
Dissertation

an der

Fakultät für Mathematik,
Informatik und Statistik

DER LUDWIG--MAXIMILIANS--UNIVERSITÄT MÜNCHEN

Martin Gerhard Metzker

A network QoS

management architecture

for virtualization environments

Eingereicht am: 28. Oktober 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/79054907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation

an der

Fakultät für Mathematik,
Informatik und Statistik

DER LUDWIG--MAXIMILIANS--UNIVERSITÄT MÜNCHEN

Martin Gerhard Metzker

A network QoS

management architecture

for virtualization environments

1. Berichterstatter:

Prof. Dr. Dieter Kranzlmüller

2. Berichterstatter:

Prof. Dr. Gabrijela Dreo Rodosek

Eingereicht am: 28. Oktober 2014

Tag der Disputation: 8. Dezember 2014

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir

selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Name, Vorname

Ort, Datum Unterschrift Doktorand/in

Formular 3.2

Abstract

Network quality of service (QoS) and its management are concerned with
providing, guaranteeing and reporting properties of data flows within com-
puter networks. For the past two decades, virtualization has been becoming
a very popular tool in data centres, yet, without network QoS management
capabilities.

With virtualization, the management focus shifts from physical components
and topologies, towards virtual infrastructures (VI) and their purposes. VIs
are designed and managed as independent isolated entities. Without net-
work QoS management capabilities, VIs cannot offer the same services and
service levels as physical infrastructures can, leaving VIs at a disadvantage
with respect to applicability and efficiency.

This thesis closes this gap and develops a management architecture, en-
abling network QoS management in virtulization environments. First, re-
quirements are dervied, based on real world scenarios, yielding a validation
reference for the proposed architecture. After that, a life cycle for VIs and
a taxonomy for network links and virtual components are introduced, to ar-
range the network QoS management task with the general management of
virtualization environments and enabling the creation of technology specific
adaptors for integrating the technologies and sub-services used in virtual-
ization environments. The core aspect, shaping the proposed management
architecture, is a management loop and its corresponding strategy for iden-
tifying and ordering sub-tasks.

Finally, a prototypical implementation showcases that the presented ma-
nagement approach is suited for network QoS management and enforce-
ment in virtualization environments. The architecture fulfils its purpose,
fulfilling all identified requirements. Ultimately, network QoS management
is one amongst many aspects to management in virtualization environments
and the herin presented architecture shows interfaces to other management
areas, where integration is left as future work.

Kurzreferat

Die Verwaltungsaufgaben für Netzdienstgüte umfassen das Bereitstellen,
Sichern und Berichten von Flusseigenschaften in Rechnernetzen. Während
der letzen zwei Jahrzehnte entwickelte sich Virtualisierung zu einer Schlüs-
seltechnologie für Rechenzentren, bisher ohne Möglichkeiten zum Verwalten
der Netzdienstgüte.

Der Einsatz von Virtualisierung verschiebt den Fokus beim Betrieb von
Rechenzentren weg von physischen Komponenten und Netzen, hin zu
virtuellen Infrastrukturen (VI) und ihren Einsatzzwecken. VIs werden
als unabhängige, voneinander isolierte Einheiten entwickelt und verwaltet.
Ohne Netzdienstgüte, sind VIs nicht so vielseitig und effizient einsetzbar wie
physische Aufbauten. Diese Arbeit schließt diese Lücke mit der Entwick-
lung einer Managementarchitektur zur Verwaltung der Netzdienstgüte in
Virtualisierungsumgebungen.

Zunächst werden Anforderungen aus realen Szenarios abgeleitet, mit
denen Architekturen bewertet werden können. Zur Abgrenzung der
speziellen Aufgabe Netzdienstgüteverwaltung innerhalb des allgemeinen
Managementproblems, wird anschließend ein Lebenszyklusmodell für VIs
vorgestellt. Die Entwicklung einer Taxonomie für Kopplungen und Kom-
ponenten ermöglicht technologiespezifische Adaptoren zur Integration von
in Virtualisierungsumgebungen eingesetzten Technologien. Kerngedanke
hinter der entwickelten Architektur ist eine Rückkopplungsschleife und ihre
einhergehende Methode zur Strukturierung und Anordnung von Teilprob-
lemen.

Abschließend zeigt eine prototypische Implementierung, dass dieser Ansatz
für Verwaltung und Durchsetzung von Netzdienstgüte in Virtualisierung-
sumgebungen geeignet ist. Die Architektur kann ihren Zweck sowie die
gestellten Anforderungen erfüllen. Schlussendlich ist Netzdienstgüte ein
Bereich von vielen beim Betrieb von Virtualisierungsumgebungen. Die Ar-
chitektur zeigt Schnittstellen zu anderen Bereichen auf, deren Integration
zukünftigen Arbeiten überlassen bleibt.

Contents

1. Introduction 1

1.1. Virtualization is indirection 2
1.2. Challenging example . 4
1.3. Problem analysis . 6
1.4. Problem statement . 9
1.5. Approach and Outline . 12
1.6. Expected results . 17

2. Virtual infrastructures in virtualization environments 19

2.1. Virtualization . 20
2.1.1. Host virtualization 20
2.1.2. Network virtualization 22

2.2. QoS management . 25
2.2.1. Network QoS properties 26
2.2.2. Performance management activities 27

2.3. ISO OSI management architecture structure 29
2.4. Virtualization specific observations 30

3. Scenario analysis 33

3.1. Morphology of scenarios . 34
3.2. Real world scenarios . 37

3.2.1. Scenario I: LRZ hosted infrastructures 38
3.2.2. Scenario II: TUM FMI virtual desktop infrastructure 42

3.3. Abstracted scenario . 44
3.4. Network QoS management requirements 47
3.5. Summary . 49

4. Related Work 51

4.1. Network QoS Technologies 52
4.2. Internet focused approaches 54

iii

4.3. Comprehensive management approaches 56
4.3.1. AAVP . 57
4.3.2. DaVinci . 59
4.3.3. ISONI . 60
4.3.4. VNET . 61

4.4. Discussion . 63

5. Performing management in virtualization environments 65

5.1. Managing virtualized services 66
5.2. Management operations performed during life cycles 71

5.2.1. Operations on individual virtual machines 72
5.2.2. Operations on virtual topologies 75
5.2.3. Life cycle for virtual infrastructures 78

5.3. Prerequisites and behavioural requirements 80
5.3.1. Use cases pertaining to roles and privileges 81
5.3.2. Use cases pertaining to networks and components . . 82

5.4. Summary . 86

6. Architecture 89

6.1. Continuously improving network QoS in virtualization envi-
ronments . 90
6.1.1. Definition of a target configuration 92
6.1.2. Development of a configuration strategy 94
6.1.3. Effective component management 95
6.1.4. Collecting performance data 97
6.1.5. Summary . 98

6.2. Automatically configuring virtualization environments 100
6.2.1. Components and links 102
6.2.2. Resource layer topology view 104
6.2.3. Refinement procedure 106

6.3. Submodel conception . 108
6.3.1. Information model 109

6.3.1.1. QoS domain 113
6.3.1.2. Presentation domain 115
6.3.1.3. Translation domain 118

6.3.1.4. Realisation domain 121
6.3.2. Organisation model 123

6.3.2.1. Organisation model domains 124
6.3.2.2. Interaction channels 126
6.3.2.3. Integration with the information model . . 129

6.3.3. Functional model . 130
6.3.3.1. Control component 134
6.3.3.2. Translate component 141
6.3.3.3. Configure 144
6.3.3.4. Monitor . 145

6.3.4. Communication model 148
6.3.4.1. Access Data 149
6.3.4.2. Singular Instruction 151
6.3.4.3. Compound Instruction 153

6.4. Summary . 155

7. Assessment 157

7.1. Validation . 157
7.2. Prototype . 162

7.2.1. MVC architecture 164
7.2.2. Management information 166
7.2.3. Management loop . 170

7.2.3.1. Control . 171
7.2.3.2. Translation 172
7.2.3.3. Configuration 177
7.2.3.4. Monitoring 178

7.2.4. Experimentation . 179
7.3. Summary . 183

8. Summary and Outlook 185

A. Use cases specifications 191

B. Requirements specifications 207

C. Information domain classes 221

C.1. QoS domain . 221
C.2. Presentation domain . 226
C.3. Translation domain . 229
C.4. Realisation domain . 235

Bibliography 237

List of Figures

1.1. A VI realised on top of a physical infrastructures 3
1.2. Virtualization follows the idea of a multiplex 7
1.3. Two VIs sharing physical resources 9
1.4. Structure of this document 13

2.2. Running applications with host virtualization 21
2.1. Physical and virtual computers and networks 22
2.3. A mapped virtual network 24
2.4. The IT service life cycle . 27

3.1. Special purpose topologies 39
3.2. TUM FMI virtual desktop infrastructure 43
3.3. Abstracted scenario, uniting different services 46
3.4. Use cases relating to virtual components 48

4.1. Key aspects to network QoS management 52
4.2. AAVP architecture . 58
4.3. Example DaVinci set up . 59
4.4. Realising virtual infrastructures with ISONI 60
4.5. VNET architecture . 62

5.1. Example life cycle of VMs 72
5.2. Exemplary life cycle of a virtual network 75
5.3. Alignment of life cycle phases 78
5.4. Use cases for managing roles and privileges 81
5.5. Use cases relating to virtual infrastructures 83
5.6. Use cases relating to virtual links 84
5.7. Use cases relating to hosts 84

6.1. Management phases . 92

vii

6.2. Tasks assisting the definition of target configurations 93
6.3. Subtasks of developing a configuration strategy 94
6.4. Tasks to implement configurations on components 96
6.5. Tasks to gauge the new current configuration 97
6.6. Complete management control loop 99
6.7. Refining target to current configurations 100
6.8. Exemplary path across component classes 103
6.9. Resource layer views . 105
6.10. Management domains within the information model 111
6.11. Meta model for managed objects 112
6.12. Classes of the QoS domain 113
6.13. Classes of the presentation domain 116
6.14. Classes of the translation domain 119
6.15. Classes of the realisation domain 122
6.16. Organisation model domains 125
6.17. Meta model for classes of the organisation model 130
6.18. Class diagram of the organisation model 131
6.19. Relations between the main functional components 132
6.20. Orientation example . 133
6.21. The functional group Control. 134
6.22. The functional group Translate. 141
6.23. The functional group Configure. 144
6.24. The functional group Monitor. 146
6.25. Prototypical retrieve and update interactions 150
6.26. Prototypical singular call interaction 152
6.27. Prototypical compound call interaction 153

7.1. Core infrastructures of the Xen lab 163
7.2. Overview of components and interactions 165
7.3. Main VI implementation . 180
7.4. Achieved data rates . 181
7.5. All network links used to realise the target configuration . . 182

List of Tables

2.1. Components in virtualization environments 23

3.1. Morphological field: managing network paths 35
3.2. Morphological field: attended hosting 40
3.3. Morphological field: unattended hosting 40
3.4. Morphological field: project infrastructures 41
3.5. Morphological field: virtual desktop infrastructure 44
3.6. Network QoS management requirements 50

4.1. Architectures overview . 55
4.2. Summary of fulfilled requirements 63

5.1. Prerequisites and behavioural requirements 86

6.1. Generic discernible direct link types by endpoint types . . . 103
6.2. Presentation domain classes mapped to their role models . . 116
6.3. Summary of actors and their roles 123
6.4. Architectural components for Control management tasks . . . 135
6.5. Architectural components for Translate management tasks . . 142
6.6. Architectural components for Configure management tasks . . 144
6.7. Architectural components for Monitor management tasks . . . 146
6.8. Basic interaction types . 148

C.1. Function classes . 224

ix

C
h
a
p
t
e
r 1

Introduction

Network quality of service (QoS) and its management are concerned with
providing, guaranteeing and reporting properties of data flows within com-
puter networks. Network QoS directly affects the performance of software
applications, that depend on communication. Through this relation, ser-
vice consumers and operators have a direct interest defining and achieving
of network QoS. Its visibility and importance has been growing, as soft-
ware architectures grow increasingly distributed [FHTG 10]. In order to
guarantee performance aspects of applications, performing network QoS
management is substantial, especially in environments where resources for
achieving network QoS are sparse and contested. Data centres employing
virtualization often create such environments.

Virtualization environments (VE) are typically used to provide isolated in-
terconnected servers for individual, customer managed service instances.
With virtualization, virtual machines (VM) are used instead of physical
computers, to provision service instances and service components. One
of the most eye-catching advantages of virtualization over traditional ded-
icated computers are multiple concurrently active VMs, sharing the re-
sources of few physical hosts. Exploiting this advantage means multiple
service components share the same network uplinks, leading to an environ-
ment where network resources are sparse and contested.

1

Chapter 1. Introduction

To facilitate network traffic forwarding, there are virtual network compo-
nents, sharing the physical resources of hosts with VMs. To achieve network
QoS, virtual network components require specific types and amounts of re-
sources, which must be provided by virtualization hosts. Models describing
network QoS are available and today's virtualization technologies are capa-
ble of performing suited resource allocations. The missing pieces to network
QoS management in VEs are

• concepts for mapping network QoS to resource requirements of virtual
components,

• coordination of management efforts concerning virtual components,
virtual topologies and the physical infrastructure, and

• a management approach for network QoS accounting for unique prop-
erties of VEs.

This work develops an architecture for network QoS management in VEs, by
providing the missing pieces and combining them with existing approaches.
New and challenges specific to VEs are analysed for their effects on network
QoS and implications on its management. The findings shape the result-
ing management architecture, so that corresponding management systems
can provide network QoS for networks including virtual components and
links.

1.1. Virtualization is indirection

Virtualization technologies often create abstracted resource pools from the
physical infrastructure. VMs and virtual networks (VN) are allocated
shares from this pool as needed. In a model view of virtualization, the
physical hardware is consolidated into a single black box of resources, ac-
cessed only through a virtualization layer. This layer's task is mapping
virtual components to physical resources.

Virtual components are the hardware provided by the virtualization layer
and occupied by operating systems (OS) of virtual systems, for instance

2

1.1. Virtualization is indirection

v
ir

tu
a

l

in
fr

a
s
tr

u
c
tu

re

virtualization layer

vSwitch vSwitch

p
h
y
s
ic

a
l

in
fr

a
s
tr

u
c
tu

re
VM

VM

VM

VM

Figure 1.1.: A VI realised on top of a physical infrastructures

VMs. The manner of how the virtualization layer provides virtual compo-
nents and the concrete choice of physical resources for the provisioning can
be changes any time, by configuring the virtualization layer. Through this,
the relation between an OS and its physical resources is dynamic, while it
is static in traditional infrastructures. Usually the mapping from virtual
components to physical resources is transparent for the OS and it cannot
influence the mapping either.

Figure 1.1 shows a virtual infrastructure (VI), a set of networked VMs
and virtual network components that must be implemented isolated from
other VIs. The VI in Figure 1.1 consists of two virtual switches (labelled
vSwitch), interconnecting four VMs. The VI is active, which means all its
components are active and a network facilitating communication paths as
specified by VI links has been realised. When a virtual system is activated,
it is placed on a physical host by the virtualization layer. This means the
VM is using the host's resources in the form of virtual components to power
its OS. Placing a VI means placing all VMs and network components and
creating an isolated network.

When exchanging data frames, the two vSwitches inside the virtual infras-

3

Chapter 1. Introduction

tructure are peer entities, but the effective data flow depends on their place-
ment. The dashed line in Figure 1.1 depicts a possible data flow, where the
data frames cross through the entire physical infrastructure. This example
illustrates the main challenge to network QoS through virtualization: The
introduction of the virtualization layer is an indirection, creating a gap be-
tween physical resources and a services. The gap results in more flexibility
for assigning and using physical resources on the one hand and uncertainty
concerning effective data flows and placement of service instances on the
other hand.

Resource allocations are a central aspect of achieving network QoS. While
virtualization aims to be completely transparent to components and ser-
vices, it may not be transparent for QoS considerations. For robust QoS
management in virtualization environments virtual systems, the virtual-
ization layer, the physical hosts and their interconnect must be managed
as part of the same management task. Current network QoS management
approaches do not include the specifics of VEs, such as the presence of a vir-
tualization layer. Therefore, QoS in a set-up including virtual and physical
components cannot be guaranteed.

1.2. Challenging example

Consider a twisted pair network cable as it is used in today's Ethernet
infrastructures. In a physical infrastructure, when used to connect two
computers, the resulting infrastructure is trivially described as: two end-
points directly connected by a cable. In this set-up, properties of network
connections depend on the capacity of the cable and the endpoints. All
three elements are static, thus their dependencies can be gauged once and
considered known. The endpoints' capacities can be divided up into shares
and assigned to various connections. Quality of service considerations in
this example concern endpoints only, as the cable is a passive component
and does not perform actions that may have side effects on network QoS.

The virtual counterpart of a twisted pair Ethernet cable is a piece of soft-
ware provided by the virtualization layer. It's concrete implementation

4

1.2. Challenging example

depends on the VMs' placement. If both endpoints are placed on the same
host, QoS considerations boil down to moving data from one software con-
tainer to another. If the endpoints are placed on different hosts, the virtual
cable is a complex component, where data is processed, sent over the phys-
ical network to another host and reprocessed to be delivered to the other
endpoint. Determining the capacity of this virtual cable is much more com-
plex than determining the capacity of a physical Ethernet cable and QoS
considerations concern many virtual and physical components.

Additionally, there are dynamic aspects to consider:

• VMs can be paused and placed on a completely different host.

• Other virtual components competing for resources are created or with-
drawn on demand.

• The VI is changed and the cable must become a switch.

An advantage of virtualization over traditional infrastructures is that it
allows hardware maintenance and load balancing without service interrup-
tions. This advantage is gained from the ability to move VMs between
physical hosts at runtime. In this example, when a VM is migrated between
physical hosts, the software container is moved and the virtual cable must
be implemented differently, so that still connects the virtual endpoints.

Through migration and on demand placement of VIs in VEs, resource allo-
cations and usage changes constantly. Given an initial configuration realis-
ing network QoS was found, it is possible for later changes to other VIs, to
have negative side effects on network QoS.

A change at runtime to the example VI may also include adding a third VM
to the infrastructure, thus turning the virtual cable into a virtual switch.
Turning an originally passive ISO OSI layer 1 component, a cable, into
an active ISO OSI layer 2 component, a switch, is a noticeable change,
also affecting management and especially for QoS considerations. Flexible
topologies are another advantage of virtualization over traditional infras-
tructure and are frequently encountered use cases in management scenarios
where virtualization is employed.

5

Chapter 1. Introduction

Furthermore, access to virtual infrastructures is mostly gained through IP
routing, resulting in many virtual layer 3 components and virtual layer 3
endpoints in the internet. These use cases tie dynamic changes in virtual
component placement to internet routing and QoS properties. Moving end-
points and changing network topologies require highly refined management
capabilities to sustain QoS levels before, during and after these activities.

The implementation of virtual components, the dynamic changes in VEs
and the translation of QoS requirements and configurations between dif-
ferent management views are the three main challenges to a management
architecture for network QoS management.

1.3. Problem analysis

May it be VMs, VNs or other virtual resources, virtualization always pro-
vides abstraction from physical set-ups. Ideally, virtualized systems are
not aware of this and operating systems using virtual resource need not be
adapted to this new environment. Even though VMs and components are
intended to offer the same capabilities and act in the same manner as their
physical counterparts, their management is different, as there the virtual-
ization layer and its capabilities must always be considered.

Virtualization follows the idea of a multiplex: offering multiple logical in-
stances of a resource, sharing limited physical resources and capacities. For
example, a VM is a logical instance of a computer. Its characterising com-
ponents, CPU, memory (RAM), and storage (HDD) and network access,
usually in the form of an Ethernet network interface card (NIC). These com-
ponents are mapped to resource shares of the underlying physical computer
(host). To provide VMs, a virtual machine monitor (VMM) or hypervisor
takes the place of the host's operating system. The VMM implements the
virtualization layer and provides virtual hardware, the VM, on which guest
operating systems are run.

Figure 1.2 illustrates a virtualization multiplex with two VMs and a virtual-
ization host. Each VM has an individual logical instance of a CPU and the

6

1.3. Problem analysis

Multiplex controlled by the VMM

Virtual Machine 1

CPU RAM NIC HDD

Virtual Machine 2

CPU RAM NIC HDD

Physical Machine

CPU RAM NIC HDD

Figure 1.2.: A VMM multiplexing physical resources

multiplex performed by the virtualization layer is a time division multiplex,
where a VM is given time intervals in which the physical CPU will execute
actual architecture specific instructions from the logical CPUs instruction
stream. Beginning and ending these execution intervals and switching be-
tween VMs is all part of the VMM's tasks. Access to RAM, HDD and NIC
is similarly coordinated by the VMM, but with different techniques.

For network access, VMMs usually implement a switch, in order to bridge
virtual NICs and physical networks. This exceeds the basic concept of a
multiplex, but the general notion of all virtual components sharing limited
physical resources remains and must always be accounted for.

Communication processes are structured and described by the system, ser-
vice and protocol interfaces [HAN 99]. The interfaces characterise the inter-
action of entities in a vendor and implementation independent manner. The
virtualization layer multiplex describes a provider consumer relationship
between virtual components and providing infrastructure, best described
as a service interface. Yet, the behaviour, functionality and purpose of
virtual entities, such as VMs and virtual switches, indicates the system in-
terface must be used to correctly describe the interaction between virtual
and physical components. Which one is more adequate, depends on the
current placement and implementation of components and is therefore sub-
ject to change. This makes VEs problematic for network management and
especially QoS management.

7

Chapter 1. Introduction

In order to perform network QoS management, the interface and corre-
sponding communication determines how network QoS is implemented:

System interface: All depicted computers and network components are
seen as discrete systems. Applying this interface, virtual and physical
systems are peer entities on the same subnet and treated equally by
network QoS management. Realising network QoS concerns horizon-
tal communication for which many QoS approaches exist and have
been implemented.

Service interface: Virtual components use the underlying network
transparently, regardless of its topology and attributes. For such ver-
tical communication QoS can only be realised if corresponding service
primitives exist, which is not the case in today's VEs.

Assuming the virtual infrastructure in Figure 1.1 is entirely placed on ex-
actly one of the three physical hosts, communication between the virtual
systems is entirely implemented by the VMM and data frames never leave
the physical host. VMM and host can be seen as a monolithic platform and
the service interface best describes the relation between VI and providing
platform. If a VI is spread across all physical hosts, the system interface
is more accurate, as network traffic crosses many discrete systems. A com-
plete VI placement description consists of two components, one based for
each interface type.

In addition to the management problems of strictly physical set-ups, virtual-
ization employs multiple abstracted views on infrastructures, showing more
or less details about component realisation and placement. The amount of
included information depends on the operators' roles, i.e., goals and tasks.
When performing management tasks, the customers' concerns are their ser-
vices and the VIs implementing them. The concrete implementations of vir-
tual components, especially physical hosts, the virtualization layer and the
supporting physical infrastructure are not directly managed by customers,
thus excluded from their management views.

Figure 1.3 shows a VE with two coexisting VI. Each VI belongs to a different
customer, resulting in two customer views, limited to one or the other
VI. Through the virtualization multiplex, management actions by different

8

1.4. Problem statement

VM

VM

v
ir

tu
a

l

in
fr

a
s
tr

u
c
tu

re
s

virtualization layer

vSwitch VM

vRouter

vSwitch

vRouter
VM

p
h
y
s
ic

a
l

in
fr

a
s
tr

u
c
tu

re

Figure 1.3.: Two coexisting virtual infrastructures realised using the same physical

resources.

customers may interfere with each other. For network QoS management, all
performed management must be coordinated and translated to tasks and
configurations for the actual physical infrastructure.

Virtualization has many legitimate techniques to implement virtual com-
ponents and infrastructures. Section 1.2 discusses the implementation of a
single virtual Ethernet cable which turns out distinctly more complex, com-
pared to the simple nature of its physical role model. With an available pool
of implementation approaches, developing a network QoS architecture for
virtualization environments largely consists of orchestrating virtualization
technologies and providing technology agnostic management.

1.4. Problem statement

When providing networks and connections with a requested QoS, resources
have to be allocated to meet all demands. An accurate model of all vir-

9

Chapter 1. Introduction

tual and physical components and their relations allows to identify which
resources have to be allocated. By controlling and coordinating the dynam-
ics in VEs, quality assurances can be maintained by reacting to changes and
adopting resource allocations accordingly. With the high level of manage-
ment views offered to operators of VIs, QoS configurations and require-
ments must be translated into requirements and allocations that can be
implemented by the hosting components. The main thesis is that network
quality of service in VEs can be realised if resource allocations in VEs guar-
antee QoS capacities as is the case in strictly physical infrastructures. The
main question behind all new challenges to network QoS management in-
troduced by virtualization is: Which resources are concerned?

This generic question motivates a set of virtualization specific questions,
requiring solutions in order to develop a management architecture for net-
work quality of service in VEs. The driving questions for this thesis are:

• How to manage network QoS in virtualization environments?
The virtualization layer hides the underlying physical infrastructure,
thus actively impedes network QoS management, because precise
knowledge of topology and resources are required for effective network
QoS management. How can effective QoS management be performed
in the presence of this opposing element? Further, VEs mostly incor-
porate many host computers. This demands integrated management
of the physical network and the virtualization systems, resulting in
the question: what is integrated management of physical networks
and virtualization with respect to network QoS?

• How to cope with virtualization dynamics? Besides automatic
adjustments that today's virtualization facilities can perform, the VE
is constantly managed by multiple users, creating, modifying or de-
commissioning VIs. As all physical resources are shared, each ma-
nagement operation may affect achievable network QoS. Coordina-
tion of management operations and the configuration of the overall
system is a big challenge. To cope with this it is necessary to know
how changes affect network QoS. Furthermore, to generally solve this
problem it has to be determined if dynamic effects can be classified
and how to handle classes of dynamics.

10

1.4. Problem statement

• What is accurate modelling of a virtual component? In gen-
eral, QoS requirements on network connections and posing QoS de-
mands are technology agnostic. Consequently, a model of virtual
components suitable for network QoS management is generic where
QoS requirements are defined. At the same time such a model is very
specific to represent, select and employ available techniques and tech-
nologies capable of provisioning a virtual component. What are the
requirements on a model of virtual components suited for network
QoS management and what could such a model look like?

• How to enforce network QoS in virtual infrastructures? As
described in Section 1.2, hosting platforms are shared in VEs. En-
forcing network QoS requires a new set of strategies, to coordinate
all providing resources into fulfilling QoS requirements. The require-
ments were originally posed at some abstract isolated VI and must be
adapted to a component sharing resources. What are the constraints
of virtual systems and what are coordination efforts are required?

• What is a prototypical life cycle of a virtual infrastructure?
In a VE, creation and withdrawal of VIs happen frequently while
other VIs are operational. Creation and withdrawal must be managed
correctly to not impede network QoS of operational VIs. However,
life cycles of VIs are understood merely intuitively. A sophisticated
description of the VI life cycle does not exists. What are the concrete
procedures for creating and withdrawing VIs? What changes can be
performed on VIs and what are their procedures?

The main contributions in developing a management architecture are three-
fold, corresponding to the main challenges introduced by virtualization:
a) the gap between abstract network paths with QoS requirements and
specific configurations of components and technologies is bridged, b) dy-
namic changes are controlled and reflected in the VE's configuration and
c) management operations on VIs are translated into atomic operations on
the providing infrastructure and globally coordinated.

11

Chapter 1. Introduction

1.5. Approach and Outline

Current management of VEs focuses on VMs and groups of VMs. Having
a network QoS architecture for VEs is a different way of performing ma-
nagement, by focusing on the interconnect instead of the endpoints. When
depicting a network as a graph consisting of vertices and edges, current ma-
nagement mostly targets the vertices, while this approach attributes more
value to the edges.

Network QoS management is a well understood problem and new challenges
arise around virtualization only. The basic idea is to integrate management
of virtual and physical components, to allow the application of available
network QoS management.

Core to this approach is the unified software development process as laid
down by Jacobson, Booch and Rumbaugh in [JBR 99]. Said process is
structured into phases, separating design from implementation thoroughly.
The unified software development process encompasses developing an ar-
chitecture following a requirements analysis before the actual refinement
and implementation. The architecture is the goal of this work. This is a
top-down apporach, suiting the problem at hand, where the staring point
for QoS management are abstract isolated VIs, tailored precisely to the
services' needs, which are refined and arranged to be implemented by a
physical infrastructure.

While the host of possibilities to implement virtual components constantly
increases with the development of new technologies, the intentions of man-
agers remain fairly static. To develop a sustainable QoS management archi-
tecture that can integrate multiple technologies, requirements are developed
by performing a scenario analysis.

The resulting requirements and architecture are focused on network QoS
and are not limited to the technologies currently available. Through the
top-down approach, new use cases and management scenarios can be added
and analysed as performed in Chapter 3. New technologies can be added
at the “bottom”, implementing the architecture's models.

12

1.5. Approach and Outline

Section 5: Performing management

actors performing management

design considerations

virtual infrastructure life cycle

dynamics in

virtualization environments

Section 4: State of the art

Section 2: Foundation

virtualization and networks

network QoS

gap in management approaches

Section 6: Mgmt. Architecture

Section 3: Scenarioanalysis

Scenario 1: generic VIs

Scenario 2: specialized VIs

Requirements cataloguevirtual infrastructure (VI)

network QoS technologies

management approaches

reusable concepts

& open issues

mapping between virtual and

physical components

comprehensive approach

management architecture

according to OSI

Section 7: Proof of concept

Implementation

Evaluation

Section 8: Summary and

 Conclusion

Figure 1.4.: Structure of this document

Following a top-down approach also serves identifying where established
models can be reused. This allows focusing more on virtualization and its
effects on network QoS management.

Outline of this work

The structure of this document is depicted in Figure 1.4. Chapter 2 begins
with the generic make up of VEs and the common concepts that yield to
a multi-layered view on networks built in VEs. After that network QoS

13

Chapter 1. Introduction

and network QoS management are introduced. The result of this chapter
is a more detailed problem description what network QoS in VEs is to
accomplish.

With this knowledge, Chapter 3 performs a requirements analysis and de-
rives a requirements catalogue for a network QoS management architecture
that is suited to perform effective network QoS management in virtualized
environments.

With the refined view through the detailed problem description and the
requirements catalogue, Chapter 4 arranges thesis with other work. After-
wards, techniques and technologies for network QoS and its management
are discussed. There are many approaches that allow the provisioning of
certain QoS features of individual links, but with a lot of requirements and
assumptions on the links' endpoints. Consequently their management is
scoped so narrowly towards specific link and endpoint types, that manage-
ment approaches for networks and network paths have become a separate
field of research. Using several examples, Section 4.1 illustrates that QoS
technologies are available on varying abstraction layers within VEs. Sec-
tion 4.3 then analyses management approaches that are intended to perform
network QoS management simultaneously on all abstraction layers. This
chapter shows that the available management approaches are not suited to
fulfil all requirements identified and a new approach is required to realise
network QoS management in VEs.

The following Chapter 5 goes beyond networks and QoS management, to
create a comprehensive understanding of VEs and the management per-
formed therein. A life cycle for VIs is developed as the basis for structur-
ing management tasks. This enables situating network QoS management
within management in VEs in general, contributing to this architecture's
sustainability and towards integration with other management tasks and
approaches. The chapter's results are prerequisites and requirements on
a management system's behaviour and the identification of management
roles. This guides the development of the management architecture in the
following Chapter 6.

Chapter 7 documents a prototypical implementation and the architecture

14

1.5. Approach and Outline

is assessed, using the requirements catalogue developed in Chapter 3. This
work is concluded in Chapter 8 with a summary and an outlook of further
research possibilities and applications of the developed approach.

Previous publications

The author of this work is also responsible for previous relevant and cited
publications. These publications either lead up to and shape the herein
presented work, or elaborate on isolated aspects to trigger scientific dia-
logue and refine ideas. While the respective publications are cited where
appropriate, this section explicitly states their relations to this work and
author.

[Metz 09] On I/O virtualization management
This is this author's first publication and based on this author's
diploma thesis “Design and analysis of techniques for virtualizing I/O-
Channels”. The paper focuses on the modelling of dynamic and static
aspects of the management of virtual I/O devices. To grasp dynamic
aspects, a life cycle for VMs was introduced. The need to recognise
dynamic aspects is a result from this author's diploma thesis, while
the life cycle and ensuing identification of management operations
and procedures were new results, developed by both authors. The
resulting life cycle definition and identified management operations
constitute Section 5.2.1.

[Metz 10] Towards end-to-end management of network QoS in vir-
tualized infrastructures (main author)
This publication states this author's intention to address network
QoS management in virtualization environments. As part of elab-
orating on the overall vision and problem, this paper presents the
classification of virtual components presented in Section 6.2.1. The
corresponding classification of links had not been performed at that
point.

15

Chapter 1. Introduction

[Metz 11] Bottom--up harmonisation of management attributes
describing hypervisors and virtual machines
This publication is the result of an in depth analysis of available
VMMs, with respect to the monitoring data they offer. In this work,
[Metz 11] is cited in Section 6.2.3 as an example for illustrating tech-
nology specific metrics, and a second time in Section 6.3.3.4, as re-
source, providing information on how the herein specified models and
procedures could be refined and extended to match specific technolo-
gies.

[Metz 12] Link Repair in Managed Multi-domain Connections
with End-to-end Quality Guarantees
This paper introduces the concept of propagation rules to communi-
cate and coordinate the realisation of QoS attributes. The class Prop-
agationRule introduced on page 224 is a specialisation of the concept
introduced in [Metz 12]. The specialisation performed for this work,
uses a schema which is not part of [Metz 12]. The concrete repair
and monitoring strategies introduced in [Metz 12] could be realised
in a management system implementing the architecture introduced
in Section 6, but this is beyond this work's scope.

[Metz 14a] Dienstgütemanagement für Netze in Virtualisierung-
sumgebungen (main author)
This publication offered this work's management approach for peer
review. It virtually is this work's Section 6.1, motivated using a sce-
nario including an early version of the classification of link types, as
introduced in Section 6.2.1.

[Metz 14b] Mapping virtual paths in virtualization environments
(main author)
This publication offered this work's finalised classification of link types
from Section 6.2.1 and the refinement procedure from Section 6.2.3
for peer review.

16

1.6. Expected results

1.6. Expected results

In VEs, VIs are designed and implemented according to customer needs.
There is considerable abstraction between the VIs' effective implementa-
tions and the VIs as demanded and managed by the customer. Sensibly
implementing and maintaining VIs involves much interpreting and map-
ping of management information and operations. This thesis introduces a
management architecture based on an approach, designed specifically for
management in VEs.

When requirements such as management capabilities and quality of ser-
vice are taken into account, it may be required to introduce additional
virtual components to extend the capabilities of a virtualization technology
or as another layer of indirection. For example an additional VM can act
as a virtual switch to perform traffic prioritisation, if the virtual switches
provided by the virtualization layer do not offer such functionality. Im-
plementation details like this are completely transparent for the customer
and the system may remove the indirection implicitly (and automatically)
when adequate resources become available. The introduced architecture
foresees an automated mapping of QoS requirements to allow for such con-
structs to implement network QoS on the one hand. On the other hand the
manager in charge of network QoS management is not concerned with such
implementation details. This enables network QoS management in VEs.

The management task separated into management of abstract models, au-
tomated mapping, implementation and monitoring. This requires a generic
topology model, capable of describing the relations between virtual links
and paths and their implementing links and paths. Using this model, high
level QoS management is refined to management operations that match
the VEs current state, i.e. the placement of components, and to match
the technology of the implementing component. This last step translates
the refined generic management operations into management operations
for the specific component. With this separation and ordering of activities
the management architecture deals with the dynamics in VEs. Delaying
the translation into component and technology specific management oper-

17

Chapter 1. Introduction

ations promotes implementations where adaptors are used to specialize the
introduced interfaces to the actual employed technologies.

It shows throughout the analysis and architecture design, that network QoS
management overlaps into many other management areas. The conceptual
core of the developed approach is a management loop arranging manage-
ment tasks in a manner that allows for interpretation and mapping where
needed. With the overlaps into many other areas, this approach might be
extended in future work to integrate network management in VEs.

18

C
h
a
p
t
e
r 2

Virtual infrastructures in

virtualization environments

Virtualization environments are a combination of many concepts with the
overall goal of providing virtual infrastructures, tailored to the specific needs
of individual services of customers. The key enabling technologies all per-
form some kind of virtualization. Characteristic for VEs is, that many
strains of such technologies are used and that the services offered to data
centre customers are realised using virtual components.

The basis to any VE is the physical infrastructure, a cluster of intercon-
nected virtualization hosts. With virtual network components, networks
extend into physical hosts, which used to be a singular non-forwarding en-
tity at the edge of a network. This is an important new aspect for network
QoS management. Another key feature of virtualization is a very loose
coupling of virtual components to the physical set-up, enabling migrating
components between hosts. This allows for great flexibilities in construct-
ing VIs, and also creates a gap between VIs as managed entities on the
one side and their current implementations on the other side. Closing this
gap, to ensure VIs operate as expected by customers is the main concern
of management performed in VEs. Performing network QoS management
on virtual networks, spanning across multiple virtualization hosts, is the
motivating goal for this thesis.

19

Chapter 2. Virtual infrastructures in virtualization environments

To establish basic terminology, this chapter briefly introduces the main
branches of virtualization technologies, host virtualization in Section 2.1.1
and network virtualization in Section 2.1.2. After that, Sections 2.2 and 2.3
elaborate on the goal of developing a management architecture for network
QoS in VEs, by introducing network QoS and commonly associated ma-
nagement activities and the concept of a management architecture and its
intentions. Section 2.4 summarises key observations of this chapter.

2.1. Virtualization

The term virtualization is frequently employed when a multiplex is applied
to provide multiple isolated instances of a single component. A complete
definition can be found in [MNM Lind 10]. Most discussions on virtual-
ization are specifically targeted at host virtualization, possibly because it
is the most visible form of virtualization, providing VMs. This is also the
main application described in Section 1.3.

The two major branches of virtualization introduced in this chapter are:

• host virtualization and
• network virtualization.

Host virtualization subsumes all technologies leading up to virtual network
components and VMs. Network virtualization incorporates all technologies
for providing isolated communication topologies.

2.1.1. Host virtualization

Host virtualization is employed on a single computer, in the form of a
VMM, to provide many VMs. For any computing application, there are
three defining aspects to a computer:

• its hardware architecture,
• the storage facility and
• the network uplink.

20

2.1. Virtualization

VMMs often implement all three, in order to be able to provide VMs.

Regarding performance capacities of VMs, the computer architecture is
described as a combination of CPU time and available RAM. Therefore, in
most literature, a VM is described with respect to the four aspects, CPU,
RAM, storage and network. Figure 2.1 illustrates a physical computer, that
has three virtual siblings.

To facilitate network access, the virtualization host implements a VN, so
that the three VMs can share one physical uplink. There are various strains
of virtualization technologies, focusing on single aspects or are even more
specialised towards individual hardware components.

Most notably, NICs often employ single root I/O virtualization (SR-IOV),
to provide multiple virtual NICs to the host computer. In effect, the VMM
can assign each VM its individual NIC and need not worry about imple-
menting a VN, thus offloading some tasks to the NIC. For QoS management
the virtualization method matters: When implementing a switch, the VMM
plays an integral part of effective network QoS management. When employ-
ing SR-IOV, the NIC becomes more critical than the VMM, as resources
and the multiplex are handled by the NIC.

A complete overview techniques is given in [MNM Lind 10]. The important
aspect for the problem at hand is, that ultimately it is the VMM that creates
the virtual components.

Guest Operating System

Hardware

Virtual Machine

Hypervisor

AbstractionApplication/Service

Figure 2.2.: Running applications

with host virtualization

Usually, a computer's OS provides ab-
straction from the underlying hardware,
providing an uniform hardware indepen-
dent platform. Host virtualization can
be considered a next logical step to-
wards more abstraction. Whereas an
OS provides a platform for applications,
host virtualization provides a platform
for multiple OS. The general notion is de-
picted in Figure 2.2.

21

Chapter 2. Virtual infrastructures in virtualization environments

C
PU

Physical network

Virtual network

Virtualization
host

Physical Computer Defining components

Network uplink Network uplink shared by VMs

VM VMVM

Figure 2.1.: Physical and virtual computers and networks

There are many motivations for employing host virtualization: Consolidat-
ing services onto fewer computers may free up valuable rack space, or be
more energy efficient. While motivations may vary, the persistent concept
in host virtualization is to break the tie between a computer's hardware
and OS, move the OS into a container and have the OS work inside this
container. The contained OS becomes a guest which is hosted by a VMM.

2.1.2. Network virtualization

In [TaWe 10], computer networks are defined as a “collection of autonomous
computers interconnected by a single technology”. In a model view, there
are two kinds of participants in any computer network: the autonomous
computers as data terminal equipment (DTE) and intermediary data com-
munications equipment (DCE), passing on data packets towards endpoints.
Together, DTEs, DCEs and the links connecting them, constitute a network
topology or infrastructure, thus the foundation for distributed systems. A
stream of packets from one component to another is a flow [Zhan 87].

