
Massive stars shaping the ISM
Simulations and application to the

Orion-Eridanus Superbubble

Katharina Maria Fierlinger

Garching 2014

Massive stars shaping the ISM
Simulations and application to the

Orion-Eridanus Superbubble

Katharina Maria Fierlinger

Dissertation
an der Fakultät für Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Katharina Maria Fierlinger

aus Graz, Österreich

München, den 13. Oktober 2014

Erstgutachter: Prof. Dr. Andreas Burkert
Zweitgutachter: PD Dr. Roland Diehl
Tag der mündlichen Prüfung: 30. Oktober 2014

Contents

1 Motivation 1

2 Background: massive stars and their surroundings 3
2.1 Theories of the interstellar medium (ISM) . 4

2.1.1 Classic equilibrium models for the ISM 4
2.1.2 Dynamic multi-phase ISM . 5

2.2 Mass and energy exchange . 5
2.2.1 Mean free path . 6
2.2.2 Evaporation due to thermal conduction 7
2.2.3 Molecular diffusion . 8
2.2.4 Turbulent diffusion . 9
2.2.5 Ambipolar diffusion . 10
2.2.6 Cooling and heating processes in the ISM 10

2.3 Multi-Messenger Astronomy . 11
2.4 Messengers from the Orion-Eridanus region . 13

2.4.1 Cosmic rays: γ-ray data . 16
2.4.2 Nucleosynthesis yields: 26Al . 16
2.4.3 Hot ISM: X-ray data . 16
2.4.4 Hot ISM: O VI . 17
2.4.5 Warm ionized interstellar gas: Hα . 18
2.4.6 Total number density of warm, cool and cold gas: infrared emission 18
2.4.7 Molecular gas: CO and H2 fluorescence 19
2.4.8 H I: 21 cm line . 19

2.5 Giant Molecular Clouds (GMCs) . 20
2.5.1 Simulated clouds . 21

2.6 Massive stars . 22
2.6.1 Orion’s OB associations . 22

2.7 Stellar feedback . 23
2.7.1 Mass loss rates and surface abundances 23
2.7.2 Stellar wind velocities . 24
2.7.3 Computed feedback momentum and kinetic energy 25
2.7.4 Supernovae . 26
2.7.5 Feedback of individual stars in an OB association 26

vi CONTENTS

3 Method: hydrodynamic simulations of the ISM 37
3.1 Fluid approximation . 38
3.2 Spatial discretization . 39

3.2.1 Setting up a grid code simulation . 39
3.2.2 Geometry of grid code simulations . 40

3.3 Time discretization and von Neumann stability analysis 41
3.4 Hydrodynamic conservation laws (Euler equations) 43
3.5 Riemann problem . 46

3.5.1 Solution of the Riemann problem . 46
3.6 Godunov’s method . 48
3.7 2nd order Godunov schemes . 49
3.8 Side note: alternatives to Godunov’s method . 49
3.9 Adaptive mesh refinement (AMR) and parallelization 51

3.9.1 Pitfalls of AMR . 52
3.9.2 Numerical diffusion . 52

4 Basic building blocks of simulations 55
4.1 Waves, discontinuities and shocks . 55

4.1.1 Contact discontinuity (CD) . 56
4.1.2 Rarefaction wave . 56
4.1.3 Shock wave and shock jump conditions 57

4.2 Sod shock tube test . 60
4.2.1 Analytic solution of the Sod shock tube problem 60
4.2.2 Initial conditions of the Sod shock tube test 62
4.2.3 Results of the RAMSES Sod shock tube test 62

4.3 Sedov-Taylor blast wave test . 65
4.3.1 Analytic solution of the Sedov-Taylor blast wave 65
4.3.2 Initial conditions of the Sedov-Taylor blast wave test 71
4.3.3 Results of the Sedov-Taylor blast wave test 72

4.4 Theories of stellar winds . 73
4.4.1 Wind theory of Castor et al. (1975) . 73
4.4.2 Thin shell approximation . 75
4.4.3 Steady-state wind of Chevalier and Clegg (1985) 78

4.5 Snowplow phases . 82
4.5.1 Adiabatic pressure driven snowplow . 85
4.5.2 Momentum conserving snowplow . 86

5 Method: codes and code modifications 87
5.1 Hydrodynamic codes . 87

5.1.1 The PLUTO code: spherical symmetry . 87
5.1.2 The RAMSES code: radioactive tracers . 88
5.1.3 The ATHENA code: the effect of ionization 89

5.2 Implementation of mass, momentum and energy feedback 89
5.2.1 PLUTO code modifications . 90
5.2.2 Code tests . 92
5.2.3 RAMSES code modifications . 92

CONTENTS vii

5.2.4 Code tests: 26Al feedback . 95

6 1D: Feedback efficiency in spherical symmetry 99
6.1 SNe without progenitor winds . 100

6.1.1 Previous work . 101
6.1.2 Grid of models . 101
6.1.3 Findings and discussion . 101

6.2 SN blast in a cavity . 108
6.2.1 Comparison to previous work on SNe in pre-existing bubbles 110
6.2.2 Feedback energy efficiency: winds or SNe? 115
6.2.3 Zones with enhanced radiative losses . 116
6.2.4 Convergence of the retained kinetic energy 119
6.2.5 Retained kinetic energy . 122

6.3 Conclusions . 123

7 3D: Porosity and depth of embedding 127
7.1 Setup of the 3D models . 127
7.2 Grid of models . 128
7.3 Impact of the cooling-heating model . 129
7.4 Impact of pre-existing cavities . 133
7.5 Homogeneous infinite cloud . 134

7.5.1 Doubling the feedback . 137
7.6 Homogeneous semi-infinite cloud with “chimney” 137

7.6.1 The “chimney” width . 142
7.6.2 The “chimney” length . 143

7.7 Convergence . 143
7.8 Conclusions from the 3D “chimney” models . 144

8 3D: Feedback in non-homogeneous clouds 147
8.1 Simulation Setup . 147
8.2 Results . 148
8.3 Artificial observations of 26Al . 148

9 Discussion and Conclusions 155

Index 159

Glossary 163

Symbols and Units 166

Bibliography 169

Danksagung 179

A Mathematica source code listings 181

B Pluto source code listings 183

viii Contents

C Ramses source code listings 215
C.1 Analytic formulas for the feedback region volume 310

C.1.1 2D: one corner inside the feedback region 311
C.1.2 2D: 2 corners inside the feedback region 311
C.1.3 2D: 3 corners inside the feedback region 312
C.1.4 Integral for 3D feedback region boundary cells 313

List of Figures

2.1 Cooling–heating equilibrium . 10
2.2 Observable Quantities . 12
2.3 Milky Way in Hα . 13
2.4 OES in Hα . 14
2.5 Sketch of the OES . 14
2.6 Multi-wavelength observations of the Orion-Eridanus region 15
2.7 26Al in the Orion region . 17
2.8 100 micron map and OB associations . 18
2.9 Stellar evolution: feedback energy . 27
2.10 Stellar evolution: mass . 28
2.11 Stellar evolution: mass loss . 29
2.12 Stellar evolution: winds . 30
2.13 Mass loss of a 120 M� star . 31
2.14 26Al feedback of a 120 M� star . 31
2.15 Final mass of the models . 32
2.16 SN yields . 33
2.17 Deciles of the cumulative distribution function . 34
2.18 The “first guess” model . 35

3.1 Sketch of the fluid approach . 38
3.2 Discretization of continuous functions . 38
3.3 Eulerian vs. Lagrangian discretization . 39
3.4 Finite differencing basics . 41
3.5 Wave propagation and the Riemann problem . 45
3.6 Slope of the characteristics . 45
3.7 Riemann problem . 46
3.8 Approximate Riemann solvers . 47
3.9 First order Godunov method . 48
3.10 Second order Godunov methods . 50
3.11 Sketch of numerical diffusion . 52

4.1 Shock formation . 57
4.2 Rankine Hugoniot jump conditions . 58
4.3 Sod shock tube test . 60
4.4 Analytic solution of the Sod shock tube . 62
4.5 1D Sod shock tube test, HLLC Riemann solver, MonCen limiter 63
4.6 1D Sod shock tube test, density at contact discontinuity 66

x LIST OF FIGURES

4.7 1D Sod shock tube, nsubcycle . 67
4.8 Tracers in the 1D Sod shock tube test . 68
4.9 2D Sod shock tube test . 69
4.10 3D Sod shock tube test . 70
4.11 Analytic solution of the Sedov-Taylor blast wave 72
4.12 Snowplow phase (Castor et al., 1975) . 75
4.13 Analytic solution for ISM the swept up by a constant wind 78
4.14 Mach number in simulated winds compared to Chevalier and Clegg (1985) 82
4.15 Simulated winds compared to Chevalier and Clegg (1985) 83
4.16 Density in simulated winds compared to Chevalier and Clegg (1985) 83
4.17 Pressure in simulated winds compared to Chevalier and Clegg (1985) 84
4.18 Velocity in simulated winds compared to Chevalier and Clegg (1985) 84

5.1 26Al decay . 96

6.1 Retained kinetic energy of SNe: ambient density 104
6.2 Retained kinetic energy of SNe: resolution . 105
6.3 Retained kinetic energy of SNe: resolution (zoom) 106
6.4 Fit of a momentum conserving shell to a simulated SN 109
6.5 Wave in wind-less model . 109
6.6 Feedback efficiency of wind bubbles in n0 = 1 cm−3, Teq(n0) = 100 K 111
6.7 Shell temperatures . 112
6.8 Minimal energy bubbles . 112
6.9 Retained kinetic energy of SNe with progenitor winds 113
6.10 Retained kinetic energy of SNe with progenitor winds vs. densest cell’s velocity . . 114
6.11 Gas phases and cooling losses . 117
6.12 Oscillations near the reverse shock . 121

7.1 Components of the toy model . 127
7.2 Stellar wind in 3D: cooling models . 129
7.3 3D infinite cloud after 1 Myr . 130
7.4 Average density in 3D bubbles . 131
7.5 Energy fractions without cooling resemble Weaver et al. (1977) 131
7.6 Energy fractions in the presence of cooling, Ekin,shell : Etherm ∼ 0.6 132
7.7 Feedback energy efficiency in the presence of chimneys 135
7.8 3D infinite cloud after 1 Myr, temperature and cooling losses 136
7.9 Temperature and 26Al distribution . 138
7.10 Time dependent cavity volume . 138
7.11 Bubble expansion in an initial cavity . 139
7.12 Sketch of a choked flow . 139
7.13 Speed of sound and density in the chimney . 140
7.14 Feedback energy efficiency in the cloud region in the presence of chimneys 140
7.15 Critical cross section of chimneys . 141
7.16 Convergence of the “chimney” models . 144

8.1 Initial conditions: non-homogeneous clouds . 148
8.2 Feedback efficiency: non homogeneous clouds 149

Figures xi

8.3 Artificial 26Al observation: homogeneous sphere (simulation data) 150
8.4 Artificial 26Al observation: homogeneous sphere (instrument) 151
8.5 Artificial 26Al observation: homogeneous sphere (time and viewing angle) 152
8.6 SPH cloud after 5 Myr . 153

xii Figures

List of Tables

2.1 Giant Molecular Clouds . 21
2.2 Massive stars in Ori OB I according to Voss et al. (2010). 22
2.3 Massive stars in Ori OB I according to Mel’Nik and Efremov (1995). 22
2.4 Classification criteria for stellar winds . 25
2.5 “first guess” model . 36
2.6 Kolmogorov Smirnov tests . 36

6.1 Retained kinetic energy of SNe in homogeneous media 102
6.2 Grid of 1D models . 103
6.3 End of the pressure driven phase . 108

xiv Tables

Listings

A.1 Solve for the internal structure of the Sedov-Taylor bubble with Mathematica . . . 181
A.2 Iterative solution for α with Mathematica . 181
A.3 Solve for the structure between CD and shell with Mathematica 182
B.1 Modifications in boundary.c . 183
B.2 Modifications in cooltable.dat to create an artificial equilibrium 183
B.3 Modifications in cooling_source.c . 183
B.4 Modifications in eta_visc.c . 184
B.5 Modifications in globals.h . 184
B.6 Modifications in input_data.c . 184
B.7 Modifications in mappers.c . 185
B.8 Modifications in pluto.h . 186
B.9 Modifications in prototypes.h . 186
B.10 Modifications in radiat.c . 186
B.11 Modifications in set_output.c . 197
B.12 Modifications in startup.c . 197
B.13 Modifications in sweep.c . 197
B.14 Modifications in tc_kappa.c . 197
B.15 init.c for a constant wind . 197
B.16 init.c as used for our 1D simulations . 199
B.17 example of pluto.ini . 207
B.18 customized definitions.h . 208
B.19 post processing routine . 209
B.20 shell script with automatic expansion of the volume 211
C.1 New module with a feedback routine for Ramses: driver.f90 215
C.2 New module with tabulated stellar models for Ramses: geneva_models.f90 244
C.3 Stellar feedback control: amr_parameters.f90 . 249
C.4 Read feedback parameters: read_params.f90 . 250
C.5 Read-in of feedback parameters: read_hydro_params.f90 250
C.6 Allocate feedback data: init_time.f90 . 250
C.7 Insert feedback: courant_fine.f90 . 251
C.8 De-allocation of feedback arrays: update_time.f90 259
C.9 Control refinement in the feedback region: flag_utils.f90 260
C.10 Control the refinement in the feedback region: hydro_flag.f90 260
C.11 Passive scalars and initial conditions for 26Al and 60Fe: hydro_parameters.f90 . . . 261
C.12 Initial conditions: SPH data, 26Al data, triangles: init_flow_fine.f90 261
C.13 New module to read-in SPH data: sph.f90 . 268
C.14 Store energy losses via radiative cooling: init_hydro.f90 287

xvi Source code listings

C.15 Include the radiative cooling loss data, when defragmenting the main memory in
subroutine “defrag”: load_balance.f90 . 287

C.16 Output of energy losses via radiative cooling: output_hydro.f90 287
C.17 Reset energy losses via radiative cooling: amr_step.f90 287
C.18 Add a mask for regions that may cool to cooling_fine.f90. I.e. exclude the feedback

region. Therefore igrid in coolfine1 needed for driver_weights 287
C.19 Local ISM values for XY, minimal temperature in the tables: cooling_module.f90 . 292
C.20 Allow changes to the output times for restarted simulations: init_amr.f90 295
C.21 Ignore velocities in almost empty cells, remove outflows from empty cells, “Alustop”:

in HLLC tracer-flux only if accepting cell is warm enough: godunov_utils.f90 . . . 295
C.22 Default units: amr_commons.f90 . 298
C.23 Check energy losses due to outflow of the computational domain: outflow.f90 . . . 298
C.24 Reset cooling losses and avoid negative internal energies in set_uold and remove

outflows from almost empty cells in godfine1: godunov_fine.f90 301
C.25 Remove outflows from almost empty cells and use average pressure of adjacent

cells in subroutine ctoprim: umuscl.f90 . 304
C.26 Makefile . 306
C.27 Example of a namelist: IC_snwind_3d.nml . 309

Zusammenfassung

Diese Arbeit befasst sich mit dem Einfluss von Sternen, deren Masse acht Sonnenmassen über-
steigt, auf das Interstellare Medium in ihrer Umgebung. Solche massereiche Sterne beenden ihr
Dasein mit einer Supernovaexplosion und verlieren im Laufe ihrer – verglichen mit massearmen
Sternen – raschen Entwicklung einen großen Teil ihrer Masse über ihre starken Sternwinde. Bei-
spielsweise gibt ein Stern mit 60 Sonnenmassen Anfangsmasse mehr als die doppelte Supernova-
energie über die kinetische Energie seiner Winde in seine Umgebung ab.
Sterne entstehen in Regionen mit kaltem, dichtem Gas, den sogenannten Molekülwolken. Beob-
achtungen zeigen, dass diese Gaswolken turbulent sind. Es ist allerdings noch ungeklärt, woher
die beobachtete Turbulenz im Interstellaren Medium ihre Energie bezieht. Die Energieabgabe von
massereichen Sternen ist – neben großskaligen gravitativen Instabilitäten in der Scheibe der Milch-
straße – eine der möglichen Erklärungen. Beobachtungen erlauben Rückschlüsse auf die einge-
brachte Energiemenge und die Längenskalen des Energie liefernden Prozesses. Daher ist es rele-
vant, zu bestimmen, wie viel kinetische Energie ein massereicher Stern in der ihn umgebenden
Molekülwolke deponieren kann.
Der Schwerpunkt dieser Arbeit sind hydrodynamische Simulationen, die diese Energieeffizienz
testen. Dazu wurden aktuelle Sternentwicklungsmodelle in die frei zugänglichen Eulerschen Git-
tercodes PLUTO und RAMSES eingebaut. Die Simulationen verwenden das von Eva Ntormousi
erstellte Modul für die Berechnung der Heiz- und Kühlprozesse eines Multiphasenmediums.
Die Modellrechnungen führten zur Erkenntnis, dass in jener Phase der Simulation, in der die räum-
liche Auflösung der Modellrechnung die Eneergieeffizienz stark beeinflusst, der größte Energie-
verlust durch Strahlung an jener Stelle auftritt, an der das vom Stern ausgestoßene Material auf
das aufgesammelte Umgebungsgas trifft. An dieser Kontaktfläche treten Mischungsprozesse auf,
welche die Energieverluste steigern. Somit können unsere Simulationen in Kombination mit ei-
ner Abschätzung der Effizienz und Skalenlänge dieser Mischprozesse eine Aussage treffen, wie
viel Energie massereiche Sterne zur Aufrechterhaltung der Turbulenz beitragen können. Für diese
Abschätzung der Mischprozesse liefert die Literatur auf Beobachtungen und numerischen Simula-
tionen basierende Richtwerte.
Als Anwendungsbeispiel wird in dieser Arbeit die Orion-Eridanus Region diskutiert. In dieser Re-
gion wird das radioaktive Isotop 26Al beobachtet. Dieses Isotop wird vorrangig in massereichen
Sternen gebildet. Es kann daher als Indikator für von Sternen ausgestoßene Materie verwendet
werden. Interessanterweise zeigen die Beobachtungen dieser Region nur in einem Teil des Gebiets
mit Röntgenemission ein 26Al Signal. Unsere RAMSES Modelle berücksichtigen 26Al und kön-
nen daher auf Gebiete mit (fehlenden) Korrelationen zwischen Röntgenemission und 26Al Signal
durchsucht werden.

xviii Zusammenfassung

Chapter 1

Motivation

This work simulates the effects of massive stars on their surroundings. Groups of massive stars,
so-called “OB associations”, form in molecular clouds. A nice, illustrative study of massive stars
shaping their environment is the Milky Way Project (Kendrew et al., 2012; Simpson et al., 2012;
Beaumont et al., 2014, http://www.milkywayproject.org), where citizens are asked to help scien-
tists identifying bubbles in observational data from the Spitzer Space Telescope. While we know,
that massive stars have a dramatic effect on their direct surroundings, since they burn fast and
hot and eject much of their material, it is less clear to which extent they are involved in driving
turbulence.
This leads us to the question: “What is turbulence?”. We can loosely describe turbulence as a
highly irregular flow in space and time. Energy is injected at large scales and cascades down to
smaller scales, where it is dissipated. This can also be seen in everyday life. For example, stirring
a glass of caffè latte will mix coffee and milk, nicely illustrating turbulence at work. Of course, as
a physicist, one has to analyze the results of this little experiment. And there even exist computer
simulations of this process: e.g. Volker Springel published a simulation called “stirring a coffee
mug” which makes use of his AREPO code (snapshots can be found e.g. in Fig. 39 in Springel,
2010). In this experiment the large scale motion of the spoon causes many small whirls. When we
analyze our data, turbulence is usually visualized with a Kolmogorov energy spectrum showing
the energy contained in coffee and milk blobs (these elements will be called “eddies” later on)
of different sizes. If turbulence has developed, a characteristic slope of −5/3 is observed in this
spectrum.
Technically, the onset of turbulence can also be parametrized via the Reynolds number (relating
velocity, scale length and viscosity) and the Prandtl number (relating momentum diffusivity and
thermal diffusivity), which are larger than unity in turbulent flows.
So, how does the process in the caffè latte relate to astrophysical fluid flows in the interstellar
medium (ISM) and this thesis? It is obvious, that a spoon created the motions in the caffè latte
experiment. However, in molecular clouds the origin of the energy injection, which creates and
sustains turbulence, is still a matter of debate. Basically, observations of the density and velocity
structure of the ISM can be compared to simulations. This gives a hint on the amount of injected
energy and the energy injection scales.
Possible processes creating turbulence in the ISM are accretion of gas of extragalactic origin,
magneto-rotational instability in the galactic disk, convergent flows of atomic gas triggered by spi-
ral density waves, supernovae (SNe), expanding H II regions, or stellar outflows. These processes
differ by the length scale on which energy is injected.

http://www.milkywayproject.org

2 1. Motivation

Most probably, turbulence is driven by a mixture of all these processes. While the local impact of
supernova explosions is obvious, their impact on galactic turbulence remains an open question. In
this work, we will thus study, how much of the stellar feedback energy can be converted to kinetic
energy of the cold gas in the surroundings of the star. We call this “feedback energy efficiency (ε)”.
Another similarity between the caffè latte and the processes studied in this thesis is, that after
stirring a caffè latte, milk and coffee become well mixed. In this work, we are also interested in
the distribution of heavy elements. The reader might be aware of the fact, that most (about 90% of
the mass) of the chemical elements in a human being were not created in the Big Bang. Thus, the
spreading of heavy elements in the cosmos (sometimes called “chemodynamics” or “the cosmic
matter cycle”) is an interesting process of evident importance for mankind. Our work also touches
this question. For this work, the spatial distribution of the radioactive isotope 26Al, which is created
in massive stars, is of interest. Due to its radioactive decay, it can serve as a tracer to identify matter
that was newly ejected from massive stars. 26Al can be used to study the spatial distribution as well
as the velocities of these ejecta.
In the next chapter we will discuss the Orion-Eridanus region, which is a prototypical example
of a region with interactions between young, massive stars and star-forming molecular clouds.
Fortunately, a 26Al signal has been observed in this region and – due to a successful INTEGRAL

proposal of R. Diehl – more observational data of 26Al in this region will become available in
the near future. The spread of 26Al might also help to shed light on the question, if the Orion-
Eridanus Superbubble (OES) is a monolithic bubble of possibly1 peculiar shape (Reynolds and
Ogden, 1979; Burrows et al., 1993; Diehl et al., 2004; Pon et al., 2014a) or a superposition of
individual superbubbles (Boumis et al., 2001; Ryu et al., 2008; Jo et al., 2011) created by the
Orion OB I associations. Presently, the available observational data for the OES (see Sect. 2.4) can
be interpreted in both ways and this question is still under debate. In this work, we will use the
term “OES” for both interpretations of the data from the Orion-Eridanus region.

1Pon et al. (2014a) fit a symmetric model, the other authors assume a less regular shape.

Chapter 2

Background: massive stars and their
surroundings

Our current understanding of astrophysics sees the universe as a constantly evolving very dynamic
system. In computational astrophysics, when we try to simulate the cosmos, we are faced with
the problem that processes on very different length scales seem to be coupled, which makes a
self consistent treatment of a subsystem challenging. An example for such a coupling between
small scales and large scales is chemical enrichment, where heavy elements are produced in stars
and distributed throughout galaxies. Vice versa, also large scales can influence small scales, for
example via turbulence, which cascades energy from large scales down to the smallest scales where
it is dissipated. Another interesting aspect of this system is that many astrophysical processes
appear to be cyclic. For instance, the processes studied in this work are often subsumed under the
concept of the matter cycle of stars. In this cycle, stars form in gas clouds, start nucleosynthesis,
produce heavy elements and finally, when they have consumed their fuel for nucleosynthesis, give
a large fraction of their gas back into the interstellar medium (ISM), possibly triggering the birth
of a new generation of stars. From this plethora of interesting processes we will now pick one –
namely the interaction of massive stars with their environments – and look at it in detail.
The benefit of gaining insight on the influences of stellar feedback onto the surrounding ISM from
small-scale high-resolution studies is twofold: On the one hand we can simulate regions small
enough to treat them in high-resolution and compare our results to observations like data from the
Orion-Eridanus Superbubble (OES) and on the other hand we can try to draw conclusions which
will hopefully be useful for investigations of processes on larger length scales. More precisely,
simulations of galaxies have a hard time resolving stellar feedback. This problem is usually as-
sessed with sub-grid models, and such models can be improved with our findings.
In this section we will discuss some key agents in the problem of stellar feedback energy efficiency
and present the terminology1 – for example “ISM” or “superbubble”, which we already used in
the preceding paragraphs – before we delve into the simulations in the next chapters. We will
start with the physics and the composition of the ISM which encompasses – as its name already
indicates – the gas and dust between stars (Sect. 2.1). In this context we will also introduce Giant
Molecular Clouds (GMCs, Sect. 2.5) and discuss observational evidence of the ISM (Sect. 2.4).
Since we are most interested in the Orion-Eridanus region, we will briefly introduce it and focus
on the observational evidence from this region. Obviously the other important topic are massive

1To make the text a bit shorter and easier to read, some of the terminology (highlighted in blue in the electronic
version) can also be found in the glossary.

4 2. Background: massive stars and their surroundings

stars, which will be discussed in Sect. 2.6 including their occurrence in the Orion-Eridanus region.
Since the dynamics of the ISM involve the exchange of mass and energy between the constituents
of the ISM we will briefly mention cooling and heating processes in the ISM in Sect. 2.2.6. The
mixing of newly produced elements into the surrounding GMC gas will be discussed in the rest of
Sect. 2.2.

2.1 Theories of the interstellar medium (ISM)

Our current picture of the interstellar medium (ISM) is that of a complex dynamic mixture of
several gas phases (Cox, 2005; de Avillez and Breitschwerdt, 2005). After reviewing the classic
models of the ISM (Field et al., 1969; McKee and Ostriker, 1977), which can be assumed to be a
zero order approximation, we will proceed to the present day dynamic picture of the ISM.

2.1.1 Classic equilibrium models for the ISM

This class of models of the ISM (Field et al., 1969; McKee and Ostriker, 1977) postulates the
existence of several gas phases in pressure equilibrium. In this context a “phase of the ISM” is
a stable combination of number density and temperature (n, T) where the heating rate (Γ) equals
the cooling rate (Λ, see also Sect. 2.2.6). An important tool in this context is Field’s stability
criterion (Field, 1965), which states that a gas phase is stable, if the slope of the cooling-heating
equilibrium curve (d log p/kB

d logn
, see Fig. 2.1) in the p/kB, n diagram is positive. A point in this space

is called stable, if a perturbation in density or temperature leads to a change of the cooling-heating
function, which counteracts this perturbation.
The classic model of Field et al. (1969) applies this concept to two phases: to a cold phase with a
temperature of 100 K and a warm phase with a temperature of 10 000 K. The motivation for this
model was the observed stability of cold H I clouds. This finding can be explained by assuming
that H I clouds are immersed in a hot, rarefied medium, which is heated by cosmic rays and which
is in pressure equilibrium with the H I regions. In contrast to this model, which emphasizes the
impact of cosmic rays, the equilibrium model of McKee and Ostriker (1977) identifies supernova
explosions as the key agent. These supernovae lead to a third thermal phase: a dilute hot medium.
The general picture presented in the McKee and Ostriker (1977) model consists of three compo-
nents in rough pressure equilibrium. This model predicts that 70% to 80% of the volume are filled
with the hot inter-cloud medium (HIM, T ∼ 5 × 105 K, n ∼ 0.003 particles cm−3) produced by
supernovae. The cold neutral medium (CNM, T ∼ 80 K, n ∼ 40 particles cm−3) forms small
dense spheres with average diameters of 3.2 pc, which are embedded in the hot medium and oc-
cupy about 2% to 4% of the volume. The remaining ∼ 20% of the volume are filled with the
coronae (T ∼ 8 000 K, n ∼ 0.25 to 0.37 particles cm−3) of the cold clouds. The model expects
two layers in these coronae: an inner layer of warm neutral medium (WNM) and an outer ionized
layer, containing the so-called warm ionized medium (WIM).
An interesting aspect for our study – which focuses on massive stars in molecular clouds – is the
role of molecular clouds in this model. The cloud masses in the McKee and Ostriker (1977) model
are chosen to stay below 104 M� to avoid self gravity of the clouds. McKee (1990) states that
molecular clouds are self-gravitating and thus not in pressure equilibrium with the phases of the
ISM. Consequently, molecular clouds do not form a fourth component of the model.
Nowadays, the three phase model is considered as a zero-order approximation only and numerical

2.2 Mass and energy exchange 5

simulations as well as observations suggest a more dynamic, turbulent ISM. Also the important
role of conduction in the McKee and Ostriker (1977) model has been criticized. Moreover, the
concept of spherical clouds does not fit well to the observed filamentary structure of the ISM.
Therefore, we will move on and discuss the concept of a dynamic ISM.

2.1.2 Dynamic multi-phase ISM

Cox (2005) suggests that dynamics in the ISM have a larger effect on the constituents of the
ISM than the thermal instability, arguing that the time to adjust to the equilibrium is rather long
(Sect. 2.2.6). Also numerical simulations (e.g. Korpi et al., 1999; de Avillez and Breitschwerdt,
2005; Joung and Mac Low, 2006; Hennebelle and Audit, 2007; Koyama and Ostriker, 2009; de
Avillez and Breitschwerdt, 2012; Hill et al., 2012; Gent et al., 2013) show a more dynamic picture
of the ISM: Generally, these models do not find an ISM becoming saturated by SN impacts. Several
studies find volume filling factors of the hot gas much lower than 70% (Joung and Mac Low, 2006;
Hill et al., 2012; Hill et al., 2012; de Avillez and Breitschwerdt, 2012). Recently, de Avillez and
Breitschwerdt (2012) also showed that the assumption of collisional ionization equilibrium (CIE)
below 106 K is problematic, and that non-equilibrium models can find O VI emission at lower
temperatures than previously expected (see Sect. 2.4.4). All models observe a dynamic medium
with large variations in pressure. Turbulence also seems to lead to a tightly interwoven CNM
and WNM with a continuously varying density and temperature structure. Some authors (e.g.
Hennebelle and Audit, 2007) claim that the CNM and WNM are locally in pressure equilibrium
in their simulations. To summarize, whereas also simulations that take turbulent motions of the
ISM into account, find much of the gas mass close to the cooling-heating equilibrium, the gas
phases observed in simulations of a turbulent ISM differ from the two phases formed by thermal
instability. In a dymanic ISM, pressure gradients lead to gas phases in the unstable regime in
Fig. 2.1, where the thermal instability is slowly working on restoring stable phases.

2.2 Mass and energy exchange

In the following, some processes, which lead to an exchange of mass and energy between gas
phases or to a removal of energy from the system, are briefly discussed. The motivation for the
brief excursion into radiative cooling (Sect. 2.2.6) is that a large fraction of the feedback energy
of massive stars (discussed in Sect. 2.7) in GMCs is removed from this environment via radiative
cooling processes (see e.g. Tab. 6.2). The importance of mixing of material of different gas phases
(treated in Sect. 2.2.2 to 2.2.5) for our work is twofold: On the one hand, obviously, the spread
of our trace element 26Al and all other newly produced heavy elements will be influenced. As
a consequence, also the predicted 26Al velocities are affected, as motions in the swept-up GMC
material are substantially lower than the velocities observed inside the superbubble. On the other
hand, mixing of gas phases can enhance radiative losses and change the feedback energy efficiency.
More generally speaking, mixing of stellar ejecta with the ambient medium is important for models
of the the cosmic matter cycle. Due to the large range of scales, a hydrodynamical treatment of
these mixing processes is beyond reach in most simulations. Therefore many chemical evolution
models assume an immediate mixing of the SN ejecta in the walls of superbubbles. However, it is
unclear if this is realistic. As pointed out by e.g. Tenorio-Tagle (1996) stellar winds and supernova
explosions lead to a two shock structure with a contact discontinuity (CD) separating the well

6 2. Background: massive stars and their surroundings

mixed hot material inside the bubble from the swept up, compressed, heated, radiatively cooling
(and thus cold) ambient medium.
The efficiency of mixing across the CD still remains an open question. Presently the mechanism
of mixing via droplets produced in the SN receives most attention (Stasińska et al., 2007; Gounelle
et al., 2009; Gounelle and Meynet, 2012; Boss and Keiser, 2012; Pan et al., 2012).
In the literature the stability of the CD in wind-blown bubbles is debated: Tenorio-Tagle (1996)
reports Rayleigh-Taylor instabilities followed by Kelvin-Helmholtz instabilities due to the collision
of SN ejecta with the wind material in his 2D simulations, whereas Pan et al. (2012) report a stable
CD for isotropic ejecta. However, Pan et al. (2012) note that the omnipresent turbulence in the
ISM will lead to instabilities, which in turn enhance the mixing across the CD by increasing the
CD surface.
In our brief discussion of processes capable of degrading the CD, we will start from kinetic gas
theory, where such degradations are caused by particle motion smearing out a gradient. We can
look at different manifestations of this diffusion process. To do so, we consider two distinct gas
phases in pressure equilibrium that are separated by a CD. After a few words on the mean free
path (λ), we will estimate in the rest frame of the CD how many hot particles will flow into the
cold gas and vice versa. This ultimately leads to heat conduction down a temperature gradient
(Sect. 2.2.2). Another manifestation of such mixing processes is molecular diffusion (Sect. 2.2.3).
In this case the CD separates two different gas species and diffusion will try to level a concentration
gradient. Taking a step back from the microscopic level to the macroscopic level, gas blobs can
mix via turbulenceturbulent diffusion (Sect. 2.2.4). And last but not least one can rely on ambipolar
diffusion caused by magnetic fields (Sect. 2.2.5).

2.2.1 Mean free path

A crucial length scale for diffusive processes is the mean free path (λ), which denotes the average
distance a particle travels between two scatterings. Processes at the scales of the mean free path
and below have to be modeled taking plasma physics into account. As will be discussed in Sect. 3,
our hydrodynamic simulations are based on the fluid approach, which assumes that λ is much
smaller than a cell size. In other words, the underlying assumptions of our simulation method
imply a maximal “meaningful” resolution, which is connected to λ. The mean free path

λ =
1

σn
(2.1)

for elastic scattering of neutral hydrogen with an elastic collision cross section σH−H of 5.7 ×
10−15 cm2 (Godard et al., 2009) becomes larger than a cell size of e.g. 0.01 pc (turbulent diffusion
length scale estimate of Gounelle et al., 2009) if the density falls below 10−26 g cm−3, which
corresponds to a number density of 0.006 cm−3. With the mean molecular velocity

v2
rms =

3kBT

mH

=
3RT

µmol

(2.2)

the average time between collisions is

τ =

√
mH

3kBTσ2n2
.

2.2 Mass and energy exchange 7

In ionized gases the scattering cross section is the area in which the electrostatic energy becomes
comparable to the relative kinetic energy of the two charged particles. The electron mean free path

λe =
0.290 (kBTe)

2

nee4 ln Λ

(Eq. 5-26 Spitzer, 1956; Shu, 1992, Eq. 1.5) with the thermal velocity of the electrons

v2
Te =

kBTe
me

and the Coulomb logarithm

Λ =
3

2e3

√
k3T 3

e

πne

is larger than 0.01 pc for temperatures above 105.36 K for densities below 10−26 g cm−3.

2.2.2 Evaporation due to thermal conduction
In the PLUTO code (Mignone et al., 2007, see also Sect. 5.1.1 of this work), thermal evaporation is
facilitated with an additional divergence term for heat conduction in the energy equation:

∂E

∂t
+ ~∇ · [(E + p)~v] = −~∇ · ~Fc .

Due to the inverse dependence on the particle mass (evident from the mean molecular velocity,
Eq. 2.2), conduction is electron dominated. If the scale length of the temperature gradient

lT ≡
Te

|∇Te|

is much larger than the mean free path of the electrons λe, the heat flux conducting heat down the
electron temperature gradient in a plasma is given by

Fc = −κ∇Te .

We use a thermal conduction coefficient for a hydrogen plasma of κ = 5.6 × 10−7T 5/2 erg s−1

cm−1 K−1 (Spitzer, 1962) within the PLUTO code (Mignone et al., 2007). The relaxation time

trelax =
ncv
κ

(∆x)2 =
(∆x)2

D
=

3

vrmsλ
(∆x)2

describes how fast heat conduction in the classic heat flux is. For a gas with a density of 10−26

g cm−3 and a temperature of 106 K on the scales of ∆x = 0.01 pc the relaxation time is ∼
1.8 × 107 years. For steep temperature gradients with scales shorter than the mean free path the
code switches to the saturated heat flux, estimated to be

Fsat = 5φρc3
s,iso [erg s−1 cm−2] ,

8 2. Background: massive stars and their surroundings

with φ = 0.3 (Balbus and McKee, 1982) and c2
s,iso = kBT/m, because in this regime the classic

heat flux equation overestimates conduction. In the case of a CD we expect such a very steep
temperature gradient. For a hydrogen gas with ρ = 10−26 g cm−3 and T = 106 K this flux is
1.1×10−20 erg s−1 cm−2, which can be compared to the loss via radiative cooling Λ ∼ 10−22n2 erg
s−1 cm3= 10−26 erg s−1 cm−3 of a slab with a width of 106 cm, which is way below our maximal
resolution. The heat flux is thus not an important agent near the CD in this problem.
In our simulations thermal conduction saturated near the CD. The kinetic feedback energy effi-
ciency is only slightly lowered, if thermal conduction is taken into account (Tab. 6.2, Fig. 6.9),
which is in agreement with the aforementioned order of magnitude estimates.
A more important aspect is the change in particle density, which affects the radiative cooling losses.
Tenorio-Tagle (1996) find 10% of shell mass mixed into the cavity due to thermal evaporation. The
efficiency of mixing of particles of different temperature is discussed in the section below.

2.2.3 Molecular diffusion
Molecular diffusion levels concentration gradients. If a diaphragm between two gaseous species
in pressure equilibrium is removed, random movement of all gas particles starts to mix the two
species. This process is described with the diffusion equation

∂n

∂t
= D

∂2n

∂x2
,

with the solution

n(x, t) =
N√

4πDt
exp−x2/4Dt .

The diffusion coefficientD ∼ v̄λ/3, with the thermal velocity v̄, is the same as for heat conduction.
The diffusion length

∆x =
√

2Dt ∼
√
vrmsλt

is a measure over which physical scales mixing has occurred. This relation can also be used to
estimate the timescale of this process:

td ∼
(∆x)2

vrmsλ
(2.3)

with the mean free path λ (Eq. 2.1) and the rms-velocity vrms (Eq. 2.2) .
Equation 2.3 shows that molecular diffusion mixes chemical species efficiently in the hot dilute
gas inside the bubble: In a gas with n = 10−2 cm−3, T = 107 K and µ ∼ 1 g mol−1 we find
vrms ∼ 500 km s−1 and a time of ∼ 33 years for mixing on the scales of ∆x = 0.01 pc. Diffusion
inside the swept up medium is inefficient (n = 1 cm−3and T = 100 K leads to a time of∼ 1.5 Myr
for mixing on the scales of ∆x = 0.01 pc).
All particles within a mean free path from the CD can penetrate into the other gas phase and
one sixth of them will have a velocity vector appropriate to do so.2 For two gas phases with

2The number of particles crossing the CD in the time interval t are thus a sixth of the particles within the volume
Avt where A is the unit area.

2.2 Mass and energy exchange 9

n = 0.01 cm−3, T = 106 K and n = 1 cm−3, T = 100 K, respectively, the same number of hot
and cold particles cross the CD. There is no change in density and thus no change in the mean
free path, but there is a change in temperature. The hot particles in the cold medium undergo their
first collision with cold particles after t = λcold/vhot = 0.35 yr. This means that after 0.35 years a
region of a length of 6×10−5 pc (λcold) has a mean temperature of Thot/6+5Tcold/6 = 1.7×105 K.
To estimate how much thermal energy has been carried into the cold medium we find the number of
diffused particles from ∆n = Aλcoldnhot/6 = 2.9× 1011A cm−2 (with nhot = 0.01 cm−3, λcold =
1.7×1014 cm). The energy transfer caused by particle motion is Ė = ṅkBT = nhot/6vhotkBThot =
3.6× 10−6 erg s−1 cm−2. With a cooling rate of Λcool = 10−22n2 erg s−1 cm−3, the energy flowing
through an area A of the CD would be lost in a cell with a number density of 1 cm−3 and a volume
of A× 0.01 pc.
Tenorio-Tagle (1996) reports that 10% of the ambient medium ended up in the bubble via thermal
conduction and dense clumplets originating from the ambient medium penetrating the bubble wall.
From kinetic gas theory, we would expect that in each collision time a sixth of the density in the
first mean free path of the shell is lost into the bubble. In the example given above, the number
of particles was conserved both in the cavity and in the shell, but if the density of the shell is
enhanced, there will be a net flux of particles into the cavity.

2.2.4 Turbulent diffusion

In this process random and chaotic motions mix eddies of size lturb with the velocity vturb. The tur-
bulent velocity fields may be created, for example, by steep gradients, the overstability of radiative
shocks (Chevalier and Imamura, 1982), stellar feedback impinging on a clumpy medium or insta-
bilities like the nonlinear thin shell instability (Vishniac, 1994, NTSI). For example, convection
can produce eddies and large scale perturbations that are mixed into a different gas phase. Such
mixing processes do not necessarily lead to a homogeneous mixture. For the turbulent diffusion in
a turbulent ISM, some authors (for a summary see Pan et al., 2012) rather expect an oil-in-water-
like process leading to cold clumps immersed in hot zones, whereas other authors assume that the
gas phases fully mix (e.g. Gounelle et al., 2009). The diffusion coefficient of turbulent mixing is

Dturb = vturblturb .

Diffusion rises linearly below the size of turbulent eddies and saturates due to turn-over as soon as
the eddy size is reached.
The assumed efficiencies of mixing in a SN shell range from a few percent (Boss and Keiser, 2012,
mixing via clumps and RT fingers), over a range from 2% to 70% (Gounelle and Meynet, 2012), to
the full range of few percent to full mixing in the study of Pan et al. (2012, clumplets and turbulent
diffusion).
The estimates for the eddie size range from lturb ∼ 0.1 − 1 pc (Stasińska et al., 2007, dispersion
of metal-rich droplets in a H II region via molecular diffusion and turbulent mixing) to lturb ∼
0.01 pc (Gounelle et al., 2009, highly turbulent mixing process with 100% mixing efficiency and
the characteristic length-scale of the thermal instability). Turbulent diffusion is thus likely to act
on length scales comparable to the resolution of our simulations.

10 2. Background: massive stars and their surroundings

10−14

10−13

10−12

10−11

10−10

10−9

10−2 0.1 1 10 102 103 104 105Pr
es

su
re

[d
yn

cm
−

2
]

Number density [cm−3]

X = 0.76, molar mass = 1.2195 g

10

102

103

104

105

10−2 0.1 1 10 102 103 104 105

Te
m

pe
ra

tu
re

[K
]

Number density [cm−3]

X = 0.76, molar mass = 1.2195 g

z�, CLOUDY

z�, RAMSES

Figure 2.1: Comparison of the cooling–heating equilibrium for solar abundances computed with
the RAMSES code (green) to the equilibrium found by the CLOUDY code (red) [data extracted
from CLOUDY by Ntormousi & Heitsch]. The absence of a maximum in the RAMSES cooling–
heating equilibrium curve (left plot) prevents the existence of two stable ISM phases. In contrast
to this, the CLOUDY cooling heating equilibrium curve allows for a multi-phase medium. This
is caused by multiple regions with positive slopes for the same pressure in the equilibrium curve.
The missing multi-phase problem was fixed artificially by switching off cooling and heating below
100 K in dense regions with a number density larger than 5 particles cm−3 and by applying a similar
procedure at 10 000 K in less dense regions.

2.2.5 Ambipolar diffusion
Ambipolar diffusion is a process that can remove magnetic fields from molecular clouds: The
magnetic fields are tied to the ionized gas component, and this component drifts relative to the
cold, neutral component of the gas, which is accelerated by gravity. E.g. Jijina et al. (1999) noted
that ambipolar diffusion takes place more rapidly than the simple laminar description predicts. For
a dense core with the size r the time scale for ambipolar diffusion is τAD = r

vD
with ion-neutral

drift speed vD (Mouschovias, 1987, eq. 81). This can be approximated by

τAD ∼ 3× 106 yr
(nH2

104 cm−3

)1.5
(

30µG

B

)2(
r

0.1 pc

)2

.

For a density of 1 cm−3 and a magnetic field strength of 10 µG (Crutcher, 2012) this leads to a
time of about three months for 0.01 pc. This process rather acts to separate the gas phases than to
mix them.

2.2.6 Cooling and heating processes in the ISM
For the work presented in this thesis, radiative losses are important, since they substantially lower
the feedback energy efficiency and thus increase the GMC lifetimes. In a medium with solar
metallicity, ∼ 100 particles cm−3 and a temperature of ∼ 100 K typical energy losses via radiative
cooling amount to about 90% of the feedback energy (see e.g. Tab. 6.2). A similar energy loss was
reported by Thornton et al. (1998).
The default cooling routine in the RAMSES code (see Sect. 5.1.2) uses Sutherland and Dopita
(1993) cooling for all elements except H and He, Compton heating from CMB and Compton
cooling according to Theuns et al. (1998, Tab. B1) with an amplitude of the radiation spectrum

2.3 Multi-Messenger Astronomy 11

at the hydrogen Lyman-alpha edge of 5 × 10−21 erg cm−2 sr−1. For H and He the amount of
(doubly) ionized particles is calculated. Based on the result of this iteration the code calculates
ionization cooling for H and He according to Cen (1992, Eq. 12), recombination cooling for H
and He according to Cen (1992, Eq. 13), dielectric recombination cooling for He according to Cen
(1992, Eq. 14), line cooling for H and He according to Cen (1992, Eq. 15), Bremsstrahlung for H
and He according to Cen (1992, Eq. 16) and radiative heating for H and He according to Theuns
et al. (1998, Tab. B4). In our simulations solar abundances3 are assumed.
In our study the existence of two gas phases in pressure equilibrium is desired, because this makes
a “static background model” feasible: Our study is easier to analyze (1) if thermal energy of
the medium, which is not influenced by the stellar feedback, stays constant, and (2) if no mo-
tions arise at the cloud surface, because of a pressure imbalance caused by cooling or heating
processes. Since the standard RAMSES cooling–heating curve (Fig. 2.1) has no maximum that
would allow for the existence of a two-phase region with a stable cold dense phase (T = 100 K,
ρ = 1.66× 10−22 g cm−3) and a stable warm phase (T = 104 K, ρ = 1.66× 10−24 g cm−3) these
phases are created artificially by switching off cooling and heating below 100 K in regions with a
number density larger than 5 particles cm−3 and by applying a similar procedure at 10 000 K in less
dense regions. In this prescription temperatures below 100 K can only be reached via expansion of
the gas, not via radiative cooling. This is of course a crude approximation to the cooling process.
However, Fig. 7.2 in Sect. 7.3 shows that it leads similar feedback energy efficiencies as the more
elaborate cooling model described in Ntormousi et al. (2011), which uses detailed cooling tables
extracted from CLOUDY.

Cooling time

The definition of the kinetic temperature of atomic gas uses the theorem of equipartition of energy,
which in turn states that in thermal equilibrium on average an equal amount of energy is associated
with each independent degree of freedom of the motion:

E = nH
3

2
kT .

The change of energy can then be expressed as:

dE

dt
=

3

2
nHk

dT

dt
.

The cooling time is:

tcool =
3
2
nHkT

n2
HΛ

,

with the the cooling rate Λ. After a cooling time, the gas will return to the cooling-heating equilib-
rium. Since cooling times in the low density phase of the ISM can be much longer than the time
between SN events, this was an argument to develop the current dynamic picture of the ISM.

2.3 Multi-Messenger Astronomy
In Sect. 2.2.6 we mentioned large energy losses via radiative cooling. This radiation can help us
gathering observational evidence on the ISM. In Fig. 2.2 we sketch the interaction of massive stars

3X=0.711, µmol = 1.2195 g

12 2. Background: massive stars and their surroundings

> 106 K

low density

superbubble

26Al

GMC
Sect. 2.5

SNe

Cold, neutral shell
Blackbody
H I, 21 cm line, Sect. 2.4.8
Vibrational H2

Absorption lines
Fine structure
Far IR C I, C II, O I

X-ray shadow

O VI , 105 K, FUV
Collisional ionization
(Thermal) Sect. 2.4.4

Bremsstrahlung
Thermal emission
106 K, Soft X-ray
Sect. 2.4.3

Strong shock
Cosmic rays
de-excitation lines
Sect. 2.4.1

Blackbody, 10 K, radio
CO as tracer, Sect. 2.4.7
Vibrational transitions
Optically thick
Self shielding

O and B stars
Blackbody, foreground
absorption lines
Sect. 2.6

Strömgren sphereStrömgren sphereH II, Hα, 104 KVisible lightThermal emissionPhoto ionizationSect. 2.4.5

Radioactive decay, γ-line,
Nuclear transition, non-thermal
Sect. 2.4.2

Figure 2.2: Sketch of a superbubble and its messengers. (Temperatures are orders of magnitude.)

with the ISM and label the regions suffering radiative energy losses and the processes leading to
this emission of photons. This is of relevance for our work, since one of the aims of this work is
comparing our numerical models containing gas with a large range of densities and temperatures
to observational data from the Orion-Eridanus region.

The basic idea behind the “Multi-Messenger Astronomy” is to gather information on the same
object – in our case the OES – via different physical processes. The “messengers” can be photons,
but in principle also neutrinos and cosmic ray particles. However, IceCube (IceCube Collabora-
tion et al., 2013) reports no neutrinos from supernova remnant shocks and also in the COMPTEL

(Bloemen et al., 1999) data cosmic ray induced de-excitation lines fell below the significance limit.

We will therefore focus on physical processes leading to the emission of photons. These processes
can be subdivided into sources of line emission and continuum emission. We can further subdivide
the continuous radiation into thermal and non-thermal radiation. Whereas thermal radiation is
characterized via the temperature, since intense interaction leads to an identical energy density of
the radiation and the radiating material, non-thermal radiation results from interaction processes
far from global energy equilibrium.

Processes leading to line radiation or line absorption are intrinsically quantum phenomena. The
quantization of the energy levels in the nucleus and in the shell leads to the emission or absorption
of photons in very narrow wavelength ranges. To measure the velocity of the photon-emitting
gas, one uses lines with small natural line widths and small thermal broadening. In the Orion-
Eridanus region radial velocities are derived from radio data and absorption lines in the spectra
from background stars. Also 26Al data from INTEGRAL can measure velocities (Kretschmer et al.,
2013) – we are awaiting a result of the ongoing 26Al observations of the OES in the near future.

2.4 Messengers from the Orion-Eridanus region 13

Figure 2.3: Milky Way in Hα. The Orion-Eridanus region is highlighted with a white ellipse. Data
source: http://astrometry.fas.harvard.edu/skymaps/halpha .

2.4 Messengers from the Orion-Eridanus region
We will now move from the multi-phase ISM in simulations to multi-wavelength observations.
For this discussion, the Orion-Eridanus region will serve as an example, since 26Al data from this
region were the motivation for this PhD project. The Orion-Eridanus region extends from the
Galactic coordinates l = 185◦ to 210◦ and b = −16◦ to −50◦ and it harbors the Orion-Eridanus
Superbubble (OES). Superbubbles are large cavities filled with hot tenuous gas, which were created
by the combined feedback of several massive stars. In Fig. 2.3, showing the Milky Way in Hα,
the Orion-Eridanus region is highlighted with a white ellipse (this is not to be confused with the
assumed boundaries of the OES). The lower part of this region features two strong filamentary Hα
shells, called “Arc A” and “Arc B” (see also Fig. 2.4 and Sect. 2.4.5). As we will see in this section,
the OES is a particularly good example of a region revealing interactions between young, massive
stars and star-forming molecular clouds. In the following subsections the reader will get a glimpse
on the observational evidence from this well observed region.
Fig. 2.5 shows an interpretation of the observed data and the position of the OES in the Milky
Way. This figure was originally drawn by Burrows et al. (1993) and augmented with 26Al by Diehl
(2002). Already Reynolds and Ogden (1979) proposed a similar de-projection of the observed data.
For this thesis the distance of the molecular clouds and the locations of the massive stars in this
sketch were adapted to the distances used by Voss et al. (2010). Fig. 2.5 also addresses a possible
interaction of the OES with the local bubble, which makes this zone even more interesting: With
the cloud shadowing technique (presented e.g. in Burrows and Mendenhall, 1991) Burrows et al.
(1993) find the molecular cloud L1569 near the interface of the Local Bubble and the OES. This
view is strengthened by FUV data of Jo et al. (2011). The position of the H I layer was derived from
observed filaments. However, Ryu et al. (2008) favor a different geometry of the OES consisting
of two superbubbles both originating in the Orion molecular cloud complex. In this alternative
interpretation “Arc A” is not the back side of a single cavity but the front layer of a second cavity.
This model is sketched in green in Fig. 2.5. A detailed discussion of the nature of “Arc A” can be
found in the appendix of Pon et al. (2014b). Recently the “single cavity” approach was revived by
Pon (2013); Pon et al. (2014a) who fitted Kompaneets models to the OES.

14 2. Background: massive stars and their surroundings

Ph
ot

on
flu

x
[R

ay
le

ig
h]

5134

1000

100

10

1

0.1

Figure 2.4: Hα features in the
OES. The filaments “Arc A” and
“Arc B” are also shown in Fig. 2.5.
The Hα data of Finkbeiner
(2003) was downloaded from
skyview.gsfc.nasa.gov. The image
size (45◦) and the image center
(Galactic coordinates l = 200,
b = −30) are the same as in
Fig. 2.6. Also the same color
bar and the same projection were
used.

Figure 2.5: This sketch of the Orion-Eridanus Superbubble is a variant of the sketch of Burrows
et al. (1993). In this plot the 26Al distribution (red) was added according to Diehl (2002). Moreover
the shape of the bubble and the locations of the OB associations use the distance estimates com-
piled in Voss et al. (2010). In this model, the Orion-Eridanus Superbubble is an adjacent bubble
of the Local Bubble. It is located from l = 185◦ to 210◦ and b = −16◦ to −50◦. The different
interpretation of Ryu et al. (2008) is shown with green ellipses. In this alternative model, two
separated superbubbles originating from different parts of the Orion GMC complex are assumed.

2.4 Messengers from the Orion-Eridanus region 15

Figure 2.6: Multi-wavelength observations of the Orion-Eridanus region. Sorted by wavelength,
from top left: 1st row: 408 MHz, Bonn H I, Dickey and Lockman H I, 2nd row: CO 115 GHz, Planck
353 GHz, Planck 857 GHz, 3rd row: IRIS 100 micron, Hα, ROSAT 0.25 keV, 4th row: ROSAT 0.75
keV, CGRO Comptel 1− 30 MeV, Fermi 3− 300 GeV, Data obtained from skyview.gsfc.nasa.gov.
Image size (45◦), map projection (“Tan”) and center (l = 200◦, b = −30◦) as in Fig. 2.4. For
references and details (e.g. color bar ranges) see text.

16 2. Background: massive stars and their surroundings

We will now discuss observational evidence for the gas phases in the ISM starting from the data
with the shortest wavelengths and ending with radio data. Fig. 2.4 shows a Hα picture of the
OES with labeled cold gas structures. In Fig. 2.6 the same region of the sky is depicted in various
wavelengths. Labels and coordinates, which are shown in Fig. 2.4, are not shown again in Fig. 2.6.

2.4.1 Cosmic rays: γ-ray data

Parizot (1998) reports that the 3–7 MeV maximum likelihood map of CGRO COMPTEL shows a
correlation with the GMCs and might trace the walls of the OES. He argues that the Gamma-ray
emission is induced by the interaction of energetic (cosmic ray) particles from inside the super-
bubble with the Orion molecular cloud complex, thereby causing non-thermal C and O nuclear
de-excitation lines. In Fig. 2.6 we see emission near the GMCs in Band 5 of Fermi (data in Fig. 2.6
from Atwood et al., 2009, band pass 3–300 GeV, color bar: log, values range from 0 to 38 counts).
However, this correlation is not visible in the 3 band maximum likelihood map of COMPTEL (data
in Fig. 2.6 from Strong, 1994, band passes 1–3 MeV, 3–10 MeV, 10–30 MeV, color bar: log, values
range from 2.312× 10−5 to 2.46× 10−3 counts s−1 cm−2 steradian−1). This is in accordance with
Bloemen et al. (1999), who report that likely a superimposed signal of the instrument caused a
false detection in the data of Parizot (1998). After re-analysis of the data the signal fell below the
significance level.

2.4.2 Nucleosynthesis yields: 26Al
26Al is a radioactive trace element for stellar nucleosynthesis and decays approximately a million
years after being ejected from the stars (Project, 2004, τ1/2 ∼ 0.72 Myr). The radioactive decay
of 26Al produces an excited 26Mg nucleus. The photon produced at the de-excitation of 26Mg can
be observed in Gamma-rays at 1.809 MeV (Project, 2004). Since 26Al decays after ejection from
massive stars, 26Al observations provide information on the time scales of the interaction process
of massive stars and the ISM. For example the spread of 26Al in different hydrodynamic models
can help to understand the potentially peculiar shape (if the model of Burrows et al. (1993) is
correct, see Fig. 2.5) of the OES. Further advantages of this tracer are that extinction is no problem
and that it shows only a weak dependence on the state of the ISM, since the 26Al -decay is a non-
thermal process. However, via the line-shape velocities of the stellar ejecta can be measured, as
Kretschmer et al. (2013) have shown for the Galactic center.
Existing COMPTEL data (Diehl et al., 2003, 26Al contours from this publication are overlaid in
Fig. 2.7) of 26Al and successful INTEGRAL proposals of R. Diehl and the Gamma group at MPE
were the main motivation for this thesis. For the interpretation of this data, it is an interesting
question whether 26Al is more likely found inside the bubble or in the cavity walls (see also Sect. 8).

2.4.3 Hot ISM: X-ray data

The ROSAT soft X-ray background data traces the emission of Bremsstrahlung in hot ionized
medium (HIM): Fig. 2.6 shows X-ray-emitting hot, diffuse plasma detected with ROSAT (Snow-
den et al., 1997). The 0.25 keV emission (ROSAT Band 1; band pass: 0.11–0.284 keV; color bar:
log; values range from -191 to 50290 in units of 10−6 counts s−1) peaks near 106 K, whereas the

2.4 Messengers from the Orion-Eridanus region 17

Ph
ot

on
flu

x
[R

ay
le

ig
h]

5134

1000

100

10

1

0.1

Figure 2.7: 26Al in the Orion-
Eridanus region. Total signif-
icance ∼ 5σ contours for the
1.8 MeV COMPTEL data (Diehl
et al., 2003), are overlaid on Hα data
of (Finkbeiner, 2003, downloaded
from skyview.gsfc.nasa.gov). The
26Al emission does not extend be-
yond “Arc A” (for labeled Hα fea-
tures see Fig. 2.4). In the two-
bubble model (see Fig. 2.5) the bub-
ble bounded by “Arc A” is pow-
ered by the feedback of the younger
Orion associations OB Ib, OB Ic and
OB Id, whereas the larger bubble
bounded by “Arc B” contains Ori
OB Ia, where all O stars have al-
ready exploded.

0.75 keV emission (ROSAT Band 5; band pass: 0.56–1.21 keV; color bar: log; values range from
-49 to 20312 in units of 10−6 counts s−1) can trace plasma up to 2× 106 K.
The X-ray emission of the OES was studied by several authors (Burrows et al., 1993; Guo et al.,
1995; Snowden et al., 1995; Guo and Burrows, 1996; Burrows and Guo, 1996; Heiles et al., 1999).
The common interpretation is a cavity-like region, filled with 2× 106 K plasma glowing in X-rays
due to thermal emission. The energy needed to heat the plasma is believed to originate from winds
of hot stars. These winds can collide and shock-heat gas. The X-ray shadow method (presented
e.g. in Burrows and Mendenhall, 1991) was used to extract information on the relative distances
of the structures visible in different wavebands.
Recent modeling efforts of the X-ray emission of the OES have been published by Krause et al.
(2014); Krause and Diehl (2014).

2.4.4 Hot ISM: O VI

More evidence for hot gas in the Orion-Eridanus region is found from UV emission lines of high-
stage ions like O VI. Since O VI (five times ionized oxygen) line emission leads to large radiative
losses, a high temperature collisionally ionized plasma would quickly cool upon emission. There-
fore, O VI emission in the diffuse ISM indicates, that hot gas is replenished. E.g. near the con-
tact discontinuity in a superbubble. The lines of O VI are found at 103.193 nm and 103.762 nm.
Kregenow et al. (2006) find that the O VI emission peaks at the thermal interface in “Arc B”. The
estimated gas temperature is 3 × 105 K. However, de Avillez and Breitschwerdt (2012) showed
that in simulations with collisional ionization equilibrium O VI traces higher temperatures than in
non-equilibrium models, where 70% of the O VI mass is found in regions with temperatures below
105 K. In contrast to O VI in regions with temperatures above 105 K, where collisional ionization
dominates, the main production channel of O VI at lower temperatures is photoionization.

18 2. Background: massive stars and their surroundings

Figure 2.8: 100 micron (Skw+SFD) and the OB
stars considered in Voss et al. (2010). This plot
was created with the ALADIN interactive sky
atlas (Bonnarel et al., 2000). Unfortunately,
the astrometric evidence for Ori OB I is limited,
because the relative velocities of the stars are
mostly directed away from the sun. Thus, de
Zeeuw et al. (1999) could not use the Hippar-
cos parallaxes and velocities to determine the
membership of the stars in the field.

2.4.5 Warm ionized interstellar gas: Hα

The warm ionized component of the ISM (∼ 104 K) can be traced by Hα. This line at 656.28 nm
is part of the Balmer series and the brightest spectral line of ionized hydrogen in visible light. It
results from the recombination of a proton and an electron to a hydrogen atom. In this process,
the electron cascades to the ground state and can pass the n = 3 to n = 2 transition that leads
to the emission of a Hα photon. Fig. 2.3 shows the Milky Way in Hα. A zoom with labeled Hα
features is shown in Fig. 2.4. Additionally Hα is shown in Fig. 2.6 (data from Finkbeiner, 2003,
band pass: 456.2–457.38 THz; color bar: log; values range from 0.1 to 5134 Rayleighs). Reynolds
and Ogden (1979) already reported an ionized shell with a mass of ∼ 8 × 104 M� and a velocity
of 15 km s−1. Since Hα cannot trace column densities (it traces its emission measure N(H+)ne),
Reynolds and Ogden (1979) used multi-wavelength data for this result. Boumis et al. (2001) argue
that “Arc B” might be closer to the observer, in a distance of∼ 150 pc, whereas “Arc A” could also
be at ∼ 530 pc. Moreover they also discuss the idea that the two arcs might be boundaries of more
than a single hot cavity.

2.4.6 Total number density of warm, cool and cold gas: infrared emission

The 100 micron data (Miville-Deschenes and Lagache, 2008; Miville-Deschênes and Lagache,
2005, band pass: 2.5–3.6 THz; color bar: log; values range from 106 to 2.4358 × 1010 Jansky
steradian−1) shown in Fig. 2.6 trace the total number density of H I, H II and H2 via thermal emis-
sion. Therefore we use this data to overlay the positions of the massive stars of the Orion OB I
associations (Fig. 2.8). A more recent all-sky observation of dust is the Planck 857 GHz Survey
(Planck Team, 2013, 857 GHz; color bar: log; values range from 0.4 to 8916 counts (native map
units are in million Jansky per steradian)), also shown in Fig. 2.6.

2.4 Messengers from the Orion-Eridanus region 19

2.4.7 Molecular gas: CO and H2 fluorescence

In the OES, molecular gas can be found in the Orion A and B molecular clouds (see Sect. 2.5) and
in the filamentary structure called “Arc A” (Ryu et al., 2008).
Whereas cold H2 does not have radio emission, CO, the second most abundant molecule after
H2, shows a strong signal from rotational transitions. The physics behind this is that, in contrast
to the homonuclear H2 molecule, CO has a small dipole moment and can thus absorb or emit
radiation on vibra-rotational transitions. The CO(1-0) line4 at 2.6 mm (115.271 GHz) is shown in
Fig. 2.6 (Dame et al., 2001, band pass: 114.89–115.12 GHz; color bar: log of velocity-integrated
main beam brightness temperature; values range from −32768 to 180 K km s−1). The Planck
filter centered around 353 GHz (Planck Team, 2013, 353 GHz; color bar: log; values range from
−1.2 × 10−5 to 1.9 counts (native map units TCMB)) can trace the CO(3-2) line at 345.796 GHz.
To infer the distribution of H2 from CO observations, the H2 to CO ratio has to be calibrated via
UV absorption lines of CO and H2. The CO to H2 conversion factor is still debated. For a recent
review see Bolatto et al. (2013).
In the Orion-Eridanus region Ryu et al. (2006, 2008) have observed H2 fluorescence in far-ultraviolet
(135–175 nm) with the SPEAR/FIMS mission. They find a correlation with Hα emission and sug-
gest that UV radiation from the Ori OB I associations might be responsible for both, the fluores-
cence and the recombination emission. They conclude that “Arc A” is likely to be at a distance of
∼ 500 pc, whereas “Arc B” could be on the near side of the cavity at ∼ 150 pc. In both regions
excitation temperatures can reach up to 1000 K. Ryu et al. (2008) argue that “Arc A” is mostly
associated with molecular and dust components while “Arc B” can be more or less characterized
by atomic origins. Based on these findings, they suggest two unrelated bubbles instead of one
peculiar shaped superbubble. This model is shown with green ellipses in Fig. 2.5.

2.4.8 H I: 21 cm line

The 21 cm line of neutral hydrogen (1420.4 MHz) results from a transition between the hyperfine
levels of the hydrogen 1s ground state. Since the relative orientation of electron spin and nuclear
spin is causing these energy levels, the 21 cm line traces H I column density for a wide range of
temperatures. Already Clark (1965) pointed out that the difference between 21 cm absorption and
emission indicates contributions from a cold neutral medium (CNM, optically thick seen in emis-
sion and absorption) and a warm neutral medium (WNM, optically thin, only seen in emission).
These two phases are the two co-existing phases in the cooling-heating equilibrium, which is dis-
cussed in Sect. 2.2.6. In the WNM number densities nH of 0.03 to 1.3 cm−3 are observed. The
kinetic temperatures lie between 4000 and 8800 K. Recently, (Murray et al., 2014) measured an
excitation temperature of ∼ 7200+1800

−1200 K in their survey of the Galactic WNM. They conclude,
that resonant Lyman-α scattering in addition to collisional excitation leads to this temperature.
The CNM has higher number densities (nH ∼ 5 to 120 cm−3) and lower temperatures (kinetic
temperature of the order of 40 − 200 K) than the WNM. In contrast to the diffuse distribution
of the WNM, the CNM has a filamentary structure, possibly originating from turbulence, seen as
absorption peaks in spectra.
In the review of Kalberla and Kerp (2009), a local exponential vertical scale height above the
Galactic plane of ∼ 150 pc for the CNM and ∼ 400 pc for the WNM is reported.

4CO(1-0) is a transition between the ground state and the first excited level. A rough estimate of the levels can be
found by using the rigid rotor model and solving for the Eigenvalues of the Schrödinger equation.

20 2. Background: massive stars and their surroundings

In the H I velocity profiles of the THINGS galaxies Ianjamasimanana et al. (2012) find a broad
component with a mean velocity dispersion of 16.8± 4.3 km s−1 and a narrow component with a
mean velocity dispersion of 6.5± 1.5 km s−1. They discuss an indication that the narrow compo-
nent is associated with molecular gas, which is in accordance with the theoretical expectation that
atomic gas passes through the CNM phase before turning into molecular gas.
In the vicinity of the OES 21 cm radiation of neutral hydrogen (T ∼ 102 to 103 K) outside the hot
bubble was reported e.g. by Brown et al. (1995) who estimate a H I shell mass of ∼ 2.3× 105 M�
(combining H I with 100 micron observations).
The first line of Fig. 2.6 shows two surveys using the 21 cm line of H I: the Bonn 1.4 GHz Survey
(Reich, 1982; Reich and Reich, 1986, band pass: 1418.8–1421.2 MHz; color bar: log; values range
from 0 to 15324 mK) and the Dickey and Lockman H I map (Dickey and Lockman, 1990, band
pass: 1418.8–1421.2 MHz; color bar: log; values range from 0 to 3.964 × 1021 atoms cm−2).
An alternative approach is used in the “H I All-Sky Continuum Survey” (Haslam et al., 1982, band
pass: 406.25–409.75 MHz; color bar: log; values range from 12.5 to 108.3 K), which shows mostly
synchrotron radiation. All of these H I surveys show an anti-correlation with X-ray data.

2.5 Giant Molecular Clouds (GMCs)

For our study GMCs are of major importance, since stars form in such cold, dense molecular gas.
Despite the small volume fraction of molecular clouds, about a half of the Milky Way’s ISM mass
inside the orbit of the sun is found in molecular gas (Williams and McKee, 1997).
Typically, molecular clouds with masses above ∼ 104 M� (Blitz, 1993; Williams et al., 2000) are
called GMCs. The distinct features in the upper part of the CO observations shown in Fig. 2.6 are
Orion’s Giant Molecular Clouds. Distance estimates of Brown et al. (1994) find the near edge of
the Orion A and Orion B molecular clouds at a distance of 320 pc and the far edge at a distance of
500 pc. The properties of the Orion A and Orion B molecular clouds are summarized in Tab. 2.1.
The Milky Way also harbors more massive GMCs than Orion’s GMCs. Williams and McKee
(1997) list GMCs with up to ∼ 6 × 106 M� and Murray (2011) finds masses up to ∼ 1.3 × 107

M�. The diameters of GMCs are in the range of tens of parsecs to a few hundred parsecs (Murray,
2011, up to 210 pc).
For molecular cloud complexes in the Milky Way an average density of 1.7× 10−22 g cm−3 (cor-
responding to ∼ 100 mH cm−3 or Σ ∼ 100 M� pc−2) can be found from column 14 and 15 in
Table 1 of Murray (2011). Tan et al. (2013) also find that typical, 12CO defined GMCs have a
mass surface density of Σ ∼ 100 M� pc−2. The median value of the number density of H2 in the
Galactic ring survey (Roman-Duval et al., 2010) is 230± 21 cm−3. However, this survey is likely
biased towards high density regions, since it is based on 4σ 13CO contours. Similar techniques led
to a factor of 10 lower densities in Heyer et al. (2009).
As Larson (1981) showed, GMC mass and size correlate with the velocity dispersion. Kritsuk et al.
(2013) conclude that these relations can be interpreted as an empirical signature of supersonic tur-
bulence. Turbulence also leads to a very inhomogeneous, sponge-like self similar density structure
of molecular clouds. Molecular clouds contain clumps that may form star clusters and cores that
may form single stars or binaries (Tan et al., 2013). Dense cores with densities of 104 − 106 parti-
cles cm−3 are considered the most important environment for star formation. Whereas these dense
cores and clumps are gravitationally bound, it is debated whether GMCs are also gravitationally
bound, since kinetic energy in turbulent motions can balance or even outweigh self gravity. For

2.5 Giant Molecular Clouds (GMCs) 21

Mass Diameter Density Reference
[M�] [pc] [g cm−3]

Orion A GMC 105 65 < ρ >∼ 10 H2 [1]
Orion B GMC 6× 104 25 < ρ >∼ 110 H2 [1]
Orion A GMC ∼ 105 40× 2 (29 deg2) ρmax > 10−20 [2]
Orion B GMC ∼ 105 (19 deg2) max. ρmax > 10−20 [2]
Orion A GMC ∼ 105 110× 20 (31.5 deg2) [3]
Orion B GMC ∼ 8× 104 ∼ 40 (25.7 deg2) [3]
Orion A GMC 8.1× 104 [4]
Orion B GMC 4.0× 104 [4]
Realistic SPH cloud 2.8× 105 ∼ 40 < 9× 10−22 [5]

> 1.66× 10−24

Homogeneous cloud 1.6× 105 ∼ 50 1.66× 10−22 This work
[1] Larson (1981), [2] Genzel and Stutzki (1989), [3] Wilson et al. (2005),

[4] Okumura et al. (2009), [5] Dobbs et al. (2011)

Table 2.1: Giant Molecular Clouds (GMCs, Sect. 2.5).

example Tan et al. (2013) argue that most GMCs are indeed gravitationally bound whereas Blitz
et al. (2007) claim that GMCs are only marginally stable.

2.5.1 Simulated clouds

Based on these findings, we will use an average number density in the order of ∼ 100 cm−3

which lies well in the plausible region of average densities in molecular clouds, for the cold, dense
clouds in this work. Tab. 2.1 also contains two toy-models, which we use in our simulations: a
simplified, homogeneous GMCs and a cloud from a large scale simulation of Dobbs et al. (2011).
Both artificial cloud models are of comparable size and mass as Orion’s GMCs.

Due to the masses, the velocity dispersions and the magnetic fields inferred from observations,
GMCs are believed to be self gravitating (Pon et al., 2012; Tan et al., 2013) and supported against
collapse by turbulence and magnetic fields. However, in this work gravity is not considered in the
simulations, since its aforementioned antagonists (turbulence, magnetic fields) are absent. More-
over, the free-fall time (τff =

√
3π/(32Gρ)) is about 5 Myr for n ∼ 100 cm−3. Thus, the time-

scales on which self-gravity acts are rather large. The internal velocity dispersion (σ) that would
lead to gravitational stability of the homogeneous GMC in Tab. 2.1 can be found from the virial
theorem Mvir/[1M�] = 1160R/[1 pc](σ/[1 kms−1])2 to be twice the sound speed in this cloud.
The virial mass Mvir balances the internal motions if external pressure and magnetic fields are not
taken into account.

Another reason not to include gravity is that the focus of this work in not calculating GMC lifetimes
but rather to testing if stellar feedback is efficient enough to play a role in driving turbulence in
GMCs. The advantage of our minimalist toy model is that simple relations between the feedback
energy efficiency and the depth of embedding of the stars or the porosity of the GMC can be seen.

22 2. Background: massive stars and their surroundings

Group Location Distance Age Mup Mmax SN O B
[pc] [Myr] [M�] [M�] stars stars

OB Ia outside GMC 330 8-12 18.5 13 7.3 0 16
OB Ib Ori B GMC 360 0.5-8 45 40 1.3 4 10
OB Ic Ori A GMC 400 3-6 45 32 1.5 2 19
OB Id Ori A GMC 410 0-2 120 36 0 5 2

Table 2.2: Massive stars in Ori OB I according to Voss et al. (2010).

OB stars ø [pc] long. ø [pc] lat.
Ori OB I a 5 9.9 2.7
Ori OB I b 27 78.6 36.8
Ori OB I c 29 38.2 32.4

Table 2.3: Massive stars in Ori OB I according to Mel’Nik and Efremov (1995).

2.6 Massive stars

Already the data of the HD catalog showed that OB stars are not homogeneously distributed over
the sky but rather grouped. OB stars form in loose groups – so-called OB associations. These asso-
ciations can be detected kinematically, because they have a very small internal velocity dispersion
of only a few km s−1. Thus, they can be seen as coherent structures in velocity space. Since OB
associations have lower masses than bound star clusters, OB associations disperse within a few
million years and their stars spread over larger diameters (diameters in the Hipparcos sample de
Zeeuw et al. (1999, Fig. 29) and Brown et al. (2000, table 1) are in the order of 50 pc) than clusters
(order of 1 pc). The reader interested in the history of the research on OB associations is referred
to the introduction of de Zeeuw et al. (1999).

2.6.1 Orion’s OB associations

The massive star content of the Orion-Eridanus region has recently been summarized by Voss et al.
(2010). The still existing OB stars in the four sub-groups of the Orion OB I associations are shown
in Fig. 2.8. Their positions are also marked in Fig. 2.5. Tab. 2.2 combines the positions (shown
in Fig. 2.8) of the massive stars with distance and mass estimates of Voss et al. (2010). Mup is
the most massive not yet exploded star of the age given in column 4. Mmax is the most massive
observed star. Column “SN” shows an Initial Mass Function (IMF) based estimate of the number
of already exploded stars. The last two columns list the observed O and B stars.

Unfortunately, the astrometric evidence for Ori OB I is limited, because the relative velocities of
the stars are mostly directed away from the sun. Thus, de Zeeuw et al. (1999) could not use the
Hipparcos parallaxes and velocities to determine the membership of the stars in the field. For the
same reason the stellar content discussed in Voss et al. (2010) differs from the massive star content
mentioned in Mel’Nik and Efremov (1995). The latter is listed in Tab. 2.3.

2.7 Stellar feedback 23

2.7 Stellar feedback

Basically, we have to distinguish between the feedback of individual stars (discussed in Sect. 2.7.2
to 2.7.4) and the feedback of groups of stars (Sect. 2.7.5). In this work, we are interested in the
feedback of OB associations. We can find the global feedback of the associations by determining
the number of stars in the association and their masses and then adding up the feedback models
for these stars. However, this approach does not treat energy losses e.g. via colliding winds of
individual stars in the group. The reader interested in this aspect is referred to Krause et al. (2012),
where the interaction of the wind-blown bubbles of massive stars has been investigated.
The stellar feedback of OB associations including 26Al has been modeled e.g. by Voss et al. (2009,
2010) via population synthesis. These models compute a Monte-Carlo sample of stars between
8 and 120 M� from a Salpeter (1955) Initial Mass Function (IMF). For each Monte-Carlo real-
ization stellar wind velocities, stellar evolution models (mass loss rate, surface abundances) and
SN models (remnant mass, trace elements ejected in the SN) are combined. If no stellar evolution
model with the given mass exists, models are interpolated logarithmically. The resulting energy
curve is an average of all Monte-Carlo realizations. Since a few percent of the Monte-Carlo re-
alizations with extremely massive stars influence the average strongly, this average feedback is
stronger than a “typical feedback” (the median). Moreover, the interpolation of models leads to
unphysical additional discontinuities in the energy injection rate (Fig. 2.9 to 2.12).
Therefore, we took a step back and evaluated the contribution of the individual stars in OB associ-
ations. Unsurprisingly, the most massive still existing star dominates the feedback (Fig. 2.9, details
in Sect. 2.7.5 and Fig. 2.18). Our problem has thus been reduced to finding the mass of the most
massive still existing star in an OB association of given total mass.
A plausible mass of this star can be estimated from the molecular clouds in the Milky Way: Under
the assumption that about 8% (Murray, 2011) of the molecular cloud mass are converted to stars,
we expect a cluster mass of 8 × 103 M� for a molecular cloud of 105 M�. In the galactic ring
survey (Roman-Duval et al., 2010) ∼ 18% and in the list of Heyer et al. (2009) ∼ 31% of the
galactic molecular clouds are estimated to be more massive than 105 M�. Weidner et al. (2013)
find a most massive star of ∼ 60 M� for a cluster mass of 8× 103 M� with their polynomial fit to
the observed most massive stars as a function of the cluster mass. This also fits well to the OES:
The most massive star in Ori OB Ib is ε Ori A with about 40 M� (Voss et al., 2010). The older
association Ori OB Ia is expected to be more massive than Ori OB Ib and Voss et al. (2010) assume
seven already exploded stars with masses above 18 M�. This would lead to a most massive star
with approximately 60 M�. Thus, we start with 1D spherically symmetric simulations focusing
on the feedback energy efficiency of a 60 M� star (Sect. 6), since a good fraction of the GMCs
can harbor most massive stars of this mass. The stellar winds in this model play an important role,
since they insert 2.34 times the SN energy into the ambient ISM. This wind-to-SN ratio is larger
than in Voss et al. (2009), since we consider individual massive stars, whereas Voss et al. (2009)
are interested in OB associations. In groups of stars, less massive stars lower the ratio of wind
energy to SN energy if a canonical SN energy of 1051 erg is assumed.

2.7.1 Mass loss rates and surface abundances

The mass loss rates and surface abundances for our wind models for individual stars are taken
from the rotating models of Ekström et al. (2012). These surface abundances also supply us with
information on the mass fraction of 26Al in the wind. Voss et al. (2009, 2010) base their population

24 2. Background: massive stars and their surroundings

synthesis on the rotating stellar evolution models with solar metallicity (z=0.02) of Palacios et al.
(2005) (= default mode “geneva05”). This is the first set of models in the Geneva grids with
26Al surface abundances.
The Geneva grids of stellar evolution models cover stellar masses between 0.8 and 120 M� and
metallicities from z=0.001 to 0.1 . A list of the models can be found on-line at
http://obswww.unige.ch/Recherche/evol/Geneva-grids-of-stellar-evolution.
For our work, we compared the following 5 sets of models:

• Meynet et al. (1994) models,
http://cdsarc.u-strasbg.fr/cgi-bin/myqcat3?J/A+AS/103/97
masses between 12 and 120M�, metallicities from z=0.001 to 0.04, mass loss rate increased
by a factor of two during MS and WNL phases

• Meynet and Maeder (2003) models,
http://obswww.unige.ch/Recherche/evol/tables_WR/
masses between 9 and 120 M�, solar metallicity (z=0.02), axial rotational velocity on the
ZAMS5 0 or 300 km s−1. In the latter models wind anisotropies are taken into account.

• Meynet and Maeder (2005) models,
http://obswww.unige.ch/Recherche/evol/tables_WR_nosolar/
masses between 9 and 120 M�, metallicities from z=0.004 to 0.04, axial rotational velocity
on the ZAMS 0 or 300 km s−1, also models with metallicity dependent mass loss rates during
the Wolf-Rayet (WR) stage.

• Palacios et al. (2005) models,
http://www.aanda.org/articles/aa/full/2005/02/aa1757/aa1757.html
masses between 25 and 120 M�, axial rotational velocity on the ZAMS 0 or 300 km s−1,
metallicities 0.004, 0.008, 0.02 and 0.04, 26Al surface abundances. These models are not
available on-line – the stellar feedback data was provided by R. Voss (logarithmically inter-
polated models, which served as raw data for Voss et al. (2009, 2010)).

• Ekström et al. (2012) models,
http://obswww.unige.ch/Recherche/evol/tables_grids2011/
http://obswww.unige.ch/Recherche/evol/Grids-of-rotating-stellar-models
masses between 0.8 and 120 M�, new solar metallicity (z=0.014), no rotation or v/vcrit =
0.40 [vcrit listed in column 37], 26Al surface abundances.

Fig. 2.13 compares the time dependent stellar masses of all available models for a 120M� star and
Fig. 2.14 shows the estimates for the 26Al content of the winds of such a star. The time dependent
stellar masses of models from 9 to 120 M� are compared in Fig. 2.10. Fig. 2.11 shows the mass
loss rates. In both figures the 32 M� model is not shown, since it is only available in Ekström et al.
(2012). The raw data for Voss et al. (2009) shows saw tooth like features that are not present in the
Geneva models. These features are artifacts from the interpolation between stellar tracks.

2.7.2 Stellar wind velocities
We estimate the time dependent wind velocity from the surface abundances as summarized in
Table 2 of Voss et al. (2009). The surface abundances are taken from the Geneva models (details

5ZAMS stands for “zero age main sequence” and refers to the start of the hydrogen fusion in the stellar core.

http://obswww.unige.ch/Recherche/evol/Geneva-grids-of-stellar-evolution
http://cdsarc.u-strasbg.fr/cgi-bin/myqcat3?J/A+AS/103/97
http://obswww.unige.ch/Recherche/evol/tables_WR/
http://obswww.unige.ch/Recherche/evol/tables_WR_nosolar/
http://www.aanda.org/articles/aa/full/2005/02/aa1757/aa1757.html
http://obswww.unige.ch/Recherche/evol/tables_grids2011/
http://obswww.unige.ch/Recherche/evol/Grids-of-rotating-stellar-models

2.7 Stellar feedback 25

Type Classification criteria Wind velocity Reference
LBV 3.75 < log Teff < 4.4 200 km s−1 Leitherer et al. (1999)

Ṁ > 10−3.5M� yr−1

WR log Teff > 4.0
WR type Surface abundances
WNL 0.4 > Hs > 0.1 1250 km s−1 Niedzielski and Skorzynski (2002)
WNE Hs < 0.1 2000 km s−1 Niedzielski and Skorzynski (2002)

Cs/Ns < 10
WC6-9 Hs < 0.1 1760 km s−1 Niedzielski and Skorzynski (2002)

Cs/Ns > 10
(Cs + Os)/Hes < 0.5

WC4-5 Hs < 0.1 2650 km s−1 Niedzielski and Skorzynski (2002)
Cs/Ns > 10
(Cs + Os)/Hes < 1.0

WO Hs < 0.1 3000 km s−1 Niedzielski and Skorzynski (2002)
Cs/Ns > 100
(Cs + Os)/Hes > 1.0

Outside categories
cool star log Teff < 4.32 v∞ = 1.3vesc Lamers et al. (1995)
hot star log Teff > 4.32 v∞ = 2.6vesc Lamers et al. (1995)

Table 2.4: Classification criteria for stellar winds. This is a modified version of Table 2 in Voss
et al. (2009) for their default mode “wind08”. Stellar types are defined according to Smith and
Maeder (1991); Leitherer et al. (1999). Hs,Cs,Ns and Hes are the fractional surface abundances
(mass fraction) of hydrogen, carbon, nitrogen and helium, respectively.

in Sect. 2.7.1). In the default mode “wind08”, Voss et al. (2009, 2010) classify the stellar types
according to Smith and Maeder (1991) and Leitherer et al. (1999). The assumed wind velocities
are listed in Table 2.4. The escape velocity is computed from the effective temperature (column 5
in the Geneva models), the mass (column 3 in the Geneva models) and the luminosity (column 4
in the Geneva models) via

vesc =

√
2GM

r

L=4πσT 4
effr

2

= 2Teff

√
GM 4

√
πσ

L
. (2.4)

The differences between the escape velocities of the Meynet and Maeder (2003) and Ekström et al.
(2012) models shown in Fig. 2.12 are mostly due to different effective temperatures. The wind
velocities in the interpolated models for the population synthesis of Voss et al. (2009, 2010) show
similar interpolation artifacts as the mass loss rates.

2.7.3 Computed feedback momentum and kinetic energy
For our simulations we estimated the wind velocity (as explained in Sect. 2.7.2) for each data point
in the Ekström et al. (2012) tables. The time dependent feedback energy and momentum were then
computed on the fly during the hydrodynamic simulations by linear interpolation in these tabulated

26 2. Background: massive stars and their surroundings

mass loss rates and corresponding wind velocities. Comparing the stellar feedback computed with
the mass loss rates and surface abundances in the models of Ekström et al. (2012) and Meynet
and Maeder (2003) to the feedback extracted by Rasmus Voss from Palacios et al. (2005) shows
that the latter has more scatter in the wind velocities and a varying slope of the energy input (see
Fig. 2.9 to 2.12). These effects are probably caused by logarithmic interpolation on a coarse grid.
The expected behavior would be between the rotating models of Ekström et al. (2012); Meynet and
Maeder (2003), probably closer to Ekström et al. (2012), since – as explained in Voss et al. (2009)
– the code had to be modified to include 26Al. Since such features will lead to additional shock
waves in the simulation, we decided to stick with the leading order term of the feedback instead of
introducing effects from such features. Fig. 2.9 shows that the leading order term is the feedback
of the most massive still existing star. This will be elaborated in Sect. 2.7.5.

2.7.4 Supernovae
All supernova (SN) energies are estimated to be 1051 erg. The mass loss during the SN is the
difference between the mass at the last point of the stellar evolution model and the remnant mass.
The remnants are assumed to be neutron stars with canonical masses of 1.4 M� for stars with
initial masses below 25 M� and black holes with canonical masses of 7 M� for more massive
stars. These estimates are also used by Voss et al. (2009, 2010). Figure 2.15 shows the mass loss
per SN event against time between ZAMS and SN event (which is larger for smaller initial masses).
In Sect. 6 we show that in the ambient densities considered in this work the actual amount mass
loading of the SNe only leads to minor differences in the retained feedback energy.
The amount of radioactive tracers 26Al and 60Fe ejected during the SN event is estimated using
Table 2 and 3 in Limongi and Chieffi (2006). This is relatively independent of the mass cut (i.e. the
mass coordinate that separates ejected material from material forming the remnant), since 26Al and
60Fe are synthesized close enough to the surface. The SN mass loss and the amounts of released
trace elements for different initial masses are summarized in Fig. 2.16.

2.7.5 Feedback of individual stars in an OB association
In this section we will compare the stellar feedback of individual stars in a typical OB association.
Our approach is to use the cumulative distribution function (CDF) of a group of stars with a power
law6 initial mass function (IMF, ξ(M)) to get the mass distribution of the stars. dN = ξ(M)dM
quantifies how many stars are expected in a mass interval [M,M + dM]. For the Salpeter IMF
(Salpeter, 1955) the exponent α = 2.35 for the power law ξ(M) ∝ M−α was derived from
observations.
Predicting the mass of the most massive star in a cluster of given mass is still an active field of
research, since random sampling from the IMF fails to match the observations. Already Elmegreen
(2000a) discussed the problem of the most massive star for a Salpeter IMF. Basically, the mass
interval for the most massive star contains only a single star

k1

∫ ∞
Mmax

n(M)dM = 1 ,

and the cluster mass
Mcluster = k1

∫ ∞
Mmin

Mn(M)dM

6or multi part power law

2.7 Stellar feedback 27

-14

-13

-12

lo
g

1
0
Ė

[E
S

N
/s

]

M0=120 M�, t0=3.56 Myr M0=85 M�, t0=4.06 Myr

-16

-15

-14

-13

lo
g

1
0
Ė

[E
S

N
/s

]

M0=60 M�, t0=4.86 Myr M0=40 M�, t0=6.18 Myr

-17

-16

-15

-14

-13

lo
g

1
0
Ė

[E
S

N
/s

]

M0=25 M�, t0=8.61 Myr M0=20 M�, t0=10.47 Myr

-18

-17

-16

lo
g

1
0
Ė

[E
S

N
/s

] M0=15 M�, t0=15.07 Myr

0.5 1
Time / t0

M0=12 M�, t0=20.73 Myr

-18

-17

-16

0 0.5 1

lo
g

1
0
Ė

[E
S

N
/s

]

Time / t0

M0=9 M�, t0=35.46 Myr

Voss et al. (2009); Palacios et al. (2005)
Meynet and Maeder (2003) z20 S0

Meynet and Maeder (2003) z20 S3A
Meynet and Maeder (2003) z20 S5A

Ekström et al. (2012) z14 V0
Ekström et al. (2012) z14 V4

Figure 2.9: These plots combine the data in Fig. 2.11 and Fig. 2.12. The feedback energy rates
are normalized to supernova energies (ESN = 1051 erg) per second. The times are normalized
to the end times of the rotating Ekström et al. (2012) models (t0). For better visibility line plots
were used for the tabulated functions. The numbers of points per plot are: 51 points in models of
Meynet et al. (1994), 350 points in models of Meynet and Maeder (2003), 400 points in models of
Ekström et al. (2012) and (interpolated) points every 0.1 Myr in the time dependent masses used
for Voss et al. (2009) which are based on stellar models of Palacios et al. (2005). The data points in
the other models are placed non uniformly in time to ease the comparison of the similar evolution
stages in different models. This figure also illustrates, why we focus on massive stars: these stars
evolve faster and have more energetic winds.

28 2. Background: massive stars and their surroundings

0.2

0.4

0.6

0.8

1

M
/M

0 M0=120 M�

t0=3.56 Myr

M0=85 M�

t0=4.06 Myr

0.2

0.4

0.6

0.8

1

M
/M

0 M0=60 M�

t0=4.86 Myr

M0=40 M�

t0=6.18 Myr

0.2

0.4

0.6

0.8

1

M
/M

0 M0=25 M�

t0=8.61 Myr

M0=20 M�

t0=10.47 Myr

0.2

0.4

0.6

0.8

1

M
/M

0 M0=15 M�

t0=15.07 Myr

0.5 1
Time / t0

M0=12 M�

t0=20.73 Myr

0.2
0.4
0.6
0.8

1

0 0.5 1

M
/M

0

Time / t0

M0=9 M�
t0=35.46 Myr

Voss et al. (2009); Palacios et al. (2005)
Meynet et al. (1994)

Meynet and Maeder (2003) z20 S0
Meynet and Maeder (2003) z20 S3A
Meynet and Maeder (2003) z20 S5A

Ekström et al. (2012) z14 V0
Ekström et al. (2012) z14 V4

Figure 2.10: Time dependent stellar masses (M) in fractions of the initial mass (M0). The times
are normalized to the end times of the rotating Ekström et al. (2012) models (t0).

2.7 Stellar feedback 29

-5

-4

-3

lo
g

1
0
Ṁ

[M
�

/y
r]

M0=120 M�
t0=3.56 Myr

M0=85 M�
t0=4.06 Myr

-6

-5

-4

-3

lo
g

1
0
Ṁ

[M
�

/y
r]

M0=60 M�

t0=4.86 Myr

M0=40 M�

t0=6.18 Myr

-7

-6

-5

-4

lo
g

1
0
Ṁ

[M
�

/y
r]

M0=25 M�

t0=8.61 Myr

M0=20 M�

t0=10.47 Myr

-9

-8

-7

-6

lo
g

1
0
Ṁ

[M
�

/y
r]

M0=15 M�

t0=15.07 Myr

0.5 1
Time / t0

M0=12 M�

t0=20.73 Myr

-9

-8

-7

0 0.5 1

lo
g

1
0
Ṁ

[M
�

/y
r]

Time / t0

M0=9 M�

t0=35.46 Myr
Voss et al. (2009); Palacios et al. (2005)

Meynet and Maeder (2003) z20 S0
Meynet and Maeder (2003) z20 S3A
Meynet and Maeder (2003) z20 S5A

Ekström et al. (2012) z14 V0
Ekström et al. (2012) z14 V4

Figure 2.11: Logarithmic mass loss rates in solar masses per year. As in Fig. 2.10, times are
normalized to the end times of the rotating Ekström et al. (2012) models (t0) and a line plot was
used for tabulated functions. Comparing the mass loss rates of Ekström et al. (2012); Meynet
and Maeder (2003) to the mass loss rates used for Voss et al. (2009), which are based on stellar
models of Palacios et al. (2005), shows artifacts of the interpolation between models in the latter.
Therefore, we decided to preferentially use the rotating models of Ekström et al. (2012).

30 2. Background: massive stars and their surroundings

1

2

3

4

v ∞
[1

00
0

km
/s

]

M0=120 M�

t0=3.56 Myr

M0=85 M�

t0=4.06 Myr

1

2

3

4

v ∞
[1

00
0

km
/s

]

M0=60 M�

t0=4.86 Myr

M0=40 M�

t0=6.18 Myr

1

2

3

v ∞
[1

00
0

km
/s

]

M0=25 M�
t0=8.61 Myr

M0=20 M�
t0=10.47 Myr

1

2

3

v ∞
[1

00
0

km
/s

]

M0=15 M�
t0=15.07 Myr

0.5 1
Time / t0

M0=12 M�
t0=20.73 Myr

1

2

3

0 0.5 1

v ∞
[1

00
0

km
/s

]

Time / t0

M0=9 M�
t0=35.46 Myr

Voss et al. (2009); Palacios et al. (2005)
Meynet and Maeder (2003) z20 S0

Meynet and Maeder (2003) z20 S3A
Meynet and Maeder (2003) z20 S5A

Ekström et al. (2012) z14 V0
Ekström et al. (2012) z14 V4

Figure 2.12: The terminal wind velocities (v∞) shown in this figure were estimated from the
surface abundances in the stellar evolution models with the classification criteria summarized in
Table 2.4. Times were normalized to the end times of the rotating Ekström et al. (2012) models
(t0). The interpolated models used for Voss et al. (2009) show effects of interpolation between
stellar tracks.

2.7 Stellar feedback 31

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4

M
as

s
[M

�
]

Time [Myr]

Evolution of a 120 M� star

Voss 2009, 2010
Meynet+ 1994 z01
Meynet+ 1994 z04

Meynet+ 2005 z04 S3
Meynet+ 1994 z08

Meynet+ 2005 z08 S3
Meynet+ 1994 z20

Meynet+ 2003 z20 S0
Meynet+ 2003 z20 S3A

Meynet+ 1994 z40

Meynet+ 2005 z40 S0
Meynet+ 2005 z40 S3MZ

Meynet+ 2005 z40 S3
Geneva 2011 z14 V0
Geneva 2011 z14 V4

Figure 2.13: Evolution of the mass of an 120 M� star in the Geneva models (Sect. 2.7.1) with
different metallicities and rotation velocities compared to the raw data used for Voss et al. (2009,
2010). The feedback of very massive stars plays a crucial role for the feedback of an OB asso-
ciation. Few models with very massive stars (1-2%) have a large influence the average feedback
(factor 2-3).

-11

-10

-9

-8

0 1 2 3

lo
g

1
0

2
6
A

ll
os

s
[M
�

/y
r]

time [Myr]

v = 0
v = 0.4vcrit

Voss 2009
v = 300 km s−1

-6.0

-5.5

-5.0

0.0 1.0 2.0 3.0lo
g

1
0

(2
6
A

ls
ur

fa
ce

m
as

s
fr

ac
t.)

time [Myr]

Figure 2.14: 26Al feedback of a 120 M� star. The non-rotating model and the rotating model
with 0.4vcrit were taken from Ekström et al. (2012). The model with an initial rotation of 300
km s−1 was extracted from Palacios et al. (2005, Fig. 1). This shows that the mass fraction in the
isochrones used in Voss et al. (2009) is relatively unaffected by the interpolation. The differences
in the total output are caused by the problems with the mass loss rate.

32 2. Background: massive stars and their surroundings

4

6

8

10

12

0 10 20 30 40

M
as

s
lo

ss
[M
�

]p
er

SN

Time [Myr]

Monte-Carlo #1
Monte-Carlo #2
Monte-Carlo #3
Monte-Carlo #4
Monte-Carlo #5

Meynet and Maeder (2003) S3A

10

20

30

20 40 60 80 100 120

Fi
na

lm
as

s
[M
�

]

Initial mass [M�]

Ekström et al. (2012) V4

Figure 2.15: Left plot: mass loss per SN event against time between ZAMS and SN event (which is
larger for smaller initial masses). The lines connect the rotating models from the stellar evolution
grids and the dots are SN mass losses from individual Monte-Carlo realizations. The remnant
masses are assumed to be 1.4 M� for stars with initial masses below 25 M� and 7 M� for more
massive stars. The right plot shows the interrelation between the initial mass and the final mass or
the remnant mass. The Monte-Carlo data is not displayed in this plot, since the information on the
initial masses of the stars in the Monte-Carlo realization was not stored.

can be obtained by multiplying the number of stars with their mass. Elmegreen did not use an
upper mass limit (i.e. ∞−0.35 = 0 and ∞−1.35 = 0 at the upper boundary of the intervals) and
thus the constant can be eliminated from 1 = k1(0 − M−1.35

max)/(−1.35) and Mcluster = k1(0 −
M−0.35

min)/(−0.35). This leads to

Mcluster =
1.35M−0.35

min

0.35M−1.35
max

.

This can be rewritten to

Mcluster ∼ 3× 103

(
Mmax

100M�

)−1.35

M� .

This mass limit cannot explain the high mass cut-off seen in observations.
A more recent multi component power law IMF has been published by Kroupa (2001). However,
the most massive stars in clusters are still an unsolved problem (Weidner et al., 2010, 2013). The
polynomial fit of Weidner et al. (2013) shows that for a cluster mass of 2 000 M� derived from a
8% star formation efficiency (Murray, 2011) and the median cloud mass in the Milky Way radio
cloud survey of 2.5× 104 M� the most massive star is expected to have ∼ 60 M�.

As explained in Weidner et al. (2013) random sampling of the IMF to find the most massive star
in the association leads to results contradicting the observations. But even if our estimate of mass
of the most massive star in the association would be too high, our conclusions on the individual
contributions of association’s stars to the combined feedback of the association will still stay valid.

2.7 Stellar feedback 33

10

20

30

M
f

[M
�

]

10

20

E
je

ct
a

[M
�

]

10

30

50

20 40 60 80 100 120

t S
N

[M
yr

]

Initial mass [M�]

Ekström et al. (2012), V0
Ekström et al. (2012), V4

Limongi and Chieffi (2006), V0
Voss, raw data

1e-6

1e-5

1e-4

6
0
Fe

[M
�

]

1e-6

1e-5

1e-4

20 40 60 80 100 120

2
6
A

l[
M
�

]

Initial mass [M�]

Figure 2.16: SN yields: final masses of the stellar evolution models (Mf , top left), SN ejecta
(center, left) and times of the SN explosions (tSN, bottom left). The data labeled Ekström et al.
(2012) was combined with canonical remnant masses to compute the mass of the SN ejecta. These
models do not include 60Fe and 26Al produced during the SN explosion. Thus, the amount of trace
elements ejected in the SN (right panels) was taken from Tab. 2 and 3 of Limongi and Chieffi
(2006). The data set “Voss, raw data” was used for the population synthesis models published in
Voss et al. (2009, 2010).

We assume that our association of massive stars contains 10 stars in the mass range [8-120] M�.
According to Salpeter (1955) 10 stars in the mass range [8:120] M� have a total initial weight of
194 M�:

10∫ 120

8
M−2.35dM

∫ 120

8

MM−2.35dM = 194M� .

Now it is possible to find 10 mass intervals [ni, ni+1] with i = 0, 1, ..., 10 and no = 8 M� in this
range with the same cumulative distribution function (CDF) F = 0.1 × (8−1.35 − 120−1.35) via
ni = (n−1.35

i−1 −F)−1/1.35. This is shown in Fig. 2.7.5. These intervals are the so called deciles. The
masses Mi in these intervals are:

Mi =
10∫ ni+1

ni
M−2.35dM

∫ ni+1

ni

MM−2.35dM .

Table 2.5 lists Mi for the Salpeter (1955) IMF and the Kroupa (2001) IMF. Since there are only
published Geneva models (Ekström et al., 2012) for distinct masses (7, 9, 12, 15, 20, 25, 32, 40, 60,
85 and 120M�) a first guess is to use 3×9M�, 2×12M�, 2×15M�, 1×20M�, 1×32M� and

34 2. Background: massive stars and their surroundings

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

fu
nc

tio
n

(C
D

F)

Mass [M�]

Salpeter (1955) IMF

Figure 2.17: Deciles of the cumulative distribution function (CDF) of 10 stars in the mass range
[8:120] M� with a Salpeter (1955) IMF. The vertical arrows indicate the boundaries between the
mass intervals.

1× 60 M�. This leads to a total mass of 193 M� instead of the expected 194 M� from a Salpeter
(1955) IMF or the expected 199 M� from a Kroupa (2001) IMF. The feedback of this model is
shown in Fig. 2.18. From this figure it becomes evident that the most massive, still existing star
dominates the feedback (e.g. Oey, 2005, also mentions this). Therefore, we conclude that during
the first 4.8 Myr the feedback of a 60 M� star is a good first approximation for the feedback of our
association.

Our first guess model assumes that no star in the association is more massive than 60 M�. The
probability for this is

p =

∫ 60

8
M−2.35dM∫ 120

8
M−2.35dM

= 95% .

The most energetic feedback for stars with Geneva models and a total mass of approximately
200 M� can be obtained by using two stars: 120 M� and 85 M� (= 205 M�), which is, however,
not very likely. The probability that all stars with masses in [8:120] M� are more massive than 85
M� is

p =

∫ 120

60
M−2.35dM∫ 120

8
M−2.35dM

= 1.6% .

Assuming that all mass is found in stars with 9 M� would lead to the weakest feedback. Also this
scenario in not very likely. The probability that all stars are less massive than 9 M� is

p =

∫ 9

8
M−2.35dM∫ 120

8
M−2.35dM

= 15% .

2.7 Stellar feedback 35

33

34

35

36

37

38

39

0 2 4 6 8 10

Fe
ed

ba
ck

en
er

gy
[e

rg
/s

]

Time [Myr]

10 × Voss et al. (2009)
120 + 85 M�
Simple model

23 × 9 M�

120 M�
85 M�
60 M�
32 M�

Figure 2.18: Comparison of the “first guess” model (3×9M�, 2×12M�, 2×15M�, 1×20M�,
1×32M� and 1×60M�) to the Voss et al. (2009) feedback model, feedback of individual massive
stars as well as the highest energy model (85 M� and 60 M�) and the lowest energy model (all
mass in 9 M� stars). The “simple” model is much less continuous than the Voss et al. (2009)
model. Also a realistic OB association with ∼ 10 massive stars is expected to have a feedback that
is strongly varying with time – the number of stars is too low to smooth the winds and there are
peaks when the SN explode (smeared out over 0.1 Myr in the Voss et al. (2009) model).

This corresponds to ∼ 21 stars if the expected mass for an IMF with 10 stars above 8 M� is used
or ∼ 23 stars if one prefers to use the a similar mass as for the most energetic case.
To summarize, we used the IMF to find a “first guess model”, which can be constructed from the
available data in the Geneva grid of stellar evolution models. Moreover, the feedback in this model
is dominated by the most massive still existing star.

Kolmogorov Smirnov test for the “first guess” model

In the Kolmogorov Smirnov test the maximal deviation of the CDF of a sorted sample (S(M))
from the CDF of the IMF (F(M)) is computed. The result of this test is that our “first guess model”
(Figure 2.18) for the mass distribution is in good agreement with the CDF of the IMF. Table 2.6
shows that the maximal deviation is so small that the null hypothesis cannot be rejected. As a
comparison this test is also shown for the unlikely cases of high mass stars only or low mass stars
only.

36 2. Background: massive stars and their surroundings

Salpeter (1955) IMF Kroupa (2001) IMF first guess∫ 120

8
M−2.35dM

∫ 120

8
MM−2.3dM model

1 < m/M�
Mass Interval Mass Interval Mass

M1= 8.3 M� [8.0, 8.6] M� M1= 8.3 M� [8.0, 8.7] M� 9 M�
M2= 9.0 M� [8.6, 9.4] M� M2= 9.0 M� [8.7, 9.4] M� 9 M�
M3= 9.8 M� [9.4,10.3] M� M3= 9.9 M� [9.4,10.4] M� 9 M�
M4=10.9 M� [10.3,11.5] M� M4=11.0 M� [10.4,11.7] M� 12 M�
M5=12.3 M� [11.5,13.1] M� M5=12.5 M� [11.7,13.3] M� 12 M�
M6=14.2 M� [13.1,15.3] M� M6=14.4 M� [13.3,15.7] M� 15 M�
M7=16.9 M� [15.3,18.7] M� M7=17.3 M� [15.7,19.2] M� 15 M�
M8=21.3 M� [18.7,24.5] M� M8=21.9 M� [19.2,25.3] M� 20 M�
M9=30.0 M� [24.5,37.7] M� M9=31.1 M� [25.3,39.2] M� 32 M�
M10=61.3 M� [37.7,120.0] M� M10=63.2 M� [39.2,120.0] M� 60 M�

Table 2.5: Columns 1-4 show the deciles of the IMF. Column 5 lists the “first guess model”.

n M S(M) F(M) S(ni−1)− F (ni) S(ni)− F (ni)

1 85 0.5 0.98 -0.98 -0.48
2 120 1.0 1.0 0.00 0.02
1 60 0.5 0.96 -0.96 -0.44
2 120 1.0 1.0 0.00 0.04
1 9 0.1 0.15 -0.15 -0.05
2 9 0.2 0.15 -0.05 0.05
3 9 0.3 0.15 0.05 0.15
4 12 0.4 0.43 -0.13 -0.03
5 12 0.5 0.43 -0.03 0.07
6 15 0.6 0.59 -0.09 0.01
7 15 0.7 0.59 0.01 0.11
8 20 0.8 0.73 -0.03 0.07
9 32 0.9 0.87 -0.07 0.03

10 60 1.0 0.96 -0.06 0.04
1 9 0.05 0.15 0.15 -0.10
...

20 9 1.00 0.15 -0.85 0.80

Table 2.6: This table shows the results of the Kolmogorov Smirnov tests for the four models
discussed in Sect. 2.7.5. The models are separated by double lines. On top the OB association
consists of a 85 M� and a 120 M� star. The second model shows an association with a 60 M� and
a 120M� star. The next model is the “first guess model” and the last model assumes that the whole
OB association consists of 9 M� stars. The first column is the sort index of the stars by mass. The
second column shows the stellar mass. S(M) is the CDF of a sorted sample and F(M) is the CDF
from the IMF. Column 4 shows the difference between F(M) in the same line and S(M) from the
line above (or zero for the first star). Column 5 contains the differences between S(M) and F(M)
from the same line. The interpretation of this data is that the “first guess model” passed the test
and that the other models (shown as a reference) are quite unlikely (see highlighted values).

Chapter 3

Method: hydrodynamic simulations of the
ISM

In this work we carry out numerical simulations of the interstellar medium (ISM). This approach
is based on several assumptions, which are discussed in this chapter. First of all, when the ISM is
modeled, it is usually treated as a perfect gas – often also called “ideal gas”. This approach ignores
intermolecular forces (i.e. dipole interactions, friction, Van der Waals, Joule-Thomson coefficients,
molecular excitations, ...), which is problematic in high density environments like inside stars or
planets, but which is a good approximation in the ISM, where densities are much lower than in
earth-based laboratories. The best laboratory-vacua (e.g. in the LHC at CERN1 or for gravitational
wave interferometers) have of the order of a million particles per cubic centimeter. For comparison,
in our simulations the highest number densities rarely surpass few thousand particles per cubic
centimeter. In the ideal gas approach, the gas consists of individual particles with ballistic motions.
These particles have localized interactions only and thus move on straight lines until they undergo
perfectly elastic two particle collisions.

