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Preface 

 

This thesis is subdivided into six chapters presented in order for their flow. In the first 

chapter, I provide an overview of the research topic focusing on the situation in Nepal, the 

rationale for this study and the specific aims and objectives. In the second chapter, I 

discuss the burden of household air pollution (HAP) in the global context and introduce 

major health effects of HAP including on lung function, chronic airway disease and 

cardiovascular health. I also discuss the global evidence base with respect to the suitability 

and effectiveness of interventions to reduce HAP and conclude with a review of exposure 

assessment methods used in HAP studies. In the third chapter, I describe the study design, 

data collection methods and the strategy for statistical analysis, including a detailed 

description of propensity score matching of households and women within households for 

specific outcome measures. Chapter 4 presents the results of the study, focusing on the 

matched analysis and highlighting differences with an unmatched sensitivity analysis, each 

with and without adjustment for potential confounders. Chapter 5 discusses the results of 

the current study and compares and contrasts the findings with related research findings in 

the field. Chapter 6 summarizes key findings and concludes with a review of their 

significance, limitations and suggestion for future research. 
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Abstract 

 

Introduction:  Globally, millions of deaths every year are attributed to household air 

pollution (HAP) caused by health-damaging pollutants produced while cooking in inefficient 

open firewood stoves under poorly ventilated conditions. These are mostly in low-and 

middle-income countries where cooking with solid fuel is nearly ubiquitous in rural areas. 

Women, by customary socio-cultural beliefs, spend significant amount of their time cooking 

and are disproportionately exposed to high levels of toxic pollutants like particulate matter, 

carbon monoxide and several other partially carcinogenic, organic and inorganic, 

compounds. 

Strong evidence has consistently linked HAP to adverse health conditions like acute lower 

respiratory tract infection in children, and chronic obstructive pulmonary disease and lung 

cancer in adults. With better exposure response evidence and more diseases like ischemic 

heart disease and stroke now causally linked to HAP, it is identified as the second most 

important risk factor for females for global disease burden out of those examined by the 

Global Burden of Disease 2010 project. In South Asia, including Nepal, it is the leading risk 

factor for both sexes for disability adjusted life years lost. 

Over recent years, global concerted efforts have been trying to address this problem 

through large scale initiatives to deliver improved firewood cookstoves to rural households 

who are inextricably trapped on the lowest rung of energy ladder. However, the nonlinear 

character of the exposure response analyses of health effects of HAP indicates the need to 

reduce HAP to a very low level so as to gain substantial health benefits. But, evidence is 

limited if the currently promoted cookstoves are reducing pollutant levels to the desired 

optimum so as to avoid health risks in a meaningful way. Therefore, a switch to clean fuels 

appears to be the only way to meet WHO Air Quality Guidelines. 

In rural Nepal, around 0.3 million households have adopted biogas fuel plants which 

operate through anaerobic digestion of biodegradable human and animal waste to produce 

clean gaseous fuel. However, to date neither the impact of this program on pollutants nor its 

impact on health has been examined in Nepal or globally. 

 

Materials and methods:  This study was designed to explore if the adoption and sustained 

use of biogas by households impacts pollution levels and cardio-respiratory health of the 

cooks compared to households that have continued to use traditional firewood stoves. 
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Specifically, it was hypothesized that the sustained use of biogas for at least ten years 

would be associated with better lung function, reduced risk of airflow obstruction, lower 

systolic and diastolic blood pressure and a reduced risk of hypertension among adult 

female cooks. 

Direct interviews regarding health and cooking practices and measurement of kitchen and 

ventilation parameters were conducted in 219 biogas- and 300 wood-using households 

from four rural villages located away from industrial and traffic related exhaust fumes. 

Outcome measures like 24 hour kitchen concentrations of carbon monoxide, forced 

expiratory volume in one second, airway obstruction as diagnosed by values below the 

lower limit of normal using Global Lung Initiative Equation 2012 and additionally by 

FEV1/FVC cut-off of 0.7 and high blood pressure as average readings more than 140/90 

mmHg were defined a priori using standard guidelines. Data were analyzed using a 

combination of propensity score matching (PSM) of women and households and statistical 

regression modelling to account for confounding. An unmatched sensitivity analysis was 

carried out for each outcome. 

 

Results:  With the use of PSM and regression adjustment, results of this study show that 

sustained use of biogas is significantly associated with 77% lower 24 hour kitchen 

concentrations of carbon monoxide (20.1 ppm in firewood- vs. 4.6 ppm in biogas-using 

households). Biogas use was also significantly associated with 123 ml [95% confidence 

interval (CI), 11 ml to 236 ml] greater forced expiratory volume in one second (FEV1) after 

adjusting for smoking, kitchen and ventilation characteristics, and additional fuel use when 

compared to age, height and socio-economic score matched groups of firewood users. 

Similarly, the odds of developing airway obstruction (diagnosed by the lower limit of normal 

criteria using Global Lung Initiative equation-2012) among cooks using biogas was reduced 

by 65% [Odds ratio (OR) =0.35, 95% CI (0.16 to 0.46)]. 

After matching and adjustment for smoking, kitchen characteristics, ventilation and 

additional fuel use, the use of biogas was also associated with 9.8 mmHg lower systolic 

blood pressure [95% CI, -20.4 to 0.8] and 6.5 mmHg lower diastolic blood pressure (95% 

CI, -12.2 to -0.8) compared to firewood users among women > 50 years of age. In this age 

group, biogas use was also associated with 68% reduced odds [OR= 0.32 (95% CI, 0.14 to 

0.71)] of developing hypertension. These effects, however, were not identified in younger 

women aged 30-50 years. 

 



x 
 

Conclusions:  Findings from this study suggest that switching from traditional firewood to 

clean biogas fuel and its sustained use is likely to result in an overall health advantage likely 

achieved by the reduced concentrations of kitchen pollutants. However, owing to the cross 

sectional nature of this study, health improvements cannot be attributed to biogas use with 

certainty. Exposure-response analysis would have further strengthened our study; 

nevertheless, current findings suggest that household biogas plants could be an alternative 

energy source to improve the cardio-respiratory health of millions of cooks who are exposed 

to HAP globally. 
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1.1 Reliance on biomass fuels and household air pollution in Nepal 

Nepal continues to suffer from one of the highest energy poverties in the world with the 

majority of its people deprived of even basic clean cooking fuel and access to modern 

energy options. Seventy five percent of its households are bound to using traditional 

biomass fuels (wood, dung and agricultural residues) for cooking, (CBS, 2012a) while sadly, 

only less than 2% of its feasible hydroelectricity potential has been exploited until now. 

(NEA, 2013) In the rural villages which constitute 83% of the population, the situation is 

worse and more than 85% of households are reliant on biomass fuels burnt invariably on 

inefficient open-fire stoves. The poorest quintile is so destitute that virtually all of them are 

on this lowest rung of the energy ladder (Figure 1.1). (CBS, 2011a) 

Figure 1.1: Primary household fuel use in urban and rural Nepal and by wealth quintiles (CBS, 
2011a, CBS, 2012a) 

 

 

 

Around 90% of the total energy demand of the country is consumed at the household level 

(Parajuli, 2011), primarily for cooking human and animal feed or heating the house. This is 

mostly fulfilled by biomass, largely firewood. Although the proportion of biomass fuel 

consumption has seen a declining trend as shown in Figure 1.2, the absolute quantity of 

biomass use has been escalating over the last three decades. This is expected to rise 

further in the nearby future (Malla, 2013), particularly if other alternative and sustainable 

energy sources are not developed e.g. solar, wind, biogas and others. 
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Figure 1.2: Primary solid biomass consumption in Nepal. Note: TPES is total primary energy 
supply. Reprinted from Energy Policy, (Malla, 2013) with permissions from Elsevier 

 

As a non-fossil renewable energy source biomass fuels are considered carbon-neutral and 

not inherently dirty. But, these fuels are often burnt in inefficient open stoves inside poorly 

ventilated houses where they undergo incomplete combustion and produce a complex 

mixture containing hundreds of pollutants, including fine particulate matter (PM), carbon 

monoxide (CO) and a broad range of partially carcinogenic compounds. (Rehfuess, 2006) 

These health-damaging pollutants are emitted at concentrations between those of active 

and passive smoking and spread in and around the home and the neighbourhood causing 

household air pollution (HAP). (Bonjour et al., 2013)  

Several studies have reported household members chronically exposed to very high levels 

of HAP due to burning of biomass inside kitchens in rural Nepal. (Devakumar et al., 2014, 

Kurmi et al., 2013, Singh et al., 2012) These are well above the World Health Organization 

(WHO) air quality guidelines which recommend that the 24h average PM2.5 (PM of less 

than 2.5 microns aerodynamic diameter) exposure should not exceed 25µg/m3 while the 

24h CO exposure should be below 7mg/m3 (~6.11ppm ). (WHO, 2010) Women who largely 

for cultural reasons are responsible for cooking and spend most of their time indoors are 

disproportionately affected by this with peak respirable particulate levels at times reaching 

as much as 60 000 µg/m3 inside the kitchen. (Devakumar et al., 2014) Besides the health 

damaging effects of smoke, women lose significant time in collecting firewood, which also 

exposes them to risks of injuries and violence. Spending many hours a day cooking on 
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inefficient stoves, and having to scrub clean the cooking pots and clothes soiled with black 

soot adds to a reduced quality of life for the female population. 

 

1.2 Health effects of household air pollution in Nepal 

Household air pollution is a major cause of poor health in developing countries. These 

pollutants, even at a low concentration, can inflict health damage in multiple ways. (Smith et 

al., 2010) Strong evidence has consistently linked HAP to conditions like acute lower 

respiratory tract infections (ALRI) in children (Dherani et al., 2008) chronic obstructive 

pulmonary disease (COPD) (Kurmi et al., 2010) and lung cancer (Hosgood et al., 2011) 

among adults. Although two studies have linked HAP exposure to the risk of high blood 

pressure (McCracken et al., 2007, Baumgartner et al., 2011), evidence linking HAP to 

cardiovascular disease (CVD) is recent and is inferential and based on similar physical 

characteristics of the particulates from different sources ranging from ambient air pollution 

to active and passive smoking. (Smith et al., 2014) Additional evidence also supports an 

association of HAP and tuberculosis (Lin et al., 2007), cataract (Pokhrel et al., 2005), low 

birth weight (Pope et al., 2010), and risks of burns, scalds and injury and violence during 

fuel collection (Rehfuess, 2006). 

Out of the several risk factors examined by the Global Burden of Disease study 2010, HAP 

accounts for the biggest share of the disease burden in Nepal with 19 500 deaths and 

around 7.5% of all disability-adjusted life years (DALYs) attributed to this risk factor. (IHME, 

2013b) ALRI, 38% of which is attributed to HAP in the South-East Asian Region including 

Nepal (Niessen et al., 2009), is reported to be the leading cause of premature death (IHME, 

2013a) especially among children under five years of age. In one of the rural Nepalese 

districts, where children are exposed to the effects of HAP from birth, HAP was estimated to 

cause around 50% of ALRI among children under five years of age. (Dhimal et al., 2010) In 

adults, HAP is mainly responsible for chronic lung diseases like COPD, lung cancer and 

cardiovascular disease. (Smith et al., 2014) In one of the earliest studies linking HAP 

exposure to poor health, Pandey reported 18-30% prevalence of chronic bronchitis among 

those exposed to biomass smoke in different villages of Nepal. (Pandey, 1984b) A recent 

study demonstrated a high percentage (27%) of airway obstruction among adults, who were 

all non-smokers, but showed long-term exposure to domestic biomass smoke and lived in 

traditional houses in one of the mountainous villages. (Mandolesi et al., 2011) The risk of 

airway obstruction, even in late-teenagers, was found to be twice as high in the Nepalese 
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population exposed to biomass smoke compared to clean fuel users. (Kurmi et al., 2013) 

HAP contributes significantly to the Nepalese disease burden where more than a quarter of 

the country’s population suffer from some sort of chronic cardiopulmonary disease and 13% 

have some respiratory disease alone. (CBS, 2011a). Studies conducted in Nepal have 

further identified HAP from biomass fuel combustion to be a risk factor for developing 

tuberculosis (Pokhrel et al., 2010) and cataract (Pokhrel et al., 2005). Although most of 

these health effects of HAP are due to chronic exposure, acute exposure in those with pre-

existing airway disease may lead to impaired gas exchange and acute cardiopulmonary 

decompensation. (Kurmi et al., 2011) 

 

1.3 Interventions to reduce household air pollution in Nepal 

Global efforts have identified two main strategies to reduce HAP exposure: switching to 

clean fuels or using cleaner-burning, more efficient cookstoves. These strategies should be 

supported by improving the kitchen ventilation or changing the cooking behaviour. (Semple 

et al., 2014, Smith et al., 2010) In Nepal, programs at national and local level are in place 

promoting improved cooking stoves (ICS), smoke hoods, biogas, liquefied petroleum gas 

(LPG) and ethanol to combat HAP. A government body called Alternative Energy Promotion 

Centre (AEPC) has been acting as the focal point to promote alternative and renewable 

energy solutions including the dissemination of clean cooking options since 1996. (AEPC, 

2103) On 20th January 2013, the government further announced an ambitious program of 

‘Clean Cooking Solutions for all by 2017’. (Rai, 2013) 

Subsequently, a Nepal Alliance for Clean Cookstoves, a public-private collaboration 

platform to coordinate the concerted efforts of all the partners to achieve this strategy has 

also been launched and is hosted by AEPC. (AEPC, 2013c) This alliance promotes all 

renewable clean cooking technologies, excluding fossil fuels like LPG and kerosene. 

Therefore, the current approach is twofold: to promote the use of different kinds of ICS, 

along with ventilation improvement through kitchen management strategies, among the 

poorest households, and to help with switching to clean fuels among better-off households 

who can afford it. But, when the choice of energy usage is also influenced by socio-cultural 

belief and not by socio-economic status alone, moving up the energy ladder is challenging. 

Indeed, it has been observed that people continue stacking multiple fuels and stove types in 

the process. This argues for further educational and awareness initiatives as well as policy 
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and program incentives to promote the sustained use of cleaner fuels and stoves. 

(Rehfuess et al., 2014) 

 

1.3.1 Improved cooking stove interventions in Nepal 

The country saw the first ICS models distributed in the 1950s, but dissemination remained 

stagnant for many decades. Subsequent initiative from the Community Forest Development 

Program promoted prefabricated ceramic stoves and this was primarily driven to reduce 

firewood consumption and prevent deforestation. However, these stoves proved 

inappropriate as they often broke down during transport and as their free distribution did not 

impart any ownership to their users. Later, the 7th national government plan (1985-90) 

formally incorporated the need for wide dissemination of ICS in the country. Over the years, 

several cookstove designs have evolved under different programs of AEPC. The most 

commonly used are mud-brick types, which are simple, cheap and assembled using local 

resources. More heat-efficient metal stoves are also available but are more expensive 

limiting their installation to only around 10 000 households in the high hills. (AEPC, 2013b) 

Around 715 000 households have installed mud type ICS, with or without chimney, 

throughout the country and their installation has seen a rising trend over the last decade as 

shown in Figure 1.3. However, the current trend cannot meet the national target to provide 

clean cooking solutions for all by 2017, so installation of ICS would have to skyrocket in the 

coming years or other clean cooking solutions would also need to be promoted 

aggressively. Moreover, many households adopting these ICS continue burning biomass 

fuels simultaneously in traditional stoves to meet different cooking needs like preparing 

animal feed or boiling water and brewing alcohol. 

Figure 1.3: Installations per year of improved cooking stoves in Nepal. (Source: AEPC) 
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Although the installation of ICS has been increasing, only a few studies have studied the 

effectiveness of these interventions in terms of reductions in HAP and their performance 

over a long time. A before-and-after intervention design with improved mud brick cook 

stoves in Nepal found more than 60% reductions in PM2.5 and CO concentrations but the 

lower limits were still higher than the WHO cut-offs. (Singh et al., 2012) Metal smoke hoods, 

promoted by Practical Action Nepal, were reported to reduce concentrations of kitchen 

pollutants by 82% and firewood consumption by 30%. (Practical Action, 2013) Besides the 

reduction in firewood consumption, these ICS have shown to significantly decrease the time 

spent on cooking and promote better health of the cooks and families. However, a lot of 

these ICS in Nepal, if used and maintained properly, are only capable to reduce a part of 

immediate personal exposure or they vent some smoke to the near outdoors and contribute 

to poor outdoor air quality of the neighbourhood. This limited effectiveness of ICS in Nepal 

is also mirrored by the global evidence base which paints a difficult picture (refer to section 

2.8). 

 

1.3.2 Cleaner fuel interventions in Nepal 

Since the effectiveness of currently available ICS in reducing HAP exposure is limited, a 

switch to clean fuels up to the next rung of the energy ladder appears to be the only way to 

meet WHO Air Quality Guideline limits. Also, in terms of providing cooking fuels, the 

eventual goal of any country should be to provide its people with clean cooking energies 

without any pollution hazard and resultant damage to health. This is ideally achieved by 

electrification (with electricity not only used for lighting but also for cooking) but due to 

significant infrastructure development needs and the large costs to households, 

electrification is unrealistic in countries like Nepal, at least in the near future. Thus, feasible 

clean cooking renewable options currently promoted in Nepal are biogas, wind power, solar 

cookers and community electrification through micro hydropower. As of the most recent 

census, roughly 1.28 million households use some kind of clean fuel like biogas, LPG and 

electricity. (CBS, 2012a) However, switching to these clean fuels remains a farfetched goal 

for the poorest households. Among the rural households, who depend on subsistence 

farming and animal rearing, the potential for household biogas development which operates 

through degradable animal and plant waste remains extensive and this is being 

materialized by the Biogas Support Program of Nepal (BSP). 
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1.3.3 Household biogas interventions in Nepal 

Biogas is a unique biomass-based gaseous fuel produced through anaerobic digestion by 

methanogenic bacteria. Organic human and animal wastes are decomposed inside locally 

made underground digesters as shown in Figure 1.4, under anaerobic conditions generating 

biogas, composed primarily of methane. (Dhingra et al., 2011) Methane, thus produced in 

the digester is piped to the kitchen for cooking or heating where it burns with a smokeless 

clear blue flame and is considered non-toxic. While biogas plants primarily rely on cattle 

dung as the raw material, human excreta from the toilet can also be channelled into the 

digester; in this way, an important aspect of sanitation is also addressed. In a study by 

Smith et al. (2000b) in India, biogas was strikingly superior among all the tested stove-fuel 

combinations: the carbon monoxide (CO) emission factor for biogas was lower than for 

LPG, and so were the corrected total suspended particles. Biogas is therefore attractive 

because of its potential for multiple health benefits and in terms of being both a renewable 

and carbon-neutral fuel. 

Figure 1.4: Schematic of household biogas digester. (Adapted from AEPC report and modified 
for simplicity) 

 

One of the schools in Kathmandu valley introduced the first biogas digester of the country in 

1955. 20 years later - in 1975/76 - the Department of Agriculture launched the first 

household biogas promotion program. (NBPA, 2014) Subsequent contributions from the 

United Mission to Nepal, Gober Gas Company (GGC) and the Agricultural Development 

Bank Nepal sustained the fledgling biogas programme through technology development, 

promotion and subsidy schemes. (NBPA, 2014) After various research and development 

activities, the GGC2047 model, the popular fixed dome digester, was approved in 1992. 
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The same year, with support from the Netherlands Development Organisation, the Biogas 

Support Programme of Nepal was established. (BSP-Nepal, 2012) 

The BSP was established to promote the large-scale use of biogas as a substitute for 

biomass fuels and kerosene used for cooking and lighting in rural Nepalese households. 

(BSP-Nepal, 2012) From 1997, the German and Nepali governments through the AEPC 

also started supporting the BSP with technical and financial support. Since its inception the 

BSP has been committed to developing and disseminating biogas plants as mainstream 

renewable energy solutions in rural Nepal; the program is now greatly expanded to all 75 

districts covering 2800 village development committees. (BSP-Nepal, 2012) It has been an 

exemplary public-private partnership and is an international household energy project co-

funded with carbon credits under the Clean Development Mechanism. Around 300 000 

plants have been installed all over the country and the trend has been increasing. (AEPC, 

2013a) With the subsidy from the government and the microfinance loan, more than 15,000 

new plants are being installed annually. (BSP-Nepal, 2012) 

There are no clear-cut studies reporting the factors that determine the adoption of biogas 

plant among the households in Nepal, although a global systematic review has recently 

been published (Puzzolo et al., 2013). However, the Biogas User’s Survey of Nepal 

designed for other purposes concluded that the shortage of firewood was the prime reason 

for adoption and use of biogas. The time saved during cooking and cleaning utensils, and 

the increased price of the conventional modern energy sources, such as LPG, are some of 

the other reasons cited for the installation and use of biogas for the majority of households. 

On the other hand, a high upfront investment deters households from adoption although 

subsidy and micro finance schemes help to reduce this challenge. (Alternative Energy 

Promotion Centre, 2010) 

 

1.4 Rationale for the study 

Although there has been wide adoption of biogas plants throughout the country for more 

than two decades, only the social, environmental and economic impacts of the program 

have been evaluated until now. To date, no studies in Nepal or elsewhere have assessed 

whether there is an actual reduction in the concentrations of health-relevant pollutants when 

switching from biomass to biogas use. Health impact assessments have been restricted to 

self-reported respiratory symptoms but any measurable health changes have not been 

quantified until now to the best of our knowledge. (Semple et al., 2014) Therefore, the likely 
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exposure reductions and associated health benefits when switching to biogas can only be 

estimated through comparisons with the impacts of switching to ICS. The high-quality 

‘plancha’ stove, an improved woodstove with a chimney, used in the seminal RESPIRE trial 

in Guatemala, the first cookstove randomized trial, achieved reductions in personal 

exposure to CO by 50% in infants (Smith et al., 2010) and it was associated with an 18% 

reduction in the relative risk of physician-diagnosed pneumonia. (Smith et al., 2011) 

However, in adult female cooks, a 60% reduction in personal CO exposure and 90% 

reduction in kitchen CO exposure was not associated with significant gains in lung functions 

after 1.5 years of follow-up. (Smith-Sivertsen et al., 2009) This suggests that the chronic 

effect of HAP exposure on lung function may not revert immediately, but that it could rather 

take as long as a decade to detect an unequivocal effect on the prevalence of obstructive 

airway disease, as also advocated by a previous retrospective cohort study that used 

chimney stoves in China.  (Chapman et al., 2005) 

 

1.5 Aims and objectives 

The main aim of this study is thus to quantify the concentrations of CO and PM2.5 in 

households that primarily use biogas for cooking and to analyze their association with 

respiratory function, prevalence of obstructive airway disease, cardiovascular and 

respiratory symptoms compared to those households that primarily use firewood for 

cooking. We also aim to explore if there are differences in blood pressure, resting heart rate 

and blood oxygen saturation following the adoption and sustained use of biogas plants for 

at least 10 years. In this way, we aim to evaluate the health impacts of the BSP in terms of 

reductions in key health-relevant pollutants and in terms of cardiopulmonary health benefit. 

Specifically we will address the following research questions: 

Main questions: 

 Does the installation and sustained use of household biogas plants result in reduced 

kitchen concentrations of PM2.5 and CO?  

 Does the installation and sustained use of household biogas plants for ten years 

result in improved cardiopulmonary function among women? 

 Can kitchen concentrations of PM2.5 and CO be linked to cardiopulmonary function 

among women?  
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Sub-questions: 

 To what extent has the BSP had an impact on the prevalence of respiratory 

symptoms among women? 

 What are the factors determining household adoption of biogas plants? 
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2 Literature review 
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2.1 Global burden of household air pollution 

Although the world has seen a decreasing trend, from 62% in 1980 to 41% in 2010, of 

proportion of people cooking with solid fuels (biomass and coal) over the past three 

decades, the absolute number has remained stable at around 2.8 billion due to population 

growth. (Bonjour et al., 2013) On the contrary, deaths attributed to household air pollution 

has more than doubled from 2 million in 2004 (attributed to solid fuel use) to 4.3 million in 

2012. However, this massive increase is due to the change in the methodology adopted in 

the risk assessment and the inclusion of additional health outcomes in the recent 

estimates.(WHO, 2009, WHO, 2014) Figure 2.1 displays the deaths attributable to HAP in 

2012 by disease, and age and sex. Almost all of these deaths were in low- and middle- 

income countries where more than 90% of people in the rural areas cook with solid fuels in 

unvented stoves. The poorest are the ones who are hardest hit by this burden as poverty is 

inextricably linked to the vicious cycle of reliance on solid fuel use and restricted economic 

development. (Bruce et al., 2006). 

 

Figure 2.1: Deaths attributable to household air pollution in 2012, source: WHO (2014) 
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out of those examined by the Global Burden of Disease (GBD) 2010 project. In South Asia, 

including Nepal, it is the leading risk factor for both sexes. (Lim et al., 2012) Women and 

girls receive the highest exposure to HAP as they spend significant times cooking for their 

family. However, because of higher rates of background diseases in men, mostly due to 

high smoking prevalence among them, absolute number of deaths attributed to HAP is 

more in case of men than women although women are more susceptible and are exposed 

to higher risks.  

 

2.2 Concentrations of household air pollutants and its exposure 

As briefly introduced in section 1.1, burning of solid fuels in open fires and unvented stoves 

produces several harmful pollutants, including different sizes of particulate matter, carbon 

monoxide, sulphur oxides, nitrogen dioxides, aldehydes, benzene, polyaromatic 

compounds, heavy metals like arsenic and fluorine (in case of coal burning) and free 

radicals. (Smith, 1987, Naeher et al., 2007, WHO, 2006) All of these have health damaging 

potential including the polyaromatic compounds which are mutagenic or carcinogenic. 

(Wornat et al., 2001). Other ill effects are mediated through inflammation, immune 

suppression, mucociliary dysfunction, and severe irritation. (Naeher et al., 2007) Children 

and women from the poorest rural areas are exposed to very high levels of such harmful 

pollutants daily. A large household survey in India measured 163 µg/m3 of daily PM2.5 in 

living areas and 609 µg/m3 in the kitchen. National averages extrapolated from these 

household figures were 113 µg/m3 in the living area and 450 µg/m3 in the kitchen. 

(Balakrishnan et al., 2013) Based on the same survey, women were estimated to be 

exposed to 337 µg/m3, children (under the age of five years) to 285 µg/m3 and men to 204 

µg/m3 of PM2.5 daily. (Smith et al., 2014) These concentrations are at least hundred folds 

higher than the WHO air quality guidelines (24 hour PM2.5 of 25 µg/m3 and annual mean of 

10 µg/m3) and still far beyond the WHO interim target I (24 hour PM2.5 of 75 µg/m3 and 

annual mean of 35 µg/m3). (WHO, 2010) Several other studies have measured HAP 

exposures in households and other microenvironments globally and these are essentially in 

the ranges reported in India or higher with age, gender, and socioeconomic differences 

influencing the exposure. 

 

 



15 
 

2.3 Health damaging potential of household air pollution 

2.3.1 Particulate matter 

Particles are the most health-damaging component of solid-fuel smoke. (Smith, 1987) They 

are a complex mixture of microscopic solid and liquid particles-both organic and inorganic 

and primarily composed of, but not limited to, sulphate, nitrates, ammonia, black carbon, 

metals, soil, dust particles and water. They are of different sizes and their ability to damage 

health depends on the sizes that one is exposed to. Besides the size, several other factors 

including the number of particles, solubility and composition of particles (either hygroscopic 

or hydrophobic), surface area of particles and even the breathing rate, physical activity and 

lung volume and lung morphology of an individual influence the deposition of particles 

inside the lungs. (Carvalho et al., 2011, van Rijt et al., 2014, Londahl et al., 2012) 

Particulate matters of or less than 10 microns (PM10) in diameter are essentially the ones 

that are inhalable and travel deep into the lungs, those larger than 10 microns are deposited 

in the oropharyngeal region. Fine particles which are below 2.5 microns in diameter can 

travel to the bloodstream and cause systemic inflammatory oxidative stress. This oxidative 

stress remains central to the patho-physiology of adverse respiratory and cardiovascular 

health. (Brook et al., 2010) Exposures to PM have shown the potential to impair alveolar 

macrophage immune response thereby increasing susceptibility to pulmonary infections. 

(Sawyer et al., 2010, Pope III and Dockery, 2006) 

The large Framingham offspring cohort study demonstrated 20 ml lower lung function after 

previous-day exposure to a “moderate” range of ambient PM2.5 classified as per the U.S. 