Typical DCEs are switches and routers, where switches operate on ISO OSI

22

2.1. Virtualization

Component Used name Participant role Type

switch switch DCE physical

router router DCE physical

computer with VMM host DTE physical

computer without VMM server DTE physical

virtual switch vswitch DCE virtual

virtual router vrouter DCE virtual

virtual machine VM DTE virtual

Table 2.1.: Components in virtualization environments

layer 2 while routers operate on ISO OSI layer 3. As depicted in Figure 2.1
and more explicitly in Figure 1.3 on page 9, there are also virtual versions
of network components. Network components implementing virtualization
are still emerging. Mostly, virtual network components are provided by the
same hosts that provide VMs.

While similar in their perceived function, virtual network components must
be managed differently than their physical role models. As the focus of
this work is network QoS management, virtual DCEs must be seen as an
additional independent kind of network component. Table 2.1 is a com-
prehensive list of components that may participate in virtual networks and
are therefore subject to management for network QoS management in VEs.
Notice that this list does not explicitly contain physical or virtual appli-
cation layer gateways. Those require application specific knowledge and
therefore they are assumed to always be implemented as VM.

The same technologies that are used for virtual endpoints are also used to
provide virtual network components, e.g. routers, which can be as migrant
as endpoints [WKB+ 08]. Any component can be virtual and migrating
through the physical infrastructure over time. This is a new aspect in
managing VN, compared to the traditional “logical structures providing
abstract and selective views of the physical network resources allocated to
VN customers” [NJC+ 99]. While the view on the VN remains unchanged

23

Chapter 2. Virtual infrastructures in virtualization environments

Physical Network

Implemented Virtual Network

Virtual Infrastructure

Figure 2.3.: An abstract virtual network, mapped onto a physical infrastructure

by migrating components, the actual links, the providing components and
their allocated resources may change entirely.

VIs comprise subsets of DTEs, DCEs and links of a physical topology.
Participating components may individually handle flows of different VNs,
which forms the basis for QoS considerations. Additionally, the concept of
a virtual link describes a path through a network which is abstracted to a
single link of a VN.

Figure 2.3 illustrates the mapping of a VI onto a physical network. From a
users perspective, the value of an infrastructure lies with the DTEs where
applications and services are operated. Hence, a user is likely to ask for a
network like the one titled Virtual Infrastructure in Figure 2.3. In such a
simple example the switch merely represents the wish for the servers belong
to the same network. In more complex infrastructures, network components
may be explicitly requested, for instance a virtual routers, to enable access
control management at the network layer for VIs. The Implemented Virtual
Network are the components implementing the VI. Due to the placement
of the two servers, the network must incorporate three physical switches.

Similarly to VMs detaching an OS from the underlying hardware, VNs

24

2.2. QoS management

detach topologies from the underlying network. According to [TaWe 10]
the “usual advantage of virtualization […] is that it provides flexible reuse of
a resource”. For networks this means to expose or hide certain aspects of
links and network nodes, for example other network participants, or details
about a networks inner structure.

The abstraction of a network path to a single virtual link is a tool employed
in network realization and network management alike. Figure 2.3 could
employ virtual links to hide two of the three involved switches from the
manager. Which switches should be hidden depends on the manager's
goals.

With the intention of performing network QoS management, a virtual net-
work link represents a subtopology. Performing management operations
on a virtual link implies performing management on all components of the
hidden subtopology.

2.2. QoS management

The previous sections describe network virtualization in VEs as a collection
of technologies to implement network components and network topologies.
Because of this shared use of a common environment, coordinating measures
must be taken, to avoid the customers' applications interacting and affecting
each other in unwanted manners.

One such aspect where VIs interfere with each other is resource usage.
The computation, storage and especially network capacities of any host are
limited, as are the capacities of (virtual) network components and links.
It is possible for a greedy, resource intensive, single entity to starve the
network data transfer of adjacent VIs. To avoid such situations and guar-
antee certain attributes to networks and the communication service they
provide, providers perform network QoS management. With network QoS
management a provider aims to implement, enforce and monitor assertions
concerning characteristics of network data transfer.

25

Chapter 2. Virtual infrastructures in virtualization environments

2.2.1. Network QoS properties

Once connected to a network, DTEs may communicate with each other.
For the users of communicating services and applications it is not relevant
whether their communication traverses virtual or physical networks. In
VEs, flows compete for resources within the physical network and virtu-
alization hosts. The amount of available resources influences the charac-
teristics, the quality, of a network flow. The classical metrics for network
quality of service apply to virtual and physical networks alike. According
to [TaWe 10] these are:

Data rate Data volume transmitted/received within a time frame.1
Delay Time passed between transmitting and receiving a message.
Loss rate Proportion of sent messages that were not received.
Jitter Expected or allowed standard deviation for measuring delay.

Next to QoS parameters that directly concern flows there are parameters
concerning infrastructures as such, which also affect how well a network
“works”, for instance maintenance windows, which ought to be addressed
as well [MNM Yamp 09]. During maintenance, problems are to be expected
or the service may even be interrupted for a short period of time. While
these parameters do apply to VEs, they must be addressed on a manage-
ment level. For actual network flows the above four metrics are the most
relevant.

Especially where VMs are involved, the network is merely a supporting
service, which influences how well the actual service the customers want
can operate. Consequently requirements on network QoS are associated or
even directly derived from the “main” service. For effective network QoS
management QoS requirements are formalised and agreed upon by customer
and provider as part of the service level agreement (SLA). Within a SLA
quality of service parameters, their measurement and reporting are laid
down, among other specifications [MNM Scha 08].

1The term used by Tanenbaum and Wetherall is bandwidth, but especially when discussing
networks this term is ambiguous.

26

2.2. QoS management

Planning

Negotiation Operation

Change Withdrawal

start

Provisioning

Figure 2.4.: The IT service life cycle [MNM Dreo 02]

After a VI has been deployed, the provider performs management to fulfil
and enforce all quality of service parameters.

2.2.2. Performance management activities

VIs provided by a data centre to a customer are instances of an IT service.
Service instances follow a life cycle, from the customers initial motivation
to procure a VI, to its final decommissioning, when the user has no need for
this service any more. For IT services, a generic life cycle, depicted in Fig-
ure 2.4, is described in [MNM Dreo 02]. Performing network QoS manage-
ment is an ongoing task throughout the entire life cycle [MNM Gars 04].

During the planning and negotiation phases, network QoS requirements
are defined with respect to a VI's purpose. In the provisioning phase, the
infrastructure specification is put into action: components and networks are
created and the network QoS requirements are turned into configurations
for the providing infrastructure. During the operation phase, the provider
ensures that the network performs within the specified parameters (the
customer, may participate here as well!).

There can be direct changes to network QoS requirements, e.g. demanding a
higher data rate, or network QoS requirements may change implicitly, with
changes to the VI and the agreed usage/purpose in the SLA. As part of the
provided VI, network QoS management plays a role during the withdrawal

27

Chapter 2. Virtual infrastructures in virtualization environments

phase in the sense that requirements must also be removed from the host
infrastructure, to avoid future side effects.

Reviewing the IT life cycle with VIs in mind yields two important activi-
ties of network QoS management: specifying network QoS parameters and
making them part of a VEs configuration. While network QoS metrics
themselves are mostly those described in Section 2.1.2, the activities in-
clude:

• defining corresponding values for QoS properties,
• defining matters of measuring and reporting, and
• defining the flows for which QoS requirements apply.

According to [HAN 99], the specification of QoS parameters is one activity
within the area of performance management of the functional model of the
ISO Open Systems Interaction management architecture. Managing config-
urations of systems is its own functional area configuration management.

Continuing along the structure of the OSI functional areas in [HAN 99],
“performance management can be seen as a systematic continuation of fault
management. Whereas fault management is responsible for ensuring that
a communications net […] just operates, this is not enough to satisfy the
objectives of performance management, which wants the overall system to
perform well.”. The stated intention of network QoS management, to imple-
ment, enforce and monitor assertions concerning characteristics of network
data transfer, map to the goal of “performing well” : the goal is guarantee-
ing characteristics of flows, not bare connectivity and ability to transmit
data.

The full set of performance management activities according to [HAN 99]
are:

• Establishing quality of service parameters and metrics2

• Monitoring all resources for performance bottlenecks and threshold
crossings

• Processing measurement data and compiling performance reports
2This activity is restated for the completeness of this list.

28

2.3. ISO OSI management architecture structure

• Evaluating history logs (i.e., records on system activity, error files)

• Carrying out measurements and trend analysis to predict failure be-
fore it occurs

• Carrying out performance and capacity planning. This entails provid-
ing analytical or simulative prediction models that are used to check
the results of new applications, tuning measures, and configuration
changes

As a combination of configuration and performance management, the im-
mediate and constantly occurring activities in network QoS management
during an actively used service are configuration and monitoring alike. Con-
figuration is performed to set up VIs that are capable of fulfilling network
QoS requirements. Monitoring serves the purpose of watching services op-
erating, so that adequate configuration can be performed to end up with
VIs capable of fulfilling network QoS requirements.

There are two main aspects to consider: determining effective implementa-
tions of intended VIs (cf. Section 2.1.2) and attributing QoS requirements
a demand for resources that the VE can provide, for instance CPU time on
a host or data rate within a switch. Continuous monitoring ensures that
configurations are effective and the guaranteed network QoS is provided.

2.3. ISO OSI management architecture structure

Architectures are templates with concepts and concerns that can be imple-
mented in ready to use systems [JBR 99]. To perform network manage-
ment, management architectures consist of four sub models, which accord-
ing to [HAN 99] describe:

• objects that are subject to management and their interrelations (in-
formation model),

• functions to perform management on managed objects (function
model),

29

Chapter 2. Virtual infrastructures in virtualization environments

• roles and cooperation forms between managing entity and managed
entity (organisation model)

• communication of management information between entities (com-
munication model).

In a management architecture for network QoS management in VEs the cen-
tral objects that are subject to management (managed objects) are physical
and virtual DTEs, DCEs, network links and their QoS attributes, as well
as the VIs they constitute.

The core management functions to facilitate network QoS perform resource
allocation to components, links and flows. Further, in VEs, components
and links can be created, modified, moved between hosts and destroyed as
needed to construct networks that can meet user demands. As a last class
of management functions, mappings of intended virtual networks onto the
VE (cf. Section 2.1.2) are created, modified and removed.

The organisation model identifies different roles of managers by their inten-
tions when using the management system. For VEs this mostly pertains to
VIs vs. physical components and subnets.

The communication model describes all interaction patterns between man-
aging and managed systems and the communicated information. A promi-
nent aspect of the communication model developed in this thesis is the
communication of available and used resources as well as monitoring data
required for performance management.

2.4. Virtualization specific observations

In combination, the introduced aspects explain problems and new be-
haviour, that can be observed in VEs. For instance, without virtualization,
resources, i.e. servers, had to be selected carefully when implementing ser-
vices, while with virtualization, DCEs and DTEs are created and linked
as needed. The problem of actually placing a service is transformed into
placing (virtual) components.

30

2.4. Virtualization specific observations

Components can be regarded as generalised building blocks, which are used
for all services. Few generalised building blocks are easier to manage as
arbitrarily specified functional components of user defined services. This is
an advantage when housing multiple services.

On the other hand, the technologies enabling these generalised building
blocks add abstraction layers, resulting in multiple views on user faced ser-
vices (by functional components) and their implementations, as depicted in
Figure 2.3. Managing and coordinating multiple views with varying levels
of abstraction is additional work, effectively making management of such
services and their implementations more difficult. For instance, customer
managers are usually restricted to higher abstraction levels, but may still
be in charge of network QoS management of their infrastructures. With-
out any knowledge on component placement or the implementing physical
hardware this is difficult to realise, as much network QoS related manage-
ment tasks require data from hardware components or configure hardware
components.

In VEs, there is at least one such additional layer, in the form of VMMs.
Performing network QoS management in VEs is a task spread out across
all abstraction layers. The task must be coordinated to be effective, be-
cause bottlenecks and shortages can occur on every abstraction layer, but
ultimately every component requires physical resources to perform.

VIs are created and withdrawn with the services they implement. Coupling
the beginning and end of a VI's life cycle this tightly to a service results
in frequent changes to the number and placement of VIs running within a
VE. Number and placement are two additional dimensions with dynamics
for managing resource allocations and consequently network QoS. The cor-
responding management tasks are another new challenge to network QoS
introduced through virtualization.

The intended architecture closes this gap created through additional ab-
straction and implementation layers to enable network QoS management
in VEs.

31

C
h
a
p
t
e
r 3

Scenario analysis

While the general problems of network QoS management are understood
very well, the new aspects introduced by virtual components, their interac-
tion and their effects on network QoS have seldom been subject to research
efforts.

Network QoS is affected through performing management on network links
and paths, and on individual components. All three happen regularly in
VEs, in the form of high order management use cases where users interact
with a management system to fulfil a certain task. The effective manage-
ment operations are either an explicit step of a management use case, or
an implicit configuration required to implement a high order management
task.

This chapter starts out with introducing two real world scenarios for VEs,
where different services are provided to customers. To show diversity in the
introduced scenarios and applicability of the presented approach beyond
these two scenarios, Section 3.1 introduces a morphology for scenarios, em-
phasising generic characteristics of VEs. Section 3.2 then introduces the
scenarios and the therein provided services. As a next step, an abstracted
scenario is developed in Section 3.3, where a single VE is used to provide
all services described in both real world scenarios, as a basis for the require-
ments analysis.

33

Chapter 3. Scenario analysis

The set of requirements can be used to evaluate any given management sys-
tem or architecture for its capabilities for network QoS management in VEs.
These requirements are also rationale for the management architecture for
network QoS management in VEs specified in Chapter 6 and will be used
as a means to evaluate the management software developed in Chapter 7.

3.1. Morphology of scenarios

The scenarios are chosen based on their differences in providing network
access for, and management of, VMs and VIs. The intention is to capture
a wide variety of use cases and in turn derive a comprehensive list of re-
quirements for network QoS management in VEs. This section introduces
aspects for discerning the later analysed management scenarios, to ensure
that the developed architecture is applicable to multiple scenarios and is
not casuistic for a specific problem.

Section 1.3 illustrates that the main problem introduced through virtu-
alization that network traffic through virtual components has aspects of
horizontal and vertical communication at the same time, with some infor-
mation hidden. Based on this observation, the morphology chosen for the
scenario analysis performed herein is also concerned with the availability of
information. Information may be:

• available,
• not available,
• explicitly hidden under certain conditions,
• implicitly hidden through the employed techniques and technologies,
• static and always available, or
• subject to change and must be extracted and refined.

The diversity of services provided in the scenarios will reflect in varying use
cases and supports the applicability of the developed architecture.

Table 3.1 shows the morphological field with all characteristics and their
possible occurrences. In later sections, service specific instances highlight
relevant characteristics of the services provided within the scenarios. This

34

3.1. Morphology of scenarios

Characteristic Occurrence

access network local net Internet

physical LAN usage peer entity tunnelled

VM placement static dynamic

VM LAN access bridged routed

VM access direct proxy gateway

VM manager customer provider

QoS manager customer provider

QoS requirements strict flexible

Table 3.1.: Morphological field for managing network paths including virtual

components

serves as a quick reference and as a tool to identify where variations in
network QoS management are to be expected and must be supported by
management systems.

access network … the service consumers origin network. From a ma-
nagement systems point of view, this is either a local network or the
Internet. In local networks it can be assumed. that enough informa-
tion is available, to identify all components along an end-to-end path.
Where network paths span across the Internet, QoS management can
only be performed within the own administrative domain. However,
for the eventuality that Internet service providers enable and allow
QoS connections across their networks, methods for coupling QoS do-
mains are already available [MNM Roel 05].

physical LAN usage … the manner the LAN is used by virtualization.
Mostly, VMMs implement a switching fabric and as a result network
traffic needs or does not need to pass the physical LAN, depending on
the placement of the communicating virtual components. A cluster
of VMMs has the option to either bridge the virtual components into
the physical LAN or implement tunnels in-between physical hosts,
to keep VNs isolated from one another and the physical network.

35

Chapter 3. Scenario analysis

These two different functions also affect how network QoS needs to
be performed.

VM placement … the possibility to migrate VMs. Dynamic VM place-
ment results in changing topologies and network QoS paths, impos-
ing additional management problems and tasks, compared to static,
unchanging VM placement.

VM LAN access … the manner a VM's network traffic leaves the VI for the
Internet or other hosted VIs. Traffic can either be bridged or routed
into the LAN. Both cases are relevant to network QoS management.

VM access … the manner customers access a VM. Customers may access
services on the VM directly over the network or there are application
layer gateways that facilitate access to services provided by VMs.
An application layer gateway may greatly influence network QoS ma-
nagement: they are mandatory parts of network QoS paths and often
perform protocol conversion, as the example presented in Section 3.2.2
shows.

VM manager, QoS manager … the customers possibility to immediately
perform management. If customers perform management their users'
views are restricted to their respective VI(s). If it is the provider
performing management, those restrictions are unnecessary. Dealing
with views and separations thereof is a concern of any management
architecture.

QoS requirements … the possibility to alter QoS requirements after de-
ployment. Strict QoS requirements can not be altered, flexible QoS
requirements can be altered. Considering the use case analysis that is
performed starting in Section 3.4, the impact on QoS management are
management tasks persisting to the modification of already deployed
network QoS paths.

36

3.2. Real world scenarios

3.2. Real world scenarios

Section 3.1 introduced a morphological field. This section employs it to
characterise services provided as part of application scenarios, according to
how and by whom network QoS is to be provided and managed.

The scenario in Section 3.2.1 is implemented by the Leibniz Supercomput-
ing Centre (LRZ). It features varying types and sizes of VIs and several
managers with different tasks, concerns and insight into the providing in-
frastructure. This scenario is very similar to the common infrastructure
as a service (IaaS) and platform as a service (PaaS) scenarios known from
cloud computing. This scenario is suited to represent large scale VEs in
general.

The second scenario, in Section 3.2.2, is situated at the Technische Uni-
versität München (TUM), where virtualization is employed to provide and
manage desktop operating systems for employees and students. This sce-
nario features varying access methods and integration with the physical net-
works, which result in different and changing network QoS requirements.

For the use case analysis, an abstracted scenario combining the character-
istics of both real world scenarios is created in Section 3.3. This scenario is
suited to implement all management use cases for performing network QoS
management in VEs.

Besides real world examples for services provided using VEs, the scenarios
provide organisational structures in which responsibilities for performing
management on VEs have been recognised and assigned. In both scenar-
ios, services, management roles and organisational structure can be ex-
pected to remain unchanged and unchallenged when introducing network
QoS management to these environments. Therefore the abstracted scenario
provides a reasonable setting for elaborating use cases and deriving require-
ments.

37

Chapter 3. Scenario analysis

3.2.1. Scenario I: LRZ hosted infrastructures

The Leibniz Supercomputing Centre (Leibniz-Rechenzentrum, LRZ) of the
Bavarian Academy of Sciences and Humanities is an IT service provider
for both universities in Munich and other publicly funded research facili-
ties. Its services range from general customer faced IT services, over man-
aging the network infrastructure connecting its customers in the Munich
area (Münchner Wissenschaftsnetz, MWN), to operating one of the world's
fastest supercomputers [LRZ 12].

The three interesting LRZ services for this work are:

Svc.#1 Attended hosting of virtual servers
Svc.#2 Unattended hosting of virtual servers
Svc.#3 Project infrastructures

To facilitate their services, the LRZ operates a dedicated physical infras-
tructure, consisting of 80 blade-servers housed in 16 enclosures. All blades
have the same VMM, VMware ESXi, installed and VMs gain network ac-
cess strictly through the VMMs provided virtual switches. Every server has
the same virtual switches configured and each switch is assigned a VLAN
ID which is valid in the physical network. Consequently each VN is acces-
sible on every server and every VN maps to exactly one VLAN ID in the
physical network.

Figure 3.1 illustrates the topological set-up within the LRZ scenario. The
boxes at the top depict the three identified services. Below, there are four
virtual topologies which are the networks to which virtual servers can be
connected. The networks are implemented to distinguish between MWN-
accessible vs. Internet-accessible and attended vs. unattended servers.
Virtual servers are not allocated their own VLAN(s), hence there is a rela-
tion between network configuration and potential infrastructure managers.
The router depicts the edge node through which network traffic enters and
leaves the VE. Dedicated VIs share the same Internet and MWN uplink,
but are not directly connected to the VNs of virtual servers.

38

3.2. Real world scenarios

LRZ
virtualization
environment

attended
infrastructures

(Internet)attended
infrastructures

(MWN)

attended
virtual server

or

unattended
infrastructures

(Internet)

unattended
infrastructures

(MWN)

unattended
virtual server

or

isolated virtual
infrastructure

MWN X-Win/
Internet

Figure 3.1.: Special purpose topologies in the LRZ virtualization environment

Svc.#1 Attended hosting of virtual servers The attended variant
of hosted virtual servers gives the customer an infrastructure where the
LRZ takes care of most management tasks. This even includes the operat-
ing system and all its services, for instance an entire webserver, including
the HTTP daemon and database system. As the LRZ provides the entire
platform, i.e. the webserver, this service can be considered as PaaS. The
customers are only concerned with providing their content. If the customer
has specific requests pertaining to network and system management, these
requests are directed towards the LRZ service desk as customers have not
got any means of directly performing management themselves.

Initially the customer requests an infrastructure which is to be provided
and operated by the LRZ. The topology and properties of that infrastruc-
ture, especially network QoS requirements, are formalised in a service level
agreement and hence considered strict. After the infrastructure has been
provisioned, the LRZ completely takes care of operating the infrastructure
within the specified parameters.

Table 3.2 summarises the characterisation of this service flavour according
to the morphological field introduced in Section 3.1. The defining aspects

39

Chapter 3. Scenario analysis

Characteristic Occurrence

access network local net Internet

physical LAN usage peer entity tunnelled

VM placement static dynamic

VM LAN access bridged routed

VM access direct proxy gateway

VM manager customer provider

QoS manager customer provider

QoS requirements strict flexible

Table 3.2.: Morphological field for attended hosting of virtual servers at the LRZ

Characteristic Occurrence

access network local net Internet

physical LAN usage peer entity tunnelled

VM placement static dynamic

VM LAN access bridged routed

VM access direct proxy gateway

VM manager customer provider

QoS manager customer provider

QoS requirements strict flexible

Table 3.3.: Morphological field for unattended hosting of virtual servers at the LRZ

for this instance are VM manager, QoS manager and QoS requirements.
The other aspects follow the initial scenario description.

Svc.#2 Unattended hosting of virtual servers With unattended
hosting, customers manage their VIs themselves, rather than delegating
management tasks to the LRZ. This means, that operating and maintain-
ing the OS of VMs is not of the LRZ's concern. As a first consequence, the
customer is free to assign the VMs' resources to programs and processes ar-
bitrarily and any time. Hence, the QoS requirements can be changed more

40

3.2. Real world scenarios

Characteristic Occurrence

access network local net Internet

physical LAN usage peer entity tunnelled

VM placement static dynamic

VM LAN access bridged routed

VM access direct proxy gateway

VM manager customer provider

QoS manager customer provider

QoS requirements strict flexible

Table 3.4.: Morphological field for project infrastructures at the LRZ

flexibly compared to the attended variant of the service. The involvement
of the LRZ Service Desk is less frequently required as a mediator to commu-
nicate new or changed requirements. The customers perform management
on the VM directly, but requests pertaining to the network still go though
the Service Desk.

Similar to the attended variant, the defining aspects of this service are VM
manager, QoS manager and QoS requirements. This service's character-
isation is summarised in Table 3.3.

Svc.#3 Project infrastructures Dedicated infrastructures for
projects include many VMs and at least one VN, which is not shared
with other customers. In general, the VMs are unattended virtual servers,
not managed by the LRZ, but connected to an isolated VN, instead of one
of the four provided networks shown in Figure 3.1.

The most notable difference to the other services is the amount of involved
virtual components. While the creation and withdrawal of VMs has to be
requested via the LRZ Service Desk, customers are given control over a
resource pool and may arbitrarily assign those resources to their VMs.

To enable this kind of customer performed management, customers are
granted access to a management system, through which resource allocations

41

Chapter 3. Scenario analysis

to VMs can be performed and tasks can be further delegated. To support
this, customers are free to create multiple accounts within the VM resource
management system and delegate shares of their initial resource pool.

This service's morphology is summarised in Table 3.4. The main property
setting this service apart is VM LAN access. However, the degrees of free-
dom for VM manager, QoS manager and QoS requirements are greater
compared to the unattended virtual server service, as there are more aspects
about the components that may be changed.

3.2.2. Scenario II: TUM FMI virtual desktop infrastructure

The Technische Universität München (TUM) is one of Munich's universi-
ties. The Center for Mathematics and the Department of Informatics (FMI)
are located within the same building at the campus Garching. IT Services
are provided centrally for both departments by the same IT group, and the
LRZ. One of these services is providing virtual desktops for researchers,
students and faculty. The desktops are accessible from anywhere within
the FMI building and the Internet.

For this service, the FMI IT group operates a VE, a virtual desktop infras-
tructure (VDI). Figure 3.2 illustrates the key contributing systems. The
service provided to users is the box at the top left position. Networks are
depicted as clouds and the subsystems realizing remote access to VMs are
ellipses in the “FMI VDI remote access” quadrant. Users are given three dis-
tinct ways to access their workstations: physical SunRay terminals within
the FMI facilities, a VNC based Java web client and directly, as every VM
is given a public IP address. The physical terminals are located at various
places in the FMI building, while the Java web client is suited to access
one's desktop from anywhere on the Internet.

The VMs are implemented by an Oracle, virtual desktop infrastructure,
based on the VM monitor Openbox. The usual mode of operation is one
unified LAN (“access network for workstations” in Figure 3.2) and traffic
separation is implemented using IP subnets. There are two kinds of traffic:
user data, for instance surfing the Internet, and virtual input/output (I/O)

42

3.2. Real world scenarios

MWN
access

network for
workstations

virtual
machine

Ray-Server
Java

web-client

SunRay
Terminal

FMI
virtualization
environment

FMI VDI
remote
access

LRZ
managed

network

X-Win/
Internet

Figure 3.2.: TUM FMI virtual desktop infrastructure

channels. Openbox exports several I/O channels for each VM through
an extension to Microsoft's remote desktop protocol (RDP) called VRDP.
Most notably these channels are the display and sound output, as well
as mouse and keyboard input. In combination with the VMM, the Ray
Server interacts with VMs through VRDP to provide remote access to VMs
through the VMM, rather than through a VMs network connection.

Especially for faculty members, VNs may be implemented to integrate vir-
tual desktops into the private networks of their chairs. Figure 3.2 depicts
this as the VM's direct connection to the MWN, to which the chairs be-
long. As described in Section 3.2.1, the MWN is managed by the LRZ.
This means for a VM's integration into a chair's network the FMI IT group
and the LRZ work together to facilitate the network path.

Svc.#4 Personal desktop The main feature of this service is present-
ing users their desktop and working environment independent from their
locations or methods of access. The users are in full control over their op-
erating systems and configure it as they see fit, while VM integration into
the local network and especially network QoS are of the sole concern of the
service provider. The QoS requirements are considered dynamic, varying
with the user applications, desktop resolution and origin, from where user
access their desktops.

43

Chapter 3. Scenario analysis

Characteristic Occurrence

access network local net Internet

physical LAN usage peer entity tunnelled

VM placement static dynamic

VM LAN access bridged routed

VM access direct proxy gateway

VM manager customer provider

QoS manager customer provider

QoS requirements strict flexible

Table 3.5.: Morphological field for TUM FMI virtual desktop infrastructure

The VMs are accessible over the Internet, as they are given public IP-
addresses that are routed announced properly. Even though direct access,
for example via SSH, is possible, the virtual workstations are primarily
accessed via the SunRay-Server. Further, the VMs are all meant to fully
participate in their local LAN and allowed to interact with each other as
peer entities. To interact with non VMs, network traffic is routed.

VM placement is static, which means once a VM is deployed it will remain
on that host throughout its lifetime. However, after a few idle hours a VMs
state is saved and the VM destroyed. The system always keeps 300 unused
“template” VMs around and when a user connects to a desktop the VM
state is quickly restored and pushed onto such a template VM. This is how
quick access for users and sensible resource regaining are implemented at
the same time. Consequently, while VM placement is static, a specific OS
can switch hosts without being rebooted.

The characteristics of this service are summarised in Table 3.5.

3.3. Abstracted scenario

Combining the settings and services from the introduced scenarios yields
an abstracted scenario where a single service provider operates a versatile

44

3.3. Abstracted scenario

VE. Every service can be delivered multiple times to different customers
and the resource consumption of all instances must be coordinated. The
services have very distinct features, so that this abstracted scenario can be
used to identify all requirements, instead of analysing all other scenarios
individually.

The MWN from the real world scenarios is abstracted to an internal net-
work. This may still be a routed network of interconnected LANs, but not
the Internet. In other instances the internal network could be understood
as “company internal”. As introduced in Section 3.2.1 there are four pre-
defined networks to which virtual servers can be connected. The criteria
for which network is selected are attended vs. unattended and Internet
vs. internal network. The attended Internet network used for the services
Svc.#1 and Svc.#2 is used for the same purpose as the access network
for workstations for the service Svc.#4. Hence, these two networks can be
consolidated into one Internet subnet for the abstracted scenario.

In addition, virtual desktops can also be integrated into LANs of the in-
ternal network. Implementations thereof are an isolated network, similar
to that of project infrastructures. While project infrastructures are routed
into the Internet, the networks for virtual desktops are bridged into the
LANs.

Figure 3.3 shows a VE, offering the services introduced in the four services
introduced in the previous Section 3.2. The Figure shows the remote ac-
cess infrastructure for virtual desktops as a single component within the
VE. The specific MWN of the real life scenarios has been replaced with
a generic “internal network”, which is managed by the provider, but out-
side the VE. To match the described service, there is only one VDI access
infrastructure.

Virtual network endpoints

The abstraction from the real world scenarios into a VE offering all intro-
duced services yields four different types of VN endpoints, i.e. VMs, that
are offered to customers as part of a service:

45

Chapter 3. Scenario analysis

virtualization
environment

un-/attended
virtual server

or

isolated virtual
infrastructure

internal network

atten-
ded

un-
atten-
ded

(internal)

atten-
ded

un-
atten-
ded

(Internet)

Internet

virtual
desktop

virtual desktop
remote access
infrastructure

Figure 3.3.: Abstracted scenario, uniting different services

• A virtual workstation (VWS), mainly providing a desktop to which
an user from outside the VE connect via an application layer gateway,
similar to the SunRay-Server.

• The remote access server (RAS), an application layer gateway used to
access virtual workstations. The gateway does not need to be virtual,
but the network between the gateway and the virtual workstation is
always transparent to the user.

• A virtual server (VSi), providing services which are used by other vir-
tual computers that are part of the same virtual topology. All com-
munication with this virtual server is VI internal, indicated through
this component type's suffix i.

• A virtual server (VSe), providing services employed from not further
specified clients. This virtual server can communicate with compo-
nents that are not part of its VI. The capability for external commu-
nication is indicated through this component type's suffix e.

The simplest virtual topology is a single VSe, connected to the Internet, cor-
responding to an un-/attended server, as described in Svc.#1 and Svc.#2.
Virtual topologies for project infrastructures are comprised of many servers,

46

3.4. Network QoS management requirements

where some are VSe VMs and others are VSi VMs. VWS VMs are special
in the regard that they may be accessed via the Internet, as well as a RAS,
which is also part of the VE. Not necessarily as a VM, but as a component
managed by the provider that interacts with VMs of customers.

In the presented scenario the main communication partner of VWS VMs is
the user of the virtual desktop. Such specific knowledge about the applica-
tion already allows for conclusions on its expected QoS requirements. As
the users are interacting with remote programs as they do with locally run
programs, they are likely to expect a similar responsiveness and therefore
the network must deliver a low delay connection. Similar considerations
are valid for RAS, in addition to a requirement to handle many simulta-
neous connections, as they are central access points. Performing network
QoS management for these VMs is an example for network QoS motivated
by dynamic application requirements, depending on service consumption,
that must be mapped onto the virtual components and network.

VSi VMs provide supporting services, that are indirectly used through
VSe or VWS VMs. Their communication partners are always within the
provider's domain, which allows for specific QoS requirements with respect
to the consumers of their services. On the other hand, VSe VMs are mostly
accessed from outside the provider's domain, which often results in gen-
eralised QoS requirements focused on the individual VM, rather than the
end-to-end network path. Performing network QoS management for these
VMs is representative for constructing a topology with rather static prop-
erties from a limited set of resources.

3.4. Network QoS management requirements

VN components share physical resources with all other virtual components,
especially VMs. Consequently, all management affecting resource allocation
and availability may have side effects on the achievable network QoS.

This section's goal is to capture side effects on network QoS through the
existing real world use cases. To guarantee network QoS the side effects

47

Chapter 3. Scenario analysis

assign resources

to component

de-/activate component

create component

delete component

migrate component

actor

Management System

Figure 3.4.: Use cases relating to virtual components

from resource allocations must be handled correctly or even avoided. This
rationale is the basis for this requirements analysis.

This requirements analysis follows the method described in [JBR 99]. Each
use case is described and detailed out, so that side effects on network QoS
can be heuristically identified and requirements on network QoS manage-
ment formulated.

For the requirements on network QoS management in VEs, management of
virtual components must be analysed. The identified use cases are shown
in Figure 3.4. The summary of the performed analysis can be found in
Appendix A, use cases 1 through 6.

The use case descriptions refer to a collection of managed VMs as VI,
even though the network aspect of VIs is not represented in the currently

48

3.5. Summary

employed management systems. The term is still used in this section to
avoid the need to introduce and discuss implementation specific concepts.

The full list of unique observations, identified as potential for side effects
on network QoS, is:

• A network uplink is provisioned on the target host.
• Component placement defines how the VNs spans across the physical

topology.
• Network components cannot be allocated resources from resource

pools.
• Resources allocated to VMs cannot be used by VN components.
• Resources on the host can be released and in turn allocated to network

components.
• The components network uplink on the origin host are not required

after the migration completes.
• There is a time interval where one component blocks resources on two

hosts.
• When a component is activated it binds and blocks resources on a

host.

The analysis shows, that management operations on single virtual compo-
nents almost always affect multiple components which are very often net-
work components. This is considered strong reason for requiring automa-
tion. Table 3.6 provides an overview of the requirements derived from the
potential side effects on network QoS resulting from management operations
on virtual components. The full description of the identified requirements
can be found in Appendix B.

3.5. Summary

This chapter analyses management performed in current VEs with the aid of
two real world scenarios. Its focus is on resource management in the context
of network QoS management. The use case analysis identifies potential
for side effects between resource management on VMs and network QoS

49

Chapter 3. Scenario analysis

Req.-ID Title

Req.#1 Resource allocation to VMs

Req.#2 Resource allocation to VN components

Req.#3 QoS links can be specified with virtual endpoints

Req.#4 Support for different types of QoS paths

Req.#5 VI semantics for performing management

Req.#6 Monitoring structures for VIs

Req.#7 Management users are restricted to their associated VIs

Req.#8 Multiple concurrent and customer managers

Req.#9 Automated adaptation of links

Req.#10 Automated enforcement of network QoS requirements

Table 3.6.: Summary of network QoS management requirements

management. This leads to requirements on a management system that is
capable of providing network QoS in a VE.

The performed requirements analysis looks at VE as a single entity that
provides VIs. The derived requirements are on a management system that
allows network QoS management, as intended.

50

C
h
a
p
t
e
r 4

Related Work

This chapter provides an overview of available technologies and approaches
relevant for developing a network QoS management architecture for VEs
and arranges them with this work and the identified requirements. The
conceptual aspects of network QoS management and management archi-
tectures is understood very well and introduced in Section 2.2.

Figure 4.1 illustrates the partitioning of the network QoS management prob-
lem, for marshalling related work:

Technology … methods for creating network links and components with
guaranteed properties.

Management … approaches for management automation and VI semantics.
Integration … architectures for network management, including virtual-

ization.

In developing a management architecture, this work aims to orchestrate
available technologies to build VIs. These technologies constitute the first
area. Management and integration are both aspects belonging to the oper-
ational specifics of VEs. The management area means specific approaches
relating to single problems. The orchestration of individual solutions to a
comprehensive network QoS management architecture constitutes the inte-
gration area.

51

Chapter 4. Related Work

Technology

Management

Integration

Figure 4.1.: Key aspects to network QoS management in VEs

Currently, most research and development is focused on the technology
aspect. Where QoS is also subject to research, the focus is on specific com-
bination of scenario and technologies, neglecting heterogeneity and integra-
tion. The architectures introduced within this chapter are located around
Cloud Computing and Future Internet, where the management aspect is
more the centre of attention and the make ups of data centres take more of
a subsidiary role.

Requirement Req.#4 lists varying types of links with unique properties due
to their endpoints and can be used as an indicator for how focused or generic
an approach is. Regarding the analysed architectures in this chapter, the
conclusion of this chapter is that there are available approaches for some
of the posed requirements and problems, but network QoS management in
VEs in its entirety remains unsolved.

4.1. Network QoS Technologies

The technologies at hand are the basis for any consideration of a network
QoS management architecture. To effectively perform QoS management,
every employed component must have some capacities for guaranteeing QoS
relevant aspects. For virtual components this means the entire provisioning
stack, from the abstracted component down to the contributing hardware
resources, must have such capacities. A network QoS technology, in this
context, is an implementation of a specific component, virtual or physical,

52

4.1. Network QoS Technologies

with QoS capacities, so that a management system can use it to realise
network QoS in VEs.

The following is a selection of available previous work, illustrating for each
layer in the provisioning stack at least one implementation with QoS ca-
pacities can be found. The main discussed contributions are:

• Project Crossbow
• A survey on QoS aware resource management
• Currently popular VMM implementations
• Currently popular implementation of network components

The most sophisticated approach addressing this problem was project
Crossbow [TDSB 09, SUN 09, TDS+ 09] by SUN Microsystems. It devel-
oped a specialised virtualization facility and corresponding hardware, that
allows for fine grained resource allocation to virtual network interfaces and
links.

Approaches, such as Crossbow, where software and hardware are very
closely coupled, are not the regular case and require homogeneous hard-
ware. VEs are scale-out clusters, as those presented in the real world sce-
narios in Section 3.2. Here, the important aspect of scale-out clusters is
that they are not built once, but grow over time, by adding additional
servers [SMEVH 10]. Even if a cluster starts out with homogeneous hard-
ware, it must be expected that there will be heterogeneous hardware. This
is discussed in [CaJi 09] and [PGP+ 10], and the need for adequate ma-
nagement is recognised.

A survey [RyKo 13] on network virtualization for QoS aware resource ma-
nagement names incompatibility of available QoS approaches in implemen-
tation and description as two of the most pressing research challenges in
the area of network virtualization. It becomes clear, that the problem is
orchestrating subsystems and components into providing VNs with guaran-
teed QoS properties. On the other hand, individual subsystems and com-
ponents that implement mechanisms that can be used to achieve network
QoS are available.

53

Chapter 4. Related Work

According to [BGRS 11], in 2009 VMware had a 80% market share with
its brand of VMM. One of it's biggest challengers is the Xen hypervisor,
which is used by Citrix and Oracle for their virtualization products, as
well as for some of the biggest (perceived) Cloud Computing providers,
such as Amazon [Shan 09, WaNg 10]. Both VMM implementations support
resource allocations to VMs as per requirement Req.#1.

There is not any equivalent support for resource allocations to VN com-
ponents as required by Req.#2. However, there are available technologies
that can contribute it if managed and integrated correctly. For instance,
the Open vSwitch [PPK+ 09] that is often used together with the Xen
hypervisor [RyKo 13], has the capability to limit data rates and perform
further scheduling in combination with OpenFlow [MAB+ 08]. This could
be modified to serve as access gateway to established QoS approaches, for
example [AAC+ 03].

There are many approaches that realise network QoS even when there are
virtual components involved. Project Crossbow and the just drawn combi-
nation around Open vSwitch are two representatives. Crossbow illustrates
how extensible the concepts of virtualization are, so that one can add and
apply highly specialised technologies to enforce network QoS. On the other
hand, Open vSwitch and OpenFlow are highly evolved concepts with open
source implementations, which enable many architectural approaches. The
list of use case specific implementations could be extended, but does not
yield any further merit. The key point is that network QoS can be im-
plemented with available technologies and this thesis may focus on the
management thereof.

4.2. Internet focused approaches

With goal of network QoS management in VEs in mind, the architectures
introduced in Section 4.3 best represent current approaches. There is a
plethora of other management approaches, which employ VNs to remedy
problems of today's Internet architecture. The most recent of these ap-
proaches pick up on “How to lease the Internet in your spare time” [FGR 07]

54

4.2. Internet focused approaches

Project Ref. Architectural Domain

VNRMS [NJC+ 99] VN management

Tempest [VdMR+98] Enabling alternate control architectures

NetScript [dSYF 01] Dynamic composition of services

Genesis [KCC+ 01] Spawning VN architectures

VNET [XCL+ 12] Virtual machine Grid computing

VIOLIN [RJXG 05] Deploying on demand value added services on IP overlays

X-Bone [Touc 01] Automating deployment of IP overlays

PlanetLab [PACR 03] Deployment and management of overlay-based testbeds

UCLP [WCS+ 03] Dynamic provisioning and reconfiguration of lightpaths

AGAVE [BLG+ 07] End-to-end QoS aware service provisioning

GENI [BCL+ 14] Creating customized VN testbeds

VINI [BFH+ 06] Evaluating protocols and services in a realistic environment

CABO [FGR 07] Deploying end-to-end services on shared infrastructure

Table 4.1.: Architectures compared in [ChBo 09]

or “Overcoming the Internet impasse through virtualization” [APST 05a].
This section arranges these approaches with this thesis and the architec-
tures analysed in Section 4.3.

