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1. INTRODUCTION 

1.1 CD40 and Notch 

CD40 and Notch represent two signaling transmembrane receptors that are expressed in a 

multitude of different cells and influence various signaling contexts initiated through cell-cell 

contact during cellular proliferation and differentiation processes. Both have numerous 

intersection points with other signaling pathways and consequently their activation or 

inactivation can have significant impact on health or disease states of the individual. 

Since the work at hand is at the crossroads of immunology and oncology the molecules as such 

will be introduced, B- and T-cell development will be laid out and the impact the respective 

molecule has on the lymphocyte compartment as well as their roles in malignancies will be 

pointed out. 

1.2 Notch signaling 

The family of Notch receptors is found on a large number of different cell types and is involved in 

a multitude of different cellular processes. Notch signaling was originally discovered in Drosophila 

melanogaster, but has been shown to be conserved throughout evolution (Artavanis-Tsakonas et 

al., 1999). 

This family of receptors consists of four members in mammals (Notch1-4) sharing structural and 

sequence homologies (Radtke et al., 2010). The Notch protein belongs to the family of LNG 

proteins (LIN12 and GLP1 in Caenorhabditis elegans; Notch in Drosophila melanogaster). In the 

extracellular part Notch presents three LNG and 10–36 copies of EGF (epidermal growth factor)- 

like repeats, where ligand-binding is mediated by the latter (Rebay et al., 1991). The intracellular 

region of Notch contains a PEST sequence (proline-, glutamate-, serine-, threonine- rich) 

important for the degradation of the protein, a RAM domain (RBPJκ-associated molecule) and six 

to seven ankyrin repeats, both sequence of which are crucial for nuclear interaction with other 

proteins. Notch1 and Notch2 additionally feature a TAD domain (transcriptional activator 

domain). 

Notch receptors have five different membrane-bound ligands in mammals that can be subdivided 

into two groups, according to the homology with the Drosophila genes serrate or delta; the first 

mentioned comprises Jagged 1 and 2, the latter Delta-like-1, -3 and -4 (Dll-1, -3 and -4). Delta and 

Serrate form part of the family of DSL (Delta/Serrate/Lag2) proteins. They consist of a small 
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intracellular part, and in the extracellular space they have varying number of EGF-like repeats and 

a DSL domain in the N-terminus. This DSL domain was also identified to be responsible for the 

interaction with Notch (Fitzgerald et al., 1995).  

Notch receptors -like their ligands- are type I single pass transmembrane proteins. From their 

maturation until activation the Notch receptor undergoes three distinct proteolytic cleavage 

events (Fig. 1.1). The first cleavage (S1 cleavage) is mediated by a furin-like protease in the trans-

Golgi network during synthesis (Logeat et al., 1998). Loss of S1 cleavage leads to loss of function 

of the Notch receptor (Lake et al., 2009). S1 cleavage results in a bipartite protein, composed of a 

small transmembrane and intracellular part linked to the larger extracellular part. After 

localization in the membrane the receptor can interact with its respective ligand. Crosslinking of 

the extracellular part then leads to a cascade of proteolytic cleavage events: first a 

metalloproteinase such as ADAM 10 or ADAM 17/TACE (a disintegrin And 

metalloproteinase/tumor necrosis factor-α-converting enzyme) (Gibb et al., 2010; Murthy et al., 

2012) leads to membrane shedding of the extracellular portion of the protein (NotchEC; S2 

cleavage). Subsequently, a presenilin-dependent γ-secretase (De Strooper et al., 1999) cuts 

within the membrane spanning domain of the receptor (S3 cleavage) so that the intracellular part 

(NotchIC) is released and can translocate to the nucleus. 

In the absence of NotchIC in the nucleus its nuclear binding partner CSL (C promoter binding 

factor1/Suppressor of Hairless/Lag1) in humans and RBP-J in mice (recombination-signal-binding 

protein-J) (Matsunami et al., 1989) is bound to DNA with co-repressors including SMRT (silencing 

mediator of retinoid and thyroid receptors), HDAC1 and HDAC2 (histone deacetylase) which leads 

to suppression of Notch-target genes. Once NotchIC enters the nucleus, it binds to RBPJ via its 

ankyrin repeats and RAM domain (Kurooka et al., 1998). Subsequently, co-repressors are 

released from the complex and co-activators such as PCAF (P300/CBP-associated factor), p300 

itself, and MAML1-3 (mastermind-like 1-3) are recruited which turn the complex into an activator 

complex. This eventually results in the expression of Notch-responsive genes such as hes1 (hairy 

and enhancer of split 1) and deltex1. Via direct and indirect effectors expression of Notch-

responsive genes influences diverse processes such as cell-fate decisions, cell migration (CCR4, 

CCR6, CCR7; CC chemokine receptors), angiogenesis (VEGF; vascular endothelial growth factor) 

and cell proliferation (c-myc, p21, p27, Cyclin D1). Ubiquitination of the PEST domain of NotchIC 

by E3 ligases terminates signaling and Notch is subsequently degraded in the proteasome 

(Hubbard et al., 1997; Fostier et al., 1998; Cornell et al., 1999; Oberg et al., 2001; Wu et al., 

2001). 

The largest body of research with regard to Notch signaling has probably been compiled in 

developmental studies (e.g. in embryonic pattern formation such as during somitogenesis) and 
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outside the lymphocyte compartment. Nonetheless, Notch signaling is also of key importance in 

the development of T cells as well as in the development of marginal zone (MZ) B cells (Tanigaki 

et al., 2002). 

 

Fig. 1.1 Notch maturation and signaling cascade. 
In its lifetime Notch undergoes three cleavage events: cleavage at S1 during transit to the cell surface in 
the Golgi apparatus by a furin-like protease after which it functions as a transmembrane receptor. Upon 
engagement with its membrane-bound ligands of the family of DSL proteins Notch undergoes cleavage at 
S2 extracellularly by a metalloprotease and S3 within the membrane by a presenilin-dependent γ 
secretase. NotchIC then translocates to the nucleus transforming the transcriptional repressor CSL into a 
transcriptional activator by recruiting MAML1 and possibly other co-activators leading to expression of 
Notch-responsive genes. CSL, human C protein binding factor1/Suppressor of Hairless/Lag1; DSL, 
Delta/Serrate/Lag2 proteins; MAML1, mastermind-like 1; MP, metalloprotease; NotchEC, Notch 
extracellular portion; NotchIC, Notch intracellular portion; S, site. (adapted from (Nam et al., 2002; von 
Boehmer, 2005) 

1.3 T-cell development 

Like all cells of the adaptive immune system T cells are derived from the common lymphoid 

progenitor (CLP) in the bone marrow, but they undergo their final developmental stages in the 

thymus. Each compartment gives important developmental cues: for example both B and T cells 

in the bone marrow depend on interleukin7 receptor (IL7R) signaling. Mice deficient for this non-

redundant cytokine or its receptor display lymphopenia of both the B- and T- cell lineage 

(Peschon et al., 1994; von Freeden-Jeffry et al., 1995; Rich, 1997). Afterwards, the lobules of the 

thymus with their different compartments (i.e. the cortex and the medulla) provide the 

appropriate environment for the T-cell progenitors to develop into mature T cells.  

T-cell progenitors still do not bear any of the distinct lineage markers of T cells, namely the T-cell 

receptor (TCR) complex, with the co-receptors CD4 and CD8. With reference to the CD4/CD8 
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status the progenitors are termed double negative (DN). They develop through distinct DN 

phases (DN 1-4), characterized by consecutive rearrangement of the Variable (V), Diverse (D), and 

Joining (J) gene segments of the TCR and change in surface marker expression of CD25 and CD44 

(D'Acquisto et al., 2011) to finally becoming double-positive (DP) for CD4 as well as CD8. At this 

stage T-cell precursors stop proliferating and finally an α:β TCR-CD3 complex is presented at the 

cell surface and the cells are able to undergo positive selection (in the medullary areas of the 

thymus) and subsequently negative selection (in the cortical areas of the thymus). Only 2-4 % of T 

cells will successfully accomplish the process of selection and then migrate into the periphery as 

naïve single-positive T cells (CD4pos or CD8pos), i.e. functional T helper or cytotoxic T cells, 

respectively, that can further develop into effector T cells upon antigen encounter. CD4pos T cells 

can further differentiate into Th(helper)1 and Th2 cells. These distinct cell types are characterized 

e.g. the type of cytokines the respective cell produces and whether it rather promotes humoral 

or cellular immune responses. 

There are two other distinct groups of DN cells that already acquire their effector potential in the 

thymus before their emigration to the periphery: natural killer (NK) T cells and T cells that belong 

to the γ:δ lineage (as opposed to the α:β lineage).  

NK T cells are a small group of T cells (0.01 %–1 % of CD3pos lymphocytes in humans) expressing 

the surface marker NK1.1 and in contrast to conventional T cells they respond to CD1d-restricted 

lipid ligands (Juno et al., 2012). The various functions of NK T cells are mediated mainly by a rapid 

release of large amounts of cytokines, including IL4 and IFNγ (Oki et al., 2004).  

γ:δ T cells, like NK T cells, are a quite small group of T cells. They diverge from α:β T cells at the 

DN2/DN3 stage (D'Acquisto et al., 2011). In humans and mice, the vast majority of T cells (>90 %) 

in peripheral blood and conventional lymphoid organs express the α:β-TCR and only a minority 

(<10 %) express the γ:δ- TCR (Haas et al., 1993).  

Interestingly, another T-cell population called T regulatory cells (Tregs) is able to prohibit the 

developmental step from naïve CD8pos T cells into effector T cells in the periphery (McNally et al., 

2011). Tregs themselves develop from the late DP stage (i.e. from α:β TCR-positive cells) (Fontenot 

et al., 2005) in the thymus and are characterized by the expression of transcription factor Foxp3 

(Forkhead box P3), and the surface markers CD4 and CD25. The expression and activity of Foxp3 

is essential to the development of this cell population which in some instances can also be 

induced in the periphery upon antigenic stimulation in the presence of transforming growth 

factor-β (TGFβ) (Chen et al., 2003; Apostolou et al., 2004; Coombes et al., 2007), IL2 (Laurence et 

al., 2007) and retinoic acid (Benson et al., 2007; Mucida et al., 2007; Sun et al., 2007). However, it 

is still a topic of debate whether these so-called induced Tregs (iTregs) are functionally stable in vivo 

(Floess et al., 2007).  
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Natural Treg from the thymus play a role critical for the maintenance of peripheral immunological 

tolerance (Dejaco et al., 2006), thereby suppressing autoimmunity, inflammatory bowel disease 

and allergies. Treg are of quintessential importance to keep self-reactive cells under control. 

However, this property seems to be mostly detrimental with regard to the role of Treg in cancer, 

where they are suspected to dampen adaptive and innate immune responses leading to anti-

tumor cytotoxicity (Wang et al., 2011). Nonetheless, it is not yet clarified whether their presence 

in tumors is really causal or rather correlative and it is now thought that the role of Treg might be 

much more versatile and strongly context-dependent (deLeeuw et al., 2012; Savage et al., 2012). 

1.3.1 Notch in T-cell development 

With regard to hematopoiesis Notch signaling is best studied in T-cell lymphopoiesis. It is 

instructive for T-cell development as such and it remains important throughout T-cell 

development and differentiation. Notch1 expression in early lymphopoiesis influences B- versus 

T-cell lineage determination and constitutive Notch signaling in the very early pro-B-cell stage 

leads to formation of an aberrant T-cell population in the bone marrow while blocking B2 B-cell 

development (Pui et al., 1999; Hampel et al., 2011). In the thymus, T cells express the Notch1 

receptor and cells of the thymic stroma express the Notch-ligand Dll4. Genetic inactivation of 

notch1 (Radtke et al., 1999; Wilson et al., 2001) or of dll4 on thymic stroma cells (Koch et al., 

2008) leads to a complete block in T-cell development. Moreover, interference with Notch 

signaling such as through a dominant negative form of MAML1 results in a similar phenotype 

(Maillard et al., 2004). 

In later developmental stages Notch signaling is thought to play a role in the α:β versus γ:δ T-cell 

lineage choice (Wolfer et al., 2002) and seems to be important for the development of IL17-

producing γ:δ T cells (Shibata et al., 2011). Expression of active Notch3 in T cells and transgenic 

expression of Jagged1 by B lymphocytes significantly increases the pool of Treg (Vigouroux et al., 

2003; Anastasi et al., 2003). Notch has also repeatedly been discussed to be involved in 

differentiation of Th1 cells, Th2 cells, or both. However, to date the issue remains unresolved. 

(Minter et al., 2005; Tu et al., 2005; Sun et al., 2008; Ong et al., 2008; Amsen et al., 2009). 

1.4 B-cell development 

Under many aspects B-cell development parallels T-cell development. B cells also rely on the 

surrounding stroma in the bone marrow for developmental cues, both through cell-cell contact 

as well as through secreted growth factors (Nagasawa, 2006). The developmental process of B 
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cells resembles that of T cells with regard to successively rearranging V(D)J-gene segments in a 

gradual and coordinated fashion, testing whether the rearrangement was successful, which 

finally results in the formation of a heterodimeric, disulfide bridge-linked antigen-receptor. Also, 

like in T cells, these stages are marked by characteristic expression of certain surface molecules 

and intracellular proteins. Striking differences in development are however that B cells are 

continually produced over the lifetime of the individual in the bone marrow (Nunez et al., 1996), 

whereas development of T cells occurs in the thymus and slows down with the thymus eventually 

undergoing involution during puberty. 

One of the very first decisive factors for the commitment of an uncommitted progenitor cell 

towards the B-cell as opposed to T-cell lineage and further maturation of the B cell is the 

transcription factor Pax5 (paired box 5). Pax5 encodes the B-cell lineage specific activator protein 

(BSAP) (Rolink et al., 1999; Nutt et al., 1999). From the early pro-B-cell phase the germline 

conformation of the heavy chain IgH-locus with its V(D)J segments is rearranged, through action 

of RAG-1 and RAG-2 (Recombination Activating proteins) (Oettinger, 1996) resulting in a pre-B-

cell-receptor at the large pre-B-cell stage. Only if the rearrangement of the heavy chain was 

successful subsequent rearrangement first of the light κ- and then λ-chain gene locus in the now 

committed B cell is initiated. Upon successful completion of this process IgM is expressed on the 

surface of the immature B cell. Only B cells expressing a non-self-reacting B-cell receptor (BCR) 

can further differentiate. B cells expressing a self-reactive BCR have been observed to re-induce 

RAG expression and to subsequently undergo additional Ig-gene rearrangements. These usually 

occur at the light chain locus in response to encountering self-antigens in the bone marrow (Gay 

et al., 1993; Tiegs et al., 1993). This mechanism has been termed receptor editing and if cells fail 

to undergo it successfully development of the respective cell is arrested and the cell dies by 

apoptosis, which has been termed clonal deletion (Nemazee et al., 1989; Hartley et al., 1993). 

Therefore, at the end of the development in the murine bone marrow only 10-20 % of the 

∼2×107 IgMpos immature B cells that are produced daily leave the bone marrow as transitional B 

cells (Osmond, 1991), enter the blood stream and initially home to the spleen (Osmond, 1986; 

Allman et al., 1993; Rolink et al., 1998). 

Via different transitional stages (termed T1-3) these B cells mature into naïve follicular B cells (Fo 

B cells) and into MZ B cells in the spleen (Loder et al., 1999; Su et al., 2002; Chung et al., 2003; 

Pillai et al., 2009). With 75 % of all mature B cells Fo B cells represent the largest group. They 

express high levels of surface IgD and CD23. As their name suggests, they are rather found in the 

follicular areas in the white pulp of the spleen and lymph nodes, but they have the ability to 

recirculate, entering and exiting follicular niches in secondary lymphoid organs until they 

encounter antigen (Hardy et al., 1983; Waldschmidt et al., 1988). With only 5 % of total splenic B 
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cells MZ B cells represent the smaller group of mature B cells. In mice they are exclusively found 

and defined by their anatomical niche in the marginal zone at the rim of splenic follicles, 

separating the red from the white pulp in the spleen. Unlike Fo B cells they are sessile in this 

location adjacent to MZ macrophages, reticular fibroblasts and metallophilic macrophages that 

reside at the inner border of the marginal sinus through which the blood enters the organ. This 

architectural setup accounts for the fact that the spleen is the largest filter of blood in the body. 

The MZ therefore presents a highly effective line of defense against blood-borne bacteria 

(Tanigaki et al., 2002): the macrophages are extremely potent phagocytic and apt for the uptake 

and clearance of even large foreign particles, such as bacteria and also effete red blood cells. 

Thereby produced antigenic fragments are taken up by dendritic cells which relay them to the T 

cells in the PALS (periarteriolar lymphoid sheath). The MZ B cells 

(CD1dposCD9posCD21hiCD23low/IgDlowIgMhiB220lowS1P1hiS1PR3hi; sphingosine 1-phosphate receptor 

3) are in a pre-activated state (indicated also by higher levels of CD80 and CD86) which allows 

them to rapidly respond to antigen contact. Not only do they become potent antigen-presenting 

cells (APCs) after brief antigenic stimulation but they have been shown to be superior activators 

of naïve CD4pos T cells over Fo B cells both in vivo and in vitro (Oliver et al., 1999; Attanavanich et 

al., 2004). Moreover, they differentiate quicker into plasma cells upon T-cell-independent (TI) 

stimuli such as bacterial lipolysaccharide (LPS) (Oliver et al., 1999). Furthermore, our group could 

demonstrate that they display enhanced proliferation after stimulation, and have an inherent 

increased basal signaling activity of Akt, extracellular signal-regulated kinase (ERK) and c-Jun N-

terminal kinase (JNK) (Hampel et al., 2011).  

Localization of the MZ B cells is thought to be managed majorly by expression of S1PR1, but not 

S1PR3 (Cinamon et al., 2004). However, S1PR3 expression by the endothelial cells lining the MZ is 

vital for proper establishment of the zone (Girkontaite et al., 2004). For Fo B cells expression of 

the chemokine receptor CXCR5 is key to access the lymphoid follicles (Forster et al., 1996), as the 

chemokine ligand CXCL13 is expressed along the dense follicular dendritic cell (Fo DC) network.  

In mice there is another subset of mature B cells beside the B2 cell populations (Fo and MZ B 

cells). These are so called B1 B cells. This self-renewing B cell subset is found mainly in peritoneal 

and pleural cavities and unlike B2 cells they are not derived postnatally from the bone marrow, 

but the fetal liver. They share certain characteristics with MZ B cells with regard to their longevity 

and pre-activated status and high expression of CD9, which is not found on unstimulated Fo B 

cells (Miller et al., 1975; Won et al., 2002). Furthermore, they respond similarly to common 

bacterial antigens through their intrinsic ability to differentiate into antibody secreting cells if 

their Toll-like receptors (TLR) are stimulated by appropriate ligands (Genestier et al., 2007). 

Therefore, both MZ B cells and B1 B cells have been referred to as “innate B cells”.  
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1.4.1 Notch in B-cell development 

Lineage decision between a Fo and MZ B-cell fate is affected by several factors: e.g. BCR-signaling 

strength (Martin et al., 2000; Girkontaite et al., 2001; Cariappa et al., 2001) and also Notch 

signaling (Tanigaki et al., 2002; Kuroda et al., 2003). While there is strong evidence that strong 

BCR signaling rather drives the B cells into adopting a Fo B-cell fate, strong Notch signaling is 

instructive for B cells to adopt a MZ B-cell fate.  

While Dll4, but not Dll1 is quintessential for T-cell development (Koch et al., 2008), Dll1-Notch2 

interaction in fact is crucial for proper MZ B-cell development as was evidenced by studies in 

mice deficient for either one of the interaction partners (Saito et al., 2003; Hozumi et al., 2004). 

These findings are further supported by studies showing that MZ B-cell generation is similarly 

affected if a player of the Notch-signaling pathway is affected; such as MAML1 (Oyama et al., 

2007; Wu et al., 2007). Dosage of Notch pathway players such as MAML1 in fact correlates with 

MZ B-cell number (Wu et al., 2007). Furthermore, deletion of negative regulators of Notch and 

constitutive action of Notch2 led to an increase in the MZ B-cell compartment in the analyzed 

mice (Kuroda et al., 2003; Hampel et al., 2011).  

1.5 The CD40 receptor 

The CD40 receptor is involved in T-cell-dependent (TD) activation of B cells. It is like Notch and its 

ligands a type I single pass transmembrane glycoprotein and belongs to the superfamily of tumor 

necrosis factor receptors (TNFRs). CD40 is mainly expressed on B cells, DCs and macrophages. 

Additionally, various levels of CD40 were described on a multitude of different cells such as 

epithelial cells, monocytes, basophils, eosinophils, T cells and neurons (Banchereau et al., 1994). 

The natural ligand of CD40 is CD154 (CD40L), a type II transmembrane molecule that also belongs 

to the TNF family. Expression has like its receptor CD40 been noted on a variety of different cell 

types, but is majorly found on activated T cells. Ligand-receptor interaction leads to the clustering 

of CD40 from monomers into trimeric complexes and subsequent relocation into lipid rafts 

initiating CD40 signal transduction. Since the CD40 molecule itself lacks enzymatic activity it relies 

on signaling via its intracellular carboxy-terminal domain via the assembly of adaptor proteins, 

i.e. TNFR-associated factors (TRAFs) along the cytoplasmatic tail of the receptor. These TRAFs, 

namely TRAF1, -2, -3, -5 and -6 mediate all downstream effects of active CD40 (Fig. 1.2), resulting 

in the activation of a variety of kinases including p38, ERK and JNK, PI3K and PLCγ2 

(phosphoinositol-3-kinase; phospholipase C-γ2) and the Src family kinases Syk, Lyn and Fyn. 

CD40-signaling leads to the activation of numerous transcription factors such as members of the 
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canonical as well as non-canonical NF-κB (nuclear factor κB) family and STAT3 (signal transducer 

and activator of transcription) (Hanissian et al., 1997). Engagement of the CD40 receptor in in 

vitro experiments showed that B cells display better survival and proliferation and that they up-

regulate numerous activation markers, including CD23, CD80, CD86, CD95 (Fas) and ICAM1 

(intercellular adhesion molecule 1). Notably, CD40 activation also triggers production and release 

of various cyto- and chemokines, including IL1, IL2, IL7, IL10, IL12, IL15, IL17, LTα, which play a 

role in regulating CD40 function in immunity since these are involved in regulating processes such 

as Ig-isotype switching and antigen presentation. Its role in immunity has also been highlighted in 

male individuals carrying CD154-mutations leading to the immunodeficiency X-linked Hyper IgM 

(HIGM) syndrome, which is characterized by normal to elevated IgM levels, a deficiency in IgG, 

IgE and IgA antibodies and a reduction of memory B cells, while overall B-cell numbers remain 

normal. This is recapitulated in CD40- (Kawabe et al., 1994) and CD154-KO mice (Renshaw et al., 

1994). As observed for HIGM patients no IgG, IgA, and IgE responses to TD antigens could be 

mounted by the B cells in these mice and germinal center (GC) formation is severely affected, 

while the TI response was largely unaffected. 

Hence, proper CD40 signaling is of utmost importance in many different processes most notably 

in B-cell signaling notably in TD-immune responses leading to formation of B-cell memory 

through the GC-reaction. 

 

Fig. 1.2 Overview of CD40 activation and impact on signaling pathways. 
Upon engagement of CD40 with CD40L and trimerization of the receptor (not shown) signaling is 
mediated via CD40’s intracellular carboxy-terminal domain and the assembly of TRAF adaptor proteins 
along the cytoplasmatic tail of the receptor. TRAF1, 2, 3, 5 and 6 mediate all downstream effects of active 
CD40. CD40L: CD154; ERK, extracellular signal-regulated kinase; IKK, IκB kinase; JNK, c-Jun N-terminal 
kinase; MKK, Mitogen-activated protein kinase kinase; NF-κB, nuclear factor κB family; NIK, NF-κB-
inducing kinase;STAT, signal transducer and activator of transcription; TAK1, transforming growth factor-b 
(TGF-b)-activated kinase 1; TRAF, Tumor necrosis factor receptor (TNFR)-associated factor  
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1.6 T-cell dependent and T-cell independent immune response 

While T cells recognize their cognate antigen mainly in processed form presented on MHCs, B 

cells are able to directly bind soluble antigen in blood and lymph. Depending on the type of 

antigen presented the naïve B cell elicits a TD- or TI immune response. 

TI antigens can activate B cells without help from a T helper cell (TI response). The TI immune 

response is fast and yields B-cell antibodies that have low affinity and are often polyreactive. The 

TI immune response does not lead to generating immunological memory.   

TD antigens however, can elicit a much more refined immune response in B cells. When 

crosslinking the BCR, the TD-antigen is internalized by receptor-mediated endocytosis, 

intracellularly processed and loaded onto MHCII molecules which are brought to the cell surface. 

The production of MHCII is up-regulated simultaneously along with other activation molecules, 

i.e. ICAM and co-stimulatory molecules B7.1 and B7.2 (CD80 and CD86, respectively). In contrast 

to macrophages and DCs, this process is initiated already at very low antigen concentrations in B 

cells. These TD antigens are thereby presented to T helper (i.e. CD4pos) cells. In case the T helper 

cell is specific for the same antigen it is activated by engagement of its TCR binding to the 

MHCII/peptide-complex and CD28 to the B cell’s B7 surface molecules and thereby activate the 

peptide-presenting B cell.  

This T-cell mediated B-cell activation is further based on two components: secreted cytokines and 

cell-cell contact mediated signals, such as IL4-stimulation and CD40L-CD40-ligation, respectively. 

Receiving the aforementioned signals the B cell then enters mitosis and can initiate isotype 

switching to IgG, IgA and IgE. Proliferating B cells are able to form either extra-follicular foci or to 

migrate to primary lymphoid follicles ultimately forming a GC. In extra-follicular foci, mainly 

short-lived plasma cells producing low-affinity antibodies are found and the foci quickly involute 

after some days (Ho et al., 1986; Smith et al., 1996). On the other hand GCs represent sites in 

secondary lymphoid organs where activated B cells commence to highly proliferate at first. 

Afterwards they undergo a number of further, crucial genetic modifications in the Ig genes 

leading to diversification and the refinement of the BCR, while migrating through distinct 

compartments (dark and light zones) of the GC. These modifications include somatic 

hypermutation, which alters the V regions of BCR, affinity maturation, which selects for survival 

of B cells with high affinity for the antigen, and isotype switching. Eventually the positively 

selected B cells differentiate either into long-lived plasma or memory B cells (McHeyzer-Williams 

et al., 1999). The latter can be rapidly reactivated upon contact with the same antigen, conferring 

quick and highly effective protection against previously encountered pathogens. 
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1.7 CD40 and Notch signal deregulation in human malignancies 

Both CD40 and Notch signaling molecules have been implicated in the development of many 

human malignancies, both within and apart from the lymphocyte context. Given that CD40 as 

well as Notch can induce a variety of signaling cascades in the cell it is not surprising that the 

results of deregulated signaling can be quite disparate.  

1.7.1 Notch signaling in cancer 

At multiple stages during development Notch signaling is involved in maintaining the balance 

between cell proliferation, differentiation and apoptosis. Therefore it is plausible that disrupting 

this balance by Notch deregulation can have both tumorigenic as well as anti-proliferative effects 

and the ultimate outcome is context-dependent. Anti-tumorigenic effects of Notch signaling have 

been observed in human hepatocellular and small lung carcinoma for example. In in vitro cultures 

of human esophageal cells a Notch3-mediated program has been shown to induce squamous 

differentiation and to counter-regulate invasive growth (Ohashi et al., 2011). Suppressing Notch1 

signaling in murine keratinocytes undercuts the Notch-induced expression of p21 that usually 

leads to cell cycle withdrawal and terminal differentiation (Rangarajan et al., 2001). Moreover, it 

abrogates Notch activation of caspase3 which as well leads to the terminal differentiation of the 

cells (Okuyama et al., 2004). Epidermal deletion of the notch1 gene leads to extensive epidermal 

hyperplasia and the notch1 conditional knock-out mice spontaneously develop cutaneous basal 

cell carcinoma (Nicolas et al., 2003). These experiments showed a role for Notch1 in the murine 

skin as a tumor suppressor.  

Nonetheless, most studies were able to show the tumor promoting effects of aberrant Notch 

signaling due to up-regulation of the receptor and/or its ligands, such as in colon, head and neck 

carcinoma and renal carcinoma and pancreatic cancer. High expression levels of Notch1 and 

Jagged1 in patients with breast, bladder and prostate cancer are correlated with a poor prognosis 

(Santagata et al., 2004; Reedijk et al., 2005; Reedijk et al., 2008; Shi et al., 2008). This underscores 

the effect Notch has by activating expression of its responder genes as well as its cross-talk with 

other pathways, such as sonic hedgehog (SHH) and Wnt signaling, EGF- and platelet-derived 

growth factor- (PDGF) signaling. Cross-talk with other pathways such as TGFβ and SMAD signaling 

is important during epithelial mesenchymal transition (EMT) - a central process in carcinoma 

progression in which Notch was found to be an inducing key player (Zavadil et al., 2004; Wang et 

al., 2010; Matsuno et al., 2012). 

The first connection between Notch dysregulation and cancer was made in 1991 by Ellisen and 

colleagues showing that the human homologue TAN1 of the Drosophila’s Notch gene was 
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disrupted in patients suffering from T-cell lymphoblastic leukemia (Ellisen et al., 1991). Since then 

the extensive involvement of Notch especially with regard to the development of T-cell 

malignancies has been progressively elucidated. However, considering direct effects on B-cell 

tumorigenesis the role of Notch is somewhat unclear. Like for other cell types the up-regulation 

of the receptor and/or its ligands was also found in the B-lymphocyte compartment, such as in 

Hodgkin Lymphoma (HL). It is under discussion whether HL could be distinguished from Non-HL 

on the basis of a Notch-associated gene expression profile (Kochert et al., 2011). In B-cell chronic 

lymphocytic leukemia (B-CLL) the oncogenic effects of Notch were found to be due to its capacity 

to up-regulate CD23 expression (Hubmann et al., 2002), while Lee and colleagues could identify 

gain of function mutations in the PEST domain – usually ubiquitinated before Notch degradation 

in the proteasome- in Diffuse Large B-cell lymphoma (DLBCL) samples (Lee et al., 2009). 

Consistent with the role of Notch in developmental decision of the B-cell lineage in the periphery 

(i.e. its capacity to push B cells towards a MZ B-cell fate) Notch2 and other molecules involved in 

the Notch signaling pathway were recently found to be the most frequent lesions in splenic 

marginal zone lymphoma (SMZL) as determined by whole-exome and –genome sequencing and 

copy-number analysis (Rossi et al., 2012; Kiel et al., 2012). The concomitant presence of viruses 

within the B cells such as Kaposi’s sarcoma herpes virus (KSHV) and Epstein-Barr Virus (EBV) 

(Hsieh et al., 1997) also seems to support the oncogenic capacities of Notch in the B cell (He et 

al., 2009) as shown in primary effusion lymphoma (PEL) (Lan et al., 2009; Lan et al., 2007) and 

Burkitt lymphoma (BL) (He et al., 2009).  

Nonetheless, the role of Notch in B cells remains controversial: while on the one hand synergistic 

effects of Notch with BCR and CD40 signaling have been shown in the promotion of proliferation 

(Thomas et al., 2007; He et al., 2009), Notch has also demonstrated to induce apoptosis and cell 

cycle arrest at both immature and mature developmental stages (Morimura et al., 2000; Romer 

et al., 2003; Kohlhof et al., 2009) as well as in B-cell malignancies (Zweidler-McKay et al., 2005). 

1.7.2 CD40 signaling in cancer  

CD40 signaling has been shown to play a role in multiple myeloma, both B-CLL and B-ALL (B-cell 

acute lymphocytic leukemia), MALT (low-grade mucosal-associated lymphoid tissue) lymphoma, 

BL and HL. The background for this effect becomes evident when looking at the effects that 

active CD40 signaling has on the cell. CD40 can promote cell growth and inhibit the induction of 

apoptosis, since it increases the level of anti-apoptotic proteins of the Bcl-family of proteins, 

protecting the cell from TRAIL- (TNF-related apoptosis-inducing ligand) and Fas-induced 

apoptosis (Benson et al., 2006; Travert et al., 2008). The ability of CD40 to induce IL6 production 
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for example has a stimulatory effect on tumor cell types such as multiple myeloma, in which IL6 is 

a key feature (Urashima et al., 1995). In melanoma, CD40 leads to self-stimulation through the 

up-regulation of its ligand CD154 (van den Oord et al., 1996). On the other hand down-regulation 

of CD154 on T cells results in decreased activation of the T lymphocytes in colon and pancreatic 

carcinoma cell lines and growth of the tumor cells (Batrla et al., 2002). Indirectly, CD40 can have 

a positive effect on tumor growth by inducing and supporting neo-vascularization of the tumor by 

relaying strong angiogenic signals (Melter et al., 2000; Chiodoni et al., 2006). 