For our assumption of an ideal gas we have to decide, if the fluid approximation is a valid approach
to facilitate handling areas spanning hundreds of cubic parsecs in space containing a vast numbers
of particles (see Sect. 3.1).

If the fluid approach is valid, we have to choose a discretization scheme (Sect. 3.2) and to consider
the limits of the time step size (Sect. 3.3).

Another approximation we have to make is the choice of the set of conservation laws we will
employ. Our description of nature is always a simple approximation, which – hopefully – covers
the leading order effects. In our case this means to decide which forces have to be taken into
account in the simulation to follow the most important processes. This encompasses the evaluation
if shear forces, magnetic fields or gravity are important agents. All these processes can in principle
be included, however, at considerable computational cost. This is discussed in Sect. 3.4.

Also some numerical pitfalls (e.g. stability of numerical schemes, conservative vs. primitive vari-
ables, ...) are briefly sketched in this chapter.

1see e.g. http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/components/vacuum.htm

http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/components/vacuum.htm

38 3. Method: hydrodynamic simulations of the ISM

Figure 3.1: The hydrodynamic approach is based on the statis-
tical treatment of large numbers of gas particles. This sketch
shows individual particles (small dots) with individual veloci-
ties vi (shown as vectors). A fluid approach can be applied if the
particles in a given volume collide often enough to be described
as a homogeneous gas blob with averaged quantities.

L

∆x > λ

Figure 3.2: Discretization of continuous functions on a grid. The hydrodynamic approach is only
applicable if the mean free path (λ) is much smaller than the scale of interest ∆x and if the scale
of the problem L is resolved with a sufficiently large number of grid cells.

3.1 Fluid approximation
To motivate the necessity of the hydrodynamic approach, we sketch a gas consisting of many
particles with velocities ~vi in Fig. 3.1. In our numerical hydrodynamic simulations we model large
regions of space (∼ 106 pc3) containing a huge number of gas particles. E.g. a number density of
∼ 1 cm−3 leads to > 1058 particles in a box of 106 pc3. Thus, we cannot treat all gas particles
individually. To tackle the evolution of a system with such a vast numbers of particles, we have
to resort to the fluid approximation. This is an idealized concept, in which the gas is described
statistically via averaged quantities, which vary with position (sketched in Fig. 3.2). For example,
with a velocity field ~v (~x) = 〈~vi〉 (~x), which is the average of the of individual particle velocities in
a given volume, centered around a location ~x (at a given time). Later on, we will call such regions
with averaged quantities and a length scale ∆x “cells” or “fluid elements”. The fluid approximation
can only be used if the mean free path (λ) – i.e. the average distance a gas particle travels between
two collisions – is much smaller than ∆x:

∆x� λ =
1

σn
∼ 106T

2

n
[cm] , (3.1)

with the number density n and the interaction cross section σ.
For example, the mean free path of the warm ISM with a temperature of T = 104 K and a number
density of n = 1 cm−3 is about λ ∼ 106 T 2

n
= 1014 cm. This is several orders of magnitude

below our resolution. An example where the fluid description of the gas should not be used is e.g.
the solar wind near the earth. Assuming a temperature of T = 105 K and a number density of
n = 10 cm−3, this leads to a mean free path of λ ∼ 1015 cm (70 AU), which clearly shows that
one should use a plasma description for this problem.
The length scales of the problem L, on which the continuous functions (e.g. density, pressure, ...)
change, have to be even larger than the scales ∆x, on which these averaged quantities are defined.
To obtain meaningful averages, another important property is the saturation of forces. Forces
which do not saturate e.g. gravity are treated as source terms in hydrodynamical simulations.

3.2 Spatial discretization 39

Figure 3.3: Illustration of the difference between the Eulerian (upper sketch) and the
Lagrangian (lower sketch) discretization. The Eulerian view follows the evolution
of averaged fluid quantities at fixed locations. The areas linked to these averaged
quantities are color coded. In contrast, the smooth particle hydrodynamics (SPH)
approach – which is a Lagrangian method – discretizes the initial conditions by
grouping gas particles to fluid elements. During the simulation, it tracks the motions
of these fluid elements. Regions of denser gas will thus be sampled with more fluid
elements than sparse regions. However, this sketch is for illustration only, since
an SPH simulation would set up the initial positions the fluid elements in a more
sophisticated way (e.g. glass configuration).

3.2 Spatial discretization
Basically, there are two ways to follow the evolution of the fluid. The system properties (U), which
are often gathered in a vector containing the information on the density, flow velocity and pressure
of the fluid, can be followed in the Eulerian or Lagrangian picture (sketched in Fig. 3.3).
In the Lagrangian view, which is used in the smooth particle hydrodynamics (SPH) approach where
individual fluid particles represent fluid elements, the observer moves along with the fluid element.
The temporal changes of the system quantities are described by the “convective” or “Lagrangian”
derivative

(
DU
Dt

)
:

DUi/Dt = ∂Ui/∂t︸ ︷︷ ︸
Eulerian

+ ~v · ~∇Ui︸ ︷︷ ︸
convective derivative

with ~v · ~∇Ui = (vx∇x + vy∇y + vz∇z)Ui .

The advantage of comoving coordinates is the feasibility of tracing the evolution of individual fluid
elements. However, this method has problems with sparse regions, turbulence and artificial surface
tension.
In the Eulerian view, which is the strategy in most grid codes2, the temporal evolution of fluid is
described by time dependent system properties at fixed locations (resp. in fixed volumes). Thus,
temporal changes of the system quantities are followed via the partial time derivative ∂U

∂t
. The sim-

ulated region is subdivided into sub-volumes – which will be called “cells” further on. Individual
gas particles can leave or enter such volumes. Technically, they are treated via averaged quantities.
At every time step and at each cell interface, the Riemann problem (see Sect. 3.5) is solved. This
checks, if fluxes across this interface occur and how large they are. Subsequently the averaged
quantities are changed according to these fluxes. In grid codes, the resolution of the simulation can
be either set before starting the simulation by a fixed mesh or it can be adjusted via adaptive mesh
refinement (AMR), which can subdivide or merge cells during the run to better resolve “interesting
areas”– e.g. near strong gradients (see Sect. 3.9).
This work uses grid codes, as we are interested in 26Al in the dilute medium. Since the resolution
in SPH follows the gas density, the SPH method is not well suited for the purpose of this study.

3.2.1 Setting up a grid code simulation
At the start of a grid code simulation, the initial state of the system has to be defined. This state
of the medium is called “initial conditions (IC)” and it will typically be described by continuously

2Grid codes are also sometimes called “mesh codes”. Moving mesh codes do not stick to the Eulerian view.

40 3. Method: hydrodynamic simulations of the ISM

varying quantities. Most commonly, the IC are specified with so-called primitive variables: density,
velocity and pressure. In principle, these quantities could also be used to calculate fluxes in the
simulations. However, for the compliance with conservation laws, it is advantageous to use the
conserved quantities (see Sect. 3.4), density, momentum and total energy, to calculate fluxes. This
way, fluxes across cell interfaces will violate the conservation laws only at the level of number
precision, which is much less than errors in fluxes based on primitive variables would violate the
conservation laws. Typically, a grid code working with conservative quantities will convert them
into primitive variables at each time step and for each cell. This is necessary for the treatment of
ISM physics like radiative cooling (where densities and temperatures matter) and also for statistics
like e.g. kinetic and thermal energy fractions. Moreover, the code will try to use units in which the
conservative variables in most of the cells are in the order of unity, since this is advantageous for
the numerics. The conversion factors between these units and cgs or SI units are taken account for
the calculation of gravity or ISM physics like e.g. cooling.
Depicting these quantities on a mesh is called “discretization”. It is connected with the loss of in-
formation, which causes discretization errors. Technically, the simulation will evolve the medium
inside a box of given size and geometry. This volume has to be subdivided into grid cells. Dur-
ing this discretization process, averaged system properties – either conservative or primitive – are
calculated for each cell: density, momentum or velocity, total energy or pressure. Additionally,
it is possible to use so-called passive scalars for properties like metallicity. Passive scalars are
advected across cell boundaries with same velocity as the carrier flow. However, the ratio of the
concentrations of the passive scalar in the two cells can be different from the density ratio. There
are several possible ways how the system quantities can be discretized: in finite difference (FD)
methods, values at grid centers and at grid faces are stored. Typically, a so-called staggered mesh
is employed, which usually stores scalars, like densities and pressures, at the grid cell centers and
quantities containing directional information, like velocities, at the cell interfaces. We will use a
more sophisticated approach, which makes use of the conservation laws: The discretization via
finite volumes (FV) discretizes the conservative equations and stores cell averages. One can also
store terms of the orthogonal series expansion of the velocity. This would then be a so-called finite
element (FE) method. Thus, FV is a very low order FE method.
To specify the treatment of gas at the boundaries of the region, boundary conditions (BCs) have
to be set. Typical choices are reflective boundaries, outflow boundaries or periodic boundaries.
However, some problems might require more sophisticated BCs, e.g. with inflows or fixed states
of boundary cells.

3.2.2 Geometry of grid code simulations

A good choice of the grid can substantially lower the computational cost. Since simulations be-
come more computationally intensive when the number of dimensions in increased, symmetries in
the problem setup can motivate the choice of a cylindrical or a spherical grid instead of a Cartesian
grid. Such symmetries are also exploited in this work: we follow interesting processes first in
spherically symmetric 1D models (if possible), since this way, sampling a large region in parame-
ter space is feasible. Subsequently, interesting regions of parameter space are re-simulated in more
dimensions to take deviations from spherical symmetry into account.
Generally, if very high resolution is required, problems are often treated in 1D, 2D or 2.5D first.
Here, 2.5D means spherical polar coordinates (r, θ, φ), with reflecting BC at the equator and at the
polar axis. This configuration assumes rotational symmetry around the polar axis. It performs 2D

3.3 Time discretization and von Neumann stability analysis 41

∆tn+1/2
∆xj+1/2

xj−1 xj xj+1

tn−1

tn

tn+1 Downwind ∂x (u)nj =
(
unj+1 − unj

)
/ (∆x)

Centered ∂x (u)nj =
(
unj+1 − unj−1

)
/ (2∆x)

Upwind ∂x (u)nj =
(
unj − unj−1

)
/ (∆x)

Figure 3.4: Finite differencing basics. The columns depict points in space (xj) where the solution
(unj) is evaluated. The rows contain these solutions at different times (tn). The sketched points
are only a cutout of a larger grid. The full grid contains the initial conditions at the lowest row
and boundary conditions in the first and last column. The sketch shows different discretizations of
derivatives, which are mathematically equivalent in the limit of infinitely small grid spacing.

simulations in the meridional (r, θ) plane but 3D simulations in ~v, ~B.
When the number of dimensions is lowered, one has to keep the consequences in mind: e.g.
hydrodynamic instabilities will develop differently and in Cartesian coordinates different numbers
of dimensions will lead to different evolutions of e.g. a Sedov-Taylor blast (since the number of
dimensions is part of the exponent in the formulas for the temporal evolution of radius and velocity,
as shown in Sect. 4.3).
For many simulations an evenly spaced grid is a very good choice. It can, however, become
necessary to better resolve regions with steep gradients if a high resolution of the whole volume
becomes computationally too expensive. Possible solutions are AMR (see Sect. 3.9) or non-evenly
spaced grids with (adaptive) cell sizes depending on gradients of e.g. pressure or density. In this
work, we use evenly spaced grids and introduce – if necessary – evenly spaced meshes inside cells
via AMR by splitting the cell into 2ν cells, where ν is the number of dimensions.

3.3 Time discretization and von Neumann stability analysis
Figure 3.4 sketches the simulation process: the solution (unj) at the locations (columns, xj) is
advanced in time (rows, tn). The sketched points are a cutout of a larger net. In the full grid,
the lowest row would contain the initial conditions. Furthermore the solution at the leftmost and
rightmost points in the full grid (first and last column) follows from the boundary conditions.
We now take a step back from finite volumes to finite differences and examine different ways
to calculate derivatives. The colored lines in this sketch show different – in the limit of very
high resolution mathematically equivalent – discretizations of derivatives. The points used in the
derivative form the computational stencil of the method. At the first and last point in the grid,
missing information in the stencil is replenished by the boundary condition. However, not all
these discretizations of the derivative would lead to good results in a simulation. The suitability of
these prescriptions can be checked by applying them to a wave solution. Schemes with growing
amplification factors (|ξ| > 1), where ξ(k) is the wave-number dependent amplification factor,
are unstable and thus not suitable for numerical simulations. This is the basic concept of the von
Neumann stability analysis.
For illustration, we will apply this method to two different discretizations: to the forward-time,
centered-space method (blue lines in Fig. 3.4) and the forward-time, upwind scheme (purple line in

42 3. Method: hydrodynamic simulations of the ISM

Fig. 3.4). In the von Neumann stability analysis solutions of the type unj = eikj∆x±iωn∆t = ξneikj∆x

are used. Two single frequency solutions to the 1D wave equation, u (x, t) = cos (kx± ωt) and
u (x, t) = sin (kx± ωt) with the wave number k = ω/c, are combined in this complex exponential
form.
The Taylor series for the forward-time, centered-space method (blue lines in Fig. 3.4) leads to

un+1
j = unj −

c∆t

2∆x

(
unj+1 − unj−1

)
.

Von Neumann stability analysis shows that this scheme is unconditionally unstable:

ξn+1eikj∆x = ξneikj∆x − c∆t

2∆x

(
ξneik(j+1)∆x − ξneik(j−1)∆x

)
ξ = 1− c∆t

2∆x

(
eik∆x − e−ik∆x

)
ξ = 1− i c∆t

2∆x
sin (k∆x)

|ξ|2 = 1 +

(
c∆t

2∆x

)2

sin2 (k∆x) .

The physics behind this is that information should only come from the direction of the flow.
An example for a scheme with stable regions is the forward-time, upwind scheme, where informa-
tion is only allowed to propagate from the nearest upwind neighbors. The Taylor series is

un+1
j = unj −

c∆t

∆x

(
unj − unj−1

)
.

Here von Neumann stability analysis leads to

ξ = 1− c∆t

∆x

(
1− e−ik∆x

)
ξ = 1− c∆t

∆x
(1− cos (k∆x) + i sin (k∆x))

|ξ|2 = 1− 2
c∆t

∆x
(1− cos (k∆x)) +

(
c∆t

∆x

)2 (
1− 2 cos (k∆x) + cos2 (k∆x) + sin2 (k∆x)

)
|ξ|2 = 1− 2

c∆t

∆x

(
1− a∆t

∆x

)
(1− cos (k∆x)) .

This is stable for 0 ≤ c∆t
∆x
≤ 1. This can be rewritten as ∆t ≤ ∆x/c, which is the Courant-

Friedrichs-Lewy (CFL) condition (Courant et al.), used for the time step size in all our simulations
in order to stay in the stable regime. The time step ∆t must be less than the time to cross a cell at
speed c. This is necessary to ensure that information from outside the stencil does not have enough
time to reach the point xj . The new solution un+1

j must take input from all points at tn within
the domain of dependence of xn+1

j into account. The CFL also applies to finite volume methods,
where similar arguments based on the domain of dependence can be made – in this case we would
not draw the stencil but rather look at the characteristics (see Fig. 3.5 and its explanation in the
text). However, also this would lead to the CFL and reflect the fact that gas must not cross more
than a whole cell during one time step.
In conclusion, we have seen that schemes, which take the propagation of information properly
into account, can lead to stable solutions. The next question is, which equations can describe the
physics of the problem. We will delve into this problem in Sect. 3.4.

3.4 Hydrodynamic conservation laws (Euler equations) 43

3.4 Hydrodynamic conservation laws (Euler equations)
The Euler equations3 are a set of coupled non-linear hyperbolic4 conservation laws, which can be
used as a simplified model to describe the dynamics of compressible fluids. The Euler equations
are only a first approximation. They neglect body forces (body forces – e.g. gravity – have to be
added as source terms to the solution of the hyperbolic PDEs), viscosity (included in the Navier
Stokes equations) or magnetic fields (treated in MHD). The Euler equations support sound waves
and an entropy wave.
The derivation of the hydrodynamic conservation laws (Eq. 3.3 to 3.6) is based on the conservation
of mass, energy and momentum. Using an integration of those quantities over a cell and Gauß’s
theorem, leads to the differential form of the Euler equations via the vanishing integrands. The
detailed derivations can be found in any book on hydrodynamics, e.g. Shu (1992, Chapter 2 pages
20 to 23 and Chapter 4 pages 45 to 46).
In addition to these hydrodynamic conservation laws, pressure and energy have to be connected
with an equation of state (EOS). This closure relation – i.e. the relation between pressure and
energy – is required to solve the system of hydrodynamic conservation laws, since there are more
unknowns than equations. A possible choice is the adiabatic5 EOS of an ideal gas:

Equation of State (EOS): p = (γ − 1) ρein or pV = NkBT . (3.2)

The adiabatic exponent γ = cp
cV

= f+2
f

is the ratio of the specific heats (cp, cV). It is a constant
that depends on the degrees of freedom (f) in the chosen type of gas. In a monoatomic ideal gas
the energy per degree of freedom is kBT/2. Thus, for increasing the temperature we can write
cV ∆T = fk/2∆T , which has been normalized with the number of particles N . If the volume has
to be adjusted to keep the pressure constant, we find from the EOS that V is proportional to T and
thus p∆V = pV

T
∆T = kBT

T
∆T , which leads to cp = cv + k and cp

cV
= f+2

f
. For monoatomic gases

(e.g. atomic hydrogen, H I) the adiabatic exponent attains the value γ = 5
3
. Twoatomic gases and

linear molecules (e.g. gases like air or H2) have an adiabatic exponent of γ = 7
5

= 1.4. In the
isothermal case (i.e. constant temperature) the pressure is a function of density only P = c2

sρ.
ein = E/ρ− 0.5|~v2| is the specific internal energy density. In Equation 3.2 ein has to be multiplied
with the density, since ein is the internal energy per unit mass and not an internal energy volume
density Etherm = ρein.
The hydrodynamic equations without gravity and viscosity are:

mass :
∂ρ

∂t
+
∂ρvk
∂xk

= 0 (3.3)

momentum :
∂ρvi
∂t

+
∂ρvivk
∂xk

= −(γ − 1)
∂ρein

∂xi
(3.4)

energy :
∂Etot

∂t
+
∂Etotvk
∂xk

= −(γ − 1)
∂ρeinvk
∂xk

(3.5)

internal energy :
∂ρein

∂t
+
∂ρeinvk
∂xk

= −(γ − 1)ρein
∂vk
∂xk

. (3.6)

3Strictly speaking, only Equation 3.8 is the Euler equation, but many authors call the whole system of partial
differential equations (PDEs) Euler equations.

4A PDE for a function u(x,t) the form Autt + 2Butx + Cuxx + ... = 0 is called hyperbolic, if AC − B2 < 0.
This kind of PDEs behaves like a wave equation and has real Eigenvalues. It describes a phenomenon with finite
propagation speed.

5“adiabatic” means “no heat exchange with the environment”.

44 3. Method: hydrodynamic simulations of the ISM

In vector notation and with the EOS (Eq. 3.2), the system of these three conservation laws can be
written as:

∂tρ+∇ · (ρ~v) = 0 [conservation of mass] (3.7)
∂t (ρ~v) +∇ · (ρ~v ⊗ ~v) +∇p = 0 [conservation of momentum] (3.8)
∂tEtot +∇ · [~v (Etot + p)] = 0 [conservation of energy] . (3.9)

In this system of coupled nonlinear partial differential equations Etot denotes the total energy
density, p is the pressure, ~v is the velocity vector, ρ is the density, ∂ab = ∂b

∂a
are partial derivatives

and ⊗ is the tensor product.
The technical terms “diffusive” and “convective” terms, often used in context of hydrodynamical
simulations, refer to parts of such equations: A transport equation for a general flow quantity Φ
and a diffusion coefficient Γ typically consists of four terms:

∂tρΦ︸︷︷︸
time

+∇ · (~vρΦ)︸ ︷︷ ︸
convection

= ∇ · (Γρ∇Φ)︸ ︷︷ ︸
diffusion

+ SΦ︸︷︷︸
source

.

The first term on the left side describes the net gain or net loss per unit volume and unit time. The
convective term covers the downstream transport with velocity ~v. A nonuniform spatial distribution
of Φ leads to a diffusive term on the right hand side. All sources and sinks are collected in SΦ.
Basically, the flow can be described either with the vector of primitive variables ~WT = (ρ,~v, P) or
with the vector of conservative variables ~UT = (ρ, ρ~v, E). The latter is favorable for computations
(see Sect. 3.2 where conservative methods like finite volumes are discussed), as it directly uses the
conservation of mass, momentum and total energy.
Generally, a system of conservation laws can be written in a compact form using the flux vectors
~Fi

(
~U
)

, the vector of conservative variables ~U and Einstein’s summation convention:

~FT
1

(
~U
)

=
(
ρv1, ρv

2
1 + p, ρv1v2, ρv1v3, v1(E + p)

)
~FT

2

(
~U
)

=
(
ρv2, ρv1v2, ρv

2
2 + p, ρv2v3, v2(E + p)

)
~FT

3

(
~U
)

=
(
ρv3, ρv1v3, ρv2v3, ρv

2
3 + p, v3(E + p)

)
∂t~U + ∂xi

~Fi

(
~U
)

= 0 . (3.10)

With the Jacobians of the flux functions ~Ji
(
~U
)

= ∂ ~Fi
∂~U

it can be rewritten as:

∂t~U + ~Ji∂xi
~U = 0 (3.11)

This system is hyperbolic if the matrix ~J has real and distinct Eigenvalues λi. Physically, the
Eigenvalues represent velocities of propagation of information. The same type of system can be
written down for the primitive variables.
An important concept for the numerical solution are the characteristic curves. These curves are
possible trajectories of a signal in the space-time diagram. Fig. 3.5 shows this diagram for a
hyperbolic PDE. The real Eigenvalues of this PDE correspond to wave families with finite speeds.
These signal propagation velocities lead to a domain of dependence and a domain of influence.

3.4 Hydrodynamic conservation laws (Euler equations) 45
Ti

m
e

Spacexj − atn xj + atn

tn P (xj, tn)

xj

C1 C2

Domain of

Domain of

dependence

influence

Riemann invariants
are constant along the
characteristic curves (C1, C2).
For an entropy wave: P, u.
For a sound wave: s, u± 2cs

γ−1
.

Figure 3.5: Hyperbolic partial differential equations have real Eigenvalues (λ) with the physical
interpretation of finite wave speeds of different wave families. The characteristic curves (C1, C2) –
which are possible wave trajectories (i.e. x(t) = xj + λ(t− tn)) – limit the domain of dependence
and the domain of influence of the point P (xj, tn) in the space-time diagram. The sketch also lists
the Riemann Invariants for two wave families.

Since Eq. 3.11 will lead to a velocity of the wave λ(~U), which will be rather a function of the
solution than constant, compression and expansion of the wave can be observed. For example, if
the velocity increases for larger ~U , the characteristics in the space-time plane are steeper in a region
with smaller ~U than in a region with larger ~U (in this diagram the slope is indirectly proportional
to the velocity). This is shown in Fig. 3.6. Diverging characteristics indicate a rarefaction fan –
shown in Fig. 3.6 in the higher ~U region. The solution for such waves is discussed in Sect. 4.1.2.
Converging characteristics lead to a shock – shown in Fig. 3.6 in the lower ~U region. The shock is
a discontinuity and the integral forms of the conservation equations lead to the Rankine Hugoniot
shock jump conditions, as shown in Sect. 4.1.3. If characteristics on both sides of an interface are
parallel, a contact discontinuity can develop (see Sect. 4.1.1).

Ti
m

e

Space
(a)

Ti
m

e

Space
(b)

Ti
m

e

Space
(c)

Figure 3.6: The dependence of the Eigenvalues on the vector of conservative variables leads to
non-constant slopes of the characteristics. We assume two constant states. This leads to two sets
of parallel characteristics shown in blue and black. They can interact in three ways: (a) a shock
forms if characteristics of the same wave-type intersect; (b) diverging characteristics produce a
rarefaction fan; (c) finally, regions with parallel characteristics can harbor a contact discontinuity.

46 3. Method: hydrodynamic simulations of the ISM
Ti

m
e

Spacexj+1/2

pL

pR
ρL

ρR

vL = 0 vR = 0

head
RF RF

tail CD shock

Ti
m

e
Spacex− λ3t

P (x, t)

x− λ2t x− λ1t

λ2 λ3λ1

RF

CD

Shock

Figure 3.7: The Riemann problem. The top left panel shows the initial conditions of the Sod
shock tube (see Sect. 4.2), which is a Riemann problem: a discontinuity separates a left and a
right state. Pressures are shown in green, densities in blue and velocities in red. Details on the
initial conditions can be found in Fig. 4.3. In the middle left panel the time evolved solution of
the Riemann problem is shown: we see the propagation of a shock and a contact discontinuity
to the right and a rarefaction wave propagating to the left. The dashed lines indicate the location
of the head and the tail of the rarefaction fan (RF), the contact discontinuity (CD) and the shock.
The lowest left panel shows the characteristics for the different waves. The right panel shows the
domain of influence (solid lines) for the point P(x,0) and the domain of dependence (dashed lines)
for the point P(x,t), which is similar to Fig. 3.5.

3.5 Riemann problem
Technically speaking, the Riemann problem (shown in Fig. 3.7) is a Cauchy initial value problem
with piecewise constant initial conditions. This is the typical problem arising at each cell inter-
face at each time step in a hydrodynamic simulation carried out with a grid code: Basically, a
grid code discretizes the density-, pressure- and velocity distribution in the ISM and stores cell
averaged quantities. As a consequence, all cell interfaces separate a constant “left” state from a
constant “right” state. At each time step the gas in the cells has the chance to flow into adjacent
cells. Therefore, the Riemann problem – waves created by the interaction of zones with piecewise
constant values of the before mentioned quantities – has to be solved at every interface between
cells at every time step. Hence, the solution of the Riemann problem is of fundamental importance
for understanding hydrodynamical simulations with grid codes.

3.5.1 Solution of the Riemann problem
Since there is no closed analytic form of the general Riemann problem (not even in 1D), typically
a Newton Raphson method and a specified accuracy are used if a hydrodynamical code claims to
use an “exact Riemann solver”. In this work, however, we will not use exact Riemann solvers,

3.6 Godunov’s method 47

Space

t S

UL UR

U∗ U∗R

Space

t

UL UR

U∗

Space

t S

UL UR

U∗L U∗R

Figure 3.8: Characteristics in (approximate) Riemann solvers. It can be seen that the linearization
of the Jacobian in the Roe solver replaces the rarefaction fan by a simple wave: The characteristics
of an exact Riemann solver (left) show a rarefaction wave, which is missing in the characteristics
of the HLL solver (center) and the HLLC solver (right). The HLL solver replaces all waves by
simple waves and just keeps the fastest right moving and the fastest left moving wave of the Roe
solver. The HLLC solver re-inserts the contact discontinuity.

but apply approximate Riemann solvers to reduce the computational cost of the simulations. Ap-
proximately solving the Riemann problem is a valid approach, since the Godunov scheme (see
Sect. 3.6) uses averaged values for the initial conditions. Moreover, in the Godunov algorithm a
full solution of the Riemann problem is not necessary: Since the Godunov algorithm aims to find
fluxes, approximating the Riemann fluxes directly already solves the problem and calculating the
states in the Riemann problem is not necessary. The approximate Riemann solver used for most
of our work is the HLLC solver (Toro et al., 1994). To motivate this choice, we will have a brief
look at the most common Riemann solvers. We already mentioned that Eq. 3.11 is non-linear and
that it tells us that the discontinuity in the Riemann problem will create waves, which will travel at
constant speed.

A well-known approximation, the Roe approximate Riemann solver Roe (1981, 1986), is a lin-
earization of the Jacobian in Eq. 3.11:

∂t~U + Ĵ(UL, UR)∂xi
~U = 0 . (3.12)

This constant coefficient linear system is then solved exactly instead of the original nonlinear
system. Technically, the Roe algorithm would start by constructing this constant coefficient matrix.
This includes finding Roe’s average states, sound speeds and enthalpies at cell interfaces. Then
it would proceed to create Eigenvectors and Eigenvalues. Next, it would compute wave strengths
and fluxes for all Eigencomponents and apply the flux limiter for all Eigencomponents. Finally,
the interface flux is found by using symmetric fluxes and adding a diffusive flux term again using
the flux limiter. The interface flux is then used to update the state vector.

The difference between the Roe solution and an exact solution is that the Roe solver assumes
simple waves. Thus, the solution will lead to constant states instead of the rarefaction fan shown
e.g. in Fig. 3.8. The HLL (Harten et al., 1983) and the HLLE (Einfeldt, 1988) solver further
simplify this solution by only following the two fastest waves. The HLLC (Harten-Lax-van Leer-
Contact) solver (Toro et al., 1994) restores the missing rarefaction wave. Tests (see Sect. 4.2)
showed that in the RAMSES code (Teyssier, 2002) this solver achieved the best results in the Sod
shock tube test (see Sect. 4.2).

48 3. Method: hydrodynamic simulations of the ISM

1 2 3

1

2

3

4

5

Solution of the
Riemann problem
New piecewise constant
approximation

First order Godunov method
piecewise constant
approximation

Figure 3.9: Sketch of the first order Godunov method. The averaged quantities in the cells are
piecewise constant functions (black). At each time step the Riemann problem is solved at every
cell interface (blue). The propagation of the different waves at this interface is evaluated and used
to change the averaged quantities. At the end of the time step the averaged quantities are again
represented by (possibly different) piecewise constant functions (green).

3.6 Godunov’s method

Having settled that we are equipped with methods to (approximately) solve the Riemann problem,
we can now discuss the algorithm initially proposed by Godunov6.

Godunov’s algorithm assumes that each computational cell represents a fluid volume with cell
averages for density, velocity and energy. These cell averages are used to reconstruct a piecewise
polynomial function. In the simplest case, the first order Godunov method sketched in Figure 3.9,
the reconstructed function is piecewise constant. In the next step, the Riemann problem is solved
at every cell interface. The solution leads to wave families traveling at constant speed. The time
step in this algorithm is limited by the CFL for the wave family with the highest velocity, since
the similarity solution of the Riemann problem for one interface gets messed up by waves from
neighboring interfaces when the fastest traveling wave has time to cross a grid cell from one face
to another. The propagation of the different wave families (e.g. entropy wave, sound waves and –
in MHD – Alfvén waves) leads to Riemann fluxes, which are used to calculate new cell averages.

Unlike finite differencing algorithms, the first order Godunov algorithm is directly based on the
conservation laws and leads to an exact solution by combining the solutions of the Riemann prob-
lems. Due to the averaging at the end of the step, this method is of first order accuracy. In other
words, the diffusivity of the method depends on the method for calculating the cell averages, which
is defined by the finite volume scheme. High order methods try to overcome this problem by using
higher order reconstruction methods, for example a piecewise linear function that may have slopes.
The first order Godunov method is very stable, but at the price of being very diffusive.

6This is usually cited as “Godunov, S. K. (1959), "A Difference Scheme for Numerical Solution of Discontinuous
Solution of Hydrodynamic Equations", Math. Sbornik, 47, 271-306, translated US Joint Publ. Res. Service, JPRS
7226, 1969” but this reference is not easily accessible via ADS.

3.7 2nd order Godunov schemes 49

3.7 2nd order Godunov schemes:
Total Variation Diminishing (TVD) Advection

Second order Godunov schemes allow for piecewise linear approximations of density, pressure
and velocity instead of piecewise constant functions (see Fig. 3.10). This way, it is possible to
better resolve discontinuities e.g. in the Sod shock tube test. The Godunov theorem states that only
first order linear schemes are monotonicity preserving. Since the reconstruction of the averages
should not create new local extrema, total variation diminishing (TVD) schemes are used. There
are several different choices of flux limiting functions (sometimes also called “slope limiters”, e.g.
in the RAMSES documentation). All these methods are based on monotonicity criteria and will
degenerate to first order at extreme points. Examples of such methods are shown in Fig. 3.10:
The minimum modulus (MinMod) flux limiter (Roe, 1986, Eq. 56) produces a monotonous recon-
structed function by setting the slopes to ∆qi

∆x
= min

(qi+1−qi
∆x

, qi−qi−1

∆x

)
if the signs of both slopes are

the same. Otherwise the MinMod limiter degenerates to first order. The Sweby diagram (Sweby,
1984) in Fig. 3.10 shows that the MinMod limiter is the most diffusive limiting function, since it
applies the maximal possible limiting in 2nd order TVD region. The counterpart is the superbee lim-
iter (Roe, 1986, Eq. 58), which applies the minimal possible limiting and has the drawback to get
unstable for most astrophysical problems. The monotonized central-difference limiter (MC limiter
or MonCen limiter) limiter (van Leer, 1977, Eq. 66) lies between these two extrema. Here the right
and left values are bounded by the initial average values: ∆qi

∆x
= min

(qi+1−qi−1

2∆x
, 2 qi+1−qi

∆x
, 2 qi−qi−1

∆x

)
,

if the signs of all three slopes are the same. Otherwise it also falls back to first order.
The drawback of the second order methods is that they are less stable than the first order method
and can lead to negative densities and negative pressures. Many codes start with the sharpest
limiter (from the three discussed limiters superbee would be the “sharpest” but it is known to
fail in most astrophysical applications) and go to more diffusive limiters if negative densities or
negative pressures occur. The RAMSES code (Teyssier, 2002), however, cannot switch between
limiters on the fly – here the limiting function chosen at the start of the simulation is used for
all solutions of the Riemann problem. For our setup (stellar winds and supernova explosions in
molecular clouds) the MonCen limiter or – if the simulation crashed – the MinMod limiter were
used. As already mentioned, sharp limiters like superbee lead to code crashes in most astrophysical
applications. Restarting any of our simulation with this limiter shows that our problem of stellar
winds and supernovae is no exception.

3.8 Side note: alternatives to Godunov’s method
In this work we will use Godunov’s method for our simulations, but basically a grid code could
also use an artificial viscosity approach. The advantage of this approach is a more accurate internal
energy evolution in regions where 1

2
ρv2 � U . But this comes at the price of smearing out shocks

and applying incorrect Rankine Hugoniot jump conditions. As already mentioned, another draw-
back of the artificial viscosity approach is that finite difference schemes do not directly use the
conservation laws. However, they are easier to code than conservative shock-capturing scheme,
which can be an advantage if one wants to add additional physical processes.
For our project we decided to use a Riemann solver, since it is less diffusive and resolving shocks
and contact discontinuities well is important for the questions we are trying to tackle with our
work (e.g. feedback energy efficiency of massive stars in the ISM). Moreover, with a Godunov

50 3. Method: hydrodynamic simulations of the ISM

1st order Godunov method:
Piecewise constant approximation

1 2 3 4 5 6 7 8 9

1

2

3

4

5

2nd order Godunov method:
Piecewise linear approximation

1 2 3 4 5 6 7 8 9

1

2

3

4

5

2

φ(r)

1

0 1 2 3

MinMod

MonCen

Superbee

Ratio of successive gradients (r)

Sweby diagram (Sweby, 1984)

Figure 3.10: Second order Godunov methods. In contrast to the first order Godunov method, sec-
ond order methods allow for non-zero slopes of the piecewise linear reconstruction. The left lower
panel shows two different slope limiting functions: monotonized central differences (blue) and
minimum modulus (green). The lower diffusivity of the 2nd order methods comes at the price that
the method is no longer monotonicity preserving. The creation of new extrema and the increase
of existing extrema can be avoided with Total Variation Diminishing (TVD) schemes. The Sweby
diagram in the lower right panel shows the order of different flux limiting functions. The shaded
area is the part of the TVD region, where second order accuracy is guaranteed and excessive com-
pression of solutions is avoided. On the horizontal axis, we find the ratio of successive gradients
(r). We stop at r = 3, since at this point the corresponding value of the flux limiter function (φ(r)),
shown on the vertical axis, reaches its maximum for all depicted limiters and stays at this values
for higher r (i.e. for MonCen and Superbee we find φ(r > 3) = 2 and for MinMod φ(r > 3) = 1).

3.9 Adaptive mesh refinement (AMR) and parallelization 51

method shocks can be treated directly and sound waves and moving matter can be treated with the
same precision. As it is a finite volume scheme, it strictly conserves mass, momentum and energy.
However, it might run into problems with the internal energy evolution.
In conclusion we decided that a second order Godunov method is the best tool for our study.

3.9 Adaptive mesh refinement (AMR) and parallelization
In this section we will discuss methods to speed up the simulations. We already mentioned that
the number of dimensions has a large effect on the computational cost of a simulation. In addition
to exploiting the symmetries of the problem (i.e. lowering the number of dimensions) and limiting
the included physical processes (e.g. gravity or radiative cooling are computationally intensive)
run times can be shortened by using several CPUs in parallel. Technically, this is implemented via
MPI in the RAMSES and PLUTO code, which are used for this work. Basically the simplest way of
domain decomposition is sub-dividing the computational volume into parallel slabs. Cells on the
boundary of these slabs are passed to all adjacent CPUs, whereas cells inside the slabs are passed
to a single CPU. In practice in simulations with nonuniform resolution, cells are most commonly
distributed between CPUs using a Peano-Hilbert curve which minimizes the number of cells which
have to be passed to more than a single CPU and distributes the cells evenly among the CPUs. If
some regions of space contain smaller cells, passing parallel slabs of the same volume to all CPUs
could lead to sub-optimal load leveling.
Another way of speeding up mesh simulations is to use lower resolution in areas which are less
interesting. Whereas resolution naturally follows the distribution of mass in an SPH simulation,
this functionality has to be added to grid codes. If it is known beforehand, in which part of the
computational volume high resolution will be desired, it is advantageous to define a fixed non-
uniform grid. In most of our simulations, however, the areas with steep gradients move inside the
box. In such situations adaptive mesh refinement (AMR) is the method of choice. AMR optimizes
the computational cost of a simulation by increasing the resolution in crucial areas and lowering
it in smooth regions. Technically, the RAMSES code’s mesh has several levels: think of the cube
containing the computational domain as level zero: In level one this cube is divided into 2ν cells,
where ν is the number of dimensions. For level two a cell of level one is again subdivided into
2n cells. The advantage of AMR is that not all cells of a level have to be subdivided but that the
AMR region can follow the interesting regions of the simulation. For example the AMR region in
RAMSES can be computed by checking gradients of the primitive variables or via a geometrical
criterion. E.g. this can be helpful, if one checks for density gradients and the initial conditions in
a part of the volume contain a density jump in pressure equilibrium. In this situation it can help to
exclude a part of the volume from refinement.
In the RAMSES code the interpolation at the borders of regions with different grid levels can be
controlled with the interpol_type variable in the namelist file. Repeating the same simulation
(60M�, infinite cloud, spherical cavity) with interpol_type=0 (no interpolation), 1 (MinMod7)
and 2 (MonCen) showed that the feedback energy efficiency is similar in all three simulations.
This is expected, since the algorithm optimizing the extent and location of highly resolved areas
tries to put the grid borders in areas with small gradients.
In our production runs we used MonCen slope limiting for the Riemann solver (unless it became
unstable and crashed) and MinMod interpolation between grid levels. Simulations with this mix-

7See Sect. 3.7 for a definition of MinMod and MonCen.

52 3. Method: hydrodynamic simulations of the ISM

v
v

vx

vy

Figure 3.11: Sketch of numerical dif-
fusion. The amount of numerical dif-
fusion in a simulation is not only con-
strained by the choice of Riemann
solver but also by the angle between
the grid axes and the direction of the
flow. Transversal flows, as shown in the
right sketch are prone to higher numer-
ical diffusivity.

ture of slope calculations did not differ significantly form a simulation with the same interpolation
scheme for the Riemann solver and the grid levels, since the grid boundary should be in a smooth
region of the flow anyway.

3.9.1 Pitfalls of AMR
If AMR is uses in a simulation, one has to be aware of its side effects. For example in simulations
with moving AMR regions one can observe shocks seeded by the grid interfaces.
In our simulations we also observed cooling introduced by grid interfaces. The simplest test to
reproduce this behavior is a stellar wind in a homogeneous ambient medium with a geometrical
refinement criterion which limits the highest resolution grid to a cube centered around the feedback
region’s center. In this test also a gradient based refinement criterion is used. If the geometrical
criterion starts to limit the refinement in areas which the gradient based refinement criterion would
refine, the finest grid starts loosing track of the dense shell. Ultimately this results in enhanced
cooling near boundaries of the finest grid. Since the region’s boundaries now can happen be placed
near strong gradients interpol_type=0makes the simulation stable enough to survive this phase.
This is related to the code crashes with negative temperatures behind the shock! Obviously this
problem is an over oscillation of the interpolation scheme near the edge of the grid levels. Interpo-
lating with scheme 0 made the simulations very stable but diffusive.8

3.9.2 Numerical diffusion
Numerical diffusion9 is a problem arising in grid codes, because the discretized hydrodynamical
equations have truncation errors which tend to make them more diffusive than the differential equa-
tions. This error is smaller for higher order schemes. Also incorrect evaluation of field gradients
(which can be caused by too coarse meshes or bad flux limiting functions) and an angle between
the flow direction and the grid axes increases this problem.

8 A re-run on the server OPTIMAL actually showed that in a 2D cut along z = 0 cooling in cells inside the bubble
occurs. I.e. radiative losses in cells with high temperatures and low densities were found. However, such cells should
not cool. This is e.g. seen at the positive x axis. Affected cells are close to the grid boundary and the problem is
caused by the geometric refinement criterion. The grids loose track of the dense shell. Another pitfall of the geometric
refinement criterion is seen in the velocity. Here, the geometric refinement criterion of the finest grid leads to a cross
like feature in velocity, since the grid boundary is reached first along the grid axes. Type 1 and 2 crash after 177 code
time units (output 12). This is the time when the geometrical refinement strategy already took over. In this phase the
finest grid cannot follow the dense shock any more.

9Numerical diffusion is also known as “artificial” or “false” viscosity, damping or dissipation.

3.9 Adaptive mesh refinement (AMR) and parallelization 53

In the two computational domains shown in Fig. 3.11 density, pressure and velocity are constant.
The conservative passive scalar shown in blue has a step which is parallel to the flow direction
(small black arrow). If the flow is not parallel to the grid, numerical diffusion will smear out the
step in the conservative passive scalar. Numerical diffusion is zero if there is either no gradient of
the passive scalar (x, left sketch) or no velocity component (y, left sketch). Transversal flows (right
sketch) show gradients of the passive scalar and have velocity components in all directions. Hence
the discretization errors will lead to numerical diffusion.

54 3. Method: hydrodynamic simulations of the ISM

Chapter 4

Basic building blocks of simulations

The aim of this work is to combine stellar feedback with the physics of the ISM. If such simulations
are carried out with a grid code, this problem can be subdivided into a number of sub-problems
which have to be solved accurately (enough). Many of these simplified problems have an analytic
solution. Thus before putting it all together and looking at the simulations as a whole, we check
how well the code recovers the analytic solutions of these sub-problems and we will discuss how
we technically implement the stellar feedback. Readers not interested in these technical details can
skip this section.
As mentioned in Sect. 3.5, the typical sub-problem arising at every cell interface at every time step
is the Riemann problem. Basically the code subdivides the volume into cells. Each cell has an
average density, an average pressure and average velocities. At each cell face that lies inside the
simulated volume1 the cell touches another cell. In 1D one can sketch this problem with a step
function e.g. in a density vs. spatial coordinate diagram. If the averaged velocities in both cells
are zero, this is the initial state of the Sod shock tube test (Sect. 4.2): Two media with possibly
differing gas properties are separated by a diaphragm. As soon as this barrier is removed, gradients
in the gas will lead to waves. In the hydrodynamic case, we will find an entropy wave, a rarefaction
wave and a density wave. The Sod shock tube test is sometimes also called “dam-break-problem”.
As soon as we are convinced that our numerical method can treat individual cell interfaces with
sufficient accuracy, we can proceed to blast waves. The Sedov-Taylor problem, which is a blast
wave without radiative cooling losses, should be recovered (Sect. 4.3).
Another agent in our models are stellar winds. Sect. 5.2 checks the conservation of mass and energy
in our feedback prescription. It also compares the solution to analytic solutions of a constant wind
without radiative cooling.

4.1 Waves, discontinuities and shocks

In the tests described in this chapter, we will come across different kinds of propagating waves.
Thus, we will first introduce the terminology and mention the most important relations (e.g. shock
jump conditions).

1Boundary cells are special cases, discussed in Sect. 3.2.1

56 4. Basic building blocks of simulations

4.1.1 Contact discontinuity (CD)
If two gasses with different temperatures are in pressure equilibrium, one can observe a contact
discontinuity (CD) between them. Contact discontinuities propagate with the characteristic speed
of the media on both sides. Hence, there is no pressure- or velocity gradient across a contact
discontinuity. However, a sudden change in density is observed.
Thus, the EOS (Eq. 3.2), which connects energy and pressure, has to allow for the same pressure at
two different densities. Consequently the aforementioned situation cannot be found in isothermal
simulations, where the pressure is a function of density only. From the adiabatic EOS (Eq. 3.2) it
is obvious that this contact discontinuity is also an entropy wave.
Contact discontinuities can also arise for passive tracers. This kind of contact discontinuities can
also be found in isothermal simulations. For example, think of a jump in metallicity, which might
be caused by stellar yields.
The antagonists of contact discontinuities are diffusive processes, which lead to mixing of the two
media. Such mixing processes are described in Sect. 6. Whether the smearing of the discontinuity
is relevant for the time scales of interest, can be derived from the diffusion coefficients.

4.1.2 Rarefaction wave
Fig. 3.6 shows possible slopes of characteristic curves. Converging characteristics lead to a com-
pression of the wave whereas diverging characteristics form a rarefaction wave2. The wedge
formed by diverging characteristics of the Euler equations is filled with a fan of characteristics.3

In the following, we will briefly derive the shape of the rarefaction wave’s profiles in the Sod
problem (details on this problem can be found in Sect. 4.2) to illustrate, how solutions can be found
using Riemann invariants. In the Sod shock tube the rarefaction wave is located between a static
medium with velocity uL = 0, pressure pL, density ρL and sound speed cs,L and a moving medium
with uR, pR, ρR and cs,R. From the location xo of the origin of the rarefaction fan, the location of
the head of the expansion fan can be found from the leftmost characteristic as xhRF(t) = x0−cs,Lt.
The tail of the rarefaction wave is found at xtRF(t) = x0 + (uR − cs,R)t. Such rarefaction waves
accelerate the fluid smoothly: The continuous function of the velocity of a rarefaction wave rises
linearly between the left and right value:

uRF(x, t) =

0 if x ≤ xhRF
(x−x0)/t+cs,L
uR+cs,L−cs,R uR = 2

γ+1

(
x−x0

t
+ cs,L

)
if xhRF ≤ x ≤ xtRF

uR if x ≥ xtRF .

(4.1)

Where we used the Riemann invariant u + 2cs
γ−1

to replace the left sound speed in the denominator
with cs,L = γ−1

2
uR + cs,R. In addition to this linear velocity profile the rarefaction wave has an

exponential density profile. To express the density we use that entropy is a Riemann invariant of
the acoustic wave, which means that pρ−γ is constant. This is plugged into the ratio of the sound
speed to the left sound speed (this will be shown in Eq. 4.55) and leads to

ρ(x, t) = ρL

(
cs(x, t)

cs,L

)2/(γ−1)

(4.2)

2rarefaction waves are also called expansion waves
3This solution follows from entropy conservation.

4.1 Waves, discontinuities and shocks 57

(a)
Sinusoidal

wave

Crest

Trough
(b)

Steepening
of the wave

c

c+ δc

c− δc
(c)

Crest
catching up

(d)
Crest overtook

trough

Shock front

x
t

c

c+ δc

c− δc

x
t

x
t

x
t

Shock path

Figure 4.1: In the upper panel of this sketch of shock formation we see an initially sinusoidal
pressure wave (a) which is distorted by pressure dependent propagation speeds (b). It steepens (c)
and ultimately the crest would overtake the trough (d). But when the state variable would become
multivalued (blue shaded area), a shock (red) forms. The location of shock fronts can be found via
shock fitting. This problem is also sometimes called “slope catastrophe” and can also be visualized
with the crossing of characteristics. The lower panel sketches such characteristics in the spacetime
plot. Higher velocities (e.g. purple line) are depicted with characteristics with lower slopes (a).
The gray areas in the lower panel indicate regions with crossing characteristics. The blue line in
the lower plots indicates the position of the corresponding upper plots in spacetime. In plot (d)
a shock path (red) is sketched in the gray area, where the characteristics cross. This path is also
found via shock fitting.

The Riemann invariant u+ 2cs
γ−1

allows us to use cs(x, t) = cs,L− γ−1
2
u(x, t) which we can combine

with Eq. 4.1 and Eq. 4.2 to find

ρ(x, t) = ρL

[
2

γ + 1
− γ − 1

γ + 1

x− x0

cs,Lt

]2/(γ−1)

. (4.3)

To find the pressure for a given density, we can again use that entropy is a Riemann invariant of
the acoustic wave (i.a. pρ−γ is constant) and find

p(x, t) = pL

(
ρ(x, t)

ρL

)γ
. (4.4)

If the velocity of the left state is not zero, a derivation of the rarefaction wave’s shape from the
Riemann invariants, can for example be found in LeVeque (2002, Sect. 14.12).

4.1.3 Shock wave and shock jump conditions
If characteristics of the same family cross, shocks form. An example is shown in Fig. 4.1. We
start with a sinusoidal wave and check the effect of pressure dependent propagation speeds. As

58 4. Basic building blocks of simulations

Pre-shock conditions

ρ5, p5

u5

uright = u5 − ud

ud velocity of the discontinuity

Shock front

Post-shock conditions

ρ4, p4

u4

uleft = u4 − ud

Figure 4.2: This sketch shows a discontinuity (dashed line) moving with a velocity ud into unper-
turbed gas. The notation uses the same indices we will also use for the shock in the Sod shock
tube test: the right unperturbed state (the pre-shock conditions) get the subscript “5”. Since it is
advantageous to use the rest-frame of the shock to find the Rankine Hugoniot jump conditions, the
velocities in this coordinate system uleft and uright are also given.

characteristics get closer, the wave profile gets distorted. Ultimately the characteristics cross, the
crest tries to overtake the trough and a shock forms. The curve, which connects the intersection
points of the characteristics in spacetime is called “shock path”.
In contrast to the smooth acceleration we observed in rarefaction waves, the fluid is accelerated
abruptly if it is hit by a shock.
In the section on rarefaction waves we derived the solution using conserved quantities. We will use
a similar procedure to derive the Rankine Hugoniot relations at the discontinuity from the con-
servation laws ud[U]+ [F (U)] = 0 for the vector of the conserved quantities U (mass, momentum,
energy).
For this purpose, it is advantageous to express the velocities in terms of velocities in the coordinate
system comoving with the discontinuity: uright = u5−ud = −ud and uleft = u4−ud, where ud is
the speed of the discontinuity (see also Fig. 4.2). This shock rest frame allows us to get rid of the
time derivatives. We will show it here with the conservation of mass: The first term of the volume
integrated equation of continuity d

dt

∫
V
ρdV+

∫
V
ρ∇~udV = 0 is zero in the rest frame of the shock4.

Using the Gauß theorem (also known as Green’s formula) the second term can be transformed into
a surface integral:

∫
V
ρ∇~udV =

∫
O
ρ~udA. For shocks with ~u = (u, 0, 0) only the surface integrals

at the surfaces parallel to the density step are nonzero:
∫
A4
ρ4uleftdA4 +

∫
A5
ρ5urightdA5. The

orientation of the surface with respect to the speed gives the sign for the integrals and leads to
ρ4uleft = ρ5uright where uleft and uright are one-dimensional rest frame speeds.
In the next step we convert the velocities back to the system with a moving discontinuity. We start
from a coordinate system comoving with the discontinuity mass conservation (Eq. 3.7) and find:

ρ4uleft = ρ5uright (4.5)
ρ4u4 − ρ4ud = ρ5u5 − ρ5ud
ρ4u4 − ρ5u5

ρ4 − ρ5

= ud . (4.6)

4The flow of plasma can be treated like it was constant in time, because the time the shock needs to cross the step
is too small for significant energy loss through processes like radiation

4.1 Waves, discontinuities and shocks 59

The relation from momentum conservation (Eq. 3.8) in a system comoving with the discontinuity
is:

p4 + ρ4u
2
left = p5 + ρ5u

2
right (4.7)

p4 + ρ4u
2
4 − 2ρ4u4ud + ρ4u

2
d = p5 + ρ5u

2
5 − 2ρ5u5ud + ρ5u

2
d

ρ4u
2
4 − ρ5u

2
5 − 2(ρ4u4 − ρ5u5)ud + (ρ4 − ρ5)u2

d = p5 − p4 . (4.8)

Here p is the gas pressure and ρu2 is the ram pressure. We can eliminate the speed of the dis-
continuity ud from the Rankine Hugoniot relations from mass (Eq. 4.6) and momentum (Eq. 4.8)
conservation and get:

ρ4u
2
4 − ρ5u

2
5 −

(ρ4u4 − ρ5u5)2

ρ4 − ρ5

= p5 − p4 . (4.9)

Combining mass conservation (Eq. 4.5) and momentum conservation (Eq. 4.7) in the rest frame of
the shock leads to

ρ2
4u

2
left(

1

ρ4

− 1

ρ5

) = p5 − p4 . (4.10)

For energy conservation (Eq. 3.9) we can immediately divide the equation by ρ4uleft = ρ5uright

(Eq. 4.5) from mass conservation and get the specific5 internal energy e and the specific kinetic
energy 0.5u2 of the fluid. We find:

e4 +
p4

ρ4

+
u2

left

2
= e5 +

p5

ρ5

+
u2

right

2

e4 − e5 =
2p5 + ρ5u

2
right

2ρ5

− 2p4 + ρ4u
2
left

2ρ4

with Eq. 4.7

e4 − e5 =
p5

2ρ5

− p4

2ρ4

+
p4 + ρ4u

2
left

2
(

1

ρ5

− 1

ρ4

) with Eq. 4.10

e4 − e5 =
p4 + p5

2
(

1

ρ5

− 1

ρ4

) (Rankine-Hugoniot equation) (4.11)

Combining the Rankine Hugoniot equation (Eq. 4.11) with the EOS p = (γ − 1)ρe (Eq. 3.2) leads
to:

p4

ρ4

− p5

ρ5

= (γ − 1)
p4 + p5

2
(

1

ρ5

− 1

ρ4

) . (4.12)

A very common way of expressing the Rankine-Hugoniot jump conditions is as pressure-, density-
or temperature ratios for both sides of the discontinuity. For this purpose it can be combined with
the EOS and expressed with Mach numbers. Since we will not directly use these formulations, we
refer the reader to the text book of Shu (1992, Eq. 15.35 to Eq. 15.37) for ratios with Mach numbers
and just show the density ratio, which we will need for the shock tube test. For this purpose the
Rankine Hugoniot equation (Eq. 4.12) can be rearranged to:

ρ4

ρ5

=
γ p4

p5
+ γ + p4

p5
− 1

γ p4

p5
+ γ − p4

p5
+ 1

. (4.13)

5Specific means “per mass unit”.

60 4. Basic building blocks of simulations

p1

p5
ρ1

ρ5

u1 = 0 u5 = 0

Head RF

Tail RF

CD

Shock

Length: x ≤ 0.5xmax x > 0.5xmax
Velocity: u1 = 0 u5 = 0
Density: ρ1 = 1 ρ5 = 0.125
Pressure: p1 = 1 p5 = 0.1
Thermal energy: Etherm,1 = 1.5 Etherm,5 = 0.15

Figure 4.3: Sod shock tube test. This sketch is a variant of Fig. 3.7. The top panel and the
table show the initial conditions of the Sod shock tube. Pressures are shown in green, densities in
blue and velocities in red. The dashed lines in the lower panel separate the five zones of the Sod
similarity solution: (1) the unperturbed state of the denser medium, (2) the rarefaction fan, RF (3)
the contact discontinuity, CD (4) the fast shock wave and (5) the unperturbed state of the tenuous
medium.

4.2 Sod shock tube test
The Sod shock tube is a widely used test for the accuracy of hydrodynamics codes. Sod (1978)
proposed this test case to investigate the typical problems of finite difference schemes such as
oscillations behind shocks and smearing of contact discontinuities. Sod shock tubes are a class
of Riemann problems (see Sect. 3.5) with zero initial velocities. The initial conditions have a
discontinuity in pressure and density placed across the grid. On one side is a cold, low density gas
and on the other side is a hotter, denser gas. At time t = 0 a diaphragm that separates those two
media is removed and waves start propagating. This setup is well suited to test numerical schemes,
since it produces steep gradients and strong shocks. The importance of this test is obvious, since
in a grid code discontinuities can arise at all cell boundaries.
Basically this test problem is one-dimensional, but if the simulation can deal with more dimen-
sions, putting the shock front not perpendicular to the cell faces can help testing how well the
code can deal with flows along cell diagonals (which is prone to numerical diffusion, as we saw in
Sect. 3.9.2).

4.2.1 Analytic solution of the Sod shock tube problem
The similarity solution of this special Riemann problem consists of five distinct zones (sketched in
the lower panel in Fig. 4.3):

1. unperturbed state of denser, high pressure medium (Etherm,1, p1, ρ1, u1)

2. rarefaction wave propagating into denser medium (Etherm,2, p2, ρ2, u2)

3. slowly moving contact discontinuity towards the less dense medium (Etherm,3, p3, ρ3, u3)

4. fast shock wave moving into tenuous medium (Etherm,4, p4, ρ4, u4)

4.2 Sod shock tube test 61

5. unperturbed state of tenuous, low pressure medium (Etherm,5, p5, ρ5, u5)

The states of the gas in zone 1 and zone 5 are known from the initial conditions . Also all thermal
energies can be found from the EOS (Eq. 3.2) which relates the thermal energies to the adiabatic
exponents, densities and pressures. Hence there are nine unknowns: p2, ρ2, u2, p3, ρ3, u3, p4, ρ4

and u4. Sect. 4.1.2 tells us that pressure, velocity and density in the rarefaction wave (p2, ρ2 and
u2) are definite if the states 1 and 3 are known. Basically the rarefaction is a reversible, adiabatic
process and the Riemann invariants lead to the solution. As we saw in Sect. 4.1.1, another unknown
speed and pressure can be removed, since there is no mass flow through the contact discontinuity
and the pressure is continuous at the contact discontinuity. Therefore we define new quantities at
the contact discontinuity: a velocity u3 = u4 =: uc and a pressure p3 = p4 =: pc. Moreover the
constant entropy in the rarefaction wave allows us to connect the state 3 to the state 1 via

pc = p1

(
ρ3

ρ1

)γ
. (4.14)

From the other Riemann invariant, the sound speed, we find:

uc +
2

γ − 1

√
γpc
ρ3

=
2

γ − 1

√
γp1

ρ1

. (4.15)

Thus, we are left with three unknowns: pc, ρ4 and uc. The post-shock medium (state 4) is separated
from the pre-shock medium (state 5) by a discontinuity. We can connect these two states with the
Rankine Hugoniot shock jump conditions (Sect. 4.1.3). For pressure and density we can use the
density ratio from the Rankine Hugoniot equation (Eq. 4.13):

ρ4

ρ5

=
γ pc
p5

+ γ + pc
p5
− 1

γ pc
p5

+ γ − pc
p5

+ 1
. (4.16)

For the post-shock velocity we use Eq. 4.9. Since the pre-shock medium is at rest (u5 = 0), we
can drop all terms containing u5 and find:

(pc − p5)

(
1

ρ5

− 1

ρ4

)
= u2

c . (4.17)

combining Eq. 4.14, 4.15, 4.16 and 4.17 leads to

p5ρ1

p1ρ5

(
1− pc

p5

)2

γ
(

1 + pc
p5

)
− 1 + pc

p5

=
2γ

(γ − 1)2

[
1−

(
pc
p1

) γ−1
2γ

]2

. (4.18)

The solution of Eq. 4.18 can be computed with an iteration scheme. It provides one with pc. To
get ρ3, this result for pc has to be inserted into Eq. 4.14; pc and Eq. 4.16 lead to ρ4. Finally the
results for pc and ρ4 are inserted into Eq. 4.17 to get uc. For the commonly used parameters in the
Sod shock tube test (γ = 5

3
, ρ1

ρ5
= 8, p5

p1
= 0.1) the solution is pc = 2.93945p5. It can for example

be found via www.wolframalpha.com by typing

solve R*P*(x-1)^2/(x*(G+1)-1+G)=2*G/(G-1)^2(1-(P*x)^((G-1)/(2G)))^2

for G=5/3,R=8,P=0.1 .

62 4. Basic building blocks of simulations

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 x0 0.6 0.8 1

Sod shock tube at t=0.25 for γ = 5
3

Density Velocity Pressure

Figure 4.4: This figure shows the analytic solution of the Sod shock tube as discussed in Sect. 4.2.1.
The vertical dotted lines show the zone boundaries.

The locations of the zone boundaries are found from the characteristics through the point x0, which
is the location of interface between the media at t = 0. The head of the rarefaction wave travels
with the sound speed of the unperturbed high pressure medium. Thus, it is found at xh,RF =
x0 − cs,1t. The velocity of the tail of this wave is found by subtracting the sound speed from the
bulk velocity of the adjacent right region. The tail is thus found at xt,RF = x0 + (uc − cs,3)t. The
location of the contact discontinuity is set by the bulk velocity in this adjacent region, which leads
to xCD = x0 + uct and for the shock the velocity can be found from Eq. 4.6): xs = x0 + r4uc

r4−r5t.
The solution for this setup at t=0.25 is shown in Fig. 4.4.

4.2.2 Initial conditions of the Sod shock tube test
The typical setup of the Sod shock tube test is summarized in Fig. 4.3. A density (ρ) and pressure
(p) jump in the middle of the computational volume separates two gas phases with ρ1 = 1, p1 = 1,
ρ5 = 0.125 and p5 = 0.1. In this notation subscript 1 denotes the initial state of the higher pressure
gas and subscript 5 the initial state of the lower pressure gas. Subscripts 2 to 4 are reserved for the
intermediate zones which will emerge later on. These zones will be separated by characteristics
(characteristics are discussed in Sect. 3.4). Both gasses are initially at rest (i.e. the velocities are
u1 = u5 = 0). With the adiabatic exponent of a monoatomic gas γ = 5/3 and the adiabatic
EOS (Eq. 3.2) this leads to the thermal energies Etherm,1 = ei,1ρ1 = p1/(γ − 1) = 1.5 and
Etherm,5 = ei,5ρ5 = 0.15.

4.2.3 Results of the RAMSES Sod shock tube test
In our simulations we will focus on the feedback energy efficiency of massive stars in molecular
clouds. Cooling losses of the gas near the contact discontinuity (CD) play an important role for

4.2 Sod shock tube test 63

0.0

0.2

0.4

0.6

0.8

1.0
Sod shock tube at t=0.25019 for γ = 5

3
, MonCen flux limiter, HLLC Riemann solver

DensityPassive scalar Velocity Pressure

-0.1

0.0

0.1

0.0 0.2 0.4 0.6 0.8 1

Figure 4.5: This figure shows the results of the HLLC Riemann solver with MonCen flux limiting,
which is the preferred choice for our simulations. Lines in the upper panel show the analytic
solutions as presented in Sect. 4.2.1 and Fig. 4.4, the superplotted points are results of a simulation
carried out with the RAMSES code. The lower panel shows the differences between the result of
the simulation and the analytic solution. The residuals for all choices of Riemann solvers and flux
limiters in the RAMSES code are compared in Fig. 4.6.

this study. Additionally we want to trace the products of nucleosynthesis (i.e. 26Al and 60Fe).
Thus, selecting a Riemann solver and a flux limiter that perform well near contact discontinuities
is crucial. Unsurprisingly6 it turned out that the acoustic and HLLC Riemann solver achieved the
best results for the contact discontinuity. The results of the HLLC Riemann solver with MonCen
limiting are shown in Fig. 4.5.
This test was carried out with all Riemann solvers implemented in the RAMSES code (for the con-
cepts behind these solvers see Sect. 3.5.1) and the MinMod and MonCen slope limiters (for details
on TVD slope limiting see Sect. 3.7). The results are shown in Fig. 4.6. For these simulations the
hydrodynamic module of the RAMSES code was used and AMR was switched on. The minimal
resolution was set to 23 cells in the computational domain. The maximal resolution was 210 cells
per unit length. The grid was refined whenever the relative variation of density, velocity or pressure

6As discussed in Sect. 3.5.1 the HLLC is a variant of the HLL solver, designed to perform well at contact discon-
tinuities.

64 4. Basic building blocks of simulations

across a cell boundary was larger than 5%. In this case the data for newly refined cells was found
using a MonCen interpolation scheme for the conservative variables. Moreover reflexive boundary
conditions, a CFL of 0.8 (see Sect. 3.3) and the MUSCL scheme were used. The intended time of
the data dump was t = 0.25. To compare simulations with different AMR grid levels, the parame-
ter nsubcycle has to be set accordingly to enforce the time step of the highest resolution grids on
coarser grid to get an output at roughly the same times.
The nsubcycle parameter controls how many sub cycles will be used for the next finer level. The
default value is 2 (in agreement to the dependence of the CFL condition on the grid size: if the
wave can travel half the length it may travel on the coarser grid, the time step size has to be halved
too). However, it is possible to set this parameter to 1. In this case the time step size from the CFL
of the coarsest grid with nsubcycle=2 will be used. For example for “nsubcycle=1,1,2,2” the
coarsest level 1, as well as the finer levels 2 and 3 would all use the CFL of level 3, whereas the
finest grid at level 4 would use its own CFL. Setting nsubcycle=1 slows down the code, which is
not a problem for small scale tests like the Sod shock tube problem, but permits outputs at desired
times.
As a consequence different choices of nsubcycle for the same grid levels in different AMR
setups will change the output times. Data is only dumped at time steps of the coarsest grid.
E.g. if the coarse grid has 23 cells in each direction and refinement up to 210 is possible and
nsubcycle=3*1,5*2 are used, the output times will be more sparse and probably differ more
strongly from the desired output times than if the coarsest allowed grid has 25 cells, the finest
possible grid has again 210 cells and nsubcycle=3*1,3*2 is used. In this simulation the whole
computational box is always refined beyond 24 cells in each direction.
With the default setting for nsubcycle the actual times of the data dumps vary between the sim-
ulations with different slope limiters and Riemann solvers as shown in Fig. 4.7. In comparison in
Fig. 4.6 the time-step of the 210 grid was also used for all coarser grids.
To avoid problems arising from the difference between the actual and the desired output times, the
analytic solution (Sect. 4.2.1) was calculated for the specific end times of the individual simula-
tions. Obviously the time dependence affects the locations of the zone boundaries. The small time
differences between the data dumps also have a slight effect on the slopes in the rarefaction wave.
A zoom in on the residuals near the contact discontinuity is shown in Fig. 4.6. The MonCen flux
limiter produces a less smeared out contact discontinuity than the MinMod flux limiter but at the
price of over-oscillations. In this test, this can be seen in the residuals for the LLF solver, displayed
in the right upper panel in Fig. 4.6. Under “messier” conditions, like near the aforementioned CD in
stellar winds and supernova bubbles, also the HLLC solver sometimes happens to run into negative
densities and crash the simulations. Hence we used the HLLC solver with MonCen limiting unless
we ran into problems. In this case, we restarted with HLLC and MinMod.
Figure 4.5 shows the result of HLLC and MonCen, which is the most accurate setup in the set
displayed in Fig. 4.6. The purple line depicts the solution for a conservative passive scalar. For our
purposes, it is interesting to check how diffusive the contact discontinuity is in different numerical
schemes, since this diffusivity affects the spatial distribution of our trace elements. Furthermore
mixing across the CD enhances cooling losses, since dense, but cold gas and hot dilute gas will
mix and lead to a dense, warm, efficiently cooling gas phase. In this setup mixing is found in about
15 cells near the contact discontinuity at t = 0.25, as shown in Fig. 4.8.
Since RAMSES can also treat 2D and 3D cases, we have also tested the dependence of the shock
on the orientation of the grid. Therefore in 2D the shock tube test was once set up with the
discontinuity parallel to a grid axis and once with the discontinuity along the grid diagonal. In

4.3 Sedov-Taylor blast wave test 65

3D these two orientations of the shock and also a discontinuity parallel to the space diagonal were
tested.
The 2D and 3D results for diagonal and parallel shocks (Fig. 4.9 and 4.10) were in good agreement.
However, it is interesting that the diagonal shocks have a steeper contact discontinuity than the
parallel shocks – even though the distance between cell centers along the diagonal is larger than
along the axis (and lower resolution enhances numerical diffusion) and also despite the fact that
diagonal flows also have higher numerical diffusion than parallel flows. This looks like an effect
of the flux limiter.

4.3 Sedov-Taylor blast wave test

The Sedov-Taylor test follows the expansion of a blast wave. The blast wave is created by de-
positing a huge amount of energy in a very small volume in a very short time. In the context
of this thesis the obvious astrophysical application of strong shock waves created in this way are
early phases of supernova (SN) explosions. To be concise, the Sedov-Taylor blast wave describes
the adiabatic expansion phase of the SN remnant in which cooling losses are still irrelevant. This
phase follows the initial free expansion (with a duration of the order of few tens of years, which
ends when the swept up mass equals the ejected mass) and is expected to last of the order of 104

years.

4.3.1 Analytic solution of the Sedov-Taylor blast wave

The analytical blast wave solution was independently discovered by several authors (Taylor, 1950;
Von Neumann, 1963; Sedov, 1993). The Sedov-Taylor blast wave is a self-similar problem and can
be tackled via dimensional analysis. For this purpose one assumes that the pressure of the ambient
medium is negligible (pright = 0) and that the ambient medium is at rest (vright = 0). Under these
assumptions the only remaining parameters for an estimate of the time dependent shock radius are
the ν-dimensional mass density of the ambient medium (ρright, with the unit [mass/lengthν]), the
deposited amount of energy (E0 with the unit [mass length2/time2]) and of course time (t). The
dimensions of these quantities are:

[ρright] = ML−ν

[E0] = ML2T−2

[t] = T

where ν indicates the number of dimensions. Under the aforementioned assumptions, it is thus
possible to convert distance, density, energy and time into a dimensionless variable λ:

λ = r

(
E0

ρ0

)− 1
2+ν

t−
2

2+ν . (4.19)

This dimensionless parameter can now be used to calculate how a change in one of these quantities
influences the others. The equations for gas-dynamic parameters in a shock-front in a gas with the

66 4. Basic building blocks of simulations

-0.1

0.0

0.1
t=0.25020 MinMod, LLF t=0.25026 MonCen, LLF

-0.1

0.0

0.1
t=0.25017 MinMod, HLL t=0.25011 MonCen, HLL

-0.1

0.0

0.1
t=0.25001 MinMod, acoustic t=0.25031 MonCen, acoustic

-0.1

0.0

0.1
t=0.25005 MinMod, exact t=0.25033 MonCen, exact

-0.1

0.0

0.1

0.70 0.75

D
en

si
ty

re
si

du
al

Space

t=0.25000 MinMod, HLLC

0.70 0.75

t=0.25019 MonCen, HLLC

Figure 4.6: Density at the contact discontinuity in a Sod shock tube test. The analytic solution at
the time of the data dump was subtracted from the numerical results obtained with the RAMSES

code. Rows show different Riemann solvers and columns show different flux limiters (MinMod
and MonCen). HLLC + MonCen (lower right corner) is the preferred choice for our simulations.

4.3 Sedov-Taylor blast wave test 67

-0.1

0.0

0.1
t=0.24985 MinMod, LLF t=0.25467 MonCen, LLF

-0.1

0.0

0.1
t=0.24982 MinMod, HLL t=0.25485 MonCen, HLL

-0.1

0.0

0.1
t=0.25507 MinMod, acoustic t=0.25436 MonCen, acoustic

-0.1

0.0

0.1
t=0.24971 MinMod, exact t=0.25474 MonCen, exact

-0.1

0.0

0.1

0.70 0.75

D
en

si
ty

re
si

du
al

Space

t=0.25509 MinMod, HLLC

0.70 0.75

t=0.25459 MonCen, HLLC

Figure 4.7: Same as Fig. 4.6 but with the default setting of nsubcycle and thus differing output
times. The differences in the locations of CD (dotted lines) are best seen in the left lower three
plots. This plot motivates, why we went through the analytic Sod solution before this test with the
aim to identify the Riemann solver, which is best suited for our task.

68 4. Basic building blocks of simulations
D

en
si

ty

Space

Sod shock tube at t=0.25019 for γ = 5
3
, MonCen flux limiter, HLLC Riemann solver

Total density

Passive scalar 1

Passive scalar 2

0

0.1

0.2

0.3

0.4

0.5

0.7 0.71 0.72

Figure 4.8: Zoom in on the density near the contact discontinuity of the Sod shock tube test with
the HLLC Riemann solver with MonCen flux limiting. Dotted lines show the analytic solution. At
t = 0.25 the media mix in ∼ 15 cells in the vicinity of the CD.

EOS shown in Eq. 3.2 are:

rshock =

(
E0

αρ0

) 1
2+ν

t
2

2+ν (4.20)

vshock =
2

2 + ν

(
E0

αρ0

) 1
2+ν

t−
ν

2+ν (4.21)

pshock =
2ρ0

γ + 1

4

(2 + ν)2

(
E0

αρ0

) 2
2+ν

t−
2ν

2+ν . (4.22)

To obtain the numerical value of the constant α (of order unity) we need to find the structure of
the solution inside the bubble, since α is found iteratively by integrating the energy in the bubble.
alpha is then adjusted until the desired input energy is reached.

In the scope of this thesis, the internal structure of the solution of the Sedov-Taylor problem is in-
teresting, since it yields the kinetic to thermal energy ratio. With a few changes a similar procedure
can be used to find the thermal to kinetic energy ratio in wind blown bubbles (Sect. 4.4.1).

We will only show the procedure used for the code tests in this thesis. The reader interested in ana-
lytic functions for the structure of the solution inside the bubble is referred to Sedov (1993, chapter
4 and pages 261 to 276). However, also they need to solve a part of the problem numerically.

For the internal structure, we exploit the symmetry of the problem and use the spherically sym-

4.3 Sedov-Taylor blast wave test 69

-0.1

0.0

0.1
acoustic, MinMod, diagonal

t=0.24546

acoustic, MinMod, parallel

t=0.24530

-0.1

0.0

0.1
acoustic, MonCen, diagonal

t=0.24526

acoustic, MonCen, parallel

t=0.24534

-0.1

0.0

0.1
HLLC, MinMod, diagonal

t=0.24541

HLLC, MinMod, parallel

t=0.24530

-0.1

0.0

0.1
HLLC, MonCen, diagonal

t=0.24575

HLLC, MonCen, parallel

t=0.24543

-0.1

0.0

0.1

0.20 0.22

D
en

si
ty

re
si

du
al

Space

HLLC, MonCen, par., no AMR

t=0.24528

0.20 0.22

HLLC, MonCen, par., no AMR

t=0.24508

Figure 4.9: CD in a 2D Sod shock tube test. See also Fig. 4.6. On uniform grids (bottom panels),
lower resolution (left) enhances numerical diffusion in the parallel shock. However, diagonal
shocks exhibit a steeper CD (i.e. narrower region with nonzero residuals) than parallel shocks –
even though the distance between cell centers along the diagonal is larger than along the axis and
also despite the fact that diagonal flows lead to more numerical diffusion than parallel flows.

70 4. Basic building blocks of simulations

0.2

0.4

0.6

0.8

1.0

-0.4 -0.2 0.0 0.2 0.4

D
en

si
ty

Space

Space diagonal, AMR [5,9], MPI, acoustic MonCen
Space diagonal, AMR [5,9], MPI, HLLC, MonCen

Space diagonal
Diagonal

Parallel
Space diagonal, AMR [5,9], HLLC, MonCen

Diagonal 2D, unigrid 9, HLLC, MonCen
Analytic solution

Figure 4.10: 3D Sod shock tube test.

metric Euler equations with an ideal EOS

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

∂v

∂r
+ 2

ρv

r
= 0 (4.23)

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂p

∂r
= 0 (4.24)

∂pρ−γ

∂t
+ v

∂pρ−γ

∂r
= 0 (4.25)

Next we change the variables from (r, t) to λ (Eq. 4.19). Scale-similarity, the ideal EOS (Eq. 3.2)
and the conservation laws in the rest frame of the shock (c.f. Eq. 3.3 to 3.5) permit us to write the
quantities at the location of the shock as:

ρrightvshock = ρleft (vleft − vshock) (4.26)
ρrightv

2
shock = ρleft (vleft − vshock)2 + pleft (4.27)

v2
shock = (vleft − vshock)2 +

2γ

γ − 1

pleft

ρleft

. (4.28)

Which can be rewritten to:

ρleft =
γ + 1

γ − 1
ρright (4.29)

vleft =
2

γ + 1
vshock (4.30)

pleft =
2

γ + 1
ρrightv

2
shock . (4.31)

These values are now used as boundary conditions at the shock. The structure inside the bubble is

4.3 Sedov-Taylor blast wave test 71

self-similar and can be described with the functions G(λ), U(λ), P (λ):

ρ(r, t) = G(λ)
γ + 1

γ − 1
ρright (4.32)

v(r, t) = U(λ)
2

γ + 1
vshock (4.33)

p(r, t) = P (λ)
2

γ + 1
ρrightv

2
shock . (4.34)

These substitutions are then inserted into Eq. 4.23 to 4.25. We use λ = r/rshock, ∂
∂t

= ∂λ
∂t

∂
∂λ

=

−λvshock

rshock

∂
∂λ

and ∂vshock

∂t
= −ν

2

v2
shock

rshock
and find:(
U(λ)− λγ + 1

2

)
1

G(λ)

∂G(λ)

∂λ
+
∂U(λ)

∂λ
+

2U(λ)

λ
= 0(

2

γ + 1
U(λ)− λ

)
∂U(λ)

∂λ
− ν

2
U(λ) +

γ − 1

γ + 1

1

G(λ)

∂P (λ)

∂λ
= 0

−νP (λ) +

(
2

γ + 1
U(λ)− λ

)
−γP (λ)

G(λ)

∂G(λ)

∂λ
−
(

2

γ + 1
U(λ)− λ

)
∂P (λ)

∂λ
= 0

For our Sedov-Taylor tests we used Mathematica to solve this set of three 1st order, coupled linear
differential equations (Code Listing A.1). We iteratively solved for the value of the constant α until
the numerical integration of the energy from λshock where G(λshock) = U(λshock) = P (λshock) = 1
equaled the released energy:

E0 = (ν − 1)2π

∫ rshock

0

ρ(r)

(
ε+

v2(r)

2

)
rν−1dr . (4.35)

This is shown in Code Listing A.2. As soon as α is found, also the location of the shock front
(λshock) and the pressure, density and velocity near the shock are known. The dimensionfree solu-
tion for the pressure, density and velocity inside the bubble is shown in Fig. 4.11. Code Listing A.2
led to α = 0.507566, rshock(0.688) = 0.986136 for t = 0.688. We checked the Mathematica results
for α for different evolution times and different numbers of dimensions with the code of Haque
(2006) and found no problems.

Thermal energy fraction

The self-similar solution of the Sedov-Taylor expansion in a uniform medium without mass loading
lead to a thermal energy fraction of 71.7% E0 which is in accordance with Chevalier (1974);
McKee and Ostriker (1977); Ostriker and McKee (1988). This fraction will be used in our setup
of the blast waves.

4.3.2 Initial conditions of the Sedov-Taylor blast wave test
The initial conditions for the Sedov-Taylor explosion consist of a sphere with an internal energy of
1051 erg placed in a homogeneous medium.
As shown in Sect. 4.3.1, the equations for the gas-dynamic parameters in the shock front depend
on the number of dimensions taken into account. Thus, for our 2D RAMSES models, the perfor-
mance of the solvers at the Sedov-Taylor problem was tested with axisymmetric explosions with

72 4. Basic building blocks of simulations

0.2

0.6

1.0

0.0 0.2 0.4 0.6 0.8 1.0
r/rshock

Pressure VelocityDensity

Figure 4.11: Internal pressure, density and velocity structure of the Sedov-Taylor blast’s bubble as
obtained with Code Listing A.1

only one layer of cells plus two layers of ghost cells for the boundary conditions in z-direction.
The simulations start at time t = 3.46 × 10−4 [code-time-units]. At the start of the simulation
the internal energy Etot = 1 [code-mass-unit code-length-unit2/code-time-unit2] is assumed to be
stored inside a circular region with radius r = 0.02 [code-length-units] and constant energy density.
The start time t = 3.46 × 10−4 [code-time-units] was chosen, because the iterative solution (see
Sect. 4.3.1) carried out with the code of Haque (2006) with dimensionless coordinates and auto-
matically chosen initial α (started from command line using: ./sedov sedov.param.start -v

-auto) yielded α = 0.56 for a two dimensional blast with energy Etot = 1 [code-mass-unit code-
length-unit2/code-time-unit2] in an initially homogeneous ambient medium with ρ = 1 [code-
mass-unit/code-length-unitν] and adiabatic exponent γ = 5

3
. Hence according to Eq. 4.20 the two

dimensional shock front is at r = 4

√
t2

α
= 0.02 [code-length-units] at this time. The shape, size

and resolution of the region into which the blast energy is inserted have a strong influence on
the results (see also Sect. 5.2.1 and Sect. 5.2.3 on the feedback region). To insert the given total
energy, the volume weighted sum of the energy density inside this region has to be the desired
total energy divided by the volume of the region. Let us assume that all the blast energy would be
stored in just four cells with cell-lengths of 0.02 [code-length-units]. In this case these four cells
get internal energies of Etherm,i = 625 [code-mass-unit code-length-unit/code-time-unit2], because
Etot = 1 =

∑
Etherm,i (∆x)2 = 4 × 625 × 0.022. Of course this cannot be done in a real sim-

ulation, because the grid would create an x-shaped outflow rather than an axisymmetric outflow.
In the simulations the feedback region radius is at least 8 cell-lengths and the internal energy of
the cells inside the spherical feedback region is Etherm,i = wi

Etot

(∆x)2 with weights wi that account
for the fact that near the border of the region only a part of the cell i might be inside the feedback
region. The weights are normalized:

∑
wi = 1.

4.3.3 Results of the Sedov-Taylor blast wave test

The Sedov-Taylor test is already relatively close to our production runs without winds. The simpli-
fications (compared to the production runs) are: (1) the Sedov-Taylor test ignores radiative cooling
losses and (2) the ambient pressure is unimportant for Sedov-Taylor blasts. The Sedov-Taylor
test shows us, (1) that our prescription of energy deposits actually manages to insert the desired
amount of energy into the computational box and (2) that energy-, mass- and momentum conser-

4.4 Theories of stellar winds 73

vation works under this conditions (which are already close to the production runs) and (3) the
diffusivity of the numerical schemes. As for the Sod shock tube test, we ran this test with all
solvers and flux limiters. Since initial conditions for this test are distributed both with the PLUTO

and RAMSES code, we do not include the plots here. Basically, the test results reach the same
conclusion (HLLC + MonCen) as the Sod shock tube test.

4.4 Theories of stellar winds
The feedback of a group of stars is dominated by massive stars7. This is, e.g., shown in Fig. 2.18,
where the energy input from the most massive still existing star dominates. However, it is also
obvious if one considers the high luminosity of massive stars, the fast evolution (i.e. rather early
SN) the energy input from SN events (1051 erg) and the kinetic energy and mass loss rates of WR
winds.
Massive stars shape the medium surrounding them via ionizing radiation, stellar winds and SN
explosions. This work will not treat the effects of the ionizing radiation. Although the energy
in the stellar winds is about two orders of magnitude smaller than the radiative energy (e.g. Voss
et al., 2009; Ekström et al., 2012), stellar winds are very efficient in heating the surrounding ISM:
whereas the temperature in the Strömgren sphere is of the order of 10 000 K, temperatures in the
shocked wind gas and the shocked ISM can be > 107 K (see also Lamers and Cassinelli, 1999,
chapter 12.1, page 357).
Stellar winds are a flow of particles escaping from a star. They are characterized by their mass
loss rate Ṁ and the terminal velocity v∞ which is the velocity of the wind particles at a large
distance from the star. Winds of massive stars exhibit terminal velocities of the order of 104 km/s
(Lamers et al., 1995; Leitherer et al., 1999; Niedzielski and Skorzynski, 2002, see also Tab. 2.4
and Fig. 2.12). The expected mass loss rates for a 40M� star are of the order of 10−6 M� per year
before the WR phases and up to > 10−4 M� per year during the WR phases (e.g. Meynet et al.,
1994; Meynet and Maeder, 2003; Ekström et al., 2012).
Voss et al. (2009) and also Abbott (1982) showed that the total energy input of winds of massive
stars is of the same order as the energy released in the SN event (1051 erg).

4.4.1 Wind theory of Castor et al. (1975)
The wind theory of Castor et al. (1975) describes an idealized spherically symmetric stellar wind,
which starts at t = 0. It is characterized by its constant terminal velocity vwind and constant mass
loss rate Ṁwind. When it flows into an ISM with not-negligible uniform density n0, the interaction
of the wind with the ISM creates a two-shock structure.
After the initial free streaming phase, which lasts for about< 100 yr and ends when swept up mass
equals the wind mass, the wind spends of the order of 1 000 yr in an adiabatic phase. This phase
ends, when the cooling time equals the evolutionary time. Consequently the stellar wind transits
to the snowplow phase, which lasts longer than the aforementioned phases. Finally dissipation
destroys the wind bubble. For our study we are interested in the snowplow phase, since our aim is
to find out, how much of the feedback energy is lost via radiative cooling.
During the snowplow phase the structure of the wind can be subdivided into 4 zones (see also
Fig. 4.12):

7massive stars are defined as stars with high enough masses to undergo a SN explosion (not type Ia).

74 4. Basic building blocks of simulations

(1) Supersonic free streaming wind
The stellar wind drives a wave into the ISM. In this zone the radius-dependent density is
ρwind(r) = Ṁwind

4πr2vwind
, since the mass per shell is constant. Also the temperature T in this

zone is constant and lower than in zone (2). A pressure less gas would move with constant
velocity vwind. As shown e.g. in Fig. 4.15, the velocity profile in this region is v(r) ∝ 1− 1

r2

and the motion is supersonic.

The observational data of Gruendl et al. (2000) shows a clear offset between theHα emission
in the free streaming wind in and the O[III] emission in the shocked wind in RCW 58.
This suggests that this region in WR bubbles can indeed span a few parsecs in low density
environments.

(2) Hot layer with shocked wind
The shocked wind layer is separated from the free wind region by the “inward facing shock”8.
During the transition through this reverse shock at the interface of zone (1) and (2) the gas
is heated and compressed. The density ρ increases by a factor ∼ 4, as follows from the
shock-jump-conditions (see Sect. 4.1.3) for high Mach numbers and the velocity decreases
as can be seen from mass conservation: ρ1 : ρ2 = u2 : u1. The hot shocked wind zone is
almost isobaric and contains also a small fraction of swept up ISM gas besides the heated
wind.

The wind adds energy at rate Ė =
Ṁwindv

2
wind

2
via a collision-less shock at small radii or via

Coulomb stopping of wind ions inside this zone.

With the mass loss Ṁ6 in 10−6M�/ year the v2000 wind velocity in 2000 km/s and t6 time in
Myr Castor et al. (1975) find:

– n = 0.01n
19/35
0

(
Ṁ6v

2
2000

)6/35

t
−22/35
6 cm−3

– T = 1.6× 106n
2/35
0

(
Ṁ6v

2
2000

)8/35

t
−6/35
6 K

– Lx−ray = 3.8× 1033n
18/35
0

(
Ṁ6v

2
2000

)37/35

t
−16/35
6 erg/s

Since the sound speed rises with T the Mach number in this zone is lower than in the free
wind region. Thus, the flow is subsonic in the hot region (2) and supersonic in zone (1).

(2-3) Contact discontinuity (CD)
The CD at radiusRCD = 0.86Rs separates wind material from swept up ISM. The expansion
velocity ˙RCD is the same on both sides of the CD but a density jump is observed. This zone
is numerically challenging, since the resolution is problematic in this thin shell. However,
this zone is very important for our simulations: on the one hand it contains a large amount
of compressed swept up medium, since ρ is highest at the CD and on the other hand, energy
losses peak there and T at the CD is lowest, since radiative cooling becomes very efficient
at high ρ.

The hot gas (separated by the CD) expands into region (4) and back into region (1) causing
a two-shock structure.

8The direction of a shock is: hot medium→ cold medium. At the interface (1) to (2) this is thus “inward facing”.

4.4 Theories of stellar winds 75

(1)

(2) Shocked wind

RCD, CD

(3)

Rs

(4) Ambient ISM

Figure 4.12: Structure of the wind bubble during the snowplow phase: ring structure with (1) free
wind, (2) shocked wind, (3) swept up ISM and (4) ambient medium. The location of the CD (RCD)
is also indicated.

(3) Hot shocked ISM
The hot layer containing swept up and heated ISM is separated from region (2) through a
contact discontinuity and through a shock, where the ISM is compressed and heated, from
region (4). The gas moves at the same velocity as in zone (2). Analogous to the inward
facing shock, we also find a ρ jump by a factor 1/4 at the interface (3) to (4). This interface

is located at Rs = 0.76
(
Ė0t3

ρ0

)1/5

= 28
(
Ṁ6v2

2000

n0

)1/5

t
3/5
6 pc.

(4) Undisturbed ISM
The ambient, low temperature medium is assumed to be at rest.

4.4.2 Thin shell approximation
During the snowplow phase the width of the zone containing the shocked ISM is much smaller
than the radius of the bubble. Therefore the thin shell approximation can be used to describe the
evolution of the pressure driven shell.
Since we will need winds in 1D, 2D and 3D, we will use n-spheres for the thin shell approximation.
Basically a ν-dimensional sphere with radius r has a surface

Sν−1r
ν−1 =

2π
ν
2

Γ
(
ν
2

)rν−1 (4.36)

and a volume

Vνr
ν =

2π
ν
2

νΓ
(
ν
2

)rν (4.37)

where Γ is the gamma function with Γ(1
2
) =
√
π,Γ(1) = 1 and Γ(x + 1) = xΓ(x). We consider

stellar wind bubbles that are placed in a homogeneous ambient medium with density ρ0. We now

76 4. Basic building blocks of simulations

assume that all mass inside the shell radiusRs(t) has been swept up into a thin, dense, high pressure
shell. We further assume that the pressure inside the shell is so much larger than the pressure in
the shocked wind region that it can be ignored in the momentum conservation of the compressed
shell (Eq. 4.38). With n-spheres equating the rate change of momentum with the pressure force in
ν dimensions can be written as:

dMv

dt
= Sν−1R

ν−1
s p (momentum conservation) (4.38)

M = ρ0VνR
ν
s (mass of swept up medium in shell)

p = (γ − 1) Eth
VνR

ν
s

(EOS, Eq. 3.2)

v = dRs

dt
(rate of bubble expansion)

dρ0VνR
ν
s

dRs

dt

dt
= (γ − 1)Sν−1R

ν−1
s

Eth
VνR

ν
s

. (4.39)

If one assumes that the shell’s radius Rs and the total thermal energy Eth follow the power laws
Rs(t) ∝ ta and Eth(t) ∝ tb, one can compare the exponents of t in Equation 4.39. This leads to

(νa+ (a− 1))− 1 = (ν − 1) a− νa+ b

a =
b+ 2

ν + 2
(4.40)

and thus Rs(t) ∝ t(b+2)/(ν+2). The cumulative thermal feedback energy Eth(t) turns out to be
a fixed fraction of the cumulative total feedback energy E(t) = Lwindt

b. Where the exponent b
discriminates several energy input modes: The energy inserted in a blast of a SN explosion would
be described with b = 0 and hence E(t) = E0 = constant. The cumulative feedback energy of
a constant wind with luminosity Lwind as described by Castor et al. (1975) is E(t) = Lwindt with
dLwind

dt
= 0. Sequential star formation can be described with E(t) = Lwindt

2.

Under the assumption that pdV work is the dominant thermal energy loss, the relation between the
kinetic and the thermal energy can be found from energy conservation. I.e. the increase of the total
energy Ė equals the change of the kinetic and thermal energy:

dEtotal

dt
=

dEth

dt
+

dEkin

dt

bLwindt
b−1 = bLwindt

b−1 − Eth (γ − 1)
ν

Rs

dRs

dt
+ Ekin

(
ν

Rs

dRs

dt
+

2

vs

dvs

dt

)
0 = −Eth

(γ − 1) ν (b+ 2)

ν + 2
+ Ekin

ν (b+ 2) + 2 (b− ν)

ν + 2

Ekin = Eth
(γ − 1) ν (b+ 2)

b (ν + 2)

Lwindt
b = Eth

b (ν + 2) + (γ − 1) ν (b+ 2)

b (ν + 2)

Eth =
b (ν + 2)

bγν + 2b+ 2γν − 2ν
Lwindt

b . (4.41)

For a constant energy input (b = 1, E ∝ t) in 3D with γ = 5
3

this yields Eth = 5
11
Lwindt and

Eq. 4.40 leads to Rs(t) ∝ t3/5. In 2D the power law is Rs(t) ∝ t3/4 and the thermal fraction

4.4 Theories of stellar winds 77

is Eth = 1
2
Lwindt. Sequential star formation (b = 2, Eth ∝ t2) leads to Rs(t) ∝ t4/(ν+2) i.e. in

2D Rs(t) ∝ t and in 3D Rs(t) ∝ t4/5. For a blast (b = 0, constant E = E0) the Sedov-Taylor
solution Rs(t) ∝ t2/ν+2 is recovered but the constant thermal energy content of 0.72E0 cannot be
found from Eq. 4.41. However, as shown in Sect. 4.3.1, it can be found via an integration of the
density/pressure/velocity structure.
We will now solve for the proportionality constant α using Rs(t) = αt

b+2
ν+2 in the equation for

momentum conservation in ν dimensions (Eq. 4.39).

αν+1 ρ0Vν
dtν(b+2)/(ν+2) dt(b+2)/(ν+2)

dt

dt
= (γ − 1)

t−(b+2)/(ν+2)

α

Sν−1

Vν
Eth

αν+2 =
b (ν + 2)3 (γ − 1)

(b2ν + b2 + 3bν + 2ν + 2b) (bγν + 2b+ 2γν − 2ν)

Sν−1

V 2
ν

Lwind

ρ0

For 3D, γ = 5
3

and constant energy input (b = 1) we get Sν−1V
−2
ν = 9

4π
and α = 5

√
2×5×25

4×7×11π
Lwind

ρ0

and thus Rs(t) = 0.76 5

√
Lwind

ρ0
t3/5. The solution for the swept up shell is:

Rs(t) =

(
b (ν + 2)3 (γ − 1) Sν−1

V 2
ν

Lwind

ρ0
t(b+2)

(b2ν + b2 + 3bν + 2ν + 2b) (bγν + 2b+ 2γν − 2ν)

)1/(ν+2)

(4.42)

vs(t) =

(
b (ν + 2)3 (γ − 1) Sν−1

V 2
ν

Lwind

ρ0
t(b−ν)

(b2ν + b2 + 3bν + 2ν + 2b) (bγν + 2b+ 2γν − 2ν)

)1/(ν+2)

b+ 2

ν + 2
(4.43)

Internal structure of the stellar wind bubble

In Sect. 4.3.1 the internal structure of the Sedov-Taylor blast wave has been discussed. For a point
explosion we had a constant total energy E(t) = E0 = constant and a constant mass M = M0 in
the computational volume. If we consider a stellar wind, we have an energy source that constantly
increases the ISM mass M = M0 + Ṁt and the total energy E = E0 + Ṁv2

2
t.

We can now again use the adiabatic, ideal EOS

ε =
p2

ρISM(γ − 1)
(3.2)

and the Rankine Hugoniot relations (Eq. 4.6 to 4.11; Lagrangian system of the shock)

v2 =
2

γ + 1
vSWB

ρ2 =
γ + 1

γ − 1
ρSWB

p2 =
2

γ + 1
ρISMv

2
SWB

to define dimensionfree functions

ρ(r, t) = G(λ)ρ0

v(r, t) = U(λ)v2

p(r, t) = P (λ)ρ0v
2
2 .

78 4. Basic building blocks of simulations

0.0

0.5

1.0

0.0

0.5

1.0

0.90 0.95 1.00
r/Rs

Density Pressure Velocity

Figure 4.13: Internal pressure, density and velocity structure between the CD and the unperturbed
medium as obtained with Code Listing A.3. The superplotted points on the lower panel are a
PLUTO model for a wind of a 60 M� star without radiative cooling.

and insert them into the spherically symmetric Euler equations. We use λ = r/Rs, ∂
∂t

= ∂λ
∂t

∂
∂λ

=

−λ v2

Rs

∂
∂λ

and ∂v2

∂t
= −2

ν

v2
2

Rshell
and find:

(U(λ)− λ)
1

G(λ)

∂G(λ)

∂λ
+
∂U(λ)

∂λ
+

2U(λ)

λ
= 0

(U(λ)− λ)
∂U(λ)

∂λ
− 2

ν
U(λ) +

1

G(λ)

∂P (λ)

∂λ
= 0

−4

ν
P (λ) + (U(λ)− λ)

−γP (λ)

G(λ)

∂G(λ)

∂λ
− (U(λ)− λ)

∂P (λ)

∂λ
= 0

We solve again with Mathematica and find the structure of the bubble between the CD and the
shell (Code Listing A.3 and Fig. 4.13). The thermal energy fraction in the 3D constant wind model
with γ = 5

3
is 5

11
Etotal as expected from Eq. 4.41.

4.4.3 Steady-state wind of Chevalier and Clegg (1985)
The Chevalier and Clegg (1985) steady-state model basically treats the feedback region like our
code: the source term in the energy conservation equation Q = Ė/V , is the energy loss rate di-
vided by the volume of the spherical feedback region (with radius R) V = 4π

3
R3 and the source

term in the continuity equation q = Ṁ/V is the mass loss divided by the feedback region’s vol-
ume. The difference to our simulation is that this model neglects the surrounding ISM and thus
no driven wave develops. The Chevalier and Clegg (1985) solution (Chevalier and Clegg, 1985,
Fig. 1) is similar to the behavior of the free wind zone near the feedback region in our simulations.
Comparing this zone in our simulations to the Chevalier and Clegg (1985) solution is thus a good

4.4 Theories of stellar winds 79

test for our implementation of the stellar feedback. However, the Chevalier and Clegg (1985) so-
lution is not a good model for feedback in regions with not negligible ISM density, since it cannot
describe regions with shocked wind or swept up medium.

The basic equations of the Chevalier and Clegg (1985) model are:

Continuity equation:
1

r2

d

dr

(
ρur2

)
= q (4.44)

with q = Ṁ/V in the feedback region and q = 0 elsewhere.

Momentum conservation: ρu
du

dr
= −dP

dr
− qu (4.45)

Energy conservation:
1

r2

d

dr

[
ρur2

(
u2

2
+

γ

γ − 1

P

ρ

)]
= Q (4.46)

with Q = Ė/V in the feedback region and Q = 0 elsewhere.

Chevalier and Clegg (1985) assume that the energy is thermalized and hence the flow is subsonic
in the feedback region. The wind speed u reaches the sound speed c =

√
γ P
ρ

at the radius of
the feedback region (R). Outside the feedback region the flow becomes supersonic. The relation
between the Mach number M = u

c
and the scaled radius r/R, is derived by integrating the above

mentioned conservation laws (Eq. 4.44, 4.45 and 4.46).

These relations are:

(
3γ + 1/M2

1 + 3γ

)−(3γ+1)/(5γ+1)(
γ − 1 + 2/M2

1 + γ

)(γ+1)/[2(5γ+1]

=
r

R
(r < R) (4.47)

M2/(γ−1)

(
γ − 1 + 2/M2

1 + γ

)(γ+1)/[2(γ−1]

=
(r
R

)2

(r > R) . (4.48)

Here we will only briefly show how the relation outside the feedback region (Eq. 4.48) can be
obtained. The relation for the feedback region (Eq. 4.47) can be derived in a similar way but the
algebra is more cumbersome than for the equations without source terms.

First the conservation equations without source terms are used to find the relation between pressure
and density:

d

dr

(
ρur2

)
= 0 (4.49)

ρu
du

dr
= −dP

dr
(4.50)

u
du

dr
+

γ

γ − 1

dP
ρ

dr
= 0 (4.51)

Eq. 4.51 was simplified by using Eq. 4.49 to remove
[(

u2

2
+

γ

γ − 1

P

ρ

)]
d

dr

(
ρur2

)
= 0

80 4. Basic building blocks of simulations

Combining the momentum conservation (Eq. 4.50) with a the energy equation (Eq. 4.51) leads to

−1

ρ

dP

dr
+

γ

γ − 1

dP
ρ

dr
= 0

−1

ρ

dP

dr
+

γ

γ − 1

1

ρ

dP

dr
+

γ

γ − 1
P

d1
ρ

dr
= 0

1

ρ

dP

dr
+ γP

d1
ρ

dr
= 0

The chain rule leads to
d
(

1
ρ

)γ
dr

=
γ

ργ−1

d1
ρ

dr

the pressure density relation is
d P
ργ

dr
= 0 or

P

ργ
=
P0

ργ0
(4.52)

Where the subscript 0 indicates quantities at the center of the feedback region. Integrating the
continuity equation (Eq. 4.49) results in

r2uρ = R2u0ρ0 . (4.53)

R is the radius of the feedback region. An integral over the momentum conservation (Eq. 4.50)
combined with Eq. 4.52 leads to:

∫
d
u2

2
= −

∫
1

ρ
dP with

1

ρ
=
P

1/γ
0

ρ0

P−1/γ

1

2

(
u2 − u2

0

)
=
P

1/γ
0

ρ0

1

1− 1/γ

(
P

1−1/γ
0 − P 1−1/γ

)
1

2

(
u2 − u2

0

)
=

γ

γ − 1

(
P0

ρ0

− P

ρ

)
with c2 = γ

P

ρ
and u0 = c0

u2

u2
0

− 1 =
2

γ − 1

(
1− c2

c2
0

)
u

u0

=

√
γ + 1

γ − 1
− 2

γ − 1

c2

c2
0

. (4.54)

The relation between pressure and density (Eq. 4.52) can now be used to rewrite the ratio between
the adiabatic sound speeds

(
c =

√
γ P
ρ

)
:

c2
0

c2
=
γ

γ

P0/ρ0

P/ρ
with Eq. 4.52

c2
0

c2
=

(
ρ0

ρ

)γ−1

(4.55)

For the integral over the energy equation it is convenient to use the adiabatic sound speed c and the

4.4 Theories of stellar winds 81

Mach number M = u/c:∫ (
u2

2
+

γ

γ − 1

P

ρ

)
dr = 0 with M =

u

c∫
M2c2γ − 1 + 2/M2

γ − 1
dr = 0 with M0 = 1

M2c2γ − 1 + 2/M2

γ − 1
= c2

0

γ + 1

γ − 1

M2γ − 1 + 2/M2

γ + 1
=
c2

0

c2
. (4.56)

We now combine the relations found from the integrals over the conservation equations (Eq. 4.54
to 4.56) to recover the Chevalier and Clegg (1985) solution at large radii (Eq. 4.48). We start by
combining Eq. 4.55 and Eq. 4.56:

M2/(γ−1)

(
γ − 1 + 2/M2

γ + 1

)1/(γ−1)

=
ρ0

ρ
with Eq. 4.53

M2/(γ−1)

(
γ − 1 + 2/M2

γ + 1

)1/(γ−1)

=
(r
R

)2 u

u0

with Eq. 4.54

M2/(γ−1)

(
γ − 1 + 2/M2

γ + 1

)1/(γ−1)

=
(r
R

)2

√
γ + 1

γ − 1
− 2

γ − 1

c2

c2
0

with Eq. 4.56

M2/(γ−1)

(
γ − 1 + 2/M2

γ + 1

)1/(γ−1)

=
(r
R

)2

√
γ + 1

γ − 1
− 2

γ − 1

γ + 1

M2 (γ − 1 + 2/M2)

M2/(γ−1)

(
γ − 1 + 2/M2

γ + 1

)(1+γ)/2(γ−1)

=
(r
R

)2

. (4.48)

The solution for the radius dependent Mach number outside the feedback region (Eq. 4.48) is
shown in Fig. 4.14 together with a subset of our spherically symmetric simulations of stellar winds.
In our simulations the sonic point is outside the feedback region and the density of the surrounding
medium plays an important role. Combining Eq. 4.53, 4.54 and 4.55 leads to the relation between
radius and density:

r

R
=

1

4

√(
ρ
ρ0

)2
γ+1
γ−1
− 2

γ−1

(
ρ
ρ0

)γ+1
. (4.57)

In Fig. 4.16 this expected density distribution for the free wind zone is compared to the inner zones
of our simulations with the rotating 60 M� and 40 M� stellar models (details on the implemen-
tation of the time dependent wind can be found in Sect. 2.7). The free wind zones of the models
seem to follow this trend, but further away from the feedback region, the non-negligible density
of the ambient medium leads to a solution which is better described by the Castor et al. (1975)
models. With Eq. 4.52 the radius-density relation Eq. 4.57 can be converted to a radius-pressure
relation:

r

R
=

1

4

√(
p
p0

)2/γ
γ+1
γ−1
− 2

γ−1

(
p
p0

)1+1/γ
. (4.58)

82 4. Basic building blocks of simulations

0

1

2

3

4

5

6

0 2 4 6 8 10

M
ac

h
nu

m
be

r

r/R

60M� 2 Myr
60M� 3 Myr
60M� 4 Myr
40M� 2 Myr
40M� 3 Myr
40M� 4 Myr
40M� 5 Myr

Chevalier and Clegg (1985)

Figure 4.14: Mach number of the Chevalier and Clegg (1985) steady state wind model (black solid
line) compared to our simulations. Our models reach Mach number 1 (dashed line to guide the
eye) outside the feedback region (radius 0 to R). Generally the Mach number in our models is
lower than predicted by the Chevalier and Clegg (1985) models. This is caused by (1) the driven
wave into the ISM, (2) cooling, (3) varying wind speeds and mass loss rates.

This relation is shown in Fig. 4.17. Again the free wind regions of the simulations can be described
with this model, but beyond the reverse shock Chevalier and Clegg (1985) has to fail. Finally

Eq. 4.53 and 4.55 can be combined to c2

c20
=
(
u0

u
R2

r2

)γ−1

which in turn combined with Eq. 4.54
leads to the velocity-radius relation:

u2

u2
0

=
γ + 1

γ − 1
− 2

γ − 1

(
u0

u

R2

r2

)γ−1

r

R
=

[
γ + 1

2

(
u

u0

)γ−1

− γ − 1

2

(
u

u0

)γ+1
]−1/(2(γ−1))

(4.59)

Fig. 4.18 shows that the velocity structure found near the feedback region in our simulations does
not follow this model. Since the velocities found in the simulation were normalized by the velocity
found at R = 1, which is lower than expected (i.e. the sonic point is found further outside than
expected), the simulated velocities seem to be higher than the model. Actually, this is only due
to the deviations at the point used for the normalization. The summary plot Fig. 4.15 compares
Eq. 4.57, 4.58 and 4.59 to a simulations with a rotating 60 M� stellar model in a dense medium.
Again the velocities show the problem that the velocity at the border of the feedback region is
lower than expected.

4.5 Snowplow phases
The Sedov-Taylor phase (r ∝ t2/5, v ∝ t−3/5, Eq. 4.20 and 4.21) ends when the cooling time
becomes comparable to the dynamical time. In the subsequent radiative phase a dense shell forms
and the expansion is driven by pdV work in this so-called pressure-driven snowplow phase (r ∝
t2/7, v ∝ t−5/7, Eq. 4.61 and 4.62). In this phase, the pressure in the dense shell is the same as

4.5 Snowplow phases 83

0.01

0.1

1

10

0.1 1 10
r/R

Density (simulation)

Pressure (simulation)

Velocity (simulation)

Density (analytic)

Pressure (analytic)

Velocity (analytic)

Figure 4.15: This plot shows normalized density, velocity and pressure profiles for a 60 M� star
immersed in an ISM with a density of 100 particles cm−3 after 4 Myr. For the normalization the
values of the outermost cell in the feedback region were used. The solution close to the feedback
region is indeed following the trends in Chevalier and Clegg (1985, fig 1) but the free streaming
region is driving a wave into the ISM and thus further out the solution shows the behavior of the 4
zone model of Castor et al. (1975).

0.01

0.1

1

10

0.1 1 10

ρ
/ρ

0

r/R

60M� 2 Myr
60M� 3 Myr
60M� 4 Myr
40M� 2 Myr
40M� 3 Myr
40M� 4 Myr
40M� 5 Myr

Chevalier and Clegg (1985)

Figure 4.16: The Chevalier and Clegg (1985) density function (ρ
ρ0
∼ c2

(
r
R

)−2) compared to
simulations. The simulations were normalized by the density value at the edge of the feedback
region.

84 4. Basic building blocks of simulations

0.01

0.1

1

10

0.1 1 10

p/
p 0

r/R

60M� 2 Myr
60M� 3 Myr
60M� 4 Myr
40M� 2 Myr
40M� 3 Myr
40M� 4 Myr
40M� 5 Myr

Chevalier and Clegg (1985)

Figure 4.17: The Chevalier and Clegg (1985) pressure function (p
p0
∼ c1

(
r
R

)−10/3) compared to
simulations. The pressure at R = 1 was used for the normalization.

