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Zusammenfassung

Nichtperturbative Effekte spielen eine zentrale Rolle für das Verständnis
der Dynamik von Quantenfeldtheorien, wie z.B. für Confinement oder den
Zerfall schwarzer Löcher. In dieser Arbeit betrachten wir zwei Systeme
in denen nichtperturbative Effekte eine zentrale Rolle spielen. Im ersten
Teil beschäftigen wir uns mit der Dynamik nichtabelscher Eichtheorien; im
zweiten Teil versuchen wir bestimmte mysteriöse Eigenschaften schwarzer
Löcher in einem Modell von Dvali und Gomez aufzuklären.
Nichtabelsche Eichtheorien sind ein zentrales Element des Standardmodells
der Teilchenphysik. Viele dynamische Aspekte dieser Theorien sind immer
noch unklar. N = 1 supersymmetrische Yang-Mills Theorien mit Eichgruppe
SU(NC) haben Domänenwälle mit besonderen Eigenschaften. Man erwartet,
dass Eichfelder mit Chern-Simons(CS) Term auf ihrem Weltvolumen leben.
Im ’t Hooft Limes von großem NC verhalten sich diese sehr ähnlich zu D-
Branen in Stringtheorie. Ähnliche Domänenwälle werden auch in nicht su-
persymmetrischen Yang-Mills Theorien vermutet. Wir konstruieren ein ein-
faches Modell in dem ein Eichfeld mit CS Term auf einem Domänenwall
lokalisiert ist. Hierzu erweitern wir ein vorheriges Modell von Dvali und
Shifman. Daraufhin leiten wir die Eigenschaften des CS Terms aus Effek-
ten der darunterliegenden mikroskopischen Theorie ab. Dann schauen wir
uns die eigentlich interessante Theorie an. Der neue Teil unserer Unter-
suchung ist hierbei der Fokus auf den topologischen Teil der Yang-Mills The-
orie. Dieser erlaubt es, robuste Aussagen zu machen, obwohl die Theorie
stark gekoppelt ist. Wir konstruieren die effektive Wirkung bei niedrigen
Energien für die superymmetrische und die nicht supersymmetrische Yang-
Mills Theorie. Wegen der Massenlücke ist dies eine topologische Feldtheorie.
Diese topologische Feldtheorie enkodiert sowohl die Aharanov-Bohm Phasen
in der Theorie als auch die Phasen durch Schnittpunkte von Flussschläuchen.
In dieser topologischen Feldtheorie sehen wir, dass die Weltvolumentheorie
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der Domänenwälle einen CS Term mit Niveau NC enthält. Dieser CS Term
wurde bereits in vorherigen Arbeiten auf Basis stringtheoretischer Konstruk-
tionen vermutet. Hier geben wir die erste feldtheoretische Konstruktion.
Wir nutzen diese Konstruktion auch um die Unterschiede zwischen super-
symmetrischen und nicht supersymmetrischen Domänenwällen zu zeigen.
Danach zeigen wir Verbindungen der beobachtete Effekte zu ähnlichen Effek-
ten in kritischer Stringtheorie auf und geben einige Spekulationen inwieweit
das Verhalten dieser Domänenwälle eine Analogie zum fraktionellen Quanten
Hall Effekt habe.
Im zweiten Teil der Arbeit untersuchen wir nichtperturbative Aspekte der
Physik schwarzer Löcher. Hierzu betrachten wir ein Modell von Dvali und
Gomez in dem schwarze Löcher als Bose-Einstein-Kondensate (BEC) schwach
wechselwirkender Gravitonen in der Nähe eines quantenkritischen Punktes
beschrieben werden. Hier konzentrieren wir uns auf nichtpertubative Eigen-
schaften eines systems attraktiv selbstwechselwirkender nicht relativistischer
Bosonen das als ein vereinfachtes Modell für Graviton BECs von Dvali und
Gomez vorgeschlagen wurde. In dieser Arbeit betrachten wir dieses System
primär mit einer vollständig nichtperturbativen Methode die exakte Diago-
nalisierung genannt wird. Zunächst untersuchen wir Verschränkungseigenschaften
des Grundzustandes des Systems. Hierbei zeigen wir, dass der Grundzustand
in der Nähe des quantenkritischen Punktes stark verschränkt ist. Um dies
präzise zu machen führen wir die sogenannte Fluktuationsverschränkung ein.
Daraufhin berechnen wir diese Grösse zunächst in einer Bogoliubov-Analyse
und extrahieren sie dann auch aus der exakten Diagonalisierung. Wir betra-
chten dann die Zeitevolution des Systems. Hier sind wir interessiert daran
ein Analog der vermuteten schnellen Chiffrierung von schwarzen Löchern zu
finden die von Hayden und Preskill vorgeschlagen wurde. Hier beschränken
wir uns auf eine schwächere Eigenschaft, sogenanntes schnelles Quanten-
brechen. Wir zeigen, dass in unserem vereinfachten Modell die Quanten-
brechzeit konsistent mit der Zeitskala, die für das schnelle Chiffrieren im
Kontext schwarzer Löcher vermutet wird, ist. Abschließend zeigen wir auf,
wie diese Resultate in verschiedene Richtungen erweitert werden können.
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Nonperturbative effects are crucial to fully understand the dynamics of quan-
tum field theories including important topics such as confinement or black
hole evaporation. In this thesis we investigate two systems where nonpertur-
bative effects are of paramount importance. In the first part we study the
dynamics of non-abelian gauge theories, while in the second part we try to
shed light on mysterious properties of black holes using a model proposed
earlier by Dvali and Gomez.
Non-abelian gauge theories are the central element in the standard model of
particle physics and many dynamical aspects remain elusive. N = 1 super-
symmetric Yang-Mills theories with SU(NC) allows for domain walls with
several curious properties. They are expected to have gauge fields with a
Chern-Simons (CS) term living on their worldvolume, while in the ’t Hooft
limit of a large number of colors many of their properties seem reminiscent
of string theoretic D-Branes. Similar domain walls were also conjectured to
be present in non supersymmetric Yang Mills theories. In our work, we in-
vestigate this problem from several points of view. We construct a toy model
of how to localize a gauge field with a CS term on a domain wall extending
earlier work by Dvali and Shifman. We then derive the peculiar properties of
CS terms in terms of effects of the underlying microscopic dynamics. Then
we look at the actual theory of interest. Here the main novelty is the focus
on the topological part of the Yang-Mills theory allowing us to make robust
statements despite working in a strongly coupled theory. We construct the
low energy effective action of both the non-supersymmetric as well as the su-
persymmetric Yang Mills theory, which due to the presence of a mass gap is a
topological field theory. This topological field theory encodes the Aharanov-
Bohm phases in the theory as well as phases due to intersection of flux tubes.
In this topological field theory we see that the worldvolume theory of domain
walls contains a level NC CS term. The presence of this term was already
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conjectured in ealier works based on string theoretic constructions. Here we
give its first purely field theoretical construction. Within this construction
we also illuminate differences between domain walls in the supersymmetric
and non-supersymmetric case.
Lastly we try to relate the effects observed to similar effects in critical string
theories and we also speculate on whether the behaviour of these domain
walls is due to an analog of the fractional quantum hall effect.
In the second part of this thesis we investigate non-perturbative aspects of
black hole physics. Here we consider a model for a low energy description of
black holes due to Dvali and Gomez, where black holes are described in terms
of a Bose-Einstein condensate (BEC) of weakly interacting gravitons near a
quantum critical point. We focus on nonperturbative properties of a system
of attractively self-interacting non-relativistic bosons, which was proposed
as a toy model for graviton BECs by Dvali and Gomez. In this thesis we
investigate this system mostly relying on a fully non-perturbative approach
called exact diagonalization. We first investigate entanglement properties
of the ground state of the system, showing that the ground state becomes
strongly entangled as one approaches the quantum critical point. In order to
make this notion precise we introduce the notion of fluctuation entanglement.
We then compute it in a Bogoliubov analysis and extract it from the exact
diagonlization procedure as well. We also consider the real time evolution of
the system. Here we are interested in finding an analog of the conjectured
fast scrambling property of black holes originally introduced by Hayden and
Preskill. We only consider the weaker notion of quantum breaking and show
that the toy model has a quantum break time consistent with the fast scram-
bling time scale conjectured in the black hole context. We then conclude by
pointing out several possible extensions of these results.
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Chapter 1

Introduction and Outline

General relativity and quantum field theory are two of the most important
advances in physics in the 20th century forming the central pillars of our
current description of reality. On the other hand both can be traced back to
the early beginning of natural sciences. The concept of space, which is the
key player in general relativity was first discussed in the celebrated Elements
by Euclid over two centuries ago, while the idea that objects consist out of
particles dates back to Demokrit. From there it took mankind over two cen-
turies of experimentation and thinking to arrive at our current description
of nature, which is able to describe effects ranging from the dynamics of the
universe as a whole to the behaviour of quarks inside a proton.
The commonly used description of quantum field theories in terms of Feyn-
man diagrams rests on a perturbative description. For quantum electro-
dynamics this description works extremely well, for example the measured
electric dipole moment of the electron matches the value predicted by quan-
tum electrodynamics to 12 significant digits. The need for non-perturbative
effects in quantum field theories was discovered early after the inception of
quantum field theory and dates back to a seminal paper by Freeman Dyson
from 1952 [1]. Dyson argued convicingly that the perturbation series for al-
most any physically relevant quantum field theory has to have zero radius
of convergence and therefore should be understood as an asymptotic series.
This implies that in order to render the perturbative expansion meaningful
there should be additional effects which are not captured by the perturba-
tive expansion. Over 60 years after the discovery of non-perturbative effects
there exists now a plethora of methods which are able to quantify them. One
approach is to start from a perspective which does not take into account per-
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turbation theory at all, but instead tries to reduce the problem to a simpler
problem with a finite configuration space using some type of coarse graining
and then doing numerical computations, numerical studies of lattices gauge
theories as well as numerical exact diagonalization would be examples of this.
Another approach is to use topological and symmetry properties of the the-
ories in order to gain a certain type nonperturbative information which is
protected by topology or symmetry. A good example for this is the com-
putation of the ground state degeneracy of a quantum hall system, which
depends only on the topology of the sample.
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1.1 Nonabelian Gauge Theories

Gauge theories provide a very interesting playground for nonperturbative ef-
fects. The possible interactions of massless spin-1 particles are much more
constrained than the interactions for scalar fields, however they lack the noto-
rious difficulties of theories containing spins higher than one, like absence of
local operators in theories of quantum gravity. Furthermore nonperturbative
effects that are still poorly understood are very important for the problem
of confinement in quantum chromodynamics, which has obvious implications
for our real world. Yang-Mills theories typically contain various objects with
quantum numbers protected by topological considerations. Due to the ro-
bustness of topological properties against perturbation those provide a clear
window into nonperturbative physics. The well known objects of this type
include domain walls, magnetic monopoles and instantons. Out of these,
magnetic monopoles are conjectured to play a pivotal role in the descrip-
tion of confinement, which is thought to be due condensation of magnetic
monopoles(see [2] and references therein). In this picture confinement is the
analog of Meissner effect, which in this case squeezes chromoelectric flux into
flux tubes. In this thesis we will work out some further consequences of this
magnetic Meissner effects for the low energy dynamics of supersymmetric
as well as non-supersymmetric Yang-Mills theories. In particular we study
Domain Walls encountered in pure Yang-Mills theories and show that they
contain topological degrees of freedom on their worldvolume. Furthermore
we show how the non-perturbative objects encountered in Yang-Mills theories
can be naturally interpreted in terms of analogs of D-Branes in noncritical
string theory.
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1.2 Black Holes and Information Paradox

After discussing non perturbative physics in the context of nonabelian gauge
theories we will now discuss aspects of gravity. The most puzzling object in
gravity is certainly a black hole with two of the big open questions being the
origin of black hole entropy and the so called information paradox. Accord-
ing to an argument by Bekenstein black holes should have an entropy [3–5],
which is proportional to the horizon area of the black hole measured in planck
units. A clear microscopic interpretation of this entropy has not been found
so far. There have been microscopic computations of the degeneracy of ex-
tremal black holes in the context of string theory, which provides an ultra-
violet completion to general relativity. This approach has been pioneered
in a seminal paper by Strominger and Vafa [6], where they compute the
degeneracy of BPS black holes using an intricate series of very indirect ar-
guments. However due to their indirect nature, these computations do not
give a clear interpretation of the degeneracy, however they provide a clear
check as to the correctness of associating an entropy to black holes. It is not
clear whether these arguments can be extended to Schwarzschild black holes.
The information paradox [7] arises when quantizing a field theory on a black
hole background. Hawking has shown [8], that due to quantum fluctuations
a black hole will emit particles with a thermal spectrum with a temperature
proportional to the inverse Schwarzschild radius TH ∼ R−1. The information
paradox arises when taking this result literally. It would imply that time
evolution in a theory of quantum gravity should not be unitary. The black
hole can be formed from a pure state, however if the black hole completely
evaporates we are left with a thermal state, which is mixed. A unitary time
evolution leaves all eigenvalues of the density matrix invariant, this implies
that the corresponding time evolution can not be unitary. In order to resolve
this issue there are two approaches one can take. We could take this as an
indication that general relativity is incomplete and needs to be extended to
a more complete theory like string theory. The other approach would be
to conclude that the semi classical analysis of Hawking misses parts of the
relevant physics. Since Hawking’s calculation is strictly valid only in the case
of an infinite black hole mass and therefore infinite black hole life time going
beyond a semi classical treatment might resolve the paradox.

Dvali and Gomez [9–14] proposed to describe black holes as Bose-Einstein
condensates of many gravitons with a wavelength given by the Schwarzschild
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radius. The individual gravitons in the condensate are weakly interacting,
however due to their large number there are strong collective interactions.
Hawking evaporation is thought to be due to so called quantum depletion of
the condensate. It was argued that the collective interactions are in fact so
strong that the condensate should be close to the critical point of a quantum
phase transition. The proximity to a quantum phase transition also explains
why quantum effects are more relevant than naively thought and why the
semiclassical treatment might miss relevant effects.

In order to describe the graviton condensate one would need to study Bose
Condensation in a derivatively interacting quantum field theory of massless
spin-2 particles, so far this proved to be an insurmountable task. In this
thesis we will focus on a non-relativistic toy model proposed by Dvali and
Gomez, which captures certain aspects of the black hole condensate picture.
To be precise we find that the ground state close to the critical point is very
strongly entangled. Furthermore we show that after preparing the system in
a classical state the system ceases to be well described by a classical descrip-
tion on a very short timescale, i.e. the so called quantum break time is very
short. In fact the quantum break time for the toy model is consistent with
the so called scrambling time scale in the black hole context.
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1.3 Outline

This work is split into three main parts, the first parts discusses non-perturbative
aspects of the dynamics of Yang-Mills theories, the second part contains a
discussion of aspects of black hole dynamics in the context of the graviton
condensate picture proposed by Dvali and Gomez while the last part of the
thesis consists of reprints of the peer reviewed publications of the author.

The first part starts with a review of the dynamics of Yang-Mills theories
and their behaviour in the so called ’t Hooft limit of a large number of
colors. We also review the relation of the ’t Hooft expansion to the genus
expansion known from string theory. From there it proceeds with a short
review of non local operators and topological field theories. Following this
there is a review of how to localize massless gauge fields on topological defects
as well as a short description of the mechanism for localizing topologically
massive gauge fields on domain walls invented by the author. The corre-
sponding more detailed explanation can be found in the third part of this
thesis. The next section deals with a topological field theory description of
the low energy dynamics of ordinary Yang-Mills theories as well as discussing
the behaviour of domain walls appearing in these theories extending previous
results by Seiberg and collaborators. Here we will also be able to shed light
on the appearance of topological degrees of freedom on the world volume
of these walls. The subsequent two sections are devoted to an extension of
these results to supersymmetric gauge theories. We first review the prop-
erties of supersymmetric Yang-Mills theories and the existing computations
of the tension of domain walls in supersymmetric Yang-Mills theories. Then
we follow up with an extension of our work in the previous chapter to show
that there are topological degrees of freedom living on these domain walls as
well. We conclude this part with a summary of the results achieved in this
thesis with respect to domain walls in Yang-Mills theory and furthermore
show how several puzzling properties of Yang-Mills theories can be seen to
have natural analogs in critical string theories. We also point out a striking
analogy to fractional quantum hall systems. Parts of the second part will be
basis for an upcoming publication together with Markus Dierigl.

In the second part of the thesis we start by reviewing well known properties
of black holes encountered in a classical as well as a semiclassical treatment
of general relativity. Here we also discuss the well known information para-
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dox as well the so called fast scrambling conjecture. We also discuss the
importance of black holes for the high energy behaviour of theories of quan-
tum gravity. Then we follow with an introduction of a model for black holes
by Dvali and Gomez. Here black holes are described as Bose-Einstein con-
densates of gravitons at a quantum critical point. We then discuss a toy
model consisting of nonrelativistic bosons that captures aspects of the rel-
evant physics. Then we sketch the results of the author’s two publications
which study entanglement properties and the physics of fast scrambling in
this toy model. We conclude with a discussion of possible interesting exten-
sions of this work.

The final part consists of ad verbatim reprints of three of the author’s pub-
lished publications, where one [15] is concerned with localization of gauge
fields with a Chern Simons interaction. The second [16] studies entangle-
ment properties of the ground state of a toy model for black holes described
as a graviton condensate. The final publication [17] is focused on dynamics
of this toy model, here we study how the system evolves from an initial clas-
sical state to an entangled non classical state and quantify the corresponding
time scale.
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Chapter 2

Branes in Field Theory
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2.1 Yang-Mills Theory

In this section we are going to describe some of the features of non-abelian
gauge theories, non-abelian gauge theories date back to the 1950’s and were
introduced by Yang and Mills. [18] However they were largely ignored, since
the classical lagrangian describes a set of massless interacting gauge fields, as
there is no evidence for any long range forces besides electromagnetism and
gravity. The great sucess of the parton model [19] for the description of meson
as well as hadron physics led to the development of QCD, which is a particular
non-abelian gauge theory. Here quantum mechanics gives the way out of the
paradox of the absence of a long range force: due to quantum fluctuations
the strength of the gauge coupling depends on the length scale at which the
theory is probed. In the IR the coupling is strong therefore the conclusion
that there should be a long range force turns out to be wrong. Since the
coupling is strong the theory can not be treated semiclassically and any
conclusion derived from semiclassical treatment shouldn’t be trusted. This
implies, that the absence of massless states in the spectrum of Yang Mills
theories is in principle consistent. The absence of massless gauge bosons in
the spectrum of the theory goes under the name of confinement and has not
been understood analytically even today.

2.1.1 Basics of YM theory

In this section we will review a few of the basics about nonabelian gauge
theories and also review some non-perturbative issues, which give the con-
ventional picture of confinement. Furthermore we will explain how an addi-
tional term, the so called θ-term can be added to the action of Yang Mills
and how it affects the physics. Then finally we will review how Yang-Mills
simplifies in a particular double scaling limit in which the number of colors
is sent to infinity.

The Lagrangian of Pure YM

Now we want to describe how one can construct Yang-Mills theory as the
most general action describing massless interacting spin-1 particles at suffi-
ciently low energies, the following discussion sketches the main ideas, a more
detailed discussion can be found in Weinberg’s book. As a warmup we are go-
ing to start by looking at a single massless spin-1. First we should choose the
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representation of the corresponding field under the Lorentz group, since we
want to describe a spin-1 particle the simplest possibility to consider would
be a vector field Aµ. In order to appreciate the constraints imposed by mass-
lessness one should recall that massless particles are described by helicity
using Wigner’s approach of the little group. Here we have to remember that
this forces part of the Lorentz group to act trivially on the states, for example
if we have a particle with a three-momentum in the z direction, then we can
boost in the y direction and subsequently rotate in the yz plane such that the
4-momentum stays invariant, Wigner tells us that these kind of transforma-
tion should act trivially on the corresponding Hilbertspace. However these
transformations necessarily change the vector field, the only way to keep a
Lorentz covariant description of our system is now to declare that the original
and the transformed field lead to the same quantum state, i.e. we have to
introduce a redudancy into our description. A more precise derivation shows
that this redundancy is given by

Aµ → Aµ + ∂µf, (2.1)

for a general function f, that decays sufficiently quickly at infinity. Demand-
ing that the Lagrangian respects this redundancy, contains no more than two
derivatives and no operators of dimension larger than 4 leads to

L = −1

4
FµνF

µν , (2.2)

where we defined the field strength tensor Fµν = ∂µAν − ∂νAµ, the factor of
1/4 is a normalization factor. Now we can try to couple our spin-1 field to
additional degrees of freedom, enforcing again, that the relevant part of the
Lorentz group acts correctly, strongly constrains the interactions to be gauge
invariant, where now the additional fields, that interact with the spin-1 field
also transform under the gauge redundancy. If the additional fields have spin-
1 as well we see that now all the spin-1’s transform under the redundancies of
the other spin-1’s. It turns out that the only consistent way to couple them
is, when the individual redundancies combine into a non-abelian Lie group
G. This leads to Yang Mills theory.
In order to conveniently describe the Yang Mills theory we combine all the
individual spin-1 gauge fields into a non-abelian gauge field A, which takes
values in the adjoint of the Lie algebra g of G. We can relate this to the
individual gauge fields via

Aµ = AaµT
a , (2.3)
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where T a denote the generators of the Lie group in some convenient repre-
sentation R, for the case of SU(N) we take the fundamental representation,
here the index a runs from 1 to dim(G). The normalization of the generators
is determined by the index T (R) of R

Tr
(
T aT b

)
= T (R)δab , (2.4)

it is 1/2 for the fundamental representation of SU(N). In order for the
transformation generated by the T a to form a representation of G, they have
to satisfy the commutation relations[

T a, T b
]

= ifabcT c , (2.5)

wherefabc are the structure constants of the Lie algebra g.
In all the discussion that follows we will choose the fundamental representa-
tion as our representation R. Under gauge redundancies given by the group
element U the gauge field changes as

Aµ → U−1AµU + U−1∂µU. (2.6)

The antisymmetric field strength tensor of a non-Abelian gauge field is given
via

Fµν = F a
µνT

a =
(
∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν

)
T a. (2.7)

The dual field strength tensor is defined as

F̃µν =
1

2
εµναβF

αβ . (2.8)

This leads to the Lagrangian for pure Yang-Mills

LYM = − 1

4g2
F a
µνF

aµν , (2.9)

with the gauge coupling constant g. This differs from the form that is pre-
sented in most textbooks, by a rescaling of the gauge field by the coupling.
It leads to non-canonical kinetic terms, which has to be taken into account
carefully when deriving Feynman rules for example. One should note that
after writing the action in this form, g2 plays the same role as ~, making it
clear why semiclassical methods are not appropiate to use at strong coupling.
The classical equations of motion are given by

DµF
µν =

(
∂µF

aµν + fabcAbµF
cµν
)
T a = 0 , (2.10)
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with the covariant derivative

Dµ = ∂µ − iAaµT a , (2.11)

in the case of a single spin-1 field this simply reduces to two of the Maxwell
equations. Furthermore, the field strength tensor fulfills the Bianchi identity

DµF̃
µν = 0 , (2.12)

which for a single spin-1 gives the remaining Maxwell equations. Let us
mention one more important point, in the previous section we were careful
to point out, that the gauge redundancies should decay sufficiently quickly at
infinity. The transformations, that don’t decay at infinity are actually global
symmetry transformations of the theory. So in a gauge theory, gauge trans-
formations always contain a part that is just a redundancy as well as a part,
that is really a bona fide global symmetry. A particularly important feature
is the running of the coupling constant with energy, which leads to asymp-
totic freedom [20]. For high energies the coupling constant decreases and one
can describe the theory using standard perturbative methods, asymptotic
freedom is the main pillar in the justification of the parton model. After
solving the renormalization group equations for the running coupling in pure
Yang-Mills we get

g2(M)

8π2
≈ 1

β0 log (M/Λ)
, with β0 =

11N

3
. (2.13)

Λ is a dynamically generated scale, which signals the breakdown of the weak
coupling approximation, which is the energy scale where confinement should
take place, it is given by

Λ ≈M exp

(
− 24π2

11Ng2

)
. (2.14)

We see, that even though we started with a theory without any mass scale,
we end up with a mass scale generated in the full quantum theory, i.e. the
classical scale symmetry is anomalous. At high energies the pure gauge the-
ory is well described by weakly interacting gluons, at low energies composite
objects called glueballs, which are made from gluons will be the physical low
energy degrees of freedom. These bound states will always be singlets under
the global SU(N) symmetry, the lightest of these with a mass M = O(1)Λ.



14 2. Branes in Field Theory

This phenomenon is called confinement and there is no analytical explana-
tion for it, however a sucessful idea is monopole condensation, which can also
be seen to be at work in various supersymmetric cousins of YM.

The θ-Term

There is an additional operator of dimension four, which is both gauge and
Lorentz invariant, the so-called θ-term

Lθ =
θ

32π2
F a
µνF̃

aµν . (2.15)

θ turns out to be an angle, i.e. if we add this term to the Yang-Mills action,
we should get the same physics if we change it by 2π. This term doesn’t
influence the equations of motion and it also cannot be seen in any finite
order in perturbation theory, since it can be written as a total derivative,

F a
µνF̃

aµν = ∂µK
µ , (2.16)

with the topological Chern-Simons current

Kµ = 2εµναβ
(
Aaν∂αA

a
β +

1

3
fabcAaνA

b
αA

c
β

)
. (2.17)

We can use this current to define a corresponding topological charge Qtop,
which measures the winding or instanton number of the field configuration,
e.g. [21]

Qtop =
1

32π2

∫
d3xK0 . (2.18)

For an SU(N) gauge theory charge turns out to be an integer for any field
configuration, that is pure gauge at infinity, i.e. that can be written as
Aµ = U−1∂µU . If we are only interested in finite action configurations, this
seems to be a necessary condition and therefore we would conclude, that θ
should be periodic. It can also easily be checked that this term violates both
P and CP.

Quarks

Now we will consider how the presence of massless fermions changes the pre-
vious discussion, we will call the fermions quarks. We introduce Nf flavours
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of quarks in some representation R. These are described by a Dirac spinor
ψf and labeled by a flavor index f , in all that follows we supress the gauge
indices. The fermionic part of the Lagrangian is just the usual Dirac La-
grangian with the partial derivative replaced by a gauge covariant derivative

Lf = iψ̄f /Dψf . (2.19)

In the presence of Dirac fermions the beta functions changes to

β0 =
11

3
T (A)− 4

3
T (R)nf . (2.20)

For SU(N) and Nf fundamental quarks this becomes:

β0 =
11

3
N − 2

3
nf , (2.21)

which reduces to the usual result for QCD. A Dirac spinor can be decomposed
into two Weyl spinors and since our fermions are massless there is no mixing
between them, i.e. we have a

U(nf )L × U(nf )R (2.22)

global flavour symmetry. However in QCD we know that there is a quark
condensate, which breaks the chiral symmetry to the diagonal subgroup, i.e.
we have the breaking pattern

U(nf )L × U(nf )R → U(nf )diag . (2.23)

Since we have spontaneous symmetry breaking, we expect massless Goldstone
bosons, in QCD these will be pions and kaons, one should note that in QCD
these are only pseudo Goldstone bosons, since the the quarks have a bare
mass, which gives a small explicit breaking of chiral symmetry. There is one
important caveat here, the naively expected Goldstone boson corresponding
to the central U(1), the η′ is heavier than expected, in order to understand
this we have to turn to the chiral anomaly. The transformation corresponding
to the broken central U(1) is

ψf → eiγ5αψf . (2.24)

Classically the theory is invariant under this transformation, however quan-
tum corrections do not conserve the chiral current

jµ5 = ψ̄fγ
µγ5ψf . (2.25)



16 2. Branes in Field Theory

Figure 2.1: Triangle diagram causing the chiral anomaly, the black dot marks
a divergence of the chiral current, ∂µj

µ
5

The effect is due to the triangle diagram depicted in figure 2.1. Its contribu-
tion can be calculated as, see e.g. [22]

nf
16π2

F a
µνF̃

aµν . (2.26)

So we see, that at the quantum level there is an additional explicit breaking,
which we can expect to give additional contributions to the mass of the
η′. Therefore we can potentially still interpret the η′ as a pseudo goldstone
boson, despite it’s surprisingly large mass. In order to make sense of this idea
however we have to find a way to vary some parameter, such that we can
turn off the anomaly. The large N expansion we will look at later provides
precisely that. This also implies, that the θ angle in QCD is not observable,
only a linear combination of the phase of the quark condensate and the bare
θ angle is observable.

2.1.2 Axions

We saw that the θ term in a YM theory violates the CP symmetry, however
we don’t observe this kind of CP violation in nature and there is a strong
bound on the size of θeff O(10−9), see [23].
A particular solution to this problem is to introduce a new pseudoscalar field,
a, the axion. The axion couples to the same combination of gauge fields as
the θ-angle and dynamically sets the relevant parameter θ+a to zero. It was
first suggested by Weinberg [24] and Wilczek [25] following up on the work
of Peccei and Quinn [26, 27]. The idea is to make θ into a field and then
to explain why the potential of this field should have a minimum at a CP
conserving value.
We will also use the axion to discuss the so called Witten effect [28], i.e. that



2.1 Yang-Mills Theory 17

magnetically charged particles pick up electric charges if θ is varied. This can
be easily understood in terms of axionic electrodynamics, this explanation
was discovered by Wilczek [29] and we will follow his discussion closely.

The Axion and its Consequnces

The axion transforms as a pseudoscalar field, that couples to the Pontryagin
density

a

32π2fa
F a
µνF

aµν , (2.27)

where fa is the axion decay constant.
The kinetic term of the axion is

Lax ∝ ∂µa∂
µa , (2.28)

which is invariant under the shift symmetry

a→ a+ c ,with c ∈ R . (2.29)

We see, that the axion acts as an effective θ term and the observed effective
θeff will be given by a combination of the vev of the axion and the actual
θ parameter. In general quantum effects will generate a potential for the
axion, this potential however will be symmetric under shifts of the effective
θ angle by 2π. The observed θ will be small if it can be guaranteed, that the
minimum of the axion is at a CP conserving value, this can be guaranteed
by a theorem by Vafa and Witten [30].

The Witten Effect

In 1979 Witten showed that a non-zero value of the θ angle induces an electic
charge for magnetic monopoles, turning them into dyons. Here we want to
give a simple explanation for this using axionic electrodynamics, which was
first discussed by Wilczek [29], here the axion plays the same role as the
θ-angle.
We take the Maxwell Langrangian and add a topological term coupled to the
axion

L = − 1

4e2
FµνF

µν +
1

32π2
aF̃µνF

µν + Lax , (2.30)
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where Lax contain the potential and kinetic term for the axion. The analog
of Maxwell’s equations in the absence of a source are now given by

− 1

e2
∂µF

µν +
1

8π2
∂µ

(
aF̃ µν

)
= 0 (2.31)

and the usual Bianchi identity. Using Bianchi identity and writing the equa-
tions explicitly in electric and magnetic fields leads to the following expression
for the analog of Gauss’ law:

~∇ · ~E =
e2

8π2
(~∇a) · ~B , (2.32)

where ~E and ~B represent the electric and magnetic field respectively.
Let us consider a spherical axionic domain wall with 〈a〉 = 0 inside and
〈a〉 = 2π outside of the wall, depicted in figure 2.2. We then put a magnetic

Figure 2.2: Setup for the illustration of the Witten effect

monopole of magnetic charge m in the center of the sphere, in the region
〈a〉 = 0 there is a radial magnetic field. 2.32 now implies that a magnetic
field, which is parallel to a gradient in the axion effectively acts as a charge for
the electric field. This however is precisely what is happening here, therefore
if we measure the electric field at ∞ we conclude that the monopole picked
up a charge. Looking more closely we see, that the monopole picked up a
charge of

q =

∫
V

d3x
[
~∇ · ~E

]
=

∫
V

d3x

[
e2

8π2
(~∇a) · ~B

]
=

e2

8π2

∫
V

d3x

[
2πδ(r −R)

m

4π

êr · êr
r2

]
=

1

4π
me2 .

(2.33)
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As in [28] we assume the fundamental magnetic charge to be that of a ’t
Hooft-Polyakov monopole, which we can get by breaking an SU(2) gauge
group to U(1) and is m = 4π

e
. Hence for 〈a〉 → 〈a〉 + 2π it generates a

fundamental unit of electric charge

q =
1

4π
me2 = e . (2.34)

This can be generalized to non-abelian groups in a straightforward way.

2.1.3 Electric and Magnetic Charges in YM Theory

The local degrees of freedom of pure YM theories, i.e. the gauge fields A, take
values in the Lie algebra g and hence are insensitive to the global structure
of the gauge group. If the universal cover of the Lie algebra g is denoted
by G̃, the theories giving rise to the same local degrees of freedom can be
written as quotient

G = G̃/H . (2.35)

H denotes a subgroup of the center, Z, of the universal cover. The center is
the subgroup of the elements in G that commute with all group elements.
In order not to confuse the important implications by staying too abstract
we will restrict now to the Lie algebra su(N). The universal cover is the Lie
group SU(N) the center is

ZSU(N) = ZN . (2.36)

We will only be interested now in two relevant groups

G = SU(N), and G = SU(N)/ZN , (2.37)

however one should note, that one could in principle mod out SU(N) by a
Zq where q could be any divisor of N .
The center of SU(N) consists of the elements

ZSU(N) =
{

11N exp
(

2πi
p

N

)
, p = 0, . . . , N − 1

}
, (2.38)

where 11N is the N ×N identity matrix.
As mentioned, the local degrees of freedom of both theories are the same but
we will be able to distinguish the theories by non-local operators discussed
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later.
If we restrict our attention to confining theories (or theories completely hig-
gsed by adjoint fields) we can label the physical charges and fluxes seen in the
IR by elements of the center ZG. The fact that a confining theory sees only
the transformation properties of the corresponding representation R under
the center and is not sensitive to the precise representation can be easily seen
as follows. The following is a summary of the arguments presented in [2],
for the original papers relevant see references therein. Imagine a flux tube
streched between two infinitely heavy probe charges in an arbitrary repre-
sentation R of the gauge group G, see figure 2.3. The flux tube has a tension

Figure 2.3: Flux tube spanned between heavy probe particles in representa-
tion R

TR that depends on the representation R. By binding gluons, which are in
the adjoint representation to the probe paricles we can construct any other
representation with the same center charge. If the flux tube is very long,
i.e. we are sufficiently deep in the IR these gluons will be subleading, when
calculating the energy of the whole configuration which is dominated by the
string tension TR times the string length. Consequently, the string tension
for long flux tubes does not depend on the representation of the probe par-
ticles, but just on the center charge, as we can just pick the representation
leading to the lowest tension by adding gluons. Since adding adjoint fields
does not change the charge under the center of the gauge group the only
value characterizing the flux tube is its center charge.
Another subtle point is that physical flux tubes (e.g. chromoelectric fluxes in
QCD) must not carry colorflux, because they should be gauge independent
quantities. This implies for example that it is not correct to think of a meson
in QCD as for example consisting of a blue quark and an antiblue antiquark,
the correct description is as a quantum state, which is a linear superposition
of all colors.
This implies that the relevant probe particles can be characterized by the
center.
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The magnetic charges and fluxes can be constructed similarly from the weights
of the Langland-dual Lie algebra modulo their root lattice, see [31]. This is
isomorphic to center ZG. It can also be understood as the first homotopy
class of the gauge group, π1(G).
For the two interesting cases we find

ZSU(N) = ZN , π1(SU(N)) = 11 , (2.39)

ZSU(N)/ZN = 11, π1(SU(N)/ZN) = ZN . (2.40)

We therefore can specify the relevant charges and fluxes with a lattice ZN ×
ZN . This is in turn relevant for confinement via Dyon/Monopole conden-
sation as different condensates lead to different subsets of ZN × ZN being
confined.
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2.2 Gauge Theories at large Nc

In this section we are going to review the relevant basics of gauge theory in
the limit of a large number of colours, the main idea is that the dynamics
of the gauge theory will become a lot simpler to treat if we make the gauge
coupling small and at the same time take the number of fields to infinity
in order to keep the dynamics non-trivial. The more non-trivial point is
that this procedure still manages to catch the relevant physics like for exam-
ple confinement and chiral symmetry breaking. The idea that theories can
become simpler in the limit when the number of some internal degrees of
freedom becomes infinite goes back a long time and was introduced in the
context of spin models in statistical physics in 1968 by Stanley [32], this was
then applied to gauge theories by ’t Hooft in 1973 [33]. Technically the point
is that in a theory of matrix valued fields the number of fields will enter into
the diagrams via combinatoric factors simply because we have to sum over
intermediate states whose number grows with N. Here different diagrams
will have different combinatoric factors associated to them and the idea of
the large N expansion is to keep only those diagrams that give the largest
combinatoric factors and hence should dominate the physics. This formed
the basis of many important advances in field theory afterwards. In order to
study the large N limit we write the Yang Mills action

S =

∫
d4x− 1

4g2
TrF a

µνF
aµν + ψ̄i /Dψ. (2.41)

In order to have a useful large N limit we should try to keep the QCD scale
ΛQCD fixed, to do this we look at the one-loop renormalization group equation
for the coupling

µ
dg

dµ
= −b0

g3

16π2
+O(g5), b0 =

11

3
N − 2

3
NF , (2.42)

this equation will not have a sensible large N limit if we keep g fixed as we
vary N since b0 is O(N), this implies that masses of particles would be N
dependent. From the RG equation we see that the natural quantity to keep
fixed in the large N limit is λ = Ng2, the RG equation for λ is given by

µ
dλ

dµ
= −

(
11

3
− 2

3

NF

N

)
λ2

32π2
. (2.43)
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The position of the Landau pole for λ has a well defined large N limit,
implying that this is a way to take the large N limit that has a chance to
catch some of the non-trivial dynamics related to confinement.

