrm{~mol}, 93 \%$, trans). No formation of the corresponding cyclopropane $\mathbf{9 e}$ was observed. $\boldsymbol{R} \mathbf{f}(n$-pentane:EtOAc 25:1) $=$ 0.40. Mp (n-pentane:EtOAc): $130^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.41$ (ddd, $J=7.6,1.9$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.85 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Car}_{\mathrm{Ar}}$), 5.97 (dd, $J=16.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-$ $\mathrm{CH}), 6.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}), 7.16-7.38\left(\mathrm{~m}, 7 \mathrm{H}, 7 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by solvent), $7.53-7.62\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=60.0\left(\mathrm{~d}, C \mathrm{H}-\mathrm{C}_{\mathrm{Ar}}\right)$, $63.7(\mathrm{~d}, \mathrm{CH}), 112.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 118.7(\mathrm{~s}, \mathrm{CN}), 125.3(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}), 126.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 126.7$ $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 135.5(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}-$

CH), 135.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 142.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}\right]^{+}$ 247.0992, found 247.0990. MS (EI) m/z: 247 (19), 218 (39), 140 (12), 130 (35), 117 (45), 115 (100), 102 (10), 43 (18). DA855

NMR-Monitoring of the reaction of $\mathbf{1 c}$ with $\mathbf{3 a}$. A solution of $\mathrm{KO}^{t} \mathrm{Bu}(40 \mathrm{mg}, 0.36 \mathrm{mmol})$ in 2.0 mL of DMSO- d_{6} was added to a solution of $\mathbf{1 c}(32 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathbf{3 a H}^{+} \mathbf{B F}_{4}^{-}(67 \mathrm{mg}$, 0.25 mmol) in 2.0 mL of DMSO $-d_{6}$ at $20^{\circ} \mathrm{C}$. The spectra taken immediately after mixing of the
reactants showed complete conversion of the reactants to epoxide $\mathbf{7 e}$ without formation of cyclopropane 9e. DA919

2-(4-(Dimethylamino)benzoyl)cyclopropanecarbaldehyde (9c). 3c ($97.2 \mathrm{mg}, 435 \mu \mathrm{~mol}$) in DMSO (5 mL) was added dropwise to a solution of $\mathbf{1 a}(29 \mathrm{mg}, 525 \mu \mathrm{~mol})$ in DMSO (5 mL) at ambient temperature. The solution was stirred for 30 min and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was subjected to a column chromatography (Silica; n-pentane:EtOAc 5:1). 9c was obtained as a yellow oil ($76 \mathrm{mg}, 0.35 \mathrm{mmol}, 70 \%$, trans:cis 5:1). \boldsymbol{R} (n-pentane:EtOAc 5:1) $=$ 0.16 . \#-major diastereoisomer, ${ }^{*}$-minor diastereoisomer; integral of one proton of the minor diastereoisomer is set to 1.0 ($d r$ 1:2 for this spectrum). No formation of the corresponding epoxide $\mathbf{7 c}$ was observed. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.50-1.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHH}, \mathrm{CH})$, ${ }^{\#}$,* 1.76 (ddd, $J=8.5,6.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} H$), ${ }^{\#} 2.13-2.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.59 (ddt,
 $J=8.4,5.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCHO}),{ }^{\#} 3.07\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right) 2\right)^{\#, *}, 3.10-3.19(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}),{ }^{*} 3.23$ (ddd, $\left.J=8.7,6.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCO}\right),{ }^{\#} 6.61-6.69(\mathrm{~m}, 6 \mathrm{H}$, $4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), ${ }^{\#, *} 7.86-7.98\left(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, ${ }^{\#, *} 9.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}),{ }^{*} 9.50(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHO})^{\#} .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.5(\mathrm{t}, \mathrm{CHH}),{ }^{*} 17.1(\mathrm{t}, \mathrm{CHH}),{ }^{\#} 25.6(\mathrm{~d}$,
 $\left(\mathrm{d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 110.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 124.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 125.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 130.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 130.8$ (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), ${ }^{*} 153.9$ (s, C_{Ar}), \#,* 193.1 (s, CO), ${ }^{*} 193.4$ (s, CO), ${ }^{\#} 199.6$ (d, CHO), 200.6 (d, CHO). ${ }^{*}$ HRMS (ESI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}$218.1176, found 218.1174. DA849

6.4.3 Kinetics of the Reactions of the α, β-Unsaturated Aldehydes 1 with the Ylides $\mathbf{2 , 3}$

6.4.3.1 Kinetics of the Reactions of Acrolein 1a

Table 6.8. Kinetics of the reaction of 1a with 2 aa (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
Ac1-2	7.23×10^{-4}	$\sim 5 \times 10^{-5}$	9.85×10^{1}
Ac1-3	7.89×10^{-4}	$\sim 5 \times 10^{-5}$	1.06×10^{2}
Ac1-4	8.54×10^{-4}	$\sim 5 \times 10^{-5}$	1.14×10^{2}
Ac1-5	9.20×10^{-4}	$\sim 5 \times 10^{-5}$	1.23×10^{2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.25 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 6.9. Kinetics of the reaction of 1 a with 2 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
Ac7-1	1.01×10^{-3}	$\sim 1 \times 10^{-4}$	1.87×10^{2}
Ac7-2	1.12×10^{-3}	$\sim 1 \times 10^{-4}$	2.00×10^{2}
Ac7-3	1.22×10^{-3}	$\sim 1 \times 10^{-4}$	2.11×10^{2}
Ac7-4	1.32×10^{-3}	$\sim 1 \times 10^{-4}$	2.20×10^{2}
Ac7-5	1.42×10^{-3}	$\sim 1 \times 10^{-4}$	2.31×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.08 \times 10^{5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 6.10. Kinetics of the reaction of 1a with 2 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 6.11. Kinetics of the reaction of 1a with 2 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

Table 6.12. Kinetics of the reaction of 1 a with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 379 nm).

Table 6.13. Kinetics of the reaction of 1a with $3 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}, \mathbf{J \& M}\right.$ method, detection at 279 nm).

No.	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
Ac9-2	2.51×10^{-3}	1.01×10^{-4}	5.70×10^{-3}
Ac9-3	2.99×10^{-3}	9.82×10^{-5}	6.92×10^{-3}
Ac9-4	3.64×10^{-3}	1.03×10^{-4}	8.51×10^{-3}
Ac9-5	3.92×10^{-3}	9.80×10^{-5}	9.17×10^{-3}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.46 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 6.14. Calculation of the Electrophilicity Parameter \boldsymbol{E} for 1 a using the \boldsymbol{N} and s_{N} Parameters of 2,3, Eq 6.1, and the Second-Order Rate Constants for the Reactions of 1 a with 2,3 (filled $\operatorname{dots} E(C=C)$, open dots were not used for the determination of E).

Nucleophile	N / s_{N}	k_{2}
2c	$25.94 / 0.42$	1.08×10^{5}
2d	$20.24 / 0.60$	2.86×10^{3}
2e	$19.46 / 0.58$	5.53×10^{2}
3c	$15.68 / 0.65$	2.46
$E(\mathrm{C}=\mathrm{C})^{[\text {a] }}=-14.65$		
2a	$26.71 / 0.37$	1.25×10^{5}
3a	$21.07 / 0.68$	9.73×10^{2}

[a] Calculated by least square minimization according to eq 6.1.

6.4.3.2 Kinetics of the Reactions of Crotonaldehyde 1b

Table 6.15. Kinetics of the reaction of 1 b with 2 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
$\mathrm{Ca} 2-1$	1.03×10^{-3}	$\sim 1 \times 10^{-4}$	2.84
$\mathrm{Ca} 2-2$	2.06×10^{-3}	$\sim 1 \times 10^{-4}$	6.08
$\mathrm{Ca} 2-3$	3.10×10^{-3}	$\sim 1 \times 10^{-4}$	8.85
$\mathrm{Ca} 2-4$	4.13×10^{-3}	$\sim 1 \times 10^{-4}$	1.20×10^{1}
Ca2-5	5.16×10^{-3}	$\sim 1 \times 10^{-4}$	1.47×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.86 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 6.16. Kinetics of the reaction of 1 b with $2 \mathrm{c}\left(\mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}\right.$, $\mathbf{J \& M}$ method, detection at 425 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
Ca6-1	8.19×10^{-4}	$\sim 4 \times 10^{-5}$	3.99×10^{-3}
Ca6-2	1.20×10^{-3}	$\sim 4 \times 10^{-5}$	5.35×10^{-3}
Ca-4	1.99×10^{-3}	$\sim 4 \times 10^{-5}$	8.42×10^{-3}
Ca6-5	2.49×10^{-3}	$\sim 4 \times 10^{-5}$	1.07×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.01 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 6.17. Kinetics of the reaction of 1 b with 2 d (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 445 nm).

No.	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
$\mathrm{Ca} 7-1$	2.03×10^{-3}	$\sim 4 \times 10^{-5}$	1.99×10^{-3}
$\mathrm{Ca} 7-2$	2.39×10^{-3}	$\sim 4 \times 10^{-5}$	2.42×10^{-3}
$\mathrm{Ca} 7-3$	2.83×10^{-3}	$\sim 4 \times 10^{-5}$	2.70×10^{-3}
$\mathrm{Ca} 7-4$	3.25×10^{-3}	$\sim 4 \times 10^{-5}$	2.96×10^{-3}
$\mathrm{Ca} 7-5$	3.67×10^{-3}	$\sim 4 \times 10^{-5}$	3.27×10^{-3}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=7.47 \times 10^{-1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 6.18. Kinetics of the reaction of 1 b with 3 a (DMSO, $20^{\circ} \mathrm{C}$, $\mathbf{J \& M}$ method, detection at 379 nm).

No.	[1b]/ $\mathrm{mol} \mathrm{L}^{-1}$	[3a]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	3.00E-02 [y		
Ca5-2	2.68×10^{-3}	$\sim 3 \times 10^{-5}$	7.38×10^{-3}		$y=2.3495 x+0.0017$	
Ca5-3	5.25×10^{-3}	$\sim 2 \times 10^{-5}$	1.48×10^{-2}			
Ca5-4	7.91×10^{-3}	$\sim 1 \times 10^{-4}$	2.05×10^{-2}			
Ca5-5	1.02×10^{-2}	$\sim 1 \times 10^{-4}$	2.51×10^{-2}	$0.00 \mathrm{E}+00$		
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.35 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				0.00E+00	$0 \quad 4.00 \mathrm{E}-03 \mathrm{C} \mathbf{1 \mathrm { b }]} / \mathrm{mol} \mathrm{L}^{8 .-90 \mathrm{E}-03}$	$1.20 \mathrm{E}-02$

Table 6.19. Calculation of the Electrophilicity Parameter \boldsymbol{E} for 1 b using the \boldsymbol{N} and $\boldsymbol{s}_{\mathbf{N}}$ Parameters of 2,3, Eq 6.1, and the Second-Order Rate Constants for the Reactions of 1 b with 2,3 (filled dots $E(\mathrm{C}=\mathrm{C})$; open dots $E(\mathrm{C}=\mathrm{O})$).

[a] Calculated by least square minimization according to eq 6.1; [b] Calculated from eq 6.1.

6.4.3.3 Kinetics of the Reactions of Cinnamaldehyde 1c

Table 6.20. Kinetics of the reaction of 1 c with 2 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 6.21. Kinetics of the reaction of 1 c with 2 bb (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
$\mathrm{Za} 2-1$	2.00×10^{-3}	$\sim 1 \times 10^{-4}$	2.46
$\mathrm{Za} 2-2$	3.00×10^{-3}	$\sim 1 \times 10^{-4}$	3.44
$\mathrm{Za} 2-3$	4.00×10^{-3}	$\sim 1 \times 10^{-4}$	4.88
Za2-4	5.00×10^{-3}	$\sim 1 \times 10^{-4}$	6.05
Za2-5	6.00×10^{-3}	$\sim 1 \times 10^{-4}$	6.95
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.16 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 6.22. Kinetics of the reaction of 1 c with $2 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, J\&M method, detection at 425 nm).

No.	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
$\mathrm{Za} 5-1$	1.89×10^{-3}	$\sim 4 \times 10^{-5}$	3.57×10^{-3}
$\mathrm{Z} 5-2$	2.25×10^{-3}	$\sim 4 \times 10^{-5}$	3.78×10^{-3}
$\mathrm{Za} 5-3$	3.05×10^{-3}	$\sim 4 \times 10^{-5}$	4.78×10^{-3}
$\mathrm{Za} 5-4$	3.26×10^{-3}	$\sim 4 \times 10^{-5}$	4.97×10^{-3}
$\mathrm{Za} 5-5$	3.69×10^{-3}	$\sim 4 \times 10^{-5}$	5.53×10^{-3}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.11 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 6.23. Calculation of the Electrophilicity Parameter \boldsymbol{E} for 1 c using the \boldsymbol{N} and $\boldsymbol{s}_{\mathbf{N}}$ Parameters of 2,3, Eq 6.1, and the Second-Order Rate Constants for the Reactions of 1 c with 2,3 (filled dots $E(C=C)$; open dots $E(\mathrm{C}=\mathrm{O})$).

[a] Calculated by least square minimization according to eq 6.1; [b] From ref. [11]

6.5 References

[1] (a) E. D. Bergmann, D. Ginsburg, R. Pappo, in Organic Reactions, Wiley, New York, 1959, pp. 179-555; (b) P. Perlmutter, Conjugate Addition reactions in Organic Synthesis, Vol. 9, Pergamon, Oxford, 1992; (c) A. Erkkila, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416-5470; (d) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471-5569; (e) D. Almasi, D. A. Alonso, C. Nájera, Tetrahedron: Asymmetry 2007, 18, 299-365; (f) A. Ting, J. M. Goss , N. T. McDougal, S. E. Schaus, in Asymmetric Organocatalysis, Vol. 291 (Ed.: B. List), Springer, Berlin, 2010, pp. 145-201; (g) Wiley-VCH Weinheim, 2010; (h) Organocatalytic enantioselective conjugate addition reactions Vol. 5, RCS Publ., Cambridge 2010.
[2] (a) T.-R. Kim, S.-J. Yun, B.-B. Park, Bull. Kor. Chem. Soc. 1986, 7, 25-29; (b) D. W. Roberts, A. Natsch, Chem. Res. Toxicol. 2009, 22, 592-603; (c) J. A. H. Schwöbel, D. Wondrousch, Y. K. Koleva, J. C. Madden, M. T. D. Cronin, G. Schüürmann, Chem. Res. Toxicol. 2010, 23, 1576-1585; (d) S. Amslinger, N. Al-Rifai, K. Winter, K. Wörmann, R. Scholz, B. Paul, M. Wild, Org. Biomol. Chem. 2013, 11, 549-554.
[3] (a) G. Scibona, P. R. Danesi, F. Orlandini, J. Phys. Chem. 1966, 70, 3403-3407; (b) F. D'Souza, G. R. Deviprasad, J. Org. Chem. 2001, 66, 4601-4609.
[4] G. Evans, T. J. K. Gibbs, R. L. Jenkins, S. J. Coles, M. B. Hursthouse, J. A. Platts, N. C. O. Tomkinson, Angew. Chem. Int. Ed. 2008, 47, 2820-2823.
[5] (a) S. Patai, Z. Rappoport, in The Chemistry of Alkenes (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1964, p. 469-584; (b) H. Shenhav, Z. Rappoport, S. Patai, J. Chem. Soc. B 1970, 469-476; (c) A. F. Noels, J. N. Braham, A. J. Hubert, P. Teyssié, Tetrahedron 1978, 34, 3495-3497; (d) L. Wartski, M. El Bouz, J. Seyden-Penne, W. Dumont, A. Krief, Tetrahedron Lett. 1979, 20, 1543-1546; (e) J. P. Guthrie, K. J. Cooper, J. Cossar, B. A. Dawson, K. F. Taylor, Can. J. Chem. 1984, 62, 1441-1445; (f) T. Strzalko, J. Seyden-Penne, L. Wartski, J. Corset, M. Castella-Ventura, F. Froment, J. Org. Chem. 1998, 63, 3295-3301.
[6] (a) J. W. Bunting, A. Toth, C. K. M. Heo, R. G. Moors, J. Am. Chem. Soc. 1990, 112, 8878-8885; (b) C. K. M. Heo, J. W. Bunting, J. Org. Chem. 1992, 57, 3570-3578.
[7] (a) R. Loos, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2003, 125, 14126-14132; (b) A. A. Tishkov, H. Mayr, Angew. Chem. Int. Ed 2005, 44, 142-145; (c) A. A. Tishkov, U. Schmidhammer, S. Roth, E. Riedle, H. Mayr, Angew. Chem. Int. Ed. 2005, 44, 46234626; (d) H. F. Schaller, U. Schmidhammer, E. Riedle, H. Mayr, Chem. Eur. J. 2008, 14, 3866-3868; (e) M. Breugst, H. Mayr, J. Am. Chem. Soc. 2010, 132, 15380-15389; (f) M. Breugst, H. Zipse, J. P. Guthrie, H. Mayr, Angew. Chem. Int. Ed. 2010, 49, 51655169; (g) M. Baidya, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2010, 132, 4796-4805; (h) H. Mayr, M. Breugst, A. R. Ofial, Angew. Chem. 2011, 123, 6598-6634; (i) T. A. Nigst, J. Ammer, H. Mayr, Angew. Chem. Int. Ed. 2012, 51, 1353-1356; (j) B. Maji, H. Mayr, Angew. Chem. Int. Ed. 2013, 52, 11163-11167; (k) B. Maji, K. Troshin, H. Mayr, Angew. Chem. Int. Ed. 2013, 52, 11900-11904.
[8] X. Guo, H. Mayr, J. Am. Chem. Soc. 2013, 12377-12387.
(a) H. Mayr, M. Patz, Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957; (b) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512; (c) R. Lucius, R. Loos, H. Mayr, Angew. Chem., Int. Ed. 2002, 41, 91-95; (d) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (e) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 1807-1821; (f) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584-595; (g) H. Mayr, S. Lakhdar, B. Maji, A. R. Ofial, Beilstein J. Org. Chem. 2012, 8, 1458-1478; (h) For a comprehensive database of nucleophilicity parameters N, s_{N} and electrophilicity parameters E, see http://www.cup.lmu.de/oc/mayr/.
[10] (a) S. Lakhdar, T. Tokuyasu, H. Mayr, Angew. Chem. Int. Ed. 2008, 47, 8723-8726; (b) S. Lakhdar, R. Appel, H. Mayr, Angew. Chem., Int. Ed. 2009, 48, 5034-5037; (c) S. Lakhdar, J. Ammer, H. Mayr, Angew. Chem., Int. Ed. 2011, 50, 9953-9956; (d) M. C. Holland, S. Paul, W. B. Schweizer, K. Bergander, C. Mück-Lichtenfeld, S. Lakhdar, H. Mayr, R. Gilmour, Angew. Chem., Int. Ed. 2013, 52, 7967-7971.
[11] R. Appel, H. Mayr, J. Am. Chem. Soc. 2011, 113, 8240-8251.
[12] D. S. Allgäuer, P. Mayer, H. Mayr, J. Am. Chem. Soc. 2013, 135, 15216-15224.
[13] O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3320-3336.
[14] (a) J. H. van Esch, M. A. M. Hoffmann, R. J. M. Nolte, J. Org. Chem. 1995, 60, 15991610; (b) M. S. Lowry, W. R. Hudson, R. A. Pascal, S. Bernhard, J. Am. Chem. Soc. 2004, 126, 14129-14135; (c) I. Sasaki, L. Vendier, A. Sournia-Saquet, P. G. Lacroix, Eur. J. Inorg. Chem. 2006, 2006, 3294-3302; (d) S. Verma, P. Kar, A. Das, D. K. Palit, H. N. Ghosh, Chem. Eur. J. 2010, 16, 611-619.
[15] (a) F. Kröhnke, Ber. dt. chem. Ges. 1934, 67, 656-667; (b) J. Àlvarez-Builla, J. L. Novella, E. Gálvez, P. Smith, F. Florencio, S. Garciá-Blanco, J. Bellanato, M. Santos, Tetrahedron 1986, 42, 699-708; (c) Z. Mao, X. Li, X. Lin, P. Lu, Y. Wang, Tetrahedron 2012, 68, 85-91.
[16] (a) Y. L. Stanc, M. L. Corre, Can. J. Chem. 1985, 63, 2958-2960; (b) V. K. Aggarwal, S. Calamai, J. Gair Ford, J. Chem. Soc., Perkin Trans. 1 1997, 593-600; (c) A. SolladiéCavallo, A. Diep-Vohuule, T. Isarno, Angew. Chem. Int. Ed. 1998, 37, 1689-1691; (d) A. Solladié-Cavallo, L. Bouérat, M. Roje, Tetrahedron Lett. 2000, 41, 7309-7312; (e) V. K. Aggarwal, I. Bae, H.-Y. Lee, J. Richardson, D. T. Williams, Angew. Chem., Int. Ed. 2003, 42, 3274-3278; (f) D. R. Edwards, P. Montoya-Peleaz, C. M. Crudden, Org. Lett. 2007, 9, 5481-5484; (g) E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841-5883; (h) O. Illa, M. Arshad, A. Ros, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 1828-1830; (i) D. J. Phillips, A. E. Graham, Synlett 2010, 2010, 769-773; (j) D. Janardanan, R. B. Sunoj, Org. Biomol. Chem. 2011, 9, 1642-1652.
[17] (a) T. Kajiwara, T. Nakatomi, Y. Sasaki, A. Hatanaka, Agric. Biol. Chem. 1980, 44, 2099-2104; (b) J. W. Bode, S. S. Sohn, J. Am. Chem. Soc. 2007, 129, 13798-13799.
[18] (a) K. W. Ratts, A. N. Yao, J. Org. Chem. 1966, 31, 1689-1693; (b) A. W. Johnson, R. T. Amel, J. Org. Chem. 1969, 34, 1240-1247; (c) V. K. Aggarwal, C. Hebach, Org. Biomol. Chem. 2005, 3, 1419-1427.
[19] V. K. Aggarwal, J. N. Harvey, J. Richardson, J. Am. Chem. Soc. 2002, 124, 5747-5756.
[20] R. Appel, N. Hartmann, H. Mayr, J. Am. Chem. Soc. 2010, 132, 17894-17900.
[21] R. Appel, H. Mayr, Chem. Eur. J. 2010, 16, 8610-8614.
[22] D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, submitted.
[23] D. S. Allgäuer, H. Asahara, H. Mayr, 2013, unpublished results.
[24] The formation of anti betaines from benzaldehyde and dimethylsulfonium benzylidene was found to be irreversible, whereas the syn-betaine formation was reversible, as previously demonstrated in the solvents DMSO, $\mathrm{CD}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by cross-over experiments and kinetic isotope effect studies. ${ }^{[16 b, f]}$
[25] X.-M. Zhang, F. G. Bordwell, M. Van Der Puy, H. E. Fried, J. Org. Chem. 1993, 58, 3060-3066.
[26] A reaction of a carbanion derived from the tetrahydroindolizine $\mathbf{5}$ seems unlikely, as the $\mathrm{p} K_{\text {a }}$ value of the corresponding CH -acid is much higher (>25; For a comprehensive database of $\mathrm{p} K_{\mathrm{a}}$-values in DMSO see http://www.chem.wisc.edu/areas/reich/pkatable/) than the $\mathrm{p} K_{\mathrm{a}}$ value of 13a (~ 12; F. G. Bordwell, X. M. Zhang, M. Van Der Puy, H. E. Fried, J. Org. Chem. 1993, 58, 3060-3066).
[27] D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, 6379-6388.
[28] The kinetics of the reaction of $\mathbf{1 a}$ with $\mathbf{3 b}$ were not investigated as complex kinetics were expected.
[29] T. M. Mitzel, C. Palomo, K. Jendza, J. Org. Chem. 2001, 67, 136-145.
[30] (a) H. Mayr, A. R. Ofial, Angew. Chem. 2006, 118, 1844-1854; (b) F. Brotzel, B. Kempf, T. Singer, H. Zipse, H. Mayr, Chem. Eur. J. 2007, 13, 336-345; (c) F. Brotzel, H. Mayr, Org. Biomol. Chem. 2007, 5, 3814-3820; (d) M. Breugst, H. Mayr, J. Am. Chem. Soc. 2010, 132, 15380-15389; (e) T. A. Nigst, J. Ammer, H. Mayr, J. Phys. Chem. A 2012, 116, 8494-8499.
[31] Currently there is only one report (X. Zhang, W. Cao, X. Wei, H. Hu, Syn. Comm. 1997, 27, 1395-1403) on a synthesis of 1-carbaldehyde substituted indolizine by a [3+2]-cycloaddition/oxidation-protocol from pyridinium ylides and α, β-unsaturated aldehydes, but this method requires harsh conditions $\left(95^{\circ} \mathrm{C} / \mathrm{DMF} / \mathrm{Co}-\mathrm{Cr}\right.$-oxidant).
[32] (a) M. Kucukdisli, T. Opatz, Eur. J. Org. Chem. 2012, 4555-4564; (b) A. Kakehi, Heterocycles 2012, 85, 1529-1577.
[33] I. Zenz, H. Mayr, J. Org. Chem. 2011, 76, 9370-9378.
[34] O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682.
[35] R. Appel, S. Chelli, T. Tokuyasu, K. Troshin, H. Mayr, J. Am. Chem. Soc. 2013, 135, 6579-6587.
[36] (a) P. v. R. Schleyer, E. D. Jemmis, G. W. Spitznagel, J. Am. Chem. Soc. 1985, 107, 6393-6394; (b) J. P. Richard, T. L. Amyes, D. J. Rice, J. Am. Chem. Soc. 1993, 115, 2523-2524; (c) K. Rakus, S. P. Verevkin, W.-H. Peng, H.-D. Beckhaus, C. Rüchardt, Liebigs Ann. 1995, 1995, 2059-2067.
[37] (a) H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515; (b) G. F. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg Organometallics 2012, 29, 2176-2179.

7 Electrophilicities of Acceptor-Substituted Olefins

Dominik S. Allgäuer, Haruyasu Asahara, and Herbert Mayr

7.1 Introduction

Acceptor-substituted olefins, like the activated ethylenes, propylenes, and styrenes depicted in Chart 7.1, are important substrates in organic reactions ${ }^{[1]}$ and can combine with nucleophiles, e.g. in Michael additions, ${ }^{[1 a-e, ~ 2]}$ addition-elimination sequences, ${ }^{[3]}[3+2]$-cycloadditions, ${ }^{[4]}$ or Diels-Alder reactions. ${ }^{[5]}$

Many kinetic studies, especially between 1950 and 1970, tried to describe the electrophilic reactivities of such activated double bonds with $\mathrm{C},{ }^{[6]} \mathrm{N},{ }^{[7-10]} \mathrm{O},{ }^{[11],},{ }^{[12, ~ 13]} \mathrm{S},{ }^{[10, ~ 14]}$ and $\mathrm{P}^{[15]}$ nucleophiles. In the 1960s, a two-parameter Hammett-Taft-type free-energy relationship was derived from linear Brønsted plots of the rate constants of reactions of α, β-unsaturated compounds with amines and thiols in water. ${ }^{[10]}$ The relation provided the relative rates of the reactivities of a rather narrow set of compounds with respect to the reaction of glycine with acrylonitrile.

We have previously shown that a multitude of combinations of nucleophiles with electrophiles can be described by the linear free-energy relationship eq 7.1, where the nucleophile is described by two solvent-dependent parameters, s_{N} (sensitivity) and N (nucleophilicity), and the electrophile by one parameter E (electrophilicity).

Chart 7.1. Acceptor-substituted olefins 1 and 2 investigated in this work.

$$
\begin{equation*}
\log k_{2}=s_{\mathrm{N}}(N+\mathrm{E}) \tag{7.1}
\end{equation*}
$$

Table 7.1. Pyridinium Ylides ${ }^{[19]} 3 \mathrm{a}-\mathrm{f}$ and the sulfonium Ylide ${ }^{[20 a]} 4$ used as reference nucleophiles (N and s_{N} parameters in DMSO, $20^{\circ} \mathrm{C}$).

We already quantified the electrophilic reactivities of many Michael acceptors, ${ }^{[16]}$ but until now the studies were restricted to systems having absorption maxima in the visible or near UV region, as no appropriate colored reference nucleophiles were available. Recently we have developed an approach to quantify the electrophilic reactivities of colorless 1,2-disubstituted ethylenes ${ }^{[17]}$ and α, β-unsaturated aldehydes ${ }^{[18]}$ using colored pyridinium ylides $\mathbf{3}^{[19]}$ and sulfonium ylide $4^{[20]}$ as reference nucleophiles (Table 7.1). The rates of the reactions of the Michael acceptors $\mathbf{1}$ and $\mathbf{2}$ with the ylides $\mathbf{3}$ and $\mathbf{4}$ in combination with their nucleophilicity parameters N and s_{N} will be used to derive the electrophilicity parameters E of the Michael acceptors $\mathbf{1}$ and $\mathbf{2}$ according to eq 7.1. ${ }^{[21]}$ In this way we can include these synthetically important electrophiles into our comprehensive reactivity scale. ${ }^{[16-18,22]}$

7.2 Results and Discussion

7.2.1 General

The [3+2]-cycloadditions of the acceptor-substituted olefins $\mathbf{1}$ and 2 with pyridinium ylides $\mathbf{3}^{[3 \mathrm{3a}, 23,24]}$ can either follow a concerted ($k_{\text {conc }}$, Scheme 7.1 top), or stepwise (k_{2}, Scheme 7.1 bottom) mechanism. The stepwise addition of the ylides $\mathbf{3}$ to the CC-double bonds of the dipolarophiles $\mathbf{1}$ and $\mathbf{2}$ proceeds via an intermediate betaine which cyclizes (k_{rc}) to give a tetrahydroindolizine (Scheme 7.1). For certain substitution patterns, stepwise mechanisms via diradical intermediates have also to be considered. ${ }^{[4 e, 25,26]}$ We recently reported that the $1,3-$ dipolar cycloadditions of pyridinium ylides with substituted benzylidene malononitriles and chalcones proceed stepwise via zwitterionic intermediates. ${ }^{[19]}$

Scheme 7.1. Concerted and stepwise cycloadditions of pyridinium ylides 3 with the acceptor-substituted olefins $\mathbf{1 , 2}$.

Scheme 7.2. Schematic mechanism for the reaction of sulfonium ylide 4 with the acceptor-substituted olefins 1.

The reactions of the sulfonium ylides $\mathbf{3}$ with Michael acceptors proceed stepwise, with initial irreversible formation of intermediate betaines (k_{2}; Scheme 7.2). ${ }^{[3,20,27]}$ The subsequent ring closure ($k_{\text {rc }}$) to cyclopropanes is usually a fast process. ${ }^{[3 b, 20,27]}$

7.2.2 Products

The reactions of the pyridinium ylides $\mathbf{3}$, generated by deprotonation of their parent salts $\mathbf{3} \mathbf{H}^{+} \mathbf{X}^{-}$with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, with the Michael acceptors $\mathbf{1}$ in DMSO give the tetrahydroindolizines $\mathbf{5}$ as initial products (Table 7.2) As [3+2]-adducts derived from isoquinolinium ylides and the activated ethylenes $\mathbf{1 a}$ and $\mathbf{1 f}$ had been reported to be unstable at ambient temperature, ${ }^{[28]} \mathrm{a}$ onepot procedure was developed to oxidize the tetrahydroindolizines 5 to the corresponding indolizines $\mathbf{6}$ using chloranil. The indolizines $\mathbf{6}$ were obtained in 52-98\% yield after purification (Table 7.2).

We recently reported on a one-pot synthesis of indolizine $\mathbf{8}$ from ethyl methacrylate $\mathbf{2 c}$ and pyridinium salt $\mathbf{3} \mathbf{e H}^{+} \mathbf{B r}^{-}$under basic, oxidative conditions (Scheme 7.3). ${ }^{[29]}$ In this synthesis the initially generated tetrahydroindolizine 7 was oxidized by 1 equiv. of chloranil in the presence of air. A base-induced elimination of the ethoxycarbonyl group resulted in the formation of indolizine $\mathbf{8}$ in 20\% yield.