The general notion of that research is to tailor VNs, to fit the varying
needs of services. Virtualization, especially VN components, merely serve
as vehicle to implement multiple instances of routing software with different
fine tuning. A comparison of 13 such architectures, listed in Table 4.1, is
performed in [ChBo 09]. CABO is the original architecture employing VN
components, introduced in [FGR 07]. From the presented list, VNET is the
most applicable to network management in VEs.

VNs are core to these approaches and QoS is an aspect in many, but solving
the challenges through virtualization are not their business. Instead, it is as-
sumed VEs can be managed so that resource allocations to VN components
and links has a predictable or even deterministic effect on VN capacities.

55

Chapter 4. Related Work

4.3. Comprehensive management approaches

As per requirement Req.#5 network QoS management is performed on
abstract VIs. Derived from analysing real world scenarios, the idea behind
this requirement is to separate the management of VIs and the providing
infrastructure. This allows VI managers to perform their tasks and need
not about the underlying infrastructure and the provider need not disclose
internal information about the VEs.

The comprehensive approaches subject to this section fulfil two require-
ments:

• VNs are subject to management.
• There is an abstract representation of each managed topology, that

does not carry information about other managed topologies.

The first requirement is chosen to find relevant approaches. The second re-
quirement is a (much) weaker version of requirement Req.#5. It is implied,
that management approaches which work with isolated abstract representa-
tions, are more like to address the issues at hand. The second requirement
is to filter out highly specialised use case specific approaches, that do not
target VEs.

The mapping of VI components onto the physical infrastructure is not
guaranteed to be static or even injective, as illustrated in Section 2.1.2.
In [PGP+ 10] the authors discuss the diversity and heterogeneity of VN
components and their provisioning. Amongst others, [MVKK 12, BKFS 07,
TaYa 10], [PGP+ 10] recognises VM migration and the changes to the net-
work as management problem that needs to be addressed. This concurs
with this thesis' identification of frequent migration and changes to the
size and topology of VIs as the main drivers for the dynamics in VEs, in
Section 1.4.

A study [SoAn 10] performed in 2010 analysed management operations per-
formed on VEs. It is determined, that for average sized deployments of
VEs, in 2010, the typical management operations include 90 start ups of
VMs and 50 automatic VM migrations, per day; peak values measure over

56

4.3. Comprehensive management approaches

1000 daily occurrences of a single management operation. These numbers
illustrate the constant dynamics in VEs, to support the requirements for
automated management.

The architectures introduced in the following aim at QoS management with
the involvement of virtualization. Each approach is relevant, because some
aspects of the requirements formulated in Section 3.4 are covered. However,
neither management architecture is aimed at all the requirements identified
in this thesis. The work discussed in the following is representative for the
current situation in the area of network QoS management in VEs.

The analysed architectures are:

• Autonomic architecture for virtual network piloting
• Dynamically Adaptive Virtual Networks for a Customized Internet
• Intelligent Service Oriented Network Infrastructure
• VNET

4.3.1. Autonomic Architecture for Virtual network Piloting

The Autonomic Architecture for Virtual network Piloting (AAVP) [FAB+ 11]
is the most recent development of continued research efforts towards au-
tomated management. The researchers focus their work around future
Internet technologies [Pujo 08, FBA+ 11]. Their subjects to manage-
ment are foremost virtual routers, which offer most merit to networks
and services in future Internet, or next generation Internet, scenar-
ios [APST 05b, WKB+ 08, SWP+ 09].

Figure 4.2 shows a deployment of the AAVP architecture, situated entirely
on a single virtualization host. Its three active components are the Vir-
tualization Context Collector (VCC), the Virtualization Piloting Decision
Maker (VPDM) and the Virtualization Manager (Virtualization Resource
Manager, VRM in [FBA+ 11]). The key idea is that every network com-
ponent has an autonomic piloting following the proposed architecture and
does the right thing to implement virtual topologies and even QoS with
virtual endpoints.

57

Chapter 4. Related Work

Dom 0 Behaviours Dom U

VR1

eth

Policies

Dom U

VRn

eth

Virtual

Machine

Manager

Virtual

Link

Manager

Virtualization Manager

Virtualization Piloting

Decision Maker

Virtualization Context

Collector

Hypervisor

Knowledge

Base

Hardware eth Memory

Figure 4.2.: AAVP architecture, adapted from [FAB+ 11]

The AAVP architecture recognises that users/customers use an abstract
description of the topology to be implemented. However, this does
not quite satisfy the requirement for VI semantics, as their specification
schema [FAP 10] foresees a strict 1:1 mapping for links and components.
Section 1.2 illustrates the complexity of managing virtual links using the
example of a virtual twisted pair cable. The cable is implemented either as
a relatively simple forwarding between two VMs on the same host, or as a
path between two VMs on separate hosts, hiding multiple links and com-
ponents from the user. Through its 1:1 mapping the AAVP has no means
of hiding paths or path segments. Consequently its monitoring approach,
realised through the VCC, does not need to map and convert monitoring
structures.

A system following this architecture can automatically enforce QoS locally
on each host and can realises QoS paths specifically for virtual endpoints.
It exchanges data between knowledge bases to coordinate all hosts into
providing network QoS paths for VIs. The concrete interaction schemes
with managers and the interactions between autonomous piloting systems
have not been laid out, yet. Similarly different types of QoS paths are
beyond the current scope of AAVP.

58

4.3. Comprehensive management approaches

Virtual Infrastructures

Node Link Node Substrate Network

Virtual Nodes and Links

Virtual

Network

Traffic

Management

QoS

Path

Virtual

Network

Traffic

Management

QoS

Path

QoS

Path

Figure 4.3.: Example DaVinci set up

4.3.2. Dynamically Adaptive Virtual Networks for a

Customized Internet

The architecture for Dynamically Adaptive Virtual Networks for a Cus-
tomized Internet (DaVinci) [HZSL+ 08], provides network paths with guar-
anteed QoS properties. VNs are used to concurrently have different methods
of traffic management and traffic engineering on the same physical infras-
tructure. Through this, VNs implement different traffic classes as well as
different methods for measurement and enforcement, while virtual compo-
nents and links are used for resource allocations. Requested network paths
are implemented by the VN whose methods are best suited to realise the
QoS requirements of the requested path.

Figure 4.3 shows an example for realising network paths with guaranteed
QoS properties using the DaVinci approach. Each node and link of the
physical infrastructure (substrate network in [HZSL+ 08]) is virtualized, so
that every VN topology is a subset of the physical topology. For each
VN customised traffic management is performed, resulting is different QoS
properties for which a VN can make assertions.

In the DaVinci architecture, individual QoS paths are what is requested and
delivered to customers, similar to the VIs introduced in Chapter 3. While
this architecture has a very narrow scope of intended use, its requirements
and main concerns compare to this thesis. Its abstracted description and

59

Chapter 4. Related Work

Host

Host

Host

Host

Host

Physical Infrastructure

NodeNode
Node Node

Node

ISONI

Virtual Service Network

Service

Component

Service

Component

Figure 4.4.: Realising virtual infrastructures with ISONI

handling of QoS paths corresponds to this thesis' requirement for VI se-
mantics. Still, this changes the required monitoring task so that it is not
comparable to monitoring in VEs. The need for automated adaptation of
paths and QoS enforcement are central aspects of DaVinci.

As a purely network focused architecture, DaVinci is not concerned with
endpoints at application level and does not recognise varying types of QoS
path. It is an architecture targeted at implementing links. Consequently
the managers of VEs do not have corresponding counterparts in the DaVinci
architecture.

4.3.3. Intelligent Service Oriented Network Infrastructure

With its service components (SC) and virtual service networks (VSN) the In-
telligent Service Oriented Network Infrastructure (ISONI) [VKO+ 09] lays
its focus on VIs, designed for specific services. Its main concerns are de-
ployment and monitoring. Managers are restricted to their VSNs and may
access monitoring data.

Figure 4.4 illustrates the ISONI approach. Host are managed using ma-
nagement agents called ISONI exchange box (IXB). Each host with an IXB

60

4.3. Comprehensive management approaches

is an ISONI node and realises SCs as VMs. To build VNs, VSNs in ISONI
terms, the IBX create OSI layer 3 overlay networks and perform access con-
trol to avoid crosstalk between the VSNs. For its high level goal of service
provisioning, ISONI requires an interface description and parametrisation
for each SC, which allow configuration of different types of QoS paths.

ISONI is strictly targeted at virtual endpoints, which fits a portion this
thesis' requirements pertaining to endpoints and types of QoS paths. The
architecture implements the concept of VIs and aims to provide adequate
monitoring structures while restricting its managers to their VIs.

Developed specifically for real time multimedia services, ISONI is not de-
signed to handle the high dynamics in VEs. On the one hand, its restriction
to OSI layer 3 leaves out most of network management relevant to network
QoS in VEs. On the other hand it does not perform automated manage-
ment.

4.3.4. VNET

The VNET architecture has been developed to deal with migrating VMs,
which may be distributed over multiple sites [SuDi 04, SGD 04]. It is con-
stantly developed to be efficient and “lightweight” enough to be employed in
a HPC environment [CXB+ 12]. While the handling of dynamics through
migration in VEs is a key motivator, network QoS is not an established
concern of VNET. However, it has been interfaced with VRESERVE, a
network reservation system for optical networks [LSD 05].

The VNET approach at management of VNs foresees a VNET proxy on
each host and all network traffic to and from VMs passes through this
proxy. Proxies decide on a per flow basis how to forward data frames.
To handle migration and VMs separated across multiple sites, the proxies
form an overlay network and may encapsulate frames to forward them to
the correct destination host; or hosts in the case of multi and broadcast.

Figure 4.5 shows an application of the VNET architecture as presented
in [XCL+ 12]. The basic components are VNET/P Core, VNET/P Control

61

Chapter 4. Related Work

VNET/P Core

User Space

VNET/P Control

Guests

Linux Kernel Virtual NIC

VNET/P Bridge

Palacios VMMHost Driver

physical network

ApplicationOS

Device Driver

ApplicationOS

Device Driver

Virtual NIC

Figure 4.5.: VNET architecture [XCL+ 12]

and VNET/P Bridge. The suffix “/P” is specific to the implementation.
VNET/P identifies an implementation as part of the VMM, while VNET/U
is a user space implementation [XCL+ 12]. The Core and Bridge constitute
the proxy. The Core is the service access point through which network
traffic enters and leaves the VNET overlay. Instead of encapsulating and
forwarding, the Core can also decide traffic is to be bridged into the physical
network. The VNET Bridge is the component that forwards network traffic
from/to the host. The Control component is the managing component
through which the behaviour of the proxy is controlled.

In VNET, VIs are described with a domain specific language. It recognises
two types of network paths, which are implemented differently. VNET can
implement and monitor these topologies and correctly handle migrating
endpoints. It does not recognise network QoS and is not concerned with
managers of the VE. Still, VNET appears to be the most sophisticated
approach to perform network management in VEs.

62

4.4. Discussion

4.4. Discussion

The overview of related work presented in this chapter includes technologies
for resource management of single subsystems and components, and a host
of architectures for employing VNs to achieve certain goals. As for how
to leverage the available technologies to build and manage the VNs, there
appears to be a gap in the developments of network QoS management, the
integration aspect in Figure 4.1.

From the surveyed architectures, four were developed with a wide enough
scope to warrant a closer analysis and comparison to the requirements de-
rived in Chapter 3. Table 4.2 summarises the findings. Each requirement
is marked either met completely, to a certain extent or not at all.

Architecture Re
q.
#1

Re
q.
#2

Re
q.
#3

Re
q.
#4

Re
q.
#5

Re
q.
#6

Re
q.
#7

Re
q.
#8

Re
q.
#9

Re
q.
#1
0

AAVP V V V & _ _ & & _ V

DaVinci V V & & V & & & V V

ISONI V V _ _ V V V & & &

VNET V V _ _ V V & & V &

V: fulfilled _: partially fulfilled &: not fulfilled

Table 4.2.: Summary of fulfilled requirements

Requirements Req.#1 and Req.#2 are very basic requirements, often ful-
filled through the underlying technologies and prerequisites for any manage-
ment architecture. Therefore all management architectures can be said to
fulfil these requirements.

Requirements Req.#3 and Req.#4 aim at the management of virtual net-
work paths. This is a more complex problem and also very often (the only)
subject of the “Future Internet” architectures. The requirements can only
be fulfilled to the extent where network path management through the In-
ternet and through the data centre are similar. This is mostly OSI layer 3
and above. The combination with endpoints are out of scope of the Future
Internet research. Requirements Req.#3 and Req.#4 can be interpreted to

63

Chapter 4. Related Work

gauge how reliable the QoS properties of paths created with the underlying
technologies are.

Requirements Req.#5, Req.#6, Req.#7 and Req.#8 pertain to the manage-
ment of VIs and their monitoring. For this comparison Requirement Req.#5
is said to be fulfilled when there is a managed object for individual VIs.
Requirement Req.#6 must always be seen in context of the intention of the
architecture is to get a reasonable statement. For instance VNET has a very
sophisticated and partly automated monitoring approach to provide rele-
vant information about its VIs. Hence the requirement is marked fulfilled,
even though the entire VNET approach does not implement or monitor net-
work QoS. Requirements Req.#7 and Req.#8 can be interpreted to gauge
how well an architecture can be used with customer managers in dynamic
environments. The fact that these requirements often remain unfulfilled
correlates with Requirements Req.#3 and Req.#4: as network QoS for VIs
can hardly be managed, coordination efforts are neither particularly useful
nor required.

Requirements Req.#9 and Req.#10 pertain to automated management.
The fulfilment of these requirements must also be evaluated in context.
Only intended and implemented management can be expected automated.
Therefore the analysed architectures can fulfil Req.#9 and Req.#10 even
though they completely lack other aspects, for instance coordination of
concurrently performed management.

Having applied the correlation between fulfilment statements, Table 4.2
shows that VIs cannot be managed for all use cases identified in Chapter 3
and that multiple managers performing management is hardly addressed at
all. Building an architecture without these short comings has to accomplish
correspondingly more, in order to fulfil the automation requirements as
well.

A comprehensive approach at network QoS management in VEs does not
exist, even though many management approaches based on a fully controlled
VE exist. The remainder of this work develops a management architecture
for network QoS in VEs and close this gap between capabilities of available
technologies and intended applications.

64

C
h
a
p
t
e
r 5

Performing management

in virtualization environments

The goal of this chapter is identifying prerequisites, and requirements on
the behaviour of a management system. Prerequisites must be fulfilled by
subsystems not developed as part of this work. Requirements on the be-
haviour carry design decisions, rather than defining necessities for achieving
network QoS management.

The resulting requirements shape the approach for developing the manage-
ment architecture in Chapter 6. This arranges network QoS management
with other management performed in VEs, to realise the herein developed
architecture's sustainability.

To gain a complete view, a life cycle for VIs is developed first. It allows
to derive management use cases and, in a further step, functional and non-
functional requirements for performing management in VEs. This method
is also used in [MNM Dreo 02]. The resulting requirements are then classi-
fied as prerequisite, or behavioural requirement.

First, Section 5.1 takes another look at the services introduced in Sec-
tion 3.2, to obtain a better understanding of the intentions of managers
whose actions affect network QoS. This serves threefold:

65

Chapter 5. Performing management in virtualization environments

1. Identifying intentions enables the identification of operations on VMs
and virtual topologies, performed in Section 5.2, leading up to the life
cycle in Section 5.2.3.

2. Identifying managers enables structuring the identified use cases in
Section 5.3 by the actors involved.

3. Identifying managers is part of developing the organisation model in
Section 6.3.2.

Section 5.3 derives requirements using the same method as applied in Sec-
tion 3.4, before Section 5.4 summarises this chapter.

5.1. Managing virtualized services

Management is performed by different users with different goals. This sec-
tion analyses the services Svc.#1, Svc.#2, Svc.#3 and Svc.#4, introduced
in Section 3.2, to refine their management into tasks which help to identify
management roles and use cases. In contrast to Chapter 3, all management
operations that affect the VMs' and network's capacities to provide and
deliver services are relevant. These are management operations performed
on of the following:

• the services themselves, or
• VMs and networks, or
• virtualization facilities, or
• physical hardware.

There are three generic roles involved with service management: the cus-
tomer, the provider and the user [GHHK 01, GHKR 01]. The customers'
overall goals are maintaining services, while the providers work to enabling
services and service management. The users is the intended audience for
provided services, but perform management solely through operating ser-
vices, if at all. The following identifies these generic roles and their specific
goals in each service. This creates specialised roles for management tasks
in VEs.

66

5.1. Managing virtualized services

Services are always requested by customers. It is assumed that all planning
and negotiating is finished, before entering the provisioning phase. The pro-
visioning phase is the first phase where concrete management is performed
on the VE and relevant management operations occur. This is the starting
point for each service description. The discussed services are:
Svc.#1 Attended hosting of virtual servers
Svc.#2 Unattended hosting of virtual servers
Svc.#3 Project infrastructures
Svc.#4 Personal desktop

Svc.#1 Attended hosting of virtual servers The provider creates
and maintains the server, while the customer uses the software installed on
the server. During the provisioning phase, the provider creates the server
as a single VM, connects it to one of two available access networks and
installs the required software on the server.

After that, the customer uses the server as intended. For performance
management as described in Section 2.2.2, the customer uses specific ma-
nagement information and monitoring data. The server, with its OS and
installed services, provides monitoring data about the current load and ac-
tivity. Data obtained about the network uplink provides information about
interactions with other systems. Operating and managing services implic-
itly controls the amount of resources services would use, however, the cus-
tomer does not control the amount of resources the VE provides. This task
is delegated to the provider through an explicit request.

Svc.#2 Unattended hosting of virtual servers As a variant of the
hosting service, the tasks are very similar to the attended hosting ser-
vice Svc.#1. The distinct feature of the unattended variant is that the
customer has full control over the operating system. This enables the cus-
tomer to use OS tools to manage resource allocations to processes. In this
form, resource allocation is managed by the provider for the virtualization
facility and by the customer for the VM. Through this, the customer is re-
sponsible for the monitoring data obtainable from the operating system.

67

Chapter 5. Performing management in virtualization environments

Svc.#3 Project infrastructures This service also has the role of a
provider that controls the VE and reacts to customer requests. The cus-
tomers are granted bulk amounts of resources, which they may arbitrar-
ily allocate to their VMs. To perform resource allocation, customers are
granted access to manage the VE directly. Moreover, on the customers
side, primary and secondary users are discernible. According to the ser-
vice description in Section Svc.#3, there are main users that can define
subordinate users. The main users control the entire virtual topology and
assign resource shares to subordinate users. Also, only main users inter-
act with the provider to attain additional components and resources. The
subordinate users are in charge of a subset of a virtual topology and work
with resources shares that are fragments of what the provider allocated
to the customer. Their management domains are created within a virtual
topology, therefore they are labelled secondary users.

In contrast to the services Svc.#1, Svc.#2 and Svc.#4, withdrawing a
VM does not mark the withdrawal of the entire service. In this case, the
provider must reorganise the (virtual) network and make the released re-
sources available to the customer again.

Svc.#4 Personal desktop With a direct uplink to the Internet and in-
tegration into a local network and the remote access server, this service has
the broadest variety of attached networks and available access methods.
Setting up a VM for a personal desktop is very similar to setting up a VM
for an (un-)attended server. On the other hand, setting up the networks
is more complex. Access over the remote access server requires a corre-
sponding configuration of the VMM. The customer is involved during the
provisioning phase a VM may be connected to the local network, which is
within the customer's management domain. Once the virtual desktop has
been provisioned, the customer has full control over the OS, analogous to
unattended virtual servers. During the operating phase management of the
LAN remains a task where provider and customer interact, as each is re-
sponsible for parts of the network. This can be regarded as a new role on
the customer side of the service.

68

5.1. Managing virtualized services

Actors performing network QoS management

The descriptions of services and the identified tasks allow a refinement of
customer and provider roles, focused on certain aspects of performance
management and certain areas of the VE. As network QoS management
is not actually performed in the real world scenarios, it is assumed, that
every role performing QoS management and resource allocation on VMs,
also fulfils similar tasks on VNs and network components. Further, it is
assumed that performance management of services requires management
information from the corresponding VI's components and therefore every
management role involved with performance management needs to interact
with the anticipated management system for network QoS management in
VEs, at least to obtain monitoring data. The identified roles described in
the following are:

• User
• Primary customer
• Secondary customer

• Local admin
• Virtualization provider
• Hardware provider

User: Interacts with the services provided on VMs. A user performing
management only controls the actual service, not the VM's OS nor
any other component. A service may be adaptable to the available
resources. In this case the Users need information about resource
utilisation of the VM and general load on its host within the VE.
This information is for example used to early detect bottlenecks and
threshold crossings.

Primary customer: Interacts with the management system and the
provider. The primary customer knows about the entire VI, its DTEs,
DCEs, topology, as well as the associated resources and actively per-
forms performance management. Once resources have been assigned
to a customer's VI by the provider, primary customers may allocate
and reallocate them to existing virtual components directly, through
the management system. Especially after a VI's initial provision-
ing, primary customers may request additional resources and virtual

69

Chapter 5. Performing management in virtualization environments

components from the provider. Also, primary customers manage sec-
ondary customers, to delegate resource shares and responsibilities for
virtual components or subtopologies.

Secondary customer: Interacts with the management system to perform
performance management analogous to the primary customer. How-
ever, secondary customers do not interact with the provider and usu-
ally, their management domain is a subset of what was provided by
the provider to the primary customer.

Local admin: Virtual desktops are an example for services that are inte-
grated into a customers domain, as opposed to externally provided
services, that exist separated from the customers domain. Integrating
a virtual desktop into the customers LAN, is an isolated supporting
task and not directly related to using the service. Therefore this task
can be delegated to a separate role, the local admin, who is in charge
of ensuring that the virtual desktop can interact with any other ma-
chine on the LAN in the same way, as local physical desktops can.
As the provider has no means of performing management in the cus-
tomers domain, the local admin plays an integral part during the
provisioning phase, to initially connect the virtual desktop with the
local LAN. After that the local admin ensures the connection between
LAN and virtual desktop performs within the specified parameters.

Virtualization provider: The virtualization provider role performs
management on the VE to provide VIs and guarantee QoS. It has
full control over VMs, VMMs and the network components inter-
connecting the virtualization hosts. VMs, network components and
topologies are created according to the customers' requests, initially
during the provisioning phase and later on as well. With global knowl-
edge of all hosts and virtual components the virtualization provider
controls virtual component placement and resource allocation. While
the main goal is providing infrastructures according to the customers'
requests, the virtualization provider also has full responsibility for the
hosts and VMMs, which especially comprises planning and perform-
ing maintenance work.

70

5.2. Management operations performed during life cycles

Hardware provider: In large scale environments, management of the IT
infrastructure is separated into many distinct roles. Especially net-
work management and physical network components are responsibil-
ities of dedicated roles. To match the VEs of the chosen real world
scenarios, having two separate provider roles is sufficient. The respon-
sibilities of the hardware provider can be summarised as everything
related to networks and physical hardware, that is not covered by the
virtualization provider. As a consequence, virtualization provider and
hardware provider both manage the physical network, to create and
manage virtual topologies. While the virtualization provider's view
is limited to network components that constitute part of the VE, the
hardware provider is responsible for all physical network components.

5.2. Management operations performed during

life cycles

Section 2.2.2 introduces life cycles conceptually, to identify the goals and
tasks pertaining to network QoS management. This section develops a
specialised life cycle for VIs in VEs, to derive management use cases in
Section 5.3.

When performing management on network paths, a single management
operation often implies many management operations on different com-
ponents. By first analysing management operations on virtual compo-
nents and infrastructures, it becomes possible to determine implicit oper-
ations and dependencies between operations when analysing management
use cases. This yields more refined and complete requirements. Services
employed by users are always assumed capable of fulfilling QoS require-
ments, if the VE provides sufficient resources.

As life cycle descriptions of VIs are not available, Section 5.2.1 starts out
with an individual VM's life cycle, then Section 5.2.2 advances to a life cycle
for virtual topologies, before Section 5.2.3 presents a life cycle for VIs.

71

Chapter 5. Performing management in virtualization environments

connect

RR

disconnect

RR

move to

VM group

migrate

VM

create

VM

halt

VM

clone

VM
start

Figure 5.1.: Example life cycle of VMs, introduced in [Metz 09]

5.2.1. Operations on individual virtual machines

Figure 5.1 shows an exemplary life cycle for a VM, already published
in [Metz 09]. This life cycle is focused on management operations that af-
fect a VMs I/O capabilities. In the Figure, RR stands for remote resource,
a piece of a VM that is not local to the hosting computer, e.g. storage. A
VN with allocated resources to fulfil certain QoS requirements and span-
ning across multiple hosts can also be considered a RR, as it is not confined
to a VM's host. Figure 5.1 shows an exemplary life cycle for a VM, first in-
troduced in [Metz 09]. This life cycle is focused on management operations
that affect a VMs I/O capabilities. In the Figure, RR stands for remote
resource, a piece of a VM that is not local to the hosting computer, e.g.
storage. A VN with allocated resources to fulfil certain QoS requirements
and spanning across multiple hosts can also be considered a RR, as it is
not confined to a VM's host.

The clone and migrate operations are intuitive examples that the depicted
management operations do not have to be performed in the shown order
and that some operations may be performed several times during the same
VM's life cycle. Yet, it is a complete list of management operations on
VMs, directly affecting their I/O subsystems. Networking is part of the I/O
subsystem and networks can be considered remote resources. Therefore, the
illustrated management operations in Figure 5.1 have network QoS relevant
aspects. The individual operations described in the following are:

• create VM
• connect RR
• move to VM group
• clone VM

• migrate VM
• disconnect RR
• halt VM

72

5.2. Management operations performed during life cycles

create VM: Regarding the individual VM instance, create VM is per-
formed only once. Creating a VM means selecting a host and using
shares of its resources to create and activate a VM according to its
specifications. Once created the VM is an active component within
the VE, which in most cases will proceed with booting an OS. The
boot process may be stalled until required RRs are connected.

connect RR: The VM is connected to a RR within the scope of the VE.
This includes the creation of data paths within a VMM so that the
VM can access its RRs. Depending on the current state of the vir-
tualization infrastructure, this also requires the creation of network
paths. For the scope of an individual VM, a RR is provided by the
VE so that it can be used after a VM's creation.

move to VM group: A VM instance is arranged with its environment and
is given to a customer from a management perspective. This includes
the application of customer or service specific rules and policies, es-
pecially network QoS attributes and requirements. At the end of
this operation the VM's configuration is such, that it matches the
service's description and requirements. This operation is always per-
formed when changes to the VM are necessary, to ensure its contri-
bution to the service and to avoid unwanted side effects of changes.
During this procedure it may be concluded that it is not possible to
provide the VM according to the specification of the service and the
customer's requirements. In this case a suitable host must be found
and the VM be migrated, before all rules and policies can be applied.
Eventually the VM is either ready to provide the service for which it
is intended, or it is concluded, that the service cannot be provided
as has been specified. In this case action is required at the scope of
service provisioning and service management.

clone VM: The VE creates an identical copy of a VM, its current state
and its RRs. While there is no persistent effect on the original VM,
the procedure itself accesses a VM's assets which has the potential to
influence its QoS.

migrate VM: A VM, in its current state, is transferred to another host.

73

Chapter 5. Performing management in virtualization environments

This implies a change to every connection to RRs and the VM must
be arranged with its environment again. Depending on the VM's
displacement within the physical set-up there are more or less im-
plications on existing network paths. After a migration, completely
different physical resources are used to realise the VM and the orig-
inal resource, used before the migration must be freed. During the
procedure there are severe effects on the QoS a VM can achieve.

disconnect RR: A VM stops using a RR, the connection is severed and
its resources freed.

halt VM: A VM is deactivated. This usually includes an OS shutdown
and remaining connected RRs are disconnected. This VM's instance
is removed from the VE, so that it does not block any resources
any longer. For halt VM many implementations can be found, each
with different properties regarding which and how many resources are
freed, which has implications on the following create VM that may
be performed.

The main concern of a VM's planning phase is preselecting suitable hosts
for create VM. As the internals of VEs are usually hidden from customers,
VMs have no explicit negotiation phase.

The provisioning phase includes all necessary operations until a VM can
provide its service relevant to the customer. Initial provisioning comprises
creating a VM, connecting RRs and moving a VM to a group. A VM also
enters a provisioning phase when migrating to a new host, as there are new
resources to be allocated to that VM. In this case the VM has already been
created, but RRs may need reconnecting and the VM must be arranged
with its environment.

Direct changes to VMs are connecting and disconnecting RRs, as well as
reconfigurations, which are part of the operation move VM to group. Fur-
ther, a VMs capabilities to provide services may be impeded by its cloning
and migration. These operations are also part of a VM's change phase,
even though both operations neither change the VM itself, nor how it may
be used as part of a service. Consequently the operation phase is charac-
terized by a VM being put to use by customers and cloning and migration

74

5.2. Management operations performed during life cycles

add

comp.

remove

comp.

link

comp.

sever

comp.

create

VN

delete

VN

renew

link
start

Figure 5.2.: Exemplary life cycle of a virtual network

are not performed. Withdrawing a VM from the VE is disconnecting all
RRs and halting the VM.

A management system must expose certain functions to enable performing
the introduced management operations on individual VMs.

5.2.2. Operations on virtual topologies

The previous Section 5.2.1 analyses management operations on individual
VMs, which are the endpoints within VIs. This section is concerned with
management operations provisioning and withdrawing VNs in VEs.

Figure 5.2 shows an exemplary life cycle for VNs, analogous to the life cycle
presented for VMs in Figure 5.1. The management operations need not be
performed in the presented order and most operations will be performed
multiple times throughout a VN's life cycle. These operations control a
components integration into the topology. The individual operations de-
scribed in the following are:

• create VN
• add component
• link components
• renew link

• sever components
• remove component
• delete VN

create VN: This first operation creates the VN, so that components can
be added and links between components can be created. At this time
no components are associated with the VN. This operation is con-
cerned with attributes all components and links within a VN share.
Prominent examples for information is prepared before links and com-
ponents are be added, are:

75

Chapter 5. Performing management in virtualization environments

• address space
• responsible management roles
• management access
• monitoring strategies
• generic QoS requirements

add component: This operation performs membership management as a
prerequisite for linking two components. VNs are isolated subtopolo-
gies and there can only be links between components belonging to the
same VN.

link components: This operation connects two components directly, so
that they can exchange data, within the scope of the VN. The result-
ing link is an abstract managed object and management views focus-
ing on the VI/VN will always show the direct connection between two
components. The link's actual implementation and placement, how-
ever, depends on its endpoints' placements and the QoS requirements
associated with the endpoints and link. Also, a links implementation
may change over time due to migration.

renew link: This operation is meant to handle changes to the VI and VN,
especially concerning migration. In VEs, most links are terminated
by virtual components, which means an endpoint's network access
is implemented by a VMM or other kind of virtualization facility.
Especially VMMs, pieces of software, often have many approaches
to implement network access. Which method is chosen may depend
on the host and its equipment, the current load, and its position in
the physical network topology. All three aspects may change over
time and a link's implementation must be renewed, to ensure it still
satisfies QoS requirements.

sever components: This operations removes a previously created link.
This severs two components within the scope of a VI/VN and also
releases the resources currently occupied by a link's implementation.

remove component: This operation is the complementary group member-
ship management operation to add component. A component to be

76

5.2. Management operations performed during life cycles

removed from a VN may not terminate links belonging to that VN.
Existing links must be severed first.

delete VN: This operation completely withdraws a VN from the VE. All
existing links are severed and the components removed from the VN.
Finally, abstract resources, such as address space, which were previ-
ously allocated to a VN are released.

Analogous to VMs in Section 5.2.1, VNs are part of a service and therefore
its planning phase mostly consists of preselecting resources and there is not
an explicit negotiation phase.

A VN's provisioning phase, can be crafted arbitrarily complex: Every host
has a limited capacity to host virtual components. For any metric that may
be chosen to measure a host's capacity, the complexity of determining an
optimal set of resources to implement and place a virtual component is NP-
hard, known as the knapsack problem [MaTo 06]. With further restrictions
on placement, e.g. grouping of VMs, the problem becomes NP-complete
(NPC).

Common use cases do not constantly saturate network links. Providers
exploit this through over provisioning, allocating more resources to VNs
than the physical network is capable of providing. The benefit is more
VMs and VIs can be realised without deploying more resources, i.e. hosts,
at the expense of increased planning costs. This leaves ample opportunities
for high dimensional planning and decision making, during VN provisioning
phases.

Changes to VNs are the addition or removal of links or components. Smaller
changes merely add links and components to the VN, without affecting
already placed entities, so that the VN immediately return into its operation
phase. Larger changes my trigger or even require a new placement of some
or even all VN components, in order to meet QoS requirements. In such
cases, the VN enters a new provisioning phase to newly place (and replace)
the entire VN within the VE. When a VN is withdrawn, all links are severed
and the VN is deleted.

77

Chapter 5. Performing management in virtualization environments

IT service

instance

VI instance

TimeP = Provisioning

O = Operation

P O W

C = Change

W = Withdrawal

C P O WC P O WC

realising a new service instance

on an existing virtual infrastructure

P O WCC CO C O

Figure 5.3.: Alignment of life cycle phases of a VI providing several user faced IT ser-

vice instances

5.2.3. Life cycle for virtual infrastructures

The previous sections introduce and describe life cycles for high level IT
services, individual VMs and isolated VNs. VIs are the missing link that
combine VMs and VNs to platforms suited to provide high level IT services.
This purpose arranges the life cycles with each other, as depicted in Fig-
ure 5.3. A VI is provisioned with the first user faced service and withdrawn
with the last used faced service.

Following the concept introduced in Section 2.2.2, the six life cycle phases
introduced in the following are:

1. planning phase
2. negotiation phase
3. provisioning phase

4. operation phase
5. withdrawal phase

Planning Phase Before a VI can be provisioned, a topology is specified,
that is suited to fulfil a customer faced services requirements. The planning
phase includes a translation of service specific QoS requirements to network
QoS requirements, that can be achieved and measured within the VE.

78

5.2. Management operations performed during life cycles

Negotiation Phase The negotiation phase determines how a VI is im-
plemented and placed within a VE. This may, for instance, include specifi-
cations that a virtual switch is to be implemented using a specialised VM,
rather than being implemented through the VMM. A reason for such a spec-
ification could be, that a customer requires more control over the switch,
than the VMM implementation could provide. As part of the planning or
negotiation phase the monitoring strategies are specified. The monitoring
strategies determine how detailed and frequent a VIs state is gauged. This
in turn determines how quickly and accurately QoS management can be
performed.

Provisioning Phase With a clear specification of what needs to be pro-
visioned by the VE, the last and most visible effects of a VI's provisioning
phase are the creating of the initial VNs and VMs. To enable these last
steps, the results from the planning and negotiation phases must be put into
policies, which will guide creating VNs and VMs within a VI. An example
for such a policy is selecting one of many methods to realise a virtual com-
ponent. Another example could be restrictions on which hosts VMs may be
placed. Such restrictions, which need to apply to all VMs of a VI, are for-
malised in VM groups, to which VMs are “added” during their provisioning
(see Section 5.2.1).

Operation Phase During a VIs operation phase the VI is used as a
platform for the user faced services, often operated by customers. While
there may be changes to the VE, e.g. more VMs share resources of hosts,
the VI itself remains steadily within the VE. The management performed
during this phase pertains to detecting changes of the environment which
may require action to ensure the VI serves its purpose.

Change Phase The change phase of a VI includes modifications of QoS
and network QoS parameters as well as migrating individual VMs or entire
parts of the VI. Depending on the current configurations, especially net-
work configurations, a migration is quick and the VI can directly revert to

79

Chapter 5. Performing management in virtualization environments

the operation phase. In general, such a change to a VI triggers renew link
operations within VNs and move to VM group operations on VMs. Espe-
cially the renew link operation may result in a required provisioning phase,
where network paths are created to fit the VI. This could entail the creation
of new VN components as well.

Withdrawal Phase Withdrawing a VI is a task which mostly coordi-
nates the decommissioning of the user faced services, the VMs and VNs.
When all operational components are withdrawn, the VI itself can be re-
moved from the system and all related policy sets discarded.

Conceptually, a VI can be regarded as a grouping of VNs and VMs and as
a container to create a compound platform, that can be referred to as a
single entity for management purposes. Operations performed on VIs are
therefore group membership operations without a directly visible effect on
the VE.

5.3. Prerequisites and behavioural requirements

The life cycles defined in Section 5.2 describe the management that is per-
formed in a VE, before, during and after a VI is used by customers and
useful to users. By putting this management in the context of how VEs
are operated in the real world examples, analysed in Chapter 3, the use
cases for a management system for network QoS management in VEs can
be derived.

First, section 5.3.1 identifies and discusses use cases pertaining to managing
roles and privileges. The management performed within these use cases is
not part of the core management functions to facilitate network QoS, as
described in Section 2.2.2. Therefore, detailed analysis of these use cases
are out of this work's scope. After that, Section 5.3.2 provides an overview
of the identified use cases and requirements, analogous to Section 3.

The full use case analysis can be found in Appendix A. The full descriptions
of derived requirements can be found in Appendix B.

80

5.3. Prerequisites and behavioural requirements

delete management

account delete secondary

customer

disassociate

account from VI

associate account

with VI

virtualization

provider

primary

customer

Management System

disassociate secondary

customer from components

associate secondary

customer with components

change account's

management role for a VI

create management

account create secondary

customer

Figure 5.4.: Use cases for managing roles and privileges

5.3.1. Use cases pertaining to roles and privileges

Customers perform management for as long as they have associated VIs
within a VE. Managers concerned with creating and managing accounts,
assigning roles, privileges, resources and VIs are virtualization managers or
primary customers.

The corresponding use cases for managing roles and privileges are sum-
marised in Figure 5.4. The nature of these use cases describes how users of
the management system become managers responsible for VIs. Overlapping
use cases indicate that their general motivation is the same. Their differ-
ence arises from the fact, that the primary customer is operating within
a limited scope, while the virtualization provider operates globally for the
entire VE.

81

Chapter 5. Performing management in virtualization environments

A manager is associated with VIs or components for which they take re-
sponsibilities in the form of a predefined role.

• Management users may perform management on all kinds of compo-
nents of a VE.

• Management users are restricted to associated VIs.

The bare identification of roles and use cases also yields non-functional,
characterising requirements on a management system (and therefore archi-
tecture) for network QoS management in VEs:

• Responsibilities for VIs can be split up in the form of sets of compo-
nents managed by different users. This may result in dependencies
and cascading resource allocations schemes. For example, the virtu-
alization provider allocates primary customers resource shares, who
in turn assign smaller shares to secondary customers, who assign re-
sources to components and links. The management system must track
and account for such cascades in order to provide accurate manage-
ment information.

• A VI's life cycle may outlast many sequential VMs' life cycles. This
has implications on how long, relative to the services life time, as-
signments are valid. Therefore, when assigning responsibilities and
resources, an explicit distinction between VI or component must be
made.

5.3.2. Use cases pertaining to networks and components

The derived use cases are structured by the goals of managers, identified in
Section 5.1:

• Virtual infrastructures
• Virtual links

• Host systems
• Virtual components

82

5.3. Prerequisites and behavioural requirements

assign resources

create VI

modify VI

delete VI

virtualization

provider

Management System

primary

customer

Figure 5.5.: Use cases relating to virtual infrastructures

Virtual infrastructures Figure 5.5 depicts the use cases directly re-
lated to VIs. While all actors perform management on components and
within VIs, the virtualization provider is the only actor performing ma-
nagement in the beginning and at the end of VIs' life cycles. The VI use
cases foremost include or imply steps from other use cases or trigger other
use cases. For example creating a VI includes the creation of many VMs
and links between them.

Virtual links Directly managing VN links has the most direct effect
on network QoS in VEs. The related management use cases are mostly
triggered as part of a larger task when creating components or complete
VIs. Figure 5.6 shows all link management related use cases, where users
explicitly interact with the management system to change a virtual topology
or aspects of individual links.

83

Chapter 5. Performing management in virtualization environments

virtualization

provider

Management System

create link

modify link attributes

delete link

place link

primary

customer

local

admin

secondary

customer

Figure 5.6.: Use cases relating to virtual links

add host to

virtualization environment

remove host from

virtualization environment

evacuate host

de-/activate host
virtualization

provider

Management System

hardware

provider

Figure 5.7.: Use cases relating to hosts

84

5.3. Prerequisites and behavioural requirements

Host systems Part of the dynamics triggering migrations and new
placements are changes in the physical topology. Physical network com-
ponents and hosts are added or removed from the VE either as a planned
change, or as part of fault management. The previously described capa-
bilities for placing VIs and their components allow such changes without
severely interrupting the user faced services, but may still affect network
QoS. Figure 5.7 includes the relevant management use cases pertaining to
physical virtualization hosts.

Please note, that virtualization hosts are never explicitly subject to manage-
ment when managing individual VIs. The same observation can be made
for physical network components. Physical components are introduced to
and removed from VEs. All management performed during their operation
phase to realise network QoS of virtualization infrastructures, is implicit.
This is a main motivation for the approach introduced in Section 6.1.