0.01

0.1

1

10

0.1 1 10

u
/u

0

r/R

60M� 2 Myr
60M� 3 Myr
60M� 4 Myr
40M� 2 Myr
40M� 3 Myr
40M� 4 Myr
40M� 5 Myr

Chevalier and Clegg (1985)

Figure 4.18: The Chevalier and Clegg (1985) velocity function (u
u0
→ 2) compared to simula-

tions. Fig. 4.14 shows that the simulation is less hypersonic than expected. The velocities in the
simulations seem to be too high, since they were normalized by the (too low) velocity at R = 1.
However, the velocities in all simulations seem to approach the same asymptotic limit in the free
wind zone.

4.5 Snowplow phases 85

in the shocked zone. When the pressure in the cavity has decreased enough, the remnant enters
the momentum conserving phase (r ∝ t1/4, v ∝ t−3/4, Eq. 4.65 and 4.66) in which the shell’s
momentum leads to further expansion of the bubble. We will briefly show, how these power laws
can be derived.

4.5.1 Adiabatic pressure driven snowplow
In this phase the pressure inside the bubble pushes the shell into the ambient medium. Near the
contact discontinuity a density peak forms. Behind the shock, at the outer side of the bubble’s
shell, a layer of heated, swept up medium at 4-times the ambient density develops. (The maximal
compression of an adiabatic mono-atomic gas leads to a factor 4 in density.) Despite radiative
cooling losses the pressure in the shell gets much larger than the bubble pressure. Material starts to
flow into the cavity and the bubble shell’s density profile becomes symmetric. The largest cooling
losses arise at the CD on the interface between the dilute bubble material and the swept up ambient
medium.
During phases in which the pressure of the adiabatic expansion of the hot dilute (and therefore not
cooling) interior of the bubble pushes the shell (c.f. Ostriker and McKee, 1988; McKee and Os-
triker, 1977), the change of momentum (here written with the ν-dimensional sphere from Eq. 4.36
to 4.37)

ρVν
d (r (t))ν dr(t)

dt

dt
= Sν−1 (r (t))ν−1︸ ︷︷ ︸

bubble surface

pbubble (4.38)

can be combined with the law of adiabatic expansion

pbubble (t)

pbubble (0)
=

(
r (t)

r (0)

)−νγ
. (4.60)

This way the exponents of r become

νa+ (a− 1)− 1 = (ν − 1− νγ)a

a = 2/(2 + νγ) .

For 3D (ν = 3) and an adiabatic exponent of γ = 5
3

we find a = 2
7
. Thus dimensional analysis

leads to

r (t) = ct2/(2+νγ) (4.61)

(c.f. Eq. 12 of McKee and Ostriker (1977) for the pressure-driven phase: r (t) = 10−0.32 7

√
R2
cESN

n0
t2/7),

which in turn leads to a velocity of

dr (t)

dt
=

2c

2 + νγ
t−νγ/(2+νγ) (4.62)

and a kinetic energy of

Ekin =
mv2

2
= 0.5ρVνr

νv2 ∝ t2ν(1−γ)/(2+νγ) (4.63)

As explained e.g. in Bandiera and Petruk (2004), Eq. 4.42 describes the fully radiative case whereas
Eq. 4.61 can be used in the adiabatic case where no kinetic energy of the incoming flow is radiated
in the outer shock.

86 4. Basic building blocks of simulations

4.5.2 Momentum conserving snowplow
When the pressure inside the bubble has decreased to the ambient pressure, momentum conserva-
tion governs the further expansion of the bubble. Assuming that all ambient medium is swept up
in a thin, dense shell (thin shell approximation), this shell is at radius r (t) moving with a velocity
of dr(t)

dt
at time t. Momentum conservation

ρVν
d (r (t))ν dr(t)

dt

dt
= 0 (4.64)

leads to a radius of
r (t) = b ν+1

√
a+ (ν + 1) t (4.65)

and a velocity of
dr (t)

dt
= b (a+ (ν + 1) t)−ν/(ν+1) (4.66)

which leads to a kinetic energy of

Ekin =
mv2

2
= c (a+ (ν + 1) t)−ν/(ν+1) (4.67)

with c =
ρVνb

ν+2

2

where a, b and c are constants.

Chapter 5

Method: codes and code modifications

Our numerical simulations were carried out with well tested, publicly available astrophysical Eu-
lerian hydrodynamics codes. Namely PLUTO (Mignone et al., 2007), RAMSES (Teyssier, 2002)
and ATHENA (Stone et al., 2008, 2010).

Our main modifications of the codes are time dependent stellar feedback, a minimal density to
numerically stabilize the very dilute hot zones inside the bubbles, a cooling-heating prescription as
described in Ntormousi et al. (2011) which allows for a multi-phase ISM and a threshold density
below which radiative cooling is not taken into account. The latter can be used to stabilize cells
near the CD and will be discussed in Sect. 6. Moreover we added a passive scalar to follow the
spread of the radioactive trace element 26Al in our simulations.

We will start by introducing the codes (Sect. 5.1). After this, in Sect. 5.2, we will then focus on
the implementation of the feedback, we discussed in Sect. 2.7.

5.1 Hydrodynamic codes
Important considerations for the code choice were (in this order) the available Riemann solvers
(Sect. 3.5.1), the implemented grids and physics modules and the available knowledge in the CAST
group1. We decided to use different codes for different aspects of the problem. E.g. the spherical
mesh in PLUTO made this code the best choice for 1D simulation, whereas following the trace
element 26Al was easier to implement with RAMSES. Finally the impact of radiation transfer was
tested with ATHENA in the scope of the ISIMA summer school, since the GPU radiation transfer
module of RAMSES was not yet publicly available at this time.

5.1.1 The PLUTO code: spherical symmetry
PLUTO (Mignone et al., 2007, 2012) is a modularized mesh code for astrophysical magnetohydro-
dynamics, developed at the Dipartimento di Fisica, Torino University in a joint collaboration with
INAF, Osservatorio Astronomico di Torino and the SCAI Department of CINECA. The code web
page is http://plutocode.ph.unito.it/. Although PLUTO is a freely-distributed software there is no
publicly accessible code repository.

1http://www.usm.uni-muenchen.de/CAST/

http://plutocode.ph.unito.it/
http://www.usm.uni-muenchen.de/CAST/

88 5. Method: codes and code modifications

For this work we used version 4.0 of PLUTO. It is MPI parallel and includes Cartesian, cylindrical
or spherical meshes in 1, 2 or 3 dimensions. While the static grid version if entirely written in C,
adaptive mesh refinement (AMR) requires the Chombo library and needs C++ and FORTRAN in
addition to C. We used it for classical hydrodynamics (HD) with thermal condition and optically
thin cooling. Our standard choices were RK3 explicit time-marching algorithm, MinMod piece-
wise interpolation scheme and the HLLC Riemann solver. PLUTO also includes the Two-Shocks,
Roe, HLLD, HLL and Lax-Friedrichs Riemann solvers.

We decided to use this code for our 1D spherically symmetric models. The most important reasons
for this choice were that PLUTO provides this desired mesh, thermal conduction and the HLLC
Riemann solver. The latter is important, since our models require an accurate treatment of the con-
tact discontinuity in the stellar wind bubbles. The PLUTO expertise in the CAST group (members
of the CAST group published Ballone et al., 2013; Schartmann et al., 2012; Burkert et al., 2012;
Schartmann et al., 2011; Junk et al., 2010; Schartmann et al., 2010, 2009, using this code) is also
one of the pros for using the PLUTO code. To adapt PLUTO to our scientific problem, we had to
modify the cooling-heating routine to allow for a multi-phase ISM and to add a source term for
our time dependent stellar feedback.

5.1.2 The RAMSES code: radioactive tracers

RAMSES (Teyssier, 2002) is an astrophysical magnetohydrodynamics mesh code that was orig-
inally developed in Saclay to study large scale structure and galaxy formation. It is free soft-
ware for non-commercial use only and can be downloaded from its bitbucket web-page: https:
//bitbucket.org/rteyssie/ramses. RAMSES is written in Fortran90, uses MPI and provides tree-
based adaptive mesh refinement. The hydrodynamics module comes with five choices for the
Riemann solver: exact, acoustic, LLF, HLL and HLLC. The TVD slope limiters MinMod and
MonCen are implemented. This work uses version 3.102, which includes a Cartesian grid in 1, 2
or 3 dimensions. The physics modules include gravity, a cooling-heating module (discussed also
in Sect. 2.2.6), star formation and supernova blasts.

In this work RAMSES is used for all simulations using a Cartesian grid. The most important
reasons for this are the large choice of Riemann solvers, the user-friendly implementation of AMR,
the simple implementation of additional passive scalars (which we need to follow our radioactive
trace elements) and source terms (i.e. our stellar winds) and last but not least the RAMSES cooling
module patch of Eva Ntormousi (Ntormousi et al., 2011) to allow for a multi-phase ISM.
Disadvantages – and thus reasons to resort to PLUTO or ATHENA – were that spherical symmetry
was not implemented in version 3.10 and that ionization (on GPUs) was still in development in
this version.
Expertise of the CAST group with this code is documented by papers and theses (Moeckel and
Burkert, 2014; Ntormousi et al., 2011; Behrendt, 2011). Hints on passive scalars by R. Teyssier
during his lectures at the Evora Supercomputing school3 are gratefully acknowledged.

2More specifically we used the ramses.tar.gz from July 12th 2011 for our patches – also the git version at bitbucket
still calls itself 3.10 although it has major differences e.g. the aton package. Ionization tests were carried out with
the ramses.tar.gz version from December 11th 2011 which is close to the GPU branch of the bitbucket site, which
identifies (still) as version 3.07

3http://www.lca.uevora.pt/supercomputing2009/

https://bitbucket.org/rteyssie/ramses
https://bitbucket.org/rteyssie/ramses
http://www.lca.uevora.pt/supercomputing2009/

5.2 Implementation of mass, momentum and energy feedback 89

5.1.3 The ATHENA code: the effect of ionization

ATHENA (Gardiner and Stone, 2005, 2008; Stone et al., 2008) is a mesh code for astrophysical
magnetohydrodynamics. It is parallelized with MPI. In contrast to PLUTO and RAMSES, ATHENA

only comes with static (fixed) mesh refinement. The available mesh geometries are Cartesian or
cylindrical.
One advantage of ATHENA is that it was developed for studies of the interstellar medium. Thus,
many groups in the community use it and develop customized versions with additional physics
included. For example, our work on elephant trunks was carried out with the code version of Mark
Krumholz, which treats ionizing radiation, in the scope of ISIMA 20104. However, in this thesis
we do not include our work on ionizing radiation. Nevertheless, our future work on massive stars
might use ATHENA simulations. The standard version of ATHENA (v4.2) implements compressible
hydrodynamics (and MHD) in 1D, 2D, and 3D, thermal conduction and optically-thin radiative
cooling. As in RAMSES an arbitrary number of passive scalars can be advected with the flow.
ATHENA can treat gravity.
Further advantages are the comprehensive documentation and test suite available on the code web
page https://trac.princeton.edu/Athena/ as well as the large choice of Riemann solvers (force, two-
shock, exact, HLLE, HLLC, Roe) for hydrodynamics. Up to 3rd order reconstruction (piecewise
parabolic) is implemented.
An example for the expertise of the CAST group with this code is Moeckel and Burkert (2014).

5.2 Implementation of mass, momentum and energy feedback

The insertion of the time-dependent stellar feedback5 in our simulations can be considered as
a generalization of the Chevalier and Clegg (1985) steady-state wind model (Sect. 4.4.3): in a
spherical region in the simulated volume time-dependent source terms are added to the energy
conservation equation and the continuity equation. We call this zone the feedback region or “the
driver region” since it is driving the bubble expansion. At each time-step the feedback model
yields a mass loss rate and a kinetic energy loss rate. These values are multiplied with the time
step length and divided by the volume of the spherical feedback region. The resulting densities are
added homogeneously to the mass density and the internal energy density in the feedback region.
If the gas in a cell inside the feedback region has a nonzero velocity, the increase of the mass in this
cell due to stellar mass loss will lead to an increase of the kinetic energy. We take this into account
when we add the feedback energy. In most models, we added the remaining feedback energy
as thermal energy. Basically, adding all feedback energy as kinetic energy or using the energy
fractions of a Sedov-Taylor blast (Sect. 4.3) leads to the same result, however, on a Cartesian
mesh, adding kinetic energy leads to more asymmetries than adding thermal energy.
In simulations with spherical symmetry (i.e. in our PLUTO models), the feedback region is placed
in the center of the grid. If a Cartesian grid is used (i.e. in all RAMSES models), the radius of
the feedback region is always resolved with at least three grid cells since smaller feedback regions
produce spikes along the diagonals of the grid. This problem was also discussed in Brighenti
and D’Ercole (1994). On the other hand too large feedback regions lead to oscillations inside

4http://isima.ucsc.edu
5The feedback is also called “the wind” since it is injecting energy and mass into the simulation over a longer time

period than a supernova (SN) burst.

https://trac.princeton.edu/Athena/
http://isima.ucsc.edu

90 5. Method: codes and code modifications

the feedback region resulting in spikes6 along the grid axes. The kinetic energy increase is not
influenced by the feedback region’s size. If the feedback region is small enough to resolve a free
streaming region, the temperature in this zone is lower than the temperature in the wind bubble.
This does not change the bubble evolution but it leads to a higher kinetic energy fraction7 and a
slightly lower feedback energy efficiency.
On a Cartesian grid, spherical feedback regions are produced by weighting cells which are only
partially inside the feedback region by the amount of the overlap of the cell with the feedback
region. To achieve this consistently for all simulations independently of the number of CPUs used,
a mask with weights is calculated for all AMR levels at the start of the simulation. This mask is
only recalculated if the feedback region moves with respect to the grid. We use a Monte-Carlo
method to find the weights: the code randomly generates positions in the cell and checks which
fraction of them is situated inside the feedback region. The typical number of random points per
cell was 100 corresponding to a 10% error in the volume fraction in these cells. This error leads
to slight asymmetries of the feedback region, but does not introduce errors in the total amount of
inserted mass or energy, since the energy and mass input are converted to densities using the actual
volume of the feedback region, which differs from 4π

3
r3 due to the Monte-Carlo errors. Since these

volume fractions are only calculated at the start of the simulation and stored in a mask for stars not
moving inside the computational box, the slightly asymmetric shape of the feedback region stays
constant during the simulation.
Sect. 5.2.1 and 5.2.3 give details on our implementation of the stellar feedback in the different
codes. In all of them we find the current mass loss rate and energy injection rate via a table look-
up in the feedback models at the end of each time step of the code. The stellar mass and energy
feedback during the last time step is then added homogeneously as a source term in a designated
feedback region.

5.2.1 PLUTO code modifications

Code Listing B.15 shows a minimal implementation of a constant stellar wind. In this code snippet,
we see two different methods to insert a constant wind with a terminal velocity of 108 cm s−1 and
a mass loss rate of 3 × 10−5 M� per year. The preprocessor directives (#ifdef-directives) in lines
22-24 switch between no wind (neither THERMALWIND nor INFLOWING_WIND defined),
kinetic or thermal energy input. According to these choices, lines 140-181 either insert the thermal
energy of the wind inside the domain or use the wind’s kinetic energy in an inflow boundary
condition. In the rest of Code Listing B.15 we see the definition of the units (lines 53-55), the
specific heat ratio (line 57) and the initial conditions (a homogeneous cloud, lines 59-63). In the
latter the velocities are not shown, since they are also set to zero in the default template for init.c.

Time dependent stellar feedback

Code Listing B.16 shows the implementation of a time dependent stellar wind with a subsequent
SN explosion in init.c. Again, we define feedback modes (lines 15-22), set the code units and
global parameters (lines 54-62) as well as the initial conditions (lines 78-83) where we added

6Some authors call this phenomenon “artificial jets”.
7The free streaming region is not removed from the efficiency plots. After 1 Myr the free streaming region of a

60 M� star in a n ∼ 100 cm−3 contains ∼ 2% of the kinetic energy. Its share of thermal energy is larger than 2% [no
percentage calculated yet].

5.2 Implementation of mass, momentum and energy feedback 91

a tracer to monitor energy losses via radiative cooling. Lines 85-97 contain code for tests with
viscosity and SNe with linear velocity profiles. These lines are not used in our “standard models”.
Lines 113-138 take care of reading in old models. The new computational volume is typically
larger than the volume in the read-in simulation. Therefore all cells are initialized with our desired
initial conditions and only the cells present in the old simulation are overwritten with the read-in
data. In the boundary conditions routine (lines 155-390) we use the tabulated wind data. This
routine calculates the feedback region volume (lines 194-214). The kinetic energy feedback (lines
215-236) is similar to the aforementioned constant wind. Lines 241-276 can merge cells, if the
mean free path becomes larger than a grid cell length. This part of the code was only used for
tests, not for production runs. In lines 278-372 we finally find the time dependent stellar feedback.
The routine first checks, if a SN explosion is due (lines 278-280). If this is the case, it either adds
the SN ejecta derived from the Ekström et al. (2012) final masses or a canonical value of 3 M�
(lines 292-304). Which one of these two SN models is used, depends on the preprocessor directive
GENEVA. Lines 311-315 reduce the time step length shortly before the SN. If the SN is not due
yet, and the Geneva stellar evolution models (Sect. 2.7.1, data from Ekström et al., 2012) are used,
the code interpolates in the table (line 319). In lines 324-329 the code evaluates the cavity size and
adds a SN explosion if a pre-defined bubble size is reached before the time when the SN would
be due. This was used for consistency checks with Tenorio-Tagle et al. (1990) who use a constant
wind and add the SN explosion when a given cavity size is reached. Lines 346-355 add the time
dependent wind and lines 355-367 add a constant wind.
The interpolation routine is shown in lines 391-472. Basically, we read in a table when this in-
terpolation routine is called for the first time (lines 409-430). Then we do a binary search in the
table (lines 439-469) and use the time step length, the code units and the desired feedback region
volume to get mass and energy densities (lines 469-470).

Calls to the feedback routines

The code in boundary.c (Code Listing B.1) checks if there is still a massive star that has not
exploded and calls UserDefBoundary from Code Listing B.16 if it has not been done yet for
this time step. This check is necessary since the predictor corrector scheme would add the stellar
feedback several times (twice for RK2 and three times for RK3) otherwise.
pluto.h (Code Listing B.8) now also contains a global variable for the time of the SN explosion
and the SN routine and the wind table look-up are listed in prototypes.h (Code Listing B.9).

Radiative cooling in a multi-phase ISM

The RAMSES cooling-heating module of Ntormousi et al. (2011), which is discussed in Sect. 5.2.3,
has been ported and merged with the PLUTO cooling table. This is shown in Code Listing B.10 of
radiat.c. However, from Code Listing B.3 it can be seen that we do not use radiative cooling
inside the feedback region and that we have moved the minimal temperature check to Code List-
ing B.10. Moreover we created an artificial equilibrium for the 1 000 K models in the cooling table
Code Listing B.2.

Other patches

The patches in Code Listing B.6 (input_data.c) help us restarting the simulation: Our strategy
is to start with a small box, but before the shock can reach the boundary, we restart the simulation

92 5. Method: codes and code modifications

and add more cells of unperturbed medium. This increase of the simulation volume is carried out
when a minimal number of unperturbed cells (i.e. cells with zero velocity, initial density and initial
pressure) is reached. This is not visible in the source code since this process is controlled with
a shell script (Code Listing B.20). The minor patch in Code Listing B.11 takes care that after a
restart with a larger volume the output files are still numbered consecutively. Basically, this only
makes post-processing of the data easier. Code Listing B.12 only got some additional debugging
output. Our modifications in Code Listing B.13 avoids outflows from already empty cells. Code
Listing B.7 shows our modification of the minimal pressure and minimal density. This patch was
needed due to the very strong gradients in our models. Code Listing B.14 shows, at which place
the thermal conduction coefficient can be modified. It also shows that we do not use thermal
conduction in the feedback region. Code Listing B.4 indicates at which place the viscosity can be
changed. In Code Listing B.5 we added new units and limits.
Typical code settings for our models are shown in Code Listing B.18. An example of pluto.ini
containing run-time parameters can be found in Code Listing B.17. Code Listing B.19 shows an
example for a post processing routine.

5.2.2 Code tests
We have tested our implementation of the stellar feedback by comparing to the analytic models
(Sect. 4.3, 4.4.1 and 4.4.3), by checking the total energy content in simulations without radiative
cooling and finally by comparing to published simulations (e.g. Thornton et al., 1998; Tenorio-
Tagle et al., 1990). None of these tests showed problems in our implementation [TO DO: add plots
or describe test results].

5.2.3 RAMSES code modifications
Code snippets of our RAMSES patches are found in the appendix. We will briefly discuss the new
modules and the modifications of existing modules.

Stellar model database

The module geneva_models (Code Listing C.2) contains the tabulated mass loss and 26Al data of
Ekström et al. (2012) as well as feedback energies computed as explained in Sect. 2.7.3 and SN
data as described in Sect. 2.7.4. Moreover, it provides a routine to convert all feedback data to the
units used in the simulation, an output routine and a routine for linear interpolation in the feedback
tables which can also add up feedback for several stars.

Feedback region and mask

However, the subroutine read_driver (lines 56-213) in the module driver (Code Listing C.1)
can also read in stellar feedback from an ASCII table and convert it to code units. This is used for
example for the Voss et al. (2009) population synthesis models. The subroutine read_sn (lines
214-291) in this module reads tabulated SN data. The allocated driver arrays can be deallocated
with the subroutines remove_driver (lines 292-309) and remove_sn (lines 310-324). This mod-
ule also comes with a routine for linear interpolation of the read-in tables (interpolate_driver,
lines 325-376). The subroutine add_SN (lines 377-403) searches for SN explosions occurring dur-
ing the present time-step and returns the mass and energy feedback.

5.2 Implementation of mass, momentum and energy feedback 93

We now need to find the region into which the stellar feedback will be injected. This will be
done with a mask: We define an array that tells us, how much of the cell’s volume lies inside the
feedback region: 0.0 for cells fully outside the feedback region, 1.0 for cells fully contained in the
region and a number between 0.0 and 1.0 for cells partly inside. For the latter case we use the
fraction of randomly generated positions in the cell that lie inside the feedback region. For 1D or
2D we also have a subroutine which calculates the volume fractions analytically.
To flag the feedback region, the subroutine allocate_driver_mask (Code Listing C.1, lines
404-588) uses the FORTRAN derived data type driver_mask (lines 38-51). This object contains
the number of cells along the feedback region radius (plus one), the cell size, the actual volume of
the feedback region found via Monte-Carlo which slightly differs from 4πr3

3
and an n-dimensional

mask for a volume containing the feedback region plus approximately one cell in each direction.
The size of the boundary layer is not exactly one cell in each direction, since the center of the
feedback region does not have to be aligned with the grid. Of course, placing the feedback region
center asymmetrically on the grid does not sound like a wise choice for a star in a homogeneous
cloud. However, the idea behind this implementation is that at some point our simulations will
contain multiple stars, represented by the feedback regions, which will have proper motions.
The routine now allocates the array driver1 of such objects with as many entries as grid lev-
els and fills it with data. The module contains two functions that read data from this object:
get_driver_volume (lines 589-598) can read the actual volume and get_driver_mask (lines
599-655) can look up how much a given cell overlaps with the feedback region. Since RAM-
SES always loops over the grids by vector sweeps, the subroutine driver_weights_fixed (lines
671-726) does this look up for a whole array of dimension(1:ngrid). Before RAMSES exits,
driver1 has to be deallocated. This is done by the subroutine deallocate_driver_mask (lines
656-670). For moving feedback regions, it might be advantageous to find cells belonging to the
feedback region on the fly. This can be done with subroutine driver_weights (lines 727-857).
If the stellar feedback is inserted as kinetic energy, the subroutine driver_vector (lines 858-981)
finds radial vectors. Finally subroutine print_xyz (lines 982-1061) helps to find out in which cell
the code encounters a problem. The module also contains a routine with analytic weights for 2D
simulations.

Calls to the feedback routines

These two new modules now have to be called by RAMSES. The feedback parameters are stored
in amr_parameters.f90 (Code Listing C.3). These parameters can be set in the namelist and
are read-in by read_params.f90 and read_hydro_params.f90 (Code Listing C.4 and C.5).
The mass and energy injection of the star(s) are taken into account if the run time parameter
nstars in the namelist (an example is shown in Code Listing C.27) is larger than zero. In this
case, the code will add the newly emitted mass (total mass and radioactive tracers) and the internal
energy (unresolved kinetic wind energy, radiation pressure) to the density resp. energy in the feed-
back region. The size and location of this feedback region are set using the run time parameters
r_driver, x_driver, y_driver and z_driver in the namelist. The feedback data is loaded in
init_time.f90 (Code Listing C.6). If the run-time parameter ifgeneva is set to .true. in the
namelist, the model grid, the stellar masses and the star formation times in the run-time parameters
genevayear, mstars and tstars are used. Otherwise the code searches for tabulated feedback
data. The data file names are stored in file_driver (default: wind.dat) and file_sn (default:
sn.dat). After every time step, courant_fine.f90 (Code Listing C.7) calls the feedback inter-

94 5. Method: codes and code modifications

polation routine. It also uses the weights of the mask to identify feedback regions. Moreover, it
takes care of the decay of 26Al and 60Fe. If the preprocessor directive CARINA is used, the feed-
back subroutine wind uses sequential star formation. The preprocessor directive EKIN switches
between compiling the code for kinetic energy feedback or code where the feedback is inserted
mainly as thermal energy. The preprocessor directive TMIN ensures that the total energy is al-
ways larger than the kinetic energy. Further preprocessor directives are TMAX, which sets a
maximal temperature (used for tests only), DECAYINTERVAL and KAHANBABUSKA that
avoid problems with number precision in the tracer decay and in large sums, and THII which
sets T = 10.000 Kelvin in the feedback region. Finally the feedback arrays are deallocated by
clean_stop in update_time.f90 (Code Listing C.8).
To control the adaptive mesh refinement in the feedback region we patched flag_utils.f90

and hydro_flag.f90 (Code Listing C.9 and C.10). This is advantageous since too low refine-
ment leads to x-shaped outflows whereas very high resolution leads to bouncing waves inside the
feedback region which can be computationally costly.

Radiative cooling in a multi-phase ISM

The standard treatment of cooling and heating processes in RAMSES is discussed in Sect. 2.2.6.
For our simulations we used two modified versions of cooling_module.f90. One version is
shown in Code Listing C.19, the other one has been described by Ntormousi et al. (2011). The
latter contains cooling tables generated with the CLOUDY code. In the version shown in Code List-
ing C.19, the preprocessor directive artificial_ISM (lines 416-447) establishes a warm phase
by using a density dependent temperature floor. We need this, since we want two stable thermal
phases in our simulations: a cold cloud and a warm, dilute ISM. Cells, which are undisturbed by
stellar feedback should neither cool nor heat. For our production runs, we used the version of Ntor-
mousi et al. (2011), but tests with the artificially stable ISM showed that the dense bubble shell
will always loose almost all its thermal energy and cool to the equilibrium temperature (i.e. the
minimum temperature in the artificially stable ISM). Hence the feedback energy efficiency of both
cooling modules was of similar order. It turned out that mixing across the contact discontinuity
has a very strong influence on the feedback energy efficiency.
We patched cooling_fine.f90 (Code Listing C.18) to switch off cooling in the feedback region.
Technically, this is implemented with a mask. All cells inside the feedback region plus a layer with
a width set by coolplus in the driver parameters in the namelist do not suffer radiative cooling
losses.
Since our simulations focus on the feedback energy efficiency, it is important for us to be able to
monitor the energy losses via radiative cooling. We thus store the loss during the last time step
for every cell. Since we do not want this array to be advected like a passive scalar, we store it at
nvar+1. To do this, we increase the array size in init_hydro.f90 (Code Listing C.14). To avoid
loosing the data during memory defragmentation, we also patched load_balance.f90 (Code
Listing C.15). The losses per time step are analyzed in output_hydro.f90 (Code Listing C.16)
and re-set in amr_step.f90 (Code Listing C.17).

Initial conditions

Patches to hydro_parameters.f90 (Code Listing C.11) and init_flow_fine.f90 (Code List-
ing C.12) enabled us to set the initial distribution of radioactive tracers and to read in SPH data.
For this purpose we also wrote the module sph (Code Listing C.13). The preprocessor directive

5.2 Implementation of mass, momentum and energy feedback 95

JIM uses the settings for the SPH data provided by Jim Dale (ISM structures in the simulations
presented in Dale and Bonnell, 2011). If it is not defined, the data format of the SPH data provided
by Clare Dobbs (molecular clouds in the simulations presented in Dobbs et al., 2011) is used.

Other patches

Additionally we have set default units in amr_commons.f90 (Code Listing C.22). These defaults
can be overwritten by different choices in the namelist. Since some of our simulations (namely
the simulations with stellar feedback into the clouds of Clare Dobbs (Dobbs et al., 2011)) observe
energy flowing out of the computational box, we monitored such energy losses with the new mod-
ule in outflow.f90 (Code Listing C.23). Finally we often re-started our simulations and thus we
patched init_amr.f90 (Code Listing C.20) since RAMSES does not allow to change the initially
chosen output times, which is quite inconvenient for re-simulations when the initial simulation
showed an interesting phase in the model’s evolution that should be analyzed in more detail. Our
version of godunov_utils.f90 (Code Listing C.21) removes outflows from almost empty cells.
It can also ignore almost empty cells when the CFL (sect 3.3) is evaluated. For the HLLC solver,
the preprocessor directive ALUSTOP only allows the radioactive tracers to flow into cells with
temperatures above a temperature threshold.
To stabilize our simulations we also avoid negative internal energies in set_uold (Code List-
ing C.24, godunov_fine.f90). We remove outflows from almost empty cells and reset the
pressures in these cells in subroutine godfine1 (Code Listing C.24, godunov_fine.f90) and
subroutine ctoprim (Code Listing C.25, umuscl.f90). godunov_fine.f90 can also be used to
reset the cooling losses.
The Makefile in Code Listing C.26 summarizes the newly defined preprocessor directives.

5.2.4 Code tests: 26Al feedback
The 26Al feedback was implemented as passive scalar with a decay law (courant_fine.f90,
Code Listing C.7). Since time steps can be a small fraction of the half life time of 26Al, the decay
law can also be invoked after a given amount of time instead of being used at every time step. This
helps to ensure that the decay is not lost due to limited numerical precision. However, during most
of the simulations the time steps were large enough that the decay could be calculated at every
time-step for all cells. Figure 5.1 shows the convergence of the approaches in the simulation of
a 60 M� star in a homogeneous medium of 100 particles cm−3 after 60 kyr. For all five runs, 8
processors and AMR with grid levels 5 to 7 (i.e. at least 25 cells but up to 27 cells along each axis)
were used.

96 5. Method: codes and code modifications

1e-34

1e-33

0 1 2 3 4 5 6

2
6
A

l[
g

cm
−
3
]

Radius [pc]

Simulation with 9 processors, 0.6 Myr

5e+23

1e+24

0 1 2 3 4 5 6

2
6
A

l[
g/

sh
el

l]

Radius [pc]

Simulation with 8 processors

Hilbert
Planar

Planar, 50 kyr
Planar, 0.5 kyr

Hilbert, no decay

Figure 5.1: This figure shows the convergence of different decay routines. The back arrow in-
dicates the location of the border of the feedback region. The turquoise line shows a simulation
without decay. A simulation in which the decay of 26Al is calculated every 50 kyr is shown in blue.
Obviously this line has to overestimate the decay since it assumes that all the 26Al in the cell has
been there since the last calculation of the decay. The simulation with decay at every time step
(green, typical time step ∼ 50 yr) coincides with the simulation with 500 yr between decay cal-
culations. Number precision problems are expected if the time steps become of the order of years
or smaller. It is interesting to note that different parallelization methods or a different number of
processors influenced the result (green line and red line). It has to be tested if this is just a problem
of the boundary cells if domain decomposition happens inside the driver region or if this problem
always occurs if AMR is combined with MPI.

Simulations

The main questions addressed in the simulations described in this work are, how long massive star
feedback takes to disrupt a Giant Molecular Cloud (GMC)(GMC) (→ molecular cloud lifetimes),
how much of the feedback energy can be converted to kinetic and thermal energy of the GMC gas
(→ feedback energy efficiency, energy reservoir for driving of turbulence) and which fraction of
the cold GMC gas is heated (→ mass distribution of ISM phases). Another important aspect of
these simulations was to check whether a scaled Voss et al. (2009) feedback model, which is based
on the mean of 100 coeval stars between 8 and 120 M�, is a suitable model for the feedback of an
OB association with ∼ 10 massive stars. This is of importance for modeling the Orion-Eridanus
Superbubble (OES), because the feedback of Voss et al. (2009) destroys homogeneous GMCs very
efficiently and produces bubbles significantly larger than observed. To assess if the Voss et al.
(2009) prescription is a realistic model for the feedback of a typical8 OB association, we compared
its influence onto GMCs (1) to the influence of the feedback of individual Monte-Carlo realizations
of an OB association with 10 stars between 8 and 120 M� and star formation with a dispersion (σ)
of 1 Myr (as described in Voss et al., 2010) and (2) to feedback of individual massive stars.
For all simulations in this work we use a cooling-heating prescription describing a cold neutral
medium (CNM) and not molecular clouds (T ∼ 10–30 K and n ∼ 1000 particles cm−3). This
prescription does not include ionization, cosmic ray heating, C+, CO, C or H2O cooling.

8We call an OB association “typical” if its stellar mass distribution has a high probability to be drawn from the
assumed IMF.

98 Simulations

Chapter 6

1D: Feedback efficiency in spherical
symmetry

We start to investigate the amount of energy massive stars can convert to kinetic energy of the
surrounding ISM with one-dimensional spherically symmetric models. The big advantage of 1D
simulations is that they make it feasible to search a large region of parameter space in a short time.
The obvious drawback is that non-radial motions (e.g. hydrodynamic instabilities in the bubble’s
shell) cannot be taken into account. We will thus assume that the retained energy in the 1D models
is just an upper limit and re-simulate the most interesting models in more dimensions. The 1D
simulations were carried out with the patched PLUTO code (Sect. 5.2.1) and contain a single,
massive star with 60 M�. As we have shown in Sect. 2.7.5, this is a valid first approximation
for feedback in GMCs. The stellar feedback is calculated from the mass loss rate of the rotating
models of Ekström et al. (2012) as described in Sect. 2.7.3. The implementation in the code is
discussed in Sect. 5.2.1.
With the 1D models it is possible to study the feedback energy efficiency’s dependence on resolu-
tion. Our simulations use a static mesh with up to 250 cells per parsec. We assume that the star is
placed in an infinite, homogeneous cloud and start with a computational box of 5 pc. During the
simulation, we monitor how many undisturbed cells of ambient medium are left and add another
5 pc of undisturbed medium to the computational box if the number of such cells drops below
100. The standard assumptions for the cloud material in this study are solar metallicity, a density
of ρ0 = 2.2× 10−22 g cm−3 and a pressure of p0 = 1.48× 10−12 erg cm−3 corresponding to a
temperature of approximately 37 K. This phase of the ISM is in cooling-heating equilibrium if we
use the same cooling model as Ntormousi et al. (2011) (see Fig. 2.1 for the cooling-heating equi-
librium). The cooling-heating equilibrium temperature Teq(n) depends on the cooling model. We
added an artificially stable gas phase for the initial conditions (n0, T0) if this ISM phase was not in
cooling-heating equilibrium in the chosen cooling model. The number density (n) of ∼ 100 cm−3

resembles the average density of molecular cloud complexes as shown in Sect. 2.5. It is known
that molecular clouds exhibit a fractal structure, which will be addressed in our future work with
models taking more dimensions into account.
Our work extends the published stellar feedback energy efficiency models in two important aspects:

1. In all simulations shown in this section, we follow the energy content of the simulations from
star formation until several million years after the SN, when peak velocity in the bubble shell
becomes smaller than the sound speed of the ambient medium. At this time the shell is not

100 6. 1D: Feedback efficiency in spherical symmetry

infinitely thin and the highest velocity is found near the highest density. We argue that at
latest at this point turbulent motions will lead to break-up of the shell and very efficient
mixing (and energy deposition) in the ambient medium. Therefore, we follow the evolu-
tion of the models substantially longer than it was done in the work of Tenorio-Tagle et al.
(Tenorio-Tagle et al., 1990, 1991; Tenorio-Tagle, 1996). Thornton et al. (1998) also stop the
simulations after 13 time of maximal luminosity (t0)s (defined in Sect. 6.1.1), which is in
most models shortly after the transition to the momentum conserving phase (Sect. 4.5.2).

2. We test how stellar winds and variations of the wind strength affect the feedback energy
efficiency.
Observationally, the impact of the wind of the SN’s progenitor star is illustrated for example
by the shell of the progenitor star around SN 1987A reported by Wampler et al. (1990), the
wind shell of a 25 M� star seen in the SN remnant G296.1–0.5 (Castro et al., 2011) or the
stellar-wind envelope seen in SN 2006aj (Sonbas et al., 2008).
However, in the literature on feedback energy efficiencies stellar winds are either ignored
(e.g. Thornton et al., 1998) or assumed to be constant (e.g. Tenorio-Tagle et al., 1990, 1991;
Tenorio-Tagle, 1996). In our simulations, it turned out that ignoring winds is problematic:
Table 6.2 shows that the amount of mechanical luminosity1 that can be converted to shell
motions differs between models, which insert all energy in a blast (a SN) and models where
stellar winds are energy sources over long periods of time. Similar effects were observed
by: Tenorio-Tagle et al. (1990, 1991); Oey and Massey (1994); Oey (1996); Tenorio-Tagle
(1996). The reason for the higher feedback energy efficiencies of continuous energy injection
processes is that WR winds of the progenitor star create a bubble in the ISM. Blast waves
of SN explosions in such cavities undergo an almost loss-less expansion until they hit the
cavity walls. As a consequence, wind-blown bubbles delay the time of maximal luminosity
(defined in Sect. 6.1.1) and increase the amount of retained energy, since such cavities can
act as pressure reservoirs. When the blast hits the cavity walls, so-called catastrophic cooling
in the dense shell of swept-up ambient medium sets in (Tenorio-Tagle et al., 1990; Smith and
Rosen, 2003). This process (strong radiative cooling losses caused by a SN blast wave hitting
a pre-existing shell) is a likely explanation for the X-ray emission in excess of an adiabatic
model in X-ray bright superbubbles (Chu and Mac Low, 1990; Arthur and Henney, 1996;
Oey, 1996).

In the first part of this chapter (Sect. 6.1) we will discuss wind-less reference models and proceed
to time dependent winds in Sect. 6.2.

6.1 SNe without progenitor winds

The models discussed in this sub-section do not take the stellar winds of the SN’s progenitor
star into account. Hence at the time of the SN explosion the ambient ISM in these models is
homogeneous without pre-existing stellar wind bubbles. One of the goals of this section is a
consistency check of our setup with the published feedback energy efficiencies of Thornton et al.
(1998) and Tenorio-Tagle et al. (1990).

1“mechanical luminosity” is the energy input inferred from the mass loss rate and estimated wind velocity.

6.1 SNe without progenitor winds 101

6.1.1 Previous work

A very well studied case of a SN explosion in the literature is the deposition of ESN = 1051 erg
(also called 1 FOE) into a homogeneous ambient medium with a number density of n0 = 1 cm−3.
The mass of the SN ejecta differs between the studies (e.g. Tenorio-Tagle et al. (1990) use 4 M�
and Thornton et al. (1998) use 3 M�) but has – as shown in Tab. 6.1 and Sect. 6.1.3 – only a minor
influence on the feedback energy efficiency.
The study of Thornton et al. (1998) also covers ambient densities better matching to GMCs. To
compare models with different ambient densities, they normalized the simulation times with the
time, when the largest energy losses due to radiative cooling occur in the simulation. This time is
called “time of maximal luminosity” (t0). Please note that despite this name it does not correspond
to the maximum in the SN light curve, which is caused by radioactive decays. Thornton et al.
(1998) found a feedback energy efficiency of ∼ 10% after 13 t0 for a wide range of ISM number
densities (n = 0.001 to 1 000 cm−3) and metallicities (log (Z/Z�) = −3.0 to 0).

6.1.2 Grid of models

As a parameter study, a large number of simulations was run with ambient densities from 2.2 ×
10−25 to 2.2× 10−22 g cm−3 (see Tab. 6.1) in order to check the influence of the ambient pressure
on the resulting feedback energy efficiency. The temperature of the ambient medium in the study
of Thornton et al. (1998) is 1 000 K. Tab. 6.1 also contains models with Teq(n0) = 37 K, since this
is the cooling-heating equilibrium temperature for a density of 2.2 × 10−22 g cm−3 if the cooling
prescription described in Ntormousi et al. (2011) (see Fig. 2.1) is used. A subset of these models
(no stellar wind, ambient density 2.2 × 10−22 g cm−3) is also shown in the uppermost part of
Tab. 6.2.
Our reference model for this section is: Teq(n0) = 37 K ambient medium temperature, n0 =2.2×
10−22 g cm−3 ambient number density, cooling function as described in Ntormousi et al. (2011)
(Fig. 2.1), 0.32 pc feedback region radius, Sedov-Taylor like energy ratios in the initial conditions
(Sect. 4.3.1) and 11 M� mass loss during the SN explosion (Sect. 2.7.4). The influence of the
parameters in the simulation was checked by varying just one of them at a time. Since this leads
to a large grid of models, we only show a selection in Tab. 6.1. The models in this table differ in
more than one parameter from each other.

Low order interpolation functions (i.e. linear interpolation) and the two-shock solver were used to
avoid numerical issues at the sharp discontinuity between the hot bubble and the cold shell. Other-
wise over-oscillations near the contact discontinuity would build up and cause negative pressures
and spurious energy gains.

6.1.3 Findings and discussion

For SN explosions without prior stellar wind bubbles in a homogeneous ambient medium with
2.2 × 10−22 g cm−3, solar metallicity and a temperature of 1 000 K Thornton et al. (1998) find
a feedback energy efficiency of about 8% after 13 t0 (times of maximal luminosity, defined in
Sect. 6.1.1). At this time we find similar feedback energy efficiencies for this model and also
for our reference model (Tab. 6.1). However, when the shell velocity has decreased to the sound
speed of the ambient medium just 0.11% of the SN feedback energy are still retained in a model,

102 6. 1D: Feedback efficiency in spherical symmetry

ρ t t/t0 Ekin(shell) Ekin(total) r
[g cm−3] [kyr] [1050 erg] [1050 erg] [pc]

Thornton et al. (1998), 2.2× 10−25 122 1 2.14 2.73 55.8
Teq(n0) = 1 000 K, 1 590 13 0.77 0.78 114.3
∆x = 0.056 pc, 2.2× 10−24 34.4 1 2.17 2.74 21.4
rf = 1.5 pc, 447 13 0.75 0.84 43.0
3 M� 2.2× 10−23 9.73 1 2.33 2.67 8.2

126 13 0.84 0.76 16.4
2.2× 10−22 3.06 1 2.35 2.61 3.3

39.8 13 0.76 0.80 6.6

Teq(n0) = 1 000 K, 2.2× 10−25 96.5 1 2.41 2.84 47.5
∆x = 0.004 pc, 1 245.5 13 0.82 0.82 106.2
rf = 1.5 pc, 2.2× 10−24 28.0 1 2.27 2.77 18.6
3 M� 364.0 13 0.77 0.78 39.4

2.2× 10−23 8.0 1 2.18 2.69 7.3
104.0 13 0.72 0.74 15.1

2.2× 10−22 2.5 1 2.84 3.23 3.1
32.5 13 0.66 0.66 6.0

Teq(n0) = 1 000 K, 2.2× 10−25 100.5 1 2.13 2.68 49.4
∆x = 0.004 pc, 1 306.5 13 0.79 0.80 103.5
rf = 0.3 pc, 2.2× 10−24 30.0 1 2.19 2.68 19.1
11 M� 390.0 13 0.71 0.73 38.3

2.2× 10−23 9.0 1 2.32 2.81 7.5
104.0 0.72 0.72 15.0
117.0 13 0.66 0.66 15.6

2.2× 10−22 3.0 1 3.00 3.03 3.0
39.0 13 0.58 0.59 6.2

Teq(n0) = 37 K 2.2× 10−22 3.0 1 2.61 2.96 3.0
∆x = 0.004 pc, 32.5 0.68 0.68 5.9
rf = 0.3 pc, 0 M� 39.0 13 0.59 0.59 6.2

Teq(n0) = 37 K 2.2× 10−22 3.0 1 2.60 2.97 3.0
∆x = 0.008 pc, 32.5 0.64 0.66 5.9
rf = 0.3 pc, 0 M� 39.0 13 0.57 0.58 6.2

Teq(n0) = 37 K 2.2× 10−22 3.0 1 2.52 2.95 3.0
∆x = 0.016 pc, 32.5 0.62 0.63 5.9
rf = 0.3 pc, 0 M� 39.0 13 0.53 0.55 6.2

Teq(n0) = 37 K 2.2× 10−22 2.5 1 2.59 2.89 2.8
∆x = 0.032 pc, 32.5 13 0.61 0.61 5.9
rf = 0.3 pc, 0 M� 39.0 0.52 0.53 6.2

Table 6.1: Retained kinetic energy (Ekin) of SNe in homogeneous media. For all models 1051 erg
were inserted at t = 0. Ekin and the bubble radius (r) were evaluated at the time of maximal lumi-
nosity (t0, defined in Sect. 6.1.1) and after 13 t0, which is the end of the simulations in Thornton
et al. (1998). The resolution (∆x) and the state of the ambient medium (T , ρ) are varied. Since
the bubble pressure at t0 is much higher than the ambient pressure, the efficiency of the 1 000 K
model is comparable to the 37 K model. 37 K is the equilibrium temperature for a density of
2.2× 10−22 g cm−3 in the cooling function described in Ntormousi et al. (2011). For the ambient
medium in the 1 000 K model an artificially stable gas phase had to be created in the cooling table
(Code Listing B.2). t0 also depends on the size of the feedback region (rf) and on the kinetic to
thermal energy ratio. Therefore three SN models with different mass loading (M�) are shown.

6.1 SNe without progenitor winds 103

∆x SN wind thermal a ε (vsh = cs) εk (wind) εt (wind)
[pc] [1051 erg] [2.34× 1051 erg] conduction [1051 erg] [1051 erg] [1051 erg]

0.032 yes no no 0 0.0011 - -
0.016 yes no no 0 0.0011 - -
0.008 yes no no 0 0.0011 - -

0.032 no yes no 0 0.0213 0.0884 0.4981
0.016 no RW no 0 0.0231 0.0896 0.4981

0.064 yes yes no 0 0.0265 0.1027 0.5422
0.032 yes yes no 0 0.0271 0.0884 0.4981
0.016 yes RW no 0 0.0304 0.0896 0.4981
0.016 yes yes no 0 0.0365 0.1136 0.6019
0.008 yes yes no 0 0.0475 0.1340 0.6859
0.004 yes yes no 0 0.0620 0.1598 0.7756

0.032 yes yes no 1 0.0710 0.1841 0.8286
0.016 yes yes no 1 0.0791 0.1947 0.8696
0.008 yes yes no 1 0.0904 0.2076 0.9113

0.032 yes yes yes 0 0.0244 0.0827 0.4549
0.016 yes yes yes 0 0.0302 0.1014 0.5570

0.032 yes yes extreme 0 0.0094 0.0329 0.1915
0.016 yes yes extreme 0 0.0098 0.0353 0.2211

0.032 yes CW no 0 0.0293 0.0932 0.2070

Table 6.2: Stellar feedback in an ambient medium with a density of 2.2 × 10−22 g cm−3 and a
pressure of 1.47684×10−12 erg cm−3. This ISM phase is in cooling-heating equilibrium at∼ 37 K.
∆x is the cell size in the simulation. Despite the lower ambient temperatures the three uppermost
models without winds are comparable to Thornton et al. (1998) (1000 K). For models with a SN
explosion (“yes” in column 3), 1051 erg and 11 M� of ejecta were inserted after 4.859 Myr. For
simulations with stellar winds (“yes” in column 4) the Ekström et al. (2012) model for a rotating
60 M� star and the wind velocities summarized in Voss et al. (2009) were used (Sect. 2.7.3). In
total this stellar wind inserts 2.34×1051 erg. The constant wind model (“CW” in column 4) inserts
the same total wind energy at a constant rate. To check the influence of the resolution on the
energy-efficiency of the SN explosion, simulations with lower resolution were re-sampled directly
before the SN (indicated as “RW” in column 4), since the efficiency during the wind phase also
depends on the resolution. The slightly higher kinetic energy in the rescaled model at the end of the
wind phase is due to smooth interpolation. ε lists the kinetic energy in 1051 erg when the densest
cell is decelerated to the ambient sound speed. εk and εt list the retained kinetic and thermal energy
at the end of the wind phase (in units of 1051 erg). “Extreme” thermal conduction mimics a very
efficient diffusion process by increasing κ by 15 orders of magnitude. The parameter a describes
a density threshold, below which radiative cooling is no longer taken into account. This decreases
the energy losses due to mixing of gas across the CD. The density threshold a is normalized to
the density of the ambient medium. The table shows that higher efficiencies are reached for
higher resolutions, thus the higher maximal densities are outweighed by the smaller amount of
mixing across the CD in the higher resolved simulations. Whereas in lower resolved simulations
a decrease of the efficiency with increasing resolution is found, since the cell near the CD is too
large to reach high enough densities or temperatures due to the mixing across the CD to suffer
substantial energy losses at every time-step.

104 6. 1D: Feedback efficiency in spherical symmetry

0.1

0.2

0.3

0.4

0.0 0.5 1.0

K
in

et
ic

en
er

gy
[1

05
1

er
g]

Time [Myr]

ρ0 = 2.2× 10−25 [g cm−3]
ρ0 = 2.2× 10−24 [g cm−3]

0.1

0.2

0.3

0.4

0.0 5.0 10.0

K
in

et
ic

en
er

gy
[1

05
1

er
g]

t/t0

ρ0 = 2.2× 10−23 [g cm−3]
ρ0 = 2.2× 10−22 [g cm−3]

Figure 6.1: Retained kinetic energy in units of canonical SN energies (ESN = 1051 erg) of a super-
nova in a homogeneous medium with a temperature of 1 000 K. For this simulation, an artificially
stable ISM phase at the temperature and the density of the ambient medium had to be created (Code
Listing B.2). t0 is the time of maximal luminosity (defined in Sect. 6.1.1). In our simulations, a
lower feedback energy efficiency in denser media is observed. The thermal energy fraction was
0.7 ESN, the SN mass loss 11 M�, and the feedback region radius 0.3 pc.

which only differs in the initial energy ratios (purely thermal) from our reference model (Fig. 6.2
and Tab. 6.2). Moreover, our models show a slightly stronger density dependence of the feedback
energy efficiency: Fig. 6.1 plots the evolution of the retained kinetic energy as a function of time
in Myr in the left panel and in the right panel normalized to t0, which is larger for lower ambient
densities. Tab. 6.2 also shows that wind-less models with different spatial resolutions converge
nicely.

Impact of the feedback model

The SN implementation of Thornton et al. (1998) assumes a mass loss of 3 M� and an energy
input (ESN) of 1051 erg. They insert 6.9% of the SN energy via thermal energy and the rest via a
linear velocity profile in a region of 1.5 pc radius.
In our preferred SN implementation (Sect. 2.7.4 and 6.1.2), 11 M� of ejecta are initially homo-
geneously distributed over a small sphere with a radius of rf = 0.32 pc. We will refer to this
zone as “feedback region”. Our test simulations show that the size of this feedback region does
not influence the results if it is small enough to be fully contained in the wind bubble, which is
the case for the presented set-ups with stellar winds. If there is no prior stellar wind, the feedback
region size can influence the kinetic to thermal energy ratio after 13 t0 (called tf in Thornton et al.,
1998). For our reference model the size of the feedback region was reduced until the kinetic to
thermal energy ratio in the SN blast changed the retained kinetic energy (εk) at tf by less than one
percent (of εk (tf)) in the model with the highest ambient density (Tab. 6.1). Since the bubble size
of a Sedov-Taylor blast is proportional to ρ−1/5, models with higher ambient medium density are
more sensitive to the too large feedback region problem.
Increasing the feedback region radius to 1.5 pc in our reference model (Sect. 6.1.2) decreases the
kinetic energy by ∼ 3% and increases the bubble size by ∼ 0.5% at 13 t0. The variation of the

6.1 SNe without progenitor winds 105

0.01

0.10

K
in

et
ic

en
er

gy
[1

051
er

g]

1.0

1.1

0 1 2 3 4 5 6

ra
tio

Time [Myr]

0.1

0.2

0.3

10 20 30 40

K
in

et
ic

en
er

gy
[1

051
er

g]

Time [kyr]
0.005

0.006

0.007

0.008

0.009

0.010

0.4 0.6 0.8

K
in

et
ic

en
er

gy
[1

051
er

g]
Time [Myr]

∆x = 0.032 pc
∆x = 0.016 pc
∆x = 0.008 pc

Figure 6.2: Retained kinetic energy in units of canonical SN energies (1051 erg) of a SN in a
homogeneous medium with T0 = 37 K and ρ0 = 2.2× 10−22 g cm−3. The SN mass loss, leading
to a kinetic energy increase, is 11 M�. The rest of the 1051 erg was added as thermal energy. The
energy is lost quickly via radiative cooling, but the shell needs more than 5.6 Myr to decelerate to
the ambient sound speed. The lines end when the shell is decelerated to the ambient sound speed.
The lower panel shows the retained kinetic energy of the models divided by the retained kinetic
energy of the model with the lowest resolution at the same time. In these kinetic energy ratios
it can be seen that higher resolution models lose less energy in the pressure driven phase due to
the smaller cooling region at the sides of the shell (in this phase the dashed lines are above the
solid line in the lower panel) but make up in the momentum conserving phase (dashed line below
solid line). The left insert shows a zoom on the pressure driven phase. After a Myr the results for
different resolutions are very well converged. The convergence of the retained energies at different
resolutions can be seen in the right insert and in the lower panel. The model with ∆x = 0.004 pc
is not shown, since it was stopped after 37 t0.

feedback region radius is also the leading effect causing the differences between the two 1000 K
models in Tab. 6.1.

The thermal energy fraction of the SN energy in our 1 000 K models in Tab. 6.1 is 72% (which
is Sedov-Taylor-like, see Sect. 4.3.1). In the 37 K model shown in Tab. 6.1, all SN energy was
inserted via thermal energy. Therefore no mass loss was used. This leads to a slightly different
kinetic to thermal energy ratio before t0 than the ratio found in models in which the energy fractions
at the SN blast are chosen according to the Sedov-Taylor solution. After 200 kyr, a model that

106 6. 1D: Feedback efficiency in spherical symmetry

0.1

0.2
0.3
0.4

K
in

et
ic

en
er

gy
[1

051
er

g]

∆x = 0.032 pc
∆x = 0.016 pc
∆x = 0.008 pc
∆x = 0.004 pc

1.0

1.1

0 20 40 60 80

ra
tio

Time [kyr]

Figure 6.3: Zoom of Fig. 6.2. In this plot the highest resolution model is added, which was stopped
after 40 t0.

differs only in the mass loss (3 M�) from our reference model (Sect. 6.1.2) still retains a kinetic
energy of 0.01678× 1051 erg. In contrast, replacing the Sedov-Taylor like energy ratios by purely
thermal energy input in this model results in 0.01684× 1051 erg at this time. We conclude that for
small enough feedback region radii the energy fractions in the SN blast do not have a significant
impact on the feedback energy efficiency.
Tab. 6.1 shows that t0 occurs later, if the mass of the SN ejecta is increased from 3M� to 11M� (as
in our preferred SN model, which is discussed in Sect. 2.7.4). However, this increase only slightly
lowers the feedback energy efficiency: After 200 kyr our reference model (Sect. 6.1.2) still retains
0.01637 × 1051 erg kinetic energy, whereas, as already mentioned, the same model in which only
the SN mass loss was changed to 3 M� finds 0.01678× 1051 erg at this time. The unimportance of
the mass of the ejecta is not surprising, since in an ambient medium with n = 2.2× 10−22 g cm−3

the swept-up shell’s mass exceeds 11 M� as soon as the bubble’s radius is larger then 2 pc.

Impact of the ambient pressure

Comparing models with Teq(n0) = 37 K and Teq(n0) = 1 000 K, with n0 = 2.2× 10−22 g cm−3,
3 M� mass injection and Sedov-Taylor like energy ratio (Sect. 4.3.1) shows that the ambient pres-
sure only has a minor effect on the feedback energy efficiency: The changes in bubble size (5.93 pc
for both models) and kinetic energy (0.06878×1051 erg vs. 0.06836×1051 erg) after 13 t0 (32.5 kyr)
are less than a percent and would thus be invisible in Tab. 6.1. As expected, higher ambient pres-
sure leads to a slightly smaller bubble, if the model is followed for a longer time: e.g. after 200 kyr
we find a shell radius of 9.60 pc and a kinetic energy of 0.01678× 1051 erg in the 37 K model and
9.54 pc and 0.01505 × 1051 erg in the 1000 K model. However, this is a very small effect and is
less important compared to the spatial resolution and the size of the feedback region.

Convergence

The retained kinetic energies at 13 t0 in the Teq(n0) = 37 K models in Tab. 6.1 indicate a depen-
dence of the feedback energy efficiency on spatial resolution. However, Fig. 6.2 to 6.3 show that
this problem is only found in the first Myr and the retained kinetic energies of the 37 K models

6.1 SNe without progenitor winds 107

without wind converge for all resolutions (0.004 to 0.032 pc) as soon as the shell has cooled to
the equilibrium temperature and cooling losses only occur in the newly swept-up compressed and
heated gas at the outside of the shell. The zone, which is suffering cooling losses, is resolved with
several cells. At this time the pressure in the swept-up shell is already larger than the pressure
inside the bubble. For all spatial resolutions a kinetic feedback energy efficiency of 0.11 % is
recovered when the shell speed reaches the ambient sound speed.

Phases of SN bubble evolution

In Sect. 4.3 and 4.5 we explained, which power laws we would expect after a SN explosion. We
will now check, if our simulations behave accordingly.

Simulated pressure driven expansion

During the pressure driven expansion, the largest cooling losses arise near the CD, where a strong
density gradient at the interface between the dilute bubble material and the swept-up ambient
medium is found. The maximum luminosity is reached earlier for simulations with larger cells,
since lower resolution will mix more of the hot gas in the bubble with the swept-up medium and
thus enhance the cooling losses.
Sect. 4.5.1 finds r ∝ t2/7, v ∝ t−5/7 and Ekin ∝ t−4/7 (Eq. 4.61 to 4.63) for the adiabatic pressure
driven expansion and Sect. 4.4.1 finds r ∝ t2/5 and v ∝ t−3/5 (Eq. 4.42 and 4.42) leading to
constant kinetic energy for the fully radiative case. The best fits to the 37 K models for times
between the time of maximal luminosity t0 (defined in Sect. 6.1.1) and the time when the pressure
inside the bubble has decreased to the ambient pressure (Tab. 6.3, column 5) are r ∝ t0.272, v ∝
t−0.75 and Ekin ∝ t−0.7. These fits rather resemble the behavior of the momentum-conserving
phase (r ∝ t1/4, v ∝ t−3/4 and Ekin ∝ t−3/4, Eq. 4.65 to 4.67). And indeed, our models show
that the pressure inside the bubble is much lower than the pressure in the shell. In contrast to the
analytic model, the simulated shell is not infinitely thin and resolved with several cells. Column 3-
4 in Tab. 6.3 list the times, when the shell pressure becomes larger than the bubble pressure. These
times mark the end of the purely bubble pressure driven phase and very close to these times (near
8 kyr) a “knee” can be seen in Fig. 6.2 and 6.3. Moreover the best fits for the radius and the velocity
in this short period of time are in agreement with fits of a pressure driven phase. The total kinetic
energy decreases more slowly than a pressure driven fit would predict, since not all the kinetic
energy is stored in the shell.
Tenorio-Tagle et al. (1990) and Tenorio-Tagle (1996) report hot swept-up matter separating the
CD several parsecs from the outer shock for their SN explosion in a homogeneous medium. This
is also seen in our simulation with n0 = 1 cm−3, Teq(n0) = 100 K. The CD and the outward
shock are at the same radius as reported by Tenorio-Tagle et al. (1990). In our simulations the
hot material between the CD and the thin dense shell (with a sub-parsec shell width, created by a
sound wave from the reverse shock) is hot shocked swept-up ISM.

Simulated momentum conservation

Comparing the pressure inside the bubble to the pressure of the ambient medium shows that at
13 t0 (∼ 40 kyr) the Teq(n0) = 1 000 K model is already in the momentum conserving phase,
whereas the bubble pressure in the 37 K model is still higher than the ambient pressure (but lower
than the shell pressure). The times when the pressure inside the bubble has decreased to the

108 6. 1D: Feedback efficiency in spherical symmetry

p0 ∆x t t t Ekin

[erg cm−3] [pc] [kyr] [kyr] [kyr] [1049 erg]
peak average bubble

3.99× 10−11 0.032 6.5 7.5 34.5 6.32
1.83× 10−12 0.032 9.5 9.5 118.5 2.58
1.83× 10−12 0.016 8.0 8.0 147.0 2.12
1.83× 10−12 0.008 6.5 6.5 174.0 1.85

Table 6.3: Ends of pressure driven phases. This table lists the times, when pressures in the shell or
the ambient medium (p0) become larger than the pressure inside the bubble. In all four models, the
SN without prior winds is placed in a homogeneous ambient medium with a density of 2.2×10−22 g
cm−3. The ambient medium is in cooling-heating equilibrium: at 1 000 K in the first model and at
37 K in the other models. Column 1 (p0) lists the ambient pressure, column 2 (∆x) the cell size in
the simulation. Column 3-5 contain the times when the pressure inside the bubble becomes smaller
than the peak pressure in the shell (column 3), the average pressure in the shell (column 4) or p0

(column 5). Column 6 lists the retained kinetic energy at the times in column 5.

ambient pressure are listed in Tab. 6.3. Eq. 4.67 was used to fit the kinetic energy evolution of the
simulations after the times listed in column 5 of Tab. 6.3. The fits of the bubble radius, the shell
velocity and the kinetic energy show that the kinetic energy decreases more slowly than Eq. 4.67
predicts (resp. the shell moves faster). The best fit to the bubble radius after the end of the pressure
driven phase is r ∝ t0.28 (Eq. 4.65 predicts r ∝ t0.25). The best fits for velocity and kinetic energy
are v ∝ t−0.77 and Ekin ∝ t−0.78 (Eq. 4.66 and 4.67 predict v ∝ t−0.75 and Ekin ∝ t−0.75).
The ratio between the shell’s kinetic energy and the bubble’s kinetic energy as well as the deviations
of the fit from the kinetic energy found in the simulations in Fig. 6.4 indicate that the overpressure
in the cavity wall leads to an expansion of the shell into the cavity. As a consequence, a high
pressure wave starts to run back and forth in the cavity (Fig. 6.5). The impacts onto the shell
increase the shell velocity.
The time when the shell velocity reaches the sound speed can be estimated from the fits by setting
Eq. 4.66 equal to the sound speed. The mass of the swept-up medium can be estimated from the
expected radius and the ambient density and leads to a kinetic energy, when combined with the
sound speed. Since this approximation assumes that all swept-up medium is compressed into an
infinitely thin pressure-less slab, all fits predicted a shorter time and a higher final kinetic energy
than the simulation data. In the simulation, the highest velocity is found near the densest cell. This
cell is only a few cells away from the undisturbed ambient medium. However, the overpressure in
the shell leads to a flow of swept-up medium into the shell. It is observed that the peak density
decreases during the simulation. Since not all swept-up medium is accelerated to the peak velocity,
the shell can travel longer before the peak velocity falls below the ambient sound speed. The lower
than expected kinetic energy is also due to the fact that much of the gas at the inner side of the
shell was already significantly decelerated.

6.2 SN blast in a cavity

Since the progenitor stars of SNe have strong stellar winds, SN explosions always happen inside
wind-blown bubbles. In this section we show that this is not a detail but a very important feature

6.2 SN blast in a cavity 109

1

2

K
in

et
ic

en
er

gy
[1

049
er

g]

∆x = 0.008 pc
∆x = 0.016 pc
∆x = 0.032 pc

0.0125(4t − 0.15)−0.75

0

2

D
at

a
-fi

t
[1

047
er

g]

0
0.02

0.0 1.0 2.0 3.0 4.0 5.0 6.0

E
b E
s

Time [Myr]

Figure 6.4: Fit of a momentum conserving shell to the data. The middle panel shows the deviations
from the fit. It can be seen that the kinetic energy decays more slowly than a momentum conserving
model predicts. This indicates that the widening of the over-pressured shell contributes to the
growth of the cavity. In the lowest panel the kinetic energy of bubble-gas is compared to the
kinetic energy of the dense shell. The oscillations are caused by a wave traveling inside the cavity
(see text).

0

5

10

0 50 100 150 200 250

R
ad

iu
s

[p
c]

Time [kyr]

ρmax

vmax

Figure 6.5: The position of the densest cell (red) is an indicator of the shock position. The over-
pressure in the swept-up shell causes a wave inside the cavity, which can be tracked by the position
of the maximal absolute value of the velocity (green). The jumps in the green dots are caused by
a second wave, starting in the compressed material at the second reflection of the aforementioned
wave in the center of the cavity.

110 6. 1D: Feedback efficiency in spherical symmetry

of the model, since it strongly influences the feedback energy efficiency.
The stellar winds in the 60 M� model based on rotating models of Ekström et al. (2012) as de-
scribed in Sect. 2.7.3 insert 2.34 times the SN energy into the ambient ISM. This wind-to-SN ratio
is larger than in Voss et al. (2009), since we consider individual massive stars, whereas Voss et al.
(2009) are interested in OB associations with in the order of 100 members. In groups of stars, less
massive stars lower the ratio of wind energy to SN energy if a canonical SN energy of 1051 erg is
assumed.
The massive star first produces a stellar wind bubble and subsequently undergoes a SN explosion.
The bubble structure contains a contact discontinuity (CD) separating two distinct phases of the
ISM: a hot dilute2 phase, of stellar wind gas which cannot cool due to its low density and a cold,
denser3 phase, which also does not cool strongly, because its thermal energy is too low to cool
efficiently (the cooling curves e.g. in Sutherland and Dopita (1993) show a strong increase of
Λ(n, T) above 10 000 K).

6.2.1 Comparison to previous work on SNe in pre-existing bubbles
Tenorio-Tagle et al. (1990) study SNe exploding in bubbles blown by a constant WR wind mimick-
ing the feedback of a 40 M� star with a mass loss rate of Ṁ = 3× 10−5 M� yr−1 and a terminal
velocity of 1 000 km s−1 into a homogeneous medium with a number density n0 = 1 cm−3 and a
temperature of 100 K. In their study the wind phase ends as soon as the wind bubble has reached
a predefined radius (rbubble). They found feedback energy efficiencies of 50% (rbubble = 4.5 pc,
∼ 60 kyr after the SN:Ekin ∼ 3× 1050 erg, Eth ∼ 2× 1050 erg) to 70% (rbubble = 15 pc,∼ 40 kyr
after the SN: Ekin ∼ 3× 1050 erg, Eth ∼ 4× 1050 erg). We re-simulated these models with dif-
ferent cooling prescriptions and found that the feedback energy efficiencies were relatively robust
against these changes (Fig. 6.6).
In the case of the 4.5 pc bubble we find feedback energy efficiencies similar to Tenorio-Tagle et al.
(1990). For this model the plots in Tenorio-Tagle et al. (1990) show that the temperature in the
dense shell is below 103 K (interestingly, this minimal temperature in the dense region is more
than a factor 10 lower than the minimal temperature in the referenced cooling table). For this
comparison, we also used the cooling curve in Fig. 1 of Raymond et al. (1976), which provides
a cooling function for temperatures above 104 K. Consequently, this is the minimum temperature
reachable via radiative cooling in our simulations. Fig. 6.7 shows that this temperature floor is
reached in the bubble walls of our 15 pc model. By contrast, Fig. 7 of Tenorio-Tagle et al. (1990)
shows a shell considerably hotter than this minimal temperature. Also, our models show a steep
density decline between the supersonic shock and the ambient medium and a smoother decline of
the density towards the hot bubble. Fig. 7 of Tenorio-Tagle et al. (1990) indicates that they seem to
find a not step-like density increase between the supersonic shock and the ambient medium. This
difference arises, since the PLUTO code treats the shock with a Riemann solver in contrast to the
artificial viscosity treatment in Tenorio-Tagle et al. (1990).

Stellar wind bubble sizes

The bubbles considered in Tenorio-Tagle et al. (1990, 1991) and Rozyczka et al. (1993) have
radii of up to 16 pc at the SN. These bubble sizes seem rather small if the wind model of Voss

2several orders of magnitude below the ambient density, 106K or hotter
3more than a factor 4 denser than the ambient medium, 10 K

6.2 SN blast in a cavity 111

0.2

0.4

0.6

0.8

1.0

E
ne

rg
y

[1
05

1
er

g]

Ambient density 1 cm−3, ambient temperature 100 K

Kinetic energy
Thermal energy

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60

E
ne

rg
y

[1
05

1
er

g]

Time [kyr]

Fig. 11 Tenorio-Tagle et al. (1990)
Raymond et al. (1976)

Cloudy, Ntormousi et al. (2011)
Pluto

Figure 6.6: The feedback energy efficiencies of our test simulations of SN explosions inside wind
bubbles in a n0 = 1 cm−3, Teq(n0) = 100 K ambient medium show results similar to Fig. 11
of Tenorio-Tagle et al. (1990) for the 4.5 pc bubble (top panel) and much lower feedback energy
efficiencies for the 15 pc bubble (lower panel). The retained kinetic energies in our models are
relatively insensitive to the cooling table: the lower panel compares simulations with Pluto cooling,
Cloudy cooling (as implemented by Ntormousi et al., 2011) and with the cooling according to
Fig. 1 of Raymond et al. (1976). The disagreement between Tenorio-Tagle et al. (1990) and our
work is caused by differences in the structure of the shock/ambient medium interface (see text).

et al. (2009) is applied to the rotating stellar models of Ekström et al. (2012) (Sect. 2.7.3): The
lowest mass star still ending in a SN in this grid of models already produces a bubble with a
radius of 13.6 pc in a 100 times denser medium (n0 = 100 cm−3 and T0 = 100 K). Since the
bubble sizes considered in Tenorio-Tagle et al. (1990, 1991) and Rozyczka et al. (1993) were
based on observations, this indicates that higher densities of the ambient medium should be taken
into account. Thus, we put our emphasis on n0 = 100 cm−3 models instead of n0 = 1 cm−3

models. The ambient density plays an important role for the feedback energy efficiency: Models
with higher ambient densities have lower feedback energy efficiencies (Fig. 6.1, Tab. 6.1).

Minimal energy bubbles: Is there a dichotomy of SNe in stellar wind bubbles?

Tenorio-Tagle (1996) report a dichotomy of wind-blown bubbles: (1) light bubbles, which are
overrun by the SN-shock and (2) stable bubbles that switch to the radiative phase as soon as they
are hit by the blast. For reference we produced a set of stellar wind bubbles with a constant wind,
consistent with the feedback used by Tenorio-Tagle et al. (1990) and ignited the SN as soon as the

112 6. 1D: Feedback efficiency in spherical symmetry

102

104

106

108

20 21
0

10−22

2× 10−22
Te

m
pe

ra
tu

re
[K

]

D
en

si
ty

[g
cm
−

3
]

Radius [pc]

Temperature (39 kyr)
Density (39 kyr)

Temperature (50 kyr)
Density (50 kyr)

Figure 6.7: The shell temperature 39 resp. 50 kyr after a SN blast in a 15 pc wind cavity in a
n0 = 1 cm−3, Teq(n0) = 100 K ambient medium with the cooling table in Fig. 1 of Raymond et al.
(1976) shows that the dense shell has cooled to the minimum temperature reachable via radiative
losses. It can also be seen that the width of the density step between the ambient medium and the
supersonic shock is in the order of 5 grid cells. Moreover, due to the different shock structure, the
15 pc cavity of Tenorio-Tagle et al. (1990) has the densest cell near 14 pc, whereas our model has
the densest cell near 15 pc, when the SN explodes.

0.01

0.1

1

0 100 200 300 400

E
ne

rg
y

[F
O

E
]

Time [kyr]

0 pc
4 pc
6 pc

7 pc
8 pc

10 pc
15 pc

Figure 6.8: Minimal energy bubbles. In this study SNe exploded at t = 0 in a cavity of given
radius. These cavities were created by a constant wind and the ambient medium has n0 = 1 cm−3,
Teq(n0) = 1 000 K. The feedback energy efficiency of a SN in a pre-existing bubble depends on
the bubble size, since on the one hand, the bubble can act as a pressure reservoir due to the very
small cooling losses inside the bubble and on the other hand, the dense cavity walls lead to large
radiative losses. It can be seen that bubbles of ∼ 7 pc radius have the smallest feedback energy
efficiency. Such bubbles are, however, even too small for the winds of the least massive star ending
in a SN. For larger radii the feedback energy efficiency rises with increasing radius.

6.2 SN blast in a cavity 113

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30

K
in

et
ic

en
er

gy
[1

051
er

g]

Time [Myr]

no SN or no wind
no SN, ∆x = 1017 cm

no wind, ∆x = 1017 cm
no SN, ∆x = 5 × 1016 cm

no wind, ∆x = 2.5 × 1016 cm

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30
K

in
et

ic
en

er
gy

[1
051

er
g]

Time [Myr]

no conduction
∆x = 1017 cm

scaled, ∆x = 5 × 1016 cm
∆x = 5 × 1016 cm

∆x = 2.5 × 1016 cm
∆x = 1.25 × 1016 cm

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30

K
in

et
ic

en
er

gy
[1

051
er

g]

Time [Myr]

density threshold
∆x = 1017 cm

∆x = 5 × 1016 cm
∆x = 2.5 × 1016 cm

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30

K
in

et
ic

en
er

gy
[1

051
er

g]

Time [Myr]

conduction
∆x = 1017 cm

∆x = 5 × 1016 cm
κ × 1014, ∆x = 1017 cm

κ × 1014, ∆x = 5 × 1016 cm

Figure 6.9: Time evolution of the retained kinetic energy. The wind phase ends after 4.859 Myr.
All lines end when the densest cell is decelerated to the ambient sound speed. Simulations with
a supernova without pre-existing wind bubble have a six times lower feedback energy efficiency
than supernovae in pre-existing bubbles [Tab. 6.2: for ∆x = 0.032 pc the simulation with a super-
nova without wind leads to 0.11 × 1049 erg of kinetic energy compared to the difference between
simulations with wind and with/without supernova: 0.58 × 1049 erg]. tf = 13 t0 [t0 is the time of
max. loss, at tf the efficiencies are evaluated.] as defined by Thornton et al. (1998) is 4.8915 Myr
for the model without wind (kinetic shell energy: 0.61× 1050 erg) and ranges from 4.9955 Myr to
5.0605 Myr for all other simulations.

desired bubble radius was reached. Fig. 6.8 shows that we observed minimal energy bubbles in
between these two cases: The minimal efficiency occurred at “intermediate” cavity sizes of 7 pc

114 6. 1D: Feedback efficiency in spherical symmetry

0.0

0.1

0.2

0.3

0.4

1 1.5 2 2.5 3 3.5 4

K
in

et
ic

en
er

gy
[1

051
er

g]

Shell velocity / sound speed

no SN or no wind
no SN, ∆x = 1017 cm

no wind, ∆x = 1017 cm
no SN, ∆x = 5 × 1016 cm

0.0

0.1

0.2

0.3

0.4

1 1.5 2 2.5 3 3.5 4
K

in
et

ic
en

er
gy

[1
051

er
g]

Shell velocity / sound speed

no conduction
∆x = 1017 cm

scaled, ∆x = 5 × 1016 cm
∆x = 5 × 1016 cm

∆x = 2.5 × 1016 cm
∆x = 1.25 × 1016 cm

0.0

0.1

0.2

0.3

0.4

1 1.5 2 2.5 3 3.5 4

K
in

et
ic

en
er

gy
[1

051
er

g]

Shell velocity / sound speed

density threshold

∆x = 1017 cm
∆x = 5 × 1016 cm

∆x = 2.5 × 1016 cm

0.0

0.1

0.2

0.3

0.4

1 1.5 2 2.5 3 3.5 4

K
in

et
ic

en
er

gy
[1

051
er

g]

Shell velocity / sound speed

conduction
∆x = 1017 cm

∆x = 5 × 1016 cm
κ × 1014, ∆x = 1017 cm

κ × 1014, ∆x = 5 × 1016 cm

Figure 6.10: Variant of Fig. 6.9: The retained kinetic energy for the same models is displayed as a
function of the densest cell’s velocity instead of time. The velocities are normalized to the ambient
sound speed (∼ 1 km s−1).

in a n0 = 1 cm−3, Teq(n0) = 1000 K medium. This minimum is created by the counteracting
effects of (1) efficient cooling in the denser shells of larger bubbles and (2) the larger cavities with
inefficient cooling serving as pressure reservoirs. However, this minimum is of academic interest
only. Modeling the wind of the lightest star, which still ends in a SN shows that even the stellar
winds of this star can produce a cavity larger than 7 pc before the SN. Thus, our models indicate
that nature does not produce such minimal energy bubbles.

6.2 SN blast in a cavity 115

Wind phase

During the stellar wind phase the models show the structure expected from stellar wind bubble
theory (Pikel’Ner, 1968; Avedisova, 1972; Castor et al., 1975; Weaver et al., 1977; Dyson, 1977,
and Sect. 4.4.1). Obviously, the width of the zones in models affected by radiative cooling losses
have to differ from these simple adiabatic models (e.g. the swept-up shell is thinner, denser and
moves more slowly into the ambient medium). A region of freely expanding wind (mostly kinetic
energy; cold gas, discussed in Sect. 4.4.3) is separated from the thermalized ejecta (mostly thermal
energy; hot dilute plasma) by a reverse shock. The presence of this free expansion zone in our sim-
ulations shows that our feedback region radius is not too large. The pdV work of the thermalized
ejecta sweeps up the ambient medium. This medium forms a thin, efficiently cooling shell, which
is separated from the thermalized ejecta by a contact discontinuity (CD). Due to the absence of
pressure and velocity gradients across this surface, no mixing (except for diffusion) between the
medium inside and outside the CD is expected (see also Tenorio-Tagle, 1996).

Post SN phase

If a SN explodes in the wind bubble of its progenitor, the blast wave expands freely and also
adiabatically in the dilute medium inside the wind bubble. In a pre-existing cavity the Sedov-
Taylor expansion phase (Sect. 4.3) is skipped (see e.g. Tenorio-Tagle et al., 1990). After the free
expansion phase, when the blast wave hits the bubble wall, the evolution continues snowplow-
phase-like (Sect. 4.5).
Since radiative losses start when the wind shell is hit, the time maximal luminosity (t0) occurs later
than it would have in absence of the wind bubble. In fact, the SN ejecta do not reach the dense
shell of swept-up ambient medium. They rather compress the wind gas and get reflected. Thus –
according to our models – the velocity of the SN-ejecta is expected to be higher than the velocity
of the gas in the bubble wall.
After reflection from the bubble wall the SN blast wave continues to travel back and forth inside the
cavity. These sound waves can be seen as oscillations in the kinetic and thermal energy evolution
(e.g. in Fig. 6.6 and near the kinetic energy peak in Fig. 6.9) as well as in the cooling losses.
The bouncing SN blast wave inside the wind cavity causes double peaks in the loss rate: The
first maximum in the loss is reached when the cavity wall (resp. the wind gas in front of it) is
compressed and kinetic energy is converted to thermal energy and the second (smaller) peak is
found when the wall expands and thermal energy is converted back to kinetic energy. Due to the
reflection of this wave inside the cavity the interaction of the wave and the cavity wall causes
periodic conversions between thermal and kinetic energy with decreasing peak loss values until
the SN wave is damped away.
As in the models without progenitor winds the cold outer shell is accelerated by pdV work from
the hot (SN-) gas inside the bubble. In later stages, when the pressure in the bubble becomes
ineffective, momentum conservation pushes the shell into the ambient medium.

6.2.2 Feedback energy efficiency: winds or SNe?
Fig. 6.9 and 6.10 show the kinetic energy evolution of our models summarized in Tab. 6.2. For
these models time resolved stellar winds of a 60 M� star (Sect. 2.7.3) were blown into a homo-
geneous medium with a density of ρ0 = 2.2× 10−22 g cm−3. The ambient medium is in cooling-
heating equilibrium as described by Ntormousi et al. (2011). In cells with densities (ρ) above aρ0

116 6. 1D: Feedback efficiency in spherical symmetry

radiative cooling is taken into account (see also section 6.2.3). Less dense cells do not suffer cool-
ing losses. The grid of models spans a = 0 to 1.3 (only the model with a = 1 and a = 0 are shown
in Fig. 6.9 and 6.10) and the resolutions of 1, 2, 4 or 8 cells per 0.032 pc (= 1017 cm). The time
of the SN explosion is set by the stellar model, thus the wind bubble size can only be influenced
indirectly via the density of the ambient medium and the chosen stellar model. [In contrast to
the constant wind test shown in Fig. 6.8, where the SN explosions occur at a pre-defined bubble
size]. For reference some models in our grid lack the SN explosion or the wind phase. The model
without SN explosion demonstrates the importance of stellar winds: The total energy input into the
wind-only model is 2.34×1051 erg, which is∼ 70% of the total energy input of a model with wind
and SN. The kinetic energy of the shell in the wind-only model at the time when it is decelerated
to the ambient sound speed is 79% of the final energy of the model with a SN blast after the wind
phase.
Another indication that continuous energy input is more efficient than blasts is the comparison
between the model with a constant wind (CW) and the model with time dependent wind strengths
(Tab. 6.2). For reference the same total wind energy and wind ejecta mass are inserted at a constant
rate in the CW model. This steady wind has more power at early times, since the energy input of
the WR phase is distributed over time: before the SN (occuring after 4.86 Myr) the mass loss rate
is 8.65× 10−6 M� yr−1 (compare to Fig. 2.11) and the energy injection rate is 4.8× 1044 erg yr−1

or 1.53× 10−14ESN s−1 (compare to Fig. 2.9). In total both, the constant and the time resolved
model for the 60 M� star’s wind inject 2.34 × 1051 erg into the surroundings during the wind
phase. We find that the steady winds produce larger bubbles than time-resolved winds with the
same total energy input. Since wind-blown bubbles serve as pressure reservoirs after the SN,
higher efficiencies are found for larger bubbles (see also Sect. 6.2.1).
Overall it can be seen that wind-bubbles enhance the feedback energy efficiency. For example,
the models with a resolution of 0.032 pc without progenitor wind retain 1.1× 1048 erg of 1051 erg
(0.11%), whereas models with preexisting bubbles retain more than 4.7×1049 erg of 3.34×1051 erg
(1.5%).

6.2.3 Zones with enhanced radiative losses
The largest cooling losses of the models are

• at the CD during pressure driven phases.

• in the dense shell during momentum conserving phases.

High resolution simulations are more efficient in the wind phase (and other pressure driven phases),
because

• in all simulations in this grid ∆x is small enough that a strongly mixing, cooling cell exists
at every time-step.

• the volume of the strongly cooling layer gets smaller at higher resolutions.

• smaller cells lead to a better separation of the media and mimic a gas with less efficient
mixing processes.

The deviations from the heating-cooling equilibrium and the cooling losses are shown in Fig. 6.11.
In this figure the evolution of the gas phases in the a = 0,∆x = 0.016 pc model are visualized. The

6.2 SN blast in a cavity 117

-12

-10

-8

-6

-1 0 1 2 3 4

lo
g

1
0
(p

[d
y
n

cm
−

2
])

log10(nH [cm−3])
cooling heating equilibrium

start WR
max. mass loss (wind)

end of wind phase

-23

-22

-21

-20

-19

2

4

6

8

-1 0 1 2 3 4

lo
g

1
0
(T

[K
])

log10(nH [cm−3])
max. mass loss (SN)

max. luminosity
momentum driven

vsh = cs

-23

-22

-21

-20

-19

lo
g

1
0
(Λ

[e
rg

cm
−

3
s−

1
])

Figure 6.11: Gas phases in the a = 0, ∆x = 0.016 pc model: The densest cells approach the
heating-cooling equilibrium (solid line). The fill color of the dots carries information on the radia-
tive losses. The dark colors of the rightmost points on the curves show cooling losses in the dense,
swept-up shell. Bright points on the equilibrium curve depict the ambient medium. The lines con-
necting dots should guide the eye and link gas from adjacent cells. The dark dots in the center show
the cooling losses near the CD. The plot compares the location of the cooling losses at different
stages of the evolution. When the mass loss rate peaks, cooling losses of dense gas are found near
the feedback region. Typical pressure driven phases (start of the WR phase at 3.457 Myr, end of
the wind phase at 4.4975 Myr, time of maximal luminosity at 4.8695 Myr) show cooling losses
near the CD, whereas losses in the dense shell dominate during momentum driven phases (in the
plot the start of the momentum driven phase at 9.7595 Myr and the end of the simulation (vsh = cs)
at 23.3975 Myr are shown).

solid line shows the cooling-heating equilibrium curve. The ambient medium would be represented
by a very bright dot (no losses) on the equilibrium curve. The gas properties in the swept-up shell
and inside the bubble are shown by dots linked with lines connecting adjacent cells. The color
of the dots contains information on the radiative losses. It can be seen that there are two regions
with enhanced cooling losses: the CD (center) and the dense part of the shell (bottom right). The
cooling-heating phase space plot (Fig. 6.11) shows seven distinct snapshots of the model:

1. 3.457 Myr at the start of the WR phase the shell is pressure driven and we find cooling losses
near the CD and in the shell.

2. The mass loss rate of the winds peaks at 4.4975 Myr and leads to dense, cooling gas near the
feedback region.

3. At the end of the wind phase at 4.859 Myr radiative cooling is effective in the shell and near
the CD.

4. As soon as the SN explosion has taken place (4.8695 Myr), again dense material is found
near the feedback region.

118 6. 1D: Feedback efficiency in spherical symmetry

5. At the time of maximal luminosity (4.8695 Myr), when the SN blast wave hits the cavity
wall, cooling near the CD is very important.

6. When the model has transited to the momentum driven phase (9.7595 Myr) cooling in the
dense, swept-up shell dominates. At this stage models of different spatial resolution con-
verge.

7. Also at the end of the simulation (23.3975 Myr), when the shell has decelerated to the ambi-
ent sound speed, cooling is only effective in the dense shell.

Comparing cooling losses in these snapshots shows that the energy losses in or near the CD cell get
unimportant after the end of the pressure driven phase. At this point models with different spatial
resolutions start to converge.

Artificial mixing across the contact discontinuity

Numerical simulations find large radiative cooling losses near the contact discontinuity (CD) sep-
arating the dilute, extremely hot shocked wind gas and the dense swept-up medium (see also
Sect. 6.2.3). In the literature this is sometimes called “catastrophic cooling” (Tenorio-Tagle et al.,
1990; Smith and Rosen, 2003). These losses arise, because the code mixes two media, which
should be separated by a CD and the cell with the mixture of the two gas phases efficiently cools,
acting like a valve, considerably reducing the feedback energy efficiency. If the mixing scale of
the gas phases (see Sect. 2.2) is not resolved numerically, this process could lead to artificially high
radiative losses.
In this work we also test the importance of this effect by regulating the radiative energy loss of the
critical cell near the CD, which acts as the dominant energy sink. Numerically there are basically
two strategies to prevent extreme cooling losses in cells at a CD where the two media mix:
(1) Strictly enforcing the separation of these two gas phases: The simplest way to avoid cooling
losses in the hot, dilute cells in which shell material and wind material can be found, is to increase
the density threshold of the cooling function. Our cooling function is tabulated for number densi-
ties nH > 0.01 cm−3. To avoid cooling losses at the CD, in the models with “density thresholds”
radiative cooling is switched off if the cell’s density is below a times the ambient density ρ0. For
example, in runs with a = 1 radiative cooling is switched off at all densities below the ambient
density. By doing this, we mimic a sub-grid model with two nicely separated ISM components in
the cell: the gas is either to cold or not dense enough to cool and no strongly cooling intermediate
gas phase is produced. Or in other words, at densities below aρ0 the simulation becomes adiabatic.
(2) Postulating a strong mixing process, which smears out the temperature and density slope near
the CD: This leads to low temperatures in regions, which are dense enough to cool. Efficiently
mixing gas across the CD can be achieved e.g. via heat conduction (which we show to be too
inefficient in Fig. 6.9), hydrodynamic instabilities or other mixing processes (e.g. molecular diffu-
sion through the shell walls or ablation of clouds and clumps). The radiative cooling losses are a
function of temperature and density. Lowering the density and the temperature by enhancing the
mixing at the discontinuity can limit the energy losses via radiative cooling by producing cells,
which are already too cold to cool efficiently.

6.2 SN blast in a cavity 119

6.2.4 Convergence of the retained kinetic energy

In our simulations cooling losses occur in two distinct regions of the models: in the dense, swept-
up shell and near the CD (see Sect. 6.2.3). Our models converge if cooling losses in the newly
swept-up medium dominate. This is the case in momentum driven bubbles (i.e. in all our models
for SNe without progenitor-winds and at late phases of the other models), whereas our models can
not converge when the cooling losses caused by mixing across the CD dominate in the pressure
driven bubbles (e.g. during the wind phases and in the early post-SN phase). This convergence
issue can, however, be solved by working out, on which scales the ISM mixes (Sect. 2.2.2 to
2.2.4). The spatial resolution of the numerical simulation governs the mixing of gas phases across
the CD (the PLUTO code allows for one gas phase per cell) and thus implies a length scale, on
which diffusive processes occur. Thus, the feedback energy efficiencies of our simulations with
different resolutions can be interpreted as solutions for different efficiencies and scale lengths of
turbulent diffusion. If the assumed length scale of the mixing processes is below our resolution,
the efficiencies in Tab. 6.2 are lower limits.

Spatial resolution

Tab. 6.2 and the top right panel of Fig. 6.9 show that resampling the wind bubble to twice the
resolution at the SN leads to an increase of the retained kinetic energy. If the model is resampled
as soon as the oscillations (back and forth conversion of energy) due to the evanescent SN wave are
damped away (at 6 Myr) to twice the resolution, also a higher efficiency is found in the rescaled
model. Restarting at the end of pressure driven phase (9 Myr) with twice the resolution does not
change the efficiency. This is consistent with the SN model without wind, which retained 0.11%
of the inserted energy when the shell speed reached the ambient sound speed independently of the
resolution.
In simulations with lower spatial resolutions than the models shown in Tab. 6.2, the swept-up shell
becomes unresolved. Thus, increasing the resolution reduces the feedback energy efficiency, since
it causes higher peak densities in the swept-up shells and the cooling losses rise with number den-
sity squared. At higher spatial resolutions mixing across the CD starts to produce strongly cooling
cells: such strongly cooling cells arise if enough energy from the hot phase is mixed with enough
density from the cold phase. At low resolution this occurs only every n-th time step. In the models
shown in Tab. 6.2 strongly cooling cells are created at every time-step. If this is the case, the feed-
back energy efficiency starts to rise again with increasing resolution.

The cooling losses are proportional to the volume of the cooling region, time and density squared.
We did not find a dependence of the feedback energy efficiencies on the CFL factors used (see
“temporal resolution” paragraph below). The density in the mixing cell also does not depend
strongly on the resolution, since the flux of hot gas into the CD cell is set by the shell velocity. Due
to the CFL using smaller cell sizes also reduces the time step. In other words, ∆t

∆x
is set by the peak

velocity and the CFL. The number density of the gas mixture in the strongly cooling cell is given
by: naverage = nhotvshell

∆t
∆x

+
(
1− vshell ∆t

∆x

)
ncold or naverage = (nhot − ncold) vshell

∆t
∆x

+ncold. The
shell velocity to peak velocity ratio (vshell ∆t

∆x
) differs less than 10% between the models with dif-

ferent resolutions. Our simulations showed lower densities in the strongly cooling cell for higher
resolutions.

120 6. 1D: Feedback efficiency in spherical symmetry

The reason for the increase of the feedback energy efficiency with spatial resolution is the reduc-
tion of the strongly cooling zone’s volume. The volume of this one-cell-wide shell located close to
the CD is affected by two counteracting effects: (1) changing the (cell-) width of a shell reduces
the volume by a factor ∆x1

∆x2
(i.e. 0.5 for doubling the cell number) but (2) at the same simulation-

time, simulations with higher resolution and thus higher efficiency have already produced larger
bubbles. This makes the volume ratio at the same simulation-time larger than ∆x1

∆x2
i.e. > 0.5 for

doubling the cell number.

From Tab. 6.2 we find that the retained kinetic energy of the shell when the shell has been decel-
erated to the sound speed seems to rise like E0 × (1.3)n for a = 0 and like E0 × (1.1)n for a = 1,
where n is the number of cells per unit length and E0 is a proportionality constant. The lower
factor for a = 1 strengthens the assumption that this treatment of the CD reduces the importance
of radiative losses near the CD in this model.
The comparison of these factors and the fact that resampling the model when the losses in the
newly swept-up medium start to dominate to higher resolution does not influence the feedback
energy efficiency show that the treatment of the CD and the assumed mixing processes are most
important during the wind phases and the pressure driven post-SN phase.
To avoid energy losses at the reverse shock, the spatial interpolation scheme should be as sharp
as possible in this region. The scheme “WEN03”, which is suited for smooth data, led to a lower
efficiency and stronger oscillations in the shocked wind region than the “LINEAR” scheme. Also
“WEN03” produces acell with a sharp local density minimum on the inside of the shell, which
leads to code crashes.

Temporal resolution

In our simulations the time-step is limited by the CFL condition (Sect. 3.3), which ensures that gas
cannot travel more than a cell length per time-step. Thus, we can reduce the time-step via reducing
the cell size

(
∆x
2

)
or via reducing the factor in the CFL condition

(
CFL

2

)
. I.e. the time-step for a

simulation with CFL=0.3 is similar to the time-step in a simulation with CFL=0.6 and twice the
number of cells per parsec. The time-steps of these two simulations differ a little, since variations
in the velocities caused by the spatial resolution are a second order effect on the time-step size. The
maximal velocities at a given time in the different simulations vary by less than 10%. The location
of the cell, which limits the time-step depends on the evolution of the model: after 1 Myr the gas
velocity in the outermost cell of the free streaming wind region limits the time-step, whereas after
4 Myr the sound speed in the shocked wind region near the bubble wall limits the time-step size.
The two-shock Riemann solver’s efficiency is independent of the time-step size (varied via the CFL
and by changing the time-marching algorithm from Runga-Kutta II to Runga-Kutta III), whereas
the Roe solver gets more efficient for larger time-steps, since the energy loss at the reverse shock
occurs less often.

Riemann solver

In the simulations4 with initial densities of ρ0 = 2.2× 10−22 g cm−3, pressures of p0 = 1.47683×
10−12 erg cm−3, resolutions of ∆x = 0.032 pc and extreme mass loss (500 M�, which is much
too high but was used for tests of the kinetic energy fraction) in the SN, the two-shock solver

4This is a different set from the simulations in Tab. 6.2

6.2 SN blast in a cavity 121

1

2

3

4

5 10

D
en

si
ty

[1
0−

2
7

g
cm
−

3
]

Radius [pc]

Time resolved wind

Constant wind

Figure 6.12: Oscillations near the reverse shock after 2 Myr in simulations using the two-shock
solver.

(1.8× 1049 erg when the shell speed reaches the sound speed) is more efficient than the Roe solver
(1.5 × 1049 erg) and less efficient than the HLLC solver (2.2 × 1049 erg). This is the expected
behavior, since the HLLC solver is the most diffusive of the three solvers and hence the density
and temperature slopes at the contact discontinuity are shallower and thus the temperature in the
first cell, which is dense enough to cool is smaller than in simulations with the two-shock solver.
On the other hand, the Roe solver has problems with energy losses at the slowly moving reverse
shock. This can be seen as damped oscillations in the shocked wind.
Actually all solvers produce oscillations inside the shocked wind region. A test with a constant
wind showed that these oscillations are not caused by changes of the wind power, since they are
also observed in a simulation with a constant wind (Fig. 6.12).

Influence of the feedback region size

The standard radius of the feedback regions in our 1D simulations is rf = 0.32 pc (Sect. 6.1.3).
To test the influence of the number of cells in the feedback region onto the energy content of the
simulation, models with different resolutions (∆x from 0.008 pc to 0.032 pc) and diameters of the
feedback region (rf from 0.32 pc to 0.64 pc) were compared.
Also these models follow the general trend that simulations with higher spatial resolution find
higher feedback energy efficiencies. Comparing the free streaming region to the solution of Cheva-
lier and Clegg (1985) (see Sect. 4.4.3) showed good agreement for all models: The density profile
was ∼ 1

30x2 for all ∆x and all rf . Also the kinetic energy profiles for all ∆x and all rf were similar
to those in Chevalier and Clegg (1985). Since the pressure in the top hat distribution in the feed-
back region is proportional to r−2

f , the pressure is larger for larger rf . All models showed a decay
like p ∝ x−10/3, as expected.
The kinetic and thermal energy increase starts later for ∆x = 0.016 pc and rf = 0.64 pc than for
rf = 0.32 pc at the same resolution, since the initial top hat structure has to evolve into a wind
structure, which takes longer for larger regions. The energy uptake rate is the same. As a result
increasing rf leads to slightly smaller bubbles. However, if the spatial resolution is decreased to
∆x = 0.032 pc, the energy increase also starts later for larger rf but after 0.1 Myr the energy uptake
rate becomes higher for larger rf , leading to larger bubbles for larger rf . Doubling the feedback
region radius thus led to an increased feedback energy efficiency for the lowest resolution. For
∆x = 0.016 pc, however, the region diameter did not change the efficiency any more. Strangely
for ∆x = 0.032 pc the radiative losses (Λ) for smaller feedback regions (rf = 0.32 pc) are smaller
than for larger feedback regions (rf = 0.64 pc), but less energy is stored in the simulation. The

122 6. 1D: Feedback efficiency in spherical symmetry

time-step size in the early phases is smaller for smaller feedback regions, since outermost free
streaming cell limits the time-step size.

6.2.5 Retained kinetic energy

The kinetic feedback energy efficiencies listed in Tab. 6.2 were evaluated at the moment, when the
densest cell was decelerated to the ambient sound speed. This is also the time when the lines in
Fig. 6.9, showing the time evolution of the retained kinetic energy, end. In the left upper panel
of Fig. 6.9 the reference models without SN explosions or without winds are shown. The 60 M�
model explodes in a SN after 4.8915 Myr. Simulations of models without wind phases are started
at this time. The dependence of the models on the resolution during the pressure driven phase
(right upper panel, see discussion in Sect. 6.2.4) leads to more efficient stellar feedback in higher
resolved simulations. Also rescaling directly after the wind phase leads to an increased efficiency,
whereas rescaling during the momentum driven phase (∼ 9 Myr) does not change the efficiency
(not shown in the plot, since the lines would be on top of each other). In the lower left panel
the CD is artificially enforced via a. The dependence on the resolution in these models is less
pronounced than in the standard case (right upper panel) but still exists, since the treatment with a
reduces the losses near the CD but cannot prevent mixing of the two gas phases. The right lower
panel shows the second approach to limit the losses near the CD: A mixing process smears out
the CD and thus prevents that high temperature gas mixes with dense gas at the CD (by producing
intermediate temperature gas and intermediate density gas). Thermal conduction leads to a 10%
(∆x = 0.032 pc) or 18% (∆x = 0.016 pc) lower efficiencies. In this panel of Fig. 6.9 and 6.10 we
also show a 14 orders of magnitude higher diffusion coefficient to mimic a very efficient mixing
process. This model is converged for all resolutions. In Fig. 6.10 the retained kinetic energy of all
these models is depicted as a function of the shell velocity. The phase, when the shell velocity has
decreased to the ambient sound speed occurs later, at larger radii and at higher kinetic energies for
higher a and higher resolutions.

The influence of a

If radiative cooling is applied for all densities in the cooling table (a = 0, Tab. 6.2, Fig. 6.9 right
upper panel), the kinetic energy at the end of the wind phase is a factor 1.3 higher in simulations
with a cell size of ∆x = 0.008 pc than in simulations with ∆x = 0.016 pc. The latter simulation’s
kinetic energy during the wind phase is a factor 1.2 higher than in a simulation with ∆x = 0.032 pc.
The feedback energy efficiency when the bubble shell has decelerated to the ambient sound speed
rises by a factor 1.3 if the number of cells is doubled.
If there is no density threshold for radiative cooling (a = 0), also the SN shell can cool. More
than 70% of the energy is lost via radiative cooling when the SN blast hits the bubble wall. All the
kinetic energy in the reflected wave is lost at the origin, since the reflected wave sweeps up the gas
and creates an efficiently cooling density peak at the origin. Again losses are higher in simulations
with larger cells.
Limiting the mixing processes across the CD by applying radiative cooling only to cells with
densities above the ambient density, leads to a feedback energy efficiency of approximately 7% for
a cell size of ∆x = 0.032 pc. If all cells with densities below the ambient density are considered to
contain not radiatively cooling hot gas (a = 1.0, Tab. 6.2, Fig. 6.9 left lower panel), halving the cell
size increases the kinetic energy when the bubble shell has decelerated to the ambient sound speed

6.3 Conclusions 123

or the kinetic energy at the end of the wind phase by a factor of 1.1. If the cellsize is reduced, the
oscillations between kinetic and thermal energy caused by the SN are less damped. The radiative
energy losses are largest when thermal energy is converted to kinetic energy (every second time,
when the wave enhances the pressure near the bubble wall, strong radiative cooling losses arise
in cells, which are dense and hot enough to cool. Since no density peak (as high as the ambient
medium) is found at the origin no additional losses occur when the SN wave is reflected at the
origin. The losses are larger if the cells are larger).

Wind-only models

Comparing the kinetic energies at the end of the wind phase of models that differ only by spatial
resolution (Tab. 6.2) show that we find an increase of the retained kinetic energy by a factor ∼ 1.1
for models with a = 1 and a factor ∼ 1.3 for models with a = 0. For the model without SN
and a = 0, which was resampled at the end of the wind phase, we find an increase of the retained
kinetic energy by a factor∼ 1.1 against the not resampled model. No energy is added to this model
after resampling, but the higher resolved model can retain more kinetic energy, since it loses less
energy at the CD.

The influence of mixing processes

The dependence of the feedback energy efficiency on the spatial resolution decreases, if thermal
conduction is taken into account. For extreme conduction the differences between the simulations
with different resolutions essentially vanish. As mentioned in Sect. 6.2.4, our spatial resolution
defines a scale length on which gases are mixed with 100% efficiency. Since our resolution has
reached or even gone below the proposed length scale of turbulent mixing (Sect. 2.2.4) we con-
clude that the dependence of the feedback energy efficiency on the spatial resolution depicts the
dependence of the radiative losses on the efficiency and the length scale of turbulent mixing across
the CD.

6.3 Conclusions
We investigated the efficiency of stellar energy deposition in the ISM. For this study we compared
the feedback energy efficiency of SNe in different environments. Our main results are:

• If a simulation with 100 particles per cm3 refers to Thornton et al. (1998) and uses a feedback
energy efficiency of 10% as a sub-grid model, a time-step of 33 kyr has to be resolved. A
short time later the efficiency drops far below 10% (Fig. 6.2 and 6.3).

• Without the stellar wind of the progenitor star, the feedback energy efficiency of a massive
star, which is placed in a dense medium, is much (here a factor 6) smaller than if the wind is
taken into account (Tab. 6.2).

• The cumulative feedback energy of the stellar wind of a 60 M� star is 2.34ESN. The impact
of the stellar wind can be seen from a comparison between a model with no SN blast at the
end of the wind phase and a model with both progenitor wind and SN blast. The energy
difference when the shell reaches the sound speed (Tab. 6.2) is 2.13 × 1048 erg in a model
without SN compared to 2.71 × 1048 erg in a model with SN and wind. This differs from

124 6. 1D: Feedback efficiency in spherical symmetry

the ratio of the total energy inputs (2.34× 1051 erg and 3.34× 1051 erg). Thus, steady stellar
feedback is more efficient than a blast.

• The feedback energy efficiency of a constant wind with the same net energy input is slightly
higher than for the time-resolved wind (Tab. 6.2). Averaging the WR phase over the whole
stellar lifetime makes the constant wind stronger than the time resolved wind in early phases
and allows it to create a larger bubble at early times, which serves as a pressure reservoir
for the bubble expansion later on. At the time when SN explosion happens, the bubble
size and the retained kinetic energy of the constant wind model are larger than in the time
resolved model, whereas the thermal energy is smaller, since the time resolved models boost
the thermal energy during the WR phase directly before the SN.

• The time of maximal luminosity (t0, defined in Sect. 6.1.1) occurs later, if stellar wind bub-
bles are taken into account. In this case, the blast expands adiabatically until it impacts onto
the cavity wall. Subsequently, the SN blast wave bounces inside the bubble and as a result
the luminosity peaks are periodic events and occur whenever the SN shock-wave hits the
cavity wall (more precisely, it does not directly hit the cavity wall but compress the wind
gas in front of the cavity wall) and kinetic energy is converted to thermal energy (and vice
versa). The losses show a double peak at times when the conversion rates are largest.

• Mixing processes across the CD are important during pressure driven phases. In these phase
the resolution mimics the scale of mixing and thus has an effect on the feedback energy
efficiency. In the subsequent momentum driven phase radiative cooling in the swept-up,
compressed and thus heated medium is the dominant energy sink.

• Comparing the constant wind models at different resolutions (which mimic the length scale
of the mixing processes in the ISM) shows that the 0.032 pc model has a higher efficiency
than expected. Low resolution models can find a higher efficiency, if they underestimate the
density in the shell. In this case the efficiently cooling temperature-density combination is
not found at every time-step in the 0.032 pc model, whereas later on this gas phase is always
present. In higher resolved models the efficiently cooling layer near the CD has a smaller
volume: At the same time of the simulation it is found at larger radii in higher resolved
simulations but it is only a single cell wide. Simulations with a resolution of 0.001 pc
showed cooling losses of the same order of magnitude in the compressed swept-up medium
and near the CD. At even higher resolutions the cooling layer will at some point become
irrelevant.

• The feedback energy efficiency in 1D simulation is expected to be an upper limit for multi-
dimensional simulations, since (non-radial) instabilities, which arise in more dimensions,
increase the surface of the CD and enhance mixing between the hot and cold gas phase. In
our work these mixing processes are treated indirectly via the mixing length-scale (i.e. by
the resolution or via diffusion coefficients).

• During the wind phase the density threshold in the cooling function (e.g. a = 1) reduces
the dependence of the feedback energy efficiency on the resolution (Tab. 6.2). However, the
differences between the feedback energy efficiencies for different resolutions at the end of
the simulations are not significantly reduced if the threshold a = 1 is used instead of a = 0.

6.3 Conclusions 125

• If the coefficient κ of heat conduction is strongly increased, the models converge, since the
gradients at the CD, which were sensitive to spatial resolution, get smeared out. However,
the total feedback energy efficiency is drastically lowered by this treatment.

126 6. 1D: Feedback efficiency in spherical symmetry

Chapter 7

3D: Porosity and depth of embedding

With our 3D simulations, we study the influences of the position of the massive stars inside the
GMCs and the “porosity” of the cloud onto the feedback energy efficiency. Porosity in this context
describes the sum of the cross-section areas of all holes in the GMC allowing stellar feedback
material to escape from the GMC into the warm phase of the ISM (phases of the ISM are discussed
in Sect. 2.1). We now move on from infinite clouds to semi infinite clouds.

7.1 Setup of the 3D models
The hydrodynamic simulations discussed in this section were carried out with the Eulerian grid
code RAMSES (Teyssier, 2002, discussed in Sect. 5.1.2) on a Cartesian mesh. The simulations
take advantage of AMR and reach a resolution of 0.13 pc. The grid is refined near large pressure
and density gradients. If nothing other is mentioned, a HLLC solver and MinMod flux limiting
are used. Our modifications of the code (cooling-heating equilibrium and stellar feedback) are
described in Sect. 5.2.3. Tests showing that our numerical solution for stellar feedback in an infinite
homogeneous cloud without radiative cooling approaches the wind theory of Castor et al. (1975),
which describes an idealized spherically symmetric stellar wind, are presented in Sect. 4.4.1.

Density step

ρ1 ρ2

∆x

∆d

-15 pc 0 pc 10 pc

Warm interstellar medium
ρ2 ∼ 1 particle cm−3

T ∼ 10 000 K
Semi-infinite cloud
ρ1 ∼ 100 particles cm−3

T ∼ 100 K
Feedback region
radius (rc) 0 to 4 pc
distance ∆x = 10 to 20 pc
“Chimney”
cross section (∆d)2 = 0 to 12.2 pc2

Figure 7.1: Components of the toy model: The feedback region is immersed in a semi-infinite
cloud. It is connected to the ambient ISM by a “chimney” in the cloud.