Table 7.2. Synthesis of the indolizines 6.

Salt	EWG^{1}	Ethylene $\mathbf{1}$	EWG^{2}	Product	Yield/\%
$\mathbf{3 b H}{ }^{+} \mathbf{B r}^{-}$	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathbf{1 a}$	CONEt_{2}	$\mathbf{6 a}$	52
$\mathbf{3 c H}^{+} \mathbf{B r}^{-}$	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathbf{1 b}$	CN	$\mathbf{6 b}$	58
$\mathbf{3 d H}^{+} \mathbf{C l}^{-}$	$\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}$	$\mathbf{1 c}$	COMe	$\mathbf{6 c}$	96
$\mathbf{3 c H}^{+} \mathbf{B r}^{-}$	CONMe_{2}	$\mathbf{1 d}$	CN	$\mathbf{6 d}$	64
$\mathbf{3 d H}^{+} \mathbf{C l}^{-}$	$\mathrm{SO}_{2} \mathrm{Ph}$	$\mathbf{1 e}$	COMe	$\mathbf{6 e}$	98
$\mathbf{3 a H}^{+} \mathbf{B r}^{-}$	CN	$\mathbf{1 f}$	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathbf{6 f}$	58
$\mathbf{3 e H}^{+} \mathbf{B r}^{-}$	COMe	$\mathbf{1 g}$	COPh	$\mathbf{6 g}$	74
$\mathbf{3 d H}^{+} \mathbf{C l}^{-}$	COPh	$\mathbf{1 h}$	COMe	$\mathbf{6 h}$	97

Scheme 7.3. Reaction of $1 \mathrm{eH}^{+} \mathrm{Br}^{-}$and ethyl methacrylate 2c.

Combination of the Michael acceptors $\mathbf{2}$ with the pyridinium salts $\mathbf{3 H}^{+} \mathbf{X}^{-}$under biphasic conditions $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ aq. $\left.\mathrm{NaOH}(32 \%)\right)$ resulted in the formation of the tetrahydroindolizines 9 which were not isolated due to their low stability. ${ }^{[19]}$

Oxidation of the [3+2]-cycloadducts $\mathbf{9}$ by 1 equiv. of chloranil gave the dihydroindolizines $\mathbf{1 0}$ in variable yields with moderate diastereoselectivities (Table 7.3). The yields of $\mathbf{1 0}$ were strongly dependent on the electron-withdrawing group of the Michael acceptors. The ester or cyano-substituted dihydroindolizines $\mathbf{1 0 b}$ and $\mathbf{1 0 f}$ were obtained in 89% and 90% yield, while acetyl-substitution diminished the yield $(\mathbf{1 0 g})$. The sulfonyl-substituted dihydroindolizine $\mathbf{1 0 e}$ could not be isolated as it decomposed during the purification. The synthesis of dihydroindolizines $\mathbf{1 0}$ derived from the Michael acceptors 2a,d,h was not attempted.

Oxidation of the tetrahydroindolizines 9 by 2 equiv. of chloranil resulted in the formation of the indolizines 11 in $50-90 \%$ yield (Table 7.3). The outcome of the [3+2]-cycloaddition/oxidation-sequence seemed to be slightly dependent on the on the electronwithdrawing groups of the reactants, as acetyl-substitution decreased the yield of the indolizines 11, like observed for the dihydroindolizines $\mathbf{1 0}$. In the reaction of N, N-dimethyl cinnamamide $\mathbf{2 d}$ with pyridinium ylide 3d the indolizine 11d was not formed and instead $\mathbf{2 d}$ was reisolated. ${ }^{[30]}$

Table 7.3. Reactions of the Michael acceptors 2 with the pyridinium ylides 3.

Salt	EWG ${ }^{1}$	Olefin 2	EWG ${ }^{2}$	R	Product	Yield/\%	$d r^{[a]}$
$3 \mathbf{c H}^{+} \mathrm{Br}^{-}$	CN	2a	$\mathrm{CO}_{2} \mathrm{Et}$	Me	11a	$84{ }^{[b]}$	-
$\mathbf{3 a H}{ }^{+} \mathrm{Br}^{-}$	$\mathrm{CO}_{2} \mathrm{Et}$	2b	$\mathrm{CO}_{2} \mathrm{Et}$	Ph	11b	89	-
$3 \mathbf{c H}^{+} \mathrm{Br}^{-}$	CN	2b	$\mathrm{CO}_{2} \mathrm{Et}$	Ph	10c	89	3:1
					11c	85	-
$3 \mathrm{dH}^{+} \mathrm{Cl}^{-}$	COMe	2d	CONMe_{2}	Ph	10d	-	-
$\mathbf{3 c H}{ }^{+} \mathbf{B r}^{-}$	CN	2 e	Tos	Ph	10e	decomp.	-
					11e	90	-
$\mathbf{3 a H}^{+} \mathrm{Br}^{-}$	$\mathrm{CO}_{2} \mathrm{Et}$	2 f	CN	Ph	10 f	90	8:1
					11f	90	-
$\mathbf{3} \mathbf{c H}^{+} \mathrm{Br}^{-}$	CN	2 g	COMe	Ph	10 g	18	2:1
					11g	50	-
$\mathbf{3 d H}{ }^{+} \mathrm{Cl}^{-}$	COMe	2h	COPh	Ph	11h	67	-

[a] By ${ }^{1} \mathrm{H}$ NMR after column chromatography; [b] DMSO, $20^{\circ} \mathrm{C}, 1 . \mathrm{Na}_{2} \mathrm{CO}_{3}$, 2. Chloranil (2 equiv.).
Table 7.4. Reactions of the sulfonium ylide 4 with the Michael acceptors 1.

Electrophile 1	EWG	Product	Yield $/ \%$	$d r^{[\mathrm{a}]}$
$\mathbf{1 a}$	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathbf{1 3 a}$	64	$2: 1$
$\mathbf{1 b}$	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathbf{1 3 b}$	66	$7: 1$
$\mathbf{1 c}$	$\mathrm{CO}_{2}{ }^{2} \mathrm{Bu}$	$\mathbf{1 3 c}$	60	$5: 1^{[b]}$
$\mathbf{1 e}$	$\mathrm{SO}_{2} \mathrm{Ph}$	$\mathbf{1 3 e}$	88	single
$\mathbf{1 f}$	CN	$\mathbf{1 3 f}$	42	single ${ }^{[b]}$
$\mathbf{1 g}$	COMe	$\mathbf{1 3 g}$	68	$3: 1$
$\mathbf{1 h}$	COPh	$\mathbf{1 3 h}$	$8: 1$	

[a] Determined by ${ }^{1} \mathrm{H}$ NMR of the crude product; [b] After column chromatography.

The reactions of the acceptor-substituted ethylenes $\mathbf{1 a - c}$ and $\mathbf{1 e} \mathbf{e} \mathbf{h}$ with the sulfonium ylide 4 in DMSO at ambient temperature gave the cyclopropanes 13 in $42-88 \%$ yield with variable diastereoselectivities. The diastereomeric ratio of the cyclopropanes $\mathbf{1 3}$ depends on the nature of the electron-withdrawing group of the Michael acceptor $\mathbf{1}$. While cyclopropane 13a is formed with low diastereoselectivity, the selectivity increases with the size of the ester substituent in $\mathbf{1}$ $(\mathbf{1 3 a} \rightarrow \mathbf{1 3 b}, \mathbf{c})$. The diastereoselectivities for the formation of the acyl-substituted cyclopropanes 13g,h are, instead, independent of the substituent size (Me versus Ph). For the sulfonylsubstituted cyclopropane $\mathbf{1 3} \mathbf{e}$ and the cyano-substituted cyclopropane $\mathbf{1 3 f}$ only one diastereoisomer was observed. The configuration of the substituents of the two diastereoisomers of the cyclopropanes $\mathbf{1 3}$ could not be assigned unambiguously.

7.2.3 Kinetic Studies and Discussion

The kinetics of the reactions of the acceptor-substituted olefins $\mathbf{1}$ and $\mathbf{2}$ with the pyridinium ylides 3 and the sulfonium ylide $\mathbf{4}$ in DMSO at $20^{\circ} \mathrm{C}$ were monitored photometrically by following the disappearance of the absorbances of the ylides $\mathbf{3}$ and $\mathbf{4}$ at or close to their absorption maxima. Due to the low stabilities of the ylides $\mathbf{3}$ and $\mathbf{4}$, they were generated in solution by combining freshly prepared solutions of the salts $\mathbf{3} \mathbf{H}^{+} \mathbf{X}^{-}$or $\mathbf{4 H}^{+} \mathbf{B F}_{4}^{-}$and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.05 eq) in DMSO directly before each kinetic experiment. To perform the kinetic experiments under pseudo-first-order conditions the electrophiles $\mathbf{1}$ and $\mathbf{2}$ were used in high excess (≥ 10 equivalents) over the ylides $\mathbf{3}$ and $\mathbf{4}$, which resulted in monoexponential decays of their UV-vis absorbances. From the decays of the UV-Vis absorbances of the ylides $\mathbf{3}$ and $\mathbf{4}$ the first-order rate constants $k_{\mathrm{obs}}\left(\mathrm{s}^{-1}\right)$ were derived by least-squares fitting of the exponential function $A_{\mathrm{t}}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)+\mathrm{C}$ to the time-dependent absorbances A_{t} (Figure 7.1a). Correlations of k_{obs} versus the concentration of the Michael acceptors $\mathbf{1}$ and 2 (Figure 7.1b) were linear and from their slopes the second order rate constants k_{2} listed in Table 7.5 were derived.

Figure 7.1. a) Decay of the absorbance of $3 \mathrm{~d}\left([3 \mathrm{~d}]_{0} \sim 5 \times 10^{-5} \mathrm{M}\right)$ at 427 nm during the reaction with $1 \mathrm{e}\left([1 \mathrm{e}]_{0}\right.$ $=5.22 \times 10^{-4} \mathrm{M}$) in DMSO at $20^{\circ} \mathrm{C}$. b) Linear correlation of $\boldsymbol{k}_{\text {obs }}$ with the concentration of 1 e .

Table 7.5. Experimental ($k_{2}{ }^{\text {exp }}$) and calculated ($\left.k_{2}{ }^{\text {calcd }}\right)^{[\text {[a] }}$ second-order rate constants for the reactions of the Michael acceptors 1 and 2 with the ylides 3 and 4 in DMSO at $20^{\circ} \mathrm{C}$.

	Electrophile	Nucleophile	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd } / ~} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	
1a		3a	1.10×10^{3}	7.60×10^{2}	1.44
		3b	$6.91 \times 10^{3[b]}$	1.74×10^{3}	3.98
		3 c	2.01×10^{3}	8.85×10^{2}	2.28
	$E=-18.92$	3d	1.37×10^{1}	6.16	2.22
		4	3.25	2.88×10^{1}	0.11
1b		3a	1.07×10^{3}	6.23×10^{2}	1.71
		3 c	1.67×10^{3}	7.05×10^{2}	2.36
		3d	1.12×10^{1}	4.46	2.50
		4	3.89	2.00×10^{1}	0.20
1c		3a	2.61×10^{2}	2.40×10^{2}	1.09
		3b	$3.40 \times 10^{2[\mathrm{~b}]}$	5.32×10^{2}	0.64
		3 c	2.94×10^{2}	2.39×10^{2}	1.23
		3d	2.05	9.50×10^{-1}	2.17
		4	1.89	3.46	0.55
1d		3 a	1.12×10^{1}	1.49×10^{1}	0.75
		3b	1.39×10^{1}	3.07×10^{1}	0.45
		3c	2.68×10^{1}	1.02×10^{1}	2.63
1 e	$E=-18.36$	3 a	1.60×10^{3}	1.53×10^{3}	1.66
		3b	$5.56 \times 10^{3[\mathrm{~b}]}$	2.86×10^{3}	1.95
		3 c	2.55×10^{3}	1.71×10^{3}	1.49
		3d	1.94×10^{1}	1.35×10^{1}	1.44
		3 e	4.10	4.37	0.94
		4	2.36×10^{1}	7.02×10^{1}	0.34
1 f		3a	1.89×10^{3}	6.78×10^{2}	2.79
		3b	$3.79 \times 10^{3}[\mathrm{~b}]$	1.55×10^{3}	2.45
		3 c	3.64×10^{3}	7.77×10^{2}	4.69
		3d	2.36	5.12	0.46
	$E=-19.06$	3 e	2.25	1.71	1.31
		3 f	$2.56 \times 10^{1[\mathrm{c}]}$	1.45	17.6
		4	4.90	2.33×10^{1}	0.21

Table 7.5. Continued.

	Electrophile	Nucleophile	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd } / ~} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
1g		3a	6.84×10^{3}	6.09×10^{3}	1.12
		3 c	7.99×10^{3}	9.40×10^{3}	0.85
		3d	1.24×10^{2}	1.80×10^{2}	0.69
	$E=-16.48$	3e	2.74×10^{1}	5.35×10^{1}	0.51
		4	$\left(\sim 4.25 \times 10^{1}\right)^{[d]}$	1.39×10^{3}	0.03
1h	$E=-15.27$	3a	3.43×10^{4}	1.71×10^{4}	2.01
		3b	2.55×10^{4}	4.25×10^{4}	0.60
		3c	4.89×10^{4}	3.03×10^{4}	1.61
		3d	8.00×10^{2}	9.61×10^{2}	0.83
		3 e	2.07×10^{2}	2.70×10^{2}	0.77
		4	$\left(\sim 7.21 \times 10^{2}\right)^{[d]}$	8.80×10^{3}	0.08
2 a	$E=-23.73$	3 a	4.14	1.27×10^{1}	0.33
		3c	2.87×10^{1}	8.16	3.57
2b		3a	3.08	6.60	0.47
		3 c	7.77	3.97	1.96
2 c	$E=-22.78$	3a	1.50×10^{1}	2.85×10^{1}	0.53
		3 c	3.76×10^{1}	2.13×10^{1}	1.76
2 e	$E=-24.69$	3a	2.36	5.59	0.42
		3 c	7.17	3.35	2.14
2 f	$E=-24.57$	3 a	6.15	identical	-
2 g		3a	1.77×10^{1}	2.37×10^{1}	0.75
		3b	2.66×10^{1}	2.37×10^{1}	0.54
		3 c	3.91×10^{1}	1.73×10^{1}	2.26
2h	$E=-19.37^{[\mathrm{e}]}$	3 a	3.31×10^{2}	5.19×10^{2}	0.64
		3b	3.20×10^{2}	1.18×10^{3}	0.27
		3c	6.17×10^{2}	5.21×10^{2}	1.18
		4	$3.41 \times 10^{1,[f]}$	1.43×10^{1}	2.38

[a] Calculated by eq 7.1 from N, s_{N} from Table 7.1 and E from this Table; [b] Bis-exponential decay of the absorbance was observed and only the initial rate was used to determine k_{2}; [c] Not used for the determination of E as the reaction rate may already be enhanced by a partially concerted cycloaddition; ${ }^{[17]}$ [d] Bis-exponential decay of the absorbance was observed and the second-order rate constant can only be estimated from the initial decay of the absorption; not used for the determination of E; [e] The electrophilicity value of $E=-18.82$ for $\mathbf{2 h}$ reported in ref. [16h] had to be corrected, as it was derived only from the reaction of $\mathbf{2 h}$ with $\mathbf{4}$; [f] k_{2} Value from ref. [16h].

If the reactions of the Michael acceptors $\mathbf{1}$ and $\mathbf{2}$ with the pyridinium ylides $\mathbf{3}$ proceed stepwise with rate-determining formation of the intermediate betaines, the measured secondorder rate constants equal k_{2} as defined in Scheme 7.1. As k_{2} refers to the attack of a nucleophile at an electron-deficient π-system, which generally follow eq 7.1 , this equation may also be used to correlate the rate constants listed in Table 7.5. The correlations of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ for the reactions of the electrophiles $\mathbf{1}$ and $\mathbf{2}$ with the ylides $\mathbf{3}$ and $\mathbf{4}$ versus the corresponding nucleophilicity parameters N are linear with a slope of roughly 1.0 as required by eq 7.1 (Figure 7.2). The rate constant for the reaction of acrylonitrile $\mathbf{1 f}$ with the quinolinium ylide $\mathbf{3 f}$ (marked by footnote [c] in Table 7.5) deviates by a factor of 18 from the correlation line, which is still within the limit of confidence of eq 7.1 (two orders of magnitude), but might also be due to a low degree of concertedness of the reaction. Therefore, this reaction was not considered for the determination of the electrophilicity parameter E of acrylonitrile $\mathbf{1 f}$.

In the reactions of methylvinylketone $\mathbf{(1 g)}$ and phenylvinylketone ($\mathbf{1} \mathbf{h}$) with the sulfonium ylide $\mathbf{4}$ bisexponential decays of the absorbance of $\mathbf{4}$ were observed, so that the second-order rate constants could only be estimated from the initial decays of the absorbance. The rate constants deviate from the correlation line and the reactions proceed 13 and 33 times slower than calculated, indicating a change of mechanism. Thus, these rate constants were not considered for the determination of the electrophilicity parameters of the acyl-substituted ethylenes $\mathbf{1 g}, \mathbf{h}$.

Figure 7.2. Correlation of $\left(\log k_{2}\right) / s_{N}\left(D M S O, 20{ }^{\circ} \mathrm{C}\right)$ for the reactions of the Michael acceptors $1 \mathrm{c}-\mathrm{h}$ with the ylides 3 and 4 against the nucleophilicity parameters N of the ylides. For the sake of clarity the correlation lines of the other electrophiles 1 and 2 are not shown (for details see Experimental Section).

The electrophilicity parameters E for the acceptor-substituted olefins 1 and 2 were determined by least-squares minimization (minimization of $\Delta^{2}=\sum\left(\log k_{2}-s_{\mathrm{N}}(N+E)^{2}\right)$ considering the rate constants of their reactions with pyridinium ylides $\mathbf{3 a}-\mathbf{e}$ and the sulfonium ylide 4 (Table 7.5).

In all 57 investigated reactions of the acceptor-substituted π-systems $\mathbf{1}$ and $\mathbf{2}$ with the pyridinium ylides $\mathbf{3}$ and sulfonium ylide $\mathbf{4}$ the experimental and calculated second-order rate constants agree within a factor of 33 , which is within the limit of confidence of eq 7.1. For the 54 rate constants used to derive the electrophilicity parameters E the agreement between experimental and calculated rate constants is better than a factor of 5 . The published E parameter of chalcone $\mathbf{2 h}{ }^{[16 h]}$ had to be corrected slightly as it can now be based on four rate constants and not only on the rate of its reaction with ylide 4.

As all measured rate constants in Table 7.5 agree within two orders of magnitude with the rate constants calculated by eq 7.1 this indicates that despite the different reaction products, the tetrahydroindolizines 5,7,9 on one hand (Tables 7.2, 7.3 and Scheme 7.3) and the cyclopropanes 13 on the other (Table 7.4), all investigated reactions proceed via a common rate-determining step, the initial CC-bond formation to the intermediate betaines.

7.3 Conclusion

The rates of the stepwise [3+2]-cycloaddition of the pyridinium ylides $\mathbf{3}$ with the acceptorsubstituted ethylenes $\mathbf{1}$ and $\mathbf{2}$, as well as their stepwise cyclopropanations by the sulfonium ylide 4, were found to follow the linear free-energy relationship (eq 7.1). As the derived electrophilicity parameters E describe both types of reactions of the Michael acceptors $\mathbf{1}$ and $\mathbf{2}$, it is likely that both reactions proceed via initial formation of a zwitterion, which undergoes a fast subsequent ring closure to the [3+2]-adducts or cyclopropanes.

Therefore, the electrophilicities E of the acceptor-substituted olefins $\mathbf{1}$ and $\mathbf{2}$ can be included into our comprehensive electrophilicity scale. ${ }^{[21 \mathrm{~g}]}$ The electrophilicity parameters E of the activated ethylenes 1 (including acrolein) ${ }^{[18]}$ cover almost nine orders of magnitude (Figure 7.3). An amido-substituted ethylene $(E=-23.54)$ is a weak electrophile. In comparison, the acrylic ester $\mathbf{1 c}$ which is substituted with a sterically demanding tert-butoxy group is more than 1,800 times more reactive. Exchanging the tert-butoxy by an ethoxy (1b) or methoxy group (1a) increases the reactivity by approximately a factor of 14-23 compared to tert-butyl acrylate 1c. Substituting the methoxycarbonyl group (1a) by a cyano group (1f) has almost no effect on
the reactivity, whereas a phenylsulfonyl group (1e) activates of the double bond by a factor of four in comparison to methoxycarbonyl (1a). Acyl groups increase the reactivity of the CCdouble bond significantly as methylvinylketone ($\mathbf{1 g}$) is 275 times, phenylvinylketone ($\mathbf{1 h}$) is $\sim 4,500$ times, and acrolein is $\sim 18,000$ times more reactive than methyl acrylate $\mathbf{1 a}$.

The addition of a methyl group in 2-position of ethyl acrylate $\mathbf{1 b}(\rightarrow \mathbf{2 c})$ decreases the reactivity by a factor of $\sim 4,200$, while adding a methyl group in the conjugate-position $(\rightarrow \mathbf{2 a})$ leads to a $\sim 37,000$ fold decrease of the reactivity, and the ethyl cinnamate ($\mathbf{2 b}$) is even $\sim 220,000$ times less reactive than $\mathbf{1 b}$. Phenyl groups in the conjugate position ($\mathbf{2 b}, \mathbf{e}-\mathbf{h}$) generally deactivate the double bond of the activated ethylene 1 by a factor of $10^{4}-10^{6}$, probably due to steric inhibition of the nucleophilic attack and the associated disruption of phenyl conjugation. All investigated activated styrenes $\mathbf{2}$ are rather weak electrophiles as their electrophilicities range from $-24.7<E<-19.3$.

Figure 7.3. Comparison of the electrophilic reactivities of the Michael acceptors 1 and 2 with $\alpha, \beta-$ unsaturated aldehydes, ${ }^{[18]}$ different disubstituted ethylenes, ${ }^{[166,} \mathrm{j}$, , 17] other Michael acceptors, ${ }^{[16 \mathrm{~b}, \mathrm{~d}, \mathrm{~h}-\mathrm{jl} \text { and }}$ azolium ${ }^{[22]}$ and iminium ${ }^{[16 e]}$ ions.

Besides the reactivity comparisons which can be made within the series of the acceptorsubstituted olefins $\mathbf{1}$ and $\mathbf{2}$, comparisons with other Michael systems are possible:

When one compares the reactivities of the recently characterized β-nitro-styrenes ${ }^{[16 i]}$ with those of the activated styrenes $\mathbf{2}$, one can see that a β-nitro-group increases the reactivity of the CC-double bond by 330,000 fold relative to a benzoyl group. In contrast, a p-nitro-substituent at the aromatic ring increases the reactivity of the CC-double bond of chalcone $\mathbf{2 h}$ only by a factor of 100 and by a factor of $\sim 4,300$ for benzylidene acetone $\mathbf{2 g} .{ }^{[16 \mathrm{~h}]}$

Addition of a second ethoxycarbonyl group to ethyl acrylate 1b in trans-configuration (diethyl fumarate) ${ }^{[17]}$ increases the reactivity of the double bond by a factor of 32 , while a second ethoxycarbonyl group in cis-configuration (diethyl maleate) ${ }^{[17]}$ leads to a three times lower reactivity. In contrast, a second electron-withdrawing group in 2-position ${ }^{[16 \mathrm{j}]}$ of (vinyl)sulfonylbenzene (1e) or β-tosyl-styrene (2e) leads to an tremendous increase of the reactivity of the double bond by a factor of $\sim 10^{11}$. 2 -Substitution of cinnamonitrile $\mathbf{2 f}$ with a second cyano group even increases the reactivity of the CC-double bond by a factor of $10^{15},{ }^{[166]}$ whereas diethyl benzylidene malonate ${ }^{[16 d]}$ is only $\sim 9,100$ times more reactive than the parent ethyl cinnamate $\mathbf{2 b}$. Activation of ethyl cinnamate $\mathbf{2 b}$ by substituting the ethoxy by an azolium group ${ }^{[22]}$ increases the reactivity of the CC-double bond 10^{13} fold, so that the magnitude of azolium activation of ethyl cinnamate is in the range of the activation of cinnamaldehyde ${ }^{[16 e]}$ by iminium-substitution. ${ }^{[18]}$

As this study gives electrophilicity parameters for many important Michael systems it can help to increase the understanding of the nucleophile-independent order of electrophilicities, which is currently investigated. ${ }^{[31]}$ Our results may also be helpful to develop new tools for the analysis of the mechanism of concerted cycloaddition reactions. ${ }^{[4 \mathrm{~h}, \mathrm{i}, 5 \mathrm{a}, 32]}$ The electrophilicities of the acceptor-substituted olefins investigated in this work may also broaden the experimental basis for the ongoing development of the distortion/interaction energy model ${ }^{[33]}$ or activation strain model. ${ }^{[34]}$

7.4 Experimental Section

7.4.1 General

Chemicals. DMSO (99.7\%, extra dry, over molecular sieves, AcroSeal) was purchased and used without further purification. The pyridinium salts $\mathbf{3} \mathbf{H}^{+} \mathbf{X}^{-}$were synthesized according to ref. [19], the sulfonium salt $\mathbf{4 H}^{+} \mathbf{B F}_{4}{ }^{-}$according to ref. [20].

Analytics. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{c}} 77.16\right){ }^{[35]}$ on 200, 300,400 , or 600 MHz NMR spectrometers and are given in ppm. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=\operatorname{triplet}, \mathrm{q}=$ quartet, $m=$ multiplet, $\mathrm{br}=$ broad. For reasons of simplicity, the ${ }^{1} \mathrm{H}$ NMR signals of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ 'spin systems of p-disubstituted aromatic rings were treated as doublets. The assignments of individual NMR signals were based on additional 2D-NMR experiments (COSY, NOESY, HSQC, HMBC). Diastereomeric ratios ($d r$) were determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction products if not stated otherwise. HRMS and MS were recorded on a Finnigan MAT 95 Q (EI) mass spectrometer or Thermo Finnigan LTQ FT Ultra (ESI). The melting points were recorded on a Büchi Melting Point B-540 device and are not corrected.

Kinetics. The rates of all reactions were determined by UV-vis spectroscopy in DMSO at $20^{\circ} \mathrm{C}$ by using stopped-flow spectrophotometer systems (Applied Photophysics SX.18MV-R and Hi-Tech SF-61DX2) as well as diode array-spectrophotometer systems (J\&M TIDAS DAD 2062). The temperature of the solutions during the kinetic studies was maintained at 20 $\pm 0.2{ }^{\circ} \mathrm{C}$ by using circulating bath cryostats. The ylides were generated in DMSO at $20^{\circ} \mathrm{C}$ immediately before each kinetic run by mixing DMSO solutions of the salts $\mathbf{3} \mathbf{H}^{+} \mathbf{X}^{-}$or $\mathbf{4 H}^{+} \mathbf{B F}_{4}^{-}$ and $\mathrm{KO}^{t} \mathrm{Bu}$ (typically 1.00:1.05 equivalents). The kinetic runs were initiated by mixing DMSO solutions of the ylides and electrophiles under pseudo first-order conditions with one of the two reaction partners in large excess over the other (>10 equivalents). Pseudo first-order rate constants $k_{\mathrm{obs}}\left(\mathrm{s}^{-1}\right)$ were obtained by fitting the single exponential $A_{t}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)+C$ (monoexponential decrease) to the observed time-depended absorbances (average of at least three kinetic runs for each concentration for the stopped-flow method) of the electrophiles or ylides. Second-order rate constants $k_{2}\left(\mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$ were derived from the slopes of the linear correlations of the obtained $k_{\text {obs-values against the concentrations of the excess reaction partner. }}^{\text {- }}$. Some kinetics have been performed by H. Asahara as indicated.

7.4.2 Product Studies

7.4.2.1 Synthesis of the Indolizines 6

Procedure A for the Synthesis of the Indolizines 6. The Michael-acceptor $\mathbf{1}(1.00 \mathrm{mmol})$ and the salt $\mathbf{3} \mathbf{H}^{+} \mathbf{X}^{-}(500 \mu \mathrm{~mol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(500 \mu \mathrm{~mol})$ were dissolved in DMSO $(5 \mathrm{~mL})$ and stirred until for 30-60 min at ambient temperature. Chloranil (1.00 mmol) was added to the solution and stirring was continued for $0.5-3 \mathrm{~h}$ until the oxidant was consumed as monitored by TLC. The reaction was treated with 2 M HCl and extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with $2 \mathrm{M} \mathrm{NaOH}(25 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was subjected to a column chromatography (n-pentane:EtOAc 15:1-3:1, depending on R_{f}). The products were further purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.