In order to understand what this limit means diagramatically we can
use a trick due to ’t Hooft, where we track the color flow in the Feynman
diagrams. The quark propagator is given by

〈ψa(x)ψ̄b(y)〉 = δabS(x− y), (2.44)

this is represented by a single line, where the color at the beginning is the
same as at the end due to δab. For gluons it is more useful to think of them
as N ×N matrices with two indices in the N and N̄ representation instead
of treating them as fields with a single adjoint index., i.e. we define

Aabµ = AAµ (TA)ab . (2.45)

The gluon propagator can then be written as

〈Aabµ(x)Acdν(y)〉 = Dµν(x− y)

(
1

2
δadδ

c
b −

1

2N
δab δ

c
d

)
. (2.46)

For large N we can neglect the second term in the former relation, ne-
glecting this term corresponds to replacing SU(N) by U(N). Now we are
going to denote the gluon propagator by a double line, we see, that in terms
of the flow of color in the diagrams we can think of a gluon as being composed
out of a quark and an antiquark. The vertices can also be written using the
double line notation. This allows to rewrite any Feynman graph as a sum of
double line graphs. Let us illustrate that in a simple example. The diagram
depicted in figure 2.4 has two vertices (∝ g2) and one loop. The ingoing

Figure 2.4: Basic gluon loop

and outgoing gluons must posses the same color decomposition. This leaves
one free fundamental color index for the loop that has to be summed over.
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Figure 2.5: Double line representation of the diagram in 2.4, the directions
of the arrows differ for quark and antiquark

Therefore, the overall contribution is of order g2N = λ. In the double line
notation the diagram transforms to figure 2.5 and the summation over the
single color index in the inner loop becomes apparent. In general, we can
think of each double line graph as a surface obtained by gluing together poly-
gons at the double lines. Because each line has an arrow on it in SU(N) and
double lines have opposing arrows we can only construct orientable surfaces
in an SU(N) theory. For SO(N) the fundamental representation is real,
therefore the lines do not have arrows and we can construct non-orientable
surfaces. The preceding discussion allows us to formulate counting rules for
the order in N for a given graph. Each vertex gets a factor of N, while every
propagator has a factor of 1/N , furthermore every loop gives a factor of N
since it represents a sum over N colors. In terms of the surfaces constructed
by gluing polygons each closed loop corresponds to the edge of a polygon and
to a face of the surface, using this one finds for a connected vacuum graph,
i.e. no external legs

NV−E+F = Nχ. (2.47)

Here V is the number of vertices, E is the number of edges, F is the number
of faces and χ is a topological invariant known as the euler character. For a
connected orientable surface this is given by

χ = 2− 2h− b, (2.48)

where h is the number of handles and b is the number of boundaries. We see
that we can use this result if we identify the edges with gluon propagators,
the faces with loops and the vertices with the actual interaction vertices,
we see that our large N counting exactly reproduces the euler characteristic.
Since a quark is presented by a single line a closed quark loop is a boundary,
therefore every quark loop brings a supression of 1/N , for a surface without
holes we have χ = 2− 2g, where g is the genus of the surface. So the leading
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contribution is coming from surfaces with the topology of a sphere. Let us
translate this result back into the language of Feynman graphs. First we note
that since this doesn’t have any holes there will be no quark contributions.
Furthermore we can do the following trick: Let us remove one face of the
corresponding spherical surface and project the rest onto a plane, in this way
we will obtain a planar graph. Furthermore it is geometrically easy to see,
that this will only work for spherical surfaces, i.e. the leading contribution in
the large N limit is given by planar graphs. In order to illustrate the planar
expansion we would like to consider the standard diagrams for the correction
of the gluon propagator and calculate their N and λ dependence, see e.g. [34]
or [35]. The 1-loop and 2-loop planar diagrams are depicted in figure 2.6.
The left diagram contains two vertices, two inner propagators, and one loop,

Figure 2.6: 1-loop and 2-loop contributions to gluon propagator in doubleline
notation

thus its contribution is g2N = λ. The diagram on the right has four vertices,
four inner propagators, and two loops and is of order g4N2 = λ2. Both of
the diagrams are not 1/N suppressed since they are planar. In figure 2.7
the simplest non-planar diagram is presented. It cannot be drawn in a plane

Figure 2.7: Simplest non-planar diagram in doubleline notation

without intersections and there are six vertices, six inner gluon propagators,
but only one single loop, which determines the contribution g6N = 1

N2λ
3. It

is indeed suppressed by a factor 1/N2.
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The vacuum energy density is calculated to first order by the contribution
of vacuum-vacuum amplitudes. The dominant term is due to genus g = 0
surfaces and leads to

Nχ = N2−2g = N2 . (2.49)

This coincides with our expectation that the vacuum energy density is pro-
portional to the degrees of freedom of the theories. Since we can understand
the 1/N as an expansion in the genus it is natural to try to interpret this as
some kind of string theory, where we try to interpret the surfaces as string
world sheets. The genus expansion in string theory corresponds to an expan-
sion in the string coupling gst. This leads to the conjecture that QCD in the
large N expansion is related to a string theory with gst ∼ N−2. [33] Further-
more we can see that quark diagrams come with factors of 1/N as compared
to purely gluonic diagrams, where the expansion is purely in terms of 1/N2,
i.e. with quarks we see a coupling of

√
gst emerge. This is also natural in

terms of string theory, where the coupling of open strings gopen is related to
the closed string coupling via

gst = g2
open. (2.50)

This implies that in the string theory language the difference between QCD
and pure gluodynamics should be, that one contains open strings, while the
other contains only closed strings.

2.2.1 Mesons and Glueballs

In order to get a further understanding of the stringy interpretation of large
N gauge theories we will now investigate the phenomenology of gluons and
mesons. Since in the limit we took kept ΛQCD fixed we can expect confine-
ment to survive in the large N limit and furthermore that typical meson and
glueball states will have masses of O(1). First of all let us note that the N
counting rules alluded to earlier also apply to Green’s functions. We can use
this to get the effective interactions of glueballs and mesons by looking at
Green’s functions for operators which have an O(1) probability of creating
glueballs and mesons respectively. This leads to a scattering amplitude for
glueballs which is O(1/N2), while it is O(1/N) for mesons. This suggests to
identify glueballs with closed strings and mesons with open strings.
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2.2.2 Baryons

Now we are going to consider baryons, a baryon is a state of N quarks, that
is completely antisymmetric in color. Baryons in the large N expansion were
first studied by Witten [35] and here we will closely follow his exposition.
There are two big differences to mesons, the first is that for mesons we always
consider the same diagrams but with different combinatoric factors associated
to them, however for baryons we have to consider different diagrams for
different values of N. Second in gluon exchange amplitudes we don’t get
an enhancement due to index sums, since the quarks have to remain in a
color singlet state, however we get a combinatoric enhancement due to the
N quarks in the Baryon. Let us for example look at the one gluon exchange
between a pair of quarks in the baryon, the coupling constant for this is of
order 1/

√
N , however there is an enhancement, since the exchange could have

happened between any two quarks in the baryon. Since there are 1/2N(N−1)
such pairs the total contribution of one gluon exchange diagrams will be of
order

N2 1

N
∼ N, (2.51)

i.e. these grow linearly in N, so it seems perturbation theory does not work.
The same will hold in higher orders, for example if we look at two gluon
exchange this will also grow like N . This will hold for all the connected
n-gluon tree exchanges.1 This implies that at large N all the k − body in-
teractions are important, and give contributions O(N), therefore the baryon
mass can have a smooth large N limit if it is O(N). The baryon is completely
antisymmetric in the color indices, this implies that their wavefunctions in
space, spin and flavour are symmetric, i.e. after stripping of the trivial colour
dependence they behave effectively as bosons. So we are led to a system of
a large number of weakly interacting bosons which can be naturally treated
using Hartree approximation, i.e. we should be able to regard each quark as
moving in a self-consistent potential generated by the other quarks.

In order to simplify the problem we are going to take heavy quarks,
since in this case we can do a non-relativistic Hartree treatment which is
considerably simpler than the relativistic version, however it can be checked
in lower dimensions that this gives the same answer on a qualitative level.
Furthermore it will be evident that the same logic can be applied in the
relativistic case. The baryon we are considering is a many body bound state

1Here n should be small compared to N
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with a binding energy that small compared to Nm, where m is the mass of
the quark. The total Hamiltonian for this system has the form

H = Nm+
∑
a

−∆a

2m
+

1

2N

∑
a6=b

V (2)(xa, xb) +
1

6N2

∑
a6=b 6=c

V (3)(xa, xb, xc) + . . .

(2.52)
where V (n) denotes the n-body potential. In the Hartree approximation2

the wavefunction for the baryon factorizes into a product of one-body wave-
functions, for simplicity we will consider the baryon completely symmetric
in flavour and spin (this would be the analog of the ∆++ in QCD). In this
case the spatial wavefunction will be totally symmetric, i.e.

ψb(x1, . . . , xN) = Πiψ0(xi). (2.53)

Now the one body wavefunction ψ0 is usually determined variationally, the
answer will be

〈Baryon|H|Baryon〉 = N (m+O(1)) , (2.54)

since each m-body interaction gives a contribution of order N. Since N factors
out the one body wave function will be independent of N in the large N limit,
this means that while the mass of the baryon is O(N) it’s size is O(1). This
also explains why Hartree approximation is valid, since as we have seen as N
gets larger the density of quarks grows, meaning that each quarks interacts
with many others. This again has an interesting interpretation in terms
of the string picture. That the mass of Baryon goes as N suggests that it
behaves like a soliton of mesons, which in our stringy interpretation would
correspond to a D0 brane. Actually in this case this can be made more precise
by considering the chiral Lagrangian describing the interactions of pions in
which the Baryon appears as a topological defect called skyrmion. [36]

2.2.3 Large N as a Classical Limit

In any gauge theory the natural observables are expectation values of (prod-
ucts of) gauge invariant operators. The large N limit can be understood as
a peculiar kind of classical limit in a beautiful argument due to Witten [37].

2Here we will only sketch the Hartree approximation, since we only want to draw
qualitative conclusions, in the second part of the thesis we review it in more detail.
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For some gauge invariant operator X let us look at the expectation value
of its square, i.e. 〈X2〉 and compare this to the square of its expectation
value 〈X〉2, for an operator which has an expectation value in leading order
in large N we expect 〈X〉 ∼ N2. This implies 〈X〉2 ∼ N4, which in diagram-
matic language can be understood easily since 〈X〉2 ∼ N4 corresponds to
two disconnected diagrams. The difference between these two quantities will
in general be down by a factor of 1/N2:

〈X2 − 〈X〉2〉 = 0 asN →∞. (2.55)

This can be easily understood, since the difference is given in diagrammatic
language only by connected diagrams, which only give one factor of N2 in-
stead of two, thereby implying that it vanishes in N →∞. The same argu-
ment can also be extended to products of gauge invariant operators, implying
that the expecation value of a product of gauge invariant operators is equal
to the product of the expectation values in large N. For example let X,Y,Z
be gauge invariant operators, then

〈XY Z〉 = 〈X〉〈Y 〉〈Z〉. (2.56)

(2.55) and (2.56) show that gauge invariant operators in large N can be
described as c-numbers instead of as quantum mechanical operators, precisely
characteristic of a classical limit.

In terms of a path integral treatment this implies that only a single gauge
field configuration should contribute to the path integral at N =∞, further-
more using translation invariance we can choose a gauge where this field
configuration is constant, i.e. Yang Mills theory at large N can be described
by a set of 4 N ×N matrices transforming as a Lorentz vector. This implies
that any observable in N =∞ Yang Mills should be described by knowledge
of a single classical gauge field configuration, which precisely characterizes
this as a classical limit, which however seems to be distinct from the usual
classical limit related to weak coupling. However finding these matrices3 has
not been possible so far. This field configuration was originally introduced
by Witten in [37] and has been dubbed Master field.

3actually since N = ∞ those should be thought of as linear operators on a Hilbert
space instead of as matrices
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2.2.4 Large N and θ

Next we are going to investigate how θ enters in the large N limit, the ap-
pearance of θ leads to surprising consequences in confining theories originally
pointed out by Witten in [38]. In discussing how the θ term influences gauge
theories at large N we have to distinguish several different cases. If our
theory is weakly coupled the effect θ has on the theory is determined via
instantons. Instantons or Anti-instantons give contributions proportional to
exp(−8π2/g2) exp(±iθ). In the case of a spontaneously broken gauge theory
for example we have a weak effective coupling and instantons have charac-
teristic size given by the relevant inverse mass gap, in this case instanton
effects can be reliably computed in an instanton expansion. However in the
case of an asymptotically free gauge theory this can not be done, since there
is no natural size for the instanton and instantons of all sizes contribute.
This means especially that it is not possible to treat the instantons as a di-
lute gas so it is not clear what kind of effective description should be used.
Moreover the instanton computation would suggest that in the large N limit
the theta dependence should be exponentially supressed as N → ∞. To
be more precise they should be supressed as exp(−8π2N/λ), here again we
see a similarity to D-Branes, since naively we would expect the action to be
supressed with exp(−N2), since the effective glueball coupling is 1/N2, so it
is natural to interpret the instanton in the string theory analog as a D − 1
brane. However due to the aforementioned difficulties we can expect that
this conclusion is too naive, in fact both the way how the U(1)-problem is
resolved in large N as well as the fact that the θ dependence can be seen in
large N at leading order using current algebra techniques [39] can be seen as
evidence that θ dependence should enter in leading order in 1/N . This gains
further support from certain two dimensional models with many features in
common with QCD where θ dependence can also be seen in leading order
in 1/N [38]. However this poses a serious problem, which can be seen as
follows: In the large N limit we have to scale out an overall factor of N from
the action, this suggests that in the large N limit we should keep θ/N fixed.
To be more specific consider the vacuum energy which we naively expect to
be proportional to N2, i.e. we expect E(θ) to have the form

E(θ) = N2h(θ/N), (2.57)

for some function h. Furthermore E(θ) = E(θ + 2π), these two conditions
however seem to be incompatible, since a smooth function of θ/N can only
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be invariant under θ → θ+2π if it is constant. The most straightforward way
to resolve this issue is that E(θ) is a multibranched function due to many
candidate vacua, that all become stable for N = ∞, where the question
which of these has lowest energy will depend on θ. In vacuum k the energy
will be given by

Ek(θ) = N2h((θ + 2πk)/N). (2.58)

In order to get the true ground state we have to minimize Ek with respect
to k for a given value of θ, the actual vacuum energy will therefore be given
by

E(θ) = N2 min
k
h((θ + 2πk)/N). (2.59)

Under CP we have θ → −θ, since CP is a symmetry iff θ = 0, π. Furthermore
E(θ) will have its absolute minimum at θ = 0, since exactly then the integral
of the euclidean path integral is real and positive. Therefore this function
will be periodic but not smooth since as every time θ/π is an odd integer
two branches will cross. This picture actually implies that at these values
of θ there are quantum phase transitions. Furthermore the solution of the
U(1)-problem in the presence of light quarks suggests that d2h/dθ2 6= 0 at
θ = 0, if this is the case we can write h(θ) = Cθ+ . . ., where the higher order
terms don’t contribute to the vacuum energy in leading order in 1/N , this
leads to the following vacuum energy

E(θ) = const ·min
k

(θ + 2πk)2 +O(1/N). (2.60)

In order to study the stability of those different vacua, Witten tried to answer
this question in [40] using methods from M-Theory. In general we are looking
for a bubble nucleation process, so essentially we are looking for domain
walls between different of these would be vacua and we are interested in
their tension. In Witten’s argument those correspond to D-Branes and the
tension between neighboring vacua should scale as N for large N, while the
difference in energy density isO(∞), therefore their lifetimes go to infinity for
N →∞. This implies that for N =∞ we have an infinite number of stable
“vacua”. A further quite non-trivial point is that chromoelectric flux tubes
can end on these domain walls. Since their tension scales like a D-Brane
tension would, flux tubes can end on them it is very natural to suggest that
these are a close field theoretic analog to D-Branes. One should note that
the argument presented in for this relies on an embedding into string theory
and an identification of the domain walls with actual D-Branes, therefore an
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understanding of this D-Brane analog from a field theory viewpoint would
be highly desirable.

A field theoretic argument for the leading low energy part of the world-
volume theory of these D-Brane analogs, as well as more qualitive arguments
for other parts of their dynamics will be the main part of the following chap-
ters.

2.2.5 Summary of large N

What we have seen in this chapter is that Yang Mills theory simplifies in
the large N limit. In particular we have seen that at leading order in 1/N
only planar diagrams contribute and expectation values of gauge invariant
operators factorize. Furthermore we have seen, that it is natural to think
of Yang Mills theory at large N as some kind of noncritical string theory,
where glueballs behave like closed strings, while mesons behave like open
strings. Furthermore we have seen that in this picture the mass of baryons
is consistent with interpreting them as D0-branes, although here one should
note, that the more natural interpretation is in terms of a soliton of mesons,
which can be seen in chiral peturbation theory as a skyrmion. A similar
situation arises in Type I string theory, here we have a 5-brane, as well as
open strings in the bulk. The type-I 5-brane can be either seen as an open
string soliton or as a D-Brane. So in string theories with bulk open string
there is no sharp distinction between D-Branes and open string solitons. [41]

The open string sector gives a SO(32) gauge theory. We can take the
instanton solution of 4 dimensional Yang-Mills theory and lift it to 10 di-
mensions, by simply making it extend into the other 6 directions, this gives
us a six dimensional object. In this language this object is just a soliton of the
open string sector, however the instanton has a scale modulus. If we shrink
the instanton to zero size it can actually be understood as the 5-brane, so
we see, that the question of whether a given object should be understood as
a brane or a soliton is somewhat ambiguous if there is an open string sector
and which description should be used depends on the problem.
After this we have seen that in pure Yang Mills we have several metastable
vacua with domain walls interpolating in between them. These domain walls
can be naturally interpreted as D-Branes in the string picture. It should be
noted that in this case we are in a situation similar to type-II string theories,
which are string theories only described in terms of closed strings, however
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once D-Branes are taken into account open strings appear as well, whose
ends are bound to the world volumes of the D-Branes. From a field theory
perspective this seems particularly confusing, since we started with a the-
ory just containing adjoint matter, however in order to describe the ends of
flux tubes there should be matter in the fundamental representation. An-
other interesting point is that from D-Brane dynamics we would expect a
U(1) gauge field to be localized on a wall interpolating between neighboring
vacua, however if this would be a massless gauge field and the relationship to
string theory holds, then open-closed duality implies that there should also
be a massless spin-2 glueball in the bulk, which is most certainly not the
case. Furthermore if we interpolate between k vacua we would expect the
theory on such a wall to be described by a U(k) gauge theory. This is fairly
surprising and suggests that there is a different mechanism at work here than
the gauge field localization mechanism due to Dvali and Shifman [42], which
we will discuss later. On top of this, there is also no clear candidate for
condensing on the wall and thereby breaking the SU(N).

In the end we are left with a very interesting analogy with string theory
which if better understood might lead to a more detailed understanding of
the microscopic dynamics of string theory. As we have seen many of the
interesting features of D-Branes also arise in the field theory context, however
here they seem deeply mysterious, in the remainder we will try to point out
how field theoretic mechanisms might explain those. For this we will study
these walls both in supersymmetric as well as in nonsupersymmetric Yang-
Mills theory.
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2.3 Non-Local Operators and TFT

In order to understand the structures appearing on the world volume theory
of the walls as well as in the bulk of Yang-Mills theory we have to understand
some basic properties of non-local operators and topological field theories.
An important tool to investigate gauge theories are non-local operators. The
line and surface operators are of special importance in four dimensions and
are briefly reviewed in the following.
Subsequently, we state the relevant facts and mechanisms of topological field
theories in various dimensions. Starting from 2 + 1 dimensional Chern-
Simons-theories, after some generalizations we describe the 3+1 dimensional
BF-theories that will be the foundation of our construction later.
To simplify the notation and avoid confusion caused by the vast amount of
indices we switch to differential notation in this chapter.

2.3.1 Non-Local Operators

The classification of gauge theories concerning their different phases is an
interesting topic by itself, e.g. [34]. In the present case our theories are
believed to be in the confining phase, which dynamically generates a mass
gap.
Nevertheless, there are further possibilities to destiguish various realization of
this confining phase. A powerful tool to investigate the fundamental structure
and properties of the theory are non-local operators, i.e. line and surface
operators, [43] and [44]. We first review the electric line and surface operators
connected to Wilson loops, introduced in [45] and their magnetic analogs,
called ’t Hooft loops. These allow us to destiguish between different global
gauge groups that exhibit the same local degrees of freedom.
The differential geometry notation proves to be very useful, since p-form
are the natural objects to be integrated over p-dimensional manifolds. Our
notation will follow that in [46] and [43].

Electric Line and Surface Operators

For a gauge group G the Wilson line operator WR(C) is constructed from a
curve C and a representation R as

WR(C) = Tr

[
P exp

(
iq

∮
C

AR

)]
, (2.61)
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where R is the representation of the gauge group and P denotes the path
ordering operator. In everything that follows path ordering will be left im-
plicit. In the case when C is a closed curve the operator will be called Wilson
loop for obvious reasons. We can give a simple spacetime interpretation of
the Wilson loop as follows: We create an particle antiparticle pair in repre-
sentation R at some point of C, move the particle along half the loop in one
direction, move the antiparticle along half the loop in the other direction and
annihilate them again as in figure 2.8. In most cases we will be interested in

Figure 2.8: Illustration of a Wilson loop with infinitely heavy probe particles

Wilson loops in the fundamental representation.
Now let us see, why this is a relevant quantity. In order to do that we go
to euclidean space and take a rectangle in spacetime with two of the sides
aligned with the euclidean time direction. This can be interpreted as keeping
the probe particles at a distance d for time T , the expectation value of the
Wilson loop can then be expressed in terms of the potential energy, V (d)
between the two particles as:(see e.g. [47])

〈WR〉 = 〈exp (−V (d)T )〉 . (2.62)

There are two behaviours relevant for the subsequent discussion, the expo-
nent can be proportional to the perimeter of the loop C, which is 2(T + d)
(perimeter law), or it can be proportional to the area enclosed by C, roughly
RT (area law). In the second case the potential energy is proportional to
the distance d, which is the expected behaviour for a flux tube with a finite
tension, which connects the two charges (e.g. [34]), this means the charges
are confined.



36 2. Branes in Field Theory

There is a problem with using this criterion for confinement in Yang-Mills
theories with light fundamental matter, since once the probe charges are
connected by a flux tube containing enough energy to create a pair of these
light particles the flux tube will break and we end up again with a perimeter
law at large distances. This actually means, that in the presence of light
charged particles the terminology confinement is actually a bit misleading
and should better be replaced by e.g. cloaking of color (see e.g. [2]), however
in order to stay consistent with common literature we will nevertheless refer
to the absence of color charged states in the physical spectrum of Yang-Mills
as confinement even in the presence of light charged particles. Furthermore
for most of our discussion this will be irrelevant since we are only consider-
ing pure yang-mills theories. For our later discussion it will be sufficient to
consider Abelian theories, therefore we will from now on focus on the case
G = U(1). In this case the Wilson loop of charge q and can be expressed as

W(C, q) = exp

(
iq

∮
C

A

)
. (2.63)

Since we are only interested in the case of compact U(1) we can assume q
to be an integer. If the flux corresponding to the charges traversing C is
confined to a two dimensional surface Σ, i.e. C = ∂Σ, we can be rewrite the
Wilson loop into

W(C, q) = exp

(
iq

∫
Σ

dA

)
= exp

(
iq

∫
Σ

F

)
, (2.64)

using a generalized Stoke’s theorem for p-forms Ω and p+1 dimensional sur-
faces Σp+1 ∫

Σp+1

dΩ =

∮
∂Σp+1

Ω . (2.65)

We will now introduce electric surface operators. In order to measure the
electric charge in a spacelike region V bounded by the 2-surface ∂V we can
simply integrate the dual field strength, F̃ = ∗F , over ∂V , see [48]

Q ∝
∮
∂V
∗F , (2.66)

this process can be thought of as encircling the charge with a magnetic flux
tube and measuring the charge with the corresponing Aharanov-Bohm phase.
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We can define an analog of the electric line operators of a connection 1-form
A for 2-forms B,this is a surface operator corresponding to a 2-manifold Σ,
which is defined analogously via

WS(Σ, η) = exp

(
iη

∫
Σ

B

)
. (2.67)

In order to construct the analog of a Wilson loop Σ should be a closed 2-
surface (i.e. ∂Σ = 0). Instead of a particle this can be pictured by a flux
tube sweeping out a two dimensional worldsheet embedded in the spacetime
manifold (note the analogy to stings), see figure 2.9.

Figure 2.9: 2-dimensional worldsheet of a flux tube embedded in higher di-
mensional spacetime

Magnetic Line and Surface Operators

We consider instead of a pair of electric charges a pair of magnetic charges
(monopole-antimonopole pair) and construct line operators in an analogous
manner. These are called ’t Hooft operators and were first considered in [49].
We do this by considering the dual, magnetic gauge field Ã (F̃ = dÃ, where
magnetic and electric field are interchanged compared to F = dA). The ’t
Hooft loop is now given by

H(C,m) = exp

(
im

∮
C

Ã

)
. (2.68)

There can picture a ’t Hooft operator in the same way as a Wilson loop. The
magnetic charge in a spacelike region V can again be evaluated via a similar
construction as in 2.66, [48]

Qm =
1

2π

∮
∂V
F . (2.69)
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This implies that we can alternatively construct the ’t Hooft operator by
removing a cylindrical neighborhood from spacetime,this looks locally like R
along the worldline times S2 enclosing the monopole. We have to enforce
(see [46])

1

2π

∮
S2

F = m , (2.70)

on the boundary of the removed region. The familiar Dirac Quantization
condition becomes for any closed 2-surface ∂V , [50]:

1

2π

∮
∂V
F ∈ Z . (2.71)

Equation 2.70 immediately implies, that F = dA can not be exactly true in
the presence of magnetic charges, but should contain singularities along the
world lines of magnetic charges.
Similar singularities are present for magnetic surface operators,here they are
on the worldsheets of magnetic flux tubes and lead to a singularity of the
field strength on the surface Σ, [43]

F = 2παδΣ + nonsingular . (2.72)

α is subject to a Dirac quantization condition. The δΣ is a 2-form, which is
orthogonal to the world-sheet Σ,i.e. for an arbitrary two form Ω we get∫

δΣ ∧ Ω =

∫
Σ

Ω . (2.73)

Dyonic Operators

We can combine ’t Hooft and Wilson line operators into a new class of non-
local operators. These are similar in construction however instead of using
probe electric charge we use dyons, i.e. particles with magnetic as well as
electric charges.
The dyonic operator is simply a linear combination of a ’t Hooft line and
a Wilson line along the same curve C with electric charge q and magnetic
charge m

D(C, q,m) = exp

(
iq

∮
C

A+ im

∮
C

Ã

)
. (2.74)

There is an obvious generalization of operators describing flux tubes carrying
both electric as well as magnetic flux.
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For line and surface operators there are certain properties that don’t depend
on the precise shape of the curve or surface in question, but only on topo-
logical properties like e.g. whether the curve describes a knot or whether
the surface has intersections, these can naturally be described by topological
field theory, which will be what we are largely interested in in what follows.

More general nonlocal operators

We can easily generalize this discussion, by considering more general fields
and going to general dimensions. The objects that naturally couple to ex-
tended objects are form fields, therefore it seems natural to consider form
fields. If we have a p+1 form field we can define an operatorWp correspond-
ing to a (p+ 1)d worldvolume V via

Wp = exp

(
iηp

∫
V
C

)
, (2.75)

in the case of p=0 this would just correspond to the Wilson line operator.
Furthermore we can define a flux operator Fp corresponding to a (p + 2)d
volume V via

Fp = exp

(
iηp

∫
V
dC

)
, (2.76)

this would be the analog of electric surface operators. By introducing singu-
larities into C or dC we can also define the analogs of our ’t Hooft line and
surface operators. These will again be constrained by an analogous quanti-
zation condition.

2.3.2 Duality Transformations

Here we are going to generalize the well known electric magnetic duality of
Maxwell theory to the case of general p-form fields in both the massless as well
as the massive case. Physically the idea is to rewrite a given theory in terms
of different fields, where topological and electrical charges are interchanged
when switching between the two theories.

Massless Case

Let us start with the Lagrangian for a free massless (p+1)-Form field Cp
given by

L = Fp ∧ ?Fp, (2.77)
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where Fp = dCp. Now the procedure is as follows, magnetic charge density
corresponds to dFp, we introduce a new field Cq, which couples to magnetic
charge density. This leads to the Lagrangian

L = Fp ∧ ?Fp + CqdFp, (2.78)

we note that this action is equivalent to the original one, as integrating out
Cq immediately shows. Next we integrate out Fp in order to arrive at an
action for Cq, this gives us

L = dCq ∧ ?dCq, (2.79)

so we see, that this gives us a free (q+ 1)-form, where q = D− 4− p. In the
end what we see here is, that an (p+1)-form has an equivalent description in
terms of a (q+1)-form, with p+q = D−4, the electric object is here a (p+1)
dimensional membrane, while the magnetic object is (q + 1) dimensional.
Furthermore we should note that the electric field strength is a p + 2 form,
while the ”magnetic” field strength is a q + 2 form is simply the hodge dual
of the former exactly as happens in electromagnetism.

Massive Case

Now let us proceed to studying an analogous procedure in the massive case,
the Lagrangian in this case has the form

L = Fp ∧ ?Fp + Cp ∧ ?Cp. (2.80)

Now it looks like we are in trouble, since the procedure we used in the pre-
vious section relied on the Lagrangian depending only on the field strength.
However there is a way out, we can decompose a massive form as Cp+dBp−1,
in the case of massive electrodynamics, B would simply correspond to the
phase of the Higgs field. Notice that by doing this we have introduced an
additional p-form gauge redundancy into our description, B shifts under this
redundancy, while C shift by a derivative. Now we can dualize B, after doing
this we see, that the Lagrangian now only depends on Fp and not on Cp itself,
which allows us in turn to dualize C, after doing this we end up with

L = Fq ∧ ?Fq + (Bq + dCq−1) ∧ ?(Bq + dCq−1), (2.81)

where p+ q = D− 3. We can now easily see, that this is just the Lagrangian
for a massive q-form, therefore the behaviour is very similar to the massless
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case, except that the dimensions are off by one. We should also note, that
the magnetic objects in the massless case are now confined and have to be
boundaries for objects of one dimension higher, which explains why it is to
be expected, that our counting is off by one.

2.3.3 Topological Field Theories

Pure topological field theories (TFTs) are non-dynamical, i.e. they don’t
contain any propagating degrees of freedom. Furthermore computing the
Hamiltonian density we see, that it is zero, i.e. there is no non-trivial time
evolution. This is both a blessing and a curse. Topological theories can be
treated much more easily on the other hand the available observables are
quite limited, however they can describe the vacuum structure in gapped
theories as well as Aharanov Bohm type phases.
In this chapter we review some properties of topological field theories. We
start by discussing Chern-Simons (CS)-theory in 2+1 dimensions introduced
in [51] (for a good review see [52]). Then we proceed to the more general BF
theories [53].

Chern-Simons Theory

Pure CS-theory is the most prominent example of a topological field the-
ory and has a plethora of applications in various areas of physics, the most
striking example being probably fractional quantum hall effect. It contains a
1-form gauge connection A (of a general gauge group G) with a non-standard
kinetic term, which is only allowed in three dimensions. It can be easily seen,
that the theory does not depend on the metric of the manifold, but only on
topological properties, therefore observables can only depend on topological
invariants of the base manifold. Despite of this there are some nontrivial
properties which we will explain in the following.

Abelian CS-Theory

For gauge group U(1) the pure CS-action with source is given by

SCS =

∫ [
k

4π
A ∧ dA− A ∧ ∗j

]
. (2.82)
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The equations of motion can be derived as

∗j =
k

2π
dA . (2.83)

In the absence of a source we get an equation of motion dA = F = 0, which
means the solutions are simply all flat gauge connections. This implies that
in order to get non-trivial results we have to go to manifolds with nontrivial
topology. Moreover, as the action is only first order in spacetime derivatives,
there are no propagating degrees of freedom in the pure CS-theory
For a point charge q, i.e. j = qδ2(~x)dt, we see that it induces a magnetic
field

B =
2πq

k
δ2(~x) , (2.84)

which is attached to it. Note that in 2 + 1 dimensions the magnetic field is
a pseudoscaler rather than a vector field. A useful way to picture this is to
think of three dimensions, then electric charges will acquire a magnetic field
perpendicular to the plane, see figure 2.10. This leads to an additional phase

Figure 2.10: Magnetic field attached to electric charges due to Chern-Simons
term

if two particles are interchanged, see [54], which in three dimensional terms is
just a manifestation of the Aharonov-Bohm effect in a 2+1 dimensional setup.
We see that this effect changes the exchange statistics. By the spin-statistics
theorem this should also change the spin, which it does, since a composite of a
charge and a magnetic field has an angular momentum. It can be checked that
the induced angular momentum matches the exchange phase. In contrast to
theories in 3 + 1 dimensions this phase shift does not have to add up to an
integral multiple of π, since spin can be an arbitrary real number in two
spatial dimensions and therefore the statistics is not constrained to lead to
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fermions or bosons. This shows, that in 2+1 dimensions there is an exchange
phase eiα determined by the prefactor k of the CS-term (anyons, [55]). α can
be determined explicitly for two particles of charge q and q′:

α =
π

k
qq′ . (2.85)

For an alternative derivation, we can calculate the regulated expectation
value of two line operators (section 2.3.1), see [56]

〈exp

(
iq

∮
C1

A

)
exp

(
iq′
∮
C2

A

)
〉 = exp

(
2πi

k
qq′L(C1, C2)

)
, (2.86)

with L(C1, C2) the linking number of the two lines, see figure 2.11 for illus-
tration. The case where we move one charge around another, is equivalent to

Figure 2.11: Example of two paths with linking number 1

a linking number of 1. The CS-theory therefore measures the linking num-
ber of line operators and multiplies the wavefunction by the correct phase.
Since only the linking number enters equation 2.86 the line operators can be
deformed, as long as they don’t cross and we still get the same result.
In the presence of a Maxwell kinetic term for the gauge field the CS-term
leads to a topological mass term. This, however, does not change the num-
ber of propagating degrees of freedom as the Higgs-mechanism would, as the
resulting massive photon only propagates a given spin (e.g. positive spin
OR negative spin). This is akin to the reason why we have two helicities
for massless particles in 4 dimensions, where the negative helicity is enforced
by CPT. In the massive case in 3 dimensions, CPT acts trivially, however P
would enforce us to have both spins. Note that this is only allowed since the
CS term breakes parity. The photon mass is given by

mCS = ke2 , (2.87)
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where e2 the coupling constant appearing in front of the kinetic term, see [52].
Under gauge transformations

A→ A+ df , (2.88)

with f a 2π-periodic function (0-form), the CS-action changes by a total
derivative

∆LCS =
ik

2
d (f ∧ dA) . (2.89)

Therefore, the equations of motion will not change. The action itself is not
gauge invariant in the presence of a boundary of the spacetime. In this case
we have to include boundary degrees of freedom in order for the action to
be gauge invariant, see e.g. [52]. In the Quantum Hall effect these boundary
degrees of freedom are the famous edge currents.