Virtual components The use cases for management of virtual compo-
nents have been derived in Section 3.4 and need not be derived from life
cycles.

The full list of unique functional and non-functional requirements is:

• Automatic adaptation of links between virtual components
• Control over physical components
• Control over resource allocations in virtual and physical components
• Control over VMMs
• Control over virtual components
• Explicit release of allocated resources
• Explicit migration of individual components
• Full information about all available and deployed resources
• Full information about the current placement of components
• Information on components belonging to VIs
• Information on currently used resources by components
• Migration of virtual components
• Monitoring structures for VN properties can be set up
• QoS requirements are specified w.r.t. the selected components or VNs

85

Chapter 5. Performing management in virtualization environments

Some requirements directly match the requirements described in Sec-
tion 3.4, and must not be formulated as new requirements. Table 5.1 pro-
vides an overview of the requirements refined from the above list. The full
specifications can be found in Appendix B.

Req.-ID Title

Req.#11 Control over physical hosts

Req.#12 Control over virtual components

Req.#13 Control over VMMs

Req.#14 Migration of virtual components

Req.#15 Full information about currently used resources by components

Req.#16 Full information about available and deployed resources

Req.#17 Release allocated resources

Req.#18 All components may be subject to management

Req.#19 Full information about the current VI placement

Req.#20 Reverse mappings from components to VIs

Req.#21 Resource allocation within a hierarchy of management users

Req.#22 Management users can be tied to life cycles or life cycle phases

Table 5.1.: Summary of prerequisites and behavioural requirements

5.4. Summary

A main result of Chapter 3 is recognising, that due to shared physical
resources, network QoS may be affected by any change to resource allocation
and resource taxation within VEs. This chapter describes and analyses a
VI life cycle, to identify such side effects of not QoS specific management.

As a result, two additional sets of requirements were derived. One set
are prerequisites, which demand management capabilities and properties
of VEs so that network QoS management can be performed reasonably.
The other set describe behaviours of a management system, which can also
be seen as supporting capabilities, which are used during multiple phases
throughout VI life cycles. In anticipation of Chapter 6, the identified be-
haviours can be core aspects of functional components in the intended archi-

86

5.4. Summary

tecture. Similarly, the identified management roles in Section 5.1 contribute
to the architecture's organisation model.

This chapter marks the end of preliminary work towards developing a net-
work QoS management architecture for VEs.

87

C
h
a
p
t
e
r 6

Architecture

Continuing the unified software development process, this chapter develops
the intended architecture for network QoS management in VEs, such that
its implementations are suited to fulfil the identified requirements.

Section 6.1 introduces the core idea to have one continuously repeating
management loop, modifying the VE to adhere to the management per-
formed by users on abstract VIs. The loop is refined into management
tasks, leading to the architecture's functional model in Section 6.3.3 and
communicating entities in Section 6.3.4.

The management loop foresees automated refinement of management on
abstract VIs and networks into concrete implementable management oper-
ations for all managed physical and virtual components. Section 6.2 spec-
ifies a refinement procedure for this task, contributing a main component
to the functional model and type specifications for links and endpoints to
the information model in Section 6.3.1.

Section 6.3 contains the management architecture. While the information,
functional and communication model obtain their most input from Sec-
tion 6.1 and Section 6.2, the organisation model's main input are the iden-
tified management roles in Section 5.3.1

89

Chapter 6. Architecture

This chapter is summarised in Section 6.4, before the following Chapter 7
first discusses the architecture, before presenting a prototypical implemen-
tation and evaluation.

6.1. Continuously improving network QoS in

virtualization environments

This Section targets the superordinate questions how to cope with dynamics
and how to enforce network QoS in VEs, stated in Section 1.4.

The core idea is to achieve QoS through automated management loop, con-
stantly working towards configuring the VE so that all VIs' QoS require-
ments are met. The loop is driven by two representations of the VE:

target configuration … all active VIs, with their QoS requirements ful-
filled, and

current configuration … the VE's current state with up to date mon-
itoring information.

The target configuration constitutes the goal specification for the VE con-
figuration. It is an intermediary representation between abstract VIs and
concrete configurations that can be rolled out onto components without
further refinement or adoption. It contains the complete specifications of
all active VIs, as managed by users, and may also include requirements and
constraints on VI realisation and placement.

The current configuration is a snapshot of the VE's current state. It consists
of all knowledge obtainable from the VE, e.g. realised virtual components
and their placement, the state of physical hosts and their hardware, resource
allocations and implemented networks.

The basic management loop is divided into four phases, as illustrated by
Figure 6.1:

1. an acting phase, formulating or refining the target configuration, espe-
cially by extracting and deriving QoS requirements from VIs,

90

6.1. Continuously improving network QoS in virtualization environments

2. a planning phase, devising a series of configurations steps to achieve the
target configuration,

3. an execution phase, managing components to implement the configura-
tion steps,

4. a verification phase, where monitoring data is generated and collected
to assess whether the target configuration has been achieved.

The concept adapted here is known as the Deming cycle [Walt 88] and is
often known by its repeating four phases Plan, Do, Check, Act. The above
adaptation starts out with an Act phase. Figure 6.1 includes interactions
with managers (labelled “Actor”) and the individual components in the
VE.

The best way to handle virtualization's dynamics, is to perform every
change as a change to the target configuration during the Act phase. The
management system automatically devises a plan to implement the change
without negatively affecting network QoS, or deny the change, if no such
plan can be developed.

If changes are applied out of band, i.e. not through changing the target
configuration, problems with delivering network QoS will be detected during
the verification phase and addressed by the next planning phase. Repeating
these phases over and over while allowing the Act phase to finish without
a change to the target configuration, results in an enforcement of QoS
settings, as long the planning phase can devise a suitable configuration for
the given VE.

The following Sections introduce the four phases of the management loop in
detail. This has been published previously in [Metz 14a]. As per Figure 6.1,
the four phases are:

• Definition of a target configuration
• Development of a configuration strategy
• Effective component management
• Collecting Performance Data

91

Chapter 6. Architecture

Actor

4. Collecting

Performance Data

1. Definition of a

Target Configuration

2. Development of

a Configuration

Strategy 3.Effective

Component

Management
individual physical

and virtual

components

Figure 6.1.: Management phases

6.1.1. Definition of a target configuration

The information about VIs largely originates from the actors performing
management in the identified use cases. Therefore it is part of this task
to take management, not performed as part of the management loops, into
account.

Figure 6.2 shows the three tasks of this phase:

• facilitating user interaction
• evaluating monitoring data
• coordination and event handling

All functionality pertaining to user interaction is combined into a func-
tional component with the task facilitating user interaction. Users interact
with the components implementing this task. They can obtain their VIs
current state and configuration and may perform the use cases named in
Section 5.3. Their actions modify the goal state of their VIs and therefore
implicitly the target configuration. The current state is partly measured as
monitoring data obtained from shared components and must be processed
and information about individual VIs extracted. This is a result produced
from the task evaluating the monitoring data.

92

6.1. Continuously improving network QoS in virtualization environments

1.Definition of a target configuration

Facilitating User

Interaction

Evaluating

Monitoring Data

Coordination,

Event Handling

Actor

4. Collecting

Performance Data

2. Development of

a Configuration

Strategy

3.Effective

Component

Management

Figure 6.2.: Tasks assisting the definition of target configurations

Processing monitoring data is an independent task, because the evalua-
tion of monitoring data may yield important information that may need
immediate action, for instance, if a trend towards resource shortage with
the current configuration is detected, a requirement for unallocated spare
resources could be added for certain components, without involving user
interaction.

Changes originating from evaluating monitoring data, as well as though
management performed by users, are integrated into the target configura-
tion as part of the coordination and event handling task. This task is the
information hub and the target configuration is one of its products. It is
also responsible for events as

• reactions to the evaluation of monitoring data,
• responses to problems during the following planning and execution

phases, or
• consequences of explicit user requests.

These events may be automatic changes to the target configuration, or
requests for information from other components, or the management user.
Ultimately, this task marks the end of the act phase in the Deming cycle
and provides the planning phase with a new target configuration.

93

Chapter 6. Architecture

2. Development of a configuration strategy

Develop

Configuration Strategy

Develop

Monitoring Strategy

4. Collecting

Performance Data

1. Definition of a

Target Configuration

3.Effective

Component

Management

Control Planning

Figure 6.3.: Subtasks of developing a configuration strategy

6.1.2. Development of a configuration strategy

The problems of transitioning a system from a given current state into
another desired state and minimising the required resources when imple-
menting network QoS are not specific to virtualization. Developing a con-
figuration strategy, i.e. implementing VIs with network QoS requirements
in a VE can therefore be seen as an optimisation problem.

Developing a configuration strategy has a high dimensional problem space.
There are

• different types of QoS requirements,
• changing numbers of network links,
• varying loads on physical hosts, and
• migrating components.

The planning procedure is correspondingly complex, if the configuration for
optimal placement of virtual components and links is demanded following
Bellman's optimality principle [Bell 57]. As far as operating VEs and per-
formance management are concerned, any configuration that fulfils all VI
constraints and requirements is sufficient.

Figure 6.3 shows the three tasks of this phase:

94

6.1. Continuously improving network QoS in virtualization environments

• develop configuration strategy
• control planning
• develop monitoring strategy

The task develop configuration strategy is representative for arbitrarily com-
plex approaches that can generate an ordered list of concrete configuration
requests for components. Sensible approaches generate lists such that the
resulting configuration of the VE is closer to the target configuration. The
information the planner may use are the architecture's model of the VI (pre-
sentation domain in the information model, cf. Section 6.3.1), the current
and target configurations and it may also interact with individual compo-
nents to obtain information directly.

The task control planning assumes an overseeing role, to monitor and con-
trol especially the development of a configuration strategy. It's core objec-
tive is to continue the management procedure. If a suitable configuration
has been developed it triggers the develop monitoring strategy task and en-
sures the devised configuration steps are passed on to the execution task.
It also handles any deviations, for instance problems reported back from
the execution task, or if the planner is unable to develop a configuration
strategy, or if the planner does not return any result. Figure 6.3 shows
bidirectional interaction between tasks where feedback loops ought to be in
place to ensure the management procedure is driven onwards.

Monitoring strategies can result in more accurate and detailed information,
when specifically tailored to the placement of VI components and links.
The exact placement is defined as part of the configuration strategy. To
use it to develop a monitoring strategy, developing a monitoring strategy
is a task that must follow after developing a configuration strategy.

6.1.3. Effective component management

This task is concerned with implementing the configuration steps devised
previously on the components.

Figure 6.4 shows the three tasks of this phase:

95

Chapter 6. Architecture

3. Effective Component Management

Configure

Component

Decode

Manage

Allocations

1. Definition of a

Target Configuration

2. Development of

a Configuration

Strategy

4. Collecting

Performance Data

individual physical

and virtual

components

Figure 6.4.: Tasks to implement configurations on components

• decode
• configure component
• manage allocations

The feedback loop between configure component and development of a con-
figuration strategy represents the planners capability to interact with com-
ponents to support the planning process. The unidirectional information
flow to the decode task is the list of configuration steps for individual com-
ponents that is to be executed.

Decode is the final adaptation task to translate the high level VI configu-
rations to instructions for the managed components. Every component has
capacities in the form of resources and mechanisms to implement network
QoS. Employing these capacities depends on the component and some-
times on the concrete product. For example, a VMM is in full control
over a host's CPU(s) and assigns CPU time intervals to individual VMs,
whereas switches and routers most often measure their resource assign-
ments in PDUs or bytes per interval. When a virtual switch or router must
implement network QoS, the single configuration step is decoded into two
management operations:

• the allocation on the virtual component and
• CPU time allocation on the VMM.

96

6.1. Continuously improving network QoS in virtualization environments

Monitor Component

Develop Benchmarks

4. Collecting performance data

Perform

Measurements

1. Definition of a

Target Configuration

2. Development of

a Configuration

Strategy

3.Effective

Component

Management

Figure 6.5.: Tasks to gauge the new current configuration

Both steps must be performed, so that the virtual component has the re-
sources to actually fulfil the QoS requirement.

The tasks configure component and manage allocations are implemented for
each managed component separately. Configuring the component means in-
teracting with and performing management operations on the component.
This is the task where the VE is actually changed. The corresponding re-
source allocations and QoS promises that are implied with the performed
management operations are recorded and managed as the separate task
manage allocations. Its objective is to make the component provide ade-
quate monitoring data.

6.1.4. Collecting performance data

The list of performance management activities, introduced in Section 2.2.2,
shows that pure performance management begins when networks and paths
with QoS properties have been deployed. Figure 6.5 shows the three tasks
of this phase:

• monitor component
• develop benchmarks
• perform measurements

97

Chapter 6. Architecture

There are three discernible types of monitoring data that can be obtained
from the running system:

• performance data provided by the individual components,
• records of past management operations from the components and the

management system, and
• results from actively benchmarking the configured network.

The task monitor component is providing performance data and records
about management operations from individual components. This task is
implemented for each managed component separately, analogous to the
configuring and managing task of effective component management.

The develop benchmarks task formulates tests that can be run on the ac-
tive system to challenge the QoS guarantees. It also specifies corresponding
measurements so that a later analysis can determine whether QoS guaran-
tees were fulfilled. The third identified task, perform measurements, sched-
ules and runs the benchmarks, collects the gathered data and stores it for
future evaluation, which closes the Deming cycle with the anew definition
of a target configuration.

6.1.5. Summary

This Section introduces a concept to facilitate and enforce network QoS
management in VEs using a control loop with tasks derived from a known
approach to continuous improvement. In this case, the VE's adhering to
QoS requirements is continuously improved.

Figure 6.6 shows the individually introduced phases as combined approach.
Its intention is a control loop realised through continuously repeating the
four identified phases. The coordination and event handling task is the au-
thority to control how frequently and automatically target configurations
are generated and implemented according to the introduced control loop.
This concept allows for systems with varying degrees of automation, rang-
ing from fully automated adaptation to changes and performance manage-
ment to systems that require a management actor to explicitly create target

98

6.1. Continuously improving network QoS in virtualization environments

Process

Interaction

Evaluate

Monitoring Data

Coordination,

Event Handling

Develop

Configuration Strategy

Develop

Monitoring Strategy

Dispatch Control

Configure

Component

Decode

Manage

Allocations

Develop Benchmarks

Perform

Measurements

4. Collecting

Performance

Data

1. Define Target Configuration

2. Develop a

Configuration

Strategy

3.Effective

Component

Management

Actor

Specific for each Component

Monitor Component

Figure 6.6.: Complete management control loop

configurations and trigger each loop iteration. Complex systems can be de-
vised, that are fully automated in some cases and require actor interaction
in other cases.

A specific procedure for assimilating the results of management performed
by actors is foreseen along the dotted lines in the illustration. It illustrates
processing of management operations from top to bottom, while the arrow
chain from the bottom up, towards the actor, represents the possibility for
feedback and escalation in case of failure. The procedure features three
intermediary steps between the initial processing of an actor's performed
management operations and the actual configuration of components. Along

99

Chapter 6. Architecture

current configuration

management operations

mapping procedure

target configuration

Figure 6.7.: Refining target to current configurations

this path all requirements pertaining to coordination, automation and re-
finement of the high level VI management must be performed, to end up
with management operations on individual components suited to implement
network QoS in VEs.

6.2. Automatically configuring virtualization

environments

The approach introduced in Section 6.1 employs two models of the same
VE. The target configuration represents what the VE should be, while the
current configuration captures the VEs current state.

This section describes the procedure and corresponding information to de-
rive management operations from the target configuration to meet network
QoS requirements. To change the current configuration, the management
operations must be specific to the components of the VE. Consequently,
the step from abstract components to actual instances and implementations
must be made as part of the refinement procedure. By developing a scheme
for management operations, this step is delegated to the implementations
of the management architecture, where products and implementations are
known.

100

6.2. Automatically configuring virtualization environments

Figure 6.7 illustrates the role of the mapping procedure introduced in this
section within the architecture. The example target configuration is a path
between a router and a switch. The path is part of the target configuration,
because it has a QoS attribute and a corresponding requirement. For in-
stance, the QoS attribute is data rate (cf. Section 2.2.1) at OSI layer 3 and
the requirement is a lower bound of 200MBit/s. The procedure, introduced
in this section, refines the path until

• every node along the path can be mapped to an existing component,
such that

• every edge connecting two nodes matches an existing (and manageable)
data path,

• with no intermediary nodes/components.

While refining the path, the QoS attribute and its requirement are also
adapted, to be meaningful for each identified path segment. The above
mentioned scheme for management operations has been specified for each
existing component. For performing management, the refined path is as a
list of such management operations on each path segment's endpoint. The
QoS attribute is a controlling parameter. This leads to a configuration of
the components described in the current configuration, according to the
intentions and requirements defined as the target configuration.

Developing the refinement procedure is an adaptation of the generic map-
ping approach identified in [JiNa 04]. The target configuration corresponds
to the user layer and the refinement procedure's output is the resource
layer. The classification of components within a VE has been published
previously in [Metz 10] and the refinement procedure has been introduced
in [Metz 14b].

The refinement procedure is based on a generic model of links and end-
points, used to describe paths. The following Section 6.2.1 derives develops
this model, before Section 6.2.2 specifies the refinement procedure. The
scheme of management operations that must be realised by implementing
components is laid out as part of the functional model in Section 6.3.3.

101

Chapter 6. Architecture

6.2.1. Components and links

Figure 6.8 shows a classification of network components by locality of config-
uration, previously published in [Metz 10]. Physical components are fixed
within the VE. While they may be replaced, for instance due to hard-
ware failures, their place and role within the network topology remains
unchanged. Local components are placed on hosts. Their roles and func-
tion may be copied to other hosts, but their states are bound to their hosts.
Volatile components are (equivalent to) VMs in terms of placement within
the VE. Their state is invariant to placement within the VE, so they can
be integrated at different positions in the (virtual) network topology.

This classification indicates how much immediate control a component has
over the underlying physical resources. While physical components can map
available resources to network performance accurately, local components
contest for shared resources with other components and VMs. Volatile
components are in general unaware of physical resources and how they are
coordinated. Following through, the introduced classification separates how
network QoS must be implemented by components:

• Physical components can directly implement network QoS.
• Local components must additionally handle resource contention. Effec-

tively they implement network QoS with respect to the current load of
their host.

• Volatile components implement some QoS themselves, but must dele-
gate the task of ensuring that the required resources are available to the
virtualization platform.

Similar to their physical role models, virtual network links are passive and
network QoS management is performed at their endpoints. For any func-
tional kind of network component, e.g. switch, classification by locality of
configuration yields different types, concerning how resources are commit-
ted and network QoS management is performed. Linking components of
different types, yields a set of discernible link types, summarised in Ta-
ble 6.1.

102

6.2. Automatically configuring virtualization environments

volatile

local

physical

vRouter vRouter

VM

vSwitch vSwitch

vHBA vVLAN

HBA Switch

Router VLAN

User SAP

Figure 6.8.: Exemplary path across

component classes

src dst →
↓ p l v
p (a) p. link (b) p. uplink (d) pv-bridge

l (b) (c) E2E link (e) v. link

v (d) (e) (f) RDMA

physical

local

v irtual

Table 6.1.: Generic discernible direct link types

by endpoint types

The six link types are characterised by their endpoints and therefore how
the links are managed. The types physical link, physical uplink, E2E link
correspond to links also found in strictly physical infrastructures, while the
types pv-bridge, virtual link, RDMA bear virtualization specific challenges.
The links are characterized as follows:

(a) physical link Virtual components are never endpoints to this link type.
For such a link, network QoS, does not require virtualization specific
adaptations [FeHu 98].

(b) physical uplink Virtual components are connected to the physical
network. Virtual components managed by the VMM compares to pro-
cesses managed by an OS: the VMM is aware of all resource contestants
and the system load they generate. The VMM can assign resources like
an OS scheduler. For QoS management the virtual component can re-
garded as an endpoint in strictly physical topologies.

(c) E2E link A trivial end-to-end (E2E) link in the context of physical
networks, as both endpoints are located on the same host. Physical
network resources are not involved in implementing this specific type
of link. However, this link type could be used in more complex set ups
to serve as tunnel endpoint for encapsulated network traffic.

(d) pv-bridge The uplink of a volatile component to the physical topology.
The volatile component is generally not aware of resource contestants,

103

Chapter 6. Architecture

but has been given an uncontested direct uplink through the VMM.
Even though the uplink is uncontested, the VMM must ensure the
volatile component has enough other resources available.

(e) virtual link The usual way of connecting virtual components, mostly
a volatile component and a local component. The VMM manages both
endpoints and can allocate the resources to meet QoS demands.

(f) RDMA (remote direct memory access) A theoretical direct connection
between volatile components, without data ever crossing the VMM's
domain. This link type is named RDMA, as this is most likely how it
would be implemented, as both endpoints are placed on the same host
and traffic between them is never handed to the VMM. This direct link
type clearly violates the isolation of virtual containers.

Regarding the virtualization of endpoints, this is a complete list of link
types, enabling topological descriptions of network paths through VEs.
From a (QoS) management perspective, links also differ in the OSI layers on
which requirements must be fulfilled and measurements are performed.

The above list is a generic template and specialized versions for the specific
technologies employed in the endpoints must be derived. Technology and
OSI layer characteristics for QoS handling yield a VE specific finite set of
discernible link types, for which management functions must be available.

6.2.2. Resource layer topology view

A resource layer non-ambiguously displays the components and links intro-
duced in this section [JiNa 04]. The different hosts must be clearly distin-
guishable, because knowledge about components sharing the same physical
resources is essential for resource allocation in QoS management. A topo-
logical view which groups network components by host and distinguishes
between local and volatile components seem reasonable. It is consistent
with describing links by their endpoints and components by their degree
of abstraction from the physical hardware. The resulting view contains all
discussed information, thus enabling refined QoS management for all iden-
tified link and component types.

104

6.2. Automatically configuring virtualization environments

volatile

local

physical

(e)
(f)

(d)

(c)

(b) (a)

(a) Links from Table 6.1

VM

switchswitch

switch
(a) (a)

(d)

(e)
(e)

nic0

(b) Enhanced topological view with virtualiza-

tion host introspection

Figure 6.9.: Resource layer views

Figure 6.9(a) shows an abstract example featuring each link named in Ta-
ble 6.1. By making the endpoints' domains (physical, local, volatile) ex-
plicit, the various link types are discernible without the labels. Figure 6.9(b)
shows an application example, connecting two servers over three switches.
Each switch is one of the types introduced in Section 1.5. The labelling is
kept for clarity purposes only. The physical host and switch are displayed
as single components, while the virtual components are displayed inside
domains (shaded areas) within the same host.

Shaded areas group local and volatile components by host. All virtual
components realised by the same physical host belong to the same area.
With this illustration, volatile components are always contained within the
local area. They are optically set apart, by using different shades. The
link between the two virtualized switches crosses domains, which means it
must be a type-e link. The intersection of a link with the host boundary
in Figure 6.9(b) is marked and explicitly names the used host's NIC, nic0.
Which NIC is used determines which resources are used for the specific link
and must be represented on the resource layer.

This enhanced topology view is suited to include all identified component
and link types. The increased information meets the increased complex-
ity and qualifies as resource layer for QoS layer partitioning [JiNa 04] as
described in Section 1.5.

105

Chapter 6. Architecture

6.2.3. Refinement procedure

With the resource layer established in Section 6.2.1, a generic procedure
for mapping application layer management information or tasks to the re-
source layer can be described. In this case, QoS attributes and require-
ments. This is achieved by iteratively refining application layer links to
eventually match the resource layer topology. QoS attribute refinement
is then performed based on reasoning on intermediary results. With each
step the QoS attribute and its requirements are adapted to suit the subpath
which ultimately results in QoS requirements for each link at resource layer,
which can then be implemented in a technology specific manner. Monitor-
ing strategies are developed by analysing the topology at resource layer and
accumulating QoS requirements for common subpaths. Subject to moni-
toring are components and subpaths with accumulated QoS, which allow
to calculate the achieved QoS for the topology defined as target configura-
tion.

Network components are often characterised by the highest layer of the ISO
OSI reference model they implement, e.g. routers implement layer 3. Com-
bined with our taxonomy in Section 6.2.1 every component within a virtu-
alization infrastructure can be characterized by the highest OSI layer it im-
plements and its locality of configuration. The refinement procedure must
therefore trigger two tasks: adaptation of QoS attributes to the identified
link segments and advancing the refinement process by detecting and resolv-
ing compound links. The procedure develops the resource layer topology
(final topology) from the application layer topology (initial topology), based
on available management information. Algorithm 1 shows the core proce-
dure refinePath, which uses two noteworthy subroutines: link (lines 8
and 22) and adaptQoS (lines 8, 12 and 22).

The refinePath procedure uses the property of the OSI model, that every
layer n uses the links and services provided by layer n-1, to break paths into
subpaths, starting at the layer of an input-endpoint, proceeding to lower
layers. If a subpath cannot be split up, it corresponds to a single resource
layer link, for which adequate management functions are available. When
a path with a directly corresponding link in the resource layer is found, the

106

6.2. Automatically configuring virtualization environments

Algorithm 1: The refinePath procedure
input : Tres(): all links in the final topology, Pinput(): a path's endpoints and QoS attribute

output: Prefined(): list of links in the final topology associated with a QoS attribute

1 Prefined ← ε
2 e0, e1 ← Pinput.endpoints
3 Pres−layer ← PathAtOsiLayer(e0,e1,e0.layer)
4 while Pres−layer /∈ Tres do
5 n← NeighbourOf(e0,Pres−layer)
6 if n 6= e1 then
7 if path(e0, n) ∈ Tres then
8 Prefined.append(link(e0,n,adaptQoS(Pinput,n)))
9 end

10 else
11 Psub ← path(e0,n)
12 Psub.qos← adaptQoS(Pinput,n)
13 Prefined.append(elementsOf(recursion into subpath))
14 end
15 e0 ← n

16 end
17 else if n = e1 then
18 e0.layer← e0.layer- 1
19 end
20 Pres−layer ← PathAtOsiLayer(e0,e1,e0.layer)
21 end
22 Prefined.append(link(e0,e1,adaptQoS(Pres−layer,e0.layer)))
23 return Prefined

function link is called. Calling link is a request to apply the input-path's
QoS attribute to a resource layer link. To actually apply the attribute,
link uses topology information to identify the technologies used for the
endpoints and the link type. With this information link can determine
the correct management for the path segment.

The task of adaptQoS is provide an adapted QoS attribute to link, by
tracking the performed path refinement. The concrete adaptation proce-
dure is specific to the QoS attribute. For instance, for a sensible imple-
mentation for an attribute “data rate”, adaptQoS would alter the attribute
values to account for protocol header fields, when regarding data rate at
varying OSI layers, or special implementations of virtualized links.

107

Chapter 6. Architecture

Besides accounting for implementation characteristics, adaptQoS tracks
paths and subpaths, to consolidate requirements of multiple high-level links
sharing the same resource layer link. This happens when link is called mul-
tiple times for the same resource layer link. Also, the information collected
by adaptQoS is used to set up monitoring.

The result of the procedure are the application layer links as resource layer
paths, where each path segment is a resource layer link with a refined QoS
attribute associated. The actual application of the attribute is resource
allocation and deploying monitoring.

The implementation of links, resource allocation and QoS is technology
specific. For example, in previous work [Metz 11], we analysed that VMMs
often use different metrics to model similar aspects of virtual and physical
components. As QoS management heavily depends on the monitoring data
obtained from the managed systems, QoS management must become ever
more specific for the managed object. This can be seen as one of the main
causes for the existing gap in QoS management, when introducing virtual
components to IT infrastructures. The advantage of using the model and
procedure introduced herein, lies in the generic structure and methodology
for describing links and components. The model's application results in a
finite and sensible set of managed object types and corresponding manage-
ment functions or strategies that allow for automated adoption, propaga-
tion and application of management information and functions from the
high level view of VIs to the concrete provisioning components.

6.3. Submodel conception

In management architectures according to the OSI reference model, the
aspects information, function, communication and organisation are spec-
ified as individual submodels, cf. Section 2.3. Submodels specify goals,
notations, structures, procedures and relations, which are substantiated to
implement management systems. Their intentions, according to [HAN 99]
are:

108

6.3. Submodel conception

6.3.1 Information model: define the modelling approach and an un-
ambiguous notation for describing the management information.

6.3.2 Organisation model: define actors, their roles and the funda-
mental principles of their cooperation.

6.3.3 Functional model: provide the basis for libraries of partial ma-
nagement solutions and for the delegation of management functionality
to agents.

6.3.4 Communication model: specify communication partners, commu-
nication mechanisms, exchange formats and embedding into the under-
lying communications architecture.

The presented order is also the order in which the models are developed.
The information and organisation models are structured into domains, while
the functional model consists of functional components. The communication
model distinguishes interaction types.

Section 5.2 lists numerous management tasks along the life cycles of vir-
tual components, networks and infrastructures which are relevant for the
management of VEs. Many of them are beyond the scope of network QoS
management and therefore beyond the scope of this architecture.

Especially with sustainability in mind, the architecture must be either ex-
tensible to enable all identified tasks, or integrable with other architectures,
with different concerns. To that end, the information meta model foresees
an association of management information with life cycle tasks LifeCycle-
Operations and the functional model features an unnamed interface, which
is an abstract representation for interfaces concerning management of VEs,
but not network QoS.

6.3.1. Information model

An information model captures relevant management information for the
problem at hand, in this case: network QoS management in VEs. It imposes
a structure on management information which leads to managed objects

109

Chapter 6. Architecture

(MO), representations of the (relevant) aspects of the subjects to manage-
ment. To reach its goal, the information model must specify a modelling
notation and structure management information pertaining to conceptually
independent domains [MNM Schi 07, MNM Marc 11]. With a complete in-
formation model, all meaningful management functions affect MOs.

Regarding the architectural concept in Section 6.1, independent information
model domains (IM domains) can be identified along the defined phases. As
QoS plays an important role throughout the entire management loop, the
QoS domain is specified as independent IM domain. From the management
loop, three additional domains can be identified. The four IM domains and
their purposes are:

6.3.1.1 QoS domain: describe network QoS.

6.3.1.2 Presentation domain: present isolated VIs to managers.

6.3.1.3 Translation domain: derive configuration strategies from tar-
get configurations.

6.3.1.4 Realisation domain: describing the physical infrastructure
and the realisation of VIs.

Figure 6.10 illustrates the four identified IM domains as UML packages.
The shaded classes indicate completely new developments, while clear
classes mark the adaptation of existing approaches. The depicted package
classes are reduced to classes with associations between domains.

To perform management on the VE, the relevant information from the
presentation domain is accumulated into the TargetConfiguration while the
relevant information from the realisation domain is accumulated into the
CurrentConfiguration. The association between TargetConfiguration and
Path in Figure 6.10 is dashed, to indicate it hides the internal structure
of the translation domain, where a direct association between these two
classes does not exist.

The presentation domain is based on the VN-SLA schema, first introduced
in [FAP 10]. The Common Information Model (CIM), maintained by the

110

6.3. Submodel conception

<<domain>>
QoS

<<domain>>
Realisation

<<domain>>
Presentation

CIM_ComputerSystem

CIM_EnabledLogicalElementCapabilities

<<domain>>
Translation

2

Infrastructure

*

0..1

Path

QoS-Category

Associations

QoSTypedInterface

Data-Category

 TargetConfiguration

LogicalLink

 VirtualInfrastructure

CurrentConfiguration
SupportedLinks

QoSLinkCapabilities

Figure 6.10.: Management domains within the information model

Distributed Management Task Force (DMTF)1, covers most of the real-
isation domain. Modelling network QoS and its requirements is based
on the approach introduced in [MNM Roel 05]. Since the VN-SLA, CIM
and [MNM Roel 05] all use UML for modelling information, UML is chosen
as the specification language for this model as well.

To serve the purpose of this architecture, all MOs follow the meta model
illustrated in Figure 6.11. Every attribute of a MO is important to network
QoS management in three aspects:

specification: The managers intention for this attribute. For instance,

1http://www.dmtf.org

111

Chapter 6. Architecture

Attribute

-type
 specification
 realisation
 assessment

+configure()
+report()
+evaluate()

1

0..*

history

LifeCycleOperations

ManagedObject

+id
+name

Figure 6.11.: Meta model for managed objects of the presentation domain

the attribute “placement” of a Node could describe a wish to pin a VM
onto a specific host.

realisation: The measured/determined current state pertaining to this
attribute. For instance, the host currently running a VM.

assessment: The result of an evaluation determining whether the reali-
sation is acceptable as implementation of the specification. For instance,
“fulfilled” if the Node is currently placed on the specified host, “not ful-
filled” otherwise.

For advanced reporting, each attribute may offer access to its history of
previous versions, that are earlier specifications or preceding measurements.
The corresponding generic management operations, to access or modify the
management information stored as MO attributes are:

configure(): Set the attribute specification; inform the system about a
change in intention.

report(): Set the attribute realisation; capture the current situation, e.g.
measuring results.

evaluate(): Set the attribute assessment; gauge the difference between
specification and realisation.

112

6.3. Submodel conception

<<domain>>
QoS

SupportedLinks

<<enumeration>>
LinkType

PropagationRule

Data-Category QoS-Category

QoSLinkCapabilities

QoSInterface

QoSTypedInterface

Figure 6.12.: Classes of the QoS domain

With this meta model, managers read realisation and assessment values
and set the specification value. The indicated LifeCycleOperations are ma-
nagement operations that advance MOs along their life cycles, identified in
Section 5.2.

When introducing the four IM domains in the following, full descriptions
are only included for the classes depicted in Figure 6.10. Complete specifi-
cations for all classes can be found in Appendix C.

6.3.1.1. QoS domain

With elaborate QoS models available, their application to VEs and espe-
cially this architecture are the main concern of the QoS domain. Figure 6.12
shows the QoS domain and the therein specified classes. This domain is
based on the QoS model introduced in [MNM Roel 05]. Data Category and
QoS Category are proxies, representing the entire QoS model introduced
in [MNM Roel 05], where data traffic is assigned QoS properties, by as-
sociating Data Categorys with QoS Categorys. The other classes model
additional information required to apply QoS to VEs. This information is
associated to MOs in three ways:

113

Chapter 6. Architecture

• Association of the presentation domain formulates network QoS and re-
quirements by associating a QoS Category with a Data Category, analo-
gous to Session in [MNM Roel 05].

• Path of the translation domain relates to QoS Category to control the
refinement procedure introduced in Section 6.2.3.

• LogicalLink and CIM_ComputerSystem of the realisation domain use,
i.e. implement, the interfaces and capabilities to effectively realise net-
work QoS in VEs.

The type LinkType is used to classify a link or path(-segment) or interface
according to the taxonomy for links introduced in Section 6.2.1. A complete
specification for all classes can be found in Appendix C.1. The following
describes the classes of the QoS domain, with associations to classes of
other domains. These classes are:

• DataCategory
• QoSCategory

• QoSTypedInterface
• QoSLinkCapabilities

Class DataCategory

Data Categorys describe communication patterns in terms of direction,
senders and receivers. This information is attributed to Associations from
the presentation domain to specify how QoS Categorys must be applied.
The classic Topology (see page 229) is n:m bidirectional communication,
where every node may interact with every other node, while the classic
Path (see page 232) is a 1:1 bidirectional communication, where two spe-
cific endpoints communicating are singled out.

Class QoSCategory

The class QoS Category is a set of QoS Parameters specifying the prop-
erties that data traffic of this category has, or should have. QoS Parame-
ters [MNM Roel 05] include semantic descriptions of the individual prop-
erties, criteria determining its fulfilment and an assurance type, describing
how vigorously the property is enforced.

114

6.3. Submodel conception

Class QoSTypedInterface (derived from QoSInterface)

QoSTypedInterface combines management information and methods, so
that an implementing component can be managed, with the proposed ap-
proach, to provide and guarantee network QoS in VEs. For a specific
QoS Category the QoSInterface(see page 222) is refined and extended by
a PropagationRule(see page 224). With this combination, the refinement
procedure can map and adapt the QoS Category, for a specific LinkType
(see page 221), while maintaining its semantics and corresponding require-
ments.

Class QoSLinkCapabilities (derived from CIM_EnabledLogicalElement-
Capabilities)

This derivation from CIM_EnabledLogicalElementCapabilities [DSP 1041]
models a CIM_ComputerSystem's (see page 236) capabilities to provide
network QoS in VEs. To that end it must always attribute an OSI layer to
the component, as the layer where the component fulfils it's main purpose.
The concrete capabilities are an aggregation of QoSTypedInterfaces, which
can be read as a list of LinkTypes for which the component can realise
network QoS in VEs.

6.3.1.2. Presentation domain

This is the most abstract representation of VEs. It contains VIs as initially
described and expected by customers and is used to manage reports on
the topologies and QoS achievement. The MOs within the presentation
domain are exposed to human managers and fulfil the task of structuring
and storing specifications and reports.

All tasks performed by the mangers create or modify specifications that
govern how the software system implementing the feedback loop performs
management. Conversely, monitoring data acquired from components is
processed, to report meaningful data pertaining to individual VIs.

Figure 6.13 shows the presentation domain's MO classes and their rela-
tions. This domain is based on the virtual network specification submodel
in [FAP 10]. Table 6.2 maps the corresponding classes. The introduced

115

Chapter 6. Architecture

<<domain>>
Presentation

1
0..*

1
2

Topology

Node Link
NetworkInterface

PointToPointUplinkDTE DCE

VirtualInfrastructureNetworkItemSpec Association

2

Path

0..*

<<domain>>
QoS

<<domain>>
Translation

Figure 6.13.: Classes of the presentation domain

Classname Role model

VirtualInfrastructure Virtual Network Specification

NetworkItemSpec Network Components

Association Associations

Node Node

Link Link

NetworkInterface Network Interface

Topology topology

Path Path

Table 6.2.: This model's classes mapped to their role models from [FAP 10]

116

6.3. Submodel conception

classes model the same VE elements as their role models, maintaining the
claim for suitability to describe VIs, i.e. VNs. The evolution performed
pertains to relations and the introduction of the meta model for MOs, in
order to use the model for steering and reporting. Classes derived from Net-
workItemSpec model information pertaining to the haptic aspects of VIs,
i.e. components and links. The derivations from Association attribute QoS
aspects to selections of certain NetworkItemSpecs.

The refinements of Node to DTE, DCE and of Link to Uplink, PointToPoint
fan out the building blocks for topologies to discern all types of components
exposed to managers. While users directly interact with DTE components,
that realise unspecified (sub-) services, DCE components have a clear task
in a topology and are used transparently. Uplink and PointToPoint distin-
guish between the subtypes of Node they link. While an Uplink links a DTE
and a DCE, PointToPoint links two components of the same type. This
information is mainly used while developing configuration strategies, but is
also very sensible to discern when interacting with human managers.

Typically every instance of VirtualInfrastructure contains exactly one in-
stance of Topology, constituting the VI's network. Especially in larger VIs,
it is conceivable that VIs manage individual Topologys for disjoint con-
nected components of the network. A Path ties network QoS properties to
data traffic between two Node endpoints. The following describes each MO
in detail.

A complete specification for all classes can be found in Appendix C.2. The
following describes the classes of the presentation domain, with associations
to classes of other domains. These classes are:

• VirtualInfrastructure
• Association

Class VirtualInfrastructure

The representative of an infrastructure that has been created within a VE.
Its main purpose is to group MOs into one entity that represents the ful-
filment of the requested infrastructure. As such, it is a composition of

117

Chapter 6. Architecture

NetworkItemSpec (see page 227) and Association objects. VirtualInfras-
tructure objects can be associated with Managers (cf. Section 6.3.2) as
part of access control.

Specifically for the task of QoS management, VirtualInfrastructure has a
resourcepool attribute. It is a list of the VE's allocatable resources, with
an upper bound for the accumulated allocation of each resource to the VI's
elements. The upper bounds specified in the resource pool do not need to
trigger any allocations. Their minimal use is merely providing reference
values for monitoring purposes.

The concrete modelling of allocatable resources is not important for this
architecture. Its presence and consistent implementation is required to
compare available resources vs. allocated and employed resources. The
quality of allocation modelling therefore greatly influences efficiency of al-
location and planning, but not basic applicability. A lightweight example
for such a model are the dynamic SLS constraints in [FAP 10], while the
CIM Resource Allocation Profile [DSP 1041] provides a very sophisticated
approach.

The management information stored in this MO can be modified by adding
and removing elements form the lists. For the resource pool, the upper
boundaries for each resource can be changed individually.

Class Association

The base class for associating network QoS to elements of VirtualInfras-
tructure. This class merges the selection idea from [FAP 10] with the
model introduced in [MNM Roel 05]. Derivations of this class are asso-
ciated with specific Data Category classes. Therefore they map to Sessions
in [MNM Roel 05]. Derivations from Associations also specify how QoS
Categorys are to be applied to NetworkItemSpecs.

6.3.1.3. Translation domain

As indicated by Figure 6.10 on page 111, the translation domain is the
biggest contribution to filling the gap in managing VIs, network QoS mod-

118

6.3. Submodel conception

<<domain>>
Translation

<<enumeration>>
PathType

 IntraVI
 InterVI
 ExtraVI

MonitoringStrategy ConfigurationStrategy ConfigurationStep

infrastructure

segments

*

*

Path

TargetConfiguration

2..*

ManagementStrategy Node

Network
1..*

CurrentConfiguration

Figure 6.14.: Classes of the translation domain

els and infrastructure models. MOs of this domain serve the mapping pro-
cedure (cf. Section 6.2) and assist automated management.

