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ABSTRACT 

Corynebacterium glutamicum is a Gram positive soil bacterium with high industrial 

importance in ton scale production of amino acids. Apart from that, it becomes more and 

more important for medical studies, where it serves as model organism due to its close 

relation to bacteria causing several pathogens such as tuberculosis, diphtheria and leprosy.  

C. glutamicum, like Mycobacterium tuberculosis, has a distinct cell wall which is composed of 

a peptidoglycan layer (murein) with covalently bound polysaccharide layers that are capped 

with mycolic acids. In addition, both organisms have a polar cell wall synthesis machinery 

which is spatially regulated by DivIVA (Wag31 in M. tuberculosis). The present study shows 

that DivIVA regulates cell wall synthesis upon direct interaction with the lipid II flippase RodA. 

RodA determines morphology and growth in C. glutamicum and is localized to the poles and 

septa. The absence of rodA results in growth defects and cell shape alterations as well as 

altered lipid II proliferation of the poles (polar cell growth is sustained). DivIVA is furthermore 

involved in chromosome segregation upon direct interaction with the partitioning ParB 

protein, which binds to parS sites on the chromosome, thus tethering the replicated nucleoids 

to the cell poles. Interactions of DivIVA with ParB and RodA were identified in a synthetic in 

vivo protein-protein interaction assay where fluorescently labeled proteins of interest are 

expressed in E. coli cells and interaction is analyzed microscopically. A decisive 

improvement of this assay is the application of FRET, which is more sensitive and allows 

quantification of interaction. In order to test whether ParB and RodA compete for the same 

interaction site in DivIVA, we mapped interaction sites of both proteins. It turned out that 

ParB binds to a middle region of DivIVA, whereas RodA binds to the N-terminal domain of 

DivIVA where one lysine residue is essential for interaction.  

To fight bacterial infections, that cause thousands of casualties each year, it is mandatory to 

understand mechanisms in cellular processes, such as cell division and growth, to find new 

targets for antibiotic intervention. Unfortunately, bacteria are able to develop resistances 

against many antibiotics. The mycolic acid or arabinan layer and synthesis machinery are 

good candidates for new antibiotics. Amongst others, two of them have emerged as useful 

drugs against M. tuberculosis, ethambutol (EMB) and BTZ043. In this study, we investigated 

the modes of action and antibiotic susceptibility of C. glutamicum after EMB and BTZ043 

treatment. We found that both antibiotics, which target the arabinan synthesis pathway, affect 

exclusively polar elongation growth, as demonstrated in different staining assays. 

Interestingly, only 10% of the cells were killed and cells in stationary phase were not affected 

by EMB or BTZ043. Moreover, we used a chromosomal DivIVA-mCherry fusion and found 

that DivIVA protein level is drastically increased. The cells show asymmetric recovery after 
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treatment, in which one daughter cell acquires the excess DivIVA whereas the other 

daughter cell exhibits normal cell growth. 
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ZUSAMMENFASSUNG 

Corynebacterium glutamicum ist ein Gram-positives Bodenbakterium mit großer industrieller 

Bedeutung für die Herstellung von Aminosäuren im Tonnenmaßstab. Des Weiteren bekommt 

es zunehmende Bedeutung für die medizinische Forschung, wo es aufgrund seiner engen 

Verwandtschaft zu den pathogenen Erregern von Tuberkulose, Diphtherie und Lepra als 

idealer Modellorganismus dient.  

Besonders die Zellwand von C. glutamicum hat große Ähnlichkeit zu der vieler pathogener 

Vertreter wie Mykobakterium tuberculosis. Sie besteht aus einer Peptidoglycan-Schicht 

(Murein), an der über weitere Polysaccharid-Schichten die charakteristischen Mycolsäuren 

gebunden sind. Darüber hinaus besitzen beide Organismen eine polare Zellwandsynthese, 

die von DivIVA (Wag31 in M. tuberculosis) räumlich reguliert wird. Die Rolle von DivIVA am 

Zellwachstum wurde vor Jahren erstmals beschrieben, jedoch war seine exakte Funktion bis 

zuletzt unbekannt. In dieser Studie wird erstmals die Funktion von DivIVA am polaren 

Zellwachstum durch Interaktion mit der Lipid II-Flippase RodA gezeigt. RodA beeinflusst die 

Morphologie und das Wachstum von C. glutamicum und wird von DivIVA an die Zellpole 

lokalisiert. Deletion von rodA resultiert in reduziertem Wachstum und veränderter 

Morphologie, sowie einer alternativen Lipid II Versorgung der Zellpole, da das polare 

Zellwachstum erhalten bleibt. DivIVA ist darüber hinaus an der Chromosomensegregation 

beteiligt, wo es direkt mit ParB interagiert, das über parS-Seiten an die replizierten 

Chromosomen bindet um sie an die Zellpole zu fixieren. Die Interaktionen zwischen DivIVA 

und ParB bzw. RodA wurden mit Hilfe eines synthetischen in vivo Assays identifiziert, worin 

die zu untersuchenden Gene an Fluorophore gekoppelt und in E. coli Zellen exprimiert 

werden. Somit lässt sich eine Co-Lokalisation nach individueller und Co-Expression der 

Fusionsproteine mikroskopisch analysieren. Eine entscheidende Verbesserung dieses 

Assays ist die Verwendung von FRET, das sensitiver ist und eine Quantifizierung der 

Interaktion ermöglicht. Um herauszufinden, ob ParB und RodA um die gleiche Bindungsstelle 

an DivIVA konkurrieren, wurden die Interaktionsdomänen beider Proteine ermittelt. Während 

ParB an eine mittlere Region in DivIVA bindet, bindet RodA an die N-terminale Domäne von 

DivIVA, in der ein Lysin-Rest für die Bindung essenziell ist.  

Für den Kampf gegen bakterielle Infektionskrankheiten, die jährlich tausende Todesfälle 

verursachen, ist es dringend notwendig zelluläre Mechanismen, beispielsweise der 

Zellteilung und des Wachstums, zu entschlüsseln um Targets für neue Antibiotika zu finden. 

Insbesondere die kontinuierliche Entstehung neue Resistenzen macht diese Aufgabe 

wichtiger denn je. Die Mykolsäureschicht und ihre Synthese sind vielversprechende Targets, 

da bisher nur wenige Antibiotika, wie Ethambutol (EMB) oder BTZ043, dagegen existieren. 
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Wir haben die Wirkungsweise und antibiotische Suszeptibilität von C. glutamicum nach EMB 

und BTZ043 Behandlung untersucht. Beide Antibiotika, die in die Arabinogalactan-Synthese 

eingreifen, beeinflussen ausschließlich das polare Zellwachstum, wie in mehrerer 

Färbeassays gezeigt. Lediglich 10% der Zellen wurden getötet. Zellen, die sich in der 

stationären Phase befanden, wurde nicht beeinflusst. Darüber hinaus zeigte die Verwendung 

eines Stammes mit chromosomaler DivIVA-mCherry Fusion, dass das DivIVA Protein Level 

stark erhöht ist. Erholungsexperimente nach Antibiotikazugabe zeigten, dass die Zellen 

asymmetrisch reagieren, wobei eine Tochterzelle das überschüssige DivIVA übernimmt, 

während die andere Zelle normales Wachstum erfährt.  
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1 INTRODUCTION 

Understanding cellular processes in bacteria is the fundamental prerequisite for bacterial 

applications in biotechnology or medicine. The engineering of high efficient production strains 

as well as the treatment of bacterial pathogens have evolved to extremely important tasks in 

our society. Being found in the 1950’s as natural amino acid producer, Corynebacterium 

glutamicum is today one of the most important organisms in biotechnology. It has been 

engineered to produce a variety of amino acids, of which L-lysine and L-glutamic acid are the 

most prominent ones. Apart from that, C. glutamicum has gained a great medical interest 

because of its close relationship to pathogens such as Corynebacterium diphtheriae, 

Mycobacterium leprae and Mycobacterium tuberculosis that all belong to the suborder 

Corynebacterineae (Figure 1, blue box). C. glutamicum is a non-pathogenic Actinobacterium 

and serves as model organism to investigate cellular processes and to find new targets for 

antibiotic (AB) intervention against the mentioned pathogens. An important characteristic of 

the suborder Corynebacterineae is the Mycobacteria-like cell wall, which contains a mycolic 

acid layer (MA) at the outer cell wall surface and provides distinct cellular properties (chapter 

1.3). 

 

Figure 1: Unrooted phylogenetic tree of bacterial species. The blue box highlights the close 
relationship of Corynebacterium and Mycobacterium. Organisms that are underlined in red are 
mentioned in the text. Modified from (Rocha 2006). 



 

2 

Although a multitude of ABs and targets have been explored in the past decades, bacteria 

managed (and still manage) to develop multi-resistant strains against established therapies. 

This impressive evolutional step happens to be alarmingly fast - faster than the progress in 

AB research. It is thus our duty to further explore yet unknown cellular processes and find 

new AB targets to fight upcoming multi-resistant strains. 

1.1 Cell division and growth in bacteria 

The bacterial cell cycle is composed of three fundamental steps: I) cell elongation, II) 

chromosome replication and segregation and III) septum formation and division.  

Within all bacterial phyla, cell elongation happens generally in three distinct modes (Daniel 

and Errington 2003). To date, these modes are unchallenged, besides minor updates in 

protein topologies that could be monitored by high-tech microscopy techniques such as 

PALM and STORM. Actinobacteria, like Corynebacterium or Mycobacterium elongate from 

the cell poles, implicating independence of elongation growth from the divisome (Locci and 

Schaal 1980) (Figure 2A).  

 

Figure 2: Distinct models of cell wall growth in bacteria, according to (Daniel and Errington 2003). 
Blue highlights areas of PG synthesis, red arrows show direction of cell wall growth, purple dots 
describe dynamic MreB filaments. Drawn according to (Daniel and Errington 2003). 

Here, cell growth is organized by the polar scaffold protein DivIVA (Wag31 in M. 

tuberculosis), which targets negative membrane curvature at the cell poles and septa (Letek 

et al. 2008b, Kang et al. 2008) (chapter 1.2).  