Non-Abelian CS-Theory

For CS-theory with a non-Abelian gauge group there is a cubic coupling of
the gauge fields, to be specific we get

LCS =
k

4π
Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (2.90)

Under a gauge transformations U the gauge field A transforms as

A = Aµdxµ →
(
U−1AµU + U−1∂µU

)
dxµ = U−1AU + U−1dU . (2.91)

The CS-Lagrangian now changes by a term that cannot be written as a total
derivative (see [52])

∆LCS = − k

12π
Tr
(
U−1dU ∧ U−1dU ∧ U−1dU

)
. (2.92)

For a non-Abelian gauge group the integral of this quantity is the winding
number of the gauge transformation as discussed in e.g. [57]

1

24π2

∫
Tr
(
U−1dU ∧ U−1dU ∧ U−1dU

)
∈ Z . (2.93)

This implies, that the coefficient of the nonabelian CS-theory has to be quan-
tized

k ∈ Z , (2.94)

where k is called the level of the CS theory. Similar arguments can be made
in the abelian case if the gauge group is compact, see [58].
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Two Field Topological Theories (BF-Theories)

In Chern-Simons theories the topological action is constructed with a single
gauge field A. We can generalize this to actions with multiple fields and more
general p-forms.
Let us start with the so called BF action, see e.g. [59]

SBF =
k

2π

∫
B ∧ dA =

k

2π

∫
B ∧ F . (2.95)

Again, the action does not depend on the spacetime metric and therefore is
again topological. Here the Hilbert space is given by the flat connections of
both B and A modulo gauge redundancies. This can again be seen from the
equations of motion without sources

B = F = 0 . (2.96)

These theories were originally considered in [53].
Since A and B are two distinct fields, these models are not restricted to three
spacetime dimensions as the CS-theory. If A is a 1-form gauge field we see
that in D dimensions B has to be a (D-2)-form, we will call this case BF
theory and we will call the other cases generalized BF theories.
In the following, we will discuss the cases D = 3 and D = 4 in some detail
and sketch the general case.

BF-Theory in D=3

In three spacetime dimensions A and B are 1-form fields and transform under
0-form gauge transformations

A→ A+ df

B → B + dg ,
(2.97)

with two 2π-periodic 0-forms f and g, since we are only considering BF
theories with compact gauge group. Introducing currents for the two fields
we see

SBF =

∫ [
k

2π
B ∧ dA− A ∧ ∗j −B ∧ ∗J

]
. (2.98)

The equations of motion are given by

dA =
2π

k
∗ J ,

dB =
2π

k
∗ j .

(2.99)
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The field configuration is again determined by the currents.
The magnetic flux of A is attached to the charges of B and vice versa. This
leads to a non-trivial exchange phase between A and B charges

α =
πqm

k
, (2.100)

where m and q are the charges. As in the CS case we can express this in
terms of the linking number via

〈exp

(
iq

∮
C1

A

)
exp

(
im

∮
C2

B

)
〉 = exp

(
2πi

k
qmL(C1, C2)

)
. (2.101)

This action actually has a very concrete physical realization given by the
type II superconductor in two spatial dimensions, i.e. a superconductor with
magnetic vortices. Instead of describing a real type II superconductor we
will use an Abelian Higgs Model, see e.g. [34]. An explicit derivation of
the emergent BF-theory for the dual superconductor will be given later, an
alternative approach via path integrals is given in [59]. In this description j
couples to electric charges and J to magnetic vortices, which shows that the
phases we observed is just the familiar Aharonov-Bohm effect.

BF-Theory in D=4

For D = 4 B is a 2-form field and transforms under 1-form gauge transfor-
mations λ

B → B + dλ . (2.102)

In our superconductor analogy, B now couples to the worldsheet of magentic
flux tubes rather than the worldline of vortices, see [59] and [60]. This is
the natural extension for topological field theories in D = 4, because there
are no Aharonov-Bohm phases between two point particles in four spacetime
dimensions; there is no analog of a linking number of two line operators in
as two loops can always be unwound. In the case of a single curve this is just
the familiar statement, that we can unknot any knot without cutting it in
D ≥ 4. Instead, the phases are present for a point paricle moving in the field
of an infinitly long solenoid, which is just a fluxtube. This can also be seen
mathematically as we can define a linking number for a line and a surface
operator. This can be understood pictorially by compatifying one dimension
and winding the surface operator one time around the compact dimension,
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this leads to the D = 3 case.
[53] introduced another term into the action of the form

∆SBF ∝
∫
B ∧B , (2.103)

which is allowed for spacetime dimensions divisible by 4. This term counts
the number of intersections [61], which is a topological invariant. In four
spacetime dimensions this is the familiar statement, that two dimensional
worldsheets intersect in points.
If we reconsider the superconductor case we see, that this term leads to a
phase, when flux tubes cross. This can be understood physically as follows
[56], when we want one of the vortices to cross we have to move it, i.e. we
have to boost it in the direction of the other vortex. This however leads to
an electric field, just by usual rules of Lorentz transformation, this field will
have a component parallel to the second flux tube. It can be easily checked,
that the integral of ~B · ~E, doesn’t depend on any details of the event like
crossing angle, width of the vortex or speed of the vortex, i.e. we see that
it is again topological. One should furthermore note, that ~B · ~E is just the
familiar θ term, i.e. we see, that the θ term can in principle be observed in
electromagnetism, which is usually disregarded. The point is, that putting
the vortices puts nontrivial boundary conditions, which means that θ can
change the physics even though it is a boundary term.

Groundstate Degeneracy in Topological Theories

On compact, topologically non-trivial space manifolds there is an additional
observable in TFTs, which is the groundstate degeneracy. For simplicity we
will consider only the 2 + 1 dimensional CS-theory of level k in this section,
where space is the torus T 2.
On the torus there are two fundamental non-contractible loops γ1 and γ2.
We can add Wilson line operators of the field A along these directions

Wi = exp

(
i

∮
γi

A

)
. (2.104)

WithW−1
i we denote the line operator with reversed path −γi. Adiabatically

switching on a unit of flux, 2π
k

(q = 1), through the hole of the torus, see figure
2.12, leads to a phase ofW1, e.g. [62]. The Hamiltonian of the theory does not
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Figure 2.12: Torus with additional flux through the hole and fundamental
line operator around it

change by adding the flux adiabatically and we see that this produces another
groundstate. These two states can be distinguished by the expectation value
of the Wilson loops. After inserting k elemetary fluxes the phase will be a
multiple of 2π and hence is unobservable, i.e. we expect to get back to the
original groundstate, therefore we find k different groundstates on the torus.
In general, one could argue that by adding a flux through the tube of the
torus we get even more degenerate ground states, altering the expectation
values of W2. But this is not the case since we find

〈W−1
2 W−1

1 W2W1〉 = exp

(
2πi

k

)
, (2.105)

since it can be deformed to two loops of linking number 1. This immediately
implies

〈W2W1〉 = 〈W1W2〉 exp

(
2πi

k

)
, (2.106)

i.e. the Wilson lines form a Heisenberg Algebra. Thus, inserting fluxes in the
tube of the torus and probing with W2 is the same as inserting flux trough
the hole of the torus and probing with the operator W1.
For an Abelian CS-theory at level k we find a ground state degeneracy of k,
which can be pictured by putting a flux of q ∈ {0, . . . , k − 1} through the
hole of the torus.
In general, if we the manifold has genus g surface the groundstate degeneracy
will be kg for the level k CS-theory.
For the BF-theory in the previous chapter the situation changes slightly.
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Instead of two different line operators we get four

Wi(φ) = exp

(
i

∮
γi

φ

)
, with φ = A,B . (2.107)

There are two different Heisenberg algebras, similar to (2.106), and we find a
number of ground states of (2k)g. These correspond to adding q ∈ {0, . . . , k−
1} fluxes of A and B through the holes of the genus g surface, see [59].

Continuum Description of a TFT

Now we are going to derive a TFT as a low energy effective description of an
abelian Higgs model. First of all we should notice that the Higgs mechanism
leads to mass gap in the theory, therefore the effective theory at energies way
below the mass gap shouldn’t contain any propagating degrees of freedom.
Using Poincare invariance immediately implies, that the Hamiltonian of the
low energy theory should be trivial and therefore that we can at most hope
for a topological field theory as a low energy theory. In this section we are
going to derive this theory explicitly. This has been known in the condensed
matter literature for quite some time [59]. Here we are mostly following
the derivation of [46], which uses an index free notation. Our model is the
standard abelian Higgs model, with a Higgs field of charge k in 4 dimensions,
for notational simplicity we will work in euclidean space. The Abelian Higgs
model is a theory of a complex scalar field φ of charge k and a U(1) gauge
field A. The gauge transformations are given as

φ → eikfφ

A → A+ df .
(2.108)

After splitting φ into modulus part and phase

φ = ρeiϕ , (2.109)

the gauge tranformation acts as a shift of the phase ϕ

ϕ→ ϕ+ kf . (2.110)

The kinetic term for φ and A is given by

Skin = − 1

2g2
F ∧ ∗F +Dφ ∧ (∗Dφ)∗ ≡ − 1

2g2
F ∧ ∗F + |Dφ|2 , (2.111)
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where ∗ denotes complex conjugation. We take the standard Higgs potential
for the scalar field

V (φ) =
λ

4

(
|φ|2 − v2

)2
, (2.112)

with self-coupling λ and v ≥ 0. This potential vanishes for ρ = v, which
gives the groundstate of the theory. Here we should note that we can still
fix the phase of φ to an arbitrary number. Therefore we would naively con-
clude, that the ground state has a continuous degeneracy labeled by the
phase of φ. This however turns out not to be true, since the corresponding
field configurations are related by gauge transformations, i.e. they describe
the same state. This is also how the Higgs mechanism evades Goldstone’s
theorem, Goldstone’s theorem strongly relies on the non-uniqueness of a vac-
uum state. Here however there is no continuous number of vacuum states,
therefore we should not expect to see a gapless particle in the spectrum, for
a more detailed discussion see [63]. This vacuum expectation value describes
the condensation of the charge k particles and the gauge field acquires a mass
given by

m2
A = 2v2k2 . (2.113)

The excitations of the Higgs field H = ρ− v have a mass

m2
H = 2λv2 . (2.114)

At very low energies, i.e. for v � E, we can set ρ = v everywhere except at
the locations of possible flux tubes that are characterized by∮

C

A 6= 0 , (2.115)

if the path C encloses the worldsheet of the flux. They can be equivalently
described as singularities in ϕ. In this limit the magnetic vortices are in-
finitely thin, since their radius scales as the Compton wavelength, ∝ 1

m
, of

the fundamental particles, [64]

mH ,mA
v→∞→ ∞ . (2.116)

This shows, that the width of the vortices are much smaller then the char-
acteristic length scale we are probing, making an approximation as line like
object reasonable. A particle of charge k should not develop a non-trivial
phase in the presence of flux tubes as otherwise the fluxtubes would destroy
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superconductivity in the bulk. This implies, that the flux, Φ, has to be
quantized as

k

∮
C

A ∈ 2πZ⇒ Φ ∈ 2π

k
Z . (2.117)

k fluxtubes lead to a trivial phase even for unit charges and cannot be de-
tected.This shows, that the flux takes values in Zk. It should be emphasized
again, that this conclusion only applies to the topological properties of the
theory.
Since all the local degrees of freedom are gapped and weakly coupled we can
construct the low energy effective action, which will encode the Aharonov-
Bohm phases and will be a topological field theory.
The procedure for obtaining a topological theory encoding Aharanov-Bohm
type phases and discrete ground state degeneracies can also be applied to
theories without a mass gap, i.e. gauge theories in the Coulomb phase. In
this case however the corresponding action can not be obtained as a simple
low energy approximation. Formally this can be done by introducing a topo-
logical scaling, which differs from the Wilsonian scaling. In the Wilsonian
scaling as we vary the scaling parameter (which is the renormalization scale)
we vary the couplings as well, such that the correlation length stays fixed.
In the topological scaling we look at the system on scale R. Now we keep the
couplings fixed as we send R → ∞ and only keep the parts of correlation
functions, which scale as R0. The Wilsonian scaling keeps all the information
except for the information related to short distance effects, while the topo-
logical scaling only keeps topological properties. For more details see [65].
However in the case of a gapped system, this is equivalent to Wilsonian scal-
ing, as the only effects that survive at low energies will be of topological
nature and since topological features can be detected at all scales, we are
guaranteed to be able to capture them at low energies. After integrating out
the radial mode, the leading term at low energies is

Stop = v2

∫
(dϕ− kA) ∧ ∗(dϕ− kA) . (2.118)

For large v the Euclidean action is dominated by the classical contributions
and in fact we can rewrite 2.118 as a contraint imposed by a Lagrange mul-
tiplier 3-form h, see [43]

Stop =

∫
h ∧ (dϕ− kA) . (2.119)
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This constraint ensures that away from vortex lines the gauge field is pure
gauge. At the vortex line positions the phase ϕ as well as the gauge field A
are singular. After dualizing ϕ into a two form B we get again a BF theory,
where electric surface operators of B described the worldsheets of vortices,
while Wilson lines of A describe the worldlines of charges. Here we can again
describe the Aharanov Bohm phases as before in terms of linking numbers.

Generalized BF Theories

In this section we will sketch how to generalize the discussion of the previ-
ous sections to generalized BF theories. We will follow closely the paper of
Kapustin and Seiberg [66]. We are in D (Euclidean) dimensions, our fields
are a (q + 1) form C(q+1) and a (D − q − 2) form C(D−q−2). The action is a
straightforward generalization of the BF action considered previously

SBF =
in

2π

∫
C(q+1) ∧ dC(D−q−2). (2.120)

The action is invariant under two abelian U(1) gauge transformations

C(q+1) → C(q+1) + dλ(q) (2.121)

C(D−q−2) → C(D−q−2) + dλ(D−q−3) (2.122)

We can define gauge invariant field strengths in the usual way via F(q+2) =
dC(q+1) and F(D−q−1) = dC(D−q−2). In the absence of sources the equation of
motion imply that the two field strengths vanish, i.e.

F(D−q−1) = F(q+2) = 0. (2.123)

We can again introduce electric type operators for both gauge fields, for a
p-form Cp these are defined as

W (p)(Σ) = ei
∫
Σ Cp , (2.124)

where Σ is a closed p-dimensional submanifold of spacetime. We can under-
stand the effect of these by noting, that for example introducing the Wilson
operator W(D−2−q)(Σ) leads to a modified equation of motion nF(q+2) = 2πδΣ,
where delta is a form, that behaves like a delta function and that is orthog-
onal to Σ. This delta function implies, that the holonomy of W(q+1) around
Σ is e2πi/n, in the case of D = 4 and q = 0 this holonomy just describes the
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familiar Aharanov-Bohm phases encountered earlier. These are the central
observables of the generalized BF theory, in the case when D = 0 mod 4,
there is an additional term for q = D/2− 1, which is given by

C(q+1) ∧ C(q+1). (2.125)

In the special case of D = 4 and q = 1 this term is the BB term discussed
earlier.
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2.4 Localization of Gauge Fields

In this section we are going to review the gauge field localization mechanism
of Dvali and Shifman and then introduce an extension due to the author,
which introduces a Chern-Simons term in this setup.

In order to describe localization of fields we are looking at a theory, where
we have some higher dimensional bulk theory, which has some effectively
lower dimensional objects like D-Branes or topological solitons. At suffi-
ciently low energies for probes localized on the lower dimensional object we
expect to see degrees of freedom that are localized to the wall. A typical ex-
ample for this would be sound waves along a guitar string for example, which
can be thought of as Goldstone bosons corresponding to broken translations.
It turns out that it is fairly easy to localize massless particles of spin-0 and
spin-1/2, since spin-0 particles are guaranteed to be there due to translation
breaking, while spin-1/2 particles can shown to be generically localized using
index theorem techniques.4 For higher spin particles the situation is signif-
icantly more complicated. For example there is no known way to localize a
massless spin-2 particle, this can be expected to be hard, since gravity cou-
ples universally and furthermore there are strong restrictions on the way a
massless spin-2 particle could possibly emerge as some kind of bound state
due to a theorem by Weinberg and Witten. [67] However there is a mech-
anism due to Dvali, Gabadadze and Porrati that achieves a sort of partial
localization of gravity with interesting phenomenological implications. [68]

In order to localize a gauge field there seem to be two possible directions
one could take, first the gauge field could appear as an emergent quasiparticle
due to some complicated dynamics, but again there are very strong restric-
tions in how this can be done since one needs to evade the Weinberg-Witten
theorem. The second possibility which Dvali and Shifman chose is to take
a gauge field that already exists in the bulk theory and arrange that it only
propagates on the wall. Apart from theoretical interest localization of gauge
field is also relevant from a more phenomenological perspective as one area
of research in the extension of the standard model lies in extra dimensions,
here it would be natural to localize the Standard Model we see to such a
wall. [69–71]

4here we are mostly interested in localizing massless particles, massive particles can be
straightforwardly localized.
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2.4.1 Dvali-Shifman Mechanism

We will begin by describing a very naive idea to localize a U(1) gauge field,
which will turn out to fail. Then we will exploit the way in which this
approach fails to construct an improved mechanism which truly localizes a
massless gauge field. In order to localize a gauge field we will simply take
electromagnetism and give the photon a mass everywhere except in some
region of space. It turns out however that this does not localize a massless
gauge field on the wall. In order to see this we should realize that a massive
U(1) field corresponds to a superconductor.

Now we imagine the setup of a superconductor in the bulk, while the
wall is the vacuum; this is precisely the well known Josephson junction.
[72] Now it is physically clear why we don’t localize the gauge field: In the
superconductor there is a large number of free charges. This implies that a
test charge in the wall will polarize the free charges in the superconductor
and this will in turn screen the electric field.
This can be seen technically as follows, in the limit where the photon is
infinitely heavy outside of the wall, the gauge field is present only inside the
wall, i.e. the corresponding action is given

S =

∫
d3x

∫ d/2

−d/2
FµνF

µν , (2.126)

where d is the width of the wall. This is akin to a four dimensional theory
compactified to three dimensions. However the spectrum of the low-energy
theory depends crucially on the boundary conditions imposed at |z| = d

2
.

The would-be massless photon corresponds to the zero mode resulting from
the Kaluza Klein decomposition. If the boundary conditions project that
mode out from the spectrum we don’t localize the vector field.
In our case the boundary conditions are as follows:

• The electric field has to be perpendicular to the boundary, since we
have a conductor

• In the case of a superconductor the magnetic field should be parallel
to the boundary.

This means E1 = E2 = 0 and B3 = 0 on the boundary, or written covariantly
as Fab = 0 where a, b = 0, 1, 2. The zero mode however has to be constant
along the z direction. This implies that the zero mode of Fab is not in the
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spectrum of the low energy theory. Therefore it is clear that we do not have
a massless photon. The lowest mode of spin-1 we see is a massive photon of
mass m ∝ d−1. What remains in the low energy spectrum is the massless
KK scalar F 3a, which does not couple to electric charge. By rewriting the
boundary conditions as F̃ a3 = 0, we see that the zero mode of the dual field
strength tensor F̃ ab remains massless. Therefore the massless scalar in the
spectrum behaves as a magnetic photon.5

An alternative way to understand this is to consider two charges inside
the wall, separated by a distance l � d. Here we will see three dimensional
electromagnetism. Now we move the charges apart, in a superconductor elec-
tric flux lines decay exponentially fast, while magnetic flux lines are expelled
by the superconductor due to the Meissner effect and can only penetrate in
the form of flux tubes6. In the limit l� d most electric flux lines end on the
superconductor instead of going through the wall, i.e. flux decays exponen-
tially fast as we move the charges further from each other. This explains why
we do not see a massless photon in the large distance limit. On the other
hand, the magnetic flux lines show the behaviour we would like electric flux
lines to have. They are confined to the wall and give the right behaviour
expected of two dimensional Maxwellian electromagnetism.

This gives us a clear way out: we can simply take the electric-magnetic
dual of the setup. More concretely, we want to have dual superconductivity in
the bulk, which as reviewed earlier is expected to be realized in the confining
phase of Yang-Mills theories. We will take a non-abelian confining gauge
theory in the bulk which gets Higgsed to a U(1) inside the wall. To be
concrete we start with a SU(2) gauge theory with a scalar field in the adjoint
representation. For the scalar we take a potential

V (φ) =
φaφa

M2
(φaφa −M2)2. (2.127)

V (φ) has minima at φa = 0 and φa = Mna, where na is an arbitrary unit
vector.7 The potential is tuned in such a way that all the minima lie at
V = 0. This theory has two phases: One is the broken phase, where just the

5This works because in 2+1 dimensions a massless vector field is dual to a scalar field.
6In the limit of infinite mass, magnetic fluxes can not penetrate the superconductor at

all, while electric fluxes decay infinitely fast on the boundary.
7Here we will ignore subtle quantum effects like Coleman Weinberg type corrections,
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U(1) symmetry is manifest and which is free in the infrared. In the other
phase we have the confining SU(2) with confinement scale Λ. In our model
we replace the wall by the U(1) vacuum and the bulk by the SU(2) vacuum.
This gives the right picture: electric flux lines can only penetrate into the
bulk in terms of flux tubes, while magnetic flux lines end on the boundary.
This shows that we really localize a U(1) gauge field. Another interesting
point to note is that flux tubes in the bulk can end on the wall, since the
U(1) is in an unconfined phase. Let us look into this in a little more detail:

In order to get a better understanding we will do a thought experiment,
where we move a charge from the wall into the bulk. The electric field will be
expelled, but since the flux has to be conserved by Gauss’ law, it will form a
string of electric flux between the wall and the charge. This implies that our
branes have a common feature with D-Branes from string theory, i.e. strings
can end on them.

As a last point let us return to the question of confinement in 2 + 1d
QED, which has been first discussed by Polyakov [73] and is due to a dilute
gas of instantons. Here the euclidean instantons have the field configurations
of monopoles in 3 spatial dimensions, therefore we can expect them to lead
to confinement. We can also understand this either in the microscopic bulk
theory or as done before in terms of instantons in the low energy world
volume theory. We can simply note that what we are considering is a literal
magnetic analog of a Josephson junction, i.e. we expect a current of tunneling
monpoles across the wall. These tunneling monopoles will be precisely the
instantons in 2 + 1d and the dilute gas of these instantons will lead to debye
screening of the magnetic photon, i.e. to confinement of the electric field on
the wall. For a more detailed discussion see [74].

2.4.2 Localization of CS term

This section is going to give a concise summary of how to extend the Dvali
Shifman mechanism in order to localize a Chern-Simons term on the wall
worldvolume. This part was the subject of a publication of the author which
is reproduced ad verbatim in the final part of the thesis. As we have described
before, the θ term is the derivative of the Chern-Simons form, this leads to
the conclusion, that a gradient in θ across the domain wall in Dvali-Shifman

since this will be unimportant for the considerations, at most we will need a more compli-
cated model.
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will lead to a Chern-Simons term in the 2 + 1 dimensional effective theory
on the world-volume of the wall. After integration by parts we get have

θ(z)

32π2
εµνρσ Tr (FµνFρσ)

=
(
∂µθ(z)

) 1

8π2
εµνρσ Tr

[
Aν∂ρAσ −

2

3
ieAνAρAσ

]
.

(2.128)

This leads us to conclude, that we will have a CS term of level

k =
∆θ

8π2
(2.129)

This situation can be achieved by having the domain wall behaving as an
axionic wall as well as having a Higgs vev. An explicit potential that achieves
this is

V =m2 Tr[φ2] +
λ

2
Tr[φ2]2+

A cos(θ)+

C Tr[φ2] cos(θ) + · · ·

(2.130)

Here θ is the axion, while φ is the Higgs field. For a certain parameter
range, this model contains precisely the domain walls we are looking for.
The parameter range is given by A < 0 and

0 < C −m2 < 2
√
λ|A|. (2.131)

We immediately see, that the vacua are at θ = 2πZ and φ = 0, so we
can have domain walls interpolating between different values of θ. Further-
more we see, that within the wall cos(θ) will become sufficiently negative
to dominate over the mass term and leading to a condensation of the Higgs
field. This is qualitatively shown in fig. 2.13. Let us remark, that since
the potential contains a tree level potential for the axion the model as given
would not solve the strong CP problem, however the model is only supposed
to be a proof of principle for localization of a CS term using Dvali-Shifman
mechanism. In our publication it is explicitly shown how to see the CS term
using image charge techniques.
Let us now try to understand some of the features of abelian CS theories in
terms of bulk physics.
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U(1) SU(2)SU(2)

Axion

Higgs

Figure 2.13: Schematic plot of the (classical) field profile across an axionic
domain wall in our model. Note: the profile was determined in the approxi-
mation A� C.

Magnetic Events

Let us consider the process, where a magnetic monopole crosses the domain
wall. The effective 2+1d theory sees a magnetic charge for a short time,
while the monopole is on the wall, this charge will disappear afterwards once
it leaves the wall, since its magnetic charge is screened by the condensate.
Furthermore the magnetic flux across the wall should change by g. These
features lead us to identify this process as a so called magnetic event [75] in
the effective Chern-Simons theory.

When the magnetic monopole flies across the brane, it experiences an
“adiabatic” change in θ, thereby acquiring electric charge via the Witten
effect reviewed earlier. Thereby it leaves the brane on the other side as an
electrically charged dyon. This rather interesting interplay between magnetic
monopoles and axionic domain walls was already pointed out by Sikivie in
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Figure 2.14: Qualitative sketch of a monopole crossing the axionic domain
wall. As described in the text, the monopole picks up an electric charge.
Because electric flux is conserved in the bulk, an electric flux tube connects
the monopole to the wall. The end of the flux tube appears as an electric
charge in the effective wall-world volume theory.

[76]. In our setup, the bulk however is confining and electric flux conserved.
Thus, when the monopole leaves the brane, it trails an electric flux tube
which connects it with the brane. A sketch of this process is shown in figure
2.14.

From the the 2+1d theory, the end of the electric flux tube looks like an
electric charge. Like any electric charge in the Chern-Simons theory, it is
screened and produces a magnetic flux, as we expected.

Furthermore it can be easily seen, that the confinement of compact QED
will disappear once we turn on the CS term. As reviewed earlier the confine-
ment can be understood in the Dvali-Shifman setup as being due to tunelling
monopoles, however in our setup the objects condensing on both sides are
different objects, therefore the tunnelling monopole can not be absorbed by
the condensate, but instead is still conected to the wall by a flux tube, this
clearly explains, why in the CS theory there is no confinement.

In our model there are domain walls with ∆θ ∈ 2πZ appear, this leads
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Figure 2.15: Sketch of a magnetic event in Maxwell-Chern-Simons theory.
(Left) The magnetic event occurs and creates a localized magnetic flux.
(Right) The event leaves an electric remnant charge and — after some elec-
tromagnetic waves have dispersed — the magnetic field profile shown here.

to a CS term, whose coefficient is quantized as

k ∈ 1

4π
Z. (2.132)

This agrees perfectly well with the fact that the Chern-Simons term appears
as a term in the microscopic SU(2) theory and the quantization condition,
that appears in the nonabelian CS theory.

Thus we have seen how to localize a CS term in the Dvali-Shifman setup,
in the rest of the thesis we will show how to show, that on certain domain
walls in pure YM theory and supersymmetric YM theory we see a CS term
on the worldvolume of these walls, here however a different mechanism than
Dvali-Shifman seems to be at work.
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2.5 TFT for YM-Theories

After having reviewed the set of tools we are going to use we now come to
the derivation of the low energy theory of pure Yang-Mills theory, this will
also lead to an interpretation of the quasivacua in large N YM we discussed
earlier. The central assumption here is, that confinement occurs by monopole
condensation. Now we have to identify what kinds of monopoles condense,
in order to do that we should remember, that in a superconductor the fluxes
of vortices, which are present are very directly related to the charges which
are condensing. An alternative useful way of viewing the quantization of
vortex flux is as follows, let us imagine ending the flux running through
the vortex on a magnetic monopole, then vortex literally becomes the Dirac
string of the monopole, now the quantization of the flux can be understood
as a Dirac quantization between the confined monopole and the charge of
the condensate. Now let us look at what sort of flux tubes we expect to
see in Yang-Mills theory: We certainly expect to see flux tubes, with a flux
corresponding to a quark charge, however we don’t expect to see flux tubes
corresponding to fractional quark charges. This immediately implies, that the
condensing monopoles should have charge N in the ZN ×ZN classifcation of
charges explained earlier, i.e. they have to correspond to adjoint monopoles,
one should also note, that this naturally explains the appearance of a ZN
topological theory at low energies. In the following we are going to explain
how to arrive at this topological theory.

2.5.1 Classification by the Choice of Line Operators

Before we saw that line operators in Yang Mills theories can be characterised
by their electric and magnetic charges (q,m) taking values in ZN × ZN .
In [44] the authors introduce the notion of genuine line operators to identify
the allowed spectrum of probe particles and classify the gauge theory, [66].
Genuine line operators are operators, that do not need a surface operator
attached to them for gauge invariance.
This means that using the generalization of the Dirac quantization for non-
local operators, [77]

qm′ −mq′ ∈ NZ , (2.133)

we only allow for operators that generate a trivial phase, i.e. a multiple of
2π. In other words we admit line operators in the spectrum for which we
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are not able to detect the Dirac string produced by other valid probes. For
example a monopole in the fundamental of the magnetic group and a particle
in the fundamental of the electric group would pick up a phase of 1/N , which
means we cannot have both in the theory.
For later convenience we rescale our electric charges by a factor of 1/N , i.e.
fundamental quarks have charge 1/N . The Dirac quantization now is in the
more familiar form

qm′ −mq′ ∈ Z . (2.134)

Let us consider two examples. If we want the fundamental Wilson line
W ,with charge (1/N, 0), of the SU(N) theory to be a genuine line operators,
the Dirac quantization (2.133) directly tells us that only magnetic charges
are allowed, which are a multiple of N . For SU(3) this is pictured in the
left panel of figure 2.16, for a more detailed discussion see [44]. If we take

(a) SU(3), genuine W (b) SU(3), genuine H

Figure 2.16: Spectrum of non-local operators in SU(3) depending on the
choice of genuine line operators, denoted by solid points in the Z3 × Z3

lattice, the dashed lines mark the periodicity of Z3

fundamental ’t Hooft lines H to be genuine, only integer electric charges,
i.e. N multiples of the fundamental charge, are allowed (right panel of figure
2.16).
All other operators have to be attached to surface operators in order to ac-
count for the non-trivial exchange phases. The set of allowed operators gives
a more fine grained classification of the theory.
We can get further insights into the theory by considering Witten effect,
Witten effect implies that under a change of θ by 2π a dyonic line operator



64 2. Branes in Field Theory

of charge (p/N,m) will become a dyonic line operator of charge( p
N
,m
)

θ→θ+2π→
(

1

N
[(p+m) modN ] ,m

)
. (2.135)

The different choices of genuine line operators lead to different theories la-
belled by the gauge group and an additional parameter p, we can label the
different theories as (SU(N)/Zm)p, where m should be a divisor of N and p
is between 1 and m.
Furthermore, we should also notice, that Witten effect implies, that under a
shift of θ the monopole condensate picks up an adjoint electric charge, i.e. we
end up with a dyon condensate. However just naively changing θ should not
produce the ground state of YM at θ = 2π, but the first excited quasivac-
uum. This implies, that the different quasivacua correspond to condensates
of dyons with different electric charges.

Let us consider this effect for the spectra of figure 2.16 for θ = 0. Previ-
ously we saw that a charge ( p

N
,m) in fundamental units in the k = 0 theory

corresponds to a charge(
1

N
[(p−m) modN ] ,m

)
, (2.136)

in the theory with k = 1.
For genuine line operatorsW at k = 0 the genuine line operators at k = 1 are
unchanged, because only monopoles with magnetic charge ∈ NZ are allowed
whose contribution is canceled by modN .
For genuine line operators H at k = 0 their analogs on the branch k = 1 are

(0,m) at k = 0↔
(

1

N
(−mmodN), 0

)
at k = 1 . (2.137)

In figure 2.17 the situation is depicted for N = 3. We see that the spectrum
indeed does change. Its peridicity in k is N as suggested by [40]. The allowed
line operators become dyonic under the change of k as can be suspected by
the Witten effect. For a more detailed discussion of this see [44].

2.5.2 Construction of the TFT

With the choice made above and all tools at hand we now construct a topo-
logical field theory of SU(N) YM theories. These models are described by a
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(a) k = 0 (b) k = 1 (c) k = 2

Figure 2.17: Change of the spectrum of genuine line operators for SU(3) in
different quasi-stable vacua labeled by k

ZN × ZN charge lattice for the line and surface operators.
We further consistently implement the Witten effect and the different con-
densate charges in the quasi-stable vacua. Introducing YM domain walls,
interpolating between the branches for fixed θ, we find that we have to in-
clude a level N CS-action on the wall in order to preserve gauge invariance.
This mechanism supports the string theory consideration of [78] and yields
a new field theoretical interpretation.
In the following we work in four dimensional Euclidean spacetime. Since our
theory only contains the phases, all terms are purely imaginary resulting in
the phase −iSE.

The Topological Action for the Dual Superconductor

The fact that all our charges and fluxes are described by ZN allows us to
construct the topological theory using an Abelian construction, which sim-
plifies the task tremendously, see [43]. Previously we derived the topological
action for a Zk theory by condensing a charge k field and starting from the
Abelian-Higgs model. We will use the same action in the following but with
one crucial difference. In order to create confinement of electric charges we
do not want to condense electrically but magnetically charged fields. To
preserve the discrete symmetry ZN we condense charge N monopoles. We
should note, that once we say we are condensing charge N monopoles we are
implicitly working in SU(N)/ZN , we will comment on the interpretation of
this later.
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The topological action we start with is just the magnetic version of (2.119)
and was already considered in [43]

S =

∫
h ∧ (dϕ−NÃ) , (2.138)

with Lagrange multiplier 3-form h. The gauge transformations are given by

ϕ→ ϕ+Nf ,

A→ A+ df ,
(2.139)

with a 0-form gauge function f which is 2π periodic, f ∼ f + 2π. We
dualize the magnetic scalar field ϕ into a 2-form field B and integrate out
the Lagrange multiplier leading to

S =

∫ [
h ∧ (dϕ−NÃ) +

i

2π
dϕ ∧ dB

]
. (2.140)

Now we can integrate out dϕ, this leads to

S =
iN

2π

∫
Ã ∧ dB . (2.141)

Here B couples to the vortices of ϕ, i.e. the electric flux tubes of the confining
theory. We assume that the spacetime manifold does not have a boundary
and integrate the above action by parts

S = −iN
2π

∫
dÃ ∧B = −iN

2π

∫
F̃ ∧B . (2.142)

This is the BF-action we had earlier, which described the topological prop-
erties of a superconductor in four dimensional spacetime.
In order to recover the more familiar gauge field A we dualize Ã

S =

∫ [
−iN

2π
F̃ ∧B +

i

2π
dÃ ∧ dA

]
=

i

2π

∫
F̃ ∧ (F −NB) . (2.143)

F and B are propotional to each other on the equations of motion. F̃ is a
Lagrange multiplier, just as we would expect for a field B that couples to
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electric flux tubes. The gauge field A has its usual 0-form gauge transforma-
tion properties, since it only appears as dA. However we have an additional
1-form gauge transformation λ

B → B + dλ ,

A→ A+Nλ ,

Ã→ Ã .