Environmental Protection Agency (EPA) index. (Rice et al., 2013) Acute exposures to PM 

are associated with aggravation of heart and lung diseases, e.g. COPD exacerbations (Ling 

and van Eeden, 2009), oxygen de-saturation and cardiac decompensation (Kurmi et al., 

2011). All of these acute events have the potential to cause premature deaths. Long term 

chronic PM2.5 exposure contributes to the development of chronic diseases like COPD 

(Ling and van Eeden, 2009) and can reduce life expectancy (Brook et al., 2010). 

Additionally, it is reported that long term exposure to PM2.5, from ambient sources, was 

associated with an increased incidence of acute myocardial infarction. (Madrigano et al., 

2013)  
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2.3.2 Carbon monoxide 

Carbon monoxide (CO) is produced in abundance during incomplete combustion of solid 

fuels. It is a colourless and odourless toxic gas easily absorbed into circulation through 

pulmonary bed after inhalation. (Raub, 1999) It has a strong affinity to haemoglobin, more 

than 200 times that of oxygen, so that oxygen cannot compete to bind with haemoglobin. 

This impairs oxygen transport and delivery and leads to tissue and cellular hypoxia. (Ernst 

and Zibrak, 1998, Prockop and Chichkova, 2007) Health damaging effects, mostly to the 

brain and heart, are mediated by tissue hypoxia or direct cyto-toxicity. (Somogyi et al., 

1981) 

Although symptoms are non specific, headache is the most common one observed with 

both acute and chronic exposure. Other associated symptoms could be nausea, vomiting, 

dizziness, confusion, shortness of breath, visual changes, and loss of consciousness or 

death. Those with pre-existing conditions, especially of heart and lung, might manifest these 

symptoms even at mild levels of CO. (Prockop and Chichkova, 2007) Acute exposure to 

very high levels can be lethal. In developing countries including Nepal, burning of inefficient 

heating devices inside closed rooms during winter has resulted in accidental deaths when 

CO levels accumulate to a very high level thereby asphyxiating persons to sudden 

unconsciousness and death. 

Chronic exposure to CO can cause neurobehavioral abnormalities, cognitive deficits and 

impaired short term memory. Of special importance in this regard is the effect on the 

developing foetus when the pregnant mother is exposed to chronic levels of CO. As CO has 

the potential to cross the placenta, it can accumulate and cause tissue hypoxia in the foetus 

which can lead to low birth weight, pre- and post- natal deaths, developmental disorders, 

and chronic cerebral conditions. This also exposes mothers to complications during 

delivery. (Raub et al., 2000) 

 

2.4 An overview of health effects of household air pollution 

As briefly discussed in section 1.2, several studies have identified household air pollution 

from solid fuel use as an important modifiable risk factor for acute and chronic health 

conditions in both children and adults. With firm evidence available, the latest WHO burden 

estimates for HAP incorporated diseases like ALRI under the age of five years, and COPD, 

lung cancer, ischemic heart disease (IHD), and stroke in adults. 
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2.4.1 Effects on foetus and children 

Studies have established associations between household air pollution and pregnancy 

outcomes like still birth (Lakshmi et al., 2013, Pope et al., 2010) and low birth weight (Pope 

et al., 2010, Epstein et al., 2013, Boy et al., 2002) The systematic review by Pope et al 

found a 95.6 g (95% CI: 68.5 to 124.7) reduced mean birth weight associated with HAP 

exposure. (Pope et al., 2010) Although these associations are yet to be causally proven 

through longitudinal studies, the evidence is consistent across a broad range of settings 

and the mechanism cited is biologically plausible given that such effect is seen with active 

or passive smoking, which have characteristics similar to those of smoke from solid fuel 

use, except for nicotine. The carboxy-haemoglobin levels in cooks exposed to HAP are also 

comparable to those seen among active or passive smokers thereby further strengthening 

this link. (Behera et al., 1988) 

Infants and young children who receive significant exposure to HAP while spending time 

with their mothers are at increased risks of ALRI. Studies conducted in different settings 

have consistently confirmed this link. (Dherani et al., 2008, Smith et al., 2011, Ezzati and 

Kammen, 2001) Considering that children are exposed to 285 µg/m3 of daily PM2.5 based 

on Indian household survey estimates, the risk of ALRI in children <5 year ranged from 2 to 

3.8 folds. (Smith et al., 2014) Although the mechanism by which HAP causes ALRI is not 

fully understood, it is hypothesized that immature lungs and an immature immune system 

during early childhood are particularly vulnerable to inflammatory insults induced by 

different HAP components leading to increased ALRI susceptibility. (Mishra, 2003, Smith et 

al., 2000a). Those who survive episodes of ALRI in early childhood are likely to have 

unhealthy lungs and impaired lung functions during adulthood (Lopez Bernal et al., 2013) 

making them susceptible to COPD when they continue being exposed to HAP. 

Further explorations are needed however to sort out the conflicting association of HAP 

exposure and asthma in children in the context of studies identifying associations for (Wong 

et al., 2013, Trevor et al., 2014) and against (Po et al., 2011) it. The same holds true for the 

association of HAP with anaemia and stunting in children. (Mishra and Retherford, 2007, 

Samet and Tielsch, 2007, Machisa et al., 2013)  
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2.4.2 Effects on adults  

In adults HAP is associated with various health risks as summarized in Table 2.1. These are 

based on systematic reviews and meta-analysis, as well as integrated response analysis 

conducted as part of the comparative risk assessment for the GBD 2010. (Smith et al., 

2014, Lim et al., 2012). 

Table 2.1: Summary of odds ratio of diseases associated with HAP based on systematic 
reviews, meta analysis and integrated exposure response function 

Disease 
Odds ratio with 95% confidence interval 

Women > 15 year Men > 15 year 

COPD 2.30 (1.73 - 2.06) 1.90 (1.15 - 3.13) 

Lung cancer- coal 1.98 (1.16 - 3.36) 1.31 (1.05 - 1.76) 

Lung cancer- biomass 1.81 (1.07 - 3.06) 1.26 (1.04 - 1.52) 

IHD (1.4 - 2.2) (1.4 - 2.2) 

Stroke (1.4 - 2.4) (1.3 -2.4) 

Cataracts 2.47 (1.63 - 3.73) NA 

Adapted from Smith et al. (2014) 

 

The remainder of this literature review is focused on lung functions, particularly airflow 

obstruction and cardiovascular diseases among adult women as they are directly related to 

the research questions being addressed through this dissertation. 

 

2.5 Measuring respiratory health and lung indices 

HAP inflicts severe damage on the respiratory health of cooks as shown in Table 2.1.To 

understand how HAP affects lung function and thereby leads to airway limitation and 

COPD, one has to understand the basics of different lung indices, predicted lung values for 

the general population and how COPD is diagnosed in modern practice. Thus a few 

introductory basics of spirometry and different lung indices are presented first, followed by 

the choice of reference equation to calculate the predicted values of lung indices and 

concluding with diagnosis criteria of COPD. 

 

2.5.1 Overview of spirometry and important lung indices 

Spirometry, a procedure which measures the flow and volume of air in the lungs, is one of 

the first line investigations for any respiratory complaints. It is used to facilitate a diagnosis, 

to assess the severity of a disease, to monitor its progress and prognosis or to follow the 
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efficacy of a treatment. (Miller et al., 2005) It is also used to identify airway disease at an 

early stage as a screening tool. The concept of measuring lung volumes dates back to as 

early as the second century. (Kiraly, 2005) However, only after Hutchinson introduced his 

water spirometer in 1846, its clinical use started albeit measuring only one of the lung 

parameters- the vital capacity. (Hutchinson, 1846). A century later, seminal works from 

Tiffeneau and Pinelli helped transform lung function measurements to its present day form 

with forced expiratory volume in one second (FEV1) and other important lung indices 

added. (Yernault, 1997) 

Measurement of lung indices through spirometry is dependent on the participant’s 

cooperation, and respiratory societies have released strict guidelines on how spirometric 

tests should be performed and interpreted. (Miller et al., 2005, Pellegrino et al., 2005) With 

proper instruction and demonstration of the procedure, as young as five year old children 

can be encouraged to perform lung function testing through spirometry (Eigen et al., 2001), 

although it is demanding to perform such tests with very young and very old age groups. 

Incorrect measurement of age and height can introduce significant biases in the predicted 

values of lung indices, so these should be recorded very precisely, documenting exact date 

of birth and measuring the standing height up to the nearest millimetres. (Quanjer et al., 

2012a) It is equally important to explain the procedure and answer the questions and allow 

the participants to try and familiarise themselves with the procedure. Finally, participants 

are encouraged to blow into the spirometer as hard and as fast as possible immediately, 

without a pause, after a maximum inspiration, and to completely empty their lungs. (Miller et 

al., 2005) During the blow, participants are asked to look straight forward without bending. 

Applying a nose clip is not absolutely mandatory but its use prevents participants from 

inhaling or exhaling through the nose. 

 

Introduction to different lung indices (FEV1, FVC, MEF 2575%) 

FEV1 or the forced expiratory volume in one second is the volume of air exhaled from lungs 

in the first second of a forced expiration started from the level of full inspiration. (Miller et al., 

2005) This is usually expressed in litres. This is the most commonly used lung index to 

diagnose airway obstruction. 

FVC or the forced vital capacity is the volume of air exhaled from lungs with a maximally 

forced effort started from the level of full inspiration. (Miller et al., 2005) This is also 

expressed in litres and is also referred to as forced expiratory vital capacity. 
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The Z score of FEV1 or FVC is useful in making comparisons between two FEV1 values or 

z scores of FEV1, as lung indices are highly dependent on age, sex, height and ethnicity of 

a person. 

MEF2575% or mid forced expiratory flow between 25% and 75% is the average expiratory 

flow rate during the middle half of expiratory vital capacity. (Miller et al., 2005) It is also 

known as maximum mid-expiratory flow and is expressed in litres per second. 

Mathematically, this is:  

MEF2575% = ½ FVC/Δt, where Δt is the time required to expire the middle half of FVC 

So, this index is highly dependent on reliable measurement of FVC. 

The largest values of FEV1 and FVC are taken from acceptable curves (those having good 

starts, without artefacts and with satisfactory exhalation) obtained from repeated blows 

during spirometry, even if they are not from the same curve. MEF2575% is taken from the 

curve that has the largest sum of FEV1 and FVC.  

Criteria for an effective and acceptable blow 

Automated spirometer displays quality control messages as shown in Table 2.2 that guides 

one to easily instruct participants on how and what to improve in the subsequent blows. It 

also provides information on overall quality of the procedure. Grades D and F are not 

acceptable and it is rarely helpful to record more than eight blows in an attempt to obtain an 

acceptable blow. 

Table 2.2: Automated quality control checks, messages and grading of blows during 

spirometry 

Manoeuvre acceptability 

Message displayed Criterion 

Don't hesitate If the back extrapolated volume (BEV) > 150 mL 

Blast out faster If the time to peak expiratory flow (PEF) > 120 ms 

Blow out longer If the change in exhaled volume during the last 0.5 s > 100 mL, and forced expiratory time < 2 s 

Blast out harder PEF values do not match within 1.0 L/s, 

Deeper breath Forced vital capacity (FVC) values do not match within 150 mL 

 Only one error message is displayed (in the order of priority listed above) 

Good test session After 2 acceptable manoeuvres that match 

Quality control grades 

A At least two acceptable manoeuvres with the largest two FEV1 values matching within 100 mL 

B At least two acceptable manoeuvres with FEV1 values matching between 101 and 150 mL 

C At least two acceptable manoeuvres with FEV1 values matching between 151 and 200 mL 

D Only one acceptable manoeuvre, or more than one, but the FEV1 values match > 200 mL  

(with no interpretation) 

F No acceptable manoeuvres (with no interpretation) 

Adapted from Ferguson et al. (2000) and (http://www.spirxpert.com/performing7.htm#top) 



21 
 

2.5.2 Importance of a reference equation and its choice 

Interpretation of the values obtained after spirometry depends on the choice of a reference 

equation for comparison. As a person’s lung indices measured and documented at a prior 

healthy state are usually not available, it is difficult to ascertain if a person’s current lung 

measurement is within a normal range. So, to overcome this challenge, one has to compare 

the results to a predicted value obtained from a healthy subject of similar age, height, 

gender and ethnicity and who does not smoke. Such predicted values could be based on 

parsimonious regression models derived using high quality spirometry data obtained from 

representative sample of the population to which the prediction is to be applied. 

More than 300 reference equations have been published for lung functions and many 

unpublished ones are available in spirometer. (Stanojevic et al., 2013) However, a 

reference equation should be chosen that does not need extrapolation of age ranges, and 

that considers suitable ethnic group. (Stanojevic et al., 2013, Swanney and Miller, 2013) 

Recently, the Global Lung Function Initiative (GLI), a special task force of the European 

Respiratory Society, developed all age range reference equations, the “GLI 2012” 

equations, that are valid across wide age ranges (3-95 years) globally and that incorporate 

multiple ethnic groups, based on spirometry records from around 0.1 million healthy non 

smokers collated from 70 centres of 33 different countries. (Quanjer et al., 2012b) Major 

respiratory societies have already endorsed the GLI 2012 equations. 

Although several ethnic groups are included in the GLI 2012 equations, these are still not 

comprehensive. (Stanojevic et al., 2013) However, for the time being for ethnic groups like 

Nepalese, for whom a reference equation does not exist, a composite equation averaging 

the equations for the rest of the ethnic groups is likely to facilitate spirometry interpretation 

until remaining global ethnic groups are also incorporated. (Quanjer et al., 2012b) This 

reference equation takes the form of: “ 

log(FEV1)= a + b.log(height)+ c.log(Age)+ age-spline + d.group 

The predicted value is: ea.Hb.Ac.ed.group.espline 

a is the intercept, H is height (cm), b the exponent for height, A is age (years) and c 

the exponent for age, and spline the contribution from the age spline, group is 

Caucasian, African American, South or North East Asian, and takes the value of 1 

for the appropriate group and 0 for other groups”.(Quanjer et al., 2012b) 
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2.5.3 Diagnosis of airflow obstruction: LLN or GOLD cut-off? 

Airflow limitation as evidenced by reduced FEV1/FVC is a hallmark of obstructive lung 

disease. (Hogg, 2004) The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

recommends confirming the diagnosis of COPD by documenting airflow obstruction by 

spirometry in adults with chronic cough or sputum production with exposure to tobacco 

smoking or smoke from indoor cooking. (GOLD, 2014) An objectively measured post 

bronchodilator FEV1/FVC < 0.70 confirms airflow obstruction/limitation (AO) and the 

diagnosis of COPD can be made in cases with such risks. (GOLD, 2014) 

However, there is a controversy on whether such an absolute cut-off, as advocated by 

GOLD, should be used in the diagnosis of AO. (Csikesz and Gartman, 2014) The simplicity 

of one cut-off without the need of a reference equation has been argued as the basis for 

adopting this straightforward arbitrary value. On the contrary, many studies, reviews and 

editorials have argued against such practice which is susceptible to age-related bias 

because of the inherent dependency of FEV1/FVC to age-related changes in lung function 

thereby leading to over-diagnosis of AO in elderly and under-diagnosis in younger age 

groups. (Quanjer et al., 2010, Culver, 2006, American Thoracic Society, 1991, Roberts et 

al., 2006, Hansen et al., 2007, Enright and Ruppel, 2009) All these studies advocated for 

the use of the lower limit of normal of FEV1/FVC as the diagnosis criterion for AO/COPD. It 

is important to note however that regardless of the diagnosis criteria used, clinical context 

cannot be ignored.(Csikesz and Gartman, 2014) 

 

2.6 Effects of HAP on COPD 

Many studies have evaluated the effects of HAP on respiratory health, especially COPD. 

(Lin et al., 2008, Liu et al., 2007, Kurmi et al., 2010) Although, cigarette smoking has always 

been the most important risk factor for COPD, exposure to solid fuel smoke has now been 

estimated to be more important than tobacco smoking given that nearly 3 billion people are 

exposed to HAP compared to just over a billion smokers. (Salvi and Barnes, 2009, Salvi 

and Barnes, 2010). This is further strengthened by data from prevalence studies from 

around the world which show that a quarter to as close as a half of all the COPD patients 

are found to have never smoked in their life. (Regional COPD Working Group, 2003, Ehrlich 

et al., 2004, Zhou et al., 2009, Salvi and Barnes, 2009) In any case, there is little doubt that 

the effect of smoking and HAP exposure is additive and that they are the prime etiological 

factors for COPD pathogenesis. 
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GOLD defines COPD as  

“a common preventable and treatable disease, characterized by persistent airflow 

limitation that is usually progressive and associated with an enhanced chronic 

inflammatory response in the airways and the lung to noxious particles or gases.” 

(GOLD, 2014) 

Although the manifestations of COPD are heterogeneous, chronic cough, sputum and 

dyspnoea are usually universal. Other associated symptoms could be wheezing and chest 

tightness. It is noteworthy that symptoms experienced by COPD patients are often not 

correlated with spirometry-based objective measurement of lung function or even computer 

tomography-based changes in the lungs. (Agusti et al., 2010) 

The firm belief until very recently was that nothing except for smoking cessation would alter 

the natural course of COPD. (Decramer and Cooper, 2010, Fletcher and Peto, 1977) This 

assertion deterred the development of early diagnosis and treatment initiation strategies for 

COPD patients. However, recent studies pointed out that a majority of patients with 

objective COPD are not aware of the presence of the disease. A large representative 

household survey from the UK reported a high prevalence of undiagnosed COPD. This 

survey reported 13% prevalence of spirometry diagnosed COPD among the participants but 

the majority (80%) of them denied any prior awareness. (Shahab et al., 2006) In this 

backdrop it is plausible to argue for attempts to make early diagnosis and initiate 

interventions aiming to avoid tobacco smoking or exposure to solid fuel smoke. It should be 

noted, however, that a lot of factors come into play in such interventions and attempts 

should be linked to a cost effectiveness analysis. 

 

2.6.1 Pathogenesis of COPD in the context of HAP 

Figure 2.2 shows the mechanism of how different factors come into play in the pathogenesis 

of COPD, primarily driven by inflammation of the lung tissues-involving airways, 

parenchyma and vasculature, thereby activating cellular and molecular changes (resulting 

from innate and adaptive immune responses) leading to the destruction of alveolar wall, 

airway narrowing and airflow limitation. 

Alveolar macrophages, which are an important part of the innate human immunity, regularly 

clear inhaled foreign particles deposited in the airways by phagocytosis and transport. 

(Kulkarni et al., 2005) However, regular and chronic exposure to smoke and toxic irritants 
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directly invades and disrupts the physical epithelial barrier that separates other lung tissue 

from alveolar airspaces. Disruption of this barrier initiates an inflammatory response. (Hogg, 

2004) Macrophages, eosinophils, neutrophils thereby act to phagocytose the invading 

particles. On subsequent attacks, the cellular and humoral immune systems are activated 

and initiate a series of cellular and molecular changes thereby leading to accumulation of 

inflammatory mucous exudates in the lumen. Alveolar walls are then infiltrated by 

inflammatory immune cells. This is now coupled with airway and vascular remodelling that 

leads to the thickening of airway walls, loss of elastic recoil and increased small airway 

resistance which are characteristic features leading to chronic airflow limitation. (Hogg, 

2004, Hogg et al., 1968, Hogg et al., 2004, Yanai et al., 1992) 
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Figure 2.2: Pathogenesis of COPD 
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2.7 Effects of HAP on cardiovascular health 

According to the most recent WHO data, 60% of all deaths attributed to HAP were caused 

by either ischemic heart disease (IHD) or stroke in 2012 (Figure 2.1). IHD and stroke are a 

part of the broad cardiovascular disease complex which includes all conditions affecting the 

heart and blood vessels. 

Ischemic heart disease is caused by decreased blood supply to heart muscles owing to the 

narrowing of coronary arteries that supply it. This is essentially due to development of 

atherosclerotic plaques in the intimae of blood vessel thus narrowing the vessel calibre. 

These plaques are rich in cholesterol deposits, collagen and other smooth muscle cells. 

When the plaque grows significantly to occlude the vessel, it impedes blood supply to heart 

muscles thereby causing ischemic symptoms only during exertion in the early stages. 

These plaques favour the build-up of thrombus around them and at times may completely 

block the vessel supplying the heart thereby causing acute myocardial ischemia/infarction. 

At other times a blood clot may break from a thrombus and embolise to distant vessels 

supplying the heart muscles, again leading to ischemia or infarction depending on the 

extent of blockage and muscle injury. 

Stroke can be ischemic or hemorrhagic, with the ischemic type being the most common. A 

thrombus, atherosclerotic plaques, or an embolus can directly occlude or induce spasm of 

the cerebral artery and any of its branches thereby causing ischemia of the associated 

vascular territory distal to the occlusion site. Brain cells, primarily neurons, in the blood-

deprived territory are susceptible to irreversible death if the occlusion is complete without 

any collateral blood supply and sustained for a longer duration. Hemorrhagic strokes on the 

other hand are due to rupture of weakened blood vessels in the brain-mainly due to rupture 

of the aneurysm. 

 

2.7.1 Pathogenesis of IHD and stroke in the context of HAP 

Evidence linking HAP to cardiovascular disease (CVD) is recent, indeed there are no 

epidemiological studies that directly examine how HAP exposure increases the risk of IHD 

or stroke, although two studies have linked HAP exposure to the risk of high blood pressure 

(McCracken et al., 2007, Baumgartner et al., 2011), which is a leading risk factor for global 

disease burden. (Lim et al., 2012). Instead, the recent burden of disease estimates provided 

by the Global Burden of Disease 2010 project (Lim et al., 2012) and WHO (2014) are based 
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on a novel integrated exposure-response analysis across multiple sources of particulate 

matter air pollution, ranging from active and passive smoking via HAP to ambient air 

pollution. (Burnett et al., 2014) PM2.5 from ambient air pollution and active or passive 

smoking is a well-recognized risk factor for CVD mainly mediated through continued 

oxidative stress and systemic inflammation. (Brook et al., 2004, Brook et al., 2010) They are 

associated with increased hospitalization (Schwartz and Morris, 1995, Lin and Kuo, 2013) 

and mortality (Beelen et al., 2014, Zhou et al., 2014). 

The likely effect of HAP on IHD and stroke is inferential and is based on the knowledge that 

particulates from ambient sources and smoking and HAP share similar physical 

characteristics. This is further strengthened by the fact that PM levels from HAP are located 

in between the levels seen in active smoking and passive smoking or ambient air pollution. 

(Smith et al., 2014) Additionally, for both IHD and stroke high blood pressure is one of the 

major modifiable risk factors (Poulter, 2003) and controlling high blood pressure together 

with other risk factors is the main way to prevent IHD and stroke. 

Studies from Guatemala and China have linked HAP to increased blood pressure among 

adult cooks. (McCracken et al., 2007, Baumgartner et al., 2011) The study from China 

documented more than 4 mmHg rise in systolic blood pressure (SBP) and 1.8 mmHg rise in 

diastolic blood pressure (DBP) with each one log unit increase PM2.5 mass among women 

beyond their fifth decade of life. (Baumgartner et al., 2011) Studies have now started 

looking at direct outcome measures of IHD rather than the intermediate outcome –

hypertension. A recent study from Pakistan demonstrated nearly fivefold increased risk of 

suffering from acute coronary syndromes (myocardial ischemia and unstable angina) 

among women who were current users of solid fuel compared to those who were natural 

gas users for cooking. (Fatmi et al., 2014) Similarly, another study from China found 

household solid fuel use associated with 2.6 (95% CI of Odds ratio: 1.5-4.3) times the risk 

for self reported ischemic heart disease after adjusting for potential confounders. They also 

reported a 1.87 times (95% CI of Odds ratio: 1.03 to 3.38) higher risk of stroke among those 

using solid fuel for longer duration-categorized as those in the highest tertile versus those in 

the lowest tertile of the duration of solid fuel use for heating and cooking. (Lee et al., 2012) 

HAP exposure causes systemic inflammation and oxidative stress which mediates high 

blood pressure. High blood pressure is a major risk factor for atherosclerosis at all ages. 

(Fausto et al., 2004) HAP has also been found to increase the tendency for coagulation and 

platelet activation thus further favouring atherosclerosis. More than 90% patients with IHD 

have atherosclerosis of one or more of the coronary arteries. (Fausto et al., 2004) 
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2.8 Evidence of effectiveness of HAP interventions 

With the advent of the Global Alliance for Clean Cookstoves (GACC), there has been a 

massive rise in the momentum to disseminate cleaner-burning stoves in the last few years. 

The GACC has been working to meet its interim target of 100 million homes adopting clean 

and efficient stoves by 2020 with the ultimate goal of universal adoption. (GACC, 2014) 

Many partners have been involved in delivering this target, and several cookstoves are 

being tested in the market and communities. Some of these are driven by locally formed 

national alliances e.g. the Nepal Alliance for Clean Cookstoves. 

However, evidence as such if these stoves are reducing HAP exposure to the desired level 

is limited. Several studies have tested different improved cookstove designs before and 

after their installation. Many of them performed well in that they achieved reductions in PM 

or CO levels after the installation of the stoves. But, these levels were still much higher than 

the WHO guideline limits. Although the mean or median levels are statistically reduced, 

many studies document high variability and overlapping concentrations before and after the 

stove use.  

A forthcoming systematic review of the effectiveness of different stove and cleaner fuel 

solutions, conducted in the context of new WHO guidelines on indoor air quality, paints a 

difficult picture: None of the ICS models currently promoted around the world and evaluated 

through PM or CO measurements in the field meet the WHO guideline for PM2.5 or its 

interim target (Rehfuess et al., personal communication). On the other hand, the nonlinear 

character of the integrated exposure response analyses has a huge implication on the 

exposure reduction we have to aim for so as to gain substantial health benefits. Smith et al. 

(2014) indicates such level of exposure reduction is difficult to achieve with currently 

available cookstove technologies that still burn solid fuels, and also is unlikely to be 

achieved by switching to fuels that are at the highest rung of energy ladder-electricity and 

gas due to the fuel stacking phenomenon. 

The limited effectiveness of these improved technologies mirrored by the global evidence 

base brings us to a difficult situation to trying to address the HAP burden experienced by 

almost half of humanity, where adoption of new technology is already multifactorial-

influenced by factor that spans poverty to sensitive socio-cultural beliefs. 
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3 Methodology 
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3.1 Study design 

This is a propensity score matched cross sectional study to compare the concentrations 

and effects of household air pollution among women who primarily use traditional 

woodstoves versus those who primarily use biogas fuel for cooking. We tried to explore if 

the adoption and sustained use of biogas plants for at least 10 years, has had any 

measurable pollution and health benefits to its users compared to those who have 

continued to use traditional woodstoves. 

We specifically assessed the impact of sustained biogas fuel use on the concentrations of 

particulate matter (PM) and carbon monoxide (CO), cardio-respiratory health outcomes- 

mainly lung indices, blood pressure, heart rate, oxygen saturation and self-reported 

cardiovascular symptoms for adult female cooks of rural Nepal. 

 

3.2 Study duration 

All recruitments and measurements were done during the summer months, 20 March - 12 

May, 2012 and 18 April - 10 May, 2013 to rule out any seasonal variation. Both air pollution 

measurements and health assessments were intended to be undertaken in every 

household. 

 

3.3 Study site 

Nepal is landlocked between India to the east, south and west and China to the north. With 

a total land area of 147 181 square kilometres, the country is divided into three ecological 

zones: mountains (above 4877 meters), hills (610 meters to 4876 meters) and terai or 

plains (less than 610 meters). For administrative purposes, it is subdivided into five 

development regions, 14 zones, and 75 districts. Districts are further divided into 3,915 

smaller rural units called village development committees (VDCs) and 58 urban 

municipalities. (CBS, 2012b) Each VDC comprises 9 wards. 