On the other hand CD40 also supplies anti-tumorigenic signals, this has been shown primarily in 

solid tumors but it also holds true for some lymphomas. For example, anti-CD40 treatment in B-

cell lymphomas can have growth inhibiting effects in vitro and in vivo after transfer into SCID 

(Severe Combined Immunodeficiency) mice (Funakoshi et al., 1994). Moreover, CD40 on B cells 

promotes the stimulation of other APCs, in fact turns the tumor cells themselves into potent 

APCs leading to the attraction of cytotoxic T cells in turn leading to eradication of the tumor cell.  

Therefore, whether engagement of CD40 has tumorigenic or anti-tumorigenic effects depends 

largely on cell type, experimental conditions (in vitro, in or ex vivo) and type of stimulus used 

(soluble versus membrane-bound CD154). 

1.8 B-cell lymphoma 

As described in the previous sections both CD40 and Notch play a role in diseases of the 

lymphatic system and therefore also in the B-cell compartment. B-cell lymphomas comprise both 

HL and non-HL, the latter of which represent the majority of cases. HL can then be differentiated 

into two larger groups: classical HL (cHL; 95 % of cases) and nodular lymphocyte predominant HL 

(NLPHL; 5 % of cases). Of the non-HL, DLBCL, MALT and Follicular lymphoma (FL) are the most 

common types, while primary effusion lymphoma (PEL) and Burkitt lymphoma (BL) are more rare 

(however with endemic differences).  

Most B-cell lymphoma develop upon recombination processes in B cells. This can happen during 

the maturation of a B cell and its BCR at two distinct time points: A) during development in the 

bone marrow and B) during the GC reaction, i.e. somatic hypermutation and class switch 

recombination. HL, like FL, marginal zone B-cell lymphoma (MZBL) and DLBL display a clear post-

GC phenotype, as indicated by the Ig-configuration of the B cell that has undergone somatic 

hypermutation (Kanzler et al., 1996; Lossos et al., 2003). These mutations are usually unfavorable 

and would force the B cells to undergo apoptosis, but due to simultaneously occurring genetic 

lesions in genes such as p53, c-myc etc. these cells rather receive growth promoting cues (Lossos 

et al., 2003). 
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As with most GC lymphomas the neoplastic follicles do not only comprise the malignant cells 

themselves but also increased numbers of non-neoplastic, but highly reactive cells such as 

myeloid cells, DCs, macrophages and T cells. This is probably most pronounced in cHL. This type 

of lymphoma can be particularly characterized by the fact that the actual tumor cells, the so-

called Hodgkin-Reed-Sternberg (HRS) cells, only constitute roughly 0.1 - 10 % of the tumor mass 

(Kuppers, 2009). The rest of the cells in the mass consists of infiltrates of reactive cells with 

varying composition according to which the type of HL can be further classified. Members of the 

innate immune system are key constituents of the HL tumor microenvironment. Their abundant 

cytokine production adds significantly to maintaining the inflammatory background in cHL 

(Aldinucci et al., 2010). However, of course, these cellular infiltrates cannot only be found in HL 

but in various tumors not only of the lymphatic system. Therefore, a short excursus will be made 

at this point to illustrate the physiological role of these innate immune cells. 

1.8.1 Innate immune cells 

The innate immune system is in its cellular part represented by granulocytes, monocytes and 

macrophages. These are myeloid cells derived from common myeloid progenitor cells (CMPs) in 

the bone marrow.  

The first cell type a pathogen is likely to encounter in solid tissues is macrophages. While for long 

having been regarded to be inflammation mediators and phagocytes only, their role seems to be 

more refined with regard to the effect they have on T cells and the extracellular matrix (Mosser, 

2003). Therefore, macrophages are now usually divided into type 1- and type 2-activated 

macrophages, which refers to the way in which the macrophage ultimately serves as an effector 

cell in type 1 or type 2 T helper cell immune responses elicited by IFN-γ or IL4 (Ding et al., 1988; 

Stein et al., 1992; Mantovani et al., 2004). Activated macrophages secrete a range of cytokines 

having both local and systemic effects; such as IL8 for example which leads to the recruitment of 

neutrophil granulocytes to the site of infection (Mosser et al., 2008; Cailhier et al., 2006). 

Neutrophils are then the first cells to arrive in large numbers at the site of inflammation. They 

limit the expansion and spread of pathogens directly at the site by phagocytosis, release of anti-

microbial peptides and pro-inflammatory cytokines (Cassatella, 1999; Denkers et al., 2003). 

Neutrophils further attract and activate other effector cells such as monocytes and DCs by the 

secretion of chemokines, which ultimately aids in mounting an adaptive immune response. DCs 

are further cellular representatives of the innate immune system. They are the most potent and 

therefore major APCs. The DCs key role is T-cell activation, providing a highly critical link to the 

adaptive immune system (Clark et al., 2000).  
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Furthermore, there are cells derived from the CLP, which unlike B- and T-lymphocytes, lack 

antigen specificity and form part of the innate immunity such as NK cells. NK cells develop in the 

bone marrow and are activated in response to cytokines and interferons secreted by 

macrophages and like cytotoxic T cells they release granules onto the surface of the respective 

target cell leading to its demise (Gapin et al., 2001). 

Looking only at these few cell types one can already fathom that cytokines and chemokines play 

a key role both in the initiation and amplification of the inflammatory response, as well as in the 

orchestration of the different cell types involved and finally in the initiation of the adaptive 

immune response. And this gives an impression that deregulation of these mechanisms can have 

quite detrimental effects for the individual such as seen not only in allergies but of course also in 

cancer. 

1.9 Rationale for studying deregulated CD40- and deregulated Notch2IC 
signaling 

In a number of lymphomas (i.e. HRS cells in cHL) the tumorigenic cells display an up-regulation of 

both CD40 and Notch. In fact Notch1 is thought to be one of the key players during malignant re-

programming of the cells (Jundt et al., 2008). CD40 has been shown to be strongly expressed in 

the cytoplasmatic and membrane sections in samples of HL patients and is now accepted as a 

hallmark of the disease (Aldinucci et al., 2010). Moreover, T cells in the neoplastic follicles 

express high amounts of CD40L (Carbone et al., 1995).  

Furthermore, HRS-cells in 40 % of all cHL cases are positive for EBV-infection. Interestingly, in 

EBV-infection the virus hijacks the cellular machinery to express viral genes that are functional 

mimics of cellular proteins. Latent membrane protein 1 (LMP1), is a functional homologue of 

CD40, whereas EBV nuclear antigen 2 (EBNA2) mimics a Notch receptor and LMP2A a BCR signal. 

All of these viral proteins target the same pathways as their cellular counterparts yet with the key 

difference that they are constitutively active forms. LMP1 is critical for B-cell transformation, a 

quality that has first been discovered in rodent fibroblasts. With regard to EBNA2 and Notch Hella 

Kohlhof from our group was able to show that although EBNA2 and Notch interact with RBP-J 

resulting in the activation of target genes their respective function has still differential outcomes 

(Kohlhof et al., 2009). While Notch-IC like EBNA2 is able to bring quiescent B cells to actively cycle 

again, an mRNA-screen revealed that it also up-regulates genes related to apoptosis. EBNA2 

mimics this physiological function, yet simultaneously leads to the up-regulation of anti-apoptotic 

genes. In case Notch signaling is active, LMP1- or constitutively active CD40-signaling could 

provide anti-apoptotic signals leading to onset of tumorigenesis. And indeed, Thomas and 
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colleagues were able to show that Notch and CD40 together with BCR-signaling in vivo lead to an 

enhancement of B-cell activation, also leading to an increase in proliferation of the B cells 

(Thomas et al., 2007), which is a necessary prerequisite for lymphoma. To study the immediate 

effects of deregulated CD40- and Notch2IC- signaling in an in vivo situation also with regard to 

lymphomagenesis was the aim of this project at hand. 

1.10 The LMP1/CD40 and Notch2IC transgenic mouse strains 

In order to examine deregulated signaling of the Notch receptor as well as the CD40-receptor 

two conditional mouse strains were generated in our lab that allow for tissue- and 

developmental stage-specific deregulation of the two molecules; the Notch2ICflSTOP and the 

LMP1/CD40flSTOPP mouse (Homig-Holzel et al., 2008; Hampel et al., 2011). 

1.10.1 The LMP1/CD40flSTOP mouse strain (Homig-Holzel et al., 2008) 

The LMP1/CD40 molecule represents a fusion protein, consisting of the membrane spanning 

domain of the viral protein LMP1 and the intracellular part of the cellular CD40 molecule. 

Thereby, we are able to exploit the ability of the six membrane spanning domain of LMP1 to 

signal ligand-independently via self-oligomerization. This N-terminal domain that tethers the 

fusion protein to the cell membrane and leads to its self-aggregation was fused to the C-terminal 

signaling domains of CD40. Thus, this construct conveys constitutively active CD40 signals to the 

respective cell in which it is expressed.  

The targeting construct was inserted into the Rosa26 locus and is under the control of the 

endogenous Rosa26 promoter. This locus is ubiquitously expressed and even a complete knock-

out of the locus has no deleterious effects on the cell (Zambrowicz et al., 1997; Casola, 2010).  

The construct is preceded by a loxP site flanked STOP cassette, which is removed upon Cre-

expression leading to the expression of the fusion protein. Hence, crossing the LMP1/CD40flSTOP 

mice to mice expressing Cre recombinase in a developmental stage- and tissue-specific manner 

allows for cell type and differentiation stage-specific expression of the transgene.  

Overall, in the LMP1/CD40 mouse strain the CD40 signaling is deregulated in the sense of it being 

constitutively active, yet the signaling pathways that are involved are still physiological CD40 

targets. This is important because even though LMP1 is the viral homologue for CD40, there are 

subtle differences in the regulation of those targets and the effect the expression of LMP1, 

respectively CD40, has on the cell (Lam et al., 2003; Rastelli et al., 2008). 
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Crossing these mice to CD19-cre mice leads to expression of the transgene in the CD19-

expressing B cells of those mice. Already at 8 weeks these mice display splenomegalies due to 

increased B- and also T-cell numbers in the spleen (eight and three times, respectively). 

Moreover the numbers of lymphocytes are as well as thrice as high in the inguinal lymph nodes 

compared to controls. In line with the effects of CD40 signaling LMP1/CD40-expressing B cells 

display an activated phenotype with regard to both surface expressed activation markers as well 

as the activation of intracellular signaling pathways, such as MAP kinase signaling (ERK, JNK). TD-

immunization of the LMP1/CD40flSTOP//CD19-cre mice does neither lead to the formation of GCs 

in those mice, nor to the subsequent production of high-affinity antibodies by plasma cells. B 

cells of the LMP1/CD40flSTOP//CD19-cre mice do not only show increased survival and diminished 

apoptosis in vitro but develop lymphomas with a very high incidence from the age of 12 months 

onward compared to controls. These lymphomas are very diverse with regard to the activation of 

their signaling pathways. Interestingly, we further found that these aged mice also develop 

tumors in the lower neck region.  

1.10.2 The Notch2ICflSTOP mouse strain (Hampel et al., 2011) 

The Notch2IC mouse was also generated in our lab in a similar manner as was the LMP1/CD40 

mouse. The murine cDNA coding for the intracellular portion of the Notch receptor was inserted 

into the Rosa26 locus and also contains a loxP flanked STOP cassette like the LMP1/CD40 mouse 

strain. Unlike the LMP1/CD40 transgene however, the Notch2IC sequence was moreover 

preceded by an endogenous ATG-Kozak site (serving as a translational start site) as well as a 

sequence coding for the CAGGS promoter (Cytomegalovirus early enhancer/chicken β-

actin/rabbit globin promoter). This promoter was chosen in order to ensure strong and 

consistent expression, as has been shown in various cellular systems (Niwa et al., 1991; Daly et 

al., 1999a; Daly et al., 1999b). Another crucial point of distinction between the Notch2IC and 

LMP1/CD40 mouse strain is that in the Notch2IC mouse an IRES-hCD2 (internal ribosomal entry 

site-human CD2) cassette is inserted downstream of the sequence coding for Notch2IC. Thereby, 

Notch2IC expression in any given cell can be monitored via concomitant surface expression of a 

truncated form of human CD2.  

Crossing the Notch2IC mice to CD19Cre mice led to a shift towards MZ B cells at the expense of 

Fo B cells in the spleen of the Notch2IC mice compared to controls. These Notch2IC-expressing B 

cells exhibit MZ B-cell characteristics with regards to their localization, their pre-activated 

phenotype: i.e. expression of surface markers, activation of Akt, ERK and JNK signaling and 
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enhanced response to stimulation by LPS and CD40 in vitro. This was found to be true even in the 

absence of a functional CD19 receptor in those Notch2IC-expressing B cells.  

1.10.3 The CD19-cre mouse strain (Rickert et al., 1997) 

The CD19-cre mouse strain has been described in 1997 by Rickert and colleagues (Rickert et al., 

1997) and it is by now widely used throughout the B-cell research community. CD19 functions as 

a co-receptor of the B-cell receptor and is expressed from the pro B-cell stage in the bone 

marrow onward with expression increasing as the B cell matures and migrates to the spleen.  

Hence, crossbreeding this mouse into the Notch2ICflSTOP and LMP1/CD40flSTOP mouse strains 

allows for a deletion of the STOP cassette preceding the Notch2IC as well as the LMP1/CD40-

transgene from B-cell precursor stages in the bone marrow onwards and allows an easy approach 

to test the effect of the two transgenes in the B-cell context. 
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2. AIM 

The Notch receptor as well as the CD40 receptor have well established roles in the biology of B 

lymphocytes. While CD40 is known to be essential to promote class switch in activated B cells, 

Notch2 plays a crucial role in the development of marginal zone (MZ) B cells. Contribution of 

constitutive Notch1 signaling in the development of T-cell lymphomas is well established, 

however the potential role of constitutive Notch signaling in B-cell lymphoma is less elucidated.  

Mice expressing either the CD40 or the Notch2 receptor in a constitutively active form and B-cell-

specific fashion have previously been established and characterized in our lab 

(LMP1/CD40//CD19-cre and Notch2IC//CD19-cre; Homig-Holzel et al., 2008; Hampel et al., 2011). 

Notch2IC//CD19-cre mice show an expansion of MZ B cells at the expense of the follicular (Fo) B 

cells, while B- and T-cell numbers resemble those of CD19-cre control mice. With age these mice 

do not develop B-cell lymphomas. The reason for this observation might be that constitutively 

active Notch2 signaling in B cells although able to induce proliferation, also leads to higher 

apoptosis rates. This hypothesis was supported by array data from Kohlhof of our group showing 

that Notch signaling leads to an up-regulation of both cell cycle genes as well as an increase in 

pro-apoptotic signals in the B cell (Kohlhof et al., 2009).  

In LMP1/CD40//CD19-cre mice on the other hand constitutively active CD40 leads to an 

expansion not only of B-, but also of T cells and LMP1/CD40-expressing B cells display a better 

survival rate conveyed by the constitutive CD40 signal that delivers anti-apoptotic signals to the B 

cell. These mice develop B-cell lymphoma with a high incidence from 12 months onward.  

From these findings it was hypothesized that Notch signaling in B cells might eventually lead to B-

cell lymphoma in combination with anti-apoptotic signals. These signals could be relayed to the B 

cell by a constitutive CD40 signal. 

With the aim to examine this question in vivo and in vitro, LMP1/CD40//CD19-cre and 

Notch2IC//CD19-cre mice were cross-bred to analyze their offspring for their B-cell phenotype, 

the developmental fate of the B cells (Fo versus MZ B cell), the proliferation and survival patterns 

and the potential effects the transgenic B cells have on the T cells and other cell populations. A 

small test group of Notch2IC//LMP1/CD40//CD19-cre animals will be kept to evaluate whether 

lymphomagenesis is potentially favored in this genetic background.  

Furthermore, in previous experiments ulcerations in the lower neck region of old 

LMP1/CD40//CD19-cre mice were observed. The potential reason behind this growth shall be 

examined and aged Notch2IC//LMP1/CD40//CD19-cre should be monitored for the recurrence of 

these ulcerations. 
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3. RESULTS 

3.1 Concomitant expression of constitutive Notch2IC and LMP1/CD40 in B cells 
has synergistic effects on increase in spleen size and weight 

 

LMP1/CD40flSTOPP mice and Notch2ICflSTOPP were crossed to CD19-cre mice, which resulted in 

the deletion of the floxed STOP cassette in the LMP1/CD40flSTOP//CD19-cre and 

Notch2ICflSTOP//CD19-cre mice. These mouse strains were cross-bred with each other to express 

both receptors in a B-cell specific fashion yielding offspring with a 

Notch2ICflSTOP//LMP1CD40flSTOP//CD19-cre genotype. Mice names were hence forth abbreviated 

to Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice. All 

three genotypes were analyzed in parallel with a CD19-cre control mouse. 

In these mice deletion of the stop cassette by activation of the CD19 promoter and expression of 

Cre recombinase starts in the phase of early B-cell development in the bone marrow, but 

progressively continues as mature B cells migrate to and distribute in the spleen. As the spleen 

represents the largest secondary lymphoid organ, overt effects of transgene-expression in B cells 

can easily be monitored by changes in size and weight of the organ. 

It has been shown before that the spleens of Notch2IC//CD19-cre mice are slightly and spleens of 

LMP1/CD40//CD19-cre mice are markedly enlarged and the organs are correspondingly heavier 

than those of aged-matched CD19-cre control mice (Homig-Holzel et al., 2008; Hampel et al., 

2011). This is even potentiated when constitutively active CD40 and constitutively active Notch2 

are simultaneously expressed in the B cells of Notch2IC//LMP1/CD40//CD19-cre mice. The 

spleens of these eight to 20 week-old mice are markedly larger than of aged-matched control 

CD19-cre and Notch2IC//CD19-cre mice (Fig. 3.1A). And they usually present with an even more 

pronounced splenomegaly than spleens of LMP1/CD40//CD19-cre and are on the average 1.6-

fold as heavy as those of LMP1/CD40//CD19-cre mice (Fig. 3.1B).  
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Fig. 3.1 Notch2IC//LMP1/CD40//CD19-cre mice display a splenomegaly and heavier spleens than all 
control mice. 
(A) Spleen size of 10 week-old mice. The ruler indicates the size of the organ in cm. (B) Splenic weight in g. 
CD19-cre (blank circle), Notch2IC//CD19-cre (filled circle), LMP1/CD40//CD19-cre (blank rhombus), 
Notch2IC//LMP1/CD40//CD19-cre (filled rhombus). Points represent data from individual mice and 
horizontal bars mark the mean value indicated in numbers. *p < 0.05, ** p < 0.01, *** p < 0.005. 

3.2 Expression of the transgenes Notch2IC and LMP1/CD40 is a B-cell specific 
event 

In order to ensure that there was no leakage of the expression of the two transgenes in any other 

cell type than in B cells, other cell types including T lymphocytes were analyzed for the presence 

of the reporter protein hCD2. hCD2 is concomitantly expressed upon the expression of the 

Notch2IC transgene after deletion of the upstream stop cassette. Flow cytometric analysis 

(Fluorescence-activated cell sorting, in short FACS) showed that expression of hCD2 could only be 

detected in splenic B220pos B cells of Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre 

mice (Fig. 3.2A), but not in B cells of CD19-cre and LMP1/CD40//CD19-cre mice. Furthermore, 

hCD2 expression was undetectable in CD3pos T cells (Fig. 3.2B) in mice of all genotypes, as well as 

in any other living cell type present in the spleen (Fig. 3.2C).  

The deletion efficiency of the stop cassette upstream of the LMP1/CD40-transgene can be 

checked indirectly via the highly specific up-regulation of CD95 in B cells of those animals. 

Therefore, staining cells simultaneously with α-hCD2 and α-CD95 antibodies and performing 

FACS analysis allows to determine the amount of successful deletion in the B cells of the 

respective animals with regard to both Notch2IC- as well as LMP1/CD40-expression (Fig. 3.2D). 
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The results displayed in Fig. 3.2D show that in all three transgene-carrying genotypes 

(Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre) the 

deletion efficiency reached on the average at least 80 % or more according to up-regulation of 

the respective reporter marker (hCD2 or CD95 or both). In summary, these results show that the 

stop cassette deletion upstream of the respective transgenes is an unambiguously B-cell-specific 

event. 

 

 

Fig. 3.2 Transgene expression is a B-cell-specific event. 
Histograms show overlays of hCD2-expression of (A) lymphocyte-gated, living, B220pos B cells, (B) 
lymphocyte-gated, living, CD3pos T cells and (C) living, B220neg cells in the spleen of CD19-cre (grey line), 
Notch2IC//CD19-cre mice (orange line), LMP1/CD40//CD19-cre mice (purple line) and 
Notch2IC//LMP1/CD40//CD19-cre mice (green line). Data is representative for nine independent 
experiments. (D) Living, B220pos splenocytes were simultaneously stained for surface expression of hCD2 
and CD95. The FACS plots show average percentages and SDs, as determined by antibody staining of 
whole splenocytes and subsequent flow cytometric analysis. Topro-3pos (dead) cells were excluded from 
analysis. SD, standard deviation.  
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3.3 In Notch2IC//LMP1/CD40//CD19-cre mice total splenic cell numbers and B-
cell numbers are significantly higher than in control and Notch2IC//CD19-cre 
mice but B-cell numbers are significantly lower than in LMP1/CD40//CD19-
cre mice 

In order to determine to what extent the expression of the respective transgenes adds to 

increase in size and weight the spleens were analyzed with regard to their total splenic cell as 

well as their splenic B-cell numbers. CD19-cre and Notch2IC//CD19-cre mice display about the 

same amount of total cells in their spleens, as well as similar B-cell numbers (Fig. 3.3A and B). 

Notch2IC//LMP1/CD40//CD19-cre mice resemble LMP1/CD40//CD19-cre mice with regard to 

their total splenic cell numbers of 5.3×108 cells (versus 5.6×108 total splenic cells in 

LMP1/CD40//CD19-cre mice) and they harbor more than 6-fold more cells than control CD19-cre 

and Notch2IC//CD19-cre mice (Fig. 3.3A). Also, B- cell numbers of Notch2IC//LMP1/CD40//CD19-

cre mice (like LMP1/CD40//CD19-cre mice) display significantly increased splenic B‐cell numbers 

compared to CD19-cre and Notch2IC//CD19-cre mice. 

 

 

Fig. 3.3 Notch2IC//LMP1/CD40//CD19-cre mice display higher splenic cell numbers and increased B‐cell 
numbers compared to control CD19-cre and Notch2IC//CD19-cre mice, but lower B‐cell numbers than 
LMP1/CD40//CD19-cre mice. 
(A) Absolute numbers of counted, living cells and (B) living, lymphocyte-gated, B220pos B cells in the spleen 
of CD19-cre, Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice as 
determined by antibody staining of whole splenocyte peparations and subsequent flow cytometric 
analysis. Topro-3pos (dead) cells were excluded from analysis. Points represent data from individual mouse 
and horizontal bars mark the mean value indicated in numbers above each data set for the respective 
genotype. *p < 0.05, ** p < 0.01, *** p < 0.005. 
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However, when comparing splenic B‐cell numbers of Notch2IC//LMP1/CD40//CD19-cre with 

LMP1/CD40//CD19-cre mice, the LMP1/CD40//CD19-cre mice display still significantly increased 

B-cell numbers versus Notch2IC//LMP1/CD40//CD19-cre mice (1.6×108 cells versus 3.2×108 

splenic B cells in LMP1/CD40//CD19-cre mice). 

Therefore surprisingly, Notch2IC//LMP1/CD40//CD19-cre mice display higher total splenic cell 

numbers and increased splenic B‐cell numbers compared to control CD19-cre and 

Notch2IC//CD19-cre mice, but lower splenic B‐cell numbers than LMP1/CD40//CD19-cre mice. 

Hence, the enlargement of the spleen had to be due to other cell populations. 

 

3.4 Notch2IC//LMP1/CD40//CD19-cre mice display an increased number of 
splenic accessory cells 

As aforementioned the elevated numbers of splenic B cells alone cannot account for the overall 

elevated total splenic cell numbers. This invited a broader look at cell populations that might be 

expanded in Notch2IC//LMP1/CD40//CD19-cre mice. In the forward scatter (FSC) versus side 

scatter (SSC) during flow cytometric analysis a population characterizing myeloid cells (Givan, 

2013) showed up unexpectedly in the splenic cell preparations of Notch2IC//LMP1/CD40//CD19-

cre mice repeatedly, however to varying extent (Fig. 3.4). Myeloid cells comprise all blood cells 

that do not belong to the group of lymphocytes and include mast cells, but also myeloblasts 

which can differentiate into neutrophils and monocytes the latter of which can further develop 

into macrophages and dendritic cells upon activation. In Notch2IC//CD19-cre and 

LMP1/CD40//CD19-cre mice percentages of these myeloid cells are with ≈3.6 % more or less on 

level of the spleens of control CD19-cre mice (with 2.8 %). However, since there is an overall 

increase in the splenic cell number of LMP1/CD40//CD19-cre mice this also translates into an 

increase in total myeloid cell numbers in these mice although the percentages vary strongly 

(±1.7-3.7 %). In Notch2IC//LMP1/CD40//CD19-cre mice there is a defined increase in the myeloid 

cell population which harbor on average 7.2 % myeloids in the splenocytes population. However, 

this varies strongly (±5.55 %), which indicates that spleens of Notch2IC//LMP1/CD40//CD19-cre 

mice have a tendency to harbor or attract more myeloid cells to the organ, but this cannot be 

observed to the same extent in all animals analyzed. 
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Fig. 3.4 Spleens of Notch2IC//LMP1/CD40//CD19-cre display an increase in the myeloid cell population. 
Myeloid cell population (green circle, Givan, 2013) as detected by FSC/SSC-analysis during FACS. Averages 
and SDs are given. FSC, forward scatter; SSC, sideward scatter; SD, standard deviation. 

3.4.1 Notch2IC//LMP1/CD40//CD19-cre mice display an increased number of granulocytes 
and macrophages 

Monocytes are an important subpopulation of myeloid cells. They are recruited to sites of tissue 

injury and inflammation where they help to resolve the infection and are important for tissue 

repair. Arriving at the site of infection or injury they quickly differentiate into DCs and 

macrophages. Therefore, the spleens of all mice were analyzed for the presence of macrophages 

and DCs and granulocytes which contribute to the myeloid cell population. 

A Gr1/Mac1 surface marker staining allows differentiating Gr1hi Mac1pos granulocytes from the 

Gr1pos Mac1pos macrophages (Zohren et al., 2012) (Fig. 3.5A) and permits to determine the 

number of macrophages and granulocytes in the respective sample as given in the methods 

section (“isolation of primary lymphocytes” and “Cell number calculations”). The results revealed 

an increase in macrophage cell numbers in LMP1/CD40//CD19-cre by roughly 3-fold in 

comparison to both Notch2IC//CD19-cre and CD19-cre mice (Fig. 3.5B). In 

Notch2IC//LMP1/CD40//CD19-cre mice however, the numbers were markedly increased by 10-

fold with respect to spleens of control CD19-cre mice. Fig. 3.5C displays the actual granulocyte 

cell numbers for the respective genotype. Again, the numbers found in Notch2IC//CD19-cre and 

CD19-cre mice are roughly the same, while in comparison those in LMP1/CD40//CD19-cre are 

increased by 4-fold and those in Notch2IC//LMP1/CD40//CD19-cre mice are increased by 10-fold 

in comparison. 

Performing immunofluorescent staining using the macrophage/granulocyte marker Mac1 on 

histological sections one can analyze the location of these macrophages and granulocytes within 

the spleen (Fig. 3.5D). In all four genotypes these cell populations are retained within the red 

pulp of the spleen, while the follicles are discernible as dark areas. One can see that the cells sit 

rather loosely in the red pulp in the spleens of CD19-cre and seem to be a little more clustered in 
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Notch2IC//CD19-cre mice. As expected due to the enlarged spleens the follicles in 

LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre are rather large in comparison to 

Notch2IC//CD19-cre and CD19-cre (and will be analyzed in detail in section 3.11). In 

LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice the macrophages and 

granulocytes also populate the red pulp areas where they seem to sit rather densely, while the 

follicles are devoid of Mac1pos cells. 

 

 

Fig. 3.5 Notch2IC//LMP1/CD40//CD19-cre mice display an increased number of granulocytes and 
macrophages. 
(A) Exemplary gating to differentiate Gr1hi Mac1pos granulocytes (Gr) from the Gr1pos Mac1pos macrophages 
(MΦ)(as described in e.g. Zohren et al., 2012). Cell numbers for the splenic macrophages (B) population 
and for the splenic granulocyte population (C) as determined by Mac1/Gr1-antibody staining and FACS 
analysis. Points represent data from individual mouse and horizontal bars mark the mean value indicated 
in numbers above each data set for the respective genotype. (D) Mac1-antibody was used in 
immunofluorescent stainings to determine the localization of macrophages/granulocytes in the spleen of 
different genotypes on splenic cryosections. Bar: 100 μm; *p < 0.05. 
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3.4.2 Notch2IC//LMP1/CD40//CD19-cre mice display an increased number of activated 
dendritic cells 

Next, since DCs are the other cell population into which monocytes can differentiate the spleens 

of all genotypes were analyzed for the presence of DC population. Although CD11c is being 

considered a marker for DCs as such (Metlay et al., 1990; Brocker et al., 1997) CD11c is also found 

on monocytes, tissue macrophages and NK cells (Hogg et al., 1986; Blasius et al., 2007; Drutman 

et al., 2012). Conventional DCs in the murine spleen however can be identified through 

examining the expression of both surface markers CD11c and CD8. FACS analysis was performed 

in order to determine whether this cell population was increased in 

Notch2IC//LMP1/CD40//CD19-cre mice. An increase in lymphocyte-gated, CD11cpos cells is 

detectable both in LMP1/CD40//CD19-cre and in the Notch2IC//LMP1/CD40//CD19-cre mice in 

which also the population of both CD11c and CD8pos conventional DC population is clearly 

discernible (Fig. 3.6A).  

 

Fig. 3.6 Notch2IC//LMP1/CD40//CD19-cre mice display an increased number of activated dendritic cells. 
(A) FACS analysis results of the different genotypes after staining splenocytes for CD11c and CD8 surface 
markers indicative of conventional murine splenic DCs (lymphocyte-gated, CD8pos and CD11cpos 
population). (B) Dot plot of lymphocyte-gated, MHCII versus CD11cpos cells as determined by flow 
cytometry in splenocytes preparations of all four genotypes with average and SDs. Data are representative 
for three independent experiments. DC, dendritic cell. SD, standard deviation. 
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Activated DCs -as other professional APCs- are characterized by up-regulation of MHCII. 

Interestingly, analyzing the CD11cpos cell population revealed not only that CD11cpos population is 

increased as such but these also up-regulate MHCII (Fig. 3.6B).  

Altogether, numbers of accessory cells as myeloid cells, macrophages and DCs were found to be 

elevated in Notch2IC//LMP1/CD40//CD19-cre mice. All these cell types are involved in 

inflammatory responses, which suggested also looking further into the activation states of the T 

lymphocytes.  

 

3.5 Notch2IC//LMP1/CD40//CD19-cre mice display significantly increased 
numbers of splenic T cells  

Next, the splenic T cells -representing the other large lymphocyte population besides B cells- 

were examined by flow cytometric analysis.  

 

 

Fig. 3.7 Notch2IC//LMP1/CD40//CD19-cre mice display higher splenic T‐cell numbers compared to 
control CD19-cre, Notch2IC//CD19-cre and LMP1/CD40//CD19-cre mice. 
Number of living, lymphocyte-gated, CD3pos T cells in the spleen of CD19-cre, Notch2IC//CD19-cre, 
LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice as determined by antibody staining of 
whole splenocytes and subsequent flow cytometric analysis. Topro-3pos (dead) cells were excluded from 
analysis. Points represent data from individual mouse and horizontal bars mark the mean value indicated 
in numbers above each data set for the respective genotype. *p < 0.05, ** p < 0.01, *** p < 0.005 
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Splenic T-cell numbers in Notch2IC//CD19-cre mice are on the level of CD19-cre control mice, 

while they are roughly increased by 6-fold in LMP1/CD40//CD19-cre mice, as has been previously 

documented. Surprisingly, the splenic T-cell population (with an overall average number of 

roughly 2.4×108 cells) is even further increased in Notch2IC//LMP1/CD40//CD19-cre mice: this 

amounts to a 10-fold increase compared to CD19-cre control mice (Fig. 3.7). It is striking to see 

that although T cells do not express the transgenes (i.e. display an expression of hCD2; Fig. 3.2B) 

this lymphocyte population is vastly expanded in Notch2IC//LMP1/CD40//CD19-cre in the 

spleens of these animals. 