Lateral cell growth is mediated by actin-like MreB or Mbl filaments (Jones et al. 2001, Vats et 

al. 2009, Dominguez-Escobar et al. 2011). MreB interacts with several PBPs and other 
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conserved membrane proteins (MreC, MreD, RodA, RodZ), thereby determining cell shape 

(Osborn and Rothfield 2007, Garner et al. 2011, Dominguez-Escobar et al. 2011). This 

elongation mode is best analyzed in E. coli and B. subtilis (Margolin 2009) (Figure 2B).  

Cocci have no elongation growth machinery. Their cell wall growth is driven by the division 

machinery at midcell and cell growth is accompanied with closure of the division site (Figure 

2C). After division, the cell poles are completely inert. Consequently, the cells strongly 

depend on formation of a new division site for cell wall growth (Daniel and Errington 2003). 

Independent from the mode of cell growth, all bacteria that possess a cell wall (there are a 

few exceptions, e.g. mycoplasmas or synthetic L-Forms, chapter 1.3) are equipped with a 

cell wall growth machinery that is generally composed of 3 major elements: I) Precursor 

synthesis, followed by II) precursor translocation over the membrane and III) incorporation 

into the existing cell wall (Figure 3).  

 

Figure 3: Basic model of PG synthesis in bacteria. PG precursors are synthesized in the cytoplasm 
and subsequently fused to decaprenyl pyrophosphate, resulting in lipid II. Lipid II is flipped to the outer 
membrane surface where the disaccharide-pentapeptides are incorporated into the existing cell wall 
by PBPs. Decaprenyl pyrophosphate is recycled back to the inner membrane site. For a detailed 
depiction of proteins involved in precursor synthesis see reviews from (Bugg et al. 2011, Typas et al. 
2012, Pinho et al. 2013). 

Precursor synthesis is proceeded in the cytoplasm, where lipid I and lipid II are synthesized 

by Mur and Mra proteins, respectively (chapter 1.3 for detailed explanation). Subsequently, 
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lipid II is translocated by lipid II flippases such as FtsW, RodA or SpoVE, members of the 

SEDS (shape, elongation, division, sporulation) protein family. The best described 

representative of this protein class is FtsW. It was shown by reconstitution experiments and 

FRET analysis, how FtsW mediates lipid II translocation over membranes in vitro 

(Mohammadi et al. 2011). RodA and FtsW from E. coli share 31.9% identity of a 320 AA 

overlap and E. coli FtsW and B. subtilis SpoVE share 39.8% identity of a 352 AA overlap 

(Ikeda et al. 1989). The immense degree of identity between FtsW, RodA and SpoVE leads 

to the idea that all three proteins fulfill the same function. C. glutamicum has homologues of 

both SEDS proteins, FtsW and RodA. While FtsW, gene product of a member of the fts 

operon and thus part of the divisome, acts in septal PG synthesis during division, RodA is 

involved in polar PG synthesis during cell elongation (Valbuena et al. 2007). SpoVE is 

involved in lipid II translocation during sporulation (Ikeda et al. 1989) and consequently not 

present in the non-sporulating organisms E. coli or C. glutamicum.  

During cell elongation, the chromosomes start to replicate beginning at the origin of 

replication towards the terminus region. Meanwhile, the replicated chromosomes are 

segregated and anchored to the cell poles. In C. glutamicum, chromosome partitioning and 

anchoring is fulfilled by the ParAB system, where ParA, a walker-type ATPase, drives the 

segregation process and ParB anchors the chromosomes via parS sites to the cell poles 

(Donovan et al. 2010).  

In E. coli or B. subtilis, division site selection is mediated by systems such as Min, Noc and 

SlmA to determine midcell with high precision (de Boer et al. 1989, Wu and Errington 2004, 

Bernhardt and de Boer 2005). Interestingly, C. glutamicum lacks all three mentioned division 

site determining machineries. As a consequence, division site is not precisely at midcell, like 

it is in B. subtilis or E. coli. Instead it appears at a random position in between the segregated 

chromosomes. Encountered also in WT cells, especially mutants defective of chromosome 

segregation show aberrant placement of division site with septa that often assemble and 

constrict over the nucleoids (Donovan et al. 2010, Donovan et al. 2013). The division process 

is initiated by early stage components of the divisome at division site. FtsZ, for instance, 

appears together with several regulators (SsgB, ZipA, ZapA, EzrA) to assemble the Z-ring in 

E. coli and B. subtilis (Lutkenhaus et al. 1980, Bi and Lutkenhaus 1991, Scheffers 2005, Son 

and Lee 2013, Hale and de Boer 1997, Gueiros-Filho and Losick 2002, Levin et al. 1992). 

Afterwards, late stage division proteins such as PBP3/FtsI and FtsW follow towards the 

division site to fulfill septum closure and cell wall growth during division, as shown for M. 

tuberculosis (Datta et al. 2002, Datta et al. 2006). Finally, the division site is completed by 

proteins like DivIVA, which recognizes newly formed negative membrane curvature at the 

septum (Lenarcic et al. 2009).  
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1.2 The versatile polar determining scaffold protein DivIVA 

DivIVA is one of the most important cell division proteins and has been extensively discussed 

in the past decades. It is widely conserved within Gram positive bacteria and has the ability 

to localize to negative membrane curvature as observed at the cell poles and septa (Lenarcic 

et al. 2009). Consequently, it is considered as polar determinant and organizer for a large 

number of cellular processes. DivIVA from B. subtilis (DivIVABsu) was first described in the 

late 1990’s and is the best characterized homologue to date (Edwards and Errington 1997). 

Ever since, DivIVA homologues have been identified and described in several bacterial 

phyla. DivIVA is composed of a highly conserved short N-terminal domain, followed by two 

coiled coil domains CC1 and CC2 (Letek et al. 2008). It was shown by crystal structure of the 

N-terminal domain of DivIVABsu, that an exposed hydrophobic AA residue (phenylalanine) is 

responsible for polar and septal membrane attachment (Oliva et al. 2010). Moreover, DivIVA 

forms oligomers, mediated by the coiled coil domains, that provide scaffold formation 

(Stahlberg et al. 2004). The oligomers have been identified as 10-12-mers by 

ultracentrifugation and gel permeation techniques (Muchova et al. 2002). DivIVA from B. 

subtilis functions as division site marker where it forms a ring like structure (Edwards and 

Errington 1997). Furthermore, it serves as spatial regulator of the Min system, where it 

bridges the FtsZ inhibitor MinCD via MinJ to the cell poles to prevent cell division apart from 

midcell (Bi and Lutkenhaus 1993, Marston et al. 1998, Bramkamp et al. 2008, Patrick and 

Kearns 2008). During cell differentiation, B. subtilis DivIVA functions in chromosome 

segregation during sporulation where it interacts with RacA to tether the nucleoid into the 

prespore (Thomaides et al. 2001, Ben-Yehuda et al. 2003). During asymmetric division 

before sporulation, DivIVA localizes to the polar septum where it is required for activation of 

σ-factor F (Eswaramoorthy et al. 2014). Since both events require the presence of the 

sporulation protein SpoIIE it could be shown with high resolution microscopy that both 

proteins interact and co-localize at the site of the polar septum which faces the smaller 

(spore) compartment. Moreover, B. subtilis DivIVA mediates polar and septal localization of 

ComN upon direct interaction (dos Santos et al. 2012). ComN is a posttranscriptional factor 

of the competence operon comE. The absence of DivIVA (ΔdivIVA) leads to delocalization of 

ComN and thus to reduced competence efficiency, demonstrating how DivIVA is directly 

involved in DNA uptake in B. subtilis. Although it had been considered as independent polar 

determinant, it could be shown very recently that DivIVA targeting in B. subtilis depends on 

SecA (Halbedel et al. 2014). SecA is an ATPase for protein secretion and interacts directly 

with DivIVA, as shown in pull down experiments. In the absence of SecA, DivIVA is 

delocalized, likely due to disadvantages in membrane binding. However, since SecA is 

involved in protein secretion and membrane insertion, its role in DivIVA localization is likely 
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indirect (Halbedel et al. 2014). In Listeria monocytogenes, DivIVA is involved in secretion of 

autolysins, such as p60 and MurA (Halbedel et al. 2012). A ΔdivIVA mutant of this organism 

showed a chaining phenotype, but had no division defects like it was observed in ΔdivIVA 

mutants of other organisms (Fadda et al. 2003, Letek et al. 2008b, Kang et al. 2008). This 

chaining phenotype is most likely due to reduced extracellular levels of the mentioned 

autolysins. A similar phenotype was observed for the ΔsecA2 mutant with malfunctions in the 

SecA2 secretion machinery. Moreover, in this context, the effect of DivIVA on swarming 

motility, biofilm formation, invasiveness and cell-to-cell spread in cell culture models could be 

shown, suggesting the importance of DivIVA in L. monocytogenes (Halbedel et al. 2012). 

DivIVA’s function in polar cell growth was first described for Streptomyces coelicolor (Flardh 

2003), and since then also observed in several other Actinomycetales species (Kang et al. 

2008, Letek et al. 2008b), however, the precise role was not clarified, yet. In S. coelicolor, 

DivIVA is part of a tip organizing center, where it interacts with the coiled coil protein Scy 

(Streptomyces cytoskeletal element) and intermediate filament like protein FilP (Holmes et al. 

2013, Fuchino et al. 2013). The absence and overproduction of Scy results in altered 

morphology and branching with mislocalization of proteins, suggesting a spatio-regulatory 

role of Scy. FilP assembles into a network structure to provide cellular rigidity and elasticity 

during polar elongation. Both proteins are spatially regulated by DivIVA and the resulting tip-

associated DivIVA complex is considered as a platform for several more spatio-dependent 

processes, that are summarized and named as the polarisome or TIPOC (Flardh et al. 2012, 

Fuchino et al. 2013). In M. tuberculosis, polar cell growth and morphology are determined by 

the DivIVA homologue Wag31, which is essential for cell growth (Kang et al. 2008). Here, 

Wag31 interacts with AccA3 and is involved in lipid permeability, whereas overexpression of 

AccA3 results in a decrease of such (Xu et al. 2014). Consequently, Wag31 plays a role in 

maintaining drug resistance and lipid permeability of the cell wall. In C. glutamicum, DivIVA 

governs spatial regulation of PG synthesis through polar recruitment of the PBPs upon weak 

interaction between PBP1a and DivIVA, as shown in a bacterial-two-hybrid assay (Valbuena 

et al. 2007).  