128 7. 3D: Porosity and depth of embedding

The basic setup for the models discussed in this chapter is sketched in Fig. 7.1. The feedback re-
gion can be placed in a pre-existing spherical cavity mimicking a Strömgren sphere1. This helps to
avoid losing the newly inserted energy in this zone immediately. Alternatively we can also turn off
energy losses via radiative cooling in the feedback region. But, since the ionizing radiation of the
massive star will create a Strömgren sphere, the assumption of a small pre-existing cavity is less
artificial than a non-cooling dense part of the cloud. As a reference we also present models without
pre-existing cavities. In these models, cooling losses can occur inside the feedback region. The
smallest initial cavity in our set of models is approximately one cell larger than the feedback region
(rc = 0.64 pc, rfb = 0.49 pc). That it cannot be exactly one cell larger is an implication of the im-
plementation of this spherical region on a Cartesian grid (see Sect. 5.2.3). The largest pre-existing
cavities we tested have a radius of rc = 4 pc. For the chosen cloud density of 100mH cm−3, this
bubble radius would be well inside the Strömgren radius of a 60 M� star. For example Sternberg
et al. (2003, Fig. 5 and Tab. 1) find 3× 1049 ionizing photons per second for an O5 main sequence
star with similar mass, luminosity and effective temperature as found in the initial phases of the
stellar evolution model we use for this study (Ekström et al., 2012, rotating 60 M� star). For a
Hydrogen number density of nH ∼ 71 cm−3, this leads to a Strömgren radius of ∼ 5.44 pc.
The pre-existing cavity contains gas with the same density and temperature as the ambient medium
and can be connected to the ambient medium via a cuboidal “chimney”. Since no friction or
viscosity are taken into account, the shape of the “chimney” is irrelevant and even if there is a
single hole or if there are several holes is a second order effect. The leading order term is the total
cross-sectional area of all holes. Therefore, our setup uses a single “chimney” with a quadratic
cross-section, since this shape of the “chimney” is more convenient than a cylindrical hole on a
Cartesian grid.
The GMC gas is assumed to have a proto-solar chemical composition according to Lodders (2003)
to calculate cooling and heating. This leads to a hydrogen mass fraction of X = 0.711. The
assumed density of 100mH cm−3 = 1.66× 10−22 g cm−3 thus corresponds to nH∼ 71 cm−3,
which is slightly below the densities in the 1D models2. However, also this density leads to a
cooling-heating model dependent equilibrium temperature in the order of 100 K (see Fig. 2.1).
Our models now also contain a warm dilute phase of the ISM which is in pressure equilibrium
with the dense phase. We use a density of 1.66 × 10−24 g cm−3 and a temperature in the order of
10 000 K. Both phases are in cooling-heating equilibrium.

7.2 Grid of models
In the sensitivity analysis the impact of (1) the distance of the feedback region from the cloud edge,
mimicking the position of the OB associations inside a GMC and (2) the “porosity” via the cross
section of the “chimney”, parametrizing the density structure of the cold ISM, onto the feedback
energy efficiency are studied.
A typical setup of our grid of models is sketched in Fig. 7.1: The distance ∆x of a 60 M� star
from the edge of a semi-infinite cloud is either 10 pc or 20 pc. As described in Sect. 5.2, the best

1The gas in a Strömgren sphere would also have a temperature of ∼ 10 000 K, however, the gas density would be
higher than in the 10 000 K gas phase we use for the cavity. We fill the pre-existing cavity with ambient medium, since
only in this way we can set up static IC.

2in 1D: 2.2× 10−22 g cm−3, or 133 mH cm−3 with a molar mass of 0.5 or 1.33 g mol−1.
in 3D: 1.66× 10−22 g cm−3, Hydrogen mass fraction X = 1 or n < 100 Lodders (2003): molar mass X = 0.7110,
Y = 0.2741, and Z = 0.0149.

7.3 Impact of the cooling-heating model 129

5%

10%

15%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

R
et

ai
ne

d
en

er
gy

/f
ee

db
ac

k
en

er
gy

Time [Myr]

rc = 4 pc, CLOUDY
rc = 0.64 pc, CLOUDY

rc = 4 pc, RAMSES
No cavity, RAMSES

Figure 7.2: Cooling-heating model dependence of the feedback energy efficiency of the wind of a
60 M� star inside a homogeneous cloud with a density of 1.66× 10−22 g cm−3. The graph shows
the fraction of retained wind energy (in thermal and kinetic energy) during 0.05 Myr (symbols) and
the total energy injection efficiency computed at each coarse grid time step (lines). The models
have a resolution of 0.13 pc and differ in the cooling-heating model and in the size of a pre-existing
cavity at the onset of the wind. The model without cavity can also be found in Fig. 7.7(a).

radius of the feedback region (0.5 pc) follows from the chosen resolution.
The tested cross sections of the “chimneys” (∆d)2 are 12.2 pc2, 3.5 pc2 and 1.2 pc2. The initial
cavity in the cold phase is either absent or has a radius of 0.64 pc, which is slightly larger than the
feedback region, or 4 pc, which is of the order of the initial Strömgren radius (see Sect. 7.1).
Presently, only the early wind phases have been modeled with a resolution much below the reso-
lution in the 1D work. However, a comparison between models that differ only in the “chimney”
size already led to a few interesting results, which will be discussed in the rest of this chapter. In
our future work we plan to follow up with higher resolution 3D models that will be monitored until
the shell has reached the ambient sound speed, as in the 1D work.

7.3 Impact of the cooling-heating model
As in our 1D models, our simulations use detailed cooling tables. We compare the results of
two cooling models: (1) cooling tables extracted from CLOUDY and implemented in RAMSES

by Eva Ntormousi as described in Ntormousi et al. (2011); (2) an artificial two-phase medium
(see Sect. 2.2.6 and 5.2.3) based on the RAMSES cooling table. For the latter, the equilibrium
temperature of the dense phase is higher than in the CLOUDY tables, as can be seen in Fig. 2.1.
As the RAMSES cooling table does not create a two-phase medium, an artificially stable hot phase,
which is in pressure equilibrium with the cold phase, is added. For both models artificially stable
phases for the two gas phases in the initial conditions (IC) are implemented and can be switched
on or off at compile-time. However, tests showed that the gas phases in the IC are close enough to
stable phases in the CLOUDY cooling model that the presence or absence of the artificial equilibria
for the IC did not have a huge impact on the simulation. Moreover, this artificial equilibrium
is unstable: Tiny density changes, which can be created e.g. by sonic waves caused by stellar
feedback, will make the gas temperature evolve towards the cooling-heating equilibrium curve
value.

130 7. 3D: Porosity and depth of embedding

2

3

4

5

6

7

8

-28

-26

-24

-22

-20

lo
g

1
0
T

[K
]

lo
g

1
0
ρ

[e
rg

/c
m

3
]

2

3

4

5

6

7

8

-28

-26

-24

-22

-20

lo
g

1
0
T

[K
]

lo
g

1
0
ρ

[e
rg

/c
m

3
]

2

3

4

5

6

7

8

11 12 13 14
-28

-26

-24

-22

-20

lo
g

1
0
T

[K
]

lo
g

1
0
ρ

[e
rg

/c
m

3
]

x [pc]
log10 T [K] log10 ρ [erg/cm3]

(a) Temperature and density distribution of the cells
along the x-axis

(b) Cut through the density distribution

Figure 7.3: The simulations with an initial cavity (radius rc) in a homogeneous cloud are shown
after 1 Myr. Top: rc = 0.64 pc, CLOUDY cooling (implemented in the same way as in Ntormousi
et al., 2011), center: rc = 4 pc, CLOUDY cooling, bottom: rc = 4 pc, modified RAMSES cooling.
The lower two plots exhibits a two peak shell structure in the swept-up shell, since the wind shell
ran into the walls of dense gas surrounding the pre-existing cavity.

7.3 Impact of the cooling-heating model 131

10−28

10−27

10−26

10−25

10−24

10−23

10−22

10−21

0 2 4 6 8 10 12 14

D
en

si
ty

[g
/c

m
3
]

Radius [pc]

Density [g/cm3] after 1 Myr

Feedback region
RAMSES
CLOUDY

Figure 7.4: Averaged radial bins of the 3D simulations on a Cartesian grid. The plot compares
simulations with an initial cavity radius of 4 pc and different cooling models. These simulations
are also shown in Fig. 7.2 and 7.3. Despite the larger ambient pressure, the model with RAMSES

cooling seems to produce slightly larger bubbles. Also the average pressure in the shell of the
model with CLOUDY cooling is lower than in the model with RAMSES cooling (this can be inferred
from Fig. 7.3).

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3

E
k
/(
E

th
−
E

th
,0

)

Time [Myr]

Expected ratio: 0.331

Cavity: rc = 4 pc
No cavity

0.32(1-exp(-13.1(t+0.175)))
0.31(1-exp(-8.77(t-0.0129)))

Figure 7.5: Numerical tests agree well with a kinetic energy fraction of 45.6% in the shell and a 5:6
energy ratio between bubble and shell. This leads to a total kinetic to thermal energy ratio of 0.331
as found in the simulations without cooling losses. Since the initial density in the feedback region
is treated like wind gas, the kinetic energy fraction is initially overestimated. The red data shows
the effect of the presence of a pre-existing cavity: the swept-up shell contains less mass and hence,
less kinetic energy. This effect is also seen in the simulation without cavity (shown in green). Here
it is caused by the mass of the feedback region (rfb = 1.5×1018 cm) ending up “on the wrong side
of the contact discontinuity”. The evolution of the energy ratios towards an equilibrium value was
fitted with an increasing exponential decay form (1−e−t). The presence of an initial cavity leads to
an initially lower kinetic energy fraction, since (1) the bubble is larger due to the faster expansion in
the initial cavity than a bubble forming in a homogeneous dense medium and (2) the swept-up mass
at a swept-up shell radius rshell is (4π/3)r3

shellρaverage = (4π/3) (r3
shellρcold − (ρcold − ρwarm) r3

c).

132 7. 3D: Porosity and depth of embedding

0.0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
k
/(
E

th
−
E

th
,0

)

Time [Myr]

Expected equilibrium ratio: 0.547

4 pc, Ek(T < 106)/Et(T > 104)
4 pc, Ek(T < 104)/Et(T > 104)

No cavity, Ek(T < 104)/Et(T > 104)
CLOUDY cooling, 2 stars, 4 pc

CLOUDY cooling, 4 pc
RAMSES cooling, 4 pc

CLOUDY cooling, no cavity

0.604(1-exp(-3.01(t - 0.0071)))
0.623(1-exp(-2.87(t - 0.0007)))
0.616(1-exp(-3.96(t - 0.0028)))

Figure 7.6: Without cooling, we expect a ratio of 0.547 between the kinetic energy in the shell
and the thermal energy in the cavity from the Weaver et al. (1977) wind theory. The open symbols
indicate the ratio of the kinetic energy of the cold medium (T < 104 K) to the thermal energy in
the bubble (T > 104 K). The crosses use the difference between the thermal energy of the initial
conditions and the current thermal energy as a proxy for the thermal energy of the bubble and the
shell. In the plot the energy content after every 3rd coarse time step is shown. In our simulations
the ratio of the total kinetic energy and the thermal energy increase is 0.6. The kinetic energy of
the shell over the thermal energy of the hot medium is closer to the aforementioned expected ratio.

A comparison of simulations with the CLOUDY and RAMSES cooling-heating treatments (Fig. 7.2)
shows that the feedback energy efficiency is of the same order for both cooling models. This is
consistent with the findings in 1D (Fig. 6.6). Fig. 7.2 contains four models that differ in the cooling-
heating model and/or in the initial cavity size. The simulation with modified RAMSES cooling and
no pre-existing cavity shows very low feedback energy efficiencies until a wind bubble has been
established (∼ 0.6 Myr). Adding a small cavity (that might represent an initial Strömgren sphere)
helps to reach a roughly constant energy uptake per time step (of ∼ 8%, shown with symbols) and
the expected wind structure inside the bubble earlier. Comparing this plot to the 1D models in the
last section (first 1.5 Myr in Fig. 6.9), one has to take the dependence of the retained energy on the
resolution and the lower ambient density of the 3D models into account.
The dense swept-up shell and the ambient medium (if not artificially stabilized at the IC pressure
and density) reach the temperature of the cooling-heating equilibrium (see Fig. 2.1 for the equi-
librium), which is lower in the CLOUDY cooling prescription. Consequently, the cooling-heating
implementation of Ntormousi et al. (2011) leads to a lower ambient pressure (without artificial
equilibrium for the IC the pressure is 7.2×10−13 erg cm−3 instead of 3.2×10−12 erg cm−3). After
1 Myr slightly larger bubble radii (Fig. 7.3) in the cut along the x-axis are observed in the simula-
tion with CLOUDY cooling than in the run with the modified RAMSES cooling with an artificially
stable second phase. The latter, however, leads to slightly larger averaged bubbles (Fig. 7.4).
The total feedback energy efficiency is set by the pressure in the hot wind-blown bubble. Without
cooling the ratio between the energy in the cavity and the energy in the shell can be found from the
pressure driven expansion (see Weaver et al., 1977, Sect. III and Sect. 4.4.2 in this thesis). Eq. 4.41

7.4 Impact of pre-existing cavities 133

predicts for a constant wind (in 3D):

Ecavity+shell = εLwt, Ecavity = ε
5

11
Lwt, Eshell = ε

6

11
Lwt

With the kinetic wind luminosity Lw = 0.5Ṁv2
∞ where v∞ is the terminal wind velocity and Ṁ is

the mass loss rate. ε is the feedback energy efficiency.
Weaver et al. (1977) predict that 40% of the energy in the swept-up shell (Eshell) are kinetic energy.
Actually checking the numerical integration described Weaver et al. (1977) with MATHEMATICA

showed that 45.6% of the shell’s energy is kinetic. The kinetic energy fraction of Ecavity is negli-
gible. This leads to a total kinetic to thermal energy ratio of 0.33, which is in excellent agreement
with our numerical tests (Fig. 7.5).

7.4 Impact of pre-existing cavities
Fig. 7.5 also illustrates the effect of an initial cavity onto the energy ratios. The size of the pre-
existing cavity influences the early phase of the bubble expansion (∼ 0.4 Myr): The wind bubble
expansion slows down with increasing ambient density. In our setup, the wind bubble first sweeps
up the lower density medium in the cavity. We find a fast expansion with almost no cooling
losses before the cavity wall is reached (visible e.g. via the similarity of the leftmost red crosses
in Fig. 7.5 and the leftmost blue crosses in Fig. 7.6). When the shell starts to sweep up the dense
cloud material, the expansion slows down and the cooling losses rise. The mass in Eq. 4.38 can no
longer use a constant ambient density and becomes ρcoldVνr

ν
shell − (ρcold − ρwarm)Vνr

ν
c . Eq. 4.40

holds only for rshell � rc
ν

√
1− ρwarm

ρcold
. A larger exponent a in Eq. 4.40 would lead to a lower

kinetic energy fraction in Eq. 4.41. This is also observed in our simulations (Fig. 7.5 and 7.6). The
bubble evolution can be approximated with two asymptotic expansion laws. One of them describes
the expansion before the shock impinges on the dense cloud material and the other one is recovered
when the second term in the aforementioned swept-up mass becomes negligible. These laws can
be obtained from the Weaver et al. (1977) wind theory (see Sect. 4.4.1). The transition between
the bubble expansion in the cavity and the expansion into the homogeneous surrounding medium
leads to a decay-law-like evolution of the energy ratios3.
We will now assume that all thermal energy of the shell is lost via radiative cooling. Without
cooling, the expected ratio between the kinetic energy of the cold gas and the thermal energy of
the hot bubble is 0.5474. In Fig. 7.6 we see that the total kinetic energy in simulations where
radiative cooling is taken into account contains a contribution from gas above 104 K (compare blue
open squares to blue open circles). The crosses and the fits in Fig. 7.6 use the total kinetic energy –
which is dominated by the cold phase (as the tests each 50 kyr show). The thermal energy is found
from the difference between the total thermal energy and the total thermal energy of the initial
conditions. It is thus lower than the thermal energy of the bubble and the shell, since the initial
thermal energy in this zone is subtracted. Every 50 kyr we evaluated the energy of the bubble in
detail. The open symbols in Fig. 7.6 show the ratio of kinetic energy of gas with temperatures

3The convergence of the energy ratios looks a bit like the temporal evolution until an equilibrium concentration of
reactants in a second order chemical reaction is established. See e.g. "A Second-Order Chemical Reaction" from the
Wolfram Demonstrations Project http://demonstrations.wolfram.com/ASecondOrderChemicalReaction/

46/5 × 0.456 = 0.547, where 6/5 are taken from Eq. 4.41 and 45.6% were found via numerical integration of
Fig. 4.13.

http://demonstrations.wolfram.com/ASecondOrderChemicalReaction/

134 7. 3D: Porosity and depth of embedding

below 104 K and thermal energies of cells with temperatures above 104 K (i.e. we do not subtract
the energy of the initial conditions here). 104 K is used as limiting temperature, since it is the
initial temperature of the cavity.
If all kinetic energy is used, the ratio seems to converge to Ekin,shell : Etherm ∼ 0.6. If we only take
the kinetic energy of cold gas into account, the ratio comes closer to the expected ratio of 0.547.
The initially higher ratio in simulations with pre-existing cavities is also influenced by the kinetic
energy of the free streaming wind.

7.5 Homogeneous infinite cloud

As a limiting case of a very narrow and very long “chimney” a homogeneous infinite cloud is used.
The total feedback energy efficiency in this setup is the lowest in the whole sample, since the gas
cannot escape the cloud and the dense swept-up shell leads to large cooling losses (Fig. 7.7(a)).
However, for all models with a resolution of 0.13 pc (purple lines in Fig. 7.7(b)) the kinetic feed-
back energy efficiency in the gas below the initial temperature in the warm medium (i.e. < 104 K)
seems to converge to ∼ 3% during the wind-phase. However, we will need more simulations to
find out, whether this is a coincidence. Fig. 7.2 indicates that the radiative losses lead to a feed-
back energy efficiency factor ε ∼ 8% for the total retained energy E(t) = εLwindt. The largest
radiative losses occur at the interface between the hot bubble and the shell (Fig. 7.8). When this
constant energy uptake rate is observed, the dense shell cools to the temperature of the cooling-
heating equilibrium for this density, as can be seen in Fig. 2.1, 7.3(a) and 7.9. Fig. 7.9 also shows
a small indication of a temperature rise in the shock – however, our simulations do not resolve this
feature. Increasing the significance by averaging over concentric shells does not help here, since
we would average over the Vishniac instability and get a smeared out shell. As already discussed
in Sect. 7.4 – a kinetic to internal energy ratio close to 0.547 (Fig. 7.6) is found. In accordance
with the predictions of Weaver et al. (1977), most of the kinetic energy is found in the swept-up
shell.
The time dependent cavity volume5 (Fig. 7.10) exhibits the V ∝ t

9
5 behavior expected for an

almost constant wind from Eq. 4.42 and Castor et al. (1975, Eq. 6).
Since the IC of the models presented in Fig. 7.7 do not use an analytical sub-grid model for a wind
shell in the feedback region or a pre-existing cavity to mimic a Strömgren sphere, these simulations
show an artificially extended free expansion phase, caused by the homogeneous density in the
feedback region: The simulation treats mass inside the feedback region like wind gas and the end
of the free expansion phase is reached when the swept-up mass exceeds the wind mass. This
artifact can be minimized by keeping the feedback region on the highest AMR level (which makes
it smaller, since the optimal size of this region follows from an optimal number of grid cells therein)
or by the assumption of a pre-existing cavity filled with ionized gas around the star. Placing the
feedback region directly in the cold dense medium results in efficient cooling inside the bubble.
If the feedback region is large enough to lead to oscillations inside it (i.e. in this case it contains
more than the optimal number of cells), also the formation of tiny strongly cooling clumplets near
the boundary of the feedback region is observed.

5We compare volumes instead of radii, since the simulations with “chimneys” are not spherically symmetric.

7.5 Homogeneous infinite cloud 135

0.00

0.04

0.08

0.12

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

E
ne

rg
y

/c
um

ul
at

iv
e

fe
ed

ba
ck

en
er

gy

Time [Myr]

∆x =∞, 2× 60 M�

∆x =∞

∆x = 20 pc, d = 1.9 pc
∆x = 10 pc, d = 3.5 pc
∆x = 10 pc, d = 1.9 pc
∆x = 10 pc, d = 1.1 pckinetic energy

internal energy

(a) Total feedback energy efficiency

0.00

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
k
in

/c
um

ul
at

iv
e

fe
ed

ba
ck

en
er

gy

Time [Myr]

∆x =∞, 2× 60 M�
∆x =∞
∆x = 20 pc, d = 1.9 pc
∆x = 10 pc, d = 3.5 pc
∆x = 10 pc, d = 1.9 pc
∆x = 10 pc, d = 1.1 pcEkin, total

Ekin, T < 106 K

Ekin, T < 105 K
Ekin, T < 104 K
Ekin, T < 103 K

(b) Kinetic feedback energy efficiency for different temperature ranges

Figure 7.7: Panel (a) shows the total feedback energy efficiency in six different setups. There
is no pre-existing cavity in these simulations and all of them use the modified RAMSES cooling
implementation. The efficiency of two 60M� stars in an infinite cloud is similar to the efficiency of
a single 60M� star (crosses and pluses). A higher “porosity” increases the efficiency of the energy
input: the retained energy rises with rising “chimney” diameter (filled symbols [triangle, box,
circle]). This is expected, since a stellar wind bubble in the tenuous medium can grow faster and
suffers less cooling losses than a stellar wind bubble in the dense medium. The cooling losses occur
in the dense shell surrounding the not-cooling hot pressure reservoir. The length of the “chimney”
only influences the kinetic energy via the size of the superbubble (filled and open boxes). In all
models about 90% of the stellar feedback are immediately lost via radiative cooling. In contrast
to panel (a) panel (b) shows only the kinetic feedback energy efficiency. The colors indicate the
temperature range of the moving gas: total retained kinetic energy (red), kinetic energy in cells
with temperatures below 103 K (light blue), 104 K (purple), 105 K (green) or 106 K (dark blue).
All simulations seem to converge to ∼ 3% retained kinetic energy in gas below 104 K.

136 7. 3D: Porosity and depth of embedding

2

3

4

5

6

7

8

-28

-26

-24

-22

-20

lo
g

1
0
T

[K
]

lo
g

1
0

lo
ss

[e
rg

/c
m

3
]

2

3

4

5

6

7

8

-28

-26

-24

-22

-20

lo
g

1
0
T

[K
]

lo
g

1
0

lo
ss

[e
rg

/c
m

3
]

2

3

4

5

6

7

8

11 12 13 14
-28

-26

-24

-22

-20

lo
g

1
0
T

[K
]

lo
g

1
0

lo
ss

[e
rg

/c
m

3
]

x [pc]
log10 T [K] log10 loss [erg/cm3]

(a) Temperature and cooling losses in cells along the
x-axis

(b) Cut through the density distribution

Figure 7.8: Similar to Fig. 7.3(a). In (a) the cooling loss distribution is shown instead of the
density. (b) shows the 2D density cut. Cooling was switched off at densities below the ambient
medium density. The temperature in the bubble (∼ 108 K) is set by the energy injection rate [see
also Fig. 7.9]. The highest cooling losses are found near the interface of the wind blown bubble
and the shell.

7.6 Homogeneous semi-infinite cloud with “chimney” 137

7.5.1 Doubling the feedback
In our simulations, inserting two stars at the same place in the infinite cloud is roughly as efficient
(total feedback energy efficiency ∼ 8%, Fig. 7.7) as inserting two stars at the same time at infinite
distance. A small difference in the total feedback energy efficiency – which is seen e.g. in the
thermal energy in Fig. 7.7(a) and in the total energy in Fig. 7.11 – is a relic of the early phase
of the bubble evolution. In simulations without pre-existing bubbles (e.g. shown in Fig. 7.7(a))
the different amounts of retained energy result from the phase before the wind bubble manages to
excavate a dilute (almost) not cooling region, which is shorter for stronger feedback. Consequently,
feedback from isolated stars is slightly less efficient under these conditions. In contrast, the energy
differences in simulations with pre-exisiting cavities (Fig. 7.11) reflect the time it takes the wind
shell to reach the edge of a pre-existing initial cavity. In this phase (almost) no cooling losses occur.
The end of this phase is best seen in the total energy in Fig. 7.11, which starts to deviate from the
feedback energy when radiative losses set in. This phase ends earlier if the stars are placed in
the same feedback region: Castor et al. (1975) wind theory predicts that the wind bubble’s radius
increases with r(t) ∝ ρ

−1/5
c E1/5t3/5. Hence, a simulation with isolated stars reaches the cavity

edges a factor 3
√

2 later than a simulation with two stars in the same feedback region. Which
is exacly the factor we find when we compare the simulations with different densities inside the
cavity or different numbers of stars in Fig. 7.11: In the model with two stars at the same location,
a RAMSES cooling function and a density of ρc = 0.92× 10−24 g cm−3 in the cavity, we find that
the total amount of retained energy is larger after 11.6 kyr than after the next time-step (which is

at 12.5 kyr). Therefore, we predict that the same evolution stage is reached a factor 3

√
166
92

later
(at ∼ 14.1 kyr), if the density in the pre-ecisting cavity is increased to 1.66 × 10−24 g cm−3. For

infinitely separated stars, we expect a factor 3
√

2 (leading to ∼ 14.6 kyr). Finally, a factor 3

√
332
92

(∼ 17.5 kyr) is expected if both, the density and the number of stars are changed. In our simulations
we find a snapshot with these properties at 13.5 kyr for two stars and ρc = 1.66 × 10−24 g cm−3,
14.5 kyr for one star and ρc = 0.99×10−24 g cm−3 and 16.6 kyr for one star and ρc = 1.66×10−24 g
cm−3. This is in good agreement with the expectations, since the time between snapshots is ∼ 1
kyr.
In simulations with a pre-existing cavity, the longer duration of the almost lossless early phase
makes feedback from isolated stars slightly more efficient. However, in both setups (with or with-
out cavity), correcting for this initial phase leads to similar efficiencies for these extreme cases
(infinite separation or same position) mimicking concentrated and loose star groups. Shell interac-
tions are not taken into account, but also Krause et al. (2012), who study the effect of stellar wind
bubble shell interactions, do not find significant differences in the feedback energy efficiency of
isolated stars or star groups during the wind phase.

7.6 Homogeneous semi-infinite cloud with “chimney”
An other means – besides bubble expansion and radiative cooling – to release pressure from the
star forming region inside the dense gas cloud is connecting this region with a “chimney” to the
ambient medium. In such channels we will first observe a shock wave, clearing the path. After
the shock wave has passed, an isentropic flow sets in. This flow will try to establish a pressure
balance of both parts of the wind blown bubble – the one inside the GMC and the one outside.
However, the sonic flow can have a too small flux to accomplish this, since the sound speed limits

138 7. 3D: Porosity and depth of embedding

2

3

4

5

6

7

8

9

-15 -10 -5 0 5 10 15

lo
g

1
0

(T
)[

K
]

x [pc]

2.2
2.6
3.0
3.4

12.0 12.4 12.8

lo
g

1
0

(T
)[

K
]

x [pc]

rise in shock

cooled to Teq

(a) Temperature

-4

-2

0

2

-10 0 10
-1

0

1

lo
g

1
0
ρ

[1
0−

2
2

g
cm
−

3
]

lo
g

1
0

2
6
A

l[
10
−

3
2

g
cm
−

3
]

x [pc]

ρ

26Al

(b) Density

Figure 7.9: Cut along the x-axis of a 60 M� model placed in a homogeneous cloud without initial
cavity after 1.25 Myr. The modified RAMSES cooling model was used. The zoomed region shows
an indication of a temperature rise in the shock. The dense swept-up gas cools to the cooling
heating equilibrium temperature (100 K). 26Al peaks near the cavity wall.

Figure 7.10: Evolution
of the cavity’s size
in different setups.
The cavities in the
infinite cloud initially
grow more slowly
then the cavities in the
simulation with “chim-
neys”, since there is no
pre-existing cavity and
thus the mass inside
the feedback region is
treated like wind-gas
and thus there is an
artificially extended
free expansion phase.

0

1

2

3

4

5

6

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Vo
lu

m
e

[1
00

0
pc

3
]

Time [Myr]

∆x = 10 pc, d = 1.1 pc
∆x = 10 pc, d = 1.9 pc
∆x = 10 pc, d = 3.5 pc
∆x = 20 pc, d = 1.9 pc
1× 60 M�
2× 60 M�

5933× t1.732 + 68
3783× t1.526 − 6
3200× t1.263 + 89
4581× t2.039 + 44

pressure driven

bubble ∝ t9/5

7.6 Homogeneous semi-infinite cloud with “chimney” 139

0

2

4

6

8

0 10 20

To
ta

le
ne

rg
y

[1
03

8
er

g]

Time [kyr]

2× 60 M�, CLOUDY, ρc = 0.92× 10−24 g cm−3

2× 60 M�, RAMSES, ρc = 0.92× 10−24 g cm−3

2× 60 M�, RAMSES, ρc = 1.66× 10−24 g cm−3

60 M�, CLOUDY, ρc = 0.92× 10−24 g cm−3

60 M�, RAMSES, ρc = 0.92× 10−24 g cm−3

60 M�, RAMSES, ρc = 1.66× 10−24 g cm−3

feedback 60 M�

feedback 2× 60 M�

Figure 7.11: Initial almost loss-less expansion before the edge of the initial cavity is reached. Lines
show the cumulative feedback energy, symbols indicate the energy increase in the simulation. The
time at which the feedback energy efficiency drops rapidly, shows that the edge of the initial
cavity is reached. Comparing the turn-off times of models that differ in the amount of feedback
or in the density of the dilute medium, confirms that the wind-blown bubble expands with r(t) ∝
ρ
−1/5
c E1/5t3/5. The duration of this phase impacts the feedback energy efficiency and can be seen

as a (small) offset at later times.

2r

flux

cs

ρ∗, p∗

ρ1, p0 ρ2, p0

Ṁ

10 pc 0 pc

(a) Maximal outflow.

p∗, ρ∗ pchimney, ρchimney p4, ρ4

(b) Isentropic flow through a “chimney”.

Figure 7.12: Sketch for the assessment of the critical “chimney” radius. The maximal flux in
the “chimney” is set by the sound speed, the density and the cross section. For technical reasons
(less artifacts) it can be helpful to include a pre-existing cavity which is slightly larger than the
feedback region to ensure that also cells partially inside the feedback region lie fully inside the
dilute medium.

140 7. 3D: Porosity and depth of embedding

10−26

10−24

10−22

0 10 20
100

101

102

103

104

D
en

si
ty

(ρ
)[

g
cm
−

3
]

Sp
ee

d
of

so
un

d
(c
s
)[

km
s−

1
]

Distance from the star [pc]
ρ:

∆d = 1.1 pc ∆d = 1.9 pc ∆d = 3.5 pc

(a) 0.1 Myr

10−28

10−26

10−24

10−22

0 10 20
100

101

102

103

104

D
en

si
ty

(ρ
)[

g
cm
−

3
]

Sp
ee

d
of

so
un

d
(c

s)
[k

m
s−

1
]

Distance from the star [pc]
cs:

∆d = 1.1 pc ∆d = 1.9 pc ∆d = 3.5 pc

(b) 0.2 Myr

Figure 7.13: Speed of sound (lines) and density (symbols) in the “chimney”. This is a cut along
the x-axis. The dashes indicate the position of the feedback region center (0 pc) and the cloud edge
(10 pc). All “chimneys” have a length of 10 pc, but they differ in diameter. It can be seen that
the flows in the two narrower “chimneys” (1.1 and 1.9 pc initial width) show a density maximum
lagging behind the density maximum in the “chimney” with 3.5 pc initial width.

0.00

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

E
k
in

/c
um

ul
at

iv
e

fe
ed

ba
ck

en
er

gy

Time [Myr]

∆x =∞, 2× 60 M�
∆x =∞

∆x = 20 pc, d = 1.9 pc
∆x = 10 pc, d = 1.1 pc
∆x = 10 pc, d = 1.9 pc
∆x = 10 pc, d = 3.5 pc

Ekin, total
Ekin, T < 104 K
Ekin, T < 103 K

Figure 7.14: Retained kinetic energy in the cloud region compared to the stellar feedback. In
contrast to Fig. 7.7(a) this plot shows the energy uptake in the region where the dense cloud was
located in the initial conditions.

7.6 Homogeneous semi-infinite cloud with “chimney” 141

(a) Initial diameter: 3.5 pc (b) Initial diameter: 1.1 pc

Figure 7.15: The plots show the minimal cross section along the “chimney”: they display averaged
density (in g cm−3) as seen from the star looking along the “chimney” axis. We stop integrating
∼ 15 pc outside the cloud’s surface to exclude the receding shell. The minimal cross section
areas are ∼ 25 pc2 in both setups. The pixel size in the plots corresponds to the pixel size in the
simulations.

the propagation speed in the “chimney”. The flow will work towards lowering the density in the
overpressured cavity in the cloud. As a lower limit, we can calculate the minimal “chimney”
diameter that is necessary to remove all the newly inserted stellar ejecta Ṁ . As can be seen
from Fig. 7.12(a), the minimal “chimney” diameter to remove all newly injected stellar yields is
Acrit = Ṁ/cs,chimney/ρchimney. In Fig. 7.12(a) the maximal mass flow rate out of the cavity is
visualized with a cylinder. The length of this cylinder is set by the sound speed in the “chimney”.
The colors show the initial density distribution. At the start, the whole computational box is in
pressure equilibrium at pressure p0. The cold cloud has a density (ρ1) of 100 particles per cubic
centimeter corresponding to a temperature of about 100 K and the surroundings have a density (ρ2)
of one particle per cubic centimeter. Stellar feedback will enhance the pressure (p∗) and the gas
flow resulting from this will lower the density (ρ∗) in the feedback region. To find the critical cross
section Acrit of the “chimney”, we sketch the pressure and density distribution in the problem at a
later time of the evolution in Fig. 7.12(b). For a setup like this, we expect an isentropic flow6 from
the feedback region (p∗, ρ∗) through a “chimney” (pchimney, ρchimney) with a cross section A into a
region that sweeps up ambient medium:

ρ∗
ρchimney

=

(
1 +

γ − 1

2
M2

)− 1
γ−1

isentropic flow. (7.1)

The simulations indeed find an isentropic flow with constant pρ−γ in the “chimney” and in the free
flowing zone downstream. The sonic point is reached near the downstream end of the “chimney”,

6The equations for an isentropic flow can be found e.g. at http://www.grc.nasa.gov/WWW/k-
12/airplane/isentrop.html

142 7. 3D: Porosity and depth of embedding

which is also where we find the smallest cross section. The “chimney” cross section decreases
downstream, since the shock wave reaches this region later and in the mean time the pressure al-
ready had time to act on other parts of the “chimney” surface. If the cross section of the “chimney”
is below the critical value (A < Acrit) for free flow, we observe a choked flow. In this case, the flux
through the “chimney” is no longer influenced by the downstream pressure (p4) if it is lower than
(2
γ+1

)γ/(γ−1)pchimney. For an adiabatic exponent of γ = 5
3
, this is 0.487 pchimney. In this case – and

if the bubble would not change its volume by expanding into the cold cloud – the pressure in the
bubble would rise until the “chimney” cross section gets large enough that no choked flow occurs
any more. In reality, we see a superposition of these two effects, leading to delayed pressure loss.
Fig. 7.13 shows the profiles of the density in the “chimney” (ρchimney ∼ 8 × 10−27 g cm−3) and
the speed of sound (cs,chimney ∼ 2× 108 cm s−1) 0.1 Myr and 0.2 Myr after the onset of the wind.
The mass loss rate is ∼ 2 × 10−6 M� per year or 1.26 × 1020 g s−1. This leads to a lower limit
of Acrit ∼ 1.26

2×8
× 1020+27−8 ∼ 8.3 pc2 or ∆dcrit ∼ 2.9 pc. A comparison of the time evolution

of models with different “chimney” cross sections shows a faster pressure drop in the part of the
wind-blown bubble that is inside the cloud as soon as this critical cross section is passed.
The lower limit for the critical “chimney” cross section Acrit can also be found from the conditions
inside the feedback region via the isentropic flow:

cs,chimney

cs,∗
=

(
ρ∗

ρchimney

) 1−γ
2

(Eq. 4.55 or 4.2)

cs,chimney

cs,∗

M=1
=

(
γ + 1

2

)− 1
2

(from Eq. 4.55 and 7.1) (7.2)

Ṁ < Acs,chimneyρchimney

Ṁ < Acs,∗ρ∗

(
γ + 1

2

)− 1
2

+ 1
γ−1

with cs =

√
γ
p

ρ

Ṁ < A
√
γp∗ρ∗

(
γ + 1

2

)− 1
2

3−γ
γ−1 γ=5/3

= 0.97A
√
p∗ρ∗ (7.3)

The initial values are p∗ = 1.38×10−12 g cm−1 s2, ρ∗ = 1.66×10−24 g cm−3 and Ṁ = 1.26×1020

g s−1. This leads to Acrit = Ṁ
0.97
√
p∗ρ∗
∼ 8.6 × 1037 cm2 = 9 pc2 or ∆dcrit ∼ 3 pc. This is larger

than two of the three tested cross sections. Our test runs used7 ∆d = {3.5, 1.9, 1.1} pc. Due to the
overpressure of the hot wind gas, the diameter of “chimney” grows with time. After 0.4 Myr e.g.
the “chimney” with an initial diameter of 1.1 pc already grew by a factor 5 in diameter.

7.6.1 The “chimney” width
Since cold gas is found in the swept-up cloud gas as well as in the shell of swept-up ambient
medium, we also evaluated the kinetic energy at the initial location of the cold cloud (Fig. 7.14).
This way we can monitor how much energy is found in the (remainders) of the cloud. This estimate
is useful, since we need the energy inside the cloud to drive turbulence there.
We see that the kinetic feedback energy efficiency in the cloud material below 103 K stops rising
at 0.2 Myr if the initial “chimney” width was 3.5 pc whereas the model with an initial width of

7The plan was to use ∆d = {1, 0.5, 0.25} × 1019 cm, resp. {3.2, 1.6, 0.8} pc, but the IC routine added one cell at
each side of the region.

7.7 Convergence 143

1.1 pc needs twice as long to reach this phase. Fig. 7.15 shows that this evolution phase in the two
setups with different initial “chimney” width are reached when comparable cross section areas are
observed: In both setups the cross section at this time is roughly 25 pc2.
The models in this sensitivity analysis do not have pre-existing cavities. This leads to a gas phase
with 103 ≤ T < 104 created by the part of the feedback region that does not overlap with the
initial “chimney” zone. The peak of the kinetic energy in such gas with 103 ≤ T < 104 inside the
cloud zone, is reached at break-out at ∼ 0.1 Myr for the model with ∆d = 3.5 pc. The model with
∆d = 1.9 pc reaches this phase at 0.2 Myr, when the cross section has increased to 11.14 pc2 from
7.3 pc2 at 0.15 Myr. And finally, the model with ∆d = 1.1 pc reaches this phase after 0.25 Myr at
a cross section of 9.7 pc2. Again we find a similar evolution phase at compareable cross sections.
To summarize, Fig. 7.7 shows a higher total feedback energy efficiency for wider “chimneys”. We
also find a higher total kinetic feedback energy efficiency in the simulations with wider “chim-
neys”. This can be understood, since – due to the aforementioned choked flow problem – larger
“chimneys” can transport more energy out of the cloud and build up larger not cooling pressure
reservoirs. However, for the same reason, the kinetic feedback energy efficiency in the cold cloud
material is lower for wider “chimneys”, as can be seen in Fig. 7.14.

7.6.2 The “chimney” length

The “chimney” length influences the amount of energy, which is deposited in the cloud, via the
break-out time. If we double the length of the 10 × 1.9 × 1.9 pc “chimney”, the first snap-shot
showing break-out is found at 0.165 Myr instead of 0.1 Myr. I.e. in Fig. 7.7 at 0.1 Myr and 0.15 Myr
the shock front of the 10×1.9×1.9 pc model has already passed the end of the “chimney”, whereas
it is still stuck therein in the 20× 1.9× 1.9 pc model. We see in Fig. 7.7 and 7.14, that during this
time the longer “chimney” (open squares) leads to more retained energy inside the cloud and less
(i.e. none) outside than the shorter “chimney” (filled squares), since with the longer “chimney” the
stellar yields have not yet found their way out of the cloud.

7.7 Convergence
In the same way as discussed in the chapter on our 1D work, we also checked the influence of
free parameters in our 3D models by varying them one by one. Among the parameters tested
were the feedback model (e.g. stars of different masses, groups of stars), the implementation of
the feedback (kinetic or thermal energy input, feedback region size, treatment of cooling in the
feedback region, pre-existing cavities, treatment of cells partly inside the feedback region), the
cooling model, the spatial and temporal resolution and the numerical method (Riemann solver
type, flux limiting scheme, number precision).
The conclusions from these tests are similar to what we see in 1D: Whereas the results are quite
robust against changes in temporal resolution and the choice of the cooling function, they show
a dependence on spatial resolution and the diffusivity of the Riemann solver. Interestingly, the
number precision only has a minor effect on the feedback energy efficiency (open symbols in
Fig. 7.16).
Our interpretation of these results is that the treatment of the CD is very important for the feedback
energy efficiency. This can be seen e.g. in Fig. 7.16 (crosses), where the acoustic Riemann solver,
which ignores the CD, finds a lower feedback energy efficiency than the HLLC Godunov scheme.

144 7. 3D: Porosity and depth of embedding

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.0 0.1 0.2 0.3 0.4 0.5 0.6

E
k
in

/c
um

ul
at

iv
e

fe
ed

ba
ck

en
er

gy

Time [Myr]

Convergence of the feedback energy efficiency

Acoustic, double, ∆x = 0.269 pc

HLLC, double, ∆x = 0.269 pc

No cavity, HLLC, double, ∆x = 0.269 pc

No cavity, HLLC, single, ∆x = 0.0.135 pc
No cavity, HLLC, double, ∆x = 0.0.135 pc

Figure 7.16: Variants of the 10×1.9×1.9 pc “chimney” model. A comparison of models with pre-
existing cavities (crosses) and models without, shows that the influence of the pre-existing cavity
is overcome at ∼ 0.55 Myr. In this regime, increasing the spatial resolution lowers the feedback
energy efficiency. Changing the number precision did not have a significant effect on the feedback
energy efficiency. A more diffusive Riemann solver lowered the feedback energy efficiency.

The explanation for this behavior is that this change does not alter the width of the swept-up shell
or the maximum density significantly. However, not treating the CD accurately results in more
mixing across the CD. This mixing of “too-cold-to-cool” swept up material and “too-dilute-to-
cool” wind material in turn leads to enhanced radiative losses near the CD.
Since we do not reach the resolutions of our 1D work with the 3D models yet, the convergence
behavior of the feedback energy efficiency between the studies differs. Basically, in 1D the feed-
back energy efficiency rises with increasing resolution since the mixing across the CD, which is
the most important energy loss channel, decreases with increasing resolution. At low resolution,
the CD is smeared out and energy losses due to mixing across the CD become less important than
the cooling at the peak density, which rises with density squared. In this regime higher resolution
leads to higher peak densities and thus lower feedback energy efficiency (Fig. 7.16).
As a consequence, simulations find a minimal efficiency, if the resolution starts to be high enough
to produce a strongly cooling cell at the CD at every time step. If the resolution is lower than
this, strongly cooling cells at the CD are created less frequently. At higher resolutions (than in the
simulation with minimal feedback energy efficiency), the zone with the high energy losses is found
near the CD and gets smaller with increasing resolution. Thus, the feedback energy efficiency rises.

7.8 Conclusions from the 3D “chimney” models
Our 3D simulations show that ≥ 90% of the stellar feedback energy leave the cloud immediately
via radiative losses. Convergence tests (Sect. 7.7) at resolutions near 0.13 pc indicate that sim-
ulations with this resolution are still in a regime where the feedback energy efficiency decreases
with increasing resolution. As discussed in the last chapter, we argue that at higher resolution the

7.8 Conclusions from the 3D “chimney” models 145

efficiency of mixing across the CD strongly influences the feedback energy efficiency. In our 1D
work we further argued that one needs to identify the most efficient mechanism for mixing across
the CD. With this information, one can extract the feedback energy efficiency from a simulation
with mixing of similar strength caused by our numerical methods.
Consequently – as the 3D simulations do not reach the resolutions necessary for this – the predic-
tive power of our present 3D data lies in a comparison of models which differ in only one aspect,
i.e. the existence, width and length of a “chimney”, which can be understood as a proxy for the
cloud’s density structure.
If the star forming region is connected to the ambient medium via a “chimney”, obviously the
depth of embedding (in this case parametrized via the “chimney” length) will change the break-
out-time. The stellar feedback creates a shock traveling through the “chimney”. When this shock
wave reaches the ambient medium, it depends on the cross section of the “chimney”, how fast
the pressure can escape from the cloud. If the speed of sound at the smallest cross section of the
“chimney” limits the flow, we call this a choked flow. In this case, the downstream pressure in
the part of the bubble that is outside the cloud cannot influence the pressure in the cavity and the
“chimney”. Therefore, during a choked flow more energy can be deposited in the cloud, than in
the presence of a wide enough “chimney” to establish a homogeneous pressure in all parts of the
bubble filled with stellar feedback. In our simulations we find indeed an isentropic flow in the
“chimney” with a sonic point near the smallest cross section.
To summarize, we expect higher kinetic feedback energy efficiencies in the cloud material and
lower total feedback energy efficiencies for deeper embedded stars. The deeper the stars are em-
bedded, the longer the pressure is confined in the cloud, which leads to more acceleration of the
cold swept-up cloud gas. Less embedded stars manage to channel more energy to the ambient
medium. Radiative losses peak in the bubble shell. Thus, less embedded stars can build up pres-
sure reservoirs outside the cloud. Also a higher porosity leads to a faster loss of pressure to the
bubble parts outside the cloud. Fig. 7.7 and Fig. 7.14 agree with the expected trends, how the
length and the width of the “chimney” are expected to influence the amount of kinetic energy that
is deposited in the cloud material.
For our re-simulations we will start with pre-existing cavities one cell larger than the feedback
region, since otherwise the “chimney” will lower the density in a part of the feedback region (up
to 50%). Starting with the same initial density in all feedback regions makes interpreting the
results in the early phase easier. The lower initial density in this region also reduces the artificial
prolongation of the free expansion phase, since the initial mass in the feedback region will end
up “on the wrong side of the CD”. We will use the cooling-heating function of (Ntormousi et al.,
2011), since it provides us with two thermal phases in pressure equilibrium and contains more
physics than setting up artificial equilibria. For the dense gas in the IC we will use the same
density as in the 1D models and the temperature corresponding to the cooling-heating equilibrium
for this density. For the warm component, we will use the same pressure. Therefore, the density
follows from the cooling-heating equilibrium. Finally, we will extend our grid to test smaller
“chimney” cross sections and take care that the IC routine does not add a layer of cells around the
“chimney”. In our set of models, we had the fully embedded stars as limiting cases. The other
extreme case, a feedback region at the cloud’s surface, will be part of our future work. Acutally a
model of this type will be shown as reference model in the next chapter. It has, however, a lower
resolution (∼ 0.5 pc) than the models presented in this chapter. Anyway, it is interesting to note
that choked flows also occur in the models presented in the next chapter. They are visible via the
slight overpressure in the region inside the dense cloud and the sonic point near the cloud’s surface.

146 7. 3D: Porosity and depth of embedding

Chapter 8

3D: Feedback in non-homogeneous clouds

The aim of this chapter is to motivate future work on the 26Al distribution. The model presented
here is a test run1 for future, better resolved models of this kind. It places stellar feedback in the
densest part of a GMC with non-homogeneous density. The IC for this cloud are taken from large
scale simulations of Dobbs et al. (2011). We will use this model to explain, how we create artifi-
cial 26Al observations from our simulations, since it illustrates the spread of 26Al in less artificial
environments than presented in Sect. 6 and 7. In the reference models, which use a cloud with
a homogeneous density of 1.66 × 10−22 g cm−3, a radius of 25.1 pc and a temperature of 100 K,
the feedback region is placed in the cloud center or 1 pc below the surface. The ambient medium
is in pressure equilibrium with the cloud and has a temperature of ∼ 10 000 K. In contrast to the
infinite clouds in Sect. 6 and the semi-infinite clouds in Sect. 7, the clouds discussed here have a
finite size. The properties of both cloud models can be found in Tab. 2.1. Their size and mass are
comparable to the properties of the Orion A and B molecular clouds. The initial column densities
for both models are shown in Fig. 8.1.
In contrast to Sect. 6 and 7, we will now use the stellar feedback from the population synthesis of
Voss et al. (2009) instead of a single star. The motivation for this is that we had observed that this
kind of feedback has a quite disruptive effect on homogeneous clouds. We were thus interested, if
non-homogeneous clouds were able to dump the feedback energy in their surroundings.

8.1 Simulation Setup

For the simulations shown in this chapter, we used the RAMSES code (Teyssier, 2002) with the
modifications discussed in Sect. 5.2.3 and 7. The standard code settings for RAMSES include
an adiabatic exponent of γ = 5

3
, a Courant factor of 0.5 and outflow (zero gradient) boundary

conditions. In contrast to Sect. 7, we use the the MinMod slope limiter and the acoustic Riemann
solver for these simulations, since this is the most robust method. The cubic computational box
has a length of 68.9 pc. The resolution of the 3D simulations was 128×128×128 cells or 0.54 pc.
The radius of the feedback region is 2.43 pc (or ∼ 4.5 cells).

1The main benefit of these tests was an optimization of the output of the simulation. Since the snapshots of our
simulations are quite memory intensive, we had to test which quantities we want to analyze on the fly and how often
we need to store a snapshot. Moreover we tested different energy injection techniques or feedback region radii.

148 8. 3D: Feedback in non-homogeneous clouds

Figure 8.1: Initial conditions. The figures show logarithmic average densities in the computational
box in g cm−3 . The properties of the homogeneous spherical cloud (left) and the SPH cloud taken
from (Dobbs et al., 2011) can also be found in Tab. 2.1.

8.2 Results

The feedback energy efficiency of the population synthesis feedback based on Voss et al. (2009)
in homogeneous and realistic clouds (Fig. 8.2) is in agreement with our findings in Sect. 6 and 7,
where we used feedback of a single, massive star. As in Fig. 7.7(a), also in Fig. 8.2 > 90% of
the stellar feedback was immediately radiated away. After break-out of the bubble from the GMC
the radiative losses decreased, since radiative losses peak in the compressed shell. Interestingly,
as in the break-out at the end of a “chimney”, also the model in which the feedback region was
placed only 1 pc below the cloud’s surface seems to show a flow inside the superbubble that is
limited by the speed of sound. Since the resulting superbubble shape has similarities with the
shape observed in Sect. 7, we will now also denote the point at which the superbubble diameter
suddenly changes as “end of the “chimney””. In Fig. 8.3, which shows the simulation after 2 Myr,
we see the sonic point near the end of the “chimney” and observe a slight overpressure in the part
of the superbubble that is bounded by the GMC material. As in Sect. 7 also here the kinetic energy
rises after break-out from the GMC.

8.3 Artificial observations of 26Al

The simulations also follow the radioactive isotope 26Al (see Sect. 2.4.2, 2.7.1 and 5.2.4) to trace
mixing processes of stellar ejecta with the ISM. Considering 26Al in the numerical simulations
should explore interpretational views for the measurements of 26Al emission from the Orion-
Eridanus region, since the simulations predict whether 26Al should be detected predominantly in
the narrow shell or in the inside of the superbubble.
In our present set of models the 26Al distribution peaks near the cavity walls (Fig. 7.9(b), 8.3
and 8.6. We now briefly present the tools we developed to produce artificial observations of the
26Al velocity in our simulations.

8.3 Artificial observations of 26Al 149

Figure 8.2: Feedback energy efficiency. These graphs show the effect of the density structure of the
surrounding medium onto the fraction of the feedback energy from the Voss et al. (2009) model that
can be converted into kinetic energy of the ISM. Left: homogeneous cloud with different distances
∆x between the surface of the feedback region and cloud surface. The feedback energy efficiency
is only followed until the bubble breaks out of the computational box. Right: structured cloud. The
OB association is assumed to move with the same velocity as the GMC. Since the cooling–heating
function in the SPH simulation differs from the RAMSES cooling–heating function, the behavior
of a cloud without stellar feedback is subtracted (red points). As a comparison the green points
show the same data with only the initial kinetic energy of the cloud subtracted.

In Fig. 8.3 we see a 3D simulation of a homogeneous cloud with an off-center OB association. This
snapshot will be used as an example to discuss the method. The observer is placed at (0,0,+400 pc)
with respect to the center of the feedback region and we place a “target point” in the center of the
feedback region. Vedrenne et al. (2003) report an angular resolution of 2.5deg for SPI (Spectrom-
eter on INTEGRAL). They mention that sources can be localised better, depending on the source
intensity. R. Diehl (private comm.) estimates an angular resolution of 2deg for the Orion-Eridanus
region. Thus, to take the resolution of the instrument into account, we select all cells in our sim-
ulation that are within the viewing angle of one degree (i.e. angle target – observer – cell center).
This way, we get all cells within a cone with an opening angle of 2 degrees. If we decide that a
certain column density leads to optically thick gas, we can further limit the number of cells taken
into account. However, extinction is not a problem for the 26Al observations, since the absorption
depth (decrease of the signal to 1/e) for 26Al is reached at a column density of the order of a few
grams per cm2 (page 12 Schönfelder, 2001; Diehl, 2014, report an estimate of the order of 3 g cm−2

found from balloon missions). For material of solar metallicity and an average density of the order
of 100 particles cm−3 a column density of 1 g cm−2 is reached after ∼ 2 kpc, which is much larger
than the assumed distance to the OES and the spatial extent of our whole simulation. Thus, even if
our whole computational box would be filled with GMC material, γ-radiation from 26Al could still
penetrate it.
For the selected cells, we store the velocity and – as a quantity mimicking the intensity – ρ/d2,
where d is the distance of the cell from the observer. We then subdivide the range of 0 to 100
km s−1 into 1 km s−1 bins and sum ρ/d2 in these bins (Fig. 8.4).
The natural line width of the γ-line is negligible (26Mg2+ has a half life of 476 fs leading to a line

150 8. 3D: Feedback in non-homogeneous clouds

Figure 8.3: This figure shows xy cuts through the simulation data cube used for the artificial
observations of 26Al in a simulation with a homogeneous cloud. In the bottom row the intensity of
the 26Al in the sight angle of the observer and the velocities in this viewing angle are shown.

8.3 Artificial observations of 26Al 151

0

2e-36

4e-36

-40 -20 0 20 40

ρ
/r

2
[g

cm
−

3
pc
−

2
]

vr[km/s]

Time = 2 [Myr]

0

5e-35

109.06 109.08 109.1 109.12 109.14

In
te

ns
ity

λ [fm]

Time = 2 [Myr]

dl = 0.001 fm
dl = 0.001 fm, sigma

0

2e-35

4e-35

6e-35

8e-35

1.8088 1.8090 1.8092

In
te

ns
ity

Energy [MeV]

Time = 2 [Myr]

dl = 0.001 fm
dl = 0.001 fm, sigma

0

6e-34

1.2e-33

1.8 1.805 1.81 1.815

In
te

ns
ity

Energy [MeV]

Time = 2 [Myr]

FWHM = 3 keV

Figure 8.4: Work flow of an artificial observation (1) integrated intensity in radial velocity bins,
(2) line without instrument profile (fm), (3) line without instrument profile (MeV), (4) line with
instrument profile (MeV)

width of 0.7 meV).Thus, we can start with a single energy. We then calculate the Doppler shift
∆λ of the 1809.63 keV line (vgas

c
= ∆λ

λ0
with λ0 = ~c

1.80963
MeV = 109 fm and ~c = 197.33 MeV

fm) and take the instrumental profile (R. Diehl (private comm.) assumes a Gaussian with 3 keV
FWHM at 1.80963 MeV, Vedrenne et al. (2003); Roques et al. (2003) report an energy resolution of
2.5 keV at 1.3 MeV, which degrades with time and which gets largere for higher energies. Roques
et al. (2003) find a mean energy resolution of 2.9 keV at 1764 keV.) into account. For the latter we
use a discretized Gaussian of given FWHM and center it in the energy bin. We then multiply our
proxy for the intensity with the Gaussian and sum over the Gaussians for all bins.
As a result the initial skewness of the profile in Fig. 8.4 is no longer seen, since it is smeared out. To
conclude, there are several reasons why this result should not be interpreted as a negative prognosis
for the observability of velocities in 26Al : First of all, we used a very badly resolved simulation
of a quite artificial setup for these tests. Also we did not optimize the time of the snapshot or the
viewing angle to get a maximal effect. Fig. 8.5 shows that after 5 Myr a redshifted component
becomes visible in 26Al .

152 8. 3D: Feedback in non-homogeneous clouds

0

6e-34

1.2e-33

1.8 1.805 1.81 1.815

In
te

ns
ity

Energy [MeV]

Time = 2 [Myr]

FWHM = 3 keV

0

8e-34

1.6e-33

1.8 1.805 1.81 1.815

In
te

ns
ity

Energy [MeV]

Time = 2 [Myr]

FWHM = 3 keV

0

1e-32

2e-32

3e-32

1.8 1.805 1.81 1.815

In
te

ns
ity

Energy [MeV]

Time = 2 [Myr]

FWHM = 3 keV

0

1e-32

2e-32

1.8 1.805 1.81 1.815

In
te

ns
ity

Energy [MeV]

Time = 2 [Myr]

FWHM = 3 keV

Figure 8.5: Line with instrument profile (MeV). The viewing angle is 0 degrees in the left plots
and 45 degrees in the right plots. The snapshots in the top row were taken after 2 Myr. In the
bottom row snapshots after 5 Myr are displayed.

8.3 Artificial observations of 26Al 153

Figure 8.6: These plots show a cut through the SPH cloud, 5 Myr after the stellar feedback started.
We see the sonic point at the smallest “chimney” cross section. This leads to an overpressure in
the cavity. Also some the flux of 26Al out of the cavity is limited by the speed of sound. The online
material contains a movie of artificial observations of this model.

154 8. 3D: Feedback in non-homogeneous clouds

Chapter 9

Discussion and Conclusions

The motivation for this work were the puzzling 26Al data from the Orion-Eridanus region. The fa-
vored de-projection of the observational evidence back in 2008 was based on the model suggested
by Burrows et al. (1993) for the Orion-Eridanus Superbubble. A version, which was slightly
adapted to new observational evidence, is shown in Fig. 2.5. It was unclear, why a banana-shaped
superbubble like the one suggested for the OES would form and why 26Al is only observed in a
part of the region with X-ray emission (Fig. 2.6 and 2.7). Actually, numerical studies like the
simulations of de Avillez and Breitschwerdt (2005) show, that superbubbles can come in a num-
ber of peculiar shapes. In non-quiescent surroundings the bubble shape follows the density and
pressure gradients the superbubble shell encounters. However, the spread of 26Al was a real puzzle
since the gas velocities inside the superbubbles should be high enough to spread 26Al allover the
superbubble. The question was, whether the shape of the OES can be a real quirk of nature. In the
mean time, the region has been successfully modeled by Pon et al. (2014a), using models based
on Kompaneets (1960) assuming a stratified, but quiescent ambient medium. However, it is still
debated, if a single bubble model or a two bubble model is to be preferred for the OES.
It turned out, that there is no simple explanation, how the assumed peculiar shape of the OES
follows naturally from the stellar feedback of the Orion OB I associations in a quiescent ambient
medium. Our simulations used stellar feedback based on population synthesis models, which Voss
et al. (2010) tuned to the Orion OB I associations. These OB associations are expected to have
formed one after the other with a few million years delay and are expected to have participated in
forming the OES. The Voss et al. (2010) feedback model, based on observed stars plus an estimate
of the exploded stars via the IMF, turned out to be so disruptive that molecular clouds of sizes
as they are found in GMC surveys (see Sect. 2.5) were quite efficiently destroyed by the first OB
association already. We were thus faced with the problem, that we either need extremely massive
GMCs or an efficient energy sink for the stellar feedback. Otherwise the problem can only be
solved with four generations of GMCs: Individual, newly formed GMCs for each of the four OB
associations.
We thus decided to take a step back and to start from simple, homogeneous toy models and gradu-
ally add complexity. Since our GMCs had a hard time to survive the stellar feedback, we decided
that we had to understand the feedback energy efficiency first. Since we need cold, dense GMC
gas for the later episodes of star formation, we also checked, how the stellar feedback affects
the mass fractions in the ISM. This is interesting, since GMC lifetimes are debated. Whereas
the detection of inter-arm GMCs (e.g. Scoville et al., 1979; Koda et al., 2009, inter-arm crossing
times ∼ 100 Myr) and observations of extragalactic GMCs seem to point to GMC lifetimes of

156 9. Discussion and Conclusions

20 − 30 Myr (Kawamura et al., 2009) of which 7 Myr are after the onset of stellar evolution, the
lifetimes of local GMCs is expected to be much shorter (e.g. Elmegreen, 2000b; Hartmann et al.,
2001, expect immediate star formation and GMC lifetimes < 10 Myr). In comparison, stellar
feedback from the Orion OB I associations is assumed to be ongoing since 8− 12 Myr (Voss et al.,
2010). Our simulations favor the scenario of transient GMCs that are reshuffled by stellar feedback
and form again in zones of colliding flows (for recent work on the formation of molecular gas via
converging flows see Micic et al., 2013; Ntormousi et al., 2011, and references therein).
One of the conclusions from our spherically symmetric models is, that stellar feedback indeed
reshuffles the cold gas. In our models the total thermal energy when the shock velocity has decel-
erated to the ambient sound speed towards the end of the simulations is lower than in the initial
conditions. The net-effect of the stellar feedback is acceleration and compression of the surround-
ing cloud material. The latter leads to radiative losses.
The other conclusions from the spherically symmetric models are shown in Fig. 6.9 and 6.10: We
identify mixing processes across the contact discontinuity as an efficient energy sink. In numerical
simulations, we can choose a Riemann solver, which treats the contact discontinuity accurately.
But, in the end, the spatial resolution will always lead to mixing of the ambient medium and the
stellar ejecta. If the simulation does not take any physical process that leads to stronger mixing than
the mixing due to the grid cell size into account, the spatial resolution governs the energy loss at
the contact discontinuity. Or to put it the other way around, since we only have a single gas phase
per cell, the resolution of our simulations can be interpreted as a proxy for the length scale of the
most efficient mixing process. Assuming a mixing length now enables us to find a feedback energy
efficiency from Tab. 6.2, Fig. 6.9 or Fig. 6.10. The latter shows the evolution of the feedback energy
efficiency as a function of the peak velocity in the swept-up shell. The simulations end when it
falls below the ambient sound speed. Thus, if one assumes that the dissipation of the kinetic energy
of the shell already happens at higher shell velocities than the ambient sound speed, Fig. 6.10 can
be used to find the feedback energy efficiency. If we assume that turbulent mixing acts on scales
of 0.004 pc, (which is smaller than the assumed eddy sizes in Gounelle et al., 2009) we find a
feedback energy efficiency of roughly two percent. This is less than the often-used value of 10%
reported by Thornton et al. (1998, i.e. 1050 erg). However, due to the stellar wind, in our case the
total energy input is 3.34 × 1051 erg instead of 1051 erg, which brings the net amount of retained
kinetic energy again closer the often-used value of 1050 erg (Thornton et al., 1998).
In our 3D models we explore a different possibility to make the GMCs exist longer: Since the tur-
bulent structure of the ISM produces GMCs that have a sponge like self-similar density structure,
we connect the feedback region inside the GMC with a “chimney” to the ambient medium. We
show, that this lowers the energy deposition in the GMC (Fig. 7.7 and 7.14). But, since the sound
speed limits the flow out of the GMC, the parts of the superbubble inside the cloud can have a
higher pressure than the rest of the bubble. In our simulations we see an isentropic flow through
the “chimney” that reaches the sonic point at smallest cross section of the “chimney”, outside the
dense cloud the flow of ejecta continues like an over-expanded flow until it hits the bubble wall
and is turned around, leading to a mushroom like bubble shape.
We also placed the stellar feedback in a GMC created in the large scale SPH simulation of Dobbs
et al. (2011). As expected, the asymmetries in the initial conditions also produced a peculiar
shaped bubble. The first simulations tell us, that 26Al is found near the superbubble’s shell in all
our models. We did not yet observe bubbles partly filled with 26Al in our grid of simulations. One
could thus interpret our results as an indication that there might be some kind of shell between the
parts of the OES containing 26Al and the parts which do not. However, we will need a larger set

157

of models to find fully conclusive evidence for this. Our main reservation in this respect is that
averaging in the population synthesis feedback according to Voss et al. (2010), which was used for
the models with inhomogeneous SPH clouds, smears out distinct SN events. In our future work
we will thus also test models for individual OB associations instead of “averaged OB association”
from population synthesis.
To conclude, we found a way to relate the feedback energy efficiency of our spherically symmetric
models to a length scale of mixing across the contact discontinuity. To tackle asymmetries in the
GMCs, we need to add more dimensions. Our present 3D models are on the edge of reaching
realistic estimates of mixing scales (e.g. Stasińska et al., 2007, estimate 1-0.1 pc, which would
be resolved in our models) and to be used to estimate feedback energy efficiencies. Moreover,
they are not yet customized for the OES. In our future work we plan improve on this and to test
turbulent clouds.

158 9. Discussion and Conclusions

Index

1D, 23, 40, 42, 46, 55, 75, 87–89, 93, 99–125,
128, 129, 132, 143–145

2D, 6, 40, 64, 65, 69, 71, 75–77, 89, 93, 310–
312

3D, 41, 64, 65, 70, 75–78, 85, 89, 127–151, 156,
157, 311–316

adiabatic exponent, 43, 61, 62, 72, 85, 141, 142,
147

adiabatic phase, 65, 73, 85, 100, 107, 115, 118,
124

26Al, xvii, 2, 5, 12–14, 16, 17, 23, 24, 26, 31,
33, 39, 63, 87, 92, 94–96, 138, 147–
151, 153, 155, 156, 261, 316

AMR, 39, 41, 51–52, 63, 64, 69, 70, 88, 90, 93–
96, 127, 134

Arc A, 13, 14, 17–19
Arc B, 13, 14, 17–19
ATHENA, 87, 89

boundary conditions, 40, 41, 64, 70, 72, 90, 91,
147

CD, 5, 6, 8, 9, 45, 46, 49, 56, 60–65, 67–69, 74,
75, 78, 85, 87, 88, 94, 101, 103, 107,
110, 115–125, 131, 143–145, 156, 157,
182

CDF, cumulative distribution function, 26, 33–
36

CFL, 42, 48, 64, 95, 119, 120, 147
characteristics, 42, 44–47, 56–58, 62
chemical enrichment, 3, 5
choked flow, 139, 140, 142, 143, 145
closure relation, 43
CNM, cold neutral medium, 4, 5, 19, 20, 97
conservation laws, 37, 40, 43–45, 48, 49, 51,

55, 56, 58, 59, 70, 74, 76–81, 85, 86,
89, 100, 105, 107, 109, 115, 116

conservative variable, 37, 40, 44, 45, 58, 64, 168
cooling

cooling function, 4, 10, 11, 87, 88, 91, 94,
97, 101, 102, 110, 111, 118, 122, 124,
128–133, 143

cooling rate, 4, 9, 11
cooling time, 11, 73, 82
cooling-heating equilibrium, 4, 5, 10, 11,

19, 94, 99, 101, 103, 108, 112, 115,
117, 127–129, 132

radiative losses, 5, 8, 10–11, 17, 40, 51, 52,
55, 62, 64, 65, 72–74, 85, 88, 89, 91,
92, 94, 95, 100, 101, 105, 107, 110,
112, 114–119, 122–124, 128, 137

cosmic matter cycle, 2, 3, 5
Courant-Friedrichs-Lewy condition, 42, 48, 64,

95, 119, 120, 147

EOS, 43, 44, 56, 59, 61, 62, 68, 70, 76, 77
Euler equations, 43–45, 56, 70, 78
Eulerian view, 39

60Fe, 26, 33, 63, 94, 261
feedback, stellar, 2, 3, 5, 9, 11, 13, 17, 21, 23–

35, 55, 79, 87–95, 97, 99, 100, 103,
104, 108, 110, 111, 114–116, 122–124,
127, 129, 135, 137, 139–141, 145, 147–
149, 153, 155–157

Field’s stability criterion, 4
finite differences, 40, 41, 48, 49, 60
finite element, 40
finite volumes, 40–42, 44, 48, 51
fluid approximation, 1, 6, 37–39, 43, 48, 56, 58,

59
FOE, 101

gas phase, 4–6, 8–11, 13, 16, 19, 20, 60, 62, 64,
87, 88, 91, 94, 97, 99, 102–104, 110,
116–119, 122, 124, 127–129, 132, 133,
143, 145, 156

Geneva grid of stellar evolution models, 23–31,
33–35, 91–93

160 INDEX

GMC, 3–5, 10, 12, 14, 16, 20–23, 97, 99, 101,
127, 128, 137, 147–149, 155–157

H I, 4, 12, 13, 15, 18–20, 43
H II, 1, 9, 12, 18
H2, 12, 18–21, 43
Hα, 12–14, 16–19
heating rate, 4
HIM, hot inter-cloud medium, 4, 16
HLLC solver, 47, 63, 64, 66–70, 73, 88, 89, 95,

121, 127, 143, 144
hyperbolic PDE, 43–45

ideal gas, 37, 43, 70, 77
IMF, initial mass function, 22, 23, 26, 32–36,

97, 155
initial conditions (IC), 39–41, 46, 60–62, 71, 73,

90, 91, 94, 99, 101, 128, 129, 132–134,
140, 142, 145, 148, 156

ISM, xvii, 1, 3–6, 9–13, 16–18, 20, 23, 37, 38,
40, 46, 49, 55, 73–75, 77–79, 82, 83,
87–89, 94, 95, 97, 99–101, 103, 104,
107, 110, 118, 119, 123, 124, 127, 128,
148, 149, 155, 156

Lagrangian view, 39, 77

mean free path, 6–9, 38, 91
MinMod flux limiting, 49–51, 63, 64, 66, 67,

69, 88, 127, 143, 147
molecular cloud, 1, 2, 4, 10, 13, 16, 19–21, 23,

49, 62, 95, 97, 99, 147, 155
MonCen flux limiting, 49–51, 63, 64, 66–70, 73,

88
Monte-Carlo, 23, 32, 90, 93, 97, 312

OB association, 1, 2, 14, 17–19, 22–23, 26, 31,
35, 36, 97, 110, 128, 149, 155–157

OES, Orion-Eridanus Superbubble, 2, 3, 12–20,
23, 97, 149, 155–157

Orion OB I associations, 2, 17–19, 22, 23, 155,
156

Orion-Eridanus region, xvii, 2–4, 12–20, 22, 148,
149, 155

passive scalar, 40, 53, 56, 63, 64, 68, 87–89, 94,
95

PLUTO, xvii, 7, 51, 73, 78, 87–92, 99–125, 183

population synthesis, 23, 25, 33, 92, 147, 148,
155, 157

porosity, 21, 127, 128, 135, 145
primitive variables, 37, 40, 44, 51

RAMSES, xvii, 47, 49, 51, 63, 64, 66, 73, 87–89,
92–95, 127–146, 215

Riemann invariant, 45, 56, 57, 61
Riemann problem, 39, 45–49, 55, 60
Riemann solver, 46, 47, 49, 51, 52, 63, 64, 66–

68, 87–89, 110, 120–121, 143, 144, 147,
156

Sedov-Taylor blast, 41, 55, 65–73, 77, 82, 89,
101, 104–107, 115, 181, 316

SN energy, 1FOE = 1051 erg, 23, 26, 27, 104,
105

SN, supernova, 1, 2, 4–6, 9, 11, 12, 22, 23, 26,
27, 32, 33, 35, 49, 64, 65, 73, 76, 88–
92, 99–108, 110–120, 122–124, 157

snowplow phase, 73, 75, 82–86, 115
Sod shock tube, 46, 47, 49, 55, 56, 58, 60–70,

73
stars

60 M�, 23, 32–36, 51, 78, 81–84, 90, 95,
99, 103, 110, 115, 116, 122, 123, 128,
129, 135, 138–140

massive, 1–5, 11–13, 16–18, 21–24, 26, 27,
31–36, 62, 73, 89, 91, 97, 99, 110, 112,
123, 127, 128, 148

O5, 128
stencil, 41, 42
Strömgren sphere, 73, 128, 129, 132, 134
superbubble, 2, 3, 5, 12–14, 16, 17, 19, 97, 100,

135, 148, 155, 156

thin shell approximation, 75–78, 86
time of maximal luminosity (t0), 100–102, 104–

107, 113, 115, 117, 118, 124
turbulence, xvii, 1–3, 5, 6, 9, 19–21, 39, 97, 100,

119, 123, 142, 156, 157
two-phase medium, 4–6, 8, 10, 11, 19, 129, 145

von Neumann stability analysis, 41–42

WIM, warm ionized medium, 4
wind theory, Castor 1975, 73–78, 81, 83, 107,

115, 127, 133, 134, 137, 182

INDEX 161

wind theory, Chevalier 1985, 78–82
wind, free streaming, 73, 74, 83, 90, 120–122,

134
wind, shocked, 73–76, 79, 118, 120, 121
wind-to-SN ratio, 23, 110, 123, 124
WNM, warm neutral medium, 4, 5, 19

162 INDEX

Glossary

AMR (adaptive mesh refinement) is a strategy to optimize the resolution and the computational
cost during a numerical simulation. If the refinement criteria are fulfilled (e.g. strong density
gradient), a cell is subdivided into 2ν cells, where ν is the number of dimensions in the
simulation. 39, 41, 51, 52, 63, 64, 88, 90, 94–96, 127, 134

CFL (Courant-Friedrichs-Lewy condition) maximal stable time-step-size in a hydrodynamical
simulation (Sect. 3.3) which ensures that gas cannot travel more than a cell length per time-
step. 42, 48, 64, 95, 119, 120

“chimney” toy model for dilute areas connecting a stellar wind bubble or SN remnant, located
inside a structured GMC, to the ambient medium. 127–129, 134, 135, 137–145, 148, 153,
156, 167

choked flow situation, in which the sound speed limits the flux through a bottleneck. 142, 143,
145, 167

contact discontinuity (CD) interface between two media with different density but no pressure
and velocity gradients across this surface. 5, 6, 8, 9, 17, 45, 46, 49, 56, 60–69, 74, 75, 78,
85, 87, 88, 94, 101, 103, 107, 110, 115–125, 131, 143–145, 156, 157

de-projection converts 2D observational data into a 3D model. 13, 155

downstream direction with respect to the flow. The other direction is called upstream. If we sit on
a fluid particle, we have already passed points upstream and will move on to points located
downstream. 44, 141, 142, 145

feedback energy energy input into the ISM via stellar winds and SN explosions. 2, 5, 10, 25, 26,
73, 76, 89, 92, 97, 101, 123, 137, 139, 144, 147, 149

feedback energy efficiency (ε) describes how much of the energy input via stellar winds and SN
explosions can be retained by the ISM (as kinetic energy of a shell). Without cooling: ε = 1.
2, 3, 5, 8, 10, 11, 21, 23, 49, 51, 62, 90, 94, 97, 99–101, 104, 106, 107, 110–113, 116,
118–125, 127–129, 132–135, 137, 139, 142–145, 148, 149, 155–157, 167

feedback region (also driver region) part of the computational box in which source terms for
stellar mass loss and stellar energy feedback are evaluated. 52, 72, 78–83, 89–94, 96, 101,
102, 104–106, 115, 117, 121, 122, 127–129, 131, 134, 137–143, 145, 147–149, 156, 168,
310–312, 316

164 Glossary

fluid element (also fluid particle) volume small compared to the box size but large with respect to
intermolecular distances. Macroscopic fluid properties like local density, local velocity are
defined over a fluid particle. 38, 39

FORTRAN derived data type an object that can group data of different types. It can be handled
like any other variable. Elements of derived data types can be accessed with the % operator.
93

GMC (Giant Molecular Cloud) dense phase of the ISM (described in Sect. 2.1). 3–5, 10, 12, 14,
16, 20–23, 97, 99, 101, 127, 128, 137, 147–149, 155–157, 163, 164

IC (initial conditions) setup at the start of a numerical simulation. 39–41, 46, 47, 60, 61, 71, 73,
90, 91, 99, 101, 128, 129, 132–134, 140, 142, 145, 147, 148, 156

IMF (Initial Mass Function) empirical function describing the initial distribution of stellar masses.
22, 23, 26, 32–36, 97, 155

ISM (Interstellar Medium) gas and dust between stars (described in Sect. 2.1). 1, 3–6, 9–13, 16–
18, 20, 23, 37, 38, 40, 46, 49, 55, 73–75, 77–79, 82, 83, 87–89, 94, 95, 97, 99–101, 103,
104, 107, 110, 118, 119, 123, 124, 127, 128, 148, 149, 155, 156, 163–165

mass cut the mass coordinate that separates ejected material from material forming the remnant.
26

mean free path (λ) average distance a particle travels before colliding with an other particle [see
kinetic theory of gas, e.g. Kennard (1938)]. 6–9, 38, 91, 167

namelist file containing all run-time parameters for a RAMSES simulation. 51, 93–95

OES (Orion-Eridanus Superbubble) a well observed, relatively close by region, which is very well
suited to study the interaction of massive stars and the ISM. 2, 3, 12–14, 16, 17, 19, 20, 23,
97, 149, 155–157

pluto.ini file containing all run-time parameters for a PLUTO simulation. 92

porosity in the context of Sect. 7 describes the sum of the cross-sectional areas of all holes in the
GMC allowing stellar feedback material to escape from the GMC into the warm phase of the
ISM. 21, 127, 128, 135, 145

preprocessor directive contains information on which parts of the code should be compiled. We
use e.g. #define EKIN 1 to compile source code parts inserting the feedback via kinetic
energy instead of code parts using thermal feedback energy. Definitions can be removed
with #undef. Source code parts can be enclosed between constructs like #ifdef EKIN,
#else and #endif. 90, 91, 94, 95, 165

Strömgren sphere ionized hydrogen around a massive star. The Strömgren radius can be found

from RS ∼ 3

√
3

4π

NLyα

3×10−13n2 cm, with the number density n in units of cm−3 and the number
of Lyman continuum photons NLyα per second. 12, 73, 128, 129, 132, 134

Glossary 165

superbubble cavity in the ISM created by the combined feedback of several massive stars. 2, 3,
5, 12–14, 16, 17, 19, 100, 135, 148, 155, 156

supernova (SN) stellar explosion. In the context of this work we focus on core collapse SNe.
These occur when nuclear fusion fails to balance gravity in the core of massive stars. We
do not take SN Ia explosions into account in this work, since we do not follow the evolution
of the stellar content of our cloud long enough to obtain white dwarfs, which in turn could
undergo a SN Ia explosion. x, xiii, 1, 2, 4–6, 9, 11, 12, 22, 23, 26, 27, 32, 33, 35, 49, 64, 65,
73, 76, 88–92, 99–108, 110–120, 122–124, 157, 163, 165–167

time of maximal luminosity (t0) time, when the largest energy losses due to radiative cooling
occur in the simulation. Please note that despite this name it does not correspond to the
maximum in the SN light curve, which is caused by radioactive decays. 100–102, 104–107,
113, 115, 124

vector sweep contains a part of the simulation data. RAMSES allows to control the maximal
memory allocation within each MPI process. Since the simulation can be too large to fit
into the memory at once, the user can specify a vector size with the preprocessor directive
NVECTOR and the data will be subdivided into arrays of dimension(1:nvector). The
default setting is NVECTOR=500. Only one of these arrays is loaded into the memory at a
time. 93

WR the Wolf-Rayet phase is the last phase in the evolution of a massive star. During this phase
the star undergoes extreme mass losses due to very strong winds. 24, 73, 74, 100, 110, 116,
117, 124

166 Symbols and Units

Units

List of frequently used units.
distance
AU Astronomical Unit, 149597870700 m
cm 10−2 m
km 103 m
m meter
micron 10−6 m
pc parsec, 3.08567758× 1016 m
energy
FOE 1051 erg, canonical supernova energy
GeV 1.6021765710−10 Joule
MeV 1.6021765710−13 Joule
eV 1.6021765710−19 Joule
erg 10−7 Joule
keV 1.6021765710−16 Joule
meV 1.6021765710−22 Joule
flux
Jy Jansky, 1026 W m−2 Hz−1

R Rayleigh, 1010 photons m−2 s−1

frequency
Hz Hertz, s−1

GHz 109 Hertz
THz 1012 Hertz
mass
g gram
M� solar mass, 1.9891× 1033 g
(number) density
cm−3 particles cm−3 , number density
g cm−3 mass density
temperature
K Kelvin
mK 10−3 K
time
fs 10−15 seconds
s second
yr year
kyr 103 years
Myr 106 years
velocity
cm s−1 0.01 meter per second
km s−1 kilometer per second
pc Myr−1 parsec per million years (∼ 0.978 km s−1)

Symbols and Units 167

Symbols

List of frequently used symbols.
ø diameter
a factor for the cooling floor (at aρ0) or exponent a in Eq. 4.40
A cross section
Acrit critical cross section for choked flows
~B magnetic field
b Galactic latitude
c wave speed
cp, cV specific heat capacity (per particle)
cs speed of sound
cs,iso isothermal speed of sound
D diffusion coefficient or total derivative
∆d “chimney” diameter (used in Sect. 7)
∆t time step size
∆x cell size or “chimney” length
Ė energy loss/gain
E energy
ESN supernova energy input (1051 erg)
Ekin kinetic energy
Etherm thermal energy
e electron charge
ein internal energy
ε feedback energy efficiency
εk kinetic feedback energy efficiency
εt thermal feedback energy efficiency
f degree of freedom
F flux
Fc heat flux
Fsat saturated heat flux
~F (~U) flux vector
γ adiabatic exponent
Γ Gamma function (in Sect. 4.4.1), diffusion coefficient (in Sect. 3.4) or heating rate (all other Sect.)
~J Jacobian
k wave number
k or kB Boltzmann constant (1.3806488(13)× 10−16 erg K−1)
κ heat conduction coefficient
Λ Coulomb logarithm (in Sect. 2.2.1) or cooling rate (all other Sect.)
λ mean free path
λi ith Eigenvalue
L scale length
lT scale length of the temperature gradient
Lw kinetic wind luminosity Lw = 0.5Ṁv2

∞
l Galactic longitude
Ṁ mass loss rate
M Mach number or Mass
M� solar mass, 1.9891× 1033 g
mH hydrogen mass
µmol molar mass

168 Symbols and Units

ṅ
n number density (unit: cm−3)
N number of particles in the EOS
n0 number density of the ambient medium
nH hydrogen number density
ν number of dimensions
ω angular frequency
p pressure
φ angle
Φ general flow quantity
R gas constant 8.314× 107 erg K−1mol−1 or radius
r radial coordinate or radius
rc cavity radius
rf or rfb feedback region radius
rshell shell radius
Ṙ shell velocity (i.e. bubble radius change)
ρ density
ρ0 ambient density
Σ surface density
σ standard deviation, velocity dispersion or cross section
SΦ source terms
Sν coefficients for the surface of an ν dimensional sphere
T temperature
Teq temperature of the cooling-heating equilibrium for a given number density
T0 temperature of the ambient medium
t, τ time
τ1/2 half life time
θ angle
t0 time of maximal luminosity (see page 101)
u velocity or component of the vector of system properties
U system properties (e.g. density, flow velocity and pressure)
~U vector of conservative variables (ρ,ρ~v,E)
v̄ average velocity
vrms rms-velocity
v or ~v velocity
v∞ terminal wind velocity
V volume
Vν coefficients for the volume of an ν dimensional sphere
dV volume change
~W vector of primitive variables (ρ,~v,P)
ξ(k) amplification factor
x or ~x position
X Hydrogen mass fraction
Y Helium mass fraction
Z metallicity, mass fraction of all elements except H and He (Z = 1−X − Y)
Z� solar metallicity

Bibliography

Abbott, D. C.: 1982, ApJ 263, 723

Arthur, S. J. and Henney, W. J.: 1996, ApJ 457, 752

Atwood, W. B., Abdo, A. A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M., Baldini,
L., Ballet, J., Band, D. L., Barbiellini, G., and et al.: 2009, ApJ 697, 1071

Avedisova, V. S.: 1972, Soviet Astronomy 15, 708

Balbus, S. A. and McKee, C. F.: 1982, ApJ 252, 529

Ballone, A., Schartmann, M., Burkert, A., Gillessen, S., Genzel, R., Fritz, T. K., Eisenhauer, F.,
Pfuhl, O., and Ott, T.: 2013, ApJ 776, 13

Bandiera, R. and Petruk, O.: 2004, A&A 419, 419

Beaumont, C. N., Goodman, A. A., Kendrew, S., Williams, J. P., and Simpson, R.: 2014, ApJS
214, 3

Behrendt, M.: 2011, Diplomarbeit, LMU, Department of Physics

Blitz, L.: 1993, in E. H. Levy & J. I. Lunine (ed.), Protostars and Planets III, pp 125–161

Blitz, L., Fukui, Y., Kawamura, A., Leroy, A., Mizuno, N., and Rosolowsky, E.: 2007, Protostars
and Planets V pp 81–96

Bloemen, H., Morris, D., Knödlseder, J., Bennett, K., Diehl, R., Hermsen, W., Lichti, G., van der
Meulen, R. D., Oberlack, U., Ryan, J., Schönfelder, V., Strong, A. W., de Vries, C., and Winkler,
C.: 1999, ApJ Lett. 521, L137

Bolatto, A. D., Wolfire, M., and Leroy, A. K.: 2013, ARA&A 51, 207

Bonnarel, F., Fernique, P., Bienaymé, O., Egret, D., Genova, F., Louys, M., Ochsenbein, F.,
Wenger, M., and Bartlett, J. G.: 2000, Astron. Astrophys. Suppl. Ser. 143, 33

Boss, A. P. and Keiser, S. A.: 2012, ApJ Lett. 756, L9

Boumis, P., Dickinson, C., Meaburn, J., Goudis, C. D., Christopoulou, P. E., López, J. A., Bryce,
M., and Redman, M. P.: 2001, MNRAS 320, 61

Brighenti, F. and D’Ercole, A.: 1994, MNRAS 270, 65

170 BIBLIOGRAPHY

Brown, A. G. A., de Bruijne, J. H. J., Hoogerwerf, R., de Zeeuw, P. T., and Blaauw, A.: 2000, in
F. Favata, A. Kaas, & A. Wilson (ed.), Star Formation from the Small to the Large Scale, Vol.
445 of ESA Special Publication, pp 239–+

Brown, A. G. A., de Geus, E. J., and de Zeeuw, P. T.: 1994, A&A 289, 101

Brown, A. G. A., Hartmann, D., and Burton, W. B.: 1995, A&A 300, 903

Burkert, A., Schartmann, M., Alig, C., Gillessen, S., Genzel, R., Fritz, T. K., and Eisenhauer, F.:
2012, ApJ 750, 58

Burrows, D. N. and Guo, Z.: 1996, in H. U. Zimmermann, J. Trümper, and H. Yorke (eds.),
Roentgenstrahlung from the Universe, p. 221

Burrows, D. N. and Mendenhall, J. A.: 1991, Nature 351, 629

Burrows, D. N., Singh, K. P., Nousek, J. A., Garmire, G. P., and Good, J.: 1993, ApJ 406, 97

Castor, J., McCray, R., and Weaver, R.: 1975, Astrophysical Journal 200, L107

Castro, D., Slane, P. O., Gaensler, B. M., Hughes, J. P., and Patnaude, D. J.: 2011, ApJ 734, 86

Cen, R.: 1992, ApJS 78, 341

Chevalier, R. A.: 1974, ApJ 188, 501

Chevalier, R. A. and Clegg, A. W.: 1985, Nature 317, 44

Chevalier, R. A. and Imamura, J. N.: 1982, ApJ 261, 543

Chu, Y.-H. and Mac Low, M.-M.: 1990, ApJ 365, 510

Clark, B. G.: 1965, ApJ 142, 1398

Courant, R., Friedrichs, K., and Lewy, H.

Cox, D. P.: 2005, ARA&A 43, 337

Crutcher, R. M.: 2012, ARA&A 50, 29

Dale, J. E. and Bonnell, I.: 2011, MNRAS 414, 321

Dame, T. M., Hartmann, D., and Thaddeus, P.: 2001, ApJ 547, 792

de Avillez, M. A. and Breitschwerdt, D.: 2005, A&A 436, 585

de Avillez, M. A. and Breitschwerdt, D.: 2012, The Astrophysical Journal Letters 761(2), L19

de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A., and Blaauw, A.: 1999, AJ
117, 354

Dickey, J. M. and Lockman, F. J.: 1990, ARA&A 28, 215

Diehl, R.: 2002, New Astronomy Review 46, 547

BIBLIOGRAPHY 171

Diehl, R.: 2014, in S. Jeong, N. Imai, H. Miyatake, and T. Kajino (eds.), American Institute of
Physics Conference Series, Vol. 1594 of American Institute of Physics Conference Series, pp
109–116

Diehl, R., Cerviño, M., Hartmann, D. H., and Kretschmer, K.: 2004, New Astronomy Review 48,
81

Diehl, R., Kretschmer, K., Plüschke, S., Cerviño, M., and Hartmann, D. H.: 2003, in K. van
der Hucht, A. Herrero, & C. Esteban (ed.), A Massive Star Odyssey: From Main Sequence to
Supernova, Vol. 212 of IAU Symposium, pp 706–+

Dobbs, C. L., Burkert, A., and Pringle, J. E.: 2011, MNRAS 413, 2935

Dyson, J. E.: 1977, A&A 59, 161

Einfeldt, B.: 1988, SIAM Journal on Numerical Analysis 25, 294

Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A.,
Decressin, T., Hirschi, R., Frischknecht, U., Charbonnel, C., and Maeder, A.: 2012, A&A 537,
A146

Elmegreen, B. G.: 2000a, ApJ 539, 342

Elmegreen, B. G.: 2000b, ApJ 530, 277

Field, G. B.: 1965, ApJ 142, 531

Field, G. B., Goldsmith, D. W., and Habing, H. J.: 1969, ApJ Lett. 155, L149+

Finkbeiner, D. P.: 2003, ApJS 146, 407

Gardiner, T. A. and Stone, J. M.: 2005, Journal of Computational Physics 205, 509

Gardiner, T. A. and Stone, J. M.: 2008, Journal of Computational Physics 227, 4123

Gent, F. A., Shukurov, A., Fletcher, A., Sarson, G. R., and Mantere, M. J.: 2013, MNRAS 432,
1396

Genzel, R. and Stutzki, J.: 1989, ARA&A 27, 41

Godard, B., Falgarone, E., and Pineau Des Forêts, G.: 2009, A&A 495, 847

Gounelle, M., Meibom, A., Hennebelle, P., and Inutsuka, S.-i.: 2009, ApJ Lett. 694, L1

Gounelle, M. and Meynet, G.: 2012, A&A 545, A4

Gruendl, R. A., Chu, Y.-H., Dunne, B. C., and Points, S. D.: 2000, AJ 120, 2670

Guo, Z. and Burrows, D. N.: 1996, in Bulletin of the American Astronomical Society, Vol. 28 of
Bulletin of the American Astronomical Society, p. 834

Guo, Z., Burrows, D. N., Sanders, W. T., Snowden, S. L., and Penprase, B. E.: 1995, Astrophysical
Journal 453, 256

172 BIBLIOGRAPHY

Haque, A.: 2006, Sedov Analytical Solution Program, http://flash.uchicago.edu/~ahaque/sedov.
html, Online since 27.11.2006; accessed: 11.05.2009

Harten, A., Lax, P., and Leer, B.: 1983, SIAM Review 25(1), 35

Hartmann, L., Ballesteros-Paredes, J., and Bergin, E. A.: 2001, ApJ 562, 852

Haslam, C. G. T., Salter, C. J., Stoffel, H., and Wilson, W. E.: 1982, Astron. Astrophys. Suppl. Ser.
47, 1

Heiles, C., Haffner, L. M., and Reynolds, R. J.: 1999, in A. R. Taylor, T. L. Landecker, and G.
Joncas (eds.), New Perspectives on the Interstellar Medium, Vol. 168 of Astronomical Society of
the Pacific Conference Series, p. 211

Hennebelle, P. and Audit, E.: 2007, A&A 465, 431

Heyer, M., Krawczyk, C., Duval, J., and Jackson, J. M.: 2009, ApJ 699, 1092

Hill, A. S., Joung, M. R., Low, M.-M. M., Benjamin, R. A., Haffner, L. M., Klingenberg, C., and
Waagan, K.: 2012, The Astrophysical Journal 761(2), 189

Hill, A. S., Joung, M. R., Mac Low, M.-M., Benjamin, R. A., Haffner, L. M., Klingenberg, C., and
Waagan, K.: 2012, ApJ 750, 104

Ianjamasimanana, R., de Blok, W. J. G., Walter, F., and Heald, G. H.: 2012, AJ 144, 96

IceCube Collaboration, Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J.,
Aguilar, J. A., Ahlers, M., Altmann, D., Auffenberg, J., and et al.: 2013, ArXiv e-prints

Jijina, J., Myers, P. C., and Adams, F. C.: 1999, ApJS 125, 161

Jo, Y.-S., Min, K.-W., Seon, K.-I., Edelstein, J., and Han, W.: 2011, ApJ 738, 91

Joung, M. K. R. and Mac Low, M.-M.: 2006, ApJ 653, 1266

Junk, V., Walch, S., Heitsch, F., Burkert, A., Wetzstein, M., Schartmann, M., and Price, D.: 2010,
MNRAS 407, 1933

Kalberla, P. M. W. and Kerp, J.: 2009, ARA&A 47, 27

Kawamura, A., Mizuno, Y., Minamidani, T., Filipović, M. D., Staveley-Smith, L., Kim, S.,
Mizuno, N., Onishi, T., Mizuno, A., and Fukui, Y.: 2009, ApJS 184, 1

Kendrew, S., Simpson, R., Bressert, E., Povich, M. S., Sherman, R., Lintott, C. J., Robitaille, T. P.,
Schawinski, K., and Wolf-Chase, G.: 2012, ApJ 755, 71

Kennard, E.: 1938, Kinetic theory of gases: with an introduction to statistical mechanics, Inter-
national series in pure and applied physics, McGraw-Hill

Koda, J., Scoville, N., Sawada, T., La Vigne, M. A., Vogel, S. N., Potts, A. E., Carpenter, J. M.,
Corder, S. A., Wright, M. C. H., White, S. M., Zauderer, B. A., Patience, J., Sargent, A. I., Bock,
D. C. J., Hawkins, D., Hodges, M., Kemball, A., Lamb, J. W., Plambeck, R. L., Pound, M. W.,
Scott, S. L., Teuben, P., and Woody, D. P.: 2009, ApJ Lett. 700, L132

http://flash.uchicago.edu/~ahaque/sedov.html
http://flash.uchicago.edu/~ahaque/sedov.html

BIBLIOGRAPHY 173

Kompaneets, A. S.: 1960, Soviet Physics Doklady 5, 46

Korpi, M. J., Brandenburg, A., Shukurov, A., Tuominen, I., and Nordlund, A&A.: 1999, ApJ Lett.
514, L99

Koyama, H. and Ostriker, E. C.: 2009, ApJ 693, 1316

Krause, M., Diehl, R., Böhringer, H., Freyberg, M., and Lubos, D.: 2014, A&A 566, A94

Krause, M., Fierlinger, K., Diehl, R., Burkert, A., Voss, R., and Ziegler, U.: 2012, ArXiv e-prints

Krause, M. G. H. and Diehl, R.: 2014, ArXiv e-prints

Kregenow, J., Edelstein, J., Korpela, E. J., Welsh, B. Y., Heiles, C., Ryu, K., Min, K.-W., Lim, Y.,
Yuk, I.-S., Jin, H., and Seon, K.-I.: 2006, ApJ Lett. 644, L167

Kretschmer, K., Diehl, R., Krause, M., Burkert, A., Fierlinger, K., Gerhard, O., Greiner, J., and
Wang, W.: 2013, A&A 559, A99

Kritsuk, A. G., Lee, C. T., and Norman, M. L.: 2013, MNRAS 436, 3247

Kroupa, P.: 2001, MNRAS 322, 231

Lamers, H. J. G. L. M. and Cassinelli, J. P.: 1999, Introduction to Stellar Winds

Lamers, H. J. G. L. M., Snow, T. P., and Lindholm, D. M.: 1995, ApJ 455, 269

Larson, R. B.: 1981, MNRAS 194, 809

Leitherer, C., Schaerer, D., Goldader, J. D., González Delgado, R. M., Robert, C., Kune, D. F., de
Mello, D. F., Devost, D., and Heckman, T. M.: 1999, ApJS 123, 3

LeVeque, R.: 2002, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied
Mathematics, Cambridge University Press

Limongi, M. and Chieffi, A.: 2006, ApJ 647, 483

Lodders, K.: 2003, ApJ 591, 1220

McKee, C. F.: 1990, in L. Blitz (ed.), The Evolution of the Interstellar Medium, Vol. 12 of Astro-
nomical Society of the Pacific Conference Series, pp 3–29

McKee, C. F. and Ostriker, J. P.: 1977, ApJ 218, 148

Mel’Nik, A. M. and Efremov, Y. N.: 1995, Astronomy Letters 21, 10

Meynet, G. and Maeder, A.: 2003, A&A 404, 975

Meynet, G. and Maeder, A.: 2005, A&A 429, 581

Meynet, G., Maeder, A., Schaller, G., Schaerer, D., and Charbonnel, C.: 1994, Astron. Astrophys.
Suppl. Ser. 103, 97

Micic, M., Glover, S. C. O., Banerjee, R., and Klessen, R. S.: 2013, MNRAS 432, 626

174 BIBLIOGRAPHY

Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., and Ferrari, A.:
2007, ApJS 170, 228

Mignone, A., Zanni, C., Tzeferacos, P., van Straalen, B., Colella, P., and Bodo, G.: 2012, ApJS
198, 7

Miville-Deschênes, M.-A. and Lagache, G.: 2005, ApJS 157, 302

Miville-Deschenes, M.-A. and Lagache, G.: 2008, IRIS - Improved Reprocessing of the IRAS Sur-
vey, http://www.cita.utoronto.ca/~mamd/IRIS/, last modified 9.12.2004, accessed: 10.09.2014

Moeckel, N. and Burkert, A.: 2014, ArXiv e-prints

Mouschovias, T. C.: 1987, in G. E. Morfill and M. Scholer (eds.), NATO ASIC Proc. 210: Physical
Processes in Interstellar Clouds, pp 491–552

Murray, C. E., Lindner, R. R., Stanimirović, S., Goss, W. M., Heiles, C., Dickey, J., Pingel, N. M.,
Lawrence, A., Jencson, J., Babler, B. L., and Hennebelle, P.: 2014, ApJ Lett. 781, L41

Murray, N.: 2011, ApJ 729, 133

Netz, H.: 1986, Netz Formeln der Mathematik, neu bearb. von J. Rast, Hanser, 6 edition

Niedzielski, A. and Skorzynski, W.: 2002, Acta Astron. 52, 81

Ntormousi, E., Burkert, A., Fierlinger, K., and Heitsch, F.: 2011, ApJ 731, 13

Oey, M. S.: 1996, ApJ 467, 666

Oey, M. S.: 2005, in American Astronomical Society Meeting Abstracts, Vol. 37 of Bulletin of the
American Astronomical Society, p. 1243

Oey, M. S. and Massey, P.: 1994, ApJ 425, 635

Okumura, A., Kamae, T., and for the Fermi LAT Collaboration: 2009, ArXiv e-prints

Ostriker, J. P. and McKee, C. F.: 1988, Reviews of Modern Physics 60, 1

Palacios, A., Meynet, G., Vuissoz, C., Knödlseder, J., Schaerer, D., Cerviño, M., and Mowlavi, N.:
2005, A&A 429, 613

Pan, L., Desch, S. J., Scannapieco, E., and Timmes, F. X.: 2012, ApJ 756, 102

Parizot, E. M. G.: 1998, A&A 331, 726

Pikel’Ner, S. B.: 1968, Astrophys. Lett. 2, 97

Planck Team: 2013, Planck, http://planck.caltech.edu/publications2013Results.html, last modified
21.3.2013 , accessed: 10.09.2014

Pon, A., Johnstone, D., Bally, J., and Heiles, C.: 2014a, ArXiv e-prints

Pon, A., Johnstone, D., Bally, J., and Heiles, C.: 2014b, MNRAS 441, 1095

http://www.cita.utoronto.ca/~mamd/IRIS/
http://planck.caltech.edu/publications2013Results.html

BIBLIOGRAPHY 175

Pon, A., Johnstone, D., and Kaufman, M. J.: 2012, ApJ 748, 25

Pon, A. R.: 2013, Ph.D. thesis, University of Victoria (Canada

Project, L. I.: 2004, WWW Table of Radioactive Isotopes, http://ie.lbl.gov/toi, last accessed Oct.,
11th 2014

Raymond, J. C., Cox, D. P., and Smith, B. W.: 1976, ApJ 204, 290

Reich, P. and Reich, W.: 1986, Astron. Astrophys. Suppl. Ser. 63, 205

Reich, W.: 1982, Astron. Astrophys. Suppl. Ser. 48, 219

Reynolds, R. J. and Ogden, P. M.: 1979, ApJ 229, 942

Roe, P. L.: 1981, Journal of Computational Physics 43, 357

Roe, P. L.: 1986, Annual Review of Fluid Mechanics 18, 337

Roman-Duval, J., Jackson, J. M., Heyer, M., Rathborne, J., and Simon, R.: 2010, ApJ 723, 492

Roques, J. P., Schanne, S., von Kienlin, A., Knödlseder, J., Briet, R., Bouchet, L., Paul, P., Boggs,
S., Caraveo, P., Cassé, M., Cordier, B., Diehl, R., Durouchoux, P., Jean, P., Leleux, P., Lichti,
G., Mandrou, P., Matteson, J., Sanchez, F., Schönfelder, V., Skinner, G., Strong, A., Teegarden,
B., Vedrenne, G., von Ballmoos, P., and Wunderer, C.: 2003, A&A 411, L91

Rozyczka, M., Tenorio-Tagle, G., Franco, J., and Bodenheimer, P.: 1993, MNRAS 261, 674

Ryu, K., Min, K.-W., Park, J.-W., Lee, D.-H., Han, W., Nam, U.-W., Park, J.-H., Edelstein, J.,
Korpela, E. J., Nishikida, K., and van Dishoeck, E. F.: 2006, ApJ Lett. 644, L185

Ryu, K., Min, K. W., Seon, K.-I., Nonesa, J., Edelstein, J., Korpela, E., Sankrit, R., Han, W., Park,
J.-H., and Park, Y. S.: 2008, ApJ Lett. 678, L29

Salpeter, E. E.: 1955, ApJ 121, 161

Schartmann, M., Burkert, A., Alig, C., Gillessen, S., Genzel, R., Eisenhauer, F., and Fritz, T. K.:
2012, ApJ 755, 155

Schartmann, M., Burkert, A., Krause, M., Camenzind, M., Meisenheimer, K., and Davies, R. I.:
2010, MNRAS 403, 1801

Schartmann, M., Krause, M., and Burkert, A.: 2011, MNRAS 415, 741

Schartmann, M., Meisenheimer, K., Klahr, H., Camenzind, M., Wolf, S., and Henning, T.: 2009,
MNRAS 393, 759

Schönfelder, V.: 2001, The Universe in Gamma Rays, Astronomy and Astrophysics Library,
Springer

Scoville, N. Z., Solomon, P. M., and Sanders, D. B.: 1979, in W. B. Burton (ed.), The Large-Scale
Characteristics of the Galaxy, Vol. 84 of IAU Symposium, pp 277–282

http://ie.lbl.gov/toi

176 BIBLIOGRAPHY

Sedov, L. I.: 1993, Similarity and Dimensional Methods in Mechanics, 10th edition, CRC Press

Shu, F. H.: 1992, The Physics of Astrophysics, Volume II, Gas dynamics, Vol. II of The Physics of
Astrophysics, University Science Books

Simpson, R. J., Povich, M. S., Kendrew, S., Lintott, C. J., Bressert, E., Arvidsson, K., Cyganowski,
C., Maddison, S., Schawinski, K., Sherman, R., Smith, A. M., and Wolf-Chase, G.: 2012, VizieR
Online Data Catalog 742, 42442

Smith, L. F. and Maeder, A.: 1991, A&A 241, 77

Smith, M. D. and Rosen, A.: 2003, MNRAS 339, 133

Snowden, S. L., Burrows, D. N., Sanders, W. T., Aschenbach, B., and Pfeffermann, E.: 1995,
Astrophysical Journal 439, 399

Snowden, S. L., Egger, R., Freyberg, M. J., McCammon, D., Plucinsky, P. P., Sanders, W. T.,
Schmitt, J. H. M. M., Truemper, J., and Voges, W.: 1997, ApJ 485, 125

Sod, G. A.: 1978, Journal of Computational Physics 27, 1

Sonbas, E., Moskvitin, A. S., Fatkhullin, T. A., Sokolov, V. V., Castro-Tirado, A., de Ugarte
Postigo, A., Gorosabel, G., Guzij, S., Jelinec, M., Sokolova, T. N., and Chernenkov, V. N.:
2008, Astrophysical Bulletin 63, 228

Spitzer, L.: 1956, Physics of Fully Ionized Gases

Spitzer, L.: 1962, Physics of Fully Ionized Gases

Springel, V.: 2010, MNRAS 401, 791

Stasińska, G., Tenorio-Tagle, G., Rodríguez, M., and Henney, W. J.: 2007, A&A 471, 193

Sternberg, A., Hoffmann, T. L., and Pauldrach, A. W. A.: 2003, ApJ 599, 1333

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., and Simon, J. B.: 2008, ApJS 178, 137

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., and Simon, J. B.: 2010, Athena: Grid-based
code for astrophysical magnetohydrodynamics (MHD), Astrophysics Source Code Library

Strong, A.: 1994, CGRO Compton Telescope: 3 channel data, http://skyview.gsfc.nasa.gov, May
1991 to October 1994, accessed: 10.09.2014

Sutherland, R. S. and Dopita, M. A.: 1993, ApJS 88, 253

Sweby, P. K.: 1984, SIAM Journal on Numerical Analysis 21(5), pp995

Tan, J. C., Shaske, S. N., and Van Loo, S.: 2013, in T. Wong and J. Ott (eds.), IAU Symposium,
Vol. 292 of IAU Symposium, pp 19–28

Taylor, G.: 1950, Royal Society of London Proceedings Series A 201, 159

Tenorio-Tagle, G.: 1996, AJ 111, 1641

http://skyview.gsfc.nasa.gov

BIBLIOGRAPHY 177

Tenorio-Tagle, G., Bodenheimer, P., Franco, J., and Rozyczka, M.: 1990, MNRAS 244, 563

Tenorio-Tagle, G., Rozyczka, M., Franco, J., and Bodenheimer, P.: 1991, MNRAS 251, 318

Teyssier, R.: 2002, A&A 385, 337

Theuns, T., Leonard, A., Efstathiou, G., Pearce, F. R., and Thomas, P. A.: 1998, MNRAS 301, 478

Thornton, K., Gaudlitz, M., Janka, H.-T., and Steinmetz, M.: 1998, ApJ 500, 95

Toro, E. F., Spruce, M., and Speares, W.: 1994, Shock Waves 4, 25

van Leer, B.: 1977, Journal of Computational Physics 23, 276

Vedrenne, G., Roques, J.-P., Schönfelder, V., Mandrou, P., Lichti, G. G., von Kienlin, A., Cordier,
B., Schanne, S., Knödlseder, J., Skinner, G., Jean, P., Sanchez, F., Caraveo, P., Teegarden, B.,
von Ballmoos, P., Bouchet, L., Paul, P., Matteson, J., Boggs, S., Wunderer, C., Leleux, P.,
Weidenspointner, G., Durouchoux, P., Diehl, R., Strong, A., Cassé, M., Clair, M. A., and André,
Y.: 2003, A&A 411, L63

Vishniac, E. T.: 1994, ApJ 428, 186

Von Neumann, J.: 1963, Theory of games, astrophysics, hydrodynamics and meteorology, Vol. 6
of Collected Works, Pergamon Press

Voss, R., Diehl, R., Hartmann, D. H., Cerviño, M., Vink, J. S., Meynet, G., Limongi, M., and
Chieffi, A.: 2009, A&A 504, 531

Voss, R., Diehl, R., Vink, J. S., and Hartmann, D. H.: 2010, A&A 520, A51+

Wampler, E. J., Wang, L., Baade, D., Banse, K., D’Odorico, S., Gouiffes, C., and Tarenghi, M.:
1990, ApJ Lett. 362, L13

Weaver, R., McCray, R., Castor, J., Shapiro, P., and Moore, R.: 1977, ApJ 218, 377

Weidner, C., Kroupa, P., and Bonnell, I. A. D.: 2010, MNRAS 401, 275

Weidner, C., Kroupa, P., and Pflamm-Altenburg, J.: 2013, MNRAS 434, 84

Williams, J. P., Blitz, L., and McKee, C. F.: 2000, Protostars and Planets IV p. 97

Williams, J. P. and McKee, C. F.: 1997, ApJ 476, 166

Wilson, B. A., Dame, T. M., Masheder, M. R. W., and Thaddeus, P.: 2005, A&A 430, 523

178 BIBLIOGRAPHY

Danksagung

Ich möchte mich bei allen Personen bedanken, die bei der Entstehung dieser Arbeit direkt und
indirekt mitgeholfen haben. Besonders bedanken möchte ich mich bei meinen Betreuern Andreas
Burkert und Roland Diehl, für das Vertrauen, mir dieses spannende Projekt zu übertragen, die
Geduld, die vielen Tipps, die Unterstützung dabei, meine Arbeit bei lokalen sowie internationalen
Treffen zu präsentieren und die gute Betreuung. Weiters hätte es diese Arbeit ohne Stephan Paul,
der mich mit Roland und Andi in Kontakt gebracht hat, nicht gegeben. Und sie wäre nun wohl
auch nicht fertig, wenn er mir nicht nahegelegt hätte, die Arbeit baldigst einzureichen. Für die selbe
Mischung an Vertrauen und sanften Hinweisen zur Effizienzsteigerung (wie bei dem ineffizienten
Energieinput der massereichen Sterne ins ISM, der in dieser Arbeit diskutiert wird, sind auch bei
mir wohl > 90% des Aufwandes ohne nachhaltigen Effekt verpufft) sowie für die kontinuierliche
Versicherung, dass sie daran glauben, dass ich das Projekt Doktorarbeit irgendwann abschließen
kann, danke ich meinem Mann Peter, meinen Eltern und Schwiegereltern, meinen Schwestern und
all meinen Verwandten und Freunden. Ich bedanke mich bei ihnen auch für den sanften Druck,
mich nicht in ein beschauliches Hausfrauenleben zu verabschieden.