(2.144)

The field strength F transforms to F +Ndλ, therefore a surface operator of
F on a closed submanifold Σ (∂Σ = 0) changes as

N

2π

∮
Σ

dλ (2.145)

Gauge invariance demands this to be a multiple of N . This leads to a quan-
tization condition for the 1-form transformations λ

1

2π

∮
dλ ∈ Z . (2.146)

This action together with the gauge transformations describes the dual su-
perconductor and its spectrum of non-local operators. In the next section we
will perform some nontrivial checks on the consistency of this description.

Non-Local Operators for the Dual Superconductor

In order to see the allowed electric charges for Wilson lines we look at the
electric surface operators integrated over a closed 2-surface Σ. All the allowed
surface operators should be gauge invariant under 1-form gauge transforma-
tions

exp

(
iη

∮
Σ

F

)
→ exp

(
iη

∮
Σ

[F +Ndλ]

)
= exp

(
iη

∮
Σ

F + 2πiηNk

)
!

= exp

(
iη

∮
Σ

F

)
, for k ∈ Z .

(2.147)

Therefore, the electric fluxes and consequently the charges producing them
have to be quantized

η, q ∈ 1

N
ZN . (2.148)
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This is the same as in the Abelian-Higgs model considered before and just
tells us that we reproduce usual charge quantization correctly. The valid
Wilson loops can be parametrized as before (p ∈ {0, . . . , N − 1})

exp

(
i
p

N

∮
C

A

)
→ exp

(
i
p

N

∮
C

[A+Nλ]

)
. (2.149)

As expected, in general they are not gauge invariant. However if we attach
a surface operator with corresponding surface Σ, where ∂Σ = C the Wilson
loop becomes invariant, since

∆

(
i
k

N

∮
C

A− ik
∫

Σ

B

)
= i

k

N

∮
C

Nλ− ik
∫

Σ

dλ = 0 , (2.150)

where we used Stokes’ theorem. We see, that in the presence of funda-
mental monopoles Wilson loops with fundamental quark charges are not
gauge invariant. They are only gauge invariant if a surface operator is at-
tached to them, i.e. we have to attach an observable string to them. In
the (SU(N)/ZN)0 theory this is exactly what we expect. The ’t Hooft loops
on the other hand are gauge invariant on their own exactly reproducing our
choice of genuine line operators.

Inclusion of the Witten Effect

In the action, equation (2.143), we describe a dual superconductor, however
we neither have a parameter, that we can identify with θ nor do we have
a parameter that we can identify with the p of (SU(N)/ZN)p. In order to
correctly identify these effects we make use of Witten effect.
Starting with a condensate of charge (0, N), the Witten effect suggests that
under θ → θ+2π its chromoelectric charge changes byN times the fundamen-
tal charge and now carries the charge of (1, N). Pure ’t Hooft loops should
not be gauge invariant anymore but should also require a surface operator.
This can be achieved by modifying the 1-form gauge transformations of the
dual gauge field Ã, (for a similar discussion in a different context see [66])

Ã→ Ã− θ

2π
λ . (2.151)

For θ = 0 ’t Hooft loops are invariant. For θ = 2π the following combination
is

exp

(
im

∮
∂Σ

Ã+ im

∫
Σ

B

)
. (2.152)
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As expected now a dyonic line is gauge invariant. Moreover, we want loop
operators, that are powers of the gauge invariant line operators to be gauge
invariant as well. For θ = 2π this implies, that any loop operator with (m

N
,m)

should be gauge invariant, which is exactly what happens.
As we changed the gauge transformations we also have to change the ac-
tion. The action 2.143 is not anymore gauge invariant with the modified
transformations for Ã

∆S = − iθ

4π2

∫
dλ ∧ (F −NB) . (2.153)

The term ∝ dλ ∧ B has to be canceled, i.e. we have to change the action.
Earlier we saw that for spacetime dimensions divisible by four an additional
term of the form B ∧ B is allowed, see [53]. It can be checked that this has
the correct transformation properties. The combination

iθN

8π2
B ∧B → iθN

8π2
B ∧B +

iθN

4π2
dλ ∧B +

iθN

8π2
d(λ ∧ dλ) , (2.154)

is able to cancel the dangerous term. The total derivative does not pose a
problem for spacetime manifolds without boundary.
Thus we arrive at a gauge invariant action that takes Witten effect into
account

S =
i

2π

∫ [
F̃ ∧ (F −NB)− Nθ

4π
B ∧B

]
, (2.155)

with 1-form gauge transformations

B → B + dλ ,

A→ A+Nλ ,

Ã→ Ã− θ

2π
λ .

(2.156)

In order to understand the physical effect of the B ∧ B-term we use the
description of ’t Hooft loops given earlier, we remove a cylinder around the
worldline of the monopole, which is locally R× S2 and fix the magnetic flux
through the S2

1

2π

∮
S2

B =
m

N
. (2.157)

Now we split the 2-form B into a singular part, corresponding to magnetic
charges, and smooth part for electric configurations

B = Bsing +Bsm , (2.158)
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the part of the B∧B-term containing the singular contribution reads (Bsing∧
Bsing vanishes due to properties of the wedge product)

iNθ

8π2

∫
2Bsing ∧Bsm =

imθ

2π

∫
S2
⊥

Bsm . (2.159)

It transforms as

imθ

2π

∫
S2
⊥

Bsm →
imθ

2π

∫
S2
⊥

(Bsm + dλ) . (2.160)

For θ 6= 0 we see, that it needs to be the boundary of a surface operator.
This surface carries the appropriate electric flux −m/N as discovered before.
This shows that the new term reproduces the expected behaviour. Now
we should note several things, first of all introducing the θ term leads to
a phase, when two flux tubes intersect. Furthermore when θ = 2π this
phase is 2π/N .This means we only see a periodicity of 2πN in θ, which
for the SU(N)/ZN theory is perfectly fine however as discussed in [44, 79].
As discussed before this phase however has a very natural interpretation
in the case of superconductors and especially doesn’t rely on any subtleties
regarding the spectrum of allowed line operators, but just on the presence of
non-trivial topological vortices. This implies that the BB term we observed
should be there even in the SU(N) case. However in the pure SU(N) case
we expect to see a 2π periodicity and not a 2πN periodicity, therefore this
result seems rather odd. We should note however that we haven’t taken into
account that we expect the SU(N) to have N different quasistable vacua.
Now, we want to incorporate the presence of these N different quasi-stable
vacua labeled by k. For this purpose we make use of the analogy

k → k + 1↔ θ → θ − 2π . (2.161)

The change of the vacuum energy cannot be quantified in the topological
framework. The Aharanov Bohm type phases as well as the phases that
fluxes acquire upon crossing are however well described by the topological
theory. The action describing a dual superconductor with θ term and (quasi)
vacua labeled by k is then given by

S =
i

2π

∫ [
F̃ ∧ (F −NB)− Nθ

4π
B ∧B +

Nk

2
B ∧B

]
. (2.162)
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The effect of the change in the condensate charge for different k alters the
gauge transformations for Ã as well

Ã→ Ã− θ

2π
λ+ kλ . (2.163)

Almost the same action and transformations were presented without deriva-
tion in [66], but with a different application. There the authors coupled this
type of TFT to a dynamical SU(N) theory in order to obtain a SU(N)/ZN
theory. Our interpretation is different, we regard the action as a topological
field theory for the confining phase of SU(N) YM theory itself, where the
label k labels the different (quasi) vacua of the YM theory and the TFT
should only be used to compute non trivial AB type phases. Similar actions
are found for theories with oblique confinement in [43] and for lattice models
of Yang-Mills theories in [80], however neither paper tried to identify the
quasivacua in YM or considered domain walls between them.
The effect of the B ∧B-term in the gauge theory can be seen by integrating
out F̃ . Remember that by dualizing Ã, F̃ is regarded as independent field
fulfilling the Bianchi identity induced by the dualization term. Therefore, we
use the equations of motions of F̃ rather than Ã and obtain the constraint
equation

B =
1

N
F . (2.164)

Plugging this constraint back into the action 2.155 we find

S = − iθ

8π2N

∫
F ∧ F +

ik

4πN

∫
F ∧ F . (2.165)

This exactly reproduced the θ-term in YM gauge theory up to the factor of
1/N .8 Taking into account, that k labels N different (quasi) vacua restores
the 2π symmetry which is needed in the SU(N) theory. In the following
discussion we keep the vacuum angle θ fixed at 0. In pure YM theory without
axions θ is a free parameter and can be fixed to some constant. The action
therefore is given by

S =
i

2π

∫ [
F̃ ∧ (F −NB) +

Nk

2
B ∧B

]
, (2.166)

8here one should also note, that our fluxes are normalized such that fundamental
charges are 1/N
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with gauge transformations

B →B + dλ ,

A→A+Nλ ,

Ã→Ã+ kλ .

(2.167)

YM Domain Walls

With the action (2.166) and the corresponding gauge transformations we can
now investigate properties of YM domain walls in this topological setting.
For that we add a jump in k on a codimension one surface, i.e. a domain
wall. We only consider fundamental walls for which ∆k = 1. The three
dimensional worldvolume of the wall is denoted V .
This jump in k has consequences for the properties under gauge transforma-
tions of the action. The first term in (2.166) changes under 1-form transfor-
mations 2.167 to

i

2π
F̃∧(F−NB)→ i

2π
F̃∧(F−NB)+

i

2π
(dk∧λ+kdλ)∧(F−NB) . (2.168)

The term dk can be regarded as a δ-function on the worldvolume V in the
following sense. For an arbitrary 3-from Ω∫

dk ∧ Ω =

∫
V

Ω . (2.169)

The second term in (2.166) changes as well

iNk

4π
B ∧B → iNk

4π
B ∧B +

iNk

2π
dλ ∧B +

iNk

4π
d(λ ∧ dλ) . (2.170)

The total change of the action reads

∆S =

∫ [
i

2π
dk ∧ λ ∧ (F −NB) +

ik

2π
dλ ∧ F +

iNk

4π
d(λ ∧ dλ)

]
(2.171)

Splitting the terms into a total derivative and dk contribution

iNk

4π
d(λ ∧ dλ) = d

(
iNk

4π
λ ∧ dλ

)
− iN

4π
dk ∧ λ ∧ dλ ,

ik

2π
dλ ∧ F dF=0

= d

(
ik

2π
λ ∧ F

)
− i

2π
dk ∧ λ ∧ F ,

(2.172)
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the total change in the action becomes

∆S =

∫ [
i

2π
d

(
kλ ∧ F +

Nk

2
λ ∧ dλ

)
− iN

4π
dk ∧ (2λ ∧B + λ ∧ dλ)

]
.

(2.173)
The first term is a total derivative and hence only relevant if the spacetime
manifold has a boundary. The second term is more intersesting. It implies
that YM domain walls generate a contribution to the action on the world-
volume of the wall (∆k = 1)

∆Swall = −iN
4π

∫
V

[2λ ∧B + λ ∧ dλ] . (2.174)

To allow for domain walls in the topological theory and simultaneously retain
the gauge symmetry of the action we consequently have to introduce degrees
of freedom on the worldvolume of the domain wall. These new degrees of
freedom have to transform under the 1-form gauge transformation. The
natural choice is a 1-form field A transforming under shift symmetry

A → A− λ . (2.175)

This is very similar to statistical gauge fields often used in condensed matter
physics, e.g. for the fractional quantum Hall effect, see [81].
In order to cancel the contribution of the fundamental domain wall the ap-
propriate worldvolume action for A is

SV = −iN
4π

∫
V

[2A ∧B +A ∧ dA] . (2.176)

This action contains a coupling of the 2-form field B to A and a U(1) CS-
term at level N. An equivalent action arises for boundaries of the spacetime
manifold, see [66].
The full action in the presence of domain walls is the sum of both contribu-
tions, S + SV .
Gauge invariance in the presence of a YM domain wall is thus only possible
if one includes a level N CS-term on the domain wall. Precisely this term
was predicted by string theory investigations for SYM theories in [78] and
by breaking of N = 2 to N = 1 supersymmetry in [82]. Our construction
now shows that such a term should as well be present on YM domain walls,
even without supersymmetry. The construction with some modifications also
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works for SYM domain walls, we will will discuss this in the next two chap-
ters. This is to our knowledge the first direct construction of the level N
CS-theory for YM domain walls and because it only uses topological charac-
teristics of the theory it should be unaltered under various deformations of
the dynamical theory.

Fluxe Tubes Ending on Domain Walls

The string theory constructions of [83] for SYM and [40] for YM theories
suggest that electric flux tubes can end on these domain walls, just like fun-
damental strings end on D-branes. In this section we would like to investigate
whether this is also true in our formalism.
The criterion for the existence of certain operators in the topological theory
is the gauge invariance under 1-form gauge transformations. The 2-form field
B couples to the electric fluxes, but the pure surface operator of B is not
gauge invariant on its own and has to be extended by a Wilson loop, W ,
of the gauge field A. With the domain wall on the other hand there is yet
another field transforming under the 1-form transformations, i.e. A.
This opens the following possibility. Consider a open electric surface oper-
ator of B over the 2-surface Σ, where the boundary ∂Σ is located in the
worldvolume of the domain wall V , (∂Σ ⊂ V). Then, the operator

exp

(
iNη

∫
Σ

B + iNη

∮
∂Σ

A
)
, (2.177)

is gauge invariant. This mechnism allows the electric flux tubes, coupling
to B, to end on a domain wall, see figure 2.18. The topological theory
successfully comprises the occurrence of the level N CS-term as well as the
possibility for electric flux tubes to end on the domain wall. These properties
are very hard to reconstruct in dynamical models but become rather simple
in this topological framework, both describing the properties of a statistical
gauge field A.9

The downside of the topological theory, however, is that all dynamical phe-
nomena can not be investigated. Values like the string tension, the domain

9The terminology statistical gauge field is borrowed from the quantum hall literature,
the Chern-Simons gauge field we described only encodes statistics changing Aharanov
Bohm type phases and no dynamics, hence the name statistical
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Figure 2.18: An electric surface operator ending on a YM domain wall

wall tension, or dynamical interactions are invisible in the TFT approach.
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2.6 SYM Theories

Next we will look at supersymmetric N = 1 SYM theories. Supersymme-
try allows us to gain some insights and exact results for the strong coupling
regime by analytic continuation from weak coupling results, where super-
symmetry guarantees, that certain quantities are analytic. Therefore un-
derstanding these supersymmetric theories might yield non-trivial checks of
some of the mechanisms considered in the non-supersymmetric case. It also
differs in some non-trivial properties making it in the certain sense closer to
QCD.
There is strong evidence that SYM shares some of the most important prop-
erties of the non-supersymmetric theory. First, there should be only color-
less asymptotic states in the spectrum. Second, fundamental electric charges
should be confined, represented by the area law of Wilson loops in the fun-
damental representation. And finally, the theory should dynamically gen-
erate a mass gap, so there are no massless degrees of freedom in the spec-
trum [84].This can be summarized by saying, that confinement qualitatively
works in the same way as before.
Again we restrict our discussion to the gauge group SU(N). The notation
concerning supersymmetry is taken from [34]. In this chapter we will again
use an index notation.

2.6.1 Lagrangian density of SYM

For the supersymmetric extension of pure gauge theories we need a gauge
field in the adjoint representation Aaµ, and its fermionic superpartners λa,
called gauginos, which are majorana fermions transforming in the adjoint
representation.
We can construct a vector superfield with these component fields and use the
Wess-Zumino gauge (see e.g. [85]) to get (Aaαα̇ = Aaµ (σµ)αα̇)

V = V aT a , with

V a = −2θαθ̄α̇Aaαα̇ − 2iθ̄2(θλa) + 2iθ2(θ̄λ̄a) + θ2θ̄2Da .
(2.178)

The scalar field Da is an auxiliary field and non-dynamical. It should not be
confused with Dµ or Dαα̇ which denotes the covariant derivative in Lorentz
vector or spinorial notation respectively and does not carry a color index.
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The non-abelian field strength tensor superfield is given by

W a
α = i

(
λaα + iθαD

a − θβF a
αβ − iθ2Dαα̇λ̄

α̇a
)
, (2.179)

where

F a
αβ = −1

2
F a
µν (σµ)αα̇ (σν) α̇

β

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν

DµX
a = ∂µX

a + fabcAbµX
c ,

(2.180)

where X can stand for any field in the adjoint.
The kinetic term is generated by the following term in the superpotential

W aαW a
α =− λaλa − 2i(λaθ)Da + 2λaαF a

αβθ
β+

+ θ2

(
DaDa − 1

2
F aαβF a

αβ

)
+ 2iθ2λ̄aα̇D

α̇αλaα .
(2.181)

In the absence of matter fields, this is the only term in the SYM Lagrangian.
The θ-term of the gauge theory occurs naturally in supersymmetric theories
by the complexification of the coupling constant

1

g2
→ 1

g2
− i θ

8π2
. (2.182)

The full Lagrangian density of the pure gluodynamics is

L =
1

4g2

∫
d2θW aαW a

α + h.c.

= − 1

4g2
F a
µνF

aµν +
i

g2
λaαDαβ̇λ̄

aβ̇ +
θ

32π2
F a
µνF̃

aµν ,

(2.183)

with dual field strength tensor F̃µν = 1
2
εµνρσF

ρσ. The only difference to the
non-supersymmetric term is the kinetic terms for the gauginos.
The supersymmetric action is just the usual QCD action with one Majorana
flavor in the adjoint representation.
One important difference to normal YM is the occurence of the gluino con-
densate , which has a close analogue in QCD, the observed quark condensate.

2.6.2 Gluino Condensation

In this section we are going to explain how to determine the gluino condensate
exactly thanks to supersymmetry and what properties this predicts.
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Chiral Anomaly

We are looking for a spontaneous breaking of chiral symmetry. First we
should notice that as in QCD the chiral symmetry

λa → eiαλa, λ̄a → e−iαλ̄a , (2.184)

is explicitly broken via the chiral anomaly. In pure SYM the chiral current
is just the R-symmetry current and can be written [34] as

Rµ =
1

g2
λ̄aσ̄µλa . (2.185)

The same triangle diagram as in massless QCD, where the gauginos run in
the loop leads to an anomaly of the chiral current. Relative to quarks in QCD
there is an additional group theoretic factor of N, since gauginos transform
in the adjoint

∂µR
µ =

N

16π2
F a
µνF̃

aµν . (2.186)

The factor N implies that there is an unbroken Z2N subgroup of the chiral
U(1) under which the gauginos transform as

λa → exp

(
iπ
j

N

)
λa, j ∈ {0, . . . 2N − 1} . (2.187)

Here we also see, that part of the Z2N just corresponds to spacetime rotations
by 2π. Now we can try to understand the spontaneous breaking of this Z2N

via gaugino condensation. The gaugino bilinear acquires a non-vanishing
vacuum expectation value, which breaks the Z2N down to Z2. Thus, there
are N equivalent vacua for N = 1 SYM theories, which are parametrized by
the phase of the gaugino condensate

〈λaλa〉 ∝ exp

(
2πi

k

N

)
, k ∈ {0, ..., N − 1} . (2.188)

Computing the Witten index also predicts N vacua [86]. In contrast to pure
YM theory these are degenerate vacua which due to supersymmetry have a
zero energy density.
The anomaly can be used to remove the phase of the gaugino condensate at
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the expense of introducing a θ term, this was first pointed out in [87]. The
θ term is exactly like in YM

Lθ =
θ

32π2
F a
µνF̃

aµν . (2.189)

Using a chiral transformation of the gaugino fields with parameter α we shift
the divergence of the R-current by

∂µR
µ =

N

16π2
F a
µνF̃

aµν → (1 + α)
N

16π2
F a
µνF̃

aµν . (2.190)

So we can move the phase of the gaugino condensate into a nontrivial θ term.
What we observe in the end is

〈λaλa〉θ = 〈λaλa〉0 exp

(
i
θ

N

)
. (2.191)

For θ → θ + 2π we see that the vacua are exchanged cyclically as shown in
figure 2.19. One should note however , that the phase of the gaugino con-

Figure 2.19: Schematic illustration of the vacua of SU(N = 10) SYM and
the action of a shift of θ

densate can vary in space, i.e. it should be considered a field, which implies
that we have an analogue of the axion or η′.
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Derivation of the Gaugino Condensate

In 1987 Shifman and Vainshtein explicitly calculated the gaugino condensate,
see [87].
For simplicity we will only review their derivation for the SU(2) case and
just state the general result, the presentation follows [34]
We introduce two chiral matter fields in the spinor representation Φc

i

Φc
i = φci +

√
2θψci + θ2F c

i . (2.192)

i ∈ {1, 2} represents is flavor index and a ∈ {1, 2} the color index. Both are
SU(2) indices. We also add a mass term to the superpotential

W =
m

2
Φc
iΦ

i
c . (2.193)

This means our Lagrangian is given by

L =
1

2g2

∫
dθ2W aαW a

α +
1

4

∫
dθ2dθ̄2 Φ̄ieV Φi +

1

4
m

[∫
d2θΦc

iΦ
i
c + h.c.

]
(2.194)

For zero mass m the scalar potential comes from the D-terms and is given
by

V (φi) =
g2

8

(∑
i

φ̄iT
aφi

)2

, with T a =
1

2
σa , (2.195)

where φi are the squark fields. This shows, that there is a modulus which
can be parametrized by one complex variable v

φ1 =

(
v
0

)
, φ2 =

(
0
v

)
. (2.196)

This degeneracy is exact to all orders in perturbation theory due to non-
renormalization theorems; it might however be lifted by non-perturbative
effects.
For vg � Λ (Λ denotes the analog of the QCD scale) the gauge group is
completely broken. By the usual Higgs mechanism all gauge bosons acquire
a mass mv ∝ gv. The fields can be rearranged into three massive vector
superfields and one light chiral superfield, this is called super-Higgs mecha-
nism. The light chiral field describes the flat direction Φ2 = Φc

iΦ
i
c. In the

low energy limit we can integrate out the vector fields and we get an effective
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theory for the light superfield Φ2. Since the vacuum structure of the theory
is an IR property of the theory we should be able to understand it from the
effective theory. As long as vg � Λ integrating out the vector fields is a well
defined procedure.
Once we switch on the mass term the flat direction is lifted, as we get an
additional term in the potential

Vm ∝ |mv|2 . (2.197)

This would lead us to the conclusion, that v should vanish, i.e. the Higgs
mechanism should be undone. However once this happens we are not allowed
to ignore non-perturbative effects, as they might become relevant.There is
an additional contribution from instantons, this contribution is strongly con-
strained by an anomaly free R-symmetry [88, 89], this contribution is given
by

Winst = C
Λ5

Φ2
, (2.198)

where C is a finite constant.This calculation can only be done as long as
gv � Λ, since otherwise one encounters the well known problems of large
instantons, which implies a breakdown of the dilute gas approximation. This
gives an additional effect due to the F-Term

F̄ = −∂W(Φ)

∂Φ
= −m

2
Φ + 2C

Λ5

(Φ2)2 Φ . (2.199)

This has to vanish in a vacuum state, i.e.

v2 = ±2

(
CΛ5

m

) 1
2

. (2.200)

As long as the mass is small we see that this approximation is justified, i.e.
gv � Λ.
Now we can use the Konishi anomaly to relate this to the value of the gaugino
condensate (see [90])

1

8
D̄2
(
Φ̄ieV Φi

)
=

1

2
mΦ2 +

1

16π2
W aαW a

α . (2.201)

By looking at the lowest component we easily see

1

16π2
〈λaλa〉 =

1

2
m〈φ2〉 = ±

(
CΛ5m

) 1
2 . (2.202)
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This is the gaugino condensate with one light flavor.
In order to take the m→∞ in which the above theory is simply pure SYM
we use holomorphicity.
In order to make use of holomorphicity we promote the mass parameter m
to a chiral spurion superfield M , where m is the vev of lowest component of
M . This new superfield leads to an extended non-anomalous R-symmetry,
which survives in the strong coupling regime

Wα → eiγWα , Φi → e−iγΦi , M → e4iγM , θα → eiγθα . (2.203)

Using this we get

〈W aαW a
α〉 ∝M

1
2 ⇒ 〈λaλa〉 ∝ m

1
2 . (2.204)

This is an exact result and valid at weak and at strong coupling. A similar
analysis gives

〈Φ2〉 ∝M− 1
2 ⇒ 〈φ2〉 ∝ m−

1
2 . (2.205)

This allows us to extend the previous results to strong coupling and we can
take the limit m→∞. In order to do this we should match the dynamically
generated scales in both theories. The β-function with Ni flavors and N
colors is given by [34,91]

β0 = 3N − 1

2
Ni . (2.206)

The dynamically generated scale Λ can be deduced from (2.14) and is given
by

α(M)

2π
=
g2(M)

8π2
≈ 1

β0 ln
(
M
Λ

) ⇒ Λ = M exp

(
− 2π

β0α

)
. (2.207)

In our case we get β0 = 5 for small m and β0 = 6 for large m. This leads to
two different mass scales Λ′ and Λ, which for M = m are given by

Λ′ = m exp

(
−2π

5α

)
, Λ = m exp

(
−2π

6α

)
. (2.208)

This gives us

Λ′5m = Λ6 . (2.209)
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From this rotation we can deduce the gaugino condensate to be

〈λaλa〉 = ±C̃Λ3 , (2.210)

with some non-zero constant C̃.
For general G = SU(N) we get [87]

〈λaλa〉 = C(N) exp

(
2πi

j

N

)
Λ3 , (2.211)

leading to N distinct vacua with j = 1, . . . , N − 1. The exact N dependence
is given by [83]

〈λaλa〉 = NΛ3 exp

(
2πi

j

N

)
. (2.212)
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2.7 SYM Domain Walls

In this chapter we describe some exact results for SYM domain walls, which
cannot be obtained in a non-supersymmetric framework. Especially the wall
tension can be calculated exactly under the assumption that the walls are
BPS states.
Then we will generalize the topological theory to the bosonic sector of the
SYM domain walls and point out the differences.
In the last chapter we have seen that N = 1 SYM with gauge group SU(N)
in four dimensional spacetime has N vacua, which arise due to spontaneous
breaking of a Z2N symmetry to Z2.
Domain walls between these vacua were first discussed by Dvali and Shifman
in [42,92] and later studied by a number of researchers. These domain walls
were also studied in a M-theory setup by Witten [83], where he argued that
those walls should be D-brane analogs. As in pure YM theories the chromo-
electric flux tubes of the SYM theories can end on the walls. This closely
mimics fundamental open strings, which can end on D-branes. Furthermore
in ’t Hoofts large N limit the tension of these domain walls is proportional to
N rather to N2 which is very odd for solitons arising in a theory of glueballs
with coupling 1/N2. This scaling also closely resembles D-Branes, whose ten-
sion also behaves strangely when considered as solitons of the closed string
sector. In the non-supersymmetric case the only argument for a linear N
dependence of the wall tension come from an embedding of the theory into
string theory and subsequent identification with bona fide D-Branes. This
situation is not very satisfying, since it doesn’t really answer what the mech-
anism is for D-Brane analogues to arise in field theories. In SYM we are in
much better shape, since we can calculate their tension from quantum field
theory.
In order to calculate the tension of the domain walls we start by looking at
the central extension of the superalgebra. The central charges can then be
related to topological quantum numbers and due to the assumed BPS prop-
erty of the states, the tensions for BPS-walls is directly related to the central
charge [93]. BPS-states are states which preserve part of the supersymmetry,
in the case of domain walls in four dimensions they preserve two of the four
real supercharges. So far there is no explicit construction of the walls and
therefore no explicit proof, that they saturate the BPS bound, however there
is some evidence that they do saturate the BPS bound (see e.g. [94–97]).
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2.7.1 Exact Domain Wall Tension

In the following we will assume that the SYM domain walls are BPS satu-
rated. If this is not be the case the presented calculations lead to a lower
bound on the wall tension. Even if they don’t saturate the bound the physical
configuration will probably have an energy close to that [98]. The centrally
extended superalgebra is given by [34]

{Qα, Qβ} = −4ΣαβZ̄ , (2.213)

with the wall area tensor defined by

Σαβ = −1

2

∫
dx[µdxν] (σµ)αα̇ (σν)α̇β , (2.214)

where the integral runs over an equal time slice of the worldvolume of the wall.
By rearranging the superalgebra, we see, that there are two supercharges in
the domain wall background Q

(w)
α with anticommutation relation{

Q(w)
α , Q

(w)
β

}
= 8Σαβ(T − |Z|) , (2.215)

where T is the domain wall tension. If we want to preserve those, the an-
ticommutator should vanish, i.e. the wall tension is equal to the absolute
value of the central charge |Z|.
For SYM with matter the central charge (up to total superderivatives) is
given by [99,100]

Z =
2

3
∆

{
3W −

3N − 1
2
Ni

16π2
W aαW a

α

}
θ=0

, (2.216)

whereW denotes the superpotential. ∆ denotes the difference of the expres-
sion in brackets at spatial infinity perpendicular to the domain wall. For
pure gluodynamics there is no superpotential and Ni = 0. So we see that
the central charge is an effect that arises due to the anomaly and has no
analogue in the classical theory.
Now we can use the BPS bound to deduce the tension of the wall as

T = |Z| = N

8π2
|〈λaλa〉k1 − 〈λaλa〉k2| , (2.217)

for a domain wall interpolating between vacua where the gaugino phase is
labeled by kj. Let us now consider SYM theory in the large N limit with

λ ≡ g2N , (2.218)
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as before. The Lagrangian density now changes to

L =
N

4λ

∫
dθ2W aαW a

α + h.c. . (2.219)

Using this we get for the tension of a domain wall interpolating between two
supersymmetric vacua labeled by k1 and k2

T =
N2

8π2
Λ3

∣∣∣∣exp

(
2πi

k1

N

)
− exp

(
2πi

k2

N

)∣∣∣∣ . (2.220)

We can rewrite this to obtain the following result [94]

T =
N2

8π2
Λ3

∣∣∣∣exp

(
πi
k1 + k2

N

)[
exp

(
πi
k1 − k2

N

)
− exp

(
−πik1 − k2

N

)]∣∣∣∣ =

=
N2

4π2
Λ3

∣∣∣∣sin(πk1 − k2

N

)∣∣∣∣ .
(2.221)

For an elemetary domain wall with k1 − k2 = 1 we get

T =
N

4π
Λ3 +O

(
1

N

)
, (2.222)

one should note, that there is no O(1) contribution, since the Taylor expan-
sion of a sine only contains odd powers. If we now try to interpret this in
terms of a non-critical string theory of closed strings with string coupling
gs ∝ 1

N
we see that the tension of the elemntary domain walls scales as

T ∝ 1

gs
, (2.223)

which is the same scaling behaviour as for D-branes [101].

2.7.2 TFT for SYM Domain Walls

In principle all the relevant topological field theories can be made super-
symmetric [102, 103], here we will only look at the bosonic sector however.
Formulating our construction in an explicitly supersymmetric language would
be an interesting future project.
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TFT for SYM

The general construction of the non-supersymmetric case still is valid and
just gets modified in some minor details. Confinement should still be due to
condensation of charge N monopoles. In SYM theories we have an axion,
which effectively acts as a dynamical θ, this allows us make monopoles out of
the condensed dyons in the YM quasivacua by using the Witten effect, at the
expense of generating a vev for the axion. This suggests the identification of
the quasivacua of YM with the vacua of SYM, with the difference, that the
quasivacua now become degenerate, since we have an axion. Therefore the
TFT describing out system is

S =
i

2π

∫ [
F̃ ∧ (F −NB)− Nθ

4π
B ∧B

]
, (2.224)

with 1-form gauge transformations

B → B + dλ ,

A→ A+Nλ ,

Ã→ Ã− θ

2π
λ .

(2.225)

From our previous discussion we see, that the fundamental domain walls
interpolating between vacua with ∆k = 1 are equally well described by a
jump of θ by 2π from the viewpoint of the TFT. The difference which will
only become apparent in the dynamical theory is that in the YM case both
sides of the wall differ by the charges of the condensate, while here they differ
by the value of the effective θ angle.
Once we let θ vary in space the action is again not gauge invariant anymore

∆S =

∫ [
− i

8π2
d(2θλ ∧ F +Nθλ ∧ dλ) +

iN

8π2
dθ ∧ (2λ ∧B + λ ∧ dλ)

]
.

(2.226)
If we take a sharp jump of θ by 2π on a codimension one surface V

dθ = 2πδV , (2.227)

and on a spacetime manifold without boundaries we get an additional con-
tribution on the domain wall

∆Swall =
iN

4π

∫
V

[2λ ∧B + λ ∧ dλ] . (2.228)
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This again implies that we have to include additional degrees of freedom on
the wall given by

SV =
iN

4π

∫
V

[2A ∧B +A ∧ dA] , (2.229)

with gauge transformations

A → A− λ . (2.230)

We see again a coupling of the wall gauge field A to the Kalb-Ramond field B
as well as a U(1) CS-term of level N is present. These were predicted by both
stringy constructions [78] as well as from embedding into N = 2 theories [82],
however both approaches suffer from an inability to take the limit of pure
SYM. Therefore our construction can be regarded as an independent check
of this result.
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2.8 Summary and Outlook

2.8.1 Summary of results presented so far

Let us shortly summarize what we have seen so far in both YM as well as in
SYM. We saw, that in YM we can expect O(N) quasivacua, which become
stable at N = ∞. They are still nondegenerate however, furthermore there
should be walls interpolating between different quasivacua, whose tension
is O(N), analogously to D-Branes. We gave an explanation for these quasi-
vacua in terms of dyon condensates. From this we constructed the low energy
effective action for YM theory. Then we studied the domain walls in this low
energy effective action, where we saw why electric flux tubes can end on the
walls and we constructed the low energy effective action of the worldvolume
theory of the domain wall, this turned out to be a level N abelian U(1) CS
theory.
In the case of SYM there were N exactly degenerate ground states. We ex-
plained why it is natural to identify these with the quasivacua seen earlier
and explained a mechanism how it can be understood that they can become
degenerate in the supersymmetric case. The mechanism makes use of gaug-
ino condensation, the phase of the gaugino condensation effectively acting
as an axion. The axion vev can turn dyons into monopoles via the Witten
effect, so the different vacua effectively correspond to monopole condensates,
however at different values of θ. We again studied the low energy effective
theory and the effective theories for domain walls, which in turned out to be
the same as in the YM case.
Now let us further comment on the dynamics of the walls. In the YM case
the different quasivacua differ by the vev of the 4-form electric field, where
the corresponding 3-form gauge potential is the composite CS 3-form. An
explanation for the vev of the field strength is as follows: The 4-Form is
effectively ~E · ~B, which is non-zero in the presence of a dyon and it has the
same sign if we take an antidyon. Since dyon condensation corresponds to
a ground state populated by dyons and antidyons it is natural to expect an
expectation value for the 4-form in the presence of a dyon condensate. Since
we can expect strongly coupled dynamics to generate a kinetic term for the
CS 3-form this explains the difference in energy between the different states,
however estimating the magnitude of the splitting seems to be out of reach
given our present understanding. We also see that the domain walls act as
charges for the CS 3-form, the force between two walls being linear if there
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is a kinetic term for the 3-form. The potential between two walls due to the
3-form grows linearly, since the field strength between them is constant. Fur-
thermore the force between wall and anti-wall will be attractive. This shows,
that in the YM theory the walls will be confined and we can expect to see
neutral wall anti-wall bound states in the spectrum. These objects might
also be extremely relevant to dynamics of real world QCD as Monte-Carlo
studies on the lattice of pure Yang-Mills show that similar kind of objects
appear in the YM vacuum [104–107], these were also seen in lattice studies
of QCD [108–112]. Studying those objects in more detail in pure YM as well
as QCD might be a very fruitful avenue for new research.
Let us now contrast this with the situation in SYM, where the domain walls
are not confined and there is no long range force between them. This can be
easily understood in two complementary ways. Both are due to the presence
of an composite axionic degree of freedom. From the point of view of Dyon
condensation, we expect, that the electric charge of the dyon condensate can
effectively be screened via the Witten effect by giving a vev to the axion.
Since the constant 4-form field strength could be understood as resulting
from the dyons having a combination of electric and magnetic charge we im-
mediately see, that the axion will effectively screen the 4-form field strength,
which explains the absence of a long-range force. We can also understand
this effect from a more field theoretic viewpoint as follows: The axion/CS
Lagrangian should have the form (we assume here, that strong dynamics
generates kinetic terms for both the axion and the CS 3-form)

L = da ∧ ?da+ da ∧ dC + dC ∧ ?dC, (2.231)

after dualizing the axion into a 2-form B we see, that B becomes the longi-
tudinal part of C in a form of Higgs mechanism and C acquires a mass, this
explains from a field theoretic point of view why the 4-form field strength is
screened. In the case of SYM it can also be seen, that the tension should scale
like O(N) as there is a correspoding central charge allowing strong control
over the tension, should the state be BPS.
It should also be pointed out, that our discussion sheds some new light on
an intuitive picture of why flux tubes can end on walls suggested by Soo-
Jong Rey and presented by Witten in [83]. This picture suggests, that one
should think of the SYM vacuum on one side of the wall as a condensate of
monopoles with charge (1, 0) and on the original side of the wall as a conden-
sate of charge (1, 1/N), now it was suggested that on the wall bound states
of anti-monopoles and dyons can form, which carry no magnetic charge and
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electric charge of a quark and that these bound states serve as ends of flux
tubes. The picture we advocate, which was already suggested in [98] is as
follows: In the usual abelian Higgs mechanism the Higgs field can screen any
charge, even fractional charges. Given this knowledge we can try to apply an
electric field orthogonal to the wall (this would be the flux tube), from the
side of the monopole condensate,now the dyon condensate on the other side
can get polarized and screen the electric field at the expense of producing
a magnetic field, however this magnetic field can again get screened on the
other side by polarizing the monopoles. This implies that flux tubes can end
on the walls and furthermore shows, that at the ends of flux tubes there will
be a net magnetic flux across the wall precisely mimicking the behaviour of
the CS term. However [98] didn’t give any arguments in favor of the lat-
ter mechanism compared to the former, neither did they explain how this
mechanism connects to the CS term on the wall. In our construction we see
clearly why the Rey construction can not be correct. Once we assume that
there are electric flux tubes with a flux corresponding to the flux produced
by particles in the fundamental and we furthermore assume, that these are
the flux tubes with the least amount of flux in the spectrum this immediately
implies, that the condensing monopoles have to carry the analog of adjoint
charges under the magnetic group, this in turn implies that the condensing
dyons on the other side of the wall should carry gluon charges and not quark
charges.

