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Summary 

Environment-driven attentional selection is assumed to be guided by the output of a 

salience map, which codes the conspicuity of each location in the visual field. Attentional 

selection sequence has been computationally modeled by salience and visual search models 

and has been empirically investigated with the distractor search paradigm. In this paradigm, a 

salient target and an additional salient distractor are presented among non-targets with the 

task to find the target and to ignore the distractor. The typical finding is that reaction times 

are increased when the salient distractor is present compared to when it is absent. It was 

concluded that attention is spatially captured by the more salient distractor before the target 

can be selected and that this additional selection leads to interference. However, this 

conclusion about the selection sequence is strongly debated and an alternative explanation is 

that attention is immediately directed to the less salient target, but this selection being slowed 

due to the distractor drawing processing resources. Although the attentional selection 

sequence, i.e. the source of reaction time interference, in the distractor search paradigm is 

still under debate, computational models as well as the empirically substantiated attentional 

capture account assume that the most salient location is invariably selected first.  

The results of this thesis challenge this strong claim: by parametrically manipulating target 

and distractor salience in the distractor search paradigm, it was shown that the size of 

reaction time interference varies as a function of relative salience between target and 

distractor and that less salient distractors interfere as well. Empirical support that this 

interference is the result of spatial attentional capture rather than a slowed target selection 

was given by first saccades that were captured by the distractor and the influence of distance 

between target and distractor on reaction time interference. Furthermore, the shape of the 

distributions of reaction time interference matched the predictions of a capture account but 

was at variance with slowing theories. The empirical reaction time interference pattern was 

also replicated by computational simulations using a capture modeling architecture, which 

once more supports attentional capture as source of reaction time interference.  

However, the results are also contradictory to the deterministic attentional capture account 

which claims that the most salient stimulus is always selected first. Instead, the probabilistic 
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theory of salience was developed to explain the results of this thesis. According to this 

theory, salience is a random variable with an expected mean value and an associated 

distribution. Analogously to a decision process, salience of each stimulus is accumulated 

over time until a selection threshold is reached and an attentional selection is triggered. 

Because the accumulation process is subject to noise, selection times of the stimuli follow a 

distribution and vary for different instances. As a consequence, attentional capture in the 

distractor search paradigm is probabilistic and distractors less salient than the target can 

capture attention when their selection time distributions overlap with the selection time 

distribution of the target. It is proposed that environment-driven attentional selection is 

probabilistically dependent on salience and that the most salient location is selected first only 

with a certain probability. 
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1 Introduction 

Everyday life is a sequence of little goals that belong to a superordinate goal. In order to 

achieve all these goals, focal attention is needed to concentrate on goal-relevant information 

and ignore all irrelevant signals that are constantly impinging on the sensory organs. Efficient 

attentional guidance to relevant objects is therefore a crucial function in human life. But how 

this guidance is accomplished in a specific situation is still an open question.  

On the one hand, attentional allocation can be human-controlled, meaning it follows 

humans’ intentions in a top-down manner; on the other hand, attentional deployment can be 

environment-driven, meaning it is automatically attracted by an object in a bottom-up 

fashion, which was not intended to be focused by the human (e.g. Egeth & Yantis, 1997). 

Most likely, both processes interact to determine the ultimate target of attentional selection. 

For the interaction of both attentional mechanisms (automatic vs. controlled), a two-stage 

architecture has become prominent (Treisman & Gelade, 1980; Wolfe, Cave, & Franzel, 

1989; Wolfe, 1994): in the first stage, the pre-attentive stage, all stimuli in the visual field are 

processed automatically and in parallel with unrestricted processing resources. In the second 

stage, focal attention serially scans the field in a certain order with the processing capacity to 

control this order being limited. When a stimulus automatically attracts attention, the serially 

controlled focus of attention in the second stage is automatically oriented first to the stimulus 

that was denoted most conspicuous by the pre-attentive processing stage. In other words, the 

pre-attentive stage controls the focus of attention in this case.  

In everyday life, this automatic capture of attention is known as distraction and is, at first 

glance, an undesirable condition. However, from an evolutionary perspective, it is indeed 

helpful: while concentrating on one goal, life-threatening stimuli, despite being irrelevant for 

the task at hand, can be detected in time and the human survives. However, in everyday life, 

unwanted attentional capture happens far more often than just through life-threatening 

stimuli. The conditions under which stimuli automatically attract attention have been debated 
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at length in research about attentional selection. The concept of salience, which is assumed to 

influence the output of the pre-attentive stage, plays a major role in this discussion. 

The next sections of this introduction outline the concept of salience and its role in 

attentional selection, a frequently used paradigm to investigate automatic attentional 

selection and its main findings, as well as competing theories to explain these findings. At 

the end of the introduction, the aims of this thesis and the way they were achieved are 

specified. 

1.1 Salience and selection processes 

The concept of a map that codes conspicuity in the pre-attentive stage was theoretically 

discussed and supported by behavioral studies (Treisman & Gelade, 1980; Treisman & Sato, 

1990; Wolfe et al., 1989), but there have also been many attempts to model bottom-up 

salience algorithms (Bruce & Tsotsos, 2009; Gao & Vasconcelos, 2009; Itti & Koch, 2000; 

C. Koch & Ullman, 1985; Li, 2002) and simulate attentional selection in visual search 

behavior (Cave & Wolfe, 1990; Wolfe, 1994). Visual search is typically investigated by 

presenting participants with a stimulus display (or a natural image) and a task to find a pre-

defined object. Such a stimulus display can be for instance a field of bars that are all 

vertically aligned, but one bar differs from the others in the orientation dimension in that it is 

tilted. The tilted bar in this context typically pops out from the background and can thus be 

efficiently found, that is the search time is the same, regardless of the number of bars 

surrounding it. How this parallel processing of all stimuli is achieved in the pre-attentive 

stage is subject to the salience models. 

1.1.1 Salience models 

Stimuli that attract attention automatically are different from all the other stimuli, meaning 

that they stand out from their background. In the visual domain, this distinctiveness is 

assumed to be described by a map that codes the physical contrast of all stimuli in the field. 
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This map is referred to as salience map. The stimulus attaining the highest activation on this 

salience map, i.e. the stimulus with the highest contrast, is automatically selected.  

The basic idea of the salience map, as it was first described by C. Koch and Ullman 

(1985), is that each stimulus is compared to its neighboring stimuli and the more it differs 

from them, the higher is its activation signal on the map. These salience signals carry 

information about the spatial location of the stimulus so that spatial attention can be allocated 

to the strongest signal. To compute the activation signal of each stimulus location, in a first 

step, stimuli are pre-attentively decomposed into their low-level features. That is, as each 

stimulus is the synthesis of a certain color, intensity, orientation, size, and so forth, 

neighboring stimuli are compared on this level and contrast maps are computed by a center-

surround algorithm for all feature-channels in parallel. In each of these maps, high contrasts 

of the respective feature are coded with a strong signal. In a second step, all feature map 

signals are integrated into the salience map that codes the location, which is overall most 

salient, regardless of the feature dimension that caused the strong signal. A winner-take-all 

mechanism then automatically guides the attentional focus across the scene in a salience 

decreasing order, starting with the most salient location. Figure 1 shows the salience map 

computation for a typical bottom-up salience model.
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Figure 1. Typical model of bottom-up salience computation. An image is decomposed into its features of 

different dimensions. Contrast maps are created for low-level features, which are then integrated into an overall 

salience map. Attention automatically selects the location with the strongest salience signal. Reprinted by 

permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience. Itti, L., & Koch, C. (2001). 

Computational modelling of visual attention. Nature Reviews. Neuroscience, 2, 194–203, copyright 2001.  

While this basic principle of salience computation in widely agreed on, the location of the 

salience map in the brain is still under debate. Most support is given to the lateral 

intraparietal area (Bisley & Goldberg, 2010; Gottlieb, Kusunoki, & Goldberg, 1998; Gottlieb, 

2007) and the frontal eye fields (Moore & Armstrong, 2003; Thompson & Bichot, 2005) as 

locations for the salience map. Li (2002) suggested the primary visual cortex as site, but her 

salience model differs from the others in that no integration of different feature maps (a 

salience map) is required to extract salience. 
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1.1.2 Visual search models 

Visual search models intend to explain search behavior based on bottom-up and top-down 

influence. The most prominent model, Guided Search (Cave & Wolfe, 1990; Wolfe et al., 

1989; Wolfe, 1994), is based on the two-stage architecture of attention with a pre-attentive, 

parallel processing stage and a subsequent attentive, serial processing stage. The activation 

map, which guides attentional selection, is similar to the salience map in that the activations 

of the feature maps are integrated into an overall, feature independent, activation map and 

activation strength is determined by the difference between one stimulus and its surrounding 

stimuli. This parallel processing stage, which suggests locations for focal attention, is then 

followed by a serial deployment of attention to the possible target locations in order of 

decreasing activation. 

What distinguishes Guided Search from salience models is the assumption of noise in the 

selection process. Because early vision processes are influenced by noise, there is also 

variability in the activation map signal. That is, the mean activation signal for a specific 

location on the map is derived through the mechanisms described in the previous paragraph 

and specified by salience models, but the selection in a given situation is the mean value plus 

a noise component. Thus, Guided Search regards the search for a target as a signal detection 

problem where the activation of all non-targets is noise and the target activation is the signal 

plus noise. The stronger the signal is compared to the noise, i.e. the more salient a respective 

target is the more efficient is search. 

Treating attentional selection in visual search as a signal to noise problem accounts for 

noise in the selection process, but disregards a time course at the same time. However, this is 

essential as even Wolfe (1994) states that “it is more reasonable (. . .) to assume that 

activations are continuously updated” (Wolfe, 1994, p. 229). A time course has never been 

considered, neither in salience nor in visual search models. Decision models on the contrary 

use a different model approach and consider a time component. The next section illustrates 

the model approach of decision models and how time is incorporated in these architectures.  
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1.1.3 Visual search as decision process 

Visual search can be regarded as a chain of decisions (Wolfe & Van Wert, 2010; Wolfe, 

1994; Zehetleitner, Rangelov, & Müller, 2012): first, a stimulus needs to be selected 

(decision between all stimuli), second, the selected stimulus is to be identified as target or 

distractor, third, the appropriate response has to be chosen, and last, a decision about the 

correct motor command has to be made. Although in principal decision making is a separate 

field of research, it is worth looking at the modeling architecture, because it considers 

temporal dynamics, which are missing in all models of salience-based selection. 

In decision research, a common modeling approach is sequential sampling models 

(Ratcliff & Smith, 2004) such as the Ratcliff diffusion model (Ratcliff, 1978) or the (leaky) 

accumulator model (Usher & McClelland, 2001). The basic assumption of these models is 

that sensory evidence is accumulated continuously over time until a threshold is reached and 

a decision is triggered. The accumulation progresses with a particular mean gradient per time 

unit, the so-called drift rate, and a certain variance of this rate, which is the noise in the 

decision process. In other words, the models account for time and random fluctuations in 

information processing. The drift rate represents the speed at which a decision is made on 

average and it depends on the strength of the sensory signal: evidence of strong sensory 

signals is accumulated with a high drift rate; hence it reaches the threshold in a shorter period 

of time than evidence of weak signals, which is accumulated with a low drift rate. Figure 2 

illustrates the basic principle of an accumulator model. 
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Figure 2. Decision process in an accumulator model. Depicted is the accumulation of sensory evidence as a 

function of time. Evidence of a stronger signal accumulates with a high drift rate (black dashed line) and 

evidence of a weak signal accumulates with a low drift rate (gray dashed line). For both drift rate examples, one 

sample accumulation path is presented, which is influenced by noise (jagged lines). A decision is triggered as 

soon as one accumulator hits the threshold a. The decision process is subject to noise, which is also indicated by 

the distribution of decisions times (above the threshold). Note that most often reaction instead of decision times 

are modeled. In this case, a non-decision time parameter (not displayed here) is added to the decision time to 

account for time not related to the decision process, such as perceptual or motor processes. 

1.2 The distractor search paradigm 

An established paradigm to investigate salience-based attentional selection is the distractor 

search paradigm (Theeuwes, 1991, 1992). In this paradigm, one salient target-stimulus is 

presented among a set of homogeneous non-target stimuli and on some trials, an additional 

salient, but task-irrelevant stimulus is presented. While the target has to be attentionally 

selected, the salient distractor has to be ignored. In the original task (Theeuwes, 1992), the 

homogeneous non-target set was comprised of green diamonds and one green circle that were 

arranged in a circle around the center of the computer screen. The green circle was the to-be-

detected target. In half of the trials, one green diamond was replaced by a red diamond – this 

was the salient distractor. Participants had to search for the green circle and indicate (via 
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button press) the orientation of the line segment, which was enclosed by the circle. The fact 

that the response criterion (the line segment) was different from the target-defining feature 

(circle form) ensured that focal attention was directed to the target stimulus and the selection 

process was disentangled from the response decision.  

The main finding of this study was that reaction time was prolonged when the red 

distractor was present compared to when it was absent (Theeuwes, 1992). That is, the red 

distractor interfered with the search for the target circle. This reaction time interference 

disappeared when the target was color-defined and the distractor was presented in the odd-

one-out shape. It was assumed that the reaction time interference was the result of attentional 

capture by the distractor before the target selection. That is, the focus of attention had to 

detour via the distractor location before engaging with the target location. Because reaction 

time interference occurred only when the distractor was in the color and the target in the 

shape dimension (and not the other way around), the conclusion was that salience is the 

critical factor for the first attentional selection. The distractor captures attention automatically 

when it is more salient than the target, but if the target is more salient than the distractor, it 

can be selected first and the less salient distractor does not interfere. In principle, this is in 

line with the predictions of bottom-up salience models, but as pointed out below, predictions 

of these models are more precise.  

1.3 The source of reaction time interference in the distractor search 

paradigm 

The main finding of the distractor search task is that reaction time interference occurs 

when a visually salient distractor is present. In the original study, it was concluded that 

spatial attentional capture by the distractor caused this reaction time interference (Theeuwes, 

1992). However, this conclusion is controversial and has been extensively discussed in the 

literature. There are other conceivable sources of reaction time interference. For instance, 

instead of being captured by the distractor, attention could directly be oriented towards the 

target location, but this selection is slowed owing to simultaneous distractor processing 

(Becker, 2007; Folk & Remington, 1998; Wykowska & Schubö, 2010). With respect to the 
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assumption that focal attention scans the visual field serially, both possible sources of 

reaction time interference differ when it comes to the number of necessary selections until 

the target stimulus is found: whereas the attentional capture account claims two selections, 

namely a first distractor and a subsequent target selection, the slowing theory assumes only 

one selection, which is the immediate target selection. Figure 3 schematically illustrates three 

conceivable sequences of target selection. 

Figure 3. Conceivable selection sequences in the distractor search paradigm. a) When no distractor is 

present, but only the target, attention is directed straight from the fixation cross to the target. This takes a certain 

amount of time. b) If a distractor is present, the attentional capture account assumes a first selection of the 

distractor location and a subsequent target selection. These two selections cost more time than only one target 

selection. c) If a distractor is present, the slowing theory expects the target location to be selected first, but 

because the distractor is drawing processing resources, this selection is slowed compared to when there is only 

the target present. Spatial allocation of attention is indicated by boxes and arrows; time is displayed through the 

clock symbols (both not drawn to scale). FC = Fixation cross, T = Target, D = Distractor. 

While the location of the first selection (distractor vs. target) has been subject to a 

vigorous debate (e.g. Bacon & Egeth, 1994; Becker, 2007; Leber & Egeth, 2006; Müller, 

Geyer, Zehetleitner, & Krummenacher, 2009; Theeuwes, 1991, 1992, 2010; Wykowska & 

Schubö, 2010; Zehetleitner, Goschy, & Müller, 2012; Zehetleitner, Müller, & Proulx, 2009; 

Van Zoest, Donk, & Theeuwes, 2004; Van Zoest & Donk, 2005; Zwaan et al., 2010), the 

target selection after attentional capture, i.e. the second selection, has been neglected as 

possible contributor to reaction time interference in the distractor search paradigm. In 

addition to the competing accounts of attentional capture and slowing there are different 

views about the mechanisms of how capture or slowing could proceed: attentional capture 

could be deterministically dependent on salience (Theeuwes, 2010) or could fluctuate and 
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therefore be probabilistically dependent on salience, as noise in the neural system distorts the 

signal emanating from the physical stimuli (C. Koch & Ullman, 1985; Wolfe et al., 1989; 

Wolfe, 1994). In terms of the slowing accounts, non-spatial filtering (Becker, 2007; Folk & 

Remington, 1998; Wykowska & Schubö, 2010) or spatial competition between both stimuli 

(Beck & Kastner, 2005, 2009; Desimone & Duncan, 1995; Desimone, 1998) is assumed to 

delay the target selection, i.e. the first selection. All four possible mechanisms of reaction 

time interference in the distractor search paradigm as well as the target selection after 

attentional capture are introduced in detail in the following sections. 

1.3.1 Attentional capture 

The distractor search paradigm was used to empirically investigate the order of attentional 

selection. Because reaction time interference occurred only when the distractor was more 

salient, but not when it was less salient than the target (Theeuwes, 1992), it was concluded 

“that the initial shift of attention [is directed] to the most salient singleton” (Theeuwes, 2010, 

p. 80) and “that the bottom-up salience signal of the stimuli in the visual field determines the 

selection order” (Theeuwes, 2010, p. 81). This deterministic view about salience-based 

selection has become very influential; yet it was established after testing only two conditions 

of distractor salience, namely a distractor more and one less salient than the target. However, 

salience-based visual search theories assume noise to influence salience computation on 

some processing stage(s) (Cave & Wolfe, 1990; Wolfe et al., 1989; Wolfe, 1994). These 

theories would therefore predict a probabilistic dependency between attentional capture and 

selection order in the distractor search paradigm. A probabilistic dependency implies that the 

most salient stimulus captures attention not with certainty, but only with a certain probability. 

This also includes distractors less salient than the target to interfere with search, although 

with a lower probability. Moreover, the second (target) selection as additional influence on 

reaction time interference has been completely ignored in the deterministic attentional 

capture account. Hence the questions whether attentional selection order is deterministically 

or probabilistically dependent on salience and whether the second selection after attentional 

capture also contributes to reaction time interference are still open and empirical evidence is 

pending. 
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1.3.2 Slowed target selection 

One of the main competitive explanations of attentional capture as source of reaction time 

interference is the theory of non-spatial filtering (Folk & Remington, 1998). It is assumed 

that the target is attentionally selected first, but the presence of the distractor prolongates this 

selection. The theory is based on the findings of Kahneman, Treisman, and Burkell (1983) 

that responses to a target object are slower when it is presented among task-irrelevant 

objects, compared to when it is presented alone. This reaction time difference was attributed 

to a filtering process by which the irrelevant objects are filtered out in order to identify the 

target. This filtering process is assumed to be a non-spatial competition for selection between 

the stimuli (Folk & Remington, 1998; Wykowska & Schubö, 2010). Although the theory of 

non-spatial filtering is based on findings from a different paradigm in which target and 

distractor are not simultaneously presented, it also makes predictions for the distractor search 

paradigm: because the filtering process is assumed to be non-spatial, any effect of distance 

between target and distractor on reaction time interference argues against a non-spatial 

process and disproves non-spatial filtering as source of reaction time interference in the 

distractor search paradigm. The influence of target-distractor distance has therefore been 

used to test non-spatial filtering as source of reaction time interference: Becker (2007) 

compared conditions where the distractor was next to the target with those where at least one 

non-target was in between. Although she found an effect of distance on reaction time 

interference, she did not completely rule out non-spatial filtering because the error pattern 

was indicative of a speed-accuracy trade-off in the data, which restricts the reliability of the 

effect. Wykowska and Schubö (2010) chose a different approach to test for non-spatial 

filtering by using the event-related EEG component N2pc as indicator of attentional capture. 

This component is assumed to be a marker of the spatial allocation of attention (Eimer, 

1996). Wykowska and Schubö (2010) found that attention was always directed to the target 

location first and was not captured by the distractor. However, the onset latency of the 

component was longer when the distractor was presented in the opposite hemifield compared 

to when it was presented in the same hemifield as the target. That is, although attention was 

not spatially captured by the distractor, it nevertheless produced some delay in the allocation 

of attention to the target. The authors conclude that non-spatial filtering costs cause reaction 

time interference in the distractor search paradigm.  
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An alternative theory to explain slowed target selection is the biased competition model of 

selective attention (Desimone & Duncan, 1995). This theory is more elaborate than non-

spatial filtering and its scope goes far beyond the distractor search paradigm. Biased 

competition postulates that simultaneously presented stimuli compete for selection, i.e. 

neural representation, this competition being biased by bottom-up mechanisms, such as 

salience (Beck & Kastner, 2005), or top-down control processes. Because of the underlying 

neural architecture, competition strength is assumed to be dependent on spatial relations 

between the competing stimuli: the neural representations of simultaneously presented 

stimuli interact in a mutually suppressive way (Desimone, 1998), which means that stimuli 

represented in close cortical areas are more competitive than stimuli represented in distant 

regions. Because in the primary visual cortex stimuli representations are topographically 

organized, close stimuli fall into the same receptive field, meaning they are represented by 

the same cluster of neurons, and therefore competition between those stimuli is stronger than 

for distant stimuli, which do not share the same processing sources (Beck & Kastner, 2009). 

In terms of slowed target selection in the distractor search paradigm, biased competition 

would predict distance between target and distractor to influence the competition among 

both, even if the target is selected before the distractor. In other words, distance should also 

influence the size of reaction time interference when the target is selected first. Of course it is 

also conceivable that the distractor wins the competition and is selected before the target. In 

this case, spatial competition would result in attentional capture by the distractor.  

In summary, reaction time interference can result from competition processes that delay 

the first (target) selection without the distractor having spatially captured attention. If 

attention is not spatially captured by the distractor in the distractor search paradigm, it is yet 

unsolved whether the delay of the first target selection is the result of non-spatial or spatial 

competition processes.  

1.3.3 Target selection after attentional capture 

Once attention is captured by the distractor and the human realizes that the selected 

stimulus is not the target, attention needs to be redirected to the target. That is, a second 

selection has to be carried out. How this second (target) selection proceeds and whether it 
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also contributes to reaction time interference in the distractor search paradigm, is largely 

unexplored. This is all the more surprising because the deterministic attentional capture 

account assumes two selections (Theeuwes, 2010), but does not specify the exact source of 

reaction time interference. That is, it leaves open the question whether it is the first 

(distractor) selection, the second (target) selection, or both selections that contribute to 

reaction time interference. 

1.4 Aim of the thesis 

This thesis approached two main goals. First, answering the research question about the 

source of reaction time interference in the distractor search paradigm. Although extensively 

investigated, this has not been conclusively identified yet. Second, establishing a 

probabilistic theory of salience by introducing a more differentiated specification of the 

concept, including noise and temporal dynamics as model inherent components. This theory 

is based on the empirical findings regarding the source of reaction time interference. It 

explains these findings and makes predictions about attentional selection and capture. 

To clarify the source of reaction time interference, the first (distractor vs. target) and the 

second (target) selection were investigated. To test whether the order of attentional selection 

is deterministically or probabilistically dependent on relative salience between target and 

distractor, the distractor search paradigm was advanced by introducing a parametric salience 

manipulation of target and distractor. To underpin the conclusion of (probabilistic) 

attentional capture as source of reaction time interference as against the hypothesis of a 

slowed first target selection, computational as well as empirical investigations were carried 

out: the results of the distractor search paradigm were computationally simulated with a 

binary capture model architecture: the model output was the proportion of attentional capture 

events instead of reaction time interference. Further, the influence of distance between target 

and distractor on reaction time interference was used to empirically rule out non-spatial 

filtering and the analysis of the reaction time interference distribution was taken to test for 

attentional capture versus spatial slowing, i.e. biased competition. In addition, one eye 

movement study was conducted to demonstrate oculomotor capture in the same paradigm, 
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which is closely related to attentional capture (Deubel & Schneider, 1996). To examine the 

role of the second (target) selection in reaction time interference, distribution analysis was 

used once more in a reaction time and an eye movement study. Figure 4 gives an overview 

about the possible sources of reaction time interference in the distractor search paradigm 

which were tested in the studies of this thesis. 

Figure 4. Possible sources of reaction time interference in the distractor search paradigm. Reaction time 

interference could be the result of attentional capture by the distractor or the consequence of a slowed target 

selection. In the former case, the occurrence of attentional capture could be deterministically or probabilistically 

dependent on stimulus salience and the second (target) selection could influence reaction time interference or 

not. In the latter case, slowing could emerge from non-spatial or spatial competition processes between target 

and distractor. 

The probabilistic theory of salience includes noise and temporal dynamics as model 

inherent components. This theoretical concept treats salience-based selection as decision 

process with sensory evidence accumulating over time until a selection threshold is reached. 

Hence, it combines methods of decision research with principles of salience-based selection. 

For the computational implementation, the accumulator model (Usher & McClelland, 2001) 

was used in combination with empirically obtained salience measures.  
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2 Cumulative Thesis 

This thesis consists of two articles, peer-reviewed and published in the journals PLoS 

ONE and Acta Psychologica and one article, which is to be submitted to a peer-reviewed 

journal. On the following pages, the abstracts of both articles and the manuscript are 

presented, along with the contributions of the author of this thesis. The full text of the articles 

and the manuscript are enclosed in the list of publications. 
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2.1 Salience-based selection: Attentional capture by distractors less salient 

than the target  

Zehetleitner, M.*, Koch, A. I.*, Goschy, H., & Müller, H. J. (2013). Salience-based 

selection: Attentional capture by distractors less salient than the target. PLoS ONE, 8(1),

e52595. 