The polymerization of DivIVA is nucleotide independent, meaning that scaffold formation and 

polar localization does not require energy. However, for proper functioning and regulation of 

growth, it needs to be phosphorylated by STPKs. In Streptococcus pneumoniae, a triad 

composed of DivIVA, GpsB (a DivIVA paralog) and StkP (a protein kinase) has been 

identified to regulate PG synthesis, whereas GpsB is required for StkP localization, which in 

turn phosphorylates DivIVA (Fleurie et al. 2014). Interestingly, they found that cell elongation 

is promoted by non-phosphorylated DivIVA, whereas phosphorylation abolishes elongation 

growth and stimulates septal PG synthesis and division (Fleurie et al. 2012). In M. 
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tuberculosis, phosphorylation of Wag31 affects not only the enzymatic activity of polar PG 

synthesis but also protein-protein interactions (Jani et al. 2010). C. glutamicum harbours 4 

STPKs, namely PknA, PknB, PknG and PknL, whereas only two of them, PknA and B are 

essential (Fiuza et al. 2008). Moreover, the protein kinases A, B and L were found to 

phosphorylate FtsZ (Schultz et al. 2009). Phosphorylation of C. glutamicum DivIVA has not 

been demonstrated, yet. 

Albeit the versatility of DivIVA, it is highly restricted to Gram positive organisms. 

Nevertheless, polar determinants are a general prerequisite in spatial control of the cell 

cycle. Gram negative bacteria have therefore other proteins to fulfil these functions that are 

partly comparable with those of DivIVA. In E. coli, for instance, the Min system for division 

site selection is replenished with the topological factor MinE which tethers MinCD to the cell 

poles (de Boer et al. 1989). Caulobacter crescentus, an oligotrophic fresh water bacterium 

with asymmetric cell division has PopZ as polar determinant which is involved in 

chromosome partitioning (Bowman et al. 2008, Laloux and Jacobs-Wagner 2013). Neither 

MinE nor PopZ have structural similarities compared to DivIVA, however, like DivIVA, PopZ 

requires multimerization to form a matrix for polar localization (Laloux and Jacobs-Wagner 

2013). Regarding the essentiality of DivIVA homologues, those in Actinobacteria seem to be 

the most important ones. C. glutamicum divIVA is essential for viability and is required for 

polar cell growth (Letek et al. 2008b). Likewise its homologues from other organisms, 

DivIVACgl consists of three distinct domains, a short N-terminal domain and two coiled-coil 

domains (Letek et al. 2009). However, the protein has a large central insertion, which gives 

hints to further functions (Letek et al. 2009). It could for instance be a good candidate for 

polar tethering of the previously described ParAB system during chromosome segregation 

(Donovan et al. 2010). 

1.3 The bacterial cell wall 

Bacteria are generally classified into Gram positives and Gram negatives, according to the 

Danish bacteriologist Hans Christian Gram. Experimental basis for this classification, that 

was first described in 1886, was a staining procedure which stained Gram positive cells dark 

purple and Gram negatives (upon counter staining) red. Later it was found by electron 

microscopy analysis, that this difference in coloring is owing to the structure of the cell wall. 

Gram positive bacteria have a thick PG layer (20-80 nm), whereas Gram negative cell walls 

are much thinner (6-8 nm, Figure 4). 
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Figure 4: Cell wall scheme of Gram positive (left) and Gram negative (right) bacteria. CM = cell 
membrane, CP = cytoplasm, OM = outer membrane, PG = peptidoglycan, PP = periplasm. 

Only a few organisms are not distinguishable with this method, as they show false or mixed 

results, and are therefore classified as Gram variable. Examples are PG free Mollicutes, 

Gram positive Deinococcus that stain according to their Gram negative-like cell wall or 

Bacillus, which show mixed staining patterns upon PG degradation (Thompson and Murray 

1981, Miyata and Ogaki 2006). Bacterial cell walls are flexible molecular networks that 

protect the cells from outer environmental influences, like mechanical erosion in soil, and 

from their internal turgor pressure, caused by osmotic flow of water into the cell. They are 

generally made of PG (Murein), which is composed of a polysaccharide (PS) backbone 

consisting of alternating β-(1,4) linked N-acetyl glucosamine (GlnNAc) and N-acetyl muramic 

acid (MurNAc) molecules (Schleifer and Kandler 1972). Single PG strands are cross-linked 

via short peptide bridges between MurNAc elements, thus forming a mesh-like layer (called 

sacculus) that gives the cell wall its structural integrity and strength. These pentapeptide 

cross-links differ between organisms, no matter if Gram positive or negative, and some even 

lack PG cross-links. The pentapeptide cross-links are usually made of five AAs or AA 

derivatives, in particular L-Alanine, D-glutamate, meso-diaminopimelic acid (DAP, E. coli, C. 

glutamicum, B. subtilis) / L-lysine (S. aureus) and two D-alanine. The choice of D-AAs is 

believed to help protect the cell wall from protease attacks, since D-AAs do not occur in 

proteins. Like all components of the cell wall, the cross-links vary between all organisms and 

many exceptions have been described (Schleifer and Kandler 1972). The PG precursor 

molecules are synthesized in the cytoplasm. The reaction cascade has 12 steps, beginning 

with fructose-6-phosphate, an intermediate from glycolysis (van Heijenoort 2007). In the last 

step MurNAc-(pentapeptide)-pyrophosphate (lipid I) is fused to GlnNAc by the 

glycosyltransferase MurG, yielding lipid II. The lipid II is then flipped to the outer membrane 

surface by lipid II flippases, as mentioned. After translocation, PBPs with transglycosylation 
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activity insert the subunits into existing glycan strands and the cross-linking is fulfilled by 

PBPs with transpeptidation activity. On top of the PG, some Gram positive species have 

additional PS layers that contribute to the thickness of the cell wall (Figure 5).  

 

Figure 5: Basic model of the Mycobacteria cell wall. Galactan chains are esterified with arabinan 
chains to form the AG layer, which is connected to the PG via a short linker. The Arabinan chains are 
capped with mycolic acids. Drawn according to (Bhamidi et al. 2008). 

The suborder of Corynebacterineae, including C. glutamicum and M. tuberculosis, has a 

distinctive AG layer which is covalently bound to PG via short linker molecules and is made 

of D-galactose and arabinose strands that are attached at three branch points. The 

arabinose strands are 30 monomers long and capped with mycolic acids (Bhamidi et al. 

2008). This mycolic acid layer has a characteristic length of ~90 C-atoms in Mycobacteria. 

Corynebacteria also possess mycolic acids, however their residues are much shorter (~40 C-

atoms). This particular fact makes C. glutamicum an interesting model organism to study 

mycolic acid layer formation in order to find new targets for AB intervention. 

The cell wall is essential for most bacteria to survive, although it is possible to produce cell 

wall lacking L-forms of several bacteria and cultivate them in the laboratory (Tulasne 1949, 

Mercier et al. 2014). Very few bacteria lack cell walls, such as Mycoplasma, most of which 

are pathogenic and to date one of the smallest living cells discovered. 

1.4 Cell wall antibiotics  

A milestone in the treatment of bacterial infections was established by Alexander Fleming in 

1928 when he found that fungi of the genus Penicillium excrete a substance that kills certain 

bacteria. Later, he found that this substance, which he named penicillin, kills specifically 
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Gram positive bacteria, whereas Gram negative Salmonella, for instance, appeared to be 

resistant. Penicillin and its derivatives are structurally based on a beta-lactam ring and are 

therefore summarized as beta-lactam ABs. The beta-lactam ring binds covalently and 

irreversible to D-alanine transpeptidase enzymes, thereby inhibiting cross-linking of the 

glycan strands in Gram positive bacteria, leading to perforation and burst. Due to the fact that 

these transpeptidase enzymes were barely characterized at that time, they were named 

according to this reaction – penicillin binding proteins (PBPs). Since then several derivatives 

of the same class of antibiotics were developed with higher stability, effectiveness and 

production yield in biotechnological production. Beta-lactam ABs are classified as 

bactericidal, as they act by inhibiting reproduction. Well established ABs of this class are 

penicillin and cephalosporin (including several derivatives). The drawback, however, of these 

ABs lies in their structural basis, the beta-lactam ring. Resistant bacteria harbor beta-

lactamases that break and thus inactivate the beta-lactam ring. In addition, due to the 

widespread and sometimes inappropriate use of ABs, bacteria developed further resistances 

against many established ABs. It is possible to counteract resistance for example by adding 

inhibitors for beta-lactamases. Mixtures of such, often expanded by further ABs, are 

summarized as broad-spectrum ABs. To counteract the rapid development in evolution, a 

variety of new AB had to be developed, targeting in the meantime most cellular elements or 

processes (e.g. ribosomes  protein synthesis, cell wall  cell growth, cell membrane  

transport, DNA  chromosome replication).  

A well-studied and established AB target is the bacterial cell wall. One reason is the huge 

structural variety and composition between different organisms, which results in differences 

in AB susceptibility between bacteria (chapter 1.2). Furthermore, it has the advantage, that 

ABs do not require uptake into the cell and thus have no barrier that needs to be passed. 

The targets of the cell wall extend from its synthesis machinery (PBPs), over precursor 

molecules (lipid II) (Breukink and de Kruijff 2006) to all different layers that are present, such 

as PG, AG, MA, etc.  

One of the most problematic diseases caused by bacterial infections is TB, which is still in 

focus of AB research since it was not yet possible to find appropriate antisera. Although 

approx. one third of the world population is infected, only 5-10 % of those develop an active 

version of such, which causes severe inflammations of lungs accompanied with chest pains. 

Strikingly, latent pathogens are able to survive for years, and therapies are long-drawn and 

expensive. In 2013, TB caused 1.1 million casualties worldwide (WHO).  

The mycobacterial cell wall not only provides cellular robustness but is also essential for 

growth, virulence and survival, thus makes it an interesting target for new ABs (Portevin et al. 
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2004). One promising drug that has been identified recently is BTZ043, the most effective 

one of the benzothiazinone compound family (Makarov et al. 2009). BTZ043 targets the 

essential DprE1 catalytic protein that is involved in isomerization of the cell wall precursor 

molecule 1-decaprenylphosphoryl ribose (DPR) to the oxoderivative DPX (Wolucka 2008, 

Crellin et al. 2011) (Figure 6). 