The TargetConfiguration and CurrentConfiguration are views on the presen-
tation domain and realisation domain, respectively. The former is restricted
to currently active VirtualInfrastructures and its associates. The latter is a
snapshot of the current topology and realisation of virtual components.

Figure 6.14 shows Network, Node and Path as the only classes intended
to model virtual components and topologies. These three classes forge
a relation between TargetConfiguration and CurrentConfiguration, which
allows the creation of ManagementStrategys. Objects of class Network,
Node and Path exist solely for this purpose and are valid only for the
specific relation they form.

For the task of performing management, ManagementStrategy and its
derivation are the classes that define the management operations performed
on components. They control changes to the VE and how feedback is pro-
vided to the managers. A complete specification for all classes can be found

119

Chapter 6. Architecture

in Appendix C.3. The following describes the classes of the translation do-
main, with associations to classes of other domains. These classes are:

• TargetConfiguration
• CurrentConfiguration

• Path

Class TargetConfiguration

A TargetConfiguration is a collection of all currently active VirtualInfras-
tructures domain. Active VIs have their components placed within the VE.
This means there are CIM_ComputerSystem (-derivation) instances, that
map 1:1 to Nodes and the Links and Associations of the presentation domain
can be mapped onto sequences of CIM_ComputerSystems (-derivations)
and LogicalLinks of the realisation domain.

Class CurrentConfiguration

A CurrentConfiguration is a collection of all LogicalLinks and their end-
points where both endpoints are currently active.

Class Path

The Path of the translation domain is the model's main information hub
for mapping network QoS from VIs on the VE. When a Path is created its
endpoints are analysed to determine the Path's type. The corresponding
enumeration PathType is:

IntraVI: Both endpoints are part of the same VirtualInfrastructure and
corresponding Nodes can be obtained canonically.

InterVI: Both endpoints are in this VE, but not part of the same Vir-
tualInfrastructure. There must be a “gateway” between both VIs and
QoS must be configured for both VIs. This may include extending the
TargetConfiguration.

120

6.3. Submodel conception

ExtraVI: One endpoint is outside this VE. A separate mechanism must
be employed to determine how and where data traffic enters and leaves
the VE and VI. A Node must be created that marks the end of the path
segment which can be managed as part of this VE. Management of the
path beyond that Node must be delegated, i.e. cannot be guaranteed.

Only when type is IntraVI, refinement as described in Section 6.2 can be
performed. All other types require the creation of subpaths stored in the
segments list, that are either IntraVI or can be delegated completely.

6.3.1.4. Realisation domain

In Section 6.2 a refinement procedure is elaborated, revolving around the
idea of the properties of the “resource layer” introduced in [JiNa 04]. The
idea is to refine management requests so that they can be trivially mapped
onto management operations for real, configurable resources. The result of
the refinement procedure is part of the translation. By basing the reali-
sation domain on a sophisticated model for IT infrastructures, suitable to
accurately capture the components states and management functions, little
additional information is needed to derive a complete realisation domain.
The CIM is such a model.

Figure 6.15 shows the classes of the realisation domain. All classes carry-
ing the prefix CIM are taken from the CIM profiles. The class LogicalLink
is added for adequate means to model topologies within the realisation
domain. The type ConfigurationLocality discerns types of CIM_Comput-
erSystems, according to the taxonomy introduced in Section 6.2.1.

While the classes and the information they represent are as specified in the
CIM, separating between physical, local and volatile components exceeds
the CIM's capability to discern between virtual and logical. Figure 6.15
illustrates this by showing CIM_VirtualEthernetSwitch. This class is not
immediately adoptable from the CIM, as it is necessary to separate virtual
from volatile components, especially switches.

121

Chapter 6. Architecture

Realisation

CIM_ComputerSystem

CIM_VirtualSystem

CIM_EnabledLogicalElementCapabilities

CIM_VirtualSystemSettingData

0..1

1

0..1

1

 CIM_ResourceAllocationSettingData

1

*

CIM_LogicalDevice

1

**

1

CIM_VirtualSystemManagementService

1
0..1

*

0..1

LogicalLink

2

<<enumeration>>
ConfigurationLocality

 physical
 local
 volatile

CIM_VirtualEthernetSwitch

Figure 6.15.: Classes of the realisation domain

Implementations of this model must derive classes from CIM_Computer-
System and CIM_VirtualSystem that define the topmost layer of the ISO
OSI model the component implements, e.g. 2 for a switch, 3 for a router.
This definition is a stored as a capability of the derived class. As this in-
formation is used for QoS mappings, the corresponding attribute is part of
the QoSLinkCapabilities class in the QoS domain.

The following describes the new class LogicalLink and the extensions to
CIM_ComputerSystem required for this model.

122

6.3. Submodel conception

Role Short description

User Manage the services provided on VIs.

Local admin Integrate services provided on VIs into local network.

Hardware provider Operate and maintain physical components.

Virtualization provider Operate and maintain virtualization platform. Provide

VIs.

Primary customer Manage VIs and their components to enable services.

Secondary customer Manage VI components to enable services.

Table 6.3.: Summary of actors and their roles identified in Section 5.1

Class LogicalLink

This is a direct connection between two derivations of CIM_Computer-
System, such that no intermediary managed component handles the data
traffic between the endpoints. Classifying this capability using the ISO OSI
model, this is layer 2 functionality, hence a logical link. Representing an
existing communication path, this class stores its LinkType. The actual
implementation of QoS for the link is realised by its endpoints.

Class CIM-ComputerSystem

This class from the CIM has been extended by three methods to provide
information required by the procedure developed in Section 6.2.

6.3.2. Organisation model

The task of an organisation model is to describe actors, their roles and
the fundamental principles of their cooperation [HAN 99]. Table 6.3 sum-
marises discernible roles when performing management in VEs, identified
in Section 5.1.

Each role focuses on a relatively small aspect of the VE. For instance, while
the hardware provider is concerned with physical components only, the sec-
ondary customer is concerned with only virtual components. A secondary
customer depends on the resources managed by the hardware provider, but

123

Chapter 6. Architecture

a hardware provider does not depend on the secondary customer, to fulfil
their tasks. Such relations warrant cooperation to ensure VIs are imple-
mented as necessary, to operate the services as intended by their users.

This organisation model follows the approach introduced in [MNM Schi 07]:
grouping roles into organisation model domains (Section 6.3.2.1) and de-
scribing their cooperation as interaction channels between the domains.
(Section 6.3.2.2). Specifying the interaction channels, allows the delega-
tion of role specific tasks, which implies interfaces of functional complexes,
which guide the development of an functional model and communication
model as well.

6.3.2.1. Organisation model domains

The identified roles are grouped into organisation model domains (OM do-
mains), by common intentions, goals and concerns. Roles belonging to the
same OM domain perform management with a similar view on the VE.
Figure 6.16 illustrates the four identified OM domains introduced in the
following. The domains and their main management concerns are:

service domain: service components realised through a VE.
virtual infrastructure domain: VIs as service realisation platform.
resource allocation domain: resources for realising VI specifications.
hardware provisioning domain: providing physical resources.

Service domain Performing management as a role of the service domain
is targeted at service components that are realised through a VE. These
roles usually have no means to manage VI components directly. Their ma-
nagement results in requirements, which specify goals for managers fulfilling
roles of the virtual infrastructure domain. While the user is concerned with
the service itself, the local admin focuses on the network access to the
service components. The concrete doings of this domain is outside the scope
of this management architecture, but it provides motivation, legitimation
and the source for requirements for the virtual infrastructure domain.

124

6.3. Submodel conception

<<domain>>
Hardware provisioning

<<domain>>
Resource allocation

<<domain>>
Virtual Infrastructure

secondary

customer

primary

customer

<<domain>>
Service

userlocal

admin

IC 1

IC 4

IC 3IC 2

virtualization

provider

hardware

provider

Figure 6.16.: Organisation model domains

Virtual infrastructure domain The roles of the virtual infrastructure
domain perform management on components and networks independent
from their implementations. This domain's view on VIs is scoped to the
relevant aspects for users/customers of a VE, as described in Section 2.1.2.
Within this domain, the resource allocation domain is the enabling partner,
providing implementations for the abstracted management. On the other
hand, the service domain provides goals and relies on the VIs that are
managed by the roles of this domain.

A secondary customer is restricted to a subset of the VI managed by
its associated primary customer. Primary customers can modify this
restriction as well as create and delete secondary customers. With regard
to the information model, both roles perform management using MOs from
the presentation domain, only.

Resource allocation domain Within the resource allocation domain,
management is performed to enable the virtual infrastructure domain and
allow their specifications be realised. To that end, all resources provided
by the hardware provisioning domain must be marshalled in a manner that
allows combination and allocation to VIs and their components. Continuous
effort must be made to ensure the resources allocated are still sufficient for

125

Chapter 6. Architecture

the VIs requirements. The virtual infrastructure provides specifications for
components and networks and relies on their availability. The hardware
provisioning domain is the enabling domain, providing resources.

The actor identified in the scenarios, which lead to the specification of the
virtualization provider role, also performs management in the role of
the primary customer of the virtual infrastructure domain. It does so for
every VI. This is very sensible in the presented scenarios, but management
does not need to be that centralised. VIs, as perceived and managed by
the virtual infrastructure domain, can be provided in parts through mul-
tiple virtualization providers, belonging to different organisations.
Therefore the virtualization provider role must not imply the pri-
mary customer role. This concept of such distributed VIs has also been
previously published in [Metz 10].

Hardware provisioning domain This domain comprises roles that are
concerned with physical components and topologies, only. As pointed out in
Section 5.1, the larger an IT infrastructure, the more likely that manage-
ment of physical components is divided between roles, for instance with
separate roles for network components and servers. Consequently, in the
generic case multiple hardware providers are involved in providing a VE
and vice versa, effects on VIs is beyond any hardware providers cannot
appreciate the effects of their management on individual VIs. Roles of this
domain are scoped to MOs of the information model's realisation domain
and, even further, to MOs of physical components. As such, this domain is
in charge of the basic components.

6.3.2.2. Interaction channels

Considering their motivations, the relations between OM domains are very
similar to the IM domains: There is a domain concerned with the ma-
nagement of physical components and topologies, another domain is con-
cerned with the management of virtual components and a third domain is
concerned with management enabling virtual components and topologies

126

6.3. Submodel conception

by levering physical components and topologies. The organisation model
specifies four interaction channels between the OM domains, illustrated in
Figure 6.16. The interaction channels and their intentions are:

IC 1: obtaining resources.
IC 2: coordinating management.
IC 3: delivering virtual infrastructures.
IC 4: realising components and topologies.

IC 1, obtaining resources The purpose of interaction channel IC 1 is
providing and using physical resources. The virtualization providers
obtain information on resources in the form of physical components, fore-
most hosts, and networks. Through this channel, additional physical com-
ponents can be requested as well as changes to physical networks. The
hardware providers use this channel to facilitate access from the resource
allocation domain to physical resources.

IC 2, coordinating management In terms of production and products,
the hardware provisioning, resource allocation and virtual infrastructure do-
mains are production stages, where physical resources are processed, refined
and cultivated, to produce a product, used to realise IT services. In that,
the hardware provisioning domain is the first production stage and its work
affects all other domains. The resource allocation domain is the second
stage, and its work affects the virtual infrastructure domain and service
domain. The virtual infrastructure domain is the third stage and its work
affects the service domain. This implies an ordering of domains along an
imaginary production line, before the resources of physical components are
useful for some users outside the VE:

1. hardware provisioning
2. resource allocation
3. virtual infrastructure
4. service

127

Chapter 6. Architecture

The intention of IC 2 is to coordinate management with all managers of
objects that may be affected. For instance, if a new server is deployed and
connected through a previously unused switch port, there is no immedi-
ate need to communicate this management task. The removal of a server
from the data centre, however, affects every VI with at least one compo-
nent placed on that host. Consequently, every user, primary/secondary
customer and virtualization provider in charge of anything concern-
ing any of the VIs, may experience effects of the server removal. The inter-
action channel IC 2 may be used to communicate the server removal, so
that other managers have the opportunity to react accordingly.

This channel is a generic coordination platform. Coordination can be uni-
directional, simply announcing management operations about to be per-
formed. Or actual coordination may be performed, where a management
operation is proposed and may only be performed after it has been signed
off by all affected managers. The latter causes a significant delay between
the initial intention to perform management and the actual performance.

The manager announcing management using IC 2 may be a different
manager than the one performing management. For instance, hard-
ware providers may only tell their immediate customers, virtualization
providers, about their intentions. In turn, the virtualization providers no-
tify their immediate customers of the virtual infrastructure domain. Notifi-
cations are always directed towards the higher numbers in the above list.

IC 3, delivering virtual infrastructures If the entirety of infras-
tructure management, including QoS, components and networks, physical
as virtual, was regarded as a single black box service that “just works”,
then IC 3 would be the service access point.

Through this channel, specifications and requirements for servers, networks
and QoS are communicated in a technology agnostic manner, to be im-
plemented by customer managers. The customer managers, of the virtual
infrastructure domain, are in charge of realising the specifications and re-
quirements, so that the resulting VI is suited to serve the needs of user,
who intend to operate services on the requested infrastructure.

128

6.3. Submodel conception

Using IC 3, managers of the service domain gain access to the components
realising service components and reports concerning the achieved QoS are
requested and provided through this channel. No immediate management,
directly affecting the behaviour of the VE is preformed through this inter-
action channel.

IC 4, realising components and topologies Channel IC 4 specifies
the interaction between the virtual infrastructure domain managers, and re-
source allocation domain managers, to provide the components, topologies
and resources, realising a VI. The customer managers of the virtual infras-
tructure domain communicate the infrastructure they want to realise to
the virtualization providers. In turn, virtualization providers
provide information on the realisation, if it has been accomplished, and
monitoring data, measuring the implementation.

Through this channel the customer managers gain access to the VEs main-
tained by virtualization providers and hardware providers. Usu-
ally information on how components and topologies are realised is not com-
municated to customer managers.

6.3.2.3. Integration with the information model

To provide a formal specification, this section introduces an UML class di-
agram of the organisation model. The diagram also serves as a means to
associate interactions with MOs. As a result, information required for in-
teraction is specified. Additionally, the reasons and subjects for interacting
roles is formalised.

As a basis for the class diagram, the meta model from [MNM Schi 07],
illustrated in Figure 6.17, is reused. Each interaction channel is a class and
its instances associate management roles with each other, for the purpose
of performing management.

The class diagram, Figure 6.18, associates interaction channels with classes
from the information model. These associations must be interpreted as the

129

Chapter 6. Architecture

OrganisationDomain InteractionChannel

ManagementRole
contains

1

1..*

refersto1..2 1..*

uses

1..*

2

Figure 6.17.: Meta model for classes of the organisation model, from [MNM Schi 07]

reasons for interaction and are therefore defining for the concrete interac-
tion. Analogous to Figure 6.16, interaction channels are depicted between
organisation domains, meaning any role within this domain.

ManagementRoles aggregated by OrganisationDomains, means a role be-
longs to a domain and the role represents a set of responsibilities attributed
to this domain. There are three IC 2 derivations, differing in the types of
associated OrganisationDomains and classes from the information model.

For clarity purposes in Figure 6.18, the associated classes from the informa-
tion model to the IC 2 derivations were replaced with a dotted association
between IC 2 and other interaction channels, which refer to the identical
set of information model classes. All shaded classes in the Figure are or-
ganisation model classes, those without background colouring are classes
from the information model.

6.3.3. Functional model

The idea of a functional model, according to [HAN 99], is to provide build-
ing blocks of management functions, that may be combined to (partial)
management solutions, fitting the managed distributed system's needs.

With the management loop introduced in Section 6.1, a segmentation and
ordering of management tasks has already been performed. The functional
model provides a sensible grouping of the tasks to functional components
and their interfaces.

130

6.3. Submodel conception

<
<
M
a
n
a
g
e
m
e
n
t
R
o
l
e
>
>

u
s
e

r
<
<
M
a
n
a
g
e
m
e
n
t
R
o
l
e
>
>

lo
c
a

l
a

d
m

in

<
<
M
a
n
a
g
e
m
e
n
t
R
o
l
e
>
>

p
ri

m
a

ry
 c

u
s
to

m
e

r

<
<
M
a
n
a
g
e
m
e
n
t
R
o
l
e
>
>

s
e

c
o

n
d

a
ry

 c
u

s
to

m
e

r

<
<
M
a
n
a
g
e
m
e
n
t
R
o
l
e
>
>

h
a

rd
w

a
re

 p
ro

v
id

e
r<
<
I
n
t
e
r
a
c
t
i
o
n
C
h
a
n
n
e
l
>
>

IC
 4

<
<
I
n
t
e
r
a
c
t
i
o
n
C
h
a
n
n
e
l
>
>

IC
 1

<
<
I
n
t
e
r
a
c
t
i
o
n
C
h
a
n
n
e
l
>
>

IC
 3

IC
 2 <
<
I
n
t
e
r
a
c
t
i
o
n
C
h
a
n
n
e
l
>
>

u
n

ty
p

e
d

 I
C

 2

<
<
O
r
g
a
n
i
s
a
t
i
o
n
D
o
m
a
i
n
>
>

R
e

s
o

u
rc

e
 a

llo
c
a

ti
o

n
<
<
O
r
g
a
n
i
s
a
t
i
o
n
D
o
m
a
i
n
>
>

V
ir

tu
a

l
In

fr
a

s
tr

u
c
tu

re

<
<
O
r
g
a
n
i
s
a
t
i
o
n
D
o
m
a
i
n
>
>

S
e

rv
ic

e
<
<
O
r
g
a
n
i
s
a
t
i
o
n
D
o
m
a
i
n
>
>

H
a

rd
w

a
re

 p
ro

v
is

io
n

in
g

C
IM

_
C

o
m

p
u

te
rS

y
s
te

m

L
o

g
ic

a
lL

in
k

V
ir

tu
a

lI
n

fr
a

s
tr

u
c
tu

re
N

e
tw

o
rk

It
e

m
S

p
e

c
A

s
s
o

c
ia

ti
o

n
Q

o
S

-C
a

te
g

o
ry

IC
 2

IC
 2

V
ir

tu
a

lI
n

fr
a

s
tr

u
c
tu

re

Q
o

S
-C

a
te

g
o

ry

<
<
M
a
n
a
g
e
m
e
n
t
R
o
l
e
>
>

v
ir

tu
a

liz
a

ti
o

n
 p

ro
v
id

e
r

Figure 6.18.: Class diagram of the organisation model

131

Chapter 6. Architecture

monitor

component

configure

component

Configure

manage component

Translate

provide

TargetConfiguration

Control
manage management

information

Monitor

network QoS

management

manage benchmarks

Component

Management

(unnamed)

Figure 6.19.: Component model illustrating the relations between the five main func-

tional components

To advance the management loop, it is necessary to complete the current
phase. This makes it intuitive, to specify functional blocks, that may im-
plement individual phases. Yet, sensible segmentation is also performed
along the involved MOs, to end up with functional components that han-
dle a subset of the MOs described in the information model and require a
reduced amount of information to work.

Figure 6.19 shows five main functional components, their interfaces and
couplings. The Component Management at the bottom of Figure 6.19 is the
functional basis, on which this architecture builds to realise network QoS
in VEs. At the top of Figure 6.19, the unnamed interface for Control is
the starting point for extensibility and integration with other architectures,
alluded to on page 108. This interface is also the main service access point
for management systems following this architecture, introduced as IC 3 in
the organisation model (cf. page 128).

In general the five components depicted in Figure 6.19 are intended to

132

6.3. Submodel conception

each implement the tasks of a specific phase from the management loop
introduced in Section 6.1. The contribution of the functional model is the
specification of management functions used to fulfil these phases' tasks.
The functions are grouped to interfaces, exposed by subcomponents and
depicted as component facets. There are two deviations when attributing
phase tasks to functional components:

• Component Management is an adaptor for a component's management in-
terface through which the component may be managed and monitored.
This functional component is provided by or for each managed compo-
nent, used by implementations following this architecture. It must al-
ways be provided by the component, i.e. the vendors. Its presence and
functionality for configuration and monitoring is a prerequisite as per
Req.#11, Req.#12, Req.#13 and Req.#15. The adaptation into the
management architecture are the decode task of phase 3 (Section 6.1.3)
and the perform measurements task of phase 4 (Section 6.1.4).

• Monitor is the functional component corresponding to collecting perfor-
mance data phase of the management loop (Section 6.1.4). It also realises
the evaluate monitoring data task, originally attributed to the phase
defining the target configuration (Section 6.1.1). This task was moved
to functionally group all monitoring aspects, especially the required ma-
nagement information, together.

Control

Virtual

Infrastructure

Virtualization

Environment

Management

Loop

Figure 6.20.: Ori-

entation example

The following sections describe each main functional
component in detail. First, each component is bro-
ken down into functional subcomponents, then the ex-
posed interfaces with their management functions are
described.

To help orientation, each introduction of subcomponent
begins with an icon, highlighting the current subcompo-
nent within the main component. Figure 6.20 gives an
example, illustrating the first subcomponent of the main
functional component control.

All main functional components contain the subcomponent Management

Loop, intended for the task of driving the management loop and providing

133

Chapter 6. Architecture

Control

Virtual

Infrastructure

network QoS

management

manage management

information
manage

VI deployment

Virtualization

Environment
manage virtual

components

(unnamed)

provide

TargetConfiguration

Management

Loop

Figure 6.21.: The functional group Control.

the interface between the main components. The main functional compo-
nents and their corresponding phases are:

6.3.3.1 Control component: phase 1, Act, Section 6.1.1
Definition of a target configuration

6.3.3.2 Translate component: phase 2, Plan, Section 6.1.2
Development of a configuration strategy

6.3.3.3 Configure component: phase 3, Do, Section 6.1.3
Effective component management

6.3.3.4 Monitor component: phase 4, Check, Section 6.1.4
Collecting performance data

6.3.3.1. Control component

The main concern of the functional component Control are management
functions guiding and controlling how management systems configure VEs,

134

6.3. Submodel conception

Subcomponent Realised task

Virtualization Environment process interaction

Virtual Infrastructure process interaction

Management Loop coordination, event handling

Table 6.4.: Architectural components for Control management tasks

by modifying of management information. Figure 6.21 shows this compo-
nent's decomposition into subcomponents and Table 6.4 links subcompo-
nents with the tasks identified in Section 6.1.

With the unnamed interface, the Control component is expected to be ex-
tended or even split into more subcomponents. Therefore, this component
is described more detailed in depth than Virtual Infrastructure and Management

Loop, by explicitly introducing internal interfaces manage virtual compo-
nents and manage VI deployment. Internal interfaces are exposed only to
other Control subcomponents. The intended internal relations are depicted
as dashed lines between facets and receptacles in Figure 6.21. The func-
tionalities provided by the subcomponents are:

Control

Virtual

Infrastructure

Virtualization

Environment

Management

Loop

Virtualization Environment The Virtualization Envi-

ronment subcomponent instantiates, advances and fi-
nalises the life cycles of physical resources, as well as
virtual components, networks and infrastructures, as de-
scribed in Section 5.2. The network QoS management
interface contains all management functions relating to
network QoS management, the focus of this thesis. All
other functionality is attributed to the unnamed inter-
face. The intended effect is to have the Virtualization Environment component
always as the service access point, when interacting with external compo-
nents and systems, including human managers.

All functions belonging to an interface realised by this component are
atomic transactions, finalized with success or failure replies. The impor-
tant aspect of the transaction is read stability [KeEi 06], ensuring that the

135

Chapter 6. Architecture

Management Loop component always accesses the results from successfully
completed transactions. All replies concern changes to management infor-
mation, not the implementation thereof. There are separate management
functions, pertaining to the effective implementation and its progress.

The interface and its functions, exposed by this component, is:

network QoS management: Manage links and topologies to expose fea-
tures described by QoS Categories. The management functions target
either QoS Categories (QoS domain), virtual links or topologies (presen-
tation domain), as well as logical links (realisation domain).

• Create, modify and remove QoS Category. QoS Categorys are a col-
lection of QoS Parameters, where parameters have values or value
ranges, representative for the QoS they describe. The QoS Categorys
are used as QoS target by Associations.

• Create, modify and remove Associations. Managers create Associa-
tions to attribute QoS Categorys to parts of the VE. As modifica-
tion, the attributed QoS Category can be replaced, as well as the
NetworkItemSpecs, grouped by the Association. The removal of an
Association withdraws the QoS settings and monitoring pertaining to
the Associations elements.

• Obtain QoS reports. Get the specification, realisation and assessment
aspects of QoS Categorys from Associations. This function triggers
the Evaluate() method of PropagationRule objects, to produce the
assessments, stating if, or even how well, the specified QoS has been
achieved. This data is condensed into a single report, together, with
data from past requests or special monitoring events; the history of
the attributes belonging to the presentation domain.

• Enforce QoS. Have the management system realise a specified Associ-
ation and its associated QoS with specified restrictions. Usually this
function is used to exclude components or links from the realisation.
Its main use is finding an alternative implementation as a response to
frequent QoS issues, by excluding subpaths of the current implemen-
tation.

136

6.3. Submodel conception

Control

Virtual

Infrastructure

Virtualization

Environment

Management

Loop

Virtual Infrastructure The Virtual Infrastructure

component handles virtual components, links and their
combination to VIs. This component influences the tar-
get configuration, by creating and managing representa-
tions of VIs. Analogous to the Virtualization Environment

component, all functions belonging to this subcompo-
nent only modify stored management information and
the functions of the internal interface must be realised
as transactions.

This component's management functions are separated into the following
two interfaces:

• manage management information
• manage virtual components

manage management information: Feed monitoring data back into the
management loop, manage history of presentation domain MOs and in-
dicate monitoring events. The functions exposed by this interface change
the information stored in existing objects, representing the current state.
These updates are single values and partly completed updates are not
significant enough to warrant transaction semantics. The motivation for
this interface is to enable the Monitoring component to feed its observations
and conclusions back into the development of TargetConfigurations.

• Update measured data. Monitoring data belonging to physical com-
ponents is stored in their respective MOs belonging to the realisation
domain. Data, representing the state of MOs of the presentation do-
main, must be provided, i.e. this subcomponent does not perform
processing monitoring data. This data updates the realisation aspect
of presentation domain MOs.

• Create, save and delete history data. All representation domain MOs
can store snapshots of their current state, stored as history. This
is used for trend analysis, reports and reviews as part of performance
management (cf. Section 2.2.2). This component implements history
management by overseeing the creating of snapshots for all components
of specified VIs, the deleting of specified generation of snapshots from

137

Chapter 6. Architecture

specified VIs. As a third function, snapshots can be copied and saved
outside the management system for persistent storage.

• Signal problems. The results of processing monitoring data may in-
dicate a problem with the achieved network QoS. Typically problems
are detected through threshold violations. Such events may demand
immediate attending and must be communicated to the Control compo-
nent and, depending on individual policies, to managers. The severity
of an event and the MOs it concerns are provided to the signalling
function and the actions taken through its implementation depend on
the specified severity.

manage virtual components: This is an internal interface, intended to
be used by the Virtualization Environment to implement life cycle operations,
i.e. creating, modifying, grouping and deleting objects. Its main purpose
is to request life cycle operations for virtual components and infrastruc-
tures. Request, in this case, means performing the operations on the
stored management information, so that the management system will
eventually perform life cycle operations as described in Section 5.2. In
the organisation model, IC 4 specifies, that all provisioning results in a
VI. Consequently all created components and links are always part of a
VI, throughout their life cycles. This and the delayed implementation
of life cycle operation requests are the reason why there is not a precise
counterpart for every operations in Section 5.2.

• Create, modify and delete VIs. These functions target the MO for
VIs, which is required as “parent” or “container” for all NetworkItem-
Spec and Association objects. Consequently it can only be deleted if it
does not contain any objects of these types or their derivations. Modi-
fications to MOs of VIs include adding and removing components and
links, as well as resource pool allocations and associating the VI with
managers.

• Create, modify and remove Associations, as described for the manage
network QoS interface.

• Create, modify and delete virtual components. Manage MOs that
have the management system realise virtual components. When a

138

6.3. Submodel conception

component is created, it must belong to a VI. All other prerequisites
and settings are implementation specific. Other specifications, per-
taining to the component, can be provided for the initial creation, or
later, as a modification to the existing component.

• Create and delete links. Creating a link between two components
has the management system connect these components. Usually this
means they become part of the same OSI layer 2 subnet.

• Register and unregister components and infrastructures for realiza-
tion. Only if a VI is registered for realisation, it becomes part of
the TargetConfiguration compiled by the Management Loop component,
which implies its placement and becoming operational. Individual
components can be explicitly unregistered, so that they are not im-
plemented, even if the remaining VI is. If they are not unregistered,
their implementation is controlled through the VI.

Control

Virtual

Infrastructure

Virtualization

Environment

Management

Loop

Management Loop The Management Loop component
enables the realisation of VIs, by providing a complete
target configuration. The target configuration is a se-
lection of multiple independent VIs. This component's
management functions are separated into the following
two interfaces:

• manage VI deployment
• provide TargetConfiguration

manage VI deployment: This interface groups management functions
controlling which and how VIs are included as part of the target con-
figuration. With independent VIs, a system can partially realise a target
configuration, by realising only some of its VIs. While this does not
fulfil all configuration requests, the VE is still in a working and valid
configuration. VIs are added or removed from the target configuration
and constraints on its implementation are included or excluded from the
configuration specification.

139

Chapter 6. Architecture

• Add and remove VIs. Make a VI part of the target configuration or
remove it from the target configuration. The herein followed idea of
target and current configurations implies that any component realised
in the VE is legitimated by the target configuration. Removing com-
ponents or entire VIs from the target configuration literally revokes
the legitimacy of its realisation and consequently all allocations, com-
ponents and links of the realisation must be purged from the VE.

• Add and remove realisation constraints. These functions allow adding
further information to the target configuration to control the planning
process. This is mostly used to provide the planner with information
on previous (failed) configuration attempts, or special placement re-
quirements that do not describe individual components. For instance,
a constraint may exclude placing two specific VMs on the same host.

provide TargetConfiguration: Th interface provides the main input
for the configuration of VEs and to obtain feedback on the realisation.
This allows for implementations that reason and decide what to do about
partial implementations.

• Create a recent target configuration and return the id of the created
object. Target configurations are snapshots of the entire presentation
domain of an information model instance. Consequently two subse-
quent calls to this function may well create to different target config-
urations. Especially with all the automation in place.

• Get target configuration. Retrieve a specific target configuration. The
Management Loop keeps track of every released target configuration to
correlate feedback on the realisation with the released target configura-
tion. This information can be used for generating constraints, changing
the target configuration, provide feedback to managers or even request
action by managers.

• Report (un-)successful realization of VIs. This function tells the Ma-

nagement Loop about partial implementations of target configuration
releases, or, depending on the implementation, on the progress of the
implementation.

140

6.3. Submodel conception

Translate

manage

component

manage

benchmarks

Management

Loop

Monitoring

Configuration

provide

Targetconfiguration

Figure 6.22.: The functional group Translate.

• Report constraint violation. A planner may have reasons to ignore
some constraints when realising a target configuration. This function
allows reporting of such behaviour, to discern explicit constraint vio-
lations from unwanted side effects.

• Implementation finished. This function tells the Management Loop that
its current stored state on the implementation (progress) of a target
configuration is considered final, and the planner is not going to pro-
vide any more feedback.

• Implementation error. If a target configuration cannot be imple-
mented as the planner determined, implementing components can di-
rectly interact with this Management Loop to report an error outside
of the normal monitoring procedure. Such errors are mostly out of
the scope of network QoS management and require handling by other
managing entities.

6.3.3.2. Translate component

The Translate functional component, its subcomponent and the interfaces
they use are illustrated in Figure 6.22. It is the main actor in implementing

141

Chapter 6. Architecture

Subcomponent Realised task

Management Loop dispatch control

Monitoring develop monitoring/configuration strategy

Configuration develop configuration strategy

Table 6.5.: Architectural components for Translate management tasks

the management loop introduced in Section 6.1. This is also visible in
the Figure, as it only uses interfaces provided by other components, but
does not expose any interfaces to be controlled from external instances.
Table 6.5 links the identified subcomponents with the tasks identified in
Section 6.1.

This component's core task The core task of this component is the transla-
tion of the target configuration into sets of management operations for the
components of the VE. The translations range from not changing anything,
because the current configuration already matches the target configuration,
on the one hand, and creating new virtual components and arranging them
in newly created VNs, on the other hand. This is a high dimensional plan-
ning problem, as described in Section 6.1.2. Any planner is intended to be
implemented as the Management Loop subcomponent, whereas the Configura-

tion and Monitoring subcomponents generate the concrete configuration steps
from the placement of VIs in the VE.

Translate
Management

Loop

Monitoring

Configuration

Management Loop The Management Loop subcompo-
nent coordinates the realisation of target configurations.
First it retrieves the target configuration using the pro-
vide TargetConfiguration interface exposed by the
Control component and then oversees the development
of the monitoring and configuration strategies. For net-
work QoS management, an initial embedding is assumed,
so that the next step of this subcomponent is the re-

finement of network QoS requirements, using the procedure introduced in
Section 6.2.3. The result are Path objects from the translation domain, as
described in Section 6.3.1, comprising the refinements of VI links, networks

142

6.3. Submodel conception

and paths. These objects are the input from which the Monitoring and Config-

uration components derive their strategies. The other subcomponents report
success or failure deriving their strategies to this component. In turn, this
component has information on progress, problems, success and failure of
the overall planning and can report to the Control component, also using
the provide TargetConfiguration interface. For more thoroughly inte-
grated management of VEs, there must at least be an additional planner
for the embedding problem, which sees that all components are created and
placed, as discussed in [Scha 12].

Translate
Management

Loop

Monitoring

Configuration

Monitoring The Monitoring subcomponent derives
monitoring strategies as well as a configuration strate-
gies from the refined Path objects, provided by the Ma-

nagement Loop subcomponent. The configuration strate-
gies are targeted at the monitoring capabilities of the
involved components, to ensure monitoring data is gath-
ered. The monitoring strategies specify how monitoring
data becomes performance data, which is suited to sup-
port assessments on the achieved network QoS, as described in the infor-
mation model on page 230.

Translate
Management

Loop

Monitoring

Configuration

Configuration The Monitoring subcomponent derives
configuration strategies, with the intention of realising
network QoS. With the refinements provided by the Ma-

nagement Loop in the form of nested translation domain
Path objects, this task means sorting the refined QoS re-
quirements by component, to ultimately generate a set of
configuration steps for each individual component. Af-
ter this step the configuration strategies can be checked
against the specifications of their components to evaluate whether the com-
ponents are actually capable of implementing them. For instance, a host
could be asked to block more data rate on a specific interface than the
interface can provide. Consequently the configuration strategy cannot be
implemented as specified. This is reported to the Management Loop which

143

Chapter 6. Architecture

Configure

Management

Loop manage

component

configure

component

Figure 6.23.: The functional group Configure.

Subcomponent Realised task

Management Loop decode

Table 6.6.: Architectural components for Configure management tasks

can either devise new configuration strategies, or further escalate the prob-
lem to the Control component. By detecting such problems early, these
problems can be handled through the management system, planners and
managers, without implementing a configuration that has great potential
to impede network QoS.

6.3.3.3. Configure

The Configure functional component, acts as a façade [FSBR 04] for the ma-
nagement of individual components. The interface exposed for this task is
manage component. The Translate component uses this interface to trig-
ger and delegate the realisation of configuration strategies. To uphold the
herein used schema for describing functional components, this component's
one task is realised by the Management Loop subcomponent, illustrated in
Figure 6.23. The mapping to the resulting management tasks of Section 6.1
is shown in Table 6.6. The used configure component is only a substi-
tute for the plethora of component specific configuration interfaces, which
cannot be listed and described within the scope of this thesis and must
always be implementation specific.

144

6.3. Submodel conception

At this stage in the management loop, information may have been refined,
consolidated and reordered so often, that it may not be possible for this
component to attribute individual configuration steps to their originating
VIs. If an error is encountered and the affected VI cannot be determined,
the entire configuration strategy must be rolled back and reported as not
implementable. To allow for partial implementations in the cases where
this component can identify the affected component,

manage component: Receive configuration strategies for individual com-
ponents and obtain feedback on its realisation.

• Realise strategy. The Management Loop is given a configuration strat-
egy it is to convert into technology and implementation specific ma-
nagement operations for the specified component. After that, it per-
forms these management operations on the component and reports
back to the Translate component or may even directly notify the Control

component of failures. When this function is called, it may be notified
that an implementation may be partial, i.e. not all configuration steps
must be realised. In this case the component may only notify the Con-

trol component of success or failure and must include the performed
configuration steps in the report.

6.3.3.4. Monitor

The Monitor functional component, closes the loop approach, by observing
the VE and interacting with the Control component correspondingly. Fig-
ure 6.24 illustrates this component and its three subcomponents, as well as
the exposed and used interfaces. Mapping of the management tasks laid
out in Section 6.1 onto individual subcomponents is shown in Table 6.7.
The only exposed interface is manage benchmarks, which is used by the
Translate component, to instruct this component how to contribute to the
overall network QoS management. The actual feedback and management
is implemented in the Evaluation subcomponent, while the Measurement sub-
component is a façade for the monitoring of individual components, analo-
gous to the Configure component.

145

Chapter 6. Architecture

manage

benchmarks

Management

Loop

Evaluation

Measurement

Monitor

monitor

component

manage management

information
network QoS

management

Figure 6.24.: The functional group Monitor.

Subcomponent Realised task

Management Loop develop benchmarks

Evaluation evaluate monitoring data

Measurement perform measurements

Table 6.7.: Architectural components for Monitor management tasks

The three subcomponents and the exposed interface are:

Monitor
Management

Loop

Evaluation

Measurement

Management Loop The Management Loop subcompo-
nent is the controlling entity for Monitor component. It
ensures monitoring strategies are implemented and their
results provided to the Control component. To that end
it implements the manage benchmarks interface, which
enables other components to send monitoring strategies
for implementation and further control them after initial
implementation.

manage benchmarks: Manage implementations of monitoring strategies.

146

6.3. Submodel conception

• Realise, replace and withdraw strategy. The Management Loop sub-
component is given a monitoring strategy it is to implement. Accord-
ing to the received strategy, the Measurement component is instructed
to monitorm specific components at specific intervals. The Evaluation

component is instructed how to process sets of monitoring data and
act according to the results. In contrast configuration strategies, mon-
itoring strategies can change without a corresponding change to the
components in VEs, for instance, if the QoS Category of an Associa-
tion is changed to demand another kind of monitoring. Therefore the
implementations of monitoring strategies are tracked, so that they can
be replaced or even withdrawn from the system.

• Deactivate an reactivate strategy. To prevent or suspend automated
management and updates of management information, monitoring
strategies can be deactivated and reactivated at a later point in time.
This is mainly used for large changes to the VE, where the manage-
ment system is creating temporary heavy load that may negatively
affect network QoS.

• Perform evaluation. In addition to the regular measuring and evalu-
ating of monitoring data, a one time performance of an implemented
monitoring strategy can be requested, to update the management sys-
tems knowledge about the current configuration of the VE.

Monitor
Management

Loop

Evaluation

Measurement

Evaluation The Evaluation subcomponent processes
monitoring data and acts accordingly. This activity
ranges from storing the monitoring data using the man-
age management information interface, to automati-
cally perform network QoS management using the net-
work QoS management interface, both exposed by the
Control component. It is the initially provided monitor-
ing strategies, that describe how monitoring data must
be correlated to yield meaningful evaluations of the implementations of QoS
Categories. This can include monitoring threshold values and automated
trend analysis.

147

Chapter 6. Architecture

Type Description Example

access data access management information update measured data

singular instruction have components perform a task perform evaluation

compound instruction step components through a task list realise strategy

Table 6.8.: Basic interaction types

Monitor
Management

Loop

Evaluation

Measurement

Perform measurements The Measurement subcom-
ponent provides the basis for all contributions of the Mon-

itor functional component. It is a façade, analogous to
the Configure component, but with the intention of moni-
toring instead of altering their behaviours. Its main task
is obtaining monitoring data and provide it in a gener-
alised manner, so that the data is comparable to data
obtained from other implementations. To achieve this

goal, the Measurement component must perform adaptations and mappings,
as previously published in [Metz 11].

6.3.4. Communication model

The communication model completes this management architecture, by
describing the communicating entities of this architecture and the rele-
vant aspects of their interaction. The communication model describes such
communication that takes place for the monitoring and control of poten-
tially dispersed resources [HAN 99]. Applied to the approach followed in
this architecture, this targets the implementations of the management loop
phases. Hence, the communicating entities are the main functional compo-
nents Control, Translate, Configuration and Monitor and their interactions are
method invocation, progress and status reports, as well as failure notifi-
cations. Relevant aspects of these interactions are communication mech-
anisms, describing interaction procedures, required state information and
the duration of an interaction.