Current accounts of attentional capture predict the most salient stimulus to be invariably 

selected first. However, existing salience and visual search models assume noise in the map 

computation or selection process. Consequently, they predict the first selection to be 

stochastically dependent on salience, implying that attention could even be captured first by 

the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less 

salient distractors has not been reported and salience-based selection accounts claim that the 

distractor has to be more salient in order to capture attention. We tested this prediction using 

an empirical and modeling approach of the distractor search paradigm. For the empirical part, 

we manipulated salience of target and distractor parametrically and measured reaction time 

interference when a distractor was present compared to absent. Reaction time interference 

was strongly correlated with distractor salience relative to the target. Moreover, even 

distractors less salient than the target captured attention, as measured by reaction time 

interference and oculomotor capture. In the modeling part, we simulated first selection in the 

distractor search paradigm using behavioral measures of salience and considering the time 

course of selection including noise. We were able to replicate the result pattern we obtained 

in the empirical part. We conclude that each salience value follows a specific selection time 

distribution and attentional capture occurs when the selection time distributions of target and 

distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with 

a certain probability depending on relative salience. 

The author of this thesis contributed to this article by conceiving and designing the 

reaction time and eye movement experiments, conducting the reaction time experiment and 

analyzing its data. Further, she contributed in developing the probabilistic theory of salience 
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as well as its theoretical consequences for attentional capture. She also wrote the manuscript 

(except for the section Computational Model) and designed the figures and tables. 

* Shared first authorship: these authors contributed equally to this work. 
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2.2 Distractors less salient than targets capture attention rather than 

producing non-spatial filtering costs 

Koch, A. I., Müller, H. J., & Zehetleitner, M. (2013). Distractors less salient than targets 

capture attention instead of producing non-spatial filtering costs. Acta Psychologica, 144, 61-

72. 

Distractors that are less salient than the target evoke reaction time interference in the 

distractor search paradigm. Here, we investigated whether this interference indeed results 

from spatial attentional capture or merely from non-spatial filtering costs. Target and 

distractor salience was manipulated parametrically and the modulation of reaction time 

interference by the distance between both stimuli was taken as an indicator of attentional 

capture. For distractors that were less salient than the target, we found distance to be 

predictive of reaction time interference. Moreover, this relationship was modulated by the 

difference in relative salience of target and distractor: the less salient the distractor was 

compared to the target, the weaker was the influence of distance. These results are in 

accordance with the sequential sampling model of salience-based selection by Zehetleitner et 

al. (Zehetleitner, M., Koch, A.I., Goschy, H., Müller, H.J., 2013. Salience-based selection: 

Interference by distractors less salient than the target. PLoS ONE 8: e52595.). This model 

assumes the salience map to be computed by noisy accumulation of sensory evidence. As a 

result, the salience map output fluctuates around its true value and less salient locations can 

be denoted as most salient. A distractor less salient than the target can therefore capture 

attention with a certain probability. We conclude that reaction time interference by less 

salient distractors in the distractor search paradigm is a result of attentional capture in a 

proportion of trials, rather than a result of non-spatial filtering costs. 

The author of this thesis contributed to this article by conceiving, designing, and 

conducting the experiments and analyzing the data. Further, she wrote the manuscript and 

designed figures and tables.  

  



20

  



21

2.3 Distribution analysis of reaction time interference: Speeded target 

selection after attentional capture 

Koch, A. I., Müller, H. J., Goschy, H., & Zehetleitner, M. (2013). Distribution analysis of 

reaction time interference: Speeded target selection after attentional capture. Unpublished 

manuscript. 

Interference in the distractor search paradigm, when a distractor is present compared to 

absent, is a frequently reported phenomenon. However, the source of this interference is 

unclear and debated. While some authors claim the additional time is the result from spatial 

attentional capture, others think that attentional deployment to the target is slowed due to 

filtering processes. By contrast, the second target selection after attentional capture by the 

distractor has hardly been investigated. To discriminate between spatial capture and slowed 

target selection and to investigate the second target selection, we qualitatively analyzed the 

distribution of reaction time and saccadic interference. Predictions about the distribution 

were generated by an accumulator race model and were qualitatively tested by two reaction 

time and one eye movement experiment. The results favor attentional capture as source for 

interference. Moreover, once attention was captured, the second target selection was faster 

than when no distractor was present. This result is explained by an immediate selection of the 

second most salient item. In conclusion, attentional capture by a distractor can slow target 

selection in some cases and speed it in other.  

The author of this thesis contributed to this article by conceiving, designing, and 

conducting the reaction time experiments and analyzing the data of the reaction time and eye 

movement experiments. Further, she wrote the manuscript and designed the figures.  
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3 Discussion 

Automatic attentional selection is assumed to be guided by the signals of a salience map, 

which codes the conspicuity of each location in the visual field. To investigate salience-based 

selection, the distractor search paradigm has frequently been used. It was found that response 

times to a target stimulus are prolonged when a salient distractor was presented together with 

the target, compared to when the target was presented alone or when the distractor was less 

salient than the target (Theeuwes, 1992). The source of this reaction time interference was 

however debated: on the one hand it was assumed that attention was spatially captured by the 

distractor before it could be directed to the target (Theeuwes, 1992, 2010). On the other hand 

it was claimed that the target is spatially selected first, but this selection is slowed because 

the distractor competes for processing resources (Becker, 2007; Folk & Remington, 1998; 

Wykowska & Schubö, 2010). For each of these explanations, further assumptions of how the 

interference producing mechanism could proceed are conceivable: attentional capture could 

be deterministically dependent on stimulus salience, meaning that a more salient distractor 

always captures attention, or it could be probabilistically dependent, in which case salience 

determines the probability with which a distractor captures attention. For competition 

processes that slow the target selection, non-spatial filtering processes or spatial competition, 

biased by salience, are two possible alternatives. In addition, for the attentional capture 

option, the second (target) selection could or could not have an influence on reaction time 

interference. 

The aim of this thesis was to investigate the source mechanism of reaction time 

interference in the distractor search paradigm and, based on the findings, to establish a 

probabilistic theory of salience. To decide between deterministic and probabilistic capture, 

target and distractor salience was parametrically manipulated in the distractor search 

paradigm and results were computationally simulated with a probabilistic capture model 

architecture (Zehetleitner, Koch, Goschy, & Müller, 2013). The influence of target-distractor 

distance on reaction time interference ruled out non-spatial filtering mechanisms as source 

(A. I. Koch, Müller, & Zehetleitner, 2013), and the analysis of the distributions of reaction 

time interference revealed probabilistic attentional capture instead of spatial competition to 
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cause reaction time interference (A. I. Koch, Goschy, Müller, & Zehetleitner, 2013). The 

contribution of the second (target) selection to reaction time interference was revealed by 

examining the distributional instead of mean interference (A. I. Koch, Goschy et al., 2013). 

Figure 5 presents the framework of all studies that were carried out for this thesis and the 

identified source of reaction time interference in the distractor search paradigm. 

Figure 5. Study framework and identified source of reaction time interference. Three studies provided 

evidence for the probabilistic occurrence of attentional capture as source of reaction time interference in the 

distractor search paradigm. In addition, it was found that the second (target) selection also modulated reaction 

time interference. 
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3.1 Falsified theories of reaction time interference in the distractor search 

paradigm 

The parametrical manipulation of target and distractor salience in the distractor search 

paradigm revealed a gradual increase of reaction time interference with increasing distractor 

relative to target salience (Zehetleitner et al., 2013). As a consequence thereof, distractors 

less salient than the target produced reaction time interference as well. Support that this 

interference (even by less salient distractors) was the result of attentional capture came from 

the computational simulation with a probabilistic capture architecture, which replicated the 

interference pattern of the behavioral experiment, and from an eye-tracking experiment, 

which showed that less salient distractors capture the gaze in some occasions (Zehetleitner et 

al., 2013).  These results unambiguously refute the deterministic account of attentional 

capture, which claims that distractors more salient than the target always capture attention, 

whereas less salient distractors never capture attention (Theeuwes, 1992, 2010).  

Non-spatial filtering explanations for the positive correlation between reaction time 

interference were excluded because target-distractor distance influenced reaction time 

interference (A. I. Koch, Müller et al., 2013). It was found that the closer together target and 

distractor were presented, the higher was reaction time interference. This effect is explained 

by a ring of suppression that is built around an attended location (Mounts & Gavett, 2004; 

Mounts, 2000). Once attention is captured by the distractor, the ring of suppression lies 

around the distractor location and a target that is closely situated to this location is more 

difficult to detect than a distant target. In other words, the distance effect serves as evidence 

of attentional capture by the distractor. In addition to the general occurrence of the distance 

effect, the effect was also observed for the subset of less salient distractors and was 

modulated by relative salience between target and distractor. These results refute the 

explanation of non-spatial filtering, but are in accordance with the findings of Zehetleitner et 

al. (2013), that reaction time interference is caused by probabilistic attentional capture: the 

more salient the distractor was compared to the target, the stronger was the distance effect 

pronounced, i.e. the more often the distractor captured the attentional focus. 
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Biased competition postulates competition for selection to be stronger for close objects 

and weaker for distant stimuli, that is it assumes competition to be spatially modulated 

(Desimone & Duncan, 1995). Hence according to this theory, the presence of a distance 

effect is not automatically attributed to attentional capture, but could also arise from spatial 

competition where the target is selected first. To distinguish between probabilistic attentional 

capture and spatial competition, the distribution of reaction time interference was analyzed, 

because both theories make different predictions about the distribution, although they expect 

the same mean interference (A. I. Koch, Goschy et al., 2013). The form of the reaction time 

interference distribution followed the predictions of a probabilistic capture account rather 

than of a non-capture, slowing theory.  

Deterministic attentional capture, non-spatial filtering, and spatial slowing mechanisms as 

suggested by biased competition were falsified as source of reaction time interference in the 

distractor search paradigm. Instead, attentional capture probabilistically dependent on 

salience is proposed (A. I. Koch, Goschy et al., 2013; A. I. Koch, Müller et al., 2013; 

Zehetleitner et al., 2013). The theory to explain probabilistic capture and the role of the 

second (target) selection in reaction time interference is presented in the next section.  

3.2 Probabilistic theory of salience   

The development of the probabilistic theory of salience was motivated by the finding that 

reaction time interference in the distractor search paradigm varied as a function of relative 

salience between target and distractor and also less salient distractors interfered (Zehetleitner 

et al., 2013).  The core assumption of the theory is the distinction between stimulus and 

selection salience. This distinction is possible because noise and temporal dynamics are 

considered in the salience computation process. Salience is assumed to be an entity that is 

subject to noise, meaning that the salience value that a stimulus attains on a certain instance 

is drawn from a distribution with an expected mean value of salience. The expected mean 

value of salience corresponds to the stimulus salience as computed by center-surround 

algorithms (e.g. Bruce & Tsotsos, 2009; Gao & Vasconcelos, 2009; Itti & Koch, 2000; C. 

Koch & Ullman, 1985), i.e. the distinctiveness of each stimulus from its surrounding stimuli. 
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Selection salience on the other hand is the actual value a stimulus with a given surround 

attains in a certain instance of time. In other words, while stimulus salience is constant, 

selection salience is a random variable across instances, due to the influence of noise.  

The model architecture of this probabilistic salience concept is based on the accumulator 

race model (Usher & McClelland, 2001). It describes the translation of stimulus into 

selection salience by assuming that the salience map develops over time. Each stimulus is 

represented by an accumulator unit that accumulates stimulus salience over time, until a 

selection threshold is reached. The drift rate of each accumulator corresponds to the 

respective stimulus salience. Selection salience of a stimulus is the accumulated stimulus 

salience at the time its accumulator hits the threshold. By reaching the threshold, an 

attentional selection of this stimulus is automatically triggered. Because the accumulation 

process is noisy, selection salience deviates from the expected mean of the selection time 

distribution, i.e. it deviates from stimulus salience. The fact that salience is accumulated over 

time for each location implies that the salience map as a whole also evolves over time and is 

subject to noise. The pattern on the map differs depending on the time the first accumulator 

hits the selection threshold: the map computation stops at the moment the first accumulator 

reaches the threshold and the salience values of all other locations are determined by the 

level their accumulators have attained at that moment.  

The probabilistic theory of salience explains the results presented in all articles of this 

thesis (A. I. Koch et al., 2013, in press; Zehetleitner et al., 2013): (i) size of reaction time 

interference depends on the distractor salience relative to the target’s salience, (ii) distractors 

less salient than the targets capture attention, (iii) the effect of target distractor-distance on 

reaction time interference is modulated by relative salience, and (iv) reaction time 

interference increases over the first percentiles and decreases again in the last percentiles. 

3.2.1 Probabilistic attentional capture  

The size of reaction time interference depends on relative salience between target and 

distractor (Zehetleitner et al., 2013). The studies conducted for this thesis suggest attentional 

capture to be the source of reaction time interference (A. I. Koch, Goschy et al., 2013; A. I. 
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Koch, Müller et al., 2013; Zehetleitner et al., 2013). Because attentional capture is a discrete 

event (either it occurs or it does not occur on a given search trial), a varying size of reaction 

time interference can be explained by different proportions of capture and non-capture 

events: high mean reaction time interference is the result of a large proportion of capture 

trials plus a small proportion of non-capture trials and low mean reaction time interference is 

the consequence of a small proportion of capture trials plus a large proportion of non-capture 

trials. In other words, the proportion of attentional capture in the distractor search paradigm 

is dependent on relative salience between target and distractor. The mechanism behind this 

relationship can be explained by the probabilistic theory of salience. 

In the distractor search paradigm, target and distractor are the only salient stimuli. 

Because they are pop-out stimuli, all other non-targets can be neglected in the selection 

process and the race for selection takes place between the target and the distractor, each 

represented by one accumulator unit. Relative salience between target and distractor is 

incorporated in the model as the difference in drift rates between both stimuli. Attentional 

capture occurs when the distractor accumulator hits the selection threshold before the target 

accumulator. The likelihood with which each stimulus reaches the threshold before the other 

stimulus is determined by the relative stimulus salience between both: the more salient the 

distractor is compared to the target, i.e. the faster its drift rate is, the more likely it is selected 

first and the less salient it is, i.e. the slower its drift rate is, the more likely the target wins the 

race. That is, the size of the proportion of capture trials is dependent on relative stimulus 

salience between target and distractor and capture can also occur for less salient distractors, 

as long as target and distractor selection times overlap. To illustrate this rationale, we 

imagine a target and a distractor which are equally salient. In this case, their drift rates are 

exactly the same and their selection time distributions fully overlap. Hence the likelihood of 

attentional capture by the distractor is 50% and the likelihood of the target hitting the 

threshold first is also 50%. This can be observed by a mean reaction time interference of 

intermediate size. The less salient the distractor is compared to the target, the slower is its 

drift rate compared to the target and thus selection time distributions of both stimuli drift 

apart. As a consequence, their overlap becomes smaller – and so does the probability for 

attentional capture and the size of observed reaction time interference.  
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To summarize, according to the probabilistic theory of salience, attentional capture is 

possible as long as the drift rate of the distractor is faster than the drift rate of the target or 

selection time distributions of target and distractor overlap. The probability for capture 

depends on the size of this overlap (for illustration of probabilistic attentional capture see 

Zehetleitner et al., 2013, Fig. 5). 

3.2.2 Target selection after attentional capture 

Attentional capture probabilistically dependent on relative salience between target and 

distractor concerns only the first selection. However, a second (target) selection has to be 

carried out in order to complete the task. While the first distractor selection could be the sole 

cause of reaction time interference and the subsequent target selection could proceed just as 

in trials without a distractor being present, it is also possible that the second target selection 

contributes to reaction time interference. That is, target selection could be different when a 

distractor is present compared to when it is absent.  

Results of the analysis of reaction time interference distributions revealed that interference 

increased over the first percentiles and decreased again in later percentiles. In some cases, 

interference became even negative in the last percentile, which indicates that the presence of 

the distractor expedited search for the target instead of slowing it. While it is plausible that 

for slow response times the proportion of capture trials is higher and hence interference is 

higher, it seems counterintuitive that for very slow response times, interference decreases 

again or even becomes negative. The probabilistic theory of salience explains this surprising 

shape of the distribution of reaction time interference and unveils the influence of the second 

selection when searching for a target in the presence of a distractor. 

Attentional capture occurs when the accumulator of the distractor hits the selection 

threshold before the target accumulator. If the second (target) selection would be the same as 

in trials where there is no distractor present, the attentional system would simply wait until 

the target accumulator hits the threshold to select the target. However, since the second most 

salient stimulus can only be the target in the distractor search paradigm, it is more efficient to 

select the second most stimulus – the target – immediately, instead of waiting until it reaches 
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the threshold. This earlier target selection can be achieved by lowering the selection 

threshold after the distractor has been identified as wrong stimulus. The selection threshold is 

lowered to the level of accumulated target evidence at the time of distractor selection plus the 

disengagement time. This process allows for the target to be selected earlier when a distractor 

is present compared to when it is absent, that is it antagonizes reaction time interference. The 

gain of time due to lowering the selection threshold is the greater the slower the target 

selection time is compared to the distractor selection time: if the target selection time is only 

a little slower than the distractor selection time, the target accumulator will reach the 

threshold while attention is still in the process of disengagement from the distractor and 

hence lowering the threshold has no effect on target selection time. However, if the target 

selection is many times slower than the distractor selection, the target accumulator has not 

reached the threshold at the time attention has disengaged from the distractor and lowering 

the threshold expedites target selection. In cases of extreme selection time difference, earlier 

target selection not only reduces or neutralizes reaction time interference produced by the 

distractor, but even changes it to the contrary, namely speeded reaction times when a 

distractor is present compared to absent. 

In summary, the influence of distractor and subsequent target selection on the size and 

algebraic sign of reaction time interference are antagonistic: while the presence of the 

distractor increases reaction time interference, the subsequent target selection can reduce 

interference again (for illustration see A. I. Koch, Goschy et al., 2013, Fig. 1).         

3.3 Methodological contributions 

The invention of the probabilistic theory of salience and the investigation of the source 

mechanism of reaction time interference in the distractor search paradigm was achieved by 

the introduction of several new methods or the application of established methods to a new 

research area. First, salience was parametrically manipulated in the distractor search 

paradigm and empirically measured. Second, the modeling architecture of decision models 

was applied to the research field of salience. Third, the distribution of reaction time 

interference was analyzed instead of mean interference.  
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In the original study (Theeuwes, 1992) and subsequent investigations (e.g. Donk & Van 

Zoest, 2008; de Fockert, Rees, Frith, & Lavie, 2004; Hickey, McDonald, & Theeuwes, 

2006), salience in the distractor search paradigm was manipulated in a binary fashion, that is 

the distractor was either more or less salient than the target. This led to the oversimplified 

conclusion that attentional capture is deterministically dependent on relative salience 

between target and distractor and that it is always the most salient stimulus in the visual field 

that captures attention first. A parametrical manipulation however, as shown here, reveals the 

possibility to account for the more complex and stochastic relationship between salience and 

attentional selection. At the same time it covers a broader range of the salience spectrum and 

hence allows detecting qualitative differences of the relationship between salience and 

attentional selection. Thus it could be discovered that the correlation was sigmoidal instead 

of linear, that is at the lower end of the relative salience spectrum, reaction time interference 

approached zero and at the upper end, it approached an asymptote where interference did not 

increase further with greater distractor salience. Also the empirical measurement of salience 

entails advantages: first, it accounts for the fact that salience is a psychological construct and 

is not linearly related to physical contrast (Nothdurft, 1993), and second, it makes stimuli of 

different dimensions directly comparable on the same scale. 

The salience pattern computed by existing salience models is the same for several 

selection trials (Bruce & Tsotsos, 2009; Gao & Vasconcelos, 2009; Itti & Koch, 2000). That 

is, noise is not considered for the selection process and hence it is always the same item that 

is selected first. Whereas noise is implemented in Guided Search (Wolfe, 1994), this model 

still neglects the temporal dynamics in the development of the salience map. To account for 

both, noise and temporal dynamics, the probabilistic salience model (Zehetleitner et al., 

2013) is grounded on a modeling architecture well-known in decision (Gold & Shadlen, 

2007), but hitherto not applied in salience research: in sequential sampling models, sensory 

evidence is accumulated until a decision threshold is reached. By regarding salience-based 

selection as decision among n (number of stimuli in the field) alternatives and differentiating 

between stimulus and selection salience, an analogy to decision research can be drawn and 

the same architecture can be applied to salience computation: stimulus salience is 

accumulated until a selection threshold is reached. This modeling architecture allows for 

noise and temporal dynamics inherent in the salience computation process and thus 
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complements and advances existing theories of salience-based selection. In addition, it 

provides the foundation for different predictions about the distribution of reaction time 

interference, i.e. it makes the distinction between capture and non-capture accounts possible 

(see below), and reveals alternative mechanisms of the second selection in the distractor 

search paradigm (A. I. Koch, Goschy et al., 2013). 

Reaction time interference in the distractor search paradigm has hitherto only been 

investigated by analyses of the mean (e.g. Becker, 2007; de Fockert et al., 2004; Leber & 

Egeth, 2006; Müller et al., 2009; Theeuwes, 1992). However, there is indication that means 

can be misleading for understanding effects in reaction time research and predictions of 

different theories can be indistinguishable for means, but are divergent for distributions 

(Balota & Yap, 2011). Empirical evidence for varying influence of salience on performance 

is given by accuracy data of eye movement studies using the distractor search paradigm, 

which suggest that the influence of salience changes with saccadic latency (Donk & Van 

Zoest, 2008; Godijn & Theeuwes, 2002; Van Zoest et al., 2004; Van Zoest & Donk, 2005, 

2008). However, distribution of reaction time interference has not been analyzed yet. Using 

distribution analysis for reaction time interference the first time, we could distinguish 

between attentional capture accounts and non-capture theories (A. I. Koch, Goschy et al., 

2013). Moreover, the contribution of the second selection after attentional capture to reaction 

time interference could be identified. The mechanism of this selection has been neglected in 

all studies investigating reaction time interference in the distractor search paradigm. The 

analysis of the distribution of reaction time interference gives new insight into the selection 

sequence and the nature of the single processes in the distractor search paradigm. It is thus 

obvious that this method opens up new possibilities for investigating salience-based 

selection.   

3.4 Future directions 

Although this thesis makes a comprehensive contribution to the understanding of reaction 

time interference in the distractor search paradigm by considering both the probabilistic 

occurrence of attentional capture for the first selection and the subsequent target selection, 
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there are still open questions about the source of reaction time interference in the distractor 

search paradigm and its neural correlates and there is potential to increase predictability of 

attentional selection based on the probabilistic theory of salience. 

  The likelihood of attentional capture, as determined by the probabilistic theory of 

salience, is solely based on the bottom-up, environment-driven factor of salience. However, 

there is evidence that top-down control operates early in the attentional system (Müller & 

Krummenacher, 2006) and visual search theories such as Guided Search (Wolfe, 1994) 

assume selection to be influenced by top-down activation. Even authors of pure bottom-up 

salience models acknowledge the impact of top-down control (Itti & Koch, 2001; see also 

Fig. 1). Neurophysiological approaches suggest a ‘priority’ instead of a ‘salience’ map, 

which combines bottom-up salience and task relevance in order to determine the location for 

the attentional focus (Fecteau & Munoz, 2006). Also the brain area, which is suggested as 

site of the salience map combines bottom-up and top-down signals (Bisley & Goldberg, 

2010) in a way that resembles the dynamics of a decision process (Gold & Shadlen, 2007). 

Therefore, a next step in developing the probabilistic theory of salience would be to include 

observer-guided control. This could be implemented in the model for example by a faster 

drift rate of the target accumulator, which would imply that the target’s stimulus salience is 

higher and consequently its selection probability is increased.  

Besides the model adaptation for the first selection, the second selection needs to be 

investigated more extensively as well, since this was the very first study examining this 

selection (A. I. Koch, Goschy et al., 2013). The qualitative inspection of the distributions of 

reaction time interference suggests that it is only the first selection that varies as a function of 

relative salience, because increase of reaction time interference over the first percentiles is 

varyingly strong for the various salience differences, but the amount of decrease in later 

percentiles seems to be the same for all salience differences. However, this is only a 

qualitative inspection and it is possible that especially the disengagement process from the 

distractor is also salience-dependent to a certain degree.  

In general, it would also be interesting to investigate the selection sequence in the 

distractor search paradigm with respect to neural correlates of the reaction time interference 
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pattern. EEG would be an appropriate method with a high temporal resolution. The EEG 

event-related potential N2pc, which is regarded as a marker of spatial orientation of attention 

(Eimer, 1996), could provide confirming evidence about proportionate attentional capture: 

the N2pc indicates attentional deployment by negative deflection of cortical activity 

contralateral to the attended location. In case of attentional capture by the distractor, this 

event-related potential should occur for the distractor and subsequently for the target 

location. If the distractor did not capture attention, only an N2pc for the target should be 

visible. Moreover, if the size of the proportion of capture is dependent on distractor relative 

to target salience, the amplitude of the distractor N2pc should vary as a function of this 

salience difference, because - analogously to reaction time interference – a high mean 

amplitude should result from many capture trials and a low amplitude from few capture 

trials. If slowed target processing also contributes to reaction time interference, as predicted 

by non-capture theories, there should also be a latency effect of the N2pc observable that is 

its onset should vary with relative salience.  

Another method neural correlates of reaction time interference could be investigated with 

is functional magnetic resonance imaging (fMRI). This method has the advantage of high 

spatial resolution and would help to identify areas in the brain that process salience-based 

attentional selection. Manipulating global and local salience in Navon figures, Mevorach, 

Humphreys and Shalev (2006) found reaction time interference from the low salient 

distractor to increase when transcranial magnetic stimulation (TMS) was applied to the right 

posterior parietal cortex (PPC). On the other hand, interference from the higher salient 

distractor increased when TMS was applied to the left PPC. The authors concluded that the 

right PPC is involved when orienting towards a salient target stimulus and the left PPC being 

responsible for avoidance of salient stimuli. In an fMRI study using the same paradigm 

(Mevorach, Shalev, Allen, & Humphreys, 2008), the left intraparietal sulcus was 

significantly more activated when attending to a less salient target in the presence of a higher 

salient distractor compared to a higher salient target accompanied by a less salient distractor. 