Methyl 3-(diethylcarbamoyl)indolizine-1-carboxylate (6a). From 3bH ${ }^{+} \mathbf{B r}^{-}$(137 mg , $500 \mu \mathrm{~mol})$, 1a ($86,1.00 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil (246 mg , 1.00 mmol) according to procedure A. 6a was obtained as colorless solid ($72 \mathrm{mg}, 0.26 \mathrm{mmol}$, 52%, cis:trans-amide 1:3). $\boldsymbol{R}_{\mathbf{f}}(n$-pentane:EtOAc $5: 1)=0.08$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 55^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.30\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.61\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $6.82(\mathrm{td}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.18(\mathrm{ddd}, J=9.0,6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.45(\mathrm{~s}$, $1 \mathrm{H}, 2-\mathrm{H}), 8.18-8.28(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 8.94(\mathrm{dt}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (7 5 \mathrm { MHz } \text { , }}$, ${ }_{5}^{6}{ }^{-1 / 2}{ }^{2}$ 137.7 (s, C-8a), 162.7 (s, CON), 165.1 (s, CO_{2}). HRMS (ESI): calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}$ 275.1390, found 275.1390. DA832

Ethyl 3-cyanoindolizine-1-carboxylate (6b). From $\mathbf{3} \mathbf{c H}^{+} \mathbf{B r}^{-}$($100 \mathrm{mg}, 500 \mu \mathrm{~mol}$), $\mathbf{1 b}$ ($100 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure $\mathbf{A} . \mathbf{6 b}$ was obtained as colorless solid ($61 \mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%$). $\boldsymbol{R} \mathbf{f}$ (n pentane:EtOAc 5:1) $=0.29$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 103{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.41(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.38\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.03(\mathrm{td}, J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.33$ (ddd, $J=9.3,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.27-8.39(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 96.8(\mathrm{~s}, \mathrm{CN}), 106.2(\mathrm{~s}, \mathrm{C}-1), 112.8$, 7), 137.9 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 163.4 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$
214.0737, found 214.0743. MS (EI) $m / z: 215$ (7), 214 (52), 186 (30), 169 (100), 142 (14), 89 (12), 58 (10), 43 (29). DA782
tert-Butyl 3-acetylindolizine-1-carboxylate ($\mathbf{6 c}$). From 3dH ${ }^{+} \mathbf{C l}^{-}(86 \mathrm{mg}, 500 \mu \mathrm{~mol})$, 1c $(128,1.00 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 6c was obtained as yellow solid ($124 \mathrm{mg}, 479 \mu \mathrm{~mol}, 96 \%$). Rf (n pentane:EtOAc 5:1) $=0.34$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 150{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.64(\mathrm{~s}, 9 \mathrm{H}$, $3 \times \mathrm{CH}_{3}$), $2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.99(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.36$ (dddd, $J=9.0,6.8,1.2$, $0.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.93$ (s, $1 \mathrm{H}, 2-\mathrm{H}$), 8.30 (dddd, $J=9.0,1.1,0.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.88$ (dtd, $J=$ $7.1,1.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=27.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 28.7\left(\mathrm{q}, 3 \times \mathrm{CH}_{3}\right)$, 80.7 (s, C) , 107.5 ($\mathrm{s}, \mathrm{C}-1$), 115.1 (d, C-6), 119.6 (d, C-8), 122.6 ($\mathrm{s}, \mathrm{C}-3$), 126.5 (d, C-2), 127.0 (d, C-7), 129.2 (d, C-5), 139.2 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 163.7 ($\mathrm{s}, \mathrm{CO}_{2}$), 187.8 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}\right]^{+}$259.1203, found 259.1205. MS (EI) m/z: 260 (2), 259 (12), 204 (6), 203 (65), 188 (66), 186 (13), 58 (44), 43 (100). DA789

3-Cyano- \mathbf{N}, \mathbf{N}-dimethylindolizine-1-carboxamide ($\mathbf{d d}$). From $\mathbf{3 c H}^{+} \mathbf{B r}^{-} \quad(99 \mathrm{mg}$, 0.50 mmol), $\mathbf{1 d}(127 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil (246 mg , 1.00 mmol) according to procedure A. 6d was obtained as yellowish solid ($68 \mathrm{mg}, 0.32 \mathrm{mmol}$, $64 \%) . \boldsymbol{R}_{\mathbf{f}}\left(n\right.$-pentane:EtOAc 1:1) $=0.16$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 72^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 3.17 (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), $6.96(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.20(\mathrm{ddd}, J=9.1,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.43$ (s, $1 \mathrm{H}, 2-\mathrm{H}), 8.05(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 8.28(\mathrm{dt}, J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H). ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=37.8\left(\mathrm{q}, 2 \times \mathrm{CH}_{3}\right), 95.3(\mathrm{~s}, \mathrm{C}-3), 109.1(\mathrm{~s}, \mathrm{C}-1), 113.2(\mathrm{~s}$,
 5), 137.4 (s, C-8a), 165.6 (s, CON). HRMS (ESI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$ 214.0975, found 214.0974. DA799

1-(1-(Phenylsulfonyl)indolizin-3-yl)ethanone (6e). From 3dH ${ }^{+} \mathbf{C l}^{-}(86 \mathrm{mg}, 0.50 \mathrm{mmol})$, $\mathbf{1 e}$ ($168 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. $\mathbf{6 e}$ was obtained as colorless solid ($147 \mathrm{mg}, 491 \mu \mathrm{~mol}, 98 \%$). $\boldsymbol{R} \mathbf{f}$ (n pentane:EtOAc 5:1) $=0.16 . \mathbf{M p} .\left(\mathrm{Et}_{2} \mathrm{O}\right): 173{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.58(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $7.06(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.39-7.58\left(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.95(\mathrm{~s}, 1 \mathrm{H}, 2-$ H), $7.96-8.02\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.18(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.87(\mathrm{dt}, J=7.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=27.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 113.6(\mathrm{~s}, \mathrm{C}-1), 115.9(\mathrm{~d}, \mathrm{C}-6), 117.7$

 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}\right]^{+}$299.0611, found 299.0611. MS (EI) m/z: 302
(1), 301 (7), 300 (20), 299 (100), 284 (63), 220 (10), 174 (20), 78.12 (12), 58 (15), 43 (48). DA796

Ethyl 1-cyanoindolizine-3-carboxylate (6f). From $\mathbf{3 a H}^{+} \mathbf{B r}^{-}$($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$), $\mathbf{1 f}$ ($53 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 6f was obtained as colorless solid ($63 \mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%$). $\boldsymbol{R f}_{\mathrm{f}}$ (n pentane:EtOAc 5:1) $=0.28$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 70^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.41(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $4.40\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.03(\mathrm{td}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.34$ (ddd, $J=8.9,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.71-7.81(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 8-\mathrm{H}), 9.53(\mathrm{dt}, J=7.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 83.9(\mathrm{~s}, \mathrm{CN}), 115.1(\mathrm{~d}$, C-6), 115.6 ($\mathrm{s}, \mathrm{C}-1$), 115.6 ($\mathrm{s}, \mathrm{C}-3$), 117.8 (d, C-8), 124.9 (d, C-2), 125.9 (d, C-7), 128.4 (d, C-5), 140.7 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 160.5 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$214.0737, found 214.0729. MS (EI) m/z: 214 (89), 186.05 (100), 169 (46), 142 (37), 114 (24), 58 (11), 43 (31). DA783
$\mathbf{1 - (3 - B e n z o y l i n d o l i z i n - 1 - y l) e t h a n o n e ~ (~} \mathbf{6 g}$). From $\mathbf{3 e H}^{+} \mathbf{B r}^{-}$($139 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathbf{1 g}$ ($70 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol}$), and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure $\mathbf{A} . \mathbf{6 g}$ was obtained as colorless solid ($98 \mathrm{mg}, 0.37 \mathrm{mmol}, 74 \%$). $\boldsymbol{R}_{\mathrm{f}}$ (n pentane:EtOAc 5:1) $=0.17$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 145{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.51(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 7.16(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.48-7.65\left(\mathrm{~m}, 4 \mathrm{H}, 7-\mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.70(\mathrm{~s}, 1 \mathrm{H}, 2-$ H), $7.78-7.88\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.66(\mathrm{dt}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.98(\mathrm{dt}, J=7.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=27.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 115.0(\mathrm{~s}, \mathrm{C}-1), 116.3(\mathrm{~d}$,

C-6), $120.6(\mathrm{~d}, \mathrm{C}-8), 122.5(\mathrm{~s}, \mathrm{C}-3), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.1$ (d, C-5), 129.1 (d, C-2), 129.2 (d, C-7), 131.7 (d, C CAr -H), 139.7 (s, C-8a), 140.1 (s , $\mathrm{C}_{\text {Ar }}$), 185.7 (s, CO), 193.2 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2}\right]^{+} 263.0941$, found 263.0941. MS (EI) $m / z: 263$ (50), 248 (100), 105 (18), 77 (16), 43 (18). DA784

1-(1-Benzoylindolizin-3-yl)ethanone ($\mathbf{6 h}$). From 3dH ${ }^{+} \mathbf{C l}^{-}(86 \mathrm{mg}, 500 \mu \mathrm{~mol})$, $\mathbf{1 h}(132 \mathrm{mg}$, 1.00 mmol), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure A. 6h was obtained as colorless solid ($127 \mathrm{mg}, 482 \mu \mathrm{~mol}, 97 \%$). $\boldsymbol{R}_{\mathrm{f}}$ ($n-$ pentane:EtOAc 5:1) $=0.61 . \mathbf{M p} .\left(\mathrm{Et}_{2} \mathrm{O}\right): 113{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.56(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $7.14(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-6), 7.48-7.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}-7,3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.78(\mathrm{~s}, 1 \mathrm{H}, 2-$
 $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $128.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.0(\mathrm{~d}, \mathrm{C}-5), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 140.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$,
140.5 (s, C-8a), 188.0 (s, CO), 190.6 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2}\right]^{+}$263.0941, found 263.0940. MS (EI) m/z: 264 (17), 263 (100), 262 (31), 248 (35), 234 (50), 204 (47), 191 (31). DA785

7.4.2.2 Synthesis of the Dihydroindolizines 10

Procedure B for the Synthesis of the Dihydroindolizines 10. NaOH (1 mL , aq. 30\%) was added under intense stirring to a suspension of $\mathbf{2}(0.50 \mathrm{mmol})$ and $\mathbf{3} \mathbf{H}^{+} \mathbf{B r}^{-}(500-750 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room-temperature. The suspension was stirred until 2 was completely consumed as monitored by TLC ($30 \mathrm{~min}-60 \mathrm{~min}$). Water $(30 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before chloranil ($500 \mu \mathrm{~mol}$) was added. The solution was stirred at room temperature for 5-30 min until the oxidant was consumed. The solvent was evaporated and the residue was subjected to a column chromatography (n-pentane:EtOAc 3:1-1:1, depending on R_{f}). The products were further purified by recrystallization from EtOH.

Ethyl 3-cyano-2-phenyl-2,3-dihydroindolizine-1-carboxylate (10b). From $\mathbf{3 c H}{ }^{+} \mathbf{B r}^{-}$ $(119 \mathrm{mg}, 600 \mu \mathrm{~mol}), \mathbf{2 b}(88 \mathrm{mg}, 0.50 \mathrm{mmol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$) according to procedure B. 10b was obtained as orange solid ($130 \mathrm{mg}, 445 \mu \mathrm{~mol}, 89 \%$, $d r 3: 1$). $\boldsymbol{R}_{\mathbf{f}}$ (n pentane:EtOAc 5:1) $=0.14$. *major-, ${ }^{\#}$ minor diastereoisomer, no integrals given due the odd ratio of major and minor diastereoisomer. Tentative assignment of the NMR-signals, as no 2D NMR spectra are available. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.93-1.14\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right)$,*, ${ }^{\text {\# }}$ $3.88-4.14\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right)$,*\# $4.53(\mathrm{~d}, J=11.2 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 4.64(\mathrm{~d}, J=5.4 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 4.76(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, \mathrm{CH}),{ }^{*} 5.32(\mathrm{~d}, J=11.3 \mathrm{~Hz}, \mathrm{CH}),{ }^{\#} 5.88-6.00(\mathrm{~m}, 2 \times \mathrm{C}-\mathrm{H}),{ }^{*, \#} 6.90-6.98(\mathrm{~m}, 3 \times \mathrm{C}-\mathrm{H})$, ${ }^{*, \#}$
 (q, CH3), 48.9 (d, C-2), 51.9 (d, C-2), * 58.7 (d, C-3), * 59.7 (d, C-3), 60.3 (t, CH2), 60.3 (t, CH_{2}), ${ }^{\#} 90.2(\mathrm{~s}, \mathrm{CN}), * 90.6(\mathrm{~s}, \mathrm{CN}),{ }^{\#} 107.8\left(\mathrm{~d}, \mathrm{C}-6\right.$ or C-7), ${ }^{\#} 108.1\left(\mathrm{~d}, \mathrm{C}-6\right.$ or C-7), ${ }^{*} 114.3$ (d, C-5 or C-8), ${ }^{\#} 116.8$ (d, C-5 or C-8),* 118.1 (s, C-1),* 118.7 ($\mathrm{s}, \mathrm{C}-1$), ${ }^{\#} 127.1$ (d, $\left.2 \times \mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right),{ }^{*} 127.9$
 132.5 (d, C-6 or C-7), \# 132.7 (d, C-6 or C-7), ${ }^{*} 136.1$ (d, C-5 or C-8), ${ }^{*} 136.3$ (d, C-5 or C-8), \# 139.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{ar}}$), ${ }^{\#} 142.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}}\right),{ }^{*} 152.3$ (br s, $2 \times \mathrm{C}-8 \mathrm{a}$), ${ }^{*, \#} 165.4\left(\mathrm{~s}, \mathrm{CO}_{2}\right),{ }^{\#} 165.4\left(\mathrm{~s}, \mathrm{CO}_{2}\right)^{*}$. HRMS (EI): calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$292.1206, found 292.1208. MS (EI) m/z: 293 (12), 292 (49), 247 (20), 220 (26), 219 (100), 218 (22), 192 (16), 143 (16), 43 (16). DA762

Ethyl 1-cyano-2-phenyl-2,3-dihydroindolizine-3-carboxylate (10f). From $\mathbf{3 a H}^{+} \mathbf{B r}^{-}$ ($148 \mathrm{mg}, 600 \mu \mathrm{~mol}$), $\mathbf{2 f}(65 \mathrm{mg}, 0.50 \mathrm{mmol}$) and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$) according to procedure B. $10 f$ was obtained as orange solid ($132 \mathrm{mg}, 452 \mu \mathrm{~mol}, 90 \%, d r 8: 1$). $\boldsymbol{R}_{\mathbf{f}}(n-$ pentane:EtOAc 5:1) $=0.12$. *major-, ${ }^{\#}$ minor diastereoisomer; signal of one proton of the minor diastereoisomer was set to $1.0 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.85$ $\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right),{ }^{\#} 1.35\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 25 \mathrm{H}, \mathrm{CH}_{3}\right), * 3.46-3.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}),{ }^{\#} 3.76$ (dq, $J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H),{ }^{\#} 4.21-4.44\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{2}\right), * 4.47(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 8 \mathrm{H}, 2-$ H), * $4.56(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 8 \mathrm{H}, 3-\mathrm{H})$, ${ }^{*} 4.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H})$, $5.08(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}-3), \# 5.73-5.84\left(\mathrm{~m}, 9 \mathrm{H}, 2 \times(6-\mathrm{H}\right.$ or $7-\mathrm{H})$), *, ${ }^{*} 6.63(\mathrm{dt}, J=9.4,1.2 \mathrm{~Hz}, 8 \mathrm{H}, 5-\mathrm{H}$ or $8-$ $\mathrm{H}),{ }^{*} 6.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$ or $8-\mathrm{H}),{ }^{\#} 6.80-6.93(\mathrm{~m}, 17 \mathrm{H}, 2 \times(5-\mathrm{H}$ or $8-\mathrm{H})$ and $2 \times(6-\mathrm{H}$ or 7-H), superimposed by solvent), ${ }^{* \#} 7.21-7.44\left(\mathrm{~m}, 49 \mathrm{H}, 10 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{*, \#}$ The intensities for most signals of the carbon atoms of the minor diastereoisomer ${ }^{\#}$ in the ${ }^{13} \mathrm{C}$ NMR were too low or too broad to give visible peaks, therefore only the signals of the major diastereoisomer are given. ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, ${ }^{*} 50.2(\mathrm{~d}, \mathrm{C}-2),{ }^{*} 62.8\left(\mathrm{~d}, \mathrm{CH}_{2}\right),{ }^{*} 65.5(\mathrm{~s}$, C-1), * 72.5 (d, C-3),* 105.9 (d, C-6 or C-7),* 115.5 (d, C-5 or C-8),* 120.6 (s, CN), * 127.2 (d, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 128.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 129.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 135.1\left(\mathrm{~d}, \mathrm{C}-6\right.$ or C-7), ${ }^{*} 135.9(\mathrm{~d}, \mathrm{C}-5$ or C8),* 141.9 (s, C_{Ar}), ${ }^{*} 155.4$ (s, C-8a), ${ }^{*} 169.3$ ($\mathrm{s}, \mathrm{CO}_{2}$). ${ }^{*}$ HRMS (EI): calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$ 292.1206, found 292.1206. MS (EI) $m / z: 293$ (15), 292 (70), 291 (38), 263 (14), 219 (100), 218 (41), 192 (18), 142 (25). DA763

1-Acetyl-2-phenyl-2,3-dihydroindolizine-3-carbonitrile dihydrate ($\mathbf{1 0 g} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathbf{O}$). From $\mathbf{3 c} \mathbf{H}^{+} \mathbf{B r}^{-}(149 \mathrm{mg}, 750 \mu \mathrm{~mol}), \mathbf{2 g}(73 \mathrm{mg}, 0.50 \mathrm{mmol})$ and chloranil ($123 \mathrm{mg}, 500 \mu \mathrm{~mol}$) according to procedure B. $\mathbf{1 0 g} \cdot \mathbf{2} \mathbf{H}_{2} \mathbf{O}$ was obtained as red solid ($23 \mathrm{mg}, 88 \mu \mathrm{~mol}, 18 \%, d r 2: 1$, isomerization upon standing in CDCl_{3}-solution to $3: 1$). $\boldsymbol{R} \mathbf{f}$ (n-pentane:EtOAc 5:1)= 0.11 . *major-, ${ }^{\text {\# minor diastereoisomer; signal of one proton of the minor diastereoisomer was set to }}$ 1.0. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.79\left(\mathrm{br}, \mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, ${ }^{*} 2.02\left(\mathrm{br}, \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, ${ }^{\#} 4.60(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-2),{ }^{\#} 4.71(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{H}),{ }^{*} 4.83(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}),{ }^{\#} 5.54$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-3), 6.21(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}),{ }^{*} 6.23-6.35(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}$ or $7-\mathrm{H}), \# 7.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{H}$ or $8-\mathrm{H}), * 7.13-7.22(\mathrm{~m}, 3 \mathrm{H}, 5-\mathrm{H}$ or $8-\mathrm{H}), * 7.23-7.41$ ($\mathrm{m}, 28 \mathrm{H}, 2 \times(6-\mathrm{H}$ or $7-\mathrm{H}), 2 \times(5-\mathrm{H}$ or $8-\mathrm{H}), 10 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$, superimposed by solvent), $8.03\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{H}_{2} \mathrm{O}\right)$. The intensities for some signals of the carbon atoms of the minor diastereoisomer ${ }^{\#}$ in the ${ }^{13} \mathrm{C}$ NMR were too low or too broad to give visible peaks, therefore only the signals of the major diastereoisomer are given. ${ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=28.2\left(\mathrm{br}, \mathrm{q}, \mathrm{CH}_{3}\right),{ }^{*} 52.5(\mathrm{~d}, \mathrm{C}-2),{ }^{*} 61.2(\mathrm{~d}, \mathrm{C}-3),{ }^{*} 110.8$ (br d, C-6 or C-7),* 116.4
(s, C-1),* 120.0 (br s, CN),* 127.3 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$),* 128.5 (d, C-5 or C-8),* 129.4 (d, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$),* 129.6 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), * 132.7 (br d, C-5 or C-8), * 138.3 (br d, C-6 or C-7), ${ }^{*} 141.6$ (s, C_{Ar}), ${ }^{*} 152.8$ (s, C-8a),* 186.9 (s, CO).* HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$262.1101, found 262.1105. MS (EI) $m / z: 263$ (20), 262 (99), 261 (29), 260 (30), 247 (60), 219 (100), 192 (32), 143 (30), 78 (16), 43 (44). DA770

7.4.2.3 Synthesis of the Indolizines 11

Procedure C for the Synthesis of the Indolizines 11. NaOH (aq. $30 \%, 1 \mathrm{~mL}$) was added under intense stirring to suspensions of $\mathbf{2}(500 \mu \mathrm{~mol})$ and $\mathbf{3} \mathbf{H}^{+} \mathbf{X}^{-}(500-750 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ at room-temperature. The mixture was stirred until the Michael acceptor was completely consumed as monitored by TLC ($30-60 \mathrm{~min}$). Water (30 mL) was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, before chloranil (1.00 mmol) was added. The solution was stirred at room temperature for $30-60 \mathrm{~min}$ until all chloranil was consumed. The solvent was evaporated and the residue was subjected to a column chromatography (n-pentane:EtOAc 15:1-3:1, depending on R_{f}). The resulting solids were taken up in CHCl_{3} and insoluble precipitates were removed by filtration. After evaporation the products were further purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.

Ethyl 3-cyano-2-methylindolizine-1-carboxylate (11a). From 3cH ${ }^{+} \mathbf{B r}^{-}$(100 mg, $500 \mu \mathrm{~mol}$), 2a ($114 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol})$, and chloranil (246 mg , 1.00 mmol) according to procedure A. 11a was obtained as colorless solid ($96 \mathrm{mg}, 0.42 \mathrm{mmol}$, $84 \%) . \boldsymbol{R}_{\mathbf{f}}\left(n\right.$-pentane:EtOAc 5:1) $=0.61 . \mathbf{M p} .\left(\mathrm{Et}_{2} \mathrm{O}\right): 124^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $1.43\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.39\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.97(\mathrm{td}, J=$ $6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.25-7.33(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}$, superimposed by solvent), $8.17-8.38$ (m, $2 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.7\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.1\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 97.8 (s, CN), 104.5 ($\mathrm{s}, \mathrm{C}-1$), 112.9 (br, s, C-3), 114.6 (d, C-6), 120.3 (d, C-5 or C-8), 125.5 (d, C-5 or C-8), 126.1 (d, C-7), 138.6 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 139.1 ($\mathrm{s}, \mathrm{C}-2$), 164.3 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$228.0893, found 228.0895. MS (EI) m/z: 229 (15), 228 (94), 200 (48), 183 (100), 156 (31), 155 (21), 78 (10), 58. (29), 43 (79). DA788

Diethyl 2-phenylindolizine-1,3-dicarboxylate (11b). From 3aH ${ }^{+} \mathbf{B r}^{-}(138 \mathrm{mg}, 500 \mu \mathrm{~mol})$, $\mathbf{2 b}(88 \mathrm{mg}, 0.50 \mathrm{mmol})$ and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure $\mathbf{C} . \mathbf{1 1 b}$ was obtained as colorless solid ($150 \mathrm{mg}, 445 \mu \mathrm{~mol}, 89 \%$). $\boldsymbol{R}_{\mathbf{f}}(n$-pentane:EtOAc 5:1) $=0.50 . \mathbf{M p}$.

[^5]$\left.\mathrm{CH}_{2}\right) 6.98(\mathrm{ddd}, J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.22-7.39\left(\mathrm{~m}, 6 \mathrm{H}, 7-\mathrm{H}, 5 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.41(\mathrm{ddd}, J=$ $9.0,1.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.62(\mathrm{dt}, J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=13.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 13.9\left(\mathrm{q}, \mathrm{CH}_{3}\right), 59.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 59.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 105.2(\mathrm{~s}, \mathrm{C}-1$ or $\mathrm{C}-3), 113.7(\mathrm{~s}, \mathrm{C}-$ 1 or C-3), 114.5 (d, C-6), $119.8(\mathrm{~s}, \mathrm{C}-8), 125.9(\mathrm{~s}, \mathrm{C}-7), 126.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, 128.0 ($\mathrm{s}, \mathrm{C}-5$), 129.3 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 136.4 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 138.8 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), $140.0(\mathrm{~s}, \mathrm{C}-2), 162.0(\mathrm{~s}$, CO_{2}), 164.5 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (EI): calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}\right]^{+}$337.1309, found 337.1304. MS (EI) $m / z: 338$ (19), 337 (100), 292 (14), 265 (24), 264 (18), 193 (14). DA708

Ethyl 3-cyano-2-phenylindolizine-1-carboxylate (11c). From $\mathbf{3 c H}^{+} \mathbf{B r}^{-}$(149 mg, $750 \mu \mathrm{~mol}), \mathbf{2 b}(88 \mathrm{mg}, 0.50 \mathrm{mmol})$ and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure C. 11c was obtained as colorless solid ($123 \mathrm{mg}, 424 \mu \mathrm{~mol}, 85 \%$). $\boldsymbol{R} \mathbf{f}(n$-pentane:EtOAc 5:1) $=$ 0.70. Mp. ($\mathrm{Et}_{2} \mathrm{O}$): $122{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.18\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23$ $\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.05(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.36(\mathrm{ddd}, J=9.1$, $6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.41-7.59\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.29-8.49(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 8-$ H). ${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 60.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 97.4(\mathrm{~s}, \mathrm{CN}), 103.9(\mathrm{~s}, \mathrm{C}-1$ or C-3), 113.0 ($\mathrm{s}, \mathrm{C}-1$ or C-3), 115.2 (d, C-6), 120.9 (d, C-5 or C-8), 125.6 (d, C-5 or C-8), 126.4 (d, C-7), $128.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 128.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 138.7(\mathrm{~s}, \mathrm{C}-\mathrm{C}}\right.$ 8a), 141.3 (s, C-2), 163.7 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (ESI): calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$291.1128, found 291.1129. DA771

2-Phenyl-1-tosylindolizine-3-carbonitrile (11e). From $\mathbf{3 c H}^{+} \mathbf{B r}^{-}$($149 \mathrm{mg}, 750 \mu \mathrm{~mol}$), 2e ($129 \mathrm{mg}, 500 \mu \mathrm{~mol}$) and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure C. 11e was obtained as colorless solid ($168 \mathrm{mg}, 450 \mu \mathrm{~mol}, 90 \%$).
$\boldsymbol{R}_{\mathbf{f}}\left(n\right.$-pentane:EtOAc 5:1) $=0.18$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 200{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.31$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $7.01-7.07\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.11(\mathrm{td}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.30-7.52$ $\left(\mathrm{m}, 8 \mathrm{H}, 7-\mathrm{H}, 7 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.33(\mathrm{dt}, J=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 8.59(\mathrm{dt}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H). ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 98.3(\mathrm{~s}, \mathrm{CN}), 112.0(\mathrm{~s}, \mathrm{C}-1), 112.6(\mathrm{~s}, \mathrm{C}-3)$, 115.7 (d, C-6), 119.9 (d, C-8), 125.6 (d, C-5), 126.7 (d, $2 \times{ }^{\text {CAr-H), }} 127.0$ (d, C-7), 128.2 (d, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 129.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) \text {, }}\right.$ 136.4 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 139.5 ($\mathrm{s}, \mathrm{C}-2$), 140.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 143.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$). HRMS (ESI): calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right]^{+} 373.1005$, found 373.1005. DA774

Ethyl 1-cyano-2-phenylindolizine-3-carboxylate (11f). From $\mathbf{3 a H}^{+} \mathbf{B r}^{-}$(148 mg, $600 \mu \mathrm{~mol}), \mathbf{2 f}(65 \mathrm{mg}, 0.50 \mathrm{mmol})$ and chloranil $(246 \mathrm{mg}, 1.00 \mathrm{mmol})$ according to procedure C. 11f was obtained as colorless solid ($131 \mathrm{mg}, 450 \mu \mathrm{~mol}, 90 \%$). Rf (n pentane:EtOAc 5:1) $=0.31$. Mp. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 136{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
$1.02\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.17\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.04(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ H), 7.37 (ddd, $J=8.9,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.41-7.53\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.76(\mathrm{dt}, J=8.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 9.62(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=13.8$ ($\mathrm{q}, \mathrm{CH}_{3}$), $60.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 86.4(\mathrm{~s}, \mathrm{CN}), 112.7(\mathrm{~s}, \mathrm{C}-1$ or C-3), $115.1(\mathrm{~d}, \mathrm{C}-6), 115.4$ ($\mathrm{s}, \mathrm{C}-1$ or C3), 117.4 (d, C-8), 126.3 (d, C-7), 127.9 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $128.5\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8(\mathrm{~d}, \mathrm{C}-5), 130.0$ $\left(2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.7$ ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 139.9 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 140.7 ($\mathrm{s}, \mathrm{C}-2$), 161.2 ($\mathrm{s}, \mathrm{CO}_{2}$). HRMS (ESI): calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$291.1128, found 291.1128. DA772

3-Acetyl-2-phenylindolizine-1-carbonitrile (11g). From $\mathbf{3 e H}^{+} \mathbf{B r}^{-}(149 \mathrm{mg}, 750 \mu \mathrm{~mol}), \mathbf{2 g}$ ($73 \mathrm{mg}, 0.50 \mathrm{mmol}$) and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure $\mathbf{C} .11 \mathrm{~g}$ was obtained as colorless solid ($66 \mathrm{mg}, 0.25 \mathrm{mmol}, 50 \%$). $\boldsymbol{R} \mathbf{f}(n$-pentane:EtOAc 5:1) $=0.20 . \mathbf{M p}$. $\left(\mathrm{Et}_{2} \mathrm{O}\right): 161{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.01-1.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.04(\mathrm{t}$, $J=6.9,1 \mathrm{H}, 6-\mathrm{H}), 7.39-7.30(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.49-7.38\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 8.28$ (dd, $J=6.8,0.9,1 \mathrm{H}, 5-\mathrm{H}), 8.52(\mathrm{dd}, J=9.1,0.8,1 \mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 30.7 ($\mathrm{q}, \mathrm{CH}_{3}$), 97.5 (s, CN), 112.8 ($\mathrm{s}, \mathrm{C}-1$), 114.2 (d, C-3), 116.0 (d, C-6), 121.6 (d, C-8), 125.3 (d, C-5), 127.6 (d, C-7), 128.9 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 129.4 (d, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 129.9 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 132.2 (s , $\mathrm{C}_{\text {Ar }}$), 138.2 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 140.7 (s, C-2), 194.3 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$ 260.0944, found 260.0943. MS (EI) m/z: 261 (9), 260 (56), 245 (100), 216 (30), 190 (12), 130 (10), 58 (23), 43 (72). DA846

1-(1-Benzoyl-2-phenylindolizin-3-yl)ethanone (11h $)$. From $\mathbf{3 d H}^{+} \mathbf{C l}^{-}(128 \mathrm{mg}, 750 \mu \mathrm{~mol})$, 2h ($104 \mathrm{mg}, 500 \mu \mathrm{~mol}$) and chloranil ($246 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to procedure $\mathbf{C} .11 \mathrm{~h}$ was obtained as colorless solid ($116 \mathrm{mg}, 336 \mu \mathrm{~mol}, 67 \%$). $\boldsymbol{R} \mathbf{f}$ (n-pentane:EtOAc 5:1) $=0.46 . \mathbf{M p}$. ($\mathrm{Et}_{2} \mathrm{O}$): $154{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.05(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}$), $7.10-7.33\left(\mathrm{~m}, 9 \mathrm{H}, 8 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by solvent), 7.36 (ddd, $J=8.9,6.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.42-7.55\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.96(\mathrm{dt}, J=9.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 10.04$ $(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 115.5(\mathrm{~s}, \mathrm{C}-1)$, 115.6 (d, C-6), 119.1 (d, C-8), 122.2 ($\mathrm{s}, \mathrm{C}-3$), 127.5 (d, C-7), 127.9 (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 128.0 (d,
 131.6 (d, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 134.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 138.7 (s, C-8a), 139.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 140.0 ($\mathrm{s}, \mathrm{C}-2$), 190.4 (s, CO), 192.8 (s, CO). HRMS (ESI): calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{2}\right]^{+}$340.1332, found 340.1331. DA781

7.4.2.4 Synthesis of the Cyclopropanes 13

General Procedure D for the Synthesis of Cyclopropanes 13. $\mathrm{KO}^{t} \mathrm{Bu}(750 \mu \mathrm{~mol})$ in DMSO (2 mL) was added dropwise to solutions of $\mathbf{1}(0.50 \mathrm{mmol})$ and $\mathbf{4} \mathbf{H}^{+} \mathbf{B F}^{-}(600-750 \mu \mathrm{~mol})$ in DMSO (5 mL) at room temperature over 1-5 min. The solution was stirred for additional 5 min then sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 15 \mathrm{~mL})$, the combined organic layers were washed with brine $(2 \times 20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by column chromatography over silica (n-pentane:EtOAc 20:1-10:1).