Of the 5.4 million households and 26.5 million total population of the country, nearly 50% 

live in the southern plains, 43% in the mid hills and the remaining 7% in the northern 

mountains. There is high cultural diversity with 125 caste/ethnic groups speaking 123 

different languages.  83% of the population still lives in remote rural areas with more than 

three quarters of households involved in subsistence farming. (CBS, 2012a) Remittance 
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remains the foremost source of income for more than half of the country’s households 

where a quarter of the population lives below the national poverty line. (CBS, 2011b). With 

energy access linked to poverty, 78% of the household still use traditional biomass fuel 

(wood, cow dung, leaves and agricultural residues) for cooking and related chores. (CBS, 

2011a) 

 

3.3.1 Selection of district 

BSP as discussed under section 1.3.3 is a nation-wide programme to promote the use of 

household biogas plants through a subsidy mechanism. According to data from BSP, there 

are 19 districts with more than 5000 biogas plants installed, 20 districts with 1000-5000 

plants and 36 districts with less than 1000 plants. Figure 3.1 shows the distribution of biogas 

plants in Nepal. (BSP-Nepal, 2012) 

Figure 3.1: Distribution of biogas plants in Nepal 

 
Source: BSP Year Book 2011/12 
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For practical reasons and to ensure timely, high-quality data collection, we limited our 

sampling frame to only those 19 districts with high density of biogas adoption. Next, we 

assessed the road network density of these 19 districts from the data obtained from the 

Department of Roads and the District Profile of Nepal 2007 (Intensive Study Research 

Centre, 2007) as shown in Table 3.1. So as to minimize the effect of outdoor air pollution 

due to vehicular emissions (Kan et al., 2007) as well as industrial emissions that are 

commonly seen when road access is better, we purposively selected Gorkha district as our 

study site because it had the lowest road density network. We also presumed that with 

access to better road and transport services people would have access to multiple energy 

solutions and would have adopted several fuel combinations making it difficult to identifying 

a pure sample of wood only and biogas only users in the study. Gorkha also ranked 40th in 

the Human Development Index and 32nd in the Overall Composite Index (Intensive Study 

Research Centre, 2007) out of the 75 districts of Nepal and may therefore share 

characteristics of both extremes. 

Table 3.1: Comparison of districts with the highest adoption of biogas according to road 
density and other characteristics 

Districts Geography Households 
HDI 

ranking 

Composite 
index 

ranking 

% of 
households 
using solid 

fuel 

Road 
density 
(km/sq 

km area) 
 

Gorkha Hills 66506 40 32 81.6 0.03763 

Sindhuli Hills 57581 34 49 90.0 0.03842 

Lamjung Hills 42079 20 22 82.9 0.06393 

Nawalparasi Terai 128793 25 37 85.5 0.11579 

Dhading Hills 73851 55 44 93.3 0.13130 

Makwanpur Hills 86127 31 26 54.6 0.13563 

Kailali Terai 142480 46 40 84.3 0.14230 

Kanchanpur Terai 82152 39 35 84.2 0.14548 

Bardiya Terai 83176 50 34 91.0 0.15013 

Dang Terai 116415 57 21 68.4 0.17962 

Syangjha Hills 68881 7 9 72.2 0.18079 

Kaski Hills 125673 3 6 48.1 0.20672 

Palpa Hills 59291 23 8 63.8 0.21700 

Rupandehi Terai 163916 5 13 44.8 0.22047 

Tanahu Hills 78309 9 16 66.7 0.26112 

Kavre Hills 80720 6 15 72.2 0.29462 

Chitwan Terai 132462 12 2 48.3 0.35904 

Morang Terai 213997 8 11 80.8 0.37101 

Jhapa Terai 184552 18 3 71.9 0.37136 
Compiled using data from the District Profile of Nepal (2007) 
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3.3.2 Selection of villages 

Having selected Gorkha district, the same principle was applied to purposively select VDCs, 

however, only focusing on those VDCs where 50 or more households owned biogas plants 

for at least a decade. The number of biogas plants installed ten or more years ago in 

different villages of Gorkha district is shown in Table 3.2. After excluding one of the relatively 

urban VDCs, Deurali, with access to a black topped highway, the remaining top four VDCs 

with highest biogas adoption were selected for household recruitment as shown in Figure 

3.2. 

Table 3.2: Villages ordered according to the number of biogas plants installed ten or more 

years ago 

Villages No of biogas plants* Road type Outcome 

Deurali 196 Black topped highway Not selected 

Palungtar 154 Gravel and earthen road Selected 

Dhuwakot 125 Gravel and earthen road Selected 

Chyangli 123 Gravel and earthen road Selected 

Chhoprak 92 Gravel and earthen road Selected 

Compiled using unpublished data from BSP. * Installed 10 or more years ago 

 

Figure 3.2: Map of Gorkha district showing its road network to the left and showing villages 
selected for this study to the right 
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Gorkha is located 140 km west of Kathmandu with the altitude ranging from 228m to 8156m 

(Mount Manasalu). The population of the district is 0.27 million and 97% of them reside 

below 2500m. All the selected villages were below 1000m elevation from sea level thus 

ruling out any effects of high altitude on cardio-respiratory functions as well as impaired 

functionality of biogas at cold temperatures. 

The selected villages, home to agricultural indigenous populations, were visited in person to 

obtain firsthand information regarding fuel use, functionality of the biogas plants, willingness 

to participate in the study, accessibility, security situation and logistic issues including 

electricity supply for the research devices. In each village, unofficial meetings were held 

with local leaders, school teachers, and VDC representatives to get to know the village in 

detail. 

Households used a combination of fuels: wood, biogas, LPG, charcoal and small amounts 

of crop residues depending on season. Those villagers cooking with wood fuel collected it in 

the community forest. Temperature in the district ranged from as low as 2.3°C to 33.2°C. 

(Intensive Study Research Centre, 2007) Cold season night time temperatures never fall 

below freezing so families did not use space heating even if they could afford to. 

 

3.4 Study population 

This study targeted all the households from the selected villages who had either primarily 

used biogas fuel for at least the last 10 years or traditional firewood stoves for coking for 

lifelong. As biogas plants rely on manure from adult cattle, only those households which 

owned at least one adult cattle were studied. Further, we investigated only adult female 

cooks of 30 years or more from the above mentioned households to study our health 

outcomes. 

 

3.5 Sample size 

As there were no studies assessing the impact of biogas on respiratory health at the time of 

study design, we made an assumption that the differences in our primary outcome would be 

at least equivalent to what has been observed with improved cookstove interventions. 

Therefore we used the estimated population mean FEV1 based on studies from Guatemala, 

Mexico and Nepal that assessed the impact of different ICS compared to those using 
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traditional firewood to calculate our desired sample size. The RESPIRE trial in Guatemala 

was powered to detect 90ml difference in FEV1 at 80% power with mean FEV1 of 2700ml 

and standard deviation of 350ml. (Smith-Sivertsen et al., 2009) A trial from Mexico was 

designed to detect a 3% difference in FEV1 between women exposed to HAP and non-

exposed women with a power of 90%. (Romieu et al., 2009) Another study from Nepal 

reported a mean FEV1 of 2.69±0.36 litres among women using ICS compared to 2.61±0.46 

litres for those using traditional woodstove, although the difference was not statistically 

significant. (Joshi et al., 2011)  

Using the FEV1 values obtained from the above studies, we needed 146 women in each 

group to detect a 115 ml difference in FEV1 between women cooking on biogas and women 

cooking on traditional woodstove, with 80% power at a two-sided significance level of 5% 

Considering that only 80% of the women would be able to undertake spirometry 

successfully, we estimated that we would need to recruit 183 women in each group. 

Table 3.3: Sample size calculation using estimates from comparable studies 

 

Endpoints 
Mean in 

biogas users 

Standard 

deviation 
Difference Power 

Each arm 

(n) 

FEV1 (ml) 2700 350 100 80% 193 

FEV1 (ml) 2700 350 115 80% 146 

FEV1 (ml) 2700 350 135 80% 86 

COPD rate 15% - 15% 80% 121 

 

As shown in Table 3.3, with 146 women in each group this study was also sufficiently 

powered to detect a potential difference in COPD prevalence of 15% among biogas and 

30% among woodstove users. Of note, as we intended to conduct matched and unmatched 

analyses, the sample size calculation at this stage however did not account for the matched 

nature of the study and was thus conservative, i.e. it was likely to underestimate the true 

power of the paired analysis of the primary outcome.  

 

3.6 Selection of households 

Once the VDCs were selected, we conducted a pilot study in Palungtar, one of the selected 

VDCs, and identified some discrepancies between the addresses of biogas users provided 

by the BSP and the observed actual addresses. This could be due to the restructuring of 

the wards inside the villages and renaming of the wards. Also, there were additional 
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households who had installed biogas plants for 10 or more years ago but were not listed in 

the BSP list. Moreover, the hilly terrain of the villages which were only accessible by foot 

made it impractical to conduct a rapid census as a basis for estimating a reliable sampling 

frame for biogas as well as firewood users. Consequently, random sampling became an 

unfeasible choice and we decided to adopt a structured sampling mechanism as detailed 

below. 

The Government of Nepal, according to the Local Self-Governance Act 2055, specifies a 

designated centre in a convenient place within each of the VDCs in Nepal. (Government of 

Nepal, 2000) All the village-level offices are located in this centre. In the selected four 

VDCs, we thus set up our research base at the centre and from there we undertook 

‘complete enumeration’ of the households within a radius of two hours of walking distance. 

Door to door visit of the potential households were done and only those households and 

cooks meeting the inclusion criteria as described in section 3.7 were recruited. VDC-based 

recruitment is shown in Table 3.4.  

Table 3.4: VDC wise recruitment of households among biogas and firewood users 

 

VDCs 
Number of 

households* 

Total 

biogas 

users 

Biogas users 

(10 years  

or more) 

Recruited 

biogas users 

Recruited 

wood users 

Palungtar 2108 404 154 57 69 

Dhuwakot 1110 231 125 49 38 

Chyangli 1532 332 123 62 50 

Chhoprak 1531 240 92 51 143 

*Number of households as of Nepal Population and Housing Census 2011 

 

 

3.7 Household and participant recruitment 

All the recruitments were done by the PhD candidate visiting each household in turn. At 

several stages of the study three medical doctors and two other medical and a public health 

student who had prior training and experience on community based research and interview 

techniques assisted the PhD candidate. 

The inclusion and exclusion criteria were staged at household and individual level: 
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Inclusion criteria: 

 Households having used biogas as their primary/main cooking fuel for at least the last 

10 years 

 Households having used traditional biomass fuel as their primary/main cooking fuel 

lifelong 

 Household owning at least one adult cattle 

 Main cook living in the same household for at least the last ten years 

 Female cook aged 30 years or more 

 

 

Exclusion criteria: 

 Non functional biogas plants for 12 months or more in the last 10 years  

 Women showing a current sign of infection with fever >380C or suffering from 

tuberculosis to rule out the possibility of spread of infection  

 Women suffering from severe scoliosis or having a known neuromuscular disorder, 

myasthenia gravis or a scar from severe and extensive burns of the chest to rule out 

any unwanted effect on lung function 

 If the cook said she is pregnant 

 If the cook was unwilling to participate in the study 

 

 

3.8 Ethical considerations 

The protocol of this study was reviewed and approved by the Ethical Review Board of the 

Nepal Health Research Council (Kathmandu, Nepal) and Oxford Tropical Research Ethics 

Committee (University of Oxford, UK) prior to any contact with the study participants. The 

LMU Ethical Commission (Munich, Germany) granted an ethical waiver for the study after 

having reviewed the two granted ethical clearances. 

In all of the villages, the project was explained to the VDC representatives, local leaders 

and school teachers. Potential study participants were briefed about the study and the 

consent form read to them in Nepali. A written informed consent was mandatory and those 

able to sign had their signatures on the informed consent form. For those unable to sign, 

the study administrator signed it on their behalf indicating that it had been read to them and 

that they had agreed to participate voluntarily and could withdraw from the study at any 

time. 

Participants were required to undergo non-invasive spirometry test. Mandatory individual 

single-use mouthpieces were used to prevent any risk of cross-infection while performing 
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such test. Participants were provided with a report of their lung function and blood pressure 

for free. If the investigator physician found any symptoms and signs of disease and 

conditions requiring medical attention, participants were advised to visit the nearby health 

facility. However, they did not receive any financial assistance for doing so. 

The risk of invasion of privacy was minimized through the use of identification numbers and 

confidentiality was maintained throughout the study. Data sets were anonymised and stored 

in password-protected computers only accessible by the study team. 

The study sponsors had no role in the design, data collection, data analysis or interpretation 

and writing of this dissertation and any manuscripts produced. 

 

3.9 Data collection overview 

Figure 3.3 shows an overview of the whole data collection process and flow of activities. 

The questionnaires used were constructed using selected questions from various resources 

so that cross study comparisons could be done. Questionnaires were framed to administer 

the eligibility criteria, to identify the households and the cook, to find out the reasons for 

adoption and non adoption of biogas plants. Standard respiratory health questionnaires and 

additional cardiovascular questionnaires were framed. For housing and kitchen 

characteristics, cooking practices and exposure assessment, we referred to the 

questionnaires used by the University of California, Berkeley (Indoor Air Pollution Team, 

2006) and Practical Action Nepal (Bates, 2007b). Additional health end points were 

documented using appropriate record forms.  

Figure 3.3: Flow of activities during data collection 

 

•Study explanation 
and rapport  

•Administration of  
eligibility criteria 

•Written informed 
consent 

Consentin
g 

•Interview of the 
main cook 

•Kitchen 
observation and 
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•Blood pressure  
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•Kitchen 
exposure 
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ments 
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All the questionnaires were developed in English and administered to the participants solely 

by the PhD candidate in Nepali. The drafted questionnaires were pretested to make sure 

that they were clear and could be understood by the respondents. Based on the pretesting, 

the socio-demographic, kitchen and cooking practice questionnaires were refined. 

 

3.9.1 Socio-demographic questionnaire/household questionnaire 

These questions were broadly of four categories: eligibility questions, identification of the 

household and the cook, characteristics of the main cook, ownership of durable assets and 

housing characteristics. Questions were framed to identify the eligible household and 

eligible women. Details to identify the household like name of the village, ward number, 

name of the household head were included. Other questions identified the cooks with their 

age, smoking status and education attained. We also referred to the questionnaire used by 

the Demographic and Health Surveys that are used to assess the household wealth index. 

(ICF International, 2011) These were reviewed and adapted to suit our need in the context 

of the villages that were selected for the study. An observation checklist was developed to 

collect the information on the materials used for the roof, floor and wall of the dwelling. 

 

3.9.2 Reasons for biogas adoption 

To better understand why some households chose to adopt biogas plants and why others 

did not, we developed a set of closed and open-ended questions. These questions were 

asked to enquire about the reasons for installing or not installing the biogas plants and if 

there were any factors that would facilitate adoption. Respondents could give multiple 

answers including an open comment. 

 

3.9.3 Kitchen characteristics and cooking practices 

A standard questionnaire adapted from the questionnaires used by Practical Action Nepal, 

and the University of California, Berkeley on household air quality monitoring was used for 

this study. (Indoor Air Pollution Team, 2005, Bates, 2007b) We collected details on kitchen 

type, stove type, stove location, eaves spaces, number of windows and doors. We asked 

detailed questions on the main fuel and additional fuels used for different cooking activities 

in different seasons. We also enquired about the source of the fuel used and if it was 
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collected or bought. We checked if there were any smoke venting mechanisms in the 

kitchen, such as smoke hoods or chimneys. 

 

3.9.4 Health questionnaire 

We adapted the health symptoms questionnaires used in prior HAP studies done by 

Practical Action Nepal (Bates, 2007a) and additionally the Modified British Medical 

Research Council Questionnaire for Assessing the Severity of Breathlessness (Fletcher, 

1960, Smith K et al., 2000). These respiratory health questionnaires assessed symptoms 

like cough, sputum production, exacerbations of COPD and breathlessness. Cardiovascular 

questions on chest pain, palpitations and night time cough were also used. Questions were 

also developed to document the severity of headache and the number of times the cooks 

were visiting the health facilities for check up. 

 

3.9.5 Weight and height measurement 

Body weight was measured in kilograms using a CAMRY weighing scale (Camry Inc, 

China) and recorded on a paper form as well as within the spirometer. The scale was 

placed on a hard, level surface and the participants were asked to stand still on it in light 

clothing, without shoes. Before each measurement the scale was standardized and set to 

zero. 

Standing height without any shoes was recorded on a paper form and within the spirometer. 

Participants were asked to stand straight with their head positioned such that the person is 

looking straight ahead with knees straightened and their feet and heels together. 

Participants stood against a wall and their height was marked which was later measured 

using a non-stretchable measuring tape. 

 

3.9.6 Cardiovascular health assessment 

Cardiovascular health was assessed by measuring the heart rate, percentage saturation of 

oxygen in the blood, and resting brachial blood pressure. 
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3.9.6.1 Pulse oximetry  

Blood concentrations of oxygen (O2) and resting heart rate were measured using a non-

invasive method known as oximetry that uses light reflectance through the nail bed. We 

used a rechargeable battery-powered fingertip CMS 50 pulse oximeter which measures 

both blood O2 saturations and resting heart rate simultaneously. All the measurements were 

done on the middle or fourth finger of a resting and seated participant. Readings were noted 

down after the plethysmograph bar waveform and pulse signal strength bar were stable and 

maximal. Three readings were recorded at an interval of 30 seconds.  

Ideally, the degree of tissue hypoxia caused by large CO exposures should not be 

measured by a simple pulse oximetry as it cannot differentiate between carboxy-

haemoglobin (COHb) and oxy-haemoglobin (OxyHb). Simple pulse oximetry thereby can 

falsely overestimate the blood oxygen saturation (SPO2). One should prefer automated co-

oximeter that can differentiate different wavelengths of COHb and OxyHb to measure true 

hypoxic levels (Prockop and Chichkova, 2007). However, in this study simple pulse 

oximetry was used. 

 

3.9.6.2 Brachial blood pressure and heart rate measurement  

Pulse rate and brachial blood pressure of all the participating women were measured at 

their homes using an automated oscillometric device (Omron SEM-1; Omron Corp, Tokyo, 

Japan). Participants were asked to rest in a chair or an improvised chair with their feet flat 

on the ground and arms uncrossed at their side. Adult sized cuffs were then wrapped 

around the upper arm. The device automatically inflated and deflated and produced systolic 

blood pressure (SBP), diastolic blood pressure (DBP) and heart rate. Participants were kept 

at ease and were requested to remain quiet during the measurements. Measurements were 

repeated two minutes apart until three measurements within 10 mmHg were obtained. The 

average of three measures was used as the final blood pressure. Those with average SBP 

≥ 140mmHg and/or DBP ≥ 90mmHg were considered hypertensive. Systolic hypertension 

was defined as SBP ≥ 140mmHg irrespective of DBP, and diastolic hypertension as DBP ≥ 

90mmHg irrespective of SBP. 
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3.9.7 Pulmonary function testing 

An introduction to spirometry and different lung indices including the choice of reference 

equations and diagnostic criteria for AO using either LLN cut-off or GOLD cut-off is 

discussed in detail in section 2.5. 

In this study, lung function indices were measured using an EasyOne (NDD, Switzerland) 

portable spirometer in accordance with European Respiratory Society and American 

Thoracic Society guidelines (Pellegrino et al., 2005, Miller et al., 2005) All lung function 

measurements were conducted by the PhD candidate throughout the study to maintain 

uniformity of the procedure among the participants. The PhD candidate had received prior 

training under Prof Annalisa Cogo (collaborator of the host institution of the candidate), 

University of Ferrara, Italy on how to perform and interpret spirometry. 

All the participants were requested to make at least three blows into the spirometer. 

Spirometry was considered successful if the participant produced at least two acceptable 

and reproducible blows, the two largest FEV1 and FVC within 150 mL as per the ATS/ERS 

criteria. (Miller et al., 2005, Pellegrino et al., 2005) Participants could make a maximum of 

eight attempts to obtain three satisfactory blows. 

The spirometer produced a graphical display of the flow volume loops and instructions as 

shown in Table 2.2 which helped to maintain the quality of the spirograms. Spirograms were 

individually reviewed by the PhD candidate and Dr Rainald Fischer for quality checks. Any 

discrepancy was mutually resolved; if further discrepancy persisted, a third independent 

reviewer provided the final verdict. Unacceptable spirometric traces were excluded from 

analysis. 

Airway obstruction (AO) was diagnosed by two criteria, (i) using the lower limit of normal 

(FEV1/FVC < 5th percentile, i.e. zFEV1/FVC < -1.645) as recommended by the Global Lung 

Initiative and using “GLI 2012 equation”(Quanjer et al., 2012b) and (ii) absolute FEV1/FVC 

cut-off of < 0.70 (Vestbo et al., 2013), where those with FEV1/FVC ≥ 0.70 were not 

considered to have airway obstruction. For airway obstruction outcome, both FEV1 and 

FVC had to be acceptable.  

In case of an abrupt end of expiratory manoeuvre and FVC values were not usable, FEV1 

values were considered acceptable (for analysis of FEV1 outcome) if the peak expiratory 

flow was achieved as seen in the graphical display and the forced expiratory time was more 

than 2 seconds.  
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3.9.8 Exposure assessment 

Current practice:  Many HAP studies in the past, and even today, have used questionnaire 

based exposure assessment of fuel use by only documenting the primary fuel type used for 

cooking without measuring pollutant concentration. This practice is likely to suffer from 

exposure misclassification. The importance of true exposure assessment need not be 

underscored. Measuring the concentration of different pollutants is pivotal in HAP studies as 

it helps researchers to causally relate their findings. Additionally, it is also necessary to test 

the effectiveness of new cookstove technologies by showing that they achieved desired 

pollutant reduction. When exposure levels and outcomes are well documented in studies it 

further allows researchers to perform exposure response analysis thus strengthening the 

evidence. 

The last decade has seen considerable progress in exposure assessment methods 

available in HAP studies. (Clark et al., 2013) Nowadays, real time particulate matter 

monitors and carbon monoxide monitors are available that have the capability to detect and 

record pollutants every minute. These can be programmed to continuously measure for 24 

hours or 48 hours depending on the device. 

The currently adopted techniques to measure HAP exposure are mostly area based 

measurements of particulates (PM10 or PM2.5) and carbon monoxide conducted inside the 

kitchens where cooking is done. These area based quantitative measurement of HAP 

exposure are technically easier than personal measurement but they fail to capture 

personal exposures (Clark et al., 2013) as cooks and children are mobile and rarely spend 

all their time inside the kitchen (Perez-Padilla et al., 2010). These measurements are also 

extremely variable as they depend on a host of factors, like kitchen type, kitchen volume, 

ventilation status, weather conditions, cooking duration, and neighbourhood pollution. 

Supplementing the area measurement data with time activity diary by recording micro 

activities of the cooks and cooking practices serves to better capture and explain 

heterogeneity. (Clark et al., 2013) 

Although personal exposure measurement devices are now available their high costs still 

hinder them to be easily used in field based research. In addition, as these devices have to 

be worn by the cooks during exposure measurement, they might find it obtrusive and 

uncomfortable and compliance could be an issue. But, because of the ability to capture 

personal exposure this remains the gold standard for now until better technologies evolve. 

These personal measurements can also be combined with area measurement and time 
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activity diary to further capture relationship between personal and kitchen exposure. (Clark 

et al., 2013) 

Although, personal exposure remains the gold standard, most epidemiological studies 

currently measure kitchen pollutant levels for different time durations ranging from 8 hours 

to 24 or 48 hours. Some studies only measure pollutants concentrations during cooking 

episodes. To reduce the uncertainties associated with these measurements, however, 

repeated measurement conducted over different seasons for prolonged duration is 

warranted. To capture all the cooking activities of a family and thereby exposure to 

pollutant, at least 24 hour measurement is needed. This also facilitates comparison across 

studies and with the WHO air quality guideline limits.  

There are different kinds of devices available to measure exposure to particle matter. 

Gravimetric method which is based on weighing of the filters loaded with particle mass is 

the gold standard method for measuring PM2.5. However, this is very time consuming and 

has a high operating cost. Alternative method based on light scattering technology offers 

real time measurement of PM2.5. This is a relatively cheap, portable device and can be 

battery operated in the field; however, it has a disadvantage that a correction fraction 

should be identified for each fuel type studied and necessitates calibration with the 

gravimetric device. 

Measuring CO is relatively straightforward compared to PM2.5 and can be done either by 

diffusion tubes or real time monitors fitted with CO sensors. Both of these are portable and 

can be used for personal CO monitoring. 

Compared to CO, PM2.5 is a better marker of HAP and is also the most important 

parameter of interest for health effects as this is directly deposited in the lungs and inflicts 

several health damages. CO exposure has been used as an easily measured proxy of 

PM2.5 in HAP studies but area measurement of CO may not always reflect true personal 

exposure to PM2.5.  

Device and method adopted in this study: We measured both the 24-hour indoor 

concentration of PM2.5 and CO inside the kitchens in summer. In a subset of houses 

measured in summer, we re-measured only 24 hour kitchen CO concentrations during 

winter. We used the University of California-Berkeley Particle Monitor (UCB PATS) from the 

Berkeley Air Monitoring Group and Indoor Air Pollution Team to measure the PM2.5 

concentrations (in units of µg/m3) in the kitchens. (Edwards et al., 2006) The UCB monitors 

record PM2.5 based on light scattering method and provide digital particle mass 
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concentration measurements every minute. (Litton et al., 2004) Industrial Scientific Gas 

Badge Pro CO monitors were used for measuring CO concentration in units of parts per 

million (ppm) every minute. 

Both the instruments were deployed indoors at head height, 1.5 meters off the floor and 

approximately 1m from the edge of the stove. The monitors were left overnight and 

collected the following day, after roughly 24 hours. Both date and time of start and end of 

the monitoring were recorded. In case the monitors were taken down after less than 24 

hours’ recording it was made sure that the monitors captured all the daily cooking routines 

of the family. Both the devices logged the data internally in real time. The detailed standard 

operating procedures developed by the University of California, Berkeley guided the routine 

procedures for instrument set-up, operation and documentation. (Indoor Air Pollution Team, 

2005) 

 

3.10 Data handling  

3.10.1 Questionnaire data 

Interview responses were recorded on paper forms and reviewed every night for 

typographical errors, and any missing responses. Whenever possible, missing responses 

were completed during the next visit for kitchen pollutant monitoring. Any typographical 

errors noticed were corrected the same night. The list of recruited households was updated 

every other night and household identification numbers and unique participant numbers 

were assigned. Although data entry was planned on site in the field, it was not possible due 

to severe power shortage. The data entry sheet was prepared in sequence similar to the 

structure of the questionnaire. Double data entry was done independently by two persons 

and any discrepancies were resolved referring to the original paper version of the 

questionnaire. An inconsistency check was run on both data entry files and discrepancies 

were corrected in one of the files, based on the original paper version of the questionnaire; 

to produce a master file for analysis. Data validation was undertaken and frequency 

distributions produced to assess if the data were clean. Data entry was done in SPSS v 17 

and clean data were later imported to R for analysis. 
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3.10.2 Cardiovascular health data 

Pulse oximetry, heart rate and blood pressure were recorded manually on paper forms. 

These were later double-entered into the SPSS data sheets. Similar inconsistency checks 

were applied as for the questionnaire data, and the corrected data imported into R. 

 

3.10.3 Pulmonary function data 

The EasyOne spirometer can store all the measurement data which can then be exported 

into Access, Excel and PDF files. The list of participants from the spirometer was extracted 

into an excel sheet which contained the identification details, age, weight, height and unique 

record number. This sheet was later merged with the participant’s unique identification 

number. The spirograms for each participant were reviewed using the EasyOne desktop 

software and the PDF copies of the best three trials were printed for each participant. These 

were reviewed independently by the PhD candidate and Dr Fischer. After consensus, the 

lung function values were entered into the excel sheet. Data validation was done through 

double entry and inconsistency checks. The clean file was later exported to SPSS and 

merged with the rest of the data set.  

 

3.10.4 Exposure assessment data 

Both the PM2.5 and CO devices recorded per minute data of indoor kitchen pollutants. This 

was logged internally by the devices and could be downloaded into an excel sheet. 

However, due to practical constraints, only carbon monoxide data was analysed. 24 hour 

kitchen carbon monoxide concentration is defined as the arithmetic mean of minute-per-

minute CO concentrations measured in parts per million (ppm) inside the kitchen for 24 

continuous hours (1440 minutes). Measurements that recorded CO exposure for 24 ± 2 

hours were accepted. 