Inhaltlich und methodisch hat diese Arbeit stark davon profitiert, dass ich in die CAST Gruppe
an der USM und in den Universe Cluster eingebunden war und das Kursangebot für IMPRS Stu-
dent/inn/en nutzen durfte. Neben Kolleg/inn/en, die mich direkt in meiner Forschung unterstützt
haben, wie Andreas Burkert, Roland Diehl, Rasmus Voss, Eva Ntormousi, Marc Schartmann,
Clare Dobbs, Martin Krause, Alessandro Ballone, Judith Ngoumou, Manuel Behrendt, Nickolas
Moeckel, Matthias Gritschneder, James Dale, Tadziu Hoffmann und Klaus Dolag möchte ich auch
allen anderen derzeitigen und ehemaligen Mitgliedern der CAST Gruppe – stellvertretend seien
Rhea-Silvia Remus und Martin Zintl genannt – sowie des Universe Clusters danken. Auch falls
wir vielleicht bisher nicht an gemeinsamen Projekten gearbeitet haben, haben mich ihre spannen-
den Ergebnisse dennoch immer wieder daran erinnert, wie viele tolle Dinge wir erforschen können.

Diese Arbeit hat sehr davon profitiert, dass Marianne Busch und Peter als Testleser/in mich dazu
bewogen haben, ein paar Monstersätze doch zu teilen. Ebenfalls herzlicher Dank für das Testlesen
geht an Judith, Manuel, meine Schwester Johanna und meine Eltern.

Für die Rechenzeit bedanke ich mich bei Andreas Weiss, Peter Fierlinger und seiner Gruppe,
Roland Diehl (RZG Zugang), der CAST Gruppe (Burkert/Dolag/Schartmann, LRZ Rechenzeit)
und Tadziu Hoffmann (USM Server für GPU Tests). Für die Weitergabe der verwendeten Codes
möchte ich mich bei A. Mignone, M. Krumholz und R. Theyssier bedanken. Letzterem bin ich
auch für Tipps im Rahmen der Sommerschule in Evora und im Rahmen seines Münchenbesuches
dankbar. Ich möchte mich auch bei M.-M. Mac Low stellvertretend für alle Personen, die Inter-
esse an meiner Arbeit gezeigt haben, dafür bedanken, dass er mich dazu gebracht hat, die Stärken

180 Danksagung

meiner Arbeit, die hoffentlich zumindest in kleinen Bereichen ein wenig über das bereits pub-
lizierte Wissen anderer Autoren hinausgehen, zu erkennen.

Mein herzlicher Dank geht auch an Birgit Schaffhauser, Heidi Jonas, Tina Jacobs, Petra Riedel,
Sonja Lutz, die MIAPP Direktoren und alle anderen Teammitglieder am Universe Cluster und am
MIAPP für die Hilfe, mir die Zeit zum Niederschreiben der Arbeit freizuschaufeln. Besonderer
Dank geht hier an Thomas Würstl, der mich immer wieder an Effizienz und Prioritätensetzung
erinnert hat.

Einen wichtigen Beitrag haben auch jene Mentoren, Kollegen und Freunde (stellvertretend seien
Mike Breger, Gerd Hensler, Dieter Breitschwerdt, Marianne Wenzel, Kurt Krachler, Bernhard
Aringer, Marianne Busch, Eva Ntormousi und mein Mann Peter genannt) geliefert, die mich im-
mer daran erinnert haben, nochmal nachzudenken, bevor ich die Astronomie verlasse, ob ich das
wirklich will und mir Wiedereinstiege ermöglicht haben. Ebenfalls wichtig war der Beitrag des
Universe Cluster Teams, das mir nebenbei immer Aufgaben mit schnell sichtbarem Erfolg über-
tragen hat und mir dadurch geholfen hat, meinen Horizont und meine Fertigkeiten zu erweitern.

Diese Arbeit trägt absichtlich keine Widmung, denn ich denke, sie soll für alle sein, die sich für
dieses Thema interessieren. Ich lade also jede/n Leser/in der Arbeit ein, eine Widmung für sich
selbst auf diese Arbeit zu schreiben.

Appendix A

Mathematica source code listings

Listing A.1: Solve for the internal structure of the Sedov-Taylor bubble with Mathematica
r0 = 0 .01 ; (∗ i nne r boundary , zero leads to crashes ∗)
rsh = 1; (∗ outer boundary , l o c a t i o n o f the shock ∗)
g = 5 / 3 ; (∗ heat capac i t y r a t i o ∗)
n = 3 ; (∗number o f dimensions ∗)
Sedov = NDSolve [{ (2 / (g + 1)∗u [x] − x) ∗u ’ [x] − n /2∗u [x] + (g − 1) / (g + 1)∗p ’ [x] / d [x

] == 0 , (u [x] − x ∗ (g + 1) / 2) ∗d ’ [x] / d [x] + u ’ [x] + 2∗u [x] / x == 0 , (2 / (g + 1)∗u [
x] − x) ∗p ’ [x] − 5/3∗p [x] (2 / (g + 1)∗u [x] − x) ∗d ’ [x] / d [x] − n∗p [x] == 0 , p [rsh]

== 1 , d [rsh] == 1 , u [rsh] == 1} , { p , d , u } , { x , r0 , rsh }]
Export [" sedov . csv " , Table [F l a t t e n [{ t , p [x] , u [x] , d [x] } / . Sedov] , { x , r0 , rsh ,

0 . 0 0 1 }]] ;

Listing A.2: Iterative solution for α with Mathematica
alpha0 = 0.507565; (∗ p r o p o r t i o n a l i t y constant , i n i t i a l value ∗)
t = 0 .688; (∗ e v o l u t i on t ime f o r which the s o l u t i o n i s computed ∗)
g = 5 / 3 ; (∗ heat capac i t y r a t i o ∗)
n = 3 ; (∗number o f dimensions ∗)
rs [alpha_ , t_ , n_] := alpha ^{−0.2}∗ t ^ { 2 / (2 + n) } ; (∗ shock f r o n t rad ius ∗)
ps [alpha_ , t_ , n_ , g_] := alpha ^{−0.4}∗2/ (g + 1) ∗4/ (2 + n) ^2∗ t ^{−2∗n / (2 + n) } ; (∗

shock f r o n t pressure ∗)
vs [alpha_ , t_ , n_ , g_] := (2 / (g + 1)) ∗alpha ^{−0.2}∗2/ (2 + n) ∗ t ^{−n / (2 + n) } ; (∗

shock f r o n t expansion v e l o c i t y ∗)
E t o t a l [alpha_ , t_ , n_ , g_] := 4∗Pi ∗ (N In tegra te [{ (x / rs [alpha , t , n] [[1]]) ^2∗ p [x / rs

[alpha , t , n] [[1]]] ∗ ps [alpha , t , n , g] [[1]] / (g − 1) / . Sedov } , { x , 0 , rs [alpha
, t , n] [[1]] }] + NIn tegra te [{ (x / rs [alpha , t , n] [[1]]) ^2∗0.5∗d [x / rs [alpha , t ,
n] [[1]]] ∗ (g + 1) / (g − 1)∗u [x / rs [alpha , t , n] [[1]]] ∗ vs [alpha , t , n , g] [[1]] ∗ u [x
/ rs [alpha , t , n] [[1]]] ∗ vs [alpha , t , n , g] [[1]] / . Sedov } , { x , 0 , rs [alpha , t ,
n] [[1]] }]) ; (∗ t o t a l energy ∗)

Eth [alpha_ , t_ , n_ , g_] := NIn tegra te [{ (x / rs [alpha , t , n] [[1]]) ^2∗p [x / rs [alpha , t ,
n] [[1]]] ∗ ps [alpha , t , n , g] [[1]] / (g − 1) / . Sedov } , { x , 0 , rs [alpha , t , n

] [[1]] }] / (N In tegra te [{ (x / rs [alpha , t , n] [[1]]) ^2∗p [x / rs [alpha , t , n] [[1]]] ∗ ps [
alpha , t , n , g] [[1]] / (g − 1) / . Sedov } , { x , 0 , rs [alpha , t , n] [[1]] }] +
NIn tegra te [{ (x / rs [alpha , t , n] [[1]]) ^2∗0.5∗d [x / rs [alpha , t , n] [[1]]] ∗ (g + 1) / (
g − 1)∗u [x / rs [alpha , t , n] [[1]]] ∗ vs [alpha , t , n , g] [[1]] ∗ u [x / rs [alpha , t , n
] [[1]]] ∗ vs [alpha , t , n , g] [[1]] / . Sedov } , { x , 0 , rs [alpha , t , n] [[1]] }]) ; (∗
thermal energy f r a c t i o n ∗)

newAlpha = FindRoot [E t o t a l [alpha , t , n , g] == 1 , { alpha , alpha0 } , Evaluated −>
False] [[1 , 2]] (∗ i t e r a t i v e s o l u t i o n f o r the p r o p o r t i o n a l i t y constant ∗)

182 A. Mathematica source code listings

F l a t t e n [Eth [newAlpha , t , n , g]] [[1]] (∗ output o f the thermal energy f r a c t i o n ∗)

Listing A.3: Solve for the structure between CD and shell with Mathematica
rcd = 0.85839; (∗ l o c a t i o n o f the CD, inner boundary ∗)
Weaver77 = NDSolve [{ 3 ∗ (u [x] − x) ∗u ’ [x] − 2∗u [x] + 3∗p ’ [x] / g [x] == 0 , (u [x] − x) ∗g

’ [x] / g [x] + u ’ [x] + 2∗u [x] / x == 0 , 3∗(u [x] − x) ∗p ’ [x] − 3∗5/3∗p [x] (u [x] − x) ∗
g ’ [x] / g [x] − 4∗p [x] == 0 , p [1] == 0.75 , g [1] == 4 , u [1] == 0 .75 } , { p , g , u } ,
{ x , rcd , 1 }]

Export [" weaver77 . csv " , Table [F l a t t e n [{ t , p [x] , u [x] , d [x] } / . Weaver77] , { x , rcd ,
1 , 0 . 0 0 1 }]] ;

Appendix B

Pluto source code listings

The listings in this section show the differences between the code used for this work and the
standard version of PLUTO 4.0 (Mignone et al., 2007, 2012). The latter version can be obtained at
http://plutocode.ph.unito.it/.

Listing B.1: Modifications in boundary.c
32 /∗ / ∗ /
33 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r :
34 c a l l UserDefBoundary f o r SN exp los ions (def ined i n i n i t . c)
35 and s to re t ime of l a s t SN event l i n e s 65 and 93−98 ∗ /
36 /∗ / ∗ /
65 s t a t i c double l a s t _ t i m e = −1.0; / / t ime of the l a s t SN event
93 i f (g_time−g_dt <= g_supernova && g_time > l a s t _ t i me) {
94 / / i n s e r t a l l feedback a t once − p r e d i c t o r / c o r r e c t o r scheme would otherwise

make energy i npu t unpred ic tab le (to 10%)
95 UserDefBoundary (d , NULL, 0 , g r i d) ;
96 / / p r i n t f (" t ime %g %g \ n " , g_time , l a s t _ t i m e) ;
97 }
98 l a s t _ t i m e =g_time ;

Listing B.2: Modifications in cooltable.dat to create an artificial equilibrium
226 1.057800e+03 9.560100e−25
227 1.079900e+03 0.0
228 1.102600e+03 0.0
229 1.125600e+03 9.736300e−25

Listing B.3: Modifications in cooling_source.c
1 # def ine RHOMIN 0.09
2 #undef RHOMIN

35 /∗ / ∗ /
36 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r :
37 RHOMIN can be used to swi tch o f f coo l i ng below t h i s dens i t y : l i n e 1−2, 106−109,

222−227
38 no coo l i ng losses i n feedback reg ion : l i n e 111−112, 158
39 s to re coo l i ng losses f o r ana l ys i s : l i n e 113
40 g_minCoolingTemp i s ignored : l i n e 196
41 ∗ /
42 /∗ / ∗ /

106 # i f d e f RHOMIN

http://plutocode.ph.unito.it/

184 B. Pluto source code listings

107 / / p r i n t (" ! CoolingSource %f %f \ n " , g_inputParam [RHO_MIN] , g_inputParam [RHO_IN
]) ;

108 i f (v0 [RHO] > g_inputParam [RHO_MIN] ∗ g_inputParam [RHO_IN]) {
109 # end i f
111 i f (GXYZ[IDIR] . x [i] < g_inputParam [R_DRIVER]) { v0 [TRC] = 0 . 0 ; } / / no coo l i ng losses

i n s i d e feedback reg ion
112 else { Radiat (v0 , k1) ; }
113 d−>Vc [TRC] [k] [j] [i]= v0 [TRC] ; / / save coo l i ng loss i n t r a c e r
196 / / i f (T1 < g_minCoolingTemp && T0 > g_minCoolingTemp)
222 # i f d e f RHOMIN
223 } e lse
224 { v0 [TRC] = 0 . 0 ;
225 d−>Vc [TRC] [k] [j] [i]= v0 [TRC] ; / / save coo l i ng loss i n t r a c e r
226 }
227 # end i f

Listing B.4: Modifications in eta_visc.c
4 /∗ / ∗ /
5 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r :
6 custom value of e ta2_v isc i n l i n e 27 ∗ /
7 /∗ / ∗ /

27 ∗eta2_v isc = 5.5e−8;

Listing B.5: Modifications in globals.h
100 double g_un i tDens i t y = 1 .e−22; /∗∗< Un i t dens i t y i n gr /cm^3. ∗ /
101 double g_uni tLength = 1. e19 ; /∗∗< Un i t Legnth i n cm. ∗ /
102 double g _ u n i t V e l o c i t y = 1 . e8 ; /∗∗< Un i t v e l o c i t y i n cm/ sec . ∗ /
109 double g_smal lDensi ty = 1 .e−7; /∗∗< Small value f o r dens i t y f i x . ∗ /
110 double g_smal lPressure = 1.e−7; /∗∗< Small value f o r pressure f i x . ∗ /
117 double g_supernova = 500 . ; /∗∗< The l a t e s t t ime when the SN goes o f f . ∗ /

Listing B.6: Modifications in input_data.c
34 /∗ /
35 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r :
36 InputDataRead loop over nv removed . nv i s now inpu t parameter l i n e s 195 , 206 ,

242 , 268
37 New i n t e r p o l a t i o n f u n c t i o n : vo id InputDataExpand1d (double ∗vs , double x1) ∗ /
38 /∗ / ∗ /

195 vo id InputDataRead (char ∗data_fname , i n t nv)
206 i n t i , j , k ;
242 / / f o r (nv = 0; nv < id_nvar ; nv++) {
268 / / }
469 vo id InputDataExpand1d (double ∗vs , double x1)
470 /∗ !
471 ∗ Perform bi− or t r i −l i n e a r i n t e r p o l a t i o n on ex te rna l
472 ∗ dataset to compute vs [] a t the given po in t { x1 , x2 , x3 } .
473 ∗
474 ∗ \ param [i n] vs i n t e r p o l a t e d value
475 ∗ \ param [i n] x1 coord ina te po in t a t which a t i n t e r p o l a t e s are des i red
476 ∗ \ param [i n] x2 coord ina te po in t a t which a t i n t e r p o l a t e s are des i red
477 ∗ \ param [i n] x3 coord ina te po in t a t which a t i n t e r p o l a t e s are des i red
478 ∗ \ r e t u r n This f u n c t i o n has no r e t u r n value .
479 ∗

185

480 ∗ The f u n c t i o n performs the f o l l o w i n g tasks .
481 ∗∗∗ ∗ /
482 {
483 i n t nv , inv , i i =0 ;
484 double ∗∗∗V;
485 /∗ −−− ∗ /
486 /∗ ! − Make sure po in t (x1 , x2 , x3) does not f a l l ou ts ide i npu t g r i d range .
487 L i m i t to i npu t g r i d edge otherwise . ∗ /
488 /∗ −−− ∗ /
489 i f (x1 >= id_x1 [0] && x1 <= id_x1 [id_nx1 −1]) {
490 i i = 0 ;
491 whi le (x1 > id_x1 [i i] && i i <id_nx1−1) {
492 i i ++;
493 }
494 / / i f (i i >2) { i i −=2;} ;
495 f o r (nv = 0; nv < id_nvar ; nv++) {
496 i nv = id_var_ indx [nv] ;
497 V = Vin [nv] ;
498 vs [i nv] = V [0] [0] [i i] ;
499 }
500 }
501 else {
502 vs [RHO] = g_inputParam [RHO_IN] ; /∗ 1e−22 g / cm3 ∗ /
503 vs [VX1] = 0 . 0 ; /∗ i n i t i a l Vx ar ray ∗ /
504 vs [VX2] = 0 . 0 ; /∗ i n i t i a l Vy ar ray ∗ /
505 vs [VX3] = 0 . 0 ; /∗ i n i t i a l Vz ar ray ∗ /
506 vs [PRS] = g_inputParam [PRS_IN] ; /∗ 1e−6 erg / cm3 ∗ /
507 vs [TRC] = 0 . 0 ;
508 }
509 }

Listing B.7: Modifications in mappers.c
21 /∗ / ∗ /
22 /∗ Plu to 4.0 only sets a minimal dens i ty , i f negat ive d e n s i t i e s are found .
23 M o d i f i c a t i o n s K. F i e r l i n g e r :
24 (1) don ’ t l e t dens i t y drop below minimal dens i t y : . . . l i n e s 58−59 and 116−132
25 (2) use maximum of g_smal lPressure or mean value o f l e f t + r i g h t c e l l (to avoid

new pressure mimina)
26 i f due to the new pressure the thermal energy i s now l a r g e r than the t o t a l

energy , remove k i n e t i c energy .
27 otherwise reduce k i n e t i c energy by sca l i ng v e l o c i t i e s l i n e s 178−182 and

191−209 ∗ /
28 /∗ / ∗ /
58 rho=MAX(g_smal lDensi ty , rho) ;
59 / / i f (rho < 0 .0) { p r i n t (" rho <0") ; }

116 i f (u [RHO] < g_smal lDensi ty) {
117 # i f d e f WARNMINRHO
118 p r i n t (" ! ConsToPrim : too low dens i t y (%8.2e) , " , u [RHO]) ;
119 p r i n t (" o ld pressure : (%8.2e) , " , u [PRS]) ;
120 # end i f
121 / / constant temperature (p / nV) =kT
122 / / u [PRS] = MAX(g_smallPressure , g_smal lDensi ty∗u [PRS] / u [RHO]) ;
123 / / constant i n t e r n a l energy E(i n t e rma l) = p / (gamma−1)
124 u [PRS] = MAX(g_smallPressure , u [PRS]) ;
125 / / constant t o t a l energy : E = p / (gamma−1)+ 0.5 rho v^2

186 B. Pluto source code listings

126 / / u [PRS] = MAX(g_smallPressure , u [PRS]+0 .5∗ (g_gamma−1.0)∗m2∗ (1 . / u [RHO]−1. /
g_smal lDensi ty)) ;

127 u [RHO] = g_smal lDensi ty ;
128 # i f d e f WARNMINRHO
129 p r i n t (" new dens i t y (%8.2e) , " , u [RHO]) ;
130 p r i n t (" new pressure (%8.2e) , " , u [PRS]) ;
131 Where (i , NULL) ;
132 # end i f
178 EXPAND(v [VX1] = 0 . 0 ; ,
179 v [VX2] = 0 . 0 ; ,
180 v [VX3] = 0 . 0 ;)
182
182 u [ENG] = g_smal lPressure /gmm1;
191 / / use maximum of g_smal lPressure or mean value o f l e f t + r i g h t c e l l (to

avoid new pressure mimina)
192 v [PRS] = MAX(g_smallPressure , 0 . 5∗ (uprim [i −1][PRS]+ uprim [i + 1] [PRS])) ;

/ / warning : uprim [i + 1] [PRS] not yet updated
193 p r i n t (" ! negat ive p (l e f t) (%8.2e) p (%8.2e) p (r i g h t) (%8.2e) , \ n " ,

uprim [i −1][PRS] , v [PRS] , uprim [i + 1] [PRS]) ;
194 i f (u [ENG] <= v [PRS] / gmm1) {
195 / / i f due to the new pressure the thermal energy i s now l a r g e r than the

t o t a l energy , remove k i n e t i c energy .
196 v [PRS] = u [ENG]∗gmm1;
197 EXPAND(v [VX1] = 0 . 0 ; ,
198 v [VX2] = 0 . 0 ; ,
199 v [VX3] = 0 . 0 ;)
200 } e lse {
201 / / o therwise reduce k i n e t i c energy by sca l i ng v e l o c i t i e s .
202 / / corr_e = s q r t (E_kin (new) / E_kin (o ld)) = v (new) / v (o ld)
203 corr_e = s q r t ((u [ENG]−v [PRS] / gmm1) / k in) ;
204 p r i n t (" ! negat ive p (E) v (new) / v (o ld) (%8.2e) , \ n " , corr_e) ;
205 / / k i n = 0.5∗m2/ u [RHO] ;
206 EXPAND(v [VX1] = v [VX1]∗ corr_e ; ,
207 v [VX2] = v [VX2]∗ corr_e ; ,
208 v [VX3] = v [VX3]∗ corr_e ;)
209 }

Listing B.8: Modifications in pluto.h
1076 extern double g_time , g_dt , g_supernova ;

Listing B.9: Modifications in prototypes.h
50 vo id InputDataRead (char ∗ , i n t) ;

158 vo id Wind (double , double ∗e , double ∗m) ;

Listing B.10: Modifications in radiat.c
1 # inc lude " p l u to . h "
2 # def ine mass_X 0.7519 /∗ = hydrogen mass f r a c t i o n , mean molar mass 1.33 l i k e

Thornton ∗ /
3 / / # de f ine mass_X 0.732 /∗ = hydrogen mass f r a c t i o n , frac_H = 0.917 ,

(1.008+4.004∗0.082+0.03) =1.366 ∗ /
4 / / # de f ine f rac_Z 1.e−3 /∗ = N(Z) / N(H) , f r a c t i o n a l number dens i t y o f metals

(Z)
5 / / w i th respect to hydrogen (H) ∗ /

187

6 / / # de f ine frac_He 0.082 /∗ = N(Z) / N(H) , f r a c t i o n a l number dens i t y o f hel ium
(He)

7 / / w i th respect to hydrogen (H) ∗ /
8 / / # de f ine A_Z 30.0 /∗ mean atomic weight o f heavy elements ∗ /
9 / / # de f ine A_He 4.004 /∗ atomic weight o f Helium ∗ /

10 / / # de f ine A_H 1.008 /∗ atomic weight o f Hydrogen ∗ /
12
12 #undef OUTPUT_EQUILIBRIUM
13 #undef COOLING_SUBSTEP
14 # def ine a r t i f i c i a l _ I S M
15 #undef a r t i f i c i a l _ I S M
16 #undef EVA_table
17 # def ine EVA_table 1 / / use the tab le o f Eva Ntormousi e t a l . 2011 ApJ 731 , 13 . . .

the CLOUDY par t (>25000 K) inc ludes gra ins , the lower pa r t takes i o n i z a t i o n
i n t o account .

18 #undef TAB_table
19 # def ine TAB_table 1 / / use Plu to ’ s CLOUDY tab le too [NOT good below 25000 K]
20 /∗ ∗∗∗ ∗ /
21 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r :
22 Modes : w r i t e e q u i l i b r i u m data to f i l e l i n e 10
23 Modes : make severa l coo l i ng t ime steps per hydro t ime step l i n e 11
24 Modes : add coo l i ng as i n Ntormousi e t a l . 2011 ApJ 731 , 13 l i n e s 12−13
25 Modes : use Plu to ’ s t ab l e above 25000 K l i n e 14
26 ∗ /
27 /∗ / ∗ /
28 vo id Radiat (r e a l ∗v , r e a l ∗ rhs)
29 /∗
30 ∗ NAME Radiat
31 ∗ PURPOSE Provide r . h . s . f o r tabu la ted coo l i ng .
32 ∗
33 ∗∗∗ ∗ /
34 {
35 # i f d e f EVA_table
36 /∗ −−−
37 Read tabu la ted coo l i ng f u n c t i o n :
38 This code i s based on the f90 vers ion o f E . Ntormousi . See Ntormousi e t a l
39 2011 ApJ 731 , 13. I t reads coo l i ng and heat ing ra tes from a f i l e created
40 by the program cooleq . pro (F . Hei tsch) f o r the I n t e r s t e l l a r Medium
41 This f i x e d tab le inc ludes heat ing and coo l i ng rates , as we l l as t h e i r
42 d e r i v a t i v e s wi th respect to temperature
43 −−− ∗ /
44 s t a t i c double ∗n1_tab , ∗n2_tab , ∗T1_tab , ∗T2_tab ; / / 1d Arrays f o r hydrogen

number dens i t y nH [1 / cm3] or temperature [K]
45 s t a t i c double ∗∗cool1_tab , ∗∗heat1_tab ; / / 2d Arrays f o r Lambda(n , T) −

heat ing and coo l i ng from tab le1
46 s t a t i c double ∗∗cool1pr ime_tab , ∗∗heat1prime_tab ; / / 2d Arrays f o r Lambda ’ (n , T)

− heat ing and coo l i ng d e r i v a t i v e s j u s t present i n tab le1
47 s t a t i c double ∗∗cool2_tab , ∗∗heat2_tab ; / / 2d Arrays f o r Lambda(n , T) −

heat ing and coo l i ng from tab le2
48 FILE ∗ f coo l1 ; / / f i l e p o i n t e r to the b inary

f i l e s
49 s i z e _ t t e s t r e s u l t ;
50 / / r e a l smallnum_cool ing= 1e−13; / / avoid numer ical problems
52
52 r e a l nH_min_fix = 0.01 ; / / minimum dens i t y [nH i n 1 /cm3]

188 B. Pluto source code listings

53 r e a l nH_max_fix = 1 . e5 ; / / maximum dens i t y [nH i n 1 /cm3]
54 r e a l T_min_f ix_1 = 10. ; / / minimum temperature [K] f o r coo l i ng tab l e 1
55 r e a l T_max_fix_1 = 2.5e4 ; / / maximum temperature [K] f o r coo l i ng tab l e 1
56 r e a l T_min_f ix_2 = 2.5e4 ; / / minimum temperature [K] f o r coo l i ng tab l e 2
57 r e a l T_max_fix_2 = 9.999e6 ; / / maximum temperature [K] f o r coo l i ng tab l e 2
59
59 i n t nbin_T_1 =500; / / t ab l e 1 r e s o l u t i o n i n temperature
60 i n t nbin_T_2 =9975; / / t ab l e 2 r e s o l u t i o n i n temperature
61 i n t nbin_n_1 =500; / / t ab l e 1 r e s o l u t i o n i n dens i t y
62 i n t nbin_n_2 =8; / / t ab l e 2 r e s o l u t i o n i n dens i t y
64
64 double nH ; / / Hydrogen number dens i t y nH [1 / cm3]
65 double log10n , log10T ; / / log10 of the hydrogen number dens i t y nH [1 / cm3] or

temperature [K]
66 double dlog_nH_1 , dlog_T_1 , h_1 , h2_1 , h3_1 ; / / f i r s t t ab l e : e q u i d i s t a n t step s ize

i n log10 (nH) and log10 (T)
67 double dlog_nH_2 , d_T_2 ; / / second tab le : e q u i d i s t a n t step s ize i n log10 (nH) and

T [NOT log10 (T)]
68 i n t i_nH_1 , i_nH_2 , i_T ; / / p o s i t i o n o f the lower i n t e r v a l boundary
69 double w1H_1 , w1H_2 , w2H_1 , w2H_2 ; / / weights f o r lower / upper pa r t o f the i n t e r v a l

i n dens i t y . . . the dens i t y i s between two values i n the l o g a r i t h m i c a l l y
e q u i d i s t a n t dens i t y t ab l e

70 # end i f
71 # i f ! def ined (EVA_table) | | def ined (TAB_table)
72 i n t k lo , khi , kmid ; / / t ab l e element number f o r b ina ry search
73 s t a t i c i n t ntab ; / / t ab l e s ize
74 s t a t i c r e a l ∗L_tab , ∗T_tab ; / / 1d Arrays f o r the coo l i ng f u n c t i o n and temperature

[K]
75 r e a l scrh ; / / i n t e r p o l a t e L_Tab [erg cm3 / s]
76 r e a l Tmid , dT ; / / T a t center o f i n t e r v a l , temperature d i f f e r e n c e
77 FILE ∗ f c o o l ; / / f i l e p o i n t e r to the coo l i ng tab l e
78 # end i f
79 r e a l mu, T , lambda ;
80 s t a t i c r e a l E_cost ; / / conver ts erg / cm3 / s to code u n i t s
81 # i f d e f a r t i f i c i a l _ I S M
82 r e a l T0 ;
83 # end i f
84 / / i f (x1 < g_inputParam [R_DRIVER]) { rhs [PRS] = 0 . 0 ; v [TRC] = 0 . 0 ; r e t u r n ; }
85 /∗ −−
86 /∗ −−
87 Load Table
88 −− ∗ /
89 / / nH = v [RHO]∗ g_un i tDens i t y /CONST_mp;
90 # i f d e f EVA_table
91 nH = v [RHO]∗ g_un i tDens i t y ∗mass_X /CONST_mp;
92 log10n=log10 (nH) ;
93 /∗ −−−
94 Read tabu la ted coo l i ng f u n c t i o n
95 −−− ∗ /
96 i f (T1_tab == NULL) {
97 p r i n t 1 (" > Reading tab l e 1 from d isk . . . \ n ") ;
98 f coo l1 = fopen (" coo l ing_tab le_n_−2_5_T_10_25000 . dat " , " rb ") ;
99 i f (f coo l1 == NULL) {

100 p r i n t 1 (" ! coo l ing_tab le_n_−2_5_T_10_25000 . dat does not e x i s t . \ n ") ;
101 QUIT_PLUTO(1) ;

189

102 }
103 n1_tab = ARRAY_1D(nbin_n_1 , double) ;
104 T1_tab = ARRAY_1D(nbin_T_1 , double) ;
105 heat1_tab = ARRAY_2D(nbin_n_1 , nbin_T_1 , double) ;
106 cool1_tab = ARRAY_2D(nbin_n_1 , nbin_T_1 , double) ;
107 heat1prime_tab = ARRAY_2D(nbin_n_1 , nbin_T_1 , double) ;
108 cool1pr ime_tab = ARRAY_2D(nbin_n_1 , nbin_T_1 , double) ;
110
110 / / f i l e 1 conta ins b inary reak k ind=8 (8 byte) : heat ing rates ,
111 / / coo l i ng rates , d (heat ing) / dT , d (coo l i ng) / dT i n t h i s order .
113
113 double a ;
114 char tmp [8] ;
115 t e s t r e s u l t = f read (tmp ,1 ,4 , f coo l1) ;
116 i n t i , j ;
117 f o r (i =0; i <nbin_n_1 ; i ++) { / / populate n1_tab
118 t e s t r e s u l t = f read (& n1_tab [i] , s i z e o f (a) ,1 , f coo l1) ;
119 / / p r i n t f (" ! n[%d]= %12.6e \ n " , i , n1_tab [i]) ;
120 }
121 t e s t r e s u l t = f read (&a , s i z e o f (a) ,1 , f coo l1) ;
122 f o r (i =0; i <nbin_T_1 ; i ++) { / / populate T1_tab
123 t e s t r e s u l t = f read (&T1_tab [i] , s i z e o f (a) ,1 , f coo l1) ;
124 / / p r i n t f (" ! T[%d]= %12.6e \ n " , i , T1_tab [i]) ;
125 }
127
127 t e s t r e s u l t = f read (&a , s i z e o f (a) ,1 , f coo l1) ;
128 f o r (i =0; i <nbin_T_1 ; i ++) {
129 f o r (j =0; j <nbin_n_1 ; j ++) { / / populate heat1_tab
130 t e s t r e s u l t = f read (& heat1_tab [j] [i] , s i z e o f (a) ,1 , f coo l1) ;
131 }
132 }
133 t e s t r e s u l t = f read (&a , s i z e o f (a) ,1 , f coo l1) ;
134 f o r (i =0; i <nbin_T_1 ; i ++) {
135 f o r (j =0; j <nbin_n_1 ; j ++) { / / populate cool1_tab
136 t e s t r e s u l t = f read (& cool1_tab [j] [i] , s i z e o f (a) ,1 , f coo l1) ;
137 }
138 }
139 t e s t r e s u l t = f read (&a , s i z e o f (a) ,1 , f coo l1) ;
140 f o r (i =0; i <nbin_T_1 ; i ++) {
141 f o r (j =0; j <nbin_n_1 ; j ++) { / / populate heat1prime_tab
142 t e s t r e s u l t = f read (& heat1prime_tab [j] [i] , s i z e o f (a) ,1 , f coo l1) ;
143 }
144 }
145 f o r (i =0; i <nbin_T_1 ; i ++) {
146 f o r (j =0; j <nbin_n_1 ; j ++) { / / populate cool1pr ime_tab
147 t e s t r e s u l t = f read (& cool1pr ime_tab [j] [i] , s i z e o f (a) ,1 , f coo l1) ;
148 }
149 }
151
151 f c l o s e (f coo l1) ;
153
153 p r i n t 1 (" > Reading tab l e 2 from d isk . . . \ n ") ;
154 f coo l1 = fopen (" coo l ing_tab le_n_−2_5_T_25000_107 . dat " , " rb ") ;
155 i f (f coo l1 == NULL) {
156 p r i n t 1 (" ! coo l ing_tab le_n_−2_5_T_25000_107 . dat does not e x i s t . \ n ") ;

190 B. Pluto source code listings

157 QUIT_PLUTO(1) ;
158 }
159 n2_tab = ARRAY_1D(nbin_n_2 , double) ;
160 T2_tab = ARRAY_1D(nbin_T_2 , double) ;
161 heat2_tab = ARRAY_2D(nbin_n_2 , nbin_T_2 , double) ;
162 cool2_tab = ARRAY_2D(nbin_n_2 , nbin_T_2 , double) ;
164
164 t e s t r e s u l t = f read (tmp ,1 ,4 , f coo l1) ;
165 f o r (i =0; i <nbin_n_2 ; i ++) { / / populate n2_tab
166 t e s t r e s u l t = f read (& n2_tab [i] , s i z e o f (a) ,1 , f coo l1) ;
167 }
168 t e s t r e s u l t = f read (&a , s i z e o f (a) ,1 , f coo l1) ;
169 f o r (i =0; i <nbin_T_2 ; i ++) { / / populate T2_tab
170 t e s t r e s u l t = f read (&T2_tab [i] , s i z e o f (a) ,1 , f coo l1) ;
171 }
173
173 t e s t r e s u l t = f read (&a , s i z e o f (a) ,1 , f coo l1) ;
174 f o r (i =0; i <nbin_T_2 ; i ++) {
175 f o r (j =0; j <nbin_n_2 ; j ++) { / / populate cool2_tab
176 t e s t r e s u l t = f read (& cool2_tab [j] [i] , s i z e o f (a) ,1 , f coo l1) ;
177 cool2_tab [j] [i] = log10 (cool2_tab [j] [i]) ;
178 / / cool2_tab [j] [i] = log10 (cool2_tab [j] [i]) −(2.∗n2_tab [j]) ;
179 }
180 }
181 / / ! heat / coo l swapped . Heating always >> coo l ing
182 t e s t r e s u l t = f read (&a , s i z e o f (a) ,1 , f coo l1) ;
183 f o r (i =0; i <nbin_T_2 ; i ++) {
184 f o r (j =0; j <nbin_n_2 ; j ++) { / / populate heat2_tab
185 t e s t r e s u l t = f read (& heat2_tab [j] [i] , s i z e o f (a) ,1 , f coo l1) ;
186 heat2_tab [j] [i] = log10 (heat2_tab [j] [i]) ;
187 }
188 }
189 f c l o s e (f coo l1) ;
190 # i f d e f OUTPUT_EQUILIBRIUM
191 /∗−−−∗ /
192 / / ou tput coo l i ng heat ing e q u i l i b r i u m
193 double xT =0.0 ;
194 double dL=1e11 ;
195 double xdL , Lsign ;
196 f o r (i =1; i <nbin_T_1 ; i ++) {
197 dL=1e11 ;
198 f o r (j =0; j <nbin_n_1 ; j ++) {
199 Lsign =(cool1_tab [j] [i]−heat1_tab [j] [i]) ∗ (cool1_tab [j] [i−1]−heat1_tab [j] [i

−1]) ;
200 / / p r i n t f (" %12.6e %12.6e %12.6e %12.6e %12.6e \ n " , cool1_tab [j] [i] ,

heat1_tab [j] [i] , pow(1 0 . , cool1_tab [j] [i]) ,pow(1 0 . , heat1_tab [j] [i]) , xdL) ;
201 i f (Lsign < 0 .0)
202 {
203 xT=n1_tab [j −1]+(n1_tab [j−1]−n1_tab [j]) ∗ (cool1_tab [j] [i−1]−heat1_tab [j] [i

−1]) / (cool1_tab [j] [i−1]−heat1_tab [j] [i−1]−cool1_tab [j] [i]+ heat1_tab [j
] [i]) ;

204 } ;
205 }
206 p r i n t f (" %12.6e %12.6e \ n " , xT , T1_tab [i]) ;
207 / / p r i n t f (" %12.6e %12.6e %12.6e \ n " , xT , T1_tab [i] , Lsign) ;

191

208 }
209 QUIT_PLUTO(1) ;
210 /∗−−−∗ /
211 # end i f
212 /∗−−−∗
213 / / ou tput coo l i ng f u n c t i o n
214 dlog_nH_1 = (double) (nbin_n_1−1) / (n1_tab [nbin_n_1−1]−n1_tab [0]) ; / / 1 / de l t a

(log10 nH)
215 f o r (j =0; j <nbin_n_2 ; j ++) {
216 i_nH_1 = MIN(MAX((i n t) f l o o r (((double) (j −2)−n1_tab [0]) ∗dlog_nH_1) ,0) , nbin_n_1

−2) ; / / l e f t index i n nH
217 p r i n t f (" \ n \ n # log10 (nH[%d]) = %12.6e [nH /cm3] , log10 (nH[%d]) = %12.6e [nH /

cm3] , log10 (nH[%d]) = %12.6e [nH /cm3] \ n " , j , n2_tab [j] , i_nH_1 , n1_tab [i_nH_1
] , i_nH_1+1 , n1_tab [i_nH_1 +1]) ;

218 f o r (i =0; i <nbin_T_1 ; i ++) {
219 p r i n t f (" %12.6e %12.6e %12.6e %12.6e %12.6e \ n " ,pow(1 0 . , T1_tab [i]) ,

cool1_tab [i_nH_1] [i] , heat1_tab [i_nH_1] [i] , cool1_tab [i_nH_1 + 1] [i] ,
heat1_tab [i_nH_1 + 1] [i]) ;

220 }
221 f o r (i =0; i <nbin_T_2 ; i ++) {
222 p r i n t f (" %12.6e %12.6e %12.6e \ n " , T2_tab [i] , cool2_tab [j] [i] , heat2_tab [j] [

i]) ;
223 }
224 }
225 QUIT_PLUTO(1) ;
226 ∗−−−∗ /
227 # i f d e f TAB_table
228 } / / add t h i s " } " i f you want to use both tab les
229 # end i f
230 # end i f
231 # i f ! def ined (EVA_table) | | def ined (TAB_table)
232 /∗−−−∗ /
233 i f (T_tab == NULL) {
234 p r i n t 1 (" > Reading tab l e from d isk . . . \ n ") ;
235 f c o o l = fopen (" c oo l t a b l e . dat " , " r ") ;
236 i f (f c o o l == NULL) {
237 p r i n t 1 (" ! c o o l t a b l e . dat does not e x i s t . \ n ") ;
238 QUIT_PLUTO(1) ;
239 }
240 L_tab = ARRAY_1D(20000 , double) ;
241 T_tab = ARRAY_1D(20000 , double) ;
243
243 ntab = 0;
244 whi le (f scan f (f coo l , "%l f %l f \ n " , T_tab + ntab ,
245 L_tab + ntab) !=EOF) {
246 ntab ++;
247 }
248 /∗ −−− ∗ /
249 # end i f
250 E_cost = g_uni tLength / g_un i tDens i t y / pow(g_un i tVe loc i t y , 3 .0) ; / / conver ts

erg / cm3 / s to code u n i t s
251 }
253
253 /∗ −−−
254 Get temperature

192 B. Pluto source code listings

255 −−− ∗ /
257
257 i f (v [PRS] < 0 .0) v [PRS] = g_smal lPressure ;
258 /∗ mean molecular weight ∗ /
259 i f (v [PRS] / v [RHO]∗KELVIN < 1e4) {mu=1 .33 ; } / / mu=1.33 l i k e i n Thornton
260 else {mu = MeanMolecularWeight (v) ; } ; / / f u l l y i on i zed
261 T = v [PRS] / v [RHO]∗KELVIN∗mu;
262 i f (T != T) {
263 p r i n t f (" ! Nan found i n r a d i a t \ n ") ;
264 # i f d e f EVA_table
265 p r i n t f (" ! rho = %12.6e [1 / cm3] , pr = %12.6e [1e−6 erg / cm3] \ n " ,nH, v [PRS]) ;
266 #else
267 p r i n t f (" ! rho = %12.6e [1e−22 g / cm3] , pr = %12.6e [1e−6 erg / cm3] \ n " , v [RHO] ,

v [PRS]) ;
268 # end i f
269 QUIT_PLUTO(1) ;
270 }
272
272 # i f d e f a r t i f i c i a l _ I S M
273 T0=g_inputParam [PRS_IN] / g_inputParam [RHO_IN]∗KELVIN∗mu;
274 i f (T > T0−0.02 && T < T0+0.02) { / / a r t i f i c i a l e q u i l i b r i u m at i n i t i a l cond i t i ons
275 rhs [PRS] = 0 . 0 ;
276 v [TRC] = 0 . 0 ;
277 r e t u r n ;
278 }
279 # end i f
281
281 i f (T < g_minCoolingTemp) {
282 rhs [PRS] = 0 . 0 ;
283 v [TRC] = 0 . 0 ;
284 r e t u r n ;
285 }
286 /∗ −−
287 Table lookup
288 −− ∗ /
289 # i f d e f EVA_table
290 # i f d e f TAB_table
291 i f (T > MAX(T_max_fix_2 , T_tab [ntab−1]) | | T < T_min_f ix_1 | | nH < nH_min_fix | |

nH > nH_max_fix) {
292 / / use both coo l i ng f u n c t i o n s − use fu l i f h igh temperature end of the coo l i ng

tab l e should be inc luded
293 / /−− i f you want t h i s , the " usual t ab l e " has to be inc luded (" i f d e f TAB_table "

must be t rue) ∗ /
294 #else
295 i f (T > T_max_fix_2 | | T < T_min_f ix_1 | | nH < nH_min_fix | | nH > nH_max_fix) {

/ / avoid e x t r a p o l a t i o n
296 # end i f
297 rhs [PRS] = 0 . 0 ;
298 v [TRC] = 0 . 0 ;
299 r e t u r n ;
300 }
302
302 / / f i r s t t ab l e
303 dlog_nH_1 = (double) (nbin_n_1−1) / (n1_tab [nbin_n_1−1]−n1_tab [0]) ; / / 1 / de l t a (

log10 nH)

193

304 dlog_T_1 = (double) (nbin_T_1−1) / (T1_tab [nbin_T_1−1]−T1_tab [0]) ; / / 1 / de l t a (
log10 T)

305 h_1 = 1 . 0 / dlog_T_1 ; / / de l t a (log10 T)
306 h2_1 = h_1∗h_1 ; / / (de l t a (log10 T)) ^2
307 h3_1 = h2_1∗h_1 ; / / (de l t a (log10 T)) ^3
309
309 / / second tab le
310 dlog_nH_2 = (double) (nbin_n_2−1) / (n2_tab [nbin_n_2−1]−n2_tab [0]) ; / / 1 / de l t a (

log10 nH)
311 / /WARNING t h i s t ab l e i s e q u i d i s t a n t i n T NOT i n log10 T
312 d_T_2 = (double) (nbin_T_2−1) / (T2_tab [nbin_T_2−1]−T2_tab [0]) ; / / 1 / de l t a (T

)
315
315
315 / / both tab les are e q u i d i s t a n t i n log10 (rho)
316 / / f i r s t t ab l e
317 i_nH_1 = MIN(MAX((i n t) f l o o r ((log10n−n1_tab [0]) ∗dlog_nH_1) ,0) , nbin_n_1−2) ; / /

l e f t index i n nH
318 w1H_1 = (n1_tab [i_nH_1+1]− log10n) ∗dlog_nH_1 ; / / l e f t weight i n nH (smal le r

d is tance −> higher weight)
319 w2H_1 = (log10n−n1_tab [i_nH_1]) ∗dlog_nH_1 ; / / r i g h t weight i n nH
321
321 / / second tab le
322 i_nH_2 = MIN(MAX((i n t) f l o o r ((log10n−n2_tab [0]) ∗dlog_nH_2) ,0) , nbin_n_2−2) ; / /

l e f t index i n nH
323 w1H_2 = (n2_tab [i_nH_2+1]− log10n) ∗dlog_nH_2 ; / / l e f t weight i n nH (smal le r

d is tance −> higher weight)
324 w2H_2 = (log10n−n2_tab [i_nH_2]) ∗dlog_nH_2 ; / / r i g h t weight i n nH
326
326 i f (T<T_min_f ix_2) {
327 double yy , yy2 , yy3 , fa , fb , fpr ima , fpr imb , fb fa , beta ,gamma1, cool , cool_prime , heat ,

heat_prime ;
329
329 log10T=log10 (T) ;
331
331 / / p r i n t f (" ! T1[0]=%12.6e , T1[%d]=%12.6e \ n " , T1_tab [0] , nbin_T_1−1, T1_tab [

nbin_T_1−1]) ;
332 / / p r i n t f (" ! log10 (T) =%12.6e , dlog_T_1=%12.6e \ n " , log10T , dlog_T_1) ;
333 i_T = MIN(MAX((i n t) f l o o r ((log10T−T1_tab [0]) ∗dlog_T_1) ,0) , nbin_T_1−2) ; / / l e f t

index i n T
334 yy = log10T−T1_tab [i_T] ; / / (log10 T − log10 T_gr id)
335 yy2 = yy∗yy ; / / (log10 T − log10 T_gr id) ^2
336 yy3 = yy2∗yy ; / / (log10 T − log10 T_gr id) ^3
338
338 fa = cool1_tab [i_nH_1] [i_T]∗w1H_1 + cool1_tab [i_nH_1 + 1] [i_T]∗w2H_1 ; / /

i n t e r p o l a t e l e f t T i n nH
339 fb = cool1_tab [i_nH_1] [i_T +1]∗w1H_1 + cool1_tab [i_nH_1 + 1] [i_T +1]∗w2H_1 ; / /

i n t e r p o l a t e r i g h t T i n nH
340 fp r ima = cool1pr ime_tab [i_nH_1] [i_T]∗w1H_1 + cool1pr ime_tab [i_nH_1 + 1] [i_T]∗

w2H_1 ; / / i n t e r p o l a t e l e f t dT i n nH
341 fp r imb = cool1pr ime_tab [i_nH_1] [i_T +1]∗w1H_1 + cool1pr ime_tab [i_nH_1 + 1] [i_T +1]∗

w2H_1 ; / / i n t e r p o l a t e r i g h t dT i n nH
342 f b f a = (fb−fa) ;
344
344 r e a l smallnum_cool ing= 1e−13; / / avoid numer ical problems

194 B. Pluto source code listings

345 i f (abs (f b f a / fb) <smallnum_cool ing) { f b f a = 0 . 0 ; }
347
347 beta = 3 .0∗ (f b f a) / h2_1−(2.0∗ fp r ima+fpr imb) / h_1 ;
348 gamma1 = (fpr ima+fpr imb) / h2_1−2.0∗(f b f a) / h3_1 ;
349 cool = pow(10 .0 , fa+ fpr ima∗yy+beta∗yy2+gamma1∗yy3) ;
351
351 fa = heat1_tab [i_nH_1] [i_T]∗w1H_1 + heat1_tab [i_nH_1 + 1] [i_T]∗w2H_1 ; / /

i n t e r p o l a t e l e f t T i n nH
352 fb = heat1_tab [i_nH_1] [i_T +1]∗w1H_1 + heat1_tab [i_nH_1 + 1] [i_T +1]∗w2H_1 ; / /

i n t e r p o l a t e r i g h t T i n nH
353 fp r ima = heat1prime_tab [i_nH_1] [i_T]∗w1H_1 + heat1prime_tab [i_nH_1 + 1] [i_T]∗

w2H_1 ; / / i n t e r p o l a t e l e f t dT i n nH
354 fp r imb = heat1prime_tab [i_nH_1] [i_T +1]∗w1H_1 + heat1prime_tab [i_nH_1 + 1] [i_T +1]∗

w2H_1 ; / / i n t e r p o l a t e r i g h t dT i n nH
355 f b f a = (fb−fa) ;
357
357 i f (abs (f b f a / fb) <smallnum_cool ing) { f b f a = 0 . 0 ; }
359
359 beta = 3 .0∗ (f b f a) / h2_1−(2.0∗ fp r ima+fpr imb) / h_1 ;
360 gamma1 = (fpr ima+fpr imb) / h2_1−2.0∗(f b f a) / h3_1 ;
361 heat = pow(10 .0 , fa+ fpr ima∗yy+beta∗yy2+gamma1∗yy3) ;
362 lambda = cool−heat ; / / i n [erg / cm3 / s]
364
364 # i f d e f COOLING_SUBSTEP
365 / / t ime u n t i l next lower tabu la ted temperature i s reached (i f coo l i ng − not

heat ing − dominates)
366 i f (lambda >0.0) {
367 / / coo l i ng t ime : thermal energy above nect T_i d i v ided by loss
368 double dt1 = (v [PRS]−pow(10 .0 , T1_tab [i_T]) ∗v [RHO] / mu/ KELVIN) / ((g_gamma − 1 .0) ∗

lambda∗E_cost) ;
369 / / recompute lambda i f next lower tabu la ted temperature i s reached :
370 i f (dt1 >g_dt) {
371 double d t=dt1 ;
372 double avg_lam =0.0 ;
373 avg_lam+=dt1∗ lambda ;
374 whi le (dt <g_dt) {
375 i_T−−;
376 fa = cool1_tab [i_nH_1] [i_T]∗w1H_1 + cool1_tab [i_nH_1 + 1] [i_T]∗w2H_1 ;

/ / i n t e r p o l a t e l e f t T i n nH
377 cool = pow(10 .0 , fa) ;
378 fa = heat1_tab [i_nH_1] [i_T]∗w1H_1 + heat1_tab [i_nH_1 + 1] [i_T]∗w2H_1 ;

/ / i n t e r p o l a t e l e f t T i n nH
379 heat = pow(10 .0 , fa) ;
380 lambda = (cool−heat) ;
381 dt1=MIN (((pow(10 .0 , T1_tab [i_T +1])−pow(10 .0 , T1_tab [i_T])) ∗v [RHO] / mu/ KELVIN)

/ ((g_gamma − 1 .0) ∗ lambda∗E_cost) , g_dt−dt) ;
382 dt+=dt1 ;
383 avg_lam+=dt1∗ lambda ;
384 }
385 lambda=avg_lam / d t ;
386 }
387 }
388 # end i f
389 }
390 # i f n d e f TAB_table

195

391 else i f (T<T_max_fix_2)
392 {
393 double yy , fa , fb , cool , heat , w1T,w2T ;
394 i_T = MIN(MAX((i n t) f l o o r ((T−T2_tab [0]) ∗d_T_2) ,0) , nbin_T_2−2) ; / / l e f t index i n

T
395 yy = T−T2_tab [i_T] ; / / (T − T_gr id)
396 w2T = yy∗d_T_2 ; / / r i g h t weight (sma l le r d is tance −> higher weight)
397 w1T = 1.0−w1T ; / / l e f t weight
399
399 fa = cool2_tab [i_nH_2] [i_T]∗w1H_2 + cool2_tab [i_nH_2 + 1] [i_T]∗w2H_2 ; / /

i n t e r p o l a t e l e f t T i n nH
400 fb = cool2_tab [i_nH_2] [i_T +1]∗w1H_2 + cool2_tab [i_nH_2 + 1] [i_T +1]∗w2H_2 ; / /

i n t e r p o l a t e r i g h t T i n nH
401 cool = pow(10 .0 , fa) ∗w1T+pow(10 .0 , fb) ∗w2T ;
403
403 fa = heat2_tab [i_nH_2] [i_T]∗w1H_2 + heat2_tab [i_nH_2 + 1] [i_T]∗w2H_2 ; / /

i n t e r p o l a t e l e f t T i n nH
404 fb = heat2_tab [i_nH_2] [i_T +1]∗w1H_2 + heat2_tab [i_nH_2 + 1] [i_T +1]∗w2H_2 ; / /

i n t e r p o l a t e r i g h t T i n nH
405 heat = pow(10 .0 , fa) ∗w1T+pow(10 .0 , fb) ∗w2T ;
406 lambda = cool−heat ; / / i n [erg / cm3 / s]
407 }
408 # end i f
409 else {
410 # end i f
411 / / use both coo l i ng f u n c t i o n s − use fu l i f h igh temperature end of the coo l i ng

tab l e should be inc luded
412 / /−− i f you want t h i s , the " usual t ab l e " has to be inc luded (remove a l l " i f d e f

Eva_table " l i n e s)
413 # i f ! def ined (EVA_table) | | def ined (TAB_table)
414 /∗ −−
415 Table lookup by b inary search
416 −−∗ /
417 k lo = 0;
418 kh i = ntab − 1;
419 # i f ! def ined (EVA_table)
420 i f (T > T_tab [kh i] | | T < T_tab [k lo]) {
421 rhs [PRS] = 0 . 0 ;
422 v [TRC] = 0 . 0 ;
423 r e t u r n ;
424 }
425 else {
426 # end i f
427 whi le (k lo != (kh i − 1)) {
428 kmid = (k lo + kh i) / 2 ;
429 Tmid = T_tab [kmid] ;
430 i f (T <= Tmid) {
431 kh i = kmid ;
432 } e lse i f (T > Tmid) {
433 k lo = kmid ;
434 }
435 }
436 # i f ! def ined (EVA_table)
437 }
438 # end i f

196 B. Pluto source code listings

439 dT = T_tab [kh i] − T_tab [k lo] ;
440 scrh = L_tab [k lo] ∗ (T_tab [kh i] − T) / dT + L_tab [kh i] ∗ (T − T_tab [k lo]) / dT ; / /

i n [erg cm3 / s]
441 # i f d e f EVA_table
442 lambda=scrh∗nH∗nH; / / i n [erg cm3 / s]
443 #else
444 / / use PLUTO c o o l i n g t a b l e between T_tab [kh i] and T_min_f ix_1
445 lambda = scrh∗v [RHO]∗ v [RHO]∗ g_un i tDens i t y ∗g_un i tDens i t y / (CONST_mp∗CONST_mp) ;
446 # end i f
447 # i f d e f COOLING_SUBSTEP
448 / / t ime u n t i l next lower tabu la ted temperature i s reached (i f coo l i ng − not

heat ing − dominates)
449 i f (lambda >0.0) {
450 / / coo l i ng t ime : thermal energy above nect T_i d i v ided by loss
451 double dt1 = (v [PRS]−T_tab [k lo]∗ v [RHO] / mu/ KELVIN) / ((g_gamma − 1 .0) ∗ lambda∗

E_cost) ;
452 / / recompute lambda i f next lower tabu la ted temperature i s reached :
453 i f (dt1 >g_dt) {
454 double d t=dt1 ;
455 double avg_lam =0.0 ;
456 avg_lam+=dt1∗ lambda ;
457 whi le (dt <g_dt) {
458 klo−−;
459 khi−−;
460 lambda=L_tab [k lo]∗ v [RHO]∗ v [RHO]∗ g_un i tDens i t y ∗g_un i tDens i t y / (CONST_mp∗

CONST_mp) ;
461 dt1=MIN (((T_tab [kh i]−T_tab [k lo]) ∗v [RHO] / mu/ KELVIN) / ((g_gamma − 1 .0) ∗ lambda∗

E_cost) , g_dt−dt) ;
462 dt+=dt1 ;
463 avg_lam+=dt1∗ lambda ;
464 }
465 lambda=avg_lam / d t ;
466 }
467 }
468 # end i f
469 # i f d e f EVA_table
470 }
471 # end i f
472 # end i f
473 v [TRC]= lambda ;
474 rhs [PRS] = −(g_gamma − 1 .0) ∗ lambda ; / / a l ready i n [erg / cm3 / s] / / ∗v [RHO]∗ v [

RHO]∗ g_un i tDens i t y ∗g_un i tDens i t y / (CONST_mp∗CONST_mp) ;
475 rhs [PRS] ∗= E_cost ;
476 /∗ −−∗ /
477 }
478 #undef T_MIN
479 /∗ ∗∗∗ ∗ /
480 double MeanMolecularWeight (r e a l ∗V)
481 /∗ ∗∗∗ ∗ /
482 {
483 r e t u r n (0 . 5) ; / / f u l l y i on i zed
484 /∗
485 r e t u r n ((A_H + frac_He∗A_He + frac_Z∗A_Z) /
486 (2 .0 + frac_He + 2.0∗ f rac_Z − 0 .0)) ;
487 / / (1+0.082∗4.004+30e−3) /(2+0.082+2e−3)=0.65

197

488 / / (1+0.082∗4.004+30e−3)=1.35
489 ∗ /
490 }

Listing B.11: Modifications in set_output.c
22 /∗ / ∗ /
23 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r :
24 s t a r t numbering o u t p u t f i l e s a f t e r g_inputParam [READIN] (l i n e s 59) ∗ /
25 /∗ / ∗ /
59 output−> n f i l e = −1+(i n t) g_inputParam [READIN] ; / / output−> n f i l e = −1;

Listing B.12: Modifications in startup.c
13 /∗ / ∗ /
14 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r : added value o f negat ive dens i t y / pressure to output
15 l i n e s 209 and 214 ∗ /
16 /∗ / ∗ /

209 p r i n t (" ! S ta r tup : dens i t y i s negat ive , zone [%f , %f , %f] %f \ n " , x1 , x2 , x3 ,
us [RHO]) ;

214 p r i n t (" ! S ta r tup : pressure i s negat ive , zone [%f , %f , %f] %f \ n " , x1 , x2 , x3 ,
us [PRS]) ;

Listing B.13: Modifications in sweep.c
17 /∗ / ∗ /
18 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r : no ou t f l ow from empty c e l l s (l i n e s 170 , 221 , 223 ,

276) ∗ /
19 /∗ / ∗ /

170 i f (u [i n] [RHO]+ s ta te . rhs [i n] [RHO] <0 .0) { s t a t e . rhs [i n] [nv] = 0 . 0 ; }
221 i f (u [i n] [RHO]+ s ta te . rhs [i n] [RHO] <0 .0) { s t a te . rhs [i n] [nv] = 0 . 0 ; }
223 i f (u [i n] [RHO] <0 .0) { p r i n t (" rho u [i n] [RHO]=%g \ n s ta te . rhs [i n] [RHO]=%g \ n

3.∗UU[∗ k] [∗ j] [∗ i] [RHO]=%g \ n " ,u [i n] [RHO] , s t a te . rhs [i n] [RHO] , u [i n] [RHO]−
s ta te . rhs [i n] [RHO] , 3 .∗UU[∗ k] [∗ j] [∗ i] [RHO]) ;

276 i f (u [i n] [RHO]+ s ta te . rhs [i n] [RHO] <0 .0) { s t a te . rhs [i n] [nv] = 0 . 0 ; }

Listing B.14: Modifications in tc_kappa.c
16 /∗ / ∗ /
17 /∗ M o d i f i c a t i o n s K. F i e r l i n g e r : no thermal conduct ion i n the feedback reg ion
18 l i n e s 44−47 and 61 ∗ /
19 /∗ / ∗ /
44 i f (x1<g_inputParam [R_DRIVER]) {
45 ∗kpar = 0 . 0 ;
46 ∗knor = 0 . 0 ;
47 } e lse {
61 }

Listing B.15: init.c for a constant wind
13 /∗ / ∗ /
14 /∗ M o d i f i c a t i o n s :
15 re−def ine code u n i t s l i n e s 53−55
16 gamma, dens i t y and pressure from p lu to . i n i l i n e s 57 , 59 and 63
17 feedback (mass+pressure) i n t o sphere i n s i d e domain l i n e s 22,23,142−158
18 feedback (mass+ v e l o c i t y) i n t o sphere near inner BC l i n e s 24,166−181

198 B. Pluto source code listings

19 ∗ /
20 /∗ / ∗ /
22 # def ine THERMALWIND 1
23 #undef THERMALWIND
24 # def ine INFLOWING_WIND 1
53 g_un i tDens i t y = 1 .e−22; /∗ re ference dens i t y (\ rho_0) i n u n i t s o f gr /cmËĘ3 ∗ /
54 g _ u n i t V e l o c i t y = 1 . e8 ; /∗ re ference v e l o c i t y (v_0) i n u n i t s o f cm/ sec ∗ /
55 g_uni tLength = 1. e19 ; /∗ re ference leng th (L_0) i n cm ∗ /
57 g_gamma = g_inputParam [GAMMA] ; /∗ c a l l s the a u x i l l a r y parameter GAMMA∗ /
59 v [RHO] = g_inputParam [RHO_IN] ; /∗ 1e−22 g / cm3 ∗ /
63 v [PRS] = g_inputParam [PRS_IN] ; /∗ 1e−6 erg / cm3 ∗ /

140 i f (s ide == 0) { /∗ −− check s o l u t i o n i n s i d e domain −− ∗ /
141 DOM_LOOP(k , j , i) {
142 # i f d e f THERMALWIND
143 / / Add mass and pressure
144 / /
145 / / wind : v = 1e8 cm/ s
146 / / wind : 3e−5 Msun / y r = 5.9673e28 g / y r = 18.9e20 g / s= 18.9e−4 1e35g /1 e11s
147 / / i n j e c t e d mass i n 1e35g per t ime step (g_dt i n 1e11s) −> 18.9e−4∗g_dt
148 / / Feedback i n t o sphere −> reg ion volume = math . p i /0 .75 e−57 ∗ r _ d r i v e r ∗∗3
149 / / wind dens i t y : 18.9e−4∗0.75/ p i / r _ d r i v e r ∗∗3 =0.0004512/ r _ d r i v e r ∗∗3
150 / / i f (pow(x1 [i] , 2) <= pow(g_inputParam [R_DRIVER] , 2)) { / / d r i v e r radius , i f x1 [i

] < 0
151 i f (x1 [i] <= g_inputParam [R_DRIVER]) { / / d r i v e r rad ius
152 d−>Vc [RHO] [k] [j] [i] += g_dt∗0.00045120426366552326/pow(g_inputParam [R_DRIVER

] , 3) ; /∗ 1e−22 g / cm3 f o r a wind wi th 3e−5 Msun / y r ∗ /
153 / /
154 / / k i n e t i c energy dens i t y = 0.5 dens i t y v^2 = 0.5 e−22 1e16 −> 0.5e−6
155 / / pressure = (gamma − 1) ∗ energydens i ty
156 d−>Vc [PRS] [k] [j] [i] += (g_gamma−1.0)∗g_dt ∗0.5∗0.00045120426366552326/pow(

g_inputParam [R_DRIVER] , 3) ; /∗ 1e−6 erg / cm3 f o r a wind wi th 3e−5 Msun / y r
∗ /

157 }
158 # end i f
159 } ;
160 }
162
162 i f (s ide == X1_BEG) { /∗ −− X1_BEG boundary −− ∗ /
163 BOX_LOOP(box , k , j , i) {
164 # i f d e f INFLOWING_WIND
165 / / Add mass and v e l o c i t y
166 / /
167 / / wind : v = 1e8 cm/ s
168 / / wind : 3e−5 Msun / y r = 5.9673e28 g / y r = 18.9e20 g / s= 18.9e−4 1e35g /1 e11s
169 / / i n j e c t e d mass i n 1e35g per t ime step (g_dt i n 1e11s) −> 18.9e−4∗g_dt
170 / / ALL feedback i n t o a sphere :
171 / / boundary c e l l s i ze 0.0 to g_inputParam [R_DRIVER]
172 / / −> reg ion volume = math . p i /0 .75 e−57 ∗pow(g_inputParam [R_DRIVER] , 3)
173 / / wind dens i t y : 18.9e−4∗0.75/ p i / r _ d r i v e r ∗∗3 =0.0004512/ r _ d r i v e r ∗∗3 f o r a

wind wi th 3e−5 Msun / y r
174 d−>Vc [RHO] [k] [j] [i] = g_dt ∗0.00045/pow(g_inputParam [R_DRIVER] , 3) ; /∗ 1e−22 g

/ cm3, 3e−5 Msun / y r ∗ /
175 EXPAND(d−>Vc [VX1] [k] [j] [i] = 1 . 0 ; , /∗ [1 e8 cm/ s] = [1 e3 km/ s] ∗ /
176 d−>Vc [VX2] [k] [j] [i] = 0 . 0 ; ,
177 d−>Vc [VX3] [k] [j] [i] = 0 . 0 ;)

199

178 d−>Vc [PRS] [k] [j] [i] = g_inputParam [PRS_IN] ; /∗ 1e−6 erg / cm3 ∗ /
179 # end i f
180 }
181 }

Listing B.16: init.c as used for our 1D simulations
14 # inc lude " p l u to . h "
15 # def ine READINTRUE 88000
16 # def ine VISCOSITYRUN 1
17 #undef VISCOSITYRUN
18 #undef GENEVA
19 # def ine GENEVA 60 / / use 60 Msun model from the Geneva g r i d
20 #undef SN_l inear_vel / / r a t h e r use i n t e r n a l boundary than l i n e a r v e l o c i t y p r o f i l e .
21 # def ine MeanFreePath 1e−4 / / merge c e l l s below mean f ree path
22 #undef MeanFreePath
23 /∗ ∗∗∗ ∗ /
24 vo id I n i t (double ∗v , double x1 , double x2 , double x3)
50 {
51 # i f def ined (SN_l inear_ve l) | | de f ined (VISCOSITYRUN)
52 double dr , vol , r , dx ;
53 # end i f
54 g_un i tDens i t y = 1 .e−22; /∗ re ference dens i t y (\ rho_0) i n u n i t s o f gr /cmËĘ3 ∗ /
55 g _ u n i t V e l o c i t y = 1 . e8 ; /∗ re ference v e l o c i t y (v_0) i n u n i t s o f cm/ sec ∗ /
56 g_uni tLength = 1. e19 ; /∗ re ference leng th (L_0) i n cm ∗ /
57 g_minCoolingTemp = g_inputParam [TMIN] ; /∗ lowest temperature i n Ke lv in ∗ /
59
59 g_gamma = g_inputParam [GAMMA] ; /∗ c a l l s the a u x i l l a r y parameter GAMMA∗ /
60 g_supernova = g_inputParam [SN] ; /∗ read l a t e s t SN t ime ∗ /
62
62 g_smal lPressure = MIN(g_smallPressure , g_inputParam [PRS_IN]∗0 .0 1) ;
63 # i f def ined (SN_l inear_ve l) | | de f ined (VISCOSITYRUN)
64 dx = x1 [2] − x1 [1] ; / / mesh spacing
65 / / x r [i] = x1 [i] + 0.5 ∗ dx ; / / c e l l centers
66 /∗ −−
67 dr i s the s ize o f the i n i t i a l energy depos i t i on
68 reg ion : 2 ghost zones .
69 −− ∗ /
70 / / dr = 2 .0∗ (g_domEnd [IDIR]−g_domBeg [IDIR]) / (double)NX1;
71 / / conver t to f u l l c e l l s
72 dr = (round ((g_inputParam [R_DRIVER] − g_domBeg [IDIR]) / dx)) ∗ dx + g_domBeg [IDIR

] ;
73 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 compute reg ion volume
75 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /
76 vo l = 4 .0 /3 .0∗CONST_PI∗ (pow(dr , 3)−pow(g_domBeg [IDIR] , 3)) ;
77 # end i f
78 v [RHO] = g_inputParam [RHO_IN] ; /∗ 1e−22 g / cm3 ∗ /
79 v [VX1] = 0 . 0 ; /∗ i n i t i a l Vx ar ray ∗ /
80 v [VX2] = 0 . 0 ; /∗ i n i t i a l Vy ar ray ∗ /
81 v [VX3] = 0 . 0 ; /∗ i n i t i a l Vz ar ray ∗ /
82 v [PRS] = g_inputParam [PRS_IN] ; /∗ 1e−6 erg / cm3 ∗ /
83 v [TRC] = 0 . 0 ;
84 / / v [FNEUT] = 1 . 0 ; / / f o r SNEq coo l ing
85 # i f d e f VISCOSITYRUN
86 i f (x1 <= dr) {

200 B. Pluto source code listings

87 v [RHO] = g_inputParam [ETH]∗ g_inputParam [RHO_IN] ; / / lower dens i t y by a f a c t o r
88 } ;
89 # end i f
90 # i f d e f SN_l inear_vel
91 i f (x1 <= dr) {
92 p r i n t f ("%g %g \ n " , x1 , x1 / dr ∗150.) ;
93 v [PRS] = (g_gamma − 1 .0) ∗g_inputParam [ETH] / vo l ;
94 v [RHO] = 0.059673/ vo l+g_inputParam [RHO_IN] ; / / 3 so l a r masses are 0.059673e35

g
95 v [VX1] = s q r t (g_inputParam [EK] /0 .3 / (0 .059673+ vo l ∗g_inputParam [RHO_IN])) ∗x1 / dr

; / / l i n e a r v e l o c i t y p r o f i l e
96 } ;
97 # end i f

113 # i f d e f READINTRUE
114 i f (g_inputParam [READIN] >0 .0) {
115 s t a t i c i n t f i r s t _ c a l l = 1 ;
116 char fname [5 1 2] ;
117 i f (f i r s t _ c a l l) {
118 g_time=g_inputParam [READIN]∗0 .1578 ;
119 i n t k , i npu t_var [6] ;
120 f o r (k = 0 ; k < 5; k++) inpu t_va r [k] = −1;
121 i npu t_va r [0] = RHO;
122 i npu t_va r [1] = VX1 ;
123 i npu t_va r [2] = PRS;
124 s p r i n t f (fname , " g r i d .%04d . out " , (i n t) g_inputParam [READIN]) ;
125 InputDataSet (fname , inpu t_va r) ;
127
127 s p r i n t f (fname , " rho.%04d . db l " , (i n t) g_inputParam [READIN]) ;
128 InputDataRead (fname , 0) ;
129 s p r i n t f (fname , " vx1.%04d . db l " , (i n t) g_inputParam [READIN]) ;
130 InputDataRead (fname , 1) ;
131 s p r i n t f (fname , " prs .%04d . db l " , (i n t) g_inputParam [READIN]) ;
132 InputDataRead (fname , 2) ;
134
134 f i r s t _ c a l l = 0 ;
135 }
136 / / InputDataExpand1d (v , x1) ;
137 I n p u t D a t a I n t e r p o l a t e (v , x1 , x2 , x3) ;
138 }
139 # end i f
140 }
141 /∗ ∗∗∗ ∗ /
142 vo id Ana lys is (const Data ∗d , Grid ∗ g r i d)
143 /∗ !
144 ∗ Perform runt ime data ana lys i s .
145 ∗
146 ∗ \ param [i n] d the PLUTO Data s t r u c t u r e
155 vo id UserDefBoundary (const Data ∗d , RBox ∗box , i n t side , Grid ∗ g r i d)
175 ∗∗∗ ∗ /
176 {
177 i n t i , j , k , nv ;
178 double ∗x1 , ∗x2 , ∗x3 ;
179 double dr , dx , vol , r , de , dm, ek in_help ;
189 x1 = g r i d [IDIR] . x ;
190 x2 = g r i d [JDIR] . x ;

201

191 x3 = g r i d [KDIR] . x ;
193
193 # i f n d e f VISCOSITYRUN
194 /∗ −−
195 c e l l s i ze . . . dx
196 −− ∗ /
197 / / w i thou t MPI dx = (g_domEnd [IDIR]−g_domBeg [IDIR]) / (double)NX1;
198 dx=x1 [2]−x1 [1] ;
199 /∗ −−
200 feedback reg ion . . . dr
201 −− ∗ /
202 / / conver t to f u l l c e l l s
203 / / x r [i] = x1 [i] + 0.5 ∗ dx ;
204 / / dr = (f l o o r ((g_inputParam [R_DRIVER] − x1 [1]) / dx) + 0 .5) ∗ dx + x1 [1] ;
205 dr = (round ((g_inputParam [R_DRIVER] − g_domBeg [IDIR]) / dx)) ∗ dx + g_domBeg [IDIR

] ;
206 i f (g_time <2e−4) p r i n t f (" t ime : %g rad ius o f the feedback reg ion : %g x 1e19 cm.

Actua l rad ius %g , %g , %g \ n " , g_time , g_inputParam [R_DRIVER] , dr , dx ,
g_domBeg [IDIR]) ;

207 /∗ −−
208 SN reg ion . . . dr
209 −− ∗ /
210 i f (g_time >= g_supernova) { dr = g_inputParam [R_SN] ; } ;
211 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
212 compute reg ion volume
213 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /
214 vo l = 4 .0 /3 .0∗CONST_PI∗ (pow(dr , 3)−pow(g_domBeg [IDIR] , 3)) ;
215 # i f d e f INFLOWING_WIND
216 i f (s ide == X1_BEG) { /∗ −− X1_BEG boundary −− ∗ /
217 i f (box−>vpos == CENTER) {
218 BOX_LOOP(box , k , j , i) {
219 / / wind : v = 1e8 cm/ s
220 / / wind : 3e−5 Msun / y r = 5.9673e28 g / y r = 18.9e20 g / s
221 / / wind dens i t y : 18.9e−4∗0.75/ p i / r _ d r i v e r ∗∗3 =0.0004512/ r _ d r i v e r ∗∗3
222 / / i n f l o w BC
223 d−>Vc [RHO] [k] [j] [i] = g_dt ∗0.00045/pow(dr , 3) ; /∗ 1e−22 g / cm3, 3e−5 Msun / y r

∗ /
224 EXPAND(d−>Vc [VX1] [k] [j] [i] = 1 . 0 ; , /∗ [1 e8 cm/ s] = [1 e3 km/ s] ∗ /
225 d−>Vc [VX2] [k] [j] [i] = 0 . 0 ; ,
226 d−>Vc [VX3] [k] [j] [i] = 0 . 0 ;)
227 d−>Vc [PRS] [k] [j] [i] = g_inputParam [PRS_IN] ; /∗ 1e−6 erg / cm3 ∗ /
228 }
229 } e lse i f (box−>vpos == X1FACE) {
230 BOX_LOOP(box , k , j , i) { }
231 } e lse i f (box−>vpos == X2FACE) {
232 BOX_LOOP(box , k , j , i) { }
233 } e lse i f (box−>vpos == X3FACE) {
234 BOX_LOOP(box , k , j , i) { }
235 }
236 }
237 # end i f
239
239 / / THIS ROUTINE WOULD BE CALLED MORE THAN ONCE: tw ice f o r RK2 three t imes f o r

RK3 − prevent t h i s i n boundary . c
240 i f (s ide == 0) { /∗ −− check s o l u t i o n i n s i d e domain −− ∗ /

202 B. Pluto source code listings

241 # i f d e f MeanFreePath
242 / / merge c e l l s w i th inne r c e l l i f the hydrogen mean f ree path i s l a r g e r than

the c e l l s i z e
243 double gmm1 = g_gamma − 1 . 0 ;
244 DOM_LOOP(k , j , i) {
245 i f (x1 [i] > dr+dx && d−>Vc [RHO] [k] [j] [i] < 1 .e−4∗dx∗200) { / / don ’ t merge

feedback c e l l s .
246 double etherm1 , etherm2 , ekin1 , ekin2 ; / / energy
247 / / p r i n t f ("%g dx < mean f ree path , i=%d , rho = %g [g / cm3] " , dx , i , d−>Vc [

RHO] [k] [j] [i]∗1 . e−22) ;
248 / / energy conservat ion
249 etherm1=d−>Vc [PRS] [k] [j] [i] / gmm1;
250 ekin1 =0.5∗d−>Vc [RHO] [k] [j] [i]∗pow(d−>Vc [VX1] [k] [j] [i] , 2) ;
251 etherm2=d−>Vc [PRS] [k] [j] [i −5]/gmm1;
252 ekin2 =0.5∗d−>Vc [RHO] [k] [j] [i −5]∗pow(d−>Vc [VX1] [k] [j] [i −1] ,2) ;
253 i f (ekin1 <etherm1 && ekin2 <etherm2) { / / don ’ t mix i n f ree streaming zone

or 5 po in t i n t e r f a c e reg ion
254 double V1 , V2 , V3 ; / / Volumes of spheres f o r we ight ing the d e n s i t i e s
255 double w1, w2 ; / / weights
256 double e t o t a l ; / / energy
257 etherm2=d−>Vc [PRS] [k] [j] [i −1]/gmm1;
258 ekin2 =0.5∗d−>Vc [RHO] [k] [j] [i −1]∗pow(d−>Vc [VX1] [k] [j] [i −1] ,2) ;
259 / / x [i] . . . c e l l center coord ina te
260 V1=pow(x1 [i]+0 .5∗dx , 3) ;
261 V2=pow(x1 [i]−0.5∗dx , 3) ;
262 V3=pow(x1 [i]−1.5∗dx , 3) ;
263 w1 = (V1−V2) / (V1−V3) ;
264 w2 = 1.0 − w1;
265 e t o t a l = (w1∗ (etherm1+ekin1) +w2∗ (etherm2+ekin2)) ;
266 d−>Vc [RHO] [k] [j] [i] = w1∗d−>Vc [RHO] [k] [j] [i] + w2∗d−>Vc [RHO] [k] [j] [i

−1]; /∗ 1e−22 g / cm3 ∗ /
267 d−>Vc [PRS] [k] [j] [i] = w1∗d−>Vc [PRS] [k] [j] [i] + w2∗d−>Vc [PRS] [k] [j] [i

−1]; /∗ 1e−6 erg / cm3 ∗ /
268 d−>Vc [RHO] [k] [j] [i −1] = d−>Vc [RHO] [k] [j] [i] ;
269 d−>Vc [PRS] [k] [j] [i −1] = d−>Vc [PRS] [k] [j] [i] ;
270 e t o t a l −= d−>Vc [PRS] [k] [j] [i] / gmm1; / / k i n e t i c energy
271 d−>Vc [VX1] [k] [j] [i] = s q r t (2 .0∗ e t o t a l / d−>Vc [RHO] [k] [j] [i]) ; / / x1

v e l o c i t y
272 d−>Vc [VX1] [k] [j] [i −1] = d−>Vc [VX1] [k] [j] [i] ;
273 }
274 }
275 }
276 # end i f
277 / / p r i n t f (" t ime %g dt %g x0 %g \ n " , g_time , g_dt , g_domBeg [IDIR]) ;
278 i f (g_time − g_dt < g_supernova)
279 {
280 i f (g_time >= g_supernova) {
281 / / SN
282 dr = g_inputParam [R_SN] ;
283 / / p r i n t f (" rad ius o f the SN %g x 1e19 cm. supernova went o f f a t %g x 1e11

s . \ n " , g_inputParam [R_SN] , g_time) ;
284 DOM_LOOP(k , j , i) {
285 i f (x1 [i] <= dr) { / / rad ius o f the feedback zone
286 i f (i ==5) { p r i n t f (" rad ius o f the SN %g x 1e19 cm. supernova went o f f

a t %10.4e x 1e11 s . %10.4e \ n " , g_inputParam [R_SN] , g_time , g_dt)

203

; }
287 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
288 add SN energy and mass
289 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /
290 / / p r i n t f (" p : %g + %g e : %g x : %g \ n " , d−>Vc [PRS] [k] [j] [i] , (g_gamma

−1.0)∗g_inputParam [ETH] / vol , g_inputParam [ETH] , x1 [i]) ;
291 / / THIS ROUTINE COULD BE CALLED MORE THAN ONCE (Pred ic to r , Cor rec to r

. .) − prevent t h i s i n boundary . c
292 # i f d e f GENEVA
293 i f (g_inputParam [ETH] <0.5∗ g_inputParam [M_SN]∗pow(d−>Vc [VX1] [k] [j] [i

] , 2)) / / added energy smal le r than increase of k i n e t i c energy
294 {
295 p r i n t f ("%d SN energy : %g [FOE] , k i n e t i c energy %g \ n " , i ,

g_inputParam [ETH] , 0 . 5∗ g_inputParam [M_SN]∗pow(d−>Vc [VX1] [k] [j
] [i] , 2)) ;

296 / / ek =0.5(m v ^2)+de =0 .5 ((m+dm) u^2 −> 2de / (m+dm) + m/ (m+dm) v^2 =
u^2

297 d−>Vc [VX1] [k] [j] [i]=MAX(0 . 0 ,pow (2 . ∗ (g_inputParam [ETH] / vo l) / (
g_inputParam [M_SN] / vo l+d−>Vc [RHO] [k] [j] [i]) +pow(d−>Vc [VX1] [k
] [j] [i] , 2)) ∗d−>Vc [RHO] [k] [j] [i] / (g_inputParam [M_SN] / vo l+d−>
Vc [RHO] [k] [j] [i]) , 0 . 5)) ; / / reduce v e l o c i t y

298 }
299 d−>Vc [PRS] [k] [j] [i] += ((g_gamma − 1 .0) ∗ (g_inputParam [ETH]−0.5∗

g_inputParam [M_SN]∗pow(d−>Vc [VX1] [k] [j] [i] , 2))) / vo l ; /∗ 1e−6 erg
/ cm3 ∗ /

300 d−>Vc [RHO] [k] [j] [i] += g_inputParam [M_SN] / vo l ; / / 10.9807 so la r
masses i n 1e35 g (10.9807 so la r masses = 2.18417104e34 g)

301 #else / / Can lead to negat ive pressures i f added energy i s smal le r than
increase of k i n e t i c energy (s ince energy d i f f e r e n c e added / subt rac ted to / from
pressure)

302 d−>Vc [PRS] [k] [j] [i] += ((g_gamma − 1 .0) ∗ (g_inputParam [ETH
]−0.5∗0.059673∗pow(d−>Vc [VX1] [k] [j] [i] , 2))) / vo l ; /∗ 1e−6 erg / cm3
∗ /

303 d−>Vc [RHO] [k] [j] [i] += 0.059673/ vo l ; / / 3 so l a r masses i n 1e35 g (3
so la r masses = 0.059673e35 g)

304 # end i f
305 / / d−>Vc [VX1] [k] [j] [i] += s q r t (2 .∗ g_inputParam [EK] / vo l / d−>Vc [RHO] [k] [

j] [i]) ; / / f o r dens i t y v a r i a t i o n s . . . constant energy dens i t y
306 / / d−>Vc [VX1] [k] [j] [i] += s q r t (g_inputParam [EK] / 0 . 3 / (vo l ∗d−>Vc [RHO] [k

] [j] [i])) ∗x1 [i] / dr ; / / l i n e a r v e l o c i t y p r o f i l e . . . f o r constant
dens i t y !

307 }
308 g_supernova =0.0 ;
309 }
310 } e lse {
311 i f (g_time + g_dt >= g_supernova) {
312 g_dt = 0.0001∗ g_dt ;
313 g_supernova=g_time +0.9∗ g_dt ;
314 p r i n t f (" reached given SN time of %12.6e x 1e11 s . supernova w i l l go

o f f a t %12.6e x 1e11 s . \ n " , g_inputParam [SN] , g_supernova) ;
315 }
316 / / check bubble s ize and s t a r t SN
317 i f (g_supernova >= g_inputParam [SN]) {
318 # i f d e f GENEVA
319 Wind (vol ,&de ,&dm) ;

204 B. Pluto source code listings

320 / / i f (g_time <0.3 && g_dt > 2 .e−4) { g_dt = 0.1∗ g_dt ; p r i n t f (" g_dt=%g ,
g_time=%g \ n " , g_dt , g_time) ; }

321 # end i f
322 / / volumecheck =0.0 ;
323 DOM_LOOP(k , j , i) {
324 i f (x1 [i] >= g_inputParam [R_BUBBLE] && d−>Vc [RHO] [k] [j] [i] <= 0.5∗

g_inputParam [RHO_IN])
325 {
326 g_dt = 0.0001∗ g_dt ; / / reduce t ime step s ize s h o r t l y before SN
327 g_supernova=g_time +0.9∗ g_dt ;
328 p r i n t f (" reached given c a v i t y s ize o f %g x 1e19 cm. supernova

w i l l go o f f a t %10.4e x 1e11 s . \ n " , g_inputParam [R_BUBBLE] ,
g_supernova) ;

329 }
330 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
331 add wind energy and mass
332 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /
333 / / Geneva 60 Msun : T_SN = 4.85966398974075e6 [years]
334 / / massloss_SN = Geneva2011V4 (1 : n_models)%

masslossSN = 10.9807 ! [so l a r masses]
335 / /
336 / / mass loss : 3e−5 Msun / y r = 5.9673e28 g / y r = 1.89e21 g / s = 0.00189

e35 g / 1e11 s
337 / /−>g_dt i n 1e11s
338 / / rho i n 1e35 g / 1e57cm^3
339 / / Feedback i n t o sphere wi th rad ius = g_inputParam [R_DRIVER] i n 1e19

cm
340 / /−> reg ion volume = math . p i /0 .75 e−57 ∗ pow(g_inputParam [R_DRIVER

] , 3) ; i n cm3
341 / / 0 .00189/ (math . p i / 0 . 7 5) =0.0004512042636655233
342 / /
343 / / i f (x1 [i] <= dr && x1 [i] >g_domBeg [IDIR]) { / / rad ius o f the

feedback zone
344 i f (x1 [i] <= dr) { / / rad ius o f the feedback zone
345 / / p r i n t f (" d0 %g dm %g p0 %g de %g \ n " , d−>Vc [RHO] [k] [j] [i] ,

0.5∗dm, d−>Vc [PRS] [k] [j] [i] , 0 .5∗ (g_gamma−1.0)∗de) ;
346 # i f d e f GENEVA
347 / / i f (i <4) { p r i n t f (" i %d t %g d %g \ n " , i , g_time , d−>Vc [RHO] [k] [j] [i

]) ; }
348 d−>Vc [RHO] [k] [j] [i] += dm;
349 ekin_help=dm∗0.5∗pow(d−>Vc [VX1] [k] [j] [i] , 2) ; / / k i n e t i c energy

increase due to added mass
350 i f (de >= ekin_help) { / / added energy l a r g e r than increase of

k i n e t i c energy
351 d−>Vc [PRS] [k] [j] [i] += (g_gamma−1.0) ∗ (de−ekin_help) ; / / add

remaining energy to thermal energy
352 } e lse { / / ek =0.5(m v ^2)+de =0 .5 ((m+dm) u^2 −> m/ (m+dm) v^2 + 2de / (m+

dm) = u^2
353 d−>Vc [VX1] [k] [j] [i]= s q r t ((d−>Vc [RHO] [k] [j] [i]−dm) / d−>Vc [RHO] [k] [

j] [i] . 0∗pow(d−>Vc [VX1] [k] [j] [i] , 2) +2.∗de / d−>Vc [RHO] [k] [j] [i
] . 0) ; / / reduce v e l o c i t y

354 }
355 #else
356 / / THIS ROUTINE COULD BE CALLED MORE THAN ONCE i f i t i s not

prevented i n boundary . c

205

357 d−>Vc [RHO] [k] [j] [i] += g_dt ∗0.00189/ vo l ; /∗ 1e−22 g / cm3 . . . added
3e−5 Msun / year ∗ /

358 / / EXPAND(d−>Vc [VX1] [k] [j] [i] = 1 . 0 ; , /∗ v= 1 [1 e8 cm/ s] = [1 e3 km
/ s] ∗ /

359 / / d−>Vc [VX2] [k] [j] [i] = 0 . 0 ; ,
360 / / d−>Vc [VX3] [k] [j] [i] = 0 . 0 ;)
361 / / / / 0 . 5 m v^2 (gamma−1) = 0.5 e−22 1e16 −> 0.5e−6
362 / / / / energy i npu t : m v^2 ∗0.5 = (3e−5 2e33) 10e16 ∗ 0.5 erg / year

= 3e44 erg / year
363 / / / / pressure = (gamma − 1) ∗ i n t e r n a l energy dens i t y
364 / / Can lead to negat ive pressures f o r high d−>Vc [VX1] [k] [j] [i]

s ince d i f f e r e n c e
365 / / between k i n e t i c energy increase and added wind energy taken

from pressure
366 d−>Vc [PRS] [k] [j] [i] += (g_gamma−1.0)∗g_dt ∗0.5∗0.00189∗(1.0−pow(d−>

Vc [VX1] [k] [j] [i] , 2)) / vo l ; /∗ 1e−6 erg / cm3 . . . added 3e−5 Msun /
year ∗ /

367 # end i f
368 / / volumecheck += pow(x1 [i]+0 .5∗dx , 3)−pow(x1 [i]−0.5∗dx , 3) ;
369 / / p r i n t f (" i %d x1 %g v %g sum v %g \ n " , i , x1 [i] , (pow(x1 [i]+0 .5∗dx

, 3)−pow(x1 [i]−0.5∗dx , 3)) ∗4.∗CONST_PI / 3 . , 4 .∗CONST_PI / 3 .∗
volumecheck) ;

370 }
371 }
372 }
373 / / p r i n t f (" vo l : %g , volumcheck : %g " , vol , vol −4.∗CONST_PI / 3 .∗ volumecheck) ;
374 / / QUIT_PLUTO(1) ;
375 # i f d e f PARALLEL
376 double g_supernova_local = g_supernova ;
377 MPI_Allreduce (& g_supernova_local , &g_supernova , 1 , MPI_DOUBLE, MPI_MIN ,

MPI_COMM_WORLD) ;
378 g_supernova_local = g_dt ;
379 MPI_Allreduce (& g_supernova_local , &g_dt , 1 , MPI_DOUBLE, MPI_MIN ,

MPI_COMM_WORLD) ;
380 # end i f
381 }
382 }
383 }
384 # end i f
385 }
387
387 # def ine year_to_seconds 31556926.0 /∗ seconds per year ∗ /
388 # def ine msun_to_g 1.9891e33 /∗ g per so la r mass ∗ /
389 # def ine msunYear_to_gs 6.30321217e25 /∗ conver ts Msun / y r to g / s ∗ /
390 /∗ ∗∗∗ ∗ /
391 vo id Wind (double vol , double ∗e , double ∗m)
392 /∗
393 ∗ NAME Wind
394 ∗ PURPOSE Provide wind mass and energy i npu t (tabu la ted 60 Msun model) .
395 ∗
396 ∗∗∗ ∗ /
397 {
398 i n t k lo , khi , kmid ; / / t ab l e element number f o r b ina ry search
399 s t a t i c i n t ntab =400; / / t ab l e s ize
400 s t a t i c r e a l ∗ t_ tab , ∗m_tab , ∗e_tab ; / / years , so l a r masses per year , 1e−30 erg / s

206 B. Pluto source code listings

401 s t a t i c double convertE , convertM ;
402 double t , Tmid , dT ;
403 FILE ∗ f c o o l ;
405
405 / / p r i n t f (" vo l %g dm %g de %g \ n " , vo l , ∗m, ∗e) ;
406 /∗ −−
407 Load Table
408 −− ∗ /
409 i f (t _ tab == NULL) {
410 p r i n t 1 (" > Reading Geneva tab le from d isk . . . \ n ") ;
411 f c o o l = fopen (" Geneva2011V4 . dat " , " r ") ;
412 i f (f c o o l == NULL) {
413 p r i n t 1 (" ! wind tab l e does not e x i s t \ n ") ;
414 QUIT_PLUTO(1) ;
415 }
416 t _ tab = ARRAY_1D(400 , double) ;
417 e_tab = ARRAY_1D(400 , double) ;
418 m_tab = ARRAY_1D(400 , double) ;
420
420 ntab = 0;
421 whi le (f scan f (f coo l , "%l f %l f %l f \ n " , t _ tab + ntab ,
422 m_tab + ntab , e_tab + ntab) !=EOF) {
423 ntab ++;
424 }
425 p r i n t f (" ntab : %d , tmax : %g years \ n " , ntab , t_ tab [ntab−1]) ;
426 /∗ −−− ∗ /
427 / / erg to code u n i t : 1 . 0 /pow(g_uni tLength , 3 .0) / g_un i tDens i t y / pow(

g_un i tVe loc i t y , 2 .0) ;
428 convertE =1.e30 / pow(g_uni tLength , 2 . 0) / g_un i tDens i t y / pow(g_un i tVe loc i t y , 3 .0) ;

/ / [1 e30 erg / s] ∗ code t ime step to code energy u n i t s
429 convertM=msunYear_to_gs / g _ u n i t V e l o c i t y / pow(g_uni tLength , 2 .0) / g_un i tDens i t y ;

/ / [Msun / y r] ∗ code t ime step to code mass u n i t s
430 }
431 /∗ −−−
432 Get t ime
433 −−− ∗ /
434 t = g_time∗g_uni tLength / g _ u n i t V e l o c i t y / year_to_seconds ; / / conver ts code u n i t s

to years
435 /∗ −−
436 Table lookup by b inary search
437 −−∗ /
438 k lo = 0;
439 kh i = ntab − 1;
440 i f (t < t_ tab [k lo]) {
441 ∗e = e_tab [k lo] ;
442 ∗m = m_tab [k lo] ;
443 }
444 else i f (t > t_ tab [kh i]) {
445 ∗e = 0 . 0 ;
446 ∗m = 0 . 0 ;
447 r e t u r n ;
448 }
449 else {
450 whi le (k lo != (kh i − 1)) {
451 kmid = (k lo + kh i) / 2 ;

207

452 Tmid = t_ tab [kmid] ;
453 i f (t <= Tmid) {
454 kh i = kmid ;
455 } e lse i f (t > Tmid) {
456 k lo = kmid ;
457 }
458 }
459 dT = t_ tab [kh i] − t _ tab [k lo] ;
460 / / i n t e r p o l a t i o n : f i n d ra te a t given t ime and use rec tang les to i n t e g r a t e .
461 / / to get t r a p e z o i d a l numer ica l i n t e g r a t i o n b e t t e r use k lo and kh i value and

compute r i s e
462 ∗m = 0.5∗ (m_tab [k lo]+ m_tab [kh i]) ; / / i n [Msun / s]
463 ∗e = 0.5∗ (e_tab [k lo]+ e_tab [kh i]) ; / / i n [Msun / s]
464 }
465 / / p r i n t f (" T:%g [years] M:%g [Msun / year] E:%g [1 e30erg / s] \ n " , t ,∗m,∗e) ;
466 / / p r i n t f (" convertM %g 1 . / vo l %g g_dt %g \ n " , convertM , 1 . / vol , g_dt) ;
467 / / p r i n t f (" convertE %g 1 . / vo l %g g_dt %g \ n " , convertE , 1 . / vol , g_dt) ;
468 / / p r i n t f (" T:%g [code] M:%g [code] E:%g [code] \ n " , g_time ,m∗convertM , e∗convertE

) ;
469 ∗m ∗= g_dt∗convertM / vo l ;
470 ∗e ∗= g_dt∗convertE / vo l ;
471 r e t u r n ;
472 }

Listing B.17: example of pluto.ini
1 [Gr id]
3
3 X1−g r i d 1 0.01 2400 u 6.01
4 X2−g r i d 1 0.0 1 u 1.0
5 X3−g r i d 1 0.0 1 u 1.0
7
7 [Chombo Refinement]
9
9 Levels 4

10 Ref_ ra t i o 2 2 2 2 2
11 R e g r i d _ i n t e r v a l 2 2 2 2
12 Ref ine_thresh 0.3
13 Tag_buf fer_s ize 3
14 Block_ fac to r 8
15 Max_grid_size 64
16 F i l l _ r a t i o 0.75
18
18 [Time]
20
20 CFL 0.4
21 CFL_max_var 1.1
22 t s t op 15.79
23 f i r s t _ d t 1 .e−9
25
25 [Solver]
27
27 Solver roe
29
29 [Boundary]
31

208 B. Pluto source code listings

31 X1−beg r e f l e c t i v e
32 X1−end ou t f l ow
33 X2−beg r e f l e c t i v e
34 X2−end r e f l e c t i v e
35 X3−beg r e f l e c t i v e
36 X3−end r e f l e c t i v e
38
38 [S t a t i c Gr id Output]
40
40 uservar 0
41 dbl 0.1578 −1 m u l t i p l e _ f i l e s
42 f l t −1.0 −1 s i n g l e _ f i l e
43 v tk −1.0 −1 s i n g l e _ f i l e
44 tab −1.0 −1
45 ppm −1.0 −1
46 png −1.0 −1
47 l og 100
48 ana lys i s −1.0 −1
50
50 [Chombo HDF5 output]
52
52 Checkpo in t_ in te rva l −1.0 0
53 P l o t _ i n t e r v a l 1.0 0
55
55 [Parameters]
57
57 RHO_IN 0.022
58 PRS_IN 3.9889e−7
59 GAMMA 1.66666666667
60 R_DRIVER 0.1
61 ETH 1.0
62 EK 0.0
63 R_BUBBLE 1.22
64 SN 7.0
65 R_SN 0.15
66 TMIN 50.0
67 M_SN 0
68 RHO_MIN 0
69 READIN 0

Listing B.18: customized definitions.h
1 # def ine PHYSICS HD
2 # def ine DIMENSIONS 1
3 # def ine COMPONENTS 1
4 # def ine GEOMETRY SPHERICAL
5 # def ine BODY_FORCE NO
6 # def ine COOLING TABULATED
7 # def ine INTERPOLATION LINEAR
8 # def ine TIME_STEPPING RK2
9 # def ine DIMENSIONAL_SPLITTING YES

10 # def ine NTRACER 1
11 # def ine USER_DEF_PARAMETERS 13
13
13 /∗ −− physics dependent dec l a ra t i o ns −− ∗ /
15

209

15 # def ine EOS IDEAL
16 # def ine ENTROPY_SWITCH NO
17 # def ine THERMAL_CONDUCTION NO
18 # def ine VISCOSITY NO
19 # def ine ROTATING_FRAME NO
21
21 /∗ −− po in te r s to user−def parameters −− ∗ /
23
23 # def ine RHO_IN 0
24 # def ine PRS_IN 1
25 # def ine GAMMA 2
26 # def ine R_DRIVER 3
27 # def ine ETH 4
28 # def ine EK 5
29 # def ine R_BUBBLE 6
30 # def ine SN 7
31 # def ine R_SN 8
32 # def ine TMIN 9
33 # def ine M_SN 10
34 # def ine RHO_MIN 11
35 # def ine READIN 12
37
37 /∗ −− supplementary constants (user e d i t a b l e) −− ∗ /
39
39 # def ine INITIAL_SMOOTHING NO
40 # def ine WARNING_MESSAGES YES
41 # def ine PRINT_TO_FILE NO
42 # def ine INTERNAL_BOUNDARY YES
43 # def ine SHOCK_FLATTENING ONED
44 # def ine ARTIFICIAL_VISCOSITY NO
45 # def ine CHAR_LIMITING YES
46 # def ine LIMITER MINMOD_LIM

Listing B.19: post processing routine
1 # inc lude < s t d i o . h> /∗ requ i red f o r f i l e opera t ions ∗ /
2 # inc lude <math . h> /∗ requ i red f o r pow(n , 3) ∗ /
4
4 FILE ∗ f t ,∗ f r ,∗ fp ,∗ f v ; /∗ dec lare the f i l e p o i n t e r ∗ /
6
6 main (i n t argc , char ∗argv [])
8
8 {
9 i n t n ;

10 char bytes [8] ;
11 char f i l ename t [128] , f i l enamer [128] , f i lenamep [128] , f i lenamev [1 2 8] ;
12 double m, t , ek , et , ek i n t o t , ethermtot , ezero ;
13 double rhomax =0.0 , trhomax =0.0 , v s h e l l =0.0 , rho0 =0.23 , shel lmass =0.0 , s h e l l v

=0 .0 ;
14 i n t nrhomax=0 , s h e l l w i d t h =0 , supersonic =0;
15 / / 60e19 cm 24000 c e l l s
16 double dV = 3 .14159 /400 . /400 . /400 . /0 .75 , dV1 ;
17 / / debug : p r i n t f ("%s \ n " , argv [1]) ;
19
19 s p r i n t f (f i l enamet , " t r 1 .%s . db l " , argv [1]) ;
20 s p r i n t f (f i lenamer , " rho.%s . db l " , argv [1]) ;

210 B. Pluto source code listings

21 s p r i n t f (f i lenamep , " prs .%s . db l " , argv [1]) ;
22 s p r i n t f (f i lenamev , " vx1.%s . db l " , argv [1]) ;
24
24 / / debug : p r i n t f ("%s %s %s " , f i lenamer , f i lenamep , f i lenamev) ;
26
26 f t = fopen (f i l enamet , " r ") ; /∗ open the f i l e f o r reading ∗ /
27 f r = fopen (f i lenamer , " r ") ; /∗ open the f i l e f o r reading ∗ /
28 fp = fopen (f i lenamep , " r ") ; /∗ open the f i l e f o r reading ∗ /
29 f v = fopen (f i lenamev , " r ") ; /∗ open the f i l e f o r reading ∗ /
31
31 ezero =0 .0 ; / / i n i t i a l thermal energy
32 e k i n t o t =0 .0 ;
33 ethermto t =0 .0 ;
34 n=0;
35 m=0.0 ;
36 p r i n t f (" # (1) c e l l number \ n ") ;
37 p r i n t f (" # (2) dens i t y [1e−22 g / cm3] \ n ") ;
38 p r i n t f (" # (3) pressure [1e−6 erg / cm3] \ n ") ;
39 p r i n t f (" # (4) v e l o c i t y [1 e8 cm/ s] \ n ") ;
40 p r i n t f (" # (5) temperature [K] \ n ") ;
41 p r i n t f (" # (6) thermal energy [1e−6 erg / cm3] \ n ") ;
42 p r i n t f (" # (7) k i n e t i c energy [1e−6 erg / cm3] \ n ") ;
43 p r i n t f (" # (8) cumulat ive mass [1 e35 g] \ n ") ;
44 p r i n t f (" # (9) coo l i ng loss [erg / cm3 / s] \ n ") ;
45 whi le (n<10000)
46 {
47 f read (& bytes , 8 , 1 , f t) ;
48 double t r = ∗ ((double ∗) bytes) ; / / erg cm3 / s
49 f read (& bytes , 8 , 1 , f r) ;
50 double d = ∗ ((double ∗) bytes) ; / / 1e−22 g / cm3
51 f read (& bytes , 8 , 1 , fp) ;
52 double p = ∗ ((double ∗) bytes) ; / / 1e−6 erg / cm3
53 f read (& bytes , 8 , 1 , f v) ;
54 double v = ∗ ((double ∗) bytes) ; / / 1e3 km/ s
55 / / i nne r boundary : 0.01 −> 400 ∗ 0.01 = 4
56 dV1=dV∗ (double) (pow ((n+5) ,3)−pow ((n+4) ,3)) ;
57 / / c e l l centered r a d i i
58 / / dV1=dV∗ (pow (((double) (n) +4.5) ,3)−pow (((double) (n) +3.5) ,3)) ;
59 n++;
60 / / CONST_amu 1.66053886e−24 /∗∗< Atomic mass u n i t . ∗ /
61 / / CONST_kB 1.3806505e−16 /∗∗< Boltzmann constant . ∗ /
62 / / KELVIN (g _ u n i t V e l o c i t y ∗ g _ u n i t V e l o c i t y ∗CONST_amu/CONST_kB)
63 / / KELVIN (1e16∗1.66053886e−24/1.3806505e−16)
64 / / KELVIN (1e16∗1.66053886e−8/1.3806505)
65 / / KELVIN (1.66053886e8 /1.3806505) =120272209.
66 / / mu=0.5
67 / / X=1−0.082−1e−3=0.917
68 t =120272209.∗p / d∗0.5∗0.917;
69 i f (d>rhomax) { trhomax= t ; nrhomax=n ; rhomax = d ; v s h e l l =v ; }
70 i f (d>rho0) { s h e l l w i d t h +=1; shel lmass+=dV1∗d ; s h e l l v +=dV1∗d∗v ; i f (v>pow(1.666667∗p /

d , 0 . 5)) { supersonic +=1 ; } }
71 ek=0.5∗d∗v∗v ;
72 / / one over gamma−1: 1.5 = 1 . / (5 . / 3 . −1 .) = 1 / (gamma − 1)
73 et =1.5∗p ;
74 / / thermal energy o f i n i t i a l cond i t i ons : 1.5∗p0 = 1.5∗7.30974e−7

211

75 i f (p < 7.30973e−7 | | p > 7.30975e−7) {
76 ezero +=1.096461e−06∗dV1 ;
77 ethermto t+=et ∗dV1 ;
78 }
79 e k i n t o t +=ek∗dV1 ;
80 m+=d∗dV1 ;
81 p r i n t f ("%d %g %g %g %g %g %g %g %g %g \ n " ,n , d , p , v , t , et , ek ,m, t r , d∗dV1) ;
82 }
84
84 f c l o s e (f r) ; /∗ c lose the f i l e p r i o r to e x i t i n g the r o u t i n e ∗ /
85 f c l o s e (fp) ; /∗ c lose the f i l e p r i o r to e x i t i n g the r o u t i n e ∗ /
86 f c l o s e (f v) ; /∗ c lose the f i l e p r i o r to e x i t i n g the r o u t i n e ∗ /
87 / / p r i n t f (" # %s+13111 %g %g %g t [0 . 5 kyr] Ekin Etherm Eto t [FOE] rhomax %d %g %g

%g ezero %g s h e l l %d %g %g %d \ n " , argv [1] , ek i n t o t , ethermtot , e k i n t o t +
ethermtot , nrhomax , rhomax , trhomax , vshe l l , ezero , she l lw id th , s h e l l v /
shellmass , shellmass , supersonic) ;

88 p r i n t f (" # %d %g %g %g t [0 . 5 kyr] Ekin Etherm Eto t [FOE] rhomax %d %g %g %g ezero
%g s h e l l %d %g %g %d \ n " , a t o i (argv [1]) +13111, e k i n t o t , ethermtot , e k i n t o t +

ethermtot , nrhomax , rhomax , trhomax , vshe l l , ezero , she l lw id th , s h e l l v /
shellmass , shellmass , supersonic) ;

89 } /∗ of main ∗ /

Listing B.20: shell script with automatic expansion of the volume
1 # ! / b in / bash
2 ZAHL=0 # f a c t o r f o r coo l i ng th resho ld : $ {ZAHL } . $ {COUNTER}
3 COUNTER=0
4 NMAX=10
5 PLUSMYR=2 # dura t i on o f i n d i v i d u a l s imu la t i ons
6 OLDAMBIENT=0 # g r i d po in t where the undis turbed medium s t a r t s i n the l a s t

s imu la t i on + b u f f e r
7 # whi le [$ZAHL − l t 2] ; do
8 # l e t COUNTER=2−2∗ZAHL
9 # l e t COUNTER=1−ZAHL

10 # whi le [$COUNTER − l t $NMAX] ; do
11 echo The r a t i o i s $ {ZAHL } . $ {COUNTER}
12 # Cont ro l w i l l en ter here i f $DIRECTORY e x i s t s .
13 i f [−d " $ {ZAHL} p$ {COUNTER} / nh100 "] ; then
14 # f i n d output w i th h ighes t number
15 STARTFILE=$ (l s $ {ZAHL} p$ {COUNTER} / nh100 / rho .?????. db l | t a i l −n 1 | sed −e ’ s

/ ^ \ ([0 −9] p [0 −9] \ / nh100 \ / rho \) \ (\ . \) \ ([0 −9]∗ \) . ∗ / \ 3 / ’)
16 # w r i t e zero i f no f i l e i s found
17 l e t STARTFILE=STARTFILE
18 grep ghosts $ {ZAHL} p$ {COUNTER} / nh100 / job∗ | awk ’BEGIN{max=800}{ i f ($6>max) {max

=$6 } ; p r i n t $0 }END{ p r i n t max } ’
19 AMBIENT=$ (grep ghosts $ {ZAHL} p$ {COUNTER} / nh100 / job∗ | awk ’BEGIN{max=800}{ i f (

$6>max) {max=$6 } }END{ p r i n t max } ’)
20 gcc −cpp −DXMAX=$ (expr $ {AMBIENT} / 100) −o w r i t e a s c i i asc i iTe4 . c −lm
21 else
22 i f [! −d " $ {ZAHL} p$ {COUNTER} "] ; then
23 mkdir $ {ZAHL} p$ {COUNTER}
24 f i
25 mkdir $ {ZAHL} p$ {COUNTER} / nh100
26 STARTFILE=0
27 OLDAMBIENT=0
28 AMBIENT=800

212 B. Pluto source code listings

29 f i
30 echo S t a r t f i l e $STARTFILE
31 REWND=0
32 whi le [$STARTFILE − l t 60000] ; do
33 i f [$STARTFILE −gt 0] ; then
34 cd $ {ZAHL} p$ {COUNTER} / nh100
35 #copy output w i th h ighes t number and i n i f i l e
36 cp p lu to . i n i p lu to$ {STARTFILE } . i n i
37 cp ∗ . $ {STARTFILE } . db l . . / . .
38 cp db l . out db l . $ {STARTFILE } . out
39 cp db l . $ {STARTFILE } . out . . / . . / db l . out
40 cp g r i d . out g r i d . $ {STARTFILE } . out
41 cp g r i d . $ {STARTFILE } . out . . / . .
42 cp r e s t a r t . out r e s t a r t . $ {STARTFILE } . out
43 MYR=$ (bc <<<" scale =2;$ {STARTFILE} / 2000 ")
44 . . / . . / w r i t e a s c i i $ {STARTFILE} > $ {MYR} Myr . t x t
45 echo $ {MYR} Myr . t x t
46 i f [$REWND −eq 0] ; then
47 l e t OLDAMBIENT=AMBIENT
48 #OLDAMBIENT=$ (awk ’BEGIN{ n =0} { n++; i f (n>12 && $1 != "# " && $5 != "−nan ") {

ambient2=$1 } }END{ p r i n t ambient2 } ’ $ {MYR} Myr . t x t)
49 else
50 REWND=0
51 f i
52 i f [$STARTFILE −gt 16000] ; then
53 # ensure 200 to 300 po in t s o f ambient medium @ r i g h t box s ide @ r e s t a r t
54 AMBIENT=$ (awk ’BEGIN{ rho0 =2.2 ; ambient =0; ambient2 =0} { i f ($2>rho0 && $1 != " # ")

{ ambient=$1 } ; i f ($2==rho0 && ($4 != 0) && ($5 != "−nan ")) { ambient2=$1
} }END{ p r i n t ambient2−ambient2%100+300} ’ $ {MYR} Myr . t x t)

55 e l i f [$STARTFILE −gt 9999] ; then
56 # ensure 400 to 500 po in t s o f ambient medium @ r i g h t box s ide @ r e s t a r t
57 AMBIENT=$ (awk ’BEGIN{ rho0 =2.2 ; ambient =0; ambient2 =0} { i f ($2>rho0 && $1 != " # ")

{ ambient=$1 } ; i f ($2==rho0 && ($4 != 0) && ($5 != "−nan ")) { ambient2=$1
} }END{ p r i n t ambient2−ambient2%100+500} ’ $ {MYR} Myr . t x t)

58 else
59 # ensure 200 to 300 po in t s o f ambient medium @ r i g h t box s ide @ r e s t a r t
60 AMBIENT=$ (awk ’BEGIN{ rho0 =2.2 ; ambient =0; ambient2 =0} { i f ($2>rho0 && $1 != " # ")

{ ambient=$1 } ; i f ($2==rho0 && ($4 != 0) && ($5 != "−nan ")) { ambient2=$1
} }END{ p r i n t ambient2−ambient2%100+300} ’ $ {MYR} Myr . t x t)

61 f i
62 echo $OLDAMBIENT $AMBIENT $MYR $STARTFILE
63 i f [$OLDAMBIENT −gt $AMBIENT] ; then
64 cd . . / . .
65 echo " s h e l l l e f t box "
66 #Rewind u n t i l a snapshot where s t e l l i s s t i l l i n the box i s reached
67 REWND=1;
68 # e x i t 2
69 else
70 i f [− f p l u t o . i n i] ; then
71 cp p lu to . i n i p lu to$ {STARTFILE } . i n i
72 f i
73 cd . . / . .
74 f i
75 f i
76 i f [$REWND −eq 0] ; then

213

77 awk −v r e s t a r t = " $ {STARTFILE} " −v po in t s = " $ {AMBIENT} " −v n=" $ {ZAHL } . $ {COUNTER}
" −v myr=" $ {PLUSMYR} " ’ {

78 i f ($1=="X1−g r i d ") { $4= po in t s ; $6= po in t s ∗0 .01+0 .01 ; } ;
79 i f ($1==" t s t op ") { $2=(myr+ r e s t a r t ∗0.0005) ∗315 .61 ; } ;
80 i f ($1=="RHO_MIN") { $2=n } ;
81 i f ($1=="READIN") { $2= r e s t a r t } ;
82 p r i n t $0 } ’ p lu to2 . i n i t > p l u t o . i n i
83 nohup nice −n 19 mpirun −np 4 . . / MyCode / pluto_RHO_COOL_MIN > job$ {STARTFILE } .