In the following chapter we will try to interpret these results in terms of
a string theoretic picture, which was already hinted at during much of the
discussion so far.

Figure 2.20: Profile of the electric field in the presence of a domain wall



92 2. Branes in Field Theory

2.8.2 Interpretation in terms of noncritical string the-
ory

As we have seen the planar limit of YM theory can be understood in a
certain sense as a noncritical string theory. We will first review some standard
textbook results of critical string theory, the results reviewed can be found for
example in [113]. In this section we will primarily focus on how to interpret
certain D-Brane like objects and see how they arise, part of this will be a
review of existing results, while other aspects will be new interpretations of
the results presented in the previous parts. We will then conclude with some
very interesting analogies to quantum hall systems, which might be fruitful
for understanding certain properties of the SYM domain wall system.

Short Caricature of Critical String Theory

This section will review the relevant results from critical string theory, for
the original references see [113]. Superstring theory can be understood as a
theory of interacting strings, it is only consistent in D = 10 and contains var-
ious interesting objects. In fact there are five theories known as superstring
theories, which are type I, type IIA, type IIB and two types of heterotic string
theories, it is understood that those are in fact not distinct theories, but can
be understood as particular limits of an 11 dimensional theory dubbed M-
Theory. M-Theory has remained mysterious and understanding its dynamics
is still an open problem. Here we will mostly focus on the different weakly
coupled limits, i.e. on the five superstring theories.
Every string theory has a massless spin-2 particle in its spectrum, which cor-
responds to the lowest vibrational mode of a closed string. Since low energy
dynamics for an interacting massless spin-2 particle is forced to be general
relatitivity by consistency, it follows that string theory is a theory of quantum
gravity. Also each string theory has a spin-0 particle called dilaton, whose
vev determines the self coupling of the strings, furthermore there is always
a Kalb-Ramond two form B for which the string acts as an electric charge,
similar to our previous discussion of flux tubes. There is also a fermionic
sector enforced by supersymmetry, which we will not discuss in detail.
Let us start by recapitulating some features of type II string theories. In
these theories there are additional massless (p+1)-form gauge fields called
Ramond-Ramond fields, which we denote by Cp+1. These forms couple elec-
trically to objects with a (p+ 1) dimensional worldvolume, by dualizing the
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RR fields we see that they couple magnetically to (q+1) dimensional objects,
with

p+ q = 6 . (2.232)

We should note that this is just the formula we discussed earlier for dualiza-
tion with D = 10. These objects are called Dp-Branes [114] and have a (p+1)
dimensional worldvolume, in general their tension scales like 1/gs where gs is
the closed string coupling, which is a crucial difference to solitons in weakly
coupled theories whose tension should scale as 1/g2

s . Also since they couple
to a massless gauge field, they carry an exactly conserved additive charge and
again this charge enters into the BPS bound, which means, that they pre-
serve part of the supersymmetry and in turn implies, that their worldvolume
theory is supersymmetric. Furthermore there are additional curious proper-
ties; the worldvolume theory of p − branes in general allow strings to end
on them, furthermore the worldvolume theory contains massless gauge fields
and the endpoints of strings look like fundamental charges to those gauge
fields. A single brane carries a U(1) gauge theory on its worldvolume, if we
now stack several branes on top of each other, there are string excitations
corresponing to strings stretching between the branes, which become light as
the branes approach each other and they carry spin-1 and charge (+1,−1)
under the gauge group of the two branes, this leads to an enhancement of
the symmetry on the worldvolume of a stack of branes. If we take k paral-
lel branes separated from each other they are described by a U(1)k theory,
however when they are put on top of each other we get a U(k) symmetry.
A second relevant process is the annihilation of a brane anti-brane pair, in
this case the spectrum of strings stretching between the branes contains a
tachyon of charge (+1,−1), condensation of this tachyon leads to a higgsing
down to the diagonal U(1), it is then conjectured, that the remaining U(1)
becomes confining and that the flux tubes stretching between the confined
charges (which are string endpoints) become fundamental strings [115]. This
whole process goes under the name of tachyon condensation and can also
explain how one can produce lower dimensional branes by annihilation of
higher dimensional ones, this area of research was originated by Sen [116]
and later significantly expanded in subsequent works.
In type IIA the RR fields exist for p = 1, 3, while for type IIB we have
p = −1, 2, 4, i.e. in type IIA we have odd dimensional branes and in type IIB
we have even dimensional branes. There is also an object dual to the funda-
mental string, which is an NS5 brane, this has the tension of a conventional
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soliton, i.e. 1/g2
s . There is another relevant oddity of type IIA, namely there

exists a D8 brane, which couples to a 9-form, a massless 9-form however is
non propagating in 10 dimensions, its field strength is dual to a zero-form
field strength F , which is called Romans mass. Note that the 0-form field
strength can not be written as the outer derivative of a corresponding con-
nection. It was shown by Polchinski, that upon crossing a D8 brane the
properly normalized F jumps by an integer value. In the case of type IIB
the 0-form C0 and the dilaton can be combined into a complexified coupling
τ analogously to the case of YM, where we combine θ and the coupling into
a complexified coupling. Type IIB is mapped into itself under S-Duality10,
here τ is transformed to

τ → −1

τ
. (2.233)

S-Duality is thus a string theoretic generalization of Montonen-Olive duality.
To be explicit the dilaton Φ is identified with the real part of the complexified
coupling via

Re(τ) = gs = eΦ . (2.234)

S-Duality also acts non-trivially on the two 2-form fields B and C2, which get
exchange when τ → −1/τ . S-Duality also acts on the other string theories,
however in a somewhat nontrivial manner, which we will not discuss here.
We can also discuss type-I theory, here one crucial difference is, the existence
of open strings, furthermore the strings are unoriented. The open strings are
charged under an SO(32) gauge group, type I string theory also contains cer-
tain BPS branes, which exist for pmod 4 = 1. These carry either symplectic
or orthogonal gauge groups, there are also non BPS branes, these are charged
under discrete Z2 groups, i.e. two branes can annihilate. It was suggested by
Witten [117], that for these branes instead of the usual connection between
the dimensions of electric and magnetic objects one gets

p+ q = 7 . (2.235)

One should note, that this is precisely what we expect for ZN charges, as
these can be obtained by higgsing a theory with Z charges. One should note
that this precisely reduces to our formula for the massive case with D = 10.

10S-Duality is actually a SL(2,Z) group, this is one the generators, the other one is
τ → τ + 1
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Glueballs, RR-forms and fluxtubes

Now we will try to interpret the results obtained for Yang Mills theories in
terms of a string theory using analogies to critical superstring theory. The
flux tubes are analogs of the fundamental strings in a critical string theory.
However we should notice one crucial difference to critical string theory al-
ready at this point, N flux tubes can annihilate by forming Baryon vertices,
this implies that the Kalb-Ramond field should be massive. This however is
necessarily the case, since the YM theory has a mass gap, the massive Kalb-
Ramond field should correspond to a 1+− glueball, where we label glueballs
by JPC as usual. From lattice studies it can also be seen, that the 1+− glue-
ball is the lightest glueball of spin-1, see e.g. [118]. In the pure YM case we
will also find a scalar 0++ glueball, which one would naturally identify with
the dilaton of a critical string theory, this identification of the 0++ glueball
with the dilaton was already made in [119], where the authors also identified
the pseudoscalar gluino-gluino glueball an analog of the RR 0-form. There
will also be a 2++ glueball, which will be the analog of the graviton in the
present case, note again that this glueball is fairly light.
We can here suggest one more identification, we expect a 1−− glueball made
from two gluinos and a gluon in the spectrum of SYM, this should be degen-
erate with the 1+− glueball and live in the same multiplet, it seems natural
to identify this glueball with RR 2-form.
The precise identification of (pseudo)-scalar glueballs with the dilaton and
the RR 0-form can also be seen fairly explicitly from explicit stringy con-
structions, in these construction one gets a term [119]

e−Φ Tr (F ∧ ∗F ) + C0 Tr (F ∧ F ) , (2.236)

naturally leading to a relation between the RR-field C0 and the axion. Fur-
thermore, this axionic field can be combined with the dilaton to a complexi-
fied coupling as in SYM. This can be used to relate them to the pseudoscalar
and scalar glueballs of the field theory respectively, [120].

Duality

We can try to identify the magnetic object corresponding to the flux tube,
following the reasoning of [117] for critical 10d type I string theory these
should be objects, which acquire a phase after encircling the string. This
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immediately singles out a natural magnetic object. Monopoles of a funda-
mental charge under the dual magnetic group acquire an Aharanov Bohm
phase upon encircling a string. Note that depending on whether we are
studyin SU(N) or SU(N)/ZN these might or might not be in the spectrum.
Now we can look at the other non-perturbative objects we have in the the-
ory. We have the domain walls, these couple electrically to the massive CS
3-form. Now let us note that this massive 3-form is the dual of the massive
RR 0-form, which is the analog of the axion in our case. Therefore the object,
that is paired up with the domain wall should be 0 dimensional, i.e. it should
behave like an instanton. Futhermore again following the analogy with type
I theory [117] we are looking for an object, which picks up a phase when it
is moved across the wall. This again singles out a natural object, which is
the string intersection. Intersections of strings on different sides of the wall
induce phases differing precisely by 2π/N . Now let us take a look at actual
electric magnetic duality on the field theory side. In this case we should not
just apply the duality transformations alluded to before, which are just a
rewriting of the theory, but instead we should also exchange the magnetic
charges making up the condensate with electric charges. Under this duality
we can expect the massive Kalb-Ramond field B to be exchanged with a
2-form field C2, where C2 couples to magnetic flux and not to electric flux,
this is very analogous to how S-Duality acts in type IIB, therefore magnetic
flux should be analogous to D1-Branes.

Walls and Romans Mass

Let us again look at the domain walls in pure YM theory, here the walls cou-
ple electrically to the massless CS 3-form. When one crosses the domain wall
it can be checked that the 4-form field strength of the CS 3-form jumps by a
finite amount. [121] 11 Here we see a close analogy to the behaviour of a D8
brane in type IIA string theory, which has codimension one as well. When
crossing a D8 brane the Romans mass jumps, this makes it natural to think
of the 4-form field strength as an analog of Romans mass in type IIA. There
is a further very suggestive relation between a CS term and the Romans mass
in an AdS/CFT setup, the AdS/CFT dual of type IIA on AdS3 × CP 3 is a
theory with gauge group U(k)2 and CS terms of level (N,−N) [122], if we
add a Romans in the bulk supergravity this changes the sum of the levels of

11This is closely analogous to the discontinuous electric field in the presence of electric
charges in the 1+1d Schwinger model
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the CS terms to be non-zero (amongst other things) [123], this is very similar
to the behaviour we encounter here, where the 4-form field strength controls
the CS level on the wall.

SYM, intersecting strings and worldsheet instantons

Let us turn our attention now more closely to SYM, here we will get a pseu-
doscalar glueball corresponding to variations in the phase of the gaugino con-
densate, as seen before this behaves like an axion and the CS 3-form becomes
massive, furthermore this state will be exactly degenerate with the dilaton
identified earlier, making it natural to combine them again into a single com-
plex field, the natural multiplet for this set of glueballs is a three-form multi-
plet [124]. As already discussed earlier the objects coupling magnetically to
the 3-form are naturally identified with string intersections, remember that
the phase two fundamental flux tubes pick up when they cross each other
is θ/N , which implies, that the crossings behave like fractional instantons.
This also naturally explains why these couple linearly to the axion, the axion
is a bound state of two gauginos, a single instanton has 2N gaugino zero
modes, i.e. it produces 2N gauginos. This suggests, that a fractional instan-
ton should have 2 gaugino zero modes, which is precisely what is needed to
produce one axion.
These string intersection events that we obtain this way also have a close
analog in critical string theory. Here we should realise, that we do not ex-
pected them to be surpressed in large N as opposed to instantons. One
should remind oneself, that in string theory there are two types of instanton
like objects. There are brane instantons, which are D(−1) branes and these
will be suppressed by the string coupling i.e. in our case 1/N . There are also
worldsheet instantons, these are not supressed by gs. Worldsheet instantons
can be constructed by wrapping a string worldsheet around some 2-cycles
of the manifold the strings propagate in. From the viewpoint of the world-
sheet theory these wrapped worldsheets look like vortices, when one views
the worldsheet theory as a gauged linear sigma model [125]. these instantons
are supressed by α′ and the Volume of the corresponding 2-cycle the world-
sheet is wrapping, however they are not gs suppressed.
In our case we can do an analogous construction, we put our YM theory on
a manifold with non contractible 2-cycles. Now we wrap a flux tube around
one of the cycles and we let the worldsheet of a second flux tube intersect
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the worldsheet wrapping the 2-cycle. The intersection of two strings in four
dimensions can be understood as a vortex in the normal bundle, closely re-
sembling the way the worldsheet instantons appear in the worldsheet theory
in critical string theory.12, The action of this wrapped flux tube will be pro-
portional to the volume of the 2-cycle measured in units of Λ and will not
be supressed by N in close analogy to critical string theory. One should note
however that the objects for which we see vortices on the string world-sheet
are somewhat different, nevertheless the analogy seems quite striking.

Tachyon Condensation

Let us now discuss a seemingly close analog of the confinement mechanism
in tachyon condensation in our setup: If we have a wall anti-wall pair, mon-
poles can tunnel across the pair. If the walls are close this process will not be
strongly supressed, since the total effective CS term for both walls vanishes.
Equivalently one can note, that in this case the condensates on both sides
are identical. For a single wall the CS term prevents monopole tunnelling
from happening as discussed earlier, equivalently again we can note, that
the condensates on both sides carry different charges. Using the arguments
given in [74], this implies that the wall anti-wall theory gets confined by the
mechanism introduced by Polyakov in [73]. The picture therefore seems to
be as follows: When a wall and an anti-wall annihilate strings stretching
between them become tachyonic in a similar manner to string theory13, this
Higgses the theory to a single U(1), this U(1) then gets confined by monopole
tunnelling, where the flux tubes of the theory on the wall should become the
confining flux tubes in the bulk, understanding this mechanism in more de-
tail is an interesting future project.

Hints from Holography

Now we will give another motivation from an embedding into critical super-
string theory why the picture advocated here makes sense: Since for us all
the fields are massive and we are in D = 4 we expect string-like objects with

12For a precise construction of the normal bundle and the corresponding gauge field see
e.g. [126]

13It would be extremely interesting to have a field theoretic source for this instability
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p = 1 to be dual to line operators with q = 0, the string theory construc-
tion of [120] relates these operators to worldlines of electric and magnetic
charges. This is further supported from a different viewpoint, by the famous
Polchinski-Strassler construction [127], which tried to construct an AdS/CFT
dual for a confining theory.14 In this case the p=0 vacuum, which in our pic-
ture should correspond to condensation of pure monopoles is realized by an
NS5-brane. The states which in our picture correspond to dyon condensates
are realized via an NS5-D5 boundstate. So in a sense we can understand
the NS5 as comprising the monopoles and the D5 as creating the electric
charges of the condensate which can be interpreted as baryons. Here we see
that the condensate is dual to the corresponding strings in a similar way
as in our case. The instantons on the other hand are dual to objects with
worldvolumes of dimension 3, exactly fitting the domain walls, just as argued
before on field theoretic grounds. So we see that most of our field theoretic
arguments reduce to their standard string theory analogs when constructing
the field theory via AdS/CFT duality. Note that this is somewhat surprising
and relies strongly on the fact that the duality relations get modified in a
subtle way when the corresponding form fields acquire a mass.
One of the most important differences to critical string theory is the presence
of a mass gap and correspondingly massive RR forms. This leads to charges
which are only conserved modN . Appreciating this point might also lead
new into insights into non-critical string theories describing confined strings,
which is a fairly active area of research (for a review see [126])

Charge Fractionalization and Quantum Hall Effect

We saw in the previous sections, that one common theme seems to be the
appearance of fractional charges. We saw ends of flux tubes appearing on
the worldvolume theory of domain walls. This looks like it has fractional
charge with respect to the objects appearing in our theory (remember that
all objects in the theory are uncharged under the center of the gauge group).
We also saw objects similar to fractional instantons appear when flux tubes
cross. Fractional charges have a long history in physics (for a review see [128])
and especially in strongly correlated systems in condensed matter physics it
is fairly common to see excitations that behave as if the objects building

14The N = 1∗ theory discussed by them is somewhat different from our constructions
however we expect certain qualitative features to survive
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up the system split into several parts. The most famous example for this is
the fractional quantum hall effect, where one puts electrons into a magnetic
field and the quasiparticle excitations of the system carry fractional elec-
tron charges. Here we will restrict ourselves to a simple description of the
fractional quantum hall effect(FQH) and describe some features which seem
analogous to properties we conjecture to see in YM theory. The FQH effect
describes a two dimensional electron gas in the presence of a magnetic field
perpendicular to the plane as depicted in 2.10. A FQH system with filling
factor ν is described by a CS term at level 1/ν [129]

SFQH =
1

4πν

∫
A ∧ dA . (2.237)

The filling factor counts the number of electrons per unit of fundamental
magnetic flux, Φ0 = 2π

e
. In this system one electron binds 1/ν fluxes of the

magnetic field corresponding to A. The groundstate of the system is well de-
scribed by a composite state of fractionalized electrons. These quasi-particles
are comprised of one fundamental flux bound to ν electrons (remember that
for FQH ν < 1).In the case of a filling factor of ν = 1/N we recover the
level N CS term of the (S)YM domain wall action. In this case the electrons
fractionalize into quasiparticles, where each has charge 1/N and each carries
one unit of magnetic flux [130].
There is a close analog to this in our domain wall theory in (S)YM: take a
baryonic object, i.e. a junction of N fundamental flux tubes. In the bulk
the junction can not split as the configuration wouldn’t be gauge invariant
after the splitting. On the wall, however, they can split up into single flux
tubes ending on the wall, by producing Wilson lines of the gauge field A,
this is depicted in figure 2.21. The ends of the flux tubes behave like electric
charges of 1/N much like the fractionalized electrons and due to the CS term
have similar statistical properties as well.
The exterior magnetic field in the FQH setup is equivalent to the jump in
the θ-angle for the domain walls, this generates a magnetic flux for electric
charges located on the wall, for an explicit construction in a toy model in
terms of image charges see our publication [15].
The FQH groundstates can be described by so-called Laughlin-states, in-
troduced in [131]. An interesting idea would be to check whether a similar
construction can be used to gain further insights into the structure of the
state corresponding to the domain wall.
If these walls truly behave like D-Branes of YM theory, we might expect
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Figure 2.21: Baryonic vertex in the bulk and on the wall respectively

an enhancement of gauge symmetry, when we stack several walls. Especially
when we have a wall with ∆k = 2 we expect to see a U(2) gauge symmetry of
level N .From the topological field theory point of view this cannot be under-
stood in our model, because a factor of two in front of the domain wall action
would be sufficient to render the action gauge invariant.This phenomenon on
the other hand is realized for FQH systems. In a bilayer configurations with
two FQH states the quasiparticles develop non-Abelian statistics, which is
described by a non-Abelian CS theory [132–134].
It is a priori not clear, that it is valid or useful to treat our system as a
FQH state, however if this is the case for a single wall, it is very natural to
expect, that a stack of two walls behaves like a bilayer system and therefore
has an enhanced gauge symmetry. As we stressed earlier charge fractionliza-
tion might also be relevant for other objects in the theory like for example
instantons. Thinking of some of the objects observed in critical string theory
in terms of charge fractionalization might also yield interesting insights into
its microscopic dynamics.
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3.1 Classical Black Holes

Blacks holes were originally introduced by John Mitchell in a letter to Henry
Cavendish [135]:

If there should really exist in nature any bodies whose density
is not less than that of the sun, and whose diameters are more
than 500 times the diameter of the sun, since their light could
not arrive at us, or of there should exist any other bodies of a
somewhat smaller size which are not naturally luminous; of the
existence of bodies under either of these circumstances, we could
have no information from sight; yet, if any luminous bodies infer
their existence of the central ones with some degree of probability,
as this might afford some of the apparent irregularities of the
revolving bodies, which would not be easily explicable on any
other hypothesis; but as the consequences of such a supposition
are very obvious, I shall not prosecute them any further.

Mitchell’s result, although it was conceived within newtonian ideas about
gravity and light, were very deep and profound, ultimately leading to some of
the deepest mysterious about gravity. He came up with the idea that objects
whose escape velocity exceeds the velocity of light would be completely dark,
which were later named black holes by J. A. Wheeler almost 200 years after.
Furthermore he proposed a method to detect their presence closely mimicing
the ones currently used by experiments. On top of being highly interesting
astrophysical objects they have become of great interest for different reasons.
Their highly unusual properties made the clash between classical general
relativity and quantum mechanics most obvious. Therefore black holes can
be described as ’the hydrogen atom of quantum gravity’ [136]. Amongst
the puzzling properties of quantum black holes are a tremendous number of
microstates, very fast thermalization and their speculated impact on high
energy scattering in gravitational theories.

3.1.1 Schwarzschild Black Holes

Let us first give a slightly more detailed version of Mitchell’s argument, which
is due to Laplace [137]. We simply take the escape velocity of a gravitating
body of mass M and size R and equate it to the velocity of light, this gives
a cricital size RS(M). If the body is smaller than this a particle will need to
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travel fast than the speed of light in order to escape from the surface of the
body. The critical size RS(M) is given by

RS(M) = 2GNM/c2. (3.1)

However we should note that in the context of Newtonian gravity this does
not mean that nothing can escape. It merely means that in order to escape,
we have to move faster than the speed of light c, which in a Galilean theory
is possible without any restriction.
In order to get a better account of the actual dynamics we should take into
account relativity, i.e. we should describe the black hole in terms of general
relativity. In general relativity the gravitational field is not sourced by mass
alone, but instead the full energy-momentum tensor Tµν acts as a source
for the gravitational field. The natural variable which couples to the energy
momentum tensor is a symmetric 2-tensor. It turns out that this 2-tensor
corresponds to the metric of spacetime gµν , therefore in order to have dynam-
ical gravity we have to give the metric dynamics. This is perhaps the most
profound insight of general relativity, namely that in a gravitational theory
spacetime itself is not a mute but instead the dramatis persona. The dynam-
ics of general relativity can be most concisely summarized in the Einstein
Hilbert action

SEH =
1

16πGN

∫
d4x
√
−gR, (3.2)

where R denotes the Riemannian curvature of spacetime, g denotes the de-
terminant of the metric and GN is Newton’s constant. By varying this action
we can derive Einstein’s equations in vacuum

Rµν −
1

2
gµνR = 0. (3.3)

For d > 2 taking the trace of this equation leads to

Rµν = 0, (3.4)

i.e. the corresponding spacetime should be Ricci flat. As with any other set of
highly non linear partial differential equations it is very hard to find solutions.
We can simplify that task by imposing symmetries, hopefully reducing the
equations to a set of simpler equations. Continous symmetries of spacetime
are called isometries and are generated by a set of Killing vectors ξ. In order
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for a killing vector ξ = xiµ∂
µ to generate an isometry it has to satisfy the

killing equation

∇µξν +∇νξµ = 0. (3.5)

Birkhoff’s theorem [138], which is due to Jebsen [139] states that any spher-
ically symmetric spacetime is asymptotically flat and stationary, i.e. it has
a timelike Killing vector field. This leads to the simplest black hole solution,
which was originally found by Schwarzschild [140] and the corresponding line
element is given by given by

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (3.6)

here M denotes the mass of the black hole and dΩ is the line element on
the unit two-sphere. This metric has a singularity at RS = 2GM and at
r = 0. However the singularity at RS is only a coordinate singularity, while
the solution is perfectly regular. As we cross the Schwarzschild radius RS the
radial coordinate becomes timelike, this is the same property of trapping of
particles we encountered earlier: As an object crosses the horizon the radial
coordinate becomes it’s time and it has to move along decreasing r, even-
tually reaching the central singularity at r = 0. The central singularity at
r = 0 however is a true singularity as can be seen by computing curvature in-
variants like RµνρσRµνρσ = 48(GM)2/r6, which diverges at r = 0. Birkhoff’s
theorem allows us to establish the uniqueness of the Schwarzschild solution
amongst spherically symmetric solutions to the vacuum Einstein equations.
By looking at the large r asymptotics of the metric and matching to newto-
nian gravity, we can see, that M can be interpreted as the mass of the black
hole.

3.1.2 Thermodynamics of Classical Black holes

There are more general black holes, which are rotating. Furthermore black
holes can also be charged under gauge fields. If we still require the space-
time to be stationary there is a set of theorems, which generally run under
the name “No-hair theorem” establishing certain uniqueness properties. 1

Namely, if we have Einstein gravity coupled to some matter fields, among
which might be an abelian gauge field Aµ, described by standard Maxwell

1For a review of no hair theorems and references to the original literature see [141]
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dynamics then the black hole solution is uniquely determined by a set of
parameters which describe mass, angular momentum, electric charge and
magnetic charge.2 This can already be interpreted as a hint towards a ther-
modynamic description. Thermodynamics systems in equilibrium can be
described in terms of a few macroscopic variables although they have a very
complex description in terms of microscopic degrees of freedom. As we will
see, there are close analogues to the basic laws of thermodynamics for the
mechanics of black holes. [142]
Let us begin by identifying an analogue of the zeroth law of thermodynamics,
which states, that temperature in thermodynamics is a global property of a
thermal system. In order to get an analogue of the zeroth law we will define a
quantity called surface gravity κ as follows. In general relativity all horizons
of stationary black holes turn out to be Killing horizons, i.e. the vector field
ξ normal to the codimension-1 horizon is a Killing vector. Since the horizon
is a null surface the norm of the Killing vector is constant on the horizon.
Therefore its gradient has to be normal to the horizon, i.e. parallel to the
Killing:

∇µ(ξνξ
ν) = −2κξµ, (3.7)

where κ is the surface gravity, which is constant on the horizon. The surface
gravity can be physically understood as the acceleration of a static particle
on the horizon of the black hole as measured at spatial infinity.

The first law of thermodynamics state that

dE = TdS + work. (3.8)

There is an analogous law for Black hole mechanics, where κ plays the role of
the temperature as already hinted at in the zeroth law, mass naturally plays
the role of energy, while it turns out that area plays the role of entropy. To
be more precise

dM =
κ

8πGN

dA+ . . . , (3.9)

where the dots denote terms depending on charge and angular momentum,
analogous to the work terms in the first law.
There is also a close analog of the second law of thermodynamics in the
context of black holes. It states that no physical process can reduce the total

2This can be trivially generalized to the case of multiple abelian gauge fields, in the case
of non-abelian gauge fields we can label them by charges under the Cartan subalgebra.
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area of all black hole horizons, i.e.

dA

dt
≥ 0. (3.10)

This holds in classical general relativity under the assumption of the weak
energy condition.3

There is also an analogue of the third law of thermodynamics in the black
hole context. It is impossible to achieve a surface gravity κ = 0 in any phys-
ical process.4

So we see that there are close analogues to all laws of thermodynamics in
the context of black hole dynamics. This begs the question whether these
laws can actually be connected to the conventional laws of thermodynamics.
Here it turns out that quantum mechanics seems to provide the missing link.
It has been shown by Hawking that black holes should radiate and thereby
lose mass causing their event horizons to shrink. This implies that quantum
mechanically (3.10) can not be quite correct. However once one takes the
combined entropy of the radiation and the entropy corresponding to the now
smaller horizon it can be shown that this always increases, thereby connect-
ing the horizon area and the entropy of a usual system of radiation. It turns
out also that the temperature of the radiation is proportional to the surface
gravity mentioned ealier, linking the surface gravity to a conventional tem-
perature. A property which is very curious from a thermodynamic viewpoint
is that the surface gravity of a black holes grows as it gets lighter, i.e. it
gets hotter as it radiates. From a thermodynamic viewpoint this implies
that black holes have a negative heat capacity and are thermodynamically
unstable. We will review semiclassical properties of black holes in the next
section.

3The weak energy condition states, that for every timelike vector field X the following
inequality holds

TµνXµXν ≥ 0. (3.11)

Physically this means, that an observer corresponding to the vector field X will measure
a positive energy density.

4Black holes with a vanishing surface gravity are usually called extremal black holes
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3.2 Semiclassical Black Holes

Let us start now by looking at how to describe gravity quantum mechanically,
it has been established already for a long time, that local off-shell observables
can not be defined in a theory of quantum gravity. However it is crucial to
realize that this is not related to reparametrization invariance, but instead is
a consequence of dynamical gravity, especially all these problems disappear
in the limit GN → 0, a beautiful explanation of this fact was given in [143]
and our discussion will only differ in some details. Canonical quantization of
general relativity leads to the so called Wheeler-de Witt [144,145] equations

H|Ψ > = 0 (3.12)

Hi|Ψ > = 0,

where the first is a consequence of time reparametrization invariance and the
second one encodes invariance under spatial diffeomorphisms Here it should
be noted that neither of these involves time explicitly, which seems to make
a notion of time evolution hard to define in quantum gravity. Naively this
argument seems to strongly rely on time reparametrization invariance and not
on the dynamics of gravity. However, this naive conclusion is incorrect. In
order to see this explicitly let us take the so-called decoupling limit MPl →∞,
making gravity nondynamical. Let us first consider the case where we are in
flat space. In this case, the metric gαβ must be diffeomorphic to the standard
lorentz metric ηαβ:

gαβ =
∂Xα

∂xµ
∂Xβ

xν
ηµν , (3.13)

where the Xµ can be thought of as components of diffeomorphisms xµ →
Xµ(x). Now the theory is still reparametrization invariant, where the matter
fields transform in the usual way, while the X fields transform via

Xµ → (f ◦X)µ, (3.14)

where ◦ denotes the standard concatenation of diffeomorphisms. In the limit
we took the Hamiltonian constraint (3.12) becomes(

∂Xµ

∂x0
Pµ +Hmatter

)
|Ψ(Xµ, φ) >= 0, (3.15)

where Hmatter is the matter Hamiltonian. Once we realize, that Pµ = i ∂
∂Y µ

we immediately see that this is nothing else than the usual time dependent
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Schrödinger equation. This shows very clearly that the problems with defin-
ing local observables in gravity are related to dynamics of gravity and not
merely reparametrization invariance, which is just a redundancy in the way
we describe physics.

3.2.1 Hawking radiation & information paradox

As has been first pointed out by Hawking [8], black holes although they are
classically stable objects should radiate once quantum mechanics is taken into
account. This effect can be thought of as virtual pair creation close to the
horizon, where one particle of the virtual pair falls into the black hole, while
the other particle escapes to infinity. In order to study Hawking radiation
one looks at the dynamics of a quantum field on a classical Schwarzschild
metric. The starting point of Hawking was to look at the dynamics of a field
theory on a Schwarzschild metric. What we should note is that in this setup
the metric is nondynamical, i.e. in order to arive at this from a dynamical
theory of gravity we have to decouple gravity. To achieve this we have to
take the limit MPl →∞, while keeping the geometry, i.e. the Schwarzschild
radius Rs fixed. This implies that we have to take the limit

MPl →∞, M →∞, Rs =
M

M2
Pl

fixed. (3.16)

When treating a quantum field on a Schwarzschild background in this way
one sees that an observer at infinity sees a state corresponding to thermal
radiation of temperature

TH =
κ

2π
, (3.17)

where κ is the aforementioned surface gravity. For a Schwarzschild black hole
we have

TH =
M2

Pl

8πM
. (3.18)

The information paradox now arises as follows: If we take Hawking’s cal-
culation at face value we conclude that Hawking radiation corresponds to
black body radiation whose density matrix is described by a mixed state.
However the black hole can be formed from a pure initial state of sufficiently
high center of mass energy. Therefore if the black hole evaporates completely
we conclude that a pure state evolves into a mixed state. However, quan-
tum mechanical evolution is unitary, which implies that pure states always
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evolve into pure states. This led Hawking to suggest that quantum mechanics
should break down in the context of gravity. [7] This apparent incompatibil-
ity of gravity and quantum mechanics is commonly dubbed the information
paradox. In discussing this argument, however, we should keep in mind that
we considered the dynamics of our system in a classical Schwarzschild back-
ground, i.e. we sidestepped all the notorious difficulties related to quantum
gravity. Upon closer inspection it is clear that what we actually did in the
derivation of Hawking radiation is a procedure similar to the one in the pre-
ceding section, i.e. we took the limit MPl → ∞ limit while keeping the
geometry fixed. This is the double scaling limit explained earlier. We also
see, that in this limit the life time of the black hole and its entropy become
infinitely large. This shows that just from Hawking’s result we cannot con-
clude that there is really a paradox, in order to see whether there is any clash
between quantum mechanics and gravity we should actually study the black
hole as a quantum system.