Methyl 2-(4-cyanophenyl)cyclopropanecarboxylate (13a). From $\mathbf{4 H}^{+} \mathbf{B F}^{-}$(200 mg , $750 \mu \mathrm{~mol})$, 1a ($43 \mathrm{mg}, 0.50 \mathrm{mmol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(84 \mathrm{mg}, 0.75 \mathrm{mmol})$ according to procedure \mathbf{D}. 13a was obtained as colorless oil which solidified slowly at ambient temperature (64 mg , $0.32 \mathrm{mmol}, 64 \%, d r 2: 1$ in the crude product, $5: 1$ after column chromatography). *major-, \#minor diastereoisomer; signal of one proton of the minor diastereoisomer was set to 1.0. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.35(\mathrm{ddd}, J=8.5,6.4,4.8 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{CHH}),{ }^{*} 1.43$ (ddd, $J=$ $8.6,8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $1.62-1.77(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH} H)$, *, 1.96 (ddd, $J=8.5,5.5,4.2 \mathrm{~Hz}$, $5 \mathrm{H}, \mathrm{CH}),{ }^{*} 2.18$ (ddd, $J=9.2,8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), ${ }^{\#} 2.64-2.49(\mathrm{~m}, 6 \mathrm{H}$,
 H, superimposed by solvent), * $7.36\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$), ${ }^{\#} 7.52-7.60(\mathrm{~m}, 12 \mathrm{H}, 4 \times$ $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$). ${ }^{*, \#}{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.9(\mathrm{t}, \mathrm{CHH}),{ }^{\#} 17.6(\mathrm{t}, \mathrm{CHH}),{ }^{*} 22.2(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 24.7$ (d, CH),* $25.5(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 26.1(\mathrm{~d}, \mathrm{CH}), * 51.8\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{\#} 52.2\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{*} 110.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 110.6$ (s, C C_{Ar}), ${ }^{*} 118.9(\mathrm{~s}, \mathrm{CN}),{ }^{\#} 119.0(\mathrm{~s}, \mathrm{CN}),{ }^{*} 126.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 130.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 131.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\right.$ $\mathrm{H}),{ }^{\#} 132.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 142.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 145.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 171.0\left(\mathrm{~s}, \mathrm{CO}_{2}\right),{ }^{\#} 173.1\left(\mathrm{~s}, \mathrm{CO}_{2}\right) .{ }^{*}$ HRMS (EI): calcd. for [$\left.\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}\right]^{+}$201.0784, found 201.0781. MS (EI) m/z: 201 (6), 169 (4), 142 (11), 115 (5), 58 (32), 43 (100). DA834-2

Ethyl 2-(4-cyanophenyl)cyclopropanecarboxylate (13b). From $\mathbf{4 H}^{+} \mathbf{B F}_{4}{ }^{-}$(159 mg, $600 \mu \mathrm{~mol}), \mathbf{1 b}(50 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(67 \mathrm{mg}, 0.60 \mathrm{mmol})$ according to procedure \mathbf{D}. 13b was obtained as colorless oil $(71 \mathrm{mg}, 0.33 \mathrm{mmol}, 66 \%, d r \sim 7: 1$ in the crude product, $4: 1$ after column chromatography). *major-, ${ }^{\#}$ minor diastereoisomer; signal of one proton of the minor diastereoisomer was set to $1.0 .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$,
 (m, $5 \mathrm{H}, 2 \times \mathrm{CH})$,** $3.88\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right),{ }^{\#} 4.16\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right),{ }^{*} 7.16(\mathrm{~d}$,
$\left.J=8.3 \mathrm{~Hz}, 8 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 7.33-7.38\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 7.50-7.59\left(\mathrm{~m}, 10 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{*}$, ${ }^{\#}$ ${ }^{13}$ C NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.6\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{\#} 14.2\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{*} 14.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, ${ }^{*} 17.6\left(\mathrm{t}, \mathrm{CH}_{2}\right)$,* $22.4(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 24.9(\mathrm{~d}, \mathrm{CH}),{ }^{*} 25.4(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 25.9(\mathrm{~d}, \mathrm{CH}),{ }^{*} 60.6\left(\mathrm{~d}, \mathrm{CH}_{2}\right),{ }^{\#} 61.1\left(\mathrm{~d}, \mathrm{CH}_{2}\right),{ }^{*}$ $110.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 110.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 118.9(\mathrm{~s}, \mathrm{CN}),{ }^{*} 119.0(\mathrm{~s}, \mathrm{CN}),{ }^{\#} 126.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 130.2(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 131.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 132.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 142.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)^{\#}, 146.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 170.5(\mathrm{~s}$, CO_{2}), ${ }^{\#} 172.6$ (s, CO_{2}). ${ }^{*}$ HRMS (EI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}\right]^{+}$215.0941, found 215.0935. MS (EI) $m / z: 216$ (10), 215 (66), 187 (27), 170 (37), 142 (100), 140 (34), 115 (25). DA658
tert-Butyl 2-(4-Cyanophenyl)cyclopropanecarboxylate (13c). From 4H ${ }^{+} \mathbf{B F}^{-}$(200 mg, $750 \mu \mathrm{~mol}), \mathbf{1 c}(64 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(84 \mathrm{mg}, 0.75 \mathrm{mmol})$ according to procedure \mathbf{D}. 13c was obtained as colorless oil $(73 \mathrm{mg}, 0.30 \mathrm{mmol}, 60 \%$, $d r 5: 1$ after column chromatography). Only signals of the major diastereoisomer given. ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=1.17\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33(\mathrm{ddd}, J=8.5,7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}), 1.69-1.62(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHH}$), $2.03-2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.48-2.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.39-7.35\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CAr}^{-}\right.$ H), $7.57-7.54\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.1(\mathrm{t}, \mathrm{CHH}), 23.4(\mathrm{~d}$, $\mathrm{CH}), 25.1(\mathrm{~d}, \mathrm{CH}), 28.0\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 80.8\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 110.4(\mathrm{~s}, \mathrm{C} \mathrm{Ar}), 119.2(\mathrm{~s}, \mathrm{CN}), 130.4(\mathrm{~d}$,

$2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), $131.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 142.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 169.6\left(\mathrm{~s}, \mathrm{CO}_{2}\right)$. HRMS (EI): calcd.
for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}\right]^{+}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)$ 187.0628, found 187.0634. MS (EI) m/z: 187 (100), 170 (44), 142 (44), 85 (63), 83 (100), 57 (62). DA833-2

4-(2-(Phenylsulfonyl)cyclopropyl)benzonitrile (13e). From $\mathbf{4 H}^{+} \mathbf{B F}_{4}^{-}(200 \mathrm{mg}, 750 \mu \mathrm{~mol})$, $\mathbf{1 e}(84 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(84 \mathrm{mg}, 0.75 \mathrm{mmol})$ according to procedure D. 13e was obtained as colorless oil, which solidified slowly at ambient temperature ($130 \mathrm{mg}, 430 \mu \mathrm{~mol}$, 88%, single diastereoisomer). Mp. $127^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.50(\mathrm{ddd}, J=8.4$, 6.6, 5.9 Hz, 1 HCHH), $1.88-1.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H), 2.72$ (ddd, $J=8.5,5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $2.87-3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.08-7.16\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.49-7.62\left(\mathrm{~m}, 2 \mathrm{H}, 4 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.63$

$-7.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.88-7.96\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=14.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 23.4(\mathrm{~d}, \mathrm{CH}), 42.3(\mathrm{~d}, \mathrm{CH}), 111.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 118.4(\mathrm{~s}$, $\mathrm{CN}), 127.3\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 127.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}-\mathrm{H}), 129.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 133.812}\right.$ (d, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 140.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 143.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$. HRMS (EI): calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}\right]^{+}$283.0662, found 283.0667. MS (EI) $m / z: 283$ (3), 143 (8), 142 (100), 140 (12). DA662

4-(2-Cyanocyclopropyl)benzonitrile (13f). From $\mathbf{4 H}^{+} \mathbf{B F}_{4}^{-}$(200 mg , $750 \mu \mathrm{~mol}$), , $\mathbf{1 f}$ ($24 \mathrm{mg}, 0.50 \mathrm{mmol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(84 \mathrm{mg}, 0.75 \mathrm{mmol})$ according to procedure $\mathbf{D} .9 f$ was obtained as colorless solid ($35 \mathrm{mg}, 0.21 \mathrm{mmol}, 42 \%$, single diastereoisomer after column). Mp. $81{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.50(\mathrm{ddd}, J=8.8,6.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}), 1.59-1.77(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}, \mathrm{CH} H), 2.67(\mathrm{ddd}, J=9.1,6.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.24-7.16\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.66$ $-7.56(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Carar}-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.6(\mathrm{~d}, \mathrm{CH}), 15.9\left(\mathrm{~d}, \mathrm{CH}_{2}\right), 24.8(\mathrm{~d}$, $\mathrm{CH}), 111.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 118.5(\mathrm{~s}, \mathrm{CN}), 120.2(\mathrm{~s}, \mathrm{CN}), 127.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 143.2$ nc $\quad \begin{aligned} & \text { (s, } \mathrm{C}_{\mathrm{Ar}} \text {). HRMS (EI): calcd. for }\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2}\right]^{+} \text {168.0682, found 168.0680. MS (EI) } \\ & m / z: 169(12), 168(100), 167(14), 141(61), 140(54), 114(20) \text {. DA661-2 }\end{aligned}$

4-(2-Acetylcyclopropyl)benzonitrile (13g). From $\mathbf{4 H}^{+} \mathbf{B F}^{-}$($159 \mathrm{mg}, 0.60 \mathrm{mmol}$), $\mathbf{1 g}$ ($35 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(67 \mathrm{mg}, 0.60 \mathrm{mmol}$) according to procedure $\mathbf{D} . \mathbf{1 3 g}$ was obtained as colorless oil ($62 \mathrm{mg}, 0.34 \mathrm{mmol}, 68 \%, d r 3: 1$). The signals of the minor diastereoisomer could not be assigned in the ${ }^{1} \mathrm{H}$ NMR due to overlap with the major diastereoisomer. Major: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.38(\mathrm{ddd}, J=8.3,6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} H \mathrm{H}$), 1.71 (ddd, $J=9.0,5.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 2.21-2.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.53 (ddd, $J=9.1,6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.12-7.19\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.53-7.60(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$. ${ }^{*}$ major-, ${ }^{\#}$ minor diastereoisomer. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.5\left(\mathrm{t} \mathrm{CH}_{2}\right),{ }^{\#} 19.7$ $\left(\mathrm{t}, \mathrm{CH}_{2}\right),{ }^{*} 28.4(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 28.4(\mathrm{~d}, \mathrm{CH}),{ }^{*} 30.4(\mathrm{~d}, \mathrm{CH}),{ }^{\#} 31.0\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{*} 31.8\left(\mathrm{q}, \mathrm{CH}_{3}\right),{ }^{\#} 33.2(\mathrm{~d}$, $\left.{ }^{\circ} \mathrm{CH}\right),{ }^{*} 110.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{*} 110.6\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#} 118.9(\mathrm{~s}, 2 \times \mathrm{CN}),{ }^{*}{ }^{, \#} 126.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right)$, ${ }^{*}$ $130.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 131.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{\#} 132.4\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right),{ }^{*} 141.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right),{ }^{\#}$ 146.2 (s, C_{Ar}), ${ }^{*} 203.6$ (s, CO), ${ }^{\#} 205.9$ (s, CO). * HRMS (EI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}\right]^{+} 185.0835$, found 185.0837. MS (EI) m/z: 186 (13), 185 (95), 170 (34), 143 (59), 142 (64), 115 (31), 89 (12), 43 (100). DA655

4-(2-Benzoylcyclopropyl)benzonitrile (13h). From $\mathbf{4 H}^{+} \mathbf{B F}^{-}$($200 \mathrm{mg}, 750 \mu \mathrm{~mol}$), $\mathbf{1 h}$ ($66 \mathrm{mg}, 0.50 \mu \mathrm{~mol}$), and $\mathrm{KO}^{t} \mathrm{Bu}(84 \mathrm{mg}, 0.75 \mathrm{mmol}$) according to procedure \mathbf{D}. The diastereoisomers of 13h were obtained as colorless oils (over all: $103 \mathrm{mg}, 417 \mu \mathrm{~mol}, 83 \%, d r$
 3:1). Major: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.34-1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}), 1.97$ (ddd, $J=8.9,5.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 2.74(\mathrm{ddd}, J=8.9,6.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $2.89-3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.22-7.29\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$, superimposed by solvent), $7.44-7.51$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.54-7.63\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.92-8.03\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 29.3(\mathrm{~s}, \mathrm{CH}), 29.7(\mathrm{~s}, \mathrm{CH}), 110.4(\mathrm{~s}, \mathrm{CN}), 118.9\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$, $127.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.2\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.8\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.5\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}^{-}}\right.$ H), 137.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 146.4 (s, $\mathrm{C}_{\text {Ar }}$), 197.7 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}\right]^{+}$247.0992,
found 247.0978. MS (EI) m/z: 248, (19), 247 (100), 246 (31), 232 (10), 140 (10), 115 (11), 105 (72), 77 (32). Minor: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.53-1.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}), 2.05-2.15$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH} H$), 2.92-2.99 (m, $1 \mathrm{H}, \mathrm{CH}$, superimposed by major diastereoisomer), 3.12-3.34 (m, $1 \mathrm{H}, \mathrm{CH}$), $7.23-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right.$, superimposed by solvent), $7.36-7.57(\mathrm{~m}, 3 \mathrm{H}$, $3 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$, superimposed by major diastereoisomer), $7.57-7.64\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 7.84-7.91$ (m, $\left.2 \mathrm{H}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 27.3(\mathrm{~d}, \mathrm{CH}), 29.1(\mathrm{~d}, \mathrm{CH})$, $110.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right), 119.0(\mathrm{~s}, \mathrm{CN}), 128.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 128.7\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.9\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 131.8$ (d, $2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 132.5 (d, $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$), 138.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 142.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{Ar}}$), 195.6 (s, CO). HRMS (EI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}\right]^{+}$247.0992, found 247.1001. MS (EI) $m / z: 248$, (20), 247 (100), 246 (48), 232 (10), 140 (11), 116 (27), 105 (78), 77 (37). DA691

7.4.3 Kinetics of the Reactions of the Michael Acceptors 1 and 2 with the Ylides $\mathbf{3}$ and 4

7.4.3.1 Reactions with Methyl acrylate 1a

Table 7.6. Kinetics of the reaction of 1 a with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MEA1-1	1×10^{-4}	2.08×10^{-3}	2.69
MEA1-2	1×10^{-4}	3.12×10^{-3}	3.39
MEA1-3	1×10^{-4}	4.16×10^{-3}	4.88
MEA1-4	1×10^{-4}	5.20×10^{-3}	6.16
MEA1-5	1×10^{-4}	6.24×10^{-3}	7.00
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.10 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.7. Kinetics of the reaction of 1a with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Bisexponential decays. The initial rate is assigned to the betaine formation. The bisexponential decays may be caused by a rate determining ring-closure.

Table 7.8. Kinetics of the reaction of 1 a with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MEA2-1	1×10^{-4}	2.08×10^{-3}	4.99
MEA2-2	1×10^{-4}	3.12×10^{-3}	6.18
MEA2-3	1×10^{-4}	4.16×10^{-3}	8.90
MEA2-4	1×10^{-4}	5.20×10^{-3}	1.13×10^{1}
MEA2-5	1×10^{-4}	6.24×10^{-3}	1.29×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.01 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.9. Kinetics of the reaction of 1 a with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MEA2-1	1×10^{-4}	2.08×10^{-3}	3.11×10^{-2}
MEA2-2	1×10^{-4}	3.12×10^{-3}	4.02×10^{-2}
MEA2-3	1×10^{-4}	4.16×10^{-3}	5.75×10^{-2}
MEA2-4	1×10^{-4}	5.20×10^{-3}	7.52×10^{-2}
MEA2-5	1×10^{-4}	6.24×10^{-3}	8.48×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.37 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.10. Kinetics of the reaction of 1a with 4 (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 371 nm).

No.	$[\mathbf{4}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MEA5-1	1×10^{-4}	5.19×10^{-3}	1.99×10^{-2}
MEA5-2	1×10^{-4}	4.19×10^{-3}	1.60×10^{-2}
MEA5-3	1×10^{-4}	3.13×10^{-3}	1.32×10^{-2}
MEA5-5	1×10^{-4}	3.98×10^{-3}	1.56×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.25 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.11. Calculation of the Electrophilicity Parameter E for 1 a using the \mathbf{N} and sN Parameters of 3,4, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 1a with 3,4.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
3a	$26.71 / 0.37$	1.10×10^{3}
3b	$27.45 / 0.38$	6.91×10^{3}
3c	$25.94 / 0.42$	2.01×10^{3}
3d	$20.24 / 0.60$	1.37×10^{1}
4	$21.07 / 0.68$	3.25
$E(\mathbf{1 a})^{[a]}=-18.92$		

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.2 Reactions with Ethyl acrylate (1b)

Table 7.12. Kinetics of the reaction of 1 b with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[3a]/ $\mathrm{mol} \mathrm{L}^{-1}$	[1b]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	6.00	$y=1067.6 x-0.3284$	
EA1-1	1×10^{-4}	1.00×10^{-3}	8.52×10^{-1}			
EA1-2	1×10^{-4}	2.00×10^{-3}	1.76	4.00	$R^{2}=0.9917$	
EA1-3	1×10^{-4}	3.00×10^{-3}	2.82			
EA1-4	1×10^{-4}	4.00×10^{-3}	3.74	0.00		
EA1-5	1×10^{-4}	5.00×10^{-3}	5.20	$0.00 \mathrm{E}+00$	$\begin{gathered} 2.50 \mathrm{E}-03 \\ {[1 \mathrm{~b}] / \mathrm{mol} \mathrm{~L}} \end{gathered}$	5.00E-03
	$k_{2}\left(20^{\circ} \mathrm{C}\right)=1$	$\times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1}$				

Table 7.13. Kinetics of the reaction of 1 b with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
EA2-1	1×10^{-4}	1.00×10^{-3}	1.63
EA2-2	1×10^{-4}	2.00×10^{-3}	3.60
EA2-3	1×10^{-4}	3.00×10^{-3}	5.10
EA2-4	1×10^{-4}	4.00×10^{-3}	6.38
EA2-5	1×10^{-4}	5.00×10^{-3}	8.57
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.67 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.14. Kinetics of the reaction of 1 b with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
EA4-1	3×10^{-5}	2.00×10^{-3}	2.08×10^{-2}
EA4-2	3×10^{-5}	3.00×10^{-3}	3.30×10^{-2}
EA4-3	3×10^{-5}	4.00×10^{-3}	4.54×10^{-2}
EA4-4	3×10^{-5}	5.00×10^{-3}	5.60×10^{-2}
EA4-5	3×10^{-5}	6.00×10^{-3}	6.51×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.12 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.15. Kinetics of the reaction of 1 b with 4 (DMSO, $20^{\circ} \mathrm{C}$, $\mathbf{J \& M}$ method, detection at 371 nm).

No.	$[\mathbf{4}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
EA9-1	9×10^{-5}	4.94×10^{-3}	1.74×10^{-2}
EA9-2	9×10^{-5}	4.25×10^{-3}	1.54×10^{-2}
EA9-3	9×10^{-5}	3.75×10^{-3}	1.32×10^{-2}
EA9-4	9×10^{-5}	3.32×10^{-3}	1.13×10^{-2}
EA9-5	9×10^{-5}	2.93×10^{-3}	9.74×10^{-3}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.89 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.16. Calculation of the Electrophilicity Parameter \boldsymbol{E} for $\mathbf{1 b}$ using the N and s_{N} Parameters of 3,4, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 1 b with 3,4.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
3a	$26.71 / 0.37$	1.07×10^{3}
3c	$25.94 / 0.42$	1.67×10^{3}
3d	$20.24 / 0.60$	1.12×10^{1}
4	$21.07 / 0.68$	3.89
$E(\mathbf{1 b}){ }^{[\mathrm{a}]}=-19.16$		

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.3 Reactions with tert-Butyl acrylate (1c)

Table 7.17. Kinetics of the reaction of 1 c with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.18. Kinetics of the reaction of 1 c with 3 bb (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 427 nm).

Table 7.19. Kinetics of the reaction of 1 c with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
tBuAA4-1	4×10^{-4}	4.00×10^{-3}	9.57×10^{-1}
tBuAA4-2	4×10^{-4}	8.00×10^{-3}	2.17
tBuAA4-3	4×10^{-4}	1.20×10^{-2}	3.31
tBuAA4-4	4×10^{-4}	1.60×10^{-2}	4.45
tBuAA4-5	4×10^{-4}	2.00×10^{-2}	5.69
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.94 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.20. Kinetics of the reaction of 1 c with 3 d (DMSO, $20^{\circ} \mathbf{C}$, $\mathbf{J \& M}$ method, detection at 427 nm).

No.	[3d]/ $\mathrm{mol} \mathrm{L}^{-1}$	[1c]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	$2.00 \mathrm{E}-02$	\bigcirc	
tBuAA2-2	3×10^{-4}	4.38×10^{-3}	1.20×10^{-2}			
tBuAA2-3	3×10^{-4}	5.93×10^{-3}	1.60×10^{-2}		$\begin{gathered} y=2.0506 x+0.0034 \\ R^{2}=0.9896 \end{gathered}$	
tBuAA2-4	3×10^{-4}	7.55×10^{-3}	1.90×10^{-2}			
tBuAA2-5	3×10^{-4}	8.60×10^{-3}	2.07×10^{-2}	0.00E+00		
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.05 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				0.00E+00	$\begin{gathered} 5.00 \mathrm{E}-03 \\ {[1 \mathrm{c}] / \mathrm{mol} \mathrm{~L}^{-1}} \end{gathered}$	1.00E-02

Table 7.21. Kinetics of the reaction of 1 c with 4 (DMSO, $20^{\circ} \mathrm{C}$, $\mathbf{J \& M}$ method, detection at 379 nm).

No.	$[\mathbf{4}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
tBuAA6-1	1×10^{-4}	1.02×10^{-3}	2.63×10^{-3}
tBuAA6-2	1×10^{-4}	1.48×10^{-3}	3.56×10^{-3}
tBuAA6-3	1×10^{-4}	2.01×10^{-3}	4.25×10^{-3}
tBuAA6-5	1×10^{-4}	2.98×10^{-3}	6.39×10^{-3}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.89 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.22. Calculation of the Electrophilicity Parameter E for 1 c using the \boldsymbol{N} and $\boldsymbol{s}_{\mathbf{N}}$ Parameters of $\mathbf{3 , 4 ,} \mathbf{E q}$ 7.1, and the Second-Order Rate Constants for the Reactions of 1c with 3,4.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
3a	$26.71 / 0.37$	2.61×10^{2}
3c	$25.94 / 0.42$	3.40×10^{2}
3d	$20.24 / 0.60$	2.94×10^{2}
4	$21.07 / 0.68$	2.05
$E(\mathbf{1 c})^{[a]}=-20.28$		

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.4 Reactions with N, N-Dimethylacrylamide (1d)

Table 7.23. Kinetics of the reaction of 1 d with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
AM4-1	5×10^{-5}	2.68×10^{-3}	2.90×10^{-2}
AM4-2	5×10^{-5}	4.01×10^{-3}	4.23×10^{-2}
AM4-3	5×10^{-5}	5.35×10^{-3}	5.47×10^{-2}
AM4-4	5×10^{-5}	6.69×10^{-3}	7.40×10^{-2}
AM4-5	5×10^{-5}	8.03×10^{-3}	8.83×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.12 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.24. Kinetics of the reaction of 1 d with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
AM2-1	5×10^{-5}	2.68×10^{-3}	4.61×10^{-2}
AM2-2	5×10^{-5}	4.01×10^{-3}	6.40×10^{-2}
AM2-3	5×10^{-5}	5.35×10^{-3}	7.85×10^{-2}
AM2-4	5×10^{-5}	6.69×10^{-3}	1.02×10^{-2}
AM2-5	5×10^{-5}	8.03×10^{-3}	1.20×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=1.39 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.25. Kinetics of the reaction of 1 d with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at $\mathbf{4 2 5} \mathbf{~ n m}$).

Table 7.26. Calculation of the Electrophilicity Parameter E for $1 d$ using the N and s_{N} Parameters of $\mathbf{3}$, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 1d with 3.

Nucleophile	N / s_{N}	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd } /} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\exp } / k_{2}{ }^{\text {calcd }}$
3a	$26.71 / 0.37$	1.12×10^{1}	1.49×10^{1}	0.75
3b	$27.45 / 0.38$	1.39×10^{1}	3.07×10^{1}	0.45
3c	$25.94 / 0.42$	2.68×10^{1}	1.02×10^{1}	2.63

[a] By eq 7.1 using N, s_{N} and E from this Table; [b] Calculated by least square minimization according to eq 7.1 N, s_{N} and E from this Table.

7.4.3.5 Reactions with (Vinylsulfonyl)benzene (1e)

Table 7.27. Kinetics of the reaction of 1 e with $3 \mathrm{a}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 425 nm ; from ref. [36]).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
VS4-2	5×10^{-5}	5.12×10^{-4}	7.87×10^{-1}
VS4-3	5×10^{-5}	7.68×10^{-4}	1.18
VS4-4	5×10^{-5}	1.02×10^{-4}	1.60
VS4-6	5×10^{-5}	1.54×10^{-3}	2.42
VS4-8	5×10^{-5}	2.05×10^{-3}	3.23
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.60 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.28. Kinetics of the reaction of 1 e with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
VS4-1	4×10^{-4}	5.02×10^{-3}	3.54×10^{1}
VS4-2	4×10^{-4}	6.02×10^{-3}	4.08×10^{1}
VS4-3	4×10^{-4}	7.03×10^{-3}	4.75×10^{1}
VS4-4	4×10^{-4}	8.03×10^{-3}	5.26×10^{1}
VS4-5	4×10^{-4}	9.04×10^{-3}	5.74×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=5.56 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.29. Kinetics of the reaction of 1 b with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
VS4-1	2×10^{-4}	5.02×10^{-3}	1.18×10^{1}
VS4-2	2×10^{-4}	6.02×10^{-3}	1.41×10^{1}
VS4-3	2×10^{-4}	7.03×10^{-3}	1.68×10^{1}
VS4-4	2×10^{-4}	8.03×10^{-3}	1.90×10^{1}
VS4-5	2×10^{-4}	9.04×10^{-3}	2.22×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.55 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Bisexponential decays. The initial rate is assigned to the betaine formation. The bisexponential decays may be caused by a rate determining ring-closure.

Table 7.30. Kinetics of the reaction of 1 d with $3 \mathrm{~d}\left(\mathrm{DMSO}, 20{ }^{\circ} \mathrm{C}\right.$, $\mathbf{J \& M}$ method, detection at 427 nm ; from ref. [36]).

No.	$[\mathbf{3 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
VS5-2	5×10^{-5}	5.22×10^{-4}	1.10×10^{-2}
VS5-3	5×10^{-5}	7.83×10^{-4}	1.60×10^{-2}
VS5-4	5×10^{-5}	1.04×10^{-3}	2.16×10^{-2}
VS5-5	5×10^{-5}	1.30×10^{-3}	2.65×10^{-2}
VS5-6	5×10^{-5}	1.57×10^{-3}	3.11×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.94 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.31. Kinetics of the reaction of 1 e with 3 e (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 445 nm ; from ref. [36]).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
VS5-2	6×10^{-5}	7.83×10^{-4}	3.32×10^{-3}
VS5-3	6×10^{-5}	1.04×10^{-3}	4.21×10^{-3}
VS5-4	6×10^{-5}	1.30×10^{-3}	5.15×10^{-3}
VS5-5	6×10^{-5}	1.57×10^{-3}	6.41×10^{-3}
VS5-6	6×10^{-5}	2.09×10^{-3}	8.61×10^{-3}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.10 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.32. Kinetics of the reaction of 1 e with 4 (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 379 nm).

No.	$[\mathbf{4}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
VS4-1	1×10^{-4}	5.02×10^{-3}	1.11×10^{-1}
VS4-2	1×10^{-4}	6.02×10^{-3}	1.39×10^{-1}
VS4-3	1×10^{-4}	7.03×10^{-3}	1.59×10^{-1}
VS4-4	1×10^{-4}	8.03×10^{-3}	1.80×10^{-1}
VS4-5	1×10^{-4}	9.04×10^{-3}	2.09×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.36 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.33. Calculation of the Electrophilicity Parameter E for 1 e using the N and s_{N} Parameters of $\mathbf{3 , 4 , E q}$ 7.1, and the Second-Order Rate Constants for the Reactions of 1e with 3,4.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
3a	$26.71 / 0.37$	1.60×10^{3}
3b	$27.45 / 0.38$	5.56×10^{3}
3c	$25.94 / 0.42$	2.55×10^{3}
3d	$20.24 / 0.60$	1.94×10^{1}
3e	$19.46 / 0.58$	4.10
4	$21.07 / 0.68$	2.36×10^{1}
$E(\mathbf{1 e})^{[\mathrm{a}]}=-18.36$		

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.6 Reactions with Acrylonitrile (1f)

Table 7.34. Kinetics of the reaction of if with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[3a]/mol L ${ }^{-1}$	[1f]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	6.00	$\begin{gathered} y=1890 x+0.084 \\ R^{2}=0.9872 \end{gathered}$	
AN7-1	5×10^{-5}	1.00×10^{-3}	1.94			
AN7-2	5×10^{-5}	1.50×10^{-3}	3.09			
AN7-3	5×10^{-5}	2.00×10^{-3}	3.79			
AN7-4	5×10^{-5}	2.50×10^{-3}	4.58			
AN7-5	5×10^{-5}	3.00×10^{-3}	5.92	0.00	$1.00 \mathrm{E}-03 \quad 2.00 \mathrm{E}-03$.00E-03
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.89 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					$[1 \mathrm{f}] / \mathrm{mol} \mathrm{L}^{-1}$	

Table 7.35. Kinetics of the reaction of 1 f with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[3b]/ $\mathrm{mol} \mathrm{L}^{-1}$	[1f]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$				
AN9-2	1×10^{-4}	1.50×10^{-3}	4.71		$\begin{gathered} y=3792 x-0.967 \\ R^{2}=0.9979 \end{gathered}$		
AN9-3	1×10^{-4}	2.00×10^{-3}	6.71				
AN9-4	1×10^{-4}	2.50×10^{-3}	8.36				
AN9-5	1×10^{-4}	3.00×10^{-3}	1.05×10	$0.00 \mathrm{E}+00$	$1.00 \mathrm{E}-03$	$2.00 \mathrm{E}-03$	$3.00 \mathrm{E}-03$
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.79 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				[1f] $/ \mathrm{mol} \mathrm{L}^{-1}$			

Bisexponential decays. The initial rate is assigned to the betaine formation. The bisexponential decays may be caused by a rate determining ring-closure.

Table 7.36. Kinetics of the reaction of 1 f with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
AN7-1	1×10^{-4}	1.00×10^{-3}	3.73
AN7-2	1×10^{-4}	1.50×10^{-3}	6.17
AN7-3	1×10^{-4}	2.00×10^{-3}	7.02
AN7-4	1×10^{-4}	2.50×10^{-3}	9.36
AN7-5	1×10^{-4}	3.00×10^{-3}	1.12×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.64 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.37. Kinetics of the reaction of 1 f with 3 d (DMSO, $20^{\circ} \mathbf{C}$, J\&M method, detection at 425 nm).

No.	$[\mathbf{3 d}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
AN4-1	1×10^{-4}	9.89×10^{-3}	1.98×10^{-2}
AN4-2	1×10^{-4}	1.55×10^{-2}	3.15×10^{-2}
AN4-3	1×10^{-4}	2.02×10^{-2}	3.91×10^{-2}
AN4-4	1×10^{-4}	2.51×10^{-2}	5.58×10^{-2}
AN4-5	1×10^{-4}	3.01×10^{-2}	6.68×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.36 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.38. Kinetics of the reaction of 1 f with 3 e (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 445 nm).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
AN3-1	1×10^{-4}	1.02×10^{-3}	3.60×10^{-3}
AN3-3	1×10^{-4}	2.04×10^{-3}	6.07×10^{-3}
AN3-4	1×10^{-4}	2.57×10^{-3}	6.82×10^{-3}
AN3-5	1×10^{-4}	2.96×10^{-3}	8.13×10^{-3}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.25 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.39. Kinetics of the reaction of 1 f with 3 f (DMSO, $20^{\circ} \mathrm{C}$, J\&M method, detection at 476 nm).

No.	$[\mathbf{3 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
AN5-1	1×10^{-4}	1.02×10^{-3}	2.79×10^{-2}
AN5-2	1×10^{-4}	1.54×10^{-3}	4.30×10^{-2}
AN5-3	1×10^{-4}	2.02×10^{-3}	5.59×10^{-2}
AN5-4	1×10^{-4}	2.52×10^{-3}	6.90×10^{-2}
AN5-5	1×10^{-4}	3.07×10^{-3}	8.00×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.56 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.40. Kinetics of the reaction of 1f with 4 (DMSO, $20^{\circ} \mathrm{C}$, $\mathbf{J \& M}$ method, detection at 379 nm).