 

3.5.1 Notch2IC//LMP1/CD40//CD19-cre mice display a shift from CD4pos towards CD8pos splenic T cells  

Beyond their developmental stages in the thymus T cells can be grouped into CD4pos and CD8pos 

cells in the periphery.  

As displayed in Fig. 3.8A CD19-cre mice majorly have CD4pos T cells, while exhibiting lower 

percentages for CD8pos T cells. The same distribution pattern can be observed in Notch2IC//CD19-

cre mice. This is also reflected in similar cell numbers for the different T-cell populations in those 

two genotypes (Fig. 3.8B). In LMP1/CD40//CD19-cre mice however, the percentages for CD4pos 

cells are even increased, while the percentages for CD8pos cells are slightly reduced in comparison 

to CD19-cre and Notch2IC//CD19-cre mice. This is also reflected in the actual cell numbers of 

CD4pos cells in LMP1/CD40//CD19-cre mice which are significantly increased compared to CD19-

cre control mice. However, since these mice harbor more T cells in their spleens as such also the 

actual numbers for CD8pos cells are significantly increased in these mice versus the control mice. 

Interestingly, in comparison to CD19-cre mice the percentages for splenic CD4pos T cells are 

slightly decreased and the percentages of CD8pos are increased in Notch2IC//LMP1/CD40//CD19-

cre mice, however due to the high number of T cells in these mice the actual cell numbers as such 

are in both cases still significantly higher than in control CD19-cre and Notch2IC//CD19-cre mice. 

With regard to the CD8pos cells Notch2IC//LMP1/CD40//CD19-cre mice harbor significantly higher 

numbers than LMP1/CD40//CD19-cre mice. 
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Fig. 3.8 Notch2IC//LMP1/CD40//CD19-cre mice display higher CD4pos and CD8pos splenic T‐cell numbers 
compared to CD19-cre, Notch2IC//CD19-cre and LMP1/CD40//CD19-cre mice. 
(A) Average percentages and SDs of CD3pos/CD4pos or CD3pos/CD8pos splenic T cells of CD19-cre, 
Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice as determined 
by FACS analysis. Data is representative of six independent experiments. Plots are gated on living 
lymphocytes. (B) Number of living, CD3pos and CD4pos (left panel) and CD3 and CD8pos (right panel) T cells in 
the spleen of CD19-cre, Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-
cre mice as determined by antibody staining of whole splenocytes and subsequent flow cytometric 
analysis. Topro-3pos (dead) cells were excluded from analysis. Points represent data from individual mouse 
and horizontal bars mark the mean value indicated in numbers above each data set for the respective 
genotype. *p < 0.05, ** p < 0.01, *** p < 0.005; SD, standard deviation. 

3.5.2 Notch2IC//LMP1/CD40//CD19-cre mice display activation of splenic T cells  

In order to characterize the abnormally expanded splenic T-cell population in these mice and to 

determine which T-cell populations are majorly responsible for the observed expansion and 

activation levels of T cells, the distribution of naïve, memory and effector T cells and the 

populations (Th1, Th2, Treg) as such were examined more closely in murine spleens. This was 
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achieved mainly via flow cytometric analysis using antibodies binding to several different surface 

(α-CD62L, α-CD25, α-CD28, α-CD69) as well as intracellular markers (IFNγ, IL4 and Foxp3). 

3.5.2.1 Splenic T cells of Notch2IC//LMP1/CD40//CD19-cre mice show an enhanced 
expression of T-cell activation markers CD25 and CD69, but not of CD28 

The splenic T cells were examined for a number of surface antigens that are up-regulated if the T 

cells are activated. CD28 is one of these markers that can engage with the B7 proteins (CD80 and 

CD86) on APCs (such as DCs and B cells) and provides co-stimulatory signals. Unexpectedly, none 

of the four genotypes tested show an upregulation of CD28 (data not shown).  

Another molecule providing co-stimulatory signals to the T cell after the TCR has been engaged is 

CD69. Together with CD25, CD69 is one of the earliest and most prominent markers expressed by 

T cells upon activation and therefore has been dubbed very early antigen (VEA) (Yokoyama et al., 

1989; Hamann et al., 1993). When testing Thy1.2pos T cells for the expression level of CD69, 

Notch2IC//LMP1/CD40//CD19-cre and LMP1/CD40//CD19-cre mice display an increased number 

of splenic T cells with higher CD69 levels than CD19-cre and Notch2IC//CD19-cre mice (Fig. 3.9B). 

CD25 however is specifically up-regulated in the splenic T cells of Notch2IC//LMP1/CD40//CD19-

cre mice compared to all other genotypes tested (Fig. 3.9A). 

 

 

Fig. 3.9 Splenic T cells of Notch2IC//LMP1/CD40//CD19-cre show an enhanced expression of the T-cell 
activation markers CD25 and CD69. 
Splenocytes from two to five-month-old mice with genotypes as indicated were stained with antibodies 
specific for Thy1.2, CD25 (A) or CD69 (B) and subjected to FACS analysis. Histograms show overlays of 
representative FACS plots (pre-gated on lymphocytes and Thy1.2pos cells) of surface expression of the 
indicated molecules from CD19-cre (grey line), Notch2IC//CD19-cre mice (orange line), 
LMP1/CD40//CD19-cre mice (purple line) and Notch2IC//LMP1/CD40//CD19-cre mice (green line). 
Representative data from three independent experiments are shown. 
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3.5.2.2 Splenic T cells of Notch2IC//LMP1/CD40//CD19-cre mice show an increase in the 
percentage of both central memory as well as effector memory T cells  

Analyzing splenic T lymphocytes by staining of the surface markers CD4, CD8, CD62L and CD44, 

allows determining the percentages of naïve (CD62Lhi CD44neg), central memory (CD62Lhi CD44hi) 

and effector cells (CD62Lneg CD44hi) in the respective CD4pos or CD8pos T-cell population. 

The FACS analysis results revealed that Notch2IC//CD19-cre, LMP1/CD40//CD19-cre mice and 

Notch2IC//LMP1/CD40//CD19-cre compared to CD19-cre mice have a reduction in the naïve T 

cell compartment (CD62Lhi CD44low) in their spleens (Fig. 3.10A (CD4pos) and Fig. 3.10B (CD8pos)). 

This is observable for all three genotypes both in the CD4pos, as well as in the CD8pos T-cell 

population (upper and lower panel). In Notch2IC//CD19-cre mice the compartment of splenic 

central memory T cells (CD62Lhi CD44hi) for both the CD4pos and CD8pos cells resembles that of 

CD19-cre mice, since there are roughly 8 % CD4pos memory T cells and roughly 18 % CD8pos 

memory T cells. With regard to the splenic effector T cells (CD62Llow CD44hi) in Notch2IC//CD19-

cre mice however, there is a distinct increase both in the CD4pos (≈ 41 %) as well as the CD8pos 

population (≈ 26 %) compared to that of CD19-cre mice (26% in the CD4 and 17 % in the CD8pos 

cell populations).  

With regard to CD4pos splenic T cells Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre 

mice display very similar patterns of expansion of splenic T-cell subgroups, although the 

subgroup of CD4pos central memory T cells is slightly decreased in Notch2IC//LMP1/CD40//CD19-

cre mice and the splenic effector T cells are even more expanded in these mice (on the average 

42 % in Notch2IC//CD19-cre versus 55 % in Notch2IC//LMP1/CD40//CD19-cre and only 26 % in 

CD19-cre mice). LMP1/CD40//CD19-cre mice have slightly increased CD4pos memory T cells and a 

stronger increase in the CD4pos effector cell compartment in comparison to CD19-cre mice. With 

respect to CD8pos splenic T cells the subgroup of central memory T cells is roughly three times 

reduced in percentage in the Notch2IC//LMP1/CD40//CD19-cre mice compared to all other 

genotypes, while effector T cells are with 39 % markedly increased both compared to mice 

Notch2IC-and LMP1/CD40-genotypes (27 % and 21 %, respectively, compared to 17 % in CD19-

cre animals). Considering that the CD8pos T cells are the largest group as such, the CD8pos effector 

cells therefore represent the largest T-cell subgroup in the spleen of 

Notch2IC//LMP1/CD40//CD19-cre mice by far. 
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Fig. 3.10 Splenic T cells of Notch2IC//LMP1/CD40//CD19-cre mice show an increase in the percentage of 
both central memory as well as effector T cells. 
Splenic cells were analyzed by flow cytometry for expression of CD62L and CD44 on either CD4pos (A) or 
CD8pos (B) lymphocyte-gated cells. Averages and standard deviations are calculated from six independent 
experiments. Naïve T cell compartment (CD62Lhi CD44low), central memory T cells (CD62Lhi CD44hi), 
effector T cells (CD62Llow, CD44hi), hi, high. 

 

A unique feature in which splenic T cells of LMP1/CD40//CD19-cre and the 

Notch2IC//LMP1/CD40//CD19-cre strongly resemble each other is the presence of a high 

percentage of CD8pos T cells that are low for the expression of both CD62L and CD44. This also 

holds true to a lesser degree in the CD4pos T-cell compartment. This might point towards 

exhaustion of the splenic T-cell compartment. Exhaustion is a commonly observed phenomenon 

that has been observed during persistent lymphocytic choriomeningitis virus (LCMV) infection of 

mice (Zajac et al., 1998) and in other sustained viral infections such as human immunodeficiency 

virus (HIV) infection and hepatitis B and C virus infection (Yamamoto et al., 2011; Rehermann et 

al., 2005). 

For actual numbers of splenic T-cell populations please refer to Tab. 9.1 (Supplements). 
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3.5.3 In Notch2IC//LMP1/CD40//CD19-cre mice splenic T cells display a Th1 activation pattern 
with and without PMA/Ionomycin stimulation  

There is not only a surge in myeloid and T cells in the spleens of Notch2IC//LMP1/CD40//CD19-

cre mice but splenic T cells of these mice are found to be activated after ex vivo isolation -as 

shown in the previous section. These findings already point towards the establishment of an 

inflammatory milieu in the spleens of Notch2IC//LMP1/CD40//CD19-cre mice. Since cyto- and 

chemokines are important mediators in inflammatory responses this led to the question whether 

the T cells were also showing an activation pattern with regard to the Th1 and Th2 cytokine 

production. 

CD4pos T cells are regarded as being the most prolific cytokine producers. This subset can be 

further subdivided into Th1 and Th2, and the cytokines they produce are known as Th1-type 

cytokines and Th2-type cytokines. Th1-type cytokines tend to produce the pro-inflammatory 

responses responsible for killing intracellular parasites and for perpetuating autoimmune 

responses. IFNγ is the main Th1 cytokine, while the Th2-type cytokines include interleukins 4, 5, 

and 13. Th17 cells produce IL17 and also IL22. This relatively newly discovered T-cell subset is 

implicated in autoimmunity. 

In order to examine cells of all genotypes with regard to their stimulation pattern splenic cell 

preparations were tested by polyclonal stimulation with phorbol myristate acetate (PMA) and 

calcium ionophore ionomycin (PMA/Ionomycin). This PMA/Ionomycin-treatment activates all 

cells in a sample unspecifically and is usually followed by Brefeldin A-treatment. This fungal 

metabolite interferes with protein transport from the Golgi apparatus to the endoplasmic 

reticulum and thereby ensures that the respective cytokine under investigation does not diffuse 

into the medium of the cell suspension. The analysis revealed that the PMA/Ionomycin 

stimulation of splenic T cells of Notch2IC//CD19-cre mice and of Notch2IC//LMP1/CD40//CD19-

cre mice induced a strong increase in the compartment of IFNγ-producing cells (not only in the 

CD4pos Th1 compartment), which could not be detected in CD19-cre and LMP1/CD40//CD19-cre 

(Fig. 3.11A, upper panel). Moreover, in splenic cell preparations of both Notch2IC//CD19-cre 

mice and of Notch2IC//LMP1/CD40//CD19-cre mice there is also an increase in the IFNγ-

production in non-CD4pos splenocytes, resulting from the stimulation. IFNγ is known to be 

produced by a multitude of different cells, e.g. NK and NKT cells. [NK cells were not responsible 

for the increase in IFNγ in the examined cases. NKT cells were not increased in these mice 

altogether (data not shown). The level of NKT IFNγ production was not determined]. 

There were no detectable differences between the four different genotypes tested with regard to 

the IL4-producing Th2 compartment (Fig. 3.11B, lower panel) or the Th17 subpopulation (data 

not shown) upon stimulation.  
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Fig. 3.11 T cells of Notch2IC//LMP1/CD40//CD19-cre and Notch2IC//CD19-cre mice display a Th1 and 
not a Th2 cytokine profile both with and without stimulation. 
(A) Upper panel: IFNγ production of PMA- and Ionomycin-stimulated splenic, lymphocyte-gated cells. 
Lower panel: IFNγ production of unstimulated splenocytes. (B) Upper panel: IL4 production of PMA- and 
Ionomycin-stimulated splenic, lymphocyte-gated T cells. Lower panel: IL4 production of unstimulated 
splenocytes. FACS analysis data was obtained by staining splenocytes with antibodies against the surface 
marker CD4 and antibodies detecting intracellular level of IL4 or IFNγ. Averages and SDs are calculated 
from three independent experiments for the stimulated cells and a representative result is shown for two 
experiments with unstimulated T cells. SD, standard deviation. 

It seemed intriguing to evaluate the status of splenic T cells immediately in ex vivo preparations 

without additional stimulation. Usually the levels of cytokine would be very low and mostly 

production will be just above or below the detection level. This was indeed the case for the 
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splenic T cells isolated from spleens of CD19-cre and LMP1/CD40//CD19-cre. In Notch2IC//CD19-

cre and the Notch2IC//LMP1/CD40//CD19-cre mice splenic cells showed a Th1 profile and again 

particularly an increase in non-CD4pos IFNγ secreting cells (Fig. 3.11A and B, lower panel 

respectively). Furthermore, there is an observable increase in the non-CD4pos fraction of cells that 

are IL4-producing without stimulation. 

Altogether, splenic T cells both in Notch2IC//CD19-cre and in Notch2IC//LMP1/CD40//CD19-cre 

mice show a tendency towards a Th1 profile both with and without stimulation. 

3.5.4 Splenic Treg are increased in splenic preparations of Notch2IC//LMP1/CD40//CD19-cre 
mice 

As shown in section 3.5.2 splenic T cells of Notch2IC//LMP1/CD40//CD19-cre mice exhibit high 

levels of the surface marker CD25. Cells that are specialized in steering cytokine release are Tregs, 

which are characterized by being CD25hi, CD4pos and positive for the transcription factor Foxp3. 

Tregs can regulate immune responses and they are of key importance in maintaining tolerance to 

self. In fact they can even prohibit the differentiation of naïve into effector T cells. Since the latter 

cell population is expanded in all transgene-expressing genotypes (except in CD19-cre mice) one 

could expect a decrease in the population of Tregs.  

When testing via intracellular FACS analysis for the presence of Tregs in the spleen of the four 

genotypes (CD19-cre, Notch2IC//CD19-cre mice, LMP1/CD40//CD19-cre mice, 

Notch2IC//LMP1/CD40//CD19-cre) there was no significant difference detectable in the 

percentage of Tregs in CD19-cre, Notch2IC//CD19-cre and LMP1/CD40//CD19-cre mice (Fig. 

3.12A). But in contrast to all other genotypes analyzed the spleens of 

Notch2IC//LMP1/CD40//CD19-cre mice display a much larger percentage (marked by a 2-fold 

increase) of Tregs and accordingly –since the spleens also harbor more cells- the actual splenic Treg 

numbers are increased.  

These findings could be confirmed with immunohistochemistry (IHC) on splenic cryosections. 

Stainings were performed with an antibody against nuclear Foxp3, which serves as a pan-Treg 

marker and an IgM staining in order to allow for a better localization of the Tregs within the 

follicular structure of the spleen (Fig. 3.12B). In spleens of CD19-cre mice the follicular structures 

are ordered and smaller and the Tregs are confined to the T-cell zone. In Notch2IC//CD19-cre 

spleens the Tregs seem to be somewhat dispersed in the B-cell zone as well. In LMP1/CD40//CD19-

cre mice the follicles are much larger as previously observed in the Mac1 stainings (Fig. 3.5D) and 

the Tregs are mainly located in the T-cell zone but also somewhat dispersed within the follicular 

structures. This observation was also made for the spleens of Notch2IC//LMP1/CD40//CD19-cre 
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mice. In these spleens however, the increase in Tregs becomes evident and the splenic structure 

almost seems enlarged but also dissolved and the Tregs are not so strictly confined to the T cell 

zone anymore.  

 

Fig. 3.12 Notch2IC//LMP1/CD40//CD19-cre mice display a substantial increase in Tregs. 
(A) Splenocytes were stained with antibodies against CD4, CD25 and after cell-permeabilization with α-
Foxp3. Dot plots were analyzed after pre-gating on CD4pos cells. Averages and SDs are calculated from 
three independent experiments. (B) IHC of splenic cryosections with antibodies detecting Tregs (Foxp3, 
blue) and B cells (IgM, red). Bar: 100 μm. IHC, immunohistochemistry. SD, standard deviation. 

3.6 Early concomitant expression of constitutive Notch2IC and CD40 partially 
blocks early B-cell development between pre- and immature B cells in the 
bone marrow 

All these observations described above are however indirect effects of the fact that the 

Notch2IC//LMP1/CD40//CD19-cre mice express constitutively active Notch2 and constitutively 

active CD40 in their B cells, which had to be characterized more in detail. As shown in section 3.3 

(Fig. 3.3B) splenic B-cell numbers of Notch2IC//LMP1/CD40//CD19-cre mice are overall increased 

compared to CD19-cre and Notch2IC//CD19-cre mice. However they are significantly reduced 

compared to LMP1/CD40//CD19-cre. Consequently, it was important to test whether expression 

of both transgenes has an effect on B-cell development. B-cell precursor subsets and immature B 

cells in the bone marrow from mice expressing the two transgenes were compared to those in 

CD19-cre mice alone as well as to that of Notch2IC//CD19-cre and LMP1/CD40//CD19-cre mice. 

To this end bone marrow samples were prepared from all genotypes for subsequent analysis. 
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3.6.1 Total and B-cell numbers are normal in bone marrow preparations of 
Notch2IC//LMP1/CD40//CD19-cre mice, but exhibit significantly increased T-cell 
numbers 

Overall cell numbers in the bone marrow were found to be similar and only slightly elevated in 

Notch2IC//LMP1/CD40//CD19-cre versus Notch2IC//CD19-cre and LMP1/CD40//CD19-cre mice 

in comparison to CD19-cre mice (Fig. 3.13A), but this can vary depending on the respective 

preparation.  

 

Fig. 3.13 Total and B-cell numbers are normal in bone marrow preparations of 
Notch2IC//LMP1/CD40//CD19-cre mice, but exhibit significantly increased T-cell numbers. 
(A) Total cell, (B) B and (C) T cell numbers of the bone marrow as determined by counting and FACS 
analysis with α-B220 and α-CD3 antibodies. Topro-3pos (dead) cells were excluded from analysis. Points 
represent data from individual mouse and horizontal bars mark the mean value indicated in numbers 
above each data set for the respective genotype. *p < 0.05; SD, standard deviation. 
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B-cell numbers in bone marrow of Notch2IC//LMP1/CD40//CD19-cre mice are slightly decreased 

compared to CD19-cre mice, this can also be observed in LMP1/CD40//CD19-cre mice (Fig. 

3.13B). By contrast T-cell numbers in bone marrow of Notch2IC//LMP1/CD40//CD19-cre mice are 

significantly higher than in all other genotypes (Fig. 3.13C). Considering the increase in T cells 

both in spleen and bone marrow in Notch2IC//LMP1/CD40//CD19-cre mice the T cells were 

analyzed for the presence of hCD2 on their surface indicating transgene expression which could 

lead to an increase in this lymphocyte population in the bone marrow. However, as previously 

shown for the splenic T cells (Fig. 3.3B) the T cells found in the bone marrow were negative for 

hCD2 (data not shown). It seems likely to assume that these T cells cannot localize all in the 

spleen and therefore rather home to other secondary lymphoid organs as well as the bone 

marrow.  

 

3.6.2 Early concomitant expression of constitutive Notch2IC and CD40 leads to a reduction in 
the pre- and immature B-cell populations in the bone marrow 

However, when examining the bone marrow-derived cells there were distinct changes with 

regard to the different B-cell subpopulations that became evident when staining the cells with 

antibodies against different surface markers and performing FACS analysis. The percentages of 

pro- and early pre- B cells (CD43pos B220pos) (Fig. 3.14A, upper panel) are slightly lower in 

Notch2IC//LMP1/CD40//CD19-cre than in LMP1/CD40//CD19-cre mice which are on level of 

CD19-cre mice. This was recapitulated in the IgM/B220 staining (Fig. 3.14A, lower panel), where 

B220pos IgMneg cells represent the pro/pre-B cells. While percentages for the pro/pre-B cells in 

bone marrow of Notch2IC//CD19-cre are more or less on level of the CD19-cre mice, these are 

reduced in LMP1/CD40//CD19-cre and are even lower in Notch2IC//LMP1/CD40//CD19-cre mice. 

Considering the percentages of pre/immature (CD43neg/low B220pos) or only immature B cells 

(B220pos IgMpos/hi), these are always lower in transgene-expressing B-cells and precursors. The 

levels of these cells in the bone marrow in Notch2IC//CD19-cre animals still resemble CD19-cre 

mice, percentages are further reduced in LMP1/CD40//CD19-cre and are lowest in 

Notch2IC//LMP1/CD40//CD19-cre mice (8.4 % CD43 neg/low B220pos cells versus 26.2 % in CD19-cre 

and 3.8 % B220pos IgMpos/hi cells versus 10.4 % in CD19-cre mice).  
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Fig. 3.14 Early concomitant expression of constitutive Notch2IC and LMP1/CD40 affects early B-cell 
development in the bone marrow leading to a reduction in pre- and immature B cells. 
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(A) Bone marrow preparations were analyzed by flow cytometry for the expression of B220 and CD43 
(upper panel) and B220 and IgM (lower panel), in order to determine the percentages of pro/early pre- 
(B220pos CD43pos), pre/immature (B220pos CD43neg/low), pro/pre (B220pos IgMneg) and immature (B220pos 
IgMhi) B cells with SD. Cells were pre-gated on lymphocyte gate. (B) Total cell numbers for pro/early pre- 
and pre/immature B-cell populations as calculated from CD43/B220-stainings (A; upper panel) after B220-
pre-gating. (C) Total cell numbers for pro/pre- and immature B cell populations as calculated from 
IgM/B220-stainings (A; lower panel) FACS plots: Numbers indicate mean percentages and SDs of 
lymphocyte-gated populations and were calculated from six independent experiments. Cell number 
calculations: Points represent data from individual mouse and horizontal bars mark the mean value, 
indicated in numbers above each point column. *p < 0.05; SD, standard deviation; Pro, pro B cells; Pre, pre 
B cells; R, recirculating B cells; I, immature B cells. 

These observations could be reconfirmed when calculating the actual cell numbers from B cell 

numbers (Fig. 3.14B and C). Considering the pre- to immature B-cell stage one can observe a 

partial block in the development of immature B cells in bone marrow of the 

Notch2IC//LMP1/CD40//CD19-cre mice compared to all other genotypes characterized by a 

significant drop in cell numbers for both of these two developmental stages (1.1×106 versus 

1.9×106 pro/pre B cells in CD19-cre and 0.25×106 versus 0.6×106 immature B cells in CD19-cre 

mice). 

In the case of Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice the surface 

expression of hCD2 would allow to pinpoint the time point when expression of the transgenes 

can be observed in the developing B cells. Overall the percentage of hCD2pos B220pos B cells is low 

(on the average 12.2 % in Notch2IC-expressing B cells and 12.4 % in B cells expressing both 

transgenes). B cells pro/pre-B-cell and immature B-cell populations as determined by the 

IgM/B220 staining were gated on hCD2 to see where the reduction in these B-cell stages is 

stronger.  

The results (Tab. 3.1) show that while Notch2IC//CD19-cre mice display on average 38 % 

immature B cells that are hCD2pos in the bone marrow, Notch2IC//LMP1/CD40//CD19-cre mice 

only display hCD2pos 31 % immature B cells. With regard to the pro/pre B-cell population in the 

bone marrow this population is also reduced in Notch2IC//LMP1/CD40//CD19-cre mice with 20 % 

versus 26 % pro/pre B cells in Notch2IC//CD19-cre mice. These results point towards a partial 

block in both the pro/pre and the immature B-cell population in Notch2IC//LMP1/CD40//CD19-

cre compared to Notch2IC//CD19-cre mice as previously established. However, comparing the 

ratios derived from the percentages of the respective B-cell compartment (1.2 in the immature 

and 1.3 in the pre/pro B-cell compartment) it is not possible to determine in which 

developmental stage the reduction is stronger Notch2IC//LMP1/CD40//CD19-cre mice. 

All in all, this strongly suggests that there is either a negative selection of the bone marrow B cells 

expressing both transgenes in this B-cell stage compared to Notch2IC//CD19-cre mice.  
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Tab. 3.1 Early concomitant expression of constitutive Notch2IC and LMP1/CD40 affects early B-cell 
development in the bone marrow leading to an equal reduction in pre - and immature B-cell population. 
Average percentages with SDs of hCD2pos Pro/Pre and immature B cells as determined from IgM/B220-
stainings (Fig. 3.14A; lower panel) after lymphocyte gate-, B220- and hCD2-pre-gating for 
Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice. Calculations based on six independent 
experiments. SD, standard deviation. 

 Immature B cells 

(hCD2pos) 
Pro/Pre B cells 

(hCD2pos) 

Notch2IC//CD19-cre 37.7 ±8.9 25.8 ±6.8 
Notch2IC//LMP1/CD40//CD19-cre 30.5 ±5.2 20.3 ±5.4 

 

 

 

3.6.3 Recirculation of mature B cells into the bone marrow is restricted in 
Notch2IC//LMP1/CD40//CD19-cre mice 

The percentages of B220hi cells in the stainings described above (Fig. 3.14A, refer to labeling of 

gates) hint at a reduction in immature and recirculating B cells in the bone marrow particulariy in 

the Notch2IC//LMP1CD19-cre compared to CD19-cre mice. A more precise evaluation for 

recirculating B cells can be achieved via staining of bone marrow cells with IgM/IgD/B220-

antibodies and pre-gating on B220pos cells (Fig. 3.15A). The previously observed reduction in 

mature recirculating B cells could indeed be further confirmed since there is a drop in the 

percentage of B220pos IgDhi IgMpos cells in all transgene-expressing mice versus the CD19-cre 

control, but especially in Notch2IC//LMP1/CD40//CD19-cre mice (3 % versus 17 % in CD19-cre 

mice). This translates to significantly reduced numbers of recirculating B cells in Notch2IC//CD19-

cre and LMP1/CD40//CD19-cre versus CD19-cre mice. This is even more pronounced in 

Notch2IC//LMP1/CD40//CD19-cre mice with 0.06×106 recirculating B cells versus 0.57×106 in 

CD19-cre and 0.22×106 recirculating B cells in LMP1/CD40//CD19-cre mice (Fig. 3.15B).  
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Fig. 3.15 Recirculation of mature B cells into the bone marrow is restricted in 
Notch2IC//LMP1/CD40//CD19-cre mice. 
(A) FACS analysis results for IgM and IgD stainings of B220pos cells to determine percentages of mature 
recirculating (IgMpos IgDlow/pos) and immature B cells (IgMpos IgDneg) in the bone marrow with SDs. (B) Total 
cell numbers for recirculating B220pos B-cell populations as calculated from IgM/IgD/B220-stainings (in A) 
in lymphocyte gate. Numbers indicate mean percentages and SDs of lymphocyte-gated, B220pos B-cell 
populations and were calculated from six independent experiments. Cell number calculations: Points 
represent data from individual mouse and horizontal bars mark the mean value, indicated in numbers 
above each point column. SD, standard deviation; R, recirculating B cells; I, immature B cells. 

3.7 AA4.1pos transitional B cells are not reduced in the spleens of 
Notch2IC//LMP1/CD40//CD19-cre mice 

With the aim to follow up on the reduced numbers of pro-, pre- and immature B cells in 

Notch2IC//LMP1/CD40//CD19-cre mice, the levels of AA4.1pos cells in the spleens of all four 

genotypes were examined. The surface marker AA4.1 characterizes transitional B cells that can 

only be found in the spleen. The flow cytometric analysis revealed that the percentages for 

transitional B cells of Notch2IC//LMP1/CD40//CD19-cre as well as in LMP1/CD40//CD19-cre mice 
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are rather reduced than increased compared to CD19-cre and Notch2IC//CD19-cre mice (Fig. 

3.16A). This is in line with the finding that Notch2IC//LMP1/CD40//CD19-cre and 

LMP1/CD40//CD19-cre mice display less immature B cells in the bone marrow. However, since 

there is an overall increase in B cells both in the spleens of LMP1/CD40//CD19-cre and 

Notch2IC//LMP1/CD40//CD19-cre mice this percentile decrease does not lead to a reduction but 

rather a slight yet non-significant increase in overall cell numbers of transitional B cells in these 

two genotypes (Fig. 3.16B) pointing to an expansion of transitional B cells in the transitional B cell 

stage in both genotypes. 

 

 

 

Fig. 3.16 AA4.1pos transitional B-cell numbers are not reduced in spleens of 
Notch2IC//LMP1/CD40//CD19-cre mice.  
Splenocytes were analyzed by flow cytometry for the expression of surface marker AA4.1, which 
characterize immature (transitional) B cells in the spleen. (A) Numbers indicate mean percentages and SD 
of lymphocyte-gated, IgMpos AA4.1pos populations. (B) Actual cell numbers were calculated from flow 
cytometric data in (A). Data was obtained from six independent experiments. Cell number calculations: 
Points represent data from individual mouse and horizontal bars mark the mean value, indicated in 
numbers above each point column. SD, standard deviation. 
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3.8 Marginal zone B cells are expanded in Notch2IC//LMP1//CD40//CD19-cre 
mice while the follicular B-cell population is decreased 

With the aim to better characterize the different B-cell populations splenocytes from all four 

genotypes (CD19-cre, Notch2IC//CD19-cre, LMP1//CD40//CD19-cre and 

Notch2IC//LMP1//CD40//CD19-cre) were prepared and stained with antibodies against different 

surface markers and subjected to flow cytometric analysis. Firstly, surface markers (namely CD21, 

CD23, IgM and IgD) were employed as to allow making a distinction between MZ B cells and Fo B 

cells.  

The surface CD21/CD23-staining allows for the unambiguous distinction between Fo B cells 

(CD21int CD23pos) and MZ B cells (CD21hi CD23low). The results of the flow cytometric analysis 

revealed that spleens of CD19-cre mice harbor few MZ B cells (6 % CD21hi CD23low) as opposed to 

Fo B cells (75 % CD21int CD23pos). Notch2IC-expressing splenic B cells show a strong shift of B cells 

adopting a MZ B-cell phenotype (≈63 %) at the expense of the Fo B-cell population (≈17 %). These 

Notch2IC-expressing B cells exhibit high levels of surface CD21 and have almost completely 

down-regulated CD23. LMP1/CD40-expressing splenic B cells display an intermediate phenotype 

(CD21hi CD23int) with B cells strongly trailing off from the Fo B-cell into the MZ B-cell 

compartment (Fig. 3.17B; upper panel) and display what can be characterized as a MZ B-cell-like 

phenotype. B cells additionally expressing constitutively active Notch2IC also display a shift of B 

cells towards adopting a MZ B-cell phenotype (≈48 %, Fig. 3.17A, upper panel), while only few 

cells exhibit a Fo B-cell type (≈20 %). Interestingly, the Notch2IC//LMP1/CD40-expressing MZ B 

cells rather resemble the CD19-cre MZ B cells since they do not down-regulate CD23 as strongly 

as the Notch2IC-expressing B cells do. 

The findings concerning the MZ B-cell status of the B cells expressing both constitutively active 

Notch2IC as well as constitutively active CD40 were confirmed with the help of an IgM/IgD-

staining. The gate comprising cells with high IgM and low IgD contains MZ B cells, but also 

transitional and B1 B cells whereas IgMpos/low IgDpos B cells are Fo B cells. The B cells of CD19-cre 

mice display a normal distribution pattern with the large majority of cells being IgMpos/low IgDpos 

and therefore Fo B cells (≈74 %). Only a small percentage of B cells of CD19-cre carries the 

surface markers characterizing MZ, B1 and transitional B cells (≈17 % IgMhi IgDlow). 