3.2.2 Scrambling

The notion of fast scrambling for black holes was introduced by Sekino and
Susskind [146] following work by Preskill and Hayden [147]. Preskill and
Hayden asked the question how long it takes for a bit of information that is
thrown into a black hole to leak out of the black hole via Hawking radiation.
To be more precise they asked how long it takes for an observer at infinity
to be able to almost certainly decode the bit originally thrown in by just
observing the emitted Hawking radiation. The naive answer, which was
originally suggested by Page [148, 149] is the time necessary to radiate half
the entropy, which is the so called Page time and is of order M3, i.e. of order
of the evaporation time. Preskill and Hayden showed that the relevant time
scale should not be related to the evaporation time, but instead to the time
it takes to scramble the information, which was dubbed scrambling time. By
scrambling time, we mean the time, which it takes for the bit of information
to be fully diffused into the black hole,i.e. how long it takes until we have
to observe a substantially large subsystem of the black hole Hilbert space to
determine the bit thrown in. Preskill and Hayden suggested a lower bound
for this scrambling time tscr of

tscr & RS log (RS) , (3.19)
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where RS is the Schwarzschild radius. Susskind and Sekino suggested then
based on several qualitative arguments, that black holes should saturate this
bound.

3.2.3 Black Holes & Scattering

A feature that is expected to appear in any consistent theory of quantum
gravity is the dominance of black hole production in scattering processes
with large momentum transfer. A central motivation for this comes from ob-
serving that in the collision of classical shock waves a black hole necessarily
forms at sufficiently high energies. To be more precise we consider classical
scattering of shockwaves in general relativity. Here one sees that once the
impact parameter of the scattering process drops below the Schwarzschild ra-
dius corresponding to the process the formation of a black hole is guaranteed
by singularity theorems5 This suggest that ultraplanckian scattering should
be dominated by black hole production. It has been recently suggested by
Dvali and Gomez [151] that it would also be plausible that black holes give
the only contribution to high energy scattering in gravity. This would imply,
that transplanckian degrees of freedom are not needed to describe quantum
gravity. Hence, this has been dubbed self-completion.
One should also note that black hole dominance implies that the cross section
in ultra high energy processes should be equal to the horizon area of a black
hole whose mass is the center of mass energy, i.e.

σ ∼ E2. (3.20)

We should note that this behaviour seems to violate the so called Froissart
bound [152], which arises in any consistent local Poincaré invariant QFT with
a mass gap:

σ < c(logE)2. (3.21)

This is commonly taken as a sign, that quantum gravity should violate lo-
cality, however we should note, that general relativity has massless gravitons
and therefore no mass gap, which implies that Froissart bound would not ap-
ply in the first place. Recently it was suggested, that a similarly fast growth
of scattering cross section at high energies might take place in other theories
of massless particles as well, this was dubbed classicalization. [153]

5For a review on singularity theorems and the original references see [150].
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3.3 Graviton condensates and Black holes

As we have seen most of the apparent paradoxes in black hole physics can be
traced back to taking a semiclassical limit, any approach towards a resolu-
tion of these paradoxes should treat the space-time geometry in a quantum
mechanical way as opposed to demoting it to a classical arena where quan-
tum physics takes place. One such approach was introduced by Gia Dvali
and Cesar Gomez in a sequence of publication [9–14]; we will now review the
important points. Here the authors made the assumption that the black hole
can be described as a bound state of N gravitons of wavelength RS. Now let
us note, that since the gravitational self-interaction contains two derivatives,
the self coupling of gravitons will be momentum dependent, for gravitons of
wavelength λ the effective coupling αgr corresponding to this self-interaction
will scale as

αgr ∼ ~GNλ
2. (3.22)

In order to determine N we should note, that each graviton has an energy
of order R−1

S ∼ (GNM)−1, where M is the mass of the black hole. The total
energy is thus given by

N(GNM)−1. (3.23)

Equating this with the black hole mass allows us to determine N as

N ∼ M2

M2
Pl

. (3.24)

Here N will be a very large number for a macroscopic black hole, making it
natural, to treat the gravitons composing the black hole as a Bose Einstein
condensate. Now let us note, that αN ∼ 1, this indicates that the collective
self-coupling of the gravitons is strong and might lead to relevant collective
effects. By exploiting an analogy to non-relativistic Bose Einstein conden-
sates with attractive self-interactions the authors concluded in [12], that the
graviton condensate should be close to a so called quantum critical point.
This immediately suggests, that the condensate should not be well described
by semiclassical methods.

A system near a quantum critical point has at least one gapless exci-
tation. In the context of Bose Einstein condensates excitations are called
Bogoliubov modes and since we have a finite number of bosons, the excita-
tion will actually not be exactly gapless, but can be expected to have a gap of
O(1/N), this similar to conventional critical points, where in finite Volume,
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excitations are also not exactly gapless, but have a gap controlled by the
inverse volume. Since the states generated by these excitations are almost
degenerate it is natural to use them to give a microscopic explanation of the
black hole entropy. However one almost gapless excitations is not enough to
reproduce the large entropy of a black hole. As in this picture the entropy is
extensive in N , this led Dvali and Gomez to conjecture, that in the case of a
graviton BEC there should be N almost gapless Bogoliubov excitations, this
is presumably related to the particular gravitational interactions.
Hawking radiation is in this picture explained as the quantum depletion,
which is well known in the context of Bose Einstein condensates, which leads
to the excitation of quanta compared to the naive ground state, these quanta
are then interpreted as Hawking radiation.
The information paradox is here resolved by new 1/N corrections, which dis-
sapear in the semi classical N →∞ limit, this can be easily seen by noting,
that the N →∞ limit is just the semi-classical limit alluded to earlier.
In the next section we will review the dynamics of a non-relativistic toy
model for black hole dynamics. This non-relativistic toy model formed the
basis for the two publications of the author, where one was concerned with
making the statement, that the system behaves very quantum mechanical at
the critical point quantitative. The second publication was concerned with
the question of whether there is a phenomenon analogous to scrambling in
this toy model and what is the origin of this phenomenon.
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3.4 Attractive Bosons as a Toy Model for Black

Holes

Motivated by the intuitive picture described earlier we are looking for a simple
toy model which captures some of the properties of the condensate picture
of black holes. In order to simplify the picture our model is going to drop
two properties of general relativity. In order for the statement that the black
hole corresponds to a collection of N particles to be made more precise we
want to have a system that preserves particle number. This also simplifies
numerical analyses we will do later by significantly reducing the size of the
relevant Hilbert space. Particle number conservation enforces us to give up
on Lorentz invariance, since a Poincaré invariant, interacting theory in more
than two spacetime dimensions necessarily allows for particle creation and
annihilation [154]. Furthermore we will only consider two-body interactions.
This is again a huge technical simplification over general relativity which
allows for vertices with an arbitrary number of external lines. Looking at
the general mechanism of condensate black holes it does not seem that either
one of those points is particularly important for quasistatic properties of the
black hole.

Therefore we are going to look at the dynamics of a large number N of
non-relativistic bosons described by the Hamiltonian operator

H =
N∑
i=1

−∆xi +
1

N

N∑
i<j

V (xi − xj), (3.25)

where ∆xi denotes the Laplacian with respect to xi and V (xi − xj) is a
two body interaction potential. For a generic state described by the density
matrix ρ(t, x1, . . . , xN ;x′1, . . . , x

′
N) the time evolution is determined by the

von Neumann equation

∂tρ =
i

~
[H, ρ] . (3.26)

Note that we put a peculiar factor of 1/N in front of the two-body interaction.
We do this because we want to mimic the balance between potential energy
and kinetic energy in the large N limit seen in the graviton picture. In
order to achieve that we have to realize that for momenta O(1) the total
kinetic energy will be O(N), while if the two particle potential would be
O(1), then the total sum would be O(N2). Therefore in order to have a
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competition between potential and kinetic energy the two body potential
should be O(1/N). In order to describe the system we are now going to
focus on a subsystem of k particles. This seems to be a good idea, since
for a semiclassical system we do not expect there to be too strong quantum
mechanical correlations. In order to make the equations more readable we
introduce the following notation:

x = (x1, . . . , xN), xk = (x1, . . . , xk), xN−k = (xk+1, . . . , xN). (3.27)

We define the k-particle reduced density matrix by

ρk(t,xk,x
′
k) =

∫
dxN−kρ(t,xk,xN−k,x

′
k,x

′
N−k). (3.28)

Under this normalization we have Trρk = 1 for all k.
From here we can easily derive the equations of motion for the k-particle

density matrix by just tracing (3.26) and using indistinguishability of the
bosons:

i∂tρk(t,xk,x
′
k) = (

∑k
i=1(−∆xi + ∆x′i

)

+ 1
N

∑k
i<j(V (xi − xj)− V (x′i − x′j)))ρk(t,xk, ′k)

+N−k
N

∑k
j=1

∫
dxk+1

(
V (xj − xk+1)− V (x′j − xk+1)

)
ρk+1(t, k, xk+1,x

′
k, xk+1). (3.29)

This is a system of equations which is in statistical physics commonly known
as the BBKGY hierarchy. For N →∞ it converges to

i∂tρk(t,xk,x
′
k) =

k∑
i=1

(−∆xi + ∆x′i
)ρk(t,xk,x

′
k) (3.30)

+
k∑
j=1

∫
dxk+1(V (xj − xk+1)

− V (x′j − xk+1))ρk+1(t,xk, xk+1,x
′
k, xk+1).

Now we make the additional assumption that in the limit N → ∞ any
two particles particles are uncorrelated, i.e. that we can factorize the two
particle density matrix into a product of two one particle density matrices
(and analogously for higher particle density matrices):

ρ2(t, x1, x2, x
′
1, x
′
2) ≈ ρ1(t, x1, x

′
1)ρ1(t, x2, x

′
2). (3.31)
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In statistical mechanics this is Boltzmann’s celebrated molecular chaos. In
this context this should be better understood as a mean field approximation,
where we model the interaction of an arbitrary particle with all the other
particles by a “mean field” ρ1.

This leads to the equation

i∂tρ1(t, x1, x
′
1) = (−∆x1 + ∆x′1

)ρ1(t, x1, x
′
1) (3.32)

+

∫
dxρ1(t, x, x) (V (x1 − x)− V (x′1 − x)) ρ1(t, x1, x

′
1).

In case the one particle density matrix corresponds to a pure state, i.e. that

ρ1(t, x1, x
′
1) = ψ(t, x1) ¯ψ(t, x′1), (3.33)

then ψ(t, x) obeys the Hartree equation

i∂tψ(t, x) = −∆ψ(t, x) +

∫
dx′V (x− x′)|ψ(t, x′)|2ψ(t, x). (3.34)

In order to simplify things further we are now going to look at a very short
ranged potential, which an be approximated by αδ(x − x′). Then (3.34)
becomes the Gross-Pitaevskii equation

i∂tψ(t, x) = −∆ψ(t, x) + α|ψ(t, x)|2ψ(t, x). (3.35)

Note that the factorization condition (3.31) really encodes two properties of
the system. One is the assumption that the initial state fullfills condition
(3.31) at t = 0, the other one is that the factorization condition is stable
under time evolution for N → ∞. The second point is rather subtle and
has recently been shown to be realized for a repulsive Bose gas in a series
of papers by Erdös, Schlein and Yau [155] . Here however we are interested
in attractive systems and we will not try to prove that this holds but rather
assume it.

Before proceeding to solving the Gross-Pitaevskii equation for the case
of interest to us we will give a different derivation which in spirit is closer to
deriving the classical equations of motion from a quantum field theory. In
order to do that we will go to a multiparticle formalism, i.e. we will use a
field operator ψ̂(x), where applying the (conjugate) field operator once on
the vacuum yields a single particle state. Expanding the field operator into
a complete set gives:

ψ̂(x) =
∑
i

ui(x)âi, (3.36)
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where ai are annihilation operators and ui(x) are a set of basis functions.
Now we are going to consider the system with an attractive δ interaction.

In order to get even closer to the standard field theory description we are
going to describe our quantum theory using a path integral. This leads us
to define the partition function in the standard way:

Z =

∫
Dψ(x, t)Dψ†(x, t)ei

S
h̄ , (3.37)

with the action given by

S =

∫
dxdt

(
ψ†i~∂tψ − |~∂xψ|2 + g|ψ|4

)
. (3.38)

In this system there is a symmetry corresponding to rotations in the phase
of the field ψ. Physically this corresponds to particle number conservation.
The corresponding conserved charge is given by∫

dx|ψ|2. (3.39)

In the case at hand we want to fix the number of particles to be N. This can
be achieved via a Lagrange multiplier, i.e. we add the term

µ

(∫
dx|ψ|2 −N

)
(3.40)

to the action.6 In order to understand the exactness of the Gross-Pitaevskii
equation in the N →∞ limit we should first note that the constraint implies
that the field will generically have an amplitude O(

√
N)). Now in order to

easier understand the large N limit it is more convenient to rescale the field
such that the typical values are O(1), i.e. we define ψ̃ = ψ/

√
N . This gives

S = N

[∫
dxdt

(
ψ̃†i∂tψ̃ − |∂xψ̃|2 + gN |ψ̃|4

)
+ µ

(∫
dx|ψ̃|2 − 1

)]
. (3.41)

Here we see that once we fix α = gN as we take the large N limit, then N just
appears as a multiplier of the total action, i.e. in the path integral it takes
the role of ~. This also immediately implies that the N → ∞ limit is truly

6This actually fixes the expectation value of the particle number to be N, however for
our purposes this is sufficient.
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a classical limit in the sense, that it completely localizes the contributions
from the path integral to its saddle points. Doing a saddle point expansion
of 3.41 corresponds to an expansion in 1/N . Looking for saddle points of
3.41 on S1 leads us to the Gross Pitaevskii equation[

∂2
θ + πα|Ψ0(θ)|2

]
Ψ0(θ) = µΨ0(θ) , (3.42)

with the constraint
∫
|ψ|2 = 1, here µ is the chemical potential. Here we

chose the size of S1 to be 1. The minimal energy solutions are given by [156]

Ψ0(θ) =



√
1

2π
µ = αN

2

α < 1√
K(m)

2πE(m)
dn
(
E(m)
π

(θ − θ0)|m
)

µ = (2−m)K2(m)
π2

α > 1

. (3.43)

Here the former describes a homogeneous system, while the latter describes
a localized soliton. θ0 is the center of the soliton, while m is determined by
the nonlinear equation

K(m)E(m) =
(π

2

)2

αN . (3.44)

So we see, that there is a phase transition at αN = 1, where for αN < 1 the
system is described by a homogeneous ground state, while for αN > 1 the
ground state is given by a localized soliton. In order to see the appearance
of a gapless mode let us expand the system around the homogeneous state
for αN < 1 and approach αN = 1.
We write Ψ̂ = Ψ0 + ˆδΨ, then we expand to quadratic order in ˆδΨ and look
for the energies of the corresponding excitations. This procedure results in
an energy Ek for an excitation with momentum k as follows

Ek =
√
k2(k2 − αN). (3.45)

From this it is obvious, that for αN = 1 the mode with k = 1 becomes
gapless. The presence of this gapless mode leads to a non classical behaviour
of the corresponding ground state. As for any quantum mechanical system
the ground state of the system will contain quantum fluctuations around
the classical ground state. In our publication we expressed these flucuations
in terms of the original non-diagonal excitations and computed their entan-
glement entropy. As is to be expected this entanglement entropy showed a
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divergence at the quantum critical point, the exact construction and a de-
tailed description of a numerical simulation for finite N is subject of the
publication [16], which is reproduced at the end of the thesis.
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3.5 Chaos & Instabilities

The property of fast scrambling in the context of black hole physics seems
highly mysterious. We should note that scrambling naturally seems to imply
that quantum effects already become important after a time scale as short as
RS log(RS). Let us introduce the quantum break time7, which is the time up
to which the difference of semiclassical time evolution and full quantum time
evolution is small. However for typical textbook quantum systems the time
scale for breakdown of a semiclassical description typically scales with some
typical classical time scale λ for the given classical configuration times the
action of this configuration, i.e. λS. In the case of black holes it is natural to
identify the typical time scale with the Schwarzschild radius RS, since it is the
only quantity surviving in the classical limit. This means naively we would
conclude that the semiclassical description is valid for RS ∗ SBH ∼ R3

SM
2
Pl,

which is comparable to the evaporation time of the black hole and certainly
much larger than the scrambling time. However as we will review now for
unstable systems the quantum break time is significantly shorter and given by
λ log(S), where λ is the Lyapunov exponent corresponding to the instability.
This is especially relevant for chaotic systems, where the instability is not at
isolated points of phase space but rather covers whole regions of phase space.

3.5.1 A simple quantum mechanical system near an
instability

In this section we are going to look at quantum systems near an unstable
point. As a simple toy model let us look at a single quantum mechanical
particle with a potential

V (x) = −mω
2

2
x2 +

λ

4
x4. (3.46)

Our main focus will be to understand why an unstable system is very badly
described by semiclassical methods. An intuitive explanation for this goes as
follows: The way to describe a quantum mechanical system of a single particle
semiclassically is through the WKB approximation, which is known not to
be a good approximation close to turning points. For problems typically
considered in a simple quantum mechanics course this is no problem, since

7This also runs under the name Ehrenfest time
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loosely speaking in these problems the system only spends very little time
at the turning points of motion. However when we have an instability and
look for trajectories probing the instability; in the example this would be
one starting on the top of the hill. Here the particle becomes very slow
around the top, which at the same time is a turning point. Furthermore
this slowing down implies that the classical period of motion will diverge
as we tune the energy close to the top of the hill and we can expect the
system to become more and more localized near the top. Now we will try
to make this more quantitative. In order to do this we look at the spectrum
of energy eigenstates in a semiclassical approximation. This is most easily
done by doing a Bohr-Sommerfeld type calculation. In order to look for the
eigenstates we look for solutions to

S(E) = (n+
1

2
)2π (3.47)

for integer n, here one should note that this WKB type approximation in-
cludes the contribution of the Maslov index due to the turning points. S(E)
is the integral of the action over a full classical period of motion S =

∮
pdx,

this is

S(E) = 2

∫ x1(E)

x0(E)

2m
√
E − V (x)dx, (3.48)

where x0(E), x1(E) are the turning points of the classical motion. The quan-
tity we will be interested in will be the gap between consecutive eigenvalues
∆ or equivalently the level density ρ. Assuming that the energy levels are
close this is well approximated by

∆ =
dEn
dn

=

(
∂S

∂E

)−1

2π. (3.49)

Explicitly this gives us

∆ =

(
2

∫ x1(E)

x0(E)

m/
√
E − V (x)

)−1

2π = 2πτ−1. (3.50)

So we see that close to the top of hill in the potential we expect the density
of states to diverge. Evaluating this more precisely shows that the density
of states diverges logarithmically close to E = 0:

ρ(E) ∼ − log(E). (3.51)
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Since the classical motion is most of the time near the top of the hill, we
can expect that a wave packet centered around x = 0 will have a substan-
tial overlap with most of these states. Since the energy difference between
these different states vanishes logarithmically we can expect the time scale
over which we see non classical behaviour to behave logarithmically in the
characteristics action as alluded to earlier.
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3.6 Quantum break time in unstable systems

We can also understand this behaviour naturally from a more dynamical
point of view by looking at the time evolution of the quantum system in
question. In the following we will look at a rather generic unstable system
and not focus on the example of the inverted hilltop. However For simplicity
we will again focus on the dynamics of a single degree of freedom. In order to
understand the deviation from a (semi-)classical behaviour it is most useful to
employ a description of the quantum dynamics which is as close as possible to
the phase space description of classical dynamics. What we want to do is to
describe the dynamics of the quantum system in terms of a quasi probability
distribution on phase space instead of describing it via a wave function. One
well-known quasiprobability distribution is the Wigner function P, which for
state described by the density operator ρ̂ is defined by

P (x, p) =
1

π~

∫ ∞
−∞

dy〈x+ y|ρ̂|x− y〉e−2ipy/~. (3.52)

This distribution is similar to a probability distribution in phase space. How-
ever it differs in crucial details. First of all, the Wigner function can and in
fact does become negative for non classical states. Observing a negative
Wigner function is in fact a way to check for non classical behaviour. Fur-
thermore for each state there is a unique Wigner function. The Wigner
function can be used to compute the expectation values of operators. To be
concrete let us define an operator Ĝ, which we take to be Weyl ordered. Then
we can associate a function g(x, p) to this operator via the Weyl transform

g(x, p) =

∫ ∞
−∞

dy〈x− y/2|Ĝ|x+ y/2〉eipy/~. (3.53)

This function will be real if Ĝ is hermitian. The expectation value of the
corresponding operator is now determined via

ψ̄Ĝ|ψ〉 = Tr(ρ̂Ĝ) =

∫ ∞
−∞

dx

∫ ∞
−∞

dpP (x, p)g(x, p). (3.54)

In order to describe the time evolution of the system we should take the
Wigner transform of the von Neumann equation, which leads to the Moyal
evolution equation

∂P (x, p, t)

∂t
= −{P (x, p, t), H(x, p)}MB . (3.55)
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Here {, }MB denotes the so called Moyal bracket, which encodes the noncom-
mutative nature of quantum mechanics. The Moyal bracket is defined as

{f(x, p), g(x, p)}MB =
2

~
f(x, p) sin

(
~
2

(
←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)
g(x, p). (3.56)

It should be noted that if we formally expand the Moyal bracket in terms of
~ the leading term corresponds to the familiar Poisson bracket {, }PB. This
allows us to clearly see how the classical description emerges for suitable
states from the ~ → 0 limit. The simple correspondence to the classical
description also allows us to easily identify, when the classical description
breaks down. This will be precisely the case once the terms nonlinear in ~ in
the Moyal bracket become important. This will be the case if the derivatives
of one of the phase space variables becomes small compared to ~. Now
we can argue for a very short quantum break time in an unstable system.
For a state which can be well described classically the Wigner function can
be thought of as the classical probability distribution in phase space.The
instability implies that the Wigner function will stretch in one direction in
phase space. However as long as the time evolution is well described by a
classical evolution Liouville’s theorem holds and we are guaranteed that the
corresponding flow on phase space is volume preserving. This means that as
the Wigner function is getting stretched in one direction in phase space it
has to get squeezed in another direction. As it gets squeezed the gradient
of the Wigner function grows exponentially fast with a rate given by the
Lyapunov exponent λ corresponding to the instability. Since the evolution is
exponentially fast the time scale corresponding to the quantum break time
will be logarithmically short, i.e. we expect the quantum break time tbr to
be given by

tbr ∼ λ−1 log
S

~
. (3.57)

It has recently been shown that in simple chaotic models the time scale for
full thermalization has the same parametric behaviour as the quantum break
time [157]. The main difference to the model considered before is the pres-
ence of a persistent instability, i.e. the system is unstable in a region of phase
space. In the model considered before, there is only an instability on top of
the hill. Since in the black hole condensate picture the instability should be
related to the evaporation process we expect there to be an instability during
the full dynamical history of the black hole, which makes it natural to expect
fast thermalization, i.e. scrambling. Therefore detecting a local instability
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can be seen as a precursor to scrambling. This relation between scrambling
and instability was the main subject of our publication which is reproduced
ad verbatim in the final part of the thesis. There we showed for the 1+1d toy
model discussed earlier that there is a natural instability appearing after a so
called quantum quench across the phase transition, i.e. when time evolving
the homogeneous state in the solitonic phase. Then we showed explicitly us-
ing numerical simulation that this instability leads to a short quantum break
time. However we did not show that this model is a fast scrambler. Here we
should notice that the corresponding instability is not persistent. Therefore
we don’t expect this toy model to capture this behaviour. We can also under-
stand why the system won’t scramble from a different viewpoint. As we have
seen earlier the density of states near the instability diverges logarithmically.
In our case this will be cut off due to N being finite. Therefore it is natural
to expect the density of states to behave as log(N) near the instability. The
dynamics of the system will then be mostly happening in a subspace of size
log(N). This immediately gives an upper bound on any entanglement en-
tropy we can possibly observe of log logN , which is too small to lead to full
scrambling. In the black hole case, however we expect the density of state to
be exponential in N . Therefore this seems to be a problem of the simplified
toy model we are considering. Construction of an improved toy model, which
tackles this problem should be a very promising and fruitful area for future
research. Exploring this new connection between quantum chaos, quantum
break time and fast scrambling in other contexts might lead to new insights
into a variety of areas of physics like quantum information theory and quan-
tum gravity. A particular problem worth studying would be a connection to
the recent discovery of fast thermalization in matrix models [158], which are
supposed to describe black holes in M-Theory.
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4.1 CS Localization

4.1.1 Abstract

We propose an explicit model, where an axionic domain wall dynamically
localizes a U(1)-component of a nonabelian gauge theory living in a 3+1
dimensional bulk. The effective theory on the wall is 2+1d Maxwell-Chern-
Simons theory with a compact U(1) gauge group. This setup allows us to
understand all key properties of MCS theory in terms of the dynamics of the
underlying 3+1 dimensional gauge theory. Our findings can also shed some
light on branes in supersymmetric gluodynamics.

4.1.2 Introduction

Maxwell-Chern-Simons (MCS) Theory in 2+1 dimensions is a theory leading
to a plethora of interesting phenomena, it has found a wide array of applica-
tions ranging from fractional quantum hall effect [159] to knot theory [160].

Some of the more interesting implications of adding a Chern-Simons (CS)
term include screening of the electric field, the association of electric charges
with magnetic fluxes and the appearance fractional statistics for charged
particles [161]. Compact U(1) gauge theories, which ordinarily are confin-
ing [73] in 2+1 dimensions are altered in an even more dramatic way. The
confinement disappears [162] and magnetic events (the analog of sphaleron
transitions) start producing electrically charged particles [75]. Also, the co-
efficient of the CS term can only take discrete values [163].

In this letter, we are going to propose an explicit setup in the Dvali-
Shifman gauge field localization framework [42], in which a 2+1 dimensional
MCS theory appears as the effective world volume theory of a field theoretic
brane in a 3+1d spacetime. This is achieved by promoting the field theo-
retic brane into an axionic domain wall. We can then clarify many of the
interesting features of 2+1d MCS theory in terms of 3+1d bulk physics.

4.1.3 2+1d Chern Simons Electrodynamics

We begin by summarizing various properties found in 2+1d Maxwell-Chern-
Simons theory with a U(1)c gauge group. Its action is given by

S =

∫
2+1d

− 1

2g2
F ∧ ?F +

k

2
A ∧ dA+ A ∧ ?j (4.1)
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Here the Chern-Simons term acts as a mass term with mass proportional
to kg2 and screens the electric field. Furthermore by explicitly solving the
equations of motion for a point charge we can see that a point particle with
electric charge qe at ~x0 produces a magnetic field B of

B(~x, t) =
q

k
eδ(~x− ~x0). (4.2)

A further peculiarity is the appearance of fractional statistics first noticed
by Wen and Zee [161], i.e. exchange of two particles of electric charges q1, q2

leads to an additional phase of

δ =
1

2k
q1q2 (4.3)

in the wavefunction.
It was shown by Polyakov [73] that QED with a compact U(1) gauge group

in 2+1d is confining at exponentially large scales due to instantons, which
effectively act as a plasma of magnetic charges and lead to Debye screening,
which in turn implies the existence of a mass gap. However in [162] it was
noted that confinement is absent if one introduces a CS term.

Gauge invariance under large gauge transformations demands that k must
be quantized [58] as

k =
n

8π
n ∈ N (4.4)

4.1.4 Dvali-Shifman localization mechanism

In [42] Dvali and Shifman proposed a field theoretic mechanism for local-
izing 3+1d gauge fields to 2+1d solitons. Their setup includes a strongly
interacting nonabelian gauge theory, e.g. SU(2), living in 3+1d space (bulk)
and a Higgs field in the adjoint representation. In the bulk, their Higgs has a
vanishing vacuum expectation value (vev) and the gauge theory is in the con-
fining phase. Their explicit theory allows for a domain wall (brane) on which
the Higgs acquires a nonzero vev — the SU(2) is broken down to U(1)c on
the wall. Because electric flux cannot escape into the bulk, this setup actu-
ally produces an effective 2+1 dimensional U(1)c gauge theory with compact
gauge group on the brane.

Their theory can also be understood as the electric-magnetic dual of a
Josephson junction [74], where a layer of insulator is sandwiched between
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two superconductors. Magnetic flux is confined to the junction while charges
inside the junction are still screened.

This duality lends itself to a straightforward interpretation of confinement
in 2+1d QED with compact U(1). In the Dvali-Shifman picture, monopoles
from the condensate in the bulk can tunnel across the brane (the dual effect of
the Josephson current). The tunneling monopoles effectively act as a dilute
plasma of magnetic charges on the brane and induce confinement in the 2+1d
theory.

4.1.5 Induced Chern-Simons Term

It is well known that the effective world volume theory of an axionic do-
main wall contains a Chern-Simons term. Starting with a (3+1)d Yang-Mills
theory, which contains an axion θ(x) coupling to the SU(2) gauge fields

S
(3+1)d
θ = − 1

8π2

∫
θTrF ∧ F (4.5)

This can be written as a total derivative of the Chern-Simons form

S
(3+1)d
θ = − 1

8π2

∫
θ d Tr[A ∧ dA+

2

3
A ∧ A ∧ A] (4.6)

and after integrating by parts gives a contribution on an axionic domain wall,
across which the axion VEV changes by ∆θ,

S
(3+1)d
θ =

∆θ

8π2

∫
(2+1)d

Tr[A ∧ dA+
2

3
A ∧ A ∧ A] (4.7)

Comparing to (4.1), we find the coefficient of the induced CS term to be

k =
∆θ

8π2
(4.8)

4.1.6 Localization of Chern-Simons theory

We will now consider the situation, where a gauge field is localized to an
axionic domain wall. For concreteness, consider again a confining SU(2)
gauge theory in the bulk, with both an axion field and a Higgs in the adjoint
representation. The explicit potential presented below allows for an axionic
domain wall and gives a nonzero Higgs-vev on the domain wall only.
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SU(2) U(1) SU(2)

Axion

Higgs

Figure 4.1: Axion and Higgs field configuration across the domain wall on
the left. And U(1)-electric (solid) and magnetic field lines (dashed) of an
electric point charge within the wall on the right.

Assuming the confinement scale in the bulk to be sufficiently high, there
will again be a U(1)c gauge theory localized to the brane. The jump in the
axion value across the brane however contributes a CS term to the 2+1d
effective action, with a coefficient given by (4.8).

We now elaborate on the 2+1d effective field theory that we expect to see
in our model. We will then take a complimentary perspective and compare
the 2+1d arguments to the 3+1d setup in an accessible limit. Along these
lines we will clarify the appearance of a photon mass.

In 2+1 dimensions, pure Maxwell-theory contains a massless photon,
which corresponds to one propagating degree of freedom(dof). As the 2+1d
theory that we are interested in comes from a 3+1d model, we also expect
to see a tower of heavy states. Their characteristic mass scale is given by the
inverse localization width and they appear as Proca-fields in the Lagrangian,
containing 2 dof.

When a Chern-Simons term is added to the 2+1d Maxwell theory, the
previously massless photon acquires a mass mcs = kg2. A vector field with a
Proca-mass of mp on the other hand splits up. One of its degrees of freedom
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becomes lighter, the other one heavier, with masses

m± =

√
m2

p +
m2

cs

4
± mcs

2
(4.9)

The number of degrees of freedom per field however does not change in either
case.

For the effective 2+1d theory, we are interested in the lowest energy
degrees of freedom. The field at long distances will be completely dominated
by the lightest mode in the spectrum. If the CS term is small, the previously-
massless-photon will be this lightest dof with mass mcs. If we imagine to
increase the CS term, there will be a crossover at some point and the m−
mode of the first level Proca field becomes the lightest mode, as illustrated
in fig. 4.2.

Let us now return to our 3+1d model and study the electromagnetic field
sourced by a charge on the brane. Consider the brane on which SU(2) is
broken to U(1)c to be of finite thickness. Further assume a simplified axion
field configuration, where the change of the axion vev is localized at the left
and right boundary of the brane (unlike the axion field depicted in fig. 4.1,
left). Then the U(1) field on the brane worldvolume just obeys Maxwell
equations and has some peculiar boundary conditions at the interfaces to
the bulk. The static field of a point charge can be calculated along the lines
of the image charge techniques developed for topological insulators in [164].
The results are in perfect agreement with the expectations from the lower
dimensional effective theory. For a configuration corresponding to the lowest
CS-level the electric field ~E decays for large distances like a Yukawa potential,
i.e.

~E ∼ 1√
r
e−kg

2r, (4.10)

while the image charges produce a localized magnetic flux across the brane as
expected. The flux lines corresponding to this configuration are depicted in
fig. 4.1, right. Furthermore if we check for more general jumps of θ across the
brane, we see that the effective mass varies as predicted, i.e. it grows linearly
until kg2 ∼ 1 and then drops again as ∆θ is raised further, reproducing the
expected 1/∆θ behavior. See the appendix for more details.
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Figure 4.2: Mass of the zero mode and the first Kaluza-Klein modes as a
function of ∆θ

4.1.7 Magnetic events and confinement

Let us shortly recall magnetic events and then elaborate on their physics in
our gauge field localization setup. In 3+1 dimensions, magnetic monopoles in
U(1)c gauge theory are well known. These static field configuration in 3 space
dimensions however can also be interpreted as instantons of a euclidean 2+1d
gauge theory. Such tunneling transitions between topologically inequivalent
vacua of the classical gauge theory play a crucial role in Polyakov’s derivation
of confinement. The associated classical transitions in Minkowski-space were
recently dubbed magnetic events. In pure U(1)c theory, their field evolution
is singular at one spacetime point, yet this singularity is lifted, when the
theory emerges from a broken SU(2). Moreover, the events carry magnetic
charge. Finally, in the context of MCS theory, consistency demands that an
electrically charged particle remains as a “remnant” of a magnetic event [75].

In our model, one can understand the magnetic events as actual monopoles
flying across the brane. A monopole crossing the brane will acquire an elec-
tric charge of

q =
∆θ

2π
, (4.11)

as shown by Witten [28]. The electric flux in the bulk however is confined
into flux tubes, therefore the monopole will stay connected to the brane by
a flux tube. From the lower dimensional point of view the throat of that
tube looks like an electric point charge, precisely as seen in [75]. Note that
this is consistent with conservation of the electric current, as from the (2+1)
d effective field theory point of view the magnetic event generates a Chern-
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Simons current. In the lower dimensional theory only the sum of electric and
Chern-Simons current is conserved.

This also explains the absence of confinement seen in the lower dimen-
sional theory [162]: The monopoles on one side of the brane cannot tunnel to
the other side, since on the other side, they are charged dyons, which can not
be absorbed by the condensate. So there is no plasma of magnetic charges
on the brane and no confinement.

4.1.8 Chern-Simons coefficient quantization

Our explicit construction – detailed in the appendix – allows for domain walls
with ∆Θ a multiple of 2π. This is compatible with the famous theorem by
Vafa and Witten [30], which restricts the possible minima of the vacuum en-
ergy to occur for θ ∈ 2πZ. This reproduces the same quantization condition
obtained from breaking 2+1d SU(2) Chern-Simons theory to U(1)c [163].

The model described so far gives a nice understanding, of why magnetic
events in the 2+1d theory lead to remnant electric charges. These electric
charges represent the throats of electric flux tubes. We can also give a con-
struction where the remnant charges have a simple description in the 2+1d
effective theory. Let us add a doublet of fermions to the theory. Because
of their color charge, they are confined in the bulk and we expect a local-
ized fermion mode on the brane. As is well known, the monopoles acquire
a fermion zero mode and monopoles with half integer charge appear in the
spectrum. Flux tubes on the other hand are unstable to Schwinger-type pair
creation in the extended theory. When a monopole crosses the brane in the
extended theory — instead of making a flux tube — it’s baryon number
changes by one unit and a localized fermion of opposite baryon number is
left on the brane.

Notice that from the point of view of Yang-Mills theory we get a different
periodicity in θ due to the axial anomaly. Therefore the Vafa-Witten theorem
implies a different quantization condition for the Chern-Simons coefficient,
namely 8πk ∈ Z. This is still consistent with the quantization condition ob-
tained in [75] from pure MCS theory. It does however allow values for k that
do not obey the quantization condition obtained by putting the 2+1d SU(2)
on a 3-sphere and considering large gauge transformations. It is important
to note, however that in our localization model, a large gauge transformation
on the spatial sphere changes the number of instantons in the enclosed bulk.
Due to the axial anomaly an instanton produces a fermionic zero mode and
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therefore does not leave the ground state invariant.