No.	$[\mathbf{4}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
AN6-1	1×10^{-4}	1.03×10^{-3}	7.30×10^{-3}
AN6-2	1×10^{-4}	1.54×10^{-3}	9.50×10^{-3}
AN6-3	1×10^{-4}	2.04×10^{-3}	1.13×10^{-2}
AN6-5	1×10^{-4}	3.00×10^{-3}	1.70×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.90 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.41. Calculation of the Electrophilicity Parameter E for 1 f using the N and s_{N} Parameters of $\mathbf{3 , 4 , E q}$ 7.1, and the Second-Order Rate Constants for the Reactions of 1 f with 3,4.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
3a	$26.71 / 0.37$	1.89×10^{3}
3b	$27.45 / 0.38$	3.79×10^{3}
3c	$25.94 / 0.42$	3.64×10^{3}
3d	$20.24 / 0.60$	2.36
3e	$19.46 / 0.58$	2.25
4	$21.07 / 0.68$	4.90
$E(\mathbf{1 f})^{[\mathrm{a}]}=-19.06$		
3f	$19.38 / 0.50$	$2.56 \times 10^{1[\mathrm{~b}]}$

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1; [b] Not used for the determination of E.

7.4.3.7 Reactions with Methylvinylketone (1g)

Table 7.42. Kinetics of the reaction of 1 g with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.43. Kinetics of the reaction of 1 g with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
MVK4-1	2×10^{-4}	3.00×10^{-3}	2.46×10^{1}
MVK4-2	2×10^{-4}	3.30×10^{-3}	2.65×10^{1}
MVK4-3	2×10^{-4}	3.60×10^{-3}	2.89×10^{1}
MVK4-4	2×10^{-4}	3.90×10^{-3}	3.19×10^{1}
MVK4-5	2×10^{-4}	4.20×10^{-3}	3.39×10^{1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=7.99 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.44. Kinetics of the reaction of 1 g with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.45. Kinetics of the reaction of 1 g with 3 e (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 445 nm).

Table 7.46. Kinetics of the reaction of 1 g with 4 (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 379 nm).

No.	$[\mathbf{4}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
MVK7-1	1×10^{-4}	3.00×10^{-3}	9.67×10^{-2}
MVK7-2	1×10^{-4}	3.30×10^{-3}	1.06×10^{-1}
MVK7-3	1×10^{-4}	3.60×10^{-3}	1.23×10^{-1}
MVK7-4	1×10^{-4}	3.90×10^{-3}	1.37×10^{-1}
MVK7-5	1×10^{-4}	4.20×10^{-3}	1.45×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.25 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.47. Calculation of the Electrophilicity Parameter E for 1 g using the N and s_{N} Parameters of $\mathbf{3 , 4 , E q}$ 7.1, and the Second-Order Rate Constants for the Reactions of 1 g with 3,4.

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1; [b] Not used for the determination of E.

7.4.3.8 Reactions with Phenylvinylketone (1h)

Table 7.48. Kinetics of the reaction of 1 h with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at $\mathbf{4 2 5} \mathbf{~ n m}$).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
PVK3-1	1×10^{-4}	1.02×10^{-3}	3.79×10^{1}
PVK3-2	1×10^{-4}	1.12×10^{-3}	4.10×10^{1}
PVK3-3	1×10^{-4}	1.22×10^{-3}	4.49×10^{1}
PVK3-4	1×10^{-4}	1.32×10^{-3}	4.80×10^{1}
PVK3-5	1×10^{-4}	1.42×10^{-3}	5.18×10^{1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.43 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.49. Kinetics of the reaction of 1 h with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
PVK3-1	4×10^{-4}	4.06×10^{-3}	1.38×10^{2}
PVK3-2	4×10^{-4}	4.47×10^{-3}	1.46×10^{2}
PVK3-3	4×10^{-4}	4.87×10^{-3}	1.56×10^{2}
PVK3-4	4×10^{-4}	5.28×10^{-3}	1.70×10^{2}
PVK3-5	4×10^{-4}	5.69×10^{-3}	1.77×10^{2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=2.55 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.50. Kinetics of the reaction of 1 h with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[3c]/ $\mathrm{mol} \mathrm{L}^{-1}$	[1h]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$		$\begin{gathered} y=48858 x-19.392 \\ R^{2}=0.9918 \end{gathered}$	\cdots
PVK2-1	4×10^{-4}	4.06×10^{-3}	1.76×10^{2}			
PVK2-2	4×10^{-4}	4.47×10^{-3}	2.01×10^{2}			
PVK2-3	4×10^{-4}	4.87×10^{-3}	2.22×10^{2}			
PVK2-4	4×10^{-4}	5.28×10^{-3}	2.40×10^{2}			
PVK2-5	4×10^{-4}	5.69×10^{-3}	2.56×10^{2}			
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=4.89 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				0.00E+00	$\begin{aligned} & \mathrm{E}-03 \quad 4.00 \mathrm{E}-03 \mathrm{~h}] / \mathrm{mol} \mathrm{~L}-1 \end{aligned}$	00E-03

The positive intercept may be due to the fact that the reaction is very fast and the solutions are not homogenous after 5 ms .

Table 7.51. Kinetics of the reaction of 1 h with 3 d (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{1 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
PVK5-1	5×10^{-5}	1.02×10^{-3}	2.18×10^{-1}
PVK5-2	5×10^{-5}	1.12×10^{-3}	2.38×10^{-1}
PVK5-3	5×10^{-5}	1.22×10^{-3}	2.58×10^{-1}
PVK5-4	5×10^{-5}	1.32×10^{-3}	2.78×10^{-1}
PVK5-5	5×10^{-5}	1.42×10^{-3}	3.03×10^{-1}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=2.07 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.53. Kinetics of the reaction of 1 h with 4 (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 379 nm).

Table 7.54. Calculation of the Electrophilicity Parameter \boldsymbol{E} for $\mathbf{1 h}$ using the N and s_{N} Parameters of 3,4, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 1 h with 3,4.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	
3a	$26.71 / 0.37$	3.43×10^{4}	
3b	$27.45 / 0.38$	2.55×10^{4}	
3c	$25.94 / 0.42$	4.89×10^{4}	
3d	$20.24 / 0.60$	8.00×10^{2}	
3e	$19.46 / 0.58$	2.07×10^{2}	
$E(\mathbf{1 h})^{[a]}=-15.27$			
$\mathbf{4}$	$21.07 / 0.68$		

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1; [b] Not used for the determination of E.

7.4.3.9 Reactions with Ethyl crotonate (2a)

Table 7.55. Kinetics of the reaction of 2 a with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[3a]/ $\mathrm{mol} \mathrm{L}^{-1}$	[2a]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	5.00E-02		
CEE1-1	1×10^{-4}	2.01×10^{-3}	8.49×10^{-3}			
CEE1-2	1×10^{-4}	4.02×10^{-3}	1.59×10^{-2}	${\underset{c}{i n}}_{\substack{i n \\ g}} 2.50 \mathrm{E}-02$	0	
CEE1-3	1×10^{-4}	6.03×10^{-3}	2.50×10^{-2}		68x	
CEE1-4	1×10^{-4}	8.04×10^{-3}	3.26×10^{-2}			
CEE1-5	1×10^{-4}	1.00×10^{-2}	4.17×10^{-2}	$0.00 \mathrm{E}+00$	$4.00 \mathrm{E}-03 \quad 8.00 \mathrm{E}-03$	120 E
$k_{2}\left(20^{\circ} \mathrm{C}\right)=4.14 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					[2a]/mol L-	

Table 7.56. Kinetics of the reaction of 2a with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.57. Calculationof the Electrophilicity Parameter E for 2a using the N and s_{N} Parameters of 3, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 2a with 3.

Nucleophile	N / s_{N}	$k_{2}{ }^{\text {exp }} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd }} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
3a	$26.71 / 0.37$	4.14	1.27×10^{1}	0.33
3c	$25.94 / 0.42$	2.87×10^{1}	8.16	3.57
$E(\mathbf{2 a})^{[a]}=-23.73$				

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.10 Reactions with Ethyl cinnamate (2b)

Table 7.58. Kinetics of the reaction of 2 b with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
ZE1-1	1×10^{-4}	1.02×10^{-3}	2.67×10^{-3}
ZE1-2	1×10^{-4}	1.51×10^{-3}	3.81×10^{-3}
ZE1-3	1×10^{-4}	2.03×10^{-3}	5.61×10^{-3}
ZE1-4	1×10^{-4}	2.58×10^{-3}	7.30×10^{-3}
ZE1-5	1×10^{-4}	2.97×10^{-3}	8.57×10^{-3}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.08 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.59. Kinetics of the reaction of 2 b with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 b}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
ZE1-1	2×10^{-4}	1.98×10^{-3}	1.76×10^{-2}
ZE1-2	2×10^{-4}	2.41×10^{-3}	2.07×10^{-2}
ZE1-3	2×10^{-4}	2.78×10^{-3}	2.33×10^{-2}
ZE1-4	2×10^{-4}	3.13×10^{-3}	2.65×10^{-2}
ZE1-5	2×10^{-4}	3.55×10^{-3}	2.98×10^{-2}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=7.77 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.60. Calculation of the Electrophilicity Parameter \boldsymbol{E} for 2 b using the \boldsymbol{N} and s_{N} Parameters of 3, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 2b with 3.

Nucleophile	N / s_{N}	$k_{2}{ }^{\text {exp }} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd } / ~} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
3a	$26.71 / 0.37$	3.08	6.53	0.47
3c	$25.94 / 0.42$	7.77	4.00	1.94

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.11 Reactions with Ethyl methycrylate (2c)

Table 7.61. Kinetics of the reaction of 2 c with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.62. Kinetics of the reaction of 2 c with $3 \mathrm{c}\left(\mathrm{DMSO}, 20^{\circ} \mathrm{C}\right.$, Stopped-flow method, detection at 425 nm$)$.

Table 7.63. Calculation of the Electrophilicity Parameter E for 2c using the N and s_{N} Parameters of 3, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 2 c with 3.

Nucleophile	N / s_{N}	$k_{2}{ }^{\exp /} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd }} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
3a	$26.71 / 0.37$	1.50×10^{1}	2.85×10^{1}	0.53
3c	$25.94 / 0.42$	3.76×10^{1}	2.13×10^{1}	1.76
$E(\mathbf{2 c})^{[\mathrm{ad}]}=-22.78$				

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.12 Reactions with (\boldsymbol{E})-1-Methyl-4-(styrylsulfonyl)benzene (2e)

Table 7.64. Kinetics of the reaction of 2 e with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.65. Kinetics of the reaction of 2 e with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.66. Calculation of the Electrophilicity Parameter \boldsymbol{E} for 2e using the \boldsymbol{N} and s_{N} Parameters of 3, Eq 7.1, and the Second-Order Rate Constants for the Reactions of 2e with 3.

Nucleophile	N / s_{N}	$k_{2}{ }^{\text {exp }} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd } /} / \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp } / k_{2}}{ }^{\text {calcd }}$
3a	$26.71 / 0.37$	2.36	5.59	0.42
3c	$25.94 / 0.42$	7.17	3.35	2.14
$\quad E(\mathbf{2 e})^{[\mathrm{a}]}=-24.69$				

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.13 Reactions with Cinnamonitrile (2f)

Table 7.67. Kinetics of the reaction of 2 f with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 f}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
ZN1-1	1×10^{-4}	2.47×10^{-3}	1.58×10^{-2}
ZN1-2	1×10^{-4}	4.94×10^{-3}	3.11×10^{-2}
ZN1-3	1×10^{-4}	7.40×10^{-3}	4.66×10^{-2}
ZN1-4	1×10^{-4}	9.87×10^{-3}	6.14×10^{-2}
ZN1-5	1×10^{-4}	1.23×10^{-2}	7.66×10^{-2}
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=6.15 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

able 7.68. Calculation of the Electrophilicity Parameter \boldsymbol{E} for 2 f using the \boldsymbol{N} and $\boldsymbol{s}_{\mathrm{N}}$ Parameters of 3, Eq 7.1, and the Second-Order Rate Constants for the Reactions of $2 f$ with 3.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
3a	$26.71 / 0.37$	6.15
$E(\mathbf{2 f})^{[a]}=-24.57$		

[a] Calculated by eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.14 (E)-4-phenylbut-3-en-2-one (2g)

Table 7.69. Kinetics of the reaction of 2 g with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[3a]/ $\mathrm{mol} \mathrm{L}^{-1}$	[2g]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	$2.00 \mathrm{E}-01$	$\begin{gathered} y=17.738 x+0.0073 \\ R^{2}=0.9966 \end{gathered}$	
PBO3-1	1×10^{-4}	2.01×10^{-3}	4.03×10^{-2}			
PBO3-2	1×10^{-4}	4.01×10^{-3}	7.84×10^{-2}	$1.00 \mathrm{E}-01$	0	
PBO3-3	1×10^{-4}	6.02×10^{-3}	1.19×10^{-1}			
PBO3-4	1×10^{-4}	8.03×10^{-3}	1.51×10^{-1}	0.00E+00		
PBO3-5	1×10^{-4}	1.00×10^{-2}	1.82×10^{-1}	$0.00 \mathrm{E}+00$	$4.00 \mathrm{E}-03 \quad 8.00 \mathrm{E}-03$	1.20E-02
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.77 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				[2g]/mol L-		

Table 7.70. Kinetics of the reaction of 2 g with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

Table 7.71. Kinetics of the reaction of 2 g with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 g}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\mathrm{obs}} / \mathrm{s}^{-1}$
PBO1-1	4×10^{-4}	4.01×10^{-3}	2.19×10^{-1}
PBO1-2	4×10^{-4}	8.03×10^{-3}	4.34×10^{-1}
PBO1-4	4×10^{-4}	1.61×10^{-2}	6.95×10^{-1}
PBO1-5	4×10^{-4}	2.01×10^{-2}	8.74×10^{-1}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=3.91 \times 10^{1} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.72. Calculation of the Electrophilicity Parameter E for 2 g using the N and s_{N} Parameters of 3, Eq 7.1, and the Second-Order Rate Constants for the Reactions of $\mathbf{2 g}$ with 3.

Nucleophile	N / s_{N}	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1[\mathrm{a}]}$	$k_{2}{ }^{\text {exp }} / k_{2}^{\text {calcd }}$
3a	$26.71 / 0.37$	1.77×10^{1}	2.37×10^{1}	0.75
3b	$27.45 / 0.38$	2.66×10^{1}	2.37×10^{1}	0.54
3c	$25.94 / 0.42$	3.91×10^{1}	1.73×10^{1}	2.26
$=-22.99$				

[a] From eq 7.1 using N, s_{N} and E from this Table; [b] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.4.3.15 Reactions with Chalcone (2h)

Table 7.73. Kinetics of the reaction of 2 h with 3 a (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 a}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
CHA3-1	1×10^{-4}	2.00×10^{-3}	6.44×10^{-1}
CHA3-2	1×10^{-4}	3.00×10^{-3}	9.57×10^{-1}
CHA3-3	1×10^{-4}	4.00×10^{-3}	1.28
CHA3-4	1×10^{-4}	5.00×10^{-3}	1.63
CHA3-5	1×10^{-4}	6.00×10^{-3}	1.96
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.31 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.74. Kinetics of the reaction of 2 h with 3 b (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	[3b]/mol L ${ }^{-1}$	[2h]/ $\mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$	2.00		
CHA3-1	2×10^{-4}	2.00×10^{-3}	7.04×10^{-1}		$\begin{gathered} y=320.2 x+0.068 \\ R^{2}=0.9856 \end{gathered}$	
CHA3-2	2×10^{-4}	3.00×10^{-3}	1.07			
CHA3-3	2×10^{-4}	4.00×10^{-3}	1.26			
CHA3-4	2×10^{-4}	5.00×10^{-3}	1.74			
CHA3-5	2×10^{-4}	6.00×10^{-3}	1.97	0.00	$2.00 \mathrm{E}-03 \quad 4.00 \mathrm{E}-03$	6.00E-03
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=3.20 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$				$[2 \mathrm{~h}] / \mathrm{mol} \mathrm{L}^{-1}$		

Table 7.75. Kinetics of the reaction of 2 h with 3 c (DMSO, $20^{\circ} \mathrm{C}$, Stopped-flow method, detection at 425 nm).

No.	$[\mathbf{3 c}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathbf{2 h}] / \mathrm{mol} \mathrm{L}^{-1}$	$k_{\text {obs }} / \mathrm{s}^{-1}$
CHA3-1	2×10^{-4}	2.00×10^{-3}	1.24
CHA3-2	2×10^{-4}	3.00×10^{-3}	1.80
CHA3-3	2×10^{-4}	4.00×10^{-3}	2.44
CHA3-4	2×10^{-4}	5.00×10^{-3}	3.13
CHA3-5	2×10^{-4}	6.00×10^{-3}	3.66
$k_{2}\left(20{ }^{\circ} \mathrm{C}\right)=6.17 \times 10^{2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			

Table 7.76. Comparison of the Experimental Rate Constants for the reactions of 2 h with $\mathbf{3 , 4}$ and the Rate Constants Calculated by Eq 7.1 from the Reported E-parameter of $\mathbf{2 h}$.

Nucleophile	N / s_{N}	$k_{2} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	
3a	$26.71 / 0.37$	3.31×10^{2}	
3b	$27.45 / 0.38$	3.20×10^{2}	
3c	$25.94 / 0.42$	6.17×10^{2}	
4	$21.07 / 0.68$	$3.41 \times 10^{1[\mathrm{a}]}$	
$E(\mathbf{2 h})^{[\mathrm{a}]}=-19.37$			

[a] Calculated by least square minimization according to eq 7.1 using N, s_{N} from Table 7.1.

7.5 References

[1] (a) S. Patai, Z. Rappoport, in The Chemistry of Alkenes (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1964, p. 469-584; (b) W. Nagata, M. Yoshioka, Org. React. 1977, 25, 255-476; (c) D. A. Oare, C. H. Heathcock, in Topics in Stereochemistry, Vol 18
(Eds.: E. L. Eliel, S. H. Wilen), Wiley-Interscience, New York, 1989, p. 227-407; (d) Z. Rappoport, in Nucleophilicity (Eds.: J. M. Harris, S. P. McManus), American Chemical Society, Washington, DC, 1987, p. 399-424; (e) D. A. Oare, C. H. Heathcock, in Topics in Stereochemistry, Vol. 20 (Eds.: E. L. Eliel, S. H. Wilen), Wiley-Interscience Hoboken, NJ 1991, p. 87-170; (f) I. Chataigner, A. Harrison-Marchand, J. Maddaluno, in Science of Synthesis, Vol. 26 (Ed.: J. Cossy), Georg Thieme Verlag, Stuttgart, Germany, 2005, p. 1123-1286; (g) F. Fringuelli, O. Piermatti, F. Pizzo, L. Vaccaro, in Science of Synthesis, Vol. $47 b$ (Ed.: A. de Meijere), Georg Thieme Verlag, Stuttgart, 2010, p. 561-722.
[2] (a) E. D. Bergmann, D. Ginsburg, R. Pappo, in Organic Reactions, Wiley, New York, 1959, pp. 179-555; (b) P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Vol. 9, Pergamon, Oxford, 1992.
[3] (a) I. Zugravescu, M. Petrovanu, N-Ylid Chemistry, McGraw-Hill, New York, 1976; (b) A.-H. Li, L.-X. Dai, V. K. Aggarwal, Chem. Rev. 1997, 97, 2341-2372; (c) E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841-5883; (d) M. J. Gaunt, C. C. C. Johanson, Chem. Rev. 2007, 107, 5596-5605.
[4] (a) R. Huisgen, H. Stangl, H. J. Sturm, H. Wagenhofer, Angew. Chem. 1961, 73, 170; (b) R. Huisgen, Angew. Chem., Int. Ed. Engl. 1963, 2, 565-598; (c) A. Ledwith, Y. Shih-Lin, J. Chem. Soc. B 1967, 83-84; (d) R. Huisgen, G. Szeimies, L. Möbius, Chem. Ber. 1967, 100, 2494-2507; (e) R. Huisgen, J. Org. Chem. 1976, 41, 403-419; (f) A. Eckell, M. V. George, R. Huisgen, A. S. Kende, Chem. Ber. 1977, 110, 578-595; (g) L. Fisera, J. Geittner, R. Huisgen, H.-U. Reissig, Heterocycles 1978, 10, 153-158; (h) R. Huisgen, L. Xingya, Tetrahedron Lett. 1983, 24, 4185-4188; (i) A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, John Wiley and Sons, New York, 1985; (j) R. Huisgen, E. Langhals, Tetrahedron Lett. 1989, 30, 5369-5372.
[5] (a) J. Sauer, R. Sustmann, Angew. Chem. 1980, 92, 773-801; (b) J. Sauer, D. Lang, H. Wiest, Chem. Ber. 1964, 97, 3208-3218; (c) J. Sauer, H. Wiest, A. Mielert, Chem. Ber. 1964, 97, 3183-3207; (d) N. K. Sangwan, H.-J. Schneider, J. Chem. Soc., Perkin Trans. 2 1989, 1223-1227; (e) A. Berkessel, H. Gröger, Asymmetric Organocatalysis, WileyVCH Weinheim 2005.
[6] (a) Y. Ogata, M. Okano, Y. Furuya, I. Tabushi, J. Am. Chem. Soc. 1956, 78, 5426-5428; (b) K. T. Finley, D. R. Call, G. W. Sovocool, W. J. Hayles, Can. J. Chem. 1967, 45, 571-573.
[7] (a) N. Ogata, T. Asahara, Bull. Chem. Soc. Jap. 1966, 39, 1486-1490; (b) I. Šestáková, V. Horák, P. Zuman, Collect. Czech. Chem. Commun. 1966, 31, 3889-3902; (c) G. J. Dienys, L. J. J. Kunskaite, A. K. Vaitkevicius, A. V. Klimavicius, Org. Reactiv., Engl. Ed. 1975, 12, 275-282; (d) O. Adomeniene, G. Dienys, Z. Stumbreviciute, Org. Reactiv., Engl. Ed. 1978, 15, 38-44.
[8] (a) K. L. Mallik, M. N. Das, Z. Phys. Chem. 1960, 25, 205-216; (b) K. Sanui, N. Ogata, Bull. Chem. Soc. Jap. 1967, 40, 1727-1727; (c) H. Shenhav, Z. Rappoport, S. Patai, J. Chem. Soc. B 1970, 469-476; (d) J. Szczesna, M. Kostecki, S. Kinastowski, Rocz. Akad. Roln. Poznaniu 1988, 192, 99-104; (e) M. Kostecki, J. Szczesna, S. Kinastowski, Rocz. Akad. Roln. Poznaniu 1993, 256, 25-32.
[9] (a) J. W. Bunting, A. Toth, C. K. M. Heo, R. G. Moors, J. Am. Chem. Soc. 1990, 112, 8878-8885; (b) C. K. M. Heo, J. W. Bunting, J. Org. Chem. 1992, 57, 3570-3578.
[10] (a) M. Friedman, J. S. Wall, J. Am. Chem. Soc. 1964, 86, 3735-3741; (b) M. Friedman, J. F. Cavins, J. S. Wall, J. Am. Chem. Soc. 1965, 87, 3672-3682; (c) M. Friedman, J. S. Wall, J. Org. Chem. 1966, 31, 2888-2894; (d) M. Friedman, J. A. Romersberger, J. Org. Chem. 1968, 33, 154-157.
[11] (a) P. Carsky, P. Zuman, V. Horvak, Collect. Czech. Chem. Commun. 1965, 30, 43164336; (b) B. A. Feit, R. Pazhenchevsky, B. Pazhenchevsky, J. Org. Chem. 1976, 41, 3246-3250.
[12] (a) N. Ferry, F. J. McQuillin, J. Chem. Soc. 1962, 103-113; (b) B.-A. Feit, A. Zilkha, J. Org. Chem. 1963, 28, 406-410; (c) R. N. Ring, G. C. Tesoro, D. R. Moore, J. Org. Chem. 1967, 32, 1091-1094.
[13] (a) M. Morton, H. Landfield, J. Am. Chem. Soc. 1952, 74, 3523-3526; (b) W. G. Davies, E. W. Hardisty, T. P. Nevell, R. H. Peters, J. Chem. Soc. B, Phys. Org. 1970, 998-1004.
[14] (a) D. W. Roberts, A. Natsch, Chem. Res. Toxicol. 2009, 22, 592-603; (b) J. A. H. Schwöbel, D. Wondrousch, Y. K. Koleva, J. C. Madden, M. T. D. Cronin, G. Schüürmann, Chem. Res. Toxicol. 2010, 23, 1576-1585; (c) S. Amslinger, N. Al-Rifai, K. Winter, K. Wörmann, R. Scholz, B. Paul, M. Wild, Org. Biomol. Chem. 2013, 11, 549-554.
[15] I. Petnehazy, G. Clementis, Z. M. Jaszay, L. Toke, C. D. Hall, J. Chem. Soc., Perkin Trans. 2 1996, 2279-2284.
[16] (a) R. Lucius, R. Loos, H. Mayr, Angew. Chem., Int. Ed. 2002, 41, 91-95; (b) T. Lemek, H. Mayr, J. Org. Chem. 2003, 68, 6880-6886; (c) S. T. A. Berger, F. H. Seeliger, F. Hofbauer, H. Mayr, Org. Biomol. Chem. 2007, 5, 3020-3026; (d) O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682; (e) S. Lakhdar, T. Tokuyasu, H. Mayr, Angew. Chem. Int. Ed. 2008, 47, 8723-8726; (f) T. Kanzian, H. Mayr, Chem. Eur. J. 2010, 16, 11670-11677; (g) T. Kanzian, S. Nicolini, L. De Crescentini, O. A. Attanasi, A. R. Ofial, H. Mayr, Chem. Eur. J. 2010, 16, 12008-12016; (h) R. Appel, H. Mayr, J. Am. Chem. Soc. 2011, 113, 8240-8251; (i) I. Zenz, H. Mayr, J. Org. Chem. 2011, 76, 9370-9378; (j) H. Asahara, H. Mayr, Chem. Asian J. 2012, 7, 1401-1407.
[17] D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, submitted.
[18] D. S. Allgäuer, H. Mayr, 2013, unpublished results.
[19] D. S. Allgäuer, P. Mayer, H. Mayr, J. Am. Chem. Soc. 2013, 135, 15216-15224.
[20] (a) R. Appel, N. Hartmann, H. Mayr, J. Am. Chem. Soc. 2010, 132, 17894-17900; (b) R. Appel, H. Mayr, Chem. Eur. J. 2010, 16, 8610-8614.
[21] (a) H. Mayr, M. Patz, Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957; (b) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512; (c) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (d) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 1807-1821; (e) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584-595; (f) H. Mayr, S. Lakhdar, B. Maji, A. R. Ofial, Beilstein J. Org. Chem. 2012, 8, 1458-1478; (g) For a comprehensive database of nucleophilicity parameters N, s_{N} and electrophilicity parameters E, see http://www.cup.lmu.de/oc/mayr/.
[22] R. C. Samanta, B. Maji, S. De Sarkar, K. Bergander, R. Fröhlich, C. Mück-Lichtenfeld, H. Mayr, A. Studer, Angew. Chem., Int. Ed. 2012, 51, 5234-5238.
[23] (a) A. G. Mikhailovskii, V. S. Shklyaev, Chem. Heterocycl. Compd. 1997, 33, 243-265; (b) J. Jacobs, E. Van Hende, S. Claessens, N. De Kimpe, Curr. Org. Chem. 2011, 15, 1340-1362; (c) A. Kakehi, Heterocycles 2012, 85, 1529-1577.
[24] O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3137-3157.
[25] (a) R. A. Firestone, J. Org. Chem. 1968, 33, 2285-2290; (b) R. A. Firestone, J. Org. Chem. 1972, 37, 2181-2191.
[26] R. Huisgen, J. Org. Chem. 1968, 33, 2291-2297.
[27] S. L. Riches, C. Saha, N. F. Filgueira, E. Grange, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 7626-7630.
[28] O. Tsuge, S. Kanemasa, S. Takenaka, Bull. Chem. Soc. Jpn. 1985, 58, 3320-3336.
[29] D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, 6379-6388.
[30] The kinetics of the reactions of N, N-dimethyl cinnamamide with the pyridinium ylides 3 showed bisexponential decays of the absorbances of the ylides 3. As no reaction product could be obtained, it is unclear to which reaction these decays refer. Thus, the kinetics were not evaluated.
[31] (a) P. Pérez, A. Toro-Labbé, A. Aizman, R. Contreras, J. Org. Chem. 2002, 67, 4747-4752; (b) L. R. Domingo, P. Pérez, R. Contreras, Tetrahedron 2004, 60, 6585-6591; (c) E. Chamorro, M. Duque-Noreña, P. Pérez, J. Mol. Struct. THEOCHEM 2009, 896, 73-79; (d) E. Chamorro, M. Duque-Noreña, P. Pérez, J. Mol. Struct. THEOCHEM 2009, 901, 145-152; (e) C. Wang, Y. Fu, Q.-X. Guo, L. Liu, Chem. Eur. J. 2010, 16, 2586-2598; (f) L.-G. Zhuo, W. Liao, Z.-X. Yu, Asian J. Org. Chem. 2012, 1, 336-345; (g) S.-i. Kiyooka, D. Kaneno, R. Fujiyama, Tetrahedron 2013, 69, 4247-4258; (h) E. Chamorro, M. Duque-Noreña, R. Notario, P. Pérez, J. Phys. Chem. A 2013, 117, 2636-2643.
[32] (a) R. Huisgen, Angew. Chem., Int. Ed. Engl. 1963, 2, 633-645; (b) R. Sustmann, Pure Appl. Chem. 1974, 40, 569-593; (c) B. Blankenburg, H. Fiedler, M. Hampel, H. G. Hauthal, G. Just, K. Kahlert, J. Korn, K. H. Müller, W. Pritzkow, Y. Reinhold, M. Röllig, E. Sauer, D. Schnurpfeil, G. Zimmermann, J. Prakt. Chem. 1974, 316, 804-816; (d) W. Bihlmaier, R. Huisgen, H.-U. Reissig, S. Voss, Tetrahedron Lett. 1979, 20, 2621-2624.
[33] (a) D. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2007, 129, 10646-10647; (b) D. H. Ess, K. N. Houk, J. .Am. Chem. Soc. 2008, 130, 10187-10198; (c) L. Xu, C. E. Doubleday, K. N. Houk, J. Am. Chem. Soc. 2010, 132, 3029-3037; (d) Y. Lan, L. Zou, Y. Cao, K. N. Houk, J. Phys. Chem. A 2011, 115, 13906-13920; (e) S. A. Lopez, M. E. Munk, K. N. Houk, J. Org. Chem. 2013, 78, 1576-1582.
[34] (a) W.-J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118-3127; (b) I. Fernández, F. P. Cossío, F. M. Bickelhaupt, J. Org. Chem. 2011, 76, 2310-2314.
[35] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
[36] H. Asahara unpublished results. 2012.

8 Applications of the Linear Free-Energy Relationship $\log k_{2}=s_{\mathrm{N}}(N+E)$

Dominik S. Allgäuer and Herbert Mayr

8.1 Introduction

In chapters 5-7 we have derived the electrophilicity parameters E for a variety of acceptorsubstituted olefins, like the ethylenes $\mathbf{1}$ and $\mathbf{3},{ }^{[1]}$ the propylenes $\mathbf{2 a}, \mathbf{c}, \mathrm{i}^{[1 \mathrm{~b}, 2]}$ and the styrenes $\mathbf{2 b}, \mathbf{2} \mathbf{e}-\mathbf{h}, \mathbf{j}^{[1 b, 2]}$ (Chart 8.1) from the rate constants of their reactions with pyridinium ${ }^{[3]}$ and sulfonium ylides ${ }^{[4]}$ using eq 8.1 , in which k_{2} is the second-order rate constant at $20^{\circ} \mathrm{C}$, s_{N} is a nucleophile specific slope parameter, N is a nucleophilicity parameter, and E is an electrophilicity parameter.