$ {ZAHL} p$ {COUNTER} . out
84 gcc −cpp −DXMAX=$ (expr $ {AMBIENT} / 100) −o w r i t e a s c i i asc i iTe4 . c −lm
85 . / a s c i i . s h e l l $STARTFILE $ (expr 2000 \∗ $ {PLUSMYR} + $STARTFILE)
86 sed ’ s / \ # / / g ’ energy . t x t >> $ {ZAHL} p$ {COUNTER} / nh100 / energy . t x t
87 rm energy . t x t
88 . / w r i t e a s c i i $ (expr 2000 \∗ $ {PLUSMYR} + $STARTFILE) > $ (bc <<<" scale =2; $ {

STARTFILE} / 2000 + $ {PLUSMYR} ") Myr . t x t
89 mv ∗ t x t ∗ i n i ∗dbl ∗out $ {ZAHL} p$ {COUNTER} / nh100
90 l e t STARTFILE=2000∗PLUSMYR+STARTFILE
91 else
92 l e t STARTFILE=STARTFILE−REWND
93 f i
94 done
95 # l e t COUNTER=COUNTER+1
96 # done
97 # l e t ZAHL=ZAHL+1
98 # NMAX=4
99 #done

214 B. Pluto source code listings

Appendix C

Ramses source code listings

The listings in this section contain patches for RAMSES version 3.10 git commit 792ce06 (first
seven digits)
from August, 27th 2014 at https://bitbucket.org/rteyssie/ramses

Listing C.1: New module with a feedback routine for Ramses: driver.f90
1 ! > \ sho r t reads and i n t e r p o l a t e s d r i v e r data ; c a l c u l a t e s weights f o r a homogeneous

, c i r c u l a r d r i v e r reg ion
2 !−−−
3 ! > \ vers ion 1.5
4 ! > \ author Kathar ina M. F i e r l i n g e r
5 ! > \ date l a s t m o d i f i c a t i o n 27.01.2012
6 !−−−
7 ! > \ d e t a i l s PURPOSE:
8 ! > \ n read and i n t e r p o l a t e :
9 ! > \ n ∗ d r i v e r mass loss (per t ime u n i t)

10 ! > \ n ∗ d r i v e r energy produc t ion (per t ime u n i t)
11 ! > \ n ∗ d r i v e r wind speed
12 ! > \ n f i l e _ d r i v e r . . . name of d r i v e r f i l e
13 ! > \ n assume t h a t the d r i v e r data are s tored i n a f i l e c a l l e d " f i l e _ d r i v e r "
14 ! > t h a t i s s tored i n the l o c a l d i r e c t o r y
15 ! > \ n dp . . . p r e c i s i o n
16 ! > \ n f i l e _ d r i v e r . . . name of d r i v e r f i l e
17 !−−−
18 ! > i f d e f SMOOTH_DRIVER_EDGE . . . c a l c u l a t e weights f o r c e l l s p a r t l y i n s i d e the

d r i v e r reg ion
19 ! > This d e f i n i t i o n should be made at compile t ime . You can also hard−code i t here .
20 ! > # de f ine SMOOTH_DRIVER_EDGE 1
21 ! > #undef SMOOTH_DRIVER_EDGE
22 module d r i v e r
23 use amr_parameters , on ly : dp , f i l e _ d r i v e r , f i l e _ s n
24 i m p l i c i t none
25 save ! r e t a i n the value o f the v a r i a b l e s from one c a l l to the next
26 i n teger , parameter : : i 9 = se lec ted_ in t_k i nd (r =9) ! < i n t e g e r type d e f i n i t i o n
27 r e a l (dp) , p r i v a t e : : end t imedr ive r = 0.0_dp ! < f o r t imes l a t e r than t h i s no

d r i v e r data e x i s t s (t ime i n code u n i t s)
28 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : t i m e d r i v e r ! < ar ray con ta in ing

t imes (code−t ime−u n i t s) a t which d r i v e r data i s a v a i l a b l e
29 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : e i d r i v e r ! < ar ray con ta in ing

energy output per u n i t t ime (i n code−energy−u n i t s per code−t ime−u n i t) a t
t imes stored i n t i m e d r i v e r

https://bitbucket.org/rteyssie/ramses

216 C. Ramses source code listings

30 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : dMdriver ! < ar ray con ta in ing
mass output per u n i t t ime (i n code−mass−u n i t s per code−t ime−u n i t s) a t t imes
stored i n t i m e d r i v e r

31 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : v e l d r i v e r ! < ar ray con ta in ing
wind speeds (i n code−length−u n i t s per code−t ime−u n i t s) a t t imes stored i n
t i m e d r i v e r

32 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : a l 2 6 d r i v e r ! < ar ray con ta in ing \
f$ ^ { 2 6 } { \ rm Al } \ f$ (i n code−mass−u n i t s per code−t ime−u n i t s) a t t imes stored
i n t i m e d r i v e r

33 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : f e 6 0 d r i v e r ! < ar ray con ta in ing \
f$ ^ { 6 0 } { \ rm Fe } \ f$ (i n code−mass−u n i t s per code−t ime−u n i t s) a t t imes stored
i n t i m e d r i v e r

34 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : timeSN ! < ar ray con ta in ing t imes
(code−t ime−u n i t s) when SN explode

35 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : eSN ! < ar ray con ta in ing SN
energies (i n code−energy−u n i t s) a t t imes stored i n timeSN

36 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : mSN ! < ar ray con ta in ing SN mass
loss (i n code−mass−u n i t s) a t t imes stored i n timeSN

38
38 type driver_mask
39 i n t e g e r : : h a l f s i z e
40 r e a l (dp) : : dx
41 r e a l (dp) : : volume
42 # i f NDIM==1
43 r e a l (dp) , dimension (:) , a l l o c a t a b l e : : weights
44 # end i f
45 # i f NDIM==2
46 r e a l (dp) , dimension (: , :) , a l l o c a t a b l e : : weights
47 # end i f
48 # i f NDIM==3
49 r e a l (dp) , dimension (: , : , :) , a l l o c a t a b l e : : weights
50 # end i f
51 end type driver_mask
53
53 type (dr iver_mask) , dimension (:) , a l l o c a t a b l e : : d r i v e r 1
55
55 conta ins
56 ! subrou t ine read_dr i ve r (nt ime)
57 ! > \ sho r t reads d r i v e r data
58 ! > \ param ntime . . . read f i r s t nt ime l i n e s o f d r i v e r data from a f i l e c a l l e d "

f i l e _ d r i v e r " i n the l o c a l d i r
59 !−−−
60 ! > \ vers ion 1.6
61 ! > \ author Kathar ina M. F i e r l i n g e r
62 ! > \ date l a s t m o d i f i c a t i o n 10.08.2011
63 !−−−
64 ! > \ d e t a i l s PURPOSE:
65 ! > \ n read f i r s t " nt ime " l i n e s o f d r i v e r data from a f i l e c a l l e d " f i l e _ d r i v e r " i n

the l o c a l d i r
66 ! > \ n f i l e _ d r i v e r . . . name of d r i v e r f i l e
67 ! > \ n change on 03−03−2009: d r i v e r f i l e has an a d d i t i o n a l column f o r 26−Al y i e l d s
68 ! > \ n change on 10−12−2009: d r i v e r f i l e has an a d d i t i o n a l column f o r 60−Fe y i e l d s
69 ! > \ n change on 10−08−2011: " zero energy " now poss ib le
70 !−−−
71 ! > \ n d r i v e r f i l e contents :

217

72 ! > \ n column 1: t ime from s t a r f o r m a t i o n (i n years)
73 ! > \ n column 2: cumulat ive output o f 26Al (i n Msol)
74 ! > \ n column 3: cumulat ive output o f 60Fe (i n Msol)
75 ! > \ n column 4: UV r a d i a t i o n (photons / s)
76 ! > \ n column 5: energy emi t ted i n winds (log (erg / s))
77 ! > \ n column 6: energy emi t ted i n supernovae (log (erg / s))
78 ! > \ n column 7: mass e jec ted by supernova (Msol / year)
79 ! > \ n column 8: mass e jec ted i n winds (Msol / year)
80 !−−−
81 subrou t ine read_dr i ve r (nt ime)
82 i m p l i c i t none
83 i n t e g e r (i 9) , i n t e n t (i n) , o p t i o n a l : : nt ime ! < ntime . . . read f i r s t nt ime l i n e s o f

d r i v e r data from a f i l e c a l l e d " f i l e _ d r i v e r " i n the l o c a l d i r
84 i n t e g e r (i 9) : : n l i n e s = 0_i9 ! < number o f l i n e s read from d r i v e r f i l e
85 i n t e g e r (i 9) : : i = 1_ i9 ! < f o r do loop
86 i n t e g e r (i 9) : : ifEOF = 0_i9 ! < checks when the end of the f i l e i s reached
87 i n t e g e r (i 9) : : e r r o r _ a l l o c ! < checks i f memory a l l o c a t i o n works
88 r e a l (dp) : : sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2 ! < convers ion

f a c t o r s between cgs and user u n i t s (subrou t ine u n i t s i n u n i t s . f90)
89 r e a l (dp) : : scale_energy , scale_m , scale_dm ! < convers ion f a c t o r s between cgs and

user u n i t s
90 r e a l (dp) : : t imestep ! < t ime i n t e r v a l between the cu r ren t l i n e and the l a s t l i n e

i n i n years
91 r e a l (dp) : : old26Al , old60Fe , o ld t ime =0.0_dp ! < s to res values from the l a s t l i n e (

to conver t cumulat ive data to f l u x e s)
92 r e a l (dp) : : sumenergy , summass , sum26Al , sum60Fe ,sum ! < mean y i e l d s (averaged over

tsum)
93 r e a l (dp) : : col1 , col2 , col3 , col4 , col5 , col6 , col7 , co l8 ! < reads data from the 8

columns i n the i npu t f i l e
94 r e a l (dp) : : tsum =1.d7 ! < t i m e i n t e r v a l f o r mean y i e l d s i n years
95 r e a l (dp) , parameter : : YearToSeconds = 31556926._dp ! < conver t years to seconds ;

1 year = 31556926 seconds
96 r e a l (dp) , parameter : : SolarMass = 1.98892e33_dp ! < so la r mass i n [g]
97 open (1 , f i l e =TRIM(f i l e _ d r i v e r) , form= ’ fo rmat ted ’)
98 p r i n t ∗ , " Reading d r i v e r data from >>" , TRIM(f i l e _ d r i v e r) , "<< . "
99 i f (present (nt ime)) then

100 n l i n e s = ntime
101 p r i n t ∗ , " searching f o r " , n l ines , " l i n e s i n d r i v e r f i l e "
102 else
103 n l i n e s = 0_ i9
104 ifEOF = 0_i9
105 do
106 read (1 ,∗ , IOSTAT=ifEOF) endt imedr iver , endt imedr iver , endt imedr iver , &
107 & endt imedr iver , endt imedr iver , endt imedr iver , &
108 & endt imedr iver , end t imedr ive r
109 i f (ifEOF . l t .0 _ i9) then
110 e x i t ! eof i s reached , jump out o f the do−loop
111 end i f
112 n l i n e s = n l i n e s +1
113 end do
114 rewind (1)
115 p r i n t ∗ , " found " , n l ines , " l i n e s i n d r i v e r f i l e "
116 end i f
117 a l l o c a t e (t i m e d r i v e r (1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
118 i f (e r r o r _ a l l o c /= 0) then

218 C. Ramses source code listings

119 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data d id not work ’
120 end i f
121 a l l o c a t e (e i d r i v e r (1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−energy−u n i t s per code

−t ime−u n i t
122 i f (e r r o r _ a l l o c /= 0) then
123 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data d id not work ’
124 end i f
125 a l l o c a t e (dMdriver (1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−mass−u n i t s per code−

t ime−u n i t
126 i f (e r r o r _ a l l o c /= 0) then
127 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data d id not work ’
128 end i f
129 a l l o c a t e (v e l d r i v e r (1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−length−u n i t s per code

−t ime−u n i t
130 i f (e r r o r _ a l l o c /= 0) then
131 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data d id not work ’
132 end i f
133 a l l o c a t e (a l 2 6 d r i v e r (1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−mass−u n i t s per code−

t ime−u n i t
134 i f (e r r o r _ a l l o c /= 0) then
135 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data d id not work ’
136 end i f
137 a l l o c a t e (f e 6 0 d r i v e r (1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−mass−u n i t s per code−

t ime−u n i t
138 i f (e r r o r _ a l l o c /= 0) then
139 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data d id not work ’
140 end i f
141 ifEOF = 0_i9
142 old26Al =0.0_dp
143 old60Fe =0.0_dp
144 o ld t ime =0.0_dp
145 sumenergy=0.0_dp
146 summass=0.0_dp
147 sum26Al=0.0_dp
148 sum60Fe=0.0_dp
149 sum=0.0_dp
150 t imestep =0.0_dp
152
152 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
153 scale_m=scale_d∗ sca le_ l ∗∗3 ! 10^(+35)
154 ! 1 year = 31556926 seconds
155 ! mass loss = 1 so la r mass / year
156 ! mass loss = \ f$ \ f r a c {1.98892 \ t imes 10^{33}}{31556926} \ f r a c { \ rm [g] } { \ rm [s] }

\ f$
157 ! mass loss = 63.e+24 g / s
158 scale_dm=SolarMass / YearToSeconds∗ sca le_ t / scale_m
159 ! k i n e t i c l u m i n o s i t y : erg / s = g cm^2 / s^3
160 ! 1 erg / s = 10^(−35−2∗19+3∗11) code−mass u n i t s code leng th u n i t s ^2 / code−t ime−u n i t s

^3
161 ! 1 erg / s = 10^(−40) code−mass u n i t s code leng th u n i t s ^2 / code−t ime−u n i t s ^3
162 scale_energy=sca le_ t / scale_m / scale_v∗∗2 ! 10^(−40)
163 do i =1 , n l i n e s
164 read (1 ,∗ , IOSTAT=ifEOF) col1 , col2 , col3 , col4 , col5 , col6 , col7 , co l8
165 t i m e d r i v e r (i) =co l1∗YearToSeconds / sca le_ t
166 dMdriver (i) =(co l7+col8) ∗scale_dm

219

167 i f (co l5 . g t . 0 . 0) then
168 e i d r i v e r (i) =(10.0_dp∗∗ (co l5)) ∗scale_energy
169 else
170 e i d r i v e r (i) =0.0_dp
171 end i f
172 i f (co l6 . g t . 0 . 0) then
173 e i d r i v e r (i) = e i d r i v e r (i) +(10.0_dp∗∗ (co l6)) ∗scale_energy
174 end i f
175 t imestep=col1−o ld t ime
176 i f (t imestep . l e . 0 . 0 _dp) then
177 a l 2 6 d r i v e r (i) =0.0_dp
178 f e 6 0 d r i v e r (i) =0.0_dp
179 else
180 a l 2 6 d r i v e r (i) =(col2−old26Al) / t imestep∗scale_dm
181 f e 6 0 d r i v e r (i) =(col3−old60Fe) / t imestep∗scale_dm
182 end i f
183 old26Al=co l2
184 old60Fe=col3
185 o ld t ime=col1
186 i f (co l1 . l e . tsum) then
187 sumenergy=sumenergy+ e i d r i v e r (i)
188 summass=summass+dMdriver (i)
189 sum26Al=sum26Al+ a l 2 6 d r i v e r (i)
190 sum60Fe=sum60Fe+ f e 6 0 d r i v e r (i)
191 sum=sum+1._dp
192 end i f
193 i f (ifEOF . g t .0 _ i9) then
194 p r i n t ∗ , ’ Something went wrong dur ing read i n o f the d r i v e r data . ’
195 else i f (ifEOF . l t .0 _ i9) then
196 p r i n t ∗ , ’End of f i l e reached at l i n e ’ , i
197 end i f
198 end do
199 c lose (1)
200 t i m e d r i v e r (n l i n e s +1)= t i m e d r i v e r (n l i n e s) ∗10.0_dp
201 dMdriver (n l i n e s +1) =dMdriver (n l i n e s)
202 e i d r i v e r (n l i n e s +1) = e i d r i v e r (n l i n e s)
203 a l 2 6 d r i v e r (n l i n e s +1)= a l 2 6 d r i v e r (n l i n e s)
204 f e 6 0 d r i v e r (n l i n e s +1)= f e 6 0 d r i v e r (n l i n e s)
205 t i m e d r i v e r (n l i n e s +2)= t i m e d r i v e r (n l i n e s) ∗100.0_dp
206 dMdriver (n l i n e s +2) =summass / sum
207 e i d r i v e r (n l i n e s +2) =sumenergy / sum
208 a l 2 6 d r i v e r (n l i n e s +2)=sum26Al / sum
209 f e 6 0 d r i v e r (n l i n e s +2)=sum60Fe /sum
210 ! no v e l o c i t i e s i n ana l y t . dat
211 v e l d r i v e r (:) =0.0_dp
212 endt imedr ive r = t i m e d r i v e r (n l i n e s)
213 end subrou t ine read_dr i ve r
214 ! subrou t ine read_sn (nt ime)
215 ! > \ sho r t reads d r i v e r SN data
216 ! > \ param ntime . . . read f i r s t nt ime l i n e s o f d r i v e r data from a f i l e c a l l e d "

f i l e _ s n " i n the l o c a l d i r
217 !−−−
218 ! > \ vers ion 1.0
219 ! > \ author Kathar ina M. F i e r l i n g e r
220 ! > \ date l a s t m o d i f i c a t i o n 10.08.2011

220 C. Ramses source code listings

221 !−−−
222 ! > \ d e t a i l s PURPOSE:
223 ! > \ n read f i r s t " nt ime " l i n e s o f d r i v e r data from a f i l e c a l l e d " f i l e _ s n " i n the

l o c a l d i r
224 ! > \ n f i l e _ s n . . . name of d r i v e r supernova f i l e
225 !−−−
226 ! > \ n d r i v e r f i l e contents :
227 ! > \ n column 1: t ime from s t a r f o r m a t i o n (i n years)
228 ! > \ n column 6: energy emi t ted i n supernovae (i n 1e51 erg)
229 ! > \ n column 7: mass e jec ted by supernova (i n Msol)
230 !−−−
231 subrou t ine read_sn (nt ime)
232 i m p l i c i t none
233 i n t e g e r (i 9) , i n t e n t (i n) , o p t i o n a l : : nt ime ! < ntime . . . read f i r s t nt ime l i n e s o f

d r i v e r data from a f i l e c a l l e d " f i l e _ d r i v e r " i n the l o c a l d i r
234 i n t e g e r (i 9) : : n l i n e s = 0_i9 ! < number o f l i n e s read from d r i v e r f i l e
235 i n t e g e r (i 9) : : i = 1_ i9 ! < f o r do loop
236 i n t e g e r (i 9) : : ifEOF = 0_i9 ! < checks when the end of the f i l e i s reached
237 i n t e g e r (i 9) : : e r r o r _ a l l o c ! < checks i f memory a l l o c a t i o n works
238 r e a l (dp) : : sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2 ! < convers ion

f a c t o r s between cgs and user u n i t s (subrou t ine u n i t s i n u n i t s . f90)
239 r e a l (dp) : : scale_energy , scale_m , scale_dm ! < convers ion f a c t o r s between cgs and

user u n i t s
240 r e a l (dp) : : col1 , col2 , co l3 ! < reads data from the 3 columns i n the i npu t f i l e
241 r e a l (dp) , parameter : : YearToSeconds = 31556926._dp ! < conver t years to seconds ;

1 year = 31556926 seconds
242 r e a l (dp) , parameter : : SolarMass = 1.98892e33_dp ! < so la r mass i n [g]
243 open (1 , f i l e =TRIM(f i l e _ s n) , form= ’ fo rmat ted ’)
244 p r i n t ∗ , " Reading d r i v e r data from >>" , TRIM(f i l e _ s n) , "<< . "
245 i f (present (nt ime)) then
246 n l i n e s = ntime
247 p r i n t ∗ , " searching f o r " , n l ines , " l i n e s i n d r i v e r f i l e "
248 else
249 n l i n e s = 0_ i9
250 ifEOF = 0_i9
251 do
252 read (1 ,∗ , IOSTAT=ifEOF) col1 , col2 , co l3
253 i f (ifEOF . l t .0 _ i9) then
254 e x i t ! eof i s reached , jump out o f the do−loop
255 end i f
256 n l i n e s = n l i n e s +1
257 end do
258 rewind (1)
259 p r i n t ∗ , " found " , n l ines , " l i n e s i n SN f i l e "
260 end i f
261 a l l o c a t e (timeSN (1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
262 i f (e r r o r _ a l l o c /= 0) then
263 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r sn data d id not work ’
264 end i f
265 a l l o c a t e (eSN(1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−energy−u n i t s per code−t ime

−u n i t
266 i f (e r r o r _ a l l o c /= 0) then
267 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r sn data d id not work ’
268 end i f
269 a l l o c a t e (mSN(1 : n l i n e s +2) , s t a t = e r r o r _ a l l o c) ! i n code−mass−u n i t s per code−t ime−

221

u n i t
270 i f (e r r o r _ a l l o c /= 0) then
271 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r sn data d id not work ’
272 end i f
274
274 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
275 scale_m=scale_d∗ sca le_ l ∗∗3 ! conver t mass i n g to code−mass−u n i t s
276 ! mass loss = 1 so la r mass
277 ! mass loss = \ f$ 1.98892 \ t imes 10^{33} \ rm [g] \ f$
278 scale_dm=SolarMass / scale_m ! so la r masses to code−mass−u n i t s
279 !SN energy : erg = g cm^2 / s^2
280 ! 1 erg = 10^(−35−2∗19+2∗11) code−mass−u n i t s code−length−u n i t s ^2 / code−t ime−u n i t s ^2
281 scale_energy =10._dp∗∗ (51.0_dp−log10 (scale_m)−2∗ log10 (scale_v)) !FOE to code−

energy−u n i t s
282 do i =1 , n l i n e s
283 read (1 ,∗ , IOSTAT=ifEOF) col1 , col2 , co l3
284 timeSN (i) =co l1∗YearToSeconds / sca le_ t
285 eSN(i) =co l2∗scale_energy ! conver t energy i n FOE i n t o code−energy−u n i t s
286 mSN(i) =co l3∗scale_dm ! conver t mass i n so l a r masses to code−mass−u n i t s
287 p r i n t ∗ , "SN (" , i , ") : a t " , timeSN (i) , " code−t ime−un i t s , mass" ,mSN(i) , " code−mass−

un i t s , energy : " ,eSN(i) , " code−energy−u n i t s "
288 p r i n t ∗ , "SN (" , i , ") : a t " , col1 , " years , mass" , col3 , " so l a r masses , energy : " , col2 , "

FOE"
289 end do
290 c lose (1)
291 end subrou t ine read_sn
292 ! subrou t ine remove_dr iver
293 ! > \ sho r t dea l loca tes d r i v e r data vec to rs
294 !−−−
295 ! > \ vers ion 1.2
296 ! > \ author Kathar ina M. F i e r l i n g e r
297 ! > \ date l a s t m o d i f i c a t i o n 10.12.2009
298 !−−−
299 ! > \ d e t a i l s PURPOSE: dea l l oca te d r i v e r data vec to rs
300 !−−−
301 subrou t ine remove_dr iver
302 i m p l i c i t none
303 dea l l oca te (t i m e d r i v e r)
304 dea l l oca te (e i d r i v e r)
305 dea l l oca te (dMdriver)
306 dea l l oca te (v e l d r i v e r)
307 dea l l oca te (a l 2 6 d r i v e r)
308 dea l l oca te (f e 6 0 d r i v e r)
309 end subrou t ine remove_dr iver
310 ! subrou t ine remove_sn
311 ! > \ sho r t dea l loca tes d r i v e r sn data vec to rs
312 !−−−
313 ! > \ vers ion 1.0
314 ! > \ author Kathar ina M. F i e r l i n g e r
315 ! > \ date l a s t m o d i f i c a t i o n 10.08.2011
316 !−−−
317 ! > \ d e t a i l s PURPOSE: dea l l oca te d r i v e r sn data vec to rs
318 !−−−
319 subrou t ine remove_sn
320 i m p l i c i t none

222 C. Ramses source code listings

321 dea l l oca te (timeSN)
322 dea l l oca te (eSN)
323 dea l l oca te (mSN)
324 end subrou t ine remove_sn
325 ! subrou t ine i n t e r p o l a t e _ d r i v e r (age , ed r i ve r , rhod r i ve r , a l d r i v e r , f e d r i v e r)
326 ! > \ sho r t i n t e r p o l a t e s d r i v e r data
327 ! > \ param age . . . age of the OB assoc ia t i on (code u n i t s)
328 ! > \ param e d r i v e r . . . energy output o f the OB assoc ia t i on (code u n i t s) a t t ime "

age "
329 ! > \ param r h o d r i v e r . . . mass output o f the OB assoc ia t i on (code u n i t s) a t t ime "

age "
330 ! > \ param a l d r i v e r . . . 26Al f r a c t i o n o f the mass output o f the OB assoc ia t i on a t

t ime " age "
331 ! > \ param f e d r i v e r . . . 60Fe f r a c t i o n o f the mass output o f the OB assoc ia t i on a t

t ime " age "
332 !−−−
333 ! > \ vers ion 1.4
334 ! > \ author Kathar ina M. F i e r l i n g e r
335 ! > \ date l a s t m o d i f i c a t i o n 04.02.2010
336 !−−−
337 ! > \ d e t a i l s PURPOSE: l i n e a r i n t e r p o l a t i o n o f d r i v e r data
338 !−−−
339 subrou t ine i n t e r p o l a t e _ d r i v e r (age , edr i ve r , rhod r i ve r , a l d r i v e r , f e d r i v e r)
340 i m p l i c i t none
341 r e a l (dp) , i n t e n t (i n) : : age
342 r e a l (dp) , i n t e n t (out) : : ed r i ve r , rhod r i ve r , a l d r i v e r , f e d r i v e r
343 i n t e g e r (i 9) : : i
344 i f (age . l t . end t imedr ive r) then
345 i =1
346 do whi le (t i m e d r i v e r (i) . l t . age)
347 i = i +1
348 end do
349 i f (i <2) then
350 r h o d r i v e r =dMdriver (1)
351 e d r i v e r = e i d r i v e r (1)
352 a l d r i v e r = a l 2 6 d r i v e r (1)
353 f e d r i v e r = f e 6 0 d r i v e r (1)
354 else
355 e d r i v e r = e i d r i v e r (i −1)+ &
356 & (age−t i m e d r i v e r (i −1)) / (t i m e d r i v e r (i)−t i m e d r i v e r (i −1)) ∗ &
357 & (e i d r i v e r (i)−e i d r i v e r (i −1))
358 r h o d r i v e r =dMdriver (i −1)+ &
359 & (age−t i m e d r i v e r (i −1)) / (t i m e d r i v e r (i)−t i m e d r i v e r (i −1)) ∗ &
360 & (dMdriver (i)−dMdriver (i −1))
361 a l d r i v e r = a l 2 6 d r i v e r (i −1)+ &
362 & (age−t i m e d r i v e r (i −1)) / (t i m e d r i v e r (i)−t i m e d r i v e r (i −1)) ∗ &
363 & (a l 2 6 d r i v e r (i)−a l 2 6 d r i v e r (i −1))
364 f e d r i v e r = f e 6 0 d r i v e r (i −1)+ &
365 & (age−t i m e d r i v e r (i −1)) / (t i m e d r i v e r (i)−t i m e d r i v e r (i −1)) ∗ &
366 & (f e 6 0 d r i v e r (i)−f e 6 0 d r i v e r (i −1))
367 end i f
368 else
369 p r i n t ∗ , ’ t ime : ’ , age
370 p r i n t ∗ , " no d r i v e r data f o r t ime > " , end t imedr ive r
371 e d r i v e r = 0.0_dp

223

372 r h o d r i v e r = 0.0_dp
373 a l d r i v e r = 0.0_dp
374 f e d r i v e r = 0.0_dp
375 end i f
376 end subrou t ine i n t e r p o l a t e _ d r i v e r
377 ! subrou t ine add_SN
378 ! > \ sho r t checks i s SN explos ions occurred dur ing t h i s t imestep
379 !−−−
380 ! > \ vers ion 1.0
381 ! > \ author Kathar ina M. F i e r l i n g e r
382 ! > \ date l a s t m o d i f i c a t i o n 10.08.2011
383 !−−−
384 ! > \ d e t a i l s PURPOSE: Add SN mass+energy loss i f any SN exploded .
385 !−−−
386 subrou t ine add_SN(age , d e l t a t , m_sn , e_sn)
387 i m p l i c i t none
388 r e a l (dp) , i n t e n t (i n) : : age , d e l t a t
389 r e a l (dp) , i n t e n t (out) : : m_sn , e_sn
390 i n t e g e r (i 9) : : i
391 m_sn=0.0_dp
392 e_sn=0.0_dp
393 do i =1 ,SIZE (timeSN)
394 i f ((timeSN (i) . g t . age) . and . (timeSN (i) . l e . age+ d e l t a t)) then
395 m_sn=m_sn+mSN(i)
396 e_sn=e_sn+eSN(i)
397 p r i n t ∗ , "SN" , timeSN (i) ,mSN(i) ,eSN(i) ,m_sn , e_sn
398 end i f
399 end do
400 ! i f (m_sn . l e . 0 . 0 _dp) then
401 ! p r i n t ∗ , " no SN"
402 ! end i f
403 end subrou t ine add_SN
404 !−−−
405 ! > \ sho r t c a l c u l a t e s Monte Carlo weights f o r a s p h e r i ca l d r i v e r reg ion
406 !−−−
407 ! > \ vers ion 1.0
408 ! > \ author Kathar ina M. F i e r l i n g e r
409 ! > \ date l a s t m o d i f i c a t i o n 27.01.2012
410 !−−−
411 ! > \ d e t a i l s PURPOSE: Monte Carlo weights f o r a s p h e r i ca l d r i v e r reg ion .
412 ! > I f a c e l l i s p a r t l y i n s i d e the d r i v e r region , randg r i ds i ze random
413 ! > p o s i t i o n s i n t h i s c e l l s are computed . The percentage of random po in t s
414 ! > t h a t l i e i n s i d e the d r i v e r reg ion i s asumed to be equal to the
415 ! > percentage of c e l l volume t h a t i s i n s i d e the d r i v e r reg ion .
416 !−−−
417 subrou t ine a l loca te_dr iver_mask
418 use amr_parameters , on ly : r _ d r i v e r , x_dr i ve r , y_dr i ve r , z_dr i ve r , &
419 & boxlen , leve lmin , nlevelmax
420 # i f n d e f WITHOUTMPI
421 use amr_commons , on ly : myid
422 # end i f
423 use random
424 i m p l i c i t none
426
426 i n t e g e r : : i i , i i x , i i y , i i z , i x , i y , i z ! < loop v a r i a b l es

224 C. Ramses source code listings

427 i n t e g e r : : h a l f s i z e ! < h a l f s i ze o f d r i v e r reg ion
428 i n t e g e r : : r andg r i ds i ze = 100000 ! < number o f po in t s i n random subgr id
429 i n t e g e r : : nn = 0 ! < counter f o r Monte Car lo Volume
430 i n teger , dimension (IRandNumSize) : : &
431 & loca lseed = (/ 3281 , 4041 , 595 , 2376 /)
432 i n t e g e r (i 9) : : e r r o r _ a l l o c ! < checks i f memory a l l o c a t i o n works
433 r e a l (dp) , parameter : : p i = DACOS(−1.D0)
434 r e a l (dp) : : minx =0.0_dp , maxx=0.0_dp
435 r e a l (dp) : : help_low , r_d r i ve r_sca led , help1 , help2 , help3 , dx
436 r e a l (k ind =8) : : help_k8
437 # i f NDIM>1
438 r e a l (dp) : : miny =0.0_dp , maxy=0.0_dp
439 # end i f
440 # i f NDIM>2
441 r e a l (dp) : : minz =0.0_dp , maxz=0.0_dp
442 # end i f
444
444 ! a l l o c a t e ar ray o f po i n te r s (1 . . nlevelmax−l eve lm in +1)
445 a l l o c a t e (d r i v e r 1 (1 : nlevelmax−l eve lm in +1) , s t a t = e r r o r _ a l l o c)
446 i f (e r r o r _ a l l o c /= 0) then
447 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data (d r i v e r 1) d id not work ’
448 end i f
450
450 ! d r i v e r 1 conta ins f o r each l e v e l
451 ! %weights (ndim x ndim ar ray) a l l o c a t a b l e
452 ! %volume
453 ! %dx
454 do i i = leve lmin , nlevelmax
455 dx=boxlen ∗0.5_dp∗∗ (i i) ! < c e l l s i ze [boxlen u n i t s]
456 d r i v e r 1 (i i −l eve lm in +1)%dx=dx ! < c e l l s i ze [boxlen u n i t s]
457 ! check how many g r i d c e l l s are along the d r i v e r d iagonal on each g r i d
458 ! l e v e l add 2 c e l l s s ince the d r i v e r center may not be on a c e l l face
459 r _d r i ve r_sca led = r _ d r i v e r / dx
460 h a l f s i z e =CEILING (r_d r i ve r_sca led) +1
461 d r i v e r 1 (i i −l eve lm in +1)%h a l f s i z e = h a l f s i z e
462 ! a l l o c a t e an ar ray f o r the weights
463 !%weights po in t s to a ndim ar ray o f 2∗ c e i l i n g (r _ d r i v e r / dx_ leve l (1))
464 a l l o c a t e (d r i v e r 1 (i i −l eve lm in +1)%weights (1 :2∗ h a l f s i z e &
465 # i f NDIM>1
466 & ,1:2∗ h a l f s i z e &
467 # end i f
468 # i f NDIM>2
469 & ,1:2∗ h a l f s i z e &
470 # end i f
471 &) , s t a t = e r r o r _ a l l o c)
472 i f (e r r o r _ a l l o c /= 0) then
473 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r d r i v e r data (d r i v e r 1%weights) d id not

work ’
474 end i f
475 ! c e l l number = FLOOR((x−xc) / dx) + h a l f s i z e
476 !−−−−−−−−−−−−−−−−−
477 ! c a l c u l a t e the l o c a t i o n o f the d r i v e r center w i th respect to the g r i d
478 !−−−−−−−−−−−−−−−−−
479 help_low =(x_d r i ve r / boxlen +0.5_dp) / (0 . 5 _dp∗∗ (i i)) ! d r i v e r l o c a t i o n i n c e l l s
480 minx=help_low−dble (FLOOR(help_low)) ! non i n t e g e r value . . . space between d r i v e r

225

g r i d and next (lower) g r i d po in t
481 minx=(−minx−dble (h a l f s i z e))
482 maxx=minx
483 ! p r i n t ∗ , " c e l l s along rad ius : " , r _d r i ve r_sca led
484 !−−−−−−−−−−−−−−−−−
485 ! get the weights
486 !−−−−−−−−−−−−−−−−−
487 do i i x =1 ,2∗ h a l f s i z e
488 # i f NDIM>1
489 help_low =(y_d r i ve r / boxlen +0.5_dp) / (0 . 5 _dp∗∗ (i i)) ! d r i v e r l o c a t i o n i n c e l l s
490 miny=help_low−dble (FLOOR(help_low)) ! non i n t e g e r value . . . space between d r i v e r

g r i d and next (lower) g r i d po in t
491 miny=(−miny−dble (h a l f s i z e))
492 maxy=miny
493 do i i y =1 ,2∗ h a l f s i z e
494 # end i f
495 # i f NDIM>2
496 help_low =(z_d r i ve r / boxlen +0.5_dp) / (0 . 5 _dp∗∗ (i i)) ! d r i v e r l o c a t i o n i n c e l l s
497 minz=help_low−dble (FLOOR(help_low))
498 minz=(−minz−dble (h a l f s i z e))
499 maxz=minz
500 do i i z =1 ,2∗ h a l f s i z e
501 # end i f
502 i f ((maxx∗∗2+maxy∗∗2+maxz∗∗2) . l t . (r _d r i ve r_sca led) ∗∗2) then ! f u l l y i n s i d e
503 # i f NDIM==1
504 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x) = 1.0_dp
505 # end i f
506 # i f NDIM==2
507 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x , i i y) = 1.0_dp
508 # end i f
509 # i f NDIM>2
510 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x , i i y , i i z) = 1.0_dp
511 # end i f
512 else i f (((abs (maxx)−1._dp) ∗∗2+(abs (maxy)−1._dp) ∗∗2+(abs (maxz)−1._dp) ∗∗2) . g t

. (r _d r i ve r_sca led) ∗∗2) then ! f u l l y ou ts ide
513 # i f NDIM==1
514 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x) = 0.0_dp
515 # end i f
516 # i f NDIM==2
517 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x , i i y) = 0.0_dp
518 # end i f
519 # i f NDIM>2
520 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x , i i y , i i z) = 0.0_dp
521 # end i f
522 else ! p a r t l y i n s i d e
523 nn=0
524 # i f d e f SMOOTH_DRIVER_EDGE
525 help1 =0._dp
526 help2 =0._dp
527 help3 =0._dp
528 do i x =1 , randg r i ds i ze
529 c a l l r an f (localseed , help_k8)
530 help1=minx+dble (help_k8)
531 # i f NDIM>1
532 c a l l r an f (localseed , help_k8)

226 C. Ramses source code listings

533 help2=miny+dble (help_k8)
534 # end i f
535 # i f NDIM>2
536 c a l l r an f (localseed , help_k8)
537 help3=minz+dble (help_k8)
538 # end i f
539 i f ((help1∗∗2+help2∗∗2+help3 ∗∗2) . l t . (r _d r i ve r_sca led) ∗∗2) then
540 nn=nn+1
541 end i f
542 end do
543 # end i f
544 # i f NDIM==1
545 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x) = dble (nn) / dble (randg r i ds i ze)
546 # end i f
547 # i f NDIM==2
548 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x , i i y) = dble (nn) / dble (randg r i ds i ze)
549 # end i f
550 # i f NDIM>2
551 d r i v e r 1 (i i −l eve lm in +1)%weights (i i x , i i y , i i z) = dble (nn) / dble (randg r i ds i ze)
552 # end i f
553 end i f
554 # i f NDIM>2
555 minz=minz +1._dp
556 maxz=max(abs (minz) , abs (minz +1.0))
557 end do
558 # end i f
559 # i f NDIM>1
560 miny=miny +1._dp
561 maxy=max(abs (miny) , abs (miny +1.0))
562 end do
563 # end i f
564 minx=minx +1._dp
565 maxx=max(abs (minx) , abs (minx +1.0))
566 end do
568
568 ! sum the weights to check i f the weight ing wi th a sphere i s okay f o r each g r i d

l l e v e l
569 # i f NDIM==1
570 d r i v e r 1 (i i −l eve lm in +1)%volume=sum(d r i v e r 1 (i i −l eve lm in +1)%weights (:)) ∗dx
571 # end i f
572 # i f NDIM==2
573 d r i v e r 1 (i i −l eve lm in +1)%volume=sum(d r i v e r 1 (i i −l eve lm in +1)%weights (: , :)) ∗dx∗dx
574 # end i f
575 # i f NDIM>2
576 d r i v e r 1 (i i −l eve lm in +1)%volume=sum(d r i v e r 1 (i i −l eve lm in +1)%weights (: , : , :)) ∗dx∗dx∗

dx
577 # end i f
578 # i f n d e f WITHOUTMPI
579 i f (myid==1) then
580 # end i f
581 p r i n t ∗ , " l e v e l " , i i , " s i ze " ,2∗ h a l f s i z e , " d r i v e r rad ius [c e l l s] " , r _d r i ve r_sca led
582 p r i n t ∗ , " Volume " , d r i v e r 1 (i i −l eve lm in +1)%volume , " expected Volume " , 4.∗ p i / 3 .∗

r _ d r i v e r ∗∗3
583 p r i n t ∗ , " Volume r a t i o " , d r i v e r 1 (i i −l eve lm in +1)%volume / 4 . / p i ∗3 . / r _ d r i v e r ∗∗3
584 # i f n d e f WITHOUTMPI

227

585 end i f
586 # end i f
587 end do
588 end subrou t ine a l loca te_dr iver_mask
589 REAL(dp) f u n c t i o n get_dr iver_volume (c u r r e n t l e v e l)
590 !−−−
591 ! > \ d e t a i l s PURPOSE: look up Monte Car lo Volume t h a t s l i g h t l y d i f f e r s
592 ! > from 4 p i /3 r ^3
593 !−−−
594 use amr_parameters , on ly : leve lmin , nlevelmax
595 i m p l i c i t none
596 i n teger , i n t e n t (i n) : : c u r r e n t l e v e l
597 get_dr iver_volume = d r i v e r 1 (c u r r e n t l e v e l−l eve lm in +1)%volume
598 end f u n c t i o n get_dr iver_volume
599 ! f u n c t i o n get_dr iver_mask
600 !−−−
601 ! > \ d e t a i l s PURPOSE: look up the volume f r a c t i o n o f ‘ ‘ feedback region ’ ’
602 ! > i n a c e l l w i th given coord ina tes
603 !−−−
604 # i f NDIM==1
605 REAL(dp) f u n c t i o n get_dr iver_mask (c u r r e n t l e v e l , x)
606 # end i f
607 # i f NDIM==2
608 REAL(dp) f u n c t i o n get_dr iver_mask (c u r r e n t l e v e l , x , y)
609 # end i f
610 # i f NDIM==3
611 REAL(dp) f u n c t i o n get_dr iver_mask (c u r r e n t l e v e l , x , y , z)
612 # end i f
613 use amr_parameters , on ly : x_dr i ve r , y_dr i ve r , z_dr i ve r , &
614 & leve lmin , nlevelmax
615 i m p l i c i t none
616 i n teger , i n t e n t (i n) : : c u r r e n t l e v e l
617 r e a l (dp) , i n t e n t (i n) : : x
618 # i f NDIM>1
619 r e a l (dp) , i n t e n t (i n) : : y
620 # end i f
621 # i f NDIM>2
622 r e a l (dp) , i n t e n t (i n) : : z
623 # end i f
624 i n t e g e r : : i x =1
625 i n t e g e r : : i y =1
626 i n t e g e r : : i z =1
627 i n t e g e r : : l e v e l _ i n t e g e r
628 l e v e l _ i n t e g e r = c u r r e n t l e v e l−l eve lm in +1
629 ! lowest po i n t : −minx−dble (h a l f s i z e) w i th minx e [0 : 1 [should get g r i d index 1
630 ! c e l l number = CEILING (([xyz]− [xyz] _ d r i v e r) / dx) + h a l f s i z e
631 i x =CEILING ((x−x_d r i ve r) / d r i v e r 1 (l e v e l _ i n t e g e r)%dx &
632 & +dble (d r i v e r 1 (l e v e l _ i n t e g e r)%h a l f s i z e))
633 # i f NDIM>1
634 i y =CEILING ((y−y_d r i ve r) / d r i v e r 1 (l e v e l _ i n t e g e r)%dx &
635 & +dble (d r i v e r 1 (l e v e l _ i n t e g e r)%h a l f s i z e))
636 # end i f
637 # i f NDIM>2
638 i z =CEILING ((z−z_d r i ve r) / d r i v e r 1 (l e v e l _ i n t e g e r)%dx &
639 & +dble (d r i v e r 1 (l e v e l _ i n t e g e r)%h a l f s i z e))

228 C. Ramses source code listings

640 # end i f
641 i f ((min (ix , i y , i z) . l t . 1) &
642 & . or . (max(ix , i y , i z) . g t .2∗ d r i v e r 1 (l e v e l _ i n t e g e r)%h a l f s i z e)) then
643 get_dr iver_mask = 0.0_dp
644 else
645 # i f NDIM==1
646 get_dr iver_mask = d r i v e r 1 (l e v e l _ i n t e g e r)%weights (i x)
647 # end i f
648 # i f NDIM==2
649 get_dr iver_mask = d r i v e r 1 (l e v e l _ i n t e g e r)%weights (ix , i y)
650 # end i f
651 # i f NDIM>2
652 get_dr iver_mask = d r i v e r 1 (l e v e l _ i n t e g e r)%weights (ix , i y , i z)
653 # end i f
654 end i f
655 end f u n c t i o n get_dr iver_mask
656 subrou t ine deal locate_dr iver_mask
657 !−−−
658 ! > \ d e t a i l s PURPOSE: f ree memory a l l o c a t ed f o r d r i v e r 1
659 !−−−
660 use amr_parameters , on ly : leve lmin , nlevelmax
661 ! i n teger , i n t e n t (i n) : : leve lmin , nlevelmax
662 i n t e g e r : : i i ! < loop v a r i a b l e
664
664 do i i = leve lmin , nlevelmax
665 dea l l oca te (d r i v e r 1 (i i −l eve lm in +1)%weights)
666 end do
668
668 dea l l oca te (d r i v e r 1)
670
670 end subrou t ine deal locate_dr iver_mask
671 subrou t ine d r i ve r_we igh t s_ f i xed (ind , i l e v e l , i g r i d , ngr id , dx , d r i ve rwe i gh t)
672 use amr_commons , on ly : ac t i ve , xg ! < index array , coord ina tes (values i n

i n t e r v a l [0 . 5 , 2 . 5]
673 use amr_parameters , on ly : boxlen , dp , icoarse_max , icoarse_min , jcoarse_min ,

kcoarse_min ! < f l o a t i n g po in t type , lower [xyz] coarse g r i d boundaries
674 i m p l i c i t none
675 i n teger , i n t e n t (i n) : : ind ! < p o s i t i o n o f new g r i ds
676 i n teger , i n t e n t (i n) : : i l e v e l ! < AMR l e v e l
677 i n teger , i n t e n t (i n) : : i g r i d ! < g r i d index
678 i n teger , i n t e n t (i n) : : ng r id ! < g r i d s ize
679 r e a l (dp) , i n t e n t (i n) : : dx ! < c e l l s i ze
680 r e a l (dp) , dimension (1 : ng r id) , i n t e n t (out) : : d r i ve rw e igh t ! < f r a c t i o n o f the c e l l

volume t h a t i s i n s i d e the d r i v e r area
682
682 i n t e g e r : : i , i x , i y , i z , i nd_g r i d ! < loop var iab le , p o s i t i o n i n coord ina te ar ray
683 r e a l (dp) , dimension (1 : 3) : : sk ip_ loc ! < g r i d boundaries
684 r e a l (dp) , dimension (1 : 3) : : xc ! < center o f new g r i d
685 r e a l (dp) : : x , y , z , boxscale ! < lower boundary o f g r i d c e l l coord ina tes
687
687 d r i ve rw e igh t (:) =0.0_dp
689
689 ! ind =1 ,2∗∗ndim
690 ! 2d : ind =1 ,4
691 ! 3d : ind =1 ,8

229

692 ! Set new g r i ds p o s i t i o n
693 i z =(ind−1) /4 ! i n t e g e r d i v i s i o n −> 0 or 1
694 i y =(ind−1−4∗ i z) /2 ! i n t e g e r d i v i s i o n −> 0 or 1
695 i x =(ind−1−2∗ i y−4∗ i z) ! i n t e g e r d i v i s i o n −> 0 or 1
696 sk ip_ loc = (/ 0 . 0 _dp , 0 . 0 _dp , 0 . 0 _dp /)
697 xc (1) =(dble (i x)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
698 sk ip_ loc (1) =dble (icoarse_min)
699 # i f NDIM>1
700 xc (2) =(dble (i y)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
701 sk ip_ loc (2) =dble (jcoarse_min)
702 # end i f
703 # i f NDIM>2
704 xc (3) =(dble (i z)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
705 sk ip_ loc (3) =dble (kcoarse_min)
706 # end i f
707 boxscale=boxlen / dble (icoarse_max−icoarse_min +1)
708 ! xg (: , 1)−1.5 . . . values i n i n t e r v a l [−1 ,1]
709 do i =1 , ng r id
710 i nd_g r i d = a c t i v e (i l e v e l)%i g r i d (i g r i d + i −1)
711 ! xg (i nd_g r i d (i) ,1) . . x coord ina te o f the center o f the subgr id
712 ! x . . . lower boundary
713 x =(xg (ind_gr id , 1) +xc (1)−sk ip_ loc (1)−0.5_dp+0.5_dp∗dx) ∗boxscale
714 # i f NDIM==1
715 d r i ve rw e igh t (i) =get_dr iver_mask (i l e v e l , x)
716 #else
717 y =(xg (ind_gr id , 2) +xc (2)−sk ip_ loc (2)−0.5_dp+0.5_dp∗dx) ∗boxscale
718 # i f NDIM==2
719 d r i ve rw e igh t (i) =get_dr iver_mask (i l e v e l , x , y)
720 #else
721 z =(xg (ind_gr id , 3) +xc (3)−sk ip_ loc (3)−0.5_dp+0.5_dp∗dx) ∗boxscale
722 d r i ve rw e igh t (i) =get_dr iver_mask (i l e v e l , x , y , z)
723 # end i f
724 # end i f
725 end do
726 end subrou t ine d r i ve r_we igh t s_ f i xed
727 ! subrou t ine d r i ve r_we igh ts (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led , xd r i ve r ,

yd r i ve r , zd r i ve r , d r i ve rw e igh t)
728 ! > \ sho r t c a l c u l a t e s Monte Carlo weights f o r a s p h e r i ca l d r i v e r reg ion
729 !−−−
730 ! > \ vers ion 1.6
731 ! > \ author Kathar ina M. F i e r l i n g e r
732 ! > \ date l a s t m o d i f i c a t i o n 07.06.2010
733 !−−−
734 ! > \ d e t a i l s PURPOSE: Monte Carlo weights f o r a s p h e r i ca l d r i v e r reg ion .
735 ! > This r o u t i n e i s b e t t e r su i t ed f o r moving feedback reg ions than
736 ! > d r i ve r_we igh t s_ f i xed i f they do not move by i n t e g e r numbers o f g r i d c e l l s .
737 ! > I f a c e l l i s p a r t l y i n s i d e the d r i v e r region , randg r i ds i ze random
738 ! > p o s i t i o n s i n t h i s c e l l s are computed . The percentage of random po in t s
739 ! > t h a t l i e i n s i d e the d r i v e r reg ion i s asumed to be equal to the percentage
740 ! > o f c e l l volume t h a t i s i n s i d e the d r i v e r reg ion .
741 !−−−
742 subrou t ine d r i ve r_we igh ts (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led , &
743 & xdr i ve r , &
744 # i f NDIM>1
745 & ydr i ve r , &

230 C. Ramses source code listings

746 # end i f
747 # i f NDIM>2
748 & zdr i ve r , &
749 # end i f
750 & dr i ve rw e igh t)
752
752 use amr_commons , on ly : ac t i ve , xg ! < index array , coord ina tes (values i n

i n t e r v a l [0 . 5 , 2 . 5]
753 use amr_parameters , on ly : dp , icoarse_min , jcoarse_min , kcoarse_min ! < f l o a t i n g

po in t type , lower [xyz] coarse g r i d boundaries
754 use random
755 i m p l i c i t none
756 i n teger , i n t e n t (i n) : : ind ! < p o s i t i o n o f new g r i ds
757 i n teger , i n t e n t (i n) : : i l e v e l ! < AMR l e v e l
758 i n teger , i n t e n t (i n) : : i g r i d ! < g r i d index
759 i n teger , i n t e n t (i n) : : ng r id ! < g r i d s ize
760 r e a l (dp) , i n t e n t (i n) : : dx ! < c e l l s i ze
761 r e a l (dp) , i n t e n t (i n) : : r d r i v e r _ s c a l e d ! < d r i v e r rad ius i n coarse g r i d c e l l s
762 r e a l (dp) , i n t e n t (i n) : : x d r i v e r ! < d r i v e r [xyz] coord ina te
763 # i f NDIM>1
764 r e a l (dp) , i n t e n t (i n) : : y d r i v e r ! < d r i v e r [xyz] coord ina te
765 # end i f
766 # i f NDIM>2
767 r e a l (dp) , i n t e n t (i n) : : z d r i v e r ! < d r i v e r [xyz] coord ina te
768 # end i f
769 r e a l (dp) , dimension (1 : ng r id) , i n t e n t (out) : : d r i ve rw e igh t ! < f r a c t i o n o f the c e l l

volume t h a t i s i n s i d e the d r i v e r area
771
771 i n t e g e r : : i , i nd_gr id , i x , i y , i z , nn ! < loop var iab le , p o s i t i o n i n coord ina te array ,

new g r i d [xyz] index , random numbers i n s i d e d r i v e r
772 i n t e g e r : : r andg r i ds i ze = 100 ! < number o f po in t s i n random subgr id
773 r e a l (dp) : : r2 ! < squared d r i v e r rad ius (i n coarse g r i d c e l l s)
774 r e a l (dp) : : xmin , ymin , zmin , xmax , ymax , zmax ! < boundaries o f new g r i d c e l l s
775 r e a l (k ind =8) : : help_k8 ! < random coord ina tes [0 : 1]
776 r e a l (dp) : : help1 , help2 , help3 ! < random coord ina tes [0 : 1]
777 r e a l (dp) , dimension (1 : 3) : : sk ip_ loc ! < g r i d boundaries
778 r e a l (dp) , dimension (1 : 3) : : xc ! < center o f new g r i d
779 i n teger , dimension (IRandNumSize) : : &
780 & loca lseed = (/ 3281 , 4041 , 595 , 2376 /)
782
782 d r i ve rw e igh t (:) =0.0_dp
783 r2= r d r i v e r _ s c a l e d ∗∗2
785
785 ! ind =1 ,2∗∗ndim
786 ! 2d : ind =1 ,4
787 ! 3d : ind =1 ,8
788 ! Set new g r i ds p o s i t i o n
789 i z =(ind−1) /4 ! i n t e g e r d i v i s i o n −> 0 or 1
790 i y =(ind−1−4∗ i z) /2 ! i n t e g e r d i v i s i o n −> 0 or 1
791 i x =(ind−1−2∗ i y−4∗ i z) ! i n t e g e r d i v i s i o n −> 0 or 1
792 sk ip_ loc = (/ 0 . 0 _dp , 0 . 0 _dp , 0 . 0 _dp /)
793 xc (1) =(dble (i x)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
794 sk ip_ loc (1) =dble (icoarse_min)
795 # i f NDIM>1
796 xc (2) =(dble (i y)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0

231

797 sk ip_ loc (2) =dble (jcoarse_min)
798 # end i f
799 # i f NDIM>2
800 xc (3) =(dble (i z)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
801 sk ip_ loc (3) =dble (kcoarse_min)
802 # end i f
804
804 ! xg (: , 1)−1.5 . . . values i n i n t e r v a l [−1 ,1]
805 do i =1 , ng r id
806 i nd_g r i d = a c t i v e (i l e v e l)%i g r i d (i g r i d + i −1)
807 ! xg (i nd_g r i d (i) ,1) . . x coord ina te o f the center o f the subgr id
808 xmax=abs (xg (ind_gr id , 1) +xc (1)−sk ip_ loc (1)−0.5_dp−x d r i v e r) +0.5_dp∗dx ! minimum :

0.5_dp∗dx
809 xmin=xmax−dx ! can get < 0 , minimum : −0.5_dp∗dx , but abs (xmin) <abs (xmax)
810 # i f NDIM>1
811 ymax=abs (xg (ind_gr id , 2) +xc (2)−sk ip_ loc (2)−0.5_dp−y d r i v e r) +0.5_dp∗dx ! minimum :

0.5_dp∗dx
812 ymin=ymax−dx ! can get < 0 , minimum : −0.5_dp∗dx , but abs (ymin) <abs (ymax)
813 #else
814 ymax=0.0_dp
815 ymin =0.0_dp
816 # end i f
817 # i f NDIM>2
818 zmax=abs (xg (ind_gr id , 3) +xc (3)−sk ip_ loc (3)−0.5_dp−z d r i v e r) +0.5_dp∗dx ! minimum :

0.5_dp∗dx
819 zmin=zmax−dx ! can get < 0 , minimum : −0.5_dp∗dx , but abs (zmin) <abs (zmax)
820 #else
821 zmax=0.0_dp
822 zmin =0.0_dp
823 # end i f
824 i f ((xmin∗∗2+ymin∗∗2+zmin∗∗2) . l t . r2) then
825 ! pa r t o f c e l l i n s i d e d r i v e r reg ion
826 i f ((xmax∗∗2+ymax∗∗2+zmax∗∗2) . l t . r2) then
827 ! c e l l f u l l y i n s i d e d r i v e r reg ion
828 d r i ve rw e igh t (i) =1.0_dp
829 # i f d e f SMOOTH_DRIVER_EDGE
830 else
831 nn=0
832 help1 =0._dp
833 help2 =0._dp
834 help3 =0._dp
835 do i x =1 , randg r i ds i ze
836 c a l l r an f (localseed , help_k8)
837 help1=xmin+dble (help_k8) ∗dx
838 # i f NDIM>1
839 c a l l r an f (localseed , help_k8)
840 help2=ymin+dble (help_k8) ∗dx
841 # end i f
842 # i f NDIM>2
843 c a l l r an f (localseed , help_k8)
844 help3=zmin+dble (help_k8) ∗dx
845 # end i f
846 i f ((help1∗∗2+help2∗∗2+help3 ∗∗2) . l t . r2) then
847 nn=nn+1
848 end i f

232 C. Ramses source code listings

849 end do
850 d r i ve rw e igh t (i) = dble (nn) / dble (randg r i ds i ze)
851 # end i f
852 end i f
853 else
854 d r i ve rw e igh t (i) =0.0_dp
855 end i f
856 end do
857 end subrou t ine d r i ve r_we igh ts
858 ! subrou t ine d r i v e r _ v e c t o r (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led , &
859 !& xd r i ve r , yd r i ve r , zd r i ve r , &
860 !& dr i ve rwe igh tvx , d r i ve rwe igh tvy , d r i ve rwe igh tvz)
861 ! > \ sho r t c a l c u l a t e s a r a d i a l vec to r f o r a s p h e r i ca l d r i v e r reg ion
862 !−−−
863 ! > \ vers ion 1.1
864 ! > based on d r i v e r _ v e c t o r vers ion 1.6
865 ! > \ author Kathar ina M. F i e r l i n g e r
866 ! > \ date l a s t m o d i f i c a t i o n 20.01.2011
867 !−−−
868 ! > \ d e t a i l s PURPOSE: For a s p h e r i c a l d r i v e r reg ion r a d i a l , normal ized
869 ! > x and y , z v e l o c i t y vec to rs are computed i f a c e l l i s p a r t l y i n s i d e
870 ! > the d r i v e r reg ion . Nothing to be done i n 1d .
871 !−−−
872 subrou t ine d r i v e r _ v e c t o r (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led , &
873 & x d r i v e r &
874 # i f NDIM>1
875 & , y d r i v e r &
876 # end i f
877 # i f NDIM>2
878 & , z d r i v e r &
879 # end i f
880 # i f NDIM>1
881 & , d r i ve r vec to r x , d r i v e r v e c t o r y &
882 # end i f
883 # i f NDIM>2
884 & , d r i v e r v e c t o r z &
885 # end i f
886 &)
888
888 use amr_commons , on ly : ac t i ve , xg ! < index array , coord ina tes (values i n

i n t e r v a l [0 . 5 , 2 . 5]
889 use amr_parameters , on ly : dp , icoarse_min , jcoarse_min , kcoarse_min ! < f l o a t i n g

po in t type , lower [xyz] coarse g r i d boundaries
890 use random
891 i m p l i c i t none
892 i n teger , i n t e n t (i n) : : ind ! < p o s i t i o n o f new g r i ds
893 i n teger , i n t e n t (i n) : : i l e v e l ! < AMR l e v e l
894 i n teger , i n t e n t (i n) : : i g r i d ! < g r i d index
895 i n teger , i n t e n t (i n) : : ng r id ! < g r i d s ize
896 r e a l (dp) , i n t e n t (i n) : : dx ! < c e l l s i ze
897 r e a l (dp) , i n t e n t (i n) : : r d r i v e r _ s c a l e d ! < d r i v e r rad ius i n coarse g r i d c e l l s
898 r e a l (dp) , i n t e n t (i n) : : x d r i v e r ! < d r i v e r [xyz] coord ina te
899 # i f NDIM>1
900 r e a l (dp) , i n t e n t (i n) : : y d r i v e r ! < d r i v e r [xyz] coord ina te
901 r e a l (dp) , dimension (1 : ng r id) , i n t e n t (out) : : d r i ve r vec to r x , d r i v e r v e c t o r y ! <

233

r a d i a l vec to r
902 # end i f
903 # i f NDIM>2
904 r e a l (dp) , i n t e n t (i n) : : z d r i v e r ! < d r i v e r [xyz] coord ina te
905 r e a l (dp) , dimension (1 : ng r id) , i n t e n t (out) : : d r i v e r v e c t o r z ! <

r a d i a l vec to r
906 # end i f
907 i n t e g e r : : i , i nd_gr id , i x , i y , i z , nn ! < loop var iab le , p o s i t i o n i n coord ina te array ,

new g r i d [xyz] index , random numbers i n s i d e d r i v e r
908 r e a l (dp) : : r2 ! < squared d r i v e r rad ius (i n coarse g r i d c e l l s)
909 r e a l (dp) : : xmin ! < boundaries o f new g r i d c e l l s
910 # i f NDIM>1
911 r e a l (dp) : : xx , yy , r r ! < a u x i l i a r y va r i a b l e s (r a d i a l vec to r)
912 r e a l (dp) : : ymin ! < boundaries o f new g r i d c e l l s
913 # end i f
914 # i f NDIM>2
915 r e a l (dp) : : zz ! < a u x i l i a r y va r i a b l e s (r a d i a l vec to r)
916 r e a l (dp) : : zmin ! < boundaries o f new g r i d c e l l s
917 # end i f
918 r e a l (dp) , dimension (1 : 3) : : sk ip_ loc ! < g r i d boundaries
919 r e a l (dp) , dimension (1 : 3) : : xc ! < center o f new g r i d
921
921 # i f NDIM>1
922 d r i v e r v e c t o r x (:) =0.0_dp
923 d r i v e r v e c t o r y (:) =0.0_dp
924 # i f NDIM>2
925 d r i v e r v e c t o r z (:) =0.0_dp
926 # end i f
927 r2= r d r i v e r _ s c a l e d ∗∗2
929
929 ! ind =1 ,2∗∗ndim
930 ! 2d : ind =1 ,4
931 ! 3d : ind =1 ,8
932 ! Set new g r i ds p o s i t i o n
933 i z =(ind−1) /4 ! i n t e g e r d i v i s i o n −> 0 or 1
934 i y =(ind−1−4∗ i z) /2 ! i n t e g e r d i v i s i o n −> 0 or 1
935 i x =(ind−1−2∗ i y−4∗ i z) ! i n t e g e r d i v i s i o n −> 0 or 1
936 sk ip_ loc = (/ 0 . 0 _dp , 0 . 0 _dp , 0 . 0 _dp /)
937 xc (1) =(dble (i x)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
938 sk ip_ loc (1) =dble (icoarse_min)
939 xc (2) =(dble (i y)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
940 sk ip_ loc (2) =dble (jcoarse_min)
941 # i f NDIM>2
942 xc (3) =(dble (i z)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
943 sk ip_ loc (3) =dble (kcoarse_min)
944 # end i f
946
946 ! xg (: , 1)−1.5 . . . values i n i n t e r v a l [−1 ,1]
947 do i =1 , ng r id
948 i nd_g r i d = a c t i v e (i l e v e l)%i g r i d (i g r i d + i −1)
949 ! xg (i nd_g r i d (i) ,1) . . x coord ina te o f the center o f the subgr id
950 xmin=abs (xg (ind_gr id , 1) +xc (1)−sk ip_ loc (1)−0.5_dp−x d r i v e r)−0.5_dp∗dx ! minimum :

0.5_dp∗dx
951 ymin=abs (xg (ind_gr id , 2) +xc (2)−sk ip_ loc (2)−0.5_dp−y d r i v e r)−0.5_dp∗dx ! minimum :

0.5_dp∗dx

234 C. Ramses source code listings

952 # i f NDIM>2
953 zmin=abs (xg (ind_gr id , 3) +xc (3)−sk ip_ loc (3)−0.5_dp−z d r i v e r)−0.5_dp∗dx ! minimum :

0.5_dp∗dx
954 # end i f
955 i f ((xmin∗∗2 +ymin∗∗2 &
956 # i f NDIM>2
957 & +zmin∗∗2 &
958 # end i f
959 &) . l t . r2) then
960 ! pa r t o f c e l l i n s i d e d r i v e r reg ion
961 xx=xg (ind_gr id , 1) +xc (1)−sk ip_ loc (1)−0.5_dp−x d r i v e r
962 yy=xg (ind_gr id , 2) +xc (2)−sk ip_ loc (2)−0.5_dp−y d r i v e r
963 # i f NDIM>2
964 zz=xg (ind_gr id , 3) +xc (3)−sk ip_ loc (3)−0.5_dp−z d r i v e r
965 # end i f
966 # i f NDIM==2
967 r r = s q r t (xx∗xx+yy∗yy)
968 # end i f
969 # i f NDIM==3
970 r r = s q r t (xx∗xx+yy∗yy+zz∗zz)
971 # end i f
972 d r i v e r v e c t o r x (i) =xx / r r
973 d r i v e r v e c t o r y (i) =yy / r r
974 # i f NDIM>2
975 d r i v e r v e c t o r z (i) =zz / r r
976 # end i f
977 end i f
978 end do
979 # end i f
980 r r =1
981 end subrou t ine d r i v e r _ v e c t o r
982 ! subrou t ine p r i n t _ x y z (ind , i l e v e l , i g r i d , ngr id , dx , i)
983 ! > \ sho r t ou tput o f the xyz coord ina tes o f a given c e l l
984 !−−−
985 ! > \ vers ion 1.0
986 ! > \ author Kathar ina M. F i e r l i n g e r
987 ! > \ date l a s t m o d i f i c a t i o n 14.03.2011
988 !−−−
989 ! > \ d e t a i l s PURPOSE:
990 ! > \ n f o r debugging . . .
991 ! > \ n helps to f i n d out i n which c e l l the code encounters a problem .
992 !−−−
993 subrou t ine p r i n t _ x y z (ind , i l e v e l , i g r i d , ngr id , dx , i)
995
995 use amr_commons , on ly : ac t i ve , xg ! < index array , coord ina tes (values i n

i n t e r v a l [0 . 5 , 2 . 5]
996 use amr_parameters , on ly : dp , icoarse_min , jcoarse_min , kcoarse_min ! < f l o a t i n g

po in t type , lower [xyz] coarse g r i d boundaries
997 use random
998 i m p l i c i t none
999 i n teger , i n t e n t (i n) : : ind ! < p o s i t i o n o f new g r i ds

1000 i n teger , i n t e n t (i n) : : i l e v e l ! < AMR l e v e l
1001 i n teger , i n t e n t (i n) : : i g r i d ! < g r i d index
1002 i n teger , i n t e n t (i n) : : ng r id ! < g r i d s ize
1003 r e a l (dp) , i n t e n t (i n) : : dx ! < c e l l s i ze

235

1004 i n teger , i n t e n t (i n) : : i ! < 1 . . ng r id
1006
1006 i n t e g e r : : i nd_gr id , i x , i y , i z , nn ! < loop var iab le , p o s i t i o n i n coord ina te array ,

new g r i d [xyz] index , random numbers i n s i d e d r i v e r
1007 r e a l (dp) : : xmin , ymin , zmin , xmax , ymax , zmax ! < boundaries o f new g r i d c e l l s
1008 r e a l (dp) , dimension (1 : 3) : : sk ip_ loc ! < g r i d boundaries
1009 r e a l (dp) , dimension (1 : 3) : : xc ! < center o f new g r i d
1012
1012
1012 ! ind =1 ,2∗∗ndim
1013 ! 2d : ind =1 ,4
1014 ! 3d : ind =1 ,8
1015 ! Set new g r i ds p o s i t i o n
1016 i z =(ind−1) /4 ! i n t e g e r d i v i s i o n −> 0 or 1
1017 i y =(ind−1−4∗ i z) /2 ! i n t e g e r d i v i s i o n −> 0 or 1
1018 i x =(ind−1−2∗ i y−4∗ i z) ! i n t e g e r d i v i s i o n −> 0 or 1
1019 sk ip_ loc = (/ 0 . 0 _dp , 0 . 0 _dp , 0 . 0 _dp /)
1020 xc (1) =(dble (i x)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
1021 sk ip_ loc (1) =dble (icoarse_min)
1022 # i f NDIM>1
1023 xc (2) =(dble (i y)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
1024 sk ip_ loc (2) =dble (jcoarse_min)
1025 # end i f
1026 # i f NDIM>2
1027 xc (3) =(dble (i z)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
1028 sk ip_ loc (3) =dble (kcoarse_min)
1029 # end i f
1031
1031 ! xg (: , 1)−1.5 . . . values i n i n t e r v a l [−1 ,1]
1032 i nd_g r i d = a c t i v e (i l e v e l)%i g r i d (i g r i d + i −1)
1033 ! xg (i nd_g r i d (i) ,1) . . x coord ina te o f the center o f the subgr id
1034 xmax=(xg (ind_gr id , 1) +xc (1)−sk ip_ loc (1)−0.5_dp) +0.5_dp∗dx ! minimum : 0.5_dp∗dx
1035 xmin=xmax−dx ! can get < 0 , minimum : −0.5_dp∗dx , but abs (xmin) <abs (xmax)
1036 # i f NDIM>1
1037 ymax=(xg (ind_gr id , 2) +xc (2)−sk ip_ loc (2)−0.5_dp) +0.5_dp∗dx ! minimum : 0.5_dp∗

dx
1038 ymin=ymax−dx ! can get < 0 , minimum : −0.5_dp∗dx , but abs (ymin) <abs (ymax)
1039 #else
1040 ymax=0.0_dp
1041 ymin =0.0_dp
1042 # end i f
1043 # i f NDIM>2
1044 zmax=(xg (ind_gr id , 3) +xc (3)−sk ip_ loc (3)−0.5_dp) +0.5_dp∗dx ! minimum : 0.5_dp∗

dx
1045 zmin=zmax−dx ! can get < 0 , minimum : −0.5_dp∗dx , but abs (zmin) <abs (zmax)
1046 #else
1047 zmax=0.0_dp
1048 zmin =0.0_dp
1049 # end i f
1050 p r i n t ∗ , " dx=" , dx
1051 p r i n t ∗ , " xmin=" , xmin , xmin / dx
1052 p r i n t ∗ , " xmax=" ,xmax , xmax / dx
1053 # i f NDIM>1
1054 p r i n t ∗ , " ymin=" , ymin , ymin / dx
1055 p r i n t ∗ , " ymax=" ,ymax , ymax / dx

236 C. Ramses source code listings

1056 # end i f
1057 # i f NDIM>2
1058 p r i n t ∗ , " zmin=" , zmin
1059 p r i n t ∗ , " zmax=" ,zmax
1060 # end i f
1061 end subrou t ine p r i n t _ x y z
1062 !−−−
1063 ! subrou t ine d r i ve r_we igh ts_ana l y t (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led ,

xd r i ve r , yd r i ve r , zd r i ve r , d r i ve rw e igh t)
1064 ! > \ sho r t c a l c u l a t e s weights f o r a s p h e r i ca l d r i v e r reg ion
1065 !−−−
1066 ! > \ vers ion 1.5
1067 ! > \ author Kathar ina M. F i e r l i n g e r
1068 ! > \ date l a s t m o d i f i c a t i o n 04.06.2010
1069 !−−−
1070 ! > \ d e t a i l s PURPOSE:
1071 ! > \ n 2d :
1072 ! > \ n produce weights f o r a c y l i n d r i c a l d r i v e r reg ion and s to re them i n
1073 ! > (a l l o c a te d) ar ray driver_geom .
1074 ! > these weights are f o r pseudo−2d s imu la t i ons w i th nz=1
1075 ! > use 1 s t quadrant ’ s weights − number rep resen ta t i on causes 4−symmetry
1076 ! > \ n 3d :
1077 ! > \ n Monte Carlo weights f o r a s p h e r i ca l d r i v e r regionMonte Car lo weights f o r a

s p h e r i c a l d r i v e r reg ion
1078 !−−−
1079 ! >\ l a t e x o n l y
1080 ! > \ sec t ion { Dr i ve r reg ion }
1081 ! > The s ize and l o c a t i o n o f the d r i v e r reg ion are set i n the namel is t :
1082 ! > \ begin { verbat im }
1083 ! > &DRIVER_PARAMS
1084 ! > f i l e _ d r i v e r = ’ ana l y t . dat ’ ! d r i v e r f i l e name (r e l a t i v e to working d i r e c t o r y)
1085 ! > r _ d r i v e r =0.83_dp ! d r i v e r rad ius i n code u n i t s
1086 ! > x_d r i ve r =(−5.64453125_dp) ! d r i v e r x coord ina te i n code u n i t s
1087 ! > y_d r i ve r =0.0_dp ! d r i v e r y coord ina te i n code u n i t s
1088 ! > z_d r i ve r =0.0_dp ! d r i v e r z coord ina te i n code u n i t s
1089 ! > coo lp lus =0.5_dp ! the d r i v e r i s not cooled , coo lp lus i s the

d i f f e r e n c e
1090 ! > ! between the d r i v e r rad ius and the rad ius o f the not cooled reg ion i n code

u n i t s
1091 ! > n_stars =20._dp ! the data i n " f i l e _ d r i v e r " conta ins y i e l d s per s t a r .
1092 ! > ! n_stars i s the number o f s t a r s i n the d r i v e r
1093 ! > /
1094 ! > \ end { verbat im }
1095 ! > To inc lude t h i s a d d i t i o n a l namel is t i n the code the f i l e s { \ t t read \ _params . f90

} and { \ t t amr \ _parameters . f90 } have tp be patched too . A f t e r { \ t t ramses . f90 }
has read i n the parameters , they can be accessed v ia \ \ \

1096 ! > { \ t t use amr \ _parameters , on ly : r \ _d r i ve r , x \ _d r i ve r , y \ _d r i ve r , z \ _d r i ve r , n \
_stars , f i l e \ _d r i ve r , coo lp lus }

1097 ! >
1098 ! > A d r i v e r module { \ t t d r i v e r . f90 } prov ides ar rays to s to re the data from the

d r i v e r f i l e , reads and i n t e r p o l a t e s d r i v e r data and c a l c u l a t e s weights f o r a
homogeneous , c i r c u l a r d r i v e r reg ion . I t uses { \ t t u n i t s . f90 } to conver t from
d r i v e r f i l e u n i t s to code u n i t s . The expected u n i t s i n the d r i v e r f i l e are :

1099 ! >
1100 ! > \ begin { verbat im }

237

1101 ! > column 1: t ime from s t a r f o r m a t i o n (i n years)
1102 ! > column 2: cumulat ive output o f 26Al (i n Msol)
1103 ! > column 3: cumulat ive output o f 60Fe (i n Msol)
1104 ! > column 4: UV r a d i a t i o n (photons / s)
1105 ! > column 5: energy emi t ted i n winds (log (erg / s))
1106 ! > column 6: energy emi t ted i n supernovae (log (erg / s))
1107 ! > column 7: mass e jec ted by supernova (Msol / year)
1108 ! > column 8: mass e jec ted i n winds (Msol / year)
1109 ! > \ end { verbat im }
1110 ! >
1111 ! > The f i l e con ta in ing the d r i v e r data i s read i n the subrou t ine { \ t t i n i t \ _t ime .

f90 } which i s c a l l e d (once) by the subrou t ine { \ t t adapt ive \ _loop . f90 } .
1112 ! >
1113 ! > The f i l e { \ t t courant \ _ f i ne . f90 } was patched to inc lude mass and energy

i n j e c t i o n o f the d r i v e r .
1114 ! >
1115 ! > Before s t a r t i n g the loop over a c t i v e g r i ds by vec to r sweeps , the s t e l l a r winds

and SN y i e l d s are i n s e r t e f using the new subrou t ine { \ t t wind \ _ f i ne } i n the
same f i l e . This new subrou t ine loops over a l l c e l l s o f the given g r i d l e v e l and

checks i f a pa r t o f the c e l l i s i n s i d e the d r i v e r reg ion .
1116 ! >
1117 ! > I f t h i s i s the case , the code w i l l add the newly emi t ted mass (t o t a l mass and

r a d i o a c t i v e t r a c e r s (nvar i n { \ t t hydro \ _parameters . f90 } i s changed to get
l a r g e r { \ t t uold } and { \ t t unew} ar rays and thus { \ t t ou tput \ _hydro . f90 } had
to be adapted)) and the i n t e r n a l energy (unresolved k i n e t i c wind energy ,
r a d i a t i o n pressure) to the dens i t y resp . energy i n the d r i v e r reg ion .

1118 ! > %
1119 ! > The d r i v e r energy and mass are homogeneously d i s t r i b u t e d over a sphere o f given

rad ius ({ \ t t r \ _ d r i v e r }) . Then the corresponding energy dens i t y and number
dens i t y are computed . For each c e l l i n the computat iona l box , t h i s value i s
scaled wi th the percentage of the c e l l volume t h a t i s i n s i d e the d r i v e r reg ion

(e . g . weight = 0.0 : c e l l l i e s f u l l y outs ide , weight = 1.0 : c e l l f u l l y
i n s i d e) .

1120 ! > %
1121 ! > In 2d the percentage of the c e l l volume t h a t i s i n s i d e the d r i v e r reg ion can be

ca l cu la ted a n a l y t i c a l l y . To set the i n t e g r a t i o n l i m i t s , the d r i v e r r o u t i n e
checks how many of the corners o f the c e l l are i n s i d e the d r i v e r reg ion . The
r o u t i n e uses the absolu te values o f the x , y and z d is tances of the c e l l

corners to reduce the number o f d i f f e r e n t cases . \ \ \
1122 ! > \ begin { t i k z p i c t u r e } [sca le =2 .0]
1123 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.50] (−0.5 ,−0.5) −− (

0.5 ,−0.5) −− (0 . 5 , 0 . 5) −− (−0.5 ,0.5) −− cyc le ;
1124 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.50] (1 ,−0.5) −− (2 ,−0.5)

−− (2 , 0 . 0) arc (30 :48 :2cm) −− (1 . 5 , 0 . 5) −− (1 , 0 . 5) −− cyc le ;
1125 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.50] (2 . 5 , 0) −− (3 . 5 , 0)

−− (3 . 5 , 0 . 2) arc (70 :89 .5 :3cm) −− cyc le ;
1126 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.50] (2.5 ,−1.1) −− (

3.3 ,−1.1) arc (15 :36 :3cm) −− (2 .8 ,−0.1) −− (2 .5 ,−0.1) −− cyc le ;
1127 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.50] (4.0 ,−0.5) −− (

4.5 ,−0.5) arc (46 :55 :4cm) −− (4 .0 ,−0.1) −− cyc le ;
1128 ! > \ draw [−] (−0.5 ,−0.5) −− (−0.5 ,0.5) −− (0 . 5 , 0 . 5) −− (0 .5 ,−0.5) −− (0 .0 ,−0.5)

node [below] { a l l corners } −− cyc le ;
1129 ! > \ draw [−] (1.0 ,−0.5) −− (1 . 0 , 0 . 5) −− (2 . 0 , 0 . 5) −− (2 .0 ,−0.5) −− (1 .5 ,−0.5)

node [below] {3 corners } −− cyc le ;
1130 ! > \ draw [−] (2.5 ,−0) −− (2 .5 ,1) −− (3 . 5 , 1) −− (3 . 5 , 0) −− cyc le ;

238 C. Ramses source code listings

1131 ! > \ draw [−] (2.5 ,−1.1) −− (2.5 ,−0.1) −− (3 .5 ,−0.1) −− (3 .5 ,−1.1) −− (3 .0 ,−1.1)
node [below] {2 corners } −− cyc le ;

1132 ! > \ draw [−] (4.0 ,−0.5) −− (4 . 0 , 0 . 5) −− (5 . 0 , 0 . 5) −− (5 .0 ,−0.5) −− (4 .5 ,−0.5)
node [below] {1 corner } −− cyc le ;

1133 ! > \ draw [−] (5.5 ,−0.5) −− (5 . 5 , 0 . 5) −− (6 . 5 , 0 . 5) −− (6 .5 ,−0.5) −− (6 .0 ,−0.5)
node [below] { no corner } −− cyc le ;

1134 ! > \ end { t i k z p i c t u r e } \ \ \
1135 ! > The cases ‘ ‘ no corner ’ ’ and ‘ ‘ a l l corners ’ ’ are t r i v i a l (0\% or 100\% i n s i d e)

. \ \ \
1136 ! > The code looks up the x and y coord ina tes o f the c e l l center w i th respect

to the d r i v e r center . Negative coord ina tes are changed to p o s i t i v e ones . I f
the d r i ve r ’ s x or y ax is l i e s i n s i d e the c e l l (one coord ina te i s smal le r
than h a l f a g r i d c e l l l eng th) the i n t e g r a l s should use the area between the
curve and the other ax is . I f both ax is l i e i n a c e l l t h a t i s not f u l l y i n s i d e
the d r i ve r , the code stops and asks f o r a l a r g e r d r i v e r rad ius − the d r i v e r
should use more than 4 c e l l s anyway .

1137 ! >
1138 ! > % and the other th ree cases w i l l be discussed i n the f o l l o w i n g subsubsect ions .
1139 ! > \ parbox {120mm} { In the 2d case wi th on ly the corner $ \ l e f t (x_ { \ rm min } | y_ { \ rm

min } \ r i g h t) $ i n s i d e the d r i v e r region , the f r a c t i o n the c e l l volume i n s i d e
the d r i v e r reg ion ($p_ { \ rm d r i v e r } $) can be ca l cu la ted wi th :

1140 ! > \ begin { eqnarray }
1141 ! > p_ { \ rm d r i v e r }&=&\ f r a c { \ i n t _ { x_ { \ rm min } } ^ { x_ { 1 } } { \ rm d } x \ i n t _ { y_ { \ rm min } } ^ { \

s q r t { r ^2−x ^ 2 } } { \ rm d } y } { V_ { \ rm c e l l } } \ nonumber \ \ \
1142 ! > &=&\ f r a c { \ i n t _ { x_ { \ rm min } } ^ { x_ { 1 } } \ s q r t { r ^2−x ^2} { \ rm d } x − y_ { \ rm min } \ l e f t (

x_{1}−x_ { \ rm min } \ r i g h t) } { (\ Del ta x) ^2} \ nonumber \ \ \
1143 ! > &=&\ f r a c { \ f r a c { 1 } { 2 } \ l e f t (x \ s q r t { r ^2−x ^2}+ r ^2 \ a rcs in \ f r a c { x } { r } \ r i g h t) _ { x_ { \

rm min } } ^ { x_ { 1 } } − y_ { \ rm min } \ l e f t (x_{1}−x_ { \ rm min } \ r i g h t) } { (\ Del ta x) ^ 2 } \
nonumber \ \ \

1144 ! > &=&\ f r a c { x_ { \ rm min } y_ { \ rm min}− \ f r a c { x_ { \ rm min } y_ {1 } } { 2 } − \ f r a c { x_ { 1 } y_ { \ rm
min } } { 2 }

1145 ! > +\ f r a c { r ^ 2 } { 2 } \ l e f t (\ a r cs in \ f r a c { x_ { 1 } } { r } − \ a r cs in \ f r a c { x_ { \ rm min } } { r } \
r i g h t)

1146 ! > } { (\ Del ta x) ^ 2 } \ nonumber \ l a b e l {2d :1 corner }
1147 ! > \ end { eqnarray } }
1148 ! > \ parbox [t] { 40mm} {
1149 ! > \ begin { t i k z p i c t u r e } [sca le =2 .0]
1150 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.50] (0.0 ,−0.5) −− (

0.5 ,−0.5) arc (46 :55 :4cm) −− (0 .0 ,−0.1) −− cyc le ;
1151 ! > \ draw [−] (0.0 ,−0.5) −− (0 . 0 , 0 . 1) −− (0 . 6 , 0 . 1) −− (0 .6 ,−0.5) −− cyc le ;
1152 ! > \ f i l l d r a w (0.0 ,−0.5) c i r c l e (0 .3mm) node [l e f t] { $ \ l e f t (x_ { \ rm min } | y_ { \ rm min }

\ r i g h t) $ } ;
1153 ! > \ f i l l d r a w (0.0 ,−0.1) c i r c l e (0 .3mm) node [l e f t] { $ \ l e f t (x_ { \ rm min } | y_ { 1 }

\ r i g h t) $ } ;
1154 ! > \ f i l l d r a w (0.5 ,−0.5) c i r c l e (0 .3mm) node [r i g h t] { $ \ , \ , \ l e f t (x_ { 1 } | y_ { \ rm

min } \ r i g h t) $ } ;
1155 ! > \ end { t i k z p i c t u r e } }
1156 ! > %\subsubsect ion {2 corners }
1157 ! > \ parbox {120mm} { I f there are two corners o f the 2d c e l l i n s i d e the d r i v e r region

, these corners are $ \ l e f t (x_ { \ rm min } | y_ { \ rm min } \ r i g h t) $ and $ \ l e f t (x_ { \ rm
max } | y_ { \ rm min } \ r i g h t) $ or $ \ l e f t (x_ { \ rm min } | y_ { \ rm max} \ r i g h t) $. In the

case $x_ { \ rm min} >y_ { \ rm min } $ the x and y coord ina tes are swapped to get an
x−i n t e g r a l . The f r a c t i o n the c e l l volume i n s i d e the d r i v e r reg ion ($p_ { \ rm
d r i v e r } $) can be ca l cu la ted wi th :

1158 ! > \ begin { eqnarray }

239

1159 ! > p_ { \ rm d r i v e r }&=&\ f r a c { \ i n t _ { x_ { \ rm min } } ^ { x_ { \ rm max } } { \ rm d } x \ i n t _ { y_ { \ rm min
} } ^ { \ s q r t { r ^2−x ^ 2 } } { \ rm d } y } { V_ { \ rm c e l l } } \ nonumber \ \ \

1160 ! > &=&\ f r a c { \ i n t _ { x_ { \ rm min } } ^ { x_ { \ rm max } } \ s q r t { r ^2−x ^2} { \ rm d } x − y_ { \ rm min }
\ Del ta x } { (\ Del ta x) ^2} \ nonumber \ \ \

1161 ! > &=&\ f r a c { \ f r a c { 1 } { 2 } \ l e f t (x \ s q r t { r ^2−x ^2}+ r ^2 \ a rcs in \ f r a c { x } { r } \ r i g h t) _ { x_ { \
rm min } } ^ { x_ { \ rm max } } − y_ { \ rm min } \ Del ta x } { (\ Del ta x) ^ 2 } \ nonumber \ \ \

1162 ! > &=&\ f r a c { \ f r a c { x_ { \ rm max} y_ {2 } } { 2 } − \ f r a c { x_ { \ rm min } y_ { 1 } } { 2 }
1163 ! > +\ f r a c { r ^ 2 } { 2 } \ l e f t (\ a r cs in \ f r a c { x_ { \ rm max } } { r } − \ a r cs in \ f r a c { x_ { \ rm min

} } { r } \ r i g h t) − y_ { \ rm min } \ Del ta x
1164 ! > } { (\ Del ta x) ^ 2 } \ nonumber \ l a b e l {2d :2 corners }
1165 ! > \ end { eqnarray } }
1166 ! > \ parbox [t] { 40mm} {
1167 ! > \ begin { t i k z p i c t u r e } [sca le =2 .0]
1168 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y = 0 . 5 0] (0 , 0 . 2) −− (1 , 0 . 2)

arc (70 :89 .5 :3cm) −− cyc le ;
1169 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0 .25] (0 ,0) −− (1 ,0) −−

(1 , 0 . 2) −− (0 , 0 . 2) −− cyc le ;
1170 ! > \ draw [−] (0 ,0) −− (0 ,1) −− (1 ,1) −− (1 ,0) −− cyc le ;
1171 ! > \ draw [−] (0 , 0 . 2) −− (1 , 0 . 2) ;
1172 ! > \ f i l l d r a w (0 ,0) c i r c l e (0 .3mm) node [l e f t] { $ \ l e f t (x_ { \ rm min } | y_ { \ rm min } \

r i g h t) $ } ;
1173 ! > \ f i l l d r a w (0 , 0 . 4) c i r c l e (0 .3mm) node [l e f t] { $ \ l e f t (x_ { \ rm min } | y_ { 1 } \

r i g h t) $ } ;
1174 ! > \ f i l l d r a w (1 , 0 . 2) c i r c l e (0 .3mm) node [r i g h t] { $ \ l e f t (x_ { \ rm max } | y_ { 2 } \

r i g h t) $ } ;
1175 ! > \ end { t i k z p i c t u r e } }
1176 ! > %\subsubsect ion {3 corners }
1177 ! > \ parbox {140mm} { I f on ly the corner $ \ l e f t (x_ { \ rm max } | y_ { \ rm max} \ r i g h t) $ l i e s

ou ts ide the d r i v e r region , $p_ { \ rm d r i v e r } $ can be ca l cu la ted wi th :
1178 ! > \ begin { eqnarray }
1179 ! > p_ { \ rm d r i v e r }&=&\ f r a c { \ i n t _ { x_ { 1 } } ^ { x_ { \ rm max } } { \ rm d } x \ i n t _ { y_ { \ rm min } } ^ { \

s q r t { r ^2−x ^ 2 } } { \ rm d } y +(x_{1}−x_ { \ rm min }) \ Del ta x } { V_ { \ rm c e l l } } \ nonumber
\ \ \

1180 ! > &=&\ f r a c { \ i n t _ { x_ { 1 } } ^ { x_ { \ rm max } } \ s q r t { r ^2−x ^2} { \ rm d } x − y_ { \ rm min } \ l e f t (
x_ { \ rm max}−x_ { 1 } \ r i g h t) +(x_{1}−x_ { \ rm min }) \ Del ta x } { (\ Del ta x) ^2} \ nonumber

\ \ \
1181 ! > &=&\ f r a c { \ f r a c { 1 } { 2 } \ l e f t (x \ s q r t { r ^2−x ^2}+ r ^2 \ a rcs in \ f r a c { x } { r } \ r i g h t) _ { x_

{ 1 } } ^ { x_ { \ rm max } } − y_ { \ rm min } \ l e f t (x_ { \ rm max}−x_ { 1 } \ r i g h t) +(x_{1}−x_ { \ rm
min }) \ Del ta x } { (\ Del ta x) ^ 2 } \ nonumber \ \ \

1182 ! > &=&\ f r a c { \ f r a c { x_ { \ rm max} y_ {1 } } { 2 } − \ f r a c { x_ { 1 } y_ { \ rm max } } { 2 }
1183 ! > +\ f r a c { r ^ 2 } { 2 } \ l e f t (\ a r cs in \ f r a c { x_ { \ rm max } } { r } − \ a r cs in \ f r a c { x_ { 1 } } { r } \

r i g h t) − y_ { \ rm min } \ l e f t (x_ { \ rm max}−x_ { 1 } \ r i g h t) +(x_{1}−x_ { \ rm min }) \ Del ta x
1184 ! > } { (\ Del ta x) ^ 2 } \ nonumber \ l a b e l {2d :3 corners }
1185 ! > \ end { eqnarray } }
1186 ! > \ parbox [t] { 20mm} {
1187 ! > \ begin { t i k z p i c t u r e } [sca le =2 .0]
1188 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.75] (0 ,0) −− (0 . 6 , 0) −−

(0 . 6 , 1) −− (0 ,1) −− cyc le ;
1189 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.50] (0 . 6 , 0 . 5) −− (1 , 0 . 5)

arc (30 :48 :2cm) −− (0 . 6 , 1) −− cyc le ;
1190 ! > \ f i l l d r a w [co lo r =blue !50 , th in , f i l l =blue , f i l l opac i t y =0.25] (0 . 6 , 0) −− (1 ,0) −−

(1 , 0 . 5) −− (0 . 6 , 0 . 5) −− cyc le ;
1191 ! > \ draw [−] (0 ,0) −− (0 ,1) −− (1 ,1) −− (1 ,0) −− cyc le ;
1192 ! > \ f i l l d r a w (0 . 6 , 1) c i r c l e (0 .3mm) node [above] { $ \ l e f t (x_ { 1 } | y_ { \ rm max} \ r i g h t) $

} ;

240 C. Ramses source code listings

1193 ! > \ f i l l d r a w (1 , 0 . 5) c i r c l e (0 .3mm) node [r i g h t] { $ \ l e f t (x_ { \ rm max } | y_ { 1 } \ r i g h t) $
} ;

1194 ! > \ f i l l d r a w (0 . 6 , 0) c i r c l e (0 .3mm) node [below] { $ \ l e f t (x_ { 1 } | y_ { \ rm min } \ r i g h t) $
} ;

1195 ! > \ end { t i k z p i c t u r e } } \ \ \
1196 ! > In 3d or i n the subrou t ine { \ t t d r i v e r \ _weights } the percentage of the c e l l

i n s i d e the d r i v e r area i s ca l cu la ted wi th Monte Carlo i f i t i s not a t r i v i a l
case (0\% or 100\%) . For a l l th ree d i r e c t i o n s n random va r i a b l e s are
ca l cu la ted . The f r a c t i o n the c e l l volume i n s i d e the d r i v e r reg ion $p_ { \ rm
d r i v e r } $ i s the number o f random po in t s i n s i d e the d r i v e r reg ion ($ | (x_ i | y_ i |
z_ i) | < r$) d i v ided by the t o t a l number o f random po in t s n .