For every interaction, there are always two communicating entities, an ini-
tiator and a target. The management functions specified in the functional

148

6.3. Submodel conception

model are the reasons for interaction. There are three discernible inter-
action types, named in Table 6.8, including a short description and an
example. With hosts realising multiple similar virtual components, it must
be assumed that when two entities start communicating, there are often
multiple reasons, i.e. multiple requests. To handle this, the generic scheme,
common to all interaction types, is:

1. The entities agree on the interaction's intention.
2. The entities agree on the interaction's subjects.
3. The intention is fulfilled.
4. The interaction is finalised.

Having a common structure with these four explicit elements allows for var-
ious extensions and varying degrees of error handling. This scheme implies
a state on each interaction, which must be maintained until the interaction
is finalized. The concrete state information is specific to the interaction
type and intention.

The details of each interaction type are described in the following. For each
interaction type a prototypical interaction is shown, where an interaction
progresses without problems. Each message in the examples is an arrow
in a sequence diagram, labelled with the intention of the message and a
specification for the payload. The intention also represents the progress
of the interaction. To denote the payload items, the Backus-Naur form
(BNF), as introduced (for example) in [Schö 03], is used to describe what
information must be provided for the various interaction types.

6.3.4.1. Access Data

This interaction type is used to access already existing MOs. Manage-
ment information is either retrieved from the information base, or updated.
Figure 6.25 shows the prototypical procedures for retrieving and updating
management information. The initiator tells the target the intention to ei-
ther update or retrieve information, the target acknowledges it is READY
to fulfil the requests, and, in the end, the interaction is finalized by the
initiator signalling it is done.

149

Chapter 6. Architecture

done

update
<ids>

update
READY
<ids>

update
COMPLETE
<ids>

Initiator Target

update
DATA
<updates>

done

retrieve
<ids>

retrieve
READY

retrieve
COMPLETE
<objects>

Initiator Target

retrieve
DATA

<ids>

<ids>

Figure 6.25.: Prototypical interactions to retrieve and update management

information

When the initiator first signals update or retrieve, it also provides a list
of references to the objects that are of concern to the initiator. As a refer-
ence the objects ids, as introduced with the information model, are used.
The target replies the subset of the requested references it can retrieve or
update, when signalling READY. For a complete and successful interaction,
these list of object ids are the same. An empty list means the target cannot
fulfil the requests. Partial lists could indicate, that the target is respon-
sible for only some MOs and the initiator must find other recipients for
other MOs. The communication model allows for such constructs, yet the
distributed implementation of single functional components is outside the
scope of this thesis.

The initiator signals DATA to fulfil the requests. For retrieving data, it
merely tells the target to deliver the requested objects. For updating data
it sends the updated data and the object for which it is intended. For
a successful interaction, the target responds with COMPLETE, which either
contains requested objects or the ids of updated objects. It remains with the
target to decide if a request is reported COMPLETE as soon as it finishes, or
if it waits and reports multiple requests as COMPLETE with one message.

The interaction may be ended by either entity, through signalling done to

150

6.3. Submodel conception

the other. However, for a successful interaction, only the initiator signals
done when it has received all objects/ids it expects.

The BNF for the message payloads is:

objects ::= <object> | <object> <objects>
ids ::= <id> | <id>, <ids>
updates ::= <update> | <update> <updates>

object ::= <A MO instance as specified in the
information model>

id ::= <An object id as specified in the information
model>

update ::= <id> <A specification of the data that is
updated>

6.3.4.2. Singular Instruction

The idea of a singular instruction is to have the target perform a task and
the tasks outcome does not affect the interaction's progress. The tasks are
management functions, that may be parametrised. For a single call to a
management function, the interaction is very similar to a remote procedure
call, as described, for instance, in [TaWe 10]. Figure 6.26 illustrates a
prototypical interaction. The first three steps of the generic scheme are
analogous to the access data interaction: the initiator signals the functions
it would like to call, the target replies with a list of functions it can perform,
the concrete calls with parameters are made and whatever the functions
return is sent from the target back to the initiator.

All functions that are going to be called must not have any dependencies
and no implications must be made pertaining to ordering, execution time
or success. Therefore, the target must attribute every returned value to
the function and parameters that yielded it. The initiator must send all
parametrised function calls in a singe DATA message, while the target may
decide if a call is reported COMPLETE as soon as it finishes, or if it waits and
reports multiple calls as COMPLETE with one message.

151

Chapter 6. Architecture

done

call
<declarations>

call
READY

call COMPLETE
<singular returns>

Initiator Target

call
DATA

<declarations>

<singular function calls>

Figure 6.26.: Prototypical interaction to call singular management functions

The interaction may be ended by either entity, through signalling done to
the other. The initiator signals done as soon as it does not want to receive
any (further) return values. Usually, the target signals done when it is not
going to send any more return values.

The BNF for the message payloads is:

declarations ::= <declaration> | <declaration> <declarations>
singular function calls ::= <singular function call> |

<singular function call>,
<singular function calls>

singular function call ::= <function name> <values>
singular returns ::= <singular return> |

<singular return> <singular returns>
parameters ::= <parameter> | <parameter> <parameters>
values ::= <value> | <value> <values>
singular return ::= <function name> <values> : <value>
declaration ::= <return type> <function name>

<parameters>
parameter ::= <type> <name>
return type ::= <type>
function name ::= <name>
type ::= <A data type>
name ::= <A name>
value ::= <Data of a specific <type>>

152

6.3. Submodel conception

done

call
<atomic declarations>

call
READY

call COMPLETE
<compound progress>

Initiator Target

call
DATA

<atomic declarations>

<compound function calls>

Figure 6.27.: Prototypical interaction to call compound management functions

6.3.4.3. Compound Instruction

Compound instruction is the interaction type intended for all management
functions, that require functional components to perform a sequence of
tasks successfully, for example implement a configuration strategy. Such
management functions either require the entire sequence is performed suc-
cessfully, or partial implementation is acceptable. The prototypical interac-
tion to compound instruction is depicted in Figure 6.27 and is very similar
to singular instruction, because it adheres to the same common scheme.
Yet, compound instruction foresee more communication, depending on the
length of the task sequence.

Analogous to singular instruction, the initiator starts an interaction of this
type, with a list of functions it intends to call and the target acknowledges
the list of declarations, before the initiator makes parametrised function
calls Specific to compound instruction is, that each element of the initial
list carries additional information on whether partial implementations are
acceptable, or the entire task sequence must be completed successfully. The
task sequence is a parameter of the function. When the functions are called,
the length of the task sequence is provided as an additional parameter.

For every called function where partial implementations are acceptable, the

153

Chapter 6. Architecture

target must report on every individual completed task, successful or not.
This results in as many reports for an individual function, as the length of
its task sequence. While the target may include multiple reports in a single
COMPLETE message, it may not group multiple reports originating from the
same function call.

For every called function where every task must finish successfully, only
the last task must be reported, if successful. With the first task that does
not finish successfully, the target must report the failure and the number
of the failed task. Ensuring a stable configuration after a failed task must
be accomplished by the implementing functions and is not part of the com-
munication model.

The interaction may be ended by either entity, through signalling done
to the other. Usually, the target signals done after reporting on the last
finished task of each called function.

The BNF for the message payloads is:

atomic declarations ::= <atomic declaration> |
<atomic declaration>
<atomic declarations>

compound function calls ::= <compound function call> |
<compound function call>,
<compound function calls>

<compound progress> ::= <singular return> <task> |
<singular return> <task>
<compound progress>

compound function call ::= <singular function call> <tasks>
atomic declaration ::= atomic <declaration> |

partial <declaration>
tasks ::= <The task list length>
task ::= <The completed task number>

154

6.4. Summary

6.4. Summary

This chapter introduces a management architecture for network QoS in
VEs. Section 6.1 started out with an approach of continuous improvement,
with the idea of having the VE converge towards behaving as specified
by abstract models of VIs. Section 6.2 introduces a refinement procedure
which is the tool enabling splitting up the overall management task, as
suggested by the approach. The procedure derives management operations
that modify the VE towards behaving as described by VI specifications.

Having laid out how network QoS management can be facilitated, Sec-
tion 6.3 introduces the management architecture for developing manage-
ment systems, that perform management with the presented approach.
The architecture is specified reusing existing approaches where appropri-
ate, most importantly the model for VIs from [FAP 10] and the model for
QoS from [MNM Roel 05]. Also the architecture is based on the CIM to
reuse existing infrastructure models.

The architecture was developed with the guides and intentions discussed in
Chapter 5. The following Chapter 7 analyses how this architecture fits the
stated goals and the requirements from Chapter 3 and introduces a proto-
typical implementation, to illustrate this approach is viable for performing
network QoS management in VEs.

155

C
h
a
p
t
e
r 7

Assessment

This chapter analyses the architecture developed in Chapter 6, to show its
applicability for network QoS management in VEs. Section 7.1 discusses
individual requirements and how the developed architecture may be used
to create management systems fulfilling these requirements. Afterwards,
a prototypical implementation is introduced in Section 7.2, before Sec-
tion 7.2.4 showcases the realisation of network QoS management in VEs.

7.1. Validation

This section steps through all identified requirements and shows how they
can be fulfilled, using the introduced architecture. Following the require-
ments on network QoS management from Section 3.4, the same procedure
is applied to the requirements derived in Section 5.3.

Network QoS management requirements

Req.#1 Resource allocation to virtual machines The bare tech-
nological capacity to allocate resources must be available, as per prerequi-

157

Chapter 7. Assessment

site Req.#12. For VMs the capacity usually lies with the VMM, which can
be managed as per prerequisite Req.#13.

The information model foresees storing resource requirements with any
Node object, a capability inherited from the original model introduced
in [FAP 10]. This includes DTE objects, the intended class for VMs. A
DTE is part of a VirtualInfrastructure, which is scheduled for implemen-
tation by becoming part of the TargetConfiguration. As part of the target
configuration, a management strategy will be devised to place a VM on an
active host from the CurrentConfiguration. This results in a CIM_Virtual-
System object for the VM, which is associated with the CIM_VirtualSys-
temManagementService object for the VMM, belonging to the host chosen
for the placement. Through these stages, high level resource allocation set-
tings for the Node are mapped onto the realising components.

Req.#2 Resource allocation to virtual network components
DCE objects for VN components derive from Node, analogous to DTE
objects for VMs. Consequently this requirement can be fulfilled analogous
to Req.#1, when DCE are realised as VMs. Section 6.2.1 identifies this
and other conceivable methods for implementing VN components. Their
technological capability to perform resource allocations is required per
prerequisites Req.#11 and Req.#13.

The introduced refinement method identifies all network components, es-
pecially those not managed as DCE objects of the presentation domain.
Besides their identification, the refinement method also determines the use
of each component, i.e. its links with QoS requirements. Every component
exposes its prerequisite functionality using the specified QoSTypedInterface,
enabling the realisation of QoS requirements. In combination, management
strategies can perform resource allocations to VN components, independent
from their realisation.

Req.#3 QoS links can be specified with virtual endpoints Man-
agers specify Associations using objects from the presentation domain. End-
points may be virtual as well as physical, when specifying QoS links.

158

7.1. Validation

Req.#4 Support for different types of QoS paths Every man-
aged object from the presentation domain is eventually mapped to a realis-
ing component. This allows for specifications of Associations with QoS Cat-
egorys independent from a components role in the infrastructure. Restric-
tions on the paths that can be realised result from management privileges
and the management systems capability to perform management operations
on the involved components. The nine discernible path types identified for
this requirement can be implemented and managed as follows:

(VSi, VSi): Both endpoints belong to the same VI. This particular QoS
path is the Path class in the presentation domain and can be implemented
using the refinement procedure as introduced.

(VWS, VSi): Analogous to (VSi, VSi). A VWS derivation from DTE
allows for equivalent behaviour in QoS path management, while VWS
objects can still have unique properties.

(VSe, VSi): Analogous to (VSi, VSi).
(VSe, VSe): Analogous to (VSi, VSi) if the path manager is responsible

for the VIs to which the endpoints belong. Otherwise, if an endpoint
is not within the manager's responsibility domain, an additional MO of
the presentation domain must be created as endpoint for the path. The
newly created MO must be associated with the original MO, so that
management strategies can be derived correctly.

(VWS, VSe): Analogous to (VSe, VSe).
(VWS, RAS): Analogous to (VSe, VSe). The RAS is never part of the

managers responsibility, thus requires a “proxy” presentation MO.
(VSe, Outside): The refinement procedure can detect path segments,

that are beyond the management system's access. These segments are
classified as ExtraVI and not refined any further. This allows the ma-
nagement system to perform network QoS management to the boundary
of its controlled area. An Outside specialisation of DTE can act as a VI
component that cannot be configured, but be a Path endpoint.

(VWS, Outside): Analogous to (VSe, Outside).
(RAS, Outside): When the RAS is within a VI, this segment is analo-

gous to (VSe, Outside). Usually, either endpoint is outside a managers
responsibility domain. Still, the refinement procedure can detect such
segments and management may be performed on them.

159

Chapter 7. Assessment

Through generalisation and the capabilities of the refinement method, this
requirement can be fulfilled.

Req.#5 Virtual Infrastructure semantics for performing ma-
nagement Through separating presentation and realisation MOs, this
architecture allows for VI semantics for performing management.

Req.#6 Monitoring structures for VIs Monitoring strategies can be
derived directly from the result of the refinement procedure, which is a
refinement of abstract network topologies to the implementing components.
This allows for placement specific monitoring set ups and also adequate
handling of migration.

Req.#7 Management users are restricted to their associated
VIs Managers are given the capabilities to perform management on their
individual VIs. The separation between presentation and realisation avoids
any necessity to provide managers with information that does not belong
to their VIs. As used introduced for requirement Req.#4, proxy objects
can augment a managers information base explicitly. The possibility to
restrict managers to their associated VIs is provided through the separation
of presentation and realisation MOs.

Req.#8 Multiple concurrent and customer managers The ma-
nagement loop, formulated in Section 6.1, as the core approach to network
QoS management in VEs, foresees VI specifications that have no immedi-
ate effect. To implement VI specifications in the VE, a snapshot of the VI
specifications is created in the form of a target configuration. The function
model in Section 6.3.3 describes how a consistent state of the specifications
for the sake of creating a target configuration can be achieved. The manage-
ment loop separates the configuration of VEs into streamlined phases. By
incorporating a mechanism ensuring consistent VI specifications, it becomes
possible to have multiple managers concurrently performing management,
without negative effects on the realisation phase.

160

7.1. Validation

Req.#9 Automated adaptation of links Through the separation of
presentation and realisation of components and paths, their MOs are im-
plementation independent. The continuous evaluation of the management
loop ensures that changes to the specifications are propagated to the imple-
mentations. The mapping performed by the refinement procedure ensures
changes to the VI's state are handled correctly.

Req.#10 Automated enforcement of network QoS requirements
The management loop includes a feedback phase, where monitoring data is
evaluated and reported back to the phase determining the target configu-
ration. This enables the detection of QoS problems and allows the system
to react accordingly. The system may automatically adapt QoS Categorys
to match the current needs. By realising management functions currently
attributed to the unnamed interface of the Control component, the ma-
nagement loop's capabilities to enforce network QoS can be extended, for
example perform automated migration of components.

Behavioural requirements

Req.#17 Release allocated resources By storing the refined links
and topologies used for the generation of configuration strategies, an “an-
tistrategy” can be devised, undoing the resource allocations performed to
realise network QoS. The management loop can perform this task implicitly
when there are changes in the new target configuration. The required ver-
sioning of TargetConfigurations and history of path refinements are foreseen
in the architecture.

Req.#18 Management may be performed on the entire virtual-
ization environment The refinement procedure leads to performing ma-
nagement on all components. To add another implementation or tech-
nology, the interfaces and properties specified in the QoS domain in the
information model must be implemented. The generalised interfaces and
refinement procedure allow for the configuration of the entire VE.

161

Chapter 7. Assessment

Req.#19 Full information about the current VI placement The
refinements performed by the refinement procedure includes all intermedi-
ary steps towards implementing virtual topologies, including the final phys-
ical host realising the component. Through the streamlined management
task realised in the management loop, this information can be used for effec-
tively performing management, without the need to expose this information
to the managers.

Req.#20 Reverse mappings from components to VIs By analysing
the results from the refinement procedure, all VIs using a specific compo-
nent can be determined. Input for reverse mapping are the same refinements
as for requirement Req.#19 and can be used analogously.

Req.#21 Resources can be allocated within a hierarchy of ma-
nagement users Hierarchies of customers have been taken into account
for creating the organisation model. While different roles are responsible
for different aspects of provisioning platforms, there are also the primary
and secondary customers, allowing for hierarchies of customers for VIs.

Req.#22 Management users can be tied to life cycles or life
cycle phases This requirement can be fulfilled, by restricting manage-
ment users to individual interfaces of the Control component. While the
architecture allows for such behaviour, interfaces beyond network QoS ma-
nagement have not been specified as part of this thesis.

7.2. Prototype

This section showcases the implementation of a prototype, illustrating an
effective, working management approach. The focus lies with the auto-
matic transformation of abstract VI specifications into technology specific
management operations for the VE. Figure 7.1 shows the main topologies
used throughout this section.

162

7.2. Prototype

xensrv02

xensrv01

xensrv03

(a) The physical infrastructure
mVend01 mVend03mR00

(b) The main virtual infrastructure

Figure 7.1.: Core infrastructures of the Xen lab

Figure 7.1(a) shows the physical infrastructure, consisting of three hosts,
named xensrv01, xensrv02 and xensrv03. There is a switch intercon-
necting all three hosts and one direct link between xensrv02 and xen-
srv03. The switch does not have any QoS capabilities and is therefore not
subject to management. The hosts use the Xen hypervisor as VMM, and
Open vSwitch (OVS) for the provisioning virtual switches. Figure 7.1(b)
shows the main VI, two endpoints and a router, which will be used as an
example throughout this chapter.

The prototype is developed towards meeting the characteristics of the Xen
lab used for development and experimentation. Some corners are cut and
specific implementations are made, where a generic approach would have
generalised representations and specialised refinements only where needed.
This results, for instance, in the fact that the specific descriptions of VMs,
as provided by the Xen hypervisor, and virtual switches, as provided by
OVS, are directly usable as the current configuration of the VE, without
further processing or generalisation. The prototype's implementation fol-
lows the common model-view-controller (MVC) pattern, because it suits
the abstract management loop and the concept of target and current con-
figurations. This section introduces the implementation. Afterwards, it
is used in Section 7.2.4 to manage network QoS in the experimental envi-

163

Chapter 7. Assessment

ronment, depicted in Figure 7.1, enforcing network QoS in a set up where
resource shortage lead to QoS degradation.

7.2.1. MVC architecture

The MVC pattern is a common software design pattern where all forms of
interaction and functionality either modify a model or are triggered as a re-
sponse to the model, or as a change thereof. The model is self contained and
complete for the scope of the developed software system. Every software
component that accesses the model is a view and acts as a representation of
a model, or a part thereof. Views have associated controllers, that modify
model or view in response to a change in one or the other. The model also
holds central logic, realising the core concepts of the software system.

This pattern is chosen for the prototype. It is used to devise components
of the intended architecture. Different management views can be designed
to provide adequate high level management interfaces for users. Every sub-
system that actually performs management on components is a view on the
component aspects of the model. The entire management loop is part of
the model. Controllers are the agents responsible for configuring compo-
nents and providing monitoring data as well as the management interfaces.
There are two management interfaces, one for reporting to the users about
the status of VIs and another one for creating VI specifications.

Figure 7.2 illustrates architectural components, having applied the MVC
pattern to the problem at hand. The model consists of a data model, a
transaction engine and the translation logic. The data model contains all
managed objects for all managed components, collected monitoring data
and all configurations and requirements pertaining to network QoS.

The transaction engine ensures consistent states when creating the tar-
get configuration. For larger implementations this could be a relational
database system implementing transactions as common for modern sys-
tems as described in [KeEi 06]. In this implementation, focusing on the au-
tomated translation from abstract VIs to technology specific management
operations, the transaction engine will directly write through any data.

164

7.2. Prototype

s
o

m
e

 M
a
n

a
g

e
m

e
n
t

A
g

e
n

t

a
 m

a
n
a
g
e
d
 c

o
m

p
o
n
e
n
t

V
ir
tu

a
liz

a
ti
o
n
 E

n
v
ir
o
n
m

e
n
t
D

a
ta

 M
o
d
e
l

-
p
h
y
s
ic

a
l
c
o
m

p
o
n
e
n
ts

-
v
ir
tu

a
l
c
o
m

p
o
n
e
n
ts

-
V

I
to

p
o
lo

g
ie

s

-
Q

o
S

 s
p
e
c
if
ic

a
)

c
o
n
fi
g
u
ra

ti
o
n
s

b
)

re
q
u
ir
e
m

e
n
ts

-
m

o
n
it
o
ri
n
g
 d

a
ta

V
I

M
g
m

t.
 U

I
C

o
n
tr

o
lle

r

a
n
o
th

e
r

A
c
to

r

s
o
m

e

M
g
m

t.
 U

I
C

o
n
tr

o
lle

r

T
ra

n
s
a
c
ti
o
n

E
n
g
in

e

T
ra

n
s
la

ti
o
n

L
o
g
ic

a
n
 A

c
to

r

a
 g

ro
u
p
 o

f
m

a
n
a
g
e
d
 c

o
m

p
o
n
e
n
ts

s
o
m

e
 M

a
n
a
g
e
m

e
n
t
A

g
e
n
t

M
o
d
e
l

V
ie
w
s

A
c
to
rs

M
a
n
a
g
e
d

C
o
m
p
o
n
e
n
ts

C
o
n
tr

o
lle

r
C

o
n
tr

o
lle

r

Figure 7.2.: An overview of the architectural components and their interactions

165

Chapter 7. Assessment

The translation logic is the implementation of the translation phase and
the core aspect of the prototypical implementation. It refines the abstract
VI specifications to be mapped onto the current configuration and develops
configuration strategies, having the management agents change the exper-
imental set up accordingly.

The VE for the following evaluation has Linux VMs on virtualization hosts
using the Xen hypervisor and OVS for virtual and local switches.

The main implementation is the Translate component, using the generalised
approaches introduced with the architecture, for transforming VI specifi-
cations into management operations for the given VE. The Configure com-
ponent is implemented as a simplified agent realising a QoS interface to
implement configuration strategies.

The Monitor and Control components are realised levering the available ma-
nagement tools “Shinken” and “Salt”, respectively. The latter is also used
to hand configuration strategies to agents.

All data is stored using text files, common configurations as well as VI
specifications and feedback provided by the monitoring system. Monitor-
ing strategies are formulated as Shinken configurations and configuration
strategies as Salt states. The following Section 7.2.2 introduces used ma-
nagement information and its notation, before Section 7.2.3 shows the im-
plementation of the management loop. After that, Section 7.2.4 applies
the management system to a VE and shows an experiment illustrating the
effectiveness of the system.

7.2.2. Management information

The information required for the prototype are physical and VIs, QoS paths
and a QoS Category. The general notation for management information is
JSON. It allows for structured data, named data and JSON is the standard
information presentation method for Xen and Open vSwitch management
tools and Shinken reports. Salt uses YAML, very similar to JSON, but

166

7.2. Prototype

noticeably different in syntax. As an effect, information exchanged with
managers is JSON while configuration strategies are written in YAML.

Listing 1: Minimal VI specification

{
"meta": {

"name": "Simple VM example"
},

"nodes": [
{ "name": "InitialTestVM" }
]

}

Physical and VIs are specified a collec-
tion of nodes and links. There is meta
information helping the usability of the
system, by giving names to specifications
and there are constraints, for embedding
heuristics and QoS requirements. Listing 1
shows a minimal example of a VI specifi-
cation. The specification is named Simple
VM example and holds a single specifica-
tion for a node named InitialTestVM. For this
prototype names must be unique because they also serve the purpose of an
id, to reference a managed object.

Listing 2: Minimal configuration strategy

InitialTestVM:
vm:

- running

When this VI specification be-
comes part of the target configura-
tion, it will be implemented. The
management system expects the
hypervisor to know about a VM
named InitialTestVM, or have it
create one, with default settings. Being part of the target configuration, the
VM must also be activated. This would be the two steps of a correspond-
ing configuration strategy. Listing 2 shows how this is implemented in the
prototype. Checking or creating VMs is not an explicit step, but implicitly
done prior to starting a VM. Hence, the configuration strategy merely tells
a host to transform a VM named InitialTestVM into the running state.

Listing 3: Exemplary monitoring data

('1395389295', 'xensrv02', 'runningVMs',
'WARNING', '1', 'SOFT', '8.37400889397',
'0.875785112381', 'Idle machine', "")

Monitoring is performed using
the Shinken, which has a pre-
defined format for monitoring
data. Listing 3 shows an ex-
ample for a single record of
monitoring data as provided
through Shinken. The most important fields are the monitored component,
the performed monitoring task, a short status message and task specific

167

Chapter 7. Assessment

data. These are the second, third, ninth and tenth field in the example,
respectively. In this example, the monitoring data originates from xensrv02
as result of the task runningVMs, the short status message is Idle machine
and no task specific data.

Listing 4: VI specification for experiment set up

{
"meta":

{ "name": "Zwei Kisten ein Router" },
"nodes": [

{ "name": "mVend01" }, { "name": "mVend03" },
{ "name": "mR00",
"type": "dce",
"layer": "3"

}],
"links": [

{ "name" : "mVend01net1",
"fromto" : ["mVend01", "net1"],
"type" : "l2plain"

},
{ "name" : "mVend03net3",

"fromto" : ["mVend03", "net3"],
"type" : "l2plain"

},
{ "name" : "mR00net1",

"fromto" : ["mR00", "net1"],
"type" : "l2plain"

},
{ "name" : "mR00net3",

"fromto" : ["mR00", "net3"],
"type" : "l2plain"

}],
"constraints": [

{ "name" : "namesaregood",
"type" : "disjointplinks",
"subjects" : ["mR00net3", "mR00net1"]

},
{ "name" : "one_host_for_each_vm",

"type" : "notonthesamehost",
"subjects" : ["mVend01", "mVend03", "mR00"]

}]
}

168

7.2. Prototype

Listing 4 shows a more detailed example, featuring all four information
blocks, meta information, nodes, links and constraints. It is the specifica-
tion for the VI depicted in Figure 7.1(b). There are three nodes: mVend01,
mVend03, mR00. Two of the nodes are “normal” VMs, while mR00 is a
virtual router, a DCE active on OSI layer 3.

Without any further specification, the management system assumes a VM
is a DTE, as is the case for mVend01 and mVend03. For the virtual router
mR00, there are explicit statements, telling the management system the
VMs type is dce and the layer attribute gives information on the highest
OSI layer, the DCE implements. For routers this is layer 3.

Following the specifications of nodes, there are the specifications of links
interconnecting the nodes. In Listing 4 the links' type is always l2plain;
a basic duplex connectivity between two nodes on OSI layer 2. With the
attribute fromto the two endpoints of a layer 2 link are identified. If both
endpoints are VMs, a virtual point to point link is assumed and will be
implemented. An endpoint that is not a VM means this link is an uplink
of a VM (or network) to a network, as net1 and net3 in this example. These
networks will be implemented as virtual OSI layer 2 topologies allowing
communication between all components with an uplink.

For a management system that can deterministically set up experimentation
environments, it was necessary to implement two placement constraints,
disjointplinks and notonthesamehost, also shown in Listing 4. Constraints
of any type are always applied to a list of subjects which must be specified
with the constraint. With this scheme, every constraint must have type
and subjects attributes set, for a complete specification. Constraints
of type disjointplinks target a list of links, instructing the management
system not to share a physical link between any two list items. The other
constraint is of type notonthesamehost, analogous to disjointplinks, but
targeting nodes.

The configuration describing the physical infrastructure follows the same
pattern an principle. Nodes are assumed of type host, with ethswitch as
a special case for physical Ethernet switches. There are two types used
to describe the links of a physical infrastructure hostswitch and hosthost

169

Chapter 7. Assessment

indicating an uplink of a host to a switch and a direct link between two
hosts, respectively. Both link types require the attribute nic to know which
NIC a host uses for this link.

Listing 5: QoS path demanding 200 MBit/s

"constraints": [
{ "name" : "datarate",

"type" : "enforcedqospath",
"subjects" : ["mVend01", "mVend03"],
"min_rate" : 200

}
]

Listing 5 shows an addi-
tional constraint, specify-
ing network QoS on the VI
specified in Listing 4. It
requires a minimum data
rate of 200 MBit/s on the
path between mVend01 and
mVend03, in both directions.
The following Section 7.2.3
describes this prototype's implementation of the management loop intro-
duced in Section 6.1. The refinement procedure preparing this QoS require-
ment for implementation is part of the translation.

7.2.3. Management loop

The implementation of the management loop mainly incorporates, Shinken
for monitoring, Salt for configuration of components, and two newly de-
veloped automatons. One automaton realises the translation of specifi-
cations to strategies, while the other newly implemented automaton aug-
ments Salt's capabilities by implementing network QoS management using
the QoS Interface as described in the information model. To control the
management loop and provide management information, text files are used
instead of an explicit implementation of a management interface. The fol-
lowing describes the implementations of the management phases introduced
in Section 6:

7.2.3.1 Control: Definition of a target configuration

7.2.3.2 Translation: Development of a configuration strategy

7.2.3.3 Configuration: Effective component management

7.2.3.4 Monitoring: Collecting performance data

170

7.2. Prototype

7.2.3.1. Control

The management loop is managed using text files. A VI is specified as
JSON object and stored using one file per object. Listing 4 is a complete
example for a VI specification. To change a VI, its text file must be edited.
To schedule a VI to become part of a target configuration, a symbolic link
to its specification must be created in a special directory deploy. Using a
versioning system, e.g. CVS, on the text files allows the retrieval of the most
recent accepted configurations, acting as a rudimentary implementation of
the transaction engine, as depicted in Figure 7.2, providing read stability
when generating target configurations.

For the physical infrastructure there is a JSON object similarly as for VIs,
except for it is interpreted differently and may never be scheduled for the
target configuration. To distinguish the physical infrastructure specification
from VI specifications, it has to have the filename physical.setup.

The scheduled VIs, the specification of the physical infrastructure and mon-
itoring data constitute the input for the automaton facilitating the trans-
lation phase of the management loop, illustrated as Translation Logic in
Figure 7.2.

The repetition of the management loop is realised using GNU make. The
core functionality of make is executing recipes for building target files from
dependency files. For the purpose of the prototype, the configuration strate-
gies are the files that need building, while the VI specifications and moni-
toring data are the dependencies.

To reduce the workload, make implements a mechanism determining when
and if a file needs to be built. This mechanism is based on timestamps in
file system information: a file is only built if there is at least one depen-
dency with a modification time more recent than the target file. This is
trivially true for non existent files. Existing files will be rebuilt, if one de-
pendency was altered since the last built. Mapped to this implementation,
configuration strategies are only rebuilt if a VI specification or the special
file containing only short status messages changes. This allows frequent
calls to make, but target configurations are only rebuilt if need be.

171

Chapter 7. Assessment

The recipe for creating configuration strategies is calling the translation
automaton. For an easier implementation, the recipe first calls the trans-
lation automaton and immediately afterwards triggers the implementation
of configuration strategies, which is done using Salt.

7.2.3.2. Translation

The translation automaton could not be provided by available tools and
is a completely new development. First it creates a target configuration
from all its inputs. Then it then derives configuration strategies for the
physical hosts from the target configuration. In this implementation and lab
environment, there are always four configuration strategies: one strategy for
each host, pertaining to its virtual switches and one configuration strategy,
that is given to all hosts, pertaining to VMs. Additionally, there may
be host specific strategies for network QoS, which are the result of the
refinement procedure. In this example, with the QoS path introduced in
Listing 5, there is be a QoS strategy for each host.

The choice for having one VM strategy valid on all hosts requires that
placement information is stored as part of the strategy. This extends the
definition of a configuration strategy from the architecture specification.
However, during development and initial experimentations, migrating VMs
was a very frequent use case, warranting automation. Apparently this is
implemented very efficiently with global knowledge on VM placement avail-
able.

Listing 6 shows the status messages of the automaton as it generates target
configurations. It starts out reading the current state, i.e. monitoring
data and the physical infrastructure JSON object; MNM Xen Lab is the
name meta information of the physical infrastructure specification. The
host name beginning with xensrv indicates monitoring data is attributed
to the hosts that generated it.

Having initialised its state, it reads the VI specifications and augments them
with placement information to generate a complete target configuration.
Lines 10 and 11 of Listing 6 shows the meta names of the VIs to be included

172

7.2. Prototype

in the target configuration. Lines 12 and 20 mark the beginning of the
individual processing of the VI specifications. The printed placement stack
in lines 13, 15, 17, 21, 23 and 25 shows the remaining workload while
handling individual VIs. Following each placement stack line, there is a
placement line, showing the intention of the management system to place
a VM on a host. This is where the management system decides whether
a VM must be created and activated, or it has already been placed and is
active.

Listing 6: Progress of the translation implementation

1 Reading current state ...
2 MNM Xen Lab
3 xensrv01.virt.lab.nm.ifi.lmu.de
4 xensrv02.virt.lab.nm.ifi.lmu.de
5 xensrv03.virt.lab.nm.ifi.lmu.de
6 Got current state!
7 Reading configuration files ...
8 Read configurations!
9 Determining target configuration ...
10 Einfaches Beispiel
11 Zwei Kisten ein Router
12 Einfaches Beispiel
13 placement stack: [u'tva', u'tre', u'ett']
14 ett -> xensrv02
15 placement stack: [u'tva', u'tre']
16 tre -> xensrv02
17 placement stack: [u'tva']
18 tva -> xensrv02
19 [empty stack]
20 Zwei Kisten ein Router
21 placement stack: [u'mVend03', u'mVend01', u'mR00']
22 mR00 -> xensrv02
23 placement stack: [u'mVend03', u'mVend01']
24 mVend01 -> xensrv01
25 placement stack: [u'mVend03']
26 mVend03 -> xensrv03
27 [empty stack]
28 Done placing nodes on hosts!
29 Identified virtual switches!
30 Target configuration complete!
31 Grinding Salt states ..

173

Chapter 7. Assessment

If a VM is to be created or activated, a list of hosts is refined using all
applicable constraints. From the remaining list all hosts are, by definition,
equally suited to run the VM and one host is randomly picked. If the
VM is already placed and no constraints are violated by this placement,
the new placement will be the old placement. This prototype has limited
capabilities to migrate VMs in order to meet constraints, but this is merely
for practical purposes and not core concern of this implementation.

The example output shows all three VMs belonging to the VI Einfaches
Beispiel are placed on xensrv02, together with mR00 from the Zwei Kisten
ein Router VI. The placements of mVend01 and mVend03 on xensrv01 and
xensrv03, respectively, are the consequence of the disjointplinks and no-
tonthesamehost constraints, shown in Listing 4.

The last line of output generated by the automaton, line 31 in Listing 6,
means it is generating configuration strategies for the VE. The result is
shown in Listings 7, 8 and 9. The VM strategy, Listing 10, consists of
one block for each VM, beginning with its name. Every VM shall be running
on the provided run_host and be connected to the listed virtual switches.

The Listings 7, 8 and 9 show the configuration strategies for virtual switches
for xensrv01, xensrv02 and xensrv03, respectively. The xenbr blocks
describe virtual switches incorporating a single physical NIC, and therefore
an uplink to the physical OSI layer 2 topology. On the other hand, the
vswitch blocks describe isolated virtual switches to which VMs may be
connected. To reach nodes and networks beyond the physical host, a vswitch
instance must have an uplink to a xenbr instance. Every vswitch instance
has a require_in attribute, which is a list of all the VMs it will link. The
require_in attribute belongs to Salt's functionality and ensures that the
virtual switches are configured before any VM the are required in. Across
all listings, vswitch names are unique. This is a design decision, making the
results more human readable and reverse mappings from virtual switch to
VI easier, but it is not necessary.

The QoS strategies are Listings 11, 12 and 13. In the herein used example,
the QoS path required by the constraint introduced in Listing 5 involves all

174

7.2. Prototype

three hosts. This prototype can
realise path segments end-to-end,
or end-to-uplink. As mVend01 and
mVend03 are on separate hosts, with
mR00 in between. The result are
four end-to-uplink path segments,
where xensrv01 and xensrv03 im-
plement one each and xensrv02 im-
plements two path segments, one for
each uplink to the physical network.
The concrete steps of the refinement
procedure resulting in this strategy
are discussed in the upcoming Sec-
tion 7.2.4.

Listing 7: xensrv01, Switch strategy

xenbr0:
vswitch.present:

- interfaces:
- eth0

vswitch2:
vswitch.present:

- uplink: xenbr0
- require:

- vswitch: xenbr0
- require_in:

- vm: mVend01

Listing 8: xensrv02, Switch strategy

xenbr0:
vswitch.present:

- interfaces:
- eth0

xenbr2:
vswitch.present:

- interfaces:
- eth2

vswitch1:

vswitch.present:
- require_in:

- vm: tre
- vm: tva
- vm: ett

vswitch4:
vswitch.present:

- uplink: xenbr0
- require:

- vswitch: xenbr0
- require_in:

- vm: mR00
vswitch5:

vswitch.present:
- uplink: xenbr2
- require:

- vswitch: xenbr2
- require_in:

- vm: mR00

Listing 9: xensrv03, Switch strategy

xenbr2:
vswitch.present:

- interfaces:
- eth2

vswitch3:
vswitch.present:

- uplink: xenbr2
- require:

- vswitch: xenbr2
- require_in:

- vm: mVend03

175

Chapter 7. Assessment

Listing 10: VM strategy

mVend03:
vm.running:

- run_host: xensrv01
- networks:

- vswitch3
mVend01:

vm.running:
- run_host: xensrv03
- networks:

- vswitch2
ett:

vm.running:
- run_host: xensrv02
- networks:

- vswitch1
mR00:

vm.running:
- run_host: xensrv03
- networks:

- vswitch2
- vswitch4

tre:
vm.running:

- run_host: xensrv02
- networks:

- vswitch1
tva:

vm.running:
- run_host: xensrv02
- networks:

- vswitch1

Listing 11: xensrv01, QoS strategy

datarate:
qos.enforcepath:

- type: datarate
- units: 201
- segment:

- mVend01
- xenbr0

- require:
- vm: mVend01
- vswitch: vswitch2
- vswitch: xenbr0

Listing 12: xensrv02, QoS strategy

datarate00:
qos.enforcepath:

- type: datarate
- units: 201
- segment:

- mR00
- xenbr0

- require:
- vm: mR00
- vswitch: vswitch4
- vswitch: xenbr0

datarate01:
qos.enforcepath:

- type: datarate
- units: 201
- segment:

- mR00
- xenbr2

- require:
- vm: mR00
- vswitch: vswitch5
- vswitch: xenbr2

Listing 13: xensrv03, QoS strategy

datarate:
qos.enforcepath:

- type: datarate
- units: 201
- segment:

- mVend03
- xenbr2

- require:
- vm: mVend03
- vswitch: vswitch3
- vswitch: xenbr2

176

7.2. Prototype

7.2.3.3. Configuration

Component configuration is done using Salt, which is a management tool
specifically created for configuration management. Salt realises a Manager-
Agent architecture. Consequently, the depicted management agents with
controllers in Figure 7.2 are Salt agents, with the extensions introduced in
the following. Salt already has the capability to manage Xen hosts, but not
with the API used in this experimentation environment. Consequently this
prototype implements three Salt modules:

• one for managing VMs on the Xen hypervisor,
• one for managing virtual switches using OVS, and
• one for enforcing network QoS.

The modules for Xen and OVS can interpret VM and switch configura-
tion strategies, respectively, and configure hosts accordingly. The correct
distribution of configuration strategies, states in Salt's terminology, their
processing and feedback is all performed by Salt. This is implemented using
heuristics on file names. Files whose names end with …

• all.sls are distributed to all hosts,
• 01.sls, 02.sls and 03.sls are distributed only to xensrv01, xen-
srv02 and xensrv03, respectively.

The module for enforcing network QoS must perform further processing of
configuration strategies, because neither the Xen hypervisor, nor the OVS
have a canonical implementation of network QoS. The QoS module is an
automaton, implementing the architecture's QoS Interface, specialised to
OVS switches on a Xen hypervisor capable of enforcing network data rate.
It receives demands for a lower bound for data rate on a path, either end-
to-end, or end-to-uplink. The demands are translated into Xen and OVS
specific configurations. These configurations are resource allocations and
resource consumption restrictions, implemented by both, the hypervisor
and the OVS, which set aside enough resources so that the overall load on
the system cannot become high enough to impede network QoS.

177

Chapter 7. Assessment

7.2.3.4. Monitoring

A very important task for any implementation with a monitoring loop is
repeated constantly is matching the target configuration to the current
configuration, because where the target configuration matches the current
configuration, no further configuration steps must be performed. Only the
differences require performing management on the VE. Consequently this
prototype implements three monitoring packs:

• one for obtaining the current state of the VE pertaining to VMs,
• another one for obtaining the state of virtual switches, and
• a data rate measuring benchmark.

The benchmark realises the monitoring strategy of QoS paths specified
through the enforcedqospath constraint. The data rate benchmark creates
only one record every 48 hours, or when triggered manually.

As indicated in the previous section when showing the data format, mon-
itoring is done per component. For each monitoring task, there is one
record for each monitored component. For this prototype, this results in
three records about VMs and another three records on virtual switches ev-
ery 15 minutes. When there are VMs and virtual switches on a host, the
record will include their complete descriptions as task specific data. This
constitutes the current configuration.