 

Figure 6: Synthesis pathway of DPA, the precursor for arabinan synthesis, and site of action of 
BTZ043. At first, 5-phosphoribose-1-pyrophosphate (PRPP) is fused to the decaprenyl chain which 
serves as membrane carrier (similar to lipid II) by UbiA resulting in 1-decaprenylphosphoryl ribose 5-
phosphate (DPPR). DPPR is then dephosphorylated by an unknown protein resulting in DPR. Finally, 
DPR isomerization to DPA via DPX is fulfilled by DprE1 and 2. DprE1 is the target for BTZ043. Drawn 
according to (Sassetti et al. 2001, Mikusova et al. 2005, Wolucka 2008). 

DPX is subsequently further proceeded by DprE2 to 1-decaprenylphosphoryl arabinose 

(DPA), the precursor for arabinan and LAM synthesis. Structural basis for BTZ043-mediated 

killing of M. tuberculosis is a covalent binding of BTZ043 to an active-site cysteine in DprE1 

and contact to a neighboring catalytic lysine, as shown by crystal structure of the DprE1-

BTZ043 complex (Neres et al. 2012). This explains the high potency and MIC of only 1 ng/ml 

against M. tuberculosis. BTZ043 is currently in late stages of preclinical development and will 

likely be applied in the near future (Lienhardt et al. 2012). One established anti-tubercular 

drug is ethambutol (EMB) which targets the EmbABC arabinosyltransferases for arabinan 

and LAM biosynthesis (Escuyer et al. 2001, Alderwick et al. 2005) (Figure 7).  
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Figure 7: Arabinan synthesis cascade and site of action of EMB. DPA is connected to the galactan 
chain at galactose 8, 10 and 12 by the arabinosyltransferase AftA, resulting in arabinosyl galactan. 
Processive addition of arabinose subunits derived from DPA is catalyzed by the 
arabinosyltransferases EmbAB (M. tuberculosis) or EmbC (C. glutamicum). Drawn according to 
(Escuyer et al. 2001, Alderwick et al. 2005, Alderwick et al. 2006). 
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EMB has been first described in the 1960’s and is widely used in TB therapy. In the 

meantime, however, several resistances occurred, especially due to mutations in the emb 

genes (Cui et al. 2014). This is just one example to demonstrate the urgency for the 

development for new ABs. 

1.5 Aim of this work 

In C. glutamicum, chromosome partitioning is mediated by the ParAB proteins, which have 

been characterized and described previously in our lab (Donovan et al. 2010). ParA is a 

walker-type ATPase and ParB a DNA binding protein (chapter 1.1). However, for proper 

tethering of the chromosomes to the cell poles, more components are required. It could be 

shown that the oriC-parS-ParB nucleoprotein complex is located at the poles in C. 

glutamicum (Donovan et al. 2010). A good candidate for polar tethering is DivIVA, which 

localizes to the poles in C. glutamicum (Letek et al. 2009). For B. subtilis it has been shown 

that the conserved DivIVA protein is involved in chromosome tethering during sporulation 

(Thomaides et al. 2001). The study that is presented in chapter 2.1 aims to clarify the 

mechanisms and regulation of chromosome segregation and tethering in C. glutamicum and 

other actinobacterial species.  

Cell wall growth has been extensively investigated in many species. The components of the 

growth machineries can be summarized in three major groups: I) PBPs that incorporate PG 

precursors into the cell wall (e.g. PBP1, PBP2, PBP3/FtsI), II) lipid II flippases which mediate 

precursor translocation over the membrane (e.g. RodA, FtsW) and III) several cytosolic 

proteins for precursor synthesis (e.g. MurG, MraY). C. glutamicum exhibits polar elongation 

growth, a common feature of Actinobacteria, including several pathogens. Consequently, 

these species are equipped with distinct proteins that form the polar elongation complex, in 

addition to the septal cell wall growth machinery during division. Although many proteins for 

polar elongation growth have been identified, it remains a mystery how they are recruited to 

the cell poles. A role of DivIVA in polar cell growth has been suggested but has not been 

characterized, yet (Letek et al. 2008b). The study presented in chapter 2.2 aims to 

characterize the lipid II flippase RodA, a member of the SEDS protein family, who’s role and 

essentiality in morphology and growth has not been investigated. Moreover, this study 

presents how polar elongation complex is recruited to the cell poles.  

The conserved cell division protein DivIVA has been identified in several actinobacterial 

species and many interaction partners have been found. Moreover, the versatile functions of 

DivIVA have been described (chapter 1.2). It is likely involved in chromosome tethering and 

polar cell growth and possibly the connection hub between both processes. The study 
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presented in chapter 2.3 aims to analyze the specificity of the interaction of DivIVA with 

RodA and to find evidence that DivIVA is required for spatial cell cycle regulation. 

Approaching the validation of protein-protein interaction candidates, this study aims to 

establish a new protein-protein interaction assay. Fluorescence microscopy and FRET are 

promising methods to visualize and quantify protein-protein interaction in vivo. Thereby, a 

heterologous E. coli system allows observation of direct physical interaction. Co-elution 

assays serve as in vitro studies. 

Altogether, this study aims to give new insights into the interesting and challenging field of 

spatial cell cycle regulation. One protein in focus is DivIVA, which localizes to the cell poles 

and septa and is thus a good candidate as spatial regulator and thus connection hub 

between polar cell growth, chromosome segregation and cell division in C. glutamicum. 

The close relationship to several pathogens makes C. glutamicum an interesting model 

organisms to study medical aspects such as antibiotic susceptibility and stress response of 

Actinobacteria. Especially the mycobacteria-like cell wall allows investigation of such, which 

is problematic in Mycobacteria where it is essential for viability. The study in chapter 2.4 aims 

to present latest results on AB susceptibility, stress response and cell recovery after 

(incomplete) AB therapy. 
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2 RESULTS / PUBLICATIONS 

2.1 A synthetic Escherichia coli system identifies a conserved origin 

tethering factor in Actinobacteria  

 

Donovan C, Sieger B, Krämer R, Bramkamp M* 

 

University of Cologne, Institute for Biochemistry, Zülpicher Str. 47, 50674 Cologne, Germany 

 

Accepted 9 February, 2012 

 

Abstract 

In eukaryotic and prokaryotic cells the establishment and maintenance of cell polarity is 

essential for numerous biological processes. In some bacterial species, the chromosome 

origins have been identified as molecular markers of cell polarity and polar chromosome 

anchoring factors have been identified, for example in Caulobacter crescentus. Although 

speculated, polar chromosome tethering factors have not been identified for Actinobacteria, 

to date. Here, using a minimal synthetic Escherichia coli system, biochemical and in vivo 

experiments, we provide evidence that Corynebacterium glutamicum cells tether the 

chromosome origins at the cell poles through direct physical interactions between the ParB–

parS chromosomal centromere and the apical growth determinant DivIVA. The interaction 

between ParB and DivIVA proteins was also shown for other members of the Actinobacteria 

phylum, including Mycobacterium tuberculosis and Streptomyces coelicolor. 
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Supplementary material and methods for chapter 2.1 
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2.2 The lipid II flippase RodA determines morphology and growth in 

Corynebacterium glutamicum 

 

Sieger B, Schubert K, Donovan C, Bramkamp M* 

 

Biocenter, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152 Planegg-

Martinsried, Germany 

 

Accepted 21 September, 2013 

 

Abstract 

Lipid II flippases play an essential role in cell growth and the maintenance of cell shape in 

many rod-shaped bacteria. The putative lipid II flippase RodA is an integral membrane 

protein and member of the SEDS (shape, elongation, division and sporulation) protein family. 

In contrast to its homologues in Escherichia coli and Bacillus subtilis little is known about the 

role of RodA in Actinobacteria. In this study, we describe the localization and function of 

RodA in Corynebacterium glutamicum, a rod-shaped, apically growing Actinobacterium. 

RodA-GFP localizes exclusively at the cell poles. Surprisingly, time-lapse microscopy 

revealed that apical cell growth is sustained in a rodA deletion strain. However, growth rates 

and antibiotic susceptibility are altered. In the absence of RodA, it appears that apical growth 

is driven by lateral diffusion of lipid II that is likely flipped by the septal flippase, FtsW. 

Furthermore, we applied a previously described synthetic in vivo system in combination with 

FRET to identify an interaction between C. glutamicum RodA and the polar growth 

organizing protein DivIVA. 
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Supplementary material and methods for chapter 2.2 
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2.3 Interaction sites of DivIVA and RodA from Corynebacterium glutamicum 

 

Sieger B, Bramkamp M* 

 

Biocenter, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152 Planegg-

Martinsried, Germany 

 

Accepted 5 December, 2014 

 

Abstract 

Elongation growth in Actinobacteria is localized at the cell poles. This is in contrast to many 

classical model organisms where insertion of new cell wall material is localized around the 

lateral site. We previously described a role of RodA from Corynebacterium glutamicum in 

apical cell growth and morphogenesis. Deletion of rodA had drastic effects on morphology 

and growth, likely a result from misregulation of penicillin-binding proteins and cell wall 

precursor delivery. We identified the interaction of RodA with the polar scaffold protein 

DivIVA, thus explaining subcellular localization of RodA to the cell poles. In this study, we 

describe this interaction in detail and map the interaction sites of DivIVA and RodA. A single 

amino acid residue in the N-terminal domain of DivIVA was found to be crucial for the 

interaction with RodA. The interaction site of RodA was mapped to its cytoplasmic, C-

terminal domain, in a region encompassing the last 10 AAs. Deletion of these 10 amino acids 

significantly decreased the interaction efficiency with DivIVA. Our results corroborate the 

interaction of DivIVA and RodA, underscoring the important role of DivIVA as a spatial 

organizer of the elongation machinery in Corynebacterineae. 
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Supplementary material and methods for chapter 2.3 
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2.4 The anti-tuberculosis drugs Ethambutol and BTZ043 selectively block 

elongation growth in CMN-group bacteria 

 

Sieger B, Schubert K, Rieblinger A, Böhm K, Sachs N, Meyer F, Wanner G, Bramkamp M* 

 

Unpublished MS 

 

Abstract 

It is widely known that antibiotic research is of growing importance to combat the 

development of multi-resistant strains that cause lethal infections, such as tuberculosis (TB), 

diphtheria and leprosy. The WHO counted 1.1 million deaths upon TB infection excluding 

HIV in 2013, showing how severe they are and how poor our ability to counteract resistances 

is. Many members of the CMN-group bacteria (Mycobacterium, Corynebacterium, Nocardia) 

are notorious pathogens and show a high rate of survival against established antibiotics. A 

first line antibiotic for TB treatment is ethambutol that is part of broad-spectrum therapies and 

targets the EmbABC arabinosyltransferases for arabinan synthesis. Another antibiotic that 

has been described recently is BTZ, which targets the isomerization process of 

decaprenylphosphoryl ribose to decaprenylphosphoryl arabinofuranose. BTZ043 is highly 

promising due to its low minimal inhibitory concentration of only 1 ng/ml for Mycobacteria. 