Rate constants for a large number of reactions of the Michael acceptors 1-3 with nucleophiles with known nucleophilicity parameters (N and s_{N}) were determined over the last decades (Scheme 8.1) ${ }^{[5-9]}$ In order to examine the general applicability of the E parameters determined in this work for predicting rate constants of Michael reactions, we collected rate constants ${ }^{[5-9]}$ for the additions of $\mathrm{C},{ }^{[5]} \mathrm{N},{ }^{[6]} \mathrm{O},{ }^{[7]} \mathrm{S},{ }^{[8]}$ and $\mathrm{P}^{[9]}$ nucleophiles to the Michael acceptors $\mathbf{1 - 3}$ from the literature and compared them with those calculated by eq 8.1 using the previously reported s_{N} and N parameters of these nucleophiles ${ }^{[10-15]}$ and the E parameters of the acceptor-substituted olefins $\mathbf{1 - 3}$ from Chart 8.1. In order to avoid ambiguities, we did not correct the reported rate constants for small changes in temperature or solvent polarity and just discuss when large deviations arise.

Many rate constants for the reactions of the activated olefins 1-3 with diazomethanes ([3+2]cycloadditions) ${ }^{[16]}$ and dienes (Diels-Alder reactions) ${ }^{[17]}$ have been reported previously ($k_{2}{ }^{\text {exp }}$; Scheme 8.2). The nucleophilicity parameters N and s_{N} of these diazomethanes ${ }^{[18]}$ and dienes ${ }^{[19]}$ have been derived from their stepwise reactions with benzhydrylium ions in preceding studies. In recent reports we have shown that eq 8.1 allows to predict the second-order rate constants for a large variety of polar nucleophile electrophile combinations, while concerted reactions do not follow eq 1. ${ }^{[20]}$

$$
\begin{equation*}
\log k_{2}=s_{\mathrm{N}}(N+E) \tag{8.1}
\end{equation*}
$$

Chart 8.1. Structures and electrophilicity parameters \boldsymbol{E} of the acceptor-substituted Olefins 1-3 (\boldsymbol{E} from refs. [1-2]).

The experimental rate constants $\left(k_{2}{ }^{\text {exp }}\right)$ for the reactions of diazomethanes and dienes with the Michael acceptors $\mathbf{1}-\mathbf{3}$ correspond to concerted processes, while the rate con-

Scheme 8.1. Addition of nucleophiles to the acceptor-substituted olefins 1-3.
 constants calculated by eq $8.1\left(k_{2}{ }^{\text {calcd }}\right)$ describe the corresponding stepwise additions. The deviation between these calculated rate constants ($\left.k_{2}{ }^{\text {calcd }}\right)$ and the experimental rate constants ($k_{2}{ }^{\text {exp }}$) can be used to derive the "free enthalpy of concert" $\Delta G_{\text {concert }}$ according to eq 8.2. ${ }^{[21]}$

Although the conditions (temperature, solvent) under which many of these rate-constants were obtained, differ from those used to derive E, N and s_{N}, we did not correct the reported rate constants for changes in temperature or solvent polarity to avoid ambiguities.

Scheme 8.2 a) 1,3-Dipolar cycloaddition of a diazomethane to the acceptor-substituted olefins 1-3. b) DielsAlder reaction of a diene with the acceptor-substituted olefins 1-3.
a)

b)

$$
\begin{equation*}
\Delta G_{\mathrm{concert}}=R T \ln \left(k_{2}^{\exp } / k_{2}^{\text {calcd }}\right) \tag{8.2}
\end{equation*}
$$

8.2 Testing the Applicability of $\log k_{2}=s_{\mathrm{N}}(N+E)$

8.2.1 General

Table 8.1 lists the nucleophilicity parameters N and s_{N} of various $\mathrm{C},{ }^{[10]} \mathrm{N},{ }^{[11-13]} \mathrm{O},{ }^{[14]} \mathrm{S},{ }^{[12 a, 13]}$ and $\mathrm{P}^{[15]}$ nucleophiles, for which rate constants for reactions with the Michael acceptors 1-3 are available, and the solvent in which these parameters were determined. In the following Figures and Tables, we will refer to the corresponding nucleophiles using the abbreviation given in Table 8.1.

Table 8.1. N and s_{N} parameters of $C,{ }^{[10]} N,{ }^{[11-13]} O,{ }^{[14]} S,{ }^{[12 a, 13]}$ and $P^{[15]}$ nucleophiles at $20{ }^{\circ} \mathbf{C}$.

Nucleophile	Abbreviation	Solvent	N/s ${ }_{\mathrm{N}}$	Ref.
Acetylacetone anion	Acac ${ }^{-}$	$\mathrm{H}_{2} \mathrm{O}$	13.73/0.64	[10b]
Diethylmalonate anion	Ma^{-}	DMSO	20.22/0.65	[10a]
4-Pyridone anion	$4-\mathrm{PyO}^{-}$	$\mathrm{H}_{2} \mathrm{O}$	14.76/0.48	[11b]
2-Pyridone anion	$2-\mathrm{PyO}^{-}$	$\mathrm{H}_{2} \mathrm{O}$	12.47/0.52	[11b]
4-Dimethylaminopyridine	DMAP	$\mathrm{H}_{2} \mathrm{O}$	13.19/0.56	[11a]
4-Morpholinoaminopyridine	MorAP	$\mathrm{H}_{2} \mathrm{O}$	12.39/0.66	[11a]
4-Aminopyridine	AP	$\mathrm{H}_{2} \mathrm{O}$	12.19/0.66	[11a]
3-Br-4-Aminopyridine	BrAP	MeCN	12.96/0.67	[11c]
Piperidine	Pip	$\mathrm{MeOH} / \mathrm{MeCN}{ }^{[a]}$	15.63/0.64	[12b]
		$\mathrm{H}_{2} \mathrm{O}$	18.13/0.43	[12c]
		DMSO	17.19/0.71	[12a]
Pyrrolidine	Pyr	MeCN	18.64/0.60	[12d]
		$\mathrm{H}_{2} \mathrm{O}$	17.21/0.49	[12c]
Morpholine	Mor	$\mathrm{MeOH} / \mathrm{MeCN}{ }^{[a]}$	15.40/0.64	[12b]
Dimethylamine	$\mathrm{Me}_{2} \mathrm{NH}$	$\mathrm{H}_{2} \mathrm{O}$	15.62/0.54	[12c]
Diethylamine	$\mathrm{Et}_{2} \mathrm{NH}$	$\mathrm{H}_{2} \mathrm{O}$	14.68/0.53	[12c]
Dipropylamine	$n \mathrm{Pr}_{2} \mathrm{NH}$	MeCN	14.51/0.80	[12d]
Dibutylamine	$n \mathrm{Bu}_{2} \mathrm{NH}$	MeCN	$(\sim 14.35 / 0.80)^{[\mathrm{b}]}$	
NH_{3}	NH_{3}	$\mathrm{H}_{2} \mathrm{O}$	9.48/0.59	[12c]
Methylamine	MeNH_{2}	$\mathrm{H}_{2} \mathrm{O}$	13.85/0.53	[12c]
Ethylamine	EtNH_{2}	$\mathrm{H}_{2} \mathrm{O}$	12.87/0.58	[12c]
n-Propylamine	$n \mathrm{PrNH}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	13.33/0.56	[12c]
		MeCN	15.11/0.63	[12d]
iso-Propylamine	$i \mathrm{PrNH}_{2}$	MeCN	13.77/0.70	[12d]
		$\mathrm{H}_{2} \mathrm{O}$	12.00/0.56	[12c]
n-Butylamine	$n \mathrm{BuNH}_{2}$	MeCN	15.27/0.63	[12d]
tert-Butylamine	$t \mathrm{BuNH}_{2}$	MeCN	12.35/0.67	[12d]
Benzylamine	BnNH_{2}	MeCN	14.29/0.67	[12d]
Allylamine	AllylNH2	MeCN	14.37/0.66	[12d]
		$\mathrm{H}_{2} \mathrm{O}$	13.21/0.54	[12c]
Aniline	Aniline	MeCN	12.67/0.68	[12c]

Table 8.1. Continued.

Nucleophile	Abbreviation	Solvent	N/ s_{N}	Ref.
Ethanolamine	HOEtNH_{2}	$\mathrm{H}_{2} \mathrm{O}$	12.61/0.58	[12c]
		MeCN	14.11/0.71	[12d]
Diethanolamine	$(\mathrm{HOEt})_{2} \mathrm{NH}$	DMSO	15.51/0.70	[12c]
Glycine	Gly	$\mathrm{H}_{2} \mathrm{O}$	13.51/0.58	[13]
Diglycine	GlyGly	$\mathrm{H}_{2} \mathrm{O}$	12.91/0.58	[13]
Alanine	Ala	$\mathrm{H}_{2} \mathrm{O}$	13.01/0.58	[13]
β-Alanine	β-Ala	$\mathrm{H}_{2} \mathrm{O}$	13.26/0.58	[13]
Phenylalanine	Phe	$\mathrm{H}_{2} \mathrm{O}$	14.12/0.53	[13]
Methionine	Met	$\mathrm{H}_{2} \mathrm{O}$	13.16/0.58	[13]
OH^{-}	OH^{-}	$\mathrm{H}_{2} \mathrm{O}$	10.47/0.61	[12a]
MeO	MeO	MeOH	15.78/0.56	[14]
EtO^{-}	EtO^{-}	EtOH	15.78/0.65	[14]
$n \mathrm{PrO}^{-}$	$n \mathrm{PrO}^{-}$	$n \mathrm{PrOH}$	16.03/0.70	[14]
$i \mathrm{PrO}^{-}$	$i \mathrm{PrO}^{-}$	$i \mathrm{PrOH}$	17.03/0.63	[14]
Cysteine dianion	Cys^{2-}	$\mathrm{H}_{2} \mathrm{O}$	23.43/0.42	[13]
Mercaptoacetic acid dianion	SAc^{2-}	$\mathrm{H}_{2} \mathrm{O}$	22.62/0.43	[12a]
$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{H}_{2} \mathrm{O}$	16.83/0.56	[12a]
$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{MeOH} / \mathrm{MeCN}{ }^{[a]}$	9.05/0.70	[15]

[a] MeOH/MeCN 91/9; [b] Estimated from the reactivity of $n \mathrm{Pr}_{2} \mathrm{NH}$ using the reactivity difference of $n \mathrm{PrNH}_{2}$ and $n \mathrm{BuNH}_{2}$ of $\Delta N=0.16$; as $n \mathrm{PrNH}_{2}$ and $n \mathrm{BuNH}_{2}$ have the same s_{N} parameter, the same s_{N} parameters are also assumed for $n \mathrm{Pr}_{2} \mathrm{NH}$ and $n \mathrm{Bu}_{2} \mathrm{NH}$.

Table 8.2 lists the experimental rate constants $\left(k_{2}{ }^{\text {exp }}\right)$ collected from the literature, ${ }^{[5-9]}$ as well as the rate constants calculated by eq $8.1\left(k_{2}{ }^{\text {calcd }}\right)$ using the electrophilicity parameters E of the acceptor-substituted olefins $\mathbf{1} \mathbf{- 3}$ from Chart 8.1 and nucleophilicity parameters N, s_{N} of the nucleophiles from Table 8.1. The solvents and temperatures employed in the measurements of $k_{2}{ }^{\text {exp }}$ sometimes differ from those used to determine N, s_{N}, and E. The effects of these differences are in many cases negligible and will only be discussed if large deviations arise. ${ }^{[19 a, 20 a, ~ b]}$

The reported experimental second-order rate constants ($k_{2}{ }^{\text {exp }}$) for the additions of carbanions, ${ }^{[5-6]}$ pyridines (exceptions are discussed below), ${ }^{[6 \mathrm{j}, \mathrm{k}]}$ pyridones, ${ }^{[6 \mathrm{j}, \mathrm{k}]}$ amines (exceptions are discussed below), ${ }^{[6-\mathrm{i},}{ }^{61]} \mathrm{OH}^{-}$(exceptions are discussed below), ${ }^{[7 \mathrm{c}, \mathrm{f}, 7 \mathrm{~h}-\mathrm{j}]}$ and alkoxides, ${ }^{[6 b, 7 a, b, d, e, ~ g] ~} \mathrm{SO}_{3}{ }^{2-},{ }^{[8 a]}$ mercapto acid dianions, ${ }^{[8 \mathrm{~b}, \mathrm{c}]}$ and $\mathrm{P}\left(\mathrm{OMe}_{3}\right)^{[9]}$ agree fairly well with the $k_{2}{ }^{\text {calcd }}$ calculated by eq 8.1. The deviations between $k_{2}{ }^{\text {exp }}$ and $k_{2}{ }^{\text {calcd }}$ are small, in comparison to the big reactivity range of 18 orders of magnitude which is covered by the comparison. Of the 110 experimental and calculated rate constants listed in Table 8.2 for the additions of C, N, O, S, and P nucleophiles to the acceptor-substituted olefins 1-3, 96 agree within the limit of confidence of eq 8.1 (two orders of magnitude), and 52 agree with a factor better than 10 .

Table 8.2. Experimental $\left(k_{2}{ }^{\text {exp }}\right){ }^{[5-9]}$ and calculated $\left(k_{2}{ }^{\text {calcd }}\right)^{[a]}$ second-order rate constants of the reactions of $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$, and P nucleophiles with the acceptor-substituted olefins 1-3.

Electrophile	Nucleophile	$\begin{aligned} & T / \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Ref.	$k_{2}{ }^{\text {calcd }}\left(20{ }^{\circ} \mathrm{C}\right) / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$\begin{aligned} & k_{2}^{\text {exp/ }} \\ & k_{2}{ }^{\text {calcd }} \end{aligned}$
1a	DMAP	25	$1.46 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$6.16 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	23.7
	Mor	30	$1.07 \times 10^{-2}(\mathrm{MeOH})$	[6 g]	$5.56 \times 10^{-3}(\mathrm{MeOH})$	1.92
	Pip	45	$2.67 \times 10^{-1}(\mathrm{MeOH})^{[\mathrm{b}]}$	[6m]	$7.80 \times 10^{-3}(\mathrm{MeOH} / \mathrm{MeCN})$	34.2
$E=-18.92$	HOEtNH_{2}	20	$7 \times 10^{-3}(\mathrm{MeCN})$	[6b]	$3.82 \times 10^{-4}(\mathrm{MeCN})$	1.83
	Gly	30	$1.82 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$7.25 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	25.1
	GlyGly	30	$4.60 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$3.25 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	14.1
	Ala	30	$1.11 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$3.72 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	29.7
	β-Ala	30	$2.84 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$5.19 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	54.7
	Phe	30	$6.40 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$2.85 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	2.25
	Met	30	$6.90 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$4.54 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	15.1
	MeO^{-}	24	$2.1 \times 10^{-1}(\mathrm{MeOH})$	[7d]	$1.74 \times 10^{-2}(\mathrm{MeOH})$	12.1
	$\mathrm{SO}_{3}{ }^{2-}$	25	$2.9 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)^{[\mathrm{b}]}$	[8a]	$6.72 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	4.31
1b	Mor	45	$1.3 \times 10^{-2}(\mathrm{MeOH})^{[\mathrm{b}]}$	[6m]	$3.93 \times 10^{-3}(\mathrm{MeOH} / \mathrm{MeCN})$	3.30
	$n-\mathrm{BuNH}_{2}$	20	$3.5 \times 10^{-5}(\mathrm{THF})$	[6f]	$3.55 \times 10^{-3}(\mathrm{MeCN})$	0.01
	BnNH_{2}	20	8.30×10^{-7} (THF)	[6b]	$5.47 \times 10^{-4}(\mathrm{MeCN})$	0.002
	AllylNH2	20	2.66×10^{-6} (THF)	[6b]	$6.92 \times 10^{-4}(\mathrm{MeCN})$	0.004
$E=-19.16$	Aniline	20	no reaction (THF)	[6b]	$3.53 \times 10^{-5}(\mathrm{MeCN})$	-
	HOEtNH_{2}	20	4.0×10^{-4} (THF)	[6f]	$2.61 \times 10^{-4}(\mathrm{MeCN})$	1.54
	$(\mathrm{HOEt})_{2} \mathrm{NH}$	20	1.5×10^{-3} (THF)	[6b]	$2.79 \times 10^{-3}(\mathrm{DMSO})$	0.54
	EtO^{-}	20	$2.0 \times 10^{-3}(\mathrm{EtOH})$	[6b]	$6.37 \times 10^{-3}(\mathrm{EtOH})$	0.31
	$n \mathrm{Bu}_{2} \mathrm{NH}$	25	3.18×10^{-6} (neat)	[60]	$1.81 \times 10^{-5}(\mathrm{MeCN})$	0.18
$E=-20.28$						
1d	DMAP	25	$1.82 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$1.60 \times 10^{-6}\left(\mathrm{H}_{2} \mathrm{O}\right)$	113
	Gly	30	$2.9 \times 10^{-5}\left(\mathrm{H}_{2} \mathrm{O} /\right.$ DMSO $)$	[6n]	$1.53 \times 10^{-6}\left(\mathrm{H}_{2} \mathrm{O}\right)$	19.0
	GlyGly	30	$2.0 \times 10^{-5}\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}\right)$	[6n]	$6.85 \times 10^{-7}\left(\mathrm{H}_{2} \mathrm{O}\right)$	29.2
$E=-23.54$	$i \mathrm{PrO}^{-}$	24	$1.17 \times 10^{-3}(i \mathrm{PrOH})$	[7d]	$7.94 \times 10^{-5}(i \mathrm{PrOH})$	14.7
1e	MeO^{-}	25	$8.0 \times 10^{-2}(\mathrm{MeOH})$	[7e]	$3.61 \times 10^{-2}(\mathrm{MeOH})$	2.21
	EtO^{-}	25	$4.90 \times 10^{-1}(\mathrm{EtOH})$	[7e]	$2.12 \times 10^{-2}(\mathrm{EtOH})$	23.1
	$n \mathrm{PrO}^{-}$	25	$8.62 \times 10^{-1}(n \mathrm{PrOH})$	[7e]	$2.36 \times 10^{-2}(n \mathrm{PrOH})$	36.6
$E=-18.36$						

Table 8.2. Continued.

Electrophile	Nucleophile	$\begin{gathered} T / \\ { }^{\circ} \mathrm{C} \end{gathered}$	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~S}^{-1}$	Ref.	$k_{2}{ }^{\text {calcd }}\left(20{ }^{\circ} \mathrm{C}\right) / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$\begin{aligned} & k_{2}{ }^{\exp /} \\ & k_{2}{ }^{\text {calcd }} \end{aligned}$
1f	Acac^{-}	40	$2.64 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)^{[\mathrm{b}]}$	[6a]	$3.89 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.68
	4-PyO ${ }^{-}$	25	$8.5 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6j]	$8.65 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.98
	$2-\mathrm{PyO}^{-}$	25	$5.0 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6j]	$3.75 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	13.3
$E=-19.06$	DMAP	25	$4.03 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6j]	$5.18 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	7.79
	MorAP	25	$2.34 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6j]	$3.97 \times 10^{-5}\left(\mathrm{H}_{2} \mathrm{O}\right)$	58.9
	AP	25	$2.90 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6j]	$2.93 \times 10^{-5}\left(\mathrm{H}_{2} \mathrm{O}\right)$	98.9
	BrAP	25	$8.1 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6j]	$8.21 \times 10^{-5}(\mathrm{MeCN})$	9.86
	Pip	25	$5.08 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$3.91 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	1.30
	Pyr	25	$6.60 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$1.24 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	5.31
	Mor	30	$5.75 \times 10^{-4}(\mathrm{MeOH})$	[6h]	$4.56 \times 10^{-3}(\mathrm{MeOH} / \mathrm{MeCN})$	0.13
		25	$5.02 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$1.39 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	3.61
	$\mathrm{Me}_{2} \mathrm{NH}$	25	$6.59 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$1.07 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	6.13
	$\mathrm{Et}_{2} \mathrm{NH}$	25	$9.24 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$4.78 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	19.3
	$n \mathrm{Pr}_{2} \mathrm{NH}$	25	$8.89 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$2.30 \times 10^{-4}(\mathrm{MeCN})$	387
	MeNH_{2}	25	$9.3 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$1.74 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	5.35
	EtNH_{2}	25	$7.7 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$2.58 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	29.8
	$n \mathrm{PrNH}_{2}$	25	$8.9 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$6.20 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	14.4
	$i \mathrm{PrNH}_{2}$	25	$2.80 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$1.12 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	25.1
	$n \mathrm{BuNH}_{2}$	25	$1.01 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$9.83 \times 10^{-2}(\mathrm{MeCN})$	1.03
	AllylNH2	25	$4.84 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6h]	$6.95 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	6.96
	HOEtNH_{2}	30	$3.10 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)^{[\mathrm{b}]}$	[6a]	$1.82 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	17.0
	Gly	30	$5.00 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$6.06 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	8.26
	GlyGly	30	$1.37 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$2.72 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	5.04
	Ala	30	$3.53 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$3.11 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	11.3
	β-Ala	30	$8.92 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$4.34 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	20.6
	Phe	30	$1.76 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$2.42 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.73
	Met	30	$1.76 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$3.80 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	4.64
	OH^{-}	25	$2.6 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[7h]	$5.77 \times 10^{-6}\left(\mathrm{H}_{2} \mathrm{O}\right)$	45.0
	MeO^{-}	20	$3.84 \times 10^{-2}(\mathrm{MeOH})$	[7b]	$1.46 \times 10^{-2}(\mathrm{MeOH})$	2.63
	EtO^{-}	20	$5.25 \times 10^{-2}(\mathrm{EtOH})$	[7b]	$7.40 \times 10^{-3}(\mathrm{EtOH})$	7.09
	$n \mathrm{PrO}^{-}$	20	$9.58 \times 10^{-2}(n \mathrm{PrOH})$	[7b]	$7.59 \times 10^{-3}(n \mathrm{PrOH})$	12.6
	$i \mathrm{PrO}^{-}$	20	$2.87 \times 10^{-1}(i \mathrm{PrOH})$	[7b]	$7.81 \times 10^{-2}(i \mathrm{PrOH})$	3.68
	Cys ${ }^{2-}$	30	$1.74\left(\mathrm{H}_{2} \mathrm{O}\right)$	[8b]	$6.86 \times 10^{1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.03
	SAc ${ }^{2-}$	30	$4.26\left(\mathrm{H}_{2} \mathrm{O}\right)$	[8b]	$3.40 \times 10^{1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.13
	$\mathrm{SO}_{3}{ }^{2-}$	25	$1.7 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)^{[\mathrm{b}]}$	[8a]	$5.65 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	3.01
1 g	$4-\mathrm{PyO}^{-}$	25	$9.6 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$1.49 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	6.43
	DMAP	25	$5.5 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$1.44 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	38.2
	MorAP	25	$3.62 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$2.00 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	181
	AP	25	$4.2 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$1.47 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	285
	BrAP	25	$7.8 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$4.38 \times 10^{-3}(\mathrm{MeCN})$	17.8
	Mor	30	$1.38(\mathrm{MeOH})$	[6g]	$2.03 \times 10^{-1}(\mathrm{MeOH} / \mathrm{MeCN})$	6.78
$E=-16.48$	Gly	30	$4.00 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6c]	$1.89 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	21.1
	MeO^{-}	19	$3.88 \times 10^{-1}(\mathrm{MeOH})$	[7a]	$4.05 \times 10^{-1}(\mathrm{MeOH})$	0.96
	EtO^{-}	19	$1.53(\mathrm{EtOH})$	[7a]	$3.51 \times 10^{-1}(\mathrm{EtOH})$	4.36
	$i \mathrm{PrO}^{-}$	19	3.05 (iPrOH)	[7a]	$2.22(i \mathrm{PrOH})$	1.38

Table 8.2. Continued.

Electrophile	Nucleophile	$\begin{aligned} & T / \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Ref.	$k_{2}{ }^{\text {calcd }}\left(20^{\circ} \mathrm{C}\right) / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$\begin{aligned} & k_{2}{ }^{\text {expp }} \\ & k_{2}{ }^{\text {calcd }} \end{aligned}$
1h	Mor	30	3.82 (MeOH)	[6g]	1.21 (MeOH/MeCN)	3.15
	NH_{3}	25	$2.9 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6d]	$3.84 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	75.5
	MeNH_{2}	25	$5.68\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6d]	$1.77 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	32.1
	EtNH_{2}	25	2.76 ($\left.\mathrm{H}_{2} \mathrm{O}\right)$	[6d]	$4.06 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	68.0
	$i \mathrm{PrNH}_{2}$	25	1.26 (aq. EtOH)	[6d]	$8.93 \times 10^{-2}(\mathrm{MeCN})$	14.1
	$n \mathrm{BuNH}_{2}$	25	1.98 (aq. EtOH)	[6d]	1.00 (MeCN)	1.98
$E=-15.26$	$t \mathrm{BuNH}_{2}$	25	2.47×10^{-1} (aq. EtOH)	[6d]	$7.91 \times 10^{-3}(\mathrm{MeCN})$	31.2
	BnNH_{2}	25	1.48 (aq. EtOH)	[6d]	$2.21 \times 10^{-1}(\mathrm{MeCN})$	6.70
	AllylNH2	25	1.98 (aq. EtOH)	[6d]	$2.55 \times 10^{-1}(\mathrm{MeCN})$	7.76
	HOEtNH_{2}	25	$3.78\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6d]	$1.50 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	25.1
	OH^{-}	25	$4 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[7c]	$1.18 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	33.8
	$4-\mathrm{PyO}^{-}$	25	$0.96\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$1.12\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.86
	DMAP	25	$2.39\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$1.51 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	15.8
	MorAP	25	$1.04\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$3.19 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	32.6
$E=-14.65$	AP	25	$1.96\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$2.36 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)$	83.2
	BrAP	25	$1.10 \times 10^{-1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$7.31 \times 10^{-2}(\mathrm{MeCN})$	1.51
	Mor	30	1.25 (MeOH)	[6g]	2.99 ($\mathrm{MeOH} / \mathrm{MeCN}$)	0.42
	Ma^{-}	25	$2.96 \times 10^{-4}(\mathrm{EtOH})$	[5]	1.64×10^{-3} (DMSO)	0.18
$E=-24.51$						
$2 f$ 2	Pip	45	no reaction $\left(\mathrm{H}_{2} \mathrm{O}\right)$	[7h]	$1.69 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	-
	EtO^{-}	39	$3.72 \times 10^{-4}(\mathrm{EtOH})$		$1.92 \times 10^{-6}(\mathrm{EtOH})$	194
$E=-24.57$						
	OH^{-}	25	$1 \times 10^{-4}(\mathrm{aq} . \mathrm{EtOH})^{[\mathrm{c}]}$	[7c]	$2.30 \times 10^{-8}\left(\mathrm{H}_{2} \mathrm{O}\right)$	4.36×10^{3}
	OH^{-}	25	$3.16 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[7j]	$2.30 \times 10^{-8}\left(\mathrm{H}_{2} \mathrm{O}\right)$	1.38×10^{4}
$E=-22.99$						
2h	Pip	20	3.56×10^{-3} (DMSO)	[6i]	$2.83 \times 10^{-2}(\mathrm{DMSO})$	0.13
	Pyr	25	$2.31 \times 10^{-2}(\mathrm{DMSO})$	[6i]	$3.64 \times 10^{-1}(\mathrm{MeCN})$	0.06
	$n \mathrm{PrNH}_{2}$	25	$5.5 \times 10^{-4}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	[61]	$2.07 \times 10^{-3}(\mathrm{MeCN})$	0.27
$E=-19.37$	$n \mathrm{BuNH}_{2}$	25	$7.1 \times 10^{-4}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	[61]	$2.61 \times 10^{-3}(\mathrm{MeCN})$	0.27
	OH^{-}	25	3.8×10^{-4} (aq. EtOH$)$	[7c]	$3.72 \times 10^{-6}\left(\mathrm{H}_{2} \mathrm{O}\right)$	102
	$\mathrm{P}(\mathrm{OMe})_{3}$	55	3.4×10^{-6} (neat)	[9]	$5.96 \times 10^{-8}(\mathrm{MeOH} / \mathrm{MeCN})$	57.0
	DMAP	25	$8 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[6k]	$4.92 \times 10^{-4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	16.3
	OH^{-}	25	$3.94 \times 10^{-2}\left(\mathrm{H}_{2} \mathrm{O}\right)^{[d]}$	[7f]	$5.46 \times 10^{-6}\left(\mathrm{H}_{2} \mathrm{O}\right)$	7.22×10^{3}
$E=-19.10$						
	OH^{-}	25	$2.20 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[7i]	$2.48 \times 10^{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$	887
	Cys^{2-}	25	$1.22 \times 10^{1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	[8c]	$3.83 \times 10^{1}\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.32
$E=-19.66$						

Table 8.2. Continued.

Electrophile	Nucleophile	T/ ${ }^{\circ} \mathrm{C}$	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Ref.	$k_{2}{ }^{\text {calcd }}\left(20^{\circ} \mathrm{C}\right) / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
3c	MeO^{-}	24	$9.93 \times 10^{-2}(\mathrm{MeOH})$	[7d]	1.10 (MeOH)	0.09
$E=-15.70$						
3e $\overbrace{\mathrm{CO}_{2} \mathrm{Et}}^{\mathrm{CO}_{2} \mathrm{Et}}$	Pip	34	$1.79 \times 10^{-2}(\mathrm{EtOH})^{[\mathrm{ee}]}$	[6e]	$3.36 \times 10^{-3}(\mathrm{EtOH})$	5.32
	$n \mathrm{BuNH}_{2}$	34	$1.54 \times 10^{-3}(\mathrm{EtOH})^{[\mathrm{ec}]}$	[6e]	$2.18 \times 10^{-3}(\mathrm{EtOH})$	0.71
	$n \mathrm{PrNH}_{2}$	34	$5.16 \times 10^{-4}(\mathrm{EtOH})^{[\mathrm{ed}}$	[6e]	$1.03 \times 10^{-4}(\mathrm{EtOH})$	5.02
$E=-17.79$	BnNH_{2}	34	$5.00 \times 10^{-4}(\mathrm{EtOH})^{[\mathrm{ec}]}$	[6e]	$1.81 \times 10^{-4}(\mathrm{EtOH})$	2.76

[a] Calculated from E in Chart 8.1 and N, s_{N} in Table 8.1 by eq 8.1 ; [b] Average of the reported k_{2} values; [c] Deviations from pseudo first-order kinetics were observed; ${ }^{[7 \mathrm{c]}}$ [d] Reevaluated from the k_{1}-values in ref. [7f] (for details see Experimental Section); [e] Reevaluated from the k_{1}-values in ref. [6e] (for details see Experimental Section).

8.2.2 Reactions with C-Nucleophiles

The experimental and calculated reaction rates of the additions of the C nucleophiles, i.e., the carbanions of acetylacetone (Acac^{-}) and diethylmalonate $\left(\mathrm{Ma}^{-}\right)$, to acrylonitrile (1f) and ethyl cinnamate ($\mathbf{2 b}$) agree within a factor better than 6 (Table 8.2). The difference in temperature for the determination of the kinetics and reactivity parameters is negligible, but the deviation between experimental and calculated rate constant for the reaction of Ma^{-}and ethyl cinnamate $\mathbf{2 b}$ would probably even be smaller, if N and s_{N} parameters for Ma^{-}in EtOH would be available.

8.2.3 Reactions with N-Nucleophiles

8.2.3.1 General

Rates of the additions of NH_{3}, primary amines (including amino acids), and secondary amines to the acceptor-substituted olefins $\mathbf{1 - 3}$ listed in Table 8.2 can in general be predicted within the limit of confidence of eq 8.1 with few exceptions (71 out of 79 rate constants). The rate constants calculated for the additions of amines in ethanol are suitable for direct comparison, because previous work has shown that N and s_{N} of amines differ only slightly in methanol, ethanol, and acetonitrile. ${ }^{[12 \mathrm{c}, \mathrm{d}, 15]}$ If the temperatures had been corrected to $20^{\circ} \mathrm{C}$, the agreement between calculated $\left(20^{\circ} \mathrm{C}\right)$ and experimental rate constants would become even better.