RESULTS 46 

 

 

Fig. 3.17 Marginal zone B cells are expanded in Notch2IC//LMP1/CD40//CD19-cre mice while the 
follicular B-cell population is decreased. 
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(A) Flow cytometric analysis of Fo (CD21int CD23pos) and MZ B cells (CD21hi CD23low) in the spleen. CD21neg 
CD23neg cells comprise immature and non-B cells. Numbers indicate mean percentages and SD of 
lymphocyte-gated, B220pos B cells displaying the respective phenotypes. Re-gating the cells on hCD2 
allows for identification of the phenotype of the cells expressing the transgenes (lower panel). 
Calculations are based on six independent experiments. (B) Splenocytes were analyzed by flow cytometry 
for the expression of surface IgM and IgD. Numbers indicate mean percentages and SD of lymphocyte-
gated populations of B220pos B cells displaying a Fo (IgMpos IgDpos) or MZ and transitional (IgMpos IgDlow) B 
cell phenotype (upper panel). Re-gating the cells on hCD2 allows for identification of the phenotype of the 
cells expressing the transgenes (lower panel). (C) Histograms show overlays of CD1d-expression of splenic 
B cells of in CD19-cre (grey line), Notch2IC//CD19-cre mice (orange line), LMP1/CD40//CD19-cre mice 
(purple line) and Notch2IC//LMP1/CD40//CD19-cre mice (green line). Fo B, follicular B cell; MZ B, marginal 
zone B cell; SD, standard deviation. 

In the flow cytometric analysis of the B cells expressing constitutively active Notch2IC, most B 

cells exhibit high levels of IgM, while intermediate to low IgD-levels in accordance with their MZ 

B-cell phenotype. LMP1/CD40-expressing B cells are positive for both IgM and IgD, but the cells 

strongly trailing off becoming intermediate in their IgD expression, therefore they display an 

intermediate phenotype similar as observed in the CD21/CD23 staining. However, when B cells 

express both the Notch2- as well as the CD40-transgene they can be clearly classified as MZ B 

cells with regard to their high IgM- and low IgD-level (Fig. 3.17B; upper panel), even though the 

effect is not as pronounced as in Notch2IC-expressing B cells alone (≈48 % MZ B cells versus 

≈63 % in Notch2IC//CD19-cre mice). 

Overall, constitutive Notch2IC-expression in B cells seems to be the decisive factor whether these 

cells present with a clear MZ B-cell phenotype. 

Re-gating the previous FACS staining results for IgM/IgD and CD21/CD23 on hCD2pos reveals that 

expression of Notch2IC is indeed correlated with the MZ B-cell phenotype, since the hCD2pos cells 

of Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice can be found within the MZ B 

cell gates (IgMpos IgDlow and CD21hi CD23low, respectively).  

Furthermore, splenic B cells of the respective genotype were analyzed for the presence of the MZ 

B-cell surface marker CD1d. Both Notch2IC-expressing B cells and B cells of 

Notch2IC//LMP1/CD40//CD19-cre mice are also high in their CD1d expression confirming their 

MZ B-cell phenotype (Fig. 3.17C) 
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3.9 Splenic B cells of Notch2IC//LMP1/CD40//CD19-cre mice display an 
activated phenotype 

MZ B cells have a pre-activated phenotype and are larger than their follicular counterparts. 

Activated lymphocytes generally have a tendency to increase in volume, this was previously 

observed in LMP1/CD40-expressing splenic B cells which show an increase in cell size and an 

upregulation of activation markers. This could also be recapitulated in the MZ Notch2IC-

expressing B cells. These also express various MZ B-cell-characteristic surface markers such as 

CD1d, CD36, and CD9 and are increased in size compared to CD19-cre controls (Hampel et al., 

2011). This is the reason that could account for the slight, but significant splenomegaly in those 

Notch2IC//CD19-cre animals versus the CD19-cre mice. Therefore, splenocytes of all genotypes 

were analyzed with regard to both cell size (through comparison of the FACS FSC, which is 

indicative of cell size) and with regard to expression of activation surface markers (such as CD80, 

CD86, CD95, MHCII and ICAM1 (CD54)).  

Fig. 3.18A confirms the increase in cell size in both single transgene expressing splenic 

lymphocytes, which is even furthered in the Notch2IC//LMP1/CD40//CD19-cre animals. Up-

regulation of activation marker CD95 is –as shown in section 3.2- a CD40-mediated event and is 

found to be even slightly increased in the splenic B cells of Notch2IC//LMP1/CD40//CD19-cre 

mice (Fig. 3.18B). This also seems to be the case for the expression of the B7 protein CD80, which 

mediates B-T-cell interactions like the B7 protein CD86. CD80 is found to be up-regulated only in 

B cells of LMP1/CD40//CD19-cre and even slightly stronger in Notch2IC//LMP1/CD40//CD19-cre 

mice, while levels of CD86 seem widely unchanged in all genotypes with respect to the CD19-cre 

control.  

Concomitant expression of Notch2IC and LMP1/CD40 seems to have an additive effect on the 

level of ICAM1-expression. The expression levels of this cell surface marker are higher both in 

Notch2IC-expressing, as well as in LMP1/CD40-expressing B cells compared to CD19-cre mice. 

ICAM1 levels are even further increased in B cells expressing both transgenes. 

MHCII expression however only showed a slight shift towards higher expression in splenic B cells 

of Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice 

compared to CD19-cre mice (data not shown).  
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Fig. 3.18 Notch2IC//LMP1/CD40-expressing splenic B cells show an increase in cell size and enhanced 
expression of cell surface activation markers. 
(A) Splenocytes were analyzed for cell size and surface expression of (B) CD80, CD86, CD95 and ICAM1 by 
flow cytometric analysis. Histograms show overlays of cell size (FSC) or overlays of surface expression of 
the indicated molecules on lymphocyte-gated, B220pos B cells from CD19-cre (grey line), Notch2IC//CD19-
cre mice (orange line), LMP1/CD40//CD19-cre mice (purple line) and Notch2IC//LMP1/CD40//CD19-cre 
mice (green line). Data are representative for six independent experiments. FSC, forward scatter. 

3.10 B-cell numbers are reduced and B-cell subsets are altered in inguinal lymph 
nodes of Notch2IC//LMP1/CD40//CD19-cre mice 

3.10.1 T-cell numbers are normal but B-cell numbers are significantly reduced in inguinal 
lymph nodes of Notch2IC//LMP1/CD40//CD19-cre mice compared to CD19-cre and 
LMP1/CD40-cre mice 

With the aim to further examining B cells in the periphery inguinal lymph nodes were prepared 

from mice of all genotypes (CD19-cre, Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and 

Notch2IC//LMP1/CD40//CD19-cre). Evaluation of the actual B- and T-cell numbers (based on data 

obtained from flow cytometric analysis) showed that T-cell numbers were overall similar 

between the different genotypes (Fig. 3.19; right panel). However, B-cell numbers are only 

increased in lymph nodes of LMP1/CD40//CD19-cre mice, but they are significantly reduced both 

in Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre compared to CD19-cre mice (Fig. 

3.19; left panel).  
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Fig. 3.19 T-cell numbers are normal but B-cell numbers are reduced in inguinal lymph nodes of 
Notch2IC//LMP1/CD40//CD19-cre mice 
Total B-cell (lymphocyte-gated, B220pos) and T-cell (lymphocyte-gated, CD3pos) numbers of iLN. Topro-3pos 
(dead) cells were excluded from the analysis. Calculations are based on six independent experiments. 
Points represent data from individual mouse and horizontal bars mark the mean value, indicated in 
numbers above each point column. iLN, inguinal lymph nodes; SD, standard deviation. 

 

3.10.2 B cells in inguinal lymph nodes of Notch2IC//LMP1/CD40//CD19-cre mice display a shift 
towards a MZ B-cell phenotype 

MZ B cells represent a B-cell population that is rather sessile in the spleen, while Fo B cells can 

freely circulate in blood and lymph until they encounter antigen. Hence, the presence of MZ B 

cells in lymph nodes is not expected. Nonetheless, previous analysis of the Notch2IC//CD19-cre 

(Hampel et al., 2011) also showed that B-cell subsets are altered in the inguinal lymph nodes of 

Notch2IC//CD19-cre mice in the sense that they display a tendency towards adopting a MZ B-cell 

phenotype. This prompted further analysis of this secondary lymphoid organ in 

Notch2IC//LMP1/CD40//CD19-cre mice and controls with respect to their phenotype.  

With regard to the results of CD21/CD23 staining the majority of all inguinal lymph node B cells of 

all genotypes displays a Fo B-cell phenotype (CD21int CD23pos; Fig. 3.21A). These findings could 

be confirmed with the results of the IgM/IgD staining where B cells were IgMpos/low and IgDpos 

(Fig. 3.21C). 
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Fig. 3.20 B-cell subsets are altered in the inguinal lymph nodes of Notch2IC//LMP1/CD40//CD19-cre 
mice. 
(A) Lymphocytes of iLN were analyzed by flow cytometry for the expression of IgM and IgD. Numbers 
indicate mean percentages and SD of lymphocyte-gated populations of B220pos B cells displaying a Fo 
(IgMpos IgDpos) or MZ and transitional (IgMpos IgDlow) B-cell phenotype. (B) Average hCD2 percentages with 
SD in B220pos B cells of iLN as determined by FACS analysis for the respective genotypes. Lower panel: Re-
gating the cells in the IgM/IgD staining results on hCD2 allows for identification of the phenotype of the 
cells expressing the transgenes. (C) Flow cytometric analysis of Fo (CD21int CD23pos) and MZ B cells (CD21hi 
CD23low) in the iLN. CD21neg CD23neg cells comprise immature and non-B cells. Numbers indicate mean 
percentages and SD of lymphocyte-gated, B220pos B cells displaying the respective phenotypes (upper 
panel). Calculations are based on six independent experiments. iLN, inguinal lymph nodes; SD, standard 
deviation. 
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Nonetheless, the percentages of B cells that display a MZ B-cell phenotype (CD21hi CD23low) are 

strongly increased in Notch2IC//CD19-cre, LMP1/CD40//CD19-cre and 

Notch2IC//LMP1/CD40//CD19-cre mice in the CD21/CD23 staining in comparison to the CD19-cre 

control mice. This could again be reconfirmed with the results of the IgM/IgD staining where 

percentages of MZ B-cells (IgMpos IgDlow) in inguinal lymph nodes were strongly increased 

compared to CD19-cre mice. However it has to be kept in mind that the fraction of cells that are 

IgMpos IgDlow comprises besides MZ B cells also B1 B and is a less specific indicator for a MZ B-cell 

phenotype. 

In the inguinal lymph nodes of Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice B 

cells fewer B cells had deleted the stop cassette upstream of the Notch2IC-transgene than in the 

spleen (≈18 % hCD2pos B cells in inguinal lymph nodes in Notch2IC//CD19-cre and ≈7 % in 

Notch2IC//LMP1/CD40//CD19-cre mice; Fig. 3.20B, upper panel). Pre-gating the inguinal lymph 

node B cells on hCD2 in the CD21/CD23 staining analysis however shows that roughly half of the 

B cells that have successfully deleted the stop cassette and express the transgene adopt a MZ B-

cell phenotype (47 % in Notch2IC//CD19-cre and 35 % in Notch2IC//LMP1/CD40//CD19-cre mice 

Fig. 3.21B; lower panel). This is recapitulated in the expression of surface IgM and IgD expression 

in the hCD2pos lymph node B cells of Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre 

mice with increased percentages of lymph node B cells that are IgMpos/low IgDpos (data not shown).  

All in all, considering the low numbers of B cells and particularly hCD2pos B cells in inguinal lymph 

nodes of Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice one could assume that 

the mature hCD2-expressing B cells are rather retained in the spleen, which would be in line with 

their physiological sessile character. Nonetheless, the cells in the inguinal lymph nodes that are 

positive for hCD2 rather display a MZ B-cell phenotype. 

3.11 Splenic architecture is grossly disrupted in Notch2IC//LMP1/CD40//CD19-cre 
mice 

In order to better characterize the splenomegaly as well as to define the follicular space and to 

localize the different B- and T-lymphocyte populations in general immunohistochemistry (IHC) on 

splenic cryosections was performed (Fig. 3.21). Spleens were stained for IgMpos B cells, for CD3pos 

T cells and MOMA1, which stains monocytes and metallophilic macrophages. Metallophilic 

macrophages line the inner border of the MZ and employing the antibody in the staining allows 

for a visual separation of the MZ B cells from the Fo B cells.  
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Fig. 3.21 Splenic architecture is grossly disrupted in Notch2IC//LMP1/CD40//CD19-cre mice.  
IHC staining of splenic cryosections from Notch2IC//CD19-cre and control mice for monocytes and 
metallophilic macrophages (α-MOMA-1; dark blue), lining the marginal zone at the sinus, B cells (α-IgM; 
red) and T cells (α-CD3; light blue). Bar: 100μm. IHC, immunohistochemistry; MZ, marginal zone. 

The triple staining showed that the follicles in CD19-cre mice are small with a small ring of MZ B 

cells surrounding them. The follicle holds the majority of Fo B cells and a well-defined, localized 

T-cell zone. In Notch2IC//CD19-cre mice as previously documented (Hampel et al., 2011) follicles 

are still small, which is in accordance with the fact that overall cell numbers are not increased 

compared to spleens of CD19-cre mice (Fig. 3.1A).  

However, the area of MZ B cells is markedly enlarged, and the Fo B cells are rather reduced, but 

the T-cell zone is equal in size compared to that in CD19-cre mice. Nonetheless, overall follicular 

structure is retained in Notch2IC//CD19-cre, which is also the case for the spleen of 

LMP1/CD40//CD19-cre mice. However, the spleens of the latter genotype display an enlargement 

of follicles as such and of the MZ- and T-cell zone which is in accordance both with the increase in 

overall spleen size, total cell and lymphocyte numbers. Nonetheless, one can determine that the 

ring of MOMA1pos cells is less distinct but rather appears as a rather diffuse pattern that extends 

well into area of the Fo B cells. The assessment of the IHC of splenic cryosections of 

Notch2IC//LMP1/CD40//CD19-cre mice delivered completely different results: the follicles are 

enlarged as was expected according to spleen size, total cell and lymphocyte numbers, but 

microachitectural order is severely affected. The otherwise defined ring of MOMA1pos cells is 

disintegrated and merges with the B and T cells in the follicle. Notch2IC//LMP1/CD40//CD19-cre 

mice exhibit a strongly enlarged MZ, nonetheless the majority of B cells seems to reside in the Fo 

area. The T cells are almost dispersed throughout the entire follicle, which allows for constant B- 

and T-cell interaction. 
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3.11.1 Splenic B cells of Notch2IC//LMP1/CD40//CD19-cre mice are intermediate in their 
CXCR4 expression 

Chemokine receptors, including CCR7, CXCR4, and CXCR5, are known to be of key importance in 

the regulation of B-cell trafficking and retention (Cyster, 1999; Okada et al., 2002; Ebisuno et al., 

2003). Expression of CXCR5 can be detected on mature B cells and is essentially responsible for 

guiding B cells into the B-cell zones of secondary lymphoid organs. In CXCR4-deficient mice 

mature B-cell populations were reduced in the marginal zone and primary follicles and they show 

defective follicle formation (Nie et al., 2004).  

In order to clarify what might be the factors contributing to the observed mispositioning of B cells 

in the Notch2IC//LMP1/CD40//CD19-cre mice CXCR4 and CXCR5 stainings were performed with 

splenocytes preparations from all four genotypes and subjected to FACS analysis. Additional 

staining for the presence of CD21/CD23-surface markers permits to analyze the respective MZ 

and Fo B-cell populations in greater detail. 

The results (Fig. 3.22A) were most distinct with regard to the MZ B cell compartment (CD21hi 

CD23low). They show that CXCR4–expression is up-regulated in Notch2IC-expressing MZ B cells in 

comparison to all other genotypes. MZ B cells (CD21hi CD23low) B cells from LMP1/CD40//CD19-

cre mice on the other hand displayed the lowest CXCR4 surface marker expression. This might 

explain that the majority of their B cell residing rather in the follicle, although the population 

strongly trails off into the MZ B cell compartment. Interestingly, MZ B cells from CD19-cre mice 

had an intermediate CXCR4 surface marker expression just like the B cells in 

Notch2IC//LMP1/CD40//CD19-cre mice display a rather intermediate CXCR4-level phenotype. 

With regard to the Fo B cell compartment (CD21int CD23pos), LMP1/CD40 also exhibited slightly 

lower levels, Notch2IC-expressing B cells still exhibited higher number for CXCR4hi B cells. This 

pattern could also be observed to a lesser degree when gating the cells on the B-cell marker 

CD19 alone without prior pre-gating on MZ and Fo B cells (data not shown) and the levels 

remained similar with minor shifts in CXCR4 expression strength when Fo B cells were compared 

to MZ B cells of the same genotype, i.e. CD19-cre (Fig. 3.22B).  

CXCR5 levels were equally examined in the four genotypes. However, distinct differences were 

undetectable among the B cells of the different genotypes (data not shown).  

All in all, one could assume that constitutive CD40- and constitutive Notch2-activity oppose each 

other with regard to positioning of the respective Notch2- or CD40-expressing cell and up- or 

down-regulation of CXCR4. These might be the forces at work in B cells of 

Notch2IC//LMP1/CD40//CD19-cre expressing both transgenes. However, CXCR4 levels as such do 

not provide hints as to where a given B cell will be positioned, since B cells of CD19-cre mice also 

display rather intermediate level of this chemokine receptor. 
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Fig. 3.22 B cells of Notch2IC//LMP1/CD40//CD19-cre mice display intermediate level in their CXCR4 
expression.  
(A) Flow cytometric analysis results of the CXCR4-levels of pre-gated B cells (CD19pos cells) for the different 
genotypes. Histogram represents an overlay of all genotypes analyzed. CD19-cre (grey line), 
Notch2IC//CD19-cre mice (orange line), LMP1/CD40//CD19-cre mice (purple line) and 
Notch2IC//LMP1/CD40//CD19-cre mice (green line). Data are representative for three independent 
experiments. (B) Flow cytometric analysis results of the CXCR4-levels of MZ B (light grey) versus Fo B cells 
(dark grey) of the same genotype (CD19-cre). 

 

3.12 Notch2IC//LMP1/CD40//CD19-cre mice show distinct changes in the 
expression of cyto- and chemokines  

Cyto- and chemokines might be the major factors leading or contributing to the surge in 

accessory cells and disrupted follicular structures in Notch2IC//LMP1/CD40//CD19-cre mice. 

These messenger substances can act both over long distances as well as only in situ. Aiming to 

identify them both on a systemic and local scale, arrays were used to detect changes in serum 

levels and mRNA-levels specifically in B cells of a broad range of cyto- and chemokines in mice of 

all four genotypes.  
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3.12.1 CXCR3 and IL13ra1, IL2Rγ, LTβ and TGFβ mRNA levels in splenic B cells of 
Notch2IC//LMP1/CD40//CD19-cre mice are differentially up-regulated by Notch2IC and 
LMP1/CD40 

In order to examine the level of cyto- and chemokines that were exclusively produced by the B 

cells, splenic B cells from all four genotypes were purified using the MACS-separation system to 

deplete CD43pos (i.e. non-B) cells from the samples. From these splenic B cells mRNA was 

extracted from which cDNA (complementary DNA) was synthesized. The cDNA was subsequently 

employed as template in a RT-PCR (real-time polymerase chain reaction) run. The RT-PCR was 

carried out in a 96-well format obtained from SA Biosciences with pre-spotted primers in each 

well for each cyto- and chemokine to be analyzed. Results were normalized to values obtained 

for the control CD19-cre mice (Fig. 3.23). 

The mRNA analysis of splenic B cells revealed that only few cyto- and chemokines were up-

regulated. Usually the respective cyto- or chemokine was up-regulated in either one of the two 

transgene-expressing B cells and rather exhibited intermediated mRNA levels in splenic B cells 

expressing both transgenes simultaneously.  

Those cyto- and chemokines that were up-regulated particularly in Notch2IC-expressing B cells 

were CXCR3 and IL13Rα1.  

CXCR3 is highly expressed on activated T cells, but usually not found on resting T lymphocytes, 

monocytes and granulocytes (Loetscher et al., 1996), but is increased on MZ versus Fo B cells (S. 

Ehrenberg, personal communication).  

IL13ra1 is a subunit of both IL13R and IL4R and together with the common γ chain and other 

subunits it forms the respective receptor for the Th2 cytokines. Both cytokines are known for 

their anti-inflammatory character (Watson et al., 1999; Zaccone et al., 1999; Kaminski et al., 

2007), however in a B-cell context IL4 together with CD40 can induce a burst in proliferation, 

division and class switching (Rush et al., 2001).  

The cyto- and chemokines that were up-regulated particularly in LMP1/CD40-expressing splenic B 

cells and to a lesser degree in Notch2IC//LMP1/CD40-expressing splenic B cells were the cytokine 

receptor IL2Rγ, lymphotoxinβ (LTβ) and TGFβ. 
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Fig. 3.23 CXCR3 and IL13ra1, IL2Rγ, LTβ and TGFβ mRNA levels in B cells of 
Notch2IC//LMP1/CD40//CD19-cre mice are differentially up-regulated by Notch2IC and LMP1/CD40.  
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Splenocytes from all four genotypes were purified by MACS-separation to deplete CD43pos (i.e. non-B) cells 
from samples. mRNA from B cells was used as template for cDNA synthesis, which was used in a RT-PCR 
run. The RT-PCR was carried out in a 96-well format obtained from SA Biosciences with pre-spotted 
primers for each cyto- and chemokine to be analyzed and controls per well. Results were normalized to 
values obtained for the control CD19-cre mice. LTβ, lymphotoxinβ; MACS, magnetic cell separation, TGFβ, 
transforming growth factor β. 

IL2Rγ also more commonly known as the common γ chain that is a subunit of some different ILRs, 

not only of IL2R, but also of the IL4-, IL7-, IL9-, IL15- and IL21-receptors (Takeshita et al., 1992; 

Russell et al., 1993; Asao et al., 1993; Sugamura et al., 1995; Asao et al., 2001) which play a 

pivotal role in development and function of B-, T- and NK-cells.  

TGFβ is known to be influence numberous cellular processes rangeing from cell cycle regulation, 

differentiation, programmed cell death, adhesion and motility (Padua et al., 2009; Akhurst et al., 

2012).  

LTβ has been found to be of key importance during the initial organization of the lymphoid tissue 

during development (Murphy et al., 1998). The stromal cells in the spleen express the receptor 

while the ligand is majorly found on B cells (McDonald et al., 2005), which is important for 

positioning processes within the lymphoid follicles and proper development of the T-cell zone 

(Ngo et al., 2001). Combination of Notch2 and LMP1/CD40 signaling up-regulated genes might 

lead to the disruption of the splenic architecture. 

 

3.12.2 Notch2IC//LMP1/CD40//CD19-cre mice show an upregulation of CXCL9 and CXCL10 in 
serum 

In order to examine levels of different cytokines on a systemic level, serum samples from mice of 

all four genotypes were collected and applied to nitrocellulose membranes onto which capture 

antibodies have been spotted in duplicate. Adding streptavidin-horseradish peroxidase and a 

common chemiluminescent detection reagents, a signal is produced in proportion to the amount 

of the respective cytokine bound. Detection is performed as for common Western blots and level 

of cytokine was quantified from comparative analysis of three cytokine arrays per genotype with 

the TINA software (Raytest) by Lothar Strobl of our group (Fig. 3.24). 

For most cytokines the results were out of range (i.e. either too strong or weak) in the 

comparative analysis. However, three cytokines were found to be reliably up-regulated in the 

sera of Notch2IC//LMP1/CD40//CD19-cre mice, namely IL16, chemokine (C-X-C) ligand (CXCL)10 

and CXCL9, while IFNγ was slightly and CXCL12 (ligand for CXCR4) was distinctly reduced in these 

mice. 
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As suggested by their alternative names monokine-induced by IFN-γ, MIG (CXCL9) and IFNγ 

inducible protein-10, IP10 (CXCL10) these CXCLs are induced by IFNγ and are therefore also 

termed Th1-type cytokines. 

 

Fig. 3.24 Notch2IC//LMP1/CD40//CD19-cre mice show an up-regulation of CXCL9 and CXCL10 and a 
down-regulation of CXCL12 in serum.  
Serum samples were prepared from heart blood and applied to R&D Proteome Profiler Mouse Cytokine 
Array Kit membranes. Using SA-HRS peroxidase and detection agents the amount of chemiluminescence is 
proportional to the amount of cytokine detected. Amount of chemiluminescent signal was quantified 
using TINA software. The displayed result is derived from comparative analysis of three independent 
experiments. Values for CD19-cre were set to 1 for normalization. SA-HRS peroxidase, streptavidin-
horseradish peroxidase.  

 

3.13 Notch2IC//LMP1/CD40-expressing splenic B cells show an increased 
proliferation in in vitro culture regardless of the supply of stimuli 

Having observed that the splenic B cells are highly activated, it would be interesting to observe 

their growth behavior under controlled conditions. Primary wild type B cells die within 1 week of 

in vitro cultures without activating stimuli. The inherently activated phenotype of LMP1/CD40-

expressing splenic B cells induces an increase in proliferation as well as enhanced survival in in 

vitro cultures in comparison to B cells from CD19-cre mice (Homig-Holzel et al., 2008). Also, the 

pre-activated phenotype of Notch2IC-expressing splenic B cells leads to an increased proliferation 

rate in comparison to controls (Hampel et al., 2011). Moreover, both CD40 and Notch are found 

up-regulated in various cancers. Taken together, this led to the assumption that cells expressing 

both Notch2IC as well as LMP1/CD40 in constitutively active forms would also show enhanced 

proliferation rates. This hypothesis was tested with the help of Carboxyfluorescein succinimidyl 

ester (CFSE)-analysis. CFSE is a fluorescent dye that labels intracellular molecules through its 

succinimidyl group. It is passed on to daughter cells during cell division and thereby provides a 
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method to measure proliferation of a cell population by the decrease in CFSE-fluorescence of the 

labeled cells.  

Splenocytes from all four genotypes were prepared and depleted of all other cell types by MACS-

separation to obtain 95-98 % pure primary B-cell samples. These were thereafter labeled with 

CFSE and cultivated in 10 % medium with and without stimuli. These stimuli comprised agonistic 

antibody against CD40 and the cytokine IL4, which are of importance in T-cell-mediated B-cell 

activation. Stimuli were applied both together and separately. Thereby stimulated or 

unstimulated splenic B cells were cultivated and analyzed on day 1, 3 and 5 for CFSE-staining 

intensity after excluding Topro-3pos (dead) cells. Data from day 1 served to set the resting peak of 

CFSE-labeling intensity. 

Evaluating the obtained data with FlowJo software delivers beside the estimates of the percent 

of culture that divided (percent divided) the division index and the proliferation index. The 

division index is an overall average of the number of cell divisions that cells in the original 

population have undergone. It includes the cells that never divided and therefore includes those 

of the resting or “undivided peak”. The proliferation index, however, gives the total number of 

divisions of a cell that went into division at least once. In contrast to the division index it only 

takes into account cells that respond in the culture system and therefore considers only the 

fraction of cells in the “divided peak”. One can say that the division index reflects the biology of 

responding part of the system, while the proliferation index considers also the dynamics of the 

entire system (www.flowjo.de).  

As one can see in Fig. 3.25 there is a clear reduction in the resting peak population on day 3 that 

transformed into a considerable shift of the “divided peak” in the cultured B cells of 

Notch2//LMP1/CD40//CD19-cre mice (Fig. 3.25A, upper panel). The same pattern can also be 

observed for the cultures that received an IL4-stimulus. With roughly 20 % divided B cells 

expressing both transgenes exhibit the highest proliferation rate of all genotypes tested.  

When examining the genotypically different B cells in their entirety (division index) on day 3 the B 

cells expressing both transgenes display by far the highest division indices both with and without 

IL4-stimulus (around 0.4 versus 0.1 in CD19-cre and 0.1/0.2 in Notch2//CD19-cre and 

LMP1/CD40//CD19-cre mice). With regard to the proliferation index one is able to observe that 

out of the cells that did proliferate, the B cells carrying constitutively active Notch2IC do so most 

strongly of all genotypes although overall the proliferation index levels of Notch2IC-, LMP1/CD40- 

and Notch2IC//LMP1/CD40-expressing splenic B cells are similar upon IL4 stimulation and tend to 

be lower in the CD19-cre splenic B cells. The aforementioned is also recapitulated in the data 

obtained for day 5 (Fig. S.1; Supplements). 
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Fig. 3.25 Notch2IC//LMP1/CD40-expressing splenic B cells show an increased proliferation in in vitro 
culture. 
Splenocytes were prepared and splenic cell preparations were depleted of CD43pos (i.e. non-B) cells and 
labeled with CFSE. The B cells were subsequently cultivated either with or without stimuli. These stimuli 
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included α-CD40 antibody, IL4 as well as both IL4 and α-CD40 antibody. Cells were analyzed by flow 
cytometric analysis on day 1, 3 and 5 of culture. Dead cells were excluded from the analysis by excluding 
Topro-3pos cells. (A) Results for respective genotypes on the indicated days without stimulus, with IL4-
stimulus, with CD40-stimulus and with both CD40- and IL4-stimulus. The displayed result is representative 
for four independent experiments. (B) Statistical evaluation of day 3 of percent divided, proliferation and 
division index for all genotypes without stimulus, with IL4-stimulus, with CD40-stimulus and both with IL4- 
and CD40-stimulus. CFSE, Carboxyfluorescein succinimidyl ester. *p < 0.05, ** p < 0.01, *** p < 0.005.  

The pattern becomes more divers when adding CD40 or both IL4 and CD40 to the respective 

cultures. Notch2IC//LMP1/CD40-expressing B cells maintain the previously described high 

proliferative states for both stimulation scenarios (CD40 or both IL4 and CD40), but the value for 

percent divided never further increases over 20 %. Furthermore, the division index also remains 

unchanged. Concerning B cells that already express constitutively active CD40 addition of CD40 

antibody alone also has little effect on B-cell proliferation. CD40-stimulation has the strongest 

effects on cultures of B cells isolated from CD19-cre and Notch2IC//CD19-cre mice. There is a 

strong increase in the percentage of dividing cells. In the case of B cells expressing constitutively 

active Notch it even excels those of LMP1/CD40 and Notch2IC//LMP1/CD40-expressing B cells, 

which is mirrored by the fact that the division index (around 0.7) rises above the levels found in 

LMP1/CD40 and Notch2IC//LMP1/CD40-expressing B cells (still 0.2 and 0.4. respectively).  

As expected this effect is even stronger in B cells that received both IL4 and CD40 in their 

medium. This leads to a further increase in the percentage of divided cells in the control B-cell 

population and their division index rises to that of Notch2IC//LMP1/CD40-expressing B cells. 

However, the Notch2IC-expressing B cells remain those with the highest level percentage of 

divided cells and division indices of all genotypes in the analysis. 

The pattern described above for the proliferative behavior of B cells of the different genotypes 

on day 3 is recapitulated on day 5. The major difference however is, that by this time 

simultaneous addition of α-CD40 and IL4 to B-cell cultures leads to a similar division indices in  

CD19-cre, Notch2IC//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice (Fig. S.1; 

Supplements). 

3.13.1 Unstimulated Notch2IC//LMP1/CD40-expressing splenic B cells survive better in culture 
than Notch2IC-, but not than LMP1/CD40-expressing splenic B cells  

The CFSE-labeled and cultured splenic B cells were stained with the fluorescent dye Topro-3, 

which is only able to penetrate damaged but not intact cellular membranes. It was used in order 

to ensure the exclusion of dead cells from the analysis. These Topro-3pos cells can also be used as 

a measure of the amount of dead versus living cells with the respective culture. 
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The results of the Topro-3neg cells with the respective stimuli at the different time points are 

summarized in Fig. 3.26. 

Fig. 3.26A gives an overview of the B-cell cultures that did not receive any stimulus. Already at 

day 1 there is a distinct drop in the Notch2IC-expressing cells. By day 3 both B-cell cultures from 

spleens of CD19-cre and Notch2IC//CD19-cre mice are low in their content of living cells (around 

15 %), while LMP1/CD40- and Notch2IC//LMP1/CD40-expressing B cells still harbor 40 % living 

cells in their cultures. Therefore, the better survival of these cells is an effect mediated by 

constitutively active CD40, since at day 5, LMP1/CD40-expressing B cells still display 50 % of living 

cells. However, there is a drop to 25 % living cells in cultures of splenic B cells of 

Notch2IC//LMP1/CD40//CD19-cre mice. This seems to be a Notch2IC-mediated effect since the 

Notch2IC-expressing B cells, like the control B cells display on the average a mere 4-6 % of living 

cells. 