We investigated the mode of action of EMB and BTZ043 on Corynebacterium glutamicum, a 

non-pathogenic relative of Mycobacterium tuberculosis. Both organisms elongate from the 

cell poles and share a remarkably similar cell wall. In addition, the genes that are involved in 

cell wall synthesis are likewise homologues. We found that EMB / BTZ043 treated cells were 

shorter due to a selective block of the mycolic acid and peptidoglycan synthesis at the cell 

poles. Although polar growth was abolished, septal cell wall synthesis continued, thus likely 

reasoning the survival of the cells. 
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Supplementary material and methods for chapter 2.4 

 

The anti-tuberculosis drugs Ethambutol and BTZ043 selectively block elongation 

growth in CMN-group bacteria 
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3 CONCLUDING DISCUSSION 

C. glutamicum is a member of the CMN-group bacteria (also called Corynebacterineae) to 

which many pathogenic species with high survival rates against established ABs belong. 

Although C. glutamicum is non-pathogenic, the structure and synthesis of C. glutamicum cell 

wall components is similar to Mycobacteria (Dover et al. 2004). The cell wall is composed of 

a PG sacculus that is connected via short linker sequences to a characteristic AG layer 

(McNeil et al. 1990) (Figure 5). The AG layer is capped with mycolic acids that are essential 

for viability in Mycobacterium (Gande et al. 2007, Kolly et al. 2014). In addition, the mode of 

cell wall synthesis of Corynebacterium and Mycobacterium is similar. During division, septal 

cell wall growth is fulfilled by Fts proteins, such as the topological marker FtsZ, lipid II 

flippase FtsW and PBP FtsI. This septal growth machinery is unique in most bacterial 

species (Bi and Lutkenhaus 1991, Weiss et al. 1999, Datta et al. 2006). Elongation of rod 

shaped bacterial cells, such as E. coli and B. subtilis, is achieved by inserting new PG 

subunit along the lateral cell axis (Osborn and Rothfield 2007). In Corynebacterium and 

Mycobacterium the elongation machinery is located at the poles (Daniel and Errington 2003, 

Letek et al. 2008a). Here, DivIVA acts as topological marker, as it self-localizes to the cell 

poles where it recognizes negative membrane curvature (Lenarcic et al. 2009). Although the 

involvement of C. glutamicum DivIVA in cell growth had been proposed (Letek et al. 2008b), 

the exact role in terms of protein interaction or spatiotemporal regulation was not clarified. 

We identified two interaction partners of C. glutamicum DivIVA: The lipid II flippase RodA and 

the chromosome partitioning protein ParB, thus characterizing the exact role of DivIVA in 

polar cell growth and chromosome segregation. 

3.1 DivIVA spatially regulates chromosome tethering in C. glutamicum 

Bacteria employ specialized chromosome segregation systems that have been well 

described (Jakimowicz et al. 2002, Wu and Errington 2003, Ramirez-Arcos et al. 2005, 

Schumacher and Funnell 2005, Lee and Grossman 2006, Ginda et al. 2013, Broedersz et al. 

2014). In some species like C. glutamicum or C. crescentus, the segregation system is 

composed of orthologues of ParA, ParB and parS which have highly conserved functions. 

ParA, a walker type ATPase, drives the segregation process of the replicated chromosomes. 

ParB is a DNA-binding protein that is recruited to inverted repeats, called parS sites, on the 

chromosome where it forms a nucleoprotein complex (Jakimowicz et al. 2002). The parS 

sites are located near the origin of replication (oriC) region. The ParABS system from C. 

glutamicum was previously characterized in our lab  and the subcellular localization of ParB 
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was observed near the cell poles (Donovan et al. 2010). Moreover, a genomic insertion of a 

tetO array near the origin region was also localized near the cell poles, indicating a polar 

orientation of the parS-oriC region in C. glutamicum (Donovan et al. 2010). These 

observations led to the idea that polar tethering of the chromosomes could be achieved by 

protein-protein interaction. A similar situation was observed in C. crescentus, where the oriC 

region is tethered to the cell poles via interaction of the ParB-parS nucleoprotein complex 

with the polar scaffold protein PopZ (Viollier et al. 2004, Bowman et al. 2008). In E. coli, 

however, the oriC region of the chromosome is orientated to a midcell position. Shortly after 

initiation of chromosome replication, the template and replicated oriC region are partitioned 

to the ¼ and ¾ position of the cell. These subcellular locations mark the midcell of the future 

daughter cell (Gordon et al. 1997). In B. subtilis, the oriC is also located at a midcell position. 

When replication has been initiated, a central replisome complex stays at midcell whereas 

the oriC regions are pushed symmetrically towards the prospective daughter cells. After 

division, the oriC regions are again located in a midcell region (Lin and Grossman 1998, 

Donovan and Bramkamp 2014). 

In C. glutamicum the oriC region of the chromosome is localized at one of the cell poles. As 

replication begins and the oriC region is duplicated, the daughter oriC is partitioned to the 

opposite cell pole, where it appears to be tethered in place. We speculated that the polar 

localized, apical growth determinant DivIVA might play a role in polar anchoring of the 

chromosomes (Letek et al. 2009, Lenarcic et al. 2009) and that protein-protein interactions 

were required for correct orientation of the chromosome. For the investigation of protein-

protein interaction we established an assay where the proteins of interest are fused to 

fluorophores and are heterologously expressed in E. coli BL21 cells. The vector pETDuet-1 

(Novagen) is ideal for this purpose as it harbors two multiple cloning sites (MCS) that allow 

simultaneous co-expression of the protein fusions. Each MCS has its own T7 promoter 

sequence. First, the fusion proteins were expressed individually. ParB localized to the 

nucleoid, likely upon unspecific binding to the DNA, as E. coli chromosomes do not contain a 

perfect parS consensus sequences (chapter 2.1). DivIVA localized to the cell poles and 

septa, likewise in its natural host. Upon co-expression, DivIVA recruited ParB to the cell 

poles. The fact that E. coli serves as heterologous reaction vessel excludes the possibility 

that further proteins might be involved in co-localization and thus gives hint to direct physical 

interaction between DivIVA and ParB. The assay was also applied to homologues of different 

species, demonstrating that DivIVA-ParB interaction is a common feature in Actinobacteria. 

To map the interactions sites of DivIVA and ParB, mutant proteins were analyzed, showing 

that a conserved arginine residue in ParB (R21) is involved in DivIVA interaction. Mutation of 

the conserved arginine to an alanine (R21A) abolished the interaction between ParB and 
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DivIVA. Indeed, when ParBR21A was expressed extra-chromosomally in C. glutamicum in a 

ΔparB background, the gross segregation defects of the ΔparB mutant phenotype was not 

completely complemented (Donovan et al. 2010). In addition, the localization of the ParB 

foci, which can be used as a proxy for the localization of the oriC regions, was altered with a 

significant proportion of cells completely lacking polar localized ParB foci. Mutagenesis of 

DivIVA revealed that a central region of 154 AAs (AA 144-298) plays a role in ParB 

interaction (chapter 2.1). Although direct interaction between DivIVA and ParB could be 

demonstrated, these two proteins alone are not sufficient for chromosome segregation. In C. 

glutamicum, also ParA is required for proper functioning of segregation, as highlighted in a 

parA deletion mutant with mislocalized ParB foci, altered phenotypes and DNA free cells 

(Donovan et al. 2010).  

Besides the spatial aspect of DivIVA mediated polar tethering of the chromosomes, also the 

temporal regulation of division and growth is imperative for the production of viable offspring. 

In other rod-shaped bacteria, such as E. coli and B. subtilis, the Min system and nucleoid 

occlusion (Noc) play a role in temporal and spatial regulation of cytokinesis. C. glutamicum, 

and other members of the Actinobacteria phylum, lack a Min system and a nucleoid 

occlusion system has not been identified to date. However, unlike E. coli and B. subtilis, C. 

glutamicum does not always divide precisely at midcell. Interestingly, mutation of the Par 

system not only altered the organization of the chromosome but also gave rise to spatial and 

temporal defects in cell division as well as altered polar cell growth (Donovan et al. 2013). 

Deletion of parB led to morphological alterations that appeared to be a consequence of 

reduced polar growth. It could be speculated that docking of the oriC at the cell poles through 

ParB-DivIVA interactions stimulates polar growth. It was also observed that C. glutamicum 

ΔparB mutant cells tend to divide before nucleoid segregation has been fulfilled, resulting in 

guillotined chromosomes (Donovan et al. 2013). Taken together, this suggests an 

involvement of chromosome segregation in spatial and temporal regulation of cell division 

and growth. Division site selection is largely altered and growth rates and generation times 

are more variable in mutants defective of chromosome segregation. It is thus believed that 

this process determines time and space for cell division in C. glutamicum (Donovan et al. 

2013). 

3.2 RodA and lipid II transport 

Like many rod-shaped bacteria, C. glutamicum harbors two machineries for cell wall growth: 

one for septal division growth and one for polar elongation growth. Septal division growth is 

fulfilled by gene products that are encoded in the fts operon, which is conserved among 
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bacterial species (Bi and Lutkenhaus 1991, Goehring and Beckwith 2005). The prokaryotic 

tubulin homologue FtsZ, which polymerizes to a ring-like structure, called the Z-ring, spatially 

regulates the cell growth machinery at the site of septation. Penicillin-binding protein FtsI 

(PBP3) directly interacts with FtsZ and incorporates new PG precursors into the new cell wall 

(Weiss et al. 1997, Datta et al. 2006). The essential lipid II flippase FtsW also interacts with 

FtsZ and fulfills lipid II translocation over the membrane (Datta et al. 2002, Mohammadi et al. 

2011). Inactivated FtsI was shown to inhibit Z-ring constriction and FtsW plays a role in FtsZ 

ring stabilization, implicating the essentiality of these three components among others for 

proper cell division (Pogliano et al. 1997, Boyle et al. 1997).  