The good agreement between the experimental and calculated second-order rate constants ($k_{2}{ }^{\mathrm{exp}} \approx k_{2}{ }^{\text {clacd }}$) for the reactions of amines with the Michael acceptors $\mathbf{1 , 2}$ in Table 8.2 indicates, that these rate constants refer to the formation of a single $\mathrm{C}-\mathrm{N}$-bond, as eq 8.1 is only valid for direct $\mathrm{C}-\mathrm{Nu}$ bond formations. ${ }^{[20]}$ Our interpretation of $k_{2}{ }^{\exp }$ for the reactions of amines with diethyl maleate (3e) thus differs from the interpretation of Rappoport and co-workers ${ }^{[66]}$ in the original work, who assigned the second order rate constants $k_{2}{ }^{\exp }$ to $K \cdot k_{\text {rot }}$ with K as the equilibrium constant for the amine addition and k_{rot} as the rate constants of rotation around the σ-bond of the intermediate aza-Michael adduct.

8.2.3.2 Reactions in Protic Solvents

In protic solvents like water or alcohols the reactions of the Michael acceptors $\mathbf{1 - 3}$ with amines proceed in many cases faster than calculated by eq 8.1, although the N and s_{N} of the amines were determined in these solvents (Table 8.2). The polarity of the amine also seems to have an influence on the predictability of the rate constant by eq 8.1 , as amines with short alkylchains (e.g. Me, Et) and 4-amino-substituted pyridines tend to react faster with the activated double bond of $\mathbf{1}-\mathbf{3}$ in protic solvents than calculated by eq $8.1\left(k_{2}{ }^{\mathrm{exp}} / k_{2}{ }^{\text {calcd }} \geq 2\right.$), while the corresponding reaction rates of amines with longer alkylchains (e.g. $n \mathrm{Pr}, n \mathrm{Bu}$) and pyridine anions in $\mathrm{H}_{2} \mathrm{O}$ and alcohols deviate to a smaller extent.

The reason for the by a factor of 113 to 285 enhanced experimental rates of the reactions of N, N-dimethylacrylamide $\mathbf{1 d}$ with DMAP and of methylvinylketone $\mathbf{1 g}$ with MorAP and AP is unclear. The deviation between experimental and calculated rate constants for the reactions of acrylonitrile $\mathbf{1 f}$ with $n \operatorname{Pr}_{2} \mathrm{NH}$ may be due to the fact that $k_{2}{ }^{\text {exp }}$ refers to water, while $k_{2}{ }^{\text {calcd }}$ refers to MeCN .

The experimental rate constants of the reactions of pyridone anions with the acrylonitrile $\mathbf{1 f}$, methylvinylketone $\mathbf{1 g}$, and acrolein $\mathbf{1 i}$ can be reproduced with high accuracy by eq 8.1 as the deviation $k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$ stays below a factor of 14 .

8.2.3.3 Reactions in Aprotic Solvents

For the reactions of amines in solvents like ethers or benzene the corresponding reactivity parameters N and s_{N} are not available. Thus, it is not surprising that the comparison of $k_{2}{ }^{\mathrm{exp}}$ and $k_{2}{ }^{\text {calcd }}$ becomes poorer, when N and s_{N} parameters of the amines in MeCN or DMSO have to be used for the calculation of $k_{2}{ }^{\text {calcd }}$ (Table 8.2). Nevertheless, the deviations between the
experimental and calculated rate constants for the additions of ethanolamine $\left(\mathrm{HOEtNH}_{2} ; N, s_{\mathrm{N}}\right.$ in MeCN) and diethanolamine $\left((\mathrm{HOEt})_{2} \mathrm{NH} ; N, s_{\mathrm{N}}\right.$ in DMSO) to ethyl acrylate 1b in THF are below a factor of 2, and the deviations for the additions of n-propylamine $\left(n \operatorname{PrNH}_{2} ; N, s_{\mathrm{N}}\right.$ in $\mathrm{MeCN})$ and n-butylamine $\left(n \mathrm{BuNH}_{2} ; N, s_{\mathrm{N}}\right.$ in MeCN$)$ to chalcone $\mathbf{2 h}$ in benzene are below a factor of 4. Interestingly, the rate constants calculated from the estimated reactivity parameters for $n \mathrm{Bu}_{2} \mathrm{NH}$ in MeCN describe the experimental rate constants well. The rate constants of the reactions of benzylamine $\left(\mathrm{BnNH}_{2} ; N, s_{\mathrm{N}}\right.$ in MeCN$)$ and allylamine $\left(\right.$ AllylNH $2 ; ~ N, s_{\mathrm{N}}$ in MeCN) with ethyl acrylate $\mathbf{1 b}$ in THF, however, cannot be reproduced by eq 8.1 , which can be explained by the fact that charge separation is less favorable in THF than in MeCN .

No reaction was observed between aniline and ethyl acrylate 1b or between piperidine (Pip) and cinnamonitrile $\mathbf{2 f}$, although the reactions should occur slowly according to eq 8.1. Maybe these reactions are hampered by unfavorable thermodynamics, although the reactions could proceed according to eq 8.1, i.e., in terms of kinetics.

8.2.4 Reactions with O-Nucleophiles

The deviations between the experimental and calculated rate constants of the addition of OH^{-}to the Michael acceptors $\mathbf{1 - 2}$ are larger than for other investigated nucleophiles. In all investigated cases these additions were found to proceed faster than calculated by eq 8.1 , so that only 2 out of 7 rate constants can be predicted within the limit of confidence of eq 8.1 (Table 8.2).

It should be noted, however, that all reactions of OH^{-}, which show so strong deviations refer to reactions with unsaturated aldehydes and ketones. Thus the additions of OH^{-}to chalcone $\mathbf{2 h}$ and cinnamaldehyde $\mathbf{2 j}$ proceed 100 and 800 times faster than calculated, and the reactions of OH^{-}and benzylideneacetone $\mathbf{2 g}$ or crotonaldehyde $2 \mathbf{i}$ proceed even 10^{3} times faster than calculated, i.e., these reactions cannot be described by eq 8.1. As the N and s_{N} parameters of OH^{-}have been determined in water and the temperature differences are negligible, these factors can be excluded as the reason for the faster reactions of OH^{-}with the unsaturated carbonyl compounds. The big deviations of $k_{2}{ }^{\exp }$ and $k_{2}{ }^{\text {calcd }}$, as well as deviations from pseudo-first-order kinetics for the reaction of benzylideneacetone $\mathbf{2 g}$ with $\mathrm{OH}^{-[7 c]}$ indicate a change of mechanism for these Michael additions.

The rate constants for the reactions of alkoxides $\left(\mathrm{RO}^{-}\right)$with the activated ethylenes $\mathbf{1}$ can be calculated with high accuracy by eq 8.1, not exceeding a deviation of a factor of 13 for 14 of the 15 reactions listed in Table 8.2. Only the addition of EtO^{-}to cinnamonitrile $\mathbf{2 f}$ proceeds 194
times faster than calculated by eq 8.1. In all cases, the comparisons of experimental and calculated rate constants are unproblematic, because the nucleophilicity parameters N and s_{N} for alkoxides have been determined in the corresponding alcohol and the temperatures which were employed in the experiments are all close to $20^{\circ} \mathrm{C}$.

8.2.5 Reactions with S-Nucleophiles

The experimental rate constants for the additions of $\mathrm{SO}_{3}{ }^{2-}$ to methyl acrylate $\mathbf{1 a}$ and acrylonitrile $\mathbf{1 f}$ can be reproduced by eq 8.1 within a factor of 4 (Table 8.2). The addition of cysteine dianion (Cys^{2-}) to cinnamaldehyde $\mathbf{2} \mathbf{j}$ proceeds by a factor 3 , and its addition to acrylonitrile $\mathbf{1 f}$ by a factor 33 more slowly than calculated by eq 8.1. The rate constant for the addition of mercaptoacetic acid dianion $\left(\mathrm{SAc}^{2-}\right)$ to $\mathbf{1 f}$ can be reproduced within a factor of 8 . In all cases, the solvent is $\mathrm{H}_{2} \mathrm{O}$, the same in which the nucleophilicity parameters N and s_{N} of these nucleophiles were determined and the temperature difference is negligible.

8.2.6 Reactions with P-Nucleophiles

The addition of $\mathrm{P}(\mathrm{OMe})_{3}$ to chalcone $\mathbf{2 h}$ in neat $\mathrm{P}(\mathrm{OMe})_{3}$ at $55^{\circ} \mathrm{C}$ is 57 times faster than calculated for this reaction in methanol at $20^{\circ} \mathrm{C}$. This small difference, which is even reduced when the difference in temperature is considered indicates that the influence of the solvent on the reactivity of $\mathrm{P}(\mathrm{OMe})_{3}$ must be small (Table 8.2).

8.2.7 Correlation Analysis

The plot of $\left(\log k_{2}\right) / s_{N}$ versus the nucleophilicity parameters N in Figure 8.1 for the reactions of acrylonitrile $\mathbf{1 f}$ with the pyridinium ylides $\mathbf{4}^{[3]}$ and the sulfonium ylide $\mathbf{5 a}^{[4]}$ was used to determine the E parameter of $\mathbf{1 f}$ (black dots). The rate constants from Table 8.2 for the reactions of $\mathbf{1 f}$ with other the types of nucleophiles, which were collected from the literature, also correlate fairly well (colored dots). From this correlation we conclude that eq 8.1 can generally be used for estimating rate constants, even when the reaction conditions are not exactly the same as those used to determine the reactivity parameters s_{N}, N, and E.

Remarkably, the deviations from the correlation line for 40 of the 41 rate constants depicted in Figure 8.1 stays below two orders of magnitude over a reactivity range of 18 orders of magnitude. Because of the small sensitivity parameters s_{N} for most of the nucleophiles
considered, the deviations in Figure $8.1\left(\Delta\left(\left(\log k_{2}\right) / s_{\mathrm{N}}\right)\right)$ look larger than they actually are $\left(\Delta \log k_{2}\right)$.

Figure 8.1. Correlation of the rate constants of the reactions of acrylonitrile 1 f with pyridinium ylides $\mathbf{4}$ and sulfonium ylide 5 (black dots) and reported rate constants for its reactions with other nucleophiles (colored dots; rate constants from Table 8.2). Only the black symbols were employed to draw the correlation line.

While acetylacetone anion (Acac^{-}), amines with long alkylchains (e.g. $n-\mathrm{BuNH}_{2}$), pyridine anions (PyO^{-}), alkoxides (RO^{-}), and S nucleophiles (except Cys ${ }^{2-}$) show no or relatively small deviations from the correlation line, amines with short alkylchains (e.g. $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{Et}_{2} \mathrm{NH}$) and OH^{-}react between a factor 5 to 99 faster than calculated, which leads to a clustering of rate constants in a small reactivity range $(N=12-14)$ above the correlation line. All reactions of amines with acrylonitrile $\mathbf{1 f}$ were carried out in $\mathrm{H}_{2} \mathrm{O}$ showing the accelerating effect of this solvent on the aza-Michael addition.

8.2.8 Estimation of Reactivity Parameters

8.2.8.1 Estimation of Nucleophilicity Parameters

Gluthathione (GSH) is an important biomolecule and a reference nucleophile for reactivity essays as its thiol group is taken as a surrogate for protein thiol groups. ${ }^{[22]}$ An estimate of its nucleophilicity values would thus be highly interesting. As many rate constants for the reactions of GSH with various Michael acceptors, including 1a,b,f,g,i and 2b,c,i,j (Scheme 8.3), have been reported ${ }^{[8 b, 22]}$ it is an ideal candidate to test the applicability of eq 1 for the estimation of nucleophilicity parameters N and s_{N} from reported rate constants.

The second order rate constants for the reactions of GSH with $\mathbf{1 a}, \mathbf{b}, \mathbf{f}, \mathbf{g}, \mathbf{i}$ and $\mathbf{2 b}, \mathbf{c}, \mathbf{i}, \mathbf{j}$ have previously been determined ($25{ }^{\circ} \mathrm{C}$, pH 6.8-7.4; for details see Experimental Section, Table 8.9), ${ }^{[8 b, 22]}$ and the temperature difference between the conditions under which the second order rate constants and the electrophilicity parameters E were determined is negligible. The rates of the reactions of glutathione with Michael acceptors are slightly dependent on the pH -value, as the rate of its reaction with acrylonitrile $\mathbf{1 f}$ is increased by a factor of 3.9 when the pH is raised from 6.0 to 11.0. ${ }^{[86]}$

The correlation of the reported rate constants $\log k_{2}$ for the reactions of GSH with $\mathbf{1 a}, \mathbf{b}, \mathbf{f}, \mathbf{g}, \mathbf{i}$ and $\mathbf{2 b}, \mathbf{c}, \mathbf{i}, \mathbf{j}$ versus the electrophilicity parameters E is astonishingly good. According to eq 8.1 the slope of the correlation provides the nucleophile-specific slope parameter $s_{\mathrm{N}}=0.34$ and the intercept on the abscissa the nucleophilicity parameter $N=17.01$ of GSH.

The tripeptide GSH is less reactive than the amino acid cysteine $\left(\mathrm{Cys}^{2-} N=23.43, s_{\mathrm{N}}=0.42\right.$; Table 8.1) or mercaptoacetic acid (SAc ${ }^{2-} N=22.62, s_{\mathrm{N}}=0.43$; Table 8.1). The reaction of GSH with cinnamaldehyde $\mathbf{2 j}$ proceeds 122 times more slowly than the corresponding reaction of Cys^{2-} (Table 8.2). The differences in reactivity between GSH and Cys^{2-} may be attributed to the bulkiness of GSH compared to Cys^{2-}, or be caused by the difference in pH (GSH: pH 6.87.4; $\mathrm{Cys}^{2-} \mathrm{pH} 10.8^{[13]}$) at which the reactivity parameters were determined.

Scheme 8.3. Reaction of glutathione (GSH) with the acceptor-substituted olefins 1-2.

Figure 8.2. Correlation of \boldsymbol{k}_{2}-values for the reactions of GSH with $\mathbf{1 a , b , f , g , i}$ and $\mathbf{2 b , c , i}, \mathrm{j}$ at $25{ }^{\circ} \mathrm{C}(\mathrm{pH} 6.8-$ 7.4) reported in refs. $[8 \mathrm{~b}, 22]$ versus the corresponding electrophilicity parameters E.

8.2.8.2 Estimation of Electrophilicity Parameters from Literature Data on Michael Additions

The plots of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ in Figure 8.3 for the reactions of (4-methyoxy)phenylvinylketone $\mathbf{6 a},{ }^{[6 \mathrm{~h}]}$ methylvinylsulfone $\mathbf{6 b},{ }^{[6 \mathrm{c},}{ }^{\mathrm{k}]} \quad N$-methyl- N-phenylethenesulfonamide $\quad \mathbf{6 c},{ }^{[7 \mathrm{e}]}$ and acrylamide $\mathbf{6 d}{ }^{[6 \mathrm{c}, \mathrm{g}, \mathrm{k}]}$ with amines, pyridines, and alkoxides in $\mathrm{H}_{2} \mathrm{O}$ and alcohols at 25 and $30^{\circ} \mathrm{C}$ versus the corresponding nucleophilicity parameters N and s_{N} from Table 8.1 correlate linearly (for details see Experimental Section). The nucleophilicity parameters for the employed amines and pyridines were in most cases determined in the solvents in which k_{2} was determined, making their use unproblematic, and the difference in the temperature used for the determination of N and s_{N} and $k_{2}{ }^{\text {exp }}$ is negligible in all cases.

Eq 8.1 requires a slope of 1.0 for the correlations of $\left(\log k_{2}\right) / s_{\mathrm{N}}$ versus the nucleophilicity parameter N. Figure 8.3 shows that this requirement is roughly met for the reactions of amines, pyridines, and alkoxides with (4-methoxy)phenylvinylketone 6a, methylvinylsulfone $\mathbf{6 b}, \mathrm{N}$ -methyl- N-phenylethenesulfonamide $\mathbf{6 c}$, and acrylamide 6d. Therefore, we estimated the electrophilicity parameter E of these Michael acceptors by least square-fitting, i.e., minimization of $\Delta^{2}=\sum\left(\log k_{2}-s_{\mathrm{N}}(N+E)^{2}\right)$ (details see Experimental Section). Deviations from
the correlation lines in Figure 8.3 are surprisingly small for all four activated ethylenes and do not exceed a factor of 17 , i.e., they are within the limit of confidence of eq 8.1.

The electrophilicity parameter $E=-13.16$ derived for the p-methoxy substituted phenylvinylketone 6a from its reactions with amines in $\mathrm{H}_{2} \mathrm{O}$ is 2.1 orders of magnitude lower than the electrophilicity parameter $E=-15.26$ of the parent phenylvinylketone $\mathbf{1 h}$ determined from its reactions with the pyridinium (4) and sulfonium ylides (5) in DMSO (Chart 8.1).

In previous studies, we have shown that $p-\mathrm{MeO}$-substitution of an aryl group directly attached to the CC-double bond decreases the electrophilicity of different activated ethylenes, including nitrostyrenes and bissulfonyl ethylenes, ${ }^{[23]}$ by approximately 1 order of magnitude in aprotic solvents. The opposite ordering of the reactivity for (4-methoxy)phenylvinylketone 6a and phenylvinylsulfone $\mathbf{1 h}$ may be caused by the fact, that for the determination of the electrophilicity parameter E of $\mathbf{6 a}$ only rate constants of its reactions with amines in water were considered. As we already showed above (Table 8.2, Figure 8.1), the rate constants of azaMichael reactions in water are accelerated by 1-2 orders of magnitude, so that the estimated E parameter for (4-methoxyphenyl)vinylketone 6a is only reliable within the limit of confidence of eq 8.1.

The same observation can be made for methylvinylsulfone $\mathbf{6 b}$. Although the rate constants for the reactions of methylvinylsulfone $\mathbf{6 b}$ with pyridines and amines in $\mathrm{H}_{2} \mathrm{O}$ correlate with the corresponding nucleophilicity parameters N, the estimated electrophilicity parameter of $E=$ -15.20 seems to be too high: according to this electrophilicity parameter, methylvinylsulfone 6b would be 3 orders of magnitude more reactive than its phenyl-substituted analogue phenylvinylsulfone $\mathbf{1 e}(E=-18.35)$.

For N-methyl- N-phenylethenesulfonamide $\mathbf{6 c}$ the estimated E parameter of -18.16 is in the range of the related phenylvinylsulfone $\mathbf{1 e}(E=-18.35$; Chart 8.1$)$. However, the E parameter of N-methyl- N-phenylethenesulfonamide $\mathbf{6 c}$ is based on only three rate constants of reactions with alkoxides in the corresponding alcohol and is not statistically confirmed.

For the estimation of the electrophilicity parameter $E=-19.00$ of acrylamide, only rate constants of its reactions with amines and pyridines in protic solvents $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}\right)$ were considered, so that its reactivity might be overestimated, as it is rated 4 orders of magnitude more reactive than its alkylated analogue N, N-dimethyl acrylamide 1d ($E=-23.54$; Chart 8.1).

Figure 8.3. Correlation of reported \boldsymbol{k}_{2}-values for the reactions of (4-methyoxyphenyl)vinylketone 6a (squares), ${ }^{[6 \mathrm{hb}]}$ methylvinylsulfone $\mathbf{6 b}$ (triangles), ${ }^{[6 \mathrm{c}, \mathrm{k}]} \mathrm{N}$-methyl- N -phenylethenesulfonamide 6c (diamonds), ${ }^{[7 \mathrm{ec}]}$ and acrylamide 6 d (dots) ${ }^{[6 \mathrm{c}, \mathrm{g}, \mathrm{k}]}$ with pyridines, amines, and alkoxides in $\mathrm{H}_{2} \mathrm{O}$ and alcohols at 25 to $30{ }^{\circ} \mathrm{C}$ (the slopes are fixed to 1.0 as required by eq 8.1 ; for a detailed list of the \boldsymbol{k}_{2} values and the estimation of \boldsymbol{E} see Exerimental Section).

8.3 Application of the Linear Free-Energy Relationship $\log \boldsymbol{k}_{\mathbf{2}}=s_{\mathrm{N}}(N+E)$ to

Concerted Reactions

Rates of [3+2]-cycloadditions of diazomethanes ${ }^{[16]}$ and of Diels-Alder reactions of dienes ${ }^{[17]}$ with different Michael acceptors like 1-3 have been reported, as well as the corresponding rate constants of their stepwise reactions with benzhydrylium ions 7. ${ }^{[18,19]}$ The rates of these stepwise reactions were used to determine the nucleophilicity parameters N and s_{N} of diazomethanes ${ }^{[18]}$ and dienes. ${ }^{[19]}$

Figure 8.4 plots the rate constants of the reactions of diphenyldiazomethane (left) and cyclopentadiene (right) with benzhydrylium ions 7 (filled circles) and with the different Michael acceptors 1-3 (open circles) versus the electrophilicity parameters E of the benzhydrylium ions 7, and the acceptor-substituted ethylenes $\mathbf{1 - 3}$.

Figure 8.4. Correlation of the $\log \boldsymbol{k}_{2}$ values of the CC-bond forming reactions of diphenyl diazomethane (left) ${ }^{[18]}$ and cyclopentadiene (right) ${ }^{[19 a, \text { b] }}$ with the benzhydrylium tetrafluoroborates 7 (filled circles, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathbf{2 0}^{\circ} \mathrm{C}$) versus the corresponding E parameters. Open circles refer to the reactions with the acceptorsubstituted olefins 1-3 (from Table 8.3).

An extrapolation of the correlation line obtained in Figure 8.4 for the rate-determining onebond formations from reactions of diphenyldiazomethane and cyclopentadiene with the benzhydrylium ions 7 as depicted in Scheme 8.4 predict rate constants of 10^{-18} to $10^{-6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for the formation of zwitterions $\mathbf{8}$ and $\mathbf{1 0}$ (Scheme 8.4) from the corresponding reactions with the Michael acceptors $\mathbf{1 - 3}$. The actually observed rate constants of 10^{-8} to $10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (open circles; Figure 8.4), however, are 5-12 orders of magnitude larger than expected for reactions involving the zwitterions $\mathbf{8}$ and $\mathbf{1 0}$ depicted in Scheme 8.4. This observation indicates that none of these reactions follows eq 8.1, which describes reactions with formation of one new σ-bond in the rate determining step. ${ }^{[20]}$ The rate constants of the reactions of diphenyldiazomethane and cyclopentadiene with the Michael acceptors 1-3 thus do not refer to reactions in which a single σ-bond is formed in the rate-determining step, i.e., they cannot proceed via zwitterionic intermediates. In agreement with previous work, ${ }^{[16,17]}$ these reactions can be seen as concerted processes and two σ-bonds are simultaneously formed in the rate determining step (Scheme 8.4).

Although the rate constants of the reactions of diphenyldiazomethane and cyclopentadiene with the activated double bonds of $\mathbf{1}-\mathbf{3}$ depicted in Figure 8.4 cannot be predicted by eq 8.1,

Scheme 8.4. Mechansim of the reactions of diphenyldiazomethane ${ }^{[18]}$ with a benzhydrylium Salt 7 (a) and with fumaronitrile 1c (b). ${ }^{[a]}$ Reactions c, d show to the mechansim of the reactions of cyclopenatdiene with reactions benzhydrylium ions (c) ${ }^{[19 \mathrm{~b}]}$ and fumaronitrile (d). ${ }^{[b]}$

[a] Stereochemistry for the [3+2]-cycloadduct $\mathbf{8}$ in analogy to ref. [16e]; [b] Stereochemistry for the Diels-Alder adduct $\mathbf{1 0}$ from ref [26].
the rate constants show a dependence on the electrophilicity of the employed Michael acceptor $\mathbf{1}-\mathbf{3}$, as $\log k_{2}$ increases linearly with increasing electrophilicity E.

A complementary analysis can be made for the reactions of methyl acrylate $\mathbf{1 a}^{[1 \mathrm{~b}]}$ and of maleic anhydride 3a ${ }^{[1 a]}$ with diazomethanes and dienes (Figure 8.5). The electrophilicity parameters E of these compounds have been derived from the rate constants of their stepwise reactions with pyridinium (4) and sulfonium ylides 5 (filled circles; Figure 8.5). The rate constants of their reactions with diazomethanes or dienes, however, lie far above the correlation lines. This observation demonstrates that the reactions of $\mathbf{1 a}$ and $\mathbf{3 a}$ with diazomethanes or dienes, do not proceed via zwitterionic intermediates. Instead, they follow a concerted mechanism and cannot be described by eq 8.1.

However, the rate constants for the concerted reactions of methyl acrylate 1a and maleic anhydride 3a with diazomethanes and dienes depend on the nucleophilicity parameters N and s_{N}, as $\left(\log k_{2}\right) / s_{\mathrm{N}}$ increases with increasing nucleophilicity N.

Figure 8.5. Correlation of $\left(\log k_{2}\right) / s_{N}$ of the stepwise reactions of methyl acrylate 1 a (left) ${ }^{[1 b]}$ and maleic anhydride 3a (right) ${ }^{[12]}$ with pyridinium ylides 4 and sulfonium ylides 5 versus the corresponding N parameters (filled circles, DMSO, $20{ }^{\circ} \mathrm{C}$). Open circles refer to the reactions of 1 a and 3 a with diazomethanes and dienes (from Table 8.3).

The gap between the correlation lines for the stepwise ($k_{2}{ }^{\text {calcd }}$) and concerted ($k_{2}{ }^{\text {exp }}$) processes in Figures 8.4 and 8.5 may be used to calculate the "free enthalpy of concert" $\Delta G_{\text {concert }}$ (eq 8.2), which is a measure for the interaction of the positively and negatively charged termini of a hypothetical zwitterionic intermediate in the transition state. ${ }^{[21]}$ It should be noted that this interpretation only compares concerted mechanisms with stepwise processes via zwitterions and neglects the alternative via diradicals. ${ }^{[24]}$

Table 8.3 lists the rate constants from the literature for the reactions of diazomethanes ${ }^{[16]}$ and dienes ${ }^{[17]}$ with the Michael acceptors $\mathbf{1}-\mathbf{3}$ including those depicted in Figures 8.4 and 8.5. The rate constants of the reactions in Table 8.3 were determined at $20-40^{\circ} \mathrm{C}$ and are compared with the calculated values at $20^{\circ} \mathrm{C}$, neglecting the small differences in temperature (Table 8.3).

The solvents in which the reactivity parameters s_{N}, N, and E were determined differ in all cases from the solvents used to determine $k_{2}{ }^{\exp }$. Cycloadditions via zwitterionic intermediates are strongly affected by the solvent polarity, ${ }^{[27]}$ while the rates of concerted ($k_{2}{ }^{\text {exp }}$; Table 8.3) cycloadditions generally show only a small dependence on solvent polarity. ${ }^{[16 d, 25]}$ A variation of the solvent may, instead, result in a change of mechanism.

Table 8.3. Comparison of experimental ($\left.k_{2}{ }^{\text {exp }}\right)^{[16-17]}$ and calculated $\left(k_{2}{ }^{\text {calcd }}\right)^{[a]}$ second-order rate constants and "free enthalpies of concert" $\Delta G_{\text {concert }}{ }^{[b]}$ for the reactions of diazomethanes and dienes with the acceptorsubstituted olefins 1-3.

Nuc. N / s_{N}	Elec.	Solvent	$\begin{gathered} \hline T / \\ { }^{\circ} \mathrm{C} \end{gathered}$	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Ref.	$\begin{gathered} k_{2}^{\text {calcd }}\left(20^{\circ} \mathrm{C},\right. \\ \left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \\ \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{gathered}$	$\begin{aligned} & k_{2}^{\text {exp/ }} \\ & k_{2}{ }^{\text {calcd }} \end{aligned}$	$\begin{aligned} & \hline \Delta G_{\text {concert }} \\ & \mathrm{kJ} \mathrm{~mol} \end{aligned}$
	1a	DMF	40	8.31×10^{-3}	[16c]	2.87×10^{-13}	2.90×10^{10}	62.7
	1b	DMF	40	8.12×10^{-3}	[16c]	1.74×10^{-13}	4.66×10^{10}	64.0
	1 f	DMF	40	4.34×10^{-3}	[16a]	2.16×10^{-13}	2.01×10^{10}	61.8
	2 a	DMF	40	2.46×10^{-5}	[16a]	1.09×10^{-17}	2.26×10^{12}	74.1
5.29/0.92 ${ }^{\text {[c] }}$	2b	DMF	40	1.25×10^{-5}	[16a]	2.09×10^{-18}	5.97×10^{12}	76.6
	2 c	DMF	40	5.05×10^{-4}	[16a]	8.18×10^{-17}	6.17×10^{12}	76.7
	3a	DMF	40	7.90×10^{-2}	[16g]	2.88×10^{-6}	2.74×10^{4}	25.8
	3 c	$\mathrm{C}_{6} \mathrm{H}_{6}$	30	1.72×10^{-3}	[16f]	2.60×10^{-10}	6.61×10^{6}	39.6
	3d	DMF	40	2.47×10^{-2}	[16g]	3.37×10^{-12}	7.33×10^{9}	59.1
	3e	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	25	7.60×10^{-4}	[16e]	8.55×10^{-14}	8.89×10^{9}	56.7
	1b	DMF	40	2.73×10^{-1}	[16d]	7.23×10^{-9}	3.78×10^{7}	45.4
$\begin{gathered} \mathrm{CH}_{2} \mathrm{~N}_{2} \\ 10.48 / 0.78^{[\mathrm{c}]} \end{gathered}$	1a	THF	25	2.3×10^{-1}	[16b]	2.59×10^{-7}	8.86×10^{5}	33.9
	1b	DMF	25	1.12	[16c]	1.70×10^{-7}	6.58×10^{6}	38.9
	2 a	THF	25	1.9×10^{-3}	[16b]	4.63×10^{-11}	4.10×10^{7}	43.5
	2 c	THF	25	1.4×10^{-2}	[16b]	2.56×10^{-10}	5.46×10^{7}	44.1
	3e	THF	25	9.20×10^{-2}	[16b]	9.30×10^{-8}	9.89×10^{5}	34.2
	1a	toluene	20	$1.28 \times 10^{-8,[\mathrm{~g}]}$	[17d]	1.61×10^{-20}	7.96×10^{11}	66.8
	1 i	toluene	20	$4.88 \times 10^{-8,[\mathrm{~g}]}$	[17d]	2.98×10^{-16}	1.64×10^{8}	46.1
$-0.87 / 1.00{ }^{[d]}$	2 i	toluene	20	$1.01 \times 10^{-10,[g]}$	[17d]	1.08×10^{-20}	9.38×10^{9}	56.0
	3a	dioxane	30	6.83×10^{-5}	[17a]	6.57×10^{-13}	1.04×10^{8}	45.7
0.67/1.10	3a	dioxane	30	1.32×10^{-4}	[17a]	1.96×10^{-12}	6.72×10^{7}	45.4
	3b	EtOH	25	4.02×10^{-4}	[17f]	1.82×10^{-15}	2.20×10^{11}	64.7
	1i	toluene	20	$3.88 \times 10^{-7,[\mathrm{~g}]}$	[17d]	3.26×10^{-14}	1.19×10^{7}	39.7
	2 i	toluene	20	$6.04 \times 10^{-8,[\mathrm{~g}]}$	[17d]	1.18×10^{-18}	5.11×10^{10}	60.1
	3a	dioxane	30	1.54×10^{-4}	[17a]	9.81×10^{-11}	1.57×10^{6}	36.0
	3a	dioxane	30	3.36×10^{-4}	[17a]	7.20×10^{-11}	4.66×10^{6}	38.1
	3b	EtOH	25	1.35×10^{-3}	[17f]	1.26×10^{-13}	1.07×10^{10}	57.2
	3c	dioxane	20	$3.49 \times 10^{-7,[\mathrm{~h}]}$	[17c]	2.89×10^{-15}	1.21×10^{8}	45.4
(1.33/1.29	3a	MeCN	40	7.29×10^{-3}	[17e]	1.33×10^{-13}	5.50×10^{10}	62.3
$\overbrace{1.49 / 1.00^{[\mathrm{d}]}}^{\mathrm{Me}}$	3a	dioxane	30	2.27×10^{-4}	[17a]	1.51×10^{-10}	1.51×10^{6}	35.9

Table 8.3. Continued.