Fig. 3.26B gives an overview of the B-cell cultures that did receive an IL4-stimulus with regard to 

the percentage of living cells in culture. The addition of IL4 enhances the especially survival of B 

cells of CD19-cre mice. But the overall pattern remains the same as in the cultures that did not 

receive a stimulus (Fig. 3.26A). 

Fig. 3.26C gives an overview of the cell cultures that did receive a CD40-stimulus with regard to 

the percentage of living cells in culture. As expected the effects of an increased survival are 

majorly observed for the cells that do not have an intrinsic activated CD40, i.e. B cells of CD19-cre 

and Notch2IC//CD19-cre mice. 

Fig. 3.26D gives an overview of the B-cell cultures that did receive both an IL4- and CD40-stimulus 

with regard to the percentage of living cells in culture. This combination provides a rather strong 

stimulus prompting the cells to strongly proliferate, hence there is no loss in viability from day 0 

to day 1. At day 3, B cells expressing constitutively active CD40 still display 40 % of viable cells, 

while all other genotypes including CD19-cre controls display around 28 % viable B cells. At day 5 

all genotypes with the exception of LMP1/CD40-expressing B cells (25 % viable cells) drop below 

values of less than 20 % viable cells. Although those values are still higher than when splenic B 

cells were left unstimulated at day 5 these values are still lower than when cells were stimulated 

with α-CD40 only. This is likely due to the fact that splenic B cells receiving a simultaneous CD40- 

and IL4-stimulation proliferate the strongest and at some point outcompete each other for 

nutrients. In favor for this hypothesis is the fact that already from day 3 onward the medium 

starts to turn slightly yellow for all genotypes. Therefore, drop in cell viability also on day 3 can be 

explained by a number of possible reasons: an overall increase in cell number and at the same 

time, increasing lack of nutrients and an accumulation of metabolites leading to an increase in 
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dead cells. Also, cells might die due to a limited number of cell divisions for each cell or cells stop 

growing and die because of contact inhibition. 

 

 

Fig. 3.26 Unstimulated Notch2IC//LMP1/CD40‐expressing B cells survive better in culture than 
Notch2IC-, but not than LMP1/CD40-expressing B cells. 
Splenocytes of all genotypes were prepared and B cells were depleted of CD43pos cells. The B cells were 
subsequently cultivated either with or without stimuli. These stimuli included α-CD40 antibody, IL4 and 
both (IL4 and α-CD40 antibody). Cells were labeled with Topro-3 prior to flow cytometric analysis on day 
0, 1, 3 and 5 of culture. Statistical evaluation of the percentage of living cells is given on the respective 
days (x-axis) without stimulus (A), with IL4-stimulus (B), with CD40-stimulus (C) and both with IL4- and 
CD40-stimulus (D). The averages and SDs are calculated from three independent experiments. SD, 
standard deviation. 
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3.14 Notch2IC//LMP1/CD40‐expressing splenic B cells are highly and actively 
cycling cells  

Previous studies in our lab showed that Notch1IC/2IC were able to drive cells into the S-phase of 

the cell cycle. However, cell numbers did not increase which was assumed to be due to an 

increased apoptosis rate in Notch1IC/2IC-expressing cells due to upregulation of pro-apoptotic 

genes (Kohlhof et al., 2009). All of this is in line with the results obtained in the CFSE-and Topro-

3-analysis presented above, considering that compared to CD19-cre B cells Notch2IC-expressing 

splenic B cells display decreased viability. Constitutive CD40 on the other hand -as was observed 

with the B cells expressing LMP1/CD40- might deliver the survival signals that enable increased 

proliferation also in Notch2IC-expressing B cells.  

This scenario could be further tested in detail with regard to the cell cycling characteristics in the 

B cells of Notch2IC//LMP1/CD40//CD19-cre mice supplied with both a constitutively active CD40 

as well as a constitutively active Notch2 to see whether these are driven into S-phase of cell cycle 

–through the activity of Notch-signaling- and allow for continuous proliferation and prevention of 

apoptosis –through the activity of CD40-signaling. 

Therefore, primary splenic B cells depleted of CD43pos cells by MACS-separation were taken into 

culture for three days and labeled with Bromodesoxyuridine (BrdU) at day 0, day 1 and day 3 for 

four hours. BrdU is a synthetic nucleoside and thymidine analogue. If given to cells during their 

proliferative S-phase BrdU-dye will be incorporated into the cell’s DNA and can later be visualized 

by intracellular staining with fluorochrome-coupled α-BrdU antibodies. This allows for inference 

on the proliferation rate of the cells. Simultaneous staining of the cells with 7-amino-actinomycin 

D (7AAD; a fluorescent DNA marker) permits to determine the full scope of the cell cycle of any 

culture of cells under investigation. In order to ensure functionality of the assay LPS was added to 

B-cell cultures of CD19-cre mice. LPS is a potent, polyclonal stimulus, activating the cells and 

driving them into proliferation.  

 

On day 0 (Fig. 3.27), reflecting the immediate ex vivo situation splenic B cells from all genotypes 

still resemble each other with regard to their cells in G0/G1 of the cell cycle (around 80 % of cells) 

and G2/M (roughly around 5 % of cells). As expected the B cells of CD19-cre mice did hardly 

proliferate and quickly died in culture without stimulus (as merely roughly 15 % of cells were 

viable at day 3 as previously shown; Fig. 3.26A). Stimulating control B cells of CD19-cre mice with 

LPS had little effect after the initial 4 hours of BrdU-labeling and simultaneous LPS-stimulation. 

But after 1 day of in vitro culture cells with LPS-stimulus displayed a strong increase of cells in S-

phase of the cell cycle (6 %), as well as in G2/M-phase (9 %), indicating a strong increase in 



RESULTS 66 

 

proliferation. The effect LPS had on cells was even more pronounced at day 3 of culture with an 

even expanded percentage of cells in S-phase (35 %), but less cells in G2/M (2 %), hinting at the 

possibility that cells were so activated that they did not accumulate in the G2 phase but rather 

re-entered the cell cycle.  

Notch2IC- as well as Notch2IC//LMP1/CD40-expressing splenic B cells displayed a much larger 

percentage of cells in S-phase after ex vivo isolation (about 2 % in both genotypes). This 

percentage increases over 24 hours: it doubles in Notch2IC-expressing cells and triples in B cells 

expressing both transgenes. Simultaneously, there is a subtle drop in the percentage of cells in 

G2/M-phase (from 6 to 4 %) in Notch2IC-expressing B cells, which is also observable in 

Notch2IC//LMP1/CD40‐expressing B cells (from 6 to 5 %). This could either be symptomatic of an 

increase in B cells re-entering cell cycle or simply of cells dying. The latter seems to be the case 

for only Notch2IC-expressing B cells since by day 3 of culture these cells display a massive 

increase of apoptotic/necrotic cells as has been observed in culture of control cells. Moreover, 

this is accompanied by a considerable drop of viable cells, in all phases of cell cycle but especially 

in S-phase.  

The drop of viable splenic B cells, in all phases of cell cycle but especially in S-phase was not 

observable for B cells expressing both transgenes, which even displayed a further increase on 

cells in S-phase (from 6 % on day 1 to 10 % on day 3), with only a small drop of the percentage of 

cells in G0/G1. This effect was likely to be mediated by CD40. LMP1/CD40-expressing B cells in 

contrast to CD19-cre control cells already after ex vivo isolation harbor more cells in S-phase, but 

this portion doubles over 24 hrs (day 1) and triples within 72 hrs (day 3). Furthermore, in line 

with the anti-apoptotic properties of active CD40-signaling LMP1/CD40-expressing B cells display 

no drop in cell viability at the analysis endpoint (day 3).  

Therefore, the herein presented data strongly support the hypothesis that simultaneous 

expression of both constitutively active Notch2 and CD40 in B cells leads to an increase in B-cell 

proliferation by Notch activity driving cells into S-phase but also apoptosis, which can be 

counteracted by CD40 which can provide strong anti-apoptotic, pro-survival stimuli. 

Of note, only medium of wells with Notch2IC//LMP1/CD40‐expressing B cells or B cells having 

received an LPS stimulus (CD19-cre) turned light yellow, indicating a change in pH due to the 

accumulation of metabolites in the medium (data not shown) and further underlines the highly 

proliferative state of Notch2IC//LMP1/CD40‐expressing B cells. 
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Fig. 3.27 Notch2IC//LMP1/CD40‐expressing splenic B cells are highly and actively cycling cells. 
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Splenocytes were prepared and B cells were depleted of CD43pos (i.e. non-B) cells and labeled with BrdU 
for 4 hrs. B cells were cultivated either with LPS (in the case of CD19-cre B cells) or without stimuli. 
Polyclonal stimulus LPS was used on CD19-cre B cells as positive control to test for assay functionality. 
Cells were analyzed by flow cytometric analysis on day 0 (upper panel), day 1 (middle panel) and day 3 
(lower panel) of culture. X-axis shows 7AAD intensity which corresponds to DNA content and y-axis 
represents APC intensity which corresponds to BrdU-incorporation. In the FSC/SSC cell debris was gated 
out and by plotting FSC-A versus FSC-W was used to discriminate doublets from single cells. The displayed 
result is representative for four independent experiments. 7AAD, 7-amino-actinomycin D; APC, 
allophycocyanin (fluorochrome); BrdU, Bromdesoxyuridine; FSC (-A, -W), foward scatter (-area, -width); 
hrs, hours; LPS, Lipopolysaccharide; SSC, sideward scatter.  

3.15 Aged Notch2IC//LMP1/CD40//CD19-cre mice are prone to develop B-cell 
lymphomas 

As shown before, B cells of Notch2IC//LMP1/CD40//CD19-cre mice have a highly activated 

phenotype and proliferate strongly in culture. Not surprisingly both Notch and CD40 are found to 

be up-regulated in a number of cancers (Kuppers et al., 2012). LMP1/CD40//CD19-cre mice 

develop B- cell lymphomas with a high incidence after 1 year (Hoemig-Hoelzl et al., 2008). 

Therefore, some mice were saved for over a year (13 to 16 months) to test whether the co-

expression of constitutive active Notch2 and CD40 has an impact on lymphomagenesis in 

Notch2IC//LMP1/CD40//CD19-cre mice. 

All five Notch2IC//LMP1/CD40//CD19-cre mice developed hyperplasia, both of the spleens as 

well as three tissue abnormalities in the lower neck region (Tab. 3.2). There are distinct variations 

in this small test group, spleens of Notch2IC//LMP1/CD40//CD19-cre mice were up to 13 times 

heavier than their control counterparts, harboring up to 26-fold more cells in total. The mice can 

be assigned into two groups: those that do present with overt signs of lymphomas and those that 

only show mild signs of lymphoma. Both groups can present with or without tumors in the lower 

neck region.  

Three out of five mice (# 3142, # 1779 and # 1778) display a splenic B-cell expansion (3 to 27-fold 

increase) and a splenic T-cell expansion (8 to 70-fold increase in mouse # 1778 compared to 

controls). Therefore, the T-cell expansion in the spleen is not lost during ageing of the mice and is 

still a hallmark of lymphocyte expansion in Notch2IC//LMP1/CD40//CD19-cre mice. Two mice 

(# 1717 and # 1760) do not present with a splenic B-cell expansion and/or a splenic T-cell 

expansion but still had an increase in splenic weight and total cell number. Mouse # 1717 had a 

tumor in the lower neck region which made the sacrifice of the mice necessary. No mice of the 

Notch2IC//LMP1/CD40//CD19-cre genotype lived longer than 16 months, since all mice 

developed abnormalities that required putting the animals down. In order to ensure that this is 

an effect of the constitutive expression of both transgenes in these mice and not of the ageing 
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process and the accumulation of random mutations over time, one CD19-cre mouse was 

analyzed along with every Notch2IC//LMP1/CD40//CD19-cre mouse. However, although there 

are also variations in splenic weight and splenic cell number in CD19-cre control mice none of 

these mice developed signs of illness. 

 

Tab. 3.2 Overview of 13-16 month-old Notch2IC//LMP1//CD19-cre mice that developed hyperplasia of 
the spleen or the lower neck region. 
The respective aged-matched controls were summarized in the first row, n=5. The data given in the three 
last columns were obtained through flow cytometric analysis of splenocytes stained for B220pos (B cells), 
CD3pos (T cells) and hCD2pos/B220pos (B cells expressing transgenes). n.d., not determined; SGT, salivary 
gland tumor. 

 
 

age splenic 
weight (g) 

total cell 
no. (×10

7
) 

B-cell no. 
(×10

7
) 

T-cell no. 
(×10

7
) 

% of hCD2
pos 

B cells 
SGT 

CD19-cre matched 0.22 ±0.1 4.9 ±1.7 2.7 ±1.2 1.2 ±0.3 - - 
Notch2IC//LMP1/CD40// 

CD19-cre 
       

# 3142 13 m 2.92 125.0 84.6 19.4 89.4 - 
# 1779 14 m 0.72 87.5 37.0 30.4 96.7 1 
# 1760 14 m 1.59 64.9 0.8 11.9 5.4 - 
# 1778 14 m n.d. 130.0 30.3 63.4 67.7 1 
# 1717 16 m 0.30 9.0 1.3 3.9 23.2 1 

 
 

3.15.1 Aged Notch2IC//LMP1/CD4//CD19-cre mice display increased numbers of splenic 
Mac1pos cells 

Since some of the old mice examined did not display an increase in the lymphocyte compartment 

in the spleen the question arose whether these cells could be accessory cells as an expansion of 

such cells was already observed in the young mice. Preparing splenocytes and analyzing them for 

Mac1 surface expression, while excluding B220pos B cells, allowed estimating the presence of 

these cells in the spleens.  

While the percentages of Gr1hi cells in aged Notch2IC//LMP1/CD4//CD19-cre were not increased 

in comparison to CD19-cre mice, only slightly higher in mouse # 1760. But as observed in the 

younger mice the absolute number of Mac1pos cells were overall elevated in the spleens in aged 

Notch2IC//LMP1/CD4//CD19-cre mice. Especially in mouse # 1760 (which had almost no B cells in 

the spleen, while displaying a high splenic weight of 1.59 g), the number of Mac1pos cells is 

particularly high (16×107 versus 0.5×107 on the average in CD19-cre mice; Fig. 3.28).   
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Fig. 3.28 Aged Notch2IC//LMP1/CD4//CD19-cre mice display increased numbers of splenic Mac1pos cells.  
Splenocytes were prepared and stained for B220 and Mac1 surface marker expression. Cell numbers of 
Mac1pos B220neg were determined by flow cytometric analysis and given for each mouse. Data for CD19-
cre control mice (n=5) were averaged and SD is given. SD, standard deviation. 

3.15.2 Aged Notch2IC//LMP1/CD40-expressing B cells display distinctly altered surface marker 
expression in the spleen  

Young Notch2IC//LMP1/CD40//CD19-cre mice display a MZ B-cell phenotype as previously shown 

(section 3.8, Fig. 3.17). Therefore, with the aim to test whether this phenotype is maintained in 

aged mice, splenic B cells of aged mice were analyzed for their MZ B-cell status with the help of 

IgM/IgD and CD21/CD23 staining and flow cytometric analysis. The FACS analysis revealed that 

staining overall is very diverse and therefore no averages can be calculated, instead the 

CD21/CD23- and IgM/IgD-staining pattern of those mice displaying high splenic B-cell numbers 

(# 3142, # 1779, # 1778 and # 1717) is presented individually (Fig. 3.29). 

The CD21/CD23-staining allows for a direct analysis of MZ B- versus Fo B-cell phenotype. Two out 

of five old Notch2IC//LMP1/CD40//CD19-cre mice (# 1778 and # 1717) still show a tendency to 

gate into the MZ-B-cell compartment gate as the young mice do. However, they display a 

tendency towards down-regulation of CD21. In two out of five old mice (# 3142 and # 1779) the 

majority of B cells showed an clear down-regulation of CD21 (CD21low CD23low). Interestingly, in 

mouse # 1717 this was particularly the case for the hCD2pos splenic B cells.  

With regard to the IgM/IgD-staining of B cells three out of five old Notch2IC//LMP1/CD40//CD19-

cre mice (# 3142, # 1778 and # 1717) still gate for majority into the MZ B-cell gate (IgMhi IgDlow) 

however with strongly varying degrees and one out of five mice (# 1779) exhibits a shift towards 

IgMhi IgDlow-MZ B-cell gate with a tendency to acquiring an IgM/IgD double-negative status.  

Gating on hCD2 usually allows screening for the status of the actual transgene-expressing cells. 

The majority of hCD2pos B cells would also gate like the majority of the entire splenic B-cell 

population in the individual mice, meaning in case there is a down-regulation in one or both 

markers (either CD21 and CD23 or IgM and IgD) in the entire splenic B-cell population this was 

found recapitulated in the hCD2 B cells of the mice. 
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Fig. 3.29 Aged Notch2IC//LMP1/CD40-expressing splenic B cells display distinctly altered surface marker 
expression in the spleen. 
(A) Flow cytometric analysis of Fo (CD21hi CD23pos) and MZ B cells (CD21hi CD23pos/low) in the spleen of mice 
# 3142, # 1779, # 1778, # 1717 and of a representative control CD19-cre mouse (with percentages of 
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averages and SDs). Numbers indicate percentages of lymphocyte-gated, B220pos B cells displaying the 
respective phenotypes. Re-gating the cells on hCD2 allows for identification of the phenotype of the cells 
expressing the transgenes (lower panel). (B) Splenocytes of mice # 3142, # 1779, # 1778, # 1717 and a 
control CD19-cre mouse were analyzed by flow cytometry for the expression of surface IgM and IgD. 
Numbers indicate percentages of lymphocyte-gated populations of B220pos B cells displaying a Fo (IgMpos 
IgDpos) or MZ and transitional (IgMpos IgDlow) B cell phenotype (upper panel). Re-gating the cells on hCD2 
allows for identification of the phenotype of the cells expressing the transgenes (lower panel). Data for 
CD19-cre mice (n=5) were averaged and SDs are given. Fo B, follicular B cell; MZ B, marginal zone B cell; 
SD, standard deviation. 

3.15.3 Aged Notch2IC//LMP1/CD40-expressing splenic B cells display differential up-regulation 
of activation markers 

Young Notch2IC//LMP1/CD40//CD19-cre mice display an activated B-cell phenotype as previously 

shown with the help of various surface markers (section 3.9, Fig. 3.18). However, when analyzing 

splenic B cells of the aged mice for CD80, CD86 and CD95 the activation marker are still up-

regulated, but with varying intensity. Only in mouse # 3142 the same robust, LMP1/CD40-

induced upregulation of CD95 can be observed (Fig. 3.30A), leading the entire splenic B-cell 

population to assume a higher CD95 expression. In all other aged mice (# 1779, # 1778 and 

# 1717) the up-regulation of CD95-expression is not as strong. Furthermore, the flow cytometric 

analysis show in all mice analyzed not only the previously observed up-regulation of CD80, but 

also of CD86 compared to controls (Fig. 3.30B) in their splenic B cells, however with strongly 

varying levels. Old mice are also diverse with regard to their hCD2-status (Fig. 3.30C), mouse 

# 1760 for example has almost completely down-regulated hCD2 in its few remaining splenic B 

cells, when comparing them to a young Notch2IC//LMP1/CD40//CD19-cre mouse.  

The different levels of activation marker expression could be explained by activity and up-

regulation of different signaling pathways that can differ from mouse to mouse as has previously 

shown for lymphoma-bearing LMP1/CD40//CD19-cre mice (Homig-Holzel et al., 2008). The 

variation in expression of transgene reporter (CD95, indirectly or hCD2, directly) might be due to 

two reasons: A) mainly B cells that do not express the transgenes are expanding or B) there is a 

transcriptional down-regulation of both transgenes and thereby down-regulation of hCD2- and 

CD95 expression with age or onset of B- cell lymphomagenesis. 
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Fig. 3.30 Aged Notch2IC//LMP1/CD40-expressing splenic B cells display up-regulation of activation 
marker.  
Splenocytes were analyzed by FACS for level of surface molecules (A) CD95, (B) CD80 and CD86 (B7-
proteins) and C) hCD2. Overlays of surface expression were made of lymphocyte-gated, B220pos B cells 
from aged Notch2IC//LMP1/CD40//CD19-cre mice (green lines) or controls (CD19-cre or young 
Notch2IC//LMP1/CD40//CD19-cre mice; grey lines).  

CD5 is a surface marker that is usually expressed on T cells as well as B1a cells, but it is also found 

on activated mature B cells. An up-regulation of activation marker CD5 in splenic B cells could be 

observed in all aged Notch2IC//LMP1/CD40//CD19-cre mice with the exception of mouse # 1760 

(Fig. 3.31 and Tab. 3.3). In this mouse (# 1760) the percentage of CD5pos/B220pos B cells is even 

diminished compared to the average in CD19-cre (0.3 % versus 4 % in CD19-cre) but overall levels 

of CD5 are comparable to the CD19-cre control mice. It should be further evaluated whether 

these splenic B cells adopt a B1 B-cell phenotype. 

 

Fig. 3.31 Aged Notch2IC//LMP1/CD40//CD19-cre mice display distinctly altered surface marker 
expression with regard to CD5 and B220 expression.  
Flow cytometric analysis of lymphocyte-gated, CD5pos and B220pos cells in the spleen as analyzed by flow 
cytometry. Notch2IC//LMP1/CD40//CD19-cre mouse # 1778 is shown along aged-matched CD19-cre 
control.  
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Tab. 3.3 Aged Notch2IC//LMP1/CD40//CD19-cre mice display distinctly altered surface marker 
expression with regard to CD5 and B220 expression.  
Flow cytometric analysis of CD5pos and B220pos cells in the spleen as analyzed by flow cytometry. Data for 
CD19-cre mice (n=5) were averaged and SDs are given. SD, standard deviation. 

 
 

CD5 (in %) CD5
pos

/B220
pos

 (in %) 

CD19-cre 22.5 ±6.5 4.1 ±1.3 
Notch2IC//LMP1/CD40// 

CD19-cre 
  

# 3142 17.2 54.6 
# 1779 36.2 24.2 
# 1760 27.1 0.3 
# 1778 53.6 27.7 
# 1717 55.6 9.5 

3.15.4 Aged Notch2IC//LMP1/CD40//CD19-cre mice maintain shift towards effector T-cell 
compartment  

As shown in Tab. 3.2 splenic T-cell expansion (8 to 70-fold increase in mouse # 1778 compared to 

controls) is preserved in the aged Notch2IC//LMP1/CD40//CD19-cre mice. In order to better 

characterize the also expanded T-cell population in the old mice the splenic lymphocytes were 

tested for the expansion of the CD4pos and CD8pos T-cell compartment and furthermore tested for 

T-cell activation via CD4, CD8, CD44 and CD62L staining and subsequent FACS analysis like the 

young mice (section 3.5.2).  

With respect to the distribution of CD4pos versus CD8pos splenic T cells, one can observe that there 

is no tendency towards an expansion of a particular T-cell subpopulation (Fig. 3.32). 

 

Fig. 3.32 Aged Notch2IC//LMP1/CD4//CD19-cre mice display increased numbers of T cells.  
Splenocytes were prepared and analyzed for CD3, CD4 and CD8 surface marker expression. Cell numbers 
of lymphocyte-gated, CD3pos/CD4pos and CD3pos/CD8pos were determined by flow cytometric analysis. 
Points represent data from individual mouse and the horizontal bar marks the mean value for CD19-cre 
control mice (n=5) were averaged and SD is indicated above control mice data set. SD, standard deviation. 

With respect to the T-cell activation the aged Notch2IC//LMP1/CD40//CD19-cre mice displayed a 

similar pattern as in the young mice since they maintain a shift towards T-cell effector 
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compartment (Fig. 3.33). However, as observed for mainly all other staining results in the old 

mice they present with variations (Tab. 3.4).  

 

Fig. 3.33 Gating scheme for T-cell activation after CD4pos or CD8pos pre-gating of T cells. 
Naïve T-cell compartment (CD62Lhi CD44low), central memory T cells (CD62Lhi CD44hi), effector T cells 
(CD62Llow, CD44hi). Data for CD19-cre mice (n=5) were averaged and SDs are given. SD, standard deviation. 

There is a general reduction in the naïve T-cell compartment and moreover a reduction in central 

memory (CD62Lhi CD44hi) both in CD4pos and CD8pos cells, with the exception of CD4pos T cells of 

mouse # 1778 in which both effector and memory T-cell compartment are increased at the 

expense of the naïve T-cell compartment. The marked increase in the effector T-cell 

compartment (CD62Llow CD44hi) in the spleen in the respective CD4pos or CD8pos T-cell population 

can also still be observed in the old mice, with the exception of CD8pos T cells of mouse # 1779 

which resemble CD19-cre mice rather than other aged Notch2IC//LMP1/CD40//CD19-cre mice. 

Tab. 3.4 Splenic T cells of aged Notch2IC//LMP1/CD40//CD19-cre mice show an increase in the 
percentage of both central memory as well as effector memory T cells.  
Splenic cells were analyzed by flow cytometry for the CD62L and CD44 expression on either (A) CD4pos or 
(B) CD8pos T cells. 

(A) 
CD4pos 

 

naïve T-cells 
(CD62L

hi
 CD44

low
) 

memory T cells 
(CD62L

hi
 CD44

hi
) 

effector T cells 
(CD62L

low
, CD44

hi
) 

% CD62L
low

, 
CD44

low
 

CD19-cre 43.6 ±7.1 6.6 ±1.0 40.7 ±5.6 9.1 ±0.8 

Notch2IC//LMP1/CD40// 
CD19-cre 

    

# 1760 0.28 2.9 86.3 10.5 

# 1778 9.9 23.9 59.4 6.8 

# 1717 5.3 4.1 68.4 22.3 

 
(B) 

CD8pos 

 

naïve T-cells 
(CD62L

hi
 CD44

low
) 

memory T cells 
(CD62L

hi
 CD44

hi
) 

effector T cells 
(CD62L

low
, CD44

hi
) 

% CD62L
low

, 
CD44

low
 

CD19-cre 22.8 ±12.8 33.7 ±5.7 35.7 ±14.8 8.1 ±3.2 

Notch2IC//LMP1/CD40// 
CD19-cre 

    

# 1779 34.5 28.7 21.5 15.4 

# 1760 2.2 6.1 41.1 50.6 

# 1778 10.9 21.4 52.9 14.7 

# 1717 5.6 6.2 51.8 36.3 
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Overall, there is an expansion in the compartment of activated T cells and again not only, but in 

particular the CD8pos T cells of aged Notch2IC//LMP1/CD40//CD19-cre mice that display the same 

shift into the CD44low CD62Lneg compartment as previously observed in the young mice.  

3.15.5 Aged Notch2IC//LMP1/CD40//CD19-cre mice develop monoclonal B-cell lymphoma  

In order to determine whether the expansion in splenic size, weight and lymphocyte cell number 

in aged Notch2IC//LMP1/CD40//CD19-cre mice is due to the expansion of one or several B-cell 

clones –which would confirm lymphoma development- Southern blots with DNA prepared from 

total splenocyte samples were prepared. Southern blot analysis also allows to determine 

whether the lymphoma originates from the expansion of one or more B-cell clones, so whether it 

is mono- or oligoclonal in nature. Using a radioactively-labeled IgH-probe on membrane-bound 

DNA that has been digested with the EcoRI-restriction enzyme, one is either able to detect the 

germline configuration of the IgH-locus or one or more distinct bands signifying the expansion of 

one or more B-cell clones carrying the same rearrangement of the BCR.  

Only four of the five mice could be tested since no DNA was kept from the mouse # 1778. These 

samples were subjected to analysis along with two control DNA samples from aged-matched 

CD19-cre mice and one DNA samples from an aged-matched LMP1/CD40//CD19-cre mouse 

(# 3143). The results of the blot revealed that two of the four samples (# 3142 and # 1779) tested 

were positive for two further IgH-rearrangements (Fig. 3.34). This could be due to an oligoclonal 

expansion, however is more likely to be a monoclonal expansion since in most B cells both Ig-

alleles tend to be rearranged. This leads to exactly two Ig-gene rearrangements and therefore 

monoclonal expansions of their splenic B-cell pool that present as oligoclonal. For the 

LMP1/CD40//CD19-cre DNA sample the band(s) appear very weak, therefore an expansion of one 

or B-cell clones could not be determined unambiguously. 

One of these two mice (# 3142) displayed the highest splenic weight and had the second highest 

cell numbers of all mice analyzed (2.9 g and 12.5×108). The other mouse (# 1779) however, had 

primarily to be sacrificed since it displayed a tumor in the lower neck region. The mouse had only 

a slightly elevated splenic weight compared to young Notch2IC//LMP1/CD40//CD19-cre mice 

(0.72 g versus an average of 0.65 g in young mice). Moreover, the total cell numbers in 

comparison to young Notch2IC//LMP1/CD40//CD19-cre mice were also only slightly elevated 

(8.7×108 cells versus 5.3×108 in young mice).  

Despite the comparatively low total cell numbers, the mouse evidently suffered from a B-cell 

lymphoma. This might be an indication that some B-cell lymphomas in younger mice have gone 

unnoticed as they do not present themselves as for example those in LMP1/CD40//CD19-cre 
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mice with an overt splenomegaly and an overt B-cell expansion. On a key note, the two mice that 

developed monoclonal B-cell lymphomas were also those expressing high hCD2 levels (Tab. 3.2 

and Fig. 3.30C) and high levels of CD95 (Fig. 3.30A). This provides further evidence to our 

hypothesis that if both transgenes are expressed within one B cell this leads to development of 

lymphoma. 

 

Fig. 3.34 Aged Notch2IC//LMP1/CD40//CD19-cre mice develop monoclonal B-cell lymphoma. 
Southern Blot of EcoRI-digested DNA isolated from whole splenocyte preparations. By use of a 
radioactively-labeled IgH-probe the samples were tested for configurations of their IgH-locus. The arrow 
points to the band indicating the germline configuration of the respective sample as found in B cells and in 
any other cell type. The asterisk points to the additional bands indicative of the change in the IgH-locus 
and monoclonal B-cell expansion in mouse # 3142 and mouse # 1779. The lane carrying the marker is on 
the left. 

Of note, mouse # 1717 and # 1760 that do not display IgH rearrangements are those mice that 

hardly harbor any B cells in their spleens (Tab. 3.2: # 1717 14 % and # 1760 1,2 % B cells). Since 

whole splenocyte preparations were used for the Southern blot analysis it is conceivable that the 

percentage of B cells with a rearranged IgH-locus is simply too small to be noticeable. These mice 

might carry mono- or oligoclonal expansions in their respective B-cell pools, but they remain 

undetectable by Southern blot analysis.  

3.16 Aged Notch2IC//LMP1/CD40//CD19-cre mice develop salivary gland 
carcinomas 

As shown in Tab. 3.2 (overview of tumor mice) there were mice that had to be sacrificed not only 

because they developed splenomegalies, but also because three mice developed overt 

hyperplasias in the lower neck regions (Fig. 3.35A and B). These could be identified by Leticia 

Quintanilla-Fendt (mouse pathologist, senior physician at the Institute for Pathology, University 
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of Tübingen) as poorly differentiated carcinomas of the submandibular salivary gland. These 

carcinomas were henceforth abbreviated to SGTs (salivary gland tumors). She did all the 

immunohistological characterization of the tissue in the following sections.  

The tumor tissue can be visualized by cytokeratin staining on paraffin sections. Fig. 3.35C shows 

exemplary staining of SGTs of LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre 

mice. In both cases the tumor tissue looks similar and is intergrowing with the rest of the 

glandular tissue and an ordered gland structure is lost.  

 

Fig. 3.35 SGT localization in mouse.  
(A) SGT on animal (courtesy of C. Hoemig-Hoelzel). (B) Schematic drawing of localization of SG in healthy 
mice. (C) Tumor tissue as visualized by cytokeratin staining of paraffin sections of SGTs in 
LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice. SGT, salivary gland tumor. 

These tumor do not only occur in aged Notch2IC//LMP1/CD40//CD19-cre mice, but they have 

also been observed in LMP1/CD40//CD19-cre mice by former colleagues C. Hoemig-Hoelzel and 

C. Hojer. An overview of incidence of SGT and/or B-cell lymphoma and age in old 

LMP1/CD40//CD19-cre mice is given in Tab. 3.5.  

Roughly 2/3 of the mice analyzed develop a B-cell lymphoma and half of these have also 

developed a SGT. However, some few old LMP1/CD40//CD19-cre mice only display SGT 

development, which means that overall roughly half of the old mice develop a SGT with age. 

In aged Notch2IC//LMP1/CD40//CD19-cre mice three out of five mice develop SGTs. From these 

one mouse (# 1779) has developed an oligoclonal B-cell lymphoma. The two other mice that 

developed a SGT are # 1778 and # 1717. # 1778 had splenomegaly and a B-cell expansion, 

presence of a B-cell lymphoma could not be detected by Southern blot analysis due to lack of 
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DNA material. The other mouse with a SGT (# 1717) had no splenomegaly and rather reduction in 

B lymphocytes even compared to CD19-cre mice. The other mouse with a B-cell lymphoma 

(# 3142) had a normal gland. This shows that lymphoma development is not necessarily 

correlated with development of an SGT. 