During cell elongation in C. glutamicum, intercalation of nascent PG subunits is carried out 

by polar localized growth machinery. This machinery is spatially regulated by DivIVA, which 

recognizes negative membrane curvature and self-localizes to the cell poles (Letek et al. 

2008b, Lenarcic et al. 2009). Three PBPs were identified to be involved in elongation growth, 

namely PBP1a, PBP1b and PBP2b (Valbuena et al. 2007). None of the three PBPs turned 

out to be essential and thus seem to be redundant. The second lipid II flippase RodA is also 

a member of the polar elongation complex. Subcellular localization of RodA was observed at 

the cell poles and, at a late stage of the cell cycle, at the division site. A markerless deletion 

of rodA had effects on cell morphology and growth, however, to our surprise, not on viability 

and polar cell growth. This observation raised the question of how polar growth is 

maintained. To answer this, we first performed a vancomycin fluorescent (van-FL) staining to 

visualize extracellular lipid II. It turned out that WT cells were stained exclusively at the poles 

and septa, as previously shown (Letek et al. 2008b), whereas ΔrodA mutant cells were 

stained homogenously around their entire envelope, giving first hints for lateral movement of 

septal FtsW flipped lipid II that subsequently migrates towards the cell pole, where the polar 

PBPs are located. In addition, we measured a strong increase in van-FL fluorescence 

implicating higher lipid II amounts on the cell surface. To support the van-FL observations, 

both WT and ΔrodA mutant cells were treated with nisin. Nisin is a lantibiotic (lantibiotics are 

peptide antibiotics that contain the polycyclic amino acid lanthionine) that forms a distinct 8:4 

complex with lipid II and penetrates the cell membrane leading cell death (Breukink and de 

Kruijff 2006). Growth experiments and phenotypic analysis revealed reduced sensitivity of 

the ΔrodA mutant compared to WT. We interpret this with reduced complex formation due to 

lower local density of lipid II on the surface of ΔrodA mutant cells and thus less reactivity of 

nisin. Finally, we measured membrane potentials of both WT and rodA mutant strains at 

different nisin concentrations to confirm penetration of the membrane and depolarization 

upon proton efflux. At sublethal nisin concentrations (20 µg/ml), we observed sustained 

potential in mutant cells compared to WT, indicating less pore formation. Taken together, 
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these results indicate extracellular existence and lateral movement of lipid II from the septum 

to the cell poles for polar growth. Our findings are in contrast to the observations that were 

made in B. subtilis, where the localization of MreB mediated PG synthesis depends on 

substrate (lipid II) availability (Lages et al. 2013).  

Although it has never been shown, RodA is believed to fulfil lipid II translocation over 

membranes, similar to its homologue FtsW. FtsW has been identified to be necessary and 

sufficient for lipid II transport in vitro (Mohammadi et al. 2011). Membrane vesicles were 

purified from E. coli cells and fluorescently labelled lipid II (NBD-lipid II) was introduced. In 

vesicles from cells overexpressing FtsW, lipid II translocation from the inner to the outer 

leaflet was induced and rendered accessible to fluorescently labelled vancomycin (TMR-

vancomycin) as detected by FRET. Similar results were obtained from vesicles derived from 

strains expressing FtsW from other organisms, signifying a species independent function. On 

the contrary, vesicles from a FtsW depletion strain showed reduced lipid II transport, implying 

the requirement of FtsW for NBD-lipid II translocation (Mohammadi et al. 2011). The residual 

transport activity that was observed was likely due to the presence of RodA which is 

supposed to have the same function. RodA and FtsW from E. coli share 31.9% identity of a 

320 AA overlap and have similar topologies, according to a topology prediction with TMHMM 

(Ikeda et al. 1989, Arnold et al. 2006). The specificity of FtsW mediated lipid II transport 

could be mapped to two AAs in transmembrane domain four (Mohammadi et al. 2014).  

Interestingly, a recent study contradicts the literature of the past decades, stating that MurJ 

and not FtsW (and possibly RodA) is responsible for lipid II transport (Sham et al. 2014). 

MurJ had been identified previously in a bioinformatics approach as a possible lipid II 

flippase in E. coli (Ruiz 2008). It is an inner membrane protein and member of the MOP 

(multidrug/oligo-saccharidyl-lipid/polysaccharide) exporter family. The gene is located within 

the mur operon which is well characterized for cell wall precursor synthesis (Mengin-Lecreulx 

et al. 1989). Whereas MurJ homologues from E. coli and Burkholderia cenocepacia are 

essential for viability (Sham et al. 2014, Mohamed and Valvano 2014), the one from B. 

subtilis is not necessary for growth and thus claimed as not serving as lipid II flippase in this 

organism (Fay and Dworkin 2009). C. glutamicum also has a MurJ homologue (cg3419) 

which has not been characterized, yet. It would be interesting to determine the localization, 

role, interactome and essentiality of MurJ in C. glutamicum with regard to its spatiotemporal 

regulation. 
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3.3 A robust protein-protein interaction assay by means of FRET 

In order to rapidly analyze and quantify protein-protein interactions, the heterologous E. coli 

interaction assay was optimized for a FRET (fluorescence resonance energy transfer) based 

assay. FRET is based on the transfer of emitted fluorescence energy of the donor 

fluorophore (CFP) that can excite the acceptor fluorophore (YFP). If the molecules of interest 

interact, the donor chromophore transfers energy to the acceptor upon excitation with light of 

the wavelength that corresponds to the absorption maximum of the donor fluorophore. In the 

case of a positive FRET, excitation of CFP leads to emission of YFP fluorescence. The most 

important prerequisite for the generation of a FRET signal for the determination of protein-

protein interaction is that the fluorophores are no further than 10 nm away, which is usually 

fulfilled in case of a direct physical interaction of the proteins of interest. In addition, the 

fluorophores have to be a FRET pair, meaning that the emission wavelength of the donor 

and excitation wavelength of the acceptor are in the same range. FRET was measured in a 

plate reader and an emission spectrum was monitored. The resulting spectra had usually two 

maxima that reflect the emission wavelengths of the two fluorophores. 

The proteins of interest were individually tagged to one of the FRET compatible fluorophores, 

eCFP and eYFP (Sourjik and Berg 2002), and transformed into E. coli BL21 DE3. After 

cultivation in LB medium and IPTG-induced protein expression for one hour, FRET could be 

measured after one optional washing step in saline (0.9% NaCl solution). With this assay, we 

identified interaction between DivIVA and RodA (chapter 2.2). The ratios between the two 

maxima of the emission spectrum after co-expression (named RCY) were calculated and used 

for quantification. To demonstrate the robustness of this FRET assay, several positive 

interaction partners as well as negative controls were tested (chapter 2.3).  

The ɛ subunit of the B. subtilis F0F1-ATP synthase sandwiched between a FERT pair served 

as a positive control when expressed from plasmid pRSETB_AT1.03 (Imamura et al. 2009). 

The ɛ subunit binds ATP which leads to a conformational change that brings the FRET pair in 

close contact. As a hydrolysis mutant variant of the ɛ subunit is used, the conformational 

change of the ɛ subunit is long-lived and can be measured. Upon expression in E. coli, a 

clear FRET signal was generated due to the presence of physiological ATP. We also 

included protein interaction between DivIVA and ParB, as an example for a protein pair that 

consists of one soluble and one membrane attached protein. Together with the non-

interacting ParB mutant (ParBR21A), we obtained a nice distinguishable positive/negative 

FRET pair. As negative controls, we included several integral membrane proteins, such as 

FtsW or BetP, which were not supposed to interact with DivIVA and indeed did not generate 

a FRET signal. Of note, a slight energy transfer could be observed here as well. This is due 
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to random approximation of the fluorophores when both proteins of interest, they are tagged 

to, have the same topology. This is for example the case for a protein pair with two trans-

membrane proteins, or for a protein pair with one transmembrane and one membrane 

attached protein. DivIVA is one such membrane attached protein and therefore a slight FRET 

signal was observed, when expressed together with a trans-membrane protein. 

Nevertheless, this slight FRET signal can easily be distinguished from the FRET that was 

obtained from protein-protein interaction. All ratios that were calculated had distinctive values 

and could be divided into 4 groups that were characterized as I) CFP fluorescence only, no 

interaction (RCY < 0.9); II) coalescence due to approximation of fluorophores, however 

without co-localization or interaction (0.9 < RCY < 1.1); III) co-localization upon protein 

interaction (1.1 < RCY < 1.3) and IV) YFP fluorescence only (RCY > 1.3) (chapter 2.3). A 

striking control experiment was performed upon expression of untagged fluorophores. When 

observed under the microscope they both localized in the cytoplasm, however, a FRET 

signal could not be observed (chapter 2.3, supplementary material). This result clearly shows 

that apparent co-localization of proteins under normal epifluorescence microscopy is 

certainly not a reliable method to investigate protein-protein interaction or to interpret it as 

such. A positive FRET signal, however, is only generated upon direct protein-protein 

interactions with distances below 10 nm between the fluorophores. The distances between 

the fluorophores of the cytosolic fluorophores were significantly longer. Altogether, FRET 

serves as a robust and reliable assay and can be considered as decisive improvement of the 

synthetic in vivo system.  

3.4 DivIVA spatially regulates the polar cell growth machinery 

The polar self-localization of various DivIVA homologs has been extensively investigated in 

the past years (Muchova et al. 2002, Lenarcic et al. 2009, Oliva et al. 2010). In C. 

glutamicum DivIVA has been proposed to play a role in polar elongation (Letek et al. 2008b). 

To date, however, the exact role has not been demonstrated. A weak interaction of DivIVA 

with PBP1a was found in a bacterial-two-hybrid interaction assay, but the interaction was not 

characterized or further investigated (Valbuena et al. 2007).  

We set out to investigate the role of DivIVA in polar cell growth, which was likely due to 

protein-protein interaction(s) between DivIVA and yet unknown protein(s), similar to the 

interaction between DivIVA and ParB for chromosome segregation. We performed co-

localization studies with the described FRET assay and identified direct physical interaction 

between DivIVA and the lipid II flippase RodA (chapter 2.2). To further characterize this 

interaction, several truncation and point mutants of both proteins were generated and FRET 
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was measured (chapter 2.3). A lysine residue in the N-terminal domain (K20) of DivIVA was 

found to be essential for interaction with RodA. Loss of charge by mutation of the lysine to 

alanine (K20A), glycine (K20G) and isoleucine (K20I) abolished interaction with RodA. 