Moreover, the blood-oxygen-level-dependent (BOLD) response difference between 

distractors more salient and less salient than the target correlated positively with reaction 

time interference. The advantage of the Navon Paradigm is that effects of salience on the 

PPC activation can be discerned from spatial influences, however salience of target and 
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distractor is correlated and a manipulation always affects both stimuli. This problem is 

circumvented in the distractor search paradigm, where target and distractor are spatially 

separated and can therefore be manipulated independently with respect to their salience. 

Based on the findings of Mevorach et al. (2006) and Mevorach et al. (2008), activation of the 

right PPC should increase with decreasing distractor salience in the distractor search 

paradigm, if the right PPC is responsible for orienting towards salient items. On the other 

hand, if the left PPC is responsible for avoiding salience, its activation should increase with 

increasing distractor salience. Therefore, activation in right and left PPC should be negatively 

correlated if they had dissociative and complementary roles in attentional salience-based 

selection. Additionally, as Mevorach et al. (2008) showed, the BOLD-response should 

correlate with reaction time interference. 

Last but not least the theory of probabilistic salience needs to be tested on other paradigms 

than the distractor search paradigm to generalize its field of application. The ultimate 

objective should be to predict the selection sequence in natural images. 

3.5 Conclusion 

The salience map, which is the basis for environment-driven attentional selection, depicts 

the conspicuousness of each location in the visual field. It evolves over time and is 

influenced by noise during its development. As a result, the focus of environment-driven 

attention is not always directed towards the most conspicuous object, but can prefer a less 

salient object if noise distorts the true salience pattern on the map. To account for these 

fluctuations, salience needs to be regarded as a random variable with a certain mean and an 

associated distribution. This is captured by the distinction between stimulus and selection 

salience: whereas stimulus salience is the mean (or expected) salience value of an object, i.e. 

the distinctiveness of this object to its surround, selection salience corresponds to the 

outcome of the salience map computation process, which is subject to noise and can therefore 

deviate from the mean. Accordingly, environment-driven attentional selection is 

probabilistically dependent on salience. 
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An empirical consequence of the probabilistic dependency between attentional selection 

and salience is that the proportion of attentional capture in the distractor search paradigm is 

dependent on relative salience between the target and the distractor, as indexed by reaction 

time interference distributions and first saccades. This implies that distractors less salient 

than the target are also able to capture attention in a proportion of trials, as long as their 

selection time distributions overlap with the selection time distribution of the target. 

According to the probabilistic theory of salience and the results presented in the studies of 

this thesis, reaction time interference in the distractor search paradigm is the consequence of 

proportionate attentional capture and an expedited subsequent target selection, rather than a 

slowed (first) target selection as proposed by non-capture theories. 
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Abstract

Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing
salience and visual search models assume noise in the map computation or selection process. Consequently, they predict
the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the
second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been
reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture
attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For
the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference
when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor
salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by
reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor
paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able
to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific
selection time distribution and attentional capture occurs when the selection time distributions of target and distractor
overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on
relative salience.
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Introduction

Visual attention can be allocated in a stimulus-driven (bottom-

up) or an observer-guided (top-down) fashion [1], with both

sources of control combining to determine which location or

object in the field is attended. The process of selection often is

investigated in the realm of visual search. In this paradigm, the

task is to find a pre-defined target among distractors and

(depending on the task) indicate its presence or absence or make

another decision based upon its features. Attentional selection in

the search process has been subject to a variety of experimental

studies [2–5] as well as computational models [6–10].

A variant of the visual search paradigm that permits attentional

selection to be investigated precisely is the visual search distractor

paradigm [11,12]. In this paradigm, a task-relevant target

singleton and an irrelevant distractor singleton (both carrying

unique features compared to all other stimuli) are surrounded by

homogeneous non-target stimuli. An example would be a display

containing a predefined target, a grey tilted bar, and a distractor, a

colored vertical bar, amongst grey vertical non-target bars. The

task is to find the target while ignoring the distractor. Typically,

the item with the highest feature contrast is selected first or

‘captures attention’ initially, as evidenced by reaction time (RT)

interference (for distractor-present compared to -absent trials)

when the distractor is characterized by a higher feature contrast

(relative to the non-targets) than the target [3,11–16], but not

when it has a lower feature contrast [11–13]. On this basis, it has

been claimed ‘‘that the initial shift of attention [is directed] to the

most salient singleton’’ [3] and ‘‘that the bottom-up salience signal

of the stimuli in the visual field determines the selection order’’ [3].

In terms of functional architecture, stimulus-driven selection in

visual search is thought to be mediated by an attention-guiding

‘master’ [17], ‘activation’ [6], or ‘salience map’ [18–20], which

codes the physical distinctiveness of each location in the field in

terms of its total feature contrast against the surrounding locations:

the more a stimulus differs from those in its surround (e.g. a bar

tilted by 45u, as compared to 7u, amongst vertical bars), the

stronger its salience signal. A winner-take-all mechanism then

selects that location on the salience map for focal-attentional

allocation which exhibits the highest level of activation. In terms of

the computations involved, existing models assume that after low-

level feature extraction, a center-surround algorithm returns

contrast images for each feature channel; these feature contrast

maps are later combined to form the feature-independent salience
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map, which serve as the basis for the attentional selection

mechanism [18]. Although, in principal, attention is guided to

the location with the highest activation, salience models typically

assume noise to influence some stage(s) of salience computation

[19,20]. Noisy coding turns selection into a stochastic process: the

more salient the target, the higher the probability that it is the first

item selected. The assumption of noise influencing attentional

guidance is shared by prominent models of visual search

[6,8,10,21].

Noise turns computed salience into a random variable with a

certain distribution and an expected value. Consequently, these

models require a differentiation of the concept of ‘salience’: salience

may refer (i) to the expected value of the distribution of salience

estimates, which corresponds to the distinctiveness of each item

from its surround, as captured by contrast images or image

statistics [22–24]; or (ii) to the actual outcome of the salience

computation process on a given trial, which is subject to variability

(due to noise) and can thus deviate from the expected value. To

illustrate this differentiation, it is instructive to linken salience-

based selection to motion (direction) discrimination treated as a

decision process [25]. Discrimination of motion direction within

random dot kinematograms is a frequently used paradigm in the

modeling of decisions [26]. Typically in this paradigm, some 100

dots are moving within a bounded area (some 3u of visual angle in

diameter): a proportion of dots move coherently to either the left

or the right, while the remaining dots have random trajectories.

The observer’s task is to indicate the direction of the coherent

motion. The decision model [25] presupposes the existence of

motion-sensitive cells whose rate of firing is proportional to the

coherence of motion in a specific direction. For the left versus right

decisions, the relevant cells are those tuned to leftward and,

respectively, rightward motion within their receptive fields. Hence,

when a patch of dots is presented with a proportion of dots moving

coherently e.g. to the right, signal detection models of this decision

assume that the cells of both types exhibit activity, which is noisily

distributed around different means. In particular, with rightward

coherent motion in a random dot kinematogram, the activity

induced in ‘right cells’ would be distributed around a mean value

greater than that of the activity induced in ‘left cells’. The higher

the proportion of coherently moving dots in the display, the farther

apart the means of the two activity distributions are. A decision

could be made by drawing one sample of evidence from the ‘left’

unit and one from the ‘right’ unit, choosing that direction which

shows a higher level of evidence [27]. Decision models that do not

only describe the outcome of decisions (as is the case with signal

detection models), but also the distribution of decision times

assume that the noisy activity of the motion-sensitive cells is

integrated, or accumulated, over time. The output of this

accumulation process, the decision variable, is constantly com-

pared against a decision criterion, until the decision is made. That

is, the noisy activity of motion detectors (e.g. in MT) is

accumulated into a decision variable (presumably in the lateral

intraparietal sulcus, LIP), based on which the decision is made.

We propose a similar logic for salience-based selection. Instead

of two motion detectors for the two relevant directions in a

random-dot motion discrimination task, we posit salience detectors

for each location of visual space which are sensitive to feature

contrast. These detectors have previously been assumed to be

noisy. Instead of a signal detection theory-based decision, such as

in Guided Search 2.0 [10], we propose that each detector’s activity

is accumulated into a decision variable over time. All these

decision variables are constantly compared against a criterion,

with the first accumulator whose activity reaches the criterion

leading to attentional selection of the respective location.

Accordingly, this model of selection does not only describe the

outcome, but also the time course of selection decisions. That is,

salience-based selection, rather than being taken to consist of the

two successive steps, namely ‘salience computation’ followed by

‘attentional selection’, is considered as dynamic process in which a

noisy signal is accumulated over time that triggers a selection

decision.

Thus, as becomes apparent from the above considerations,

there are two conceptually different notions of salience. The

construct of physical feature contrast, which corresponds to

motion coherence in the random dot kinematogram, is represent-

ed as sensory data by the activity of salience detectors in the brain

(analogous to the activity of motion detectors representing motion

coherence). This momentary neural representation is distributed

around its mean, that is, it is a noisy signal. Because the expected

salience value, that is the mean of the neural salience represen-

tation, is not linearly related to physical feature contrast [28,29], it

needs to be estimated. This estimation is the intent of current

salience models [22–24]. However, relevant for selection on a

given trial is the accumulated signal of the neural representation,

which is the decision variable. For clarity, in the remainder of the

article, we refer to the concept of expected salience value as

stimulus salience and the actual or accumulated estimate as selection

salience, because the latter is the basis for attentional selection on a

given trial. Stimulus salience is related to physical stimulus

properties: for instance, a horizontal bar among vertical bars has

a higher stimulus salience than a bar tilted by 30u. Solely based on

the value of stimulus salience, focal-attentional selection would

have to favor the horizontal bar. However, owing to noise in the

computation process, the resulting estimates (i.e. selection salience)

are distributed around the expected value of stimulus salience.

Hence, if the distributions of selection salience for horizontal and

30u orientation contrasts overlap, first selection of the 30u bar is

possible in principle: the selection salience of the 30u bar can be

higher on a given trial than that of the horizontal bar. Stimulus

and selection salience do not usually have to be differentiated in

standard visual search (detection) tasks with only one salient target

being present – because, despite noise, the stimulus salience

distributions of target and non-targets virtually never overlap and

the selection salience of a non-target can never be higher than that

of the target. However, this differentiation becomes important

when two conspicuous stimuli are presented, but only one is task-

relevant: if selection salience is higher for the irrelevant (distractor)

stimulus, even though its stimulus salience is lower than that of the

relevant (target) item, it will nevertheless be attentionally selected

first.

Thus, because of the noisy salience computation, in the

distractor visual search paradigm, attentional capture would occur

when the distractor has a higher selection salience than the target.

A distractor can have a higher selection salience if its stimulus

salience is higher, equal, or even lower compared to that of the

target, depending on the overlap between the distributions of the

target’s and the distractor’s selection salience. Consequently, (i) the

occurrence of attentional capture would be proportional to the

relative stimulus salience of the target and the distractor and (ii)

distractors even less stimulus salient than the target would capture

attention in a proportion of trials. This implies that if the

proportion of attentional capture events is high, RT interference

would be large; and if it is low, interference would be small.

Note, however, that this hypothesis has never been tested

directly. Most studies of attentional capture have used only

singleton distractors that were more salient than the target [14,30–

33], and so cannot address this issue at all. On the other hand,

there are a few studies that have contrasted (at most) two stimulus

Attentional Capture by Less Salient Distractors
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salience conditions [11–13,34]. But even then, one cannot logically

make any inferences about the stochastic dependency of selection

(order) on stimulus salience (quite apart from the fact that

interference effects heavily depend on the sample that is drawn

from all possible stimulus salience values, that is the studies with

two settings are likely to have contrasted only extreme, low and

high, values of stimulus salience). In other words, although salience

and visual search models assume noise in the selection process

accounting for attentional capture by less stimulus-salient dis-

tractors, there is, to our knowledge, as yet no empirical evidence

for this assumption. Testing this assumption would require varying

the salience of targets and distractor parametrically, rather than

(just) dichotomically.

On this background, the present study was designed to test the

hypothesis of stochastic dependency between stimulus salience and

attentional selection [10,21], using a combined approach of

behavioral evidence and quantitative modelling [18–20]. In the

behavioral part, we parametrically manipulated the stimulus

salience of pop-out targets and pop-out distractors – so as to be

able to (i) examine the occurrence of attentional capture across a

greater range of stimulus salience values and (ii) determine the

quantitative relationship between stimulus salience and attentional

selection, that is, selection salience. For achieving these aims, it was

necessary to quantify the difference in stimulus salience between

targets and distractors – which we did by means of a visual search

go/no-go detection task in which each of the pop-out stimuli,

whether it served as a target or a distractor in the visual search

distractor task, was presented as a single, to-be detected pop-out

stimulus (i.e., without an irrelevant pop-out stimulus being present

in the display). The detection RTs measured in this task served as

estimates for stimulus salience. The difference in stimulus salience

between a given target-distractor pair in the visual search distractor

task was then quantified in terms of the difference in their

associated detection RTs when they were presented alone in the

visual search detection task. This procedure permitted us to compare

stimulus salience across different dimensions.

Given that noise in the salience computation process turns

attentional selection into a stochastic process, we expected (i) RT

interference to be dependent on the relative stimulus salience and

(ii) even less stimulus-salient distractors (compared to the target) to

interfere, that is capture attention, in some proportion of trials. By

contrast, if salience is not a random variable, as suggested by some

authors [11,12], or noise is too small to affect attentional selection

between two salient stimuli, attentional capture should occur only

with distractors more stimulus-salient than the target. In order to

verify that RT interference by less salient distractors is indeed

caused by attentional capture, we recorded eye movements in an

additional experiment with distractors less salient than the target.

As a second step, we computationally modeled the results of the

behavioral visual search distractor experiment; specifically, we

modeled selection salience in the distractor paradigm based on the

stimulus salience parameters estimated from the behavioral data in

the detection task (see also [35]). The model we implemented is

based on two-stage models of visual search, which assume that

stimulus salience is computed spatially in parallel for all items in

the display (stage 1) and then focal attention is allocated to the item

with the highest selection salience value (stage 2). Note, that our

model only describes the first step of this process: the salience-

based decision as to what location in space attention should select.

The second step, including attentional engagement and stimulus

identification, is outside the scope of the present model. The only

model that (to our knowledge) has made the distinction between

stimulus salience and selection salience explicit is Guided Search

[10]. GS assumes that the selection salience value is stochastically

related to stimulus salience, that is pre-attentive salience coding for

each item in the display is subject to noise, necessitating a signal-

detection-type decision [36] as to which item to transfer to the

second, focal-attentional processing stage. Signal detection models,

in general, account for response proportions, such as those of hits

and false alarms, but not for the temporal duration of the

underlying decisions. Likewise, GS makes statements only about

the proportion of selection decisions directed to the target versus to

a non-target, but not the time-course with which the decisions are

made. However, pop-out targets can differ in the speed with which

they are singled out, that is they can be equivalent in terms of

selection proportion (the target is always selected first), but differ in

the time it takes until the item is selected. Behaviorally, it has been

demonstrated that targets that pop out (i.e., that have flat RT/set-

size functions) can differ in detection RTs [37–40]. For example,

among vertical bars, both a target tilted by 45u and one tilted by

12u pop out, but differ in their associated detection RTs. Töllner,

Zehetleitner, Gramann, and Müller [41] demonstrated that such

differences in RTs are indeed attributable to differences in

selection times: the latency of the so-called N2pc component of

the EEG, which is assumed to reflect the transition from pre-

attentive to post-selective stimulus processing [42,43], increased as

a function of decreasing stimulus salience of the pop-out target.

Given this finding and the notion that a selection decision is based

on the accumulated sensory evidence [25], we considered it

important to take into account the time course of selection

decisions in our model; that is, we simulated the data of the visual

search distractor paradigm in a new model of salience-based

selection that assumes a time course of selection decisions and thus

permits the proportion of capture trials to be predicted for a given

salience difference (derived from the respective detection RTs)

between target and distractor.

In summary, the present study had two goals, one empirical and

one theoretical. Empirically, it was designed to test two central

predictions of visual search and salience models: in a distractor

paradigm, (i) RT interference should be proportional to the

difference in stimulus salience between target and distractor, and

(ii) interference should also be observed with distractors less

stimulus-salient than the target. Furthermore, assuming that this

RT interference is actually caused by attentional capture (rather

than some filtering cost [44]) less stimulus-salient distractors should

also be found to capture the eyes. Theoretically, the study was

intended to computationally model the conceptual distinction

between stimulus salience (as estimated by RTs in a search

detection task without distractors) and selection salience, the noisy

estimate of stimulus salience computed by the pre-attentive visual

system. To this end, the data of the behavioral visual search

distractor experiment were modeled, based on the behaviorally

estimated stimulus salience parameters. The model makes

predictions about which item is selected first, rather than about

RT interference.

Behavioral Reaction Time Experiment

Methods
Ethics statement. Participants gave their written informed

consent. The study was approved by the ethics committee of the

Department of Psychology, LMU Munich, in accordance with the

Code of Ethics of the World Medical Association (Declaration of

Helsinki).

Participants. Fifteen paid (J 16) volunteers, with a median

age of 27 (range 20–50) years, five of them male, all dextral and

with visual corrected-to-normal acuity, participated in this study.
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Stimulus presentation and data acquisition. The exper-

iment was conducted in a sound-insulated room, and was

controlled by a program purpose-written in C++. Stimuli were

presented on a 190 View Sonic Graphics Series G 90 fB monitor at

a resolution of 1,0246768 pixels and a refresh rate of 85 Hz;

viewing distance was approximately 57 cm. Participants respond-

ed using their left and right index fingers, respectively, to press one

of two vertically arranged buttons on a purpose-built response pad.

RTs and response accuracy were recorded online.

The display consisted of 39 vertical broken grey bars presented

on black background and arranged on three imaginary concentric

circles (1.88u, 3.25u, and 4.63u of visual angle in radius, with 8, 12,

and 18 bars, respectively) around the center of the screen, which

was occupied by another bar. Bars were 0.25u61.13u in size and

had a 0.13u-gap randomly located at the top or the bottom of each

bar. Targets differed from non-targets in orientation (7, 8, 9, 14

and 45u tilted from vertical), and distractors differed from non-

targets in luminance (13.8, 14.8, 17.9, 19.4, and 25.5 cd/m2 for

distractors and 5.25 cd/m2 for non-targets). A pilot experiment

was conducted to ensure that target and distractor salience was

sufficient for these stimuli to ‘pop out’ from the search array, that

is, their associated detection times were independent of the

number of non-targets in the display (see Text S1 and Table S1).

Design and procedure. Two 1-hr sessions were carried out

on consecutive days, at the same time of day. The first part of each

session was the distractor experiment; the second part was a post-

experiment for stimulus salience measurement (for the latter, see

Baseline salience measurement). The within-subject design of the

distractor experiment was 2 (distractor present vs. absent)65

(target salience)65 (distractor salience) factorial, resulting in 25

salience difference conditions. A target was present on all trials; a

distractor occurred randomly in 50% of the trials. Target and

distractor were placed randomly at the 12 possible positions on the

second circle to keep eccentricity constant. All salience difference

conditions were presented in random order within blocks.

Participants completed 20 blocks of 50 trials each day, yielding a

total of 2,000 trials and 40 trials per salience difference condition.

Each trial started with a white fixation dot (radius = 0.05u)

presented for a duration uniformly distributed between 900 and

200 ms, that was superseded by the search display which remained

present until response (Figure 1A). Participants were instructed to

indicate, as quickly and accurately as possible, the gap location

(top or bottom) of the target by pressing the upper or lower button,

respectively. In case of an error, visual feedback was provided,

followed by an additional 500-ms blank screen before the next

trial. At the end of each block, participants were informed about

their mean RT and error rate.

Baseline salience measurement. Because salience is not

linearly related to physical contrast [29], we used a behavioral

measurement of salience, which was collected in a post-experiment

after each session of the distractor experiment. Stimuli were the

same as in this experiment. All target orientation and distractor

luminance contrasts from the distractor experiment (Figure 1B)

were presented as (to-be-detected) targets randomly intermixed

with target-absent displays (as in the distractor experiment, targets

never occurred on the outer circle). The design was 2 (target

presence vs. absence)62 (dimension luminance vs. orientation)65

(contrast) factorial. Dimensions were blocked, contrasts were

mixed within blocks. Participants’ task was to indicate the presence

of an orientation or luminance target via button press; response

was to be withheld if no target was present. Four blocks consisting

of 80 trials were performed each day, yielding a total of 640 trials

and 32 trials per contrast condition. The stimulus display was

presented until response or a maximum of 1,200 ms. Error

feedback was provided visually, immediately after the false

response.

Using these detection RTs as our measure of stimulus salience,

we calculated the salience difference between stimuli by subtract-

ing distractor salience from target salience. For example, if a target

was detected at a rate of 300 ms and an distractor at a rate of

400 ms, then their salience difference was 2100 ms. Note that

items of higher salience are associated with shorter RTs; negative

salience differences indicate a distractor less salient than the target,

and positive differences a distractor more salient than the target.

This salience difference measure served as independent variable in

the distractor experiment.

Data analysis. Only correct-response trials were used for

analysis (distractor experiment: 96.5%; baseline salience measure-

ment: 99.0%), excluding RTs shorter than 150 and longer than

1,500 ms in the distractor experiment (0.8%) and shorter than 150

and longer than 1,000 ms in the baseline salience measurement

(0.2%). The first 20 trials (first 10 trials of the baseline salience

measurement) of each session and the first 3 trials of each block

served as practice trials and were also excluded from analysis. RT

interference was calculated by subtracting mean RTs for target-

only trials from mean RTs for target-plus-distractor trials.

Statistical data analysis was carried out with R software [45].

Regression analyses were conducted with n=25 salience difference

conditions (aggregated across 15 participants); t-tests for RT

interference of less salient distractors were conducted with n=15

participants.

To test for the dependency of RT interference on relative

salience between target and distractor, we used nonlinear least-

square estimation for regression function fitting. The nonlinear

function followed the form:

Y~
a

1ze
{

d{p
g

ÿ � , ð1Þ

where a is the asymptote or maximum RT interference, d the

salience difference, p the inflection point, and g the growth factor

of the function.

Goodness of fit comparison of the regression functions was

carried out using Bayes Information Criterion [46], which is

calculated according to

BIC~{2 logLzk log n, ð2Þ

where L is the maximum likelihood of the data under the

regression function, k the number of parameters to be estimated,

and n the number of observations. Smaller BIC values indicate a

better model fit.

Results and Discussion
We investigated the order of attentional selection in a distractor

experiment with a unique, orientation-defined pop-out target

present on all trials and a unique, luminance-defined pop-out

distractor randomly interspersed in half the trials (Figure 1A; for

stimulus pop-out characteristics, see Text S1 and Table S1).

Target orientation and distractor luminance were manipulated

such that the salience difference between the two items was varied

parametrically in 25 steps (Figure 1B). Stimulus salience was

estimated in a post-experiment (Baseline salience measurement) in

which no distractors were presented and targets could be defined

in the orientation or the luminance dimension. The times required

to detect these targets served as salience estimates for the stimuli in

the distractor experiment (Figure 2). We used the mean salience
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difference values of all participants to predict RT interference on

distractor-present, compared to distractor-absent, trials using

nonlinear regression functions. RT interference in this task is

commonly attributed to automatic prior selection of the distractor,

and absence of interference to direct selection of the target [12].

Figure 3A presents the observed RT interference (for correct-

response trials), averaged across participants (mean RT [6 SEM]

on distractor-present trials = 660 [612.9] ms; mean RT interfer-

ence = 28 [64.4] ms), for luminance-defined distractors and

orientation-defined targets as a function of their salience differ-

ence. RT interference was strongly correlated with the salience

difference (n=25; Pearson’s r= .91 [t(23) = 10.8, p,.001]), indic-

ative of the order of selection (‘target first’) being dependent on

relative object salience. This relationship already exhibits the

expected characteristics: (i) the magnitude of interference varies

with the salience difference between target and distractor, and (ii)

distractors considerably less salient than the target do interfere

with search.

Next, we fitted two nonlinear regression functions to the data,

one with the inflection point free to vary (R1) and one in which it

was fixed to 0 ms salience difference (R2). We then compared the

functions’ goodness of fit by examining their Bayes Information

Criterion values [46], where smaller BIC values indicate a better

fit. Regression function R1 yielded an asymptote of 73 ms, an

inflection point of 7 ms, and a growth factor of 29 ms. For the

nonlinear regression function R2, where the inflection point was set

to 0 ms, the RT interference asymptote was estimated to be

67 ms, and the growth factor to be 26 ms salience difference. BIC

value comparison confirmed regression function R2 (with the

inflection point set to 0 ms) to fit the data better than R1

(BICR1=178 vs. BICR2=175; see Table 1 for details).

Figure 1. Experimental design and stimuli. (a) A search display, consisting of 39 broken grey bars arranged around three imaginary concentric
circles, was presented in the center of the screen, on a black background. There was always an orientation target; and in half of the trials (randomly
determined), there was also a luminance distractor. Each trial started with a white fixation spot that was hidden while the display was presented until
response. Inter-stimulus-intervals varied randomly in the range 9006200 ms. While ignoring a bright distractor, participants searched for a tilted
target bar and decided, via a speeded button press, whether the gap was located at the top or the bottom of the bar. This response decision required
focal attention to be allocated to the target. (b) 25 Salience difference conditions resulted from 5 orientation (7, 8, 9, 14, 45u) and 5 luminance (13.8,
14.8, 17.9, 19.4, and 25.5 cd/m2) contrasts.
doi:10.1371/journal.pone.0052595.g001
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These results argue in favor of a proportional first selection of

the distractor dependent on its salience difference to the target.

The function where the inflection point was set to 0 ms indicates

that equally salient targets and distractors are equally likely (50%)

to be selected first. First-selection probability for a given item then

increases as its relative salience increases. The shift of the inflection

point into the positive range in regression function R1 indicates

that at the point at which selection probability is equal for both

items, the target is actually less salient than the distractor (rather

than the two stimuli being equi-salient). This might reflect an

influence of top-down control, permitting the target to compensate

for this discrepancy in relative salience. However, reconsidering

our measure of relative salience, it is possible that target and

distractor salience is not the same in the distractor experiment as

measured in the baseline salience measurement. There are three

possibilities of how they may differ between tasks. First, if a

stimulus is presented alone as in the baseline salience measure-

ment, the display is more homogeneous compared to when an

additional distractor is presented – in which case salience might be

overestimated in the baseline salience measurement relative to the

distractor experiment. However, because this would apply to both

the target and the distractor, this should not affect relative salience

in the distractor experiment. A second reason for diverging relative

salience in the distractor experiment derives from the fact that

stimulus salience was measured after the distractor experiment.