Tab. 3.5 Overview over LMP1/CD40//CD19-cre mice age in months with SGTs and B-cell lymphoma. 
SGT, salivary gland tumor; CH, C. Hojer; CHH, C. Hoemig-Hoelzel 

Mouse # Age (months) B-cell lymphoma SGT Analyzed by 

492 10 no yes CH 
282 12 no yes CHH 
201 14 no yes CHH 
740 18 no yes CH 

     
947 10 yes no CH 
849 12 yes no CH 
445 13 yes no CH 
787 13 yes no CH 
197 14 yes no CHH 
686 14 yes no CH 
850 14 yes no CH 
748 18 yes no CH 
386 18 yes no CH 
851 19 yes no CH 

     
364 12 yes yes CHH 
685 12 yes yes CH 
142 14 yes yes CHH 
247 15 yes yes CHH 
384 15 yes yes CH 
34 17 yes yes CHH 

176 18 yes yes CHH 

 

The main question is to uncover the mechanism behind the tumorigenesis. Two scenarios can be 

envisioned: either the SGTs are elicited by proxy through the activated/lymphatic B- and/or T 

cells and the SGTs are rather secondary tumors with lymphocytic infiltrates. Or, on the other 

hand the stop cassette might have been deleted at some time at least in some epithelial cells 

leading to constitutively active CD40 and constitutively active Notch2IC in the SGs of the 

respective mice.  

With the aim to elucidate this question the paraffin sections of the SGs were stained for the 

presence of CD3pos and B220pos cells to evaluate them for the presence of lymphocytic infiltrates, 

for hCD40 (although an antibody detecting the extracellular part of CD40 was used) and hCD2 

which is the marker protein that indicates successful deletion of the stop cassette and expression 

of the targeting construct. hCD2 could deliver clues as to whether carcinogenesis occurs due to a 

somewhat leaky expression of the transgene(s). 

The lymphocyte staining (Fig. 3.36A and B) revealed that both B220pos B cells (B) and also CD3pos T 

cells (A) are found in higher densities at the capsule lining the SGTs. Interestingly, the B220pos B 



RESULTS 80 

 

cells appear to be rather few compared to the T cells and particularly the CD3pos T cells can also 

be found in low numbers within the glandular tissue. This staining shows that there are no heavy 

lymphocyte infiltrates to be found within SGTs, but they rather sit in the surroundings. This is in 

line with literature findings that strong lymphocyte infiltrates in the salivary glands of wild type 

mice are only observed upon infection, such as with the Murine cytomegalovirus (MCMV) which 

displays a strong tropism for the salivary gland (Pilgrim et al., 2007). 

 

 

Fig. 3.36 Histological evaluation of lymphocytic infiltrates and surface marker expression in the SGTs of 
Notch2IC//LMP1/CD40//CD19-cre mice.  
IHCs on paraffin sections of SGTs of CD3pos T (A) and B220pos B cells (B), hCD40pos cells (C), hCD2pos cells and 
cytokeratin (D). IHC, immunohistochemistry; SGT, salivary gland tumor. 
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The CD40 staining (Fig. 3.36C) shows that only a few cells are positive for CD40. The staining as 

such appears to be specific since CD40 is a membrane-bound molecule which is where the 

staining can be observed. These cells could be epithelial cells that up-regulated CD40 

independently or infiltrating B cells with CD40. 

On the other hand the hCD2 staining (Fig. 3.36D, upper left panel) reveals that the marker 

surface molecule is prominently distributed throughout the entire tumor tissue in SGTs of 

Notch2IC//LMP1/CD40//CD19-cre mice, while it is absent in SGTs of LMP1/CD40//CD19-cre mice 

(Fig. 3.36D, upper right panel) which indicates specificity. Interestingly, the staining patterns 

appear to be a “photo negative” of the cytokeratin staining, meaning it is especially strong in the 

areas of the tumor where the cytokeratin staining is weaker and vice versa. (Fig. 3.36D, lower left 

panel). Furthermore, the hCD2 expression seems to start from the lumen of the vessels that run 

through the SG tissue (small insert, Fig. 3.36D, lower right panel).  

All in all, these histological findings do not deliver final insight what might be the contributing 

factor for tumor development in the SGs. One would expect the lymphocyte infiltrates to be less 

discrete at the rim of the tissue, if the infiltrates were the major contributing factor for 

carcinogenesis. This seems to be supported by the high expression of hCD2 through the entire 

diseased tissue in the SGTs of Notch2IC//LMP1/CD40//CD19-cre mice, while it is absent in 

LMP1/CD40//CD19-cre mice.  

Southern blot analysis of SGTs shows a partial deletion of stop cassette 

The strong hCD2 expression within the tissue (and not just on the connective tissue surrounding 

the SG where the majority of the hCD2pos B cells are located) rather points toward expression of 

the transgenes due to excision of the stop cassette in the carcinoma. In order to determine on a 

molecular level whether the stop cassette has been deleted DNA was extracted from tissue from 

a normal inconspicuous SG of a LMP1/CD40//CD19-cre mouse and SGT of a LMP1/CD40//CD19-

cre mouse and analyzed by Southern blot after EcoRI digest. The probe binds upstream of the 

first exon of the locus and allows to detect (A) the wild type conformation of the Rosa26 locus, 

(B) whether the targeting construct has been inserted into the locus and (C) whether there has 

been a deletion of the stop cassette as part of the targeting locus. 

The results of the blot are shown in Fig. 3.37. Only mice having the LMP1/CD40 inserted in only 

one allele were chosen for analysis. Accordingly one can still see the 15.4 kb band in the blot that 

indicates the wild type conformation of the targeted locus in one allele. In the SG without tumor 

there is one additional band at the height 7.2 kb indicative of the successful insertion of the 

construct into the rosa26-locus, which has been analyzed with the TINA software and was found 
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to be equimolar to the band at 15.4 kb. In the SGT, there is an additional third band at the height 

of 5.1 kb that indicates the excision of the stop cassette in the targeting construct that 

successfully inserted into the Rosa26-locus. This band was again quantitatively analyzed with the 

TINA software and was found to be equimolar to the band at 7.2 kb in the sample. This is a strong 

hint that half of the cells in the SGT tissue present with a deleted stop cassette. Considering that 

the B cells seemed to be rather few that are mainly sitting in the connective tissue capsule it 

seems unlikely that these account for this amount of deletion of the stop cassette in the tissue. 

Nonetheless, it cannot be ruled out that these B cells contribute since the material used for the 

Southern blot analysis was whole tissue preparation because no means of purification of SGT 

cells were available. DNA material from microdissections of SGT material and controls was 

prepared, however PCRs detecting the deletion of the stop cassette also remained inconclusive 

(data not shown).  

 

 

Fig. 3.37 Southern blot analysis of SGTs shows a partial deletion of stop cassette.  
(A) Schematic representation of the target locus in wild type configuration (upper panel), with the 
inserted targeting construct (middle panel) and upon excision of the stop cassette (lower panel). The 
length (in kb) of the region indicated in the area of the red lines that is detected by the probe (dark red) 
after EcoRI digest. (B) Southern blot of inconspicuous SG of a LMP1/CD40//CD19-cre mouse and SGT of a 
LMP1/CD40//CD19-cre mouse showing band sizes upon EcoRI digest and blotting as indicated on the left. 
kb; kilobase; SG, salivary gland; SGT, salivary gland tumor. 
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4. DISCUSSION 

The rationale behind the cross-breeding mice expressing constitutively active Notch2IC and CD40 

in their B cells was to re-create a situation that is found in a number of tumors including B-cell 

lymphomas such as cHL that display high and constitutive expression of both surface molecules.  

Indeed with the work at hand it could be shown that such B cells have an activated phenotype, 

they highly proliferate and cycle actively, that T cell numbers are increased in the spleen and that 

these T cells are activated and moreover that increased numbers of accessory cells -which also 

display an activated phenotype- are recruited to the spleen. Moreover, with age these mice seem 

to be prone to tumorigenesis. These factors shall be examined in more detail in the following 

sections. 

4.1 Notch2IC//LMP1/CD40//CD19-cre mice display an increase in reactive 
accessory cells in their spleens 

The splenomegaly in the Notch2IC//LMP1/CD40//CD19-cre mice is not only due to an increase in 

the lymphocyte compartment. They also display an increase in accessory cells as for example 

macrophages. Moreover, macrophages are cells that are –in line with their phagocytic 

capabilities- inherently larger than most other cell types encountered in the spleen, further 

adding to the splenomegaly in Notch2IC//LMP1/CD40//CD19-cre mice. The increase in accessory 

cells in Notch2IC//LMP1/CD40//CD19-cre mice raises of course the question of the mechanism 

behind the attraction of such cells in the mice. Since the accessory cells as such did not express 

the transgenes themselves which was demonstrated by the fact that they are hCD2neg, the effect 

had to be B-cell-mediated. Indeed it has previously been shown that B cells are not necessarily 

the mere “followers” of inflammatory cues, but in fact can induce inflammation themselves.  

This is illustrated by data gathered by Chu and colleagues (Chu et al., 2011). They generated a 

mouse model with a B-cell-specific knock-out of the ubiquitin-modifying enzyme A20 and 

demonstrated that this led to a hyperactivation of splenic B cells as well as enhanced 

proliferation and survival of the B cells. Furthermore, the mice displayed a surge in inflammation-

related cells such as myeloid cells (i.e. dendritic cells and macrophages), effector T cells as well as 

Tregs in murine spleens. Ultimately these mice exhibit a severe autoimmune syndrome. The 

molecule A20 in fact was found to restrict NF-κB signaling downstream of CD40 (Tavares et al., 

2010). Therefore it is expectable that B-cell specific loss of a negative regulator of CD40 or 

constitutive activation of the receptor can lead to the creation of an inflammatory milieu in the 

spleen of the respective mouse model. This effect seems to be further heightened by 
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constitutively active Notch2, since the mice expressing both transgenes in their B cells still harbor 

more granulocytes and significantly more macrophages in their spleens than LMP1/CD40//CD19-

cre mice alone. 

Interestingly, with regard to LMP1, the viral homologue of CD40 it could also be shown that it can 

have similar effects even outside of the lymphocyte compartment as was shown by Hannigan and 

colleagues (Hannigan et al., 2011). They established a transgenic model of multistage 

carcinogenesis that was induced by epithelial expression of LMP1. Hannigan et al. were able to 

show an influx of innate immune cells such as macrophages and neutrophils in the skin of mice 

along with an increase of soluble molecules and inflammatory factors, such as CXCL10, CXCL13, 

soluble L-selectin and further cytokines. Furthermore, they were able to register that there was a 

significant increase in activated CD8pos and CD4pos T cells including Tregs cells in the dermis of the 

mice.  

Overall the spleens of Notch2IC//LMP1/CD40//CD19-cre mice represent an inflammatory milieu 

with regard to the influx of reactive innate immune cells. In physiological states upon infection 

this is desirable and the milieu would subside when infection resolves. However, in states of 

chronic infection continuous presence of innate immune cells and the sustained release of cyto- 

and chemokines by these cells themselves as well as the additionally attracted lymphocytes 

usually have detrimental effect for the individual’s health. Recently the term “sterile 

inflammation” has been coined describing the situation in which the inciting stimulus might not 

be as harmful to the individual compared to the prolonged “answer” of the immune system 

towards it (Chen et al., 2010; Rock et al., 2010). Indeed, there is a growing body of evidence 

illustrating the link between inflammation and tumorigenesis. Prominent examples are gastric 

cancer which can often be traced back to an initially relatively harmless gastritis induced by 

Helicobacter pylori (Hatakeyama, 2004; Matysiak-Budnik et al., 2006). In the liver chronic 

hepatitis B virus (HBV) infection can similarly induce hepatocellular carcinoma (Farazi et al., 2006) 

and 30-50 % of all hepatocellular carcinoma-related deaths can be attributed to HBV-infection 

(Lavanchy, 2004).  

At this point of course it is not clear whether the presence of the accessory cells actually adds to 

the onset of tumorigenesis or whether they present an innate force that keeps the transgene-

expressing B cells in check. Nonetheless, the increase of myeloid cells in general and granulocytes 

and macrophages in particular rather points towards a tumor-promoting environment.  

Macrophages have long been identified as diagnostic markers for in many solid tumors (Qian et 

al., 2010) and this could also be confirmed with the most recent data from lymphoid tumors with 

regard to FL and cHL where an increase in macrophages numbers was negatively correlated with 

disease outcome (Farinha et al., 2005; Kamper et al., 2011). Of note in the latter study, the high 
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numbers of macrophages were further correlated with presence of EBV in the tumor cell 

population. Considering the data from LMP1/CD40//CD19-cre and 

Notch2IC//LMP1/CD40//CD19-cre this effect of macrophage recruitment towards the tumor is 

likely due to the influence of LMP1 or constitutive CD40 activation. 

Nonetheless, tumor-associated macrophages represent a heterogeneous group (Mantovani et 

al., 2005; Sica, 2010) with diverging roles in tumorigenesis and maintenance: M1 macrophages 

(classically activated cells) are activated upon LPS and IFNγ-encounter (Th1 phenotype) and 

rather initiate cytotoxic T cells for an anti-bacterial, anti-viral and anti-tumor response. This could 

be the case in the spleen of Notch2IC//LMP1/CD40//CD19-cre mice presenting with a tendency 

for high IFNγ-levels in the tissue. On the other hand, M2 macrophages arise from monocytes 

upon IL4-and IL13-stimulus. They can promote angiogenesis, tissue-remodeling and dampen the 

effect of their M1 counterparts (Mantovani et al., 2004a). 

Conventional DCs are increased and have an activated phenotype in the spleen of 

Notch2IC//LMP1/CD40//CD19-cre mice which might hint at a tumor-promoting function by 

attracting and activating T cells and thereby adding to the inflammatory milieu. In epithelial 

tumors it was moreover shown that carcinoma cells may condition local DCs to promote 

proliferation of Tregs (Ghiringhelli et al., 2005). On the other hand DCs can act-tumor-suppressing 

by priming cytotoxic T cells with high efficiency (Steinman et al., 2007). The presence and effect 

of DCs in solid tumors is quite controversially discussed in the literature (Tsujitani et al., 1990; 

Troy et al., 1998; Lespagnard et al., 1999). In the field of lymphoma research immature DCs have 

been proposed to promote survival of malignant T cells (Ni et al., 2011), but mature DCs have 

also been linked to improved clinical outcomes in cohorts of DLBCL patients (Chang et al., 2007). 

It has to be kept in mind that they represent a highly heterogeneous group that can be classified 

by their phenotypes, stages of maturation, degrees of activation and functions and accordingly 

few generalizations can be made. It was not clarified in the thesis at hand whether the spleens of 

Notch2IC//LMP1/CD40//CD19-cre mice harbor more DC subtypes than the detected 

conventional DCs.  

Interestingly, in the older Notch2IC//LMP1/CD40//CD19-cre mice the expansion of the 

macrophages in the spleen is still present, but their presence in numbers can vastly differ 

between individual mice although of the same genotype, hinting at the fact that the long-term 

outcome of constitutively active CD40 and Notch2IC can lead to different results or types of 

tumors and necessitates a “second hit” of signaling deregulation.  

Future experiments should also examine the level of lymphocytes and myeloids in the blood in 

order to clarify whether elevated cell numbers are contained to the spleen or present a systemic 

response to the transgene expression of the B cells. 
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4.2 Notch2IC//LMP1/CD40//CD19-cre mice display an increase of activated T 
cells and increase in the percentage of both central memory as well as 
effector memory T cells in their spleens 

The splenic T-cell population in Notch2IC//LMP1/CD40//CD19-cre mice is significantly larger than 

the already increased B-cell population in these mice. However, predominance of a T-cell over a 

B-cell population cannot be regarded as diagnostic marker of malignancy per se. The atypical 

distribution of CD4pos versus CD8pos T cells however, can count as considerably better criterion 

whether the situation at hand is abnormal. In Notch2IC//LMP1/CD40//CD19-cre mice both T-cell 

subsets were increased in the spleen, however with a clear bias towards the CD8pos 

compartment. In a FACS approach to characterize T-lymphoproliferative disorders Gorczyca and 

colleagues showed that while in concordance with previous data HL displayed a clear tendency 

towards CD4pos T-cell expansion (Gorczyca et al., 2002). On the other hand immunocompromised 

individuals such as HIVpos patients, as well as individuals with certain viral infections such as EBV 

an expansion of an increased number of CD8pos T cells in relation to CD4pos T cells can be 

observed (Borowitz et al., 1982; Weisberger et al., 2003). 

Notch2IC//LMP1/CD40//CD19-cre mice show a distinct up-regulation of CD25 and CD69 in a 

subpopulation of their splenic T cells. Moreover a reduction of the naïve T cells can be observed 

in Notch2IC//LMP1/CD40//CD19-cre mice like in the single transgene-expressing mice. The single 

transgene-expressing controls resemble the Notch2IC//LMP1/CD40//CD19-cre mice also in the 

distribution of splenic T cells with regard to CD44 and CD62L marker expression, more precisely 

in their tendency to adopt an effector phenotype (CD44hi CD62Llow). The down-regulation or 

shedding of CD62L (L-selectin) could be due to a number of reasons. On the one hand, Meijer and 

colleagues were able to identify tumor-specific type 1 T cells from lymph nodes draining an 

autologous tumor cell vaccine that are characterized by reduced CD62L expression (Meijer et al., 

2004). Furthermore, a group around Morgan was able to show that shedding of CD62L occurs 

when T cells encountered specific tumor antigen and it regulates lytic activity in human tumor 

reactive T lymphocytes (Yang et al., 2011). Moreover, myeloid-derived suppressor cells (MDSCs) 

were found to down-regulate CD62L expression on CD4pos and CD8pos T cells (Hanson et al., 

2009). MDSCs represent a population of myeloid cells which -due to interference through tumor-

derived factors- are unable to differentiate into granulocytes, macrophages and DCs and 

accumulate at individual’s blood, in lymphoid organs and at tumor sites and might provide an 

important link between inflammation and cancer (Sinha et al., 2008; Ostrand-Rosenberg et al., 

2009). These cells might be of interest in Notch2IC//LMP1/CD40//CD19-cre mice, since they 

harbor high percentages of myeloid cells in their spleens in general and exhibit a down-regulation 

not only of CD62L but in fact of both CD62L and CD44 in their splenic T cells. However, this would 
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have to evaluated carefully since MDSCs exhibit their tumor promoting function by suppressing 

T-cell activation and proliferation (Bronte et al., 2000; Terabe et al., 2003; Rodriguez et al., 2005; 

Rodriguez et al., 2008). This seems to argue against presence of such cells in 

Notch2IC//LMP1/CD40//CD19-cre mice because of the high splenic T-cell number in these mice. 

However, MDSCs might account for the fact that not all of the T cells in the spleen exhibit high 

levels of the activation markers (CD65, CD25) throughout and as aforementioned they might be 

responsible for the overt down-regulation of both CD62L and CD44.  

The shift from effector T cells (CD62Llow CD44hi) versus CD62Llow CD44 low/neg that is discernible in 

the splenic T cells of Notch2IC//LMP1/CD40//CD19-cre mice could also be observed in 

LMP1/CD40//CD19-cre mice. This observation might indicate exhaustion of T cells.  

Exhaustion is a commonly observed phenomenon for example in sustained viral infections such 

as HIV infection. This was shown to be reinforced by the presence of the inhibitory receptor PD1 

(programmed cell death 1) on T cells (Barber et al., 2006; Blackburn et al., 2009; Mueller et al., 

2010). When testing for PD1 expression via flow cytometric analysis in mice of all genotypes 

tested the obtained results indeed showed a distinct up-regulation of the inhibitory receptor in 

splenic CD4pos T cells of LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice 

compared to CD19-cre controls (data not shown; CD8pos were not tested). However, this up-

regulation was unexpectedly also observed for Notch2IC//CD19-cre mice. Hence, PD1 up-

regulation might contribute, but does not necessarily lead to the potential T-cell exhaustion in 

LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice.  

Interestingly, PD1 has been found on T cells only when they are activated (Keir et al., 2008) and it 

has also been implicated in the development of Tregs or inducible iTregs in the periphery. The 

receptor is highly expressed on this cell type and seems to be involved at various levels in 

functioning of (i)Tregs (Polanczyk et al., 2007; Francisco et al., 2009; Francisco et al., 2010; Gotot et 

al., 2012). Hence, PD1 expression or up-regulation of the surface molecule could offer an 

explanation why especially CD8pos T cells display a down-regulation of CD44 and CD62L and also 

why there is an increase in Tregs in the spleen of Notch2IC//LMP1/CD40//CD19-cre mice and 

should be further evaluated in the future.  

4.2.1 Tregs are increased in splenic preparations of Notch2IC//LMP1/CD40//CD19-cre mice 

As shown, Notch2IC//LMP1/CD40//CD19-cre mice display an increase in Tregs in their spleens. Tregs 

are known to play a role in suppressing autoimmunity, but they are also able to dampen anti-

tumor response and are suspected to support tumor immune escape (Kryczek et al., 2009; 

Boursier et al., 2012; Mailloux et al., 2013). All in all, Tregs can be “a double-edged sword”. 
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Considering the impact of Tregs in patients with B-cell lymphomas, those with a high number of 

tumor infiltrating Foxp3pos cells (Tregs) have a better survival than patients with few Foxp3pos cells 

as was shown for DLBCL, FL and cHL patients (Alvaro et al., 2005; Carreras et al., 2006; Lee et al., 

2008; Tzankov et al., 2008; Wahlin et al., 2010; Koreishi et al., 2010; Kelley et al., 2007). Indeed, 

in the context of B-cell malignancies Tregs seem to have rather tumor-suppressing role owing to 

their physiological role to keep B cells in check and even kill defective B lymphocytes in order to 

prevent autoimmunity (Lindqvist et al., 2012). 

Thus, the presence of these cells in the spleen of the Notch2IC//LMP1/CD40//CD19-cre mice 

could be one of the key factors why these mice develop B-cell tumors rather late in their lifetime 

(from 13 months onward). It will be highly interesting to further evaluate the role of Tregs in the 

Notch2IC//LMP1/CD40//CD19-cre mice: to test for the presence of Tregs particularly in older mice 

and examine whether the expansion of this particular T-cell subgroup is diminished or disappears 

altogether. The presence of B-cell-derived IL10 is vital for the proper development and 

maintenance of Tregs (Carter et al., 2011), moreover B7 proteins (CD80 and CD86) on B cells have 

been implicated to play a role in the development and activation of the T-cell subgroup 

(Tsukahara et al., 2005; Mann et al., 2007). While IL-10 was not found to be up-regulated in 

serum or in splenic B cells themselves, CD80 was up-regulated in splenic B cells expressing both 

transgenes whereas CD86-levels were basically unchanged compared to controls in the young 

mice. Interestingly, these B7 molecules have been suggested to have diverging roles in Treg 

regulation (Zheng et al., 2004): while blockage of CD86 appears to enhance Treg suppressive 

function, blockage of CD80 rather seems to lead to Treg division. This might point towards why 

even high Treg numbers in the mice might not be able to ward off disease in the long run. And 

finally in the old mice CD80 is also up-regulated, which is likely to be unrelated to presence or 

absence of Tregs, since CD80 is also found to be highly expressed on HRS cells (Vooijs et al., 1997). 

As aforementioned, it will be interesting to monitor aged mice particularly for the presence of 

Tregs routinely to examine possible correlation of their presence, absence or decline with the 

onset of tumorigenesis in the Notch2IC//LMP1/CD40//CD19-cre mice. Also, since there is data 

showing that the effect of Tregs in the outcome of disease might be closely linked with the 

composition of cells in the respective tumor infiltrate (Schreck et al., 2009) this will have to be 

evaluated in relation to a panel of analysis regarding the presence of different subtypes of 

accessory cells in the aged Notch2IC//LMP1/CD40//CD19-cre mice .  
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4.3 Concomitant expression of constitutively active Notch2IC and CD40 has 
synergistic effects on spleen size and activation status of the splenocytes 

Spleens of Notch2IC//LMP1/CD40//CD19-cre animals are significantly larger and heavier than all 

control counterparts, which is an additive effect of the constitutively active signaling of CD40 and 

Notch2IC in the B cells of these mice. Any de- or increase in size and weight of the organ is 

influenced by basically two factors: A) activation status of the splenic cells which influences cell 

size and which can also be linked to cell type and B) actual cell number.  

Notch2IC//LMP1/CD40-expressing splenic B cells are activated with regard to their levels of 

activation markers -i.e. CD80 and ICAM. This finding can be attributed to expression of both 

transgenes in the B cells. It is known that activation of cells also leads to an increase in cell size. 

LMP1/CD40-expressing splenic B cells were previously shown to display a shift in various 

activation markers (of which CD95 is specific for LMP1/CD40 expression in the cell) and 

accordingly they display an increase in cell size. Moreover, these mice exhibit an increase both in 

the splenic B- and T-cell numbers. With regard to Notch2IC//CD19-cre mice, B cells are also 

activated but in this case this is probably primarily due to the fact that these splenic B cells –as in 

mice expressing both transgenes- adopt a MZ B-cell phenotype and MZ B cells are inherently pre-

activated. This also explains the slight, but significant splenic weight difference between CD19-

cre and Notch2IC//CD19-cre mice, even though the splenic B- and T-cell compartments are not 

expanded in these mice. The overall increase in splenic size in Notch2IC//LMP1/CD40//CD19-cre 

mice can be attributed to the impact of constitutive CD40 signaling on the lymphocyte 

compartment leading to an increase of both B- and T-cell compartments and additionally of the 

macrophage and granulocyte numbers in their spleen, as well as the B-cell size, which is 

increased due to their activation status. Cell size and increased activation are also due to 

Notch2IC-induced MZ B-cell phenotype of the Notch2IC//LMP1/CD40-expressing B cells. 

4.4 Marginal zone B cells are expanded in Notch2IC//LMP1//CD40//CD19-cre 
mice at the expense of the follicular B-cell population 

It is by now a well-established fact that Notch plays a role in MZ B-cell development (Tanigaki et 

al., 2002; Saito et al., 2003; Kuroda et al., 2003; Hozumi et al., 2004; Hampel et al., 2011). 

Therefore it was not unexpected that both in Notch2IC//CD19-cre and 

Notch2IC//LMP1//CD40//CD19-cre mice this population of mature B cells is expanded at the 

expense of Fo B cells, with regard to CD21/CD23-, IgM/IgD- and CD1d-status.  

Both in vitro and in vivo studies have shown that Notch signaling enhances expression of 

CD21/35 in B cells (Saito et al., 2003; Strobl et al., 2000). The mechanism behind this being the 
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fact that the first intron of the murine CD21 gene has three regulatory RBP-J sites and the 

commitment to high CD21 levels have been suggested to let the B cells develop into MZ B cells 

(Makar et al., 2001; Zabel et al., 2002).  

MZ B cells are suggested be mostly generated from the T1 transitional stage, but are also thought 

to develop from T2 B cells and pre-MZ B cells (Pillai et al., 2005). T2 and pre-MZ B cells down-

regulate surface expression of CD23 as they differentiate into MZ B cells. In the physiological in 

vivo situation this is likely to be supported by ADAM 10, the metalloproteinase that accounts for 

the S2 cleavage of the Notch receptor and thereby initiates Notch signaling cascade. Moreover, 

ADAM10 leads to shedding of CD23 as shown by both in vitro and in vivo studies (Weskamp et 

al., 2006; Lemieux et al., 2007; Gibb et al., 2010), further defining the MZ B-cell phenotype and 

amplifying it by inducing Notch signaling. 

LMP1/CD40-expressing B cells with regard to CD21/CD23 surface marker rather display an MZ B-

cell-like phenotype, whereas Notch2IC-expressing B cells do not only present with a MZ B-cell 

phenotype but they are almost CD23neg. Therefore, additional expression of constitutive CD40 in 

B cells aside from constitutive expression of Notch2 leads to an attenuation of this almost “overt” 

MZ B-cell phenotype in Notch2IC//LMP1//CD40//CD19-cre mice. Splenic B cells expressing both 

transgenes indeed rather resemble MZ B cells of CD19-cre controls. Also, LMP1/CD40 signaling 

leads to different localization cues in splenic B cells compared to constitutive Notch2 signaling 

alone. This shall be further discussed in the next chapter.  

4.5 Splenic architecture is grossly disrupted in Notch2IC//LMP1/CD40//CD19-cre 
mice 

In the FACS analysis the B cells of LMP1/CD40//CD19-cre mice appear to have an MZ B-cell-like 

phenotype. Nonetheless, for the majority the B cells in these mice were still able to reside within 

the follicle. The border separating follicle from MZ can -in IHC analysis- be optically determined 

by the localization of MOMA1pos macrophages. These are already quite dispersed in spleens of 

LMP1/CD40//CD19-cre in contrast to CD19-cre and Notch2IC//CD19-cre mice, which might hint 

at a very mild disruption of structure and a very low difficulty of the B cells to localize properly. 

Notch2IC-expressing B cells display a clear MZ B-cell phenotype at the expense of Fo B cells, both 

in the FACS analysis results as well as with regarding to the localization of the B cells in the actual 

MZ. Surface marker expression in Notch2IC//LMP1/CD40//CD19-cre mice as shown in the FACS 

analysis- suggests that B cells expressing both transgenes exhibit a clear MZ B-cell phenotype and 

did not insinuate a diffuse splenic structure as observed in the IHC staining. However, the splenic 

architecture of Notch2IC//LMP1/CD40//CD19-cre mice is very unique with still high number of B 
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cells residing in the Fo zone despite the MZ marker expression profile on the one hand and loss of 

defined T- and B-cell zones on the other. 

CXCR4 is known to be responsible for homing of B cells to the bone marrow (Petit et al., 2002). 

CXCR4-deficient mice are impaired in B-lymphopoeisis, myelopoeisis and unable to produce 

normal numbers of viable mature B cells (Ma et al., 1998; Nie et al., 2004). CXCR4 was previously 

not reported to influence the MZ versus Fo B-cell lineage decision (Nie et al., 2004). This was 

underlined by the data presented in this thesis finding no noticeable difference in expression 

level between Fo and MZ B cells in control mice. However, the difference in expression levels 

between LMP1/CD40-expressing splenic B cells and Notch2IC-expressing splenic B cells were 

quite large and considering the localization of the majority of B cells in the respective mouse 

(LMP1/CD40-expressing rather in the Fo; Notch2IC-expressing rather in the MZ), there could be a 

however complex connection between these observations (CXCR4 level and localization of B cells 

in the spleen). However, this positional information conveyed by CXCR4 is lost in splenic B cells 

expressing both transgenes, since they express intermediate level between Notch2IC- and 

LMP1/CD40-expressing B cells. This could add to the effect that these B cells despite their MZ B-

cell phenotype rather reside in the Fo area. It would be interesting to determine the level of the 

CXCR4 ligand SDF1 (stromal-derived factor1) in the cells of the red pulp where SDF1 level are 

usually high (Cyster, 2005). This could deliver clues as the actual positional clues that 

Notch2IC//LMP1/CD40-expressing splenic B cells are actually exposed to with regard to CXCR4 

signaling. 

The evaluation of normal CXCR4 levels in correlation with low serum levels of the ligand SDF1 (i.e. 

lower than in the CD19-cre controls and single transgene expressing mice) might also account in 

part to the low B-cell numbers in inguinal lymph nodes and low numbers of recirculating B cells in 

the bone marrow. Yet, this still leaves low numbers of Notch2IC-expressing B cells in the 

aforementioned compartments unexplained. 

Another factor that could have implications for the localization of splenic B cells is LTβ, which was 

found up-regulated with regard to its mRNA levels both in LMP1/CD40-expressing and in 

Notch2IC//LMP1/CD40-expressing B cells. In physiological conditions signaling disruption via the 

LTα/β complex leads to severe impairment in development even complete loss of secondary 

lymphoid organs (Rennert et al., 1996; De Togni et al., 1994). The signaling axis is also important 

during the remodeling of lymphoid tissue during viral infections and the process is mediated by B 

lymphocytes (Kumar et al., 2010). More precisely loss of LTβ signaling leads to loss of splenic MZs 

marginal zones and T/B-cell segregation (Futterer et al., 1998). Inversely, adverse effects could 

also be anticipated if LTβ expression is unusually high as found in splenic B cells of 

LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice.  
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This leads to the other aspect of abnormal splenic architecture in these mice. As aforementioned 

it is not only an open question why the B cells expressing both transgenes do not localize strictly 

in the MZ according to their surface marker expression, but also what is the reason for the loss of 

a defined T/B-cell zone. Also under this aspect it would be valuable to examine the increased LTβ 

level since the engagement of LTβR on splenic stroma cells prompts them to release further 

cytokines such as CCl21. CCL21, like CCL19, is a ligand for CCR7. CCR7 level and those of its 

ligands play an important role both for B- as well as T cells in order to localize properly in the 

spleen (Forster et al., 1999; Luther et al., 2000; Okada et al., 2007). In fact this receptor although 

it is only subtly expressed on B cells enables them -along with CXCR4 and CXCR5- to leave the 

blood stream and to enter secondary lymphoid tissues such as lymph nodes and intestinal 

Peyer’s patches (Okada et al., 2002; Ebisuno et al., 2003). Moreover, it can be hypothesized that 

the loss of structure contributes to the activation of the B- and especially the T cells, since the 

region of interaction between the lymphocytes is not limited to the T/B-cell border. 