Mutation to an arginine (K20R), however, restored interaction, implicating that a positive 

charge is required for RodA interaction. All DivIVA mutant variants localized to the cell poles 

and division septa similar to the wild type protein, suggesting that K20 is not involved in 

membrane binding. The lysine K20 in C. glutamicum DivIVA is conserved in Actinobacteria, 

such as C. glutamicum, M. tuberculosis or S. coelicolor, suggesting that is must have a 

distinct role in polar elongation growth. Lateral growing firmicutes, such as B. subtilis or L. 

monocytogenes, have an exposed phenylalanine at the relevant position (F17), which is 

involved in membrane attachment (Oliva et al. 2010) (see alignment in chapter 2.3, figure 1). 

If K20 of DivIVA is responsible for RodA interaction, then how does DivIVACgl attach to the 

membrane? One possible idea is the involvement of further hydrophobic AA residues that 

are located in the tip region, such as isoleucine I18. To test this idea we mutated I18 to an 

aspartate (I18D) and a phenylalanine (I18F). It turned out that I18D had slight defects in 

membrane binding whereas mutant I18F, which carries a hydrophobic phenylalanine residue, 

had a similar binding capacity compared to WT DivIVA. Altogether, interaction of DivIVA with 

RodA requires a positively charged residue at position 20 (K20) of DivIVA, while membrane 

attachment is fulfilled by nearby located AAs in C. glutamicum DivIVA.  

The interaction site of RodA was mapped to its cytoplasmic C-terminus, in particular to the 

last ten AAs (AAs 432-451: MSKQASEVAA). Truncation (ΔC10) as well as single and double 

point mutants (S433G/S437G, K434G, Q435G) revealed that interaction of RodA with DivIVA 

was weakened. When all ten AAs were mutated to AAs with similar functional groups or 

charges (mutC10: AVRNGIADGG), interaction was sustained, implicating an ionic charge-

based protein interaction between RodA and DivIVA.  

The interaction of DivIVA and RodA was corroborated from subcellular localization studies in 

C. glutamicum, where RodA foci were found only together with DivIVA at approx. 60% of the 

cell poles and 30% of the septa when expressed as fluorescent protein fusions. DivIVA-

independent RodA foci were not observed, neither at the poles nor at the septum, indicating 

that RodA localization depends on DivIVA. 

To date, no crystal structures of RodA or FtsW exist and structure modeling of both proteins 

did not provide evidence for an interaction topology. Moreover, the crystal structure of the 

DivIVA N-terminus has only been resolved for B. subtilis DivIVA. The structure of C. 

glutamicum DivIVA is still unknown. 
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A recent study claims that addition of new cell wall material in M. tuberculosis does not occur 

at the DivIVA-marked tip but is directed to a subpolar location (Meniche et al. 2014). This is 

achieved by interaction of DivIVA (Wag31) with enzymes that are involved in early steps of 

precursor synthesis, AccA3 and AccD5, both members of the acyl-CoA carboxylase (ACC) 

complex together with AccD4. This Wag31-associated complex is responsible for the 

synthesis and activation of 2-carboxyacyl-CoA (Gande et al. 2007). In this reaction cascade, 

the polyketid synthase Pks13 catalyzes the condensation of 2-carboxyacyl-CoA with 

activated meromycoloyl-AMP, yielding MA after reduction by CmrA (Portevin et al. 2004). 

Although spatially regulated by Wag31, here it seems that cell wall synthesis is excluded 

from the tip and directed to the border between the cylindrical body and the poles where new 

cell walls are added circumferentially in a manner that is analogous to lateral cell growth like 

in B. subtilis or E. coli (Meniche et al. 2014). We tested the idea of subpolar addition of new 

cell walls in C. glutamicum. Using a similar staining method as mentioned in the above study, 

composed of an Az-D-Ala treatment in combination with DBCO-carboxyrhodamine to 

visualize nascent PG, our results show that this is not the case in C. glutamicum (chapter 

2.4). Moreover, we applied the staining to Mycobacterium phlei. Likewise, M. phlei cells did 

not show subpolar PG insertion (K. Schubert, personnel communication). The advantage of 

this staining assay is that Az-D-Ala treatment is not lethal to the cells, compared to a 

vancomycin-FL staining. We therefore applied a pulse labelling approach, where we first 

stained Az-D-Ala modified cells with a green fluorescent dye (DBCO-carboxyrhodamine), 

prior to further incubation and subsequent staining with a second, red fluorescent dye 

(DBCO-TexasRed). Using fluorescence microscopy we could show that the first staining 

procedure (green) exclusively labelled the cell poles. After further incubation and a second 

staining procedure, we saw that the extended cell poles were labelled exclusively with the 

second dye (red), whereas the subpolar area remained labelled in green (see chapter 2.4, 

figure 3B).  

Unlike to the other components of the polar elongation machinery, such as RodA and the 

PBPs, DivIVA cannot be deleted in C. glutamicum, likely due to its versatility and involvement 

in further processes such as chromosome tethering. 

3.5 Polar cell growth inhibition in C. glutamicum 

We applied our knowledge in polar cell growth and spatiotemporal cell cycle regulation to 

investigate stress response mechanisms of EMB and BTZ043. Both antibiotics target 

enzymes of the AG synthesis pathway: BTZ043 the decaprenyl-phosphoryl-β-D-ribofuranose 

2’-epimerase DprE1 for DPR isomerization to DPX and EMB the arabinosyltransferases 
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EmbABC during processive addition of arabinofuranosyl residues to the arabinan chains 

(Escuyer et al. 2001, Alderwick et al. 2005, Goude et al. 2009, Makarov et al. 2009) (Figure 6 

and Figure 7). Since Mycobacteria require their mycoloyl-arabinogalactan layer for growth 

and survival, they have a high susceptibility to both antibiotics, which makes it difficult to 

study AB effects and response mechanisms before the cells die. Therefore, we used C. 

glutamicum as model organism as it is closely related to Mycobacteria but whose mycolic 

acid layer is not essential for viability.  

Both antibiotics that were investigated showed similar phenotypic effects with shorter and 

thicker cells. EMB had a significant effect on growth and final OD, whereas the effect of 

BTZ043 on cell growth was less pronounced (chapter 2.4). Using a chromosomal DivIVA-

mCherry insertion we observed a drastic increase in DivIVA protein level after AB treatment. 

RT-qPCR analysis revealed that the DivIVA transcription level was not increased. This 

suggests that due to the inhibition of growth, the progressive dilution of the constitutively 

expressed DivIVA protein was reduced, resulting in excessive DivIVA. Cell staining assays 

with fluorescent DHPE, a mycolic acid stain, and with Az-D-Ala in combination with DBCO-

carboxyrhodamine for nascent cell wall labelling showed that both ABs exclusively affect 

polar cell wall synthesis. Septal cell wall synthesis that occurs during division was not 

targeted. Cell wall analysis of purified and hydrolyzed cell walls revealed that both ABs alter 

the composition of C. glutamicum cell wall. Compared to untreated cells, AB treated cells had 

significantly less arabinose and no rhamnose, as shown by thin layer chromatography 

(chapter 2.4 figure 4). Rhamnose is part of the linker molecule that connects AG with the PG 

sacculus and lack of rhamnose implicates that AG and MA are released from the PG frame. 

Electron microscopy images revealed that the cell surface of C. glutamicum cells was 

significantly altered after AB treatment, corroborating alterations in the composition of the cell 

wall. 

The observation that both antibiotics also inhibited PG synthesis raised the question of how 

PG and AG synthesis are connected. Since BTZ043 inhibits procession of the decaprenyl-

carrying DPR intermediate (Figure 6), we set out to test if irreversible consumption of 

decaprenyl pyrophosphate is one reason for the inhibition of PG synthesis. Decaprenyl 

phosphate is the versatile carrier molecule for several translocation processes over the 

membrane, like for lipid II, LAM and teichoic acids and thus one connection hub between AG 

and PG synthesis (Lazarevic and Karamata 1995, Mohammadi et al. 2011). Besides DPP, 

some species utilize undecaprenyl phosphate as a lipid carrier. Whereas M. tuberculosis 

primarily utilizes DPP, M. smegmatis, S. aureus and E. coli utilize undecaprenyl phosphate 

(Higashi et al. 1970, Crick et al. 2000, Mahapatra et al. 2005). As the differences of both 

carrier molecules are insignificant, we designate the carrier molecule that is present in C. 
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glutamicum as decaprenyl phosphate. If irreversible DPP consumption led to shortage of 

such for lipid II translocation, this would explain why PG synthesis is affected by BTZ. To test 

this idea, we overexpressed the DPP synthetase UppS1. It turned out that UppS1 

overexpression counteracts BTZ inhibition, simply by filling of the DPP pool and thus re-

enabling translocation of lipid II, and possibly teichoic acids. From these results we can 

conclude a side effect of BTZ043 inhibition, which is the constitutive withdrawing of DPP, 

resulting in shortage of such for other flipping processes over the membrane. The relation 

between UppS level and AB susceptibility was previously observed in B. subtilis, where 

reduced UppS levels caused increased susceptibility to cell wall acting antibiotics (Lee and 

Helmann 2013). Unlike BTZ043 inhibition, UppS1 overexpression did not complement EMB 

inhibition of PG growth, suggesting that EMB mediated PG growth inhibition is not due to 

DPP consumption. A possible alternative is the existence of a large cell wall synthetic super 

complex where the components are highly interdependent and inhibition of one component 

leads to inhibition of the whole synthetic complex. 

Altogether, we conclude that polar cell wall growth is not essential for viability in C. 

glutamicum, as neither gene deletions, such as rodA, nor AB treatment (EMB, BTZ) result in 

cell death or extinction of the population. Most likely, the septal cell wall growth machinery is 

capable of taking over cell growth and, to an extent, ensures that viability is preserved. 

When AB mediated polar growth inhibition is stopped before cell death, e.g. in an incomplete 

AB therapy, C. glutamicum cells proceed an impressively effective method to recover from 

AB stress. Excessive protein amounts, for instance, are collected in one daughter cell, to 

enable normal growth for the other daughter cell (chapter 2.4). The asymmetric distribution of 

aggregated protein happened in 51% of the cases already from the first generation on, and 

all cell lines were able to recover at least within 3 generations. This asymmetric recovery 

behavior highlights another interesting example for cellular asymmetries in C. glutamicum, 

such as division site selection and polar growth speed. 