4.1.9 Etc.

We can also try to understand what happens in the context of multiple
branes, as those, when brought on top of each other, merge into a single
brane. In other words from the view point of the lower dimensional EFT the
U(1) × U(1) symmetry gets broken to a single diagonal U(1) as the branes
come on top of each other, as was first proposed in [165]. In our context it
is evident that one ends up with a jump in the axion field that is the sum
of the jumps in the original branes, i.e. as two branes are brought on top of
each other their CS levels add up.

Now we take a look at two monopoles of unit charge. Moving them across
a brane of ∆θ = π, each produces a fermion of charge 1/2 on the brane. When
we now exchange the fermions on the brane, the wavefunction picks up an
additional anyonic phase

δ = π. (4.12)

Therefore the magnetic event remnant fermions actually behave like bosons.
This is to be expected, because the interchange of monopoles before moving
them across the brane would not have caused a nontrivial phase either.

4.1.10 Conclusions and Outlook

We have found an explicit mechanism to localize a MCS to a field-theoretic
brane in 3+1 dimensions. Building on the Dvali-Shifman gauge field localiza-
tion mechanism, we constructed a model in which the localization happens
on an axionic domain wall. This naturally leads to a CS term in the 2+1d
low energy theory.

As expected our low energy theory exhibits the features deduced from
classical MCS, namely a photon mass and the appearance of magnetic flux
in the presence of electric charge. In terms of bulk physics those features can
be understood as modified boundary conditions in Maxwell’s equations due
to the varying θ-term across the bulk-brane interface.

Quite generally for MCS theory obtained from some compactification, we
have found that for large CS level the massive Kaluza-Klein-tower states can
become lighter than the zero mode. I.e. for large CS level the effective theory
behaves vastly different than one would expect from just a single gauge field
with CS coupling.
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Even more interestingly we have developed a nice understanding of the
disappearance of confinement and the properties of magnetic events. Also
the discreteness of the Chern–Simons coupling is related in a surprising way
to bulk axion physics.

This work opens up several possible directions for future research, the
most obvious being a generalization to more complicated gauge groups in
the bulk and on the brane. Other interesting questions concern supersym-
metric generalizations of our model with connections to string theory. In
the original SQCD model given by Dvali-Shifman [42], the gluino-condensate
order parameter 〈λλ〉 plays the role of the axion. This implies that the con-
clusions drawn in our paper should also apply to the above mentioned field
theoretic branes found in SQCD. This observation can shed some new light
on the conjecture [83] that in the large N limit the SQCD domain walls should
assume a role analogous to D-branes in QCD string theory. Using string du-
alities the effective world volume theory has already been conjectured to be a
Chern–Simons gauge theory [78]. It might also be worth exploring a possible
realization of our setup in Seiberg-Witten theory [166], where it could bear
a relation to the phenomenon of wall-crossings. It would also be interesting
to check whether a dual of our setup can lead to non-trivial applications in
condensed matter systems.

4.1.11 appendix

Explicit potential

Here we propose an explicit potential that can be used to realize the local-
ization of Chern-Simons theory as described above. The potential for the
Axion Θ(x) and Higgs φ(x) fields is

V = A cos(Θ) + (B + C cos(Θ)) (φa)2 + λ(φa)4 + · · · (4.13)

As long as |B| < C and A and C are of the same sign, the potential has
global minima where θ is a multiple of 2π and φ = 0 in this theory. This
corresponds to the confining vacuum in the bulk. Clearly, axionic domain
walls exist and near the center of such a wall, the Higgs field must take a
nonzero vev to minimize the potential. An exemplary field configuration for
such a domain wall is shown in fig. 4.1 (left). Terms of higher order in φ
or cos(Θ) will not change the story much as long as their coefficients are
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sufficiently small. Note however that B −C must be sufficiently negative to
allow for a Higgs-mode to condense.

Image charge details

Here we will give some details of our calculation of the electromagnetic field
sourced by a point charge on the domain wall. Consider the simplified situa-
tion described in the text, where the axion vev does not change continuously
by ∆θ, but in two discrete jumps at the left and right boundary of the U(1)
domain. For the purpose of determining the correct boundary conditions,
the dual superconductor in the bulk can be modeled by a medium of singu-
lar permeability/permittivity. For one charge on the brane, an infinite series
of image charges is recursively built up. For a given electric and magnetic
charge, the charge-vector of its mirror image is determined by the following
matrix:  −θ2

dsc+θ2
vac+π2

(θvac−θdsc)2+π2

θdsc(θvac(θvac−θdsc)+π2)
π((θvac−θdsc)2+π2)

4π(θdsc−θvac)
(θvac−θdsc)2+π2 − −θ

2
dsc+θ2

vac+π2

(θvac−θdsc)2+π2

 (4.14)

where θvac is the axion-vev in the U(1) vacuum on the brane and θdsc is
the axion-vev in the dual-superconductor on the other side of the respective
boundary.

For the simplest case, when ∆θ = 2π is symmetrically distributed and
θvac = 0, the mirror charges contributing to the electric field at the center
of the brane are just an evenly spaced sequence of alternating sign. After
Fourier expanding the charge density, the field created by the Fourier mode
ρk ∝ cos((2k+ 1)πz/(2L)) can be evaluated exactly. At asymptotically large
distance from the charges, the k = 0 mode dominates and reproduces the
expected Yukawa form

|E(r, θ, z = 0)| ∝
(

1√
r

+O(1/r3/2)

)
exp

(
−πr

2L

)
(4.15)

For generic ∆θ and when ∆θ is distributed unevenly to the left and right
boundary, the effective mass of the lightest mode can be evaluated numer-
ically. The results are displayed in 4.3. As expected, for a small values of
∆θ we see a linear growth of the mass with ∆θ. This is precisely the Chern-
Simons mass of the previously-massless 2+1d photon. In the case of larger
∆θ however, the situation is more complicated. When ∆θ is distributed un-
evenly, we see a falloff in the effective mass proportional to ∆θ−1. This can
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Figure 4.3: Effective mass of the lightest mode seen by a brane observer as
a function of the discontinuities in θ

be interpreted as one of the two dof of a massive KK-mode becoming light,
as remarked in the text. The evenly distributed case however is peculiar,
as the effective mass saturates for large ∆θ at the value of the mass of the
lightest KK-mode in the absence of a Chern-Simons term. In this case there
is an enhanced symmetry, implemented by first performing a reflection about
the brane and then inverting the axion field. It implies that both dof in each
KK level have to stay degenerate.
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4.2 Black Holes and Quantumness on Macro-

scopic Scales

4.2.1 Abstract

It has recently been suggested that black holes may be described as con-
densates of weakly interacting gravitons at a critical point, exhibiting strong
quantum effects. In this paper, we study a model system of attractive bosons
in one spatial dimension which is known to undergo a quantum phase transi-
tion. We demonstrate explicitly that indeed quantum effects are important at
the critical point, even if the number of particles is macroscopic. Most promi-
nently, we evaluate the entropy of entanglement between different momentum
modes and observe it to become maximal at the critical point. Furthermore,
we explicitly see that the leading entanglement is between long wavelength
modes and is hence a feature independent of ultraviolet physics. If applicable
to black holes, our findings substantiate the conjectured breakdown of semi-
classical physics even for large black holes. This can resolve long standing
mysteries, such as the information paradox and the no-hair theorem.

4.2.2 Introduction

In a recent series of papers [167–170], Dvali and Gomez have proposed a new
conceptual framework for the understanding of black hole physics. The first
of two key claims is that the black hole is a bound state or condensate of
many weakly interacting (i.e. long-wavelength) gravitons. Secondly, it was
suggested that this condensate is at a quantum critical point and therefore
exhibits properties that are not apparent in the traditional description in
terms of (semi-)classical general relativity. Most importantly, the underlying
quantum physics could be able to resolve the mysteries of the information
paradox. Hawking evaporation is described as the depletion and evaporation
of the condensate and its purification is thus a natural result. To the same
extent, black holes could carry quantum hair [169]. These effects are not
visible in the semiclassical approximation, since this limit corresponds to an
infinite number of black hole constituents.

In this letter, we will review the Dvali-Gomez proposal and will elaborate
in more detail why one can expect Bose condensates at a critical point to
display qualitatively new phenomena. In particular, we will discuss how
quantum physics can be relevant on macroscopic scales in such systems. To
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this end, we are going to investigate in detail the quantum phase transition
of the attractive Bose gas in 1 + 1 dimensions.

The idea that black holes may be described by the quantum physics of
N weakly interacting gravitons was first put forward in [167]. There it was
observed that in pure Einstein gravity a black hole of mass M and hence size
Rs = GNM primarily consists of gravitons of wavelength λ ∼ Rs. As each
of these long wavelength particles contributes energy E1 = ~/λ, one obtains

N ∼ M

E1

=
M2

M2
p

. (4.16)

The idea of a black hole as a Bose condensate of gravitons can also be
motivated in a bottom-up approach. As gravitons are self coupled, they can
potentially form a self sustained bound state. The properties of such a bound
state can be estimated via the virial theorem,

〈Ekin〉 ∼ 〈V 〉 . (4.17)

The kinetic energy Ekin of N gravitons of wavelength λ is given by

〈Ekin〉 = N
~
λ
, (4.18)

while a naive estimate of the potential energy of the configuration of size R
is

〈V 〉 ∼ N2GN~2

λ2R
. (4.19)

Assuming the size to be of the order of the wavelength, R ∼ λ, one obtains

λ ∼
√
NLp . (4.20)

It is easily verified that this relation is nothing but Eq. (4.16). An order of
magnitude estimate of graviton-emission gives a result consistent with the
rate of emission of Hawking radiation. Consequently, a self sustained bound
state of gravitons, if it exists, will likely behave like a black hole.

One should observe that the typical interaction strength between two
gravitons is α ∼ 1/(λMPl)

2. However, all mutual interactions add up and
their total effect should be quantified by Nα. This implies that the self bound
graviton condensate is at αN ∼ 1, where interactions start to dominate over
the kinetic term. This condition characterizes the critical point of a zero
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temperature phase transition or quantum phase transition (QPT) in a simple
bosonic model system [170] and is considered to ensure that quantum effects
are important even for macroscopic black holes.

To substantiate this idea, it is our interest to gain more qualitative in-
sight into bosonic systems at a critical point by a detailed study of this
1 + 1-dimensional nonrelativistic attractive Bose gas on a ring. The tran-
sition in this system was discovered and first studied in [171–174]. We will
substantiate the existence of this critical point by studying appropriate char-
acteristics.

We will then focus on the quantum behavior. As a measure of quantum-
ness, we calculate the entanglement of different momentum modes applying
analytical as well as numerical techniques. We observe that it becomes max-
imal at the critical point and for low momentum modes. We interpret this
as further evidence that the black hole condensate picture can be successful
independent of the ultraviolet physics that completes Einstein theory.

The remainder of the paper will be organized as follows. In section 2 we
will introduce in detail the 1+1-dimensional attractive Bose gas, remind the
reader of mean g and introduce the basis of our numerical studies. Further
evidence for the existence of a quantum critical point is provided in section 3.
We will then introduce the fluctuation entanglement as a relevant measure
of quantumness and present our results in 4. Finally, in the conclusions,
we discuss the qualitative consequences of our findings with regards to the
physics of macroscopic black holes.

4.2.3 The 1 + 1-dimensional Bose Gas

Throughout this paper, we consider a Bose gas on a 1D-circle of radius R
with attractive interactions. The Hamiltonian is given by

Ĥ =
1

R

∫ 2π

0

dθ

[
− ~2

2m
ψ̂†(θ)∂2

θ ψ̂(θ)

− ~2

2m

παR

2
ψ̂†(θ)ψ̂†(θ)ψ̂(θ)ψ̂(θ)

]
, (4.21)

where α is a dimensionless, positive coupling constant. This Hamiltonian
can be cast into a more convenient form by decomposing ψ̂(θ) in terms of
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annihilation operators:

ψ̂(θ) =
1√
2πR

∞∑
k=−∞

âke
ikθ , (4.22)

which leads to

Ĥ =
∞∑

k=−∞

k2â†kâk −
α

4

∞∑
k,l,m=−∞

â†kâ
†
l âm+kâl−m (4.23)

Note that in order to improve readability we have now switched to units
R = ~ = 2m = 1. The total number operator is

N̂ =

∫ 2π

0

dθψ̂†(θ)ψ̂(θ) =
∞∑

k=−∞

â†kâk . (4.24)

It was first shown in [171–174] that an increase of the effective coupling
αN on the ring leads to a transition from a homogenous ground state to a
solitonic phase, where the critical point is reached for αN = 1.

Mean Field Analysis

A mean field approach to the hamiltonian (4.21) leads to the Gross-Pitaevskii
energy functional

E[ΨGP ] =

∫ 2π

0

dθ
[
|∂θΨ(θ)|2 − α

2
|Ψ(θ)|4

]
(4.25)

The ground state wavefunction Ψ0 is obtained through minimization of the
energy functional subject to the constraint

∫
dθ|Ψ(θ)|2 = N . This leads to

the time independent Gross-Pitaevskii equation[
∂2
θ + πα|Ψ0(θ)|2

]
Ψ0(θ) = µΨ0(θ) , (4.26)

where µ = dE/dN is the chemical potential. Solutions to this equation are
given by (see e.g. [175])1

Ψ0(θ) =


√

N
2π√
NK(m)
2πE(m)

dn
(
E(m)
π

(θ − θ0)|m
) . (4.27)

1Here, dn(u|m) is a Jacobi elliptic function and K(m) and E(m) are the complete
elliptic integrals of the first and second kind, respectively.



4.2 Black Holes and Quantumness on Macroscopic Scales 143

Here, θ0 denotes the center of the soliton and m is determined by the equation

K(m)E(m) =
(π

2

)2

αN . (4.28)

For small αN < 1, (4.25) is minimized by the homogenous wavefunction.
On the other hand, for αN > 1 the solitonic solution has a lower energy. At
αN = 1, both configurations are degenerate in energy - a clear indication for
a quantum phase transition.

On a side note, one may wonder whether the one-soliton solution is stable
for arbitrary αN > 1 or if multi-soliton solutions may eventually be energet-
ically favored. This can be checked in a simple argument. A soliton of size
Rs has a total energy

E ∼ N

R2
s

− αN
2

Rs

. (4.29)

Minimization with respect to R yields Rs = 2
αN

and E1 = −1
4
α2N3. A split

into two stable solitons of boson number rN and (1−r)N yields a total energy
E2 = −1

4
α2N3[1 − 3r(1 − r)]. This is bigger than E1 for any r < 1. This

can be straightforwardly generalized two multi-soliton solutions; therefore,
the single soliton is stable.

Finally, let us note that the apparent spontaneous breaking of translation
symmetry in the solitonic phase is in no contradiction to known theorems
about the absence of finite volume symmetry breaking. The Gross-Pitaevskii
ground state only becomes exact in theN →∞ limit. In this limit, translated
Gross-Pitaevskii states are orthogonal and do not mix under time evolution.
Technically, symmetry breaking is made possible because expecation values
of composite operators made out of the fields diverge in the large N limit.
We comment on this in more detail in the Appendix.

This again emphasizes how the classical limit really emerges as a large
N limit from quantum mechanics. Exactly how this argument breaks down
at the critical point and what the implications of this breakdown are will be
the focus of the remainder of this manuscript.

Bogoliubov Approximation

The Gross-Pitaevskii equation is the zeroth-order equation in an expansion
of the field operator into its mean value and quantum (and, in more general
setups, thermal) fluctuations around it:

ψ̂(θ) = 〈ψ̂(θ)〉+ δψ̂(θ) . (4.30)
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The spectrum of these small excitations around the mean field can then
be found in the Bogoliubov approximation. Generally, this corresponds to
approximating the fluctuation Hamiltonian by its quadratic term and subse-
quent diagonalization through canonical transformations of the field.

For αN < 1, i.e. on the homogeneous background, it is convenient to stick
to the momentum decomposition (4.78) and replace â0 = â†0 =

√
N0 ∼

√
N .

In words, one assumes that the zero mode is macroscopically occupied and all
commutators [â0, â

†
0] in the Hamiltonian are suppressed by relative powers of

1/N ; the quantum fluctuations of the zero mode may therefore be neglected.
This, in combination with taking into account the constraint

N̂ = N0 +
∑
k 6=0

â†kâk (4.31)

leads to the Hamiltonian

H =
∑
k 6=0

(
k2 − αN/2

)
a†kak

−1

4
αN

∑
k 6=0

(
a†ka

†
−k + aka−k

)
+O(1/N) . (4.32)

All interaction terms are suppressed by 1/N and go to zero in the double
scaling limit N → ∞, α → 0 with αN finite. The Hamiltonian can be
diagonalized

H =
∑
k 6=0

εkb
†
kbk, εk =

√
k2(k2 − αN) (4.33)

with a Bogoliubov transformation

ak = ukbk + v?kb
†
−k, (4.34)

where the Bogoliubov coefficients are

u2
k =

1

2

[
1 +

k2 − αN
2

εk

]
, (4.35)

v2
k =

1

2

[
−1 +

k2 − αN
2

εk

]
. (4.36)

The Boguliubov approximation breaks down whenever an εk becomes too
small. In that case the initial assumption that only the zero mode is macro-
scopically occupied is no longer justified. Obviously, it is ε1 that first goes
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to zero, namely when αN → 1. Right at the phase transition, the Boguli-
ubov approximation is never valid. It is worth noting however, that for any
finite distance δ from the critical point, there exists a minimal N for which
the approximation is valid. In other words, for any finite δ, the Boguliubov
approximation becomes exact in the limit N → ∞. This is due to the fact
that both the interaction terms as well as v2

k/N vanish in this limit for any
finite δ. For δ = 0, however, this is never true.

In the αN > 1 case, the classical background is not homogenous any more,
but is given by the bright soliton solution (4.27). In this case, the background
induces an additional nontrivial mixing between momentum eigenmodes of
different |k|. A decomposition into momentum eigenmodes requires an (un-
known) analytic expression for the Fourier components of the soliton and
is thus no longer convenient. On the other hand, an analytic Bogoliubov
treatment is still possible by directly decomposing δψ̂ into normal modes:

δψ̂(θ) =
∑
i

(
ui(θ)b̂

†
i + v?i (θ)b̂i

)
. (4.37)

If the mode functions obey the Boguliubov-de Gennes equations

∂2
θuj + αΨ2

0(2uj + vj) + µuj = Ejuj (4.38)

∂2
θvj + αΨ2

0(2vj + uj) + µuj = −Ejuj (4.39)

and are normalized such that they form a complete set and the transforma-
tion (4.37) is canonical, the Hamiltonian is diagonalized. The first excited
Bogoliubov modes have the form

u1(θ) = N1sn2

(
K(m)

π
(θ − θ0)

∣∣∣∣m) (4.40)

v1(θ) = −N1cn2

(
K(m)

π
(θ − θ0)

∣∣∣∣m) . (4.41)

The coefficient N1 is defined by

N2
1 =

mK(m)

2π [(2−m)K(m)− 2E(m)]
. (4.42)

Numerical Diagonalization

While the Bogoliubov treatment provides an approximative description of the
Bose gas deep in the respective phases, it fails, as we have reasoned above,
around the critical point.
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A complementary method to explore the quantum properties of the sys-
tem is numerical diagonalization of the Hamiltonian. Of course, numeri-
cal techniques are only applicable for sufficiently small Hilbert spaces. The
Hamiltonian (4.21) is number conserving. This allows for exact diagonaliza-
tion of (4.23) by considering a subspace of fixed N . However, to make any
numerical procedure feasible, we need to limit the allowed momenta. In the
spirit of [171–174], we truncate the basis of free states in which we perform
the diagonalization to |l| = 0, 1. This gives a very good approximation to
the low energy spectrum of the theory well beyond the phase transition. An-
alytically, this can be seen by analyzing the spectrum of the soliton solution
(4.27). Only for αN ∼> 1.5, higher l modes start giving relevant contribu-
tions. We have further verified this numerically by allowing for |l| = 2, 3; the
low energy modes are only marginally affected up until αN ∼ 2. Our code
allowed us to consider particle numbers N ∼< 10000. In order to illustrate
scaling properties, all analyses are performed for various particle numbers.

Since the normalized coupling αN is the relevant quantity for a phase
transition, one can analyze all interesting properties for a fixed N by varying
α. The corresponding spectrum of excitations above the ground state as a
function of αN is shown in Fig.4.4 for N = 5000 and −1 ≤ k ≤ 1. One ob-
serves a decrease in the energy gap between the low lying excitations due to
the attractive interactions as αN is increased. At the quantum critical point,
the spacing between levels reaches its minimum. Its magnitude depends on
the particle number N ; the energy of the lowest lying excitation decreases
with N . By further increasing the coupling α one reaches the solitonic phase.
The spectrum corresponds to that of translations and deformations of a soli-
ton.

Obviously, (4.21) is invariant under translations; since we are considering
a finite length ring, the ground state obtained by exact diagonalization can
never correspond to a localized soliton. It will instead contain a superposition
of solitons centered around arbitrary θ. This problem can be overcome by
superposing a weak symmetry breaking potential to break the degeneracy
between states with a different soliton position:

Ĥsb = Ĥ + V̂ε (4.43)

V̂ε =
ε

N2

∫
dθψ̂†(θ) cos θψ̂(θ) . (4.44)

The higher ε, the deeper the symmetry breaking potential, and the more
localized the soliton will be.
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Figure 4.4: Energy spectrum for N = 5000 as a function of the effective
coupling αN

4.2.4 Quantum Phase Transition in the 1D-Bose gas

The mean field treatment of the attractive 1D Bose gas above has signalled
a quantum phase transition. The degeneration of the Bogoliubov modes at
αN = 1 supports the existence of a critical point. Although, by definition, a
phase transition can only occur for infiniteN , indications for it should already
be visible for large but finite N . Here we will focus on two observations:

(i) The one-particle entanglement entropy displays a sharp increase close
to the critical point.

(ii) The ground state fidelity peaks at the critical point; the height of the
peak grows with N .
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Figure 4.5: One-particle entanglement entropy for N = 50 (blue, dotted),
500 (black, dashed), 5000 (red, solid).

One-Particle Entanglement

The one particle entanglement entropy is defined as the von Neumann en-
tropy S1 = Tr[ρ̂1p log ρ̂1p] of the one particle density matrix ρ̂1p of the ground
state, obtained by singling out one particle and tracing over all N − 1 other.
As long as the ground state of the system is well described by a Hartree, i.e.
product state, ρ̂1p describes a pure state; the entanglement entropy vanishes.
When the critical point is approached, collective effects become important.
No longer is the ground state described by a product state; consequently the
entanglement entropy increases - a single particle becomes strongly entangled
with the rest of the system.

The one particle density matrix is defined via

ρ̂1p = Tr
(N−1)P

ρ̂ = Tr
(N−1)p

|0GP 〉〈0GP | , (4.45)
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or, explicitly, in the one particle momentum eigenbasis

(ρ̂1P)ij = δij
∑
{nk}

|α{nk}|
2ni
N
. (4.46)

Here, nk is the occupation number of the k-th momentum mode and we have
used

|0GP 〉 =
∑
{nk}

α{nk}|{nk}〉 . (4.47)

We have plotted the numerically evaluated one particle entanglement as a
function of αN for different N in Fig.4.5. The increase close to the critical
point gets profoundly sharper for larger N . Independent of N , the entropy
is bounded by Smax = log 3, due to the truncation of the one-particle Hilbert
space to a three level system.

The entanglement entropy becomes maximal for large αN . This, as ar-
gued before, is due to the fact that the numerical groundstate is given by a
superposition of solitons localized at arbitrary positions [176].2

Ground State Fidelity

Ground State Fidelity (GSF) was introduced in [177] as a characteristic of a
QPT. It is defined as the modulus of the overlap of the exact ground states
for infinitesimally different effective couplings.

F (αN, αN + δ) = |〈0αN |0αN+δ〉| (4.48)

Far away from the critical point, this overlap will be very close to unity. For
small αN , the ground state is dominated by the homogeneous state, and
while coefficients may change slightly, no important effect will be seen. The
analogous statement holds deep in the solitonic regime. While the shape of
the soliton changes, it will so smoothly; in the infinitesimal limit, the overlap
is one. Right at the critical point, however, the ground state changes in a
non-analytic way. The homogeneous state ceases to be the ground state and
becomes an excited state, while the soliton becomes the new ground state.
As energy eigenstates with different eigenvalue are orthogonal, the ground
state fidelity across the phase transition is exactly zero.

2This quantum behavior is not expected to survive in the large N limit if the symmetry
breaking potential is turned on. In this case, a vacuum is selected which does not mix with
translated states (see Appendix). The entanglement entropy is therefore much smaller.
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Figure 4.6: Numerical ground state fidelity susceptibility for N = 3000 (blue,
dashed), N = 5000 (black, dotted) and N = 10000 (red, solid).

The GSF has the disadvantage of depending on the arbitrary choice of the
small parameter δ. This can be cured by introducing the fidelity susceptibility
χgs(αN) as the second derivative of the GSF.

χgs(αN) = lim
δ→0

F (αN, αN + δ)− F (αN, αN − δ)
δ2

. (4.49)

It has been shown [178] that singular behavior of the fidelity susceptibility
directly signals a discontinuity of the first or second derivative of the ground
state energy - a quantum phase transition.

The aforementioned behavior is of course idealized for an infinite system,
where ground state degeneracy and thus level crossing become an exact prop-
erty. In the finite N systems we examined numerically, the overlap cannot
go to zero, because there is anticrossing which allows the energy levels to
degenerate only for N →∞.

Still we can observe a drop in the fidelity which deepens with N but is
of magnitude much smaller than 1 for all N we were able to simulate. The
fidelidy susceptibility as obtained from the exact diagonalization is plotted
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in Fig.4.6 for different N . In the limit N → ∞, we expect a behavior
χgs → −δ′′(αN − 1). This tendency can be clearly observed. Both the
negative and the positive peak move towards αN = 1, they become narrower,
and their modulus diverges with growing N .

4.2.5 Fluctuation Entanglement

We will now consider the entanglement between the fluctuation δâk = âk−ac
k

of a given original momentum mode and the fluctuations of the rest of the
system. The motivation for studying this quantity is twofold. We imagine,
that an external observer would couple linearly to the bosonic field (so that
the situation has some minimal resamblance with the gravity case). It has
been pointed out [179] that for such a coupling, field values (or their Fourier
components) will be the environment-selected pointer states3 and not local-
ized single particle states. This leads us to consider the entanglement of
a momentum mode, rather than single-particle entanglement, as a measure
of relevant quantum correlations of the given state. Furthermore, the ob-
server couples to the original field âk and hence its fluctuations as opposed
to coupling to the Bogoliubov modes b̂k.

More technically speaking, the quantity we calculate is the von Neumann
entropy of the reduced density matrix for a given δâk

(δρk)nm = Tr
modes k′ 6=k

[
ρ (δâ†k)

m|0c〉〈0c|(δâk)n
]

(4.50)

where |0c〉 denotes the state that would be observed classically.

Fluctuation entanglement provides a measure for the quantum correla-
tions between a single momentum mode with the rest of the system. It hence
gives a direct handle of the quantumness of our ground state as measured by
an outside observer if coupled linearly to the field. Note also that due to the
fact that we are considering a closed system, the fluctuation entanglement is
exactly equivalent to the Quantum Discord introduced in works [180,181] as
a measure of quantumness.

3Pointer states denote those states that are stable with respect to interactions with the
environment and therefore correspond to classically observable states.
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Calculation in the Bogoliubov Approximation

In order to calculate the fluctuation entanglement in the Bogoliubov case,
note that the sought-for density matrix is Gaussian4. The ground state
in terms of b̂k is Gaussian and the Bogoliubov transformation amounts to
squeezing - which leaves a Gaussian state Gaussian. Also integrating out
modes in a Gaussian state does not change this property. Hence the reduced
density matrix in terms of δâk must have the form

ρk = Ck exp
{
− λk

(
δâ†kδâk

−1

2
τk

[
δâ†kδâ

†
k + δâkδâk

] )}
,

(4.51)

with real coefficients λk and τk and normalization Ck such that Tr ρk = 1.
This density matrix has a von Neumann entropy

Sk =
λk
√

1− τ 2
k

2

(
coth

λk
√

1− τ 2
k

2
− 1

)
− ln

(
1− e−λk

√
1−τ2

k

) (4.52)

We can fix the unknown coefficients by imposing

〈ψ|δâ†kδâk|ψ〉 = Tr[ρkδâ
†
kδâk]

and

〈ψ|δâkδâk|ψ〉 = Tr[ρkδâkδâk] , (4.53)

where |ψ〉 is the groundstate of the Bogoliubov modes.

Homogenous Phase

In the homogenous case, imposing (4.53) and evaluating the left hand side
by inserting the Bogoliubov transformation (4.34) leads to

λk = ln

(
uk
vk

)2

, τk = 0 and Ck = 1/u2
k. (4.54)

4A density matrix is called Gaussian, when its Wigner function W (α, α?) =
1
π2

∫
d2β exp(−iβα? − iβ?α) Tr[ρ exp(iβa† + iβ?a)] is Gaussian
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Thus, the fluctuation entanglement entropy is

Sk = u2
k lnu2

k − v2
k ln v2

k. (4.55)

The entanglement of the first momentum mode S1 diverges near the critical
point αN = 1− δ as

S1 ≈ 1− ln(4)− 1

2
ln δ. (4.56)

A similar divergence of an entanglement entropy has been pointed out in spin
chain (and analogous) systems undergoing a phase transition [182, 183]. In
contrast to these cases however, where the entanglement is between nearest
neighbour sites, the diverging entanglement in our case is between different
low-momentum modes and not between localized sites. So one may say, that
the entanglement in our case is long-range. Furthermore it should be noted,
that the entanglement of the higher modes |k| > 1 stays finite near the critical
point, showing that the diverging entanglement is an infrared effect, which
can be expected to be independent of short distance physics.

Solitonic Phase

The relevant expectation values in the Bogoliubov ground state are given by

〈ψ| δâ†mδân|ψ〉 =∑
k

(∫
eimθvk(θ)dθ

)(∫
e−inθvk(θ)

?dθ

)
, (4.57)

〈ψ| δâmδân|ψ〉 =∑
k

(∫
e−imθuk(θ)dθ

)(∫
e−inθvk(θ)

?dθ

)
. (4.58)

It can be checked that close to the phase transition the first excited mode
gives the leading contribution to the aforementioned entanglement entropy.
The quantities 〈ψ|δâ†1δâ1|ψ〉 and 〈ψ|δâ1δâ1|ψ〉 can be obtained by numeri-
cal integration. The parameters λ, τ of the reduced gaussian density matrix
can then be determined. The final von Neumann entropy again shows a
divergence5 close to the phase transition. Fig.4.7 shows the fluctuation en-
tanglement obtained in the Bogoliubov approximation on both sides of the
phase transition.

5The shape of the divergence obtained by numeric integration seems to be consistent
with a logarithm with a coefficient close to 0.33 near the phase transition.
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Figure 4.7: Analytical fluctuation entanglement

Numerical Treatment

As discussed before, for any given finite size system, the Bogoliubov approx-
imation should not be trusted close to the critical point. Therefore it is
important to study the exact behavior of finite size systems numerically, in
order to substantiate the claim that the fluctuation entanglement entropy
becomes large.

Within an exact treatment this quantity is considerably more difficult to
extract, because in contrast to the Bogoliubiv analysis, one does not have
direct access to a “classical background” which one could use to disentangle
classical correlations. Instead, the seperation can be obtained through the
following procedure.

Since all numerical solutions are obtained for a fixed particle number
N , the field expectation value in the exact ground state |0N〉 will neces-
sarily vanish, 〈0N |ψ̂(θ)|0N〉 = 0. Obviously, the ground state |0N〉 can
hence never correspond to the classical (coherent) state with a wave func-
tion corresponding to the soliton solution of the Gross-Pitaevskii equation,
〈ψcl|ψ̂(θ)|ψcl〉 = ΨGP(θ). In order to define a mapping from |0N〉 to |ψcl〉,
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Figure 4.8: Numerical fluctuation entanglement for N = 15 (blue, dashed),
N = 20 (black, dotted) and N = 25 (red, solid).

we numerically search for the coherent state |α〉 with maximal overlap with
|0N〉. This state is expected to be annihilated by the perturbations of the
Gross-Pitaevskii ground state,

δâk|αk〉 = 0 , (4.59)

where
δâk = âk − ck (4.60)

and the ck are the Fourier coefficient of ΨGP(θ). From Eq.(4.59) it directly
follows that αk = ck. There is now an obvious measure of correlations which
excludes those of the Gross-Pitaevskii background: The entanglement en-
tropy of the δâ1 modes, described by the density matrix

(ρ̃1)kl = Tr [ρ̂|δl1〉〈δk1|] . (4.61)

Now, |δl1〉 denotes the eigenstate of δN̂1 = δâ†1δâ1 with eigenvalue δl1. Eq.
(4.61) directly corresponds to the density matrix (4.51) in the Bogoliubov
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approximation. Using the relations (4.59) and (4.60), it can be directly recast
to take on the form

(ρ̃1)kl = Tr

[
ρ̂

(â†1 − α∗1)l√
l!

|α1〉〈α1|
(â1 − α1)k√

k!

]
, (4.62)

which, by the definition of a coherent state, can be straightforwardly evalu-
ated.

The resulting fluctuation entanglement is shown in Fig.4.8 for different
particle number. It has a clear maximum at the would–be–phase–transition.
The maximum value becomes larger and the peak narrower with increasing
particle number, so the divergence in the Bogoliubov case seems a plausible
limit. The fact that at αN = 2, the fluctuation entanglement is still quite
high is not surprising. Only in the limit N → ∞ do we expect to see the
behavior of the Boguliubov analysis. This is supported by the fact that a
decrease is observed for increasing N , as well as for stronger localization
potentials.

4.2.6 Conclusions and Outlook

In this paper, we have considered properties of the 1+1-dimensional attrac-
tive Bose gas around its critical point. By analyzing important indicators for
QPTs, we provided further evidence that a tuning of the effective coupling
gN leads to a phase transition in the system. More importantly, we have
shown that quantum correlations become very important close to the critical
point - contrary to the naive intuition that at sufficiently large particle num-
ber, systems should behave approximately classical. We have also pointed
out that the quantum entanglement of the bosons close to the critical point
is “long range” - in contrast to the observations in spin-chain systems that
display nearest neighbour entanglement at criticality.

The motivation for our study of this model system, however, was the con-
jecture that black holes are bound states of a large number of weakly inter-
acting gravitons. It has been claimed that the graviton condensates behave
significantly different with respect to the semiclassical black hole analysis
due to their being at a quantum critical point. It was argued that criticality
allows quantum effects to only be suppressed by the perturbative coupling
αg ∼ 1/N as opposed to the usual exponential suppression. If the qualitative
insights from our simple toy model are valid for graviton condensates our
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results can back up several of the claims. We can argue that quantum effects
become important for attractive Bose condensates at their critical point -
even though the perturbative coupling is very small. Moreover, the entan-
glement of the true state is long range, consistent with the notion of a con-
densate of gravitons of wavelength comparable to the Schwarzschild radius.
This would imply that for a black hole, the semiclassical treatment with a
background geometry that obeys classical general relativity and quantization
of fields on top of this rigid background becomes invalid much earlier than
what the standard lore tells. Although curvature invariants in the horizon
region of large Schwarzschild black hole are small, the semiclassical treat-
ment is not applicable. Instead, quantum correlations in the graviton bound
state become relevant. Importantly, our results point in the direction that
the physics is dominated by large wavelengths. Therefore the description
of black holes as graviton condensates has the attractive feature of being
independent of the ultraviolet completion of gravity. The only requirement
being that the low energy theory resembles perturbatively quantized Einstein
theory with a massless spin two graviton.

The 1+1-dimensional Bose gas can indeed capture quite a few of the in-
triguing features of black holes and their possibly quantum nature. To under-
stand in more detail time dependent features, such as Hawking evaporation,
resolutions of the information paradox or scrambling, the implementation of
dynamical methods will be amongst the aims of immediate future work. This
will then necessarily also address possible couplings to external systems in
order to be able to model the evaporation process. Working with more spa-
tial dimensions may prove feasible to model the collapse induced by Hawking
evaporation. This could alternatively be achieved by considering couplings
that show further resemblance with gravitational self- interactions. Steps in
these directions also include generalizations to non-number conserving, and
ultimately relativistic theories.