 

3.11 Statistical analysis: overview 

All the statistical analyses were performed in R version 3.0.2 (R Core Team, 2013) using 

appropriate packages. Table 3.5 summarizes the main analytical approach used for different 

research questions. The primary sample for analysis consisted data from a single female 
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cook per household selected to avoid within-household correlation. In case more than one 

cook was recruited into the study for a household, the woman who could successfully do a 

spirometry (primary outcome) was selected. In case both women produced successful 

spirometry records, the woman who spent the most hours per day in the kitchen was 

selected. 
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Table 3.5: Study components, outcome measures and analytical approach 

Study components Outcome measures Main analytical approach 

Reasons for 

adoption and  

non adoption of 

biogas 

Reasons for: 

i. Adoption 
ii. Non adoption 
iii. Factors facilitating 

adoption 

Descriptive analysis on factors for adoption, non 

adoption using percentages and numbers  

Kitchen  

pollutant 

concentrations 

24 hour kitchen CO Between group (households) crude differences 

--- untransformed 
 

Matched analysis on households matched by 

their socio-economic status 

---- post matching weighted linear regression on 

log transformed data 
 

24 hour kitchen PM2.5 Not analyzed currently for practical reasons 
 

Respiratory  

health 

 

FEV1, zFEV1, FVC, 

MEF2575% 

Between group (primary cooks) crude differences 
 

 

Matched analysis among primary cooks, matched 

by their age, height and socio-economic status 

--- post matching weighted linear regression to 

calculate the differences 
 

Airway obstruction (AO) Between group (primary cooks) crude differences 
 

 

Matched analysis among primary cooks, matched 

by their age, height and socio-economic status 

--- post matching weighted logistic regression to 

calculate odds ratio 
 

Cardiovascular  

health 

Analysis further stratified by age group (30-50 years or >50 years) 

Mean SBP,  

Mean DBP 

Between group (primary cooks) crude differences 

 

Matched analysis among primary cooks, matched 

by their age, BMI and socio-economic status 

--- post matching weighted linear regression to 

calculate the differences 
 

Hypertension (HTN), 

Systolic HTN, 

Diastolic HTN 

Between group (primary cooks) crude differences 
 

Matched analysis among primary cooks, matched 

by their age, BMI and socio-economic status 

--- post matching weighted logistic regression to 

calculate odds ratio 
 

Questionnaire-based 

health symptoms 

Cough, phlegm, wheeze, 

difficulty breathing, chest 

pain, palpitation 

Between group (primary cooks) crude differences 

 

All matched analyses use propensity score matching. All sensitivity analyses are unmatched.  
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3.11.1 Principal component analysis for wealth index 

Many measures of socio-economic status (SES) like asset based measures, consumption 

expenditure, income, education or occupation have been used in health research. The 

strengths and limitations of these are compiled in Table 3.6. All of these methods eventually 

measure overlapping aspects of SES. (Howe et al., 2012) So, the choice depends on the 

research setting, time and resources available for data collection and whether one is 

interested in calculating a household’s current or long-run welfare status. 

Table 3.6: Different measures of socio-economic status-strengths and limitations 

 

Measures of SES Strengths Limitations 
Asset based measure: 
 
Measured by possession of 
durable goods, housing 
materials and access to basic 
facilities.  

 Rapid, simple and 
computationally easier 

 Required data can be 
reliably measured 

 Stable and long term 
measure of SES 

 Comparability across 
studies due to wide use 

 Measure of relative rather 
than absolute SES 

 Non-functional assets may 
give false SES 

 Quality of the asset is not 
captured 

 Associated with 
community infrastructure 
e.g. water supplies 

Consumption expenditure: 
 
Measures how income is used 
by a household by aggregating 
expenditures on a wide range 
of items.  

 Measures key aspects of 
how income is used 

 Easier to collect than 
income 
 

 Requires extensive, time 
consuming data collection 

 Subject to inaccurate recall 
of expenses 

 Unclear on the choice of 
expenditure items which 
vary across settings 

 Complex calculation 
 Short-term fluctuations 

Income: 
 
Measured by asking about 
absolute household income. 

 Best indicator of material 
living standards 

 Sensitive information 
 Difficult to measure 

income of those who are 
self-employed or receive 
income in kind 

 Dynamic and liable to 
short term changes 

Occupation:  
 
Reflects the social standing, 
income and intellect of a 
person according to his/her 
current occupation. 

 Available in routine data 
sources 

 Cannot be readily 
assigned to people who 
are currently not employed 

 House makers or self 
employed are difficult to 
classify  

Education: 
 
Measured as years of 
education or literacy. 

 Easy and less contentious 
to measure, high response 
rate 

 May suffer cohort effects 
and gender differences 

 Does not account for the 
quality of education 

(Filmer and Pritchett, 2001, Howe et al., 2012, Galobardes et al., 2006) 
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Income and expenditure data are often not available in developing countries, so 

researchers have to rely on proxies. (Howe et al., 2012) As the use of a single proxy is 

unreliable, a composite index of proxies like possession of a range of durable assets, 

access to basic facilities or housing characteristics and living conditions is often computed. 

In this study, we collected similar information as in the DHS on the ownership of assets and 

animals and access to basic services like electricity, water and a toilet. We also observed 

the housing construction materials. 

 

We applied Principal Component Analysis (PCA), a data reduction technique, to generate a 

summary asset index. PCA uses the correlations between the covariates to generate a set 

of orthogonal uncorrelated components. Only the first principal component which explains 

the maximum data variance is finally used to calculate the asset index. (Filmer and 

Pritchett, 2001, Houweling et al., 2003) Those assets that are more unequally distributed 

between households are given more weight in PCA. (McKenzie, 2005) 

 

PCA relies on the assumption that the data used are continuous, but the proxies collected 

for the asset index are mostly of binary or ordinal character. A technical solution to correct 

this violation is to calculate the tetrachoric or polychoric correlation coefficients. Other 

alternatives to PCA like multiple correspondence analysis (Traissac and Martin-Prevel, 

2012), factor analysis (Sahn and Stifel, 2003) or multivariate regression have also been 

suggested. (Vyas and Kumaranayake, 2006) However, PCA remains intuitively easier and 

the asset index obtained appears stable and coherent - internally and externally. (Filmer 

and Pritchett, 2001) 

 

Household assets (radio, television and watch) were coded as binary, housing materials 

(roof, wall and floor) and access to drinking water supply as ordinal, while the discrete 

animal counts (cattle, oxen, goats and pigs) were square root transformed to reduce 

excessively large variance. Descriptive statistics of the covariates were checked and those 

with poor variability (possession of mobile phone, land telephone, electricity, bicycle and 

scooter), i.e. when everybody or nobody owned a given asset, were excluded from the 

PCA. Households with missing values for one or more of the variables were excluded from 

the analysis. Only the first principal component explaining the maximum variance was 

retained and interpreted. 
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3.11.2 Descriptive analysis 

All the variables of interest were summarized by group: biogas versus firewood users. 

Firstly, household-level variables like family size and number of rooms and secondly 

individual-level variables like age and height were analyzed by group. In each case, 

continuous variables were summarized as mean, median and inter-quartile range while 

categorical variables were summarized using frequency and percentage (%). Ranges were 

checked to ensure that no implausible values had accidently been recorded. Data normality 

was graphically evaluated using histograms. Crude between-group comparisons were 

based on the Wilcoxon test for continuous variables and Fisher’s exact test for categorical 

ones. 

 

3.11.3 Matching for causal inference 

Matching is a technique to balance variables between an intervention and a control group; 

this technique to increase causal inference could be put into practice through the study 

design (i.e. by recruiting an intervention and a matched control household or woman) or 

through statistical techniques. Subsequent parametric analyses are far less model-

dependent where matching results in groups that are balanced or without statistically 

significant differences across relevant variables. Since matching per se is not a method of 

effect estimation, applying common regression procedures after matching also improves 

causal inference by reducing bias and increasing the efficiency of the model. 

 

3.11.4 Available matching methods  

A brief overview of different statistical matching methods with their strengths and limitations 

is given in Table 3.7. 
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Table 3.7: Different matching techniques-their strengths and limitations 

Matching methods Strengths Limitations 

Exact matching:   
 
Matches all controls with 
exactly the same covariate 
values. So, each treated unit 
matches with all available 
exact controls.  

 Makes the groups very 

similar and produces exact 

balance. 

 Reduces the variance of 

causal effect estimates 

without increasing bias.  

 High probability of 

discarding substantial 

numbers of subjects and 

reducing the effective 

sample size and power. 

Nearest neighbour matching:  
 
Starts with a random treated 
unit and matches the closest 
control unit that has not yet 
been matched. 

 Faster and easy to 
understand.  
 

 Very useful when there are 
a limited number of control 
units with values similar to 
those in the treated group.  

 When done ‘with 
replacement’, there is a 
chance that only a few 
unique controls may be 
selected as matches.  
 

 When done ‘without 
replacement’, a significant 
number of treated groups 
may end up with poor 
matches. 

Sub-classification: 
 
Stratifies the groups into fairly 
equal sized strata. In each 
stratum, the distributions of 
covariates between the groups 
are as similar as possible.  

 Uses all of the available 

observations and stratifies 

them. 

 Results in large reductions 

in bias. 

 Produces biased results if 
within strata model 
adjustment is not done to 
correct for residual 
imbalance. 
 

 Treatment effects are 
obtained separately for 
each subclass.  

Optimal matching:  

Is a variant of nearest neighbor 

matching but performs better 

in minimizing the distance 

within each pair. 

 Useful when there are few 
appropriate controls for 
treated units. 
 

 Minimizes the total distance 
within matched units. 

 Matching order in which 
the treated units are 
matched is indifferent. 

Full matching:  
 
Combines sub classification 
and optimal matching so that 
numerous matched sets, each 
containing varying numbers of 
treated or controls units, are 
created. 

 All available observations 
are placed into one of the 
subclasses. 

 
 Optimal in minimizing the 

distance measure. 
 

 Risk of matched sets with 
widely varying ratios of 
treated to control units 
which can lead to large 
variance of the effect 
estimate.  

(Ho et al., 2006, Stuart and Green, 2008) 

 

3.11.5 Selection of matching method 

To prevent the loss of statistical power of the study, we decided on a matching technique 

that would retain the maximum number of data points. We thus ruled out exact and nearest 

neighbour matching a priori. Among the techniques which use all of the data points, we 
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opted for full matching as it utilizes the principle of both the sub classification as well as 

optimal matching and allows varying numbers of subjects within a matched group.  

Full matching, introduced by Rosenbaum (1991), does a fine stratification of all the 

available observations in an optimal way to create numerous subclasses such that each 

has either one treated unit and one or more control units, or one or more treated units and 

one control unit. (Hansen, 2004) Using the controls in their entirety, the full matching 

produces good balance between groups and removes observed confounding. (Stuart and 

Green, 2008, Hansen, 2004) 

 

3.11.6 Propensity score: a matching estimator 

Observational studies, unlike randomized controlled trials (RCT), are prone to selection bias 

due to non-randomly distributed chances of adopting the intervention between the two 

groups. Systematic differences between those adopting and those not, are therefore likely 

to result in a biased effect estimate. Introduced by Rosenbaum and Rubin in 1983 and 

widely used in econometrics and observational studies, the propensity score (PS) tries to 

yield unbiased effect estimates of such non-random interventions. The propensity score is 

defined as the conditional probability of receiving the intervention given the observed 

covariates. (Rosenbaum and Rubin, 1983) It is a scalar summary measure of several 

multidimensional covariates such that treatment assignment is ignorable between treated 

and untreated groups with an identical propensity score. Although a true propensity score 

can only be calculated from an RCT, observational studies make use of propensity scores 

estimated through a logit or probit regression model. 

The PS has been used in four different ways in the literature: through matching, weighting, 

stratification and regression adjustment. (Williamson et al., 2012) Matching on an estimated 

PS appears to be more robust than weighting or regression (Zhao, 2008) while stratification 

reduces bias less than the other methods. (Rosenbaum and Rubin, 1983) Propensity score 

matching allows matching the treated and controls by many covariates at once such that 

the treated unit is matched to the control unit with the closest propensity score. The goal 

throughout is to make the overall matched groups balanced i.e. similar in observed 

covariates rather than the individual matched pairs. (Gelman and Hill, 2007) This best 

balance directed PS modelling is a key advantage because the analyst remains blinded to 

the outcome until a matched data set has been created. (Williamson et al., 2012) 
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3.11.7 Selection of matching covariates 

The selection of covariates to be used in the propensity model is most important in reducing 

the selection bias while estimating the treatment effect. (Steiner, 2011) However, this does 

not mean the models should be over-fitted as this has its own concerns. (Judkins et al., 

2007) One should trade-off between the bias of excluding relevant variables and the 

inefficiency of including the irrelevant ones. (Ho et al., 2007) So, a matching procedure 

should include all the known confounders except for the variables that are a consequence 

of treatment, i.e. any intermediate outcomes. (Rosenbaum, 1984, Gelman and Hill, 2007) 

Including additional predictors of outcome further corrects any chance imbalances and 

results estimates with greater precision. (Austin, 2008, Williamson et al., 2012) However, 

omitting any variable having a disproportionately large effect on the outcome is detrimental; 

rather it is crucial to obtain good balance on such covariates even after matching. (Ho et al., 

2007) 

In this study, for the matched analysis of 24 hour kitchen concentration of CO, which is a 

household level outcome, biogas and wood households were matched by their SES score. 

For individual level health outcomes like FEV1, FVC, risk of AO we decided to match the 

participants by their age and height, the most important biological determinants of lung 

function (Quanjer et al., 2012a), and additionally by their SES which is an important 

determinant of lung disease and overall health and should not be discounted in 

epidemiological studies. (Steinberg and Becklake, 1986, Hegewald and Crapo, 2007, Raju 

et al., 2005) SES has also been linked as an independent risk factor for COPD through 

large studies (Yin et al., 2011). Even in an economically well-developed country with a free 

health care system low SES has been associated with poor COPD prognosis. (Lange et al., 

2014) Besides being the determinant of health, SES is also likely to be the key driver for 

biogas adoption thereby matching by SES also reduces selection bias. 

For cardiovascular outcomes (SBP, DBP and hypertension), after stratification into two age 

groups (30-50 yrs and >50 yrs), we further matched cooks using biogas to those using 

wood by their age, BMI and socio-economic score, with all of these variables used on a 

continuous scale. Age and BMI were chosen a priori to account for differential risk of high 

blood pressure, and SES to account for differential rates of biogas adoption as above. 
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3.11.8 Effectiveness of matching 

The goal of matching is to achieve as good a balance as possible in an effort to reduce 

bias. So, after running the matching algorithm, a balance test of covariates was undertaken 

using standardized differences of the means, also known as absolute standardized bias 

(ASB). ASB is defined as the weighted difference in means of a covariate between two 

groups divided by the standard deviation of the covariate in the pooled group. (Williamson 

et al., 2012) Balance was assumed to be well achieved when ASB was less than 0.25. (Ho 

et al., 2007, Stuart and Green, 2008) Jitter plots and histograms were additionally used to 

examine the distribution of propensity scores and weights assigned to each cook. Although 

statistical significance testing is frequently used, it is not recommended to assess balance 

(Austin, 2008) and was not tested. Graphical displays using histograms, quantile-quantile 

plots and jitter plots were evaluated. 

 

3.11.9 Analysis after full matching 

Due to the resultant varying number of cases in each subclass after full matching, the 

overall effect estimation should be weighted such that the treated receive a weight of one 

and the control receive a weight proportional to the number of treated in a matched 

subclass divided by the number of controls in the subclass. (Ho et al., 2007) We thus used 

weighted linear and logistic regression to calculate the effect estimate. All regression 

models contained matching covariates to account for any remaining imbalances and 

additional control variables in multivariable analysis. 

However, it is still debated if one should account for the matched nature of the data during 

analysis. (Austin, 2008, Hill, 2008, Stuart, 2008) Austin argues that PSM forms part of the 

study design rather than an analytical component, which necessitates appropriate statistical 

methods that account for the lack of independence within matched pairs. (Austin, 2008) A 

contrary opinion is not to account for pairing because PSM creates matched groups during 

analysis rather than individually matched pairs as in data collection. (Gelman and Hill, 2007) 

Schafer and Kang state that: “‘Matching’ erroneously suggests that the resulting data 

should be analyzed as if they were matched pairs. The treated and untreated samples 

should be regarded as independent, however, because there is no reason to believe that 

the outcomes of matched individuals are correlated in any way.” (Schafer and Kang, 2008) 

There is thus no consensus and researchers are left to make an informed choice or report 
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results using both techniques. We opted to use a generalized estimating equation (GEE) 

method which takes into account the paired nature of the data. 

 

3.11.9.1 Univariate and multivariable analysis in matched dataset 

After creating the matched datasets using PSM, univariate and multivariable analyses were 

run. In both the univariate and multivariable analysis, those covariates used for matching 

were again adjusted in the regression models to account for any remaining imbalance. 

Independent effect of key variables was analyzed for each outcome using weighted 

regression models and GEE. 

 

All the variables to be adjusted in multivariable analysis were set a priori. Potential 

confounders were grouped into common domains like, biological (age, height, weight, BMI), 

socio-economic (PCA derived socio-economic score or education), kitchen and ventilation 

related [kitchen volume (as a continuous variable), windows (categorised as no window, 

one window, more than one window), quality of eave spaces (categorised as absent, poor 

or good) and categories of kitchen type], and additional fuels (owning LPG or rice cooker). 

These variables were introduced as a group in the regression models while calculating the 

adjusted effects. Linear and logistic regression analyses were conducted by sequentially 

adjusting for confounders which were known to be associated with outcome measures or 

have been shown by prior HAP studies to be associated with similar outcome measures. A 

conceptual framework as in Figure 3.4 constructed based on literature review guided the 

analysis and control of variables in multivariable analysis. 

 

24 hour kitchen CO: This outcome measure was log transformed for univariate and 

multivariable regression analysis owning to its skewed distribution. Weighted linear 

regression models were fitted with log CO as the dependent variable to estimate the effect 

of biogas fuel use (ref category: firewood) after propensity score matching of biogas and 

firewood using households by their SES score. In the multivariable regression analysis, 

control variables were introduced in a stepwise fashion such that the full model constituted 

two variables for additional fuel use (LPG and rice cooker) and four kitchen characteristics 

variables (kitchen volume, windows, eaves spaces and kitchen type) and SES again 

introduced despite using as a matching covariate. 
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Figure 3.4: Conceptual framework for regression analysis 

 

 

 

Forced expiratory volume in one second (FEV1): Linear regression models were fitted 

with FEV1 (in litres) as the dependent variable to estimate the effect of independent 

variables like age, height, weight, biogas fuel use and etc in the univariate analysis. As for 

the analysis of kitchen CO, control variables were introduced in a stepwise fashion in the 

weighted multivariable linear regression analysis of dataset matched by age, height and 

SES. The full model controlled for smoking (categorised as current, never and former 

smoker), all matching covariates, additional fuel use and kitchen characteristics. 

 

Airway obstruction: Logistic regression models were fitted with AO as the dependent 

variable to estimate the effect of independent variables like biogas use, smoking, age, 

kitchen characteristics etc. Weighted multivariable logistic regression analysis was run with 

the same control variables as used for analysis of FEV1 to calculate the odds ratio 

associated with biogas use. 

 

Cardiovascular outcomes: All analyses of cardiovascular status were stratified into two 

age groups (30-50 years and >50 years) as outlined in Table 3.5 owing to the differential risk 

of cardiovascular diseases in post menopausal women. (Miller et al., 2007, Liu et al., 2001) 



58 
 

--Systolic and diastolic blood pressure: For analysis of continuous outcome measures SBP 

(in mmHg) and DBP (in mmHg), weighted linear regression models were run as SBP or 

DBP as the dependent variable and biogas fuel use as independent variable in each age 

group. Besides the matching covariates (age, BMI and SES), the final model was adjusted 

for smoking, kitchen characteristics and additional fuel use as above. 

 

--Hypertension: Weighted logistic regression models were fitted with HTN as the dependent 

variable to estimate the effect of biogas use in each age group. Full model for multivariable 

analysis was adjusted for the same control variables as used for analysis of SBP and DBP. 

 

3.11.10 Sensitivity analysis 

In the unmatched dataset, the independent effect of key variables was analyzed through 

univariate linear or logistic regression as conducted in the matched analysis. Multivariable 

regression models for unmatched sensitivity analyses contained same sets of potential 

confounders (as described in section 3.11.9.1) as in the matched analyses. In the matched 

dataset, additional sensitivity analyses were run ignoring the matched nature of the data, 

i.e. ignoring the lack of independence. 

Additional sensitivity analyses were carried out in all the recruited cooks for primary health 

outcomes with adjustment for multiple subjects per household to obtain regression 

coefficients with robust variance estimates using GEE with working independence. 
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4 Results 
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4.1 Overview 

Although a total of 555 cooks were recruited from 519 unique households, all analyses for 

this dissertation are based on single cook per household selected to avoid within-household 

correlation. The woman who spent the most hours per day in the kitchen was selected for 

analysis in case more than one cooks were recruited into the study for a household as 

explained in section 3.11 which also details the analytical approach used. 

Figure 4.1 shows the number of recruited and analysed sample size for each outcome. 

Although both pollutant and health measurements were intended to be undertaken in each 

household, unforeseen circumstances like power shortage, political movements and poor 

weather compromised kitchen pollutant monitoring and was carried out only in a subset of 

households. Additionally, due to necessity of further training and collaboration to analyse 

the large volume of data from the UCB PM2.5 monitors, analyses of PM2.5 outcome was 

not carried out for this dissertation. This is planned beyond the defence procedure. 

 

Figure 4.1: Sample size analysed for each outcome 

 

Only descriptive analyses are conducted for questionnaire-based health symptoms and 

further analyses are planned for publication purposes later. All other outcome measures 

were analysed based on the analytical approach as outlined in Table 3.5. Results in the 
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sections below are organised first by crude differences, univariate analysis, and adjusted 

multivariable linear or logistic regression analysis using both matched and unmatched 

strategies. 

 

4.2 Reasons for adoption, sustained use and non adoption of biogas 

Adoption: 212 biogas-using households provided reasons for adoption of biogas plants 

with 345 different responses. Lack of firewood availability and trouble collecting the 

firewood was the major reason cited for adoption of household biogas plants in almost 60% 

of households. More than one third of the households were attracted to this alternative 

technology as they felt its use would keep their kitchen clean due to reduction in smoke and 

black soot. A significant number of households mentioned the co-benefit the biogas system 

offered as they did not have to worry about the septic system of the toilet. In the hilly 

villages, where public sewerage treatment and disposal system is absent, biogas plants 

connected with the toilet acted as a natural septic tank as well as a fuel source. Table 4.1 

presents other reasons cited for adoption of the plants and it is striking that only 10 

households stated the possible health benefits of switching to biogas use. 

Table 4.1: Reasons for adoption of household biogas plant 

 N=212 

households 

% of  

households 

Problem with fuel availability 127 59.9 

Smoke filled dirty kitchen due to firewood use 79 37.3 

Convenience for cooking 41 19.3 

Co-benefit of septic system 35 16.5 

Advice from local agent 22 10.4 

Neighbors influence 12 5.7 

Government subsidy and micro financing 11 5.2 

For better health of family members 10 4.7 

For lighting purposes 8 3.8 

 

 

Non adoption:  Among the wood users, expensive upfront investment was the main barrier 

to adoption of biogas plants in nearly half of the households. Construction of a biogas 

system was felt to be very labour-intensive and this discouraged uptake in households with 

small family size. Lack of adequate land with sufficient sun exposure prevented some 

households from installing the plant despite their willingness. More than 10% of households 
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said that inability to move the biogas plant to a new site once constructed had deterred 

them from installing it, as they were planning to move to a new place in the near future. 

Another 10% reported daily operation, maintenance and feeding the plant as labour-

demanding and discouraging them from adoption. Inadequate availability of the substrate 

due to few animals and social taboo restricting the connection of human waste from latrines 

to the biogas system were other reasons cited for non-adoption despite subsidy from the 

government. Less than 5% of the households believed that the bio-slurry produced from the 

digester would lack the natural quality of organic fertilizer and would decrease the yield from 

crops. Table 4.2 provides more detail on the reasons for non adoption of biogas plants by 

wood users. 

Table 4.2: Reasons for non adoption of household biogas plant 

 N=265 

households 

% of  

households 

Expensive upfront investment 128 49.2 

Construction issues 32 12.4 

lack of sufficient and suitable land 15 5.8 

labour-intensive construction process 9 3.5 

small family size and lack of manpower 8 3.1 

Not feasible to relocate it to a new site later 29 11.2 

Operational and maintenance issues 28 10.7 

labour-intensive daily operations 24 9.2 

lack of adequate water supply 4 1.5 

Insufficient substrate for feeding the plant  21 8.1 

difficulty in rearing large number of cattle 15 5.8 

do not prefer connecting to toilet (taboo) 6 2.3 

Poor quality manure 9 3.5 

Inadequate fuel production 9 3.4 

Happy with current energy situation 10 3.8 

Easy availability of firewood 4 1.5 

Planning to install it soon 13 5.0 
 

We also enquired with the households that continued to rely on firewood if there were any 

factors that would prompt them to switch to biogas as shown in Table 4.3. Two fifths of these 

households responded that it would be easier if the upfront investment was made cheaper 

by further subsidy schemes. Nearly 20% of the users were not sure if any measures would 

facilitate adoption given the expensive upfront investment. Among those with limited land, 

some users mentioned that modifications to the design of the digester such that it would fit 

in a smaller space would facilitate uptake. Potential users with the intention to move also 

suggested design modifications so that the plant could be moved to a new place. 
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Table 4.3: Factors that would facilitate adoption of household biogas plant 

 N=285 

households 

% of  

households 

If it was cheaper and there was more subsidy from 

the government 

116 42.8 

If there was better information on how to obtain it 26 9.6 

If it was easier to construct and operate 18 6.6 

If a moveable biogas plant was available 14 5.2 

If the plant could be designed to fit in a small area 10 3.7 

If better training on use and after sales services 

were provided 

7 2.6 

If payment modalities were different 3 1.1 

Other reasons 40 14.8 

Do not know 54 19.9 

 

 

4.3 Characteristics of biogas and firewood users 

4.3.1 Household-level characteristics 

Household-level characteristics like family size, number of children under five years of age, 

and number of males and females in the family were similar between the households using 

biogas or firewood (Table 4.4). Both groups of households owned 7 cattle on average. 

Households using biogas had more rooms in the house than firewood users (p < 0.001). 

Table 4.4: Household characteristics in firewood- and biogas-using households 

 All  

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p  

value 

Family size 4.48, 5 (3-6) 4.49, 4 (3-5.25) 4.48, 5 (3-6) 0.877 

Number of females 2.41, 2 (1-3) 2.41, 2 (1-3) 2.40, 2 (1-3) 0.845 

Households with <5 years children    0.416 

None 437 (84.20%) 250 (83.33%) 187 (85.39%)  

1-3 82 (15.80%) 50 (16.67%) 32 (14.61%)  

Number of all animals 7.20, 7 (5-9) 7.14, 7 (4-9) 7.29, 7 (5-9) 0.402 

Number of rooms 4, 4 (3-5) 3.57, 4 (3-4) 4.58, 4 (4-5) <0.001 

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact 

test for categorical data (based on simulation with B=10 000 for large tables)  

 

Table 4.5 shows how biogas and wood users significantly differed by both the type and 

volume of the kitchen. In these villages, all of the households had their kitchen on the 

ground floor but most of them were connected to the living units on the first floor by a ceiling 
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door through which smoke can easily spread. Nearly half of the biogas users had an 

external kitchen attached to the main building. Most of these kitchens were roofed with 

galvanized sheets leaving eave spaces between the walls and the roofs. One in ten 

firewood using households had detached, usually small kitchens some of them just large 

enough to accommodate a cook while cooking. These were made out of bamboo sticks with 

or without a mixture of mud and straw applied over the wall and roofed with either thatch or 

galvanized sheets. Nearly 15% of households cooked and lived in the same room. 

Table 4.5: Kitchen characteristics in firewood- and biogas-using households 

  All  

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p  

value 

Kitchen volume in m
3 *

 
19.53, 18.72 

(12.66-24.38) 

16.87, 16.47 

(10.39-22.20) 

23.16, 22.15 

(16.72-27.09) 

<0.001 

Kitchen type    <0.001 

Separate kitchen 210 (40.46%) 123 (41%) 87 (39.73%)  

External kitchen 189 (36.42%) 85 (28.33%) 104 (47.49%)  

Kitchen and living same 74 (14.26%) 51 (17%) 23 (10.50%)  

Detached kitchen 39 (7.51%) 34 (11.33%) 5 (2.28%)  

3 walled kitchen 7 (1.35%) 7 (2.33%) 0  

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact 

test for categorical data (based on simulation with B=10 000 for large tables). *Data on kitchen volume is from 296 wood and 217 biogas users. 