3.6 A revised model of spatial cell cycle regulation 

Based on our results on spatial cell cycle control we propose a new model that describes the 

connection between chromosome segregation and elongation growth, as well as temporal 

regulation of cell division (Figure 8). In an early stage of the cell cycle, shortly after a 

previous division event, the chromosome is condensed and the origin is located close to the 

original (old, right) cell pole (A). As the cell elongates, chromosome replication is initiated. 

The replicated daughter oriC is subsequently segregated towards the opposite (new, left) 

pole. At that stage, the old cell pole grows faster than the new pole (chapter 2.2). A possible 
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explanation for this difference in growth speed is that the new cell pole goes through a 

rebuilding phase where the divisome is disassembled and a new elongasome is made. In 

addition, it might be possible that a regulatory system is employed that stalls elongation 

growth of the new pole until the new oriC-ParB complex (yellow dot) has reached the new 

cell pole. 

 

Figure 8: Proposed revised model for chromosome segregation, elongation growth and cell division in 
C. glutamicum. After division, the cells elongate from the poles at different growth speed, in which the 
old pole grows faster than the new pole (A). In the meantime, chromosome replication and 
segregation proceeds (B). After segregation, the new division site is marked within the midcell gap 
between the two nucleoids (C). FtsZ ring constriction initiates the formation of the new septum (D). 
DivIVA localizes to the division septum and recruits further proteins, such as RodA, to prepare the new 
polar elongation machinery. Finally, the cell divides giving rise to two fully equipped daughter cells (E). 

When the replicated nucleoid arrives at the new pole, it is tethered via DivIVA-ParB 

interaction (chapter 2.1). ParB binds to parS sites that are located on the chromosome near 

the ori region (B). It remains unclear, whether nucleoid anchoring triggers elongation growth 

at the new pole in a way that both poles now grow with the same speed. As soon as the 

segregation process opens enough space at or close to midcell (C), septum formation and 

construction is carried out. The site of septation is previously defined by FtsZ, which forms a 
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ring-like structure, called the Z-ring. Although it is speculated that the chromosome itself, the 

organization of the chromosome or a factor associated with the chromosome might spatially 

influence division site selection, it is not yet clear if regulatory systems play a role. FtsZ lays 

the foundation of the division site and is necessary for recruitment of further division proteins 

that are also encoded in the fts operon. In E. coli, FtsA is required to target FtsZ to the 

membrane (Pichoff and Lutkenhaus 2002). Other division proteins are the septal lipid II 

flippase FtsW (Datta et al. 2002, Mohammadi et al. 2011) or penicillin-binding protein FtsI for 

septal PG formation (Weiss et al. 1997) and several regulator proteins such as EzrA, ZapA 

and SepF for positive or negative regulation of Z-ring formation. Since C. glutamicum lacks 

division site selection machineries such as Min or Noc, assembly of FtsZ does not always 

occurs precisely at midcell, however some regulatory system must exist given that the 

divisome assembles in the vicinity of the midcell region. When chromosome partitioning has 

been fulfilled, septum formation occurs in between the segregated nucleoids within a range 

of 20% of division length (chapter 2.2). Due to the formation of new negative membrane 

curvature at the septum (C-D), DivIVA is able to localize to the division site at a late stage 

(Gamba et al. 2009), where it recruits further proteins, such as RodA (chapter 2.2) or PBP1a 

(Valbuena et al. 2007), that are required for the formation of the new pole. Finally, cell 

division is completed, giving rise to two daughter cells (E). The fact that cell division does not 

always occur precisely at midcell has crucial consequences on the progeny. The daughter 

cells of each division event are not identical but differ in size. Moreover, recent observations 

showed that the two poles are not equally equipped with the entire elongation machinery. 

The old cell pole has approximately 2.1 ± 0.2 times more DivIVA than the new pole and also 

the RodA amount is significantly higher at the old cell pole, suggesting that the elongation 

machinery is not fully developed at the new pole. As a consequence, the two poles grow with 

different speed, with the old pole growing faster than the new pole (chapter 2.2). Another 

interesting asymmetry was observed on a population level, during recovery from EMB stress 

(chapter 2.4). Excessive DivIVA amounts were stored in a heterogenic manner in one 

daughter cell to enable the other daughter cell to exhibit normal growth and thus to set up a 

new intact population. 

Altogether, we can conclude that C. glutamicum is a striking example for asymmetries during 

division and growth. In other species, such as C. crescentus for instance, asymmetric 

division is more obvious. In this organism cell division gives rise to two morphologically and 

functionally different cells, a swarmer cell and a stalked cell (Poindexter 1964, Shapiro et al. 

2002). The stalked cell has a tubular stalk with an adhesive tip which allows adherence to 

surfaces. Moreover, it can undergo normal chromosome replication and cell division. The 
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swarmer cell has a flagellum which provides swimming motility for chemotaxis. However, it 

cannot undergo cell division, and has to differentiate into a stalked cell beforehand. 

3.7 Summary and outlook 

The involvement of C. glutamicum DivIVA in polar cell growth has been proposed several 

years ago but it was never investigated in detail. Consequently, the exact function of DivIVA 

was not clarified and possible interaction partners were not characterized. 

A role of DivIVA in chromosome segregation has been suggested from the observation of the 

polar orientation of the oriC-ParB nucleoprotein complex in C. glutamicum. The polar 

determinant DivIVA was a good candidate for the involvement of oriC-ParB tethering to the 

cell poles. 

In the present study we present our data about the identification and characterization of two 

functions of C. glutamicum DivIVA: its role in chromosome tethering via interaction with ParB 

and its role in polar cell growth via interaction with RodA. We mapped the sites of DivIVA 

required for interaction with ParB and RodA to see whether both proteins share or compete 

for the same interaction site of DivIVA. This hypothesis was questioned as possible 

connection knot between cell wall growth and chromosome segregation. It turned out that 

RodA and ParB do not share the same interaction site, suggesting that DivIVA has a modular 

character. Figure 9 gives an overview of the present DivIVA interactome of C. glutamicum. 

 

Figure 9: Model of DivIVA with its interaction partners RodA and ParB. RodA binds with its C-terminal 
end (AAs 432-451) to lysine residue K20 in DivIVA, which is presumably located at the tip of the loop. 
ParB binds with its arginine residue R21 to a middle region (AA 144-298) of DivIVA (Donovan et al. 
2012). The DivIVA structure was adapted and modified from B. subtilis DivIVA (Oliva et al. 2010). 
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The DivIVA crystal structure in figure 9 has been adapted from B. subtilis DivIVA (Oliva et al. 

2010). We presume a similar topology for DivIVACgl, as it was predicted for the N-terminal 

domain from structure modeling with Swiss-Model (Arnold et al. 2006). DivIVA interacts via 

lysine residue K20 with the C-terminal end (AAs 442-451) of RodA. Moreover, a central 

region of DivIVA (AAs144-298) is required to interact with ParB, whereas arginine residue 

R21 of ParB is crucial for interaction with DivIVA. In addition, DivIVA has a strong 

oligomerization tendency and the ability to attach to membranes, with both characteristics 

dependent on specific domains. It has been shown for B. subtilis DivIVA that oligomerization 

is maintained by the C-terminal coiled-coil domain (Muchova et al. 2002), whereas 

membrane attachment requires phenylalanine residue F17 in the N-terminal domain (Oliva et 

al. 2010). Interestingly, C. glutamicum DivIVA has a lysine residue at the corresponding 

position which we have found to be crucial for RodA interaction. It is therefore likely that the 

mechanism of membrane attachment differs between DivIVA from B. subtilis and C. 

glutamicum. It would be interesting to further characterize C. glutamicum DivIVA in terms of 

membrane attachment and its topology, which could be responsible for a modular switch, for 

instance when ParB interaction enables RodA interaction to trigger polar growth (compare 

with Figure 8). Resolving the C. glutamicum crystal structure would be a first step towards 

this idea. 

The asymmetry in cell division of C. glutamicum not only results in two non-equal daughter 

cells but also in asymmetry within each cell. The two cell poles of a new born cell grow with 

different speed, likely as a consequence from the poorly equipped elongation machinery at 

the new cell pole, where less protein amounts of the components of the elongation 

machinery, such as DivIVA and RodA, were observed. At a late stage in the cell cycle, 

however, both cell poles exhibit the same growth speed, most likely when the new oriC-ParB 

complex has arrived at the opposite pole and chromosome partitioning has been fulfilled. It 

could be possible that arrival of the segregated chromosomes at the opposite pole triggers 

growth speed of the new pole. Time lapse studies with fluorescently labelled oriC-ParB, 

DivIVA and with fluorescently stained cell walls to measure the growth speed of the cell poles 

could be applied to test this idea. 

It would be a milestone in bacterial cell growth analysis to solve the mystery of lipid II 

translocation. Although plenty of work has been done to approach this task, the detailed 

mechanism is still unclear. A crystal structure of RodA or FtsW, ideally together with their 

substrate, lipid II, would provide a huge step in understanding the mechanism of lipid II 

translocation. A crystal structure of RodA would also give information about the topology and 

structure of the C-terminal region for interaction with DivIVA. Besides the polar lipid II 

flippase RodA and the septal lipid II flippase FtsW, a homologue of the recently characterized 
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lipid II flippase MurJ is also present in C. glutamicum. It would be interesting to analyze a 

possible redundancy of this flippase or, alternatively, a different and yet unknown function of 

C. glutamicum MurJ. 

Several experiments that were performed in the context of the present study revealed that 

polar cell wall growth is not essential for viability in C. glutamicum. Neither the deletion of 

genes that encode for the polar growth machinery (rodA, for example) nor antibiotic inhibition 

of polar cell wall growth is mortal. However, deletion of divIVA is presumed to be lethal, likely 

due to its involvement in polar cell growth and chromosome segregation. Unlike 

Corynebacteria, Mycobacteria require polar cell wall growth for viability. Although the 

structure of the complex PG-AG-MA cell envelope is conserved, there must be a significant 

difference that causes the essentiality in Mycobacteria compared to Corynebacteria. 

Identification of this difference would open a new field for AB research. 
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