4.6 Notch2IC//LMP1/CD40//CD19-cre mice show distinct changes in the 
expression level of cyto- and chemokines in serum and splenic B cells 

CXCR3 and IL13rα1, IL2Rγ, LTβ and TGFβ mRNA levels in splenic B cells of 

Notch2IC//LMP1/CD40//CD19-cre mice were found to be differentially up-regulated by Notch2IC 

and LMP1/CD40. Cyto- and chemokines that were up-regulated on mRNA level particularly in 

Notch2IC-expressing B cells were CXCR3 and IL13Rα1. The cyto- and chemokines that were up-

regulated particularly in LMP1/CD40-expressing B cells and to a lesser degree in 

Notch2IC//LMP1/CD40-expressing B cells were IL2Rγ, LTβ and TGFβ. 

Notch2IC//LMP1/CD40//CD19-cre mice furthermore show an up-regulation of CXCL9 and CXCL10 

and IL16 in serum compared to all other genotypes.  

It effect that the up-regulation of the mRNA levels of interleukin receptor subunits IL13Rα1 and 

IL2Rγ has in splenic B cells of Notch2IC//LMP1CD40//CD19-cre mice is probably complex, since 

both are subunits function as part of a number of different ILRs. IL13R mediates both IL13 as well 

as IL4 signaling. Both IL4 and IL13 were shown to have anti-inflammatory capabilities, e.g. they 

have been related to the protection of pancreatic β-cells (Zaccone et al., 1999; Kaminski et al., 

2007) and the prevention of destructive insulitis (Rabinovitch et al., 1998). However IL4 is also a 

potent B-cell stimulus necessary for class switching and B-cell proliferation (Mandler et al., 1993; 

Rush et al., 2002; Kim et al., 2007). IL2Rγ on the other hand is also known as the common γ-chain 

and is part of the respective ILR mediating IL2-, IL4-, IL7-, IL9-, IL15- and IL21-responses (Takeshita 

et al., 1992; Russell et al., 1993; Asao et al., 1993; Sugamura et al., 1995; Asao et al., 2001), which 
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are involved in a number of developmental processes not only in B cells, but also T- and NK cells. 

Taken together these findings of higher subunit level suggest an increased responsiveness of 

Notch2IC//LMP1/CD40-expressing B cells towards further cytokine stimulation.  

TGFβ has been implicated to play a role in numerous biological processes, i.e. cell growth, 

inflammation, matrix synthesis and apoptosis (Taipale et al., 1998). With regard to tumorigenesis 

in solid tissues TGFβ has been implicated in metastasis and angiogeneisis (Yu et al., 2000; Padua 

et al., 2009). On the other hand, in the context of B-cell lymphoma it has been shown to induce 

growth arrest (Bakkebo et al., 2010), moreover TGFβ has also been implicated in recently 

discovered regulatory function of B cells in the tumor environment (Yang et al., 2010). The latter 

rather points towards a counter reaction to overt B-cell activation and proliferation in the 

LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre animals. 

LTβ is likely to have implications in the localization of Notch2IC//LMP1/CD40-expressing B cells as 

laid out in the previous section. Furthermore, signaling via the LTβ receptor in classical DCs has 

been shown to be of importance in their development (Kabashima et al., 2005). Blocking the 

pathway also leads to an decrease in Tregs but also inflammation in mice treated with a receptor 

antagonist (Nakayama et al., 2012). Considering this, overt LTβ signaling -besides its implications 

in T/B-cell positioning- might be a contributing factor leading to the surge in Tregs and DCs in the 

spleen of Notch2IC//LMP1/CD40//CD19-cre mice. Moreover a role for this signaling pathway has 

been proposed in establishing a lymphoma-supporting niche in the spleen fostering a 

microenvironment with the involvement of various cell types as observed in cHL (Kuppers, 2011; 

Rehm et al., 2011). 

Along the lines of accessory cell recruitment one can interpret the data for increased IL16 serum 

levels. IL16 is a chemoattractant for all CD4-expressing cells. It is a cytokine that can as well 

attract myeloid cells, DCs, macrophages and other cell types as was observed in the spleens of 

Notch2IC//LMP1/CD40/CD19-cre animals. Furthermore, IL16 is able to induce up-regulation of 

IL2R (CD25) on T cells (Parada et al., 1998). Therefore it can influence T-cell dynamics 3-fold: it 

can lead to a better reactivity towards T-cell-activating IL2, and lead to both the increase in 

CD25pos T cells as well as the overall increase of Tregs (which are CD25pos).   

 

Most interestingly is probably the finding of increased CXCR3 mRNA level in splenic B cells as well 

as increased serum level of CXCL9 and CXCL10 (its ligands) in the Notch2IC//LMP1/CD40//CD19-

cre mice liking data from the mRNA and serum analysis 

Although hardly detectable on Fo B cells, CXCR3 is known to be higher expressed on MZ B cells, 

which is in line with the higher level of the receptor in Notch2IC- and 

Notch2IC//LMP1/CD40//CD19-cre mice that display a MZ B-cell phenotype. This was further 
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underlined by results of an mRNA array by Stefanie Ehrenberg from our lab (personal 

communication). Therefore, it is not so surprising that the level of the receptor are also high in B-

cell lymphomas associated with this particular entity of mature B cells i.e. the MZ B cells. For 

example, strong expression of CXCR3 was observed patients with B-CLL, FL, in SMZL and in the 

monocytoid and plasmacytic cells in extranodal marginal zone lymphoma (Jones et al., 2000; 

Ohshima et al., 2003). 

The level of ligands for CXCR3, i.e. CXCL11, CXCL10 and CXCL9 are increased in serum of 

Notch2IC//LMP1/CD40//CD19-cre mice. Together they form a group of homologous proteins that 

elicit their chemotactic function via binding to the G-protein-coupled receptor CXCR3 (Loetscher 

et al., 1996; Luster et al., 1995; Lasagni et al., 2003). CXCR3 is also rapidly induced on naïve T cells 

following activation (Groom et al., 2011). In fact, engagement of CXCR3 facilitates the shift of 

CD8pos cells towards differentiation into effector cells (Kurachi et al., 2011). Receptor blockage via 

an agonist leads to strong inhibition of the migration of T cells and the role of CXCL10 and CXCL9 

in the recruitment of effector T lymphocytes to sites of inflammation has been documented 

(O'Boyle et al., 2012). Moreover, these cytokines are secreted not just by T cells through a 

positive feedback loop but CXCL9 and CXCL10 are also produced by DCs, B cells, and 

macrophages (Park et al., 2002) and the receptor was also found on endothelial cells and in 

infiltrating lymphocytes with an activated phenotype in inflammatory diseases. The fact that the 

ligands can be produced by B cells as well combined with the fact of higher level of their receptor 

strongly supports the hypothesis of a positive feedback loop in Notch2IC- and 

Notch2IC//LMP1/CD40//CD19-cre mice. Interestingly, CXCR3 is expressed by certain DC subsets, 

specifically myeloid-derived CD11cpos cells in normal and inflammatory conditions (Garcia-Lopez 

et al., 2001). This supports the findings that there is a distinct increase in accessory cells such as 

macrophages and CD11cpos DCs of an activated phenotype in the Notch2IC//LMP1/CD40//CD19-

cre mice due to systemic presence of these ligands. Up-regulation of CXCR3 in splenic B cells 

compliments the high serum level of its ligands in these mice and might help to establish and 

maintain the inflammatory milieu in these mice and maybe even the MZ B-cell phenotype.  

 

A factor that was synergistically down-regulated in serum of Notch2IC//LMP1/CD40/CD19-cre 

mice was CXCL12, also termed SDF1 which is a homeostatic chemokine. The major function of 

this chemokine is to regulate hematopoietic cell trafficking, since it induces intracellular actin 

polymerization needed for cell motility (Bleul et al., 1996) and also secondary lymphoid tissue 

architecture (Teicher et al., 2010). The chemokine has two receptors, i.e. CXCR4 and CXCR7, the 

former of which was not found to be down- or up-regulated in splenic B cells of 

Notch2IC//LMP1/CD40//CD19-cre compared to CD19-cre animals, but found to be up-regulated 
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in Notch2IC//CD19-cre and down-regulated in LMP1/CD40//CD19-cre mice. In the spleen CXCL12 

is mainly found in the red pulp (Cyster, 2005), and its down-regulation with constant CXCR4-

levels might contribute to the positioning defects observed in the spleen of 

Notch2IC//LMP1/CD40//CD19-cre mice.  

It would be highly interesting to evaluate the cyto- and chemokine profile of the splenic cells in 

situ in order to decipher the respective contribution of the different cellular compartment that 

were found to be expanded in mice expressing both transgenes in their B cells.  

4.7 Notch2IC//LMP1/CD40-expressing splenic B cells show an increased 
proliferation in in vitro culture regardless of the supply of stimuli 

Many of the parameters that were examined in the Notch2IC//LMP1/CD40//CD19-cre mice were 

clearly due to the expression of one or the other transgene, for example the MZ B-cell phenotype 

is an effect that can be clearly be attributed to constitutively active Notch2IC in the B cells of 

these animals. By contrast, the effect concomitant expression of both transgenes in the splenic B 

cells has on their proliferative behavior is derived from both LMP1/CD40 and Notch2IC signaling.  

As has been shown before Notch can convey proliferative signals to the cell in which it is 

expressed, however activity of the pathway also leads to apoptotic signals (Kohlhof et al., 2009). 

This outcome can differ depending on cell type and potential disease state. On the one hand 

pharmacological inhibition of the Notch pathway can lead to apoptosis in immortalized Kaposi’s 

sarcoma and B-CLL cells (Curry et al., 2005; Rosati et al., 2013) and Notch inhibition has been 

discussed as a possible approach in treatment of cancer especially with regard to subduing 

cancer stem cells (Purow, 2012). On the other hand Notch2 signaling was found to sensitize 

endothelial cells to apoptosis through negative regulation of apoptosis regulator Survivin 

(Quillard et al., 2009), to induce apoptosis in neural progenitor cells through a p53-dependent 

pathway (Sakurada et al., 1992). Generally, Notch signaling has been recognized as a powerful 

initiator of growth arrest and apoptosis in a number of B-cell malignancies (Zweidler-McKay et 

al., 2005). In the data presented here it could also be observed that Notch2IC-expressing splenic 

B cells survived less well in in vitro culture without stimulus than LMP1/CD40-expressing splenic B 

cells or B cells expressing both transgenes. However, the results of the BrdU analysis also showed 

a high percentage of Notch2IC-expressing B cells in S-phase of the cell cycle which underlines that 

Notch signaling strongly supports the proliferation of the splenic B cells. The proliferative state of 

Notch2IC-expressing cells is in line with data showing that Notch can in fact induce a number of 

cell cycling genes such as CyclinE1, CyclinE2, CyclinA2 and CDK6 (cyclin-dependent kinase6) and 

CDK4 (Kohlhof et al., 2009). Moreover, Notch is known to induce the transcription factor c-myc, 
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which plays a key role in inducing cell cycle regulation, proliferation and growth (Palomero et al., 

2006). C-myc is deregulated in a number of cancers, in the field of hematopoietic malignancies it 

is probably best characterized for its Notch-induced role in T-ALL (Weng et al., 2006; Riz et al., 

2010) and Burkitt lymphoma (Li et al., 2003; Mirandola et al., 2009).  

CD40 is vital for the growth, survival and differentiation processes of the B cell (Gordon, 1995; 

Kehry, 1996) and has moreover shown to also enhance survival in DCs and other cells (van 

Kooten et al., 1997), it can also induce apoptosis in hepatocytes through up-regulation of CD95 

(Afford et al., 1999; Afford et al., 2001). These effects can be overpowered by TRAF-signaling-

induced up-regulation of the anti-apoptotic proteins Bcl-xL and Bfl-1/A1 that is NF-κB-mediated 

(Lee et al., 1999).  

In the in vitro culture one could clearly see the survival advantage LMP1/CD40-expressing B cells 

had over Notch2IC-expressing B cells, due to the effects of constitutively active CD40 relaying 

strong survival signals to the B cell. However, with regard to their proliferation state or more 

precisely the percentage of strongly proliferating B cells in S-phase they actually lagged behind 

Notch2IC-expressing B cells. Examining the dynamics of cell cycle and survival of B cells of 

Notch2IC//LMP1/CD40//CD19-cre mice one can observe the synergies that arise from the 

combination of both constitutively active CD40 and Notch2IC: While these B cells display better 

overall survival (CFSE- and Topro-3-staining data) without any stimulus, they display higher 

percentages of B cells that are actively cycling in S-phase of the cell cycle (BrdU data), leading in 

the sum to proliferation rates surpassing those of all genotypes tested in parallel. 

At this point one can only hypothesize as to what the exact mechanisms behind these 

proliferative capacities are. As aforementioned c-myc is a potential candidate, but this should be 

evaluated carefully. A further candidate for evaluation would be the cell cycle regulator p53 for 

which Notch1 has been described to be a target and various crosstalk levels between the two 

signaling pathways have been suggested (Dotto, 2009; Wickremasinghe et al., 2011; Roemer, 

2012). p53 could also be regulated by active CD40 signaling as has been shown for multiple 

myeloma cell lines (Teoh et al., 2000; Tai et al., 2002).  

4.8 Aged Notch2IC//LMP1/CD40//CD19-cre mice are prone to develop B-cell 
lymphomas 

With regard to B-cell lymphoma development one year-old LMP1/CD40//CD19-cre mice started 

to develop lymphomas with a high incidence, whereas with one year none of the 

Notch2IC//CD19-cre mice developed obvious signs of lymphoma (Homig-Holzel et al., 2008; 

Hampel et al., 2011), which implies that in contrast to constitutively active CD40, constitutively 
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active Notch2 signaling alone is not sufficient to drive B-cell lymphomagenesis. However, as seen 

in the in vitro data the combination of both transgenes greatly enhances proliferation and 

survival of the cells. And in fact, although the test population that was kept for long-term 

observation was rather small, it seems that these mice also develop lymphomas with a high 

incidence: since three out of five mice showed a vast increase in the lymphocyte compartment 

and two out of five mice could be diagnosed with a monoclonal expansion of their splenic B-cell 

population. However, although the Southern blot did not deliver definite confirmation for the 

expansion of several B-cell clones in the other mice, does not confirm their absence. Especially in 

the aged mice with low B cell numbers the method of Southern blot analysis might not be 

sensitive enough to detect several, maybe more subtle expansion of B cells with different 

clonalities. This is indeed the case in cHL, where only a fraction of the tumor mass consists of the 

actual lymphoma cells which are surrounded by large numbers of various accessory cells. 

Furthermore, it is conceivable that some of the mice developed T-cell lymphoma. Already in 

young mice the splenic T-cell population is expanded and activated and is still present in the aged 

Notch2IC//LMP1/CD40//CD19-cre mice. Therefore, these aged mice should be examined for the 

presence of T-cell tumors. This could be accomplished via special probes for the TCR similar as 

done for the IgH-locus in the B cell of the whole cell preparations in Southern blot analysis. In a 

faster approach the clonality of T cells of aged mice could be characterized by FACS analysis with 

regard to their TCR-Vβ chain repertoire (Pechloff et al., 2010). Similar to the young mice the old 

mice shall be routinely examined for presence and status of accessory cells.  

Interestingly, a staining for the reporter cell surface marker hCD2 revealed that only in two out of 

the five mice tested, the splenic B-cell population displayed a large percentage of hCD2pos B cells. 

This might be an indication that although Notch2IC//LMP1/CD40//CD19-cre mice in contrast to 

the control mice did develop overt hyperplasia, that the expression of the transgenes (which can 

be monitored by staining for surface hCD2) might provide the tipping point towards lymphoma 

development but might not be necessary to be maintained afterwards.  

Furthermore, the fact that all splenic B cells of aged Notch2IC//LMP1/CD40//CD19-cre mice -with 

exception of CD80 and CD86- showed a great diversification of surface markers, might be 

suggestive of a higher than detected tumor incidence. In the tumors observed in 

LMP1/CD40//CD19-cre mice (Homig-Holzel et al., 2008) all mice exhibited differential activation 

of examined signaling pathways.   

Another crucial point to consider when evaluating the observed tumor incidence in mice is the 

weight of the spleen, since one of the aged mice with a tumor detectable by Southern blot did 

not exhibit increased splenic weight nor overtly increased B-cell numbers (# 1779). This might 

hint at the fact that a number of tumors might have gone unnoticed in the young mice simply 
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because they did not manifest themselves with an overt splenomegaly. Therefore, mice that are 

considerably younger than 12 months of age should be routinely checked for tumor 

development. 

With regard to the increase of accessory cells and especially the Tregs in the younger mice and the 

potential impact they are having, i.e. whether they act rather tumor-promoting or tumor-

suppressing, it will be of utmost importance to examine the outgrowth behavior of B cells 

transplanted into NSG mice (i.e. NOD/LtS z-scid IL2Rγnull or NOD/SCID/γ mice). These have no T-, 

B- and NK cells and moreover many defects in the innate immune compartment (Shultz et al., 

2005). Consequently, they rank amongst the most immunodeficient strains of mice. If the onset 

of tumorigenesis is accelerated, these transplantation experiments could provide valuable hints 

as to whether the onset of B-cell lymphoma is kept in check by innate immune cells and T cells. 

Together with further analysis of the chemo- and cytokine panel of these accessory cells this 

could provide a rather comprehensive picture of the mechanisms at work concerning 

tumorigenesis due to deregulated CD40- and Notch2IC-signaling in vivo. 

4.9 Aged Notch2IC//LMP1/CD40//CD19-cre mice develop salivary gland 
carcinomas 

Apart from the observed B-cell lymphomas the old Notch2IC//LMP1/CD40//CD19-cre mice also 

develop salivary gland carcinomas, this phenomenon had also been observed for aged 

LMP1/CD40//CD19-cre mice by former colleagues C. Hoemig-Hoelzel and C. Hojer (unpublished 

data). Like in LMP1/CD40//CD19-cre mice carcinoma development in 

Notch2IC//LMP1/CD40//CD19-cre mice seemed rather independent of whether these mice also 

developed an overt B-cell lymphoma or not. Some old Notch2IC//CD19-cre mice also showed 

hyperplasia in their SGs, however with a much lower incidence and the animals were older (> 18 

months; S. Ehrenberg, personal communication); therefore, it was assumed that the SGT 

development was majorly a CD40-mediated event.  

The question is however, whether tumorigenesis in the SGs is a B-cell-mediated effect or whether 

there was an aberrant expression of LMP1/CD40 or rather Notch2IC//LMP1/CD40. Both scenarios 

seem equally likely since CD40 rather conveys survival promoting qualities to the expressing 

epithelial cell and on the other hand overt activation of the lymphocyte compartment -as seen in 

chronic inflammation- can in fact lead to cancer (Coussens et al., 2002). Unfortunately, with the 

data at hand the question what the causative behind carcinogenesis could not be resolved 

unambiguously. 
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CD40 was originally identified as a B-cell costimulatory receptor and a tumor-antigen expressed 

in bladder carcinoma (Paulie et al., 1985) and the transforming capacity of LMP1 –the viral 

homologue of CD40- was first shown in rodent fibroblasts (Wang et al., 1985; Baichwal et al., 

1988; Moorthy et al., 1993). Moreover, initial studies on the functions of CD40 have been 

primarily performed in transiently transformed epithelial cells since B lymphocytes used to be 

more challenging to manipulate experimentally, thereby it became obvious that the functions of 

CD40 can vary depending on the cell type in which it is expressed. The function of active CD40-

signaling in an epithelial cell context has been well-characterized, but even within the same 

compartment the outcome of CD40 expression can vary. On the one hand activity of the CD40 

pathway can contribute to the proinflammatory function of intestinal epithelial cells in 

pathological states like inflammatory bowel disease and expression of its viral homologue LMP1 

is closely associated with nasopharyngeal cancer, it can promote cell survival through activation 

of the phosphatidylinositol 3-(PI3) kinase/Akt pathway and inhibit epithelial cell differentiation 

(Dawson et al., 1990; Raab-Traub, 2002; Dawson et al., 2003; Lo et al., 2004; Borcherding et al., 

2010). Moreover, the SGTs under investigation were all carcinomas with a low differentiation 

degree resembling a human neoplasm called “lymphoepithelioma-like carcinoma of the 

submandibular salivary gland associated with Epstein-Barr virus” (L. Quintanilla-Fendt, personal 

communication). Furthermore, the high tumor incidence in the mice, the fact that a considerable 

portion of the tumor tissue displayed the deletion of the stop cassette (Southern blot data), the 

high presence of hCD2 while B cells were virtually absent from the tumor sites, all argue in favor 

of a temporarily ectopic expression of the Cre-recombinase (Schmidt-Supprian et al., 2007), 

leading to deletion of the stop-cassette and ultimately to tumorigenesis due to the growth 

promoting effects of CD40.  

When evaluating the hypothesis that SG tumorigenesis could be due to a B cell intrinsic effect we 

could actually identify a possible human correlate called Sjogren’s syndrome. Sjogren’s syndrome 

is an autoimmune disease which is characterized by obstruction of the lacrimal and salivary 

glands. This is accompanied among other symptoms by parotitis (i.e. an inflammation of the 

major SG) and its most serious complication of Sjogren’s is the development of non-HL (Johnsen 

et al., 2012). B cells have been shown to play a pivotal role in this disease (Mackay et al., 2007; 

Coca et al., 2009). A number of models have been developed which try to facilitate studying the 

diverse aspects of the disease in mice (Delaleu et al., 2011). The model proposed by Qian and 

colleagues displays similarities with Notch2IC//LMP1/CD40//CD19-cre mice (Qian et al., 2008). 

Qian et al. showed that genetic deficiency of a negative regulator (Act1) of CD40 and B-

lymphocyte-activating factor (BAFF) leads to development of Sjogren's syndrome in those mice. 

This is manifested by an overall increase in B-cell number in those mice, hyperactivation and 
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enhanced survival of B cells, enlarged lymph nodes and SGs. All these features are also found in 

Notch2IC//LMP1/CD40//CD19-cre mice. Howver, Qian et al., also found α-La-, as well as α-Ro 

autoantibodies in the sera of the knock-out mice. The presence of these could not expected in 

LMP1/CD40//CD19-cre or Notch2IC//LMP1/CD40//CD19-cre mice, since these transgenic mice 

are impaired in their Ig isotype switching.  

Nonetheless, the involvement of B cells as mediators cannot be ruled out categorically, if only as 

mediators of inflammation. Another point to consider is that even though no B cells were found 

in the SG of Notch2IC//LMP1/CD40//CD19-cre mice, B cells have been demonstrated to exert 

procarcinogenic capabilities even distal from the site of tumor origin as demonstrated by de 

Visser and colleagues (de Visser et al., 2005).  

Considering the strong hCD2 staining in the SGTs one has to keep that expression of CD2 can be 

up-regulated in basal cell carcinoma, human urogenital system and in adult kidney tumours 

(Taylor et al., 1990; Tienari et al., 2005) and has been implicated in mutagenesis in human 

embryonic carcinoma cells (Do et al., 2009). Therefore strong expression of hCD2 could rather be 

a consequence of carcinomagenesis in the SGT cells and not marker of transgene expression.  

The SGs seem a peculiar organ to develop tumors, however it is conceivable that this organ even 

when mice kept in ultra-clean conditions is still exposed to certain amounts of antigen, similar as 

Peyer’s patches in the intestines of the animals. Again, antigenic insult would rather hint towards 

involvement of B cells in development of SGT.  
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5. SUMMARY 

CD40- and Notch-receptor signaling were found to be deregulated in a number of tumors such as 

Hodgkin lymphoma. Mice expressing either one of the receptors in a constitutively active form 

and B-cell-specific fashion have previously been established and characterized in our lab 

(LMP1/CD40//CD19-cre and Notch2IC//CD19-cre; Homig-Holzel et al., 2008; Hampel et al., 2011). 

In order to study the effects of the constitutive activation of both receptors in B cells in an in vivo 

setting, mice expressing constitutively active Notch2 and mice expressing constitutively active 

CD40 were cross-bred so that offspring concomitantly express both receptors in a CD19-

dependent and hence B-cell-specific manner. This resulted in the Notch2IC//LMP1/CD40//CD19-

cre. All mouse analyses were carried out with aged-matched CD19-cre, Notch2IC//CD19-cre and 

LMP1/CD40//CD19-cre as controls. 

Notch2IC//LMP1/CD40//CD19-cre mice display a significant increase in splenic size and weight. 

There was a significant increase in total splenic cell numbers and splenic B-cell numbers in 

Notch2IC//LMP1/CD40//CD19-cre compared to CD19-cre and Notch2IC//CD19-cre mice, 

however splenic B-cell numbers were significantly lower than in LMP1/CD40//CD19-cre mice. 

Therefore, it was evaluated what other cell types contribute to the enlarged spleen and increased 

total cell numbers. 

Increased numbers of accessory cells, namely myeloid cells, macrophages, granulocytes and 

dendritic cells could be identified in spleens of Notch2IC//LMP1/CD40//CD19-cre mice. 

Moreover, these mice display significantly increased numbers of splenic T cells compared to 

controls. The T cells in the Notch2IC//LMP1/CD40//CD19-cre mice display an enhanced 

expression of the T-cell activation markers and an increase in the percentage of both central 

memory, as well as effector memory T cells. Furthermore, regulatory T cells (Tregs) that represent 

important regulators of cellular immune responses are increased in spleens of 

Notch2IC//LMP1/CD40//CD19-cre mice. 

Mice of the Notch2IC//LMP1/CD40//CD19-cre genotype exhibit a partial block in early B-cell 

development between pre- and immature B cell stage in the bone marrow, probably due to 

deleterious effects that early expression of both transgenes has on the developing B cell. 

Considering the pool of mature B cells in Notch2IC//LMP1/CD40//CD19-cre animals they display - 

like Notch2IC//CD19-cre mice - an expansion of the marginal zone (MZ) B cells and decrease of 

the follicular (Fo) B cells as determined by flow cytometric analysis. Although they unambiguously 

display MZ B-cell surface marker expression, the splenic architecture was observed to be 

disrupted in Notch2IC//LMP1/CD40//CD19-cre mice with very diffuse B- and T-cell zones. Distinct 
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changes in the expression of cyto- and chemokines in Notch2IC//LMP1/CD40//CD19-cre mice 

(both with regard to mRNA levels of the respective splenic B cells as well as serum levels) could 

be contributing to this. There was an up-regulation of CXCL9 and CXCL10 in serum and an 

increase of CXCR3 and IL13 receptor α1, IL2 receptor γ, Lymphotoxin β and Transforming Growth 

Factor β mRNA levels in splenic B cells of Notch2IC//LMP1/CD40//CD19-cre mice in comparison 

to all other genotypes.  

Generally the splenic B cells of Notch2IC//LMP1/CD40//CD19-cre mice display an activated 

phenotype and better survival in culture than Notch2IC-, but not than LMP1/CD40-expressing B 

cells. B cells of Notch2IC//LMP1/CD40//CD19-cre mice display enhanced proliferation in in vitro 

culture surpassing that of splenic B cells expressing either Nocth2IC or LMP1/CD40.  

A small group of mice was left to age in order to observe potential B-cell lymphoma 

development. Indeed it was found that from an age of 13 months onward 

Notch2IC//LMP1/CD40//CD19-cre mice are prone to develop monoclonal B-cell lymphoma and 

strongly suggest further studies with larger cohorts. Aged mice still display an increased number 

of macrophages in their spleens and they maintain the shift towards effector T-cell compartment 

as observed in the young mice. However, they vastly differ from young mice regarding their MZ 

B-cell phenotype since aged Notch2IC//LMP1/CD40-expressing splenic B cells display distinctly 

altered surface marker expression profile. Moreover, old Notch2IC//LMP1/CD40-expressing B 

cells display up-regulation of activation-induced of both B7-proteins and CD5. Furthermore, aged 

Notch2IC//LMP1/CD40//CD19-cre mice develop salivary gland carcinomas, as has also been 

observed for LMP1/CD40//CD19-cre mice. The origin of these carcinomas however could not be 

unambiguously identified within the scope of this work.  

All in all, the data presented fit with the hypothesis that constitutive CD40 signaling can deliver 

survival signal to the B cells that can counteract constitutive Notch-signaling-induced apoptosis 

signals which ultimately results in a profound increase in proliferation rates in the splenic B cells 

of mice that expressing constitutively active Notch2 and constitutively active CD40. 
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6. ZUSAMMENFASSUNG 

Der CD40- und der Notch-Rezeptor-Signalweg sind in verschiedenen Tumoren dereguliert, u.a. im 

Hodgkin-Lymphom. In unserem Labor sind Mäuse mit B-zellspezifischer Expression jeweils einer 

der beiden Rezeptoren, die zudem konstitutiv aktiv sind, generiert und charakterisiert worden; 

LMP1/CD40//CD19-cre und Notch2IC//LMP1/CD40//CD19-cre-Mäuse (Homig-Holzel et al., 2008; 

Hampel et al., 2011). Um die Effekte deregulierter Signale dieser beider Rezeptoren in B-Zellen in 

vivo zu studieren, wurden Mäuse, die konstitutiv aktives Notch2 exprimieren, mit Mäusen, die 

konstitutiv aktives CD40 exprimieren, miteinander verpaart. Hierdurch exprimiert die 

Nachkommengeneration (Notch2IC//LMP1/CD40//CD19-cre-Mäuse) gleichzeitig beide 

Rezeptoren in CD19-abhängiger und damit B-zellspezifischer Form. Alle Mausanalysen sind mit 

CD19-cre, Notch2IC//CD19-cre und LMP1/CD40//CD19-cre Kontrollmäusen gleichen Alters 

durchgeführt worden. 

Die Notch2IC//LMP1/CD40//CD19-cre-Mäuse haben synergistische Effekte sowohl auf die 

Milzgröße, als auch auf das Milzgewicht. Die absoluten Zell- und der B-Zellzahlen in der Milz der 

Notch2IC//LMP1/CD40//CD19-cre-Mäuse waren gegenüber denen der CD19-cre und 

Notch2IC//CD19-cre-Mäusen signifikant erhöht. Jedoch waren die Anzahl der B-Zellen in der Milz 

der Notch2IC//LMP1/CD40//CD19-cre-Mäuse im Vergleich zu den LMP1/CD40//CD19-cre-

Mäusen signifikant geringer. Es wurde daraufhin untersucht, welche anderen Zelltypen für die 

erhöhten absoluten Milzzellzahlen verantwortlich sind. 

Es konnte eine erhöhte Anzahl an akzessorischen Zellen, und zwar myeloider Zellen, 

Makrophagen, Granulozyten und Dendritischer Zellen in Milzen der 

Notch2IC//LMP1/CD40//CD19-cre Mäusen identifiziert werden. Darüber hinaus zeichnen sich 

diese Mäuse durch eine signifikant erhöhte Anzahl an T-Zellen in ihren Milzen verglichen mit den 

Kontrollen aus. Die T-Zellen in den Notch2IC//LMP1/CD40//CD19-cre-Mäusen zeigen eine 

erhöhte Expression T-zellspezifischer Aktivierungsmarker und einen prozentualen Anstieg von 

zentralen Gedächtniszellen sowie Effektor-T-Zellen. Zudem sind regulatorische T-Zellen (Tregs), die 

wichtige Regulatoren in der zellulären Immunantwort repräsentieren, in den Milzen von 

Notch2IC//LMP1/CD40//CD19-cre-Mäusen erhöht. 