One might argue that assigning the role of target to the orientation

dimension (and that of distractor to the luminance dimension) in

the distractor experiment induces ‘priming’ for orientation-defined

singletons, resulting in an overestimation of target salience and an

underestimation of distractor salience in the subsequent baseline

salience measurement. The implication is that at 0 ms salience

difference, the distractor would actually be more salient than the

target and the true point of equal salience would lie in the negative

range of salience differences. However, according to Maljkovic

and Nakayama [47], priming effects for the orientation dimension,

as an aftereffect of having been assigned the target role in the

distractor experiment, should dissipate within a few trials in the

baseline salience measurement. Third, stimulus salience might be

different in the distractor experiment because of top-down

weighting [48–51]. When both stimuli are presented together, as

in the distractor experiment, the weight of the target might be up-

modulated and that of the distractor down-modulated. That is, the

salience values determined in the baseline salience measurement

would be under-estimates for targets and over-estimates for

distractors. If this was the case, true equality of salience should

be in the positive range of salience differences and the distractor

would be even less salient than the target at the point of 0 ms

salience difference. To test for the latter two possible types of

salience estimation errors, we fitted regression functions with

varying inflection points from 210 to 15 ms salience difference

and calculated the corresponding BIC’s. As figure 4 shows, BIC

was lowest for a regression function with the inflection point in the

positive range of salience differences. This implies that at 0 ms

salience difference, in the distractor experiment, the distractor is

still less stimulus-salient than the target and top-down weighting

shifts the point of equal salience difference into the positive range.

Figure 2. Empirical data of the baseline salience measurement and data fitted by the accumulator salience model. Left panel: five
salience levels of orientation targets. Right panel: five salience levels of luminance targets. Symbols depict RT quantiles of each condition as follows:
o = .1, D= .3, += .5,6= .7, and e= .9. Lines represent RTs generated by the model. Fitted RTs differ from empirical RTs by 5 ms on average (range: 0
to 28 ms). Additional parameter estimates were Ter= 300 ms, ser= 70 ms, a = .08, and b= .294.
doi:10.1371/journal.pone.0052595.g002
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Consequently, our measure of salience difference is rather

conservative, that is RT interference by less salient distractors is

actually even higher than we have assumed here.

The nonlinear regression function already implies that dis-

tractors less salient than the target do interfere with search. To

examine RT interference by less salient distractors more closely,

we conducted t-tests for all salience differences for which the

distractor was significantly less salient (criterion of 0 ms salience

difference) than the target. These tests confirmed there are indeed

distractors less salient than the target that produced significant RT

interference (Figure 3A).

Overall, the findings of RT interference being sigmoidally

related to relative salience and of less salient distractors capturing

attention, are compatible with visual search and salience models

[10,18–24] that assume that the salience coding and, thus, the

selection process is subject to internal noise.

Computational Model
A second, theoretical goal of the present study was to develop

and test a computational model of how stimulus salience translates

into selection salience, that is, a model accounting for the variation

in the outcome of the selection process based on stimulus salience

– concretely by simulating the data of the distractor paradigm.

Figure 3. Behavioral interference and modeled proportion of
capture as a function of salience difference. (a) Empirical RT
interference, averaged across participants, represents the RT difference,
in ms, between distractor-present and distractor-absent trials. Salience
difference, averaged across participants, was derived from detection
times in the baseline salience measurement requiring a simple target-
present vs. target-absent decision (see Methods of Behavioral reaction
time experiment). Negative x-values indicate distractors less salient, and
positive x-values distractors more salient than the target. Dots represent
mean values of RT interference for each salience difference condition
(n=25); arrows indicate the associated standard errors. Red dots
indicate significant RT interference by distractors significantly less
salient than the target (t-tests: p,.05). Solid curve: regression function
curve R2. (b) Proportion of capture in the distraction experiment was
predicted by salience difference, derived from fitting empirical salience
difference values. Again, dots represent mean values of RT interference
for each salience difference condition (n=25). The curve depicts the
nonlinear relationship according to R2.
doi:10.1371/journal.pone.0052595.g003

Table 1. Parameter estimates of the model predictions fitted
to empirical and modeled data.

Variable

Unstandardized

estimate S.E. t p CI BIC

Human data

R1 178

Asymptote 73 9.66 7.53 .001 58–117

Inflection point 7 10.26 0.65 .263 210–48

Growth factor 29 5.79 5.79 .019 18–47

R2 175

Asymptote 67 2.90 23.09 ,.001 61–73

Inflection point 0

Growth factor 26 3.39 7.57 ,.001 19–34

Model data

R2 242

Asymptote 0.95 0.04 24.87 ,.001 0.87–1.03

Inflection point 0

Growth factor 42 5.01 8.39 ,.001 32–55

Note: n= 25. Estimate for empirical data in ms; asymptote estimate for modelled
data in proportions. Ri=Nonlinear regression function. S.E.= Standard Error. t
and p= value and probability of the t statistic associated with parameter
estimate. Degrees of freedom: R1: 23, R2: 22. CI= 95% confidence interval.
BIC=Bayes Information Criterion.
doi:10.1371/journal.pone.0052595.t001

Figure 4. Course of BIC dependent on the inflection point of
the regression function. Regression functions were fitted according
to formula (1), with the inflection point as fixed parameter. Inflection
points are specified in ms of salience difference.
doi:10.1371/journal.pone.0052595.g004
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Importantly, the model we devised makes predictions about the

item that is selected first (rather than directly about RT

interference) and takes noise and the time course of selection,

based on stimulus salience, into account. Selection is assumed to

involve a decision between all stimuli in the display and the

dynamics of selection processes to be stochastic in nature [10,19–

24], with the outcome being dependent on stimulus salience and a

noise component.

In more detail, the model assumes that the salience map

develops over time probabilistically (Figure 5). Each item in the

visual scene is represented by a sensory-evidence accumulator unit,

the drift rate of which corresponds to stimulus salience.

Accumulation is assumed to be a leaky and noisy process [52].

That is, sensory evidence does not accumulate infinitely, but

comes to settle eventually around an asymptotic value (mathe-

matically the proportion of the drift rate to leak). A selection

decision is triggered as soon as sensory evidence for a specific

location exceeds a threshold. In this model, stimulus salience

determines the drift rate with which sensory evidence is

accumulated, and selection salience is the accumulating, or

accumulated, sensory evidence. In contrast to this dynamic

process, which is continuous over time, conventional models of

visual salience essentially envisage a snapshot-like topographic

representation of the (physical) feature contrasts present in the

scene, which serves as the basis for selection decisions: the location

of maximum contrast is attentionally selected by a winner-take-all

mechanism, the time course of which is usually not modeled

explicitly.

For simulating the results of the distractor experiment, in a first

step, we fitted the model to the empirical baseline salience

measurements in order to obtain parameter estimates for stimulus

salience; in the next step, these parameters were used to simulate

selection salience in terms of the probability of a distractor versus a

target being selected first.

Methods
We implemented the selection salience map using leaky

accumulators [52]. That is, all items on the screen are represented

by leaky accumulators that race against each other for selection;

the item that first exceeds a threshold criterion is then selected.

Model parameters are drift rate n, leakage b, and threshold a. At

each time step, sensory evidence of accumulator I is updated

according to the formula:

dxi~½ni{bxi�hzN(0,s)
ffiffiffi

h
p

, ð4Þ

where h is the step size, which is set to 1 ms in the model fits, and

N(0, s) denotes a Gaussian distribution with mean 0 and standard

deviation s. Within-trial variability is normally distributed with

s=0.1. Salience computation terminates as soon as one

accumulator exceeds the selection threshold, resulting in a decision

time of attentional selection (tsel). Observed reaction time is usually

considered to be the sum of decision time and time of non-

decision-related processes such as basic encoding time between

retina and primary visual cortex as well as the time necessary after

the decision has been made for the motor commands to be

transmitted to and innervate the effector muscles. Non-decision

times (denoted Ter), which incorporate the time necessary for

stimulus encoding and response production, are usually assumed

to be distributed uniformly [53] with range ser. Note that,

potentially, the model could also be turned into a winner-take-all

‘network’ by adding lateral inhibition between each accumulator.

In this case, over time, there would eventually be only one

accumulator active, with the activities of all other accumulators

driven to (near-) zero. As concerns the selection times for the first

item, the main question at issue in the present study, such a model

would yield similar results.

In pop-out search, accumulators for non-target stimuli can be

left out of the simulation, because non-targets are effectively never

selected – as evidenced by search time for pop-out targets being

independent of the number of non-targets [38]. That is, for the

baseline salience measurement, in which only a target (but no

distractor) was presented amongst the non-targets, the selection

salience map model is reduced to one accumulator racing towards

its threshold. In the distractor experiment, by contrast, a pop-out

target and a pop-out distractor were presented simultaneously. In

the model, this is represented by two accumulators racing against

each other, with the drift rates of the two accumulators

corresponding to target and distractor stimulus salience, respec-

tively.

The simulation proceeded in two steps: first, the model

described above was fit to the data of the baseline salience

measurement to obtain drift rates corresponding to the different

levels of stimulus salience induced by the 10 possible ‘targets’, as

well as estimates of the other parameters (b, a, Ter, and ser); second,

these estimated parameters were then used to simulate the

proportion of capture trials in the distractor experiment.

From the empirical data of the baseline salience measurement,

RT distributions were characterized by the .1, .3, .5, .7, and .9

quantiles. These were calculated per observer per condition and

then pooled across all observers [53]. Model parameters consisted

of one selection threshold a, leakage b, non-decision time Ter and

its range ser, and additionally one drift rate ni per salience

condition. For each parameter set, 50,000 replications of the

random walk process were simulated (see equation 4); that is, for

each salience condition, the model produced 50,000 model RTs.

From these, the model .1, .3, .5, .7, and .9 quantiles as well as the

error rates were computed. An error was recorded if the

accumulator failed to reach the selection threshold within

1,200 ms (as in the empirical experiment). For each parameter

set, the weighted least squares (WLS) was calculated according to

4(pcth{pcex)
2
z

X

i

wipcex½Qth(i){Qex(i)�2, ð5Þ

where pc stands for percent correct and the indices th and ex denote

the modeled (theoretical) and empirically measured (experimental)

statistics, respectively; Q(i) signifies the .1, .3, .5, .7, and .9 quantile

RTs, and wi is a weight which was set to 2 for the .1 and .3

quantiles, to 1 for the .5 and .7 quantiles, and to 0.5 for the .9

quantile [54]. That is, the squared differences between empirical

and model percent-correct scores and, respectively, empirical and

model quantiles are calculated, and the latter differences are

weighted more strongly for lower than for higher quantiles,

because estimates for higher (especially the .9) quantiles are more

variable than those for ‘faster’ quantiles. A Nelder-Mead simplex

optimization algorithm [55] implemented in R [45] was used to

minimize the WLS cost function. The fitting procedure com-

menced with manually selected starting variables and was run for

200 iterations ten times in a row, each time using the optimization

result from the previous run as starting values for the next run in

order to avoid local minima. Local minima are likely to be avoided

by this procedure, because during the simplex optimization, the

step sizes with which the parameter space is sampled become

adaptively smaller. When restarting the algorithm, the step size is

increased again, thus providing the potential for escaping from a
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local minimum [56]. Finally, the optimization procedure was run

with maximally 5,000 iterations to yield the final set of parameters.

Those parameters which fitted best to the baseline salience

measurement data were then used to simulate capture in the

distractor experiment. The model was based on the assumption

that in cases of both, a target and a distractor being present, two

accumulators race against each other for selection, one with a drift

rate corresponding to target stimulus salience and the other with a

rate corresponding to distractor stimulus salience; the accumulator

which first reaches the selection threshold wins the race. Capture

was then operationalized as the proportion of trials in which the

distractor accumulator completed the race before the target

accumulator. For each combination of target and distractor, the

selection threshold a, the leakage b, and the two salience values

were taken from the fit of the baseline salience measurement data

and 40 races were simulated (the same number of trials as were

used in the empirical study).

Results and Discussion
As RT interference is an indirect measure of the order of

attentional selection, the underlying mechanism can only be

inferred. Therefore, to strengthen our hypothesis about the

relationship between salience and order of selection, we compu-

tationally implemented the proposed salience-based selection

mechanism (Figure 5), estimated target salience from the

(behavioral) baseline salience measurement, and simulated inter-

Figure 5. Stochastic model of salience-based selection. (a) For each location in the visual field, salience is accumulated over time t = {t1, t2,…,
tk} by leaky accumulators. Gray jagged lines represent sample paths of sensory evidence accumulation over time, influenced by noise. Mean
accumulation behavior is indicated by solid black lines. Salience asymptotes s (st= target salience, sd=distractor salience, snt=non-target salience)
indicate maximum salience when time is infinite and noise absent; asymptotes correspond to the salience values of map locations computed by
deterministic models. (b) Selection time distributions (t = target, d =distractor) indicate selection time variation due to noise. Overlap of these
distributions (red area) marks the range within which a distractor may be selected first even if it is less salient than the target. (c) The final salience
pattern evolves over time, as illustrated by heat maps at different points in time.
doi:10.1371/journal.pone.0052595.g005
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ference for the distractor experiment. RTs generated by the

salience model yielded a close fit to the empirical RT distributions

(Figure 2) for the various orientation and luminance targets in the

baseline experiment: reduced salience slowed search and increased

the spread of the RT distributions. The goodness of fit is

remarkable given that across the ten different target conditions,

only one parameter (the drift rate, corresponding to salience) was

free to vary, whereas the parameters a (selection threshold), b

(leakage of the accumulator), Ter (non-decision time), and ser
(variability of Ter) were kept constant.

Importantly, when simulating the data of the distractor

experiment using the fitted parameters from the baseline salience

measurement, the predicted proportions of capture were similar to

the observed RT interference (Figure 3B): the salience model

simulates distractors less salient than the target to capture

attention, the proportion of capture events to depend sigmoidally

on salience difference, and capture to occur in half the trials with

distractor of equal salience relative to the target. This qualitative

similarity is reinforced by comparing the fits of nonlinear

regression function R2 to the simulated and the empirical data:

the inflection point and growth factor parameters of the nonlinear

fits did not differ, as indicated by the overlapping confidence

intervals (see Table 1). Keeping the leakage parameter b constant

at zero does not qualitatively alter the fit of the baseline

experiment or the proportions of interference. However, there

are two conceptual arguments for assuming leakage. First, without

leakage, evidence would accumulate towards infinity over time,

which is implausible with respect to the limitedness of neuronal

firing rates. Second, with leakage, sensory evidence averages to an

asymptote which is proportional to the salience values calculated

by conventional, ‘static’ salience algorithms.

Behavioral Eye Movement Experiment

Although RT interference has been attributed to attentional

capture in most previous studies [11–13,15], there is also the

possibility that RTs are slower on distractor compared to target-

only trials not because attention is first captured by the distractor,

but because the distractor draws on the same processing resources

as the target and thus slows target selection. Conceivable

mechanisms of slowing are filtering [57] or competitive interac-

tions [58] to be resolved in favor of the target. Whatever the

precise mechanism that may underlie such slowing effects, in the

present context, the critical question is whether or not the RT

interference produced by distractors less salient than the target is

the result of attentional capture. Empirical RT data cannot answer

this question (RT interference may be caused by slowing,

attentional capture, or both), and although our modeling results

demonstrate that a capture account could explain the pattern of

RT interference effects, it does not rule out alternative accounts in

terms of non-capture slowing. Given this, we examined for

attentional capture of the eye by (less salient) distractors in an eye-

tracking experiment. Involuntary capture of the eye by a distractor

is commonly taken as a strong indicator of attentional capture

[59]. Accordingly, the finding of oculomotor capture would

corroborate attentional capture as a source of RT interference. In

the eye-tracking experiment, participants’ task was to make a

direct saccade to the target, while a less salient distractor could be

present in the display.

Methods
Methods were the same as in the RT distractor experiment,

unless stated otherwise.

Participants. Eight paid (J 8) volunteers, with a median age

of 23 (range 20–39) years, one of them male, seven dextral, and

with visual corrected-to-normal acuity and normal color vision,

gave written informed consent to participate in this experiment.

Stimulus presentation and data acquisition. Stimuli were

generated using a ViSaGe system (Cambridge Research Ltd., UK)

with a purpose-programmed Experimental Toolbox for MATLAB

(The MathWorks, Inc.). Stimulus displays were presented on a 22-

inch Mitsubishi Diamond Pro 2070SB CRT monitor with a screen

refresh rate of 120 Hz and a screen resolution of 1,0246768 pix-

els. Eye movements were recorded at a sampling rate of 1000 Hz

by means of an EyeLink 1000 Desktop Mount eye tracker (SR

Research Ltd., Canada) positioned below the display monitor.

Participants viewed the monitor from a distance of about 70 cm;

to minimize head movements, a chin and forehead rest were used.

Eye movements were recorded from the right eye; however,

stimulus displays were viewed binocularly.

Grey vertical bars (without gaps) of 0.25u61.35u of visual angle

were arranged on three imaginary concentric circles (2u, 4u, and 6u

of visual angle in radius, with 6, 12, and 18 bars, respectively).

Targets differed from non-targets in orientation (22u tilted from

vertical, randomly to the right or left), and distractors differed from

non-targets in color (distractor 1: 180/100/106, distractor 2: 171/

104/110 RGB). All stimuli were matched for luminance.

Design and procedure. The experimental session started

with the eye-tracking experiment, after which the baseline salience

measurement was conducted. The eye-tracking experiment

implemented a 2 (distractor absent vs. present)62 (distractor

salience) factorial within-subject design, with two salience differ-

ence conditions. To ensure reliable differentiation between target

and distractor fixations for the data analysis, distractor positioning

was restricted in the following way: the target position was chosen

randomly out of the 12 possible positions on the middle circle; the

distractor position was then chosen to be shifted by three or five

positions to either the left or the right from the target position

(each in a random 25% of the distractor-present trials). There were

80 trials per salience condition. This resulted in 320 trials overall,

which were presented in 4 blocks of 80 trials each. All salience

difference conditions were presented in random order within

blocks.

The task was to make a speeded saccade to the target.

Observers were instructed to fixate the fixation cross at the trial

start until the appearance of the search display, and then to make a

direct saccade to the (orientation) target, while ignoring the (color)

distractor. In case the first saccade went nevertheless to the

distractor, participants were instructed to direct the next eye

movement to the target. In addition, they were told that after

having made a saccade to the target, they should fixate it until the

disappearance of the search display.

Each trial started with a fixation cross (0.5u60.5u) for 1,000 ms.

Then, the search display appeared and remained visible for

1,000 ms. The intertrial interval, in which a black (blank) screen

was displayed, was of a random duration between 700 ms and

1,100 ms. Observers were encouraged to use this interval for

briefly closing and resting their eyes, so that they could minimize

blinks during the subsequent trial. Additionally, participants could

take short breaks between experimental blocks. Prior to each block

of trials, a nine-point calibration of the eye tracker was conducted.

Baseline salience measurement. Salience measurement

was the same as for the reaction time experiment, unless stated

otherwise. Apparatus and stimuli were the same as in the eye-

tracking experiment, that is, the to-be-detected targets were either

‘oriented’ or ‘colored’. Six blocks consisting of 40 trials were

performed, yielding a total of 240 trials and 40 trials per target
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condition. Each trial started with the presentation of a white

fixation cross (0.5u60.5u) for a random duration ranging from

700 ms to 1,100 ms. Thereupon, the search display was presented

and remained visible until response or a maximum duration of

1,000 ms.

Data analysis. For the analysis of the baseline salience

measurement, error trials (0.9%) and target-absent trials were

excluded. In addition, RTs shorter than 150 ms and longer than

three standard deviations above an observer’s mean per target

type were discarded as outliers (0.8% of all trials). For the analysis

of the eye-tracking data, trials were excluded on which search

display onset occurred during a saccade or the eye-tracker failed to

track the observer’s pupil (4.3%). Saccade latencies were

calculated as the time between onset of the search display and

the initiation of the observer’s first saccadic eye movement. Trials

with initial saccade latencies below 80 and above 600 ms were

excluded (2.9%). The remaining data underwent a drift correction:

Before the onset of the search display (i.e. at the end of the fixation

cross display), gaze was assumed to have rested on the fixation

cross. Thus, for drift correction, the eye’s deviation from the

fixation cross was subtracted from the subsequent gaze position

data for this trial. The initial saccade after search display onset was

then assigned to the target or the distractor if it landed within 3u of

visual angle of the respective (target or distractor) location. Initial

saccades that went neither to the target nor to the distractor were

not included in the subsequent analysis (2.8% of the remaining

trials).

Salience difference, which again served as independent variable,

was computed as in the RT distractor experiment. To ascertain

that each distractor was less salient than the target in the baseline

experiment and whether the percentages of distractor fixations

were greater than zero in the eye-tracking experiment, one-sided t-

tests were calculated on the sample of eight participants.

Results and Discussion
The eye-tracking experiment was designed to examine whether

the interference by less salient distractors observed in the RT

distractor experiment was the result of attentional capture;

participants’ task in this experiment was to make a speeded

saccade to the orientation-defined target, while a color-defined,

but less salient distractor could be present at the same time.

Distractor color was manipulated in two steps. As in the RT

experiment, stimulus salience was estimated in a post-experiment

(baseline salience measurement). The times required to detect these

(orientation- and color-defined) stimuli served as salience estimates

for the stimuli in the eye-tracking experiment.

Detection times were significantly faster for the orientation

target (M=376 ms; SD=37) compared to both color distractor 1

(M=399 ms, SD=54; t[7] =22.1, p,.05) and color distractor 2

(M=414, SD=54; t[7] =23.3, p,.01). Hence, both distractors

were considerably less salient than the target.

For the eye-tracking experiment, we calculated mean percent-

ages of target and distractor fixations (based on distractor-present

trials) for the two distractor types. Figure 6 presents these as a

function of the salience difference between target and distractor.

With color distractor 1 (salience difference of 224 ms) in the

display, 22.5% of the initial saccades went to this distractor rather

than to the target. With color distractor 2 (salience difference of

239 ms), there were 13.3% oculomotor capture trials. The

capture rate was significantly above zero for color distractor 2 as

well as for color distractor 1 (t[7] = 5.1, p,.001 and, respectively,

t[7] = 5.7, p,.001). Thus, even though both color distractors were

less salient than the target (as established in the baseline salience

measurement), they led to a considerable amount of capture

events. This implies that distractors less salient than the target do

give rise to involuntary attentional capture (as well as distractors

more salient than the target).

The initial saccade latencies, irrespective of saccade destination,

were examined in an ANOVA with the single factor distractor

condition (three levels: absent, color distractor 1, color distractor

2). The latencies were somewhat shorter for distractor-absent trials

(M=249 ms, SD=20) than for trials with a color distractor

(distractor 1: M=256 ms, SD=29; distractor 2: M=256 ms,

SD=31), but these differences were not reliable (F[2,14] = 1.9,

p= .19). The same was true when only the latencies of initial target

fixations were examined: latencies were slightly, but not signifi-

cantly, shorter for distractor-absent trials (M=249 ms, SD=20)

than for trials with a color distractor (distractor 1: M=259 ms,

SD=31; distractor 2: M=256 ms, SD=34; F[1,9] = 2.4, p= .16,

Greenhouse-Geisser-corrected).

Finally, we examined how long the eyes rested on the distractor

when it was selected prior to the target. The mean fixation

duration was 131 ms for color distractor 1 and 154 ms for color

distractor 2. The 95% confidence intervals ranged from 95–

160 ms for color distractor 1 and from 95–214 ms for color

distractor 2. This means that the time required to identify the

foveated item as a non-target and to prepare the next saccade

varied between 95–214 ms.

This time can be related to the maximum RT interference in

the behavioral distractor experiment. There, the asymptote of the

sigmoidal relationship between salience difference and RT

interference was about 80 ms. That is, distractors much more

salient than the target, which are presumably selected first in

100% of all trials, lead to RT interference of approximately 80 ms.

This time is in a similar range (albeit somewhat faster) to the

durations of first fixations on distractors. Note, though, that the

focus of the present study and model is on the capture of attention,

Figure 6. Capture of the eye by less salient distractors. Empirical
proportion of capture by the distractor, averaged across participants,
represents the proportion of first eye movements landing on the
distractor position. Salience difference, averaged across participants,
was derived from detection times in the baseline salience measurement
requiring a simple target-present vs. target-absent decision (see
Methods of Behavioral eye-tracking experiment). Negative x-values
indicate distractors less salient than the target. Dots represent mean
values of proportion of capture for each salience difference condition
(n= 2); arrows indicate the associated standard errors.
doi:10.1371/journal.pone.0052595.g006
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rather than the subsequent processing steps which include

identification of the selected item as a distractor, selection of the

next salient location, disengagement of attention, and execution of

the covert or overt attention shift. These processing stages

subsequent to attentional capture have only rarely been discussed

in the literature [3] and should be the subject of future research.

The two methods presented here (fixation durations and

maximum RT interference) may serve as two possibilities of how

to estimate the duration of the subsequent processing stages.

General Discussion

Theories of attentional selection, such as salience and visual

search theories [10,18–21], assume attention to be automatically

attracted by the most salient location. An additional assumption of

these theories is noise operating during the computation process.

This assumption of noise requires the distinction between stimulus

salience, determined by physical stimulus properties, and the

salience estimate for selection which is susceptible to noise –

selection salience. Although there are empirical studies providing

evidence for attentional capture by the most salient stimulus

[11,12,14], there has been no previous study in which salience of a

target and salience of a distractor were varied parametrically, to

demonstrate that noise influences the process of selection between

two competing locations and turns salience into a stochastic

variable such that even less salient stimuli lead to RT interference

because they may be selected prior to the most salient ones. Note

that the assumption of noise influencing the selection process is

also at the heart of the redundant-signals paradigm. Here, two

salient features share the same location while racing for selection

[60,61].