Instabilities can in turn be countered by adding repulsive interactions
that dominate at very short scales. Stable configurations of that sort would
correspond to extremal black holes. Their properties also provide a vast
playground for future investigation.

4.2.7 Spontaneous symmetry breaking in finite volume

Standard lore states that there can be no spontaneous symmetry breaking in
finite volume with a finite number of fields. This may seem puzzling since we
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claim here explicitly that our ground state is a localized soliton for gN > 1,
clearly signaling spontaneous breaking of translation invariance. This puzzle
is resolved by noticing that the mean field approximation can only be exact
in the limit N →∞.

To illustrate this, consider a number conserving Hamiltonian containing
a finite number 2m of fields in the potential. Mean field approximation
becomes exact if the corresponding state can be approximated arbitrarily
well by a Hartree-type state, i.e.

|ψ0〉 = ⊗
∑
k

ck|k〉 . (4.63)

A translated state is given by

|ψδθ〉 = ⊗
∑
k

cke
ikδθ|k〉 . (4.64)

Now it can be seen that spontaneous symmetry breaking is indeed possible
as we take the limit N →∞. It can be shown that

lim
N→∞

|〈ψ0|ψδθ〉|2 = lim
N→∞

∣∣∣∣∣∑
k

cke
ikδθ

∣∣∣∣∣
2N

, (4.65)

lim
N→∞

|〈ψ0|H|ψδθ〉|2 ≤ lim
N→∞

CN2m

∣∣∣∣∣∑
k

cke
ikδθ

∣∣∣∣∣
2(N−m)

. (4.66)

In both expressions the right hand side vanishes as long as ck 6= 0 for at
least two different k. In other words, in the large N limit localized objects,
localized at different points are orthogonal and, furthermore, do not mix
under time evolution.

In the proof for absence of finite volume symmetry breaking enters the
assumption that expectation values of composite operators made out of the
fields are finite. This assumption breaks down in the large N limit. While
this implies unboundedness of the energy in this limit, it is nothing to worry
about. The energy diverges linearly in N and hence the energy per particle
remains bounded, reminiscent of a thermodynamic limit.
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4.3 Scrambling in the Black Hole Portrait

4.3.1 abstract

Recently a quantum portrait of black holes was suggested according to which
a macroscopic black hole is a Bose-Einstein condensate of soft gravitons stuck
at the critical point of a quantum phase transition. We explain why quantum
criticality and instability are the key for efficient generation of entanglement
and consequently of the scrambling of information. By studying a simple
Bose-Einstein prototype, we show that the scrambling time, which is set by
the quantum break time of the system, goes as logN for N the number of
quantum constituents or equivalently the black hole entropy.

4.3.2 Introduction

The present state of affairs in black hole physics is somewhat paradoxical. On
one side, it is widely believed that the final state of the black hole evaporation
process is a pure state, while on the other side, the standard Hawking’s model
of evaporation does not account for the purification mechanism. Obviously
the missing ingredient is a microscopic quantum model of the black hole
beyond its pure geometrical definition.

In the present paper, we shall focus on a specific microscopic description,
put forward in [9, 11–13, 16] (for different aspects of this portrait, see [184–
188]). In this picture, black holes of arbitrarily large size R are treated as self-
sustained bound states of a large number of long wavelength (∼ R) gravitons.
From the quantum physics point of view, such a bound-state represents a
Bose-Einstein condensate stuck at the critical point of a quantum phase
transition. This quantum criticality is the key to the understanding of the
mysterious properties of black holes that emerge in the naive semi-classical
treatment.

In this respect, our approach sharply differs from previous attempts, such
as D-brane models for extremal black holes [6], models based on Matrix the-
ory [189–191] and fuzzballs [192]. These approaches heavily rely on a par-
ticular UV-completion of gravity at short distances, such as string or Planck
(Lp) length-scales. Our key postulate is fundamentally different. We state
that physics of macroscopic black holes of size R � LP , must be largely
insensitive to the properties of UV-completion at Planck-distances and must
be governed solely by the quantum physics of long wavelength gravitons with
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their quantum interaction strength being fully determined by the graviton-
graviton interaction vertices of Einstein theory. All the seemingly-mysterious
properties of the black holes must originate from collective quantum phenom-
ena of these constituent soft gravitons. To put it shortly, in our picture large
black holes are not governed by UV-physics, but rather by the quantum
collective effects of IR-physics.

These collective effects render the entire macroscopic system extremely
sensitive to quantum effects. A fundamental aspect is the appearance of
large number of almost gapless collective modes (Bogolyubov modes), which
can be thought of as the quantum holographic degrees of freedom. They are
responsible for the instability of the condensate, for its quantum depletion
as well as for a large (near)degeneracy of the quantum states. These phe-
nomena provide the underlying quantum-mechanical dynamics for black hole
evaporation, entropy and holography.

An accompanying property of the quantum phase transition is a very
efficient generation of entanglement. Sharp rise of one-particle ground-state
entanglement was already confirmed by numerical studies of a prototype
model [16].

In this paper, we shall discuss how the instability of the BEC is the key
for understanding the efficient generation of entanglement and information-
scrambling by a black hole in a logarithmic time,

tscrambling/R ∝ logN . (4.67)

Noticing that in our treatment N measures the number of constituents, this
result is in full agreement with the semi-classical prediction originally made
in [146,147].

Let us briefly review some of the key ingredients of the black hole quantum
portrait. In the picture of [12] we track the formation of a black hole as
bringing the graviton condensate to the critical point of a quantum phase
transition. At this point the BE condensate is nearly self-sustained with
mass M and size R related to the total number N of constituents as M =√
NL−1

P , R =
√
NLP . However, the condensate is unstable both with respect

to collapse as well as to quantum depletion. The two effects balance each
other in such a way that although the condensate slowly collapses and loses
its gravitons, it stays at the quantum critical point. This process can be
parametrized as a self-similar decrease of N ,

dN

dt
= − 1√

NLP
. (4.68)
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Note that this instability survives in the semi-classical limit (LP → 0, N →
∞,
√
NLP = fixed), which corresponds to the Gross-Pitaevskii limit of the

graviton condensate.
One of the most important outputs of the black hole N -quantum portrait

is to allow us to identify important quantum corrections that are not resolv-
able within the standard semi-classical approximation. In the semi-classical
picture one works with the notion of classical metric. Irrespectively whether
the metric is derived from the loop-corrected effective action, it is an intrinsi-
cally classical entity and its quantum constituents are not resolved. The only
non-perturbative quantum corrections that one can visualise in this limit for
a black hole of action S are of the form e−

S
~ . These sort of corrections take

into the account only the total black hole action and are blind to any form
of microscopic constituency. Such corrections, for instance, can measure the
transition amplitudes between black hole and thermal topologies [193,194].

On the other hand there exist more important quantum corrections that
scale as ~/S, but they are unaccountable in the semi-classical treatment.
The key problem lies in unveiling their microscopic meaning as well as in
understanding under what conditions these quantum corrections can effec-
tively lead to order-one effects for macroscopic black holes. In the quantum
N -portrait these corrections naturally appear as 1/N corrections, since the
occupation number of gravitons measures the black hole action (as well as
the entropy),

N =
S

~
. (4.69)

Thus, the quantity 1/N is a measure of quantum effects that are much more
important then the e−N -type effects captured by the semi-classical analysis.
In particular, it was shown that 1/N -corrections account for the deviations
from thermality of black hole radiation [9] as well as for the quantum hair
of black holes [11]. Existence of these corrections was also confirmed for
the string holes [195].6 These 1/N -corrections are the key for abolishing the
black hole ”information paradox”, since over the black hole half-lifetime they
give order-one effect for arbitrarily-large black holes N � 1 [13].

A Bose-Einstein condensate represents a very natural setup for identifying
the physical meaning of 1/N -corrections. In a nutshell, for BE condensates

6The similarly large corrections are also indicated in a different treatment in which one
prescribes a wave-function to the horizon [196–198], This approach differs from ours since
the metric is still treated semi-classically and its quantum constituents are not resolved.
Nevertheless the largeness of the corrections is in a qualitative agreement.
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the small quantum deviations from the mean field Gross-Pitaevskii (GP)
description are 1/N -corrections, with 1/N replacing the role of the Planck
constant ~. Moreover, as we will discuss in this paper, instabilities of the GP
equation can naturally lead to fast enhancement of these quantum correc-
tions. More concretely, around instabilities of the GP equation the quantum
break time (i.e. the time needed to depart significantly (O(1)) from the mean
field approximation) scales with N as logN . Nicely enough, the BE portrait
of black holes implies instabilities of the GP equation. The root of these in-
stabilities lies in the mean-field instability of the condensate at the quantum
critical point due to the attractive nature of the interaction. As we will show
in this note, the quantum break time for BE condensates fits naturally with
the notion of scrambling time for black holes.

4.3.3 Scrambling and Quantum Break Time

The notion of black holes as scramblers was first introduced in [147], where
it was realized that perturbed black holes should thermalize in a time t ≥
R logSBH for SBH the black hole entropy andR the black hole radius. In [146]
it was then suggested that black holes may saturate this bound, a property
that has become known as fast scrambling. The associated timescale is now
known as scrambling time.7

The concept of scrambling is intimately related to entanglement of sub-
systems. Consider a quantum mechanical system whose Hilbert space is a
direct product H = HA ⊗ HB in a state described by the density matrix
ρ. The conventional measure of entanglement between the subsystems is the
Von Neumann entropy of the reduced density matrix:

SA = Tr
A

(ρA log ρA) ρA = Tr
B
ρ (4.70)

A system is called a scrambler if it dynamically thermalizes in the sense that,
if prepared in an atypical state, it evolves towards typicality. That is, even
for an initial state that has little or no entanglement between subsystems,
the time evolution is such that the reduced density matrices are finally close
to thermal density matrices. The scrambling time is simply the characteristic
time scale associated to this process. It can be described as the time it takes
for a perturbed system, one that is described by a product state, to evolve
back into a strongly entangled state. It can also be interpreted as the time

7For several attempts to understand the physics of scrambling, see [158,199–201].
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necessary to distribute any information entering the system amongst all its
constituents.

The quantum meaning of the scrambling time becomes more transparent
if we rewrite it as

tscrambling ∼ R log

(
S

~

)
(4.71)

with S now denoting the action of the black hole. This is the typical expres-
sion for the quantum break time provided the system is near an instability,
where quantum break time denotes the timescale for the breakdown of the
classical (mean field) description. Hence we will identify as a necessary con-
dition for a system to behave as a fast scrambler to have a quantum break
time scaling logarithmically with the number of constituents.

Logarithmic Quantum Break Time

In the context of quantum chaos, it has long been known that under cer-
tain conditions, the classical description breaks down much quicker than the
naively expected polynomial quantum break time. Specifically, in the vicin-
ity of an instability for the classical description, i.e. positive local Lyapunov
exponent λ, the quantum break time usually goes as

tbreak ∼ λ−1 log
S

~
(4.72)

This exactly resembles the logarithmic scaling of the scrambling time. In
fact, the black hole scrambling time coincides with the typical quantum break
time if the microscopic description of the black hole contains an instability
characterized by a Lyapunov exponent λ ∼ 1/R. The black hole quantum
portrait contains such an instability which survives in the semi-classical limit
(LP = 0, N = ∞, with

√
NLP fixed ) and is described by equation (4.68).

The characteristic timescale is given byR =
√
NLP which classically becomes

the black hole radius. Hence we expect the Lyapunov exponent to be set by
1/R. This is precisely the way we will identify scrambling in the BE portrait
of black holes.

For the convenience of the interested reader, in appendix 4.3.7 we repro-
duce a general argument for logarithmic quantum break time at an insta-
bility. In the next section we show specifically for Bose-Einstein condensate
systems that they exhibit quantum breaking in the scrambling time. We
will also comment on the instability there. In section 4.3.5, we perform a
numerical analysis that confirms this reasoning.
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Chaos and Thermalization

The relation between scrambling and quantum break time is even stronger if
the classical limit of the relevant system not only contains a local instability,
but also exhibits classical chaos. For such systems it has been claimed - and
checked to some extent - that the time scale of thermalization is of the same
order as tbreak [202]. By taking a pure quantum state it was shown that the
time evolution not only stretches and folds the quasi-probability distribu-
tion, but also smoothens it out. Of course the quantum state stays pure,
but it is thermalized in the sense of being smeared out over the accessible
classical phase space volume. This would presumably imply scrambling as
defined above. Although, at this point we cannot prove that this is indeed
how scrambling actually takes place in the graviton condensates of the BH
portrait, we do take it as further evidence that the quantum break time is
intimately related with scrambling time.

4.3.4 Quantum Break Time in BE Condensates

Prototype Models

It has been pointed out [9, 12, 13] that many of the seemingly mysterious
properties of black holes can be resolved when considering them as Bose-
Einstein condensates of long wavelength gravitons that interact with a critical
coupling strength. Indeed, it has been realized that a vast amount of those
properties can already be explored in much simpler systems. These systems
share the crucial property that they contain bifurcation or quantum critical
points.

Within this work we will follow that route and further explore models
of attractive cold bosons both in one and three spatial dimensions. We will
show that they exhibit a logarithmic quantum break time, again intimately
related to the existence of instabilities and quantum critical or bifurcation
points.

The explicit models under consideration in d+1 dimensions are described
by the Hamiltonian

H =

∫
V

ddx

(
~2

2m
(∇φ†)(∇φ)− g

2
(φ†φ)2

)
. (4.73)

Here, φ carries the dimension length−d/2, while the coupling constant g carries
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dimension energy × lengthd. The integral is taken over the volume of a d-
dimensional torus V .

Expanding φ into mean field and quantum fluctuations φ = φmf + δφ and
subsequent minimization of the energy functional leads, at zeroth order, to
the Gross-Pitaevskii (GP) equation for stationary solutions:

i~∂tφmf =

(
~2

2m
∆ + g|φmf |2

)
φmf = µφmf . (4.74)

The chemical potential µ appears as a Lagrange multiplier that imposes a
constraint on the particle number N ,

∫
V
ddxφ†φ = N .

An intuitive understanding of the physics of these Bose-Einstein conden-
sates may be gained by considering the behavior of the energy when rescaling
the characteristic size of the condensate R:

E ∼ N

R2
− gN N

Rd
, (4.75)

where the coefficients of both terms naturally depend on the shape of the
condensate. As illustrated in Fig. 4.9, the behavior depends strongly on the
dimension under consideration. For d = 1, the energy is always bounded
from below. The (stable) ground state solution is given by a homogeneous
condensate for gN < 1 and a localized soliton for gN > 1. A quantum phase
transition is observed [203] at gN = 1. On the other hand, for d ≥ 3, there is
a classically stable homogeneous solution for gN < 1, while the condensate
is unstable for gN > 1.

Quantum Breaking in Bose Condensates

We will now apply the notion of quantum breaking to a Bose-Einstein conden-
sate system of N identical particles. In general, we want to study k-particle
subsets (although k particles do not form a proper subspace, this technical-
ity will not disturb us much) and use the conventional k-particle sub-density
matrices

ρ(k)
mn = N Tr

[
ρ

(∏
l

(a†l )
ml

)(∏
l

anll

)]
(4.76)

where m and n label k-particle states, al is the annihilation operator for
one Boson in the l orbital and nl is the occupation number in state n of
orbital l, which satisfy

∑
nl = k. The normalization N is chosen so that
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L
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Figure 4.9: Energy as a function of the condensate width for gN � 1 (solid)
and gN � 1 (dashed) for a condensate in 1 (black) and 3 (red) spatial
dimensions.

Tr ρ(1) = 1. We would identify a Bose gas as a fast scrambler, if its time
evolution would create a large entropy in each ρk for k � N on a timescale
that scales logarithmically with N .

More precisely, we do not expect generic atomic Bose-Einstein conden-
sates - as available in the laboratory - to be scramblers in the sense of the
previous paragraph. We do however identify the scrambling timescale to be
the relevant thermalization scale for the quantum time evolution of the sys-
tem in the following restricted way. If we do not insist on the thermalization
of all sub-density matrices, but restrict our attention to ρ(1), then the time
in which a state with pure ρ(1) develops a large von Neumann entropy in ρ(1)

is exactly the quantum break time. This is because a pure ρ(1) represents a
condensate-like state with all bosons in one orbital. This state can be com-
pletely described by a classical field representing the wave function of the
relevant orbital. Therefore as soon as ρ(1) develops a large entropy, the gas
can no longer be expected to have a classical description.



4.3 Scrambling in the Black Hole Portrait 167

The one-particle density matrix may be diagonalized

ρ(1) =
∑
i

λi|Φi〉〈Φi| . (4.77)

with eigenvectors |Φi〉, λi and eigenvalues ρ(1)(Ψ).
A true BE condensate state |ΨBE〉 is characterized by possessing one

eigenvalue λmax = O(1) with the sum of all other eigenvalues suppressed as
1/N . If a many-body ground state is of this type, we will say that the system
is a BE condensate.

In the limit N →∞ the corresponding reduced one-particle density ma-
trix ρ(1) defines a pure state |ΦGP 〉 in the one-particle Hilbert space, which
is the eigenvector corresponding to the unique maximal eigenvalue. The BE
many-body state corresponds to having all the N constituents in the same
state |ΦGP 〉. The wave function ΦGP (x, t) of this one-particle state is the
Gross-Pitaevskii wave function and its evolution is described by the Gross-
Pitaevskii equation (4.74).

For finite N and finite gN , the Gross-Pitaevskii equation is never exact.
In fact, any exact BE condensate state will, by quantum mechanical time
evolution, deplete. This is reflected by the fact that the other eigenvalues of
ρ(1) grow. In what follows, we are interested in tracking precisely this growth
for some concrete initial conditions, as this allows us to quantify how quickly
the Gross-Pitaevskii description breaks down.

Under these conditions the quantum break time tb appears as the time in
which the difference between the exact many-body evolution and the mean
field time evolution surpasses a threshold value. Note that the scaling of tb
with N is independent of the choice of threshold value, therefore rendering
it effectively arbitrary for our purposes.

Before going into more concrete details let us briefly discuss the physical
meaning of this timescale. Let us denote by ρ(1)(t) the exact many-body

evolution of the reduced density matrix, whereas by ρ
(1)
GP (t) we label the

mean field GP time evolution for the same initial conditions at t = 0. Since
ρ

(1)
GP (t) is a pure state, we can use as a measure of the difference with respect

to ρ(1)(t) the entanglement entropy S(ρ(1)(t)). We will define tb as the time
needed to reach a certain threshold entropy. This time will generically depend
both on the initial condition as well as on the number N of constituents.

The potential growth of the entanglement with time means that the one-
particle density matrix is losing quantum coherence. On the other hand, and
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from the point of view of the many body wave function, this loss of quantum
coherence is reflected in the form of quantum depletion, i.e. in the growth of
the number of constituents that are not in the condensate state. Note, that
since at the time tb the number of constituents away from the condensate
is significant, this time also sets the limit of applicability of the Bogolyubov
approximation.

For regular quantum systems we can expect the time tb to depend on N as
some power [204]. However, as we will show, some attractive BE condensates
exhibit a quantum breaking time scaling with N as tb ∼ logN i.e., they
generate entanglement in a time depending on the effective Planck constant
as log(1/~).

In this sense BE condensates – under those conditions – effectively behave
as fast scramblers. Hence our task will be, on one side to identify the above
conditions and on the other side to relate those fast scrambler BE condensates
with the sort of BE condensates we have put forward as microscopic portraits
of black holes.

4.3.5 Scrambling and Quantumness in BE Condensates

A necessary condition for having a quantum break time tb scaling like logN
for some initial many body state Ψ0 is the exponential growth with time of
small fluctuations δΨ(t) where Ψ = Ψ0 + δΨ. In linear approximation the
equation controlling δΨ is the Bogolyubov-De-Gennes equation. As discussed
above, a significant departure from the mean field approximation as well
as generation of entanglement for the reduced one particle density matrix
requires a growth in time of the depleted i.e of the non-condensed particles.
Nicely enough the equations controlling the growth of depleted particles are
the same as the ones controlling the small fluctuations of the Gross-Pitaevskii
equation and therefore we can translate the problem of finding a time tb
scaling like logN into the simpler problem of the stability of the Gross-
Pitaevskii equation. For a detailed discussion and the related technicalities,
see [205].

We can understand the short break time more concretely if we think about
the difference between the exact evolution and the mean field evolution as
the addition of a small perturbation to the exact Hamiltonian. Since an un-
stable system is exponentially sensitive to perturbations of the Hamiltonian
then the time for the evolution of states to differ substantially is very short.
The instability is controlled by the Lyapunov exponent λ, while the preex-
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ponential factor will depend on the size of the perturbation. The quantum
break time is the time when this becomes important, so we can naturally
expect it to scale like tb ∼ λ−1 logN .

Numerical Analysis

Quantum Break Time of One Dimensional Condensates

In this section we will verify the logarithmic quantum break time numerically
for the (1+1)-d Bose condensate.

The theory (4.73) in 1 + 1 dimensions undergoes a quantum phase tran-
sition for gN = 1. When surpassing the critical coupling, the homogeneous
state becomes dynamically unstable.

As we expect the black hole to lie at such a point of instability, due
to its collapse going in hand with Hawking evaporation, we will model the
behavior of the black hole by considering the homogeneous state past the
point of quantum phase transition.

We consider gN > 1 and prepare as initial condition a perfect condensate
in the homogeneous one-particle orbital . The linear stability analysis (simply
expanding the classical Hamiltonian (4.73) around a the background) at once
indicates an instability: the energy of the first Bogolyubov mode becomes
imaginary; its magnitude corresponds to λ, the Lyapunov coefficient for the
unstable direction.

Note that this setup may be interpreted as preparing the system in a
supercooled phase. Or as the result of a quench across the phase transition,
suddenly increasing the coupling from gN = 0 to gN > 1 [206, 207]. The
system finds itself in a classically instable configuration and quantum fluc-
tuations ensure that a rapid depletion of the condensate and simultaneous
entanglement generation take place.

Would we evolve the same initial state for gN < 1, very little entangle-
ment would be generated (because it overlaps with very few energy eigen-
states there) and the relevant timescale of evolution would not scale loga-
rithmically in N (as can be checked by studying the spectrum).

Decomposition of φ in terms of annihilation and creation operators

φ̂ =
1√
Lb

∞∑
k=−∞

âke
ikx , (4.78)
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leads to the more convenient form for (4.73)8

Ĥ =
∞∑

k=−∞

k2â†kâk −
g

4

∞∑
k,l,m=−∞

â†kâ
†
l âm+kâl−m (4.79)

Bogolyubov diagonalization around the homogeneous background φhom =√
N yields for the energy of the first Bogolyubov mode [13,16,203]

ε1 =
√

1− gN (4.80)

Parametrizing the effective coupling as gN = 1 + δ, we obtain ε1 = i
√
δ.

Applying the above argument, we therefore expect the system to break from

mean field on a timescale tbreak ∼ =(ε1)−1 logN ∼
√
δ
−1

logN . The argument
of the logarithm is proportional to N because the action of the mean field
solution scales as S ∼ N for fixed gN .

Within this setup, the departure from classical evolution is expected to go
in hand with the generation of large entanglement. This allows us to identify
the quantum break time directly with the scrambling time.

Since we are interested in finite N effects in a regime where we expect
semi-classical methods to fail, we will use a method not relying on any kind
of perturbation theory. We will diagonalize the Hamiltonian (4.79) explicitly.
Then, in order to time evolve the homogeneous Hartree state

|φhom〉 = (â†0)N |0〉, (4.81)

we will project |φhom〉 onto energy eigenstates and apply the time evolution
operator U(t) = exp (iHt) on the state. Finally, we project the time evolved
state onto a k-particle subspace and compute the von Neumann entropy

S1 = −Tr ρ1 log ρ1

(ρ1)ij = 〈φhom|â†i âj|φhom〉 (4.82)

as a function of time.
In order to make this task computationally feasible we will make use of

several properties of the system [203]. Since the Hamiltonian is translation-
ally invariant and number conserving we can restrict ourselves to fixed total
momentum and fixed total particle number. In our case, only the total mo-
mentum zero sector is relevant, since this contains the homogeneous state.

8For improved readability, we have now set ~ = 2m = V = 1
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Furthermore, from the Bogolyubov analysis we see that the modes with k > 2
have a fairly large gap for gN not much bigger than 1. Therefore, we can
truncate the momentum modes l we take into account to l = −1, 0, 1.

In Fig. 4.10 we plot S1 as functions of time for different values of N. In
order to see the break time, we evaluate the time when S1 is higher than
some threshold value Sth. We plot this time as a function of particle number
N in Fig. 4.11, where the solid line is the result of fitting a logarithm to the
data points. This clearly shows a logarithmic break time.

A clearer understanding for the observed behavior emerges if we look
at the density of states. In Fig. 4.12 we show a plot of the density of
states in the zero-momentum sector for given energy and coupling. It can be
clearly observed that there is a large density of states for low energies near
the phase transition, which is due to the light Bogolyubov mode appearing
at the quantum critical point. Furthermore, we clearly see a band of a high
density of states for large couplings. The state we time-evolve in the numerics
overlaps only with the modes in this band. We have checked that the density
of states in this band varies logarithmically with N, i.e. the gap ∆ between
states in this band will typically go as

∆ ∼ 1/(λ logN). (4.83)

Given that the time scale for the time evolution will be set by this gap we
naturally see the logarithmic break time emerging.

Three Dimensional Condensates and Connection with Black Hole

In the previous section, we have studied a Bose condensate in one spatial
dimension as a prototype model. In that case it was viable to perform nu-
merical simulations of the quantum time evolution. For an attractive Bose
condensate, one dimension is special however insofar as the classical GP sys-
tem has a well defined lowest energy configuration after the phase transition
- the bright soliton. In higher dimensions, however, there is no classical so-
lution in the would-be solitonic phase. Instead when increasing the effective
coupling gN past 1, the stable lowest energy solution of the Gross-Pitaevskii
equation and another (unstable) solution disappear together in a saddle node
bifurcation [208] (see a sketch of the phase diagram in Fig. 4.139). Thus,

9This can also be understood intuitively from Fig.4.9 and Eq.(4.75). The two solutions
for small gN correspond to the maximum of the energy functional and the infinitely
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Figure 4.10: One particle entanglement entropy as a function of time for
N = 16, 32, 64, 128 and 256.

while we willfully prepared an unstable initial state for the (1+1)-d bosons,
when a perfectly stable ground state was available, in (3+1)-d it is inevitable
to enter the instability when going past the bifurcation point.

It is precisely this instability that we believe to be responsible for the fast
scrambling of information in black holes.

There, the relevant coupling controlling the mean field approximation

is gN with g =
L2
P

l2
for l the wave length of the constituent gravitons. In

the weak coupling regime gN < 1 the condensate cannot be self-sustained
and we should therefore imagine some external trapping potential that sets
the wavelength of the constituent gravitons. The many body wave function
is a stretched condensate in the corresponding trap. At the critical point
gN = 1 the system of gravitons becomes self-sustained in the sense that

stretched condensate. For large gN , no stable points exist. This analysis assumes the
presence of a trapping potential. As we will argue below, this is in close analogy to the
black hole.
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Figure 4.11: Quantum break time as a function of N .

the quantum pressure compensates the gravitational attraction. However,
although at this point we can satisfy the virial condition of self-sustainability,
the system is not stable in the mean field approximation and will tend to
collapse - reducing its size and consequently decreasing the typical wavelength
of the constituent gravitons. As we have elaborated, this mean field picture
dramatically changes once we take appropriately into account 1/N quantum
effects. Based on our prototypes, we expect the quantum evolution to break
from mean field in a time O(R logN). This is reflected in the generation of
large entanglement entropy for the corresponding one particle density matrix
as a function of gN .

The evolution of black holes is different from that of laboratory conden-
sates because of Hawking evaporation. While collapse usually puts a con-
densate off the critical point, this is prevented by the decrease of the number
of gravitons N . As the condition of instability persists along the collapse, we
also expect larger-k-density matrices to be efficiently scrambled.
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4.3.6 Summary and Outlook

The purpose of this note was to stress that the properties of unstable Bose-
Einstein condensates are crucial in understanding the efficient generation of
quantum entanglement and scrambling.

The idea of black holes as maximal scramblers is a very interesting hy-
pothesis. Its verification requires a microscopic quantum theory and the goal
of this paper is to set some ideas in this direction.

The very conservative assumption of our work lies in modeling black holes
as many-body quantum systems governed by weakly-coupled IR gravity. The
semi-classical one-particle collective behavior appears as a consequence of the
many-body system being in a BE condensate state. Quantum fluctuations
relative to this state are measured by 1/N with N being the number of
graviton constituents (and, equivalently, the BH action in Planck units).
Some special features of BHs, as, for instance, fast scrambling, are understood
in this frame as the reflection of a logarithmic quantum break time.

These observations provide the clue for solving some recalcitrant BH para-
doxes. In particular, the assumption of purity of the final evaporation state
seems to lead to strong departures from semi-classicality at least in Page’s
time [149], meaning that a breakdown of semi-classicality takes place after
this time irrespective of the size of the black hole. This is very puzzling,
since naively one expects the semi-classical approximation to be valid for
large macroscopic black holes. The approach to these sort of puzzles that we
can extract from the present work lies in identifying the root of this break-
down of semi-classicality in the existence of a logarithmic quantum break
time. Because BHs are unstable BECs, the quantum evolution takes over
much sooner then what would be naively expected.

Furthermore, we consider the properties of quantum criticality and quan-
tum instability as crucial for fast scrambling. We take the ensuing logarithmic
quantum break time as a very encouraging sign. However, we would refrain
from making strong statements about implications of additional black hole
properties, such as, for example, their age or the embedding spacetime.10 To
address such questions the prototype model must be refined, which is the
subject of future work.

As a marginal comment let us just note that the quantum time coordinate
λt, with λ the Lyapunov exponent, is the natural candidate for the Rindler
time. This leads to a potential connection between the physics of the time-

10We thank the referee for reminding us of these issues.
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coordinate inside the black hole and the entanglement flow for the reduced
density matrix.

Finally, it would be very interesting to study some of the phenomena
discussed in this work, in particular the appearance of logarithmic quantum
break time, for realistic Bose-Einstein condensates in the laboratory. This
would give an exciting prospect of simulating some aspects of quantum black
hole physics in the labs.

4.3.7 appendices

Instability and Quantum Break Time

The question of how long a mean field (i.e. classical) trajectory faithfully
reproduces the quantum evolution of a dynamical system has been studied a
very long time ago [204]. Only much later however has it been noticed, that
under certain circumstances, the quantum evolution can deviate from mean
field in sub-polynomial time. Good arguments have been given [209] that
where the classical phase space of a system exhibits a dynamical instability,
i.e. a Lyapunov exponent λ > 1, the quantum dynamics will deviate from
mean field after a time that goes like

tbreak = λ−1 log(S/~) (4.84)

where S is the typical action.

Local Instability Argument

The general argument (following [209]) that leads to the logarithmic break
time can be summarized as follows: Assume that the classical phase space
of the system contains a region with a local Lyapunov exponent λ > 0. For
the sake of the argument, let us represent every pure quantum state |ψ〉 as a
Glauber Q or Husimi quasi-probability distribution11 on phase space

Qψ(α) =
1

π
|〈α|ψ〉|2 , (4.85)

where the |α〉 form an overcomplete basis of coherent states. As one would
expect for a real probability distribution, the Q distribution moves along with

11It is similar to the better known Wigner quasi-probability function, but has some
properties that make it favorable for the study of chaotic systems.
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the classical trajectories. There are however intrinsically quantum terms that
contain additional derivatives and act diffusively on phase space.

Imagine that we initially prepare a close analog to classical state - a co-
herent state - and localize it in the unstable region of phase space. The Q
distribution, initially well localized, will be stretched in the unstable direc-
tion. However, because Hamiltonian flows are volume preserving, there must
also be a “stable” direction with a local Lyapunov exponent −λ. The Q dis-
tribution is exponentially compressed in the stable direction. When its width
gets smaller than a given phase space distance (that involves ~), the diffusive
quantum terms become important. From that point on, the quantum time
evolution departs even from the physics of a classical phase space ensemble.
The time scale for the departure naturally goes like

tbreak = λ−1 log(1/~). (4.86)

It can be argued that the dimensionless ratio in the exponent should be S/~
with S being the typical action [204]. The quantum break time tbreak is also
referred to as Ehrenfest time in the literature on quantum chaos.

The quick break time has been explicitly verified numerically, e.g. in
tractable two level systems that are well motivated experimentally [210].

4.3.8 Quantum Break Time for a Wave Packet

In order to illustrate the arguments of the previous section, we show the
phase space evolution of the simplest possible system with an instability, a
nonrelativistic particle of mass m in the potential

V (x) = −αx2 + βx4 (4.87)

Around x = 0, there is an instability in phase space with positive local
Lyapunov exponent λ =

√
2α/m. We evolve a minimum uncertainty wave

packet centered around x = 0, p = 0. Three snapshots of the Husimi function
at different instances of time are shown in Fig. 4.14, top row. The bottom
row shows the classical Liouville time evolution of the same initial functional
shape. Evidently, the contraction of the Husimi function in the stable direc-
tion is limited compared to the classical evolution. As explained above, this
is due to quantum diffusive terms and generically limits the applicability of
the classical approximation to the quantum break time.
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Figure 4.12: Density of states as a function of gN and E/N for N=1500.



178 4. Papers

gN

Figure 4.13: Phase diagram for the three-dimensional condensate. For small
gN two solutions exist; one is stable while the other one is unstable. At the
critical point, both solutions disappear.
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Figure 4.14: Phase space (x,p) evolution of the quantum mechanical Husimi
function starting from an instability (top row). Classical Liouville evolution
of the same initial function. (bottom row)
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chen Mechanik innerhalb der Quantenmechanik. Zeitschrift für Physik,
45(7-8):455–457, 1927. doi:10.1007/BF01329203.

[205] Y. Castin and R. Dum. Low-temperature Bose-Einstein condensates in
time-dependent traps: Beyond the U(1) symmetry-breaking approach.

http://arxiv.org/abs/1212.2606
http://dx.doi.org/10.1088/0264-9381/30/9/092001
http://dx.doi.org/10.1088/0264-9381/30/9/092001
http://arxiv.org/abs/1305.3139
http://arxiv.org/abs/1302.6086
http://arxiv.org/abs/1302.6086
http://arxiv.org/abs/1306.5298
http://arxiv.org/abs/1306.5298
http://arxiv.org/abs/1101.6048
http://arxiv.org/abs/1101.6048
http://arxiv.org/abs/1111.6580
http://dx.doi.org/10.1007/JHEP04(2013)022
http://arxiv.org/abs/1105.2581
http://dx.doi.org/10.1103/PhysRevD.84.106012
http://dx.doi.org/10.1103/PhysRevD.84.106012
http://link.aps.org/doi/10.1103/PhysRevA.67.013608
http://link.aps.org/doi/10.1103/PhysRevA.67.013608
http://dx.doi.org/10.1103/PhysRevA.67.013608
http://dx.doi.org/10.1103/PhysRevA.67.013608
http://dx.doi.org/10.1007/BF01329203


201

Phys. Rev. A, 57:3008–3021, Apr 1998. doi:10.1103/PhysRevA.57.

3008.

[206] P. Calabrese and J. Cardy. Evolution of entanglement entropy in one-
dimensional systems. Journal of Statistical Mechanics: Theory and
Experiment, 4:10, April 2005. arXiv:arXiv:cond-mat/0503393, doi:
10.1088/1742-5468/2005/04/P04010.

[207] P. Calabrese and J. Cardy. Time Dependence of Correlation
Functions Following a Quantum Quench. Physical Review Letters,
96(13):136801, April 2006. arXiv:arXiv:cond-mat/0601225, doi:

10.1103/PhysRevLett.96.136801.
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