1197 ! >\ end la texon ly
1198 subrou t ine d r i ve r_we igh ts_ana l y t (ind , & ! < p o s i t i o n o f new g r i ds
1199 & i l e v e l , & ! < AMR l e v e l
1200 & i g r i d , & ! < g r i d index
1201 & ngr id , & ! < g r i d s ize
1202 & dx , & ! < c e l l s i ze
1203 & rd r i ve r_sca led , & ! < d r i v e r rad ius i n coarse g r i d c e l l s
1204 & xdr i ve r , & ! < d r i v e r [xyz] coord ina te
1205 & ydr i ve r , & ! < d r i v e r [xyz] coord ina te
1206 & zdr i ve r , & ! < d r i v e r [xyz] coord ina te
1207 & dr i ve rw e igh t) ! < f r a c t i o n o f the c e l l volume t h a t i s

i n s i d e the d r i v e r area
1208 use amr_commons , on ly : ac t i ve , xg
1209 use amr_parameters , on ly : dp , icoarse_min , jcoarse_min , kcoarse_min , &
1210 & verbose_patches
1211 use random
1212 i m p l i c i t none
1213 i n teger , i n t e n t (i n) : : ind ! < p o s i t i o n o f new g r i ds
1214 i n teger , i n t e n t (i n) : : i l e v e l ! < AMR l e v e l
1215 i n teger , i n t e n t (i n) : : i g r i d ! < g r i d index
1216 i n teger , i n t e n t (i n) : : ng r id ! < g r i d s ize
1217 r e a l (dp) , i n t e n t (i n) : : dx ! < c e l l s i ze
1218 r e a l (dp) , i n t e n t (i n) : : r d r i v e r _ s c a l e d ! < d r i v e r rad ius i n coarse g r i d c e l l s
1219 r e a l (dp) , i n t e n t (i n) : : x d r i v e r ! < d r i v e r [xyz] coord ina te
1220 r e a l (dp) , i n t e n t (i n) : : y d r i v e r ! < d r i v e r [xyz] coord ina te
1221 r e a l (dp) , i n t e n t (i n) : : z d r i v e r ! < d r i v e r [xyz] coord ina te
1222 r e a l (dp) , dimension (1 : ng r id) , i n t e n t (out) : : d r i ve rw e igh t ! < f r a c t i o n o f the c e l l

volume t h a t i s i n s i d e the d r i v e r area
1224
1224 i n t e g e r : : i , i nd_gr id , i x , i y , i z , nn
1225 ! i n t e g e r : : subgr ids i ze = 10 ! 3d subgr id
1226 i n t e g e r : : r andg r i ds i ze = 100 ! 3d random subgr id
1227 r e a l (dp) : : dx2 , r2 , r r ! , rd
1228 r e a l (dp) : : xmin , ymin , zmin , xmax , ymax , zmax
1229 r e a l (k ind =8) : : help_k8
1230 r e a l (dp) : : help1 , help2 , help3 , help4 , help5
1231 r e a l (dp) , dimension (1 : 3) : : sk ip_ loc
1232 r e a l (dp) , dimension (1 : 3) : : xc
1233 i n teger , dimension (IRandNumSize) : : &
1234 & loca lseed = (/ 3281 , 4041 , 595 , 2376 /)
1236
1236 d r i ve rw e igh t (:) =0.0_dp
1237 r2= r d r i v e r _ s c a l e d ∗∗2
1238 r r =(rd r i ve r_sca led −0.01_dp∗dx) ∗∗2

241

1239 dx2=dx∗∗2
1241
1241 ! ind =1 ,2∗∗ndim
1242 ! 2d : ind =1 ,4
1243 ! 3d : ind =1 ,8
1244 ! Set new g r i ds p o s i t i o n
1245 i z =(ind−1) /4 ! i n t e g e r d i v i s i o n −> 0 or 1
1246 i y =(ind−1−4∗ i z) /2 ! i n t e g e r d i v i s i o n −> 0 or 1
1247 i x =(ind−1−2∗ i y−4∗ i z) ! i n t e g e r d i v i s i o n −> 0 or 1
1248 xc (1) =(dble (i x)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
1249 # i f NDIM>1
1250 xc (2) =(dble (i y)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
1251 # end i f
1252 # i f NDIM>2
1253 xc (3) =(dble (i z)−0.5_dp) ∗dx ! −0.5_dp or +0.5_dp
1254 # end i f
1256
1256 sk ip_ loc = (/ 0 . 0 _dp , 0 . 0 _dp , 0 . 0 _dp /)
1257 sk ip_ loc (1) =dble (icoarse_min)
1258 # i f NDIM>1
1259 sk ip_ loc (2) =dble (jcoarse_min)
1260 # end i f
1261 # i f NDIM>2
1262 sk ip_ loc (3) =dble (kcoarse_min)
1263 # end i f
1265
1265 ! xg (: , 1)−1.5 . . . values i n i n t e r v a l [−1 ,1]
1266 do i =1 , ng r id
1267 i nd_g r i d = a c t i v e (i l e v e l)%i g r i d (i g r i d + i −1)
1268 ! xg (i nd_g r i d (i) ,1) . . x coord ina te o f the center o f the subgr id
1269 xmax=abs (xg (ind_gr id , 1) +xc (1)−sk ip_ loc (1)−0.5_dp−x d r i v e r) +0.5_dp∗dx ! minimum :

0.5_dp∗dx
1270 xmin=xmax−dx ! xmax−dx can get < 0 , minimum : −0.5_dp∗dx , but abs (zmin) <abs (zmax

)
1271 # i f NDIM>1
1272 ymax=abs (xg (ind_gr id , 2) +xc (2)−sk ip_ loc (2)−0.5_dp−y d r i v e r) +0.5_dp∗dx ! minimum :

0.5_dp∗dx
1273 ymin=ymax−dx ! ymax−dx can get < 0 , minimum : −0.5_dp∗dx , but abs (zmin) <abs (zmax

)
1274 #else
1275 ymax=0.0_dp
1276 ymin =0.0_dp
1277 # end i f
1278 # i f NDIM>2
1279 zmax=abs (xg (ind_gr id , 3) +xc (3)−sk ip_ loc (3)−0.5_dp−z d r i v e r) +0.5_dp∗dx ! minimum :

0.5_dp∗dx
1280 zmin=zmax−dx ! zmax−dx can get < 0 , minimum : −0.5_dp∗dx , but abs (zmin) <abs (zmax

)
1281 #else
1282 zmax=0.0_dp
1283 zmin =0.0_dp
1284 # end i f
1285 i f ((xmin∗∗2+ymin∗∗2+zmin∗∗2) . l t . r r) then
1286 ! pa r t o f c e l l i n s i d e d r i v e r reg ion
1287 i f ((xmax∗∗2+ymax∗∗2+zmax∗∗2) . l t . r r) then

242 C. Ramses source code listings

1288 ! c e l l f u l l y i n s i d e d r i v e r reg ion
1289 d r i ve rw e igh t (i) =1.0_dp
1290 else
1291 # i f NDIM==1
1292 ! 1d
1293 ! i f (xmin . g t . 0 . 0 _dp) then : (r−|xmin |) . . . pa r t o f r i n s i d e i n t e r v a l
1294 ! i f (xmin . l t . 0 . 0 _dp) then : (r + | xmin |) . . . pa r t o f r i n s i d e p o s i t i v e pa r t o f

i n t e r v a l p lus negat ive pa r t o f i n t e r v a l
1295 ! i n both cases : (r−xmin)
1296 d r i ve rw e igh t (i) =(rd r i ve r_sca led−xmin) / dx
1297 # end i f
1298 # i f NDIM==2
1299 ! 2d
1300 i f (max(xmin∗∗2 , ymin∗∗2)+min (xmax , ymax) ∗∗2. l t . r r) then ! a t l e a s t two

corners i n s i d e c e n t r a l reg ion
1301 i f (min (xmin∗∗2 , ymin∗∗2)+max(xmax , ymax) ∗∗2. g t . r r) then ! two corners

i n s i d e c e n t r a l reg ion
1302 i f ((ymin . l t . 0 . 0 _dp) . and . (xmin . l t . 0 . 0 _dp)) then
1303 p r i n t ∗ , " xmin AND ymin negat ive : use a l a r g e r d r i v e r rad ius ! "
1304 p r i n t ∗ , " xmin=" , xmin , "xmax=" ,xmax
1305 p r i n t ∗ , " ymin=" , ymin , "ymax=" ,ymax
1306 stop
1307 end i f
1308 help1=min (xmin , ymin) / r d r i v e r _ s c a l e d ! lower boundary o f the i n t e g r a l
1309 help2= s q r t (1 .0 _dp−help1 ∗∗2) ! sur face of sphere @ lower

boundary o f the i n t e g r a l
1310 help3=min (xmax , ymax) / r d r i v e r _ s c a l e d ! upper boundary o f the i n t e g r a l
1311 help4= s q r t (1 .0 _dp−help3 ∗∗2) ! sur face of sphere @ upper

boundary o f the i n t e g r a l
1312 ! help5 : sub t rac t rec tang le between x−ax is (i f xmin < ymin , otherwise y−

ax is) and ymin (i f xmin < ymin , otherwise xmin) and i n t e g r a l boundaries
1313 help5=(−max(xmin , ymin) ∗dx / r2)
1314 else ! th ree corners i n s i d e c e n t r a l region , ymax / xmax corner ou ts ide
1315 ! okay f o r (ymin . l t . 0 . 0 _dp . and . xmin . l t . 0 . 0 _dp)
1316 help2=ymax / r d r i v e r _ s c a l e d ! sur face of sphere @ lower boundary o f the

i n t e g r a l
1317 help1= s q r t (1 .0 _dp−help2 ∗∗2) ! lower boundary o f the i n t e g r a l
1318 help3=xmax / r d r i v e r _ s c a l e d ! upper boundary o f the i n t e g r a l
1319 help4= s q r t (1 .0 _dp−help3 ∗∗2) ! sur face of sphere @ upper boundary o f the

i n t e g r a l
1320 ! help5 : sub t rac t rec tang le between (x−ax is and ymin) and i n t e g r a l

boundaries
1321 ! f o r ymin<0 add rec tang le between (x−ax is and ymin) and i n t e g r a l

boundaries
1322 ! help5 : add rec tang le between (xmin and help1) and (ymin and ymax) (okay

f o r xmin <0)
1323 help5 =(−(help3−help1)) ∗ymin / r d r i v e r _ s c a l e d + &
1324 & (help1−xmin / r d r i v e r _ s c a l e d) ∗dx / r d r i v e r _ s c a l e d
1325 end i f
1326 else ! one corner i n s i d e c e n t r a l reg ion
1327 i f ((ymin . l t . 0 . 0 _dp) . and . (xmin . l t . 0 . 0 _dp)) then
1328 p r i n t ∗ , " xmin AND ymin negat ive : use a l a r g e r d r i v e r rad ius ! "
1329 p r i n t ∗ , " xmin=" , xmin , "xmax=" ,xmax
1330 p r i n t ∗ , " ymin=" , ymin , "ymax=" ,ymax
1331 stop

243

1332 end i f
1333 help1=min (ymin , xmin) / r d r i v e r _ s c a l e d ! lower boundary o f the i n t e g r a l
1334 help2= s q r t (1 .0 _dp−help1 ∗∗2) ! sur face of sphere @ lower

boundary o f the i n t e g r a l
1335 help4=max(xmin , ymin) / r d r i v e r _ s c a l e d ! sur face of sphere @ upper

boundary o f the i n t e g r a l
1336 help3= s q r t (1 .0 _dp−help4 ∗∗2) ! upper boundary o f the i n t e g r a l
1337 ! i f (ymin . l t . 0 . 0 _dp) help5 : sub t rac t rec tang le between (y−ax is and xmin)

and i n t e g r a l boundaries
1338 ! e lse help5 : sub t rac t rec tang le between (x−ax is and ymin)

and i n t e g r a l boundaries
1339 help5 =(−(help3−help1)) ∗help4 ! a lso ok i f help1 < 0
1340 end i f
1341 ! weight :
1342 ! (r2∗ . . .) : lower and upper boundary o f (see e . g . Netz , 7 th . e d i t i o n

i n t e g r a l 113) \ i n t _ { xmin } ^ { x @ ymin } \ s q r t (1−(x / r) ^2) dx = 0 .5∗ (xy+ a rcs in (x))
1343 ! help5 : sub t rac t rec tang le between x−ax is and lowest y
1344 ! help5 : add rec tang le between xmin and the lower boundary o f the i n t e g r a l
1345 d r i ve rw e igh t (i) = (0 .5 _dp∗ (help3∗help4+as in (help3)− &
1346 & help1∗help2−as in (help1)) +help5) ∗ r2 / dx2
1347 i f (d r i ve rw e igh t (i) . g t . 1 . _dp) then
1348 i f (verbose_patches) p r i n t ∗ , " d r i ve r we ig h t (i) " , d r i ve r we ig h t (i)
1349 i f (verbose_patches) p r i n t ∗ , " xmin , ymin " , xmin , ymin
1350 i f (verbose_patches) p r i n t ∗ , " xmax , ymax" ,xmax , ymax
1351 i f (verbose_patches) p r i n t ∗ , " r r " , r r
1352 d r i ve rw e igh t (i) =0._dp
1353 stop ’ e x i t i n g : d r i ve rw e igh t > 1 ’
1354 else i f (d r i ve rw e igh t (i) . l t . 0 . _dp) then
1355 i f (verbose_patches) p r i n t ∗ , " d r i ve r we ig h t (i) " , d r i ve r we ig h t (i)
1356 i f (verbose_patches) p r i n t ∗ , " xmin , ymin " , xmin , ymin
1357 i f (verbose_patches) p r i n t ∗ , " xmax , ymax" ,xmax , ymax
1358 i f (verbose_patches) p r i n t ∗ , " r r " , r r
1359 d r i ve rw e igh t (i) =0._dp
1360 stop ’ e x i t i n g : d r i ve rw e igh t < 0 ’
1361 end i f
1362 # end i f
1363 # i f NDIM==3
1364 ! 3d Monte Carlo
1365 nn=0
1366 do i x =1 , randg r i ds i ze
1367 c a l l r an f (localseed , help_k8)
1368 help1=xmin+dble (help_k8) ∗dx
1369 c a l l r an f (localseed , help_k8)
1370 help2=ymin+dble (help_k8) ∗dx
1371 c a l l r an f (localseed , help_k8)
1372 help3=zmin+dble (help_k8) ∗dx
1373 i f ((help1∗∗2+help2∗∗2+help3 ∗∗2) . l t . r2) then
1374 nn=nn+1
1375 end i f
1376 end do
1377 d r i ve rw e igh t (i) = dble (nn) / dble (randg r i ds i ze)
1378 # end i f
1379 end i f
1380 else
1381 d r i ve rw e igh t (i) =0.0_dp

244 C. Ramses source code listings

1382 end i f
1383 end do
1384 end subrou t ine d r i ve r_we igh ts_ana l y t
1385 end module d r i v e r

Listing C.2: New module with tabulated stellar models for Ramses: geneva_models.f90
1 module geneva_models
2 use amr_parameters , on ly : dp , i fgeneva , genevarotat ing , genevayear , mstars ,&
3 & t s t a r s , n_stars
4 ! S t e l l a r feedback
5 ! i n teger , parameter : :MAXSTARS=100
6 ! r e a l (dp) : : n_stars = 10.0_dp ! number o f OB s ta r s i n s i d e the d r i v e r reg ion
7 ! l o g i c a l : : i fgeneva =. f a l s e . ! use geneva models −> ignore / ove rwr i t e

f i l e _ d r i v e r and f i l e _ s n
8 ! l o g i c a l : : genevaro ta t ing =. t r ue . ! use r o t a t i n g geneva models
9 ! i n t e g e r : : genevayear=2011 ! chose geneva g r i d

10 ! r e a l (dp) , dimension (1 :MAXSTARS) : : mstars =9.0_dp ! mass of the s ta r s
11 ! r e a l (dp) , dimension (1 :MAXSTARS) : : t s t a r s =0.0_dp ! fo rmat ion o f the s ta r s a t t h i s

t ime
12 i m p l i c i t none
13 save ! r e t a i n the value o f the v a r i a b l e s from one c a l l to the next
14 i n teger , parameter : : i 9 = se lec ted_ in t_k i nd (r =9) ! < i n t e g e r type d e f i n i t i o n
15 ! i n teger , parameter : : dp=k ind (1 .0E0) ! r e a l type d e f i n i t i o n
16 i n teger , parameter : : n_poin ts = 400
17 i n teger , parameter : : n_models = 11
19
19 type sn_matr ix
20 # i f NPRE==4
21 r e a l (k ind =8) : : timeSN ! yr
22 r e a l (k ind =8) : : masslossSN ! msun
23 r e a l (k ind =8) : : Al26SN ! msun
24 r e a l (k ind =8) : : energySN ! erg
25 #else
26 r e a l (dp) : : timeSN ! yr
27 r e a l (dp) : : masslossSN ! msun
28 r e a l (dp) : : Al26SN ! msun
29 r e a l (dp) : : energySN ! erg
30 # end i f
31 end type sn_matr ix
33
33 type d r i v e r _ m a t r i x
34 # i f NPRE==4
35 r e a l (k ind =8) : : timeSN ! yr
36 r e a l (k ind =8) : : masslossSN ! msun
37 r e a l (k ind =8) : : energySN ! erg
38 r e a l (k ind =8) , dimension (1 : n_poin ts) : : t ime ! y r
39 r e a l (k ind =8) , dimension (1 : n_poin ts) : : massloss ! msun / y r
40 r e a l (k ind =8) , dimension (1 : n_poin ts) : : v e l o c i t y !km/ s
41 r e a l (k ind =8) , dimension (1 : n_poin ts) : : energy ! 1e30 erg / s
42 r e a l (k ind =8) , dimension (1 : n_poin ts) : : Al26 ! msun / y r
43 #else
44 r e a l (dp) : : timeSN ! yr
45 r e a l (dp) : : masslossSN ! msun
46 r e a l (dp) : : energySN ! erg
47 r e a l (dp) , dimension (1 : n_poin ts) : : t ime ! y r

245

48 r e a l (dp) , dimension (1 : n_poin ts) : : massloss ! msun / y r
49 r e a l (dp) , dimension (1 : n_poin ts) : : v e l o c i t y !km/ s
50 r e a l (dp) , dimension (1 : n_poin ts) : : energy ! 1e30 erg / s
51 r e a l (dp) , dimension (1 : n_poin ts) : : Al26 ! msun / y r
52 # end i f
53 ! r e a l (dp) , dimension (1 : n_poin ts) : : z ! mass f r a c t i o n (1−H−He)
54 end type d r i v e r _ m a t r i x
56
56 i n teger , parameter , dimension (1 : n_models) : : i n i t i a l m a s s = &
57 & (/7 ,9 ,12 ,15 ,20 ,25 ,32 ,40 ,60 ,85 ,120/)
59
59 type (d r i v e r _ m a t r i x) , dimension (1 : n_models) : : Geneva2011V4
61
61 type (SN_matrix) , dimension (1 : n_models) : : VossGenevaAl
63
63 conta ins
65
65 subrou t ine create_VossGenevaAl
66 # i f NPRE==4
67 VossGenevaAl (1 : n_models)%timeSN = (/ 0e0_8 , 3.685e+07_8 , 2.195e+07_8 , &
68 & 1.555e+07_8 , 11.05e+06_8 , 8.65e+06_8 , 6.95e+06_8 , 5.95e+06_8 , &
69 & 4.65e+06_8 , 3.85e+06_8 , 3.45e6_8 /) ! [years]
71
71 VossGenevaAl (1 : n_models)%masslossSN = (/ 0e0_8 , 7.06781_8 , 9.1462_8 , &
72 & 9.0551_8 , 10.4174_8 , 10.6538_8 , 3.9536_8 , 3.4385_8 , 5.5983_8 , &
73 & 9.8102_8 , 4.4746_8 /) ! [so l a r masses]
75
75 VossGenevaAl (1 : n_models)%Al26SN = (/ 0e0_8 , 0.556278e−05_8 , &
76 & 1.94186e−05_8 , 12.7075e−05_8 , 5.4382336e−05_8 , 9.77063e−05_8 , &
77 & 9.41636e−05_8 , 10.3988e−05_8 , 18.3466e−05_8 , 29.5453e−05_8 , &
78 & 0.063e−05_8 /) ! [so l a r masses]
80
80 #else
81 VossGenevaAl (1 : n_models)%timeSN = (/ 0e0_dp , 3.685e+07_dp , &
82 & 2.195e+07_dp , 1.555e+07_dp , 11.05e+06_dp , 8.65e+06_dp , 6.95e+06_dp , &
83 & 5.95e+06_dp , 4.65e+06_dp , 3.85e+06_dp , 3.45e6_dp /) ! [years]
85
85 VossGenevaAl (1 : n_models)%masslossSN = (/ 0e0_dp , 7.06781_dp , &
86 & 9.1462_dp , 9.0551_dp , 10.4174_dp , 10.6538_dp , 3.9536_dp , &
87 & 3.4385_dp , 5.5983_dp , 9.8102_dp , 4.4746_dp /) ! [so l a r masses]
89
89 VossGenevaAl (1 : n_models)%Al26SN = (/ 0e0_dp , 0.556278e−05_dp , &
90 & 1.94186e−05_dp , 12.7075e−05_dp , 5.4382336e−05_dp , 9.77063e−05_dp , &
91 & 9.41636e−05_dp , 10.3988e−05_dp , 18.3466e−05_dp , 29.5453e−05_dp , &
92 & 0.063e−05_dp /) ! [so l a r masses]
93 # end i f
95
95 # i f NPRE==4
96 VossGenevaAl (1 : n_models)%energySN = 1.0_8 ! [erg]
97 #else
98 VossGenevaAl (1 : n_models)%energySN = 1.0_dp ! [erg]
99 # end i f

100 end subrou t ine create_VossGenevaAl
101 !−−
102 subrou t ine create_Geneva2011V4

246 C. Ramses source code listings

103 !−−
104 ! SN data
105 !−−
106 ! grep "400 " M???Z14V4 . dat | grep " :400 " > SN. t x t
107 ! # co l . 1 : l i n e number and i n i t i a l mass
108 ! # co l . 2 : age [y r]
109 ! # co l . 3 : mass [Msol]
110 ! awk ’ { s p l i t ($1 , help1 , "M") ; s p l i t (help1 [2] , help2 , " Z ") ; sub (/ p / , " . " , help2 [1]) ;

i n i t i a l m a s s =help2 [1] ; mass=$3 ; age=$2 ; i f (i n i t i a l m a s s <25) { remanentmass =1.4}
e lse { remanentmass = 7 . 0 } ; i f (i n i t i a l m a s s >6) { p r i n t i n i t i a l m a s s , age , mass ,
remanentmass , mass−remanentmass } } ’ SN. t x t

111 !−−
112 # i f NPRE==4
113 Geneva2011V4 (1 : n_models)%timeSN = (/ 5.89825423207157e7_8 , &
114 & 3.54627289784629e7_8 , 2.07324437587086e7_8 , 1.50658661141411e7_8 , &
115 & 1.04749575317549e7_8 , 8.60585058063150e6_8 , 7.22426176827787e6_8 , &
116 & 6.17506476706730e6_8 , 4.85966398974075e6_8 , 4.06404560769163e6_8 , &
117 & 3.55717089269368e6_8 /) ! [years]
118 Geneva2011V4 (1 : n_models)%masslossSN = (/5 .46839 _8 ,7.11747_8 , &
119 & 8.82398_8 ,9.67124_8 ,5.77851_8 ,2.68962_8 ,3.12489_8 ,5.33227_8 , &
120 & 10.9807_8 ,19.3934_8 ,12.0444_8 /) ! [so l a r masses]
121 Geneva2011V4 (1 : n_models)%energySN = 1.0_8 ! [erg]
122 #else
123 Geneva2011V4 (1 : n_models)%timeSN = (/ 5.89825423207157e7_dp , &
124 & 3.54627289784629e7_dp , 2.07324437587086e7_dp , 1.50658661141411e7_dp , &
125 & 1.04749575317549e7_dp , 8.60585058063150e6_dp , 7.22426176827787e6_dp , &
126 & 6.17506476706730e6_dp , 4.85966398974075e6_dp , 4.06404560769163e6_dp , &
127 & 3.55717089269368e6_dp /) ! [years]
128 Geneva2011V4 (1 : n_models)%masslossSN = (/5 .46839 _dp ,7.11747_dp , &
129 & 8.82398_dp ,9.67124_dp ,5.77851_dp ,2.68962_dp ,3.12489_dp ,5.33227_dp , &
130 & 10.9807_dp ,19.3934_dp ,12.0444_dp /) ! [so l a r masses]
131 Geneva2011V4 (1 : n_models)%energySN = 1.0_dp ! [erg]
132 # end i f
133 !−−
134 ! Wind 120 so la r masses
135 !−−
136 ! awk ’ { p r i n t $2 } ’ M007Z14V4 . dat
138
138 ! Geneva2011V4 (1 : n_models)%t ime ! y r
139 ! Geneva2011V4 (1 : n_models)%massloss ! msun / y r
140 ! Geneva2011V4 (1 : n_models)%v e l o c i t y !km/ s
141 ! Geneva2011V4 (1 : n_models)%energy !1 e30 erg / s
142 ! Geneva2011V4 (1 : n_models)%Al26 ! msun / y r
143 ! Geneva2011V4 (1 : n_models)%z ! mass f r a c t i o n (1−H−He)
145
145 Geneva2011V4 (11)%time = (/0.188397310560790E+05 , 0.243588632933556E+05 , &

4977 Geneva2011V4 (1)%Al26 = 0.0
4978 Geneva2011V4 (1)%v e l o c i t y = (/2 .43448 e+08 , 1.21021e+08 , 1.20297e+08 , 1.19599e+08 ,

&
5059 end subrou t ine create_Geneva2011V4
5060 subrou t ine scale_Geneva2011V4
5061 i m p l i c i t none
5062 i n t e g e r : : i i , j j
5063 r e a l (dp) : : sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2 ! < convers ion

f a c t o r s between cgs and user u n i t s (subrou t ine u n i t s i n u n i t s . f90)

247

5064 # i f NPRE==4
5065 r e a l (k ind =8) : : scale_energy , scale_m , scale_dm , scale_e ! < convers ion f a c t o r s

between cgs and user u n i t s
5066 r e a l (k ind =8) , parameter : : YearToSeconds = 31556926._8 ! < conver t years to

seconds ; 1 year = 31556926 seconds
5067 r e a l (k ind =8) , parameter : : SolarMass = 1.98892e33_8 ! < so la r mass i n [g]
5068 #else
5069 r e a l (dp) : : scale_energy , scale_m , scale_dm , scale_e ! < convers ion f a c t o r s between

cgs and user u n i t s
5070 r e a l (dp) , parameter : : YearToSeconds = 31556926._dp ! < conver t years to seconds ;

1 year = 31556926 seconds
5071 r e a l (dp) , parameter : : SolarMass = 1.98892e33_dp ! < so la r mass i n [g]
5072 # end i f
5073 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
5074 scale_e =51.0−(log10 (scale_d) +3.∗ log10 (sca le_ l) +2.∗ log10 (scale_v)) ! 0
5075 scale_m=scale_d∗ sca le_ l ∗∗3 ! 10^(+35)
5076 ! 1 year = 31556926 seconds
5077 ! mass loss = 1 so la r mass / year
5078 ! mass loss = \ f$ \ f r a c {1.98892 \ t imes 10^{33}}{31556926} \ f r a c { \ rm [g] } { \ rm [s] }

\ f$
5079 ! mass loss = 63.e+24 g / s
5080 scale_dm=SolarMass / YearToSeconds∗ sca le_ t / scale_m
5081 ! k i n e t i c l u m i n o s i t y : erg / s = g cm^2 / s^3
5082 ! 1 erg / s = 10^(−35−2∗19+3∗11) code−mass u n i t s code leng th u n i t s ^2 / code−t ime−u n i t s

^3
5083 ! 1 erg / s = 10^(−40) code−mass u n i t s code leng th u n i t s ^2 / code−t ime−u n i t s ^3
5084 scale_energy=sca le_ t / scale_m / scale_v∗∗2 ! 10^(−40)
5085 do i i =1 ,SIZE (Geneva2011V4)
5086 Geneva2011V4 (i i)%timeSN = Geneva2011V4 (i i)%timeSN∗YearToSeconds / &
5087 & sca le_ t ! y r to code u n i t s
5088 Geneva2011V4 (i i)%masslossSN = Geneva2011V4 (i i)%masslossSN∗SolarMass / &
5089 & scale_m ! msun to code u n i t s
5090 Geneva2011V4 (i i)%energySN = Geneva2011V4 (i i)%energySN∗10.∗∗ scale_e ! erg to

code u n i t s
5091 do j j =1 ,SIZE (Geneva2011V4 (1)%time)
5092 Geneva2011V4 (i i)%t ime (j j) = &
5093 & Geneva2011V4 (i i)%t ime (j j) ∗YearToSeconds / sca le_ t ! y r to code u n i t s
5094 Geneva2011V4 (i i)%massloss (j j) = &
5095 & Geneva2011V4 (i i)%massloss (j j) ∗scale_dm ! msun / y r to code u n i t s
5096 Geneva2011V4 (i i)%Al26 (j j) = &
5097 & Geneva2011V4 (i i)%Al26 (j j) ∗scale_dm ! msun / y r to code u n i t s
5098 Geneva2011V4 (i i)%energy (j j) = &
5099 # i f NPRE==4
5100 & Geneva2011V4 (i i)%energy (j j) ∗1e30_8∗scale_energy ! erg / s to code u n i t s
5101 #else
5102 & Geneva2011V4 (i i)%energy (j j) ∗1e30_dp∗scale_energy ! erg / s to code u n i t s
5103 # end i f
5104 Geneva2011V4 (i i)%v e l o c i t y (j j) = Geneva2011V4 (i i)%v e l o c i t y (j j) / scale_v !km/ s to

code u n i t s
5105 end do
5106 end do
5107 end subrou t ine scale_Geneva2011V4
5108 subrou t ine print_Geneva2011V4
5109 use amr_commons , on ly : myid , ncpu
5110 i m p l i c i t none

248 C. Ramses source code listings

5111 i n t e g e r (i 9) : : i , j , i i , j j , i l u n
5112 i l u n =ncpu+myid+10
5113 open (u n i t = i l u n , f i l e = "Geneva . t x t " , form= ’ fo rmat ted ’)
5114 w r i t e (i l u n , ’ (" # t ime [y r] , energy loss [erg / s] , mass loss [msun / y r] , " ,&
5115 & " wind v e l o c i t y [cm/ s] , 26AL [Msun / y r] , s t a r s " , I4) ’) i n t (n_stars)
5116 do j =1 , i n t (n_stars)
5117 do j j =1 ,11
5118 p r i n t ∗ , i n i t i a l m a s s (j j) , mstars (j)
5119 i f (i n t (i n i t i a l m a s s (j j)) . eq . i n t (mstars (j))) then
5120 i i = j j ! compute number o f the model o f t h i s mass
5121 end i f
5122 end do
5123 w r i t e (∗ , ’ (" # s t a r " , I4 ,1X , " fo rmat ion t ime [y r] " , G14.5E4 , &
5124 & " i n i t i a l mass [Msun] " , G14.5E4) ’) j , t s t a r s (j) , mstars (j)
5125 w r i t e (i l u n , ’ (" # s t a r " , I4 ,1X , " fo rmat ion t ime [y r] " , G14.5E4 , &
5126 & " i n i t i a l mass [Msun] " , G14.5E4) ’) j , t s t a r s (j) , mstars (j)
5127 do i =1 , n_poin ts
5128 ! energy i n tab les i s 1e30 erg / s
5129 w r i t e (i l u n , ’ (5 (2 x ,G14.5E4)) ’) Geneva2011V4 (i i)%t ime (i) + t s t a r s (j) , &
5130 & Geneva2011V4 (i i)%energy (i) ∗1e30_dp , Geneva2011V4 (i i)%massloss (i) , &
5131 & Geneva2011V4 (i i)%v e l o c i t y (i) , Geneva2011V4 (i i)%Al26 (i)
5132 end do
5133 w r i t e (i l u n , ’ ("SN at t = " ,G14.5E4) ’) Geneva2011V4 (i i)%timeSN+ t s t a r s (j)
5134 w r i t e (i l u n , ’ ("SN energy [erg] = " ,G14.5E4) ’) Geneva2011V4 (i i)%energySN
5135 w r i t e (i l u n , ’ ("SN mass loss [Msun] = " ,G14.5E4) ’) Geneva2011V4 (i i)%masslossSN
5136 w r i t e (i l u n , ’ ("26 Al f r a c t i o n = " ,G14.5E4) ’) &
5137 & Geneva2011V4 (i i)%AL26 (n_poin ts) / Geneva2011V4 (i i)%massloss (n_poin ts) ! too high

− sur face mass f r a c t i o n not mass f r a c t i o n i n e jec ta
5138 end do
5139 c lose (i l u n)
5140 end subrou t ine print_Geneva2011V4
5141 subrou t ine interpolate_Geneva2011V4 (age , dt , ed r i ve r , rhod r i ve r , a l d r i v e r)
5142 i m p l i c i t none
5143 r e a l (dp) , i n t e n t (i n) : : age ! s imu la t i on t ime
5144 r e a l (dp) , i n t e n t (i n) : : d t ! t ime step s ize (f o r SN)
5145 r e a l (dp) , i n t e n t (out) : : ed r i ve r , rhod r i ve r , a l d r i v e r
5146 i n t e g e r (i 9) : : i , j , i i , j j
5147 r e a l (dp) : : scaled_age ! s imu la t i on t ime cor rec ted f o r s t a r fo rmat ion t ime
5149
5149 e d r i v e r = 0.0_dp
5150 r h o d r i v e r = 0.0_dp
5151 a l d r i v e r = 0.0_dp
5152 do j =1 , i n t (n_stars)
5153 do j j =1 ,11
5154 i f (i n i t i a l m a s s (j j) . eq . mstars (j)) then
5155 i i = j j ! search f o r the number o f the model f o r t h i s mass
5156 end i f
5157 end do
5158 scaled_age = age − t s t a r s (j)
5159 i f ((scaled_age . l t . Geneva2011V4 (i i)%timeSN) . and . &
5160 & (scaled_age . ge . Geneva2011V4 (i i)%t ime (1))) then
5161 i =1
5162 do whi le (scaled_age . g t . Geneva2011V4 (i i)%t ime (i))
5163 i = i +1
5164 end do

249

5165 e d r i v e r = e d r i v e r + Geneva2011V4 (i i)%energy (i −1)+ &
5166 & (scaled_age−Geneva2011V4 (i i)%t ime (i −1)) / &
5167 & (Geneva2011V4 (i i)%t ime (i)−Geneva2011V4 (i i)%t ime (i −1)) ∗ &
5168 & (Geneva2011V4 (i i)%energy (i)−Geneva2011V4 (i i)%energy (i −1))
5169 r h o d r i v e r = r h o d r i v e r +Geneva2011V4 (i i)%massloss (i −1)+ &
5170 & (scaled_age−Geneva2011V4 (i i)%t ime (i −1)) / &
5171 & (Geneva2011V4 (i i)%t ime (i)−Geneva2011V4 (i i)%t ime (i −1)) ∗ &
5172 & (Geneva2011V4 (i i)%massloss (i)−Geneva2011V4 (i i)%massloss (i −1))
5173 a l d r i v e r = a l d r i v e r +Geneva2011V4 (i i)%Al26 (i −1)+ &
5174 & (scaled_age−Geneva2011V4 (i i)%t ime (i −1)) / &
5175 & (Geneva2011V4 (i i)%t ime (i)−Geneva2011V4 (i i)%t ime (i −1)) ∗ &
5176 & (Geneva2011V4 (i i)%Al26 (i)−Geneva2011V4 (i i)%Al26 (i −1))
5177 else i f ((scaled_age . g t . Geneva2011V4 (i i)%timeSN) . and . &
5178 & (scaled_age−dt . l e . Geneva2011V4 (i i)%timeSN)) then
5179 p r i n t ∗ , ’ t ime : ’ , scaled_age
5180 p r i n t ∗ , "SN at t = " , Geneva2011V4 (i i)%timeSN
5181 p r i n t ∗ , "SN energy [erg] = " , Geneva2011V4 (i i)%energySN
5182 p r i n t ∗ , "SN mass loss [Msun] = " , Geneva2011V4 (i i)%masslossSN
5183 p r i n t ∗ , " 26Al f r a c t i o n = " , &
5184 & Geneva2011V4 (i i)%AL26 (n_poin ts) / Geneva2011V4 (i i)%massloss (n_poin ts)
5185 e d r i v e r = e d r i v e r + Geneva2011V4 (i i)%energySN / d t
5186 r h o d r i v e r = r h o d r i v e r + Geneva2011V4 (i i)%masslossSN / d t
5187 a l d r i v e r = a l d r i v e r + Geneva2011V4 (i i)%masslossSN / d t ∗ &
5188 & Geneva2011V4 (i i)%AL26 (n_poin ts) / Geneva2011V4 (i i)%massloss (n_poin ts) ! too high

− sur face mass f r a c t i o n not mass f r a c t i o n i n e jec ta
5189 end i f
5190 end do
5191 end subrou t ine interpolate_Geneva2011V4
5192 end module geneva_models

Listing C.3: Stellar feedback control: amr_parameters.f90
68 ! S t e l l a r feedback c o n t r o l
69 i n teger , parameter : :MAXSTARS=100
70 charac te r (LEN=128) : : f i l e _ d r i v e r = ’ wind . dat ’ ! f i l e w i th wind data
71 charac te r (LEN=128) : : f i l e _ s n = ’ sn . dat ’ ! f i l e w i th SN data
72 charac te r (LEN=128) : : f i l e _ s p h = ’ cloud1_ka_new ’ ! SPH p a r t i c l e s f o r i n i t i a l

cond i t i ons
73 r e a l (dp) : : r _ d r i v e r = 0.75_dp ! d r i v e r rad ius (i n user leng th u n i t s)
74 r e a l (dp) : : x_d r i ve r = 0.0_dp ! x coord ina te o f the d r i v e r center (i n user

leng th u n i t s)
75 r e a l (dp) : : y_d r i ve r = 0.0_dp ! y coord ina te o f the d r i v e r center (i n user

leng th u n i t s)
76 r e a l (dp) : : z_d r i ve r = 0.0_dp ! z coord ina te o f the d r i v e r center (i n user

leng th u n i t s)
77 r e a l (dp) : : coo lp lus = 0.0_dp ! space between coo l i ng reg ion and d r i v e r reg ion

(i n user leng th u n i t s)
78 r e a l (dp) : : n_stars = 1.0_dp ! number o f OB s ta r s i n s i d e the d r i v e r reg ion
79 i n t e g e r : : max_dr iver_gr id = 7 ! amr : re f inement o f d r i v e r reg ion
80 l o g i c a l : : i fgeneva =. f a l s e . ! use geneva models −> ignore / ove rwr i t e

f i l e _ d r i v e r and f i l e _ s n
81 l o g i c a l : : genevaro ta t ing =. t r ue . ! use r o t a t i n g geneva models
82 i n t e g e r : : genevayear=2011 ! chose geneva g r i d
83 r e a l (dp) , dimension (1 :MAXSTARS) : : mstars =9.0_dp ! mass of the s ta r s
84 r e a l (dp) , dimension (1 :MAXSTARS) : : t s t a r s =0.0_dp ! fo rmat ion o f the s ta r s a t t h i s

t ime

250 C. Ramses source code listings

164 r e a l (dp) : : T_min_f ix =1.e−2_dp ! minimum temperature f o r coo l i ng tab le

Listing C.4: Read feedback parameters: read_params.f90
25 namel is t / dr iver_params / f i l e _ d r i v e r , f i l e _ s n , f i l e_sph , r _ d r i v e r , &
26 & x_dr ive r , y_dr i ve r , z_dr i ve r , coo lp lus , n_stars , max_dr iver_gr id , &
27 & ifgeneva , genevarotat ing , genevayear , mstars , t s t a r s
66 w r i t e (∗ ,∗) ’ Version 3.10 ’
67 w r i t e (∗ ,∗) ’ h t t ps : / / b i t bu c k e t . org / r t e y s s i e / ramses August 5 th 2014 ’
68 w r i t e (∗ ,∗) ’ g i t commit 5a2d93b83d13bb48f21077c61cfda275256d8aea ’
69 w r i t e (∗ ,∗) ’ w r i t t e n by Romain Teyss ier (CEA/DSM/ IRFU /SAP) ’
70 w r i t e (∗ ,∗) ’ (c) CEA 1999−2007 ’
71 w r i t e (∗ ,∗) ’ w i th s t e l l a r feedback patches of K .M. F i e r l i n g e r ’

126 max_dr iver_gr id=levelmax
127 read (1 ,NML=driver_params)
128 !−−−−−−−−−−−−−−−−−
129 ! Max s t a r number checks
130 !−−−−−−−−−−−−−−−−−
131 i f ((i fgeneva) . and . (n_stars >MAXSTARS)) then
132 w r i t e (∗ ,∗) ’ E r ro r : n_stars >MAXSTARS ’
133 c a l l c lean_stop
134 end i f
135 rewind (1)

Listing C.5: Read-in of feedback parameters: read_hydro_params.f90
19 namel is t / in i t_params / f i l e t y p e , i n i t f i l e , mu l t i p l e , nregion , reg ion_type &
20 & , x_center , y_center , z_center , aexp_ in i &
21 & , length_x , length_y , length_z , exp_region &
22 # i f NENER>0
23 & , prad_region &
24 # end i f
25 & , d_region , u_region , v_region , w_region , p_region , a l_ reg ion
26 ! var_region , t h a t i n i t i a l i z e s the passive sca la rs i s always zero !
27 namel is t / hydro_params /gamma, couran t_ fac to r , smal l r , smal lc , l a r g e t &
39 namel is t / physics_params / coo l ing , T_min_f ix , haardt_madau , metal &

Listing C.6: Allocate feedback data: init_time.f90
127 ! I n i t i a l i z e wind tab le
128 i f (i fgeneva) then
129 c a l l create_Geneva2011V4
130 # i f n d e f WITHOUTMPI
131 i f (myid==1) then
132 # end i f
133 p r i n t ∗ , "Geneva 2011 V4 models z=0.014 "
134 c a l l print_Geneva2011V4
135 # i f n d e f WITHOUTMPI
136 end i f
137 # end i f
138 c a l l scale_Geneva2011V4
139 else
140 c a l l read_dr i ve r
141 c a l l read_sn
142 end i f
143 c a l l a l loca te_dr iver_mask

251

144 end subrou t ine i n i t _ t i m e

Listing C.7: Insert feedback: courant_fine.f90
82 ! I n s e r t s t e l l a r wind
83 i f (n_stars . g t . 0 . 0 _dp) then
84 c a l l w ind_f ine (i l e v e l)
85 end i f

251 subrou t ine wind_f ine (i l e v e l)
252 !−−−
253 ! > \ vers ion " sn+wind " : thermal energy and mass loss read i n from sn . dat and wind .

dat
254 ! > \ author Kathar ina M. F i e r l i n g e r
255 ! > \ date l a s t m o d i f i c a t i o n 13.09.2011
256 !−−−
257 ! use amr_commons , on ly : ac t i ve , d to ld , ncoarse , numbtot , xg
258 use d r i v e r
259 use geneva_models
260 use amr_commons , on ly : ac t i ve , d to ld , ncoarse , numbtot , t , T_min_f ix
261 use amr_parameters , on ly : r _ d r i v e r , x_dr i ve r , y_dr i ve r , z_dr i ve r , n_stars , &
262 & ifgeneva , genevarotat ing , genevayear , mstars , t s t a r s
263 use hydro_commons , on ly : uold , nvar , gamma, smal l r , i 26a l , i 60 fe
264 use poisson_parameters , on ly : dp , icoarse_max , icoarse_min , boxlen , &
265 & verbose , verbose_patches , nvector , ndim , ngridmax , twotondim
266 ! t h i s subrou t ine uses make_v i r tua l_ f ine_dp
267 i m p l i c i t none
268 i n t e g e r : : i l e v e l
270
270 i n t e g e r : : i g r i d , ncache , i , ind , i s k i p , ng r id
271 i n t e g e r : : i va r , ind_gr id , i n d _ c e l l
272 # i f d e f DECAYINTERVAL
273 r e a l (dp) , parameter : : decay_ in te rva l = 0.1578_dp
274 # end i f
276
276 r e a l (dp) , dimension (1 : nvector) : : weight
277 # i f d e f EKIN
278 # i f NDIM>1
279 r e a l (dp) , dimension (1 : nvector) : : weightx
280 r e a l (dp) , dimension (1 : nvector) : : weighty
281 # end i f
282 # i f NDIM>2
283 r e a l (dp) , dimension (1 : nvector) : : weightz
284 # end i f
285 # end i f
286 r e a l (dp) : : mdr iver = 0.0_dp ! 5.76015d−5
287 r e a l (dp) : : e d r i v e r = 0.0_dp ! 1.57015d−4
288 r e a l (dp) : : d r i ve r26A l = 0.0_dp
289 r e a l (dp) : : dr iver60Fe = 0.0_dp
290 # i f DEBUG==2
291 r e a l (dp) : : d r i v e r T e s t = 0.0_dp
292 # end i f
293 # i f DEBUG==3
294 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
295 ! check i f k i n e t i c energy i s s t i l l sma l le r than t o t a l energy
296 r e a l (dp) : : OLD_rho , OLD_Etot , OLD_mx, OLD_Ekin_help
297 r e a l (dp) : : OLD_my, OLD_mz

252 C. Ramses source code listings

298 # end i f
299 # i f d e f CARINA
300 r e a l (dp) : : edr iver_he lp , mdr iver_help , d r iver26Al_he lp , dr iver60Fe_help
301 ! r e a l (dp) : : s ta r_ fo rmat ion_per iode = 1893.41556_dp ! code t ime u n i t : 1 . d11s=

3.16887646 kyr , 6 Myr = 1.89341556e14 s = 1893.41556 ctu
302 r e a l (dp) : : s ta r_ fo rmat ion_per iode = 946.70778_dp ! code t ime u n i t : 1 . d11s=

3.16887646 kyr , 3 Myr = 9.4670778e13 s = 946.70778 ctu
303 r e a l (dp) : : s t a r _ f o r m a t i o n _ i n t e r v a l
304 i n t e g e r : : e x i s t i n g _ s t a r s , i i
305 # end i f
306 r e a l (dp) , parameter : : p i = acos(−1.0_dp)
307 # i f d e f THII
308 r e a l (dp) , parameter : : T_HII = 1.0e4_dp
309 # end i f
310 # i f d e f TMAX
311 r e a l (dp) , parameter : : T_max = 5.0e6_dp
312 # end i f
313 !
314 ! l o g i c a l : : debug = . t r ue .
315 ! r e a l (dp) : : xx
316 ! r e a l (dp) : : r2
317 !
318 r e a l (dp) : : x d r i v e r = 0.0_dp
319 r e a l (dp) : : y d r i v e r = 0.0_dp
320 r e a l (dp) : : z d r i v e r = 0.0_dp
321 r e a l (dp) : : r d r i v e r _ s c a l e d
322 ! r e a l (dp) : : r3
323 r e a l (dp) : : dx , one_over_boxscale
324 # i f d e f EKIN
325 r e a l (dp) : : momentum_help
326 # end i f
327 # i f def ined (EKIN) | | def ined (THII) | | de f ined (TMAX) | | def ined (TMIN)
328 r e a l (dp) : : Ekin_help
329 # end i f
330 # i f def ined (THII) | | de f ined (TMAX) | | def ined (TMIN)
331 r e a l (dp) : : T_help
332 # end i f
333 r e a l (dp) : : de ,dm, d26Al , d60Fe
334 r e a l (dp) : : d e l t a t , one_over_v_sphere
335 # i f d e f CARINA
336 r e a l (dp) : : DtV
337 r e a l (dp) : : eSN_help , mSN_help
338 #else
339 r e a l (dp) : : s tarsDtV
340 # end i f
341 ! 26 Al s e t t i n g s
342 ! h a l f l i f e t ime of 26Al ; (7 .17 e5 \pm 0.24e5) years
343 ! Dr . Jagdish K. T u l i Nuclear Wal le t Cards 2005 7 th E d i t i o n
344 ! h t t p : / / www. nndc . bn l . gov / w a l l e t / wc7 . html
345 ! h a l f l i f e t ime of 26Al ; (7 .16 e5 \pm 0.32e5) years
346 ! r e a l (dp) , parameter : : t h a l f 2 6 A l = 7.16d12 ∗ 3.1556926_dp ! [seconds]
347 r e a l (dp) , parameter : : t h a l f 2 6 A l = 2.2594759e13_dp ! [seconds]
348 ! 60 Fe s e t t i n g s
349 ! h a l f l i f e t ime of 60Fe ; (2 .62 e6 \pm 0.04e6) years
350 ! Rugel e t a l . , Phys . Rev . L e t t . 103 , 072502 (2009)

253

351 r e a l (dp) , parameter : : tha l f60Fe = 2.62d13 ∗ 3.1556926_dp ! [seconds]
352 r e a l (dp) : : scale_nH , scale_T2 , sca le_ l , scale_d , sca le_t , scale_v
353 r e a l (dp) : : eSN = 0.0_dp
354 r e a l (dp) : :mSN = 0.0_dp
356
356 # i f DEBUG==2
357 d r i v e r T e s t = 0.0_dp
358 i f (verbose_patches) w r i t e (∗ ,116) sum(uold (: , ndim+2))
359 # end i f
361
361 i f (numbtot (1 , i l e v e l) ==0) r e t u r n
362 i f (verbose) w r i t e (∗ ,111) i l e v e l
364
364 ! Mesh spacing a t t h a t l e v e l
365 one_over_boxscale=dble (icoarse_max−icoarse_min +1) / boxlen
366 ! scaled box :
367 dx = 0.5_dp∗∗ (i l e v e l)
368 ! box i n code u n i t s
369 ! dx=0.5_dp∗∗ i l e v e l ∗boxscale
370 ! vo l=dx∗∗ndim
371 ! r2= r d r i v e r ∗∗2
372 ! r3= r _ d r i v e r ∗∗3
373 x d r i v e r = one_over_boxscale∗ x_d r i ve r
374 y d r i v e r = one_over_boxscale∗ y_d r i ve r
375 z d r i v e r = one_over_boxscale∗ z_d r i ve r
376 r d r i v e r _ s c a l e d = one_over_boxscale∗ r _ d r i v e r
378
378 ! p r i n t ∗ , " D r i ve r coord ina tes " , xd r i ve r , y d r i v e r
379 ! p r i n t ∗ , " d r i v e r rad ius " , r _ d r i v e r
380 ! p r i n t ∗ , " scaled d r i v e r rad ius (boxsize : [0 : 1]) " , rd r i ve r_sca led , r2
381 ! p r i n t ∗ , " scaled g r i d spacing (boxsize : [0 : 1]) " , dx
382 ! p r i n t ∗ , " box leng th " , boxlen
383 ! p r i n t ∗ , " box scale " , boxscale
385
385 ! s i ze o f l a s t t imestep
386 i f (d t o l d (i l e v e l) . g t . 0 . 0 _dp) then
387 d e l t a t = d to l d (i l e v e l)
388 ! ! check i f you a l ready c a l l e d read_dr i ve r i n i n i t _ t i m e (amr / i n i t _ t i m e . f90)
389 i f (i fgeneva) then
390 c a l l interpolate_Geneva2011V4 (t , d e l t a t , ed r i ve r , mdriver , d r i ve r26A l)
391 dr iver60Fe =0.0_dp
392 eSN=0.0_dp
393 mSN=0.0_dp
394 else
395 c a l l i n t e r p o l a t e _ d r i v e r (t , ed r i ve r , mdriver , d r i ve r26A l , dr iver60Fe)
396 c a l l add_SN (t , d e l t a t , eSN,mSN)
397 end i f
398 # i f d e f CARINA
399 s t a r _ f o r m a t i o n _ i n t e r v a l = t / s ta r_ fo rmat ion_per iode
400 e x i s t i n g _ s t a r s =max(1 , min (70 , i n t (70 .0 _dp∗ s t a r _ f o r m a t i o n _ i n t e r v a l)))
401 i f (e x i s t i n g _ s t a r s . g t . 1) then
402 do i i =2 , e x i s t i n g _ s t a r s
403 ! i f (verbose_patches) w r i t e (∗ ,114) i i , t−r e a l (i i) ∗ s t a r _ f o r m a t i o n _ i n t e r v a l
404 w r i t e (∗ ,114) i i , t−r e a l (i i) ∗ s t a r _ f o r m a t i o n _ i n t e r v a l
405 i f (i fgeneva) then

254 C. Ramses source code listings

406 c a l l interpolate_Geneva2011V4 (t−r e a l (i i) ∗ s t a r _ f o r m a t i o n _ i n t e r v a l , &
407 & d e l t a t , edr iver_he lp , mdr iver_help , d r i ve r26A l_he lp)
408 ! sca le s ince the i n t e r p o l a t i o n used a l l s t a r s
409 dr i ve r26A l_he lp=dr i ve r26A l_he lp / r e a l (n_stars)
410 edr i ve r_he lp =edr i ve r_he lp / r e a l (n_stars)
411 mdriver_help =mdr iver_help / r e a l (n_stars)
412 dr iver60Fe_help =0.0_dp
413 eSN_help=0.0_dp
414 mSN_help=0.0_dp
415 else
416 c a l l i n t e r p o l a t e _ d r i v e r (t−r e a l (i i) ∗ s t a r _ f o r m a t i o n _ i n t e r v a l , &
417 & edr iver_he lp , mdr iver_help , d r iver26Al_he lp , dr iver60Fe_help)
418 c a l l add_SN (t−r e a l (i i) ∗ s t a r _ f o r m a t i o n _ i n t e r v a l , d e l t a t , &
419 & eSN_help , mSN_help)
420 end i f
421 e d r i v e r = e d r i v e r +edr i ve r_he lp
422 mdriver= mdr iver +mdr iver_help
423 d r i ve r26A l = d r i ve r26A l +dr i ve r26A l_he lp
424 dr iver60Fe=dr iver60Fe+dr iver60Fe_help
425 eSN= eSN+eSN_help
426 mSN= mSN+mSN_help
427 end do
428 end i f
429 # end i f
430 ! ! dont f o r g e t to c a l l remove_dr iver i n c lean_stop (amr / update_time . f90)
431 else
432 eSN=0.0_dp
433 mSN=0.0_dp
434 d e l t a t =1.e−4_dp
435 mdriver = 0.0_dp ! 5.76015d−5∗n_stars
436 e d r i v e r = 0.0_dp ! 1.57015d−4∗n_stars
437 d r i ve r26A l = 0.0_dp
438 dr iver60Fe = 0.0_dp
439 i f (i fgeneva) then
440 c a l l interpolate_Geneva2011V4 (t , d e l t a t , ed r i ve r , mdriver , d r i ve r26A l)
441 else
442 c a l l i n t e r p o l a t e _ d r i v e r (t , ed r i ve r , mdriver , d r i ve r26A l , dr iver60Fe)
443 end i f
444 i f (verbose_patches) then
445 w r i t e (∗ ,112) i n t (r d r i v e r _ s c a l e d / dx)
446 ! one_over_v_sphere =0.75_dp / r3 / p i
447 one_over_v_sphere =1._dp / get_dr iver_volume (i l e v e l)
448 w r i t e (∗ ,117) one_over_v_sphere
449 end i f
450 end i f
451 ! => energy per d r i v e r reg ion i s d i s t r i b u t e d over c e l l s
452 ! V_sphere = p i ∗ r _ d r i v e r ∗∗3/0.75
453 ! one_over_v_sphere =0.75_dp / r3 / p i
454 one_over_v_sphere =1._dp / get_dr iver_volume (i l e v e l)
455 ! ! e=mv^2/2 −> 2e /m
456 ! one_over_v_shel l =0.75_dp / p i / (r3−(r _ d r i v e r−d e l t a t ∗ s q r t (e d r i v e r ∗2.0_dp / mdr iver)

) ∗∗3)
457 ! i n j e c t i o n o f the wind of a given number o f s t a r s i n t o V_sphere dur ing the l a s t

t imestep
458 # i f d e f CARINA

255

459 DtV= d e l t a t ∗one_over_v_sphere
460 de = e d r i v e r ∗DtV + eSN∗one_over_v_sphere
461 dm =mdr iver ∗DtV + mSN∗one_over_v_sphere
462 d26Al= d r i ve r26A l ∗DtV
463 d60Fe=dr iver60Fe∗DtV
464 #else
465 i f (i fgeneva) then
466 starsDtV= d e l t a t ∗one_over_v_sphere
467 de = e d r i v e r ∗starsDtV ! [code−energy / code−l eng th ^3]
468 dm =mdr iver ∗starsDtV
469 else
470 starsDtV=n_stars∗ d e l t a t ∗one_over_v_sphere
471 de = e d r i v e r ∗starsDtV + eSN∗n_stars∗one_over_v_sphere ! [code−energy / code−

l eng th ^3]
472 dm =mdr iver ∗starsDtV + mSN∗n_stars∗one_over_v_sphere
473 end i f
474 d26Al= d r i ve r26A l ∗starsDtV
475 d60Fe=dr iver60Fe∗starsDtV
476 # end i f
477 # i f DEBUG==2
478 p r i n t ∗ , "dm" , dm, " de " , de
479 i f (verbose_patches) w r i t e (∗ ,114) de
480 ! i f (verbose_patches) w r i t e (∗ ,113) d r i ve r26A l ∗n_stars∗ d e l t a t
481 # end i f
482 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
483 ! Loop over a c t i v e g r i ds by vec to r sweeps
484 ncache= a c t i v e (i l e v e l)%ngr id
485 ! i f (debug) xx =0.0_dp
486 do i g r i d =1 ,ncache , nvector
487 ngr id=MIN(nvector , ncache− i g r i d +1)
488 ! Loop over c e l l s
489 do ind =1 , twotondim
490 i s k i p =ncoarse +(ind−1)∗ngridmax
491 weight (:) =0.0_dp
492 # i f d e f EKIN
493 # i f NDIM==2
494 weightx (:) =0.0_dp
495 weighty (:) =0.0_dp
496 c a l l d r i v e r _ v e c t o r (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led , &
497 & xdr i ve r , yd r i ve r , weightx (1 : ng r id) , weighty (1 : ng r id))
498 # end i f
499 # i f NDIM==3
500 weightx (:) =0.0_dp
501 weighty (:) =0.0_dp
502 weightz (:) =0.0_dp
503 c a l l d r i v e r _ v e c t o r (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led , &
504 & xdr i ve r , yd r i ve r , zd r i ve r , &
505 & weightx (1 : ng r id) , weighty (1 : ng r id) , weightz (1 : ng r id))
506 # end i f
507 # end i f
508 c a l l d r i ve r_we igh t s_ f i xed (ind , i l e v e l , i g r i d , ngr id , dx , weight (1 : ng r id))
509 ! c a l l d r i ve r_we igh ts (ind , i l e v e l , i g r i d , ngr id , dx , rd r i ve r_sca led , &
510 !& xd r i ve r , &
511 ! # i f NDIM>1
512 !& yd r i ve r , &

256 C. Ramses source code listings

513 ! # end i f
514 ! # i f NDIM>2
515 !& zd r i ve r , &
516 ! # end i f
517 !& weight (1 : ng r id))
519
519 ! i f (debug) xx=xx+sum(weight (1 : ng r id))
520 do i =1 , ng r id
521 i nd_g r i d = a c t i v e (i l e v e l)%i g r i d (i g r i d + i −1)
522 i n d _ c e l l = i s k i p + ind_g r i d
523 ! decay o f 26Al and 60Fe
524 # i f d e f DECAYINTERVAL
525 ! (use l a r g e r t imesteps to avoid s u b t r a c t i n g a t i n y number from a huge number)
526 i f (f l o o r (t / decay_ in te rva l) . ne . f l o o r ((t + d e l t a t) / decay_ in te rva l)) then !

decay_ in te rva l ends dur ing t h i s t ime step
527 ! decay o f 26Al
528 uold (i n d _ c e l l , i 2 6 a l) =uold (i n d _ c e l l , i 2 6 a l) &
529 & ∗2.0_dp∗∗(−decay_ in te rva l ∗ sca le_ t / t h a l f 2 6 A l)
530 ! decay o f 60Fe
531 uold (i n d _ c e l l , i 60 fe) =uold (i n d _ c e l l , i 60 fe) &
532 & ∗2.0_dp∗∗(−decay_ in te rva l ∗ sca le_ t / tha l f60Fe)
533 end i f
534 #else
535 ! decay o f 26Al
536 uold (i n d _ c e l l , i 2 6 a l) =uold (i n d _ c e l l , i 2 6 a l) &
537 & ∗2.0_dp∗∗(− d e l t a t ∗ (sca le_ t / t h a l f 2 6 A l))
538 ! decay o f 60Fe
539 uold (i n d _ c e l l , i 60 fe) =uold (i n d _ c e l l , i 60 fe) &
540 & ∗2.0_dp∗∗(− d e l t a t ∗ (sca le_ t / tha l f60Fe))
541 # end i f
542 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
543 ! D r i ve r reg ion only
544 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
545 i f (weight (i) . g t . 0 . 0 _dp) then
546 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
547 ! mass
548 uold (i n d _ c e l l , 1) =max(uold (i n d _ c e l l , 1) +dm∗weight (i) , sma l l r)
549 # i f d e f EKIN
550 ! dE = (dM v) ^2 / (2 dM)
551 ! (dM v) = s q r t (dE 2 dM)
552 ! ! pure k i n e t i c energy i npu t (h igher momentum)
553 ! ! momentum_help= s q r t ((de∗weight (i) +Ekin_help) ∗2.0_dp∗uold (i n d _ c e l l , 1))
554 ! ! use d r i ve r−momentum
555 ! ! −> gas mix ture w i l l put unresolved k i n e t i c energy i n t o E_therm
556 momentum_help= s q r t (de∗2.0_dp∗dm) ∗weight (i)
557 # i f DEBUG==2
558 p r i n t ∗ , " wind speed " , momentum_help /dm/ weight (i) ∗scale_v , " [cm/ s] "
559 # end i f
560 ! uold = rho ∗ vx
561 ! (M+dm) v_new= M v_old + dM v_new
562 # i f NDIM==1
563 ! vx
564 uold (i n d _ c e l l , 2) =uold (i n d _ c e l l , 2) +momentum_help
565 # end i f
566 # i f NDIM>1

257

567 ! vx
568 uold (i n d _ c e l l , 2) =uold (i n d _ c e l l , 2) +weightx (i) ∗momentum_help
569 ! vy
570 uold (i n d _ c e l l , 3) =uold (i n d _ c e l l , 3) +weighty (i) ∗momentum_help
571 # end i f
572 # i f NDIM==3
573 uold (i n d _ c e l l , 4) =uold (i n d _ c e l l , 4) +weightz (i) ∗momentum_help
574 # end i f
575 # end i f
576 ! t o t a l energy dens i t y
577 uold (i n d _ c e l l , ndim+2)=uold (i n d _ c e l l , ndim+2)+de∗weight (i)
578 ! o ld energydens i ty + d r i v e r energy dens i t y
579 ! don ’ t sub t rac t E−k in
580 ! uold (, ndim+2) conta ins e_ in t +e_kin
581 ! uold (i n d _ c e l l , ndim+2)=uold (i n d _ c e l l , ndim+2)+ &
582 !& weight (i) ∗max(0 .0 _dp , de−dm/ uold (i n d _ c e l l , 1) ∗∗2∗0.5_dp∗ &
583 !& (uold (i n d _ c e l l , 2) ∗∗2+ uold (i n d _ c e l l , 3) ∗∗2))
584 ! 26Al
585 uold (i n d _ c e l l , i 2 6 a l) =uold (i n d _ c e l l , i 2 6 a l) +d26Al∗weight (i)
586 ! 60Fe
587 uold (i n d _ c e l l , i 60 fe) =uold (i n d _ c e l l , i 60 fe) +d60Fe∗weight (i)
588 # i f def ined (THII) | | de f ined (TMAX) | | def ined (TMIN)
589 ! Compute T /mu i n Ke lv in
590 Ekin_help =(uold (i n d _ c e l l , 2) ∗∗2 &
591 # i f NDIM>1
592 & +uold (i n d _ c e l l , 3) ∗∗2 &
593 # end i f
594 # i f NDIM>2
595 & +uold (i n d _ c e l l , 4) ∗∗2 &
596 # end i f
597 &) ∗0.5_dp / uold (i n d _ c e l l , 1)
598 T_help=scale_T2 ∗ (gamma−1.0_dp) / uold (i n d _ c e l l , 1)
599 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
600 # i f DEBUG==3
601 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
602 ! check i f k i n e t i c energy i s s t i l l sma l le r than t o t a l energy
603 i f (Ekin_help . g t . uold (i n d _ c e l l , ndim+2)) then
604 OLD_rho=uold (i n d _ c e l l , 1)−dm∗weight (i)
605 OLD_Etot=uold (i n d _ c e l l , ndim+2)−de∗weight (i)
606 OLD_Ekin_help=Ekin_help∗uold (i n d _ c e l l , 1) / OLD_rho
607 p r i n t ∗ , " w i th wind : ekin , e t o t : " , Ekin_help , uold (i n d _ c e l l , ndim+2)
608 p r i n t ∗ , " w i thou t wind : ekin , e t o t : " , OLD_Ekin_help , OLD_Etot
609 i f (OLD_Ekin_help . g t . OLD_Etot) then
610 uold (i n d _ c e l l , ndim+2)=Ekin_help+T_min_f ix / T_help
611 else
612 uold (i n d _ c e l l , ndim+2)=OLD_Etot−OLD_Ekin_help+Ekin_help
613 end i f
614 end i f
615 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
616 # end i f
617 # i f d e f TMIN
618 ! Set Tmin
619 i f ((uold (i n d _ c e l l , ndim+2)−Ekin_help) . l t . T_min_f ix / T_help) then
620 uold (i n d _ c e l l , ndim+2)=Ekin_help+T_min_f ix / T_help
621 end i f

258 C. Ramses source code listings

622 # end i f
623 # i f d e f TMAX
624 ! Set Tmax
625 i f ((uold (i n d _ c e l l , ndim+2)−Ekin_help) . g t . T_max / T_help) then
626 uold (i n d _ c e l l , ndim+2)=Ekin_help+T_max / T_help
627 end i f
628 # end i f
629 ! Set T (d r i v e r) to 10.000 K
630 # i f d e f THII
631 i f ((uold (i n d _ c e l l , ndim+2)−Ekin_help) . l t . T_HII / T_help) then
632 uold (i n d _ c e l l , ndim+2)=Ekin_help+T_HII / T_help
633 end i f
634 # end i f
635 # end i f
636 # i f def ined (TMAX) | | def ined (TMIN)
637 else
638 ! Compute T /mu i n Ke lv in
639 Ekin_help =(uold (i n d _ c e l l , 2) ∗∗2 &
640 # i f NDIM>1
641 & +uold (i n d _ c e l l , 3) ∗∗2 &
642 # end i f
643 # i f NDIM>2
644 & +uold (i n d _ c e l l , 4) ∗∗2 &
645 # end i f
646 &) ∗0.5_dp / uold (i n d _ c e l l , 1)
647 T_help=scale_T2 ∗ (gamma−1.0_dp) / uold (i n d _ c e l l , 1)
649
649 # i f DEBUG==3
650 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
651 ! check i f k i n e t i c energy i s s t i l l sma l le r than t o t a l energy
652 i f (Ekin_help . g t . uold (i n d _ c e l l , ndim+2)) then
653 p r i n t ∗ , " w i thou t wind : ekin , e t o t : " , Ekin_help , uold (i n d _ c e l l , ndim+2)
654 uold (i n d _ c e l l , ndim+2)=Ekin_help+T_min_f ix / T_help
655 end i f
656 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
657 # end i f
658 # i f d e f TMIN
659 ! Set Tmin
660 i f ((uold (i n d _ c e l l , ndim+2)−Ekin_help) . l t . T_min_f ix / T_help) then
661 uold (i n d _ c e l l , ndim+2)=Ekin_help+T_min_f ix / T_help
662 end i f
663 # end i f
664 # i f d e f TMAX
665 ! Set Tmax
666 i f ((uold (i n d _ c e l l , ndim+2)−Ekin_help) . g t . T_max / T_help) then
667 uold (i n d _ c e l l , ndim+2)=Ekin_help+T_max / T_help
668 end i f
669 # end i f
670 # end i f
671 # i f d e f EKIN
672 # i f DEBUG==3
673 i f (uold (i n d _ c e l l , ndim+2) . l t . Ekin_help) then
674 p r i n t ∗ , "WARNING: negat ive pressure ! ! " , uold (i n d _ c e l l , ndim+2) ,

Ekin_help
675 c a l l p r i n t _ x y z (ind , i l e v e l , i g r i d , ngr id , dx , i)

259

676 end i f
677 # end i f
678 # end i f
679 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
680 end i f
681 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
682 end do
683 # i f DEBUG==2
684 d r i v e r T e s t = d r i v e r T e s t + sum(weight (1 : ng r id)) ∗de
685 # end i f
686 end do
687 end do
688 # i f DEBUG==2
689 i f (verbose_patches) w r i t e (∗ ,115) d r i ve rTes t , d e l t a t , d r i v e r T e s t / d e l t a t ∗ (0.083

e19_dp∗∗3) ∗1.e−17_dp
690 i f (verbose_patches) w r i t e (∗ ,116) sum(uold (: , ndim+2))
691 ! i f (debug) p r i n t ∗ , "sum of a l l weights = " , xx
692 ! i f (debug) p r i n t ∗ , " p i ∗ (r / dx) ∗4/3 = " , p i ∗ (r d r i v e r _ s c a l e d / dx) ∗∗3/0.75
693 ! i f (debug) p r i n t ∗ , " p i ∗ (r / dx) ∗∗2 = " , p i ∗ (r d r i v e r _ s c a l e d / dx) ∗∗2
694 ! i f (debug) p r i n t ∗ , r d r i ve r_sca led , dx , r d r i v e r _ s c a l e d / dx
695 # end i f
696 ! Update boundaries
697 do i v a r =1 , nvar
698 c a l l make_v i r tua l_ f ine_dp (uold (1 , i v a r) , i l e v e l)
699 end do
701
701 111 format (’ Enter ing wind_f ine f o r l e v e l ’ , I2)
702 112 format (’ Number o f c e l l s along d r i v e r rad ius : ’ , I2)
703 113 format (’ New26Al : ’ , G14.5E4)
704 114 format (’ dE : ’ , G14.5E4)
705 115 format (’ Ed r i ve r : ’ , G14.5E4 , " d t " , G14.5E4 , "dE / d t [erg / s] " , G14.5E4)
706 116 format (’ sum E: ’ , G14.5E4)
707 117 format (’ d r i v e r volume [1 e57 cm3] : ’ , G14.5E4)
708 end subrou t ine wind_f ine

Listing C.8: De-allocation of feedback arrays: update_time.f90
180 subrou t ine clean_stop
181 use amr_parameters , on ly : n_stars
182 use amr_commons
183 use d r i v e r
184 i m p l i c i t none
185 # i f n d e f WITHOUTMPI
186 i nc lude ’ mpi f . h ’
187 # end i f
188 i n t e g e r : : i n f o
189 # i f n d e f WITHOUTMPI
190 c a l l MPI_FINALIZE (i n f o)
191 # end i f
192 i f (n_stars . g t . 0 . 0) then
193 i f (.NOT. i fgeneva) then
194 c a l l remove_dr iver
195 c a l l remove_sn
196 end i f
197 c a l l dea l locate_dr iver_mask
198 end i f

260 C. Ramses source code listings

199 stop
200 end subrou t ine clean_stop

Listing C.9: Control refinement in the feedback region: flag_utils.f90
416 # i f d e f MAXDRIVERGRID
417 c a l l geometry_ref ine (xx , i n d _ c e l l , ok , ngr id , i l e v e l , dx_loc)
418 #else
419 c a l l geometry_ref ine (xx , i n d _ c e l l , ok , ngr id , i l e v e l)
420 # end i f
515 # i f def ined POISSON && (POISSON > 0)
516 end i f
517 # end i f
518 end subrou t ine po isson_re f ine
519 ! ###
520 ! ###
521 ! ###
522 ! ###
523 # i f d e f MAXDRIVERGRID
524 subrou t ine geometry_ref ine (xx , i n d _ c e l l , ok , nce l l , i l e v e l , dx loc)
525 use amr_parameters , on ly : r _ d r i v e r , max_dr iver_gr id
526 #else
527 subrou t ine geometry_ref ine (xx , i n d _ c e l l , ok , nce l l , i l e v e l)
528 # end i f
537 # i f d e f MAXDRIVERGRID
538 r e a l (dp) : : dx loc
539 # end i f
568 i f (er <10) then
569 r =(xn∗∗er+yn∗∗er+zn∗∗er) ∗∗ (1 . 0 / er)
570 else
571 # i f d e f IGNOREX
572 ! ignore xn to r e f i n e only c lose to x ax is
573 r =max(yn , zn) ! don ’ t r e f i n e outs ide t h i s reg ion
574 #else
575 r =max(xn , yn , zn)
576 # end i f
577 end i f
578 # i f d e f MAXDRIVERGRID
579 ! ! r e f i n e a t the cloud sur face to h ighes t l e v e l
580 ! ok (i) =ok (i) . or . ((r < 1.0 + dxloc / r r) . and . (r > 1.0 − dxloc / r r)) ! c loud

sur face
581 ! d r i v e r sur face
582 i f (i l e v e l . l e . max_dr iver_gr id) then
583 ok (i) =ok (i) . or . (r < (r _ d r i v e r + dx loc) / r r)
584 ! e lse
585 ! ! don ’ t r e f i n e d r i v e r reg ion beyond max_driver g r i d
586 ! i f (r < (r _ d r i v e r + dx loc) / r r) ok (i) = . f a l s e .
587 end i f
588 # end i f
589 ok (i) =ok (i) . and . (r < 1 .0) ! Don ’ t r e f i n e outs ide the reg ion . Only r e f i n e

i n s i d e i f a lso another re f inement c r i t e r i u m i s met .

Listing C.10: Control the refinement in the feedback region: hydro_flag.f90
140 # i f d e f MAXDRIVERGRID
141 c a l l geometry_ref ine (xx , i n d _ c e l l , ok , ngr id , i l e v e l , dx_loc)

261

142 #else
143 c a l l geometry_ref ine (xx , i n d _ c e l l , ok , ngr id , i l e v e l)
144 # end i f

Listing C.11: Passive scalars and initial conditions for 26Al and 60Fe: hydro_parameters.f90
10 # i f n d e f NVAR
11 i n teger , parameter : : nvar=ndim+2+nener+2 ! add two passive sca la rs f o r 26Al and 60

Fe
12 #else
13 i n teger , parameter : : nvar=NVAR+2 ! add two passive sca la rs f o r 26Al and 60Fe
14 # end i f
58 r e a l (dp) , dimension (1 :MAXREGION) : : a l_ reg ion =0.
74 r e a l (dp) : : l a r g e t =0.1_dp ! l a r g e s t t ime step i n coarsest g r i d . . i n each smal le r

g r i d f a c t o r 0.5 smal le r
87 i n t e g e r : : i 2 6 a l =ndim+3
88 i n t e g e r : : i 60 fe =ndim+4
89 i n t e g e r : : i l o s s =ndim+5

Listing C.12: Initial conditions: SPH data, 26Al data, triangles: init_flow_fine.f90
43 # i f d e f SPH
44 use sph , ONLY: read_sph , erase_sph
45 # end i f
52
52 # i f d e f SPH
53 i n t e g e r : : k
54 # end i f
55 i n t e g e r : : i , i c e l l , i g r i d , ncache , i s k i p , ngr id , i l u n
79 # i f d e f SPH
80 l o g i c a l : : i f s p h =. f a l s e .
81 # end i f

429 # i f d e f SPH
430 do k=1 , nregion
431 i f (reg ion_type (k) . eq . ’ sph ’) then
432 i f s p h =. t r ue .
433 c a l l read_sph (length_x (k) , x_center (k) , u_region (k) &
434 # i f NDIM>1
435 & , length_y (k) , y_center (k) , v_region (k) &
436 # end i f
437 # i f NDIM>2
438 & , length_z (k) , z_center (k) , w_region (k) &
439 # end i f
440 &)
441 end i f
442 end do
443 # end i f
482 # i f d e f SPH
483 c a l l erase_sph
484 # end i f
493 ! ##
494 subrou t ine reg ion_cond in i t (x , q , dx , nn)
495 use amr_parameters
496 use hydro_parameters
497 # i f d e f SPH
498 use sph , ONLY: i n te rpo la te_sph

262 C. Ramses source code listings

499 # end i f
500 use random
501 i m p l i c i t none
502 i n t e g e r : : nn
503 r e a l (dp) : : dx
504 r e a l (dp) , dimension (1 : nvector , 1 : nvar) : : q
505 r e a l (dp) , dimension (1 : nvector , 1 : ndim) : : x
507
507 i n t e g e r : : i , i x , i va r , k , n_weight
508 r e a l (dp) : : vol , r , xn , yn , zn , en
509 r e a l (dp) : : ro , xno , yno , zno , weight , sca le
510 r e a l (k ind =8) : : help_k8
511 r e a l (dp) : : help1 , help2 , help3 ! < random coord ina tes [0 : 1]
512 r e a l (dp) : : help4 , help5
513 r e a l (dp) : : scale_nH , scale_T2 , sca le_ l , scale_d , sca le_t , scale_v
514 r e a l (dp) , parameter : : T_minimum=10._dp
516
516 i n teger , dimension (IRandNumSize) : : &
517 & loca lseed = (/ 3281 , 4041 , 595 , 2376 /)
518 i n t e g e r : : r andg r i ds i ze = 10000 ! < number o f po in t s i n random subgr id
519 ! reg ions are o v e r w r i t t e n by reg ions wi th h igher " reg ion index "
520 ! on ly " po i n t " reg ions are an over lay
521 ! and (now) edges of " square " reg ions apply weights i f the
522 ! c e l l s are p a r t l y i n s i d e (parameters o f reg ions wi th
523 ! lower " reg ion index " are used)
524 ! Set some (t i n y) d e f a u l t values i n case n_region=0
525 q (1 : nn , 1) = sma l l r
526 q (1 : nn , 2) =0.0d0
527 # i f NDIM>1
528 q (1 : nn , 3) =0.0d0
529 # end i f
530 # i f NDIM>2
531 q (1 : nn , 4) =0.0d0
532 # end i f
533 q (1 : nn , ndim+2)= sma l l r ∗smal lc ∗∗2/gamma
534 # i f NVAR > NDIM + 2
535 do i v a r =ndim+3 , nvar
536 q (1 : nn , i v a r) =0.0d0
537 end do
538 # end i f
540
540 ! Loop over i n i t i a l cond i t i ons reg ions
541 do k=1 , nregion
542 ! For " a lu " reg ions only :
543 i f (reg ion_type (k) . eq . ’ a lu ’) then ! reg ion square , en=10
544 p r i n t ∗ , " reading alu , reg ion=" , k
545 reg ion_type (k) = " square "
546 exp_region (k) = 10
547 u_region (k) =0.0_dp
548 # i f NDIM>1
549 v_region (k) =0.0_dp
550 # end i f
551 # i f NDIM>2
552 w_region (k) =0.0_dp
553 # end i f

263

554 var_reg ion (k , i26a l−ndim−2) = a l_ reg ion (k)
555 end i f
556 ! For " d r i v e r " reg ions only :
557 i f (reg ion_type (k) . eq . ’ d r i v e r ’) then ! reg ion square , en=10
558 p r i n t ∗ , " reading alu , reg ion=" , k
559 reg ion_type (k) = " square "
560 exp_region (k) = 2
561 u_region (k) =0.0_dp
562 # i f NDIM>1
563 v_region (k) =0.0_dp
564 # end i f
565 # i f NDIM>2
566 w_region (k) =0.0_dp
567 # end i f
568 var_reg ion (k , i26a l−ndim−2) = a l_ reg ion (k)
569 end i f
570 ! For " square " reg ions only :
571 i f (reg ion_type (k) . eq . ’ square ’) then
572 ! Overlap o f reg ions i s not checked .
573 ! the second reg ion i n the i n p u t f i l e
574 ! w i l l ove rwr i t e the f i r s t e tc . . .
575 ! Exponent o f choosen norm
576 en=exp_region (k)
577 i f (en<10) then
578 ! Conversion f a c t o r from user u n i t s to cgs u n i t s
579 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
580 end i f
581 do i =1 ,nn
582 ! Compute p o s i t i o n i n normal ized coord ina tes
583 xn=0.0d0 ; yn=0.0d0 ; zn=0.0d0
584 ! new :
585 ! ro . . . d is tance between the center o f the reg ion and the innermost
586 ! corner o f the c e l l i f the ro computed t h i s way i s smal le r than 1 ,
587 ! but r i s l a r g e r than 1 , the c e l l l i e s p a r t l y i n s i d e the reg ion
588 ! f o r c e l l s p a r t l y i n s i d e the reg ion weights are computed
589 ! r . . . d is tance between the center o f the reg ion and the outermost
590 ! corner i f the r computed t h i s way i s l a r g e r than 1 ,
591 ! the c e l l l i e s f u l l y ou ts ide the reg ion
592 !
593 ! o ld :
594 ! r . . . d is tance between the center o f the reg ion and the center o f
595 ! the c e l l . c e l l s are considdered as e i t h e r complete ly
596 ! i n s i d e or complete ly ou ts ide the reg ion
597 !
598 ! weights f o r c e l l s p a r t l y i n s i d e c i r c u l a r reg ion
599 ! normal ize to r =1 using a f a c t o r 2
600 ! because length_ [xyz] read i n i s the diameter , not the rad ius
601 ! => xno = (d is tance to reg ion center + dx /2) / reg ion rad ius
602 scale =2.0d0∗dx / length_x (k)
603 xno =(2.0 d0∗abs (x (i , 1)−x_center (k)) +dx) / length_x (k)
604 ! xn =(2.0 d0∗abs (x (i , 1)−x_center (k))−dx) / length_x (k)
605 xn=xno−scale
606 i f (xn <0.d0 . and . xno <0.d0) then
607 help1=abs (xn)
608 xn=abs (xno)

264 C. Ramses source code listings

609 xno=help1
610 end i f
611 # i f NDIM>1
612 yno =(2.0 d0∗abs (x (i , 2)−y_center (k)) +dx) / length_y (k)
613 ! yn =(2.0 d0∗abs (x (i , 2)−y_center (k))−dx) / length_y (k)
614 yn=yno−2.0d0∗dx / length_y (k)
615 i f (yn <0.d0 . and . yno <0.d0) then
616 help1=abs (yn)
617 yn=abs (yno)
618 yno=help1
619 end i f
620 # end i f
621 # i f NDIM>2
622 zno =(2.0 d0∗abs (x (i , 3)−z_center (k)) +dx) / length_z (k)
623 ! zn =(2.0 d0∗abs (x (i , 3)−z_center (k))−dx) / length_z (k)
624 zn=zno−2.0d0∗dx / length_z (k)
625 i f (zn <0.d0 . and . zno <0.d0) then
626 help1=abs (zn)
627 zn=abs (zno)
628 zno=help1
629 end i f
630 # end i f
631 ! Compute c e l l " rad ius " r e l a t i v e to reg ion center
632 i f (en<10) then
633 ! new :
634 ! ro . . . d is tance between the center o f the reg ion
635 ! and the innermost corner o f the c e l l
636 ! f o r c e l l s p a r t l y i n s i d e the regiong weights are computed
637 ! r . . . d is tance between the center o f the reg ion
638 ! and the outermost corner
639 !
640 ! o ld :
641 ! r . . . d is tance between the center o f the reg ion
642 ! and the center o f the c e l l
643 ! c e l l s are considdered as e i t h e r complete ly
644 ! i n s i d e or complete ly ou ts ide the reg ion
645 ro =(xn∗∗en+yn∗∗en+zn∗∗en) ∗∗ (1 . 0 / en)
646 r =(xno∗∗en+yno∗∗en+zno∗∗en) ∗∗ (1 . 0 / en)
647 else
648 r =max(xn , yn , zn)
649 ro =1.1d0
650 end i f
651 ! I f c e l l l i e s w i t h i n region ,
652 ! REPLACE p r i m i t i v e v a r i a b l e s by reg ion values
653 # i f d e f RANDZELLEN
654 i f (r . l t . 1 . 0) then
655 #else
656 ! i f (ro . l e . 1 . 0) then
657 i f (((en<10) . and . (ro . l e . 1 . 0)) . or . &
658 & ((en . ge .10) . and . (r . l e . 1 . 0))) then
659 # end i f
660 i f (en<10) then
661 ! r >ro ; 1 / r ^2 undef ined @ r =0
662 q (i , 1) =d_region (k)
663 ! p / rho = T / scale_T2

265

664 i f (p_region (k) . l t . q (i , 1) ∗T_minimum / scale_T2) then
665 p r i n t ∗ , " i n i t f l ow f i n e : " ,T_minimum
666 p r i n t ∗ , " i n i t f l ow f i n e : " , p_region (k) , &
667 & q (i , 1) ∗T_minimum / scale_T2
668 end i f
669 q (i , ndim+2)=max(p_region (k) ,q (i , 1) ∗T_minimum / scale_T2)
670 else
671 q (i , 1) =d_region (k)
672 q (i , ndim+2)=p_region (k)
673 end i f
674 q (i , 2) =u_region (k)
675 # i f NDIM>1
676 q (i , 3) =v_region (k)
677 # end i f
678 # i f NDIM>2
679 q (i , 4) =w_region (k)
680 # end i f
681 # i f NENER>0
682 do i v a r =1 , nener
683 q (i , ndim+2+ i v a r) =prad_region (k , i v a r)
684 enddo
685 # end i f
686 # i f NVAR>NDIM+2+NENER
687 ! q (i , i 2 6 a l) =a l_ reg ion (k)
688 do i v a r =ndim+3+nener , nvar
689 q (i , i v a r) =var_reg ion (k , i va r−ndim−2−nener)
690 end do
691 # end i f
692 # i f d e f RANDZELLEN
693 else i f ((ro . l e . 1 . 0) . and . (r . g t . 1 . 0)) then
694 ! weights f o r c e l l s p a r t l y i n s i d e c i r c u l a r reg ion)
695 n_weight=0
696 help1 =0._dp
697 help2 =0._dp
698 help3 =0._dp
699 do i x =1 , randg r i ds i ze
700 c a l l r an f (localseed , help_k8)
701 ! => xno = (d is tance to reg ion center + dx /2) / reg ion rad ius
702 ! rad ius_x = length_x (k) / 2 . _dp
703 help1=xn+dble (help_k8) ∗2. _dp∗dx / length_x (k)
704 # i f NDIM>1
705 c a l l r an f (localseed , help_k8)
706 help2=yn+dble (help_k8) ∗∗2._dp∗dx / length_y (k)
707 # end i f
708 # i f NDIM>2
709 c a l l r an f (localseed , help_k8)
710 help3=zn+dble (help_k8) ∗2. _dp∗dx / length_z (k)
711 # end i f
712 i f ((help1∗∗2+help2∗∗2+help3 ∗∗2) . l t . 1 . 0) then
713 n_weight=n_weight+1
714 end i f
715 end do
716 weight = dble (n_weight) / dble (randg r i ds i ze)
717 # i f DEBUG==2
718 ! p r i n t ∗ , " weight " , weight

266 C. Ramses source code listings

719 ! i f (en<10) then
720 i f (weight . g t . 1 . 0) then
721 i f (verbose_patches) p r i n t ∗ , " weight= " , weight
722 weight =1.0_dp
723 end i f
724 i f (weight . l e . 0 . 0) then
725 i f (verbose_patches) p r i n t ∗ , " weight= " , weight
726 weight =0.0_dp
727 end i f
728 # end i f
729 q (i , 1) =q (i , 1) ∗ (1 . d0−weight) +weight∗d_region (k)
730 i f (p_region (k) . l t . q (i , 1) ∗T_minimum / scale_T2) then
731 p r i n t ∗ , " i n i t f l ow f i n e : " ,T_minimum
732 p r i n t ∗ , " i n i t f l ow f i n e : " , p_region (k) , &
733 & q (i , 1) ∗T_minimum / scale_T2
734 end i f
735 q (i , ndim+2)=q (i , ndim+2) ∗ (1 . d0−weight) +weight∗ &
736 & max(p_region (k) ,q (i , 1) ∗T_minimum / scale_T2 / (gamma−1.0))
737 ! e lse cannot en ter t h i s pa r t o f the loop ro =1.1>1
738 ! q (i , 1) =q (i , 1) ∗ (1 . d0−weight) +weight∗d_region (k)
739 ! q (i , ndim+2)=q (i , ndim+2) ∗ (1 . d0−weight) +weight∗p_region (k)
740 ! end i f
741 q (i , 2) =q (i , 2) ∗ (1 . d0−weight) +weight∗u_region (k)
742 # i f NDIM>1
743 q (i , 3) =q (i , 3) ∗ (1 . d0−weight) +weight∗v_region (k)
744 # end i f
745 # i f NDIM>2
746 q (i , 4) =q (i , 4) ∗ (1 . d0−weight) +weight∗w_region (k)
747 # end i f
748 # end i f
749 # i f NENER>0
750 do i v a r =1 , nener
751 q (i , ndim+2+ i v a r) =q (i , ndim+2+ i v a r) ∗ (1 . d0−weight) &
752 & +weight∗prad_region (k , i v a r)
753 enddo
754 # end i f
755 # i f NVAR>NDIM+2+NENER
756 do i v a r =ndim+3+nener , nvar
757 q (i , i v a r) =q (i , i v a r) ∗ (1 . d0−weight) &
758 & +weight∗ var_reg ion (k , i va r−ndim−2−nener)
759 end do
760 # end i f
761 end i f
762 end do
763 end i f
764 ! For " po i n t " reg ions only :
765 i f (reg ion_type (k) . eq . ’ po i n t ’) then
766 ! Volume elements
767 vo l=dx∗∗ndim
768 ! Compute CIC weights r e l a t i v e to reg ion center
769 do i =1 ,nn
770 xn =1.0 ; yn =1 .0 ; zn=1.0
771 xn=max(1.0−abs (x (i , 1)−x_center (k)) / dx , 0 . 0 _dp)
772 # i f NDIM>1
773 yn=max(1.0−abs (x (i , 2)−y_center (k)) / dx , 0 . 0 _dp)

267

774 # end i f
775 # i f NDIM>2
776 zn=max(1.0−abs (x (i , 3)−z_center (k)) / dx , 0 . 0 _dp)
777 # end i f
778 r =xn∗yn∗zn
779 ! I f c e l l l i e s w i t h i n CIC cloud ,
780 ! ADD to p r i m i t i v e v a r i a b l e s the reg ion values
781 q (i , 1) =q (i , 1) +d_region (k) ∗ r / vo l
782 q (i , 2) =q (i , 2) +u_region (k) ∗ r
783 # i f NDIM>1
784 q (i , 3) =q (i , 3) +v_region (k) ∗ r
785 # end i f
786 # i f NDIM>2
787 q (i , 4) =q (i , 4) +w_region (k) ∗ r
788 # end i f
789 q (i , ndim+2)=q (i , ndim+2)+p_region (k) ∗ r / vo l
790 # i f NENER>0
791 do i v a r =1 , nener
792 q (i , ndim+2+ i v a r) =q (i , ndim+2+ i v a r) +prad_region (k , i v a r) ∗ r / vo l
793 enddo
794 # end i f
795 # i f NVAR>NDIM+2+NENER
796 do i v a r =ndim+3+nener , nvar
797 q (i , i v a r) =var_reg ion (k , i va r−ndim−2−nener)
798 end do
799 # end i f
800 end do
801 end i f
802 # i f d e f SPH
803 ! For " sph " reg ions only :
804 i f (reg ion_type (k) . eq . ’ sph ’) then
805 c a l l i n t e rpo la te_sph (x , q , dx , nn , d_region (k) , p_region (k))
806 end i f
807 # end i f
808 ! For " t r i a n g l e " reg ions only :
809 i f (reg ion_type (k) . eq . ’ t r i a n g l e ’) then
810 do i =1 ,nn
811 xn=0.0d0 ; yn=0.0d0 ; zn=0.0d0
812 xno =(2.0 d0∗abs (x (i , 1)−x_center (k)) +dx) / length_x (k)
813 xn=xno−2.0d0∗dx / length_x (k)
814 # i f NDIM>1
815 yno =(2.0 d0∗abs (x (i , 2)−y_center (k)) +dx) / length_y (k)
816 yn=yno−2.0d0∗dx / length_y (k)
817 # end i f
818 # i f NDIM>2
819 zno =(2.0 d0∗abs (x (i , 3)−z_center (k)) +dx) / length_z (k)
820 zn=zno−2.0d0∗dx / length_z (k)
821 # end i f
822 # i f NDIM==1
823 i f (xn . l e . 0 . 0 d0) then
824 # end i f
825 # i f NDIM==2
826 i f (yn . l e . xn) then
827 # end i f
828 # i f NDIM==3

268 C. Ramses source code listings

829 i f (2 .0 d0∗zn . l e . xn+yn) then
830 # end i f
831 q (i , 1) =d_region (k)
832 q (i , 2) =u_region (k)
833 # i f NDIM>1
834 q (i , 3) =v_region (k)
835 # end i f
836 # i f NDIM>2
837 q (i , 4) =w_region (k)
838 # end i f
839 q (i , ndim+2)=p_region (k)
840 # i f NENER>0
841 do i v a r =1 , nener
842 q (i , ndim+2+ i v a r) =prad_region (k , i v a r)
843 enddo
844 # end i f
845 q (i , i 2 6 a l) =a l_ reg ion (k)
846 ! # i f NVAR>NDIM+2+NENER
847 ! do i v a r =ndim+3+nener , nvar
848 ! q (i , i v a r) =var_reg ion (k , i va r−ndim−2−nener)
849 ! end do
850 ! # end i f
851 end i f
852 end do
853 end i f
854 end do
855 r e t u r n
856 end subrou t ine reg ion_cond in i t

Listing C.13: New module to read-in SPH data: sph.f90
1 #undef CLARE
2 # def ine JIM 1
3 ! > \ sho r t read + i n t e r p o l a t e sph i n i t i a l cond i t i ons
4 !−−−
5 # i f d e f JIM
6 ! > \ vers ion 1.2 Jim ’ s i n i t i a l cond i t i ons
7 #else
8 ! > \ vers ion 1.2 Clare ’ s i n i t i a l cond i t i ons
9 # end i f

10 ! > \ author Kathar ina M. F i e r l i n g e r
11 ! > \ date l a s t m o d i f i c a t i o n 26.03.2011
12 !−−−
13 ! > \ d e t a i l s PURPOSE:
14 ! > \ n f i l e _ s p h . . . name of sph i n i t i a l cond i t i ons f i l e
15 ! > \ n read the sph i n i t i a l cond i t i ons from a f i l e c a l l e d " f i l e _ s p h " i n the l o c a l

d i r
16 !−−−
17 ! > \ n sph f i l e contents :
18 # i f d e f JIM
19 ! > \ n column 1: x (0 .1 pc)
20 ! > \ n column 2: y (0 .1 pc)
21 ! > \ n column 3: z (0 .1 pc)
22 ! > \ n column 4: vx (2.0748E+04 cm/ s)
23 ! > \ n column 5: vy (2.0748E+04 cm/ s)
24 ! > \ n column 6: vz (2.0748E+04 cm/ s)

269

25 ! > \ n column 7: dens i t y (6.7746E−20 g /cm^3)
26 ! > \ n column 8: temperature (K)
27 ! > \ n column 9: smoothing leng th (0 .1 pc)
28 #else
29 ! > \ n column 1: x (kpc)
30 ! > \ n column 2: y (kpc)
31 ! > \ n column 3: z (kpc)
32 ! > \ n column 4: vx (km/ s)
33 ! > \ n column 5: vy (km/ s)
34 ! > \ n column 6: vz (km/ s)
35 ! > \ n column 7: dens i t y (10^−24 cm−3)
36 ! > \ n column 8: temperature (K)
37 ! > \ n column 9: smoothing leng th (kpc)
38 # end i f
39 !−−−
40 module sph
41 use amr_parameters , on ly : dp , f i l e _ s p h
42 i m p l i c i t none
43 save ! r e t a i n the value o f the v a r i a b l e s from one c a l l to the next
44 i n teger , parameter : : i 9 = se lec ted_ in t_k i nd (r =9) ! < i n t e g e r type d e f i n i t i o n
45 i n t e g e r (i 9) : : nsph = 0_i9 ! < number o f sph p a r t i c l e s where pa r t o f the

smoothing leng th i s i n s i d e the box
46 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : x_sph ! < ar ray

con ta in ing sph x coord ina te [code u n i t s]
47 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : vx_sph ! < ar ray

con ta in ing sph x v e l o c i t y [code u n i t s]
48 # i f NDIM>1
49 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : y_sph ! < ar ray

con ta in ing sph y coord ina te [code u n i t s]
50 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : vy_sph ! < ar ray

con ta in ing sph y v e l o c i t y [code u n i t s]
51 # end i f
52 # i f NDIM>2
53 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : z_sph ! < ar ray

con ta in ing sph z coord ina te [code u n i t s]
54 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : vz_sph ! < ar ray

con ta in ing sph z v e l o c i t y [code u n i t s]
55 # end i f
56 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : T_sph ! < ar ray

con ta in ing sph temperature [code u n i t s]
57 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : rho_sph ! < ar ray

con ta in ing sph dens i t y [code u n i t s]
58 r e a l (dp) , dimension (:) , a l l o c a t a b l e , p r i v a t e : : smoothing_sph ! < ar ray

con ta in ing sph smoothing leng th [code u n i t s]
59 conta ins
60 ! subrou t ine read_sph
61 ! > \ sho r t read sph i n i t i a l cond i t i ons
62 !−−−
63 ! > \ vers ion 1.0
64 ! > \ author Kathar ina M. F i e r l i n g e r
65 ! > \ date l a s t m o d i f i c a t i o n 26.03.2011
66 !−−−
67 ! > \ d e t a i l s PURPOSE:
68 ! > \ n f i l e _ s p h . . . name of sph i n i t i a l cond i t i ons f i l e
69 ! > \ n read the sph i n i t i a l cond i t i ons from a f i l e c a l l e d " f i l e _ s p h " i n the l o c a l

270 C. Ramses source code listings

d i r
70 !−−−
71 ! > \ n sph f i l e contents :
72 # i f d e f JIM
73 ! > \ n column 1: x (0 .1 pc)
74 ! > \ n column 2: y (0 .1 pc)
75 ! > \ n column 3: z (0 .1 pc)
76 ! > \ n column 4: vx (2.0748E+04 cm/ s)
77 ! > \ n column 5: vy (2.0748E+04 cm/ s)
78 ! > \ n column 6: vz (2.0748E+04 cm/ s)
79 ! > \ n column 7: dens i t y (6.7746E−20 g /cm^3)
80 ! > \ n column 8: temperature (K)
81 ! > \ n column 9: smoothing leng th (0 .1 pc)
82 #else
83 ! > \ n column 1: x (kpc)
84 ! > \ n column 2: y (kpc)
85 ! > \ n column 3: z (kpc)
86 ! > \ n column 4: vx (km/ s)
87 ! > \ n column 5: vy (km/ s)
88 ! > \ n column 6: vz (km/ s)
89 ! > \ n column 7: dens i t y (10^−24 cm−3)
90 ! > \ n column 8: temperature (K)
91 ! > \ n column 9: smoothing leng th (kpc)
92 # end i f
93 !−−
94 ! subrou t ine read_sph_claresmooth (x_length , x_center , vx_center &
95 subrou t ine read_sph (x_length , x_center , vx_center &
96 # i f NDIM>1
97 & , y_length , y_center , vy_center &
98 # end i f
99 # i f NDIM>2

100 & , z_length , z_center , vz_center &
101 # end i f
102 &)
103 i m p l i c i t none
104 ! > reg ion size , l o c a t i o n and bulk v e l o c i t y
105 r e a l (dp) , i n t e n t (i n) : : x_ length ! < reg ion width
106 r e a l (dp) , i n t e n t (i n) : : x_center ! < reg ion center
107 r e a l (dp) , i n t e n t (i n) : : vx_center ! < bulk speed
108 # i f NDIM>1
109 r e a l (dp) , i n t e n t (i n) : : y_ length ! < reg ion width
110 r e a l (dp) , i n t e n t (i n) : : y_center ! < reg ion center
111 r e a l (dp) , i n t e n t (i n) : : vy_center ! < bulk speed
112 # end i f
113 # i f NDIM>2
114 r e a l (dp) , i n t e n t (i n) : : z_ length ! < reg ion width
115 r e a l (dp) , i n t e n t (i n) : : z_center ! < reg ion center
116 r e a l (dp) , i n t e n t (i n) : : vz_center ! < bulk speed
117 # end i f
118 ! > counters + e r r o r handl ing
119 i n t e g e r (i 9) : : n l i n e s = 0_i9 ! < number o f l i n e s read from d r i v e r f i l e
120 i n t e g e r (i 9) : : i i = 1_ i9 ! < f o r do loop
121 i n t e g e r (i 9) : : ifEOF = 0_i9 ! < checks when the end of the f i l e i s reached
122 ! > u n i t s + convers ion f a c t o r s
123 r e a l (dp) : : sca le_d is t , scale_dens , sca le_ve l

271

124 r e a l (dp) : : sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2 ! < convers ion
f a c t o r s between cgs and user u n i t s (subrou t ine u n i t s i n u n i t s . f90)

125 r e a l (dp) : : col1 , col2 , col3 , col4 , col5 , col6 , col7 , col8 , co l9 ! < reads data from
the 9 columns i n the i npu t f i l e

126 # i f d e f JIM
127 r e a l (dp) , parameter : : DeciPcToCm = 3.08568025e17_dp ! < conver t 0.1 pc to cm;

1 pc = 3.08568025e18 cm
128 r e a l (dp) , parameter : : Veloci tyToCgs = 2.0748e4_dp ! < conver t to cm/ s
129 r e a l (dp) , parameter : : DensToCgs = 6.7746e−20_dp ! < conver t to g / cm3
130 #else
131 r e a l (dp) , parameter : : KpcToCm = 3.08568025e21_dp ! < conver t kpc to cm; 1 kpc

= 3.08568025e21 cm
132 r e a l (dp) , parameter : : KmToCm = 1e5_dp ! < conver t km to cm
133 r e a l (dp) , parameter : : DensToCgs = 1e−24_dp ! < conver t 10^−24 g / cm3 to g

/ cm3
134 # end i f
135 ! > l o c a l v a r i ab l e s : t e s t i f sph p a r t i c l e i s c lose enough to the reg ion to be

re l evan t
136 r e a l (dp) : : x_help , x_max , smoothing_length
137 # i f NDIM>1
138 r e a l (dp) : : y_help , y_max
139 # end i f
140 # i f NDIM>2
141 r e a l (dp) : : z_help , z_max
142 # end i f
144
144 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
145 # i f d e f JIM
146 s c a l e _ d i s t =DeciPcToCm / sca le_ l
147 sca le_ve l=Veloci tyToCgs / scale_v
148 #else
149 s c a l e _ d i s t =KpcToCm/ sca le_ l
150 sca le_ve l=KmToCm/ scale_v
151 # end i f
152 scale_dens=DensToCgs / scale_d
153 open (1 , f i l e =TRIM(f i l e _ s p h) , form= ’ fo rmat ted ’)
154 p r i n t ∗ , " Reading sph data from >>" , TRIM(f i l e _ s p h) , "<< . "
155 nsph = 0_i9
156 n l i n e s = 0_ i9
157 ifEOF = 0_i9
158 x_max = 0.5_dp∗ x_ length
159 # i f NDIM>1
160 y_max = 0.5_dp∗ y_ length
161 # end i f
162 # i f NDIM>2
163 z_max = 0.5_dp∗ z_ length
164 # end i f
165 do
166 read (1 ,∗ , IOSTAT=ifEOF) col1 , col2 , col3 , col4 , col5 , col6 , col7 , col8 , co l9
167 smoothing_length=col9∗ s c a l e _ d i s t
168 x_help=abs (co l1∗ s c a l e _ d i s t +x_center−x_max)−smoothing_length
169 # i f NDIM>1
170 y_help=abs (co l2∗ s c a l e _ d i s t +y_center−y_max)−smoothing_length
171 # end i f
172 # i f NDIM>2

272 C. Ramses source code listings

173 z_help=abs (co l3∗ s c a l e _ d i s t +z_center−z_max)−smoothing_length
174 # end i f
175 ! help . . . box conta ins values i n [−xyz_max : xyz_max]
176 i f (ifEOF . l t .0 _ i9) then
177 e x i t ! eof i s reached , jump out o f the do−loop
178 end i f
179 n l i n e s = n l i n e s +1
180 i f (x_help . l e . x_max) then
181 ! i f (abs (x_help) . l e . x_ length) then
182 # i f NDIM>1
183 i f (y_help . l e . y_max) then
184 ! i f (abs (y_help) . l e . y_ length) then
185 # end i f
186 # i f NDIM>2
187 i f (z_help . l e . z_max) then
188 ! i f (abs (z_help) . l e . z_ length) then
189 # end i f
190 nsph=nsph+1
191 # i f NDIM>2
192 ! e lse
193 ! p r i n t ∗ , z_help , z_ length
194 end i f
195 # end i f
196 # i f NDIM>1
197 ! e lse
198 ! p r i n t ∗ , y_help , y_ length
199 end i f
200 # end i f
201 ! e lse
202 ! p r i n t ∗ , x_help , x_ length
203 end i f
204 end do
205 p r i n t ∗ , " found " , n l ines , " l i n e s i n sph f i l e "
206 p r i n t ∗ , " se lec ted " , nsph , " p a r t i c l e s "
207 rewind (1)
208 c a l l a l loca te_sph
209 ifEOF = 0_i9
210 nsph = 0_i9
211 do i i =1 , n l i n e s
212 read (1 ,∗ , IOSTAT=ifEOF) col1 , col2 , col3 , col4 , col5 , col6 , col7 , col8 , co l9
213 smoothing_length=col9∗ s c a l e _ d i s t
214 x_help=abs (co l1∗ s c a l e _ d i s t +x_center−x_max)−smoothing_length
215 # i f NDIM>1
216 y_help=abs (co l2∗ s c a l e _ d i s t +y_center−y_max)−smoothing_length
217 # end i f
218 # i f NDIM>2
219 z_help=abs (co l3∗ s c a l e _ d i s t +z_center−z_max)−smoothing_length
220 # end i f
221 i f (ifEOF . l t .0 _ i9) then
222 e x i t ! eof i s reached , jump out o f the do−loop
223 end i f
224 n l i n e s = n l i n e s +1
225 i f (x_help . l e . x_max) then
226 ! i f (abs (x_help) . l e . x_ length) then
227 # i f NDIM>1

273

228 i f (y_help . l e . y_max) then
229 ! i f (abs (y_help) . l e . y_ length) then
230 # end i f
231 # i f NDIM>2
232 i f (z_help . l e . z_max) then
233 ! i f (abs (z_help) . l e . z_ length) then
234 # end i f
235 nsph=nsph+1
236 smoothing_sph (nsph) =co l9∗ s c a l e _ d i s t
237 x_sph (nsph) =co l1∗ s c a l e _ d i s t +x_center
238 vx_sph (nsph) =(col4−vx_center) ∗ sca le_ve l
239 T_sph (nsph) =co l8 / scale_T2
240 rho_sph (nsph) =co l7∗scale_dens
241 # i f NDIM>1
242 y_sph (nsph) =co l2∗ s c a l e _ d i s t +y_center
243 vy_sph (nsph) =(col5−vy_center) ∗ sca le_ve l
244 # end i f
245 # i f NDIM>2
246 z_sph (nsph) =co l3∗ s c a l e _ d i s t +z_center
247 vz_sph (nsph) =(col6−vz_center) ∗ sca le_ve l
248 # end i f
249 # i f NDIM>2
250 end i f
251 # end i f
252 # i f NDIM>1
253 end i f
254 # end i f
255 end i f
256 end do
257 c lose (1)
258 p r i n t ∗ , " se lec ted " , nsph , " p a r t i c l e s "
259 end subrou t ine read_sph
260 ! end subrou t ine read_sph_claresmooth
261 ! subrou t ine read_sph_anysmooth
262 ! > \ sho r t read sph i n i t i a l cond i t i ons ; user def ined smoothing leng th
263 !−−−
264 ! > \ vers ion 1.0
265 ! > \ author Kathar ina M. F i e r l i n g e r
266 ! > \ date l a s t m o d i f i c a t i o n 26.03.2011
267 !−−−
268 ! > \ d e t a i l s PURPOSE:
269 ! > \ n f i l e _ s p h . . . name of sph i n i t i a l cond i t i ons f i l e
270 ! > \ n read the sph i n i t i a l cond i t i ons from a f i l e c a l l e d " f i l e _ s p h " i n the l o c a l

d i r
271 !−−−
272 ! > \ n sph f i l e contents :
273 # i f d e f JIM
274 ! > \ n column 1: x (0 .1 pc)
275 ! > \ n column 2: y (0 .1 pc)
276 ! > \ n column 3: z (0 .1 pc)
277 ! > \ n column 4: vx (2.0748E+04 cm/ s)
278 ! > \ n column 5: vy (2.0748E+04 cm/ s)
279 ! > \ n column 6: vz (2.0748E+04 cm/ s)
280 ! > \ n column 7: dens i t y (6.7746E−20 g /cm^3)
281 ! > \ n column 8: temperature (K)

274 C. Ramses source code listings

282 ! > \ n column 9: smoothing leng th (0 .1 pc)
283 #else
284 ! > \ n column 1: x (kpc)
285 ! > \ n column 2: y (kpc)
286 ! > \ n column 3: z (kpc)
287 ! > \ n column 4: vx (km/ s)
288 ! > \ n column 5: vy (km/ s)
289 ! > \ n column 6: vz (km/ s)
290 ! > \ n column 7: dens i t y (10^−24 cm−3)
291 ! > \ n column 8: temperature (K)
292 ! > \ n column 9: smoothing leng th (kpc)
293 # end i f
294 !−−−
295 ! subrou t ine read_sph (x_length , x_center , vx_center &
296 subrou t ine read_sph_anysmooth (x_length , x_center , vx_center &
297 # i f NDIM>1
298 & , y_length , y_center , vy_center &
299 # end i f
300 # i f NDIM>2
301 & , z_length , z_center , vz_center &
302 # end i f
303 &)
304 i m p l i c i t none
305 ! > reg ion size , l o c a t i o n and bulk v e l o c i t y
306 r e a l (dp) , i n t e n t (i n) : : x_ length ! < reg ion width
307 r e a l (dp) , i n t e n t (i n) : : x_center ! < reg ion center
308 r e a l (dp) , i n t e n t (i n) : : vx_center ! < bulk speed
309 # i f NDIM>1
310 r e a l (dp) , i n t e n t (i n) : : y_ length ! < reg ion width
311 r e a l (dp) , i n t e n t (i n) : : y_center ! < reg ion center
312 r e a l (dp) , i n t e n t (i n) : : vy_center ! < bulk speed
313 # end i f
314 # i f NDIM>2
315 r e a l (dp) , i n t e n t (i n) : : z_ length ! < reg ion width
316 r e a l (dp) , i n t e n t (i n) : : z_center ! < reg ion center
317 r e a l (dp) , i n t e n t (i n) : : vz_center ! < bulk speed
318 # end i f
319 ! > counters + e r r o r handl ing
320 i n t e g e r (i 9) : : n l i n e s = 0_i9 ! < number o f l i n e s read from d r i v e r f i l e
321 i n t e g e r (i 9) : : i i = 1_ i9 ! < f o r do loop
322 i n t e g e r (i 9) : : ifEOF = 0_i9 ! < checks when the end of the f i l e i s reached
323 ! > u n i t s + convers ion f a c t o r s
324 r e a l (dp) : : sca le_d is t , scale_dens , sca le_ve l
325 r e a l (dp) : : sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2 ! < convers ion

f a c t o r s between cgs and user u n i t s (subrou t ine u n i t s i n u n i t s . f90)
326 r e a l (dp) : : col1 , col2 , col3 , col4 , col5 , col6 , col7 , col8 , co l9 ! < reads data from

the 8 columns i n the i npu t f i l e
327 # i f d e f JIM
328 r e a l (dp) , parameter : : DeciPcToCm = 3.08568025e17_dp ! < conver t 0.1 pc to cm;

1 pc = 3.08568025e18 cm
329 r e a l (dp) , parameter : : Veloci tyToCgs = 2.0748e4_dp ! < conver t to cm/ s
330 r e a l (dp) , parameter : : DensToCgs = 6.7746e−20_dp ! < conver t to g / cm3
331 #else
332 r e a l (dp) , parameter : : KpcToCm = 3.08568025e21_dp ! < conver t kpc to cm; 1 kpc

= 3.08568025e21 cm

275

333 r e a l (dp) , parameter : : KmToCm = 1e5_dp ! < conver t km to cm
334 r e a l (dp) , parameter : : DensToCgs = 1e−24_dp ! < conver t 10^−24 g / cm3 to g

/ cm3
335 # end i f
336 ! > l o c a l v a r i ab l e s : t e s t i f sph p a r t i c l e i s c lose enough to the reg ion to be

re l evan t
337 r e a l (dp) : : x_help , smoothing_length , x_max
338 # i f NDIM>1
339 r e a l (dp) : : y_help , y_max
340 # end i f
341 # i f NDIM>2
342 r e a l (dp) : : z_help , z_max
343 # end i f
345
345 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
346 # i f d e f JIM
347 s c a l e _ d i s t =DeciPcToCm / sca le_ l
348 sca le_ve l=Veloci tyToCgs / scale_v
349 #else
350 s c a l e _ d i s t =KpcToCm/ sca le_ l
351 sca le_ve l=KmToCm/ scale_v
352 # end i f
353 scale_dens=DensToCgs / scale_d
354 open (1 , f i l e =TRIM(f i l e _ s p h) , form= ’ fo rmat ted ’)
355 p r i n t ∗ , " Reading sph data from >>" , TRIM(f i l e _ s p h) , "<< . "
356 nsph = 0_i9
357 n l i n e s = 0_ i9
358 ifEOF = 0_i9
359 x_max = 0.5_dp∗ x_ length
360 # i f NDIM>1
361 y_max = 0.5_dp∗ y_ length
362 # end i f
363 # i f NDIM>2
364 z_max = 0.5_dp∗ z_ length
365 # end i f
366 do ! count number o f l i n e s i n s i d e the f i l e
367 read (1 ,∗ , IOSTAT=ifEOF) col1 , col2 , col3 , col4 , col5 , col6 , col7 , col8 , co l9
368 i f (ifEOF . l t .0 _ i9) then
369 e x i t ! eof i s reached , jump out o f the do−loop
370 end i f
371 n l i n e s = n l i n e s +1
372 end do
373 nsph= n l i n e s
374 p r i n t ∗ , " found " , n l ines , " l i n e s i n sph f i l e "
375 p r i n t ∗ , " se lec ted " , nsph , " p a r t i c l e s "
376 rewind (1)
377 c a l l a l loca te_sph
378 ifEOF = 0_i9
379 nsph = 0_i9
380 do i i =1 , n l i n e s
381 read (1 ,∗ , IOSTAT=ifEOF) col1 , col2 , col3 , col4 , col5 , col6 , col7 , col8 , co l9
382 smoothing_length=col9∗ s c a l e _ d i s t
383 x_help=abs (co l1∗ s c a l e _ d i s t +x_center−x_max)−smoothing_length
384 # i f NDIM>1
385 y_help=abs (co l2∗ s c a l e _ d i s t +y_center−y_max)−smoothing_length

276 C. Ramses source code listings

386 # end i f
387 # i f NDIM>2
388 z_help=abs (co l3∗ s c a l e _ d i s t +z_center−z_max)−smoothing_length
389 # end i f
390 i f (ifEOF . l t .0 _ i9) then
391 e x i t ! eof i s reached , jump out o f the do−loop
392 end i f
393 n l i n e s = n l i n e s +1
394 nsph=nsph+1
395 smoothing_sph (nsph) =co l9∗ s c a l e _ d i s t
396 x_sph (nsph) =co l1∗ s c a l e _ d i s t +x_center
397 vx_sph (nsph) =(col4−vx_center) ∗ sca le_ve l
398 T_sph (nsph) =co l8 / scale_T2
399 rho_sph (nsph) =co l7∗scale_dens
400 # i f NDIM>1
401 y_sph (nsph) =co l2∗ s c a l e _ d i s t +y_center
402 vy_sph (nsph) =(col5−vy_center) ∗ sca le_ve l
403 # end i f
404 # i f NDIM>2
405 z_sph (nsph) =co l3∗ s c a l e _ d i s t +z_center
406 vz_sph (nsph) =(col6−vz_center) ∗ sca le_ve l
407 # end i f
408 end do
409 c lose (1)
410 p r i n t ∗ , " se lec ted " , nsph , " p a r t i c l e s "
411 p r i n t ∗ , " c a l l i n g calc_smooth ing_length "
412 # i f NDIM==1
413 c a l l ca lc_smoothing_length (x_max , 0 . 5 _dp , 0 . 5 _dp)
414 # end i f
415 # i f NDIM==2
416 c a l l ca lc_smoothing_length (x_max , y_max , 0 . 5 _dp)
417 # end i f
418 # i f NDIM==3
419 c a l l ca lc_smoothing_length (x_max , y_max , z_max)
420 # end i f
421 ! end subrou t ine read_sph
422 end subrou t ine read_sph_anysmooth
423 ! subrou t ine a l loca te_sph
424 ! > \ sho r t a l l o c a t e s sph ar rays
425 !−−−
426 ! > \ vers ion 1.0
427 ! > \ author Kathar ina M. F i e r l i n g e r
428 ! > \ date l a s t m o d i f i c a t i o n 26.03.2011
429 !−−−
430 ! > \ d e t a i l s PURPOSE:
431 ! > \ n a l l o c a t e sph ar rays
432 !−−−
433 subrou t ine a l loca te_sph
434 i m p l i c i t none
435 ! > e r r o r handl ing
436 i n t e g e r (i 9) : : e r r o r _ a l l o c ! < checks i f memory a l l o c a t i o n works
437 a l l o c a t e (x_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
438 i f (e r r o r _ a l l o c /= 0) then
439 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r x_sph d id not work ’
440 end i f

277

441 a l l o c a t e (vx_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
442 i f (e r r o r _ a l l o c /= 0) then
443 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r vx_sph d id not work ’
444 end i f
445 # i f NDIM>1
446 a l l o c a t e (y_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
447 i f (e r r o r _ a l l o c /= 0) then
448 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r y_sph d id not work ’
449 end i f
450 a l l o c a t e (vy_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
451 i f (e r r o r _ a l l o c /= 0) then
452 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r vy_sph d id not work ’
453 end i f
454 # end i f
455 # i f NDIM>2
456 a l l o c a t e (z_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
457 i f (e r r o r _ a l l o c /= 0) then
458 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r z_sph d id not work ’
459 end i f
460 a l l o c a t e (vz_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
461 i f (e r r o r _ a l l o c /= 0) then
462 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r vz_sph d id not work ’
463 end i f
464 # end i f
465 a l l o c a t e (T_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
466 i f (e r r o r _ a l l o c /= 0) then
467 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r T_sph d id not work ’
468 end i f
469 a l l o c a t e (rho_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
470 i f (e r r o r _ a l l o c /= 0) then
471 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r rho_sph d id not work ’
472 end i f
473 a l l o c a t e (smoothing_sph (1 : nsph) , s t a t = e r r o r _ a l l o c) ! i n code−t ime−u n i t s
474 i f (e r r o r _ a l l o c /= 0) then
475 stop ’ e x i t i n g : a l l o c a t i o n o f memory f o r smoothing_sph d id not work ’
476 end i f
477 end subrou t ine a l loca te_sph
478 ! subrou t ine erase
479 ! > \ sho r t dea l loca tes sph ar rays
480 !−−−
481 ! > \ vers ion 1.0
482 ! > \ author Kathar ina M. F i e r l i n g e r
483 ! > \ date l a s t m o d i f i c a t i o n 26.03.2011
484 !−−−
485 ! > \ d e t a i l s PURPOSE:
486 ! > \ n dea l l oca te sph ar rays
487 !−−−
488 subrou t ine erase_sph
489 i m p l i c i t none
490 dea l l oca te (x_sph) ! < ar ray con ta in ing sph x coord ina te [code u n i t s]
491 dea l l oca te (vx_sph) ! < ar ray con ta in ing sph x v e l o c i t y [code u n i t s]
492 # i f NDIM>1
493 dea l l oca te (y_sph) ! < ar ray con ta in ing sph y coord ina te [code u n i t s]
494 dea l l oca te (vy_sph) ! < ar ray con ta in ing sph y v e l o c i t y [code u n i t s]
495 # end i f

278 C. Ramses source code listings

496 # i f NDIM>2
497 dea l l oca te (z_sph) ! < ar ray con ta in ing sph z coord ina te [code u n i t s]
498 dea l l oca te (vz_sph) ! < ar ray con ta in ing sph z v e l o c i t y [code u n i t s]
499 # end i f
500 dea l l oca te (T_sph) ! < ar ray con ta in ing sph temperature [code u n i t s]
501 dea l l oca te (rho_sph) ! < ar ray con ta in ing sph dens i t y [code u n i t s]
502 dea l l oca te (smoothing_sph) ! < ar ray con ta in ing sph smoothing leng th [code u n i t s