 

Biogas and wood users significantly differed in terms of number of windows and doors in 

their kitchen as shown in Table 4.6. Nearly a quarter of the firewood using households did 

not have a window in their kitchen as many of these households had a detached kitchen or 

kitchen with an open face. These differences in kitchen characteristics may be the 

consequence of a higher SES of the households using biogas. Nearly three fourths of 

biogas using households did not have eave spaces in the kitchen as they instead built 

windows or additional doors in the kitchens. Although households had two or more doors in 

the kitchen most of the time only one remained open. 
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Table 4.6: Kitchen ventilation characteristics in firewood- and biogas-using households 

 All  

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p  

value 

Number of windows    <0.001 

No window 79 (15.22%) 69 (23%) 10 (4.57%)  

One window 312 (60.12%) 181 (60.33%) 131 (59.82%)  

More than one 128 (24.66%) 50 (16.67%) 78 (35.62%)  

Number of doors    0.001 

One door 305 (58.77%) 194 (64.67%) 111 (50.68%)  

More than one 214 (41.23%) 106 (35.33%) 108 (49.32%)  

Kitchen eave spaces    0.004 

Completely closed 331 (63.78%) 174 (58%) 157 (71.69%)  

Partially open 108 (20.81%) 70 (23.33%) 38 (17.35%)  

Completely open 80 (15.41%) 56 (18.67%) 24 (10.96%)  

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact 

test for categorical data (based on simulation with B=10 000 for large tables) 

 

Biogas use was associated with more than 100 minutes (p<0.001) reduction in reported 

cooking duration per day (Table 4.7). However, in a subsample of 168 houses where 24 

hour kitchen pollutant monitoring was done and the post-monitoring questionnaire was 

administered, mean cooking duration during 24 hours was reported to be 232 minutes 

among firewood users versus 179 minutes among biogas users (p<0.001). Although 42% of 

the biogas households owned an electric rice cooker compared to only around 20% of the 

firewood using households, this was rarely used due to severe power shortage. 71 houses 

(35 firewood users and 36 biogas users) owned additional LPG cylinders. 

Table 4.7: Cooking duration and additional fuel use in firewood- and biogas-using households 

 All  

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p  

value 

Reported cooking duration ( hours)* 4.37, 4 (3-5.50) 5.11, 5 (4-6) 3.34, 3 (2.50-4) <0.001 

Cooking duration during pollutant 

monitoring (hours)** 

3.35, 3.15 

(2.50-4) 

3.87, 3.50 

(2.75-5) 

2.97, 3 

(2.41-3.50) 

<0.001 

Households owning an electric rice 

cooker 
152 (29.29%) 58 (19.33%) 94 (42.92%) 

<0.001 

Households using LPG 71 (13.68%) 35 (11.67%) 36 (16.44%) 0.123 

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact 

test for categorical data (based on simulation with B=10 000 for large tables). *294 wood and 212 biogas users. **71 wood and 97 biogas users  

 

The major cooking tasks of families were preparing tea, boiling milk, preparing meals for the 

family including day time snacks and fodder for animals. Except for two households all other 
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biogas-using households reported preparing tea on biogas stoves. Eleven firewood using 

households prepared tea with fuels other than firewood. Milk was invariably boiled in 

firewood stoves in both households but 8% of biogas using household also boiled milk 

occasionally with biogas fuel besides firewood. All of the families prepared animal fodder in 

firewood, except one household which cooked using biogas fuel. Only 20 households (17 

firewood and 3 biogas users) had a chimney in the stoves to exhaust smoke outdoors. 

Families cooked a median number of eight dishes in a day. Biogas users cooked a median 

number of six dishes with biogas and one dish with firewood while wood users cooked 

almost all of the meals using firewood. Although 71 houses (35 firewood users and 36 

biogas users) owned additional LPG cylinders as a reserve fuel for emergencies and 

adverse weather conditions, a cylinder lasted for at least a year and up to four years in 

these households, thus reflecting very rare use of these additional fuels. 

 

4.3.2 Socio-economic status 

Households using firewood and biogas differed significantly in their socio-economic status 

score derived using principal component analysis. Almost a third of the firewood users were 

from the lowest wealth quintile while less than 5% of biogas users fell in the same category. 

Two thirds of the biogas users were from the upper two quintiles in comparison to only one 

fifth of the firewood users (Table 4.8). 

Table 4.8: Socio-economic status in firewood-and biogas-using households 

 All 

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p 

value 

Wealth quintile    <0.001 

Lowest 105 (20.23%) 97 (32.33%) 8 (3.65%)  

Second 103 (19.85%) 73 (24.33%) 30 (13.7%)  

Middle 103 (19.85%) 69 (23%) 34 (15.53%)  

Fourth 104 (20.04%) 45 (15%) 59 (26.94%)  

Highest 104 (20.04%) 16 (5.33%) 88 (40.18%)  

Socio-economic score 
0.00, 0.18, 

(-0.87-1.07) 

-0.69, -0.47, 

(-1.56,0.41) 

0.94, 1.02 

(0.23-1.76) 

<0.001 

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact 

test for categorical data (based on simulation with B=10 000 for large tables).  
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4.3.3 Individual-level characteristics 

Table 4.9 compares the biological characteristics of the firewood- and biogas-using cooks. 

Primary cooks from households using biogas were significantly older than those using 

firewood. The median age of the cooks were 48 and 50 years respectively in firewood and 

biogas users. There was no significant difference in the height of the cooks but the median 

weight differed by 2.5 kg, biogas users being heavier. A quarter of the biogas users were 

overweight. A significant number of firewood users were from underprivileged caste groups-

Dalits, Kumal or Miya, while biogas users were predominantly Brahmin or Chhetri, the 

privileged caste group. 

Table 4.9: Biological characteristics of primary cooks in firewood- and biogas-using 
households 

 All 

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p 

value 

Age in years 49.70, 49 

(40-59) 

48.29, 48 

(39-57) 

51.63, 50 

(42-60) 

0.002 

Weight in kilograms* 50.61, 50 

(44-56) 

49.72, 49 

(39-57) 

51.81, 51.50 

(45-57) 

0.006 

Height in meters* 150.90, 151 

(147-154) 

150.80, 151 

(147-154) 

151.10, 151.50 

(147.25-154) 

0.362 

Body mass index in kg/m
2
* 22.17, 21.78 

(19.78-24.20) 

21.83, 21.37 

(19.72-23.62) 

22.64, 22.48 

(19.94-24.88) 

0.009 

Underweight 74 (14.42%) 45 (15.25%) 29 (13.30%)  

Normal 343 (66.86%) 206 (69.83%) 137 (62.84%)  

Overweight 96 (18.71%) 44 (14.92%) 52 (23.85%)  

Ethnicity    <0.001 

Brahmin/chhetri 260 (50.10%) 127 (42.33%) 133 (60.73%)  

Newar 63 (12.14%) 23 (7.67%) 40 (18.26%)  

Mangols 48 (9.25%) 22 (7.33%) 26 (11.87%)  

Dalits, Kumal and Miya 148 (28.52%) 128 (42.67%) 20 (9.13%)  

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact 

test for categorical data (based on simulation with B=10 000 for large tables). *Data based on 295 firewood users and 218 biogas users.  

 

There was a high prevalence of smoking among the cooks in both groups (see Table 4.10). 

49% of biogas users and 56% of firewood users reported ever having smoked cigarettes. 

One in every four cooks using biogas was a current smoker compared to more than one in 

every three cooks using firewood. The median consumption of cigarettes was similar 

between the groups, 7.55 pack years in firewood users versus 7.33 pack years in biogas 

users. There was no statistical difference in smoking duration, age at which smoking started 

and pack years consumption between the two groups. 
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Table 4.10: Smoking among primary cooks in firewood- and biogas-using households 

 All 

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p 

value 

Ever or never smoking    0.091 

Never smoker 245 (47.21%) 132 (44%) 113 (51.59%)  

Ever smoker 274 (52.79%) 168 (56%) 106 (48.41%)  

Smoking    0.022 

Never 245 (47.21%) 132 (44%) 113 (51.59%)  

Former 107 (20.62%) 57 (19%) 50 (22.83%)  

Current 167 (32.18%) 111 (37%) 56 (25.57%)  

Pack years of smoking* 10.95, 7.50 

(3.92-14.95) 

11.17, 7.55  

(4.00-14.77) 

10.61, 7.33  

(3.90-14.95) 

0.612 

Age in years at which smoking 

started*  

17.33, 15  

(12-20) 

17.30, 15  

(13-20) 

17.39, 15  

(12-20) 

0.620 

Duration smoked for in years* 32.12, 33  

(20-44) 

31.11, 30.50  

(20-42) 

33.71, 37  

(21.50-46.50) 

0.144 

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact 

test for categorical data (based on simulation with B=10 000 for large tables). *Data based on 164 firewood users and 102 biogas users.  

 

 

4.4 Carbon monoxide levels in biogas and firewood users 

24 hour kitchen concentrations of CO were measured in 80 biogas and 63 firewood users 

during summer. A total of 21 houses lacked complete 24 hour CO measurements (from 2 

minutes up to 60 minutes) but these measurements captured all the cooking sessions of the 

family (morning, evening and day meals). Had the devices been placed longer they would 

not have contributed additional CO as all of the cooking and fuel use for the day was 

captured by the device already. One device went off 4 hours earlier and the measurement 

was discarded. 

A typical 24 hour CO record showed two peaks - one during morning meal and another 

during evening meal preparation (Figure 4.2). Additional peaks can occur when the family 

ignites fire for other reasons, mostly for preparing tea. The absolute peak CO concentration 

was as high as 1348 ppm in firewood-using households and 807 ppm in biogas-using 

households. The median peak CO concentration was significantly lower in households 

using biogas than in households using firewood (47.50 ppm versus 235 ppm, Wilcoxon test: 

p<0.001). Households using biogas had 77% lower mean 24 hour kitchen CO levels than 

those using firewood. The mean CO among biogas users (4.60 ppm) was below the WHO 

guideline limit but wood users (20.05 ppm) were exposed to CO levels three times higher 

than the WHO recommended levels; differences between the two groups were statistically 

significant (Wilcoxon test: p<0.001). 
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Figure 4.2: Typical example of 24 hour kitchen CO recording 

 

 

 

Table 4.11: 24 hour mean kitchen concentration of CO in firewood- and biogas-using 
households 

 All 

(N=143) 

Wood  

(N=63) 

Biogas  

(N=80) 

p 

value 

24h average kitchen CO in summer 

in ppm 

11.41, 7.06 

(1.32-16.08) 

20.05, 15.85 

(9.80-26.76) 

4.60, 2.10 

(0.87-5.85) 

<0.001 

Peak CO level in summer in ppm 185.7, 141 

(45.5-247) 

284, 235 

(150-341) 

108.2, 47.5 

(27-144.5) 

<0.001 

24 h average kitchen CO in winter in 

ppm* 

6.42, 3.42 

(1.02-8.05) 

8.59, 6.03 

(2.35-13.28) 

4.17, 1.51 

(1.01-5.04) 

<0.001 

Peak CO level in winter in ppm* 134.50,74 

(47.50-156.50) 

152.4, 130 

(64.25-204.75) 

116, 55 

(40.50-90) 

0.010 

Data are mean, median (IQR) or number (%) unless otherwise specified.  

P value based on Wilcoxon test for continuous data. *Data based on 28 firewood users and 27 biogas users. 

 

In a subset of households measured in summer, we re-measured kitchen CO in winter. 

Households had lower levels of CO in winter than during summer but still the difference 

between biogas- and firewood-using household persisted as shown in Table 4.11. 

 

 
4.4.1 Univariate analysis of CO 

CO data were log transformed for regression analyses owing to their skewed distribution. 

Linear regression models were fitted with log CO as the dependent variable to estimate the 
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effect of biogas fuel use on kitchen concentrations. Table 4.12 shows the balance achieved 

in SES after matching. 

Table 4.12: Balance improvement for analysis of CO concentrations through matching on 
socio-economic status score 

 
Biogas users 

Wood users 
before matching 

Wood users after 
matching 

Standardized 
mean difference 

Socio-economic status 
score (mean) 

1.169 -0.334 1.035 0.119 

Matched number 80 63 `63 NA 

 

Figure 4.3 shows a jitter plot of the propensity score for households using biogas and 

firewood. Each circle represents one household and the size of the circle reflects that 

household’s weight in the matched sample. All treated households received a weight of 1. 

The weight of the control households depended on how many treated and control units 

were in a matched subclass. Control units with small propensity scores received a lower 

weight because there were no treated households with propensity scores that low. Owing to 

the use of full matching there were no unmatched treated or control units. 

Figure 4.3: Jitter plot of propensity scores for firewood and biogas using households. The 

size of each circle is proportional to the weight given to that household. 
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The jitter plot also shows the overlap of propensity scores in the two groups, in this case 

there was considerable overlap, which is a good precondition for obtaining valid causal 

estimates. The histograms of the density of propensity scores show the general 

improvement in balance achieved before and after matching. Despite matching, there were 

a few biogas-using households with an SES much greater than the firewood-using 

household as evidenced in Figure 4.4. 

Figure 4.4: Histograms of the density of propensity scores for households before and after 

matching. 

 

Univariate analysis was undertaken in both the matched and unmatched datasets. As 

shown in Table 4.13 biogas fuel use was associated with significant reductions in the kitchen 

concentration of CO in both analysis strategies. In the matched analysis, having a window 

in the kitchen and a larger kitchen volume were independently associated with decreased 

log 24 hour kitchen CO concentrations. Interestingly, types of kitchen or additional fuel use 
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did not significantly influence CO levels. The findings of the sensitivity analysis were largely 

in line with those of the main analysis. 

 

Table 4.13: Unadjusted effect of various factors on log transformed 24 hour kitchen carbon 

monoxide 

 Main analysis  
Matched  

Sensitivity analysis 
Unmatched  

Independent variables Coefficient 
(95% CI) 

P 
value 

Coefficient 
(95% CI) 

P 
value 

Biogas -0.749 
(-0.955, -0.542) 

<0.001 -0.875 
(-1.064, -0.686) 

<0.001 

Kitchen eave spaces  (ref: completely closed) 

Partially open -0.369 
(-0.720, -0.018) 

0.039 -0.073 
(-0.353, 0.207) 

0.607 

Completely open 0.088 
(-0.259, 0.435) 

0.619 -0.064 
(-0.364, 0.237) 

0.676 

Kitchen type  (ref: living room) 

Separate kitchen -0.113 
(-0.685, 0.460) 

0.700 -0.372 
(-0.792, 0.047) 

0.082 

External kitchen 0.206 
(-0.329, 0.742) 

0.449 -0.137 
(-0.498,0.224) 

0.454 

Detached kitchen 0.368 
(-0.265, 1.001) 

0.255 0.322 
(-0.226, 0.869) 

0.248 

3 walled kitchen -0.514 
(-0.262, 1.291) 

0.194 0.168 
(-0.534, 0.870) 

0.636 

Window  (ref: no window) 

One window -0.492 
(-0.780, -0.204) 

0.001 -0.462 
(-0.773, -0.151) 

0.004 

More than one window -0.448 
(-0.817, -0.079) 

0.017 -0.598 
(-0.935, -0.262) 

<0.001 

Kitchen volume in m
3
 -0.020 

(-0.032, -0.007) 
0.002 -0.011 

(-0.020, -0.002) 
0.013 

Use of LPG 0.253 
(-0.090, 0.596) 

0.148 0.033 
(-0.262, 0.328) 

0.825 

Use of electric rice cooker -0.072 
(-0.334, 0.191) 

0.593 -0.149 
(-0.387, 0.089) 

0.218 

Wealth quintile (ref: lowest) 

Second Not applicable NA 0.141 
(-0.269, 0.551) 

0.498 

Middle NA NA -0.204 
(-0.628, 0.219) 

0.341 

Fourth NA NA -0.401 
(-0.785, -0.017) 

0.041 

Highest NA NA -0.648 
(-1.006, -0.290) 

<0.001 

All estimates are expressed in log units unless otherwise specified. 
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4.4.2 Multi-variable analysis of 24 hour kitchen CO 

In the matched analysis, use of biogas was associated with substantial reductions (β= -

0.758, 95% CI [-1.030,-0.486], p<0.001) in log 24 hour CO concentrations after adjusting for 

additional fuel use and kitchen characteristics like eave spaces, type of kitchen, number of 

windows and kitchen volume. 

Table 4.14: Effect of biogas on log 24 hour kitchen CO after stepwise adjustment for potential 
confounders 

 Main analysis 

Matched  

Sensitivity analysis 

Unmatched  

Adjusted for Coefficient  

(95% CI) 

p 

value 

Coefficient 

(95% CI) 

p 

value 

Biogas (unadjusted) -0.749 (-0.955, -0.542) <0.001 -0.875 (-1.064, -0.686) <0.001 

Socioeconomic status score NA NA -0.795 (-1.012, -0.577) <0.001 

SES, additional fuel use -0.796 (-1.063, -0.530) <0.001 -0.821 (-1.045, -0.596) <0.001 

SES, additional fuel use, 

kitchen characteristics 

-0.758 (-1.030, -0.486) <0.001 -0.871 (-1.110, -0.633) <0.001 

All estimates are expressed in log units unless otherwise specified. 

 

In the unmatched sensitivity analysis this difference persisted and the effect size (β= -0.871, 

95% CI [-1.110,-0.633], p<0.001) was even greater when adjusted for additional fuel use 

and kitchen characteristics.  
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4.5 Pulmonary function in biogas and firewood users 

We enrolled 519 primary cooks of which 94% successfully performed spirometry. Figure 4.5 

shows the flow chart for participants’ lung function measurement. 33 women (21 firewood 

users and 12 biogas users) felt it was challenging to perform spirometry and withdrew from 

the procedure without making an attempt. 

Figure 4.5: Flow chart of spirometry performance 

 

 

4.5.1 Acceptable spirometry 

Two medical doctors (Maniraj Neupane and Rainald Fischer) independently assessed the 

spirograms and any disagreement was settled through discussion. 446/519 (85.9%) 

spirograms were acceptable for FEV1 while only 428/519 (82.5%) FVC records met the 

quality criteria. Nearly 83% of the cooks produced complete records allowing classification 

of obstructive airway disease. Figure 4.6 shows the success rate in terms of producing 

complete records in different age groups and according to the smoking status of cooks. 

Above the age of 40 years, successive age groups were less successful in producing 

complete spirometry records. The success rate did not differ by smoking status. 

 

 

Recruited 
primary cooks 

N= 519 

Firewood users 
(300) 

279 performed   
spirometry  

Acceptable FEV1 
256 (85.3%) 

Acceptabe FVC, 
FEV1/FVC 

241 (80.3%) 

Biogas users 
(219) 

207 performed 
spirometry 

Acceptable FEV1  

190 (86.8%) 

Acceptable FVC, 
FEV1/FVC  

187 (85.4%) 
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Figure 4.6: Spirometry success rate by age groups, smoking status and cooking fuel type 

 

 

4.5.2 Between group crude comparison of lung indices 

FEV1, FVC and MEF2575, all decreased with increasing age- intervals of 5 years as shown in 

Figure 4.7. Similarly, FEV1, FVC and MEF2575 increased with greater height. In an 

unmatched and unadjusted between-group comparison, there was no difference in FEV1, 

FVC, zFEV1, and MEF2575 between the two groups of cooks. 

Table 4.15: Crude comparison of lung indices between firewood- and biogas-using cooks 

 All Wood Biogas 
p 

value 

zFEV1 
-from 256 firewood and 190 biogas users                                             

-1.01, -0.93 

(-1.84, -0.19) 

-1.05, -0.93 

(-1.85, -0.22) 

-0.98, -0.91 

(-1.83, -0.13) 

0.619 

FEV1 (L) 
-from 256 firewood and 190 biogas users                                             

1.90, 1.96 

(1.56, 2.24) 

1.91, 2.00 

(1.56, 2.24) 

1.89, 1.90 

(1.56, 2.24) 

0.658 

FVC (L) 

-from 241 firewood and 187 biogas users                                             
2.51, 2.54 

(2.13, 2.87) 

2.53, 2.54 

(2.16, 2.88) 

2.48, 2.55 

(2.09, 2.83) 

0.392 

MEF2575 (L/s) 

-from 239 firewood and 184 biogas users                                             

1.759, 1.70 

(1.03, 2.43) 

1.74, 1.66 

(1.03, 2.38) 

1.78, 1.72 

(1.03, 2.46) 

0.705 

PEF (L/s) 

-from 240 firewood and 185 biogas users                                             
4.80, 4.94 

(3.86, 5.88) 

4.92, 5.08 

(4.00, 6.00) 

4.65, 4.69 

(3.79, 5.61) 

0.047 

Data are mean, median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data. 
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Figure 4.7: FEV1 (top), FVC (middle), MEF2575 (bottom) by age group in biogas and firewood 
users 

 

4.5.3 Between group crude comparison of airway obstruction 

The overall prevalence of airway obstruction in this population was more than 24% using a 

zFEV1/FVC score of less than -1.645 as a cut-off, i.e. the lower limit of normal (LLN). 26% 

of firewood users were diagnosed with obstructive airway disease compared to around 22% 

of biogas users; however the difference was not statistically significant in an unmatched and 
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unadjusted analysis. Applying the GOLD definition yielded a prevalence of around 20% in 

both groups. Severe airway obstruction as defined by GOLD was present in less than 5% of 

cooks. 

Table 4.16: Crude comparison of airway obstruction between firewood- and biogas-using 
cooks 

 All 

(N=428) 

Wood  

(N=241) 

Biogas  

(N=187) 

p 

value 

Airway obstruction by zFEV1/FVC 
score less than -1.645 (LLN) 

104 
(24.30%) 

63 
(26.14%) 

41 
(21.93%) 

0.363 

Airway obstruction by GOLD criteria 
i.e. FEV1/FVC<0.7 

86 
(20.09%) 

48 
(19.92%) 

38 
(20.32%) 

1 

Severe airway obstruction by GOLD 
definition 

18 
(4.21%) 

12 
(4.98%) 

6 
(3.21%) 

0.469 

Data are number (%) unless otherwise specified. P value based on Fisher’s exact test for categorical data  

(based on simulation with B=10 000 for large tables). 

 

The prevalence of airway obstruction increased sharply with increasing age using both 

diagnostic criteria (Figure 4.8). The GOLD cut-off resulted in fewer airway obstructions than 

the LLN cut-off among the cooks under the age of 60. Among the cooks older than 60 

years, the prevalence was strikingly higher based on GOLD criteria compared to the LLN 

cut-off. However, it should be noted that the total number of cooks producing acceptable 

and complete spirometry was small in these age groups (20 in 70-80 yrs and only 2 above 

80 years). In any case, at least two fifths of female cooks of 60 years or more suffered from 

airway obstruction using either of the two diagnostic criteria. 

Figure 4.8: Prevalence of airway obstruction by age group and using different diagnosis 
criteria 

 

 

We stratified the prevalence of airway obstruction by the smoking status of cooks as shown 

in Table 4.17. Nearly 14% (11% of biogas vs. 16% of firewood users) of never smoking 
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cooks were diagnosed to have AO using LLN criteria. AO prevalence increased from never 

smokers to current smokers to former smokers in both the biogas and firewood users; two 

fifths of former smokers were diagnosed with AO according to the LLN cut-off.  

Table 4.17: Prevalence of airway obstruction by smoking status in firewood and biogas users 

 AO defined by LLN (n=428/519) AO by GOLD definition (n=428/519) 

Smoking 
status 

Biogas 
 

Wood  Total 
 

Biogas 
 

Wood  Total 
 

Never 
smoker 

11.00% 
(11/100) 

16.35% 
(17/104) 

13.73% 
(28/204) 

9.00% 
(9/100) 

7.69% 
(8/104) 

8.33% 
(17/204) 

Former 
Smoker 

38.10% 
(16/42) 

41.67% 
(20/48) 

40.00% 
(36/90) 

33.33% 
(14/42) 

35.42% 
(17/48) 

34.44% 
(31/90) 

Current 
smoker 

31.11% 
(14/45) 

29.21% 
(26/89) 

29.85% 
(40/134) 

33.33% 
(15/45) 

25.84% 
(23/89) 

28.36% 
(38/134) 

Total  
 

21.93% 
(41/187) 

26.14% 
(63/241) 

24.30% 
(104/428) 

20.32% 
(38/187) 

19.92% 
(48/241) 

20.09% 
(86/428) 

 

A similar pattern of AO prevalence was observed using GOLD diagnostic criteria. Although 

more current smokers in the biogas group suffered from AO compared to the firewood 

group, it is not surprising given the differences in age of the participants. 

 

4.5.4 Analysis of FEV1 

Linear regression models were fitted with individual lung index as the dependent variable to 

estimate the effect of independent variables like biogas fuel use, using matched data in the 

main analysis and unmatched data in a sensitivity analysis. 

 

Performance of matching and balance check 

Single primary cooks from each household were matched by their SES, age and height 

using full matching. Table 4.18 shows the balance in key variables achieved after matching. 

The standardized mean differences or ASB, defined as the weighted differences in means 

divided by the standard deviation in the original treated group all reduced after matching 

shown by the down-going slope of the line plots in Figure 4.9. All ASB were less than 0.25, 

implying that the groups are well matched. 
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Table 4.18: Balance achievement as shown by the reduction in absolute standardized bias 

after matching on socio-economic status score, age and height (for FEV1) 

 

Biogas 
Wood before 

matching 

Wood after 

matching 

Standardized 

mean difference 

after (before) 

matching 

Distance/propensity score 0.589 0.305 0.587 0.007 (1.214) 

Age (mean) 51.176 48.386 52.701 -0.130 (0.237) 

Height (mean) 151.314 150.819 151.508 -0.039 (0.099) 

BMI (mean) 22.694 21.879 22.416 0.105 (0.216) 

Weight (mean) 52.074 49.868 51.065 0.074 (0.229) 

Socio-economic score (mean) 0.908 -0.587 0.848 0.055 (1.374) 

 

Figure 4.9: Line plot of absolute standardized difference in means of selected covariates 
before and after matching for comparison of FEV1 

 

 

 

Figure 4.10 shows a jitter plot of the propensity score for primary cooks from households 

using biogas or firewood for cooking. Each circle represents a cook and the size of the 

circle reflects the assigned weight in the matched sample. All treated units received a 

weight of 1 while control units received weights ranging from 0.04 to 29.72. The jitter plot 

showed substantial overlap of the propensity scores in the two groups. 
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Figure 4.10: Jitter plot of propensity scores for primary cooks using either firewood or biogas 
for comparison of FEV1.The size of the circle reflects the weights assigned to each. 

 

101 subclasses were formed during the matching procedure. The number of treated and 

control units in each subclass ranged from 1 treated and 31 control units to 1 control and 22 

treated units. Such stark differences in the number of treated vs. control units were 

observed in only 5 subclasses, the remaining 96 subclasses had a more uniform distribution 

of treated and control units as shown in Figure 4.11. 

Figure 4.11: Number of firewood and biogas users in each of the matched subclasses created 

during full matching for comparison of FEV1 
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Figure 4.12 shows the distribution of the propensity scores of cooks in each fuel group 

before and after matching. Propensity score distributions were in contrast to each other 

before matching which improved markedly to more or less homogenous distribution after 

matching as shown by the histograms. 