Nuc. N / s_{N}	Elec.	Solvent	$\begin{aligned} & \hline T / \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Ref.	$\begin{gathered} k_{2}{ }^{\text {calcd }}\left(20^{\circ} \mathrm{C},\right. \\ \left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \\ \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{gathered}$	$\begin{aligned} & k_{2}{ }^{\text {expp/ }} \\ & k_{2}{ }^{\text {calcd }} \end{aligned}$	$\begin{aligned} & \Delta G_{\text {concert/ }} \\ & \mathrm{kJ} \mathrm{~mol}^{-1} \end{aligned}$
$2.30 / 1.06{ }^{[d]}$	1a	dioxane	20	1.18×10^{-5}	[17b]	2.39×10^{-18}	4.95×10^{12}	71.2
	1 f	dioxane	20	1.04×10^{-5}	[17b]	1.72×10^{-18}	6.03×10^{12}	71.7
	1g	dioxane	30	1.51×10^{-4}	[17d]	9.31×10^{-16}	1.62×10^{11}	65.0
	1 i	dioxane	30	1.48×10^{-4}	[17d]	7.99×10^{-14}	1.85×10^{9}	53.8
	2 i	dioxane	30	7.00×10^{-8}	[17d]	1.56×10^{-18}	4.47×10^{10}	61.8
	3a	dioxane	20	5.56×10^{-2}	[17b]	2.80×10^{-10}	1.99×10^{8}	46.6
		dioxane	30	9.21×10^{-2}	[17a]	2.80×10^{-10}	3.29×10^{8}	49.4
	3b	dioxane	20	3.95×10^{-2}	[17b]	3.35×10^{-13}	1.18×10^{11}	62.1
		EtOH	25	3.02×10^{-1}	[17f]	3.35×10^{-13}	9.02×10^{11}	68.2
	3c	dioxane	20	8.06×10^{-4}	[17b]	6.12×10^{-15}	1.32×10^{11}	62.4

[a] Calculated from E (Chart 8.1) and N, s_{N} (Table 8.3) by eq 8.1 ; [b] Calculated by eq 8.2 for the temperature at which k_{2} was determined; [c] N and s_{N} for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from ref. [18]; [d] N and s_{N} for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from ref. [19d]; [e] N and s_{N} for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from ref. ${ }^{[19 \mathrm{c}]} ;[\mathrm{f}] N$ and s_{N} for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at from ref. ${ }^{[19 e]}$; [g] Calculated from activation parameters in ref. [17d] by using the Eyring equation; [h] Calculated from activation parameters in ref. [17c] by using the Eyring equation.

First of all, one can recognize that with exception of the reaction of diphenyldiazomethane with 3a, all calculated rate constants $k_{2}{ }^{\text {calcd }}$ in Table 8.3 are smaller than $2 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, i.e., none of these reactions can proceed via zwitterionic intermediates. From the ratio $k_{2}{ }^{\exp } / k_{2}{ }^{\text {calcd }}$, the "free enthalpy of concert" $\Delta G_{\text {concert }}$ relative to the zwitterionic pathway was derived using eq 8.2. ${ }^{[21]}$ If a diradical intermediate is feasible, $\Delta G_{\text {concert }}$ may be smaller, however, than the $\Delta G_{\text {concert }}$ values listed in Table 8.3 which measure the concertedness of the reaction relative to zwitterionic intermediates.

The "free enthalpies of concert" $\Delta G_{\text {concert }}$ for the [3+2]-cycloadditions of diphenyldiazomethane decrease with increasing electrophilicity of the olefins $\mathbf{1 - 3}$, i.e., from 77 $\mathrm{kJ} \mathrm{mol}^{-1}$ for the reaction with ethyl cinnamate $\mathbf{2 b}$, the least electrophilic Michael acceptor in the series, to $26 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the reaction with maleic anhydride 3a, the most electrophilic activated ethylene. Similarly, $\Delta G_{\text {concert }}$ decreases for the Diels-Alder reactions of cyclopentadiene with increasing electrophilicity from $73 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with methyl acrylate 1a, to $47 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with maleic anhydride 3a.

The "free enthalpy of concert" $\Delta G_{\text {concert }}$ also decreases with increasing nucleophilicity of the diazomethane or diene: $\Delta G_{\text {concert }}$ decreases from $73 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in the reaction of methyl acrylate $\mathbf{1 a}$ with cyclopentadiene to $34 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in the reaction of $\mathbf{1 a}$ with diazomethane. For maleic anhydride 3a the "free enthalpy of concert" $\Delta G_{\text {concert }}$ decreases from $62 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in the reaction with furan, to $26 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in reaction with diphenyldiazomethane.

The correlation between the reactivity parameters N and E and the "free enthalpy of concert" $\Delta G_{\text {concert }}$ may now allow us to estimate the concertedness of different types of pericyclic reactions - always with the caveat that reactions via intermediate diradicals are not considered.

8.4 Conclusion

The good agreement between reported experimental rate constants and those calculated using eq 8.1 for the reactions of the Michael acceptors $\mathbf{1 - 3}$ with $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$, and P nucleophiles in 96 of the investigated 110 cases demonstrates the applicability of the linear free-energy relationship $\log k_{2}=s_{\mathrm{N}}(N+E)$ for the prediction of the rate constants of a broad variety of polar organic reactions.

Although the reactivity parameters determined in this work from reported rate constants of the reactions of gluthathione (GSH) with the Michael acceptors $\mathbf{1}$ and 2, and the reactions of the activated ethylenes $\mathbf{6}$ with pyridines, amines, and alkoxides may not be very accurate, the fair correlations between the reported rate constants and reactivity parameters are obvious. Considering the broad validity range of eq 8.1 of over 30 orders of magnitude ${ }^{[20 f]}$ the observed deviations from the correlation lines, which in all cases lie within the limit of confidence of eq 8.1, are relatively small, showing that eq 8.1 can be used to estimate reactivity parameters of nucleophiles and electrophiles from reported rate constants.

For reactions in which more than one bond is formed in the rate determining step, e.g., for concerted cycloadditions, the rate constants cannot be calculated by eq 8.1 as two σ-bonds are formed simultaneously in the rate-determining step. However, we could show that eq 8.1 is a practical tool to differentiate between stepwise or highly asynchronous, and concerted reactions.

We found that rate constants of [3+2]-cycloadditions of diazomethanes and of Diels-Alder reactions of dienes with the acceptor-substituted olefins 1-3 decrease with decreasing nucleophilicity of the 1,3 -dipole or 1,3 -diene and decreasing electrophilicity of $\mathbf{1} \mathbf{- 3}$. The reactivity parameters s_{N}, N, and E may thus be used as an orientation for the ordering of the reactivity of the reactants in pericyclic reactions.

8.5 Experimental Section

8.5.1 General

The k_{1} values reported in refs. [6e, 7 f] for the reactions of $\mathbf{2 i}$ with OH^{-}and of $\mathbf{3 e}$ with amines were plotted against the concentrations of the nucleophiles to derive more reliable k_{2} values, as the second-order rate constants given in refs. [6e, 7f] scatter. The k_{1} values in ref. [6e], which deviate strongly from the other reported k_{1} values, were not used for the determination of k_{2}.

The electrophilicity parameters E of the activated ethylenes $\mathbf{6}$ were determined by leastsquares minimization, i.e., least-squares fitting of by minimizing $\Delta^{2}=\sum\left(\log k_{2}-s_{\mathrm{N}}(N+E)\right)^{2}$

8.5.2 Reevaluation of the Kinetics Reported in the Literature

8.5.2.1 Reaction of $\mathbf{2 i}$ with $\mathbf{O H}^{-}$from Ref. [7f]

Table 8.4. Kinetics of the reactions of 2 i with $\mathrm{OH}^{-}\left(\mathrm{H}_{2} \mathrm{O} ; 25^{\circ} \mathrm{C}\right)$ from ref. [7f].

$[\mathbf{2 i}] / \mathrm{mol} \mathrm{L}^{-1}$	$\left[\mathrm{OH}^{-}\right] / \mathrm{mol}$	k_{1} / s^{-1}
1.56×10^{-5}	3.73×10^{-2}	1.10×10^{-3}
1.56×10^{-5}	6.67×10^{-2}	2.38×10^{-3}
1.56×10^{-5}	1.00×10^{-1}	3.73×10^{-3}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.79 \times 10^{-2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		

8.5.2.2 Reactions of 3 e with Amines from Ref. [6e]

Table 8.5. Kinetics of the reactions of 1 e with piperidine ($\mathrm{Pip} ; \mathrm{EtOH}(95 \%) ; 34{ }^{\circ} \mathrm{C}$) from ref. [6e].

$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathrm{Pip}] / \mathrm{mol} \mathrm{L}^{-1}$	k_{1} / s^{-1}
2×10^{-5}	4.00×10^{-3}	8.33×10^{-5}
2×10^{-5}	1.00×10^{-2}	1.64×10^{-4}
2×10^{-5}	2.00×10^{-2}	3.63×10^{-4}
2×10^{-5}	4.00×10^{-2}	7.18×10^{-3}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=$		$1.79 \times 10^{-2} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Table 8.6. Kinetics of the reactions of 1 e with \boldsymbol{n}-butylamine ($\mathrm{EtOH}(95 \%) ; 34{ }^{\circ} \mathrm{C}$) from ref. [6e].

$[\mathbf{1 e}] / \mathrm{mol} \mathrm{L}^{-1}$	$\left[n \mathrm{BuNH}_{2}\right] / \mathrm{mol} \mathrm{L}^{-1}$	k_{1} / s^{-1}
2×10^{-5}	1.01×10^{-2}	3.48×10^{-5}
2×10^{-5}	2.02×10^{-2}	6.25×10^{-5}
2×10^{-5}	1.01×10^{-1}	1.89×10^{-4}
2×10^{-5}	2.02×10^{-1}	3.34×10^{-4}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=1.54 \times 10^{-3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		

Table 8.7. Kinetics of the reactions of 1 e with dipropylamine ($\mathrm{EtOH}(\mathbf{9 5 \%})$; $34{ }^{\circ} \mathrm{C}$) from ref. [6e].

Table 8.8. Kinetics of the reactions of 1e with benzylamine (EtOH (95%); $34^{\circ} \mathrm{C}$) from ref. [6e].

$[\mathbf{1} \mathbf{e}] / \mathrm{mol} \mathrm{L}^{-1}$	$\left[\mathrm{BnNH}_{2}\right] / \mathrm{mol} \mathrm{L}^{-1}$	k_{1} / s^{-1}
2×10^{-5}	9.17×10^{-2}	1.17×10^{-4}
2×10^{-5}	1.46×10^{-2}	2.18×10^{-4}
2×10^{-5}	1.84×10^{-2}	2.15×10^{-4}
2×10^{-5}	3.67×10^{-1}	2.85×10^{-4}
$k_{2}\left(20^{\circ} \mathrm{C}\right)=5.16 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$		

8.5.3 Determination of Reactivity Parameters from Reported Rate Constants

8.5.3.1 Reactions of GSH with 1,2 from Refs. [8b, 22]

Table 8.9. Experimental second-order rate constants ($k_{2}{ }^{\text {exp }}$) for the reactions of the GSH with $\mathbf{1 a , b}, \mathrm{g}, \mathrm{i}$ and $\mathbf{2 b}, \mathrm{c}, \mathrm{i}, \mathrm{j}$ in $\mathrm{H}_{2} \mathrm{O}$ at $\mathbf{2 5}^{\circ} \mathrm{C}$. \boldsymbol{k}_{2} values taken from refs. [8b, 22].

Elec.	E	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	pH	Ref.
$\mathbf{1 a}$	-18.92	1.91×10^{-1}	7.4	22
$\mathbf{1 b}$	-19.16	1.79×10^{-1}	7.4	22
$\mathbf{1 g}$	-16.48	2.30	7.4	22
$\mathbf{1 f}$	-19.06	6.72×10^{-1}	6.8	8 b
$\mathbf{1 i}$	-14.65	2.20	7.4	22
$\mathbf{2 b}$	-24.51	2.70×10^{-3}	7.4	22
$\mathbf{2 c}$	-22.78	9.59×10^{-4}	7.4	22
$\mathbf{2 i}$	-19.10	9.82×10^{-2}	7.4	22
$\mathbf{2 j}$	-19.66	1.00×10^{-1}	7.4	22
	$N=17.01$	$s_{\mathrm{N}}=0.34$		

8.5.3.2 Reactions of (4-Methoxy)phenylvinylketone 6a with Amines from Ref. [6h]

Table 8.10. Experimental ($\left.\boldsymbol{k}_{2}{ }^{\text {exp }}\right)$ and calculated ($\left.\boldsymbol{k}_{2}{ }^{\text {calcd }}\right)^{[\text {a] }}$ second-order rate constants for the reactions of (4methoxy)phenylvinylketone 6a with amines and pyridines in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. \boldsymbol{k}_{2} values from ref. [6h].

Nuc.	$k_{2}{ }_{2}^{\text {exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}}$	$k_{2}{ }^{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
MeNH_{2}	2.60	2.32	1.12
EtNH_{2}	2.30	6.78×10^{-1}	3.39
$i \mathrm{PrNH}_{2}$	9.20×10^{-1}	2.24×10^{-1}	4.11
$n \mathrm{BuNH}_{2}$	3.95	2.13×10^{1}	0.19
$t \mathrm{BuNH}_{2}$	8.00×10^{-2}	2.86×10^{-1}	0.28
$\mathrm{AllylNH}_{2}$	1.49	1.06	1.40
$\mathrm{Et}_{2} \mathrm{NH}$	1.83×10^{1}	6.38	2.87
$\mathrm{Pr}_{2} \mathrm{NH}$	2.23×10^{1}	1.20×10^{1}	1.86
Pip	7.00×10^{1}	1.54×10^{2}	0.46
Mor	7.90	2.13×10^{1}	0.37

[a] Calculated by eq 8.1 using the N and s_{N} parameters given in Table 8.1 and E in this Table; For the correlation for the determination of E see 8.5.3.6.

8.5.3.3 Reactions of Methylvinylsulfone $\mathbf{6 b}$ from Refs. [$\mathbf{6 c}, \mathbf{k}$]

Table 8.11. Experimental ($\left.k_{2}{ }^{\text {exp }}\right)$ and calculated ($\left.k_{2}{ }^{\text {calcd }}\right)^{[\text {a] }]}$ second-order rate constants for the reactions of methylvinylsulfone 6b with amines and pyridines in $\mathrm{H}_{2} \mathrm{O}$ at 25 and $30^{\circ} \mathrm{C}$. k_{2} values taken from refs. [6c, k].

Nuc.	$T /{ }^{\circ} \mathrm{C}$	$k_{2}{ }^{\exp } / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Ref	$k_{2}{ }^{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp } / k_{2}}{ }^{\text {calcd }}$
DMAP	25	8.25×10^{-2}	$[6 \mathrm{k}]$	7.47×10^{-2}	1.10
GlyGly	30	9.00×10^{-3}	$[6 \mathrm{c}]$	4.68×10^{-2}	0.19
Gly	30	3.06×10^{-2}	$[6 \mathrm{c}]$	1.04×10^{-1}	0.29
BrAP	25	1.95×10^{-2}	$[6 \mathrm{k}]$	3.15×10^{-2}	0.62
AP	25	6.10×10^{-2}	$[6 \mathrm{k}]$	1.03×10^{-2}	5.93
MorAP	25	4.40×10^{-2}	$[6 \mathrm{k}]$	1.39×10^{-2}	3.16
$E=-15.20^{[\mathrm{aj}}$					

[a] Calculated by eq 8.1 using the N and s_{N} parameters given in Table 8.1 and E in this Table The correlation for the determination of E see 8.5.3.6.

8.5.3.4 Reactions of N-Methyl- N-Phenylethenesulfonamide 6 c with Alkoxides from Ref. [7e]

Table 8.12. Experimental ($\left.\boldsymbol{k}_{2}{ }^{\text {exp }}\right)$ and calculated ($\left.\boldsymbol{k}_{2}{ }^{\text {calcd }}\right)^{[\text {a] }]}$ second-order rate constants for the reactions of N -methyl- N -phenylethenesulfonamide 6 c with alkoxides in the corresponding alcohol at $25{ }^{\circ} \mathrm{C}$. \boldsymbol{k}_{2} values taken from ref. [7e].

Nuc.	Solvent	$T /{ }^{\circ} \mathrm{C}$	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
$\mathrm{MeO}-$	MeOH	25	6.28×10^{-3}	4.63×10^{-2}	0.14
$\mathrm{EtO}-$	EtOH	25	4.93×10^{-2}	2.83×10^{-2}	1.74
$n \mathrm{PrO}-$	$n \operatorname{PrOH}$	25	9.48×10^{-2}	3.21×10^{-2}	2.95
		$E=-18.16^{[a]}$			

$\overline{\text { [a] Calculated by eq } 8.1 \text { using the } N \text { and } s_{\mathrm{N}} \text { parameters given in Table } 8.1 \text { and } E \text { in this Table The correlation for }}$ the determination of E see 8.5.3.6.

8.5.3.5 Reactions of Acrylamide 6d with Amines and Pyridines from Refs. [6c, g, k]

Table 8.13. Experimental ($\left.k_{2}{ }^{\text {exp }}\right)$ and calculated ($\left.k_{2}{ }^{\text {calcd }}\right)^{[a]}$ second-order rate constants for the reactions of acrylamide 6 d with amines and pyridines in $\mathrm{H}_{2} \mathrm{O}$ and MeOH at 25 and $30{ }^{\circ} \mathrm{C}$. \boldsymbol{k}_{2} values taken from refs. $[6 \mathrm{c}, \mathrm{g}, \mathrm{k}]$.

Nuc.	Solvent	$T /{ }^{\circ} \mathrm{C}$	$k_{2}{ }^{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	Ref	$k_{2}{ }^{\text {calcd }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{2}{ }^{\text {exp }} / k_{2}{ }^{\text {calcd }}$
DMAP	$\mathrm{H}_{2} \mathrm{O}$	25	6.10×10^{-4}	$[6 \mathrm{k}]$	5.55×10^{-4}	1.10
GlyGly	$\mathrm{H}_{2} \mathrm{O}$	30	2.00×10^{-4}	$[6 \mathrm{c}]$	2.92×10^{-4}	0.68
Gly	$\mathrm{H}_{2} \mathrm{O}$	30	6.30×10^{-4}	$[6 \mathrm{c}]$	6.51×10^{-4}	0.97
Ala	$\mathrm{H}_{2} \mathrm{O}$	30	3.50×10^{-4}	$[6 \mathrm{c}]$	3.34×10^{-4}	1.05
Pyr	MeOH	30	8.27×10^{-3}	$[6 \mathrm{~g}]$	1.23×10^{-2}	0.67
BrAP	$\mathrm{H}_{2} \mathrm{O}$	25	1.00×10^{-4}	$[6 \mathrm{k}]$	8.92×10^{-5}	1.12
Mor	MeOH	30	3.57×10^{-4}	$[6 \mathrm{~g}]$	4.94×10^{-3}	0.07
AP	$\mathrm{H}_{2} \mathrm{O}$	25	5.30×10^{-4}	$[6 \mathrm{k}]$	3.18×10^{-5}	16.7
MorAP	$\mathrm{H}_{2} \mathrm{O}$	25	3.90×10^{-4}	$[6 \mathrm{k}]$	4.31×10^{-5}	9.04
Phe	$\mathrm{H}_{2} \mathrm{O}$	30	2.22×10^{-4}	$[6 \mathrm{c}]$	2.58×10^{-3}	0.09
$E=-19.07^{\text {[a] }}$						

[a] Calculated by eq 8.1 using the N and s_{N} parameters given in Table 8.1 and E in this Table The correlation for the determination of E see 8.5.3.6.

8.5.3.6 Correlations of $\left(\log k_{2}\right) / s_{N}$ of the Reactions of 6 with Nucleophiles

Figure 8.6. Correlation of $\left(\log k_{2} / s_{N}\right)$ versus N for $6(4-m e t h o x y) p h e n y l v i n y l k e t o n e ~ 6 a ~(s q u a r e s), ~$ methylvinylsulfone 6b (triangle), N-methyl- N-phenylethenesulfonamide 6 c (diamonds), and acrylamid 6d (circles). The slopes of the correlations were set to $\mathbf{1 . 0}$.

8.6 References

[1] (a) D. S. Allgäuer, H. Mayr, Eur. J. Org. Chem. 2013, submitted; (b) D. S. Allgäuer, H. Asahara, H. Mayr, To be published 2013.
[2] D. S. Allgäuer, H. Mayr, To be published 2013.
D. S. Allgäuer, P. Mayer, H. Mayr, J. Am. Chem. Soc. 2013, 135, 15216-15224.
R. Appel, N. Hartmann, H. Mayr, J. Am. Chem. Soc. 2010, 132, 17894-17900.
[5] Reactions with C-Nucloephiles: K. T. Finley, D. R. Call, G. W. Sovocool, W. J. Hayles, Can. J. Chem. 1967, 45, 571-573.
[6] Reactions with N-Nucleophiles: (a) Y. Ogata, M. Okano, Y. Furuya, I. Tabushi, J. Am. Chem. Soc. 1956, 78, 5426-5428; (b) N. Ogata, T. Asahara, Bull. Chem. Soc. Jap. 1966, 39, 1486-1490; (c) M. Friedman, J. S. Wall, J. Org. Chem. 1966, 31, 2888-2894; (d) I. Šestáková, V. Horák, P. Zuman, Collect. Czech. Chem. Commun. 1966, 31, 3889-3902; (e) Z. Grunbaum, S. Patai, Z. Rappoport, J. Chem. Soc. B 1966, 1133-1137; (f) K. Sanui, N. Ogata, Bull. Chem. Soc. Jap. 1967, 40, 1727-1727; (g) H. Shenhav, Z. Rappoport, S. Patai, J. Chem. Soc. B 1970, 469-476; (h) G. J. Dienys, L. J. J. Kunskaite, A. K. Vaitkevicius, A. V. Klimavicius, Org. Reactiv., Engl. Ed. 1975, 12, 275-282; (i) J. Szczesna, M. Kostecki, S. Kinastowski, Rocz. Akad. Roln. Poznaniu 1988, 192, 99104; (j) J. W. Bunting, A. Toth, C. K. M. Heo, R. G. Moors, J. Am. Chem. Soc. 1990, 112, 8878-8885; (k) C. K. M. Heo, J. W. Bunting, J. Org. Chem. 1992, 57, 3570-3578;
(1) M. Kostecki, J. Szczesna, S. Kinastowski, Rocz. Akad. Roln. Poznaniu 1993, 256, 25-32; (m) K. L. Mallik, M. N. Das, Z. Phys. Chem. 1960, 25, 205-216; (n) M. Friedman, J. Am. Chem. Soc. 1967, 89, 4709-4713; (o) J. Horáleka, E. Krejcara, J. Churáček, Collect. Czech. Chem. Commun. 1988, 53, 833-838.
[7] Reactions with O-Nucleophiles: (a) N. Ferry, F. J. McQuillin, J. Chem. Soc. 1962, 103113; (b) B.-A. Feit, A. Zilkha, J. Org. Chem. 1963, 28, 406-410; (c) P. Carsky, P. Zuman, V. Horvak, Collect. Czech. Chem. Commun. 1965, 30, 4316-4336; (d) R. N. Ring, G. C. Tesoro, D. R. Moore, J. Org. Chem. 1967, 32, 1091-1094; (e) W. G. Davies, E. W. Hardisty, T. P. Nevell, R. H. Peters, J. Chem. Soc. B, Phys. Org. 1970, 998-1004; (f) J. P. Guthrie, Can. J. Chem. 1974, 52, 2037-2040; (g) B. A. Feit, R. Pazhenchevsky, B. Pazhenchevsky, J. Org. Chem. 1976, 41, 3246-3250; (h) O. Adomeniene, G. Dienys, Z. Stumbreviciute, Org. Reactiv., Engl. Ed. 1978, 15, 38-44; (i) J. P. Guthrie, K. J. Cooper, J. Cossar, B. A. Dawson, K. F. Taylor, Can. J. Chem. 1984, 62, 1441-144; (j) J. P. Guthrie, J. Cossar, K. F. Taylor, Can. J. Chem. 1984, 62, 1958-1964.
[8] Reactions with S-Nucleophiles: (a) M. Morton, H. Landfield, J. Am. Chem. Soc. 1952, 74, 3523-3526; (b) M. Friedman, J. F. Cavins, J. S. Wall, J. Am. Chem. Soc. 1965, 87, 3672-3682; (c) T.-R. Kim, S.-J. Yun, B.-B. Park, Bull. Kor. Chem. Soc. 1986, 7, 25-29.
[9] Reactions with P-Nucleophiles: I. Petnehazy, G. Clementis, Z. M. Jaszay, L. Toke, C. D. Hall, J. Chem. Soc., Perkin Trans. 2 1996, 2279-2284.
[10] (a) R. Lucius, R. Loos, H. Mayr, Angew. Chem., Int. Ed. 2002, 41, 91-95; (b) T. Bug, H. Mayr, J. Am. Chem. Soc. 2003, 125, 12980-12986.
[11] (a) F. Brotzel, B. Kempf, T. Singer, H. Zipse, H. Mayr, Chem. Eur. J. 2007, 13, 336-345; (b) M. Breugst, H. Mayr, J. Am. Chem. Soc. 2010, 132, 15380-15389; (c) T. A. Nigst, J. Ammer, H. Mayr, J. Phys. Chem. A 2012, 116, 8494-8499.
[12] (a) S. Minegishi, H. Mayr, J. Am. Chem. Soc. 2002, 125, 286-295; (b) H. Mayr, A. R. Ofial, Angew. Chem. 2006, 118, 1844-1854; (c) F. Brotzel, Y. C. Chu, H. Mayr, J. Org. Chem. 2007, 72, 3679-3688; (d) T. Kanzian, T. A. Nigst, A. Maier, S. Pichl, H. Mayr, Eur. J. Org. Chem. 2009, 6379-6385.
[13] F. Brotzel, H. Mayr, Org. Biomol. Chem. 2007, 5, 3814-3820.
[14] T. B. Phan, H. Mayr, Can. J. Chem. 2005, 83, 1554-1560.
[15] T. B. Phan, M. Breugst, H. Mayr, Angew. Chem., Int. Ed. 2006, 45, 3869-3874.
[16] [3+2]-Cycloaddtions with diazomethanes: (a) R. Huisgen, H. Stangl, H. J. Sturm, H. Wagenhofer, Angew. Chem. 1961, 73, 170; (b) A. Ledwith, Y. Shih-Lin, J. Chem. Soc. B 1967, 83-84; (c) L. Fisera, J. Geittner, R. Huisgen, H.-U. Reissig, Heterocycles 1978,

10, 153-158; (d) J. Geittner, R. Huisgen, H.-U. Reissig, Heterocycles 1978, 11, 109-112; (e) G. Swieton, J. Von Jouanne, H. Kelm, R. Huisgen, J. Org. Chem. 1983, 48, 1035-1040; (f) T. Oshima, T. Nagai, Tetrahedron Letters 1985, 26, 4785-4788; (g) R. Huisgen, E. Langhals, Tetrahedron Lett. 1989, 30, 5369-5372.
[17] Diels-Alder reactions with dienes: (a) J. Sauer, D. Lang, A. Mielert, Angew. Chem., Int. Ed. Engl. 1962, 1, 268-269; (b) J. Sauer, H. Wiest, A. Mielert, Chem. Ber. 1964, 97, 3183-3207; (c) J. Sauer, D. Lang, H. Wiest, Chem. Ber. 1964, 97, 3208-3218; (d) B. Blankenburg, H. Fiedler, M. Hampel, H. G. Hauthal, G. Just, K. Kahlert, J. Korn, K. H. Müller, W. Pritzkow, Y. Reinhold, M. Röllig, E. Sauer, D. Schnurpfeil, G. Zimmermann, J. Prakt. Chem. 1974, 316, 804-816; (e) M. W. Lee, W. C. Herndon, J. Org. Chem. 1978, 43, 518-518; (f) A. Meijer, S. Otto, J. B. F. N. Engberts, J. Org. Chem. 1998, 63, 8989-8994.
[18] T. Bug, M. Hartnagel, C. Schlierf, H. Mayr, Chem. Eur. J. 2003, 9, 4068-4076.
[19] (a) H. Mayr, R. Schneider, B. Irrgang, C. Schade, J. Am. Chem. Soc. 1990, 112, 44464454; (b) T. Siegmund, Ludwig-Maximilian Universität (München), 1999; (c) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512; (d) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (e) J. Ammer, C. Nolte, H. Mayr, J. Am. Chem. Soc. 2012, 134, 13902-13911.
[20] (a) H. Mayr, M. Patz, Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957; (b) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc. 2001, 123, 9500-9512; (c) H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; (d) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 1807-1821; (e) H. Mayr, A. R. Ofial, J. Phys. Org. Chem. 2008, 21, 584-595; (f) For a comprehensive database of nucleophilicity parameters N, s_{N} and electrophilicity parameters E, see http://www.cup.lmu.de/oc/mayr/.
[21] (a) M. Hartnagel, K. Grimm, H. Mayr, Liehigs Ann. 1997, 71-80. (b) H. Mayr, A. R. Ofial, J. Sauer, B. Schmied, Eur. J. Org. Chem. 2000, 2013-2020. (c) C. Fichtner, H. Mayr, J. Chem. Soc., Perkin Trans. 2 2002, 1441-1444.
[22] J. A. H. Schwöbel, D. Wondrousch, Y. K. Koleva, J. C. Madden, M. T. D. Cronin, G. Schüürmann, Chem. Res. Toxicol. 2010, 23, 1576-1585.
[23] (a) T. Lemek, H. Mayr, J. Org. Chem. 2003, 68, 6880-6886; (b) S. T. A. Berger, F. H. Seeliger, F. Hofbauer, H. Mayr, Org. Biomol. Chem. 2007, 5, 3020-3026; (c) O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675-9682; (d) I. Zenz, H.

Mayr, J. Org. Chem. 2011, 76, 9370-9378; (e) H. Asahara, H. Mayr, Chem. Asian J. 2012, 7, 1401-1407.
[24] (a) R. A. Firestone, J. Org. Chem. 1968, 33, 2285-2290; (b) R. Huisgen, J. Org. Chem. 1968, 33, 2291-2297; (c) R. A. Firestone, J. Org. Chem. 1972, 37, 2181-2191.
[25] R. Huisgen, in 1,3-Dipolar Cycloaddition Chemistry (Ed.: A. Padwa), Wiley, New York, 1984, p. 1-176.
[26] I. Hunt, C. D. Johnson, J. Chem. Soc., Perkin Trans. 2 1991, 1051-1056.
[27] (a) R. Huisgen, G. Steiner, Tetrahedron Lett. 1973, 14, 3763-3768; (b) R. Brückner, R. Huisgen, Tetrahedron Lett. 1990, 31, 2557-2560.

[^0]: [a] $\Delta G^{0}=R T \ln K ;[\mathrm{b}]$ From $k \mathrm{cc}$ in Tables 2.8, 2.10, using the Eyring equation; [c] From Marcus equation (eq 2.12).

[^1]: *This corresponds to the consumption of a small residual concentration of electrophile in the second step of case 2 b , which can actually not be observed.

[^2]: [a] After refluxing in THF for 4 h .

[^3]: (1) Conthe $(\mathrm{s}, C=\mathrm{CH}), 127.6(\mathrm{~s}, C=\mathrm{CH}), 128.6\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.0\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 129.3(\mathrm{~d}$, $\left.2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.1\left(\mathrm{~d}, 2 \times \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 130.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 132.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Ar}}\right)$,

[^4]: [a] Calculated by eq 4.1 from E (Chart 1) and N, s_{N} from Table 4.4.

[^5]: ($\mathrm{Et}_{2} \mathrm{O}$): $87^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.84\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.00$
 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $4.01\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$,