The aim of the present study was to test the predictions by visual

search and salience models that noise influences the selection

process such that (i) selection salience (based on which a selection is

made) varies as a function of relative salience between target and

distractor and (ii) distractors less stimulus-salient than the target

capture attention. Further, by implementing the distinction

between stimulus and selection salience computationally, we

aimed at modelling the empirical results of the distractor visual

search experiment.

By manipulating stimulus salience of targets and distractors

parametrically, we found distractor interference to be sigmoidally

related to salience difference between targets and distractors and

even distractors less salient than the target to interfere with search

and capture attention. These results are in accordance with

salience [18–20] and visual search models [8,10,21], which assume

noise during the selection process. This, at the same time, suggests

that experimental manipulations of previous studies [11,12,14,16]

were insufficient to recognize the stochastic dependency between

salience and attentional capture and hence claimed that the most

(stimulus-) salient item is invariably selected first. Parametric

salience manipulation, by contrast, revealed a gradual increase of

RT interference with increasing distractor salience relative to the

target, where a less salient distractor can be selected before the

more salient target. These results point to a stochastic relationship

between stimulus salience and selection, which is predicted by

visual search and salience models, but was not shown in relevant

empirical studies [11,12,14,16].

Attentional Selection as Decision Process
For the computational implementation of the distinction

between stimulus and selection salience, we considered attentional

selection as a decision between the target and the distractor (non-

targets were considered negligible in the competition for selection,

because it was ensured that all target and all distractor stimuli were

found efficiently, i.e. popped-out) and used decision mechanisms

to model selection salience on the basis of stimulus salience. The

idea to implement attentional selection as a decision process is

grounded on the assumption that search does not involve a one-

step decision [62–64], but rather a chain of decisions [10,65,66].

In this chain, first, one of n possible locations has to be selected

(where n is the number of possible target locations in the display);

second, a two-alternative identification decision between ‘target’

and ‘distractor’ has to be made; third, a decision concerning the

response-relevant feature (here the gap location) is necessary for

task completion; and fourth, the correct button has to be selected

for the response (here upper or lower).

As input for the selection salience modelling, we used the

stimulus salience estimates measured in the detection experiment.

Selection salience was then computed by the race of the two

accumulators of target and distractor with their drift rates

corresponding to the stimulus salience of both stimuli. In other

words, the model was first fit to the RT distributions in the salience

baseline measurement, which was designed to provide estimates of

the drift rate parameters corresponding to the stimulus salience

values of the various (orientation and luminance) target stimuli.

This procedure of taking empirical data as input for the model to

simulate visual search performance was also used by Purcell et al.

[35]. When, second, using these empirical stimulus salience

parameters to simulate the data of the distractor experiment, the

proportion of simulated capture (i.e. trials on which the distractor

was selected first) did not differ from that of empirical RT

interference and increased with increasing relative stimulus

salience between target and distractor. The model also simulated

capture by less salient distractors, as indicated in the RT distractor

experiment and demonstrated in the eye-tracking experiment.

The present approach of considering salience-based attentional

selection as decision process (with a decision being made in favor

of the stimulus with the highest selection salience), is only one way

to conceive of salience. An alternative approach is that adopted by

image-based salience models [22–24], which implement the

construct of salience in terms of image statistics that are computed

by center-surround algorithms. In this case, however, the most

salient item is invariably selected, unless some noise filter is added

on top of the computed salience. For the computation process

itself, stimulus salience and selection salience are always identical

in these models, that is, noise is not an inherent component of the

computation process, but a ‘technical’ add-on following the

computation of salience. A more theoretical, rather than technical,

approach was taken in developing cognitive concepts of salience to

explain specific patterns in visual search performance [10,17,21].

Here, the core function of salience (or activation) maps is their role

in guiding attention to a specific location. Another perspective that

has been taken to consider salience is the neurophysiological one

[19,67–70]. Here, the spike rates of neurons in the lateral

intraparietal area or the frontal eye field are considered to form a

salience map and marking locations for focal-attentional alloca-

tion. Some attempts have already been undertaken to combine the

various constructs of salience: Li [20] presented a salience model

based on neuronal network modelling of V1 that combines the

cognitive, neurophysiological, and image statistics perspectives.

Purcell et al. [35] combined the decision with the neurophysio-

logical approach by feeding neuronal spike trains as salience signal

to a stochastic accumulator model that simulated a decision in a

visual search task. The variety of perspectives from which salience

can be considered demonstrates that when various studies talk

about salience, the authors do not necessarily have the same

concept in mind. Thus, clearly, it is necessary to precisely define
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the concept under consideration, in order to frame predictions

about behavior.

Relation to Biased Competition
As mentioned above, RT interference due to distractor presence

can have several possible sources. Either the distractor could

capture attention and the target would be selected only as the

second item, yielding a cost on RT; or the distractor could slow

down selection of the target, even if the target is selected first.

Here, we discuss these two theoretical possibilities with respect to

the concept of biased competition [58,71,72]. The core assump-

tion of biased competition is the idea that stimuli compete for

neuronal representation. The competition for this representation

can be biased by both top-down (intentional) and bottom-up

(environmental) factors. The bottom-up factor relevant in this

context is salience [73]: the more salient a stimulus is, the stronger

it competes for neural representation. There are two possibilities of

how this account can be linked to the distractor visual search

paradigm.

First, biased competition could account for no-capture slowing

of target selection. Target and the distractor compete for neural

representation. Thus, when a distractor is present, fewer resources

are available for the target. Even if the target is selected first, its

selection time would be slower in the presence, compared to the

absence, of a distractor. This could be implemented in our model

in terms of lateral inhibition between the different accumulators

[52,74]. That is, each accumulator receives excitatory input from

the salience signal derived from its stimulus and, additionally,

inhibitory input from the other accumulators. However, while

such a wiring scheme would implement the biased-competition

mechanism sketched above, our eye movement experiment

yielded little indication that the time required for direct (first)

selection of the target is dependent on distractor presence (or

distractor salience).

Second, our decision model – which assumes an accumulator

for each stimulus in the visual field, with the drift rate of each

being proportional to the stimulus salience – can be considered as

an implementation of the bias in competition imposed by stimulus

salience [73]. In the model, competition takes the form of a race,

amongst the accumulators, against a threshold: that item is

attentionally selected that drives the accumulator which crosses the

threshold first, where the driving input depends on stimulus

salience.

In summary, both variants of biased competition (yielding target

slowing and distractor capture, respectively) can be implemented

in our salience decision model. However, our eye movement data

suggest that primarily the latter mechanism is responsible for the

RT interference caused by a competing distractor, whether the

distractor is more or less salient than the target.

Relation to Top-down Modulations of Salience
The focus of the present study was on bottom-up modulations of

salience by physical feature contrast. Top-down modulations of

salience are well documented in the literature [10,48,50] and have

also been discussed in relation to attentional capture [49,75,76].

Specifically, it is assumed that when a dimension (e.g. orientation)

is task-relevant, salience signals from this dimension are up-

modulated to some degree. At the same time, salience signals from

irrelevant or to-be-ignored dimensions (e.g. luminance or color)

are down-modulated. Our data support this view, in that the

salience difference at which the target and the distractor are

equally likely to be selected actually requires the distractor to be

somewhat more salient than the target, as measured in the baseline

experiment (because in the distraction experiment, top-down

weights enhance the target and reduce the distractor salience). The

present model can easily be extended to incorporate top-down

weighting: the drift rates would be slightly increased for features in

the target-defining dimension and decreased for features in the

distractor-defining dimension, implementing task-dependent top-

down modulations of salience.

Conclusion
We conclude that attentional selection can be understood as a

‘decision’ and, consequently, with regard to the concept of

salience, a distinction has to be made between stimulus salience,

which is computed from physical stimulus properties, and selection

salience, which contains the noisy estimate of stimulus salience that

is relevant for attentional selection. Following this distinction, the

dependency between attentional selection and salience is stochastic

in nature. As an empirical consequence, attentional capture by an

irrelevant distractor occurs as long as the selection time

distributions of target and distractor overlap, and distractors less

salient than the target can also capture attention.
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Distractors that are less salient than the target evoke reaction time interference in the distractor search par-

adigm. Here, we investigated whether this interference indeed results from spatial attentional capture or

merely from non-spatial filtering costs. Target and distractor salience was manipulated parametrically and

the modulation of reaction time interference by the distance between both stimuli was taken as an indicator

of attentional capture. For distractors that were less salient than the target, we found distance to be predictive

of reaction time interference. Moreover, this relationship was modulated by the difference in relative salience

of target and distractor: the less salient the distractor was compared to the target, the weaker was the influ-

ence of distance. These results are in accordance with the sequential sampling model of salience-based selec-

tion by Zehetleitner et al. (Zehetleitner, M., Koch, A.I., Goschy, H., Müller, H.J., 2013. Salience-based selection:

Interference by distractors less salient than the target. PLoS ONE 8: e52595.). This model assumes the salience

map to be computed by noisy accumulation of sensory evidence. As a result, the salience map output fluctu-

ates around its true value and less salient locations can be denoted as most salient. A distractor less salient

than the target can therefore capture attention with a certain probability. We conclude that reaction time in-

terference by less salient distractors in the distractor search paradigm is a result of attentional capture in a

proportion of trials, rather than a result of non-spatial filtering costs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Every instant of time, numerous signals reach the sensory system—

more than the brain can efficiently process up to the level of conscious

awareness and decision making. Given this, selective attention is re-

quired to focus processing on ‘relevant’ objects or locations. This focus-

ing can happen in an agent-based or top-down actingmanner aswell as

in an environment-based or bottom-up acting fashion (Egeth & Yantis,

1997). Accordingly, attention can be allocated intentionally to a stimu-

lus, based on parameters (e.g. spatial location, features, dimensions,

objects) specified in the ‘attentional set’ (Folk, Remington, & Johnston,

1992); alternatively, attention can be reflexively summoned by a salient

stimulus (Theeuwes, 1992).

Stimulus salience refers to the conspicuity, or contrast, of an item

relative to its surrounding items: the more homogeneous the back-

ground of a given item is and the more it differs from the background,

the more salient it is (Duncan & Humphreys, 1989; Itti & Koch, 2001;

Koch & Ullman, 1985; Wolfe, Cave, & Franzel, 1989). With regard to

the influence of salience on attentional capture, the debate has mostly

been centered on whether or not the most salient, but task-irrelevant,

non-target item invariably captures attention, whereas the influence

of items less salient than the target has largely been neglected. On

influential salience models (Bruce & Tsotsos, 2009; Itti & Koch,

2001), one would predict the most salient item to capture attention

invariably — which is well supported by behavioral (Donk & Van

Zoest, 2008; Kim & Cave, 1999; Mounts, 2000; Theeuwes, 1991,

1992) and physiological evidence (De Fockert, Rees, Frith, & Lavie,

2004; Hickey, McDonald, & Theeuwes, 2006; Hodsoll, Mevorach, &

Humphreys, 2009). For instance, in the classical distractor search

paradigm, Theeuwes (1991, 1992) presented a salient target among

homogeneous non-targets and one salient (non-target) distractor.

He found singleton distractors more salient than the target to inter-

fere with search (i.e., to slow reaction times to the target), whereas

interference was not evident with targets more salient than the

distractors. Because distractor interferencewas observed, in the former

case, even though participants knew the exact target-defining feature,

Theeuwes concluded that salience was the critical factor determining

priority of, or first, attentional selection. Although Theeuwes' (1991,

1992) strong ‘bottom-up’ stance has been challenged by findings that

attentional capture can be top-down modulated by observers' inten-

tions (e.g. Bacon & Egeth, 1994; Eimer & Kiss, 2008; Leber & Egeth,
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2006; Müller et al., 2009; Zehetleitner, Goschy, & Müller, 2012),

all accounts agree that if a distractor does capture attention, it

must have been more salient – that is, it cannot have been less

salient – than the target item (De Fockert et al., 2004; Theeuwes,

1992, 2010).

Given this ubiquitous assumption, it is unsurprising that little ef-

fort has been directed to systematically investigate interference by

distractors that are less1 salient than the target, probably because in-

fluential theories of salience-based selection predict no interference

for this case (Theeuwes, 2010). To our knowledge, the first systematic

study of this issue is that of Zehetleitner, Koch, Goschy, and Müller

(2013), which yielded evidence of interference caused by less salient

distractors. In more detail, varying target and distractor salience para-

metrically in a distractor search paradigm, Zehetleitner et al. (2013)

found reaction time (RT) interference to correlate strongly with the

relative salience between both items. Importantly, even distractors

less salient than the target evoked RT interference — suggestive of

attentional capture (Theeuwes, 1992). However, the finding that a

distractor slows RTs to the target is per se not sufficient to infer that at-

tention was actually captured by, that is, first directed to the distractor

and only afterwards reoriented to the target. Rather, RT slowing could

also result from non-spatial ‘filtering costs’ associated with resolving

the competition between simultaneously presented, more or less sa-

lient stimuli (Folk & Remington, 1998, 2006; Kahneman, Treisman, &

Burkell, 1983).

Given this, the dependency of performance on the distance between

target and distractor has become a more accepted behavioral marker of

spatial-attentional capture (as opposed to mere non-spatial filtering

costs): performance deteriorates the closer the distractor is located to

the target (Caputo & Guerra, 1998; Eriksen & St. James, 1986; Hickey

& Theeuwes, 2011; Mounts, 2000, 2005; Mounts & Gavett, 2004;

Theeuwes, Kramer, & Kingstone, 2004; Zehetleitner, Müller, & Proulx,

2009). This distance effect has been explained in terms of a ring of

suppression around the attended location, making it hard to detect

and respond to another item that falls within the suppressed region.

For the distractor search paradigm, this means that after being allo-

cated to the distractor, attention forms a ring of inhibition around

its location; if the target is located at a position within this ring, se-

lection takes longer compared to when it is located outside, that is,

further away from the distractor (see Fig. 1). In the literature, this

effect has been referred to as ‘Localized Attentional Interference (LAI)’

(Mounts, 2000, 2005; Mounts & Gavett, 2004). This LAI effect is

considered to be a more precise indicator of attentional capture and

has thus been used recently to infer capture in the distractor search par-

adigm (Hickey & Theeuwes, 2011; Turatto, Galfano, Gardini, &Mascetti,

2004).

However, studies designed to resolve the issue of capture versus

non-spatial filtering costs by using the distance effect as a marker of

capture, and its absence as indication of non-spatial filtering costs,

have yielded rather inconsistent results. Zehetleitner et al. (2009)

found a distance effectwhen target and distractor dimensions remained

the same during experimental blocks and distractor presence was 50%.

For conditions in which target and distractor never appeared at the

same location, Becker (2007) reported a distance effect when the colors

of the non-targets and the distractor swapped unpredictably across

trials, but not when they stayed constant. However, for conditions in

which target and distractor could share location on some trials, Becker

(2007) found no distance effect when the colors of the target and

non-targets swapped, but they did find an effect when the colors

remained constant within blocks. Turatto and Galfano (2001), by con-

trast, obtained a distance effect, indicative of attentional capture, when

target and distractor could share location and the colors of non-targets

and distractor swapped unpredictably across trials. On the other hand,

Hickey and Theeuwes (2011) found a distance effect both when target

and distractor swapped colors across trials andwhen their colors stayed

constant throughout a trial block — in a paradigm in which target and

1 For reason of clarity, henceforth, the short-hand expression ‘less salient

distractor(s)’always implies the comparison with the target.

Fig. 1. Localized attentional interference effect. The closer the target (orientation-

defined in the examples) is to the attention-capturing distractor (luminance-defined

in the examples), the more it is suppressed. a) No capture by the distractor. Attention

is allocated to, and the ring of suppression centered on, the target; the distractor does

not influence performance. b) Capture by a distant distractor; the target is outside the

suppressed area and therefore relatively easy to detect. c) Capture by a close distractor.

The target is located in the suppressed region and therefore difficult to detect.
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distractor could never share location. When analyzing color repetition

and swap trials separately in the mixed-block condition, capture

was still found for the swap as well for the repetition trials. The

only condition that yielded no indication of capture was that in

which the target was more salient than the distractor. They took

this as support for the notion that salience is decisive for attentional

capture.

A somewhat different paradigm for examining whether target se-

lection is slowed by capture or non-spatial filtering costs was used by

Folk and Remington (1998). A cue display that preceded the search

(i.e., target) display could contain a color singleton distractor, formed

by four small circles surrounding the position markers where the

target display stimuli would be presented later. The color target,

predefined by its hue, could subsequently be presented at either the

same or a different location than the distractor. The target was a

color singleton in half the trials and a non-singleton (inwhich case an-

other colored non-target singleton of a different hue was presented)

in the other half of the trials. While the target color was kept con-

stant throughout the experiment, distractor conditions were varied

block-wise: ‘same color as target’, ‘different color to target’, and, re-

spectively, ‘no distractor’. The task was to indicate the targets' form

identity (i.e., whether it was a ‘+’ or an ‘=’ sign) by a speeded two-

alternative choice. Folk and Remington (1998) obtained a distance

effect only when the distractor had the same color as the target,

whereas a distractor of a different color was found to produce

distance-independent costs when compared with the ‘no distractor’

condition. Folk and Remington (1998) concluded that distractors of

the same color capture attention, whereas distractors of a different

color induce non-spatial filtering costs. Whether or not it is possible

to find a coherent account for all these disparate results, common to

all these studies is that they posed the question of capture versus

non-spatial filtering only for more salient distractors; none has

considered this issue with regard to distractors less salient than the

target.

The present study was designed to investigate whether the RT

interference caused by less salient distractors is indeed attributable

to attentional capture, as proposed by Zehetleitner et al. (2013), or

rather to non-spatial filtering costs. Note that the arguments ad-

vanced by Zehetleitner et al. (2013) in favor of capture were mainly

theoretical: they were based on the modeling of the observed RT in-

terference effects by means of a probabilistically operating capture

mechanism, which described the empirical data remarkably well.

Going beyond this approach, the present study was intended to pro-

vide empirical evidence of attentional capture by examining for the

presence versus absence of a distance effect as markers for capture

and non-spatial filtering costs, respectively. In more detail, in both

experiments of the study, we applied parametrical target–distractor

relative salience and distance manipulations in a distractor search par-

adigm and examined whether distance has an effect on RT interference

for varying salience differences between the target and the distractor.

To assess the generality of any distance effects revealed, the two exper-

iments introduced different distractor dimensions: in Experiment 1,

which was essentially a re-analysis of Zehetleitner et al. (2013), partic-

ipants searched for an orientation-defined target and ignored a (relative

to the target) brighter distractor; in Experiment 2, they had to ignore

a (relative to the target) differently colored distractor. If less salient

distractors, independently of their defining dimension, do indeed cap-

ture attention, distance would be expected to have an influence on RT

interference; by contrast, no distance effect would be expected if less

salient distractors cause merely non-spatial filtering costs (without

actually summoning attention to their location). Moreover, if different

proportions of capture events (i.e., trials on which capture occurs)

account for the increase in RT interference with relative salience, as

hypothesized by Zehetleitner et al. (2013), one would also expect a

modulation of the correlation between salience and RT interference by

target–distractor distance.

2. Experiment 1

2.1. Methods

The methods were as in Zehetleitner et al. (2013).

2.1.1. Participants

Eighteen participants took part for course credit or € 16. The data

of one participant had to be discarded because of technical problems.

The remaining 17 had a median age of 26 (range 20–50) years; five

were male, all were dextral, and all had (corrected-to-) normal visual

acuity.

2.1.2. Stimulus presentation and data acquisition

The experiment was conducted in a sound-insulated booth, and

was controlled by a program purpose-written in C++. Stimuli were

presented on a 19″ View Sonic Graphics Series G 90 fB monitor at a

resolution of 1024 × 768 pixels and a refresh rate of 85 Hz; viewing

distance was approximately 57 cm. Participants responded using

their left and right index fingers, respectively, to press the upper or

lower button of a purpose-built response pad. RTs and response accu-

racy were recorded online.

The display consisted of 39 vertical broken gray bars presented on

black background and arranged equidistantly on three imaginary con-

centric circles (1.9°, 3.3°, and 4.6° of visual angle in radius, with 8, 12,

and 18 bars, respectively) around the center of the screen. The bars

were 1.13° × 0.25° in size and had a 0.13°-gap randomly located at

the top or bottom of each bar. Targets differed from non-targets in

orientation (7, 8, 9, 14 and 45° tilted from vertical), and distractors

differed from non-targets in luminance (13.8, 14.8, 17.9, 19.4, and

25.5 cd/m2). Distance between target and distractor could be 0, 1, 2,

3, 4, or 5 stimuli in between. A pilot experiment was conducted to en-

sure that target and distractor salience was sufficient for these stimuli

to ‘pop out’ from the search array, i.e., their associated detection times

were independent of the number of non-targets in the display.

2.1.3. Design and procedure

Two 1-h sessions were carried out on consecutive days, at the

same time of day. The first part of each session was the distractor

experiment; the second part was a post-experiment for stimulus

salience measurement (for the latter, see Section 2.1.4). For the

distractor experiment, factors manipulated within participants were

distractor presence (present vs. absent), target salience (five levels),

and in case of distractor presence, distractor salience (five levels)

and target–distractor distance (six distances). A target was present

on all trials; distractors occurred randomly in 50% of the trials. Each

target and distractor salience combination occurred equally often. A

target and a distractor (when present) could appear only at one of

the 12 positions of the second (intermediate) circle of the stimulus

display, to keep the distance of the target and, respectively, distractor

from the display center constant; their exact positions – and, as a re-

sult, the distance between them – was chosen randomly, with the

constraint that the target and distractor could never share the same

location. Importantly, relative target–distractor salience and distance

was randomized within trial blocks. Participants completed 20 blocks

of 50 trials each day, yielding a total of 2000 trials.

Each trial started with a white fixation dot, presented for a dura-

tion uniformly distributed between 900 and 200 ms, that was super-

seded by the search display which remained present until response

(Fig. 2a). Participants were instructed to indicate, as quickly and accu-

rately as possible, the gap location (top or bottom) of the target by

pressing the upper or lower button, respectively. In case of an error, vi-

sual feedback was provided, followed by an additional 500-ms blank

screen before the next trial. At the end of each block, participants

were informed about their mean RT and error rate.
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2.1.4. Stimulus salience measurement

Because salience is a psychological construct, rather than a physi-

cal given, we used a behavioral measurement of salience, which was

collected in a post-experiment after each session of the distractor

experiment. Stimuli were the same as in the distractor experiment.

All target orientation and distractor luminance contrasts from the

distractor experiment (Fig. 2b) were presented as (to-be-detected)

targets randomly intermixed with target-absent displays (as in the

distractor experiment, targets never occurred on the outer circle).

The design was 2 (target presence vs. absence) × 2 (dimension lumi-

nance vs. orientation) × 5 (contrast) factorial. Participants' task was

to indicate the presence of an orientation or luminance target via but-

ton press; response was to be withheld if no target was present. Four

blocks consisting of 80 trials were performed each day, yielding a

total of 640 trials and 32 trials per contrast condition. The stimulus

display was presented until response or a maximum duration of

1200 ms.

Using these detection RTs as our measure of stimulus salience, we

calculated the relative salience between stimuli by subtracting

distractor salience from target salience, separately for each participant

and relative salience condition. For example, if a targetwas detected at

a rate of 350 ms and a distractor at one of 400 ms, then their salience

difference was considered to be −50 ms. Note that items of higher

salience are associatedwith shorter RTs; negative values of relative sa-

lience indicate a distractor less salient, and positive values a distractor

more salient than the target. This relative salience measure, served as

independent variable in the main distractor experiment.

2.1.5. Data analysis

Only correct-response trials were used for analysis (distractor ex-

periment: 96.1%; stimulus salience measurement: 98.6%), excluding

RTs shorter than 150 and longer than 1500 ms in the distractor exper-

iment (1.3%) and shorter than 150 and longer than 1000 ms in the

stimulus salience measurement (0.3%). The first 20 trials (the first 10

trials of the stimulus salience measurement) of each session and the

first 3 trials of each block served as practice trials and were also ex-

cluded from analysis.

We employed hierarchical linear modeling to examine whether

distance has an impact on RT interferencewhen distractors are less sa-

lient, as well asmore salient, than the target. Themodelingwas applied

separately to the data subset with less salient distractors, as well as to

the subset withmore salient distractors, and thewhole data set (includ-

ing both less and more salient distractors). The method of hierarchical

linear modeling takes care of repeated measures in regression analysis

by taking into account different levels in the data structure. As the

same participant performs many trials of the same experimental condi-

tion in typical cognition research, the data structure is nested, with

single-trial RTs (observation level 1) being dependent on the higher,

individual-participant level (group level 2). To take this nested data

structure into account, single-trial RTswere aggregated only across trials

of the same condition andparticipant, rather than across participants. RT

interference was then calculated by subtracting RTs of target-only trials

from RTs of target-plus-distractor trials. This was done separately for

each participant and relative salience × target–distractor distance con-

dition. Relative saliencewas calculated by subtracting distractor salience

from target salience (see Section 2.1.4).