Figure 4.12: Histograms of the density of propensity scores for primary cooks before and 
after matching for comparison of FEV1 

 

 

4.5.4.1 Univariate analysis of FEV1 

In the univariate linear regression analysis of matched dataset, smoking status of the cook 

was the most important determinant of FEV1 (Table 4.19). Compared to a never smoker of 

similar age, height and SES, an ever smoking female cook had a 226 ml (345 ml – 106 ml, 

p<0.001) lower FEV1. Both former and current smokers had significantly lower FEV1 values 

than non smokers. Kitchen type and the use of an electric rice cooker were other significant 

determinants of FEV1 in the univariate linear regression analysis. 
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Table 4.19: Unadjusted effect of various factors on FEV1 

 Main analysis 
Matched  

Sensitivity analysis 
Unmatched 

Independent variables Coefficient 
(95% CI) 

P 
value 

Coefficient 
(95% CI) 

P 
value 

Age NA NA -0.027 
(-0.030, -0.024) 

<0.001 

Height NA NA 0.044 
(0.036, 0.053) 

<0.001 

Weight 0.008 
(-0.001, 0.018) 

0.081 0.018 
(0.013, 0.023) 

<0.001 

BMI 0.017 
(-0.003, 0.036) 

0.094 0.027 
(0.014, 0.040) 

<0.001 

Smoking (ref: never smoker)     

Former smoker -0.168 
(-0.309, -0.027) 

0.019 -0.472 
(-0.588, -0.356) 

<0.001 

Current smoker -0.263 
(-0.425, -0.101) 

0.001 -0.340 
(-0.443, -0.237) 

<0.001 

Ever smoker (ref: never smoker) -0.226 
(-0.345, -0.106) 

<0.001 -0.394 
(-0.484, -0.305) 

<0.001 

Wealth quintile (ref: lowest) 

Second NA NA 0.001 (-0.153, 0.155) 0.988 

Middle NA NA -0.100 (-0.254, 0.054) 0.201 

Fourth NA NA 0.030 (-0.125, 0.185) 0.702 

Highest NA NA -0.080 (-0.235, 0.075) 0.309 

All estimates are expressed in litres unless otherwise specified 

 

With respect to cooking characteristics as shown in Table 4.20, compared to firewood, 

biogas use was associated with 150 ml (-21 ml – 322 ml) better FEV1 but this was not 

statistically significant (p=0.086). Having a separate kitchen was associated with 129 ml (12 

ml – 246 ml, p=0.031) increased FEV1 compared to having the kitchen as part of the living 

room. Kitchen volume, quality of eave spaces or the number of windows in the kitchen were 

not significant determinants of FEV1 in linear regression. Biological characteristics like 

weight and BMI did not significantly influence FEV1 in the matched analysis. 
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Table 4.20: Unadjusted effect of fuel use and kitchen related variables on FEV1 

Effect of fuel use and kitchen related variables on FEV1(L) 

 Matched analysis Unmatched analysis 

Independent variables Coefficient 
(95% CI) 

P 
value 

Coefficient 
(95% CI) 

P 
value 

Biogas 0.150 
(-0.021, 0.322) 

0.086 -0.016 
(-0.114, 0.082) 

0.747 

Kitchen eave spaces  (ref: completely closed) 

Partially open -0.227 
(-0.474, 0.021) 

0.073 -0.070 
(-0.191, 0.052) 

0.263 

Completely open -0.091 
(-0.222, 0.039) 

0.171 -0.027 
(-0.165, 0.111) 

0.698 

Kitchen type  (ref: living room) 

Separate kitchen 0.129 
(0.012, 0.246) 

0.031 0.100 
(-0.049, 0.249) 

0.188 

External kitchen -0.066 
(-0.248, 0.117) 

0.482 -0.004 
(-0.157, 0.147) 

0.950 

Detached kitchen 0.162 
(-0.045, 0.369) 

0.126 0.145 
(-0.076, 0.367) 

0.196 

3 walled kitchen -0.315 
(-0.549, -0.081) 

0.008 -0.288 
(-0.761, 0.184) 

0.232 

Window  (ref: no window) 

One window -0.016 (-0.185,0.152) 0.849 0.034 (-0.106,0.174) 0.632 

More than one window 0.061 (-0.117,0.239) 0.502 -0.027 (-0.186,0.131) 0.733 

Kitchen volume in m
3
 0.002 (-0.005,0.010) 0.558 <0.001 (-0.004,0.005) 0.988 

Use of LPG -0.190 (-0.448,0.067) 0.148 0.008 (-0.133,0.150) 0.909 

Use of electric rice cooker -0.198 
(-0.333,-0.063) 

0.004 -0.013 
(-0.119,0.093) 

0.809 

All estimates are expressed in litres unless otherwise specified 

 

In the unmatched sensitivity analysis, all biological characteristics like age, height, weight, 

BMI were significant (all p<0.001) determinants of FEV1. As in the matched analysis, an 

ever smoking female cook had 394 ml (305 ml – 484 ml, p<0.001) lower FEV1 compared to 

a never smoker. Both the former and current smokers had significantly lower FEV1 than a 

non smoker. None of the kitchen characteristics significantly influenced FEV1; neither did 

biogas use or any additional fuel use. 

 

4.5.4.2 Multi-variable analysis of FEV1 

Multi-variable linear regression analysis of FEV1 in the matched dataset revealed a 

significant effect of biogas use on FEV1. After stepwise adjustment for smoking status of 

the cooks; kitchen characteristics like type of kitchen, eave spaces, kitchen volume and 
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number of windows; and additional fuel use, cooks using biogas fuel had a 123 ml (11 ml – 

236 ml, p=0.032) greater FEV1 than the cooks using firewood (Table 4.21).  

Table 4.21: Effect of biogas on FEV1 after adjustment for important confounders 

 Main analysis 

Matched  

Sensitivity analysis 

Unmatched  

Adjusted for Coefficient  

(95% CI) 

p 

value 

Coefficient 

(95% CI) 

p 

value 

Unadjusted effect of biogas 0.150 (-0.021, 0.322) 0.086 -0.016 (-0.114, 0.082) 0.747 

Age, height, SES NA NA 0.027 (-0.056, 0.111) 0.523 

Age, height, SES, smoking 0.122 

(-0.022, 0.266) 

0.097 0.016 

(-0.066, 0.098) 

0.700 

Age, height, SES, smoking and 

kitchen characteristics 

0.119 

(-0.003, 0.242) 

0.057 0.002 

(-0.085, 0.089) 

0.977 

Age, height, SES, smoking, kitchen 

characteristics, additional fuel use 

0.123 

(0.011, 0.236) 

0.032 0.008 

(-0.080, 0.096) 

0.859 

All estimates are expressed in litres unless otherwise specified. 

 

In the unmatched sensitivity analysis, adjusting for the same set of variables in a stepwise 

fashion did not produce a statistically significant effect of biogas use on FEV1. 

 

4.5.5 Analysis of airway obstruction 

Logistic regression models were fitted with AO as the dependent variable to estimate the 

effect of independent variables like biogas use. As only 428 cooks had complete spirometry 

records, allowing for diagnosis of the presence or absence of AO, another matched dataset 

was created matching primary cooks from each household by their SES, age and height 

using full matching. Table 4.22 shows the balance achieved after matching. All standardized 

mean differences were less than 0.25, implying that the groups are well matched. 

Table 4.22: Balance achievement as shown by the reduction in absolute standardized bias 
after matching on socio-economic status score, age and height (for AO) 

 
Biogas 

Wood  
before 

matching 

Wood  
after  

matching 

Standardized mean 
difference after 

(before) matching 

Distance (propensity score) 0.598 0.311 0.596 0.007  (1.239) 

Age (mean) 50.876 47.946 52.306 -0.123  (0.252) 

Height (mean) 151.292 150.862 151.223 0.014  (0.086) 

BMI (mean) 22.706 21.937 22.864 0.017  (0.217) 

Weight (mean) 52.081 50.015 51.916 -0.042  (0.206) 

SES (mean) 0.917 -0.599 0.870 0.044  (1.402) 
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The standardized mean differences i.e. the absolute standardized bias for the matching and 

other key covariates all decreased and were less than 0.25 after matching as shown by the 

down-going slope of the line plots in Figure 4.13. 

 

Figure 4.13: Line plot of absolute standardized bias of selected covariates before and after 
matching for comparison of airway obstruction 

 

Figure 4.14 shows a jitter plot of the propensity scores. All treated units received a weight of 

one while control units received weights ranging from 0.04 to 27.13. 102 subclasses were 

formed during matching. The number of treated and control units in each subclass ranged 

from 1 treated and 31 control units to 1 control and 20 treated units (Figure 4.15). 
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Figure 4.14: Jitter plot of propensity scores for primary cooks using either firewood or biogas 
for comparison of airway obstruction. The size of the circle reflects the weights assigned to 
each. 

 

The substantial overlap of the propensity scores in the two groups, as shown in the jitter 

plot, is a good precondition for obtaining valid causal estimates. 

 

Figure 4.15: Number of firewood and biogas users in each of the matched subclasses created 
during full matching for comparison of airway obstruction 
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Figure 4.16 shows the distribution of the propensity scores of cooks in each fuel group 

before and after matching. Propensity score distributions were in contrast to each other 

before matching which improved markedly to more or less homogenous distribution after 

matching as shown by the histograms. 

 

Figure 4.16: Histograms of the density of propensity scores for primary cooks before and 

after matching for comparison of airway obstruction. 

 

 

 

4.5.5.1 Airway obstruction as defined using LLN  

In the univariate logistic regression analysis of AO as defined by LLN in the matched 

dataset, past smokers were nearly 3 times (OR= 2.84 [1.02, 7.93]) more likely to develop 

AO compared to never smokers of similar socioeconomic status, age and height as shown 

in Table 4.23. There was a 46% reduced odds (OR= 0.54, [0.25, 1.19]) of developing AO 

with the use of biogas, but this was not statistically significant. 

Out of the kitchen characteristics, poor quality eave spaces and a kitchen with only three 

walls were significantly associated with a substantially greater risk of developing AO. The 
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number of windows in the kitchen, kitchen volume or use of additional fuel did not influence 

the outcome. 

Table 4.23: Unadjusted effect of various factors on the risk of developing AO as diagnosed by 
LLN 

 Main analysis 

Matched  

Sensitivity analysis 

Unmatched  

Independent variables Odds ratio 

(95% CI) 

P 

value 

Odds ratio 

(95% CI) 

P 

value 

Biogas 0.54 (0.25,1.19) 0.126 0.79 (0.51,1.24) 0.314 

Age NA NA 1.06 (1.04,1.08) <0.001 

Smoking (ref: never smoker)     

Former smoker 2.84 (1.02,7.93) 0.046 4.19 (2.34,7.48) <0.001 

Current smoker 2.04 (0.75,5.59) 0.165 2.67 (1.55,4.61) 0.003 

Ever smoker (ref: never smoker) 2.28 (0.91,5.69) 0.078 3.23 (1.99,5.24) <0.001 

Education (ref: none) 0.61 (0.18,2.05) 0.425 0.48 (0.27,0.86) 0.014 

Kitchen eave spaces  (ref: absent) 

Poor 2.46 (1.07,5.66) 0.033 1.01 (0.58,1.76) 0.973 

Good 0.85 (0.20,3.60) 0.821 1 (0.53,1.87) 0.977 

Kitchen type  (ref: living room) 

Separate kitchen 2.14 (0.66,6.93) 0.206 1.35 (0.66,2.78) 0.409 

External kitchen 2.49 (0.72,8.58) 0.148 1.22 (0.59,2.54) 0.590 

Detached kitchen 4.04 (0.78,21.04) 0.097 1.64 (0.60,4.45) 0.335 

3 walled kitchen 22.83 (3.08,169.25) 0.002 2.67 (0.40,17.79) 0.311 

Window  (ref: no window) 

One window 0.82 (0.24,2.83) 0.758 1.01 (0.53,1.92) 0.985 

More than one window 0.65 (0.16,2.54) 0.533 1.09 (0.53,2.25) 0.810 

Kitchen volume in m
3
 0.98 (0.94,1.03) 0.486 0.99 (0.97,1.02) 0.559 

Use of LPG 0.97 (0.31,3.07) 0.964 1.04 (0.56,1.96) 0.891 

Use of electric rice cooker 1.91 (0.93,3.94) 0.080 1.02 (0.63,1.65) 0.920 

Log10COSumAvg -- `-- 1.10 (0.637,1.94) 0.732 

Wealth quintile (ref: lowest) 

Second NA NA 0.88 (0.42,1.85) 0.744 

Middle NA NA 1.09 (0.53,2.25) 0.805 

Fourth NA NA 0.95 (0.46,1.97) 0.884 

Highest NA NA 1.56 (0.78,3.10) 0.210 

 

In the unmatched sensitivity analysis, smoking status of the cook was an independent risk 

factor for developing AO. A former smoker was four times (OR= 4.19 [2.34-7.49] more likely 

to develop AO and a current smoker was at least 2.5 times (OR= 2.67 [1.55-4.61]) more 

likely to develop AO when diagnosed by LLN. A cook with some formal education had a 

52% reduced odds (OR=0.48 [0.27-0.86]) of developing AO compared to a cook without 
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any formal schooling. None of the kitchen characteristics were associated with the risk of 

AO in the unmatched univariate analysis. 

 

Multivariable analysis of AO as defined by LLN 

Multi-variable logistic regression analysis of AO as diagnosed by LLN revealed significant 

reductions in the risk of developing AO among the cooks using biogas. The effect size 

increased progressively with the stepwise addition of control variables in the model. When 

adjusting for smoking status of the cooks and kitchen characteristics, biogas use was 

associated with more than a 55% (OR= 0.44 [0.20-0.94]) reduction in the odds of 

developing AO compared to cooks using firewood and of similar socio-economic status, age 

and height. Further adjustments for additional fuel use resulted in a further reduction in the 

odds of developing AO (OR=0.35 [0.16-0.76]) for biogas use. 

Table 4.24: Effect of biogas on AO after stepwise adjustment for important confounders (LLN)  

AO diagnosed by values less than 

LLN 

Main analysis 

Matched  

Sensitivity analysis 

Unmatched  

Adjusted for Odds ratio  

(95% CI) 

p 

value 

Odds ratio 

(95% CI) 

p 

value 

Unadjusted effect of biogas 0.54 (0.25, 1.19) 0.126 0.79 (0.51, 1.24) 0.314 

Age, height, SES NA NA 0.47 (0.27, 0.83) 0.009 

Age, height, SES, smoking 0.51 (0.24, 1.11) 0.092 0.48 (0.27, 0.85) 0.012 

Age, height, SES, smoking and 

kitchen characteristics 

0.44 (0.20, 0.94) 0.035 0.51 (0.27, 0.94) 0.030 

Age, height, SES, smoking, kitchen 

characteristics, additional fuel use 

0.35 (0.16, 0.76) 0.008 0.51 (0.27, 0.95) 0.033 

 

The unmatched multi-variable sensitivity analysis produced similar findings, showing a 

significantly decreased odds of developing AO of about 50% (OR= 0.51 [0.27-0.95]) for 

biogas users in the fully adjusted model. 

 

4.5.5.2 Airway obstruction as diagnosed by GOLD criteria 

In the univariate logistic regression analysis of AO as defined by GOLD criteria in the 

matched dataset, cooking with biogas was not significantly (OR= 0.83 [0.34-2.02]) 

associated with the odds of developing AO compared to cooking with firewood as shown in 

Table 4.25. Cooks who were either current or former smokers were nearly three times (OR= 
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2.89[1.05-7.98]) more likely to develop AO compared to never smokers of similar 

socioeconomic status, age and height. 

It seems that cooking in a three walled kitchen is associated with a substantial risk of 

developing AO, however this is not meaningful due to the distribution of the variable (all 7 

households with a three walled kitchen are wood users). None of the other kitchen- and 

ventilation-related characteristics were associated with the risk of developing AO. 

Table 4.25: Unadjusted effect of various factors on the risk of developing AO as diagnosed by 
GOLD criteria 

 Main analysis: Matched  Sensitivity analysis: 

Unmatched  

Independent variables Odds ratio 

(95% CI) 

P 

value 

Odds ratio 

(95% CI) 

P 

value 

Biogas 0.83 (0.34, 2.02) 0.683 1.02 (0.64, 1.65) 0.918 

Age NA NA 1.12 (1.09, 1.15) <0.001 

Smoking (ref: never smoker)     

Former smoker 2.83 (1.09, 7.36) 0.033 5.78 (2.99, 11.18) <0.001 

Current smoker 2.92 (0.93, 9.18) 0.067 4.35 (2.34, 8.11) <0.001 

Ever smoker (ref: never smoker) 2.89 (1.05, 7.98) 0.041 4.90 (2.76, 8.67) <0.001 

Literacy 0.31 (0.07, 1.40) 0.129 0.30 (0.14, 0.62) 0.001 

Kitchen eave spaces  (ref: absent) 

Poor 2.43 (0.85, 6.95) 0.099 0.94 (0.52, 1.71) 0.846 

Good 0.48 (0.10, 2.40) 0.374 0.75 (0.37, 1.53) 0.437 

Kitchen type  (ref: living room) 

Separate kitchen 2.18 (0.67, 7.10) 0.195 1.16 (0.55, 2.46) 0.695 

External kitchen 2.02 (0.57, 7.19) 0.278 1.04 (0.49, 2.24) 0.912 

Detached kitchen 2.12 (0.44, 10.28) 0.349 1.30 (0.45, 3.77) 0.630 

3 walled kitchen 47.87(8.40, 272.70) <0.001 2.97 (0.42,19.95) 0.263 

Window  (ref: no window) 

One window 0.87 (0.27, 2.84) 0.818 1.18 (0.58, 2.43 0.649 

More than one window 0.96 (0.21, 4.34) 0.955 1.32 (0.60, 2.91) 0.493 

Kitchen volume in m
3
 0.98 (0.95, 1.01) 0.228 0.99 (0.97, 1.02) 0.540 

Use of LPG 0.68 (0.22, 2.10) 0.502 0.88 (0.43, 1.77) 0.714 

Use of electric rice cooker 1.64 (0.78, 3.46) 0.195 1.06 (0.64, 1.77) 0.818 

Log10COSumAvg -- -- 1.29 (0.70, 2.40) 0.412 

Wealth quintile (ref: lowest) 

Second NA NA 1.04 (0.48, 2.24) 0.928 

Middle NA NA 0.97 (0.45, 2.13) 0.950 

Fourth NA NA 0.75 (0.33, 1.69) 0.488 

Highest NA NA 1.67 (0.80, 3.45) 0.169 
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In the unmatched sensitivity analysis increased age was associated with a greater odds 

(OR=1.12 [1.09-1.15]) of AO. Having some formal education significantly reduced the odds 

of AO by 70% (OR= 0.30 [0.14-0.62]). As in the matched analysis, cooks who were either 

current or former smokers had a nearly five times (OR=4.90 [2.76-8.67]) increased odds of 

developing AO. 

 

Multivariable analysis of AO as diagnosed by GOLD criteria 

When airway obstruction was diagnosed by GOLD criteria, the matched multivariable 

analysis adjusting for important confounders resulted in reduced odds of developing AO 

among biogas users compared to firewood users. However, none of the models yielded 

significant association as shown in Table 4.26. 

Table 4.26: Effect of biogas on AO after stepwise adjustment for important confounders 
(GOLD) 

AO diagnosed by GOLD criteria Main analysis: Matched  Sensitivity analysis: 

Unmatched  

Adjusted for Odds ratio  

(95% CI) 

p 

value 

Odds ratio 

(95% CI) 

p 

value 

Unadjusted effect of biogas 0.83 (0.34, 2.02) 0.683 1.02 (0.64, 1.65) 0.918 

Age, height, SES NA NA 0.58 (0.30, 1.11) 0.101 

Age, height, SES, smoking 0.87 (0.36, 2.13) 0.767 0.59 (0.30, 1.15) 0.122 

Age, height, SES, smoking and 

kitchen characteristics 

0.73 (0.28, 1.86) 0.505 0.71 (0.34, 1.46) 0.350 

Age, height, SES, smoking, kitchen 

characteristics, additional fuel use 

0.60 (0.23, 1.58) 0.300 0.71 (0.34, 1.49) 0.369 

 

In the unmatched multi-variable sensitivity analysis, the effect of biogas use on the risk of 

developing AO as diagnosed by GOLD criteria was also not statistically significant. 

 

4.6 Cardiovascular health in biogas and firewood users 

All analyses of cardiovascular status were stratified into two age groups (30-50 years and 

>50 years) as outlined in Table 3.5 owing to the differential risk of cardiovascular diseases in 

post menopausal women. (Miller et al., 2007, Liu et al., 2001) 
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SBP progressively increased with age in this population. DBP increased up to the age of 50 

years and then decreased thereafter. With both SBP and DBP measures, we observed a 

notch around the age of 50 years as in Figure 4.17. 

Figure 4.17: Distribution of systolic and diastolic blood pressure in firewood- and biogas-

using cooks 
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4.6.1 Between group crude comparison of cardiovascular outcomes 

The crude estimates of between-group comparisons of SBP, DBP and prevalence of 

hypertension are shown in Table 4.27. As expected, women aged more than 50 years had 

higher SBP and DBP and a higher rate of hypertension than women aged 30-50 years. In 

the older age group, one in two cooks had average blood pressure readings ≥140/90 

mmHg, and the prevalence of high blood pressure in the overall population was 34.5%. 

Biogas users had lower overall SBP and DBP and also lower prevalence of hypertension 

than wood users; for DBP and diastolic hypertension, these differences were statistically 

significant. In the younger age group, biogas users had higher SBP and DBP than wood 

users but these differences were not statistically significant. 

 

Table 4.27: Crude comparisons of blood pressure and prevalence of hypertension by age 
group and primary fuel use 

 

 30-50 years (N=297) >50 years (N=222) 

Characteristics Wood  
(185) 

Biogas 
(112) 

P  
value 

Wood  
(115) 

Biogas 
(107) 

P 
value 

SBP 121.33 
(111.50,132.33) 

124.00 
(115.00,135.33) 

0.07 139.00 
(121.33,155.67) 

136.50 
(118.42,152.50) 

0.44 

DBP 78.67 
(73.50, 86.33) 

81.00 
(74.50,87.00) 

0.19 82.33 
(76.33,92.00) 

79.33 
(73.42,87.67) 

0.03 

Hypertension 42 (22.95%) 25 (22.52%) 1 59 (52.21%) 51 (48.11%) 0.60 

Systolic HTN 25 (13.66%) 20 (18.02%) 0.32 54 (47.79%) 48 (45.28%) 0.79 

Diastolic HTN 33 (18.03%) 20 (18.02%) 1 36 (31.86%) 19 (17.92%) 0.02 

Data are median (IQR) or number (%) unless otherwise specified. P value based on Wilcoxon test for continuous data and Fisher’s exact test for 
categorical data (based on simulation with B=10 000 for large tables). 

 

 

4.6.2 Impact of biogas on blood pressure among cooks older than 50 years 

Figure 4.18 shows the reduction in the absolute standardized bias and balance achieved for 

key variables after matching biogas-using cooks to wood-using cooks older than 50 years. 

The ASB for each of the matching covariates (age, BMI and SES) was reduced to less than 

0.25. Before matching, participants differed significantly in their PCA-derived socio-

economic scores. After full matching, participants were well balanced in their socio-

economic score (ASB was reduced from 1.746 to 0.068) and distance measure (propensity 

score). 
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Figure 4.18: Balance achievement as shown by the reduction in absolute standardized bias 

after matching biogas users and wood users older than 50 years 

 

SBP and DBP among >50 years 

After matching and additional adjustments for smoking status, kitchen characteristics and 

additional fuel use, no statistically significant differences were observed for SBP. However, 

both the unadjusted and adjusted model yielded more than 6 mmHg lower average DBP 

among biogas users compared to wood users in this age group as shown in Table 4.28. 

Unmatched sensitivity analysis yielded results that were similar to those of the matched 

analysis. However, the effect sizes were lower and did not reach statistical significance. 

Table 4.28: Unadjusted and adjusted differences in SBP and DBP in biogas- vs wood-using 
cooks older than 50 years 

Main analysis: Matched 

Matched by age, BMI and SES 
 

SBP (mmHg) DBP (mmHg) 

Difference 
(95% CI) 

p 
value 

Difference 
(95% CI) 

p 
value 

Unadjusted effect of biogas -9.22 (-20.25, 1.81) 0.101 -6.14 (-11.56,-0.71) 0.027 

Smoking -9.45 (-21.06, 2.16) 0.110 -6.51 (-12.28,-0.74) 0.027 

Smoking, kitchen characteristics,  
additional fuel use 

-9.84 (-20.43, 0.76) 0.069 -6.49 (-12.15,-0.82) 0.025 

Sensitivity analysis: Unmatched 

Unadjusted effect of biogas -2.34 (-8.77, 4.11) 0.475 -3.11 (-6.37,0.15) 0.061 

Age, BMI, Smoking -3.82 (-10.27, 2.63) 0.245 -3.24 (-6.45,-0.03) 0.048 

Age, BMI, Smoking, SES -2.72 (-10.45, 5.01) 0.489 -2.47 (-6.32,1.37) 0.206 

Age, BMI, Smoking, SES, kitchen 
characteristics, additional fuel use 

-4.47 (-12.95, 4.01) 0.300 -3.26 (-7.49,0.96) 0.129 
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Hypertension among >50 years 

The adjusted and unadjusted estimates of the risk of developing hypertension are shown in 

Table 4.29. After matching and adjustment there was a 68% reduced odds (OR=0.32, 95% 

CI [0.14-0.71]) of developing hypertension among biogas users compared to wood users. 

Biogas users showed a substantial reduction (82%) in the odds of developing diastolic 

hypertension compared to their wood-using counterparts, whereas the observed differences 

in systolic hypertension were not statistically significant. 

Table 4.29: Unadjusted and adjusted differences in the risk of developing hypertension in 
biogas- vs wood-using cooks older than 50 years 

 

Main analysis: Matched 

Matched by age, BMI and SES 
(>50 years) 

HTN Systolic HTN Diastolic HTN 

Odds ratio 
(95% CI) 

p 
value 

Odds ratio 
(95% CI) 

p 
value 

Odds ratio 
(95% CI) 

p 
value 

Unadjusted effect of biogas 0.40 
(0.16-1.00) 

0.051 0.48 
(0.16-1.39) 

0.178 0.25 
(0.07-0.88) 

0.031 

Smoking 0.39 
(0.16-0.92) 

0.033 0.49 
(0.17-1.38) 

0.176 0.23 
(0.06-0.83) 

0.024 

Smoking, kitchen characteristics, 
additional fuel use 

0.32 
(0.14-0.71) 

0.005 0.42 
(0.17-1.02) 

0.054 0.18 
(0.05-0.60) 

0.005 

Sensitivity analysis: Unmatched 

Unadjusted effect of biogas 0.85 
(0.50-1.44) 

0.544 0.90 
(0.53-1.54) 

0.710 0.47 
(0.25-0.88) 

0.019 

Age, BMI, Smoking 0.79 
(0.46-1.36) 

0.400 0.85 
(0.49-1.47) 

0.554 0.42 
(0.22-0.82) 

0.010 

Age, BMI, Smoking, SES 0.83 
(0.43-1.59) 

0.572 0.85 
(0.44-1.64) 

0.634 0.51 
(0.23-1.10) 

0.085 

Age, BMI, Smoking, SES, 
kitchen characteristics, 
additional fuel use 

0.64 
(0.30-1.33) 

0.231 0.69 
(0.33-1.43) 

0.320 0.44 
(0.18-1.05) 

0.063 

 

Unmatched sensitivity analysis showed effect in similar direction as matched analysis but 

was not statistically significant in the final model. 

 

4.6.3 Impact of biogas on blood pressure among cooks aged 30-50 years 

In the younger age group, however, balance was not well achieved using the same a priori 

agreed set of matching covariates as shown in Figure 4.19. The ASB for BMI actually 

worsened from 0.262 in the unmatched dataset to 0.387 after matching, and age displayed 

only minimal improvement (from 0.223 to 0.217). SES and the overall distance measure 
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(propensity score) were well balanced, with the ASB for SES being reduced from 1.319 in 

the unmatched dataset to 0.099 in the matched dataset. 

Figure 4.19: Balance achievement as shown by the reduction in absolute standardized bias 

after matching biogas users and wood users aged 30-50 years 

 

 

SBP and DBP among 30-50 years 

Contrary to older cooks, the adjusted matched analysis in the younger group showed a 

statistically significant 4mmHg higher SBP among biogas users compared to wood users 

but no differences for DPB as in Table 4.30. Results from the unmatched sensitivity analysis 

were in accordance with the matched analysis but did not reach statistical significance. 
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Table 4.30: Unadjusted and adjusted differences in SBP and DBP in biogas-vs wood-using 
cooks aged 30-50 years 

Main analysis: Matched 

Matched by age, BMI and SES 
(30-50 years age) 

SBP (mmHg) DBP (mmHg) 

Difference 
(95% CI) 

p 
value 

Difference 
(95% CI) 

p 
value 

Unadjusted effect of biogas 3.59 (-0.77, 7.95) 0.106 1.14 (-2.04, 4.32) 0.482 

Smoking 3.76 (-0.37, 7.89) 0.075 1.37 (-1.64, 4.39) 0.372 

Smoking, kitchen characteristics, 
ventilation and additional fuel use 

4.38 (0.86, 7.90) 0.015 1.49 (-0.95, 3.93) 0.231 

Sensitivity analysis: Unmatched 

Unadjusted effect of biogas 3.77 (0.02, 7.52) 0.049 1.84 (-0.41, 4.09) 0.109 

Age, BMI, Smoking 1.92 (-1.85, 5.69) 0.318 0.85 (-1.40, 3.10) 0.457 

Age, BMI, Smoking, SES 1.85 (-2.37, 6.08) 0.388 0.73 (-1.80, 3.25) 0.571 

Age, BMI, Smoking, SES, kitchen 
characteristics, additional fuel use 

2.80 (-1.72, 7.32) 0.223 1.33 (-1.39, 4.05) 0.337 

 

 

Hypertension among 30-50 years 

Table 4.31 shows the risk of hypertension among younger cooks, where no statistically 

significant differences between the two groups of fuel users were observed in both the 

matched and unmatched sensitivity analysis. 