The current configuration is stored completely once and the short status
messages a second time in a separate file. The separate file with the short
status messages contains exactly one entry for each pair of host and mon-
itoring task. Only if a management task returns a different short status
message than the one stored in the file, the file is updated. The con-
trol implementation uses the modification time of this file to notice if the
monitoring has noticed a status change important enough to generate and
implement a new target configuration.

178

7.2. Prototype

7.2.4. Experimentation

This section performs experiments using the introduced prototype and in-
frastructures to showcase the proposed management approach can be used
to perform network QoS management in VEs. The experiment itself is per-
forming the data rate benchmark, the monitoring strategy associated with
the enforcedqospath QoS path. The results have been published previously
in [Metz 14b].

The experiment is performed five times under varying conditions:

T1 The monitored VI is the only active VI and the QoS strategies are
not implemented.

T2 There is an additional VI, creating massive CPU load on xensrv02
and the QoS strategies are not implemented.

T3 There is an additional VI, creating massive network load and the QoS
strategies are not implemented.

T4 There is massive CPU load on xensrv02 and the QoS strategies are
implemented.

T5 There is massive network load and the QoS strategies are imple-
mented.

To create a data flow as the benchmark, the program mbuffer is used,
to copy a ≈ 1 GByte large ISO image between the endpoints. By using
mbuffer with in RAM buffers larger than the actual file, potential side
effects due to disc I/O are eliminated. Also, mbuffer shows the achieved
data rate over the last second, which is sufficiently accurate, as there is not
anything else competing for resources on the endpoints.

To avoid further interference with the measurement, the entire benchmark
becomes one monitoring record, with an excessively large amount of task
specific data. Listing 14 shows the first and last three lines of the task
specific data, measured for experiment T1. Each line shows the average
throughput, in and out, during the last second, the total amount of data
transferred so far and the buffer fill level.

Figure 7.3 illustrates the implementation of the main VI for the experiments
on the physical infrastructure, both introduced with in Section 7.2. The six

179

Chapter 7. Assessment

Listing 14: Excerpt of the task specific data from experiment T1

out @ 38.6 MB/s, 31.5 MB total, buffer 95% full
out @ 38.9 MB/s, 70.4 MB total, buffer 92% full
out @ 39.1 MB/s, 109 MB total, buffer 89% full

[... 24 lines skipped ...]
out @ 39.2 MB/s, 1087 MB total, buffer 7% full
out @ 39.0 MB/s, 1127 MB total, buffer 4% full
out @ 38.8 MB/s, 1165 MB total, buffer 1% full

xensrv01 xensrv02 xensrv03 p
h
y
s
ic

a
l

in
fr

a
s
tr

u
c
tu

re
V

I
p

la
c
e

d
 V

I

Data rate requirement: 200 MBit/s

mVend01
mR00

mVend03

mR00
vsw02 psw01 vsw04 vsw05 vsw03

psw01

Figure 7.3.: The main VI implemented on top of the physical infrastructure

lines shown in Listing 14 are representative for the entire experiment T1.
Using mbuffer to transfer data from mVend01 to mVend03 yields a relatively
steady data rate of 39 MByte/s .

For the other experiments, the VMs ett, tva and tre are used to create load
on xensrv02, in order to create QoS degradation, i.e. a lower average data
rate when performing the benchmark. The hosts, especially xensrv02,
have one CPU with two physical cores and can process four instruction
streams simultaneously. The idea was to end up with one more object to
schedule than simultaneously executable instruction streams. This would
be achieved with three VMs as load generators, mR00 for data forwarding

180

7.2. Prototype

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

d
a

ta
 r

a
te

[M

B
yt

e
/s

]

elapsed time [seconds]

uncontested resources T1
contested CPU w/o QoS T2
contested NIC w/o QoS T3
contested CPU w/ QoS T4
contested NIC w/ QoS T5

minimum required

Figure 7.4.: Achieved data rates

and the privileged VM, dom0 as fifth scheduling object for the hypervisor.

As it turns out, for inflicting QoS degradation, it does not matter how
load is created. Having three load generator VMs is as effective as having
one load generator VM with three virtual CPUs. Similarly, one VM can
saturate a 1 GBit/s link as effectively as three VMs generating network load
can. When creating sufficient CPU load so that QoS degradation occurs,
additional network load hardly leads to further degradation. These effects
can be specific for this particular set up and need not hold for all VEs.
However, these observations greatly reduces the number of experiments
required to create a proper impression of this specific VE.

The results from the performed experiments are summarised in Figure 7.4.
Under heavy load the achieved data rates in T2 and T3 drop constantly
below the lower bound of 200 MBit/s. Notice, that QoS degradation due to
CPU load yields a very constant data rate, while network load yields a lot
less steady measurements. The achieved data rates in T4 and T5, where the
QoS strategies are implemented, are above the lower bound and therefore
fulfil the QoS requirements.

The same method for creating load in experiments T2, T4 and T3, T5 were
used. To generate CPU load, the tool stress was used. This tool is
specifically written for the task of consuming resources, especially CPU

181

Chapter 7. Assessment

mVend01 vswitch02 xenbr0 eth0(xensrv01)

pswitch01

eth0(xensrv02)

xenbr0vswitch01

vswitch04

ett

tva

tre

mR00 vswitch05 eth2(xensrv02)xenbr2

mVend03 vswitch03 eth2(xensrv03)xenbr2

Figure 7.5.: All network links used to realise the target configuration

resources. Network load was created using wget to download a multi GB
ISO image, but redirecting the download stream, so that the downloaded
data would never be stored, thus avoiding unwanted load on xensrv02.

The management system achieves network QoS by devising and implement-
ing the QoS strategies introduced in Section 7.2.3. The strategies are cre-
ated after all placement is done, to limit the problem space. Starting point
is the enforcedqospath constraint from Listing 5, specifying a lower bound
of 200 MBit/s and the endpoints mVend01 and mVend03.

With the placement information available, a graph as depicted in Figure 7.5
can be constructed. This graph includes every network link required to
build the whole target configuration. Within this graph, the end-to-end
data path for the QoS path can be determined. The end-to-end data path
is illustrated as thick lines in Figure 7.5, which is the same path as the
depicted placed VI in Figure 7.3. This path is the knowledge required
for a meaningful implementation the procedures pathAtOsiLayer() and
neighborOf() used in Algorithm 1 on page 107. These were the last miss-
ing pieces to allow a canonical implementation of a refinement procedure
as specified by Algorithm 1.

182

7.3. Summary

The adaptQoS() procedure, which has to be QoS Category specific, is an
adaptation of the requested data rate to the protocol overhead introduced
through IP and Ethernet PCI. Summing it all up, the steps of the refinement
procedure to create the QoS strategies introduced earlier are:

1. Starting out with only the end-to-end path as depicted at the top of
Figure 7.3: four iterations of pathAtOsiLayer(), moving from OSI l7
to l3, where mR00 is identified, because it has been specified as a layer 3
component in the VI specification.

2. adaptQoS → 200.3 MBit/s to account for IP PCI.
3. Twice: recursion into subpath

a) Five iterations of pathAtOsiLayer(), moving OSI l7 to l2.
b) adaptQoS → 200.6 MBit/s to account for Ethernet PCI.
c) link for all found segments, building the longest possible subpaths

that are implemented by an individual host.

Step 3c) yields the path segments as put in the QoS strategies shown in
Listings 11, 12 and 13. The 201 units result from rounding 200.6 MBit/s.

7.3. Summary

This chapter assesses the suggested architecture, by first validating against
the developed requirements and showcasing a prototype for network QoS
management in VEs.

Section 7 discusses how the individual requirements can be fulfilled by a
management system, following this architecture. Section 7.2 proceeds with
developing a prototypical implementation, aimed at illustrating the au-
tomation aspects of the suggested management loop, before Section 7.2.4
performs experiments on a VE with the developed prototype.

The experiment shows, that, with the herein developed approach, imple-
mentation independent abstract VI specifications hold enough information
to realise effective network QoS management in VEs.

183

C
h
a
p
t
e
r 8

Summary and Outlook

Network QoS relies on guarantees, that all involved components perform
in a certain manner. Virtualization environments feature constant change
and uncertainty about a components current implementation. This opposes
network QoS, because it makes guaranteeing a components performance
much more difficult. Consequently, network QoS management must be
adapted to overcome challenges, that are specific for VEs, in order to achieve
network QoS analogous to strictly physical environments.

While the management of virtual network endpoints is widely understood,
management of networks and network components in VEs used to take a
subsidiary role. As a result, available management approaches for VEs
are not fully adopted to VE specific challenges. This work contributes
a management architecture that structures the network QoS management
task, such that the previously impassable problems can be controlled and
network QoS in VEs implemented.

VEs are versatile platforms, hence network QoS management is one aspect
amongst many management concerns. To develop a sustainable approach,
this work determines a prototypical life cycle for VIs and arranges the
network QoS management task with it. The intention is to enable this
approach being used in combination with solutions for other management
tasks, such as embedding.

185

Chapter 8. Summary and Outlook

After a closer analysis of use cases in real world scenarios and existing
work, automation appears as the only sustainable approach to dealing with
virtualization dynamics. Especially as data centres grow to span the area of
multiple football fields, the sheer numbers of MOs becomes overwhelming
for human managers. There must be automated assistance for performing
management tasks.

The stacking of technologies and abstractions in VEs is problematic for
network QoS, which often employs resource sharing mechanisms to enforce
a certain behaviour of components. To enable similar functionality in VEs,
the architecture models abstract network QoS from any implementation,
while remaining specific enough for deterministic implementations.

A side effect of the implementation independent network QoS specifications
is, that the most important aspects of a virtual component are its placement
and implementation. This is one step ahead of today's management sys-
tems, where concrete properties like CPU, RAM and I/O channels usually
are a VM's determinant.

The defining aspect of the herein developed management architecture is
the underlying idea of a management feedback loop, constantly shaping
the VE to implement and enforce network QoS. The management loop and
the developed arrangement of subtasks around it enable fulfilment of all
but one identified requirement.

Understanding the challenges of VEs, a management architecture according
to ISO OSI has been specified and validated. A prototypical implementa-
tion of this management loop based approach has been provided. Experi-
mental evaluations show that management systems following the proposed
architecture are suited for efficient network QoS management in virtualiza-
tion environments.

Outlook

The previous chapters often show how much preparation and preliminary
work is required, before there is even enough information available, to ac-

186

tually consider network QoS. For example:

• A lot of use cases are identified in the real world scenarios, and while
many are relevant to network QoS management, it is hardly an immediate
concern of, or even motivation for, any use case.

• In the information model, QoS is merely one out of four domains, not
larger than any other.

• When developing the prototype, quite the effort is made to describe and
monitor VIs and VEs, before network QoS can be introduced as a single
constraint with two simple attributes.

To deliver a sustainable architecture, the approach has to start out as an
attempt at management in VEs in general and then immediately focus
on network QoS. This arranges network QoS management properly within
VEs, while avoiding picking up on problems outside the scope of network
QoS management. As an effect, many new questions arise adjacent to the
answered questions and already become visible in the proposed architec-
ture.

For the information model, the object hierarchy and relations to classes
outside the presentation domain are what is important for network QoS
management. This made it acceptable to not require and specify attributes
for the therein contained classes. This immediately raises the question for
an accurate modelling of a virtual component, when aiming for a more
holistic management approach for VEs.

The organisation model identifies discernible roles with varying manage-
ment tasks. From a network QoS management point of view, these roles
could be realised through multiple independent providers, but can these
roles really fulfil their tasks when realised that far disjoint? Will there
be additional challenges pertaining to sharing information and resources,
when network QoS management of a single VI translates into configuration
strategies implemented by multiple VEs?

The function model very prominently features a generic interface for all
management concerns that are not network QoS management. Is this sole

187

Chapter 8. Summary and Outlook

position in the management loop sufficient for all management aspects that
can sensibly be integrated with network QoS management?

The architecture presented herein allows the management of network paths,
independent from their implementation. This becomes ever more useful,
with the complexity of such paths' implementations. With the developed
models and management capabilities, the question arises: which are the
most effective and efficient constructs for implementing network paths? It is
possible, that the answer to that question varies with the QoS requirements
associated with a path. Today, a virtual machine could perform traffic
engineering to optimally use the underlying physical resources. Yet, when
technologies such as active queue management are used, the effect on QoS
properties such as delay and drop rate could be disastrous. There could be
benefit in determining recipes and building blocks for network topologies
with QoS properties in VEs.

There is a constant development of new virtualization technologies. Recent
developments are called “virtual network functions” (VNF) and “software
defined networking” (SDN). VNF basically allows for quick development
and deployment of new specialised types of virtual network components,
while SDN realises new approaches to centralise and implement network
configurations.

Both developments, VNF and SDN, have the potential to develop additional
sources for dynamics and uncertainty about network component implemen-
tations. This might warrant additional types of strategies and functional
components to ensure the management loop can still fulfil its purpose.

As network QoS becomes ever more important, these technology fields will
as well. While developing the experiments presented in Section 7.2.4, an-
other small test was the same benchmark, using a topology without the vir-
tual router. With that set up, the virtual machines would achieve average
data rates around 80 MByte/s, roughly double the throughput compared to
the topology that includes the virtual router, even without resource short-
age. This can be seen as an indicator that virtual network components
are not yet very efficient, impeding large scale applications, while further
motivating the development of new, more efficient, technologies.

188

Emerging technologies such as VNF facilitate ever more efficient virtual net-
work components. On the one hand, the advent of these new components
will create further heterogeneity, in the sense that these components must
be managed in a different manner. On the other hand, these technologies
allow for new services, or at least new service levels, where network QoS
provides added value. This is when the concepts and mechanisms intro-
duced in this work will become integral parts of management systems.

189

A
p
p
e
n
d
i
x

A
Use cases specifications

The following use cases' format:

name: Each use case is labelled and named for structuring purposes and
later reference.

description: An informal description summarising intention and effect
of the use case.

precondition: Dependencies and prerequisites so that the use case can
successfully be performed.

postcondition: A description of the changes to the VE after the use case
has been performed successfully.

procedure: A prototypical description of the steps transitioning the VE
state from pre- to postconditions. For VMs and VNs this often means the
execution of certain management operations, described in Section 5.2.1
and Section 5.2.2, respectively.

effects: Potential for side effects on network QoS, used in Section 3.4 to
derive requirements on network QoS management.

functional requirements: Requirements on functional abilities of ma-
nagement systems, used in Section 5.3 to derive prerequisites and be-
havioural requirements.

191

Appendix A. Use cases specifications

nonfunctional requirements: Requirements on other aspects than
functional abilities, used in Section 5.3 to derive prerequisites and be-
havioural requirements.

UC 1 Assign resources to components

Description A manager assigns resources to components. There
may be different kinds of resource, for example CPU
time, RAM and storage space. Resource assignment im-
plicitly guarantees a minimum capacity for performing
work, with respect to the kind of resources allocated.

Precondition The VI has been assigned a pool of bulk resources
and this assignment of resources to components does not
overtax the VI's resource pool. The management system
provides the manager with information on assigned, used
and free resources.

Postcondition The realising components of the VE enforce that the
component has hat least the assigned resource available.

Procedure
1. A component is assigned resources from a VIs resource pool within

the management system.
2. The VE, i.e. all realising subsystems of the current component, are

reconfigured to assure the assigned amount of resources. This may
require a replacement of the component and its links within the VE.

3. The component is rearranged with its environment and its links are
renewed, if necessary.

Potential for side effects on network QoS
• Resources allocated to VMs cannot be used by VN components.
• Network components cannot be allocated resources from resource

pools.
Functional requirements

• Control over resource allocations in virtual and physical components
• Migration of virtual components

192

Non-functional requirements
• The currently used resources by components must be obtainable
• Links between virtual components are automatically adapted by the

management system
• Full information about the current placement of components within

the VE

UC 2 Activate component

Description A previously deactivated component is activated to
actively participate in a VI.

Precondition The component has been created and deactivated.
The VE has sufficient capacities available to operate the
component within its specifications.

Postcondition The component can be used to provide user faced
services and is part of a VI.

Procedure
1. The component is placed within the VE.
2. The component is activated, thus blocks and consumes resources.
3. The links to other components are placed.
4. The component becomes operational.

Potential for side effects on network QoS
• When a component is activated it binds and blocks resources on a

host.
• Component placement defines how the VNs spans across the physical

topology.
Functional requirements

• Control over virtual and physical components
Non-functional requirements

• The currently used resources by components must be obtainable
• Links between virtual components are automatically adopted
• Full information about the current placement of components within

the VI

193

Appendix A. Use cases specifications

UC 3 Deactivate component

Description An active component is deactivated, but not removed
from the VE.

Precondition The component has been created and is active.
Postcondition The component cannot be used to provide user faced

services, does not consume any physical resources, but
may still be assigned resources from a VI's resource pool.

Procedure
1. Links terminated by this component are severed.
2. The component is deactivated.
3. Physical resources reserved for the component are freed.

Potential for side effects on network QoS
• Resources on the host can be released and in turn allocated to network

components.
Functional requirements

• Control over virtual components
• Explicit release of allocated resources

Non-functional requirements
• Not applicable to this use case

UC 4 Create component

Description A new component is created, placed, activated and
linked with other components.

Precondition A VI has been created successfully.
Postcondition The new component is active and integrated into the

virtual topology.
Procedure

1. The VM is created.
2. The VM is linked with other components.
3. The VM is placed and activated.
4. Monitoring is set up for the virtual links.

194

Potential for side effects on network QoS
• When a component is activated it binds and blocks resources on a

host.
• Component placement defines how the VNs spans across the physical

topology.
A new component is created, placed, activated and
linked with other components.

Functional requirements
• Control over the VMM
• Monitoring structures for VN properties can be set up

Non-functional requirements
• The currently used resources by components must be obtainable
• Links between virtual components are automatically adopted
• Full information about the current placement of components within

the VI

UC 5 Migrate component

Description Migrate a virtual component between physical hosts.
Precondition The component is active and the target physical host

has the capacities to host the virtual component.
Postcondition The migrated component works on its new host as it

did before the migration and all links have been adapted
so that every link still operates within all specified pa-
rameters.

Procedure
1. Migration of a virtual component is triggered.
2. All links of the component are renewed.
3. Monitoring for affected QoS network segments is adopted.

Potential for side effects on network QoS
• There is a time interval where one component blocks resources on two

hosts.
• The components network uplink on the origin host are not required

after the migration completes.

195

Appendix A. Use cases specifications

• A network uplink is provisioned on the target host.
Functional requirements

• Control over the VMM
• Monitoring structures for VN properties can be set up

Non-functional requirements
• The currently used resources by components must be obtainable
• Links between virtual components are automatically adopted
• Full information about the current placement of components within

the VI

UC 6 Delete component

Description A virtual component is withdrawn from the VI.
Precondition The component has been created successfully.
Postcondition The component is completely removed and all links

have been severed.
Procedure

1. The component is deactivated.
2. All links to and from the component are severed.
3. Resource allocations are undone and the component is removed from

the VE.
Potential for side effects on network QoS

• Resources on the host can be released and in turn allocated to network
components.

Functional requirements
• Control over virtual and physical components

Non-functional requirements
• Full information about the current placement of components within

the VI

196

UC 7 Create VI

Description The virtualization provider creates a VI within the
VE. VNs and VMs are created and linked and the ready
to use VI is then handed over to the customer.

Precondition Customer and provider have agreed upon a complete
specification of the intended VI. The VI is ready to pro-
vide virtual components and links, and a management
user for the customer has been created.

Postcondition All components of the VI are active and can commu-
nicate within the specified parameters. Customer and
provider can perform management on the VI.

Procedure
1. The VN is created.
2. The VMs are created and linked according to the specification.
3. The virtual components are activated and placed within the VI.
4. Monitoring is set up to gather data on the newly activated VI.
5. The customer's management user is associated with the VI.

Functional requirements
• Control over virtual and physical components (to create and link com-

ponents)
• Monitoring structures for VN properties can be set up

Non-functional requirements
• Full information about the current placement of components within

the VI (to activate and place VI components)
• Links between virtual components are automatically adapted by the

management system (to match the virtual components' placement in
the VE)

197

Appendix A. Use cases specifications

UC 8 Modify VI

Description Change meta information pertaining to an individ-
ual VI, but may affect many components. For instance,
generic QoS requirements for VNs, or requirements on
component placement may change over time. This use
cases foremost influence how the management system
handles the VI. If this happens while a VI is active, ac-
tive components may be affected and consequently, their
configuration and monitoring must be adapted. Note,
this use case targets meta information, rules and poli-
cies, for VIs only. Changes with respect to components
and the topologies they constitute are separate use cases,
directly associated with virtual components and links.

Precondition The VI has been created successfully.
Postcondition The VI is in the same state as before and within the

new parameters.
Procedure

1. The specifications pertaining to the VI are changed.
2. All affected components and links are modified accordingly. Virtual

components are rearranged with their environment for resource de-
mands and their links renewed. This may include migrating some
components, thus affecting more components and links.

3. The deployed monitoring is adapted to the new component and link
placement.

Functional requirements
• Explicitly migrate individual components (to fit the VI to the new

parameters)
• Monitoring structures for VN properties can be set up

Non-functional requirements
• Full information about the current placement of components within

the VI (to determine all affected components)
• Links between virtual components are automatically adapted by the

management system (to match the virtual components' placement in
the VE)

198

UC 9 Delete VI

Description When a VI is no longer needed, it is removed from
the VE, including all its components and links.

Precondition A VI has been created successfully. The user faced
services are not employed any longer and the customer
has requested that the VI is deleted.

Postcondition All links to and between components of this VI have
been severed, VNs deleted and all VMs, that belonged
only to this VI, have also been deleted. There are not
any associations from managing users to the VI and all
previously set up monitoring has been removed.

Procedure
1. All VMs belonging to the VI are halted.
2. All management users are disassociated from the VI.
3. All links to and between the halted VMs are severed.
4. All components are removed from the VNs and the VNs are deleted.
5. The VI is removed.

Functional requirements
• Control over virtual and physical components (to delete components

and sever links)
Non-functional requirements

• Full information about the current placement of components within
the VI (to determine all affected components)

UC 10 Assign resources

Description Quantitative shares of physical resources are at-
tributed to the VI. These amounts are the total available
resources that can be assigned to VI components by pri-
mary and secondary customers.

Precondition A VI has been created successfully. The amount of
resources to be assigned is greater than the amount cur-
rently used by the VI components.

199

Appendix A. Use cases specifications

Postcondition Primary customers can attribute resources to compo-
nents or delegate resources to secondary customers.

Procedure
1. A set of physical resource shares is attributed to the VI.

Functional requirements
• Not applicable to this use case, as the effect is limited to the manage-

ment system and not directly filtered down to the VE.
Non-functional requirements

• The currently used resources by components must be obtainable (to
verify the precondition)

UC 11 Create link

Description A user instructs the management system to create
the possibility for two components of the same VI to
interact with each other over a network.

Precondition Both components have been created successfully and
are part of the same VI.

Postcondition Data traffic between the components adheres to the
specifications provided when creating the link.

Procedure
1. The endpoints on the new link are selected.
2. Specifications describing the link and data transmission properties are

made.
3. The link is placed within the VE.
4. Monitoring is set up.

Functional requirements
• Control over virtual and physical components
• Monitoring structures for VN properties can be set up

Non-functional requirements
• QoS requirements are specified w.r.t. the selected components or VNs.

200

UC 12 Delete link

Description When a link is removed from a VI its specific require-
ments are removed from all ongoing QoS considerations
and corresponding monitoring set ups are withdrawn. If
creating the link has any spawned corresponding links
and paths in the VE, they are removed as well.

Precondition The link as been created successfully.
Postcondition The specifications and requirements that were associ-

ated with this link do not influence any QoS implemen-
tation and monitoring any more.

Procedure
1. The affected components and path segments are identified and recon-

figured.
2. Components and paths implementing only this link are deleted.
3. All links that shared a network path segment or a component with

the deleted link are renewed.
4. The link is removed from the management system.

Functional requirements
• Control over virtual and physical components
• Control over the VMM
• Control over resource allocations in virtual and physical components
• Explicit release of allocated resources

Non-functional requirements
• Links between virtual components are automatically adapted by the

management system
• Full information about the current placement of components within

the VI

UC 13 Modify link attributes

Description Applying changes to requirements on the link's prop-
erties and specification. This results in renewing and
potentially replacing the link in the VE.

201

Appendix A. Use cases specifications

Precondition The VE can implement the link with the changed
attributes.

Postcondition The link can be used within the new specifications.
Procedure

1. Properties and settings are changed within the management system
2. The link is renewed and newly placed if necessary

Functional requirements
• Control over virtual and physical components
• Control over resource allocations in virtual and physical components

Non-functional requirements
• Links between virtual components are automatically adapted by the

management system

UC 14 Place link

Description Links spanning across multiple components may have
multiple conceivable implementations, which are all ca-
pable of fulfilling QoS requirements. With this use case,
the virtualization provider aims to optimize resource us-
age by placing links within the VE using global metrics,
beyond the scope of the individual link.

Precondition The link endpoints are active and already placed.
Postcondition The link can be used within the specified parameters.
Procedure

1. Trigger management system to place the link
Functional requirements

• Control over virtual and physical components
• Control over resource allocations in virtual and physical components

Non-functional requirements
• Links between virtual components are automatically adapted by the

management system

202

UC 15 Evacuate host

Description The manager intents to have the host not realising
any virtual links or components. All components cur-
rently placed on the host are migrated to other hosts,
possibly requiring new placement of entire VIs.

Precondition The host is active and implementing virtual compo-
nents as part of the VE. There are other hosts that can
host affected virtual components.

Postcondition There are neither virtual components nor virtual
links placed on the host. All previously hosted compo-
nents have been migrated to other hosts and the affected
VIs still operate within their specified parameters.

Procedure
1. The host is stopped from accepting additional virtual components and

links to be realised.
2. All components placed on the host are migrated to different hosts.
3. Links to the migrated components are renewed and possibly newly

placed.
Functional requirements

• Control over the VMM
• Migration of virtual components

Non-functional requirements
• Links between virtual components are automatically adapted by the

management system
• Information on components belonging to VIs

UC 16 Deactivate host

Description A virtualization host is evacuated and then sus-
pended. This use case is similar to UC15 with an ad-
ditional step of suspending the host.

Additional functional requirements
• Control over physical host

203

Appendix A. Use cases specifications

UC 17 Remove host from virtualization environment

Description A virtualization host is evacuated, then suspended
and completely removed from the VE so that it cannot
be reactivated. From a network QoS point of view this
use case is effectively similar to UC16, with the exception
that the host cannot be activated at a later point in time.

UC 18 Add host to virtualization environment

Description A new host is connected to the VE and integrated as
another virtualization host, that is capable of providing
VIs and VI components. This increases the VEs avail-
able resources for providing VIs.

Precondition The host has never been part of the VE.
Postcondition The host can provide virtual links and components

that are part of VIs.
Procedure

1. The host is physically connected to the VE.
2. The host is added as additional resources that can be used for and

allocated to VIs.
Functional requirements

• Control over virtual and physical components
Non-functional requirements

• The management system is aware of all available and deployed re-
sources.

204

UC 19 Activate host

Description A previously deactivated host is activated to host vir-
tual components.

Precondition The host has been added to the VE and is currently
deactivated.

Postcondition The host can provide virtual links and components
that are part of VIs.

Procedure
1. The host is brought up so that it is fully operational and ready to

provide links and components.
2. The host is added as additional resources that can be used for and

allocated to VIs.
Functional requirements

• Control over virtual and physical components
Non-functional requirements

• The management system is aware of all available and deployed re-
sources.

205

A
p
p
e
n
d
i
x B

Requirements specifications

To capture all important aspects, the structural template is the require-
ments shell as specified in the Volere requirements specification template
[RoRo 06]. The requirements shell is originally designed to capture all im-
portant aspects of a requirement and trace its origin, especially for projects
where multiple interest groups contribute to the requirements engineering
over time. As the latter aspect is not required, the following changes are
applied to the requirements shell to suit this work:

• A short descriptive title is added.
• The priority is used as description of its contribution to the management

system.
• The conflict field is omitted, because no conflicts were identified.
• The originator is not relevant for the following development and therefore

omitted.
• Customer (dis-)satisfaction is omitted.
• No chronological tracking of requirements is performed, hence history is

omitted.
• All supporting material is provided or referenced in the preceding sce-

nario analysis and not repeated.

The requirements derived in this work demand functional and non func-
tional aspects of a management system for network QoS management in

207

Appendix B. Requirements specifications

VEs. The requirements beginning from 11 are marked as prerequisite or
behavioural requirement. Prerequiresites must be fulfilled by sub systems
that are not developed as part of this work, while behavioural requirements
shape the resulting architecture to suit today's VEs, but are not immedi-
ately required to achieve network QoS management.

Req.#1 Resource allocation to virtual machines

Type: non-functional Priority: Resource management

Description: VMs must be assigned resources that control their capac-
ities to fulfil their tasks.

Rationale: VMs require resources to perform their tasks. To guarantee
QoS, VMs must be guaranteed a certain capacity to perform their tasks.

Fit Criterion: After successful configuration an active VM can maintain
its throughput under conditions where the host cannot assign any additional
resources to any components.

Req.#2 Resource allocation to VN components

Type: non-functional Priority: Resource management

Description: VN components must be assigned resources that control
their capacities to fulfil their tasks.

Rationale: Similarly to VMs, VN components require shares of physical
resources to perform their tasks and their capacities increase and decrease
with the available resources. The more a service or program depends on
communication to perform well, the more important it becomes that the VN
components have enough resources available to fulfil their tasks. Therefore,
the capability to assign resources to VN components, in order to guarantee
a certain capacity to fulfil their tasks is essential for network QoS Manage-
ment. Including network components into resource management avoids side

208

effects where VMs are allocated too many resources, so that network com-
ponents are starved for resources.

Fit Criterion: After successful configuration a network components can
maintain its throughput under conditions where the host cannot assign any
additional resources to any components.

Req.#3 QoS links can be specified with virtual endpoints

Type: non-functional Priority: Integration of QoS management

Description: One or many endpoints of a network QoS specification for
a link may be virtual components.

Rationale: In current virtualization approaches and especially the anal-
ysed scenarios, customers are not aware of implementation specifics. There-
fore, a specification of a QoS link must be valid at the abstraction level of
virtual components. This must provide sufficient management information
for the VE to implement an end-to-end network link that satisfies QoS
requirements.

Fit Criterion: After its specification, a link can be placed as path
through the virtual and physical network, so that it satisfies the QoS re-
quirements

Req.#4 Support for different types of QoS paths

Type: non-functional Priority: QoS Management

Description: The management system must support multiple kinds of
QoS paths. With the four types of virtual endpoints identified in Sec-
tion 3.3, together with Outside as representative for endpoints outside the
VE these are:

209

Appendix B. Requirements specifications

(VSe, VSe) (VSe, VSi) (VSe, VWS) (VSe, Outside)

(VSi, VSi) (VSi, VWS)

(VWS, RAS) (VWS, Outside)

(RAS, Outside)

Rationale: When implementing QoS requirements assumptions may
or even must be made on the endpoints and the interconnecting network.
Especially when data traffic originates from, or is addressed to, endpoints
outside the VE these assumptions may differ. To fully realise network QoS
in VEs, a management system must allow network QoS on all conceivable
path types.

Fit Criterion: The management system can control and enforce network
QoS on all kinds of QoS paths.

Req.#5 Virtual Infrastructure semantics for performing management

Type: non-functional Priority: QoS management

Description: To enable consistent management VIs must be managed
as a whole, where each component and each network foremost represent
a contribution to meeting the customers demand, rather than a concrete
entity to be instantiated.

Rationale: The additional indirections through using virtualization to
provision DTEs and DCEs allow for many equivalent implementations of
the customers' requests. This introduces possibilities for heterogeneous
platforms used for the same purpose and the concrete implementation for
a VI may change, for example, through migration.

Fit Criterion: none

210

Req.#6 Monitoring structures for VIs

Type: functional Priority: QoS management

Description: With changes to the VE and the placement of components
within, monitoring structures must be set up specifically for a VI's cur-
rent implementation. Monitoring components, links and the networks they
constitute, requires a planned strategy to incorporate all network partici-
pants.

Rationale: Depending on the placement of components and links, only
a subset of physical and virtual components is relevant for a specific VI.
In that sense, monitoring for a specific VI must be placed along with the
implementation of VI components and links.

Fit Criterion: For every constructable link monitoring can be set up
to gain useful data in the sense of OSI performance management.

Req.#7 Management users are restricted to their associated VIs

Type: non-functional Priority: QoS management

Related use cases: Not explicit as per Section 5.3.1.

Description: A management user may perform management only on
their associated VIs. The domains and capabilities must be clearly sepa-
rated.

Rationale: In a multi user environment where VIs are to be operated
isolated from each other, the management system must also implement such
isolation.

Fit Criterion: A management user can only obtain information about
and perform management operations on their associated VIs.

211

Appendix B. Requirements specifications

Req.#8 Multiple concurrent and customer managers

Type: non-functional Priority: Resource management

Description: Any manager can always interact with the management
system to perform management on their VIs.

Rationale: The service project infrastructures in Section 3.2.1 foresees
at least one customer manager per VI. When performing performance ma-
nagement users are likely to interact more often with the management to
retrieve reports and perform measurements. Together with the expansions
plans of the real world scenarios frequent access of the management sys-
tem by multiple users must be expected and the management system must
be able to cope with multiple concurrent users, not baring their concrete
management role.

Fit Criterion: Multiple managers can concurrently perform manage-
ment using the management system without generating side uncontrolled
side effects.

Req.#9 Automated adaptation of links

Type: non-functional Priority: QoS management

Description: Established network paths are automatically reconfigured
to match and account for changes to the VI configuration and changes to
VE's state.

Rationale: In VEs and especially with multiple customer managers,
most management is performed on VIs an their components. The actual
placement and used hardware components are only of subsidiary concern
to the managers.

212

Fit Criterion: A network QoS affecting reconfiguration of a VI or
physical change to the VE does not require additional management actions
by users to adapt all VIs so that network QoS can be guaranteed.

Req.#10 Automated enforcement of network QoS requirements

Type: non-functional Priority: QoS management

Description: The management system automatically reconfigures the
VE to enforce QoS requirements for all deployed VIs.

Rationale: To uphold the abstraction from physical hardware and
topologies, implementation and enforcement of QoS requirements must be
automated and performed implicitly. This is also required to coordinate
possible side effects from multiple VIs of different customers with compo-
nents on the same physical host.

Fit Criterion: VIs cannot influence each other to perform worse than
the minimum guaranteed QoS.

Req.#11 Control over physical hosts

Type: prerequisite Priority: Required for comprehensive manage-
ment of the VE

Related use cases: UC16

Description: Management functions to control physical hosts so they
can provide their resources to the VE.

Rationale: Analogous to virtual components, physical components fol-
low a life cycle where they are subject to management. While most ma-
nagement will be performed on the VMM, at the beginning and end of their
life cycles, hosts may need to be managed directly.

213

Appendix B. Requirements specifications

Fit Criterion: Physical hosts can be added and removed from VEs
correctly.

Req.#12 Control over virtual components

Type: prerequisite Priority: Critical for QoS management

Related use cases: UC7, UC9, UC2, UC3, UC6, UC11, UC12, UC14, UC18,
UC19

Description: For each virtual component, all management functions,
that are relevant to perform life cycle operations, must be available. This
enables the management system to control the life cycle of each component,
obtain its current state and trigger other life cycle phases. More functions,
pertaining to a component's capabilities to allocate resources to a specific
task or even network flow, are required.

Rationale: As part of the life cycle operations, virtual components are
assigned resources to work with. These are essential to control the QoS
a component can provide. The allocation functions are used to configure
the individual components and therefore implicitly their immediate links to
form network paths which can fulfil QoS requirements.

Fit Criterion: The management system can configure and monitor all
virtual components so that network QoS management can be performed
and network QoS enforced.

Req.#13 Control over VMMs

Type: prerequisite Priority: Required to control component
placement

Related use cases: UC4, UC5, UC12, UC15

214

Description: Full management access to the virtualization technology
employed on the hosts is required. This includes the VMMs and every ma-
nagement software that may be used to centralise or delegate management
information or even tasks, e.g. load balancing.

Rationale: Access to each virtualization implementation is required for
monitoring. VMMs often have a centralised management system so that
hosts can be managed as clusters. These systems sometimes offer additional
information and functionality and may always perform management that
influences component placement and resource allocation. Therefore they
must be part of network QoS management.

Fit Criterion: All monitoring data is available, component management
and especially placement and resource allocation can be performed.

Req.#14 Migration of virtual components

Type: prerequisite Priority: Critical for component placement

Related use cases: UC8, UC1, UC5, UC15

Description: Virtualization technologies must offer the functionality to
migrate active virtual components to other hosts.

Rationale: With changes being made to the VIs while they are active,
the VE must be able to adapt to the new configurations without inter-
rupting services and a complete replacement of all VIs. Moving individual
components is a critical tool to adapt VI placement.

Fit Criterion: Active virtual components can be completely moved to
another host, without any remaining dependency on the originating host,
within a reasonable timespan.

215

Appendix B. Requirements specifications

Req.#15 Full information about currently used resources by components

Type: prerequisite Priority: Critical for QoS management

Related use cases: UC10, UC1, UC2, UC4, UC5

Description: The currently used resources must be attributable to the
consuming (virtual) component.

Rationale: This is the essential dynamic information that must be mon-
itored in the VE. This information is required for performance manage-
ment.

Fit Criterion: For every active component the used resources can be
obtained from the management system.

Req.#16 Full information about available and deployed resources

Type: prerequisite Priority: Critical for QoS management

Related use cases: UC18, UC19

Description: The individual providing hosts must be able to determine
the amount of resources they can allocate and the amount of deployed
resources.

Rationale: This is complementary knowledge that combined with other
required information allows for performance management, especially for
predicting shortages and placement planning.

Fit Criterion: Information on available and deployed resources can be
obtained from each component.

216

Req.#17 Release allocated resources

Type: behaviour Priority: Required for efficient QoS

Related use cases: UC3, UC12

Description: The core required functionality is the capability to immedi-
ately free resources bound by a VI component, so that it can be immediately
used by other components.

Rationale: When components and links are deactivated or deleted, the
management system can not know about the future intentions for the VI.
With this explicit functionality, components can become “dormant” and all
their resources are taken from them, but may remain part of the VI so they
can be reactivated at a later stage.

Fit Criterion: Reconfiguring a component to have less, or no allocated
resources at all takes effect immediately and the resources can be allocated
to other components.

Req.#18 All components may be subject to management

Type: behaviour Priority: Critical for real world application

Related use cases: Not explicit as per Section 5.3.1.

Description: Management on all components relevant for network QoS
may be performed.

Rationale: The management system is to implement various manage-
ment roles to delegate tasks and responsibilities. To ensure management
roles can fulfil their purpose, all components must be manageable from
within the management system.

217

Appendix B. Requirements specifications

Fit Criterion: No management user must resort to other means of
management to fulfil their assigned roles.

Req.#19 Full information about the current VI placement

Type: behaviour Priority: Required for efficient management

Related use cases: UC7, UC8, UC9, UC1, UC2, UC4, UC5, UC6, UC12

Description: The management system must have current information
about the placement of all placed VI components.

Rationale: Placed components consume resources and must be linked.
Information about placement is crucial for any planning and for reconfig-
uring placed components and adopting network links and paths.

Fit Criterion: Correct information about all placed components and the
mapping from virtual component to providing hardware can be retrieved
from the management system.

Req.#20 Reverse mappings from components to VIs

Type: behaviour Priority: Required for efficient management

Related use cases: UC15

Description: For every individual component it must be known to which
VIs it belongs.

Rationale: Some components used to realise network segments may be
employed by multiple VIs. For management operations that are directed
at hardware components, especially not at VIs, the management system
must determine which components and which VIs are affected. With that
knowledge further action, for instance replacing links and components, can
be performed.

218

Fit Criterion: For any hardware component all realized virtual compo-
nents can be determined and their corresponding VIs identified.

Req.#21 Resource allocation within a hierarchy of management users

Type: behaviour Priority: Required for real world applica-
tion

Related use cases: Not explicit as per Section 5.3.1.

Description: In a hierarchy of management users, preceding users can
assign resource shares to following users to allocate to components, or their
following users.

Rationale: In order to perform QoS management on a VI subtopology,
a management user requires resources to allocate to components. On the
other hand, VIs must not exceed their allocated resource shares.

Fit Criterion: In a hierarchy of management users resources can be
allocated to users, who are then restricted to that amount of resources to
allocate to components.

Req.#22 Management users can be tied to life cycles or life cycle phases

Type: behaviour Priority: Required for real world applica-
tion

Related use cases: Not explicit as per Section 5.3.1.

Description: The duration of a management users existence can be
bound to the life cycle of a VI, or of a concrete placed instance.

Rationale: There are hierarchies of customer managers where tasks and
responsibilities may be delegated for a limited period of time. This period
is often determined by life cycles, or life cycle phases.

219

Appendix B. Requirements specifications

Fit Criterion: The management users' privileges and responsibilities
change with the life cycle phases of VIs and components according to a
configuration.