For our hierarchical linear models, we factored in distance, relative

salience, and their interaction as fixed effects on RT interference, and

participant as random intercept effect. Stepwise selection of predic-

tors was applied in the following sequence: no predictor (model 1),

distance (model 2), distance + relative salience (model 3), and

distance + relative salience + distance × relative salience (model

4). The hierarchical linear model equation was: yij = β0j + β1x1i +

β2x2i + β3x1ix2i + εijwith β0j = γ + uj. For level 1, yij is the interfer-

ence on trial i for participant j, β0j is the participant-specific intercept,

β1 is the fixed effect of distance on trial i, β2 x2i is the fixed effect

of relative salience on trial i, β3 x1ix2i is the fixed effect of the interac-

tion distance × relative salience on trial i, and εij is the residual. For

level 2, that is, the intercept of each participant, γ is the mean (i.e.,

fixed-effect) intercept and uj the participant-specific deviation of

the mean.2 To test for significance of each predictor, we compared

the nextmore complexmodel's goodness-of-fit to that of the previous,

more parsimonious one, using χ2-tests and the Bayes Information

Criterion (BIC; Schwarz, 1978). Following Whisman and McClelland

(2005), for the analyses of the two data subsets (with less and, respec-

tively, more salient distractors), predictors were centered (i.e., the

mean of the variable was subtracted from each value, so as to yield a

mean of 0) because the values of 0 ms relative salience (equal salience

of distractor and target) and of 0 units of distance between target and

distractor (target and distractor at same location)were outside the ex-

amined range. For the same reason, in the analysis for the whole data

set, distance was centered, while relative salience was not— the latter

because the 0 ms value corresponds to the target and distractor being

equally salient, so that the regression coefficient can be meaningfully

interpreted without centering. For centered predictors, regression co-

efficients represent the main effects also in models including interac-

tion terms.

To examine the interaction or moderator effect more closely, that

is, to test whether the influence of distance varies as a function of rel-

ative salience, we calculated the simple relationships between inter-

ference and distance at different values of relative salience (Bauer &

b)

Luminance-

distractor

Orientation-

target

900 + 200 ms

Until response

a)
-

Fig. 2. Procedure and stimuli in Experiment 1. a) Trial sequence. The oriented bar served as

target, whereas thebright barwas the to-be-ignoreddistractor. b) 25 salience conditions in

the distractor search paradigm (target orientation: 7, 8, 9, 14, 45° × distractor luminance:

13.8, 14.8, 17.9, 19.4, and 25.5 cd/m2). Note that the salience values in the illustration are

not veridical.

2 Note that in the literature, there are different usages of the notations in these equa-

tions; we follow that of Bauer and Curran (2005).
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Curran, 2005). This is expressed by re-arranging the equations of the

hierarchical linear model to μy|x2 = (γ + β2 x2) + (β1 + β3 x2) x1,

where μy|x2 is the predicted mean interference as a function of distance

conditional on the relative salience value. The first term of the sum in

the equation represents the simple intercept and the second term the

simple slope, both dependent on the value of relative salience. We calcu-

lated the simple slopes for three different values of relative salience,

namely, the 25%, 50%, and 75% quartiles of the respective distribution of

relative salience values. Quartiles for the respective data sample (less

salient, more salient, or whole data set) were estimated using the default

procedure of R (R Development Core Team, 2010). Significance of simple

slopes and the significance boundary (i.e., the value of relative salience

below which slopes are no longer significant) were calculated using the

online tool provided by Preacher, Curran, and Bauer (2006).

Statistical tests were conducted on N = 8848 level-1 observations

(relative salience × distance) for the data subset with less salient

distractors, N = 5974 level-1 observations for the subset with more

salient distractors, and on N = 14,822 level-1 observations for the

whole data set. For all data sets, statistical tests were conducted on

N = 17 level-2 groups (participants); the significance level adopted

was .05. Hierarchical linear modeling was carried out using the lme4

package (Bates & Maelcher, 2010) of R (R Development Core Team,

2010).

2.2. Results and discussion

For less salient distractors, the mean RT was 630 ms (sd =

103 ms) and the mean interference 13 ms (sd = 71 ms). Table 1 pre-

sents estimates of the fixed and random effects and Table 2 depicts

the results of the model comparisons along with the significance of

each predictor. As can be seen from Table 1, RT interference was the

greater the smaller the distance between target and distractor (wit-

ness the negative coefficient). This effect of distance is significant, as

model 2, with the single predictor distance, provides a significantly

better fit than model 1, without any predictors (see Table 2). This is

consistent with the assumption that less salient distractors do capture

attention. Additionally, relative salience is a significant predictor of RT

interference: interference increases with increasing salience of the

distractor relative to the target. This effect is evidenced by model 3,

which includes relative salience as additional fixed effect, fitting sig-

nificantly better than model 2. Finally, the effect of distance on RT

interference varies dependent on relative salience. This moderating

effect is also significant, as model 4, which includes the interaction

of distance and relative salience as predictor, fits significantly better

thanmodel 3 (without the interaction term). In summary, the moder-

ator model (model 4) fits the data best overall when taking into ac-

count both significance tests and BIC scores.

To examine the dependency of RT interference on target–distractor

distance for different values of relative salience, as indicated by the

significant interaction, we calculated simple intercepts and simple

slopes, that is, we regressed RT interference on distance conditional

on specific values of relative salience. The three relative salience

values chosen were the 25%, 50%, and 75% quartiles of the data subset

with less salient distractors. A significant interaction term implies that

simple slopes differ dependently on the value of relative salience, but

Table 1

Fixed effects and variance estimates for the relationship between distance, relative salience, and RT interference in Experiment 1.

Model 1 Model 2 Model 3 Model 4

Less salient distractors

Fixed effects

Intercept 13.57 (2.21) 13.57 (2.19) 13.44 (2.37) 13.39 (2.39)

Distance −7.14 (0.92) −7.09 (0.92) −7.13 (0.91)

Relative salience 0.22 (0.04) 0.23 (0.04)

Distance × Relative salience −0.09 (0.02)

Random effect

Participant 43.17 (6.57) 42.48 (6.52) 55.95 (7.48) 58.03 (7.62)

More salient distractors

Fixed effects

Intercept 52.69 (4.71) 52.59 (4.60) 53.99 (4.65) 54.03 (4.60)

Distance −15.21 (1.47) −15.32 (1.47) −15.31 (1.47)

Relative salience 0.42 (0.08) 0.42 (0.08)

Distance × Relative salience −0.10 (0.05)

Random effect

Participant 266.78 (16.33) 250.15 (15.81) 257.21 (16.04) 249.58 (15.80)

Whole data set

Fixed effects

Intercept 29.15 (3.38) 29.14 (3.33) 35.04 (3.13) 35.13 (3.11)

Distance −10.28 (0.81) −10.34 (0.81) −11.85 (0.84)

Relative salience 0.37 (0.02) 0.38 (0.02)

Distance × Relative salience −0.09 (0.01)

Random effect

Participant 164.84 (12.84) 159.64 (12.64) 135.36 (11.63) 133.40 (11.55)

Note. Predictors were centered as stated in the analysis section. Coefficients (standard errors) are reported for fixed effects and variance estimates (standard deviations) are

presented for random effects.

Table 2

Hierarchical linear model comparison for Experiment 1.

Model χ2 BIC

Less salient distractors

1 112,607

2 60.43⁎⁎ 112,556

3 28.58⁎⁎ 112,536

4 14.81⁎⁎ 112,531

More salient distractors

1 79,273

2 105.46⁎⁎ 79,177

3 29.00⁎⁎ 79,156

4 4.79⁎ 79,160

Whole data set

1 192,582

2 159.12⁎⁎ 192,432

3 244.53⁎⁎ 192,159

4 44.24⁎⁎ 192,163

Note. BIC: Bayes Information Criterion.
⁎ p b .05.
⁎⁎ p b .01.
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whether each slope actually differs from zero, that is, whether a corre-

lation exists, needs to be tested additionally. The left panel of Fig. 3

presents the simple slopes for the 25% (−75 ms relative salience),

50% (−50 ms relative salience), and 75% (−26 ms relative salience)

quartiles of (negative) relative salience values in terms of the respec-

tive (target minus distractor) detection time differences. While the

slopes for the 25% and 50% quartiles were non-significant (−75 ms:

0.01, z = 0.00, p = .996; −50 ms: −2.37, z = −1.55, p = .121),

that for the 75% quartile was significant (−26 ms: −4.61, z =

−4.13, p b .001). As can be seen from the left panel of Fig. 3, inter-

ference decreases with increasing distance, but to a different degree

dependent on the relative salience between target and distractor:

when the distractor is only a little less salient than the target, as for

the 75% quartile, the influence of distance on interference is strong,

but the effect weakens or vanishes as the salience of the distractor

decreases relative to that of the target (at the 50% and 25% quartiles).

The significance boundary for the simple slopes was −45 ms relative

salience; that is, for relative salience values smaller than−45 ms, sim-

ple slopes were no longer significantly different from zero. Restated:

distractors can be up to 45 ms less salient than the target and still cap-

ture attention.

To corroborate that the same pattern is also evident with

distractors more salient than the target, as has been reported many

times in the literature, we conducted the same analysis for the data

subset with more salient distractors. For this subset, the mean RT

was 739 ms (sd = 135 ms) and the mean interference 56 ms

(sd = 107 ms). For more salient distractors, too, hierarchical linear

modeling revealed smaller distances to yield greater RT interference

(Table 1), as indicated by the significantly better fit of model 2 over

model 1 (Table 2). Furthermore, the influence of relative salience on

RT interference was also significant, as model 3 outperformed model

2. Finally, the interaction between the two turned out to be significant

too, as model 4 fit the data significantly better thanmodel 3. However,

although the significance tests favor model 4 overall, the BIC statistics

prefer model 3. The latter are indicative of the interaction term con-

tributing little to the predicted RT interference. Thus, compared to

the distractors less salient than the target (see above), the contribu-

tion of the interaction term is less reliable for more salient distractors.

Since the significance tests revealed a significant interaction,

we conducted the interaction analysis also for the data subset with

more salient distractors; see the middle panel of Fig. 3 for the results.

The simple slopes for the 25% quartile (14 ms relative salience), 50%

quartile (35 ms relative salience), and 75% quartile (63 ms relative sa-

lience) were all significant (14 ms: −16.66, z = −10.46, p b .001;

35 ms: −18.87, z = −8.63, p b .001; 63 ms: −21.62, z = −6.69,

p b .001). That is, the effect of distance on RT interference, although

manifest for all distractors more salient than the target, decreased to

a differential degree depending on the relative salience between tar-

get and distractor.

Finally, to cover the whole range of examined relative salience

values (making the results comparable to those of Zehetleitner et al.,

2013), the hierarchical linear models were also calculated for the

whole data set. The overall mean RT was 670 ms (sd = 127 ms) and

the mean interference 28 ms (sd = 88 ms). In this analysis, too, dis-

tance and relative salience significantly predicted RT interference

(see Tables 1 and 2). In addition, the interaction term in model 4

was significant, as this model fit the data significantly better than

model 3. However, as with the more salient distractors, the BIC statis-

tics favored model 3 over model 4.

To examine the moderating effect by relative salience more close-

ly, simple slopes and intercepts were calculated for the 25% and 75%

quartiles as well as the relative salience value of 0 ms (we chose

0 ms instead of the 50% quartile because this point denotes equal

target and distractor salience). The right panel of Fig. 3 presents the

Fig. 3. Interaction effects in Experiment 1. RT interference as a function of target-to-distractor distance (i.e., the number of non-targets between target and distractor), conditional

on relative salience (distractor minus target). Simple slopes are depicted for different relative salience values. Left panel: data subset for less salient distractors. Middle panel: data

subset for more salient distractors. Right panel: whole data set.
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simple slopes for the 25% quartile (−56 ms relative salience), 0 ms

relative salience, and the 75% quartile (21 ms relative salience). All

three simple slopes were significant (−56 ms: −6.78, z = −7.02,

p b .001; 0 ms: −11.85, z = −14.17, p b .001; 21 ms: −13.77,

z = −14.41, p b .001). The figure shows that for the whole data set,

too, interference decreases with increasing distance, but again to a

different degree dependent on the relative salience between target

and distractor: the more salient the distractor is compared to the tar-

get, the stronger the influence of distance on RT interference.

Taken together, the results of Experiment 1 revealed distance to

modulate RT interference — a clear indication of attentional capture

by the distractor. While this would be expected on most existing the-

ories of attentional capture for more salient distractors, it is also true

for distractors less salient than the target. This confirms our hypothe-

sis that the latter do indeed capture attention, rather than interfer-

ence being merely a product of non-spatial filtering processes. The

finding that relative salience is a significant predictor was already

reported in Zehetleitner et al. (2013). Going beyond this, the present

analyses revealed an influence of distance modulated by the relative

salience of target and distractor: the influence of distance was the

greater the more salient the distractor was compared to the target.

This can be explained by differential proportions of (discrete) capture

and non-capture events, with the proportions being dependent on

relative salience. We consider this notion of proportional capture in

more detail in Section 4.

3. Experiment 2

3.1. Methods

The methods of Experiment 2 were the same as of Experiment 1,

unless expressly stated otherwise.

3.1.1. Participants

Eighteen participants took part in Experiment 2; one of them had

to be excluded due to technical problems. Four of the remaining 17

participants had already taken part in Experiment 1. Median age

was 26 (range 20–49) years; four were male; and 14 were dextral.

3.1.2. Stimulus presentation and data acquisition

Stimuli were presented on a 20″ Mitsubishi Diamond Pro 2070SB

monitor at a resolution of 1280 × 1024 pixels and a refresh rate of

100 Hz; viewing distance was approximately 73 cm. Participants

responded using their left and right index fingers, respectively, to

press buttons 2 and 8 of the numeric keypad of an Empirisoft DirectIN

keyboard. RTs and response accuracy were recorded online. Radii of

stimuli circles were 1.18°, 2.2°, and 3.06° of visual angle, respectively,

and bar size was 0.71° × 0.16° with a 0.08° gap. Target orientation

was a tilt of 9, 10, 11, 16, and, respectively, 45° from the vertical,

and distractor colors were different shades of red (RGB 173/107/114,

181/103/110, 185/97/104, 210/78/87, 252/0/21), with constant lumi-

nance of all presented stimuli (16.2–17.3 cd/m2).

3.1.3. Design and procedure

The design and procedure were the same as in Experiment 1

(Fig. 2a).

3.1.4. Baseline salience measurement

This was analogous to Experiment 1, but with the targets being

color and orientation defined (rather than luminance and orientation

defined, as in Experiment 1; Fig. 2b).

3.1.5. Data analysis

Only correct-response trials were used for analysis (distractor

experiment: 96.4%; baseline salience measurement: 99.2%), exclud-

ing RTs shorter than 150 and longer than 1500 ms in the distractor

experiment (1.4%) and shorter than 150 and longer than 1000 ms in

the Section 3.1.4 (0.2%). Hierarchical linear modeling analyses were

analogous to those in Experiment 1. Tests were conducted on N =

6025 level-1 observations (relative salience × distance) for the data

subset with less salient distractors, N = 8813 level-1 observations

for the data subset with more salient distractors, and on N = 14,838

level-1 observations for the whole data set. For all data sets, statistical

tests were conducted on N = 17 level-2 groups (participants).

3.2. Results and discussion

For less salient (color-defined) distractors, the mean RT was

643 ms (sd = 98 ms) and the mean interference 8 ms (sd = 71).

Model estimates are presented in Table 3 and model comparisons

are summarized in Table 4. For less salient, color-defined distractors,

too (as well as for the less salient luminance-defined distractors in

Experiment 1), RT interference increased with decreasing distance.

This distance effect was significant, as model 2 fit the data better

than model 1. That is, less salient distractors defined in the color

dimension do also capture attention (as well as the luminance-

defined distractors in Experiment 1). The contribution of relative sa-

lience to the prediction of RT interference was only marginally signif-

icant, but in the same direction as in Experiment 1: RT interference

increased with relative salience. Also, the interaction between dis-

tance and relative salience in model 4 was only marginally significant.

Thus, model 2 with the single predictor ‘distance’ fits best. Overall,

less salient color distractors do also capture attention, though the

contribution of relative salience was not reliable. Because the interac-

tion was insignificant, no simple slopes were calculated for the data

subset with less salient distractors.

With more salient (color-defined) distractors, the mean RT

was 723 ms (sd = 129 ms) and the mean interference 31 ms (sd =

94 ms). For these distractors, too, RT interference increased with

smaller distances (Table 3), with the distance effect being significant

(Table 4). This replicates previous results that more salient distractors

capture attention. Furthermore, relative salience significantly predict-

ed RT interference by more salient distractors, as model 3 provided a

significantly better fit than model 2. However, the interaction in

model 4 was non-significant, leaving model 3 as the best account of

the data. Because the interactionwas non-significant, no simple slopes

were calculated for the data subset with more salient distractors.

The final analysis included again the whole data set. The mean RT

was 694 ms (sd = 125 ms) and the mean interference 23 ms (sd =

87). For all data points, with color-defined distractors, distance and

relative salience were revealed to be significant predictors of RT inter-

ference (see Tables 3 and 4 for the statistical details). Also, as in Ex-

periment 1, the interaction term in model 4 was significant, which

again indicates varying impact magnitude of distance on RT interfer-

ence, dependent on relative salience. But here, too, BIC statistics favor

model 3 without the interaction.

The interaction was further investigated by examining the simple

intercepts and slopes for the 25% quartile (−24 ms relative salience),

0 ms relative salience, and the 75% quartile (61 ms relative salience).

Fig. 4 shows the simple relationships, with all slopes differing sig-

nificantly from zero (−24 ms: −4.67, z = −4.39, p b .001; 0 ms:

−6.00, z = −6.51, p b .001; 61 ms: −9.34, z = −8.34, p b .001).

As with the luminance-defined distractors in Experiment 1, color-

defined distractors also captured attention, as indicated by the dis-

tance effect. Likewise, the influence of distance was again moderated

by relative salience between target and distractor.

In summary, with color-defined distractors, too, target selection

was influenced by target–distractor distance. This was also true for

distractors less salient than the target (replicating the finding of

Experiment 1), which indicates that even less salient color-defined

distractors captured attention. However, in Experiment 2, the influ-

ence of distance on RT interference was significantly modulated by
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relative salience only when the whole data set was considered. Pre-

sumably, the reason for the non-significant modulation in the subset

of data for less salient distractors lies in the stimuli presented in Ex-

periment 2. Compared to Experiment 1, the distribution of relative sa-

lience values was different, that is, the range was more restricted,

with fewer pairs falling into the extreme range of the target being

much less salient the distractor— thus reducing the variation of inter-

ference for the subset of less salient distractors.

From the fact that the best-fitting regression models were dif-

ferent for Experiments 1 and 2 (with luminance- and color-defined

distractors, respectively), the question arises whether the strength

of attention capture would also be influenced by the distractor dimen-

sion, that is: does the distractor dimension (luminance vs. color) mod-

ulate the effect of distance on RT interference? To examine this, we

collapsed the data of both experiments and calculated the hierarchical

linear models with the fixed effects ‘distance’ (centered), ‘relative

salience’ (centered), ‘distractor dimension’, and all possible interac-

tions. As in the previous analyses, predictors were included stepwise

and significancewas assessed by comparingmodelswith χ2-tests. Sta-

tistical tests were conducted onN = 29,660 level-1 observations (rel-

ative salience × distance × experiment) and N = 34 level-2 groups

(participants). Distance was revealed a significant predictor of RT in-

terference (β = −17.38, χ2 = 202.82, p b .001), as were relative sa-

lience (β = 0.54, χ2 = 266.88, p b .001), experiment (β = −15.04,

χ2 =10.53, p = .001), the interaction between distance and relative

salience (β = −0.07, χ2 = 40.03, p b .001), the interaction between

distance and experiment (β = 5.81, χ2 = 21.63, p b .001), and the

Table 3

Fixed effects and variance estimates for the relationship between distance, relative salience, and RT interference in Experiment 2.

Model 1 Model 2 Model 3 Model 4

Less salient distractors

Fixed effects

Intercept 9.81 (2.75) 9.73 (2.81) 9.47 (2.89) 9.43 (2.91)

Distance −3.79 (1.21) −3.79 (1.21) −3.83 (1.21)

Relative salience 0.10 (0.06) 0.10 (0.06)

Distance × Relative salience −0.07 (0.04)

Random effect

Participant 59.97 (7.74) 65.31(8.08) 72.04 (8.49) 73.52 (8.57)

More salient distractors

Fixed effects

Intercept 30.46 (3.24) 30.45 (3.30) 30.97 (3.19) 30.94 (3.20)

Distance −8.99 (1.26) −8.94 (1.26) −8.95 (1.26)

Relative salience 0.20 (0.05) 0.20 (0.05)

Distance × Relative salience -0.05 (0.03)

Random effect

Participant 108.52 (10.42) 115.71 (10.76) 103.62 (10.18) 104.46 (10.22)

Whole data set

Fixed effects

Intercept 22.97 (2.86) 22.97 (2.93) 19.68 (2.82) 19.70 (2.84)

Distance −6.79 (0.90) −6.82 (0.90) −6.00 (0.92)

Relative salience 0.20 (0.03) 0.20 (0.03)

Distance × Relative salience −0.05 (0.01)

Random effect

Participant 106.92 (10.34) 113.25 (10.64) 100.40 (10.02) 102.05 (10.10)

Note. Predictors were centered as stated in the analysis section. Coefficients (standard errors) are reported for fixed effects and variance estimates (standard deviations) are

presented for random effects.

Table 4

Hierarchical linear model comparison for Experiment 2.

Model χ2 BIC

Less salient distractors

1 77,192

2 9.81⁎⁎ 77,191

3 2.86† 77,197

4 3.53† 77,202

More salient distractors

1 116,796

2 50.48⁎⁎ 116,755

3 14.82⁎⁎ 116,749

4 2.50⁎ 116,755

Whole data set

1 194,341

2 57.06⁎⁎ 194,294

3 65.06⁎⁎ 194,200

4 14.03⁎⁎ 194,234

Note. BIC: Bayes Information Criterion.
† p b .10.

⁎⁎ p b .01.

Fig. 4. Interaction effect in Experiment 2. RT interference as a function of target-

to-distractor distance (i.e., the number of non-targets between target and distractor),

conditional on relative salience (distractor minus target). Simple slopes are depicted

for different relative salience values of the whole data set.
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interaction between relative salience and experiment (β = −0.17,

χ2 = 23.22, p b .001). The three-way interaction was not significant

(β = 0.04, χ2 = 3.24, p = .072). The interaction analysis revealed

the distance effect to be the stronger the higher the relative salience

was, and to be overall more marked in Experiment 1 than in Experi-

ment 2. The effect of relative salience on RT interference was also

stronger in Experiment 1 than in Experiment 2. As for the (modulat-

ing) influence of the distractor dimension, the effect pattern indicates

that capture was more pronounced (as evidenced by the stronger dis-

tance effect), and that the RT interference increased more strongly

with relative salience, when the distractor was luminance-defined

rather than color-defined.

4. General discussion

We found singleton distractors less salient than the target to cap-

ture attention. The size of RT interference in the distractor search par-

adigm was dependent on the distance between target and distractor,

and the strength of this relationship was modulated by the stimuli's

relative salience. We observed RT interference to be the greater the

closer both stimuli were located to each other and the more salient

the distractor was compared to the target. The question at issue in

the present study was whether the interference (costs) caused by

less salient distractors are attributable to spatial attentional capture

or, alternatively, to non-spatial filtering mechanisms. To address

this, we took the influence of distance on RT interference as an indi-

cator of spatial attentional capture and manipulated distance and sa-

lience parametrically in two experiments with different distractor

dimensions (luminance and, respectively, color).

4.1. Distance effect as indicator for attentional capture

Non-spatial filtering costs are assumed to (i) reflect a delay in the

allocation of attention to the target owing to parallel processing of

both stimuli for their identity, and (ii) to be non-spatial in nature

(Folk & Remington, 1998, 2006). Thus, any spatial modulation, such

as an influence of distance between target and distractor on RT inter-

ference, would rule out (by definition: non-spatial) filtering costs as

sole source of RT interference.

While the presence of a distance effect excludes non-spatial filter-

ing costs, it is not intuitive that it would indicate attentional capture

at the same time, especially given that larger RT interference is asso-

ciated with smaller distances. To understand why attentional capture

may be inferred from this influence of distance on RT interference, it

is helpful to take a more detailed look at the chain of processing in the

search task and to draw on theories of attentional distribution.

In the distractor search paradigm, performance involves a chain of

decisions that have to be made until a response can be given (Wolfe,

1994; Wolfe & Van Wert, 2010; Zehetleitner, Rangelov, & Müller,

2012). The search process starts with the selection of the first item

(which can be regarded as a decision amongst all items). In a second

step, the selected item has to be identified and, if it is recognized as a

target, a decision about the correct response has to be made. If the

first identified item is the distractor, attention needs to be disengaged

and a second selection has to be executed, after which the chosen

item has to be identified and the respective response has to be select-

ed. In this decision chain, all processes that contribute to the first

selection can be considered as pre-selective and all subsequent pro-

cesses as being post-selective.

The distribution of attention, when it is directed at a certain loca-

tion, is described by Localized Attentional Interference (LAI) theory

(Mounts, 2000, 2005; Mounts & Gavett, 2004). On this theory, en-

hanced processing within the focus of attention is associated with a

ring of suppression around the attended location (a “Mexican-hat”-

type function; e.g. Caparos & Linnell, 2009; Hodgson, Müller, &

O'Leary, 1999; Müller et al., 2005), as a result of which items located

within this ring are more difficult to detect. With regard to the

distractor search paradigm, this implies that if attention was first fo-

cused on the distractor location, it would be more difficult to subse-

quently select the target when it is located nearby the distractor

compared to when it is some distance away. Finding such an influence

of target–distractor distance on RT interference thus indicates that

attention must have been allocated to the distractor — because, had

it been allocated immediately to the target instead of the distractor,

no second selectionwould have been necessary and hence no distance

effect would have arisen. In other words, the distance effect in the

distractor search paradigm arises post-selectively (i.e., after the first

selection). With regard to the distance modulations revealed in the

present study, this implies that there was attentional capture not

only for distractors more salient than the target, but also for less sa-

lient distractors; that is, the latter capture attention, too, rather than

merely producing non-spatial filtering costs.

LAI theory is based on the assumption that attention visits the

distractor and target location serially. This is in accordance with the

idea of a decision chain building up the selection process (Wolfe,

1994; Wolfe & Van Wert, 2010; Zehetleitner, Rangelov, et al., 2012).

However, there are other theories that predict a distance effect as a

consequence of attentional capture while assuming a parallel pro-

cessing architecture. In the realm of the attentional capture literature,

Caputo and Guerra (1998), for instance, suggested target and

distractor processing to take place in parallel, but once the distractor

has captured attention, a spatial filtering mechanism in the form of a

ring of suppression slows down parallel target identification. Howev-

er, with this processing architecture, too, attentional capture by the

distractor is the cause of the distance effect, that is, target selection

is delayed when it is close to the distractor, even if its processing

started in parallel with distractor processing.