Table 4.31: Unadjusted and adjusted differences in the risk of developing hypertension in 
biogas- vs wood-using cooks aged 30-50 years 

Main analysis: Matched 

Matched by age, BMI and SES 
(30-50 years age) 

HTN Systolic HTN Diastolic HTN 

Odds ratio 
(95% CI) 

p 
value 

Odds ratio 
(95% CI) 

p 
value 

Odds ratio 
(95% CI) 

p 
value 

Unadjusted effect of biogas 0.96 
(0.37-2.44) 

0.925 0.94 
(0.32-2.70) 

0.901 1.14 
(0.38-3.39) 

0.811 

Smoking 1.08 
(0.46-2.52) 

0.857 1.07 
(4.16-2.74) 

0.890 1.32 
(0.51-3.41) 

0.572 

Smoking, kitchen 
characteristics, additional fuel 
use 

1.66 
(0.75-3.72) 

0.213 1.67 
(0.75-3.72) 

0.213 1.78 
(0.67-4.76) 

0.247 

Sensitivity analysis: Unmatched 

Unadjusted effect of biogas 0.98 
(0.56, 1.71) 

0.932 1.39 
(0.73, 2.64) 

0.316 1.00 
(0.54, 1.84) 

0.997 

Age, BMI, Smoking 0.81 
(0.44, 1.50) 

0.506 1.06 
(0.53, 2.13) 

0.859 0.86 
(0.44, 1.67) 

0.645 

Age, BMI, Smoking, SES 0.87 
(4.34, 1.74) 

0.692 1.23 
(0.56, 2.70) 

0.612 0.88 
(0.42, 1.87) 

0.743 

Age, BMI, Smoking, SES, 
kitchen characteristics, 
additional fuel use 

1.05 
(0.49, 2.27) 

0.894 1.50 
(0.63, 3.59) 

0.361 1.05 
(0.46, 2.37) 

0.912 
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4.7 Questionnaire-based health symptoms in biogas and firewood users 

 

Only unmatched between-group crude comparisons were done for health symptoms owing 

to the possibility of recall bias. No further univariate or multivariable analyses were done. 

 

Table 4.32: Between groups crude comparison of health symptoms and any health care visit 

  

 All 

(N=519) 

Wood  

(N=300) 

Biogas 

(N=219) 

p 

value 

Chronic bronchitis 75 (14.45%) 48 (16.00%) 27 (12.33%) 0.257 

Cough 130 (25.05%) 83 (27.67%) 47 (21.46%) 0.124 

Phlegm 122 (23.51%) 76 (25.33%) 46 (21.00%) 0.295 

Wheeze 60 (11.56%) 34 (11.33%) 26 (11.87%) 0.890 

Difficulty breathing 148 (28.52%) 98 (32.67%) 50 (22.83%) 0.018 

Chest pain 87 (16.76%) 65 (21.67%) 22 (10.05%) <0.001 

Palpitation 98 (18.92%) 75 (25.00%) 23 (10.55%) <0.001 

Headache 338 (65.13%) 212 (70.67%) 126 (57.53%) 0.002 

Cooks seeking healthcare for any 

cardio respiratory complaints in the 

last one year 

155 (29.86%) 109 (36.33%) 46 (21.00%) <0.001 

Data are number (%) unless otherwise specified. P value based on Fisher’s exact test for categorical data  

(based on simulation with B=10 000 for large tables. 

 

As shown in Table 4.32, prevalence of all of the symptoms was lower or similar in biogas 

users compared to firewood users. Cardiac symptoms were significantly lower in the biogas 

using women, as was the prevalence of headache. 
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5 Discussion 
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5.1 Adoption of household biogas plants 

This study also tried to explore the reasons for adoption and non adoption of biogas plants 

through semi closed-ended questions, although factors influencing the sustained use of the 

biogas plants were not explored. Shortage of firewood was the major reason to install 

biogas plants in majority of the households. When firewood collection was restricted and 

controlled to conserve the community forest, villagers had scarcity of firewood. Promotion of 

biogas plants by local agents from the BSP Nepal around the same time promoted biogas 

adoption among those who could afford it. 

A systematic review by Puzzolo et al. (2013) identified 33 different factors influencing the 

adoption of household biogas plants across seven broad domains. Our findings are in 

accordance with the factors summarised within these seven broad domains which included 

fuel and technology characteristics (plant feeding, design requirements), household 

characteristics (SES, education, ownership of land and animal), knowledge (smoke, 

cleanliness, health benefits), subsidy, regulation, policy and market (supply and demand) 

issues. (Puzzolo et al., 2013)  

Efficient human excreta disposal from the latrines directly into the biogas digester was an 

important factor attracting households in the hilly area devoid of centralised sewerage 

disposal system to adopt household biogas digesters. This factor identified in our study 

however, was not acknowledged by other studies included in the systematic review. Also, 

unlike the systematic review which identified perceived health benefits as widely recognized 

factor for adoption it is surprising that less than 5% of the households from our study 

installed the plants for potential health benefits. This might be because of the promotion of 

biogas plants by local agents who highlighted only on fuel savings, subsidy schemes, 

micro-financing and economic benefits neglecting the potential health benefits of switching 

to clean fuel. 

Other reasons as pointed by the systematic review that deterred adoption like the lack of 

ownership of land and animals were also identified in this study. But the most important 

barrier for adoption is obviously the expensive upfront investment. Biogas specific issues 

like the fixed underground design of the digester made relocation of the plant to a new site 

impossible and this deterred households from adopting the plant until they moved to a 

permanent location. 

  



101 
 

5.2 Impact of biogas use on carbon monoxide concentrations 

Although past household air pollution studies have measured kitchen levels of PM and CO 

in households burning wood in traditional or improved stoves and using other fuels (e.g. 

LPG), this is the first study to measure such pollutants in households adopting and 

continuously using biogas for a long period under real life cooking conditions and from 

intervention perspective. We documented substantial reduction in kitchen CO levels 

associated with biogas compared with traditional firewood stoves. Biogas users in average 

were exposed to 24 hour mean CO levels 25% lower than the WHO Air Quality Guideline 

limit (7mg/m3~equivalent to 6.1ppm using conversion factor) (WHO, 2010) while wood 

users were exposed to very high levels of kitchen CO. The mean 24 hour CO in wood users 

(20.05 ppm) was more than four times higher than in biogas users (4.60 ppm). However, 

there was still substantial overlap in the distribution of CO exposure in these two groups 

which might be due to random variation in fuel use. It might also be due to variation in 

cooking behaviours or measurement error introduced by the device, especially on winter 

data when we hired four additional monitors from a local agency. 

In our setting, households using biogas also burnt wood in open fires inside their kitchen to 

boil milk and to prepare animal fodder for their cattle every day. This could have resulted in 

higher readings documented among biogas users. Besides, households using biogas were 

interspersed with the majority of households using wood in these villages. So, smoke 

leaking from neighbouring houses that burnt wood entered the kitchens of nearby biogas 

users contributing to relatively high exposure levels experienced by households using 

biogas. This ‘neighbourhood pollution’ is a well observed phenomenon in HAP studies. 

(Smith et al., 1994, Zhang and Smith, 2007) Despite biogas being a gaseous fuel, these 

underlying fuel use characteristics and household cooking behaviour could explain the 

relatively higher kitchen CO levels in biogas users (4.6 ppm) in our study unlike the 

improved plancha users (1.1 ppm) in Guatemala (Smith et al., 2010) where plancha use 

was exclusive. Besides, the controlled nature of their study with weekly surveillance visits 

and repair and maintenance of plancha could have further resulted in substantially reduced 

CO post intervention. They achieved 90% reductions in the kitchen CO exposure with 

plancha while biogas users in our study had only 77% lower mean exposure than wood 

users. 

In addition to boiling milk and preparing animal fodder in firewood, households using biogas 

also supplemented it with firewood at times when biogas supply ran out inadvertently while 

preparing main family meals. Some traditional dishes (like selroti- doughnut shaped deep 
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fried bread made out of rice flour) were always cooked with firewood. This incomplete 

transition to biogas fuel could have largely negated its potential benefits in pollution 

reduction when open fire stoves were simultaneously used in the same kitchen or near 

outdoors. 

Eight households using firewood had 24 hour kitchen CO levels less than 6.1ppm (WHO 

cut-off). Although these households did not posses chimney or smoke-hood for venting 

smoke outside, they had either good ventilation as reflected by large windows or large eave 

spaces. In addition, kitchens of three of these households were completely open on one 

side, while six households also used additional rice cooker or LPG for meeting some of their 

cooking needs which could have contributed to the lower levels of CO in these wood users. 

Fuel type, windows in the kitchen, partially open eave spaces and large kitchen volume 

were significant predictors of kitchen CO in our study consistent with Balakrishnan et al. 

(2013) from a study in India. Unlike for them, kitchen type did not influence CO levels in our 

study. Bruce et al. (2004) also reported stove/fuel type as the most important determinant of 

kitchen CO along with some effect of eave spaces. 

 

5.2.1 Effect of interventions to reduce pollutant concentration-locating the findings 

Biogas users in our study had more than four times lower kitchen CO levels than the wood 

users. Lack of studies measuring pollutants concentration inside biogas using kitchens 

prevents us from comparing our findings. However, relating the results with other studies 

using either improved stove or LPG provides useful insights. A study from Nepal reported 

more than 10 times lower respirable PM among LPG users than the biomass users. (Kurmi 

et al., 2008) However, this study compared wood users from rural villages to LPG users 

from urban areas thereby differing in background pollution level, cooking needs as well as 

socio-economic status etc. Another study from India comparing biomass with LPG- a 

gaseous fuel similar to biogas observed 3 times lower particulates among LPG users (Dutta 

et al., 2011) and this is consistent with our study, except that we observed similar trend with 

kitchen CO. Table 5.1 compares kitchen CO and PM associated with different fuel types or 

interventions across several study settings. 

Despite the fact that we observed significantly lower CO levels among households using 

biogas the overlap of exposure between the two groups warrants long periods of 

monitoring, repeated in different season along with recording of detailed cooking history and 

time activity pattern to get a true picture of HAP exposure. 
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Table 5.1: Carbon monoxide and particulate concentrations in relation to published data 

Country Exposure measured Fuel/stove type Mean levels 

Nepal 

(Current study, 2014) 

24h kitchen CO 

(summer) 

Biogas (n= 80) 

Firewood (n=63) 

4.60 ppm 

20.05 ppm 

Nepal 

(Current study, 2014) 

24h kitchen CO 

(winter) 

Biogas (n= 27) 

Firewood (n=28) 

4.17 ppm 

8.59 ppm 

Nepal 

(Kurmi et al., 2013) 

24h kitchen CO 

 

Biomass (n=30) 

LPG (n=23) 

13.4 ppm 

2 ppm 

Nepal 

(Kurmi et al., 2013) 

24h PM2.5 Biomass (n=30) 

LPG (n=23) 

455 µg/m
3
 

101 µg/m
3
 

Nepal 

(Singh et al., 2012) 

24h kitchen CO 

 

ICS (n=36) 

Traditional stove (n=36) 

8.35 ppm 

22.2 ppm 

India 

(Dutta et al., 2011) 

8h kitchen  

PM2.5 

Biomass (n=244) 

LPG (n=236) 

156 µg/m
3 

52 µg/m
3
 

Guatemala 

(Smith et al., 2010) 

48h kitchen  

CO 

Improved plancha (n=36) 

Open fire wood (n=36) 

1.10 ppm 

8.60 ppm 

India 

(Chengappa et al., 2007) 

24h kitchen  

CO 

Improved stove (n=15) 

Open fire (n=15) 

2.68 ppm 

8.67 ppm 

Guatemala 

(Bruce et al., 2004) 

24h kitchen 

CO 

Improved planchas (n=16) 

Open fire (n=99) 

Gas (n=20) 

3.09 ppm 

12.4 ppm 

7.75 ppm 

Guatemala 

(Albalak et al., 2001) 

24h kitchen  

PM3.5 

 

 Improved plancha (n=59) 

Open fire (n=58) 

LPG/open fire (n=60) 

280 µg/m
3
 

1560 µg/m
3
 

850 µg/m
3
 

 

Although repeat winter measurements in a subsample of households was planned to 

validate the reductions, to our surprise, we noticed lower levels of CO during winter in both 

the firewood and biogas users. It has been indicated that moisture content in the fuel affects 

CO concentration (Demirbas, 2004). Firewood might be soaked and wet during rainy days 

observed in summer while in winters we noticed that households used their wood reserve 

kept dried for a long time. Temperature never reaches below freezing in our study site and 

households did not use any space heating methods, so this might also be reason for not 

observing very high exposure during winter. Further, our winter measurements might also 

have been influenced by additional monitors that we used during winter measurements. 

Devices used for summer monitoring were all brand new and factory calibrated. These 

same devices were used after factory re-calibration in Munich for winter measurements. 

However, for logistic reasons we borrowed four additional monitors from a local agency that 

were being used for a similar purpose in another study and those were not calibrated even 

after their long use. 

Although we observed lower CO levels with biogas use and studies have suggested that 

CO being easy to measure could be used as proxy for PM2.5 exposure (Naeher et al., 

2000), there are concerns that CO may not be a valid surrogate for particulates when using 
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gas stoves or other clean fuels. (Naeher et al., 2001) It is also argued that mean 24 hour 

CO levels may not indicate their peak concentrations which might play a role in ill health of 

the cooks. (Naeher et al., 2001) Differences in the physical characteristics of CO and PM 

and the combustion processes of different fuels may lead to a differential reduction in their 

levels as seen in a study in India, where CO exposure was reduced by 70% but the 

simultaneous reduction in PM2.5 was only 44%. (Chengappa et al., 2007) This can have 

important health as well as research implications depending on the mechanistic pathways 

of the disease involving HAP. 

In addition, because we did not measure personal CO exposure of the cooks, we are not 

sure if the reduction in kitchen CO exposure also translates to reduction in personal CO 

exposure. Evidence from past studies show that kitchen CO measurements are not always 

representative of personal CO measurements. (Clark et al., 2013) Personal CO 

measurement using dosimeter techniques would have better captured this difference 

however, data from RESPIRE trial shows that the personal CO measurements were only 

lowered by 50-60% compared to the 90% lowering of kitchen CO level (Smith et al., 2010). 

Alternative technologies should not only aim for reduction in exposure but it should also be 

culturally appropriate and meet diverse cooking needs. Although biogas was well adopted 

by its users, some high-power consuming cooking activities were not done with biogas-

including boiling of large quantity of milk every day or preparing selrotis and animal fodder 

and users felt that high intensity of wood flame would be appropriate for such activities. This 

phenomenon promotes fuel stacking and incomplete transition to clean fuel thereby still 

using traditional stoves and compromising the potential health benefits associated with 

clean fuel use. 

 

Summary of CO findings 

We documented substantial reduction in kitchen CO levels associated with biogas use 

compared to traditional firewood use in rural Nepal. Despite the overlap in the distribution of 

kitchen CO exposure in the two fuel groups, marked reduction in kitchen CO levels 

associated with biogas provides evidence that household biogas plants could be a clean 

alternative fuel for rural households relying on animal rearing and subsistence farming. 

Further change in cooking practice, installing additional improved stoves to replace open 

fires and improving ventilation would potentiate the benefits from biogas. 
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5.3 Impact of biogas on respiratory health 

5.3.1 Lung indices (FEV1, zFEV1, FVC, MEF2575) 

One of the primary aims of this study was to assess the impact of sustained use of biogas 

on respiratory health of cooks. We hypothesized that biogas user compared to wood user of 

same age and height will have at least 100 ml better FEV1 and associated lower risk of 

developing airway obstruction. We observed 123 ml (11 - 236ml, p=0.032) better FEV1 

among biogas users compared to firewood users of same age, height and SES when 

adjusted for kitchen and ventilation characteristics and additional fuel use. We also 

observed positive effect of biogas use on other lung indices; zFEV1, FVC and MEF2575. 

This was significantly higher for MEF2575 (0.263 [0.120, 0.407] L/sec) while effect on 

zFEV1 (0.339 [-0.011, 0.689] standard deviation) and FVC (0.034 [-0.114, 0.183] L) did not 

reach statistical significance.  

As confirmed by other studies, we found age and height to be significant biological predictor 

of lung function. (Quanjer et al., 2012b) BMI and weight did not have predictive ability on 

FEV1 when cooks were matched by age, height and SES. Smoking was found to adversely 

affect FEV1 as in other studies linking smoking and impaired lung function or airway 

obstruction. (Willemse et al., 2004)  

Mean FEV1 in our study (1.90 L) is similar to what Pandey reported (1.89 L in nonsmoker 

and 1.75 L in smokers) among biomass exposed cooks on the outskirts of Kathmandu. 

(Pandey et al., 1985) In a recent study, biomass exposed non-smoker females had mean 

FEV1 of 2.12 L (Kurmi et al., 2013) comparably higher than what we observed in our study. 

However, participants in that study were much younger (mean age 34.8 years) compared to 

those in our study (mean age 49.7 years) and thereby age is likely to explain the difference 

in mean FEV1 in these two studies. 

 

5.3.2 Effect of interventions to reduce HAP on FEV1- locating the findings 

Table 5.2 summarizes the findings from comparable studies which researched different 

interventions aiming to reduce HAP. As none of these studies have analyzed the effect of 

biogas on FEV1, we again compare our findings with studies using either ICS or LPG. Out 

of all the studies summarized, we report the highest difference in FEV1 (123ml [11-236], 

p=0.032) and this was statistically significant. Kurmi et al. (2013) reported 74ml lower FEV1 

among biomass users compared to LPG users, however, participants in this study were 
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recruited from two different community settings rural (for biomass) and urban area (for 

LPG). Another study from Ecuador unlike our study found contrary effect i.e. reductions of 

FEV1 with LPG use, although this was statistically not significant. This study however had 

small sample size-24 ‘LPG only’ vs. 22 ‘biomass only’ females and the duration of exposure 

to biomass or clean fuel was not known.(Rinne et al., 2006) Another study from Mexico 

associated 81 ml lower FEV1 among firewood users exposed to more than 2.6mg/m3 of 

PM10. (Regalado et al., 2006) 

Table 5.2: Comparison of differences in FEV1 from this current study with other published 
studies 

Country/ Study 

design (Reference) 

Adjusted for Exposure/Fuel/Stove 

type 

compared 

Duration of 

exposure to 

intervention 

FEV1 

difference 

Nepal (30-83 yrs) 

Cross-sectional 

(Current study, 

2014) 

Matched by age, 

height, SES and 

adjusted for kitchen 

characteristics,  

ventilation, additional 

fuel 

Effect of biogas compared 

with wood user 

[Ref: Wood] 

At least 10 

years of 

biogas use 

123ml  

(11, 236 ml) 

p = 0.032 

Nepal (≥16 yrs) 

Cross-sectional 

(Kurmi et al., 2013) 

Age, height, gender, 

literacy, BMI, 

income, smoking, 

SHS 

Effect of biomass (rural) 

compared to LPG (urban) 

users [Ref: LPG] 

NA -74 ml  

(-148, 1 ml) 

p = 0.046 

Guatemala  

(15-50 yrs) 

RCT 

(Smith-Sivertsen et 

al., 2009) 

Age, time,  

altitude,  

SES 

Effect of ‘plancha’ stoves 

18 months post 

intervention  

[Ref: Open fire] 

18 months -10 ml * 

(-90, 50 ml) 

p > 0.05 

Mexico  

(14-45 yrs) 

RCT 

(Romieu et al., 

2009) 

Age, height, SES, 

SHS, BMI, 

community, 

crowding, separate 

kitchen, place of 

cooking and eating  

Yearly decline rate of 

FEV1 in Patsari stove 

group  

Vs. 

 open fire stove group 

  

1 year 31 ml/yr decline 

vs 

62 ml/yr decline 

p = 0.012 

Mexico (≥38 yrs) 

Cross-sectional 

(Regalado et al., 

2006) 

Age, income, 

passive smoking, 

hour-years of 

biomass exposure 

Exposure to biomass 

 PM10 > 2.6 mg/m
3
 

[Ref: PM10 < 2.6 mg/m
3
] 

At least 6 

months of 

exposure to 

biomass 

smoke 

-81ml 

(-0.5, -150 ml) 

p = 0.04 

Ecuador (≥16 

yrs) 

Cross-sectional 

(Rinne et al., 2006) 

Age,  

height,  

SHS 

Effect of biomass 

compared to LPG users 

[Ref: LPG] 

Not known 50ml 

(-280, 380 ml) 

p>0.05 

India (35.5 ± 14.6 

yrs) 

Cross-sectional  

(Saha et al., 2005) 

Age, weight, height, 

house type, family 

size, occupation 

Between group difference 

among LPG vs. 

Biomass users 

More than 

10 years  

2.29 ± 0.55  

Vs. 

1.96 ± 0.61 

* Excess change (relative to baseline) in the plancha group relative to the control group across follow up time 
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Two randomized controlled trials assessing the impact of ICS failed to observe any 

differences in FEV1 in an intention-to-treat analysis. (Romieu et al., 2009, Smith-Sivertsen 

et al., 2009) Significant reductions in kitchen CO achieved with improved plancha stoves 

used in the RESPIRE trial could not simultaneously translate into FEV1 gains among the 

cooks despite using the ICS for 18 months. (Smith-Sivertsen et al., 2009) Given these 

findings and likewise from the studies studying the effects of sustained smoking cessation 

(Anthonisen et al., 2002), it is likely that sustained exposure reduction for a prolonged 

period of time would be necessary to detect meaningful changes in FEV1 after switching to 

cleaner alternatives. Although the study from Mexico was able to document relatively slower 

age related FEV1 decline among ICS users (31ml decline) than the traditional open fire 

users (62 ml decline), adherence to the improved stoves was very poor. (Romieu et al., 

2009) 

Balance improvement through matching especially in age and height, the two most 

important biological determinants of lung function (Quanjer et al., 2012a) and sustained 

biogas use for at least a decade in this study could have contributed to our effect estimates 

being larger than obtained in other studies except for the two RCTs which measured rate of 

yearly decline. Before matching, firewood users were significantly younger by 3.34 years 

(51.6yrs vs. 48.2yrs) than the biogas users which could explain the differences on the 

results between the matched and unmatched sensitivity analysis as well as the crude 

comparisons which had a potential for large age related bias. Similarly, biogas users and 

wood users belonged mostly to either the upper two quintiles or the lower two quintiles of 

SES respectively and they differed significantly in their PCA derived SES. Although the 

magnitude of influence of SES in FEV1 is variable, in women the effect of low SES could be 

as large as 200ml reduction. (Hegewald and Crapo, 2007) This could have resulted in 

higher effect of FEV1 among already better off biogas users but matching was successful in 

removing the imbalance in SES as shown by the reduced standardized difference in means 

before and after matching, and thus ruling out this influence. 

The decade long reduced HAP exposure achieved by sustained biogas use additionally 

explains the positive effect of biogas over firewood users. Again due to lack of comparable 

studies, comparison with the effects of smoking cessation is likely to give us more insights. 

Quitting smoking won’t be able to regain the already lost FEV1 due to prior smoking. 

Indeed, it has been shown that maintenance of smoking cessation only normalizes the 

smoking induced rapid decline in FEV1 (Fletcher and Peto, 1977, Burchfiel et al., 1995), 

especially when quitting at an early age (Kohansal et al., 2009), and the decline thereafter 
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continues to be age related. Anthonisen et al. (2002) observed 22 mL/yr decline in 

sustained quitters versus 54 mL/yr decline in FEV1 in continuous smokers in their 11 years 

of follow up. So, hypothetically, women who had prior HAP exposure when adopting and 

maintaining clean biogas fuel use for continuous ten years would have lower age related 

FEV1 decline than those women who continue using wood and being exposed to harmful 

pollutants. This could explain the differences we observed due to biogas fuel use over wood 

users. 

 

5.3.3 Airway obstruction (AO) 

Prevalence of AO 

Owing to the large age-related bias (under-diagnosis in younger age group and over-

diagnosis in older age group) in the AO diagnosis using GOLD definition (Quanjer et al., 

2013, Quanjer et al., 2014), we defined AO using both criteria- the LLN cut-off (FEV1/FVC < 

5th percentile i.e. z score < -1.645) and the GOLD cut-off (FEV1/FVC < 70%). This also 

allowed comparing our results with prior studies which mostly used GOLD criteria. 

The crude prevalence of AO by LLN was more than 24% (26% among firewood users vs. 

22% among biogas users). This is twice the prevalence reported by Kurmi et al. (2013) 

probably because of older participants in our study (49.7±12.3 yrs  vs. 34.8±16yrs). Among 

the non-smoker biomass exposed females, we observed 16% prevalence of airway 

obstruction compared to nearly 20% by Kurmi (2010). Participant characteristics differed in 

these studies such that we investigated one primary female cook from each household 

while the former study recruited other participants besides the cook. Different choice of 

reference lung equation, the use of GLI 2012 equation (using ethnicity as ‘others’) in this 

study vs. the European Community for Steel and Coal reference equation (Quanjer et al., 

1993) (with 10% reduction for non-Caucasians) in Kurmi, to determine the LLN also 

explains the difference in the prevalence of AO. 

By GOLD criteria, we diagnosed AO in one among every five cooks in both fuel types 

similar to what Kurmi et al. (2013) reported among biomass users. This is also consistent 

with one of the earlier studies in Nepal which reported around 19% prevalence of chronic 

bronchitis based on respiratory symptoms among biomass exposed females. (Pandey, 

1984a) 
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5.3.4 Risk of developing AO 

Compared to firewood use, biogas use was associated with more than 65% (OR= 0.346 

[0.157-0.762], p=0.008) reduced odds of developing AO (by LLN) after adjustment for 

smoking, kitchen characteristics and additional fuel use. GOLD criteria also yielded reduced 

odds of developing AO with biogas use, but statistically not significant and it may be owing 

to the reduced power to detect the difference due to lower overall prevalence of AO by 

GOLD.  

Smoking which remains the most important cause of AO globally (Mannino and Buist, 

2007), was also independently associated with the risk of developing AO in this study by 

using either of the diagnostic criteria (LLN or GOLD). Kitchen characteristics like windows 

and kitchen volume did not exert a significant impact on the risk of developing AO in 

univariate analysis. 

Discordance in the diagnosis of airway obstruction when using LLN or GOLD criteria has 

been a topic of wide discussion. Although there has been no firm consensus (Pellegrino et 

al., 2008, Miller et al., 2009) on which criteria to use, experts are now arguing to switch to 

the more robust LLN method acknowledging that the GOLD criteria is susceptible to under-

diagnosis of AO in younger age groups and over-diagnosis in the older age groups. 

(Quanjer et al., 2010) This phenomenon was well observed in this study as reported in 

Figure 4.8 where we note the discordance in the diagnosis above and below the 60-70 year 

age group. Although, we do not report the exact age at which this occurs, some other 

studies have reported this to be around 52 years. (Cerveri et al., 2009, Miller et al., 2009) 

The use of GOLD cut-off can over-diagnose by 50% in the older age groups because it 

does not take into account the inherent nature of the FEV1/FVC ratio which decreases with 

the increase in age and height. (Quanjer et al., 2010) This can lead to unwarranted 

treatment of elderly subjects who in reality do not suffer from airway obstruction. This is 

equally problematic in the younger age group where the use of fixed 70% cut-off could lead 

to false negatives. 

 

5.3.5 Effect of interventions to reduce HAP on AO-locating the findings 

Table 5.3 summarizes the effect of biomass or clean fuel intervention on the risk of 

developing AO diagnosed either by standard spirometry or by the physicians in the hospital. 

Studies have consistently linked biomass exposure to higher risk of developing AO, 
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although findings are heterogeneous due to different fuel use and different diagnostic 

criteria used. There are no comparable studies assessing the risk reduction after biogas 

use, however we report 65% reduced odds of developing AO with sustained use of biogas 

for at least 10 years. This is in line with the odds ratio calculated from the systematic 

reviews if we switched the reference category to biogas users. 