220

A
p
p
e
n
d
i
x C

Information domain classes

C.1. QoS domain

<<domain>>
QoS

SupportedLinks

<<enumeration>>
LinkType

PropagationRule

Data-Category QoS-Category

QoSLinkCapabilities

QoSInterface

QoSTypedInterface

The type LinkType is used to classify a link or path(-segment) or inter-
face according to the taxonomy for links introduced in Section 6.2.1. The
following describes the classes of the QoS domain in detail:

221

Appendix C. Information domain classes

Class Data Category

A Data Category describes communication patterns in terms of direction,
senders and receivers. This information is attributed to Associations from
the presentation domain to specify how QoS Categorys must be applied.
The classic Topology is n:m bidirectional communication, where every node
may interact with every other node, while the classic Path is a 1:1 bidi-
rectional communication, where two specific endpoints communicating are
singled out.

Class QoS Category

A QoS Category is a set of QoS Parameters specifying the properties that
data traffic of this category has, or should have. QoS Parameters include
semantic descriptions of the individual properties, criteria determining its
fulfilment and an assurance type, describing how vigorously the property is
enforced.

Class QoSInterface

A QoSInterface is a generic interface which must be implemented by com-
ponents, links and paths alike, to realise network QoS. One interface for
three different types of managed objects helps the refinement of Associa-
tions and automation of management. The final mapping of management
operations to method calls on involved components is postponed until no
further refinement and adaptation is required. The relevant methods for an
information model of MOs implementing the QoSInterface are:

GetQoSAvailable(): Takes an argument of type QoS Category and re-
turns a value quantifying current capacity to provide this particular QoS
Category.

GetQoSAmount(): Takes an argument of type QoS Category and returns a
value quantifying the maximum capacity to provide this particular QoS
Category.

GetQoSAllocated(): Takes an argument of type QoS Category and re-

222

C.1. QoS domain

turns a value quantifying the amount of assertions made for this partic-
ular QoS Category.

QoSSet(): Takes an argument of type QoS Category as the QoS that must
be realised.

QoSAlloc(): Takes an argument of type QoS Category as a request to
facilitate a link with of this QoS Category in addition to the existing
QoS settings. Returns whether it can fulfil the request, or not.

QoSFree(): Takes an argument of type QoS Category indicating one less
link of this category should be provided and its allocations can be freed
up.

QoSClear(): Does not take any argument but removes all QoS configura-
tions pertaining to this object.

Class QoSTypedInterface (derived from QoSInterface)

A QoSTypedInterface combines management information and methods, so
that an implementing component can be managed, with the proposed ap-
proach, to provide and guarantee network QoS in VEs. For a specific QoS
Category the QoSInterface is refined and extended by a PropagationRule.
With this combination, the refinement procedure can map and adapt the
QoS Category, for a specific LinkType, while maintaining its semantics and
corresponding requirements.

Class QoSLinkCapabilities (derived from CIM_EnabledLogicalElement-
Capabilities)

This derivation from CIM_EnabledLogicalElementCapabilities models a
CIM_ComputerSystem's capabilities to provide network QoS in VEs. To
that end it must always attribute an OSI layer to the component, as the
layer where the component fulfils it's main purpose. The concrete capabil-
ities are an aggregation of QoSTypedInterfaces, which can be read as a list
of LinkTypes for which the component can realise network QoS in VEs.

223

Appendix C. Information domain classes

Function class Purpose

_COMPARE Compare two values a and b. Result can be: “a

is better”, “a is worse”, “a and b are equivalent”

_SELECT_BEST Return the best value of a given value set.

_SELECT_WORST Return the worst value of a given value set.

_AGGREGATE_LINKS Aggregate property values of two links or paths.

_AGGREGATE_LINKPARTS Aggregate two partial views at the same link to

a single link weight.

Table C.1.: Function classes from [YHSH 10]

Class PropagationRule

A PropagationRule represents a method for applying a QoS Category to
a path of links. This concept has been previously published in [Metz 12],
based on previous work [YHSH 10], where a schema for generic treatment of
network connection properties has been devised. Consequently, the Propa-
gationRule is the complement to QoSInterface to enable configuration and
monitoring of network QoS.

Table C.1 shows the table of function classes for operations on a single QoS
parameter, previously published in [YHSH 10]. This is reused, but as a
scheme for functions on a QoS Category, therefore a set of QoS Parameters.
The _AGGREGATE_LINKPARTS class is therefore reinterpreted to aggregate
the set of QoS Parameters to a single value. It's original meaning is targeted
at inter domain aspects, not relevant to this model.

These function classes realise the monitoring part of QoS management
and their implementations mainly concern Path of the translation domain,
when monitoring data obtained from individual components is correlated to
derive information for the presentation domain VirtualInfrastructures and
their associated classes.

For varying management purposes, there may be PropagationRule deriva-
tions with multiple methods for each function class. To support automation
and its purpose as part of a QoSTypedInterface only the _AGGREGATE classes

224

C.1. QoS domain

must be implemented. The _COMPARE and _SELECT classes are for path se-
lection, fitting the area of VN embedding, which is out of the scope of this
thesis, but a logical next step in further integrating network management
in VEs. The required methods for this class are:

IsViable(): A _COMPARE operation with dual use:

1. when refining high level configurations, determine if the refined path
can meet its QoS requirements, and

2. having configured the system, validate if the new configuration is ef-
fective.

MeasureQoS(): A _AGGREGATE_LINKS operation, used to determine the
current state of a path, in terms of QoS relevant data, by retrieving the
corresponding values of all its segments and correlating them.

Evaluate(): A _AGGREGATE_LINKPARTS operation, to gain a measure-
ment of the fulfilment of the QoS Category on the whole.

AdoptMetrics(): Takes an argument of type QoS Category to modify
individual QoS Parameters, mostly to modify their value range.

AdoptMeasurement(): Takes an argument of type PropagationRule to
change the specific implementations of this PropagationRule. This may
be required when the host systems of volatile components change.

MakeVirtualEndpoint(): Changes the behaviour of the refinement pro-
cedure, to treat a Path as a LogicalLink, to account for network virtu-
alization techniques that should not be managed by this system. For
instance a leased line connecting two data centres, or simply components
the data centre operators do not want to be automatically managed.

AccountForProtocol(): This is used to keep track of protocol overhead
through repeated transport and encapsulation, common in VEs.

225

Appendix C. Information domain classes

C.2. Presentation domain

<<domain>>
Presentation

1
0..*

1
2

Topology

Node Link
NetworkInterface

PointToPointUplinkDTE DCE

VirtualInfrastructureNetworkItemSpec Association

2

Path

0..*

<<domain>>
QoS

<<domain>>
Translation

Class VirtualInfrastructure

A VirtualInfrastructure is the representative of an infrastructure that has
been created within a VE. Its main purpose is to group MOs into one entity
that represents the fulfilment of the requested infrastructure. As such, it
is a composition of NetworkItemSpec and Association objects. VirtualIn-
frastructure objects can be associated with Managers (cf. Section 6.3.2) as
part of access control.

Specifically for the task of QoS management, VirtualInfrastructure has a
resourcepool. It is a list of the VEs allocatable resources, with an upper
bound for the accumulated allocation of each resource to the VI's elements.
The upper bounds specified in the resource pool need not trigger any alloca-
tions. Their minimal use is merely providing reference values for monitoring
purposes.

The concrete modelling of allocatable resources is not important for this
architecture. Its presence and consistent implementation is required to

226

C.2. Presentation domain

compare available resources vs. allocated and employed resources. The
quality of allocation modelling therefore greatly influences efficiency of al-
location and planning, but not basic applicability. A lightweight example
for such a model are the dynamic SLS constraints in [FAP 10], while the
CIM Resource Allocation Profile [DSP 1041] provides a very sophisticated
approach.

The management information stored in this MO can be modified by adding
and removing elements form the lists. For the resource pool, the upper
boundaries for each resource can be changed individually.

Class NetworkItemSpec

This is the parent class for all MOs that are perceived as atomic from
any manager's point of view. Consequently NetworkItemSpec derivations
provide the most refined view on a VE. Their attributes store the managers'
intentions as well as the current state of. For sensible monitoring and
reports, every NetworkItemSpec has an attribute for each resource listed
in the composing VirtualInfrastructure's resourcepool. This allows for
correct calculation and representation of employed resources, even if there
have not been concrete specifications.

Class Node (derived from NetworkItemSpec)

A Node is a component that is subject to management, because it fulfils
a part of the purpose, most often service, for which the VI was created.
Nodes have resource allocation attributes that are subsets of the VirtualIn-
frastructure's resourcepool. Specifications for these attributes constitute
resource allocation requests. The attribute placement contains the hosting
entity. For instance the hypervisor running the VM. Nodes may be end-
points of Paths. Every node has a list of Paths for which it is an endpoint.
Similarly, Nodes are endpoints of Links, to which they interface through
NetworkInterfaces.

227

Appendix C. Information domain classes

Class DTE (derived from Node)

A DTE is a refinement of a Node and is always an endpoint. It does not
forward network traffic.

Class DCE (derived from Node)

A DCE is a refinement of a Node and is always a forwarding component
within a VI. DCEs can be associated with a Topology, making it the sole
representative of that topology, for management purposes. The attribute
distributed controls whether a management system may implement this
component as multiple components, each realising a (real) subset of the
DCE 's Links.

Class NetworkInterface

A NetworkInterface holds per link information for its corresponding Node.

Class Link (derived from NetworkItemSpec)

A NetworkItemSpec is the MO for links in VIs. It has a list containing
exactly two NetworkInterfaces. Links build Topologys and determine how
Paths may be realised and consequently implemented.

Class Uplink (derived from Link)

An Uplink is a Link connecting one DTE with one DCE.

Class PointToPoint (derived from Link)

A PointToPoint is a Link connecting two Nodes of the same type, e.g. two
DTEs or two DCEs.

Class Association

This is the parent class for associating network QoS to elements of Virtual-
Infrastructure. This class merges the selection idea from [FAP 10] with the
model introduced in [MNM Roel 05]. Derivations of this class are associ-
ated with specific Data Category classes. Therefore they map to Sessions

228

C.3. Translation domain

in [MNM Roel 05]. Derivations from Associations also specify how QoS
Categorys are to be applied to NetworkItemSpecs.

Class Topology (derived from Association)

A Topology is a selection of links with the intention to facilitate commu-
nication between all Nodes associated with one of the selected links. This
Association derivation's Data Category (QoS domain) is a bidirectional
unicast, which means any associated QoS Categorys (QoS domain) is to be
applied to every link.

Class Path (derived from Association)

A Path is a selection of exactly two Nodes with a bidirectional unicast Data
Category.

C.3. Translation domain

<<domain>>
Translation

<<enumeration>>
PathType

 IntraVI
 InterVI
 ExtraVI

MonitoringStrategy ConfigurationStrategy ConfigurationStep

infrastructure

segments

*

*

Path

TargetConfiguration

2..*

ManagementStrategy Node

Network
1..*

CurrentConfiguration

229

Appendix C. Information domain classes

Class ManagementStrategy

ManagementStrategys are the backbone of performing management with the
proposed approach. The attributes applicability and intention store
information on the circumstances, method and ordering when a Manage-
mentStrategy must be implemented. Typical values for applicability are
“once” and “always”, specifying a ManagementStrategy may be discarded
after its first (and only) implementation or it has to be applied whenever
management is performed on the associated Network, respectively. The
intention most commonly stores the goal of the strategy, for instance
“component placement”, “connectivity”, “QoS enforcement”. This allows
the management system to order and prioritise ManagementStrategys.

Class MonitoringStrategy (derived from ManagementStrategy)

A ManagementStrategy specifies how management information originating
from MOs of the realisation domain are attributed to MOs of the presen-
tation domain. In it's most compact form, a MonitoringStrategy associates
an attribute of an object of the presentation domain with an attribute of
an object of the realisation domain. For instance, the CPU time used by a
VM is accessed through a CIM_VirtualSystem object and copied to a DTE
object.

In general a MonitoringStrategy needs to specify what information it needs
from the realisation domain what information it will contribute to the pre-
sentation domain and an implementable procedure which takes the input
data and generates the specified output.

For network QoS management MonitoringStrategys often correspond to QoS
Categorys and the types of guarantee associated with their properties. For
instance, monitoring for best effort services is a compact strategy facilitat-
ing the copying of measured data. At the other extreme, a MonitoringStrat-
egy could specify collecting monitoring data in short, fixed time intervals,
automatically correlating it with threshold values, and immediately react
to threshold violations by modifying specifications of MO attributes and

230

C.3. Translation domain

triggering the creation of ConfigurationStrategys, to make the VE enforce
a QoS Category on the monitored MOs.

Class ConfigurationStrategy (derived from ManagementStrategy)

A ConfigurationStrategy is a recipe for a management system that trans-
forms the VE so that it performs more according to the TargetConfiguration.
To fulfil its task, a ConfigurationStrategy aggregates ConfigurationSteps into
an ordered list. Executing the steps of the list is considered implementing
the strategy. Objects of this class are used for coordinating and control-
ling implementations. Grouping steps to strategies, yields discrete states of
the VE where assertions can be made according to the intention of the
strategies. This allows for partial fulfilment and fault management, giving
managers and the management system opportunities to adjust specifica-
tions, rather than completely denying the implementation of a TargetCon-
figuration.

Class ConfigurationStep

A ConfigurationStep is an atomic operation of a ConfigurationStrategy. One
step often corresponds to a parametrised call to a management function of
a component within the VE. The ConfigurationStep has an attribute er-
rorhandling, which specifies the effect on the superordinate Configura-
tionStrategy, when an error is encountered during the call to the manage-
ment function.

Class TargetConfiguration

A TargetConfiguration is a collection of all currently active VirtualInfras-
tructures domain. Active VIs have their components placed within the VE.
This means there are CIM_ComputerSystem (-derivation) instances, that
map 1:1 to Nodes and the Links and Associations of the presentation domain
can be mapped onto sequences of CIM_ComputerSystems (-derivations)
and LogicalLinks of the realisation domain.

231

Appendix C. Information domain classes

Class CurrentConfiguration

A CurrentConfiguration is a collection of all LogicalLinks and their end-
points where both endpoints are currently active.

Class Network

The components possibilities to communicate are modelled as Nodes associ-
ated with Networks. It corresponds most to Association, but its main task is
to group elements from the presentation domain with the Nodes and Paths
of the translation domain. Networks are the working sets for the refinement
procedure and also tie ManagementStrategys to VirtualInfrastructures.

Class Node

A Node within the scope of the translation domain is essentially a stub that
is part of a Network or Path. Initially, translation Nodes are created for
presentation Nodes. As Paths are created and refined additional Nodes may
be “discovered”. To be referenced in a ManagementStrategy, a Node must
be associated with a MO from the realisation domain.

Class Path

A Path of the translation domain is the model's main information hub for
mapping network QoS from VIs on the VE. When a Path is created its
endpoints are analysed to determine the Path's type. The corresponding
enumeration PathType is:

IntraVI: Both endpoints are part of the same VirtualInfrastructure and
corresponding Nodes can be obtained canonically.

InterVI: Both endpoints are in this VE, but not part of the same Vir-
tualInfrastructure. There must be a “gateway” between both VIs and
QoS must be configured for both VIs. This may include extending the
TargetConfiguration.

232

C.3. Translation domain

ExtraVI: One endpoint is outside this VE. A separate mechanism must
be employed to determine how and where data traffic enters and leaves
the VE and VI. A Node must be created that marks the end of the path
segment which can be managed as part of this VE. Management of the
path beyond that Node must be delegated, i.e. cannot be guaranteed.

Only when type is IntraVI, refinement as described in Section 6.2 can be
performed. All other types require the creation of subpaths stored in the
segments list, that are either IntraVI or can be delegated completely.

The endpoints of a Path are referred to as start and end, to imply a
direction and a corresponding search or traversing order. This also allows
for directed QoS Categorys, if a derivation from Association with a directed
Data Category was created. For bidirectional Associations, two Paths must
be created.

When a Path cannot be refined any further, either because its management
is delegated completely, or it has a corresponding LogicalLink from the real-
isation domain, it is atomic. When it is atomic, its Node endpoints can be
associated with their implementing components of the realisation domain
and a ConfigurationStrategy for implementing the QoS Category, retrieved
from an Association, can be devised using the associated QoSTypedInter-
face.

Any Path that is not atomic is refined into subpaths, stored as seg-
ments. When refining a Path, usually new Nodes are must be added to
the Network. By accessing the associated CurrentConfiguration, a Path
retrieves the information especially necessary to implement the methods
PathAtOsiLayer(), NextNeighbourOf() and PrevNeighbourOf().

The methods of this class are:

PathAtOsiLayer(): Takes an integer as argument, numbering the layer
of the ISO OSI reference model for this request. Returns a copy of this
Path with segments filled with all subpaths at the requested OSI layer
from start to end.

233

Appendix C. Information domain classes

NextNeighbourOf(): Takes a Node and an integer as arguments. The
integer is an OSI layer, analogous to PathAtOsiLayer(). Semantically,
this method first calls PathAtOsiLayer() with the provided OSI layer,
to get its result. It then gets the Path form the result's segments,
where start is the provided Node. If such a Path exists in the result's
segments, then its end property is returned, otherwise the provided
Node has no neighbour on the provided OSI layer on this Path.

PrevNeighbourOf(): Analogous to NextNeighbourOf(), but selecting
the segment where end is the provided Node and start is the returned
property.

AdoptQoS(): Takes a Node as argument, and

1. calls MakeVirtualEndpoint() if the argument's layer is 7,

2. calls AccountForProtocol() if the argument's layer is higher, i.e.
greater, than start.layer,

3. calls AdoptMetrics() on the subpath from start to the argument

4. calls AdoptMetrics() on the subpath from the argument to end

234

C.4. Realisation domain

C.4. Realisation domain

Realisation

CIM_ComputerSystem

CIM_VirtualSystem

CIM_EnabledLogicalElementCapabilities

CIM_VirtualSystemSettingData

0..1

1

0..1

1

 CIM_ResourceAllocationSettingData

1

*

CIM_LogicalDevice

1

**

1

CIM_VirtualSystemManagementService

1
0..1

*

0..1

LogicalLink

2

<<enumeration>>
ConfigurationLocality

 physical
 local
 volatile

CIM_VirtualEthernetSwitch

Class LogicalLink

A LogicalLink is a direct connection between two derivations of CIM_Com-
puterSystem, such that no intermediary managed component handles the
data traffic between the endpoints. Classifying this capability using the ISO
OSI model, this is layer 2 functionality, hence a logical link. Representing
an existing communication path, this class stores its LinkType. The actual
implementation of QoS for the link is realised by its endpoints.

235

Appendix C. Information domain classes

Class CIM-ComputerSystem

This class from the CIM has been extended by three methods to provide
information required by the procedure developed in Section 6.2.

GetConfLocality(): Does not take any arguments and returns the lo-
cality of configuration of a component as type ConfigurationLocality.

GetSupportedLinks(): Takes one argument of type QoS Category and
returns a list of LinkTypes, which are all LinkTypes for which this par-
ticular component can implement the provided QoS Category.

GetQoSCapacity(): Takes one argument of type QoS Category and re-
turns a value quantifying this components capacity to provide this par-
ticular QoS Category. Defining the meaning and range of the value is
part of and specific to the QoS Category.

236

Bibliography

[AAC+ 03] Akyildiz, I. F., T. Anjali, L. Chen, J. C. de Oliveira,
C. Scoglio, A. Sciuto, J. A. Smith and G. Uhl: A new
traffic engineering manager for DiffServ/MPLS networks: de-
sign and implementation on an IP QoS Testbed. Computer
Communications, 26(4):388 -- 403, 2003.

[APST 05a] Anderson, T., L. Peterson, S. Shenker and J. Turner:
Overcoming the Internet impasse through virtualization. Com-
puter, 38(4):34--41, 2005.

[APST 05b] Anderson, T., L. Peterson, S. Shenker and J. Turner:
Overcoming the Internet impasse through virtualization. Com-
puter, 38(4):34--41, April 2005.

[BCL+ 14] Berman, M., J. S. Chase, L. Landweber, A. Nakao,
M. Ott, D. Raychaudhuri, R. Ricci and I. Seskar:
GENI: A federated testbed for innovative network experiments.
Computer Networks, 61(0):5 -- 23, 2014. Special issue on Fu-
ture Internet Testbeds - Part I.

[Bell 57] Bellman, Richard E.: Dynamic Programming. Univ. Press,
Princeton, NJ, USA, 1957.

[BFH+ 06] Bavier, A., N. Feamster, M. Huang, L. Peterson and
J. Rexford: In VINI veritas: realistic and controlled network
experimentation. In ACM SIGCOMM Computer Communica-
tion Review, volume 36, pages 3--14. ACM, 2006.

[BGRS 11] Burd, S. D., G. Gaillard, E. Rooney and A. F. Seazzu:
Virtual Computing Laboratories Using VMware Lab Manager.
In Proceedings of the 2011 44th Hawaii International Confer-
ence on System Sciences, HICSS '11, pages 1--9, Washington,
DC, USA, 2011. IEEE Computer Society.

237

Bibliography

[BKFS 07] Bradford, R., E. Kotsovinos, A. Feldmann and
H. Schiöberg: Live wide-area migration of virtual machines
including local persistent state. In Proceedings of the 3rd inter-
national conference on Virtual execution environments, pages
169--179. ACM, 2007.

[BLG+ 07] Boucadair, M., P. Levis, D. Griffin, N. Wang,
M. Howarth, G. Pavlou, E. Mykoniati, P. Georgat-
sos, B. Quoitin and J. et. al. Rodriguez Sanchez:
A framework for end-to-end service differentiation: Network
planes and parallel Internets. Communications Magazine,
IEEE, 45(9):134--143, 2007.

[CaJi 09] Carapinha, J. and J. Jiménez: Network Virtualization: A
View from the Bottom. In Proceedings of the 1st ACM Work-
shop on Virtualized Infrastructure Systems and Architectures,
VISA '09, pages 73--80, New York, NY, USA, 2009. ACM.

[ChBo 09] Chowdhury, N. M. M. K. and R. Boutaba: Network vir-
tualization: state of the art and research challenges. Commu-
nications Magazine, IEEE, 47(7):20--26, 2009.

[CXB+ 12] Cui, Z., L. Xia, P. G. Bridges, P. A. Dinda and J. R.
Lange: Optimizing overlay-based virtual networking through
optimistic interrupts and cut-through forwarding. In Proceed-
ings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 99. IEEE
Computer Society Press, 2012.

[DSP 1041] Distributed Management Taskforce: CIM Resource Al-
location Profile. DMTF Standard 1041, DMTF, June 2009.

[dSYF 01] Silva, S. da, Y. Yemini and D. Florissi: The NetScript
active network system. Selected Areas in Communications,
IEEE Journal on, 19(3):538--551, 2001.

[FAB+ 11] Fajjari, I., M. Ayari, O. Braham, G. Pujolle and
H. Zimmermann: Towards an Autonomic Piloting Virtual
Network Architecture. In NTMS, pages 1--5. IEEE, IEEE, 2011.

238

Bibliography

[FAP 10] Fajjari, I., M. Ayari and G. Pujolle: VN-SLA: A Virtual
Network Specification Schema for Virtual Network Provision-
ing. In Networks (ICN), 2010 Ninth International Conference
on, pages 337--342, April 2010.

[FBA+ 11] Fajjari, I., O. Braham, M. Ayari, G. Pujolle and
H. Zimmermann: AAVP: An Innovative Autonomic Archi-
tecture for Virtual network Piloting. International Journal of
Next-Generation Computing, 2(3), 2011.

[FeHu 98] Ferguson, P. and G. Huston: Quality of service: delivering
QoS on the Internet and in corporate networks. Wiley New
York, NY, 1998.

[FGR 07] Feamster, N., L. Gao and J. Rexford: How to lease
the Internet in your spare time. ACM SIGCOMM Computer
Communication Review, 37(1):61--64, 2007.

[FHTG 10] Fiedler, M., T. Hossfeld and P. Tran-Gia: A generic
quantitative relationship between quality of experience and qual-
ity of service. Network, IEEE, 24(2):36--41, 2010.

[FSBR 04] Freeman, E., K. Sierra, B. Bates and E. Robson: Head
First design patterns. O'Reilly, Sebastopol, CA, 2004.

[GHHK 01] Garschhammer, M., R. Hauck, H.-G. Hegering,
B. Kempter, M. Langer, M. Nerb, I. Radisic,
H. Roelle and H. Schmidt: Towards generic Service Ma-
nagement Concepts -- A Service Model Based Approach. In
Proceedings of the 7th International IFIP/IEEE Symposium
on Integrated Management (IM 2001), pages 719--732, Seattle,
Washington, USA, May 2001. IFIP/IEEE, IEEE Publishing.

[GHKR 01] Garschhammer, M., R. Hauck, B. Kempter, I. Radisic,
H. Roelle and H. Schmidt: The MNM Service Model --
Refined Views on Generic Service Management. Journal of
Communications and Networks, 3(4):297--306, December 2001.

239

Bibliography

[HAN 99] Hegering, H.-G., S. Abeck and B. Neumair: Integrated
Management of Networked Systems -- Concepts, Architectures
and their Operational Application. Morgan Kaufmann Pub-
lishers, 1999.

[HZSL+ 08] He, J., R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford
and M. Chiang: DaVinci: Dynamically Adaptive Virtual Net-
works for a Customized Internet. In Proceedings of the 2008
ACM CoNEXT Conference, CoNEXT '08, pages 15:1--15:12,
New York, NY, USA, 2008. ACM.

[JBR 99] Jacobson, I., G. Booch and J. Rumbaugh: The Uni-
fied Software Development Process. Addison--Wesley, January
1999.

[JiNa 04] Jin, J. and K. Nahrstedt: QoS specification languages for
distributed multimedia applications: A survey and taxonomy.
Multimedia, IEEE, 11(3):74--87, 2004.

[KCC+ 01] Kounavis, M. E., A. T. Campbell, S. Chou, F. Mod-
oux, J. Vicente and H. Zhuang: The genesis kernel: A pro-
gramming system for spawning network architectures. Selected
Areas in Communications, IEEE Journal on, 19(3):511--526,
2001.

[KeEi 06] Kemper, A. and A. Eickler: Datenbanksysteme: eine Ein-
führung. Oldenbourg, 2006.

[LRZ 12] LRZ press release: SuperMUC No 4 of the Top500 List,
June 2012. [online], Accessed: Oct, 16, 2012.

[LSD 05] Lange, J. R., A. I. Sundararaj and P. A. Dinda: Au-
tomatic dynamic run-time optical network reservations. In
High Performance Distributed Computing, 2005. HPDC-14.
Proceedings. 14th IEEE International Symposium on, pages
255--264. IEEE, 2005.

[MAB+ 08] McKeown, N., T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker

240

Bibliography

and J. Turner: OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev., 38(2):69--74,
March 2008.

[MaTo 06] Martello, S. and P. Toth: Knapsack problems: algorithms
and computer implementations. UMI Books on Demand, Ann
Arbor, Mich., 2006.

[Metz 09] Danciu, V. A. and Martin G. Metzker: On I/O virtu-
alization management. In Proceedings of the 3rd International
DMTF Workshop on Systems and Virtualization Management,
volume 2009, Wuhan, China, September 2009. Distributed Ma-
nagement Task Force.

[Metz 10] Metzker, Martin G. and V. A. Danciu: Towards end-to-
end management of network QoS in virtualized infrastructures.
In Systems and Virtualization Management (SVM), 2010 4th
International DMTF Academic Alliance Workshop on, pages
21--24, October 2010.

[Metz 11] Danciu, V., N. gentschen Felde, M. Kasch and Mar-
tin G. Metzker: Bottom--up harmonisation of management
attributes describing hypervisors and virtual machines. In Pro-
ceedings of the 5th International DMTF Workshop on Sys-
tems and Virtualization Management: Standards and the Cloud
(SVM 2011), volume 2011, Paris, France, October 2011. Dis-
tributed Management Task Force (DMTF), IEEE Xplore.

[Metz 12] Yampolskiy, M., W. Hommel, F. Liu, R. König, Mar-
tin G. Metzker and M. Schiffers: Link Repair in Man-
aged Multi-domain Connections with End-to-end Quality Guar-
antees. Int. J. Netw. Manag., 22(6):494--507, November 2012.

[Metz 14a] Metzker, Martin G. and D. Kranzlmüller: Exploring
Virtuality -- Virtualität im interdisziplinären Diskurs, chapter
Dienstgütemanagement für Netze in Virtualisierungsumgebun-
gen. Springer Fachmedien Wiesbaden, Wiesbaden, Germany,
2014.

241

Bibliography

[Metz 14b] Metzker, Martin G. and D. Kranzlmüller: Mapping
virtual paths in virtualization environments. In Müller, P.,
B. Neumair, H. Reiser and G. Dreo Rodosek (edi-
tors): 7. DFN-Forum Kommunikationstechnologien: Verteilte
Systeme im Wissenschaftsbereich, Beiträge der Fachtagung,
16.-17. Juni 2014, Fulda, volume 2014 of Lecture Notes in
Informatics, Bonn, Germany, June 2014. Gesellschaft für In-
formatik e.V., Köllen Druck+Verlag GmbH.

[MNM Dreo 02] Dreo Rodosek, G.: A Framework for IT Service
Management. Habilitation, Ludwig--Maximilians--Universität
München, June 2002.

[MNM Gars 04] Garschhammer, M.: Dienstgütebehandlung im Dien-
stlebenszyklus --- von der formalen Spezifikation zur rechn-
ergestützten Umsetzung. Dissertation, Ludwig--Maximilians--
Universität München, July 2004.

[MNM Lind 10] Lindinger, T.: Optimierung des Wirkungsgrades
virtueller Infrastrukturen. Dissertation, Ludwig--Maximilians--
Universität München, February 2010.

[MNM Marc 11] Marcu, P.: Architekturkonzepte für interorgan-
isationales Fehlermanagement. Dissertation, Ludwig--
Maximilians--Universität München, May 2011.

[MNM Roel 05] Roelle, H.: Eine dienstorientierte Methodik zur Kop-
pelung von Netz--QoS--Architekturen. Dissertation, Ludwig--
Maximilians--Universität München, July 2005.

[MNM Scha 08] Schaaf, T.: IT--gestütztes Service--Level--Management
--- Anforderungen und Spezifikation einer Managementar-
chitektur. Dissertation, Ludwig--Maximilians--Universität
München, December 2008.

[MNM Schi 07] Schiffers, M.: Management dynamischer Virtueller Or-
ganisationen in Grids. Dissertation, Ludwig--Maximilians--
Universität München, July 2007.

242

Bibliography

[MNM Yamp 09] Yampolskiy, M.: Maßnahmen zur Sicherung von
E2E--QoS bei Verketteten Diensten. Dissertation, Ludwig--
Maximilians--Universität München, December 2009.

[MVKK 12] Mann, V., A. Vishnoi, K. Kannan and S. Kalyanara-
man: CrossRoads: Seamless VM mobility across data cen-
ters through software defined networking. In Network Op-
erations and Management Symposium (NOMS), 2012 IEEE,
pages 88--96, April 2012.

[NJC+ 99] Ng, W. F., D. S. Jun, H. K. Chow, R. Boutaba and
A. Leon-Garcia: MIBlets: a practical approach to virtual
network management. In Integrated Network Management,
1999. Distributed Management for the Networked Millennium.
Proceedings of the Sixth IFIP/IEEE International Symposium
on, pages 201--215, 1999.

[PACR 03] Peterson, L., T. Anderson, D. Culler and T. Roscoe:
A blueprint for introducing disruptive technology into the In-
ternet. ACM SIGCOMM Computer Communication Review,
33(1):59--64, 2003.

[PGP+ 10] Pettit, J., J. Gross, B. Pfaff, M. Casado and
S. Crosby: Virtual switching in an era of advanced edges.
In 2nd Workshop on Data Center--Converged and Virtual Eth-
ernet Switching (DC-CAVES), 2010.

[PPK+ 09] Pfaff, B., J. Pettit, T. Koponen, K. Amidon,
M. Casado and S. Shenker: Extending Networking into
the Virtualization Layer. In ACM workshop on Hot Topics in
Networks (HotNets-VIII), 2009.

[Pujo 08] Pujolle, G.: An Autonomic Architecture for Network Ma-
nagement and Control. UPGRADE, 2008(VI), December 2008.

[RJXG 05] Ruth, P., X. Jiang, D. Xu and S. Goasguen: Virtual
distributed environments in a shared infrastructure. Computer,
IEEE, 38(5):63--69, 2005.

243

Bibliography

[RoRo 06] Robertson, S. and J. Robertson: Mastering the Require-
ments Process (2Nd Edition). Addison-Wesley Professional,
March 2006.

[RyKo 13] Rygielski, P. and S. Kounev: Network Virtualization for
QoS-Aware Resource Management in Cloud Data Centers: A
Survey. PIK --- Praxis der Informationsverarbeitung und Kom-
munikation, 36(1):55--64, February 2013.

[Scha 12] Schaffrath, G.: Virtual Network Management. Disser-
tation, Technischen Universität, Berlin, Germany, December
2012.

[Schö 03] Schöning, U.: Theoretische Informatik - kurzgefasst. Spek-
trum Akademischer Verlag, 4. A. (korrig. Nachdruck 2003) edi-
tion, 2003.

[SGD 04] Sundararaj, A. I., A. Gupta and P. A. Dinda: Dynamic
topology adaptation of virtual networks of virtual machines. In
Proceedings of the 7th workshop on Workshop on languages,
compilers, and run-time support for scalable systems, ACM
International Conference Proceeding Series, pages 1--8, New
York, NY, USA, 2004. ACM, ACM.

[Shan 09] Shankar, S.: Amazon elastic compute cloud, 2009. [online],
Accessed: Oct, 16, 2011.

[SMEVH 10] Stanley-Marbell, P., N. P. Evans and E. Van Hens-
bergen: A unified execution model for cloud computing. ACM
SIGOPS Operating Systems Review, 44(2):12--17, 2010.

[SoAn 10] Soundararajan, V. and J. M. Anderson: The Impact
of Management Operations on the Virtualized Datacenter.
SIGARCH Comput. Archit. News, 38(3):326--337, June 2010.

[SuDi 04] Sundararaj, A. I. and P. A. Dinda: Towards Virtual Net-
works for Virtual Machine Grid Computing. In Proceedings of
the 3rd conference on Virtual Machine Research And Technol-
ogy Symposium, pages 177--190, 2004.

244

Bibliography

[SUN 09] SUN Microsystems: Crossbow: Network Virtualization and
Resource Control, October 2009. [online], Accessed: Mar, 17,
2010.

[SWP+ 09] Schaffrath, G., C. Werle, P. Papadimitriou, A. Feld-
mann, R. Bless, A. Greenhalgh, A. Wundsam,
M. Kind, O. Maennel and L. Mathy: Network Virtualiza-
tion Architecture: Proposal and Initial Prototype. In Proceed-
ings of the 1st ACM Workshop on Virtualized Infrastructure
Systems and Architectures, VISA '09, pages 63--72, New York,
NY, USA, 2009. ACM.

[TaWe 10] Tanenbaum, A. S. and D. Wetherall: Computer Net-
works. Pearson Education, Limited, New York, 5th Revised
edition. edition, 2010.

[TaYa 10] Tai, J. Piao and J. Yan: A Network-aware Virtual Machine
Placement and Migration Approach in Cloud Computing. In
Grid and Cooperative Computing (GCC), 2010 9th Interna-
tional Conference on, pages 87--92, Nov 2010.

[TDS+ 09] Tripathi, S., N. Droux, T. Srinivasan, K. Belgaied
and V. Iyer: Crossbow: a vertically integrated QoS stack. In
ACM workshop on Research on enterprise networking, pages
45--54, New York, NY, USA, 2009. ACM.

[TDSB 09] Tripathi, S., N. Droux, T. Srinivasan and K. Belgaied:
Crossbow: from hardware virtualized NICs to virtualized net-
works. In ACM workshop on Virtualized infrastructure systems
and architectures, pages 53--62, New York, NY, USA, 2009.
ACM.

[Touc 01] Touch, J.: Dynamic Internet overlay deployment and
management using the X-Bone. Computer Networks,
36(2):117--135, 2001.

[VdMR+98] Merwe, J. E. Van der, S. Rooney, I. Leslie and
S. Crosby: The tempest-a practical framework for network
programmability. Network, IEEE, 12(3):20--28, 1998.

245

Bibliography

[VKO+ 09] Voith, T., M. Kessler, K. Oberle, D. Lamp,
A. Cuevas, P. Mandic and A. Reifert: Interactive Real-
time Multimedia Applications on Service Oriented Infrastruc-
tures. Technical Report, IRMOS Consortium 2008, July 2009.

[Walt 88] Walton, M.: The Deming Management Method. Perigee,
New York, 1988.

[WaNg 10] Wang, G. and TS E. Ng: The impact of virtualization on
network performance of amazon ec2 data center. In INFO-
COM, 2010 Proceedings IEEE, pages 1--9. IEEE, 2010.

[WCS+ 03] Wu, J., S. Campbell, J. M. Savoie, H. Zhang, G. v.
Bochmann and B. St. Arnaud: User-managed end-to-end
lightpath provisioning over CA* net 4. In Proceedings of the
National Fiber Optic Engineers Conference (NFOEC), pages
275--282, 2003.

[WKB+ 08] Wang, Y., E. Keller, B. Biskeborn, J. van der Merwe
and J. Rexford: Virtual Routers on the Move: Live Router
Migration As a Network-management Primitive. In Proceedings
of the ACM SIGCOMM 2008 Conference on Data Communi-
cation, SIGCOMM '08, pages 231--242, New York, NY, USA,
2008. ACM.

[XCL+ 12] Xia, L., Z. Cui, J. R. Lange, Y. Tang, P. A. Dinda and
P. G. Bridges: VNET/P: Bridging the cloud and high perfor-
mance computing through fast overlay networking. In Proceed-
ings of the 21st international symposium on High-Performance
Parallel and Distributed Computing, pages 259--270. ACM,
2012.

[YHSH 10] Yampolskiy, M., W. Hommel, D. Schmitz and M. K.
Hamm: Generic Function Schema for Operations on Multiple
Network QoS Parameters. November 2010.

[Zhan 87] Zhang, L.: Designing a new architecture for packet switching
communication networks. IEEE Communications Magazine,
25(9):5--12, 1987.

246

	Titel
	1 Introduction
	1.1 Virtualization is indirection
	1.2 Challenging example
	1.3 Problem analysis
	1.4 Problem statement
	1.5 Approach and Outline
	1.6 Expected results

	2 Virtual infrastructures in virtualization environments
	2.1 Virtualization
	2.1.1 Host virtualization
	2.1.2 Network virtualization

	2.2 QoS management
	2.2.1 Network QoS properties
	2.2.2 Performance management activities

	2.3 ISO OSI management architecture structure
	2.4 Virtualization specific observations

	3 Scenario analysis
	3.1 Morphology of scenarios
	3.2 Real world scenarios
	3.2.1 Scenario I: LRZ hosted infrastructures
	3.2.2 Scenario II: TUM FMI virtual desktop infrastructure

	3.3 Abstracted scenario
	3.4 Network QoS management requirements
	3.5 Summary

	4 Related Work
	4.1 Network QoS Technologies
	4.2 Internet focused approaches
	4.3 Comprehensive management approaches
	4.3.1 AAVP
	4.3.2 DaVinci
	4.3.3 ISONI
	4.3.4 VNET

	4.4 Discussion

	5 Performing management in virtualization environments
	5.1 Managing virtualized services
	5.2 Management operations performed during life cycles
	5.2.1 Operations on individual virtual machines
	5.2.2 Operations on virtual topologies
	5.2.3 Life cycle for virtual infrastructures

	5.3 Prerequisites and behavioural requirements
	5.3.1 Use cases pertaining to roles and privileges
	5.3.2 Use cases pertaining to networks and components

	5.4 Summary

	6 Architecture
	6.1 Continuously improving network QoS in virtualization environments
	6.1.1 Definition of a target configuration
	6.1.2 Development of a configuration strategy
	6.1.3 Effective component management
	6.1.4 Collecting performance data
	6.1.5 Summary

	6.2 Automatically configuring virtualization environments
	6.2.1 Components and links
	6.2.2 Resource layer topology view
	6.2.3 Refinement procedure

	6.3 Submodel conception
	6.3.1 Information model
	6.3.1.1 QoS domain
	6.3.1.2 Presentation domain
	6.3.1.3 Translation domain
	6.3.1.4 Realisation domain

	6.3.2 Organisation model
	6.3.2.1 Organisation model domains
	6.3.2.2 Interaction channels
	6.3.2.3 Integration with the information model

	6.3.3 Functional model
	6.3.3.1 Control component
	6.3.3.2 Translate component
	6.3.3.3 Configure
	6.3.3.4 Monitor

	6.3.4 Communication model
	6.3.4.1 Access Data
	6.3.4.2 Singular Instruction
	6.3.4.3 Compound Instruction

	6.4 Summary

	7 Assessment
	7.1 Validation
	7.2 Prototype
	7.2.1 MVC architecture
	7.2.2 Management information
	7.2.3 Management loop
	7.2.3.1 Control
	7.2.3.2 Translation
	7.2.3.3 Configuration
	7.2.3.4 Monitoring

	7.2.4 Experimentation

	7.3 Summary

	8 Summary and Outlook
	A Use cases specifications
	B Requirements specifications
	C Information domain classes
	C.1 QoS domain
	C.2 Presentation domain
	C.3 Translation domain
	C.4 Realisation domain

	Bibliography