Irrespective of the processing architecture, the distance effect

resulting from a first distractor selection was modulated by the rela-

tive salience between target and distractor: it was more pronounced

for distractors of higher salience than for distractors of lower salience

compared to the target. One way to explain this modulation is based

on the assumption of proportionate capture and no-capture events

(Zehetleitner et al., 2013). In order to demonstrate that the finding

of a distance effect modulation by relative salience can indeed be

explained by the proportion of capture trials, we describe the linkage

between the proportion of capture events and the distance effect step

by step.

The basic assumption is that relative salience between target and

distractor determines the proportion of capture events (Zehetleitner

et al., 2013): the more salient the distractor is compared to the target,

the more likely it is the first item to be selected. Now, RT interference

is calculated as the RT on distractor-present trials minus the RT on

target-only trials. Yet, RTs on distractor-present trials are dependent

on whether or not the distractor captures attention. On the idea that

performance involves a chain of discrete decision processes, RTs on

non-capture trials would be equivalent to those on target-only trials,

because in both cases, the target is the first item to be selected and

no further (second) selection would be involved. In contrast, RTs

on trials on which capture occurred would be longer as they include

the time required to disengage attention from the initially selected

distractor and to select and further process the second, target item.

According to the Localized Attentional Interference (LAI) account

(Mounts, 2000, 2005; Mounts & Gavett, 2004), the time required for

the second selection is dependent on the distance of the target from

the distractor. Consequently, a distance effect manifests only when

attention is first captured by the distractor. If the proportion of

such capture trials is high, a greater number of distance-dependent

second-selection processes would contribute to the RT interference

effect, and vice versa when the proportion of capture trials is low.

From this it follows that a high proportion of capture trials results in

a marked overall distance effect, whereas a low proportion gives rise
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to a lesser effect. According to Zehetleitner et al. (2013), the propor-

tion of capture events is high when the salience of the distractor rela-

tive to that of the target is high, and it is low when relative salience is

low. Thus, relative salience and the size of distance effect are directly

related, and the assumption of proportionate capture events can ex-

plain the modulation of the distance effect by relative salience.

4.2. Conflicting findings

However, not all previous studies that reported RT in a distractor

search paradigm to be modulated by the spatial distance between tar-

get and distractor, agree on what exactly the modulation looks like. In

the present study, as well as in previous studies (Caparos & Linnell,

2009; Caputo & Guerra, 1998; Eriksen & St. James, 1986; Hickey &

Theeuwes, 2011; Hodgson et al., 1999; Mounts, 2000, 2005; Mounts &

Gavett, 2004; Müller et al., 2005; Theeuwes et al., 2004; Zehetleitner

et al., 2009), interference became larger, or RT slower, the closer tar-

get and distractors were located to each other.

Becker (2007), who also posed the question of whether the RT in-

crease in the distractor search paradigm resulted from non-spatial fil-

tering or attentional capture, found a distance-dependent modulation

in the opposite direction, with longer RTs for greater distances and

faster RTs for shorter distances. She concluded that the RT increase is

primarily attributable to non-spatial filtering costs and that the dis-

tance effect is induced by a small amount of capture trials. However,

Becker's (2007) error rates pointed in the reverse direction to the RT

pattern, with fewer errors for greater distances and more errors for

closer placements. This speed-accuracy trade-off (which, if corrected

for, might produce the opposite pattern) makes her results difficult to

interpret. Another reason for the divergent results between Becker's

(2007) and our study might be the dissimilar display density. Becker

(2007) used sparse displays, whereas we used displays with greater

stimulus density. It is known that processing is different in dense com-

pared to sparse displays (Bravo & Nakayama, 1992), and that effects of

salience are greater with denser displays (Nothdurft, 2000; Rangelov,

Müller, & Zehetleitner, submitted for publication).

4.3. Theories of attentional selection

The fact that less salient distractors, too, can capture attention

(albeit less frequently than more salient distractors) is at variance

with a seminal theory of salience-based selection which holds that

only the most salient item in the visual field can capture attention:

“We assume that the initial shift of attention [is] to the most salient

singleton” (Theeuwes, 2010, p. 80). Although this account is contro-

versial, it has hitherto mostly been challenged by evidence based on

the use of a different paradigm and focusing on the issue of top-

down controlled as contrasted with bottom-up guidance of attention-

al allocation (Bacon & Egeth, 1994; Eimer & Kiss, 2008; Folk et al.,

1992; Kiss, Jolicoeur, Dell'Acqua, & Eimer, 2008; Müller et al., 2009;

Zehetleitner, Goschy, et al., 2012). The present findings, however,

were obtained using the very same – distractor search – paradigm,

and can neither be explained by top-down control nor by simple

salience-based selection as envisaged in this theory (Theeuwes, 2010).

Instead, we explain our results of capture by less salient distractors

within the sequential sampling model of salience-based selection

(Zehetleitner et al., 2013), which is in general agreement with existing

salience-based models of visual search (Itti & Koch, 2001; Koch &

Ullman, 1985;Wolfe et al., 1989). However, going beyond thesemodels,

our framework explicitly specifies the time course of salience-based at-

tentional selection. It takes into account the noisy build-up of activation

on the selection-guiding saliencemap— and because of this noisy accu-

mulation of sensory evidence, the actual salience value associated with

each stimulus in the field varies around its mean of (overall) ‘true’

salience. Accordingly, the most salient item is selected only with a cer-

tain probability, and by implication, less salient stimuli may also be

selected with some probability — which allows for attentional capture

by distractors less salient than the target.

In more detail, the sequential sampling model of salience-based

selection (Zehetleitner et al., 2013) assumes that sensory evidence

for all items in the field is accumulated until a threshold is reached

and a selection decision is triggered. The drift rate, with which senso-

ry evidence for each item is accumulated, is determined by the sa-

lience of the respective item (Zehetleitner & Müller, 2010). Relative

salience (i.e., the drift rate difference between the target and the

distractor) and noise in the accumulation process over time produce

variation in the map output, based on which attention is allocated

to a location. Consequently even distractors less salient than the tar-

get may reach the selection threshold before the target and thus, cap-

ture attention in a certain proportion of trials. Following the logic of

this stochastic salience model, the probability of the distractor ex-

ceeding the threshold prior to the target diminishes as its salience,

relative to that of the target, decreases.

In accordance with this model are the results of singleton-

distractor studies that monitored eye movements, showing that

distractors less salient than targets decrease oculomotor accuracy es-

pecially for slow-latency saccades (Van Zoest & Donk, 2005; Van

Zoest, Donk, & Theeuwes, 2004). These findings, too, indicate that

the time course of selection is crucial, whether a distractor does or

does not capture attention.

4.4. Parametric manipulations

Hitherto, attentional capture has mostly been investigated using

binary saliencemanipulations and dichotomically examining whether

or not attentional capture occurred (De Fockert et al., 2004; Donk &

Van Zoest, 2008; Folk et al., 1992; Hickey et al., 2006; Lamy, Leber, &

Egeth, 2004; Theeuwes, 1992).While this approach has the advantage

of being simple and providing a good starting point for examining the

issue, it entails the possibility of overlooking, or failing to recognize,

relationships that are not represented by a binary sample of the vari-

able investigated. That is to say: if the distractor is varied in two

steps (or even held constant), conclusions about the relationship be-

tween salience and attentional capture are necessarily oversimplified.

As recent studies demonstrate, cognitive relationships are more com-

plex and stochastic in nature (Gold & Shadlen, 2007; Vul, Hanus, &

Kanwisher, 2009). Even though it is implicitly accepted that the rela-

tionship between salience and attentional capture is a gradual one,

capture by less salient distractors had not been demonstrated until re-

cently (Zehetleitner et al., 2013) and, thus, existing salience-based se-

lectionmodels had not been challenged in this respect. To prevent the

drawing of false or restricted conclusions, we therefore advocate the

use of parametric manipulations and to pose questions about proba-

bilities and proportions, rather than simply the presence versus ab-

sence of a certain phenomenon.

We only manipulated the bottom-up salience parameter paramet-

rically, and the stochastic salience model explains our results also

only from a bottom-up perspective. Yet, it is possible to incorporate

top-down control into the model by introducing an impact on, for

instance, the (drift) rate of sensory evidence accumulation, which

can thus modulate the probability of capture. Although this is not

implemented in the model as yet, a mechanism such as ‘target

dimension weighting’ (Found & Müller, 1996) could be one possibili-

ty of top-down influence as weighting operates already at an early

processing stage (Kuhbandner & Zehetleitner, 2011; Melloni, Van

Leeuwen, Alink, & Müller, 2012; Müller & Krummenacher, 2006;

Töllner et al., 2012; Zehetleitner, Goschy, et al., 2012; Zehetleitner,

Krummenacher, Geyer, Hegenloh, & Müller, 2010; Zehetleitner &

Müller, 2010). A mechanism for combining salient and behaviorally

relevant information in a joint map for stimulus selection is at the

heart of Gottlieb's (2007) notion of a ‘priority map’. Furthermore,

parametric manipulations that influence mechanisms of top-down
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control might provide new insights into the occurrence of attentional

capture, as they have done in response conflict research (Durston et

al., 2003; Forster, Carter, Cohen, & Cho, 2011).

5. Conclusion

The present study demonstrates that in the distractor search par-

adigm, where target and distractor are simultaneously presented,

distractors that are more salient than the target capture attention;

importantly, however, less salient distractors too can capture atten-

tion (although the proportion of capture events is smaller). Only

distractors that are far less salient than the target fail to capture atten-

tion. The present study cannot completely rule out non-spatial filter-

ing costs for less salient distractors, but it can exclude the notion that

non-spatial filtering is the only mechanism responsible for RT inter-

ference (caused by less salient distractors).

In terms of bottom-up attentional capture by less salient distractors,

we conclude that non-spatial filtering alone is not sufficient to explain

RT interference in the distractor search paradigm. Rather, the occur-

rence of spatial capture is proportionate, with the relative salience be-

tween target and distractor determining the size of this proportion. As

a consequence, attentional capture by less salient distractors relative

to the target is possible and stochastic in nature, as we have demon-

strated here.
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Abstract  

Interference in the distractor search paradigm, when a distractor is present compared to 

absent, is a frequently reported phenomenon. However, the source of this interference is unclear 

and debated. While some authors claim the additional time is the result from spatial attentional 

capture, others think that attentional deployment to the target is slowed due to filtering processes. 

By contrast, the second target selection after attentional capture by the distractor has hardly been 

investigated. To discriminate between spatial capture and slowed target selection and to 

investigate the second target selection, we qualitatively analyzed the distribution of reaction time 

and saccadic interference. Predictions about the distribution were generated by an accumulator 

race model and were qualitatively tested by two reaction time and one eye movement 

experiment. The results favor attentional capture as source for interference. Moreover, once 

attention was captured, the second target selection was faster than when no distractor was 

present. This result is explained by an immediate selection of the second most salient item. In 

conclusion, attentional capture by a distractor can slow target selection in some cases and speed 

it in other.  

Keywords: attentional capture, filtering, accumulator race model, second 

selection
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To move around efficiently in our environment, humans must behave goal-oriented, 

which requires filtering out distracting stimuli. Imagine driving down the road, looking for the 

small sign designating the destination. While searching for it, i.e. voluntary directing attention to 

potential target signs, one disregards other stimuli at the roadside to achieve the goal, namely 

finding the destination. But if one ignored all other stimuli impinging on the sensory organs 

completely in this situation, it could be life-threatening, for instance if one misses a red light or 

the pedestrian crossing the street in front of one. This means, distraction or involuntary capture 

of attention on some occasions serves goal attainment in the long run and can therefore be 

supporting, although contradictory to the current goal. The question that has been asked 

frequently in the literature by now is ‘what characteristics of a stimulus make it capture attention 

of an observer automatically?’. 

The Distractor Search Paradigm 

In order to find an answer to this question, many studies used the distractor search 

paradigm (Theeuwes, 1992). In this paradigm, a task-relevant target singleton and an irrelevant 

distractor singleton (both carrying unique features compared to all other stimuli) are surrounded 

by homogeneous non-target stimuli. For instance, a display containing a gray tilted bar 

predefined as target and a bright vertical bar as distractor, amongst gray vertical non-target bars. 

The task is to search for the target stimulus while ignoring the possibly present distractor. A 

typical (although debated) result is an increase in reaction time (RT) when a more salient 

distractor than the target, i.e. a more conspicuous distractor than the target, is present compared 

to when it is absent (Bacon & Egeth, 1994 Exp. 1; Becker, 2007; de Fockert, Rees, Frith, & 

Lavie, 2004; Hickey, McDonald, & Theeuwes, 2006; Hickey, Van Zoest, & Theeuwes, 2009; 
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Hickey & Theeuwes, 2011; Hodsoll, Mevorach, & Humphreys, 2009; Kumada & Humphreys, 

2002; Kumada, 1999; Lamy & Yashar, 2008; Lavie & de Fockert, 2006; Leber, 2010; Müller, 

Geyer, Zehetleitner, & Krummenacher, 2009; Theeuwes, 1991, 1992; Töllner, Müller, & 

Zehetleitner, 2012; Wykowska & Schubö, 2010; Zehetleitner, Müller, & Proulx, 2009).  

The Source of Reaction Time Interference 

If RT interference evoked by a salient distractor occurs, the source of this interference is 

not yet clearly identified and is still debated. Some authors interpret RT interference in the 

distractor search paradigm as spatial attentional capture, that is attention visits the distractor 

location before the target location (Hickey & Theeuwes, 2011; Theeuwes, 1992, 2010; 

Zehetleitner, Koch, Goschy, & Müller, 2013). Others claim that RT interference reflects non-

spatial filtering costs that result from the concurrent processing of another salient stimulus 

(Becker, 2007; Folk & Remington, 1998, 2006; Wykowska & Schubö, 2010). Critically, 

according to these latter authors, attention is NOT directed to the distractor location before 

oriented to the target location. Such filtering costs are assumed to arise from non-spatial 

competition between both stimuli (Wykowska & Schubö, 2010) or parallel identification (Folk & 

Remington, 2006). Although not explicitly mentioned by the authors of these studies, to our 

understanding, this is similar to what the theory of Biased Competition (Desimone & Duncan, 

1995) describes: simultaneously presented objects compete for representation, this competition 

being biased by bottom-up factors or top-down attentional control. However there are two 

important differences between the notion of filtering and Biased Competition. First, Biased 

Competition postulates spatial modulation of competition with stronger competition for close 

items. Second, Biased Competition explains both in the distractor search paradigm, capture by 
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the distractor, in case the distractor wins the competition and no capture, in case the target wins 

the competition. Filtering on the other hand assumes only the case that the target is selected first. 

Because the question at hand is whether or not the distractor captures attention and Biased 

Competition does not make discriminable predictions here, we will speak of attentional capture 

and non-capture accounts, the former including first selection of the distractor and the latter 

including filtering and competition mechanisms without first selection of the distractor.  

Predictions about Means and Distributions 

Folk and Remington (1998) state “the visual search paradigm used to measure attentional 

capture confounds two potential sources of disruption – filtering costs and shifts of spatial 

attention.” (p.849). This is certainly true if mean RT’s of experimental conditions are analyzed, 

but as Cousineau and Shiffrin (2004) or Balota and Yap (2011) point out, some theories make 

the same predictions about mean performance, but differ in their predictions when distributions 

are considered. For RT interference in the distractor search paradigm, non-capture accounts as 

well as capture accounts would predict RT interference when a distractor is present and this 

interference to be higher with increasing salience of the distractor relative to the target 

(Zehetleitner et al., 2013). Distribution analyses for this paradigm have so far only been 

conducted for eye movements (Donk & Van Zoest, 2008; Godijn & Theeuwes, 2002; Van Zoest, 

Donk, & Theeuwes, 2004; Van Zoest & Donk, 2005, 2008). To derive predictions from the 

theoretical accounts about RT interference distribution, we take a step back and look at the 

processing architecture of capture and non-capture trials. 

Both possible sources of RT interference, attentional capture and non-capture costs, differ 

in their underlying processing architecture. With respect to attentional capture, because of 



SPEEDED TARGET SELECTION AFTER ATTENTIONAL CAPTURE   6 

fluctuations in attentional control (Leber, 2010), it is unrealistic to assume attentional capture to 

occur in every trial, but rather in a proportion of trials, the size of which is dependent on the 

distractor’s salience relative to the target’s salience (Zehetleitner et al., 2013). For non-capture 

costs, there is one selection for distractor absent and present trials, namely target selection. For 

attentional capture, there is one (target) selection for distractor absent trials, but two possible 

processing ways for distractor present trials: either there is only the target selection if no 

attentional capture occurred, or in case of attentional capture, there are two selections, namely 

the distractor selection and the subsequent target selection. Considering the fact that attentional 

capture trials, comprising two selections, are slower than no-capture trials where attention travels 

immediately to the target, RT interference should increase with RT latency, as the proportion of 

capture trials becomes larger. Although comprehensive reports on RT interference as a function 

of RT latency are pending, one study touched this issue and reported a trend for RT interference 

to increase over quartiles (Belopolsky & Theeuwes, 2010). Since the proportion of capture trials 

is also dependent on relative salience between target and distractor (Zehetleitner et al., 2013), 

this effect of increasing RT interference with increasing RT latency should be even more 

pronounced with higher distractor salience relative to the target.  

For non-capture accounts, predictions about RT interference distribution are more 

difficult to establish and because attentional selection in the distractor search paradigm can be 

regarded as a decision between the target and the distractor (Zehetleitner et al., 2013), we used 

the accumulator race model (Usher & McClelland, 2001) as basis to generate more precise 

predictions for capture and non-capture accounts. The architecture of these accumulator models 

resembles the one of the model described in Zehetleitner et al. (2013): sensory evidence for the 
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target and the distractor is accumulated over time, by two accumulators with a drift rate that is 

determined by stimulus salience. Each accumulator is racing towards the same selection 

threshold, the first hitting it denoting the selected stimulus – target or distractor. In this model, 

non-capture accounts are implemented in restricting the race outcome in a way that the target 

always wins, i.e. it hits the selection threshold before the distractor. For capture accounts, there is 

no such restriction and distractor or target can hit the threshold first resulting in a capture trial for 

the former and non-capture trial for the latter.  

The core assumption of non-capture competition accounts is that the target selection is 

slowed when a distractor is present compared to when it is absent. We implemented this in the 

race model by reducing the drift rate of the target when a distractor is present compared to the 

drift rate of trials where the target is presented alone. For capture accounts, the drift rate of the 

target was the same in distractor present and absent trials, but for capture trials, costs were added 

for the distractor selection and the subsequent disengagement process from the distractor. In 

addition, we modeled two alternatives for the second (target) selection.  

The second selection after attentional capture is largely unexplored, but on the basis of 

our computational model, one can derive two alternatives of how it could proceed. First, after 

attention was captured by the distractor, i.e. the distractor accumulator hit the threshold, the 

target accumulation continues as before and it is selected at the time the target accumulator hits 

the threshold. In this case one would simply wait for the target to reach the threshold and the 

target would be selected at the same time it would be selected without a distractor being present. 

If a distractor is present, it always takes longer (in case of capture) or equally long (in case of no 

capture) to select the target compared to when the target is presented alone; that is RT 
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interference is always positive or zero. Second, an alternative for the second target selection 

could be a decrease of the selection threshold to the level of the accumulated evidence of the 

target at the time attention has disengaged from the distractor. In this case, one would not have to 

wait for the second selection until the accumulation of target evidence reaches the threshold, but 

simply take the next salient item. Because one knows that there are only two salient stimuli in the 

field, one can select the second salient element (the target) immediately. In other words, 

attentional capture by the distractor could expedite target selection if the sum of capture costs 

and disengagement costs is less than the time target selection would cost without a distractor. If 

one considers the positively skewed selection time distribution of a given drift rate, the benefit 

should become larger with longer selection times, i.e. RT latencies (see Figure 1 for illustration). 

In other words, in some cases, namely when the target selection time is longer than the time it 

costs to select the distractor and disengage from it, a distractor can expedite RTs instead of 

prolong them, assuming that the selection threshold is lowered for the second selection and 

attention immediately selects the next most salient stimulus. In terms of RT interference, this 

would mean that RT interference becomes negative. 

Although the pattern of RT interference is deducible from theory, as stated above, 

implementations of all three theories were run to generate predictions for the distribution of RT 

interference and thereby test the race model behavior. These predictions are depicted in Figure 2. 

The first simulation depicts the prediction of non-capture accounts, the second simulation 

represents predictions of capture accounts with a fixed selection threshold, and the third 

simulation shows predictions for capture accounts with a variable selection threshold that adapts 
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to the accumulated evidence of the target at the time where attention has disengaged from the 

distractor location.  

As can be seen from Figure 2a, non-capture accounts would predict overproportionally 

increasing RT interference with increasing percentile of RT latency. Capture accounts on the 

other hand would predict an initial increase of RT interference and a decrease in later percentiles 

(Figures 2a and 2b). Whereas a capture model with a fixed threshold for the second target 

selection predicts RT interference always to be in the positive range, a capture model with a 

variable selection threshold predicts RT interference to drop into the negative range in the last 

percentiles. In other words, a model with a variable selection threshold predicts faster RTs when 

the distractor is present compared to when it is absent for slow RT latencies. In these cases the 

distractor expedites RT instead of slowing it. As stated before, although counterintuitive, this is 

the case if the cost the distractor evokes plus the time it takes to disengage attention from it is 

overall shorter than the time it takes the target accumulator to reach the threshold as it was set for 

the first selection without variable adaptation after the first selection. 

To recapitulate, non-capture and capture accounts make the same predictions about mean 

RT interference, yet simulations suggest different qualitative predictions for the distribution. 

Therefore, distribution analysis constitutes a means to distinguish between spatial shifts of 

attention and filtering costs in the distractor search paradigm. Hence, the statement of Folk and 

Remington (1998) that the distractor search paradigm could not distinguish between both options 

is not valid.  

Study Goal
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Goal of this study was to investigate the cause of RT interference in the distractor search 

paradigm and the second target selection after attentional capture by the distractor. Predictions of 

capture and filtering (i.e. non-capture) theories do not make discriminable predictions about 

mean interference, but they do make different predictions about the distribution of RT 

interference. We take this advantage of distribution analysis to decide between the occurrence of 

capture and non-capture in the distractor search paradigm and to investigate the second target 

selection. To this end we conducted two reaction time experiments and one eye tracking 

experiment. In experiment 1, which was a RT experiment, the target was orientation defined and 

the distractor, which could be present, was color defined. In experiment 2, we tested for 

generalization across dimensions and defined the target again in the orientation dimension, but 

the distractor in the luminance dimension. Although distribution analyses were so far mainly 

carried out with eye movement data (Donk & Van Zoest, 2008; Godijn & Theeuwes, 2002; Van 

Zoest et al., 2004; Van Zoest & Donk, 2005, 2008), none of these studies looked at saccadic 

latency interference analogue to RT interference, that is saccadic latency of correct trials (first 

fixation on target) when the distractor is present compared to when the target is presented alone. 

That is, although a saccade can be carried out correctly to the target, attention could be covertly 

captured beforehand. This should be visible in the saccadic latency. In experiment 3, we 

therefore recorded eye movements in the distractor search paradigm to test (i) whether there 

occurs similar interference as in RT experiments and (ii) whether the distribution of this 

interference is the same as the costs in the RT experiments, i.e. whether attention was spatially 

captured or saccadic latency merely slowed. The goal of this article is to discuss the important 

qualitative properties of RT interference distribution. 
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Experiment 1  

Goal of experiment 1 was to test whether RT interference in the distractor search 

paradigm is the result of spatial attentional capture or of non-capture filtering processes. To this 

end, salience of an oriented target and a colored distractor was parametrically varied and 

distribution of RT interference across RT latency was analyzed and compared with the simulated 

predictions (Figure 2). 

Methods  

The methods were as in Zehetleitner et al. (2013). 

Participants. Eighteen paid (€ 16) volunteers took part in experiment 1. One had to be 

excluded because of too many outliers (more than 2.5 sd above the mean) and one had to be 

excluded because of technical problems. The remaining 16 participants had a median age of 26 

(range 20-49) years, four of them male, 15 dextral and with visual corrected-to-normal acuity 

and normal color vision. 

Stimulus presentation and data acquisition. The experiment was conducted in a sound-

insulated booth, and was controlled by a program purpose-written in C++. Stimuli were 

presented on a 20” Mitsubishi Diamond Pro 2070SB monitor at a resolution of 1,280 × 1,024 

pixels and a refresh rate of 100 Hz; viewing distance was approximately 73 cm. Participants 

responded using their left and right index fingers, respectively, to press buttons 2 and 8 of the 

numeric keypad of an Empirisoft DirectIN keyboard. RTs and response accuracy were recorded 

online. 

The display consisted of 39 vertical broken gray bars presented on black background and 

arranged equidistantly on three imaginary concentric circles around the center of the screen. 
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Radii of stimuli circles were 1.18°, 2.20°, and 3.06° of visual angle, respectively. The bars were 

0.71° × 0.16° in size and had a 0.08°-gap randomly located at the top or bottom of each bar. 

Targets differed from non-targets in orientation (9, 10, 11, 16, and 45 from the vertical), and 

distractor differed from non-targets in color with different shades of red (RGB 173/107/114, 

181/103/110, 185/97/104, 210/78/87, 252/0/21). All stimuli were matched for luminance (16.2 – 

17.3 cd/m
2
). A pilot experiment was conducted to ensure that target and distractor salience was 

sufficient for these stimuli to ‘pop out’ from the search array, i.e., their associated detection 

times were independent of the number of non-targets in the display.