Table 5.3: Comparison of this current study with other HAP studies with respect to risk of AO 
(diagnosed by a physician or by spirometry) among women 

Country/ Study 

design (Reference) 

Mean age 

  and sample size 

Diagnosis  

criteria 

Exposure/Fuel/Stove 

type 

compared 

Odds ratio 

 (95 % CI) 

Nepal (30-83 yrs) 

Cross-sectional 

(Current study, 

2014) 

(49.7±12.3 yrs) 

Wood= 241  

Biogas= 187 

LLN 

 

Effect of biogas 

 

[Ref: Wood] 

0.35 

(0.16-0.76) 

 

Nepal (30-83 yrs) 

Cross-sectional 

(Current study, 

2014) 

(49.7±12.3 yrs) 

Wood= 241  

Biogas= 187 

GOLD 

 

Effect of biogas 

 

[Ref: Wood] 

0.60 

(0.23-1.58) 

Nepal (≥16 yrs) 

Cross-sectional 

(Kurmi et al., 2013) 

34.8 yrs 

Biomass= 369 

LPG= 367 

LLN Effect of biomass 

/rural 

[Ref: LPG/urban] 

2.38 

(0.94-5.99) 

Colombia (35-70 yrs) 

Case-control 

(Dennis et al., 1996) 

65.2 yrs 

Hospital based 

104 cases 

104 controls 

GOLD with 

FEV1<70% 

Effect of years of  

wood use 

(32.8 ±16 yrs in cases, 

18±14 yrs in controls) 

3.92 

(1.70-9.10) 

Mexico (≥38 yrs) 

Cross-sectional 

(Regalado et al., 

2006) 

55.66 yrs 

Wood= 778 

Gas= 67 

GOLD Effect of biomass 

 

[Ref: Natural gas] 

1.50 

(0.50-4.30) 

China (≥40 yers) 

Cross sectional 

(Liu et al., 2007) 

1089 women Post 

bronchodilator 

FEV1/FVC<70% 

Effect of biomass 

 

[Ref: LPG] 

3.11 

(1.63-5.94) 

Turkey 

Case control 

(Sezer et al., 2006) 

74 each 

Case: 57.1±11.1 

Control: 

56.4±10.8 yrs 

Hospital based 

clinical 

diagnosis 

≥30 years of biomass 

exposure 

[Ref: No exposure] 

6.61 

(2.17-20.18) 

Systematic reviews  

(Smith et al., 2014) 24 studies Spirometry, 

clinical, or 

symptom recall 

Effect of biomass on 

women 

2.30 

(1.73-2.06) 

 

(Po et al., 2011) 6 studies 

 

Spirometry or at 

hospital 

Effect of biomass on 

women 

2.40 

(1.47-3.93) 

(Kurmi et al., 2010) 20 studies Spirometry or at 

hospital 

Effect of biomass 

(both sexes) 

2.80 

(1.85-4.23) 
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Effect estimates from recent systematic reviews show at least doubling of the risk of AO 

among women using biomass compared to women using some form of cleaner fuel. 

 

Summary of respiratory health findings 

Sustained use of biogas is associated with significantly larger FEV1 and MEF2575 when 

comparing age, height and socio-economically matched groups of biogas users and 

firewood users. The prevalence of airway obstruction is very high in rural Nepal but the risk 

of developing AO was substantially lower in biogas users versus firewood users, in 

particular when defining AO based on LLN diagnostic criteria. 

 

5.4 Impact of biogas use on cardiovascular health 

SBP, DBP and Hypertension 

More than one in three (35%, 177/513) cooks we measured had blood pressure reading 

≥140/90 mmHg, similar to the global prevalence of high blood pressure. We found 

sustained use of biogas for at least ten years associated with lower levels of SBP and DBP 

among cooks beyond the fifth decade of their life. We observed a surprising finding among 

young biogas users (30-50 yrs) who actually showed 4 mmHg higher SBP with biogas use. 

This may be because of SBP being sensitive to age and BMI. We also observed 68% 

reduced odds (0.32 [0.14-0.71], p=0.005) of developing hypertension among biogas users 

compared to wood users older than 50 years. This was, however, not observed in the 

younger age group. This may be because of persistent large imbalances in matching 

covariates, in particular in relation to BMI, even after matching. BMI imparts a significant 

effect on blood pressure (Kaufman et al., 1997), and the worsened balance of this covariate 

may have led to an estimate of the effect of biogas use which is biased towards the null. 

 

5.4.1 Effect of interventions to reduce HAP in blood pressure-locating the findings 

The lack of comparable studies assessing the impact of biogas use on blood pressure 

prevents us from comparing our findings. However, our results are consistent with those of 

the randomized trial in Guatemala which observed reduction in SBP and DBP after 

switching from an open fire to an improved ‘plancha’ stove. We observed 9.8 ([-20.4 to 0.8] 
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mmHg, p=0.069) and 6.5 ([-12.15 to -0.82], p=0.025) lower SBP and DBP in biogas users 

while the differences observed in Guatemala were 3.7(-8.1 to 0.6) mmHg and 3.0 (-5.7 to -

0.4) mmHg respectively. Decade-long use of biogas fuel for cooking in our study could have 

led to greater reductions in mean BP as opposed to only around a year (293 days, 2-700 

days) use of improved stoves in Guatemala. (McCracken et al., 2007) Although we 

observed larger mean effect, overlap of effect size between ours and the RESPIRE 

estimates points towards consistent direction and magnitude of the estimates achievable by 

reduction in the HAP exposure. 

The age-related effect of HAP on blood pressure observed in our study was also reported 

by a similar study from China. (Baumgartner et al., 2011)They reported a 4.1 mmHg and 

1.8 mmHg increases in SBP and DBP respectively associated with each one log unit 

increase in PM2.5 mass among > 50 years old cooks. But, as in our study, the Chinese 

study also failed to identify similar associations among cooks aged ≤50 years. 

(Baumgartner et al., 2011) For these younger cooks, they reported a lowering of DBP with 

increased PM2.5, although not significant, and a very small effect on SBP. In our case, both 

SBP and DBP tend to be higher among young biogas users. 

We found a high prevalence (35%, 177/513) of high blood pressure in this population 

similar to the prevalence (34%) reported by Sharma et al. (2011) in a large community-

based screening program in Eastern Nepal. Other studies conducted in Nepal also reported 

similar prevalence of hypertension; 31% by Ministry of Health and Population (2008) and 

34% by Vaidya et al (2012). However, HAP studies in neighbouring China and India 

reported only 13% (Baumgartner et al., 2011) and 20% prevalence (Dutta et al., 2011) 

respectively. However the population characteristics studied in these studies was 

heterogeneous. Study from India investigated only pre-menopausal women while the 

Chinese study included only non-smokers. These important differences in population 

characteristics and urban rural differences are likely to be the main reason for the stark 

contrast in prevalence observed in these studies compared to ours. 

The high prevalence of smoking among the cooks is of potential concern as it may dilute 

the effect estimates for biogas. However, both fuel groups had similar rates of ‘ever 

smokers’ and median number of pack-years of cigarettes smoked (7.5 years, p=0.61). 

Additionally, exposure through neighbourhood air pollution could also contribute to a 

reduction in the effects observed for biogas and therefore bias the effect estimate towards 

the null. 
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The matched analysis yielded differences associated with fuel type with less bias owing to 

reduced ASB of the matching covariates, age and BMI, which are both biological 

determinants of blood pressure. Matching by SES helped to overcome selection bias in self-

adoption of biogas plants. Before matching, participants differed significantly in their PCA-

derived SES scores. After full matching, participants were well balanced in their SES. 

Effective balance achieved through matching resulted in a more precise effect estimate in 

cooks more than 50 years old but was less successful in the younger age group. 

 

5.5 Strengths and limitations of the study 

We conducted an epidemiological study to explore if the adoption and sustained use of 

biogas plants by households impacts pollution levels and cardio-respiratory health 

compared to households that have continued to use traditional wood stoves. In doing so, 

we used an opportunity to study the true field-performance of a self adopted intervention in 

a real-life setting. Although we found significant impact of biogas intervention in both 

pollutants reduction and cardio-respiratory health benefits, these findings should be 

considered in the context of following important strengths and limitations. 

 

Study design: This is a cross-sectional study so the temporal relationship of cause and 

effect cannot be ascribed to biogas. Besides, we made an assumption that some of the 

variables like kitchen characteristics (windows, doors, eaves space etc) or fuel use 

characteristics were always the same during the last ten years period. But ten years of 

sustained intervention use without intermediate follow-ups is a long duration during which 

many unmeasured factors including changes in health practices and household behaviour 

could have interplayed. These went unmeasured and undocumented when we made a 

cross-sectional assessment at a single point after ten years. These unmeasured and 

unknown factors could impart residual confounding in our results despite an attempt to 

balance the measured covariates through matching and regression. 

Although cross-sectional, this is a pragmatic study which assessed real-life impact of self 

adopted intervention in the community. Propensity score matching technique, rarely used in 

HAP studies, was used as an innovative technique to account for the non random 

distribution of intervention thereby reducing selection bias and to achieve good balance 

between the comparison groups. This was further strengthened by a priori protocol with 

stringent recruitment criteria for example cattle ownership to further reduce selection bias. 
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Standard questionnaire were adopted to verify fuel use and kitchen characteristics and to 

minimise recall bias. 

 

Study sampling and population: A purposive sampling was undertaken to select study 

district and village based on road density network among the districts with higher rate of 

biogas adoption so the generalisability of findings from this study could be limited to similar 

rural district and villages only. However, more than 80% of the Nepalese population resides 

in the rural villages, the majority relying on subsistence farming and animal rearing thus our 

findings are likely to be observed in those rural settings as well. Due to difficult geographical 

terrain of the study villages and lack of reliable sampling frame, we adopted convenience 

‘complete enumeration of household’ approach but due to time constraints and logistic 

issues, this was not a complete census and neither a random sampling of the households. 

The initial design of the study was to recruit only non smokers but high smoking rates, 

although not heavy, observed in the villages negated this possibility. This could dilute our 

effect estimates in addition to what already affected by neighbourhood pollution. However, 

both fuel groups had similar rates of ‘ever smokers’ and median number of pack-years of 

cigarettes smoked (7.5 years, p=0.61) minimising the effect of smoking. 

Although the selection of households was based on convenience, this study was 

implemented in remote rural villages far away from the effect of major exposures to 

industrial emissions as well as vehicular exhaust fumes thus providing a location to study 

the pure effect of HAP exposure and intervention aimed to reduce it. Adult female primary 

cooks from these rural households who were exposed to HAP from early life were ideal to 

assess the long term impact of HAP and its reduction strategy. A relatively large sample 

size with high response rate among households and women for participation in the study 

due to interest in measuring their health status offers an important strength to the study. 

 

Data collection: Pollutants monitoring was carried out only in a subset of the households 

due to feasibility constraints (e.g. electricity shortage) and personal exposures were not at 

all measured. So, dose dependent exposure response analyses for both respiratory and 

cardiovascular outcomes were not possible. The use of additional four CO monitors from a 

local agency besides the brand new factory calibrated monitors could have introduced 

measurement error in the winter concentration of CO. 
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Spirograms acceptance rate was above 80%, similar in both fuel groups and comparable to 

other studies but unknown outcome status on the remaining 20% cooks could influence our 

effect estimates in any direction there by not ruling the possibility of bias. It is noteworthy, 

however that the spirometry failure rate was similar between the groups thus minimising this 

bias. 

Qualified medical doctors and medical students who had prior training and experience in 

community-based research and interview techniques administered the questionnaire and 

performed health evaluations on site at participant’s home following stringent operating 

manuals thereby strengthening data quality. Pollutant monitoring was done by a field staff 

specifically trained and hired for this purpose by a local agency studying the emission 

standards of smoke-hoods. All lung function measurement was performed by the same 

medical doctor throughout the study thereby maintaining the consistency of the procedure 

and high data quality.  

 

Questionnaires and instruments: We did not enquire how long the cooks using biogas 

currently had a prior exposure of cooking with firewood before adopting biogas plants. 

Questions about physical activity, amount of salt intake and use of anti-hypertensive 

medication were not included in the questionnaire and thus were not controlled for in 

subsequent analysis. Although, the questionnaires were framed in English and 

administered in Nepali these were standard questionnaires validated and used in other HAP 

and relevant health impact studies locally and abroad and these were thus adapted to suit 

our need after a field pretesting. High quality equipment tested for their portability, reliability 

and accuracy were used for lung function, blood pressure, and carbon monoxide 

measurement. 

 

Data entry: Data were recorded in paper forms and later entered into electronic data base 

so were prone to errors. However, double data entry was done to reduce any inconsistency. 

In addition, data checks were done on site which gave an opportunity to “go back” 

immediately and verify any missing information. Consistency checks and data validations 

added further to ensuring high quality data. Pollutant monitoring data and lung function data 

were electronically imported from the respective equipment thus reducing any manual 

errors. 
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Data analysis: An a priori analysis plan guided all the analysis except for the blood 

pressure outcome which was a post hoc decision based on literature review. Matching did 

not achieve effective balance among younger biogas users for comparison of blood 

pressure outcome possibly compromising the effect estimates in that group. Some analyses 

have not been undertaken yet e.g. particulate matter data and self reported health 

outcomes. These analyses are planned after setting up further collaboration beyond the 

defence and will strengthen our analysis. 

Although we cannot exclude the possibility of incomplete adjustment of measured or 

unmeasured confounders or any findings just by chance alone, all primary and secondary 

outcomes were well defined a priori and analyses were limited to these pre-specified 

outcome measures. Choice of control variables to adjust in the models was a priori and 

based on a conceptual framework. We used both propensity score matching (PSM) and 

statistical regression model adjustment to account for potential selection bias and 

confounding. PSM is widely used in the analysis of observational studies when 

randomization is not feasible, but rarely used in HAP studies. In addition, unmatched 

sensitivity analyses mostly showed same but lower/less precise effects. This strong 

analysis strategy with additional sensitivity analyses aimed to report results with less bias 

and greater precision. 

The possibility of persistent imbalance cannot be negated despite matching. But we used 

weighted linear and logistic regression models after propensity score matching which 

additionally included matching covariates to account for any remaining imbalances. This 

method is considered doubly robust allowing two chances to control for confounding.  

Ambiguity remains in the literature, in particular, if one should account for the lack of 

independence in the matched groups or not. Thus, the variance of the estimates calculated 

in this study may be different if one ignores the lack of independence. But we made an 

informed choice based on the literature review and adopted the generalised estimating 

equation methods to account for the lack of independence in matched data set. 
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5.6 Significance of findings 

This study tried to fill the gap in the knowledge of at least how long a switch to a primarily 

clean intervention should be sustained by those exposed to prior HAP before a meaningful 

change in their cardio-respiratory functions could be detected. Although, we specifically 

compared biogas fuel use against firewood use, this study has significant implications for 

other possible HAP interventions in that such interventions should aim for long term 

acceptability, durability and sustained use. 

The findings of this study are also of global public health importance given that, globally, 2.8 

billion people are exposed to HAP (Bonjour et al., 2013) and more people are dying 

prematurely every year from its associated health complications, 4.3 million deaths in 2012 

(WHO, 2014), almost all of them in low-and middle- income countries. COPD and 

cardiovascular diseases are already the leading causes of global deaths. Any intervention 

with the potential to reduce these disease risks is likely to have significant impacts on global 

health and wellbeing.  

This study is the first evaluation of biogas programme and findings from our study give 

evidence that the Nepal Biogas Support Program has been successful in reducing the 

pollutant level, especially the kitchen CO, and its associated cardiovascular health risks 

among its female users. In the context where 80% of the Nepalese population resides in 

rural areas with similar socio-cultural practices and beliefs, and relying mainly on 

subsistence farming and animal rearing, findings from this study conducted in four rural 

villages are likely to be observed in other similar rural settings as well. 

The BSP Nepal has served as a model for other SNV Netherlands Development 

Organisation funded biogas programmes in several Asian countries including Vietnam, 

Cambodia, Indonesia and Bangladesh. Recently, Africa Biogas Partnership Programme in 

six African countries (Ethiopia, Kenya, Senegal, Tanzania, Uganda and Burkina Faso) has 

been started. (Netherlands Development Organisation, 2014) Our results may be directly 

applicable in these countries due to socio-economic and biogas program similarities. 

Nevertheless, our results are also of broad importance to biogas programs of neighbouring 

China and India where more than 46 million household have already adopted household 

biogas plants. Differences in cooking preferences and cooking needs in these countries 

may result in findings contrary to ours so well-designed longitudinal studies carried out in 

different socio-cultural settings practices should be carried out before applicability of 

findings to all of these settings can be assumed. 
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5.7 Implications for policy and practice 

The National Biogas Support Program has installed around 0.3 million households biogas 

digesters throughout the country however its scaling-up potential remains largely un-

exploited. Findings from this study therefore have important policy and practice implications 

and advocate for: 

Adding a health perspective to biogas adoption and use: 

The current biogas promotion strategy in Nepal at the users level largely focuses on the 

gains due to firewood and fertiliser saved while neglecting the health perspective. But any 

policies and programmes aiming to reduce dependence on biomass fuels (and thereby 

HAP) should incorporate and reflect health agenda. Unless health agenda is brought into 

this context, the scaling up potential of the biogas program could remain unfulfilled. 

This study could serve as an example to promote biogas adoption using the health 

perspective. Achieved sanitation in the household, improved quality of life of women and 

their families with reduced smoke, reduced burns and scalds and time saved on collecting 

firewood are other added gains that should be imparted at the population level. 

Combining biogas installation with other HAP reduction strategies: 

The current practice under the BSP promotes one time adoption of biogas plants through 

subsidy schemes without emphasizing the long-term impacts that it can potentially bring. 

Given that biogas installation is relatively expensive and adoption is currently limited to 

socio-economically advantaged households, these households are also likely to have the 

potential to install additional ICS so that supplemental wood fire activities like preparing 

animal fodder or boiling milk could be carried out under a relatively clean combustion 

process. Such a holistic approach of supplementing biogas adoption with ICS installation as 

well as kitchen ventilation improvement is likely to bring more substantial health benefits 

than promoting biogas alone. 

Reaching the poorest: 

Mechanisms to reach the poorest households still seem to be lacking while changing their 

cooking practice would have much more overall impact in reducing the disease burden. A 

strategy to promote biogas adoption among these households may include their 

identification and increasing the subsidy (e.g. through a tiered subsidy approach) or 
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reducing the upfront investment associated with biogas adoption by spreading the 

microcredit payback time over a longer duration. 

Addressing social, technical, and financial barriers to adoption: 

Improving structural designs of the biogas plants through innovative research and 

development so that they could fit in a relatively small space or could be moved to a new 

location would promote more families to adopt these digesters as we identified a significant 

number of families wishing to install these plants but unable to do so owing to small land 

space or planning to move to a new location. Similarly many households are reluctant to 

connect latrines to biogas digesters due to social taboos. Effective awareness raising 

activities involving community leaders and role models would address this. Reducing the 

overall cost associated with adoption without compromising quality and functionality of the 

biogas plants and maintaining continuous after sales services are other important factors.  

Targeting tobacco smoking and HAP together: 

This study additionally revealed a high prevalence of smoking among rural women who are 

already exposed to effects of household air pollution. So, the health benefits of HAP 

reduction strategies if implemented will be diluted by the smoking habits of the cooks. In 

terms of a holistic approach for better health, combination of HAP reduction strategy and 

smoking cessation programs would likely translate into more substantial health gains than 

either of them alone. HAP and tobacco smoking being the leading risk factors for COPD 

further justifies this approach. 

Breaking the vicious cycle of HAP and poverty: 

As poverty and solid fuel use are inextricably linked to each other in a bidirectional fashion, 

the rural population is unlikely to switch to the next rung of energy ladder unless they are 

lifted out of poverty or provided with specific programmatic incentives (e.g. subsidies) to do 

so. Equally true is the fact that reliance on solid fuel has been restricting any economic 

development. The challenge is immense but this chain has to be broken to promote better 

health and economic development. 
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5.8 Implications for future research 

The findings of this study, although cross-sectional are likely to impart implications on future 

research. Collaborative research with the BSP so as to design a prospective before-after-

intervention study could result in stronger conclusions. Given that only one high quality RCT 

has ever been done in HAP domain, a community-based randomized trial with biogas is not 

only logistically challenging but needs a very long-term follow-up. So, quasi-experimental 

study designs with biogas are likely to result in useful insights. 

This study also provides a ground for converting this study into a cohort study by following 

up the participants we recruited in this study at predefined intervals (e.g. every two years) to 

closely follow their lung functions and to compare the trends of decline in FEV1 or other 

changes in blood pressure. 

Besides the kitchen CO concentration, additional personal exposure measurement of the 

cooks would have allowed better exposure classification and ability to conduct exposure 

response analysis. We suggest researchers to include such measurement, cost allowing, so 

that evidence would be strengthened. In addition, area measurements should be sampled 

from other living environments as well like verandah, living room and outdoor so as to 

determine overall community exposure. Additional gravimetric PM measurements of biogas 

smoke would help to establish the conversion coefficient to later use cheaper light 

scattering technology in the field. 

We are not aware of studies which have investigated cooks by echocardiography of the 

heart or Doppler study of blood vessels to study the flow and possible atherosclerotic 

changes due to HAP. Adding such investigations would provide more information to confirm 

or refute the relationship of HAP exposure with cardiovascular diseases. 

Other short-term health outcomes among children (e.g. birth weight, pneumonia) or other 

health outcomes (e.g. lung cancer, cataract) could also be studied in relation with biogas. 

Similarly, health outcome studies with biogas use can be repeated in other settings or 

countries for repeatability and generalisability of findings. 

Adding qualitative component to quantitative assessment of impact could capture 

behavioural practices on why the transition to clean fuel has been partial, why families 

continue stacking multiple fuels and multiple types of stoves. Designing a mixed method 

research of impact assessment would help to address adoption and sustained use issues. 

 



121 
 

6 Conclusion 
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This study primarily aimed to explore if sustained use of household biogas as a main 

cooking fuel for at least ten years would reduce harmful exposure to kitchen pollutants and 

translate into objectively measured cardio-respiratory health gains among adult female 

cooks in rural Nepal. 

With the use of a cross-sectional design and propensity score matching of women and 

households using either biogas or firewood as their main cooking fuel, our results show that 

sustained use of biogas is significantly associated with a) 77% lower 24 hour CO 

concentrations in the kitchen, b) 123 ml higher forced expiratory volume in one second 

(FEV1) and 65% reduced odds of developing airway obstruction (diagnosed using LLN 

criteria) among women aged 30 to 83 years and c) lower mean systolic and diastolic blood 

pressure along with significantly reduced odds of high blood pressure among women 

beyond the fifth decade of their life. 

These findings suggest that switching from traditional firewood to clean biogas fuel and its 

sustained use is likely to result in overall health benefits among female cooks. However, 

owing to the cross sectional nature of our study, a causal relationship with biogas use 

cannot be attributed with certainty. Exposure response analysis would have further 

strengthened our study; nevertheless, current findings suggest that household biogas plants 

could be an alternative energy source to improve cardio-respiratory health of millions of 

cooks who are potential beneficiaries of this technology based on geographic location and 

cattle ownership but are still reliant on solid fuels. 

The findings from this pragmatic study designed to assess the real-life impact of self-

adopted household biogas plants could assist in promotion and scaling up of biogas 

interventions among rural households relying on subsistence farming and animal rearing in 

developing countries like Nepal, India and China. Further mechanisms to reduce the cost or 

decrease the upfront investment are likely to facilitate adoption of these plants at scale. 

Promotional activities along with supply and market development should also penetrate 

further to the very remote areas where designs of the plant could be changed to suit local 

needs and facilitate adoption. 

The objectively assessed cardio-respiratory health benefits of biogas outlined in this study 

are also of broad importance to the more than 46 million households in China, India and 

Nepal who have installed and continue to use biogas plants without a clear evidence base 

of health impacts. Large scale programs in these countries could further build up from these 

findings. It is also important to underscore that besides the scaling up potential of these 
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programs, they also have the potential to collaborate with researchers to design large scale 

longitudinal studies to further substantiate our findings and add new insights for other 

pollutant measures and short-term as well as other longer-term health outcomes. 

Given that almost half of humanity still relies on solid fuels for cooking and heating needs 

and is thereby exposed to harmful smoke during cooking, these findings are of global health 

importance and direct policy relevance. In particular, global concerted efforts such as the 

Global Alliance for Clean Cookstoves are trying to find ways to deliver clean cooking 

options to the poorest households of South East Asia and Sub-Saharan Africa. In that 

regard, technologies already well adopted by households across many countries cannot be 

neglected, rather a sustainable mechanism should be identified by which the technology 

can be further enhanced and scaled up. 

Sadly, as of today, the poorest of the poor around the world are silently dying while cooking 

to feed their children and elderly with whatever resources they have. Unless these 

households are lifted up to socioeconomic affluence, they will have to continue burning solid 

fuel and inhale toxic smoke. It is imperative in this regard that a global effort should identify 

and further add to the existing mechanisms to address the complex issue of household air 

pollution in a comprehensive way and break the vicious cycle between poverty and ill health 

so that children, women and elderly throughout these remote areas could be lifted up to live 

in an environment conducive to health. Appropriate policy and programmatic action should 

be taken by the governments, public and private sector alike to prevent any premature 

deaths resulting from cooking. 
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Consent form 

Comparing heart and lung health in women using traditional stoves and biogas stoves 

Information and Consent sheet 
 

You are being asked to participate in a research study assessing the cardiorespiratory 
health of adult women exposed to indoor air pollution in Nepal. You are invited because you 
are the main cook of the family and is 30 years or older.  
 
Researchers from Nepal International Clinic-Kathmandu, Oxford University Clinical 
Research Unit-Nepal and Ludwig Maximilian University-Germany are conducting this study 
along with members from the Mountain Medicine Society of Nepal.  
 
The purpose of this research is to quantify the exposure to indoor air pollutants and explore 
the impacts in cardiorespiratory health by cooking daily in biogas fuel for last 10 years in 
adult female cooks and compare it to those cooking in traditional firewood stoves. 
 
More than 80% of Nepali population still cooks with biomass fuel. When these biomass 
fuels are burned in inefficient open stoves inside houses with poor ventilation, they emit a 
complex mixture of hundred of pollutants, including fine particulate matter, carbon monoxide 
and several carcinogenic compounds. These pollutants are proved to cause chronic 
obstructive lung disease, acute respiratory tract infections and even cancer. It is also 
thought that they cause high blood pressure, tuberculosis, cataract etc.  
 
The Biogas Support Program of Nepal (BSPN), which promotes cleaner biogas plant fuels, 
is expanded now. More than 200,000 biogas plants are running nationally. However, 
whether there is reduction in pollutant levels in the kitchens of these biogas users is not 
known. Many houses use biogas together with other traditional fire-stoves. We also do not 
know if there are any health benefits when biogas is used together with other fuel source. 
So, we want to find out the same by doing spirometry and measuring your blood pressure 
and oxygen saturation coupled with pollutants level quantification.  
 
If you agree to take part in this research, we will ask you to do the following things.  We will 
ask some questions to know what fuel you use for cooking, where you cook and etc. We will 
also ask you if you have any respiratory symptoms. We will also perform some procedures 
to measure your respiratory and cardiac health. All of these procedures are painless and 
noninvasive. We will ask you to blow your breath out in a small device the size of a radio to 
measure your lung functions. We will also shine a special light through your fingertip to 
measure the amount of oxygen in your blood. We will also measure your blood pressure. 
We will explain what it means to your health and give you a report of these. We will also 
measure the indoor air quality in your kitchen by keeping two devices for 24 hours. They 
measure these compounds automatically by themselves. 
 
By participating in this study, you and the other women in your area will help us learn if 
cooking in the biogas for long time is helpful to reduce the indoor air pollution and improve 
the cardiorespiratory functions than cooking with the traditional woodstoves. We hope we 
will learn what the women and doctors here can do to help women be healthy and have 
good indoor air quality.  
 
You will not receive any money for the time that you spend with us. However, we will give 
you a report that includes details on your blood pressure, oxygen saturation, heart rate and 
lung functions. We will also explain what does that mean to you and can provide advice if 
you wish. 
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We would also like to ask if you would allow us to share your information after we prepare it 
so that it cannot be linked to you.  The information in this study will only be used in ways 
that will not reveal who you are. You will not be identified in any publication from this study 
or in any information shared with other researchers. Your participation in this study is 
confidential.  
 
Your participation is voluntary.  If you choose not to participate, it will not affect your current 
or future relations with us or our universities or the Nepal International Clinic.   If you choose 
to participate and then change your mind in between, that is okay.  There is no penalty for 
not participating or for discontinuing your participation. 
 
The researchers conducting this study are Buddha Basnyat, Maniraj Neupane, Eva 
Rehfuess, Rainald Fischer, Guenter Froeschl and Jeremy Farrar from Nepal, Germany and 
UK. Other Nepalese citizens who are from your area are helping with this study.  Please 
ask any questions you have now or later.  If you have any additional questions, concerns or 
complaints about the study after you talk with them, you may again contact them at   
Maniraj Neupane: +977-9841625 295  
Buddha Basnyat: +977-14434642 or +977-14435 357  
 

If the researchers cannot be reached, or if you would like to talk to someone else 
about; (1) questions, concerns or complaints regarding this study, (2) research 
participant rights, (3) research-related injuries, or (4) other human subjects issues, 
please contact Nepal Health Research Council’s Institutional Review Board at +977 
1 425 4220 or write: Nepal Health Research Council, Institutional Review Board, 
Kathmandu, Nepal. 
 

Statement of Consent 

I have heard or read the above information.  I have received answers to the questions I 
have asked.  I am at least 18 years of age. 

I consent to participate in this research.    Yes ☐ 

 
Print name of participant:          
 
Signature or mark or thumbprint of participant:        
 
Signature of a witness (in case of illiterate patients):       
 
Signature of person obtaining the consent:       
Date: _________________________ 
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Short version of consent form in Nepali 
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Questionnaire 
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