Mäuse des Notch2IC//LMP1/CD40//CD19-cre Genotyps weisen einen partiellen Block in der 

frühen B-Zellentwicklung im Knochenmark zwischen dem pre- und unreifen B-Zellstadium auf, 

wahrscheinlich aufgrund abträglicher Auswirkungen, die die frühe Expression beider Transgene 

auf die sich entwickelnde B-Zelle hat. Reife B-Zellen in Notch2IC//LMP1/CD40//CD19-cre Tieren 

zeigen – wie auch Notch2IC//CD19-cre-Mäuse – in der durchflusszytometrischen Analyse eine 
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Expansion der Marginalzonen (MZ) B-Zellen und eine Verminderung der Follikulären (Fo) B-

Zellen. Obwohl sie eindeutig MZ B-Zelloberflächenmarker in der FACS-Analyse aufweisen und B-

Zellen auch in der MZ lokalisierbar sind, saß doch ein unerwartet großer Anteil der B-Zellen in 

Notch2IC//LMP1/CD40//CD19-cre-Mäusen auch im Follikel und die Milzarchitektur wies in der 

Immunhistochemischen-Analyse sehr diffuse B- und T-Zellzonen auf. Distinkte Abweichungen 

hinsichtlich der Expression von Zyto- und Chemokinen in Notch2IC//LMP1/CD40//CD19-cre-

Mäusen (sowohl im Niveau an mRNA in den B-Zellen als solche, als auch im Serum) könnten an 

diesem Effekt beteiligt sein. Im Vergleich zu allen anderen analysierten Mäusen ergab sich in 

Notch2IC//LMP1/CD40//CD19-cre-Mäusen eine Hochregulierung von CXCL9 und CXCL10 im 

Serum und eine Zunahme an CXCR3 und IL13-IL13-Rezeptor α1, IL2-Rezeptor γ, Lymphotoxin β 

und Transforming-Growth-Factor β mRNA der Milz-B-Zellen. 

Allgemein zeigen die Milz-B-Zellen in Notch2IC//LMP1/CD40//CD19-cre-Mäusen einen 

aktivierten Phänotyp und verbessertes Überleben in in-vitro-Kultur verglichen zu Notch2IC-, aber 

nicht zu LMP1/CD40-exprimierenden Milz-B-Zellen. Zudem zeigen die Milz-B-Zellen von 

Notch2IC//LMP1/CD40//CD19-cre-Mäusen eine gesteigerte Proliferation in In-vitro-Kultur, die 

die von B-Zellen übertreffen, die entweder Notch2IC oder LMP1/CD40 exprimieren. 

Eine kleine Gruppe Mäuse wurde zur Analyse in erhöhtem Alter verwahrt, um die potenzielle 

Entstehung von B-Zelllymphomen beobachten zu können. Tatsächlich konnte beobachtet 

werden, dass sie ab einem Alter von 13 Monaten fortschreitend anfällig für die Entstehung von 

monoklonalen B-Zelllymphomen sind, was weitere Studien mit größeren Kohorten empfiehlt. 

Alte Mäuse zeigen immer noch eine erhöhte Anzahl an Makrophagen und eine Verschiebung der 

T-Zell-Population zu den Effektor-T-Zell-Phänotyp in der Milz wie bei jungen Mäusen. Sie 

unterscheiden sich jedoch stark von jungen Mäusen hinsichtlich ihres MZ-B-Zellphänotyps, da 

alte Notch2IC//LMP1/CD40//CD19-cre-Mäuse ein verändertes Oberflächenmarkerprofil 

aufweisen. Darüber hinaus zeigen alte Notch2IC//LMP1/CD40//CD19-cre-Mäuse eine 

Hochregulierung beider aktivierungsinduzierter B7-Proteine und CD5 auf ihren Milz-B-Zellen auf. 

Außerdem entwickeln Notch2IC//LMP1/CD40//CD19-cre-Mäuse Tumore der Speicheldrüse, wie 

es auch bei LMP1/CD40//CD19-cre-Mäusen beobachtet wurde. Der Ursprung dieser Tumore 

konnte im Rahmen dieser Arbeit nicht eindeutig identifiziert werden. 

Insgesamt untermauern die gezeigten Daten die Hypothese, dass ein konstitutives CD40-Signal B-

Zellen ein Überlebenssignal zuführen kann, das dem Notch-Signalweg-induzierten Apoptose-

Signal entgegenwirken kann. Dies resultiert schließlich in einer profunden Zunahme der 

Proliferationsraten in Milz-B-Zellen von Mäusen, die sowohl konstitutiv aktives Notch2 und 

konstitutiv aktives CD40 exprimieren. 
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7. MATERIAL 

Bacteria 

DH5α (Escherchia coli): Genotype: F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80d 

lacZ ΔM15 Δ(lacZYAargF)U169 hsdR17 (rK- mK+), λ- . 

DNA probes for Southern blotting 

Rosa26-probe: The probe is 550 bp large and was prepared from the pRosa26-5-pBS KS plasmid 

by restriction digest with the enzymes EcoRI und Pac1.  

IgH-probe: The IgH-probe is the sequence between the J4 and Emicro segments of the IgH locus 

and was excised with the enzymes EcoRI and NaeI. It was subsequently cloned into a Bluescript 

Vector from which it can be prepared by digest with the enzymes EcoRI und HindIII (Gao et al., 

2000).  

Enzymes 

Restriction endonucleases were purchased from New England BioLabs and MBI Fermentas. Taq 

DNA polymerase was purchased from Invitrogen Life Technologies. 

B-cell medium 

1 x RPMI 1640  

5 % (v/v) fetal calf serum (FCS; PAA/ 10% (v/v) if used for culture 

1 % (v/v) Penicillin-Streptomycin 

1 % (v/v) non-essential aminoacids 

1 % (v/v) sodiumpyruvate 

1 % (v/v) L-Glutamin 

50 μM β-Mercaptoethanol  

All reagents by Gibco. 

Mouse strains 

All mice were kept on a mixed background (BALB/c x C57BL/6). 

LMP1/CD40flSTOPP (Homig-Holzel et al., 2008) 

The LMP1/CD40fl STOPP It is conditional transgenic for the chimeric LMP1/CD40 gene that has 

been inserted into the murine Rosa26 locus. A STOP cassette flanked by loxP sites is located 

upstream of the LMP1/CD40 gene and prevents its expression. In the presence of Cre, the STOP 

cassette can be excised and LMP1/CD40 is expressed under control of the endogenous Rosa26 

promoter. 
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Notch2IC (Hampel et al., 2011) 

The Notch2ICflSTOPP strain is conditional transgenic for the conditional notch2IC allele. The 

notch2ICflSTOP construct was inserted together with an IRES-hCD2 coding sequence into the 

murine Rosa26 locus. A STOP cassette flanked by loxP sites is located upstream of the notch2IC 

gene and prevents its expression. In the presence of Cre, the STOP cassette can be excised and 

Notch2IC is expressed under control of the constitutively active CAGGS promoter. This leads to 

the expression of the Notch2IC transgene under the transcriptional control of promoter, while 

hCD2 is concomitantly expressed on the surface to the respective Notch2IC-expressing cell. 

CD19-cre (Rickert et al., 1997) 

CD19-cre are a C57BL/6 mouse strain that has the Cre recombinase gene inserted into the CD19 

locus, thereby disrupting the CD19 gene. The expression of the cre gene is regulated by the 

endogenous CD19 promoter. 

Primers for PCR and sequencing reactions 

Primer name Primer sequence (5´ to 3´) Annealing Temp (°C) 

CD19c  AACCAGTCAACACCCTTCC  57 

CD19d CCAGACTAGATACAGACCAG 57 

Cre 7  TCAGCTACACCAGAGACGG  57 

CD40 PCR3 CTG AGA TGC GAC TCT CTT TGC CAT  55 

Ex1Fw1 LMP1 AGG AGC CCT CCT TGT CCT CTA 55 

Notch2IC 25 rev (T) ATCCCGGTCTCCGTATAGTG  59 

Notch2IC 33 fw (T) CCCTTGCCCTCTATGTACCA 59 

Rosa fw1 (60)  CTCTCCCAAAGTCGCTCTG  59 

Rosa rev2 (62) TACTCCGAGGCGGATCACAAGC 59 

Antibodies for immunohistochemistry 

Antigen Source Coupled to Dilution Manufacturer 

Murine CD3 Dog  1:2 By courtesy of E. Kremmer 

Murine IgM Goat   Peroxidase 1:100   Sigma 

Murine MOMA1 Rat    1:100   Biomedicals 

Rat IgG2 Mouse Biotin 1:250 Jackson Laboratories 

Mac1  Rat Biotin 1:100 BD 

Foxp3   Rat Biotin 1:100  eBioscience 

Streptavidin-

conjugated 

 Alkaline Phosphatase 1:400 Sigma 



METHODS 107 

 

8. METHODS 

Mouse breeding 

Mice carrying the notch2ICflSTOP and the LMP1/CD40 allele were crossed to the CD19-cre mouse 

strain to generate mice expressing one or the other or both transgenes. Transgenes were 

expressed upon in Cre-mediated excision of the stop cassette upstream the respective or both 

targeting constructs in the Rosa26 locus. Transgenes are expressed from the pro-B cell stage 

onward with a gradual increase during proceeding B cell differentiation (Rickert et al., 1997). 

Analyses were performed on a mixed background and mice were analyzed at eight to 16 weeks of 

age, unless stated otherwise. Mice that were monitored for the development of lymphomas or 

leukemic disease (>13months) were kept under special observation by designated personnel.  

All mice were bred and maintained in specific pathogen-free conditions. All experiments were 

performed in compliance with the German animal welfare law and have been approved by the 

Institutional Committee on Animal Experimentation and the government of Upper Bavaria. 

Isolation of primary lymphocytes 

Mice were euthanized by CO2 gassing and subsequently dissected. Spleen, thymus, and lymph 

nodes were taken out as whole organs and were maintained in medium until further procedures. 

Cells from the bone marrow were prepared by dissecting tibia bones, cut at neck of the tibia and 

the cavity was flushed with medium. Splenic weight was obtained by placing spleens in sterile 

petri dishes on a microscale. In case small pieces were cut off for histologic preparations (see 

section “Histology”, pp.110-111), the larger piece of spleen was weighed again to be able to 

equate weight with total cell number and finally FACS percentages of particular cell populations 

(see section “Cell number calculations”, p. 108). 

Single cell suspensions from lymph nodes and spleens were obtained by passing the organs 

through a 70 µm cell strainer (Becton Dickinson). Erythrocytes were depleted from single cell 

suspensions from spleen and bone marrow by lysis with a hypotonic buffer (1x RBC lysis buffer; 

eBiosciences) for three minutes or longer for LMP1/CD40//CD19-cre and 

Notch2IC//LMP1/CD40//CD19-cre at RT. All cell suspensions were kept on ice the entire time and 

washing steps with medium or PBS/1% (w/v) BSA were carried out by centrifuging cell 

suspensions for 10 minutes at 300 x g at 4 °C. Cell numbers were determined by Neubauer 

chamber countings. 



METHODS 108 

 

Magnetic Cell Separation (MACS) 

Splenic B cells were isolated from single cells suspensions by depletion of CD43pos non-B cells by 

MACS, using α-CD43 beads and LS columns according to the manufacturer’s specifications 

(Miltenyi Biotec). Thereby, B-cell populations of 85 to 98% purity were obtained as confirmed via 

FACS-analysis.  

Cell number calculations  

Total cell number of any given cell suspension was determined by use of a Neubauer counting 

chamber and a light microscope counting only the light cells (darker cells are probably dead 

having disrupted cell membranes that allows for diffusion of the counting medium into the cell).  

Cell numbers of a cell population can be calculated from the total cell number as determined by 

Neubauer chamber counting and the percentage of the respective population in the organ under 

investigation as determined by FACS.  

In case no small piece was cut off for histologic preparations: 

Total cell no. (as counted)/100 × percentage of respective cell population (as determined by FACS)  

= total no. of respective cell population. 

In case a small piece was cut off for histologic preparations: 

Spleen = x gram,  

i.e. larger piece (as weighed) = x-y1 = y2 = z2 ×107 cells 

i.e. smaller piece = x-y2 = y1 = z1 ×107 cells 

Hence, Total cell no. (z1 + z2)/100 × percentage of respective cell population (as determined by 

FACS) = total no. of respective cell population. 

 

Surface marker Flow Cytometry (FACS) 

Single cell suspension prepared from BM, LN and SP were surface-stained with a combination of 

FITC-, PE-, PerCP- and APC-conjugated monoclonal antibodies, diluted in MACS buffer (Miltenyi 

Biotec). Antibodies specific for the respective surface antibody employed were purchased from 

BD Biosciences or eBiosciences. Usually 3×104 cells were used for stainings and stained in 

25 microL staining mix for at least 20 min on ice. If indicated cells were additionally labeled with 

TOPRO-3 or propidium iodide (PI) staining (both from Molecular Probes) in order to exclude dead 

cells from analysis. These intercalating fluorescent dyes are able to bind to DNA and thus only 

stain dead cells with damaged cell membranes which allow the dye to diffuse into the nucleus. 

The staining of cells was determined with a four-color FACSCaliburTM flow cytometer (BD 

Biosciences) and results were analyzed using CELLQuest and FlowJo software. 
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Intracellular FACS-analysis 

4×106 cells previously washed in PBS/1 % (w/v) BSA were resuspended in 25 microL surface 

marker staining mix and incubated for at least 20 min on ice. After another washing step, cells 

are resuspended in PBS/4 % paraformaldehyde or Histofix (Carl Roth) and left for 10 min at RT. 

Cells are washed with PBS (then they can be left o/n at 4 °C in PBS), afterwards they are washed 

with intracellular FACS buffer (PBS/1 % (w/v) BSA/1 % (w/v) saponin) and afterwards incubated in 

intracellular FACS buffer for 10 min at RT. Respective staining mixes were prepared in 20 microL 

buffer and incubated for 30 min at RT. Cells were washed twice in 1 mL intracellular FACS buffer 

and cell pellets were resuspended in PBS for FACS measurement. 

Foxp3 staining was performed according to manufactures specifications of the Foxp3 staining kit 

from eBiosciences. 

In vitro culture of primary lymphocytes 

Short term cultivation for stimulation of T-cell responses (Th1/Th2) 

4×107 whole splenic cells/mL were kept in B-cell medium with 10 % (v/v) FCS, supplemented with 

phorbol myristate acetate (PMA; 1:50.000 dilution from 1 mM stock) and calcium ionophore 

ionomycin (Ionomycin; 1:10.000 dilution from 10 mM stock). 

PMA/Ionomycin-treatment provides a polyclonal stimulus activating all cells in a sample 

unspecifically. The cells were incubated at 37 °C for 2 to 2 ½ hrs. Subsequently cells were treated 

with by Brefeldin A (1:500 dilution from 5 mg/ml stock) for no longer than 2 ½ hrs at 37 °C. 

Brefeldin A-treatment is done to ensure that the cytokine under investigation does not diffuse 

from the cell into the medium of the cell suspension. 

Afterwards cells were washed with PBS and in order to stain intracellular cytokines the protocol 

for Intracellular FACS-analysis was followed.  

Proliferation assay (CSFE assay)  

Splenic, MACS-purified B cells were labeled with carboxyfluorescein diacetate succinimidyl ester 

(CFSE, Molecular Probes, final concentration 5 μM) in serum-free B cell medium for 5 min at 

37 °C for 10 min. CFSE is a fluorescent dye that labels intracellular molecules by its succinimidyl 

group. It is passed on to daughter cells during cell division and thereby provides a method to 

measure proliferation of a cell population by the decrease in CFSE-fluorescence of the labeled 

cells.  

B cells were cultured (5×106 cells/ml) in B-cell medium with 10 % (v/v) FCS with or without stimuli 

up to five days in 96-well plates (5×105 cells/well). Stimuli were either IL4 (10 ng/ml; mouse 

recombinant; Sigma) or α-CD40 antibody (2.5 μg/ml; eBioscience) or both. At different time 
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points (day 1, day 3 and day 5), cells were analyzed with a FACSCalibur. The percentage of living 

cells was determined by staining and excluding dead cells by Topro-3.  

Cell cycle analysis (BrdU assay) 

To perform cell cycle analysis B cells were isolated and cultured as described above, at least 5 

wells with 5×105 cells of a 96-well plate were cultivated. Splenic B cells were analyzed on day 0 as 

to determine the immediate ex vivo situation and subsequently on day 1 and day 3 after 

bromdesoxyuridine (BrdU) labeling for four hours. BrdU is a synthetic nucleoside and thymidine 

analogue. If given to cells during their proliferative S-phase BrdU-dye will be incorporated into 

the cell’s DNA and can later be visualized by α-BrdU antibodies. This allows for inference on the 

proliferation rate of the cells. Simultaneous staining of the cells with 7-amino-actinomycin D 

(7AAD; a fluorescent DNA marker) shortly before analysis, permits to determine the full scope of 

the cell cycle of any culture of cells under investigation. In order to ensure functionality of the 

assay LPS (25 μg/ml; E. coli 055:B5; Sigma) was added to B-cell cultures of CD19-cre mice. LPS is a 

potent, polyclonal stimulus, activating the cells and driving them into proliferation. 

BrdU incorporation into the DNA of B cells was analyzed by using the APC BrdU Flow Kit (Becton 

Dickinson) according to manufacturer’s instructions on a LSRII Fortessa (Becton Dickinson).  

Preparation of serum from murine blood 

Blood was collected directly from the heart with a Pasteur pipette. Afterwards, the blood was 

stored on ice for at least four hours and was subsequently centrifuged at 9.000 xg and 4  C for 

10 min. The supernatant was transferred to a new tube and the procedure was repeated once to 

yield pure serum. 

Equal amounts of serum were analyzed for the presence of cyto- and chemokines with the 

Proteome ProfilerTM Array according to manufacturer’s specifications (Mouse Cytokine Array 

Panel A; R&D Sytems) and the obtained data subsequently analyzed with Tina 2.0 software. 

Histology 
 Immunohistochemistry 

Spleens were embedded in O.C.T. Tissue Tek (Sakura) in medium-sized cryomolds (Sakura) and 

placed them on dry ice until completely frozen. Embedded spleens were stored at -20 °C, 

wrapped in aluminum foil and ziplock bags to avoid air contact. 5-8 μm thick sections were cut 

with a cryostat (Leica Microsystems), collected on gelatin-coated microscope slides (Thermo 

Scientific) and air-dried overnight. Sections were subsequently fixed for ten minutes in 100 % 

(v/v) acetone.  
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Slides with sections were then rehydrated with PBS, and incubated for 20 minutes in quenching 

buffer (PBS containing 10 % (v/v) goat serum, 1 % (w/v) BSA) to block endogenous peroxidase. 

Afterwards, sections were incubated for each 15 min in two different blocking buffers, first an 

Avidin, then a Biotin blocking buffer (Avidin-Biotin Blocking Kit; Vector Laboratories) to prevent 

unspecific binding of Avidin- and Biotin-coupled antibodies. Between incubation steps, sections 

were washed for 5 min in PBS. Subsequently, staining was performed by incubating sections with 

different antibodies diluted in PBS/1 % (w/v) BSA for one hour each. Before and after antibody 

stainings, sections were washed with PBS each three times for 5 minutes. Phosphatase-

conjugated antibodies were detected in blue using Blue Alkaline Phosphatase Substrate Kit III 

(Vector laboratories). Peroxidase-conjugated antibodies were detected in red due to a reaction 

with aminoethylcarbazole (AEC) after treatment with Peroxidase Substrate Kit AEC (Vector 

laboratories). Staining reactions were stopped at the latest after 10 min by washing with PBS. All 

incubation steps were performed at 22 °C in a wet chamber. Sections were air-dried and 

subsequently embedded in Kaiser gelatin (Merck) and sealed off with a coverslip. 

For Foxp3 stainings, sections were rehydrated in PBS/1 % (w/v) BSA/1 % (w/v) saponin. Also all 

antibodies were diluted in PBS/1 % (w/v) BSA/1 % (w/v) saponin. 

Stainings were analyzed using a fluorescent microscope (Zeiss). Pictures were obtained with a 

digital camera (AxioCam MRm) and the AxioVision programme. 

 Fluorescent microscopy 

Sections of specimen were prepared, blocked and stained as described for 

immunohistochemistry ultimately using antibodies coupled to flourochromes. Analysis was 

carried out on a confocal microscope (Axiovert 200M, Zeiss) and Pictures were obtained with a 

digital camera (AxioCam MRm) and OpenLab programme and edited using Adobe Photoshop. 

DNA isolation 
 Plasmid isolation from bacteria  

Plasmids were produced and isolated from competent bacteria with the EndoFree Plasmid Maxi 

Kit (Qiagen) according to manufacturer’s instructions. The air-dried pellet was resolved in TE 

buffer and DNA concentration was determined with a photometer (Eppendorf). 

 Isolation of genomic DNA from murine tails and whole splenocyte pellets 

Murine tail clippings, splenic cell pellets or SGTs were incubated shaking at 56 °C o/n in at least 

500 μl lysis buffer (100 mM Tris/HCl pH 8,5 mM EDTA, 0.2 % (w/v) SDS, 200 mM NaCl,) 

supplemented with 100 μg/ml proteinase K (Invitrogen). 1/3 volume of a saturated NaCl (at least 

5 M) were added to precipitate proteins and samples were centrifuged 10 min at 10.000 xg. The 
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supernatant was transferred into a new tube and DNA was precipitated by adding 2x volume 

100 % (v/v) isopropyl alcohol and inverting the sample-containing tube. After another round of 

centrufgation samples were centrifuged and the DNA was washed with 70 % (v/v) ethanol. 

Samples were air-dried, and ultimately dissolved in appropriate volume of TE buffer by shaking at 

37 °C for one hr for genotypings or at least 4 hrs for Southern blots. 

DNA analysis 

Polymerase Chain Reaction (PCR) for genotyping 

The method of PCR was used to analyze DNA of transgenic mice for the configuration of the 

Rosa26 locus (insertion of transgenes) and presence of Cre-recombinase in the CD19-locus in the 

genome. All materials were obtained from Invitrogen. A basic reaction mixture with different 

primers was used: 

 
Master Mix Per reaction (µl) 

H20 19,65 

Taq Puffer (10x) 2,5 

MgCl2 (25 mM) 1 

dNTP (10mM) 0,5 

Primer 1 0,1 

Primer 2 0,1 

Taq Polymerase (5U/µl) 0,15 

DNA 1 

total 25 

Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis was performed to determine PCR reaction results and size-

fractionate restriction-digested DNA molecules, which were either eluted from the gel (Southern 

blot probe) or blotted on a nitrocellulose membrane (Southern blot). Gels were prepared with 1x 

TAE (40 mM Tris/HCl, 20 mM acetic acid, 1 mM EDTA pH 8.5), 5 μg/ml ethidium bromide and 

0.8 % (Southern blot) or 2 % (w/v; genotyping) agarose. 

Electrophoresis was performed in a gel electrophoresis chamber (Peqlab) with 1x TAE buffer at 

90 V for PCR samples or run at 25 V o/n. Results were visualized and documented with a 

geldocumentation system (Vilbert Lourmat). 

DNA fragment for Southern blot probe was excised from agarose gel containing correctly-sized 

fragment with a clean scalpel and the DNA probe was isolated with QIAquick Gel Extraction Kit 

(Qiagen) according to manufacturer’s instructions. 

Restriction digest of DNA for Southern blot 

Restriction digest of plasmid DNA was performed using specific restriction enzymes according to 

manufacturer’s instructions for appropriate conditions and buffers. 



METHODS 113 

 

Genomic DNA from splenic cells and SGTs was digested with EcoRI for both Southern blots. 

Restriction buffer mix (1 mM Spermidin, 1 mM DTT, 100 μg/ml BSA, 50 μg/ml RNase, 1x EcoRI 

buffer, 100 to 150 U of EcoRI enzyme) was added to respective DNA in TE buffer. DNA was 

digested for at least 16 hrs at 37 °C. 

Southern blot (Southern, 1975) 

This method was used for the identification of mono- or oligoclonal B cell lymphomas (whole 

splenic cell preparations) and the deletion of the transgene up-stream the inserted transgene 

(SGTs). After the restriction digest treatment, DNA is electrophoretically separated and 

transferred from the agarose gel to a nitrocellulose membrane. A radioactively-labeled DNA 

probe (Rosa- or IgH-probe) is allowed to hybridize to the denatured DNA on the membrane o/n. 

This allows for the detection of distinct DNA fragments as definite bands on the membrane. 

After digestion as described in the previous section, the respective samples were size-

fractionated on a 0.8 % (w/v) agarose gel along with a standard 1 kb DNA ladder (Invitrogen) at 

25 V o/n. The restriction-digested DNA in the gel was visualized and documented on a UV 

luminescent screen together with a ruler to determine the height of the desired fragment in the 

gel so that the gel could be cut down to a smaller size and only the part containing the fragement 

of interest would be kept. Subsequently, the gel was incubated in 0.25 N HCl for 25 min in order 

to denature the DNA. Afterwards the gel has to be equilibrated for transfer onto the membrane: 

the gel was shortly rinsed in water and incubated in alkaline transfer buffer (0.4 M NaOH, 0.6 M 

NaCl) for 40 min. DNA blotting onto the membrane (ImmobilonTM Ny+ membrane, Millipore) 

was achieved via capillary pressure from transfer buffer flow top to bottom of the set-up. The 

next morning the position of slots of the gel were marked on the membrane. The membrane was 

rinsed shortly in 2x SSC buffer (0.3 M NaCl, 0.03 M NaCitrate, pH 6.5) for neutralization. DNA was 

cross-linked to the membrane by baking it for one hr at 80 °C. In order to limit unspecific binding 

of the respective probe, the membrane was pre-hybridized in pre-heated (65 °C) hybridization 

solution (1 M NaCl, 50 mM Tris, pH 7.5, 10 % (w/v) dextran sulfate, 1 % (w/v) SDS, 250 μg salmon 

sperm DNA/ml) for at least 6 hrs at 65 °C, before incubation with the respective radioactively 

labeled probe. 

The probe was prepared by excision through restrictions digest and 100 ng were labeled by 

Random Prime Labeling Kit (GE Healthcare) according to manufacturer’s instructions with 50 μCi 
32P-dCTP (Hartmann Analytic). The labeled probe was purified using a G50 sephadex column (GE 

Healthcare) according to manufacturer’s instructions. In order to denaturate the probe to enable 

binding to membrane-bound DNA, it was incubated for five minutes at 100 °C and placed for two 
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minutes on ice. The membrane was incubated for at least 16 hrs at 65 °C in the hybridization 

solution, containing pre-hybridization buffer with the respective DNA probe. 

Afterwards, the membrane was rinsed three times or more each for 10 min in pre-heated 

washing buffer (0.2x SSC, 0.5 % (w/v) SDS) at 58 °C to wash off unbound or unspecifically-bound 

probe until radioactivity dropped to 60 to 70 counts. The membrane was placed in transparent 

foil and radioactively-labeled probe was visualized on the membrane by autoradiography with 

radiosensitive films (Biomax MS PE Applied Biosystems 35x43 cm, KODAK), exposed for one day 

or longer at -80 °C in a Biomax cassette. 

RNA analysis 
 RNA preparation 

Total RNA that was isolated by using RNaeasy Mini Kit (Quiagen). In order to use defined and 

equal amounts of total RNA for cDNA synthesis, undiluted 2 μl RNA were applied to a 

spectrophotometer (NanoDrop) and its absorbance at 260 nm was determined to calculate RNA 

concentration. RNA integrity was tested on a Nothern Blot gel (kindly provided by M. Kellner). 

 cDNA synthesis 

RNA can be reversely transcribed into a single-stranded DNA intermediate, i.e. complementary 

DNA (cDNA). Using oligo-dT primers, reverse transcriptase synthesizes a cDNA strand starting at 

the 3´-end of the poly(A)-mRNA. 1 μg total RNA of all samples was simultaneously in the same 

PCR run reversely transcribed with > 10 U of viral AMV Reverse Transcriptase, using 1st Strand 

cDNA Synthesis Kit for RT-PCR [AMV] (Roche Diagnostics) with 0.02 A260 units (0.8 μg) Oligo-

p(dT)15 primers, amount of 10x reaction buffer, 10 mM dNTPs, 25 mM MgCl2 and 50 U RNase 

Inhibitor according to manufacturer’s instructions, adding to a final reaction volume of 25 μl. 

Each RNA preparation was transcribed in quadruplicate. RNA was restored at -80 °C. The resulting 

first strand cDNA was stored at -20 °C and was used as a template for qPCR. 

 Mouse Inflammatory Cytokines & Receptors qRT PCR Array 

The Array used was obtained from SA Biosciences and is based on the principles of quantitative 

real-time PCR (q RT PCR). This method allows studying mRNA expression in a comparative 

manner between different samples (as in this case) genotypes and was carried out using the 

LightCycler system (Roche Diagnostics).  

SYBR green fluorescent dye is included in the reaction and this dye intercalates into the growing 

DNA strands during PCR reaction (unbound dye exhibits very little fluorescence and therefore 

does not have to be taken into account). The process of increase in fluorescence is measured by 
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the LightCycler during each completion of reaction cycle in realtime and the amount of RNA can 

be reversely determined by the amount of bound SYBR green in the sample.  

100 µl of a genotype cDNA was mixed with the reaction mix supplied with array according to 

manufactures instructions. 100 µl of the resulting mix were immidiately added to each of the well 

of the 96-well array with pre-spotted primers for each cytokine and cytokine receptor to be 

analyzed and was centrifuged before placing into the LightCycler instrument. The array was 

always kept on ice during the preparation. 

For each sample the crossing point (CP) was determined. The crossing point describes the cycle in 

which the fluorescence exceeds background signal and the lower the CT, the higher the content 

of the respective amplicon in the respective sample.  

In order to determine the specificity of each DNA product by examining the melting temperature 

of the resulting qRTPCR products, melting curve analysis was performed according to 

manufacturer’s instructions. 

Data analyses were carried out using Excel software (Microsoft). 
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SUPPLEMENTARY DATA 

Tab. S.1 Overview over cell numbers of splenic T cell populations of CD19-cre, Notch2IC//CD19-cre, 
LMP1/CD40//CD19-cre and Notch2IC//LMP1/CD40//CD19-cre mice.  
Splenic cells were analyzed by flow cytometry CD62L and CD44 expression on either (A) CD4pos or (B) 
CD8pos lymphocyte-gated T cells. Calculations are based on five independent experiments. 

(A) 

 

(B) 

 

CD4pos 

 

Total cell 
numbers  

(×10
7
) 

naïve T-cells 
(CD62L

hi
 CD44

low
) 

(×10
7
) 

memory T cells 
(CD62L

hi
 CD44

hi
) 

(×10
7
) 

effector T cells 
(CD62L

low
 CD44

hi
) 

(×10
7
) 

CD62L
low

, 
CD44

low
 

(×10
7
) 

CD19-cre 1.2 ±0.2 0.6 ±0.1 0.1 ±0.0 0.3 ±0.1 0.0 ±0.0 

Notch2IC// 
CD19-cre 

1.3 ±0.5 0.6 ±0.2 0.1 ±0.0 0.5 ±0.2 0.1 ±0.0 

LMP1/CD40// 
CD19-cre 

7.7 ±1.9 2.4 ±1.4 0.8 ±0.3 2.1 ±0.7 0.4 ±0.2 

Notch2IC//LMP1/CD40// 
CD19-cre 

8.7± 5.4 1.9 ±1.6 0.4 ±0.4 3.3 ±1.0 1.0 ±0.7 

CD8pos 

 

Total cell 
numbers 

(×10
7
) 

naïve T-cells 
(CD62L

hi
 CD44

low
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(×10
7
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memory T cells 
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effector T cells 
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(×10
7
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CD62L
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(×10
7
) 

CD19-cre 0.5 ±0.2 0.3 ±0.1 0.1 ±0.0 0.1 ±0.0 0.0 ±0.0 

Notch2IC// 
CD19-cre 

0.8 ±0.2 0.4 ±0.4 0.2 ±0.2 0.2 ±0.2 0.1 ±0.0 

LMP1/CD40// 
CD19-cre 

1.9 ±0.8 0.7 ±0.3 0.2 ±0.1 0.3 ±0.1 0.3 ±0.2 

Notch2IC//LMP1/CD40// 
CD19-cre 

5.7 ±2.5 1.0 ±0.8 0.2 ±0.2 2.0 ±0.9 2.3 ±1.8 
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Fig. S.1 Notch2IC//LMP1/CD40-expressing B cells show an increased proliferation in in vitro culture. 
 Splenocytes were prepared and splenic cell preparations were depleted of CD43pos (i.e. non-B) cells and 
labeled with CFSE. The B cells were subsequently cultivated either with or without stimuli. These stimuli 
included α-CD40 antibody, IL4 as well as both IL4 and α-CD40 antibody. Cells were analyzed by flow 
cytometric analysis on day 1, 3 and 5 of culture. Dead cells were excluded from the analysis by excluding 
Topro-3pos cells. Statistical evaluation of day 5 of percent divided, proliferation and division index for all 
genotypes without stimulus, with IL4-stimulus, with CD40-stimulus and both with IL4- and CD40-stimulus. 
CFSE, Carboxyfluorescein succinimidyl ester. *p < 0.05, ** p < 0.01, *** p < 0.005.  
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