Design and procedure. Two 1-hr sessions were carried out on consecutive days, at the 

same time of day. The first part of each session was the distractor experiment; the second part 

was a short experiment to measure stimulus salience (for the latter, see Stimulus Salience 

Measurement). For the distractor experiment, factors manipulated within participants were 

distractor presence (present vs. absent), target salience (five levels), and in case of distractor 

presence, distractor salience (five levels). A target was present on all trials; distractors occurred 

randomly in 50% of the trials. Each target and distractor salience combination occurred equally 

often. A target and a distractor (when present) could be presented only at one of the 12 positions 

of the second (intermediate) circle of the stimulus display; their exact positions were chosen 

randomly, with the constraint that the target and distractor could never share the same location. 

Importantly, relative target-distractor salience was randomized within trial blocks. Participants 

completed 20 blocks of 50 trials each day, yielding a total of 2,000 trials.  

Each trial started with a white fixation dot, presented for a duration uniformly distributed 

between 900 and 200 ms, that was superseded by the search display which remained present until 
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response (Figure 3a). Participants were instructed to indicate, as quickly and accurately as 

possible, the gap location (top or bottom) of the target by pressing the 8 or 2 button, respectively. 

In case of an error, visual feedback was provided, followed by an additional 500-ms blank screen 

before the next trial. At the end of each block, participants were informed about their mean RT 

and error rate. 

Stimulus salience measurement. Because salience is a psychological construct, rather 

than a physical given, we used a behavioral measurement of salience, which was collected in a 

short experiment after each session of the distractor experiment. Stimuli were the same as in the 

distractor experiment. All target orientation and distractor color contrasts from the distractor 

experiment (Figure 3b) were presented as (to-be-detected) targets randomly intermixed with 

target-absent displays (as in the distractor experiment, targets never occurred on the outer circle). 

The design was 2 (target presence vs. absence) × 2 (dimension color vs. orientation) × 5 

(contrast) factorial. Participants’ task was to indicate the presence of an orientation or color 

target via button press; response was to be withheld if no target was present. Four blocks 

consisting of 80 trials were performed each day, yielding a total of 640 trials and 32 trials per 

contrast condition. The stimulus display was presented until response or a maximum duration of 

1,200 ms. 

Using these detection RTs as our measure of stimulus salience, we calculated the relative 

salience between stimuli in the distractor experiment by subtracting distractor salience from 

target salience. For example, if a target was detected at a rate of 350 ms and a distractor at one of 

400 ms, then their salience difference was considered to be -50 ms. Note that items of higher 
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salience are associated with shorter RTs; negative values of relative salience indicate a distractor 

less salient, and positive values a distractor more salient than the target.  

Data analysis. The first 20 trials (first 10 trials of the stimulus salience measurement) of 

each session and the first 3 trials of each block served as practice trials and were excluded from 

analysis. Of the remaining trials, only correct-response trials were used for analysis (distractor 

experiment: 96.3%; stimulus salience measurement: 99.2%), excluding RTs that were longer or 

shorter than 2.5 sd of the participants’ mean RT in the respective condition (distractor 

experiment: 2.7%, salience measurement: 1.3%). 

Distributions of RT interference were calculated according to the vincentizing procedure 

(Ratcliff, 1978) for each relative salience (target salience - distractor salience) condition 

separately. In a first step, RTs of each participant for distractor absent and present trials were 

rank ordered and percentile RTs were determined for both trial types. This step can be displayed 

in a cumulative distribution function (CDF), which plots probabilities for the respective or a 

faster RT. In the second step RT interference was calculated by computing the horizontal 

difference between corresponding RT percentiles of distractor absent and present trials. This 

horizontal difference, i.e. RT interference can be plotted as a function of percentile. Finally, 

percentile RT and interference were aggregated across participants. All data analysis was carried 

out with R (R Development Core Team, 2010). 

Results and Discussion 

Parametric salience manipulation revealed a good range of distractors more and less salient than 

the target with a greater number of distractors more salient than the target. The most salient 
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distractor was 99 ms more salient, i.e. faster detected, than the target and the least salient 

distractor was 87 ms less salient, i.e. slower detected, than the target (Figure 4).

Results of the distribution analysis are presented in Figures 5 and 6. Because ways of 

presenting results of distribution analyses have varied in the literature and readers might be more 

familiar with one or the other way, we deliberately present the data in two different formats. In 

the cumulative distribution functions it is already prominent that trials in which the target was 

presented alone are faster in the last percentile than trials where the target was presented together 

with a distractor. RT interference, which is the horizontal difference between percentiles of 

target alone and target plus distractor trials, is easier to understand from Figure 5 and 6. These 

Figures show that distribution of RT interference looks qualitatively similar to the simulated 

predictions of the capture model with a variable selection threshold. Interference increases with 

percentile and drops in the last or second last percentile, in some cases even into the negative 

range. Longer RT latencies for a given drift rate are the result of noise (Figure 1) and as we 

hypothesized, for a given target-distractor pair, i.e. two given drift rates, interference decreases. 

The increase of RT interference is the more pronounced the more salient the distractor is 

compared to the target. Because Figure 6 depicts RT interference as a function of percentile, RT 

latencies are hidden. Figure A1 in the appendix therefore shows RT interference as a function of 

RT latency. From this figure, it becomes obvious that the dip of RT interference in the last 

percentile is not the result of longer RTs per se, but is indeed a result of RTs from the right tail of 

the selection time distribution of one particular drift rate. 
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Experiment 2  

To generalize the results of experiment 1 to another distractor dimension, in experiment 2 

the target had to be selected in the presence of a luminance defined distractor. 

Methods 

Methods of experiment 2 were the same as in experiment 1 if not stated otherwise. 

Participants. Seventeen paid volunteers took part in experiment 2. One had to be 

excluded because of too many outliers. The remaining 16 participants had a median age of 27 

(range 20-50) years, five of them male, all dextral and with visual corrected-to-normal acuity. 

Stimulus presentation and data acquisition. Stimuli were presented on a 19” View 

Sonic Graphics Series G 90 fB monitor at a resolution of 1,024 x 768 pixels and a refresh rate of 

85 Hz; viewing distance was approximately 57 cm. Participants responded using their left and 

right index fingers, respectively, to press one of two vertically arranged buttons on a purpose-

built response pad. RTs and response accuracy were recorded online. 

Radii of stimuli circles were 1.88°, 3.25°, and 4.63° of visual angle, respectively. The 

bars were 1.13° × 0.25° in size with a gap of 0.13°. Targets differed from non-targets in 

orientation (7, 8, 9, 14, and 45° from the vertical), and distractors differed from non-targets in 

luminance (13.8, 14.8, 17.9, 19.4, and 25.5 cd/m
2 

for distractors and 5.25 cd/m
2 

for non-targets). 

Design and procedure. Design and procedure was identical to experiment 1 with the 

exception that the response pad was purpose-built and buttons were therefore not numbered 2 

and 8; however they were also vertically arranged.
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Baseline salience measurement. Baseline salience measurement was the same as in 

experiment 1, but instead of colored targets, luminance targets were presented as in the 

corresponding distractor experiment. 

Data analysis. The same trials as in experiment 1 were excluded as practice trials. Of the 

remaining trials, only correct-response trials were used for analysis (distractor experiment: 

96.1%; stimulus salience measurement: 98.8%), excluding RTs that were longer or shorter than 

2.5 sd of the participants’ mean RT in the respective condition (distractor experiment: 2.6%, 

salience measurement: 1.1%). Distribution analysis was analogue to experiment 1.

Results and Discussion 

The range of salience differences due to parametric manipulation was again wide with the 

most salient distractor being 85 ms more salient, i.e. faster detected, than the target and the least 

salient distractor being 127 ms less salient, i.e. slower detected, than the target. Figure 7 gives an 

overview about all target distractor salience differences. 

Results of the distribution analysis are presented in Figures 8 and 9. Overall, results 

qualitatively resemble those of experiment 1 and are in accordance with the simulated 

predictions of the capture model with a variable selection threshold. Trials in which the target 

was presented together with a distractor are for many target distractor pairs faster in the last 

percentile than trials where the target was presented alone. Distribution of RT interference again 

follows an inverted U-shape, that is it increases with percentile and drops in the last or second 

last percentile, again, in some cases into the negative range. The increase of RT interference is 

the more pronounced the more salient the distractor is compared to the target. The increase is 

also more pronounced than in experiment 1, which suggests that here, more capture trials 
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occurred. RT interference presented as function of RT latency (Figure A2) again suggests that 

the dip in is not the result of longer RTs, but confirms that it is a result of RTs from the right tail 

of the selection time distribution of one particular drift rate. 

Experiment 3  

Experiments 1 and 2 indirectly measured capture of covert attention and suggest by 

means of distribution analysis that attention is indeed captured by the distractor rather than target 

selection is merely slowed. A closer connected, but still indirect measure of attentional capture is 

oculomotor capture. Because eye movements and attention are tightly coupled (Deubel & 

Schneider, 1996), an eye movement to the distractor before to the target is considered to be 

accompanied by attentional capture. However, as stated above, even if the eyes were not 

captured by the distractor, attention could be captured before the saccade is executed.  

Experiment 3 was therefore designed to apply the same principle of analysis to eye 

movement data. Saccadic latencies of correct eye movements, i.e. trials without oculomotor 

capture, were analyzed with respect to distractor presence. The distribution of this “saccadic 

interference” should resemble the simulated predictions of capture accounts and the distribution 

of RT interference, if covert capture of attention occurred before the correct eye movement.   

Methods 

Methods were the same as in experiment 1 if not stated otherwise.  

Participants. Eight paid (€ 8) volunteers with a median age of 27 (range 24-46) were 

recruited for this experiment. Seven of them were female; all were dextral and with visual 

corrected-to-normal acuity.
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Stimulus presentation and data acquisition. Stimuli were generated using a ViSaGe 

system (Cambridge Research Ltd., UK) with a purpose-programmed Experimental Toolbox for 

MATLAB (The MathWorks, Inc.). Screen refresh rate was 120 Hz at a screen resolution of 

1,024 x 768 pixels. Eye movements were recorded at a sampling rate of 1000 Hz by means of an 

EyeLink 1000 Desktop Mount eye tracker (SR Research Ltd., Canada) positioned below the 

display monitor. Participants viewed the monitor from a distance of about 70 cm; to minimize 

head movements, a chin and forehead rest were used. Eye movements were recorded from the 

right eye; however, stimulus displays were viewed binocularly.

Gray vertical bars (without gaps) of 0.25° × 1.35° of visual angle were arranged on three 

imaginary concentric circles (2°, 4°, and 6° of visual angle in radius, with 6, 12, and 18 bars, 

respectively). A further gray bar occupied the position in the center. Targets differed from non-

targets in orientation (22° tilted from vertical to the right or left), and distractors differed from 

non-targets in color, such that one was more salient (RGB: 252/0/21) than the target and the 

other one less salient (171/104/110) than the target. A pilot experiment ensured that distractors 

were faster and slower detected than the target, respectively. All stimuli were matched for 

luminance (13.6 – 14.2 cd/m2).  

Design and procedure. The eye-tracking experiment implemented a 2 (distractor absent 

vs. present) × 2 (distractor salience high vs. low) factorial within-subject design. To ensure 

reliable differentiation between target and distractor fixations for data analysis, distractor 

positioning was restricted in the following way: the target position was chosen randomly out of 

the 12 possible positions on the middle circle; the distractor position was then chosen to be 

shifted by three or five positions to either the left or the right from the target position (each in a 
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random 25% of the distractor-present trials). There were 128 trials per distractor condition. This 

resulted in 512 trials overall, which were presented in 8 blocks of 64 trials each. Trial 

presentation order was randomized within blocks (with 32 distractor-absent and 32 distractor-

present trials per block). 

The task was to make a speeded saccade to the target. Observers were instructed to fixate 

the fixation cross at the trial start until the appearance of the search display, and then to make a 

direct saccade to the target, while ignoring the distractor. In case the first saccade went 

nevertheless to the distractor, participants were instructed to direct the next eye movement to the 

target. In addition, they were told that after having made a saccade to the target, they should 

fixate it until the disappearance of the search display. 

Each trial started with a fixation cross (0.5° × 0.5°) for 1,000 ms. Then, the search display 

appeared and remained visible for 1,000 ms. The intertrial interval, in which a black screen was 

displayed, had a random duration between 700 ms and 1,100 ms. Observers were encouraged to 

use this interval for briefly closing and resting their eyes, so that they could minimize blinks 

during the subsequent trial. Additionally, participants could take short breaks between 

experimental blocks. Prior to each block of trials, a nine-point calibration of the eye tracker was 

conducted. 

Data analysis. Trials were excluded on which search display onset occurred during a 

saccade or the eye tracker failed to track the observer’s pupil (8.7%). Saccadic latencies were 

calculated as the time between onset of the search display and the initiation of the observer’s first 

saccadic eye movement. Trials with initial saccadic latencies below 80 ms and above 600 ms 

were excluded (2.7%). The remaining data underwent a drift correction: before the onset of the 
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search display (i.e., at the end of the fixation cross display), gaze was assumed to have rested on 

the fixation cross. Thus, for drift correction, the eye’s deviation from the fixation cross was 

subtracted from the subsequent gaze position data for this trial. The initial saccade after search 

display onset was then assigned to the target or the distractor if it landed within 3° of visual 

angle of the respective (target or distractor) location. 

To calculate saccadic interference, only saccades that immediately went to the target were 

included in the analysis (74.9%). Of these trials, the difference in saccadic latency was calculated 

when the distractor was present compared to when it was absent. Distribution analysis was 

analogue to RT interference in experiments 1 and 2.

Results and Discussion 

Results of the distribution analysis are presented in Figures 10 and 11. Distribution of 

saccadic latency partly resembles the distributions of the RT experiments and the simulated 

predictions of the capture model with a variable selection threshold. It only partly resembles the 

predictions, because there is no increase in interference, neither for the more nor for the less 

salient distractor. However, trials in which the target was presented alone were again faster in the 

last percentile than trials where the target was presented together with the distractor as indicated 

by negative interference. 

These results suggest that although saccades are executed correctly, covert capture of 

attention can happen beforehand if the distractor is more salient than the target. Yet, this 

conclusion has to be treated with caution, because overall, interference was relatively small with 

a maximum of 13 ms. On the other hand, it is obvious that the distribution qualitatively follows 

the predictions of a capture model. Despite the fact that distractor interference is not present 
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during the first percentiles, the benefit due to the distractor is still observable in the slow 

selection times. This is a hint to covert attentional capture in some cases even before a saccade is 

correctly executed. 

General Discussion 

This research was motivated by the question about the source of RT interference, namely 

spatial attentional capture or filtering. Analysis of mean RTs or mean RT interference cannot 

distinguish between both sources, because both predict RT interference to increase with stronger 

salience of the distractor. For the distribution of RT interference however, capture accounts 

predict interference to increase with RT latency, because capture trials as a result of two 

selections are slower than no-capture trials. Because the proportion of capture trials grows with 

stronger distractor salience, the increase of RT interference over RT latency should be enhanced 

for more salient distractors. That is, the increase of RT interference entails a mixture distribution 

of non-capture and capture trials with the former constituting the fast, i.e. left end of the 

distribution and the latter representing the slow, i.e. right end of the distribution. Simulations 

using a leaky accumulator model (Usher & McClelland, 2001) suggested interference to decrease 

again in the last percentiles, which gives the prediction about distribution of RT interference an 

inverted U-shape. These predictions of capture accounts differ qualitatively from predictions of 

non-capture accounts, which also suggest interference to increase, but in an overproportional 

fashion without a decrease in later percentiles. Further, predictions of a capture account with 

fixed selection threshold differed qualitatively from a capture account with variable selection 

threshold. A fixed threshold implies that when the distractor is present, it always takes longer to 

select the target as compared to when the target is presented alone. Thus distractor presence 
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always results in costs, i.e. positive interference. A variable threshold on the other hand speeds 

up RT when a distractor is present and the target selection is slow: is the time it costs to select 

the distractor and disengage from it shorter than the selection time of the target, a decrease of the 

selection threshold after disengagement from the distractor lets the target be earlier selected than 

when it is presented alone. In this case, interference becomes negative, i.e. the distractor speeds 

up selection time of the target. 

We presented three experiments, two with RT measurement and one with eye-tracking, 

the results of which qualitatively very much look alike. For more salient distractors, RT 

interference increased with percentile and dropped into the negative range in the last percentile. 

For less salient distractors, the increase was not as pronounced as for the more salient distractors 

or was absent. Both, distributions of interference of more and less salient distractors, is in 

accordance with the findings of Zehetleitner et al. (2013) that the probability of capture increases 

with increasing salience of the distractor and that less salient distractors capture attention on a 

smaller proportion of trials or do not capture attention at all if far less salient than the target 

(Theeuwes, 1992). The dip into the negative range in the last percentile suggests the second 

selection to be speeded due to a decrease of the selection threshold. That is, after attention was 

captured by the distractors, the second most salient item in the visual field is selected 

immediately, rather than at its normal selection time, which would take longer. Our results are 

clearly at odds with non-capture accounts that predict interference to overproportionally increase 

with RT latency. 

The intention of this research was to distinguish between capture and non-capture in the 

distractor search paradigm. To this end, we subsumed both, non-spatial filtering and the special 
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case of Biased Competition in which the target wins the race, under non-capture accounts. 

However, this view of Biased Competition was an artificial curtailment of the theory for the 

purpose of expressing interference as a result of slowing rather than of spatial capture. As full 

theory, Biased Competition does also account for attentional capture, namely when the distractor 

wins the competition. The situation is different with non-spatial filtering: this account is a pure 

non-capture account, although the proposed mechanism is the same as for Biased Competition, 

namely competition (Wykowska & Schubö, 2010), or parallel identification (Folk & Remington, 

2006). On a theoretical level, it is an open question how non-spatial filtering and Biased 

Competition differ from each other, except that one assumes competition to be non-spatial and 

the other to be spatial in nature. While for non-spatial filtering, there is no evidence for the 

mechanism of non-spatial competition, there are studies demonstrating how spatial competition 

is grounded in the neural system as Biased Competition describes it (Beck & Kastner, 2009; 

Desimone, 1998). All stimuli in the visual field compete to control behavior. They compete for 

neural representation that is for the neural response in visual cortex, by interacting in a mutually 

suppressing way. The closer the interacting neurons are located in the cortex the stronger their 

competition is. In terms of receptive fields, this implies that stimuli sharing a receptive field 

compete stronger than stimuli falling in different receptive fields. This spatial competition can be 

biased by stimulus properties or observer’s goals. The theory of Biased Competition explains 

both, capture and non-capture events in the distractor search paradigm. If the target wins the 

competition, it is a non-capture trial, if the distractor wins the competition it is a capture trial. 

Because it accounts for both and, moreover, clearly describes the mechanism of competition, we 

consider it as qualified theory to explain our results.  
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Here, we simulated the predictions of competition models that predict non-capture or 

capture in the distractor search paradigm. These are plausible and well-established models of 

attentional selection in the literature that account for RT interference when a distractor is present. 

However, the leaky accumulator model (Usher & McClelland, 2001), that we used to simulate 

the predictions of the competition models, provides another possibility of how RT interference 

could emerge, namely by an increase of the non-decision time Ter when a distractor is present 

compared to absent. The simulated prediction about RT interference as a result of a varying non-

decision time Ter is displayed in the Appendix (Figure A4). RT interference was equally 

distributed, i.e. it was the same for fast and slow RTs, which does not correspond to our 

experimental data. To our knowledge, there is no theoretical foundation for the influence of non-

decision time on RT interference. 

While a distractor induced interference on the one hand, it also facilitated target selection 

when this was very slow. This idea of facilitation due to a salient distractor was also reported by 

Geng and DiQuattro (2010), who presented their participants with two squared fields that were 

intersected by a “t-like” cross. One of the squares, with the horizontal bar in the middle, served 

as the distractor and the other, where the horizontal bar was located in the upper or lower half, 

served as target. The task was to manually indicate by button press whether the target had its 

horizontal bar in the upper or lower half. In the relevant experiment, salience in terms of 

luminance contrast of the squared fields was manipulated such that if a salient square was 

present, it always was the distractor, or target and distractor were equally salient. In a neutral 

condition there was only the target present. Eye movements were recorded and served as 

indicator for attentional capture by the distractor, although there was no explicit task for eye 
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movements. The findings were shorter RTs in capture trials (where the first saccade went to the 

distractor) when the distractor was more salient compared to when it was equally salient. The 

authors interpret this finding in the sense that top-down controlled rejection of the distractor is 

faster when it is salient. However, these authors compared only RTs for more salient and equal 

salient distractors and there is no report on the comparison between capture by a salient 

distractor and distractor absent RTs. This is exactly what is indicated by our finding of negative 

RT interference: a salient distractor speeds RT to the extent that is even faster than when there is 

no distractor present, not only when it is not salient. Geng and DiQuattro’s (2010) explanation of 

top-down controlled fast rejection based on salience cannot account for our results, because in 

our experiments the salient object was not necessarily the distractor, but the role of the most 

salient object was unpredictable. Instead of rejecting the distractor based on salience, the most 

salient object had to be identified first and only then the second selection could be speeded. We 

suggest the second selection to be speeded, rather than a fast rejection of the distractor, because 

we found negative RT interference, which was predicted by the model that kept disengagement 

time constant, but accelerated the time of the second selection by lowering the selection 

threshold. 

We used distribution analysis to distinguish attentional capture from slowing, i.e. non-

capture, in the distractor search paradigm. Our results suggest attentional capture to occur, so 

much the more salient the distractor is compared to the target. Moreover, negative RT 

interference indicates faster RTs when the distractor is present compared to when a slowly 

selected target is presented alone. It seems that the second selection after attentional capture is 

accelerated to the time it takes to select the distractor and disengage from it. Therefore, we 
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conclude that RT interference in the distractor search paradigm is the result of spatial capture of 

attention rather than merely slowing due to filtering processes. The second target selection after 

attentional capture can be even be faster than on trials when there is only the target present.  
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Figures 

Figure 1. Target selection after attentional capture. One sample path of distractor 

selection is shown in black. Sample paths of different targets are shown in gray. The selection 

threshold a is set at the beginning of the trial. If target selection time exceeds distractor selection 

time dsel  plus disengagement time ddis, as in case of target t2 and t3,  an immediate decrease of the 

selection threshold to the level of the next most salient stimulus is triggered. A target is then 

selected earlier than at its normal selection time tsel. No such benefit occurs for target t1, because 

its normal selection time is earlier than the ddis. The benefit is the more pronounced the longer 

target selection would take without a decrease of the threshold after attentional capture. 
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Figure 2. Predictions about the distribution of RT interference. Predictions were 

generated by leaky accumulator models with target and distractor represented by separate 

accumulator units. 100,000 simulated trials were run with the parameter estimates of target and 

distractor drift rate = 0.4, non-decision time Ter = 200 ms, its range ser  = 0.01 and threshold = 

0.05. (a) Predictions of non-capture accounts. For distractor present trials, drift rate of the target 

was reduced to 0.16. (b) Predictions of a capture account with fixed threshold. Disengagement 

time was set to 140 ms. (c) Predictions of a capture account with a variable threshold for the 

second selection. Disengagement time was set to 140 ms, threshold was changed to the time of 

distractor selection plus disengagement time. 
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Figure 3. Experimental design and stimuli. (a) A search display, consisting of 39 broken grey 

bars arranged around three imaginary concentric circles, was presented in the center of the 
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screen, on a black background. There was always an orientation target; and in half of the trials 

(randomly determined), there was also a color distractor. Each trial started with a white fixation 

spot that was hidden while the display was presented until response. Inter-stimulus-intervals 

varied randomly in the range 900 ± 200 ms. While ignoring a color distractor, participants 

searched for a tilted target bar and decided, via a speeded button press, whether the gap was 

located at the top or the bottom of the bar. This response decision required focal attention to be 

allocated to the target. (b) 25 Salience difference conditions resulted from 5 orientation and 5 

color contrasts. Adapted figure from Zehetleitner et al. (2013). 
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Figure 4. Relative salience between targets and distractors in experiment 1. Bars depict the 

mean difference between the detection times of orientation and color targets in the stimulus 

salience measurement, which served in the distractor experiment as targets and distractors, 

respectively. Error bars represent standard errors of the mean. 
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Figure 5. Cumulative distribution functions of all target distractor pairs in experiment 1.

Each panel represents CDF’s of one target salience and all distractor saliencies. 
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Figure 6. RT interference as a function of percentile in experiment 1. Each line represents the 

distribution of RT interference for a certain target-distractor-pair. Relative salience of each pair 

can be read out from Figure 4 with corresponding color code.  
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Figure 7. Relative salience between targets and distractors in experiment 2. Bars depict the 

mean difference between the detection times of orientation and luminance targets in the stimulus 

salience measurement, which served in the distractor experiment as targets and distractors, 

respectively. Error bars represent standard errors of the mean. 
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Figure 8. Cumulative distribution functions of all target distractor pairs in experiment 2.

Each panel represents CDF’s of one target salience and all distractor saliencies. 
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Figure 9. RT interference as a function of percentile in experiment 2. Each line represents the 

distribution of RT interference for a certain target-distractor-pair. Relative salience of each pair 

can be read out from Figure 7 with corresponding color code.  
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Figure 10. Cumulative distribution function of target distractor pairs in experiment 3.  
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Figure 11. Saccadic interference as a function of percentile in experiment 3. Each line 

represents the distribution of saccadic interference for the distractor more and less salient than 

the target.  
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Appendix 

Figure A1. RT interference as a function of RT latency in experiment 1. Colors represent 

salience differences between target and distractor, corresponding to the color code of Figure 4. 
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Figure A2. RT interference as a function of RT latency in experiment 2. Colors represent 

salience differences between target and distractor, corresponding to the color code of Figure 7. 
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Figure A3. Saccadic interference as a function of saccadic latency in experiment 3. 
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Figure A4. Predictions about the distribution of RT interference caused by a variable non-

decision time Ter dependent on distractor presence. Predictions were generated by a leaky 

accumulator model with target and distractor represented by separate accumulator units. 100,000 

simulated trials were run with the parameter estimates of target and distractor drift rate = 0.4, 

non-decision time Ter = 200 ms for target only trials and Ter = 2,200 ms for distractor present 

trials with a range ser  = 0.01 and threshold = 0.05. Disengagement time was set to 140 ms. 
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