]
503 end subrou t ine erase_sph
505
505 ! subrou t ine in te rpo la te_sph
506 ! > \ sho r t i n t e r p o l a t e s sph i n i t i a l cond i t i ons onto g r i d
507 !−−−
508 ! > \ vers ion 1.0
509 ! > \ author Kathar ina M. F i e r l i n g e r
510 ! > \ date l a s t m o d i f i c a t i o n 26.03.2011
511 !−−−
512 ! > \ d e t a i l s PURPOSE:
513 ! > \ n i n t e r p o l a t e sph i n i t i a l cond i t i ons onto g r i d
514 ! > e . g . v e l o c i t i e s are i n t e r p o l a t e d l i k e
515 ! > \ f $ v _ j =\ sum_i v_ i \ f r a c { m_i w\ l e f t (\ l e f t | \ vec { r } _ { i }−\ vec { r } _ { j } \ r i g h t | , h_ i \

r i g h t) } { \ rho_ i } \ f$
516 ! > w i th
517 ! > \ f$h \ f$. . . smoothing leng th
518 ! > \ f$ \ vec { r } _ i , \ vec { r } _ j \ f$. . . l o c a t i o n o f SPH p a r t i c l e s
519 ! > \ f$m_i \ f$. . . mass of the SPH p a r t i c l e (here 2500 so la r masses)
520 ! > \ f$ \ rho_ i \ f$. . . dens i t y o f the SPH p a r t i c l e
521 ! > \ f$w \ l e f t (\ l e f t | \ vec { r _ i }−\ vec { r _ j } \ r i g h t | , h_ i \ r i g h t) \ f$. . . ke rne l f u n c t i o n
522 ! > \ f$w \ l e f t (\ l e f t | \ vec { r _ i }−\ vec { r _ j } \ r i g h t | , h_ i \ r i g h t) =\ l e f t \ { \ begin { ar ray } { c l }

\ f r a c {4 − 6 v^2 + 3 v ^3} {4 \ p i h_ i ^3 } , & \ mbox{ f o r } \ l e f t | \ vec { r _ i }−\ vec { r _ j } \
r i g h t | < h_ i \ \ \ f r a c { \ l e f t (2−v \ r i g h t) ^3 } {4 \ p i h_ i ^3 } , & \ mbox{ f o r } h_ i \ l e \
l e f t | \ vec { r _ i }−\ vec { r _ j } \ r i g h t | <2 h_ i \ \ 0 , & \ mbox{ e lse } \ end { ar ray } \ r i g h t . \
f$

523 !−−−
524 subrou t ine in te rpo la te_sph (x , q , dx , nn , d_region , p_region)
525 use poisson_parameters , on ly : ndim
526 use hydro_parameters , on ly : nvar , nvector
527 i m p l i c i t none
528 i n t e g e r , i n t e n t (i n) : : nn ! < s ize o f vec to r sweep
529 r e a l (dp) , i n t e n t (i n) : : dx ! < c e l l s i ze
530 r e a l (dp) , dimension (1 : nvector , 1 : nvar) , i n t e n t (i nou t) : : q ! < p r i m i t i v e v a r i a b l e s
531 r e a l (dp) , dimension (1 : nvector , 1 : ndim) , i n t e n t (i n) : : x ! < coord ina tes
532 r e a l (dp) , i n t e n t (i n) : : d_region ! < background dens i t y (hot medium)
533 r e a l (dp) , i n t e n t (i n) : : p_region ! < background pressure (hot medium)
534 i n t e g e r (i 9) : : i i = 1_ i9 ! < f o r do loop
535 i n t e g e r (i 9) : : j j = 1_ i9 ! < f o r do loop
536 r e a l (dp) : : vx_help , x_help , rho_help , p_help , T_help , r , ufac
537 r e a l (dp) : : r_smooth , kernel_weight , smoothing_length , smooth ing_length3pi
538 # i f NDIM>1
539 r e a l (dp) : : vy_help , y_help
540 # end i f
541 # i f NDIM>2
542 r e a l (dp) : : vz_help , z_help
543 # end i f
544 r e a l (dp) : : sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2 ! < convers ion

279

f a c t o r s between cgs and user u n i t s (subrou t ine u n i t s i n u n i t s . f90)
545 r e a l (dp) , parameter : : p i = DACOS(−1.D0)
546 # i f d e f JIM
547 r e a l (dp) , parameter : : m_part_g = 2e−3_dp∗1.98892e33_dp ! m_sph_part ic le i n g
548 #else
549 r e a l (dp) , parameter : : m_part_g = 2500._dp∗1.98892e33_dp ! m_sph_part ic le i n g
550 # end i f
551 r e a l (dp) : : m_part , rho_par t ! m_sph_part ic le i n g
553
553 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
554 m_part=m_part_g / scale_d / sca le_ l ∗∗3 ! m_sph_part ic le i n code u n i t s
555 rho_par t=m_part / dx∗∗3 ! dens i t y corresponding to a s i n g l e m_sph_part ic le a

c e l l i n code u n i t s
556 ! q (: , 1) =d_region
557 do i i =1 ,nsph
558 smooth ing_length3pi =1._dp / (smoothing_sph (i i) ∗∗3) / p i
559 i f (smoothing_sph (i i) . l t . 0 .5∗ dx) then
560 qloop : do j j =1 ,nn
561 i f (abs (x (j j , 1)−x_sph (i i)) . l t . 0 .5∗ dx) then
562 # i f NDIM>1
563 i f (abs (x (j j , 2)−y_sph (i i)) . l t . 0 .5∗ dx) then
564 # end i f
565 # i f NDIM>2
566 i f (abs (x (j j , 3)−z_sph (i i)) . l t . 0 .5∗ dx) then
567 # end i f
568 vx_help=vx_sph (i i)
569 # i f NDIM>1
570 vy_help=vy_sph (i i)
571 # end i f
572 # i f NDIM>2
573 vz_help=vz_sph (i i)
574 # end i f
575 ! > \ var scale_T2 . . . conver ts (P / rho) i n user u n i t i n t o (T /mu) i n

Ke lv in (mu: molar mass)
576 p_help=T_sph (i i) ∗ rho_par t
577 ! ADD to p r i m i t i v e v a r i a b l e s the reg ion values
578 ! mass weighted v e l o c i t y (momentum conservat ion)
579 q (j j , 2) =q (j j , 2) ∗q (j j , 1) +vx_help∗ rho_par t
580 # i f NDIM>1
581 q (j j , 3) =q (j j , 3) ∗q (j j , 1) +vy_help∗ rho_par t
582 # end i f
583 # i f NDIM>2
584 q (j j , 4) =q (j j , 4) ∗q (j j , 1) +vz_help∗ rho_par t
585 # end i f
586 ! pressure
587 i f ((q (j j , ndim+2) . l t . p_region ∗1.000001_dp) . and . (q (j j , 1) . l t . d_region

∗1.000001_dp)) then
588 q (j j , ndim+2)=max(p_help , p_region)
589 else
590 q (j j , ndim+2)=q (j j , ndim+2)+p_help
591 end i f
592 q (j j , 1) =q (j j , 1) + rho_par t
593 q (j j , 2) =q (j j , 2) / q (j j , 1)
594 # i f NDIM>1
595 q (j j , 3) =q (j j , 3) / q (j j , 1)

280 C. Ramses source code listings

596 # end i f
597 # i f NDIM>2
598 q (j j , 4) =q (j j , 4) / q (j j , 1)
599 # end i f
600 # i f DEBUG==2
601 p r i n t ∗ , " dens i ty , pressure " , rho_par t , p_help
602 p r i n t ∗ , " x , vx " , x_sph (i i) , vx_help
603 # i f NDIM>1
604 p r i n t ∗ , " y , vy " , y_sph (i i) , vy_help
605 # end i f
606 # i f NDIM>2
607 p r i n t ∗ , " z , vz " , z_sph (i i) , vz_help
608 # end i f
609 # end i f
610 e x i t qloop
611 # i f NDIM>1
612 end i f
613 # end i f
614 # i f NDIM>2
615 end i f
616 # end i f
617 end i f
618 end do qloop
619 else
620 do j j =1 ,nn
621 r =abs (x (j j , 1)−x_sph (i i))
622 # i f d e f JIM
623 i f (r . l t . 2 .0∗ smoothing_sph (i i)) then
624 #else
625 ! i f (r . l t . 2 .0∗ smoothing_sph (i i)) then
626 # end i f
627 # i f NDIM>1
628 r = r ∗ r + ((x (j j , 2)−y_sph (i i)) ∗∗2)
629 # end i f
630 # i f NDIM>2
631 r = r + ((x (j j , 3)−z_sph (i i)) ∗∗2)
632 # end i f
633 # i f NDIM>1
634 r = s q r t (r)
635 # end i f
636 r_smooth= r / smoothing_sph (i i)
637 ! i f ((r_smooth . g t . 2) . and . (r . l e .0 .5∗ dx)) p r i n t ∗ , r , smoothing_sph (i i) ,

r_smooth ,0 .5∗ dx
638 i f (r_smooth . l t . 2 . _dp) then
639 !SPH kerne l
640 i f (r_smooth . l t . 1 . _dp) then
641 kerne l_weight = (1 . _dp−1.5_dp∗ r_smooth∗ r_smooth+

&
642 & 0.75_dp∗ r_smooth∗ r_smooth∗ r_smooth) ∗

smooth ing_length3pi
643 else i f (r_smooth . l t . 2 . _dp) then
644 kerne l_weight =0.25_dp ∗ ((2 . _dp−r_smooth) ∗∗3)∗smooth ing_length3pi
645 end i f
646 rho_help=kerne l_weight∗m_part
647 ufac=rho_help / rho_sph (i i)

281

648 ! p r i n t ∗ , kernel_weight , ufac , rho_help , rho_sph (i i)
649 ! s top
650 vx_help=ufac∗vx_sph (i i)
651 # i f NDIM>1
652 vy_help=ufac∗vy_sph (i i)
653 # end i f
654 # i f NDIM>2
655 vz_help=ufac∗vz_sph (i i)
656 # end i f
657 ! > \ var scale_T2 . . . conver ts (P / rho) i n user u n i t i n t o (T /mu) i n

Ke lv in (mu: molar mass)
658 p_help=T_sph (i i) ∗ rho_help
659 ! ADD to p r i m i t i v e v a r i a b l e s the reg ion values
660 ! mass weighted v e l o c i t y (momentum conservat ion)
661 q (j j , 2) =q (j j , 2) ∗q (j j , 1) +vx_help∗ rho_help
662 # i f NDIM>1
663 q (j j , 3) =q (j j , 3) ∗q (j j , 1) +vy_help∗ rho_help
664 # end i f
665 # i f NDIM>2
666 q (j j , 4) =q (j j , 4) ∗q (j j , 1) +vz_help∗ rho_help
667 # end i f
668 ! pressure
669 i f ((q (j j , ndim+2) . l t . p_region ∗1.000001_dp) . and . (q (j j , 1) . l t . d_region

∗1.000001_dp)) then
670 q (j j , ndim+2)=max(p_help , p_region)
671 else
672 q (j j , ndim+2)=q (j j , ndim+2)+p_help
673 end i f
674 q (j j , 1) =q (j j , 1) +rho_help
675 q (j j , 2) =q (j j , 2) / q (j j , 1)
676 # i f NDIM>1
677 q (j j , 3) =q (j j , 3) / q (j j , 1)
678 # end i f
679 # i f NDIM>2
680 q (j j , 4) =q (j j , 4) / q (j j , 1)
681 # end i f
682 # i f DEBUG==2
683 p r i n t ∗ , " dens i ty , pressure " , rho_help , p_help
684 p r i n t ∗ , " x , vx " , x_sph (i i) , vx_help
685 # i f NDIM>1
686 p r i n t ∗ , " y , vy " , y_sph (i i) , vy_help
687 # end i f
688 # i f NDIM>2
689 p r i n t ∗ , " z , vz " , z_sph (i i) , vz_help
690 # end i f
691 # end i f
692 # i f d e f JIM
693 end i f
694 #else
695 ! end i f
696 # end i f
697 end i f
698 end do
699 end i f
700 end do

282 C. Ramses source code listings

701 end subrou t ine in te rpo la te_sph
703
703 ! subrou t ine sum_sph
704 ! > \ sho r t sums sph p a r t i c l e s per g r i d c e l l . no smoothing .
705 !−−−
706 ! > \ vers ion 1.0
707 ! > \ author Kathar ina M. F i e r l i n g e r
708 ! > \ date l a s t m o d i f i c a t i o n 26.03.2011
709 !−−−
710 ! > \ d e t a i l s PURPOSE:
711 ! > \ n i n t e r p o l a t e sph i n i t i a l cond i t i ons onto g r i d
712 ! > e . g . v e l o c i t i e s are i n t e r p o l a t e d l i k e
713 ! > \ f $ v _ j =\ sum_i v_ i \ f r a c { m_i w\ l e f t (\ l e f t | \ vec { r } _ { i }−\ vec { r } _ { j } \ r i g h t | , h_ i \

r i g h t) } { \ rho_ i } \ f$
714 ! > w i th
715 ! > \ f$h \ f$. . . smoothing leng th
716 ! > \ f$ \ vec { r } _ i , \ vec { r } _ j \ f$. . . l o c a t i o n o f SPH p a r t i c l e s
717 ! > \ f$m_i \ f$. . . mass of the SPH p a r t i c l e (here 2500 so la r masses)
718 ! > \ f$ \ rho_ i \ f$. . . dens i t y o f the SPH p a r t i c l e
719 ! > \ f$w \ l e f t (\ l e f t | \ vec { r _ i }−\ vec { r _ j } \ r i g h t | , h_ i \ r i g h t) \ f$. . . ke rne l f u n c t i o n
720 ! > \ f$w \ l e f t (\ l e f t | \ vec { r _ i }−\ vec { r _ j } \ r i g h t | , h_ i \ r i g h t) =\ l e f t \ { \ begin { ar ray } { c l }

\ f r a c {4 − 6 v^2 + 3 v ^3} {4 \ p i h_ i ^3 } , & \ mbox{ f o r } \ l e f t | \ vec { r _ i }−\ vec { r _ j } \
r i g h t | < h_ i \ \ \ f r a c { \ l e f t (2−v \ r i g h t) ^3 } {4 \ p i h_ i ^3 } , & \ mbox{ f o r } h_ i \ l e \
l e f t | \ vec { r _ i }−\ vec { r _ j } \ r i g h t | <2 h_ i \ \ 0 , & \ mbox{ e lse } \ end { ar ray } \ r i g h t . \
f$

721 !−−−
722 subrou t ine sum_sph (x , q , dx , nn , d_region , p_region)
723 use poisson_parameters , on ly : ndim
724 use hydro_parameters , on ly : nvar , nvector
725 i m p l i c i t none
726 i n t e g e r , i n t e n t (i n) : : nn ! < s ize o f vec to r sweep
727 r e a l (dp) , i n t e n t (i n) : : dx ! < c e l l s i ze
728 r e a l (dp) , dimension (1 : nvector , 1 : nvar) , i n t e n t (i nou t) : : q ! < p r i m i t i v e v a r i a b l e s
729 r e a l (dp) , dimension (1 : nvector , 1 : ndim) , i n t e n t (i n) : : x ! < coord ina tes
730 r e a l (dp) , i n t e n t (i n) : : d_region ! < background dens i t y (hot medium)
731 r e a l (dp) , i n t e n t (i n) : : p_region ! < background pressure (hot medium)
732 i n t e g e r (i 9) : : i i = 1_ i9 ! < f o r do loop
733 i n t e g e r (i 9) : : j j = 1_ i9 ! < f o r do loop
734 r e a l (dp) : : vx_help , x_help , rho_part , p_help , T_help , r , ufac
735 r e a l (dp) : : r_smooth , kernel_weight , smoothing_length , smooth ing_length3pi
736 # i f NDIM>1
737 r e a l (dp) : : vy_help , y_help
738 # end i f
739 # i f NDIM>2
740 r e a l (dp) : : vz_help , z_help
741 # end i f
742 r e a l (dp) : : sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2 ! < convers ion

f a c t o r s between cgs and user u n i t s (subrou t ine u n i t s i n u n i t s . f90)
743 r e a l (dp) , parameter : : p i = DACOS(−1.D0)
744 r e a l (dp) , parameter : : m_part_g = 2e−3_dp∗1.98892e33_dp ! m_sph_part ic le i n g
745 r e a l (dp) : : m_part ! m_sph_part ic le i n g
747
747 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
748 ! q (: , 1) =d_region
749 rho_par t=m_part_g / scale_d / sca le_ l ∗∗3/ dx∗∗3 ! m_sph_part ic le i n code u n i t s

283

750 do i i =1 ,nsph
751 smooth ing_length3pi =1._dp / (smoothing_sph (i i) ∗∗3) / p i
752 qloop : do j j =1 ,nn
753 i f (abs (x (j j , 1)−x_sph (i i)) . l t . 0 .5∗ dx) then
754 # i f NDIM>1
755 i f (abs (x (j j , 2)−y_sph (i i)) . l t . 0 .5∗ dx) then
756 # end i f
757 # i f NDIM>2
758 i f (abs (x (j j , 3)−z_sph (i i)) . l t . 0 .5∗ dx) then
759 # end i f
760 vx_help=vx_sph (i i)
761 # i f NDIM>1
762 vy_help=vy_sph (i i)
763 # end i f
764 # i f NDIM>2
765 vz_help=vz_sph (i i)
766 # end i f
767 ! > \ var scale_T2 . . . conver ts (P / rho) i n user u n i t i n t o (T /mu) i n

Ke lv in (mu: molar mass)
768 p_help=T_sph (i i) ∗ rho_par t
769 ! ADD to p r i m i t i v e v a r i a b l e s the reg ion values
770 ! mass weighted v e l o c i t y (momentum conservat ion)
771 q (j j , 2) =q (j j , 2) ∗q (j j , 1) +vx_help∗ rho_par t
772 # i f NDIM>1
773 q (j j , 3) =q (j j , 3) ∗q (j j , 1) +vy_help∗ rho_par t
774 # end i f
775 # i f NDIM>2
776 q (j j , 4) =q (j j , 4) ∗q (j j , 1) +vz_help∗ rho_par t
777 # end i f
778 ! pressure
779 i f ((q (j j , ndim+2) . l t . p_region ∗1.000001_dp) . and . (q (j j , 1) . l t . d_region

∗1.000001_dp)) then
780 q (j j , ndim+2)=max(p_help , p_region)
781 else
782 q (j j , ndim+2)=q (j j , ndim+2)+p_help
783 end i f
784 q (j j , 1) =q (j j , 1) + rho_par t
785 q (j j , 2) =q (j j , 2) / q (j j , 1)
786 # i f NDIM>1
787 q (j j , 3) =q (j j , 3) / q (j j , 1)
788 # end i f
789 # i f NDIM>2
790 q (j j , 4) =q (j j , 4) / q (j j , 1)
791 # end i f
792 # i f DEBUG==2
793 p r i n t ∗ , " dens i ty , pressure " , rho_par t , p_help
794 p r i n t ∗ , " x , vx " , x_sph (i i) , vx_help
795 # i f NDIM>1
796 p r i n t ∗ , " y , vy " , y_sph (i i) , vy_help
797 # end i f
798 # i f NDIM>2
799 p r i n t ∗ , " z , vz " , z_sph (i i) , vz_help
800 # end i f
801 # end i f
802 e x i t qloop

284 C. Ramses source code listings

803 # i f NDIM>1
804 end i f
805 # end i f
806 # i f NDIM>2
807 end i f
808 # end i f
809 end i f
810 end do qloop
811 end do
812 end subrou t ine sum_sph
814
814 ! > \ sho r t c a l c u l a t e s how many neighbours can be found i n s i d e a given smoothing

leng th
815 !−−−
816 ! > \ vers ion 1.0
817 ! > \ author Kathar ina M. F i e r l i n g e r
818 ! > \ date l a s t m o d i f i c a t i o n 27.03.2011
819 !−−−
820 ! > \ d e t a i l s PURPOSE:
821 ! > \ n c a l c u l a t e s how many neighbours can be found i n s i d e a given smoothing leng th
822 !−−−
823 subrou t ine count_neighbours (x_max , y_max , z_max)
824 i m p l i c i t none
825 i n t e g e r (i 9) : : i i = 1_ i9 ! < f o r do loop : loop over p a r t i c l e s
826 i n t e g e r (i 9) : : j j = 1_ i9 ! < f o r do loop : loop over neighbours
827 i n t e g e r (i 9) : : n_ne ighbour_ i i = 1_ i9 ! < p a r t i c l e s i n s i d e the smoothing leng th

o f p a r t i c l e i i
828 r e a l (dp) : : r ! < d is tance between SPH p a r t i c l e i i and j j
829 r e a l (dp) : : x_max , y_max , z_max
830 # i f DEBUG==2
831 p r i n t ∗ , " count ing neighbours "
832 # end i f
833 do i i =1 ,nsph ! loop over SPH p a r t i c l e s
834 n_ne ighbour_ i i = 0_ i9
835 i f (abs (x_sph (i i)) . l e . x_max) then
836 i f (abs (y_sph (i i)) . l e . y_max) then
837 # i f NDIM>2
838 i f (abs (z_sph (i i)) . l e . z_max) then
839 # end i f
840 do j j =1 ,nsph ! loop over neighbours
841 r =abs (x_sph (j j)−x_sph (i i))
842 # i f NDIM>1
843 r = r ∗ r + ((y_sph (j j)−y_sph (i i)) ∗∗2)
844 # end i f
845 # i f NDIM>2
846 r = r + ((z_sph (j j)−z_sph (i i)) ∗∗2)
847 # end i f
848 # i f NDIM>1
849 r = s q r t (r)
850 # end i f
851 i f (r . l e . smoothing_sph (i i)) then ! found a p a r t i c l e i n s i d e

cu r ren t smoothing leng th
852 n_ne ighbour_ i i = n_ne ighbour_ i i + 1_ i9
853 end i f
854 end do

285

855 ! > w r i t e neighbours f o r a l l p a r t i c l e s i n s i d e the g r i d code box to
the screen

856 i f (rho_sph (i i) . g t . 1 0 .) then
857 p r i n t ∗ , i i , n_ne ighbour_ i i , smoothing_sph (i i) , rho_sph (i i)
858 end i f
859 # i f NDIM>2
860 end i f
861 # end i f
862 end i f
863 end i f
864 end do
865 end subrou t ine count_neighbours
867
867 ! > \ sho r t c a l c u l a t e s rad ius i n s i d e which N neighbours can be found
868 !−−−
869 ! > \ vers ion 1.0
870 ! > \ author Kathar ina M. F i e r l i n g e r
871 ! > \ date l a s t m o d i f i c a t i o n 27.03.2011
872 !−−−
873 ! > \ d e t a i l s PURPOSE:
874 ! > \ n c a l c u l a t e s rad ius i n s i d e which N neighbours can be found
875 !−−−
876 subrou t ine calc_smoothing_length (x_max , y_max , z_max)
877 i m p l i c i t none
878 i n t e g e r (i 9) : : i i = 1_ i9 ! < f o r do loop : loop over p a r t i c l e s
879 i n t e g e r (i 9) : : j j = 1_ i9 ! < f o r do loop : loop over neighbours
880 i n t e g e r (i 9) : : n_ne ighbour_ i i = 1_ i9 ! < p a r t i c l e s i n s i d e the smoothing leng th

o f p a r t i c l e i i
881 i n t e g e r (i 9) , parameter : : n_neighbour = 50 _ i9 ! < number o f neighbours i n s i d e

smoothing leng th
882 r e a l (dp) : : smoothing_length ! < rad ius i n s i d e which you can f i n d N p a r t i c l e s
883 r e a l (dp) : : r ! < d is tance between SPH p a r t i c l e i i and j j
884 r e a l (dp) : : dr ! < increment / decrement o f the smoothing leng th (f o r i t e r a t i v e

process)
885 r e a l (dp) : : x_max , y_max , z_max
886 # i f DEBUG==2
887 i n t e g e r (i 9) : : n_loop = 0_i9 ! < loop counter
888 r e a l (dp) : : sum ! < dev ia t i ons from Clare ’ s smoothing leng th
889 sum=0._dp
890 p r i n t ∗ , " c a l c u l a t i n g smoothing leng th . N= " , n_neighbour
891 # end i f
892 do i i =1 ,nsph ! loop over SPH p a r t i c l e s
893 smoothing_length =1.0_dp
894 dr =0.01_dp
895 # i f DEBUG==2
896 n_loop=0_ i9
897 # end i f
898 do
899 n_ne ighbour_ i i = 0_ i9
900 do j j =1 ,nsph ! loop over neighbours
901 r =abs (x_sph (j j)−x_sph (i i))
902 # i f NDIM>1
903 r = r ∗ r + ((y_sph (j j)−y_sph (i i)) ∗∗2)
904 # end i f
905 # i f NDIM>2

286 C. Ramses source code listings

906 r = r + ((z_sph (j j)−z_sph (i i)) ∗∗2)
907 # end i f
908 # i f NDIM>1
909 r = s q r t (r)
910 # end i f
911 i f (r . l e . smoothing_length) then ! found a p a r t i c l e i n s i d e cu r ren t

smoothing leng th
912 n_ne ighbour_ i i = n_ne ighbour_ i i + 1_ i9
913 end i f
914 end do
915 i f (n_ne ighbour_ i i . eq . n_neighbour) then
916 e x i t ! r i g h t number o f neighbours , jump out o f the do−loop
917 else i f (n_ne ighbour_ i i . l t . n_neighbour) then
918 ! too low number o f neighbours − increase smoothing leng th
919 i f (dr . l t .0 _dp) then
920 ! now changing from decrease to increase − change s ign and step

s ize
921 dr =(−0.2_dp) ∗dr
922 end i f
923 smoothing_length=smoothing_length+dr
924 else
925 ! too high number o f neighbours − decrease smoothing leng th
926 i f (dr . g t .0 _dp) then
927 ! now changing from increase to decrease − change s ign and step

s ize
928 dr =(−0.2_dp) ∗dr
929 end i f
930 smoothing_length=smoothing_length+dr
931 end i f
932 # i f DEBUG==2
933 n_loop=n_loop+1_ i9
934 # end i f
935 end do
936 ! w r i t e a l l p a r t i c l e s i n s i d e the g r i d code box to the screen
937 i f (abs (x_sph (i i)) . l e . x_max) then
938 # i f NDIM>1
939 i f (abs (y_sph (i i)) . l e . y_max) then
940 # end i f
941 # i f NDIM>2
942 i f (abs (z_sph (i i)) . l e . z_max) then
943 # end i f
944 # i f DEBUG==2
945 ! p r i n t ∗ , i i , n_loop , (smoothing_length−smoothing_sph (i i)) / dr ,

smoothing_length , smoothing_sph (i i)
946 p r i n t ∗ , i i , smoothing_length , 2 . 0 _dp∗smoothing_sph (i i)
947 sum=sum+abs (smoothing_length−2.0_dp∗smoothing_sph (i i))
948 # end i f
949 smoothing_sph (i i) =smoothing_length
950 # i f NDIM>2
951 end i f
952 # end i f
953 # i f NDIM>1
954 end i f
955 # end i f
956 end i f

287

957 end do
958 # i f DEBUG==2
959 p r i n t ∗ , sum
960 stop
961 # end i f
962 end subrou t ine calc_smooth ing_length
963 end module sph
964 !−−−

Listing C.14: Store energy losses via radiative cooling: init_hydro.f90
29 a l l o c a t e (uold (1 : nce l l , 1 : nvar +1))
30 a l l o c a t e (unew (1 : nce l l , 1 : nvar +1))

107 do i v a r =1 ,(nvar +1)
108 read (i l u n) xx
109 i f (i v a r ==1) then
114 else i f (i va r >=2.and . i va r <=ndim+1) then
120 else i f (i va r >=ndim +3.and . i va r <=ndim+2+nener) then
126 else i f (i v a r ==ndim+2) then
148 else
149 ! Read passive sca la rs
150 do i =1 ,ncache
151 uold (i nd_g r i d (i) + i s k i p , i v a r) =xx (i) ∗uold (i nd_g r i d (i) +

i s k i p , 1)
152 end do
153 end i f

Listing C.15: Include the radiative cooling loss data, when defragmenting the main memory in
subroutine “defrag”: load_balance.f90

1280 do i v a r =1 , nvar+1

Listing C.16: Output of energy losses via radiative cooling: output_hydro.f90
101 i v a r =nvar+1 ! Cool ing (energy loss) , t r a c e r dens i t y
102 do i =1 ,ncache
103 xdp (i) =uold (i nd_g r i d (i) + i s k i p , i v a r)
104 ! i f (xdp (i) . g t . 0 . 0) p r i n t ∗ , xdp (i)
105 end do
106 w r i t e (i l u n) xdp

Listing C.17: Reset energy losses via radiative cooling: amr_step.f90
152 ! rese t energy loss
153 ! . . . do i t here i f you want to sum over a main step
154 ! . . . o therwise the set_uold r o u t i n e can be used
155 uold (: , nvar +1) =0.0
156 unew (: , nvar +1) =0.0

Listing C.18: Add a mask for regions that may cool to cooling_fine.f90. I.e. exclude the feedback
region. Therefore igrid in coolfine1 needed for driver_weights

43 # i f COOLINGWEIGHTS > 0
44 c a l l c oo l f i ne 1 (ind_gr id , ngr id , i g r i d , i l e v e l) ! " i g r i d " used f o r d r i ve r_we igh ts
45 #else

288 C. Ramses source code listings

46 c a l l c oo l f i ne 1 (ind_gr id , ngr id , i l e v e l)
47 # end i f
70 # i f COOLINGWEIGHTS > 0
71 subrou t ine c oo l f i ne 1 (ind_gr id , ngr id , i g r i d , i l e v e l)
72 #else
73 subrou t ine c oo l f i n e1 (ind_gr id , ngr id , i l e v e l)
74 # end i f
75 use amr_commons , on ly : ac t i ve , dtnew , ncoarse , son , t
76 use hydro_commons , on ly : uold , coo l ing , iso thermal , dp , icoarse_max , &
77 & icoarse_min , boxlen , nvector , ndim , ngridmax , twotondim , smal l r , &
78 & gamma, nvar , imeta l , i x i o n
79 use cool ing_module
83 # i f COOLINGWEIGHTS > 0
84 # i f COOLINGWEIGHTS > 1
85 use amr_parameters , on ly : r _ d r i v e r , x_dr i ve r , y_dr i ve r , z_dr i ve r , coo lp lus
86 # end i f
87 use d r i v e r
88 # end i f
95 i n t e g e r : : i l e v e l , ng r id
96 # i f COOLINGWEIGHTS > 0
97 i n t e g e r : : i g r i d
98 # end i f
99 i n teger , dimension (1 : nvector) : : i nd_g r i d

100 !−−−
101 !−−−
102 i n t e g e r : : i , ind , i s k i p , idim , n lea f , nn lea f
103 r e a l (dp) : : scale_nH , scale_T2 , sca le_ l , scale_d , sca le_t , scale_v
104 r e a l (k ind =8) : : d tcoo l , dE_help
105 ! r e a l (k ind =8) : : nISM ,nCOM, damp_factor , coo l ing_swi tch , t _ b l a s t
106 ! r e a l (dp) : : p o l y t r op i c_co ns ta n t
107 i n teger , dimension (1 : nvector) , save : : i n d _ c e l l , i n d _ l e a f
108 r e a l (k ind =8) , dimension (1 : nvector) , save : : nH, T2 , delta_T2 , ekk
109 r e a l (k ind =8) , dimension (1 : nvector) , save : : e r r ! new
110 r e a l (k ind =8) , dimension (1 : nvector) , save : : T2min , Zso lar ! new
123 # i f COOLINGWEIGHTS > 0
124 r e a l (dp) : : dx
125 r e a l (dp) , dimension (1 : nvector) : : weight
126 # i f COOLINGWEIGHTS > 1
127 r e a l (dp) : : rscaled , one_over_boxscale
128 r e a l (dp) : : x d r i v e r = 0.0_dp
129 r e a l (dp) : : y d r i v e r = 0.0_dp
130 r e a l (dp) : : z d r i v e r = 0.0_dp
131 # end i f
132 # end i f
133 # i f d e f a r t i f i c i a l _ I S M
134 r e a l (dp) : : d e n s i t y _ c r i t ! c r i t i c a l dens i t y : 5 Hydrogen atoms per cm^3
135 # end i f
137
137 ! Conversion f a c t o r from user u n i t s to cgs u n i t s
138 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
139 ! scale_nH conver ts rho i n user u n i t s i n t o nH i n H/ cc
140 # i f d e f a r t i f i c i a l _ I S M
141 d e n s i t y _ c r i t =5._dp / scale_nH ! ! c r i t i c a l dens i t y i n user u n i t s
142 # end i f
147 # i f COOLINGWEIGHTS > 0

289

148 ! scaled box :
149 dx=0.5_dp∗∗ i l e v e l
150 # i f COOLINGWEIGHTS > 1
151 one_over_boxscale=dble (icoarse_max−icoarse_min +1) / boxlen
152 x d r i v e r = one_over_boxscale∗ x_d r i ve r
153 y d r i v e r = one_over_boxscale∗ y_d r i ve r
154 z d r i v e r = one_over_boxscale∗ z_d r i ve r
155 rsca led = one_over_boxscale ∗ (r _ d r i v e r +coo lp lus) ! For d r i ve r_we igh ts ()
156 # end i f
157 # end i f
175 ! Loop over c e l l s
176 do ind =1 , twotondim
177 # i f COOLINGWEIGHTS > 0
178 # i f COOLINGWEIGHTS > 1
179 i f (coo l i ng) then
180 i f (coo lp lus . l t . 0 . 0 _dp) then
181 weight (:) =1._dp
182 else i f (coo lp lus . eq . 0 . 0 _dp) then
183 weight (:) =0._dp
184 c a l l d r i ve r_we igh t s_ f i xed (ind , i l e v e l , i g r i d , ngr id , dx , &
185 & weight (1 : ng r id))
186 weight (1 : ng r id) =1._dp−weight (1 : ng r id)
187 else
188 weight (:) =0._dp
189 c a l l d r i ve r_we igh ts (ind , i l e v e l , i g r i d , ngr id , dx , rscaled , &
190 & xdr i ve r , &
191 # i f NDIM>1
192 & ydr i ve r , &
193 # end i f
194 # i f NDIM>2
195 & zdr i ve r , &
196 # end i f
197 & weight (1 : ng r id))
198 ! ! weights : sum of a l l weights = p i ∗ r _ d r i v e r ∗∗2 / (boxscale∗dx) ∗∗2
199 ! ! 0.0_dp . l e . weight (i) . l e . 1 . _dp
200 weight (1 : ng r id) =1._dp−weight (1 : ng r id)
201 end i f
202 end i f
203 #else
204 weight (:) =0._dp
205 c a l l d r i ve r_we igh t s_ f i xed (ind , i l e v e l , i g r i d , ngr id , dx , weight (1 : ng r id))
206 weight (1 : ng r id) =1._dp−weight (1 : ng r id)
207 # end i f
208 # end i f
209 i s k i p =ncoarse +(ind−1)∗ngridmax
210 do i =1 , ng r id
211 i n d _ c e l l (i) = i s k i p + ind_g r i d (i)
212 end do
214
214 ! Gather l e a f c e l l s
215 n lea f =0
216 do i =1 , ng r id
217 # i f COOLINGWEIGHTS > 0
218 i f ((son (i n d _ c e l l (i)) ==0) . and . (weight (i) . g t . 0 . 0 _dp)) then
219 #else

290 C. Ramses source code listings

220 i f (son (i n d _ c e l l (i)) ==0) then
221 # end i f
307 ! ==
308 ! You can put your own po ly t rope EOS here
309 ! ==
310 do i =1 , n l ea f
311 T2min (i) = T_min_f ix
312 end do
313 ! ==
315
315 ! i f (coo l i ng) then
316 ! Compute thermal temperature by s u b t r a c t i n g po ly t rope
317 ! do i =1 , n l ea f
318 ! T2 (i) = max(T2 (i)−T2min (i) , T2_min_f ix)
319 ! end do
320 ! end i f
376 ! i f (coo l i ng . and . . not . neq_chem) then
377 i f (coo l i ng) then
378 ! Compute " thermal " temperature by s u b t r a c t i n g po ly t rope
379 do i =1 , n l ea f
380 T2 (i) =MAX(T2 (i) , T_min_f ix , T2_min_f ix)
381 ! T2 (i) =MAX(T2 (i) , T2min (i) , T2_min_f ix)
382 end do
383 ! c a l l so lve_coo l ing (nH, T2 , Zsolar , boost , d tcoo l , delta_T2 , n l ea f)
384 c a l l so lve_coo l ing (nH, T2 , Zsolar , d tcoo l , delta_T2 , n l ea f)
385 # i f DEBUG >3
386 do i =1 , n l ea f
387 i f ((T2 (i) . g t . 1 . e7) . or . (nH(i) . l t . 0 . 0 1)) then
388 i f (del ta_T2 (i) . g t . 0 . 0) then
389 p r i n t ∗ , "COOLING i n non−coo l i ng regime : " ,T2 (i) ,nH(i) , del ta_T2 (i)
390 STOP
391 end i f
392 end i f
393 end do
394 # end i f
395 end i f
411 ! Compute net energy s ink (user u n i t s)
412 ! de l ta_T := T_new − T_old
413 ! i f (coo l i ng . or . neq_chem) then
414 i f (coo l i ng) then
415 do i =1 , n l ea f
416 # i f d e f a r t i f i c i a l _ I S M
417 ! p h o t o i o n i z a t i o n keeps the warm phase from coo l ing below 10.000 K
418 i f (T2 (i) +del ta_T2 (i) . l e . 1 . e4_dp) then
419 ! t e s t i f there are more than 5 p a r t i c l e s per cubic cen t imeter
420 i f (uold (i n d _ l e a f (i) ,1) . l t . d e n s i t y _ c r i t) then
421 ! i f the dens i t y i s below d e n s i t y _ c r i t
422 ! c a l l i t the warm phase and keep i t a t 10.000K
423 i f (T2 (i) . g t . 1 . e4_dp) then
424 del ta_T2 (i) = 1 . e4_dp−T2 (i) ! don ’ t coo l below to 10.000K
425 T2min (i) = 1 . e4_dp ! make sure coo l i ng weights don ’ t

i n t e r f e r e
426 else
427 del ta_T2 (i) =max(0 .0 _dp , del ta_T2 (i)) ! don ’ t coo l . Keep heet ing

terms . But don ’ t heat to 10.000K

291

428 ! del ta_T2 (i) =0.0_dp ! don ’ t coo l but a lso don ’ t
heat to 100K

429 ! T2min (i) = T_min_f ix ! keep low temperatures
430 T2min (i) = T2_min_f ix ! keep low temperatures
431 end i f
432 else
433 ! i f there are more than 5 p a r t i c l e s per cubic cen t imeter
434 ! c a l l i t the co ld phase and keep i t a t T_min_f ix
435 i f (T2 (i) +del ta_T2 (i) . l e . T_min_f ix) then ! coo l i ng+heat ing would

lead to a too smal l temperature
436 i f (T2 (i) . g t . T_min_f ix ∗1.01_dp) then ! the i n i t i a l s t a t e was "

warm enough "
437 del ta_T2 (i) =T_min_f ix−T2 (i) ! don ’ t coo l below 100K
438 T2min (i) = T_min_f ix ! make sure coo l i ng weights don ’ t

i n t e r f e r e
439 else ! The i n i t i a l temperature was too smal l too
440 del ta_T2 (i) =0.0_dp ! don ’ t coo l but a lso don ’ t heat to 100K
441 ! T2min (i) = T_min_f ix ! don ’ t keep low temperatures
442 T2min (i) = T2_min_f ix ! keep low temperatures . . . T2_min f i x

i s set i n cool ing_module
443 end i f
444 end i f
445 end i f
446 end i f
447 # end i f
448 ! del ta_T2 . . . Ke lv in
449 ! scale_T2 . . . g / erg Ke lv in (cm/ s code−t ime / code−l eng th) ^2 = Ke lv in (

code−t ime / code−l eng th) ^2
450 ! nH (code−mass / code−l eng th ^3)
451 del ta_T2 (i) = del ta_T2 (i) ∗nH(i) / scale_T2 / (gamma−1.0) ! [code−energy−u n i t

/ code−length−u n i t ^3]
452 end do
453 ! Turn o f f coo l i ng i n b l a s t wave reg ions
454 ! i f (de layed_cool ing) then
455 ! do i =1 , n l ea f
456 ! coo l ing_sw i tch = uold (i n d _ l e a f (i) , i d e l a y) / uold (i n d _ l e a f (i) ,1)
457 ! i f (coo l ing_sw i tch > 1d−3) then
458 ! del ta_T2 (i) = MAX(del ta_T2 (i) , r e a l (0 , k ind=dp))
459 ! end i f
460 ! end do
461 ! end i f
462 end i f
464
464 ! Compute minimal t o t a l energy from po ly t rope
465 do i =1 , n l ea f
466 T2min (i) = T2min (i) ∗nH(i) / scale_T2 / (gamma−1.0) + ekk (i) + e r r (i)
467 end do
469
469 ! Update t o t a l f l u i d energy
470 i f (i so therma l) then
471 do i =1 , n l ea f
472 uold (i n d _ l e a f (i) , ndim+2) = T2min (i)
473 end do
474 else
475 do i =1 , n l ea f

292 C. Ramses source code listings

476 T2 (i) = uold (i n d _ l e a f (i) , ndim+2)
477 end do
478 i f (coo l i ng) then
479 # i f COOLINGWEIGHTS > 0
480 nn lea f =0
481 do i =1 , ng r id
482 i f ((son (i n d _ c e l l (i)) ==0) . and . (weight (i) . g t . 0 . 0 _dp)) then
483 nn lea f=nn lea f +1
484 dE_help=del ta_T2 (nn lea f) ∗weight (i)
485 T2 (nn lea f) = T2 (nn lea f) +dE_help
486 uold (i n d _ l e a f (nn lea f) , nvar +1)=(−dE_help / d t coo l) ! energy l o s t by

r a d i a t i v e coo l i ng
487 ! [code−energy−u n i t / code−length−u n i t ^3 / code−t ime−u n i t]
488 end i f
489 end do
490 #else
491 do i =1 , n l ea f
492 dE_help=del ta_T2 (i)
493 T2 (i) = T2 (i) +dE_help
494 uold (i n d _ l e a f (i) , nvar +1)=(−dE_help / d t coo l) ! energy l o s t by

r a d i a t i v e coo l i ng
495 ! [code−energy−u n i t / code−length−u n i t ^3 / code−t ime−u n i t]
496 end do
497 # end i f
498 end i f
499 do i =1 , n l ea f
500 i f (T2 (i) . l t . T2min (i)) then
501 uold (i n d _ l e a f (i) , ndim+2) = T2min (i)
502 ! sub t rac t the re−added energy from the loss
503 uold (i n d _ l e a f (n l ea f) , nvar +1)=uold (i n d _ l e a f (n l ea f) , nvar +1) +(T2 (i)−

T2min (i)) / d t coo l
504 else
505 uold (i n d _ l e a f (i) , ndim+2) = T2 (i)
506 end i f
507 end do
508 end i f

Listing C.19: Local ISM values for XY, minimal temperature in the tables: cooling_module.f90
68 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 ! r e a l (k ind =8) , parameter : : X = 0.76_dp
70 ! r e a l (k ind =8) , parameter : : Y = 0.24_dp
71 ! r e a l (k ind =8) , parameter : : mu_mol = 1.2195_dp
72 ! X = 0.76 , Y = 0.24 , Z = 0.0
73 ! 1 /mu_mol = X/ X_x + Y/ A_y + Z /A
74 ! atomic H : X_x =1
75 ! A_y = 4
76 ! >>> 1 . / (0 .76+0 .24∗0 .25)
77 ! 1.2195121951219512
78 ! r e a l (k ind =8) , parameter : : mu_mol = 1.2812524863014476_dp
79 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 ! Lodders 2003
81 r e a l (k ind =8) , parameter : : X = 0.7110_dp
82 r e a l (k ind =8) , parameter : : Y = 0.2741_dp
83 r e a l (k ind =8) , parameter : : mu_mol = 1.2812524863014476_dp
84 ! X = 0.7110 , Y = 0.2741 , Z = 0.0149

293

85 ! 1 /mu_mol = X/ X_x + Y/ A_y + Z /A
86 ! atomic H : X_x =1
87 ! A_y = 4
88 ! A = 15.5 (mean so la r composi t ion)
89 ! 1 . / (0 .711+0.2741∗0.25+0.0149/15.5)
90 ! 1.2812524863014476

102 ! i n teger , parameter : : nb in_T_ f i x =91 ! r e s o l u t i o n i n temperature
103 i n teger , parameter : : nb in_T_ f i x =81 ! r e s o l u t i o n i n temperature
104 i n teger , parameter : : nb in_n_ f i x =141 ! r e s o l u t i o n i n dens i t y
105 r e a l (k ind =8) , parameter : : nH_min_fix =1.e−8_dp ! minimum dens i t y sma l l r =1e−7
106 r e a l (k ind =8) , parameter : : nH_max_fix =1.e+6_dp ! maximum dens i t y
107 ! r e a l (k ind =8) , parameter : : T2_min_f ix =1.e+1_dp ! minimum temperature f o r coo l i ng

tab l e
108 r e a l (k ind =8) , parameter : : T2_min_f ix =1.e+2_dp ! minimum temperature f o r coo l i ng

tab l e
109 r e a l (k ind =8) , parameter : : T2_max_fix =1.e+10_dp ! maximum temperature f o r coo l i ng

tab l e
239 subrou t ine set_model (Nmodel , J0 in_ in , J0min_in , alpha_in , normfacJ0_in , z r e i o n i z _ i n , &
240 & cor rec t_coo l i ng , r e a l i s t i c _ n e , &
241 & h , omegab , omega0 , omegaL , as tar t_s im , T2_sim)
305 # i f n d e f CLOUDY
306 i f (Nmodel /= −1) then
330 end i f
331 # end i f
380 subrou t ine se t_ tab le (aexp)
381 ! ===
382 i m p l i c i t none
383 r e a l (k ind =8) : : aexp
384 i n t e g e r : : nbin_n , nbin_T
385 r e a l (k ind =8) : : nH_min , nH_max , T2_min , T2_max
386 nH_min=nH_min_fix
387 nH_max=nH_max_fix
388 T2_min=max(T_min_f ix , T2_min_f ix)
389 T2_max=T2_max_fix
390 nbin_n=nb in_n_ f i x
391 nbin_T=nb in_T_ f i x
392 c a l l cmp_table (nH_min , nH_max , T2_min , T2_max , nbin_n , nbin_T , aexp)
393 end subrou t ine se t_ tab le
553 ! subrou t ine so lve_coo l ing (nH, T2 , zso lar , boost , dt , del taT2 , n c e l l)
554 subrou t ine so lve_coo l ing (nH, T2 , zso lar , dt , del taT2 , n c e l l)
555 ! ===
556 use hydro_commons , on ly : gamma
567 r e a l (k ind =8) : : lambda , lambda_prime , logT2max , logT2min
568 r e a l (k ind =8) : : fa , fb , fpr imea , fpr imeb , alpha1 , beta1 ,gamma1
573 r e a l (k ind =8) : : reduce_cool ing =1.0_dp ! a r t i f i c i a l l y increase coo l i ng t ime
580 logT2max=log10 (T2_max_fix) ∗1.01_dp
581 logT2min=log10 (T2_min_f ix) ∗0.99_dp
587 precoe f f = X∗ (gamma−1.0_dp) / kB ! =2._dp∗X / (3 . _dp∗kB)
590 ! facH (i) =MIN(MAX(log10 (nH(i) / boost (i)) , t ab l e%nH(1)) , t ab l e%nH(tab l e%n1))
591 facH (i) =MIN(MAX(log10 (nH(i)) , t ab l e%nH(1)) , t ab l e%nH(tab l e%n1))
635 i f ((facT . l e . logT2max) . and . (facT . ge . logT2min)) then
706 lambda=lambda∗ reduce_cool ing ! a r t i f i c i a l l y increase

coo l i ng t ime
707 lambda_prime=lambda_prime∗ reduce_cool ing ! a r t i f i c i a l l y increase

coo l i ng t ime

294 C. Ramses source code listings

709
709 ! 1 / wcool . . . coo l ing_s tep s ize . . . l i m i t s coo l i ng step s ize
710 ! varmax decreases step s ize
711 ! reduce_cool ing increases step s ize
712 wcool=MAX(abs (lambda) / tau (ind (i)) ∗varmax ,wmax(ind (i)) ,− lambda_prime∗

varmax)
714
714 tau_o ld (ind (i)) = tau (ind (i))
715 ! T = T0 (1 + lambda_prime dt − lambda / T0 dt) / (1 + lambda_prime dt)
716 ! varmax . . . decreases step s ize . . . sma l le r change i n T per

step
717 ! reduce_cool ing . . . increases step s ize and decreases lambda (prime) . . .

same change i n T per step i f the step s ize i s not l i m i t e d by wmax
. . . l ess steps . . . sma l le r change i n T (o v e r a l l)

718 tau (ind (i)) =tau (ind (i)) ∗ (1 . _dp+lambda_prime / wcool−lambda / tau (ind (i)) /
wcool) / (1 . _dp+lambda_prime / wcool)

719 t ime_old (ind (i)) =t ime (ind (i))
720 t ime (ind (i)) =t ime (ind (i)) +1._dp / wcool
722
722 i f (DEBUG. g t . 0) then
723 i f ((lambda . l t . 0 . 0) . and . (tau_o ld (ind (i)) . g t . 101 .0)) then
724 w r i t e (∗ , ’ (8 (1X, E12 . 5)) ’) lambda , lambda_prime , wcool , tau_o ld (ind (i))

, tau (ind (i)) , t ime_old (ind (i)) , t ime (ind (i)) , time_max (ind (i))
725 end i f
726 end i f
728
728 else
730
730 t ime (ind (i)) =time_max (ind (i))
732
732 end i f
749 ! Compute exact t ime s o l u t i o n
750 do i =1 , n c e l l
751 ! t ime_old < time_max < t ime . . . dens i t y scaled coo l i ng t ime
752 i f (t ime (i) . g t . time_max (i)) then
753 tau (i) = tau (i) ∗ (time_max (i)−t ime_old (i)) / (t ime (i)−t ime_old (i)) & ! " r i g h t

weight " ∗ new temperature
754 & +tau_old (i) ∗ (t ime (i)−time_max (i)) / (t ime (i)−t ime_old (i)) ! " l e f t

weight " ∗ o ld temperature
755 end i f
756 end do
769 ! Compute de l t a T
770 do i =1 , n c e l l
771 ! avoid problems caused by number p r e c i s i o n
772 i f ((t a u _ i n i (i) . g t . T2_max_fix) &
773 & . or . (t a u _ i n i (i) . l e . T2_min_f ix ∗1.1_dp) &
774 & . or . (nH(i) . l t . nH_min_fix)) then
775 ! # i f DEBUG==3
776 ! i f (de l taT2 (i) . l t . 0 . 0 _dp) then
777 ! p r i n t ∗ , " T i n i : " , t a u _ i n i (i) , " d e l t a t " , de l taT2 (i) , " f r a c t i o n " , del taT2 (i) /

t a u _ i n i (i) , t ime (i) , tau (i)
778 ! STOP
779 ! end i f
780 ! # end i f
781 del taT2 (i) =0.0_dp

295

782 else
783 del taT2 (i) =tau (i)− t a u _ i n i (i)
784 end i f
785 end do
787
787 end subrou t ine so lve_coo l ing

Listing C.20: Allow changes to the output times for restarted simulations: init_amr.f90
290 & (ngr id_cur ren t >ngridmax)) then
291 ! & (ngr id_cur ren t >ngridmax) . or . (noutput2 >noutput)) then
303 do i i =1 , noutput
304 i i i = i i ! i i . . . index o f the 1 s t output a f t e r r e s t a r t
305 i f (t o u t (i i) . g t . t) e x i t
306 end do
307 ! noutout i s the index of the l a s t output a f t e r r e s t a r t
308 i o u t = i ou t2 ! number o f prev ious outputs
309 t ou t2 (1 : i o u t) = t
310 t ou t2 (i o u t +1: i o u t +noutput− i i i +1)= t o u t (i i i : noutput)
311 t ou t2 (i o u t +noutput− i i i +2: noutput) =0.0
312 noutput= i o u t +noutput− i i i +1
313 p r i n t ∗ , " ou tput f i l e s w i l l be generated a t t = "
314 p r i n t ∗ , t ou t2 (i o u t : noutput)
315 t o u t = tou t2
316 ! t o u t (1 : noutput2) = tou t2 (1 : noutput2)
317 ! aout (1 : noutput2) =aout2 (1 : noutput2)
318 i f o u t = i f o u t 2
319 read (i l u n) d to l d (1 : nlevelmax2)

Listing C.21: Ignore velocities in almost empty cells, remove outflows from empty cells,
“Alustop”: in HLLC tracer-flux only if accepting cell is warm enough: godunov_utils.f90

29
29 r e a l (dp) : : d t c e l l , smallp , help_EK
30 i n t e g e r : : k , id im
31 # i f NENER>0
32 i n t e g e r : : i r a d
33 # end i f
35
35 ! smal lc= 1 .e−10
36 ! sma l l r = 1 .e−8
37 smal lp = smal lc ∗∗2/gamma ! 1 .e−20/gamma
39
39 ! Convert to p r i m i t i v e v a r i ab l e s
40 i f ((verbose_patches) . and . (minval (uu (1 : nce l l , 1)) . l e . sma l l r)) then
41 p r i n t ∗ , " godunov u t i l s : lowest dens i t y : " , minval (uu (1 : nce l l , 1)) &
42 & , " h i g h t e s t dens i t y : " , maxval (uu (1 : nce l l , 1))
43 p r i n t ∗ , " godunov u t i l s : lowest pressure : " , minval (uu (1 : nce l l , ndim+2)) &
44 & , " h i g h t e s t pressure : " , maxval (uu (1 : nce l l , ndim+2))
45 end i f
46 do k = 1 , n c e l l
47 uu (k , 1) =max(uu (k , 1) , sma l l r)
48 end do
49 ! V e l o c i t y
50 do id im = 1 ,ndim
51 do k = 1 , n c e l l

296 C. Ramses source code listings

52 uu (k , id im +1) = uu (k , id im +1) / uu (k , 1)
53 end do
54 end do
55 ! I n t e r n a l energy
56 do id im = 1 ,ndim
57 do k = 1 , n c e l l
58 uu (k , ndim+2) = uu (k , ndim+2)−h a l f ∗uu (k , 1) ∗uu (k , id im +1)∗∗2
59 end do
60 end do
61 # i f NENER>0
62 do i r a d = 1 , nener
63 do k = 1 , n c e l l
64 uu (k , ndim+2) = uu (k , ndim+2)−uu (k , ndim+2+ i r a d)
65 end do
66 end do
67 # end i f
70
70
70 ! Debug
71 i f (debug) then
72 do k = 1 , n c e l l
73 # i f d e f KMFCLEAN
74 ! KMF patch : c e l l s w i th dens i t y = min . dens i t y are al lowed
75 i f (uu (k , ndim+2) . l e . smal lp . or . uu (k , 1) . l t . sma l l r) then
76 #else
77 i f (uu (k , ndim+2) . l e . smal lp . or . uu (k , 1) . l e . sma l l r) then
78 # end i f
79 w r i t e (∗ ,∗) ’ s top i n cmpdt ’
80 ! use d r i v e r c a l l p r i n t _ x y z (ind , i l e v e l , i g r i d , ngr id , dx , i)
81 w r i t e (∗ ,∗) ’ dx = ’ , dx
82 w r i t e (∗ ,∗) ’ k= ’ , k
83 w r i t e (∗ ,∗) ’ n c e l l = ’ , n c e l l
84 w r i t e (∗ ,∗) ’ rho = ’ , uu (k , 1)
85 w r i t e (∗ ,∗) ’ rho_min = ’ , sma l l r
86 w r i t e (∗ ,∗) ’ P_min = ’ , smal lp
87 w r i t e (∗ ,∗) ’P = ’ , uu (k , ndim+2)
88 w r i t e (∗ ,∗) ’ ve l = ’ , uu (k , 2 : ndim+1)
89 help_EK=0.0_dp
90 do id im = 1 , ndim
91 help_EK = help_EK + h a l f ∗uu (k , 1) ∗uu (k , id im +1)∗∗2
92 end do
93 w r i t e (∗ ,∗) ’ E to t = ’ , uu (k , ndim+2)+help_EK
94 w r i t e (∗ ,∗) ’ Ekin = ’ , help_EK
95 ! w r i t e (∗ ,∗) ’ Eloss = ’ , uu (k , nvar +1) ! would be empty s ince i t i s rese t a f t e r the

output i n amr_step
96 c a l l dump_all
97 stop
98 end i f
99 end do

100 end i f
102
102 ! Compute maximum time step f o r each author ized c e l l
103 dt = cou ran t_ fac to r ∗dx / smal lc
105
105 do k = 1 , n c e l l

297

106 ! Compute pressure
107 uu (k , ndim+2) = max ((gamma−one) ∗uu (k , ndim+2) ,uu (k , 1) ∗smal lp)
108 # i f NENER>0
109 do i r a d = 1 , nener
110 uu (k , ndim+2+ i r a d) = (gamma_rad (i r a d)−one) ∗uu (k , ndim+2+ i r a d)
111 end do
112 # end i f
113 ! Compute sound speed
114 uu (k , ndim+2) = gamma∗uu (k , ndim+2)
115 # i f NENER>0
116 do i r a d = 1 , nener
117 uu (k , ndim+2) = uu (k , ndim+2) + gamma_rad (i r a d) ∗uu (k , ndim+2+ i r a d)
118 end do
119 # end i f
120 uu (k , ndim+2)= s q r t (uu (k , ndim+2) / uu (k , 1))
121 ! Compute wave speed
122 uu (k , ndim+2) = dble (ndim) ∗uu (k , ndim+2)
123 do id im = 1 ,ndim
124 uu (k , ndim+2)=uu (k , ndim+2)+abs (uu (k , id im +1))
125 end do
126 # i f d e f KMFCLEAN
127 ! > KMF patch : ignore t ime steps from almost empty c e l l s
128 i f (uu (k , 1) . g t . sma l l r) then ! dens i t y
129 # end i f
130 uu (k , 1) =zero
131 ! Compute g r a v i t y s t reng th r a t i o
132 do id im = 1 ,ndim
133 uu (k , 1) =uu (k , 1) +abs (gg (k , id im))
134 end do
135 uu (k , 1) =uu (k , 1) ∗dx / uu (k , ndim+2)∗∗2
136 uu (k , 1) =MAX(uu (k , 1) ,0.0001_dp)
137 d t c e l l =dx / uu (k , ndim+2) ∗ (s q r t (one+two∗ cou ran t_ fac to r ∗uu (k , 1))−one) / uu (k , 1)
138 ! d t c e l l =dx∗ cou ran t_ fac to r / uu (k , ndim+2)
139 ! i f (d t c e l l . l t . 0 . 0 1) then
140 ! p r i n t ∗ , d t c e l l , uu (k−1 ,1:ndim+2) , k−1 , he lpd t (k−1 ,1:ndim+2)
141 ! p r i n t ∗ , d t c e l l , uu (k ,1 : ndim+2) , k , he lpd t (k , 1 : ndim+2)
142 ! p r i n t ∗ , d t c e l l , uu (k +1 ,1: ndim+2) , k+1 , he lpd t (k +1 ,1: ndim+2)
143 ! s top
144 ! end i f
145 dt = min (l a rge t , dt , d t c e l l)
146 # i f d e f KMFCLEAN
147 ! > KMF patch : ignore t ime steps from almost empty c e l l s
148 end i f
149 # end i f
150 end do
151 end subrou t ine cmpdt
237 # i f def ined (REFINE_BUBBLE) && (REFINE_BUBBLE > 0)
238 ok (k) = ok (k) . or . e r r o r > err_grad_d . or . dm < 0.01∗ d_region (1) ! r e f i n e

a l l c e l l s i n s i d e the wind blown bubble
239 #else
240 ok (k) = ok (k) . or . e r r o r > err_grad_d
241 # end i f

1111 INTEGER : : i va r , i
1112 # i f def ined ALUSTOP && (ALUSTOP > 0)
1113 REAL(dp) : : Tce l l , scale_nH , scale_T2 , sca le_ l , scale_d , sca le_t , scale_v

298 C. Ramses source code listings

1114 REAL(dp) , parameter : : Tmin26Al = 1 . e6_dp !K
1115 # end i f
1117
1117 # i f def ined ALUSTOP && (ALUSTOP > 0)
1118 c a l l u n i t s (sca le_ l , sca le_t , scale_d , scale_v , scale_nH , scale_T2)
1119 # end i f
1299 # i f def ined ALUSTOP && (ALUSTOP > 0)
1300 # i f NVAR > 2+NDIM+NENER
1301 ! f l u x on ly i f accept ing c e l l i s warm enough .
1302 i f (us tar >0) then
1303 T c e l l =pr / r r ∗scale_T2
1304 i f (T c e l l . l t . Tmin26Al) then
1305 fgdnv (i ,3+ ndim+nener :4+ ndim+nener) = 0.0_dp
1306 else
1307 fgdnv (i ,3+ ndim+nener :4+ ndim+nener) = ro∗uo∗ &
1308 & q l e f t (i ,3+ ndim+nener :4+ ndim+nener)
1309 end i f
1310 else
1311 T c e l l = p l / r l ∗scale_T2
1312 i f (T c e l l . l t . Tmin26Al) then
1313 fgdnv (i ,3+ ndim+nener :4+ ndim+nener) = 0.0_dp
1314 else
1315 fgdnv (i ,3+ ndim+nener :4+ ndim+nener) = ro∗uo∗ &
1316 & q r i g h t (i ,3+ ndim+nener :4+ ndim+nener)
1317 end i f
1318 end i f
1319 # end i f
1320 # i f NVAR > 2+NDIM+NENER+2
1321 do i v a r = 3+ndim+nener +2 , nvar
1322 i f (us tar >0) then
1323 fgdnv (i , i v a r) = ro∗uo∗ q l e f t (i , i v a r)
1324 else
1325 fgdnv (i , i v a r) = ro∗uo∗ q r i g h t (i , i v a r)
1326 end i f
1327 end do
1328 # end i f
1329 #else
1330 # i f NVAR > 2+NDIM+NENER
1331 do i v a r = 3+ndim+nener +2 , nvar
1332 i f (us tar >0) then
1333 fgdnv (i , i v a r) = ro∗uo∗ q l e f t (i , i v a r)
1334 else
1335 fgdnv (i , i v a r) = ro∗uo∗ q r i g h t (i , i v a r)
1336 end i f
1337 end do
1338 # end i f
1339 # end i f

Listing C.22: Default units: amr_commons.f90
127 r e a l (dp) : : u n i t s _ d e n s i t y =1.e−22_dp ! [g /cm^3]
128 r e a l (dp) : : un i t s_ t ime =1.e11_dp ! [seconds]
129 r e a l (dp) : : un i t s_ l eng th =1.e19_dp ! [cm]

Listing C.23: Check energy losses due to outflow of the computational domain: outflow.f90

299

1 module ou t f l ow
2 use amr_parameters , on ly : dp
3 i m p l i c i t none
4 conta ins
5 ! subrou t ine out f low1 (ind , i l e v e l , i nd_gr id , i n d _ c e l l , de l tax , summass , sumekin , sumeth)
6 ! > \ sho r t P r i n t mass f l u x across g r i d boundaries
7 !−−−
8 ! > \ vers ion 1.0
9 ! > \ author Kathar ina M. F i e r l i n g e r

10 ! > \ date l a s t m o d i f i c a t i o n 15.12.2010
11 !−−−
12 ! > \ d e t a i l s PURPOSE: P r i n t mass f l u x across g r i d boundaries
13 !−−−
14 subrou t ine out f low1 (ind , i l e v e l , i nd_gr id , i n d _ c e l l , de l t ax &
15 & ,summass , sumekin , sumeth) ! uold
16 use hydro_commons , on ly : uold , gamma
17 use amr_commons , on ly : ac t i ve , xg , d to l d ! < index array , coord ina tes (values

i n i n t e r v a l [0 . 5 , 2 . 5]
18 use amr_parameters , on ly : dp , icoarse_min , jcoarse_min , kcoarse_min ! < f l o a t i n g

po in t type , lower [xyz] coarse g r i d boundaries
19 use poisson_parameters , on ly : ndim
20 i m p l i c i t none
21 i n teger , i n t e n t (i n) : : ind , i l e v e l ! < p o s i t i o n o f new g r i ds
22 i n teger , dimension (:) , i n t e n t (i n) : : i nd_gr id , i n d _ c e l l
23 r e a l (dp) , i n t e n t (i n) : : de l t ax ! < conver ts c e l l s i ze
24 r e a l (dp) , i n t e n t (i nou t) , dimension (1 : 1 0) : : summass ! < t o t a l mass loss per

t imestep
25 r e a l (dp) , i n t e n t (i nou t) , dimension (1 : 1 0) : : sumekin ! < t o t a l k i n e t i c energy

loss per t imestep
26 r e a l (dp) , i n t e n t (i nou t) , dimension (1 : 1 0) : : sumeth ! < t o t a l t h te rma l energy

loss per t imestep
27 r e a l (dp) : : dx ! < c e l l s i ze (i f boxlen = 1)
28 i n t e g e r : : i i , i , i x , i y , i z , nn ! < loop var iab le , p o s i t i o n i n coord ina te array , new

g r i d [xyz] index , random numbers i n s i d e d r i v e r
29 i n t e g e r : : ng r id ! < g r i d s ize
30 r e a l (dp) : : vx , vy , vz ! < v e l o c i t i e s
31 r e a l (dp) : : xcoord , ycoord , zcoord ! < coord ina tes
32 r e a l (dp) : : temperature , o f lux , massflux , ek_help , eth_help
33 r e a l (dp) , dimension (1 : 3) : : sk ip_ loc ! < g r i d boundaries
34 r e a l (dp) , dimension (1 : 3) : : xc ! < center o f new g r i d
35 r e a l (dp) , parameter : : minvel =1.e−8_dp ! < minimum out f l ow speed below which mass

/ energy loss i s ignored
36 r e a l (dp) : : gm1k ! < (gamma−1._dp) / 8 . 3 e−9_dp
37 gm1k=(gamma−1._dp) / 8 . 3 e−9_dp ! i n Ke lv in
38 ngr id = s ize (i nd_g r i d)
39 dx=0.5_dp∗∗dble (i l e v e l)
40 ! p r i n t f l u x over c e l l boundaries
41 ! ind =1 ,2∗∗ndim
42 ! 2d : ind =1 ,4
43 ! 3d : ind =1 ,8
44 ! Set new g r i ds p o s i t i o n
45 i z =(ind−1) /4 ! i n t e g e r d i v i s i o n −> 0 or 1
46 i y =(ind−1−4∗ i z) /2 ! i n t e g e r d i v i s i o n −> 0 or 1
47 i x =(ind−1−2∗ i y−4∗ i z) ! i n t e g e r d i v i s i o n −> 0 or 1
48 sk ip_ loc = (/ 0 . 0 _dp , 0 . 0 _dp , 0 . 0 _dp /)

300 C. Ramses source code listings

49 xc (1) =(dble (i x)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
50 sk ip_ loc (1) =dble (icoarse_min)
51 # i f NDIM>1
52 xc (2) =(dble (i y)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
53 sk ip_ loc (2) =dble (jcoarse_min)
54 # end i f
55 # i f NDIM>2
56 xc (3) =(dble (i z)−0.5_dp) ∗dx ! −0.5D0 or +0.5D0
57 sk ip_ loc (3) =dble (kcoarse_min)
58 # end i f
59 do i =1 , ng r id
60 ! xg (: , 1)−1.5 . . . values i n i n t e r v a l [−1 ,1]
61 xcoord=xg (i nd_g r i d (i) ,1)+xc (1)−sk ip_ loc (1)
62 i f ((xcoord . l t . dx) . or . (xcoord . g t . 1 . _dp−dx)) then ! boundary l aye r c e l l
63 i f (xcoord . l t . dx) then
64 ! f o r ou t f l ow vx < 0
65 vx=(−1._dp) ∗uold (i n d _ c e l l (i) , 2) / uold (i n d _ c e l l (i) , 1)
66 else
67 ! f o r ou t f l ow vx > 0
68 vx=uold (i n d _ c e l l (i) ,2) / uold (i n d _ c e l l (i) ,1)
69 end i f
70 i f (vx . g t . minvel) then
71 ek_help =(uold (i n d _ c e l l (i) , 2) ∗∗2 &
72 # i f NDIM>1
73 & +uold (i n d _ c e l l (i) , 3) ∗∗2 &
74 # end i f
75 # i f NDIM>2
76 & +uold (i n d _ c e l l (i) , 4) ∗∗2 &
77 # end i f
78 &) ∗0.5_dp / uold (i n d _ c e l l (i) , 1)
79 eth_help =(uold (i n d _ c e l l (i) , ndim+2)−ek_help)
80 temperature=gm1k∗eth_help / uold (i n d _ c e l l (i) , 1) ! i n Ke lv in
81 i i =max(min (f l o o r (log10 (temperature) +1.0) ,10) ,1)
82 ! massf lux = dx∗dx∗v∗dt ∗ rho
83 o f l u x = d to l d (i l e v e l) ∗ (de l t ax) ∗∗2∗vx
84 summass(i i) =summass(i i) + o f l u x ∗uold (i n d _ c e l l (i) , 1)
85 sumekin (i i) =sumekin (i i) + o f l u x ∗ek_help
86 sumeth (i i) =sumeth (i i) + o f l u x ∗eth_help
87 ! don ’ t " cyc le " s ince corner c e l l s can have xyz f l u x e s
88 end i f
89 end i f
90 # i f NDIM>1
91 ycoord=xg (i nd_g r i d (i) ,2)+xc (2)−sk ip_ loc (2)
92 i f ((ycoord . l t . dx) . or . (ycoord . g t . 1 . _dp−dx)) then ! boundary l aye r c e l l
93 i f (ycoord . l t . dx) then
94 ! f o r ou t f l ow vy < 0
95 vy=(−1._dp) ∗uold (i n d _ c e l l (i) , 3) / uold (i n d _ c e l l (i) , 1)
96 else
97 ! f o r ou t f l ow vy > 0
98 vy=uold (i n d _ c e l l (i) ,3) / uold (i n d _ c e l l (i) ,1)
99 end i f

100 i f (vy . g t . minvel) then
101 ek_help =(uold (i n d _ c e l l (i) , 2) ∗∗2 &
102 & +uold (i n d _ c e l l (i) , 3) ∗∗2 &
103 # i f NDIM>2

301

104 & +uold (i n d _ c e l l (i) , 4) ∗∗2 &
105 # end i f
106 &) ∗0.5_dp / uold (i n d _ c e l l (i) , 1)
107 eth_help =(uold (i n d _ c e l l (i) , ndim+2)−ek_help)
108 temperature=gm1k∗eth_help / uold (i n d _ c e l l (i) , 1) ! i n Ke lv in
109 i i =max(min (f l o o r (log10 (temperature) +1.0) ,10) ,1)
110 ! massf lux = dx∗dx∗v∗dt ∗ rho
111 o f l u x = d to l d (i l e v e l) ∗ (de l t ax) ∗∗2∗vy
112 summass(i i) =summass(i i) + o f l u x ∗uold (i n d _ c e l l (i) , 1)
113 sumekin (i i) =sumekin (i i) + o f l u x ∗ek_help
114 sumeth (i i) =sumeth (i i) + o f l u x ∗eth_help
115 ! don ’ t " cyc le " s ince corner c e l l s can have xyz f l u x e s
116 end i f
117 end i f
118 # end i f
119 # i f NDIM>2
120 zcoord=xg (i nd_g r i d (i) ,3)+xc (3)−sk ip_ loc (3)
121 i f ((zcoord . l t . dx) . or . (zcoord . g t . 1 . _dp−dx)) then ! boundary l aye r c e l l
122 i f (zcoord . l t . dx) then
123 ! f o r ou t f l ow vz < 0
124 vz=(−1._dp) ∗uold (i n d _ c e l l (i) , 4) / uold (i n d _ c e l l (i) , 1)
125 else
126 ! f o r ou t f l ow vz > 0
127 vz=uold (i n d _ c e l l (i) ,4) / uold (i n d _ c e l l (i) ,1)
128 end i f
129 i f (vz . g t . minvel) then
130 ek_help =(uold (i n d _ c e l l (i) , 2) ∗∗2+ uold (i n d _ c e l l (i) , 3) ∗∗2 &
131 & +uold (i n d _ c e l l (i) ,4) ∗∗2) ∗0.5_dp / uold (i n d _ c e l l (i) , 1)
133
133 eth_help =(uold (i n d _ c e l l (i) , ndim+2)−ek_help)
134 temperature=gm1k∗eth_help / uold (i n d _ c e l l (i) , 1) ! i n Ke lv in
135 i i =max(min (f l o o r (log10 (temperature) +1.0) ,10) ,1)
136 ! massf lux = dx∗dx∗v∗dt ∗ rho
137 o f l u x = d to l d (i l e v e l) ∗ (de l t ax) ∗∗2∗vz
138 summass(i i) =summass(i i) + o f l u x ∗uold (i n d _ c e l l (i) , 1)
139 sumekin (i i) =sumekin (i i) + o f l u x ∗ek_help
140 sumeth (i i) =sumeth (i i) + o f l u x ∗eth_help
141 end i f
142 end i f
143 # end i f
144 end do
145 end subrou t ine out f low1
146 end module ou t f l ow

Listing C.24: Reset cooling losses and avoid negative internal energies in set_uold and remove
outflows from almost empty cells in godfine1: godunov_fine.f90

1 ! > preprocessor : i f d e f ETOT . . . increase t o t a l energy
2 ! > preprocessor : i f n d e f ETOT . . . reduce speeds
3 ! > preprocessor : i f d e f VMAX . . . se t speed l i m i t

187 ! Set uold to unew f o r myid c e l l s
188 do ind =1 , twotondim
189 i s k i p =ncoarse +(ind−1)∗ngridmax
190 do i v a r =1 , nvar
191 do i =1 , a c t i v e (i l e v e l)%ngr id

302 C. Ramses source code listings

192 uold (a c t i v e (i l e v e l)%i g r i d (i) + i s k i p , i v a r) = unew(a c t i v e (i l e v e l)%i g r i d (i)
+ i s k i p , i v a r)

193 end do
194 end do
195 ! . . . rese t coo l i ng losses here i f you do not want to sum over a main step
196 do i =1 , a c t i v e (i l e v e l)%ngr id
197 i n d _ c e l l = a c t i v e (i l e v e l)%i g r i d (i) + i s k i p
198 uold (i n d _ c e l l , nvar +1) = 0.0_dp
199 unew(i n d _ c e l l , nvar +1) = 0.0_dp
200 end do
201 i f (p ressu re_ f i x) then
202 ! Cor rec t t o t a l energy i f i n t e r n a l energy i s too smal l
203 do i =1 , a c t i v e (i l e v e l)%ngr id
204 i n d _ c e l l = a c t i v e (i l e v e l)%i g r i d (i) + i s k i p
205 d=uold (i n d _ c e l l , 1)
206 u=uold (i n d _ c e l l , 2) / d
207 # i f d e f VMAX
208 i f (u>vmax) then
209 p r i n t ∗ , " u>vmax" , u , vmax
210 uold (i n d _ c e l l , 2) = min (vmax∗d , uold (i n d _ c e l l , 2))
211 u=uold (i n d _ c e l l , 2) / d
212 end i f
213 # end i f
214 # i f NDIM>1
215 v=uold (i n d _ c e l l , 3) / d
216 # i f d e f VMAX
217 i f (v>vmax) then
218 p r i n t ∗ , " v>vmax" , v , vmax
219 uold (i n d _ c e l l , 3) = min (vmax∗d , uold (i n d _ c e l l , 3))
220 v=uold (i n d _ c e l l , 3) / d
221 end i f
222 # end i f
223 #else
224 v=0.0_dp
225 # end i f
226 # i f NDIM>2
227 w=uold (i n d _ c e l l , 4) / d
228 # i f d e f VMAX
229 i f (w>vmax) then
230 p r i n t ∗ , "w>vmax" , w, vmax
231 uold (i n d _ c e l l , 4) = min (vmax∗d , uold (i n d _ c e l l , 4))
232 w=uold (i n d _ c e l l , 4) / d
233 end i f
234 # end i f
235 #else
236 w=0.0_dp
237 # end i f
238 e_kin =0.5∗d∗ (u∗∗2+v∗∗2+w∗∗2)
239 # i f NENER>0
240 do i r a d =1 , nener
241 e_kin=e_kin+uold (i n d _ c e l l , ndim+2+ i r a d)
242 end do
243 # end i f
244 e_cons=uold (i n d _ c e l l , ndim+2)−e_kin
245 # i f n d e f ETOT

303

246 i f (e_cons . l e . 0 . 0) then
247 i f (verbose_patches) then
248 p r i n t ∗ , "PATCH: e_cons i s too smal l : e_cons= " , e_cons
249 ! p r i n t ∗ , " uold (, ndim+2)= " , uold (i n d _ c e l l , ndim+2)
250 p r i n t ∗ , "PATCH: reduce speeds to " , &
251 & 0.99_dp∗uold (i n d _ c e l l , ndim+2) / e_kin , " x o ld speed "
252 end i f
253 ! decrease speeds
254 uold (i n d _ c e l l , 2 : ndim+1) =0.99_dp∗uold (i n d _ c e l l , 2 : ndim+1)∗ &
255 & uold (i n d _ c e l l , ndim+2) / e_kin
256 ! use new speeds to get new energies
257 u=uold (i n d _ c e l l , 2) / d
258 # i f NDIM>1
259 v=uold (i n d _ c e l l , 3) / d
260 #else
261 v=0.0_dp
262 # end i f
263 # i f NDIM>2
264 w=uold (i n d _ c e l l , 4) / d
265 #else
266 w=0.0_dp
267 # end i f
268 e_kin =0.5∗d∗ (u∗∗2+v∗∗2+w∗∗2)
269 e_cons=uold (i n d _ c e l l , ndim+2)−e_kin
270 i f (verbose_patches) then
271 p r i n t ∗ , "new (smal le r) v e l o c i t i e s : " , uold (i n d _ c e l l , 2 : ndim+1)
272 p r i n t ∗ , " e_cons=" , e_cons , " e_kin=" , e_kin
273 end i f
274 end i f
275 # end i f
276 ! Note : here d ivu=(−d iv . u) ∗dt
277 d iv=abs (d ivu (i n d _ c e l l)) ∗dx / dtnew (i l e v e l)
278 e_trunc= b e t a _ f i x ∗d∗max(div ,3 .0∗ hexp∗dx) ∗∗2
279 i f (e_cons<e_trunc) then
280 e_prim=enew(i n d _ c e l l)
281 i f (e_prim . g t . 0 . 0) then
282 i f (verbose_patches) p r i n t ∗ , "PATCH i n set_uold : p ressu re_ f i x "
283 uold (i n d _ c e l l , ndim+2)=e_prim+e_kin
284 else
285 # i f d e f ETOT
286 uold (i n d _ c e l l , 2 : ndim+1) =0.99_dp∗uold (i n d _ c e l l , 2 : ndim+1)∗ &
287 & uold (i n d _ c e l l , ndim+2) / e_kin
288 i f (verbose_patches) then
289 p r i n t ∗ , "PATCH i n set_uold : e_prim i s zero : " , &
290 & " e_prim=" , e_prim , " e_kin=" , e_kin , " e_cons=" , e_cons , &
291 & " e_ to t= " , uold (i n d _ c e l l , ndim+2)
292 p r i n t ∗ , "PATCH i n set_uold : reduce speeds to " , &
293 & 0.99_dp∗uold (i n d _ c e l l , ndim+2) / e_kin , " x o ld speed "
294 p r i n t ∗ , "PATCH i n set_uold new speeds : " , &
295 & uold (i n d _ c e l l , 2 : ndim+1)
296 u=uold (i n d _ c e l l , 2) / d
297 # i f NDIM>1
298 v=uold (i n d _ c e l l , 3) / d
299 #else
300 v=0.0_dp

304 C. Ramses source code listings

301 # end i f
302 # i f NDIM>2
303 w=uold (i n d _ c e l l , 4) / d
304 #else
305 w=0.0_dp
306 # end i f
307 e_kin =0.5_dp∗d∗ (u∗∗2+v∗∗2+w∗∗2)
308 e_cons=uold (i n d _ c e l l , ndim+2)−e_kin
309 p r i n t ∗ , " e_cons=" , e_cons , " e_kin=" , e_kin
310 end i f
311 # end i f
312 i f (verbose_patches) p r i n t ∗ , "PATCH: e_prim i s zero : " , &
313 & " e_prim=" , e_prim , " e_kin=" , e_kin , " e_cons=" , e_cons
314 end i f
315 end i f
316 end do
317 end i f
318 end do
587 subrou t ine godf ine1 (ind_gr id , ncache , i l e v e l)
823 i f (unew(i n d _ c e l l (i) , 1) . l e . sma l l r) then
824 i f (verbose_patches) w r i t e (∗ ,112) unew(i n d _ c e l l (i) , 1 : nvar)
825 ! se t dens i t y
826 unew(i n d _ c e l l (i) , 1)= sma l l r
827 ! se t v e l o c i t i e s
828 unew(i n d _ c e l l (i) , 2 : ndim+1) =0.0_dp
829 ! se t pressure
830 unew(i n d _ c e l l (i) , ndim+2)=min (1e−20_dp , unew(i n d _ c e l l (i) , ndim+2)) !

smal lp
831 ! remove ou t f l ow
832 f l u x (i , i 3 , j 3 , k3 ,1 : nvar , id im) =max(0 .0 _dp , &
833 & f l u x (i , i 3 , j 3 , k3 ,1 : nvar , id im)) ! i n f l o w
834 f l u x (i , i 3 + i0 , j 3 + j0 , k3+k0 , 1 : nvar , id im) =min (0 .0 _dp , &
835 & f l u x (i , i 3 + i0 , j 3 + j0 , k3+k0 , 1 : nvar , id im)) ! ou t f l ow
836 end i f

Listing C.25: Remove outflows from almost empty cells and use average pressure of adjacent cells
in subroutine ctoprim: umuscl.f90

848 subrou t ine ctopr im (uin , q , c , grav in , dt , ng r id)
860 r e a l (dp) , dimension (:) , a l l o c a t a b l e : : qhelp
861 i n t e g e r : : i , j , k , l , n , idim , nqhelp
890 ! remove ou t f lows from q , set v e l o c i t y zero
891 ! and use average pressures o f ad jacent c e l l s
892 i f (u in (l , i , j , k , 1) . l e . sma l l r) then
893 i f (verbose_patches) then
894 p r i n t ∗ , "PATCH: ctopr im : detected too smal l dens i t y "
895 p r i n t ∗ , " rho (u in) " , u in (l , i , j , k , 1) , "< " , sma l l r
896 end i f
897 ! se t v e l o c i t i e s
898 ! q (l , i , j , k , 2 : ndim+1) = u in (l , i , j , k , 2 : ndim+1)∗oneoverrho
899 q (l , i , j , k , 2 : ndim+1) =0.0_dp
900 ! remove ou t f lows from empty c e l l s and set pressure
901 a l l o c a t e (qhelp (1 :2∗ ndim))
902 qhelp =0.0_dp
903 nqhelp=0
904 i f (i . g t . iu1) then ! t h i s q was al ready w r i t t e n

305

905 q (l , i −1, j , k , 2) =max(q (l , i −1, j , k , 2) ,0 .0 _dp)
906 qhelp (1) = q (l , i −1, j , k , ndim+2)
907 nqhelp=nqhelp+1
908 end i f
909 i f (i . l t . iu2) then ! q not yet w r i t t e n
910 u in (l , i +1 , j , k , 2) =min (u in (l , i +1 , j , k , 2) ,0 .0 _dp)
911 qhelp (2) =(gamma−one) ∗uin (l , i +1 , j , k , 1) ∗ &
912 & MAX(smalle , u in (l , i +1 , j , k , ndim+2) / u in (l , i +1 , j , k , 1)−h a l f ∗&
913 & sum ((u in (l , i +1 , j , k , 2 : ndim+1) / u in (l , i +1 , j , k , 1)) ∗∗2))
914 nqhelp=nqhelp+1
915 end i f
916 # i f NDIM>1
917 i f (j . g t . ju1) then
918 q (l , i , j −1,k , 3) =max(q (l , i , j −1,k , 3) ,0 .0 _dp)
919 qhelp (3) = q (l , i , j −1,k , ndim+2)
920 nqhelp=nqhelp+1
921 end i f
922 i f (j . l t . ju2) then
923 u in (l , i , j +1 ,k , 3) =min (u in (l , i , j +1 ,k , 3) ,0 .0 _dp)
924 qhelp (4) =(gamma−one) ∗uin (l , i , j +1 ,k , 1) ∗ &
925 & MAX(smalle , u in (l , i , j +1 ,k , ndim+2) / u in (l , i , j +1 ,k , 1)−h a l f ∗&
926 & sum ((u in (l , i , j +1 ,k , 2 : ndim+1) / u in (l , i , j +1 ,k , 1)) ∗∗2))
927 nqhelp=nqhelp+1
928 end i f
929 # i f NDIM>2
930 i f (k . g t . ku1) then
931 q (l , i , j , k−1 ,4)=max(q (l , i , j , k−1 ,4) ,0 .0 _dp)
932 qhelp (5) = q (l , i , j , k−1,ndim+2)
933 nqhelp=nqhelp+1
934 end i f
935 i f (k . l t . ku2) then
936 u in (l , i , j , k +1 ,4)=min (u in (l , i , j , k +1 ,4) ,0 .0 _dp)
937 qhelp (6) =(gamma−one) ∗uin (l , i , j , k +1 ,1)∗ &
938 & MAX(smalle , u in (l , i , j , k+1 ,ndim+2) / u in (l , i , j , k +1 ,1)−h a l f ∗&
939 & sum ((u in (l , i , j , k +1 ,2: ndim+1) / u in (l , i , j , k +1 ,1)) ∗∗2))
940 nqhelp=nqhelp+1
941 end i f
942 # end i f
943 # end i f
944 ! mean
945 q (l , i , j , k , ndim+2) = max(smallp , sum(qhelp) / r e a l (nqhelp))
946 ! ! median
947 ! ! 1d : minval
948 ! ! 2d : 3 rd l a r g e s t value (from 4)
949 ! ! 3d : 4 th l a r g e s t value (from 6)
950 ! do i h e l p =1 ,ndim
951 ! qhelp (maxloc (qhelp)) =0.0_dp
952 ! end do
953 ! q (l , i , j , k , ndim+2) = maxval (qhelp)
954 dea l l oca te (qhelp)
955 # i f NENER>0
956 ! Compute thermal pressure
957 e i n t = MAX(q (l , i , j , k , ndim+2) / (gamma−one) ∗oneoverrho−erad , smal le)
958 # end i f
959 else

306 C. Ramses source code listings

Listing C.26: Makefile
1 ###
2 # I f you have problems wi th t h i s makef i le , con tac t Romain . Teyssier@cea . f r
3 ###
4 # Compi la t ion t ime parameters
5 NVECTOR = 500 # . . . d e f a u l t : NVECTOR = 500
6 NDIM = 3
7 NPRE = 8
8 NVAR = 7 # . . . d e f a u l t : NVAR = NDIM+2+2+1 (rho , vx , vy , vz , u i , 26Al , 60Fe , aton)
9 NENER = 0

10 SOLVER = hydro
11 #undef WITHOUTMPI ! . . . f o r s i n g l e processor runs
12 #undef QUADHILBERT
13 #undef SOLVERmhd ! . . . use MHD
14 # def ine NOSYSTEM 1 ! . . . avoid system c a l l s
15 ###
16 # Kathar ina ’ s comp i la t i on t ime parameters
17 # def ine DEBUG 2 ! . . . debugging output
18 # def ine DEBUG 3 ! . . . more debugging output
19 # def ine DEBUG 0 ! . . . no debugging output
20 DEBUG = 0
21 #
22 # def ine CLOUDY 1 ! use CLOUDY coo l ing implemented by Eva Ntormousi (2011 ,

ApJ 731 , 13)
23 CLOUDY = 1
24 # def ine COOLINGWEIGHTS 0 ! . . . use unweighted coo l i ng losses i n a l l c e l l s
25 # def ine COOLINGWEIGHTS 2 ! . . . use user def ined coo lp lus from namel is t , reduce

coo l i ng near feedback reg ion
26 # def ine COOLINGWEIGHTS 1 ! . . . use coo lp lus = 0 , use mask , no c o o l i n g i n c e l l s w i th

feedback
27 COOLINGWEIGHTS = 0
28 #
29 # def ine DEBUGCOOLING 1 ! . . . debugging output i f smal lnum_cool ing c o nd i t i on i s

v i o l a t e d
30 DEBUGCOOLING = 1
31 # def ine KAHANBABUSKA 1 ! . . . check i f the c a l c u l a t i n g the sum of a l l d e n s i t i e s

runs i n t o problems
32 KAHANBABUSKA = 1
33 # def ine KMFCLEAN 1 ! . . . c e l l s w i th minimal dens i t y (uu (k , 1) . eq . sma l l r) are

al lowed , t ime steps from almost empty c e l l s are ignored
34 KMFCLEAN = 1
35 #
36 # def ine MAXDRIVERGRID 1 ! . . . enhance ref inement i n feedback reg ion
37 MAXDRIVERGRID = 1
38 # def ine SMOOTH_DRIVER_EDGE 1 ! . . . c a l c u l a t e weights f o r c e l l s p a r t l y i n s i d e the

d r i v e r reg ion
39 SMOOTH_DRIVER_EDGE = 1
40 # def ine ZEROREDSHIFT 1 ! ignore r e d s h i f t s i n cool ing_module .
41 ZEROREDSHIFT = 1
42 #undef REFINE_BUBBLE ! . . . r e f i n e a l l c e l l s w i th d e n s i t i e s below 0.01∗ d_region (1)
43 REFINE_BUBBLE = 1
44 #undef CARINA ! . . . sequen t ia l s t a r fo rmat ion
45 #undef DECAYINTERVAL ! . . . se t lower l i m i t f o r the t ime i n t e r v a l f o r the 26Al decay
46 #undef EKIN ! . . . i n s e r t k i n e t i c energy , not thermal energy
47 #undef ETOT ! . . . increase t o t a l energy , don ’ t reduce speeds

307

48 #undef IGNOREX ! . . . ignore xn to r e f i n e only c lose to x ax is
49 #undef MASSFLUX 1 ! . . . p r i n t mass f l u x
50 #undef MHD ! . . . use MHD i n FromangTeyssier2006 / i n i t _ f l o w _ f i n e . f90
51 #undef RANDZELLEN ! . . . i n t e r p o l a t e p a r t l y f i l l e d c e l l s o f s p h e r i ca l reg ions
52 #undef SPH ! . . . read SPH data
53 #undef THII ! . . . se t T = 10.000 Ke lv in i n d r i v e r reg ion
54 #undef TMAX ! . . . don ’ t a l low temperatures above 5.0e6 Ke lv in
55 #undef TMIN ! . . . check i f the t o t a l energy i s l a r g e r than the k i n e t i c

energy
56 #undef VMAX ! . . . se t speed l i m i t i n ramses_wind_cleanlowdens_patches /

godunov_fine . f90
57 #undef WITHTURB ! f o r maclow_eva / i n i t _ f l o w _ f i n e . f90
58 ###
59 #PATCH0 = . . / mypatch / aton
60 #PATCH1 = . . / mypatch / ramses_wind_ISM_phases
61 #PATCH1 = . . / mypatch / cooling_module_eva
62 PATCH2 = . . / mypatch / ramses_wind_cleanlowdens_patches
63 PATCH3 = . . / mypatch / ramses_wind_standard_patches
64 EXEC = ramsesWind_
65 #PROFILER = −pg −fno−i n l i n e−f u nc t i o ns
66 #ATON_FLAGS = −DATON # Uncomment to enable ATON.
67 ###
68 COMPILEPARS = −DNVECTOR=$ (NVECTOR) −DNVAR=$ (NVAR) −DNDIM=$ (NDIM) −DNPRE=$ (NPRE) −

DNENER=$ (NENER) −DSOLVER$(SOLVER) −DDEBUG=$ (DEBUG) −DCOOLINGWEIGHTS=$ (
COOLINGWEIGHTS) −DDEBUGCOOLING=$ (DEBUGCOOLING) −DCLOUDY=$ (CLOUDY) −
DKAHANBABUSKA=$ (KAHANBABUSKA) −DKMFCLEAN=$ (KMFCLEAN) −DMAXDRIVERGRID=$ (
MAXDRIVERGRID) −DSMOOTH_DRIVER_EDGE=$ (SMOOTH_DRIVER_EDGE) −DZEROREDSHIFT=$ (
ZEROREDSHIFT) −DREFINE_BUBBLE=$ (REFINE_BUBBLE) $ (ATON_FLAGS)

69 ###
70 # For t ran compi ler op t ions and d i r e c t i v e s
72
72 # −−− No MPI , i f o r t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 #F90 = / home / ka tha r ina / i n t e l / b in / i f o r t # op t ima l . universe−c l u s t e r . de
74 #F90 = / opt / i n t e l / b in / i f o r t # 10.155.59.244 # 10.155.59.15
75 #F90 = / opt / i n t e l / Compiler / 1 1 . 1 / 0 6 9 / b in / i n t e l 6 4 / i f o r t # 10.155.59.237
76 #F90 = / opt / i n t e l / Compiler / 1 1 . 1 / 0 4 6 / b in / ia32 / i f o r t # 10.155.59.82
77 #FFLAGS = −O0 −Warn −g −t raceback −fpe0 −f t r a p u v −cpp −DNOSYSTEM # f o r debugging

only
78 #FFLAGS = −O3 −cpp −DWITHOUTMPI −DNOSYSTEM
79 #FFLAGS = −cpp −DWITHOUTMPI −DNOSYSTEM # d e f a u l t
81
81 # −−− MPI , i f o r t syntax −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 #F90 = / usr / b in / mpif90 #10.155.59.244 , op t ima l . universe−c l u s t e r . de (d e f a u l t : i f o r t

)
83 #F90 = / usr / l o c a l / OpenMPI− i n t e l / b in / mpif90 #10.155.59.237 (d e f a u l t : i f o r t)
84 #F90 = / usr / l o c a l / mpich2−1.0/ b in / mpif90 −f90= i f o r t #10.155.59.237
85 #F90 = / usr / b in / mpif90 −g −t raceback
86 #FFLAGS = −O0 −cpp −DNOSYSTEM
87 #FFLAGS = −O2 −cpp −DNOSYSTEM
88 #FFLAGS = −O3 −cpp −DNOSYSTEM
89 #FFLAGS = −cpp − f a s t −DNOSYSTEM # d e f a u l t
91
91 # −−− No MPI , g f o r t r a n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92 F90 = g f o r t r a n −O3 −f record−marker=4 −f back t race −f f r e e−l i n e−length−none −g
93 FFLAGS = −x f95−cpp−i npu t −DWITHOUTMPI

308 C. Ramses source code listings

95
95 # −−− MPI , g f o r t r a n syntax −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96 #F90 = mpif90 −O3
97 #FFLAGS = −x f95−cpp−i npu t
99
99 ###

100 MOD = mod
101 ###
102 # MPI l i b r a i r i e s
103 #LIBMPI = −lmpi_cxx
104 #LIBMPI = − l f m p i −lmpi − l e l a n
106
106 # −−− CUDA l i b r a r i e s , f o r T i tane −−−
107 #LIBCUDA = −L / usr / l o c a l / cuda / l i b 6 4 −lm −lcuda − l c u d a r t
108 #LIBCUDA = −L / opt / cuda / l i b −lm −lcuda − l c u d a r t
110
110 LIBS = $ (LIBMPI)
111 ###
112 # Sources d i r e c t o r i e s are searched i n t h i s exact order
113 VPATH = $ (PATCH0) : $ (PATCH1) : $ (PATCH2) : $ (PATCH3) : . . / $ (SOLVER) : . . / aton : . . / hydro : . . /

pm : . . / poisson : . . / amr
114 ###
115 # A l l ob jec ts
116 MODOBJ = amr_parameters . o amr_commons . o random . o pm_parameters . o pm_commons . o

poisson_parameters . o poisson_commons . o hydro_parameters . o hydro_commons . o
cool ing_module . o b i s e c t i o n . o sparse_mat . o clfind_commons . o gadge t read f i l e . o
d r i v e r . o geneva_models . o maclow . o ou t f l ow . o sph . o

117 AMROBJ = read_params . o i n i t _amr . o i n i t _ t i m e . o i n i t _ r e f i n e . o adapt ive_ loop . o
amr_step . o update_time . o output_amr . o f l a g _ u t i l s . o phys ica l_boundar ies . o
v i r t ua l _bounda r i es . o r e f i n e _ u t i l s . o n b o r s _ u t i l s . o h i l b e r t . o load_balance . o
t i t l e . o s o r t . o c o o l i n g _ f i n e . o u n i t s . o l i gh t_cone . o movie . o

118 # P a r t i c l e−Mesh ob jec ts
119 PMOBJ = i n i t _ p a r t . o ou tpu t_par t . o rho_ f i ne . o synchro_f ine . o move_fine . o newdt_f ine

. o p a r t i c l e _ t r e e . o a d d _ l i s t . o remove_ l i s t . o s ta r_ fo rma t i on . o s i n k _ p a r t i c l e . o
feedback . o c lump_f inder . o clump_merger . o f l a g _ f o r m a t i o n _ s i t e s . o

120 # Poisson so l ve r ob jec ts
121 POISSONOBJ = i n i t _ p o i s s o n . o ph i_ f ine_cg . o i n t e r p o l _ p h i . o f o r c e _ f i n e . o

mu l t i g r i d_coa rse . o mult igr id_f ine_commons . o m u l t i g r i d _ f i n e _ f i n e . o
m u l t i g r i d _ f i n e _ c o a r s e . o gravana . o boundary_poten t ia l . o rho_ana . o
output_poisson . o

122 # Hydro ob jec ts
123 HYDROOBJ = i n i t _ h y d r o . o i n i t _ f l o w _ f i n e . o wr i te_screen . o output_hydro . o

cou ran t_ f i ne . o godunov_fine . o uplmde . o umuscl . o i n te rpo l_hyd ro . o godunov_ut i l s
. o c o n d i n i t . o hydro_ f lag . o hydro_boundary . o boundana . o read_hydro_params . o
synchro_hydro_f ine . o

124 # A l l ob jec ts
125 AMRLIB = $ (AMROBJ) $ (HYDROOBJ) $ (PMOBJ) $ (POISSONOBJ)
126 # ATON ob jec ts
127 ATON_MODOBJ = t im ing . o radiation_commons . o rad_step . o
128 ATON_OBJ = observe . o i n i t _ r a d i a t i o n . o r a d _ i n i t . o rad_boundary . o rad_s ta rs . o

rad_backup . o . . / mypatch / aton / a t o n l i b / l i b a t o n . a
129 ###
130 ramses : $ (MODOBJ) $ (AMRLIB) ramses . o
131 $ (F90) $ (MODOBJ) $ (AMRLIB) ramses . o −o $ (EXEC) $ (NDIM) d $ (LIBS)
132 # $ (F90) $ (PROFILER) $ (AMRLIB) ramses . o −o $ (EXEC) $ (NDIM) d $ (LIBS)

309

133 ramses_aton : $ (MODOBJ) $ (ATON_MODOBJ) $ (AMRLIB) $ (ATON_OBJ) ramses . o
134 $ (F90) $ (MODOBJ) $ (ATON_MODOBJ) $ (AMRLIB) $ (ATON_OBJ) ramses . o −o $ (EXEC) $

(NDIM) d $ (LIBS) $ (LIBCUDA)
135 ###
136 %.o:%. f90
137 $ (F90) $ (FFLAGS) $ (COMPILEPARS) −c $^ −o $@
138 # $ (F90) $ (PROFILER) $ (FFLAGS) $ (COMPILEPARS) −c $^ −o $@
139 ###
140 clean :
141 rm ∗ . o ∗ . $ (MOD)
142 ###

Listing C.27: Example of a namelist: IC_snwind_3d.nml
1 This namel is t conta ins var ious i npu t parameters f o r RAMSES runs
3
3 &DRIVER_PARAMS
4 f i l e _ d r i v e r = ’ wind . dat ’
5 f i l e _ s n = ’ sn . dat ’
6 r _ d r i v e r =0.75d0
7 x_d r i ve r =0.0d0
8 y_d r i ve r =0.0d0
9 z_d r i ve r =0.0d0

10 coo lp lus =0.0d0
11 n_stars =1.0d0
12 /
14
14 &RUN_PARAMS
15 hydro =. t r ue .
16 debug =. t r ue .
17 ncon t ro l =10
18 nsubcycle=2
19 nremap=10
20 n r e s t a r t =0
21 verbose_patches =. t r ue .
22 /
24
24 &AMR_PARAMS
25 l eve lm in =7
26 levelmax=7
27 ngridmax=340000
28 boxlen =21.25
29 /
31
31 &BOUNDARY_PARAMS
32 nboundary = 6
33 bound_type= 2 , 2 , 2 , 2 , 2 , 2
34 ibound_min=−1, 1 , −1, −1, −1, −1
35 ibound_max=−1, 1 , 1 , 1 , 1 , 1
36 jbound_min= 0 , 0 , −1, 1 , −1, −1
37 jbound_max= 0 , 0 , −1, 1 , 1 , 1
38 kbound_min= 0 , 0 , 0 , 0 , −1, 1
39 kbound_max= 0 , 0 , 0 , 0 , −1, 1
40 /
42
42 &INIT_PARAMS

310 C. Ramses source code listings

43 nregion=2
44 reg ion_type (1) = ’ square ’
45 reg ion_type (2) = ’ square ’
46 x_center =10.625 ,10.625
47 y_center =10.625 ,10.625
48 z_center =10.625 ,10.625
49 length_x =21.25 ,15.5
50 length_y =21.25 ,15.5
51 length_z =21.25 ,15.5
52 exp_region =10.0 ,2.0
53 d_region =0.0166 ,1.66
54 u_region =0.0 ,0 .0
55 v_region =0.0 ,0 .0
56 w_region =0.0 ,0 .0
57 p_region =1.38e−6 ,1.38e−6
58 /
60
60 &OUTPUT_PARAMS
61 tend =1262.43
62 d e l t a _ t o u t =15.78
63 /
65
65 &HYDRO_PARAMS
66 gamma=1.66667
67 cou ran t_ fac to r =0.8
68 slope_type=1
69 scheme= ’ muscl ’
70 riemann= ’ acous t i c ’
71 p ressu re_ f i x =. t r ue .
72 b e t a _ f i x =0.d0
73 sma l l r =1.e−7
74 /
76
76 &PHYSICS_PARAMS
77 coo l i ng =. t r ue .
78 T_min_f ix =100.
79 metal =. f a l s e .
80 z_ave =1.0d0
81 T2_star =0.0
82 /
84
84 &REFINE_PARAMS
85 i n t e r p o l _ v a r =0
86 i n t e r p o l _ t y p e =2
87 err_grad_d =0.1
88 err_grad_p =0.1
89 /

C.1 Analytic formulas for the feedback region volume
For (pseudo) 2D simulations (nz=1) the stellar feedback energy and mass is homogeneously dis-
tributed over the feedback region, which is a cylinder of given radius (rdriver) and scaled with
the ratio of the volume of a one cell high cylinder with this radius to the volume of a sphere of the

C.1 Analytic formulas for the feedback region volume 311

same radius (πr
2
fb∆x

4π
3
r3

fb
= 3∆x

4rfb
). In 3D runs the newly inserted energy and mass are homogeneously

distributed over a sphere of given radius (rdriver). In 2D the percentage of the cell volume that is
inside the feedback region can be calculated analytically. To set the integration limits, the feedback
routine checks how many of the corners of the cell are inside the feedback region. The routine uses
the absolute values of the x, y and z distances of the cell corners to reduce the number of different
cases.

all corners 3 corners

2 corners

1 corner no corner

The cases “no corner” and “all corners” are trivial (0% or 100% inside).

C.1.1 2D: one corner inside the feedback region
In the 2D case with only the corner (xmin|ymin) inside the feedback region, the fraction the cell
volume inside the feedback region (pfb) can be calculated with:

pfb =

∫ x1

xmin
dx
∫ √r2−x2

ymin
dy

Vcell

=

∫ x1

xmin

√
r2 − x2dx− ymin (x1 − xmin)

(∆x)2

=

1
2

(
x
√
r2 − x2 + r2 arcsin x

r

)x1

xmin
− ymin (x1 − xmin)

(∆x)2

=
xminymin − xminy1

2
− x1ymin

2
+ r2

2

(
arcsin x1

r
− arcsin xmin

r

)
(∆x)2

(xmin|ymin)

(xmin|y1)

(x1|ymin)

C.1.2 2D: 2 corners inside the feedback region
If there are two corners of the 2D cell inside the feedback region, these corners are (xmin|ymin) and
(xmax|ymin) or (xmin|ymax). In the case xmin > ymin the x and y coordinates are swapped to get an

312 C. Ramses source code listings

x-integral. The fraction the cell volume inside the feedback region (pfb) can be calculated with:

pfb =

∫ xmax

xmin
dx
∫ √r2−x2

ymin
dy

Vcell

=

∫ xmax

xmin

√
r2 − x2dx− ymin∆x

(∆x)2

=

1
2

(
x
√
r2 − x2 + r2 arcsin x

r

)xmax

xmin
− ymin∆x

(∆x)2

=
xmaxy2

2
− xminy1

2
+ r2

2

(
arcsin xmax

r
− arcsin xmin

r

)
− ymin∆x

(∆x)2

(xmin|ymin)

(xmin|y1)
(xmax|y2)

C.1.3 2D: 3 corners inside the feedback region
If only the corner (xmax|ymax) lies outside the feedback region, pfb can be calculated with:

pfb =

∫ xmax

x1
dx
∫ √r2−x2

ymin
dy + (x1 − xmin)∆x

Vcell

=

∫ xmax

x1

√
r2 − x2dx− ymin (xmax − x1) + (x1 − xmin)∆x

(∆x)2

=

1
2

(
x
√
r2 − x2 + r2 arcsin x

r

)xmax

x1
− ymin (xmax − x1) + (x1 − xmin)∆x

(∆x)2

=
xmaxy1

2
− x1ymax

2
+ r2

2

(
arcsin xmax

r
− arcsin x1

r

)
− ymin (xmax − x1) + (x1 − xmin)∆x

(∆x)2

(x1|ymax)

(xmax|y1)

(x1|ymin)

In 3D the percentage of the cell inside the feedback region is calculated with Monte-Carlo if it is
not a trivial case (0% or 100%). For all three directions ν random variables are calculated. The
fraction the cell volume inside the feedback region pfb is the number of random points inside the
feedback region (|(xi|yi|zi)| < r) divided by the total number of random points n.

C.1 Analytic formulas for the feedback region volume 313

C.1.4 Integral for 3D feedback region boundary cells

x = [xmin, xmax], xmax =
√
R2 − y2

min − z2
min

y = [ymin, ymax], ymax =
√
R2 − x2 − z2

min

z = [zmin, zmax], zmax =
√
R2 − x2 − y2

pfb =

∫ xmax

xmin

∫ ymax

ymin

∫ zmax

zmin

dzdydx

=

∫ xmax

xmin

∫ ymax

ymin

(√
R2 − x2 − y2 − zmin

)
dydx

with Integral 113 in Netz (1986)
∫ √

a2 − x2dx =
1

2

(
x
√
a2 − x2 + a2 arcsin

x

a

)
=

∫ xmax

xmin

(
1

2

(
y
√
R2 − x2 − y2 + (R2 − x2) arcsin

y√
R2 − x2

)
− zmin

)ymax

ymin

dx

pfb =
1

2

∫ xmax

xmin

(√
R2 − x2 − z2

min

√
R2 − x2 −R2 + x2 + z2

min − ymin

√
R2 − x2 − y2

min

+ (R2 − x2) arcsin

√
R2 − x2 − z2

min√
R2 − x2

− (R2 − x2) arcsin
ymin√
R2 − x2

− 2zmin

√
R2 − x2 − z2

min + 2zminymin

)
dx

with arcsin

√
1−

(
zmin√
R2 − x2

)2

= arccos
zmin√
R2 − x2

for (
zmin√
R2 − x2

≥ 0)

=
1

2

∫ xmax

xmin

((
R2 − x2

)(
arccos

zmin√
R2 − x2

− arcsin
ymin√
R2 − x2

)
− ymin

√
R2 − x2 − y2

min − zmin

√
R2 − x2 − z2

min + 2zminymin

)
dx

Wolfram Mathematica online integrator (http://integrals.wolfram.com/index.jsp):∫ (
R2 − x2

)(
arccos

z√
R2 − x2

− arcsin
y√

R2 − x2

)
dx =

−x(3R2 − x2)

3

(
arcsin

y√
R2 − x2

− arccos
z√

R2 − x2

)
+

2R3

3
arctan

xy

R
√
R2 − x2 − y2

+
2R3

3
arctan

xz

R
√
R2 − x2 − z2

−xy
6

√
R2 − x2 − y2 − y

6
(3R2 + y2) arcsin

x√
R2 − y2

−xz
6

√
R2 − x2 − z2 − z

6
(3R2 + z2) arcsin

x√
R2 − z2

http://integrals.wolfram.com/index.jsp

314 C. Ramses source code listings

pfb =
1

12

(
−2x(3R2 − x2)

(
arcsin

ymin√
R2 − x2

− arccos
zmin√
R2 − x2

)
+4R3 arctan

xymin

R
√
R2 − x2 − y2

min

+ 4R3 arctan
xzmin

R
√
R2 − x2 − z2

min

−xymin

√
R2 − x2 − y2

min − ymin(3R2 + y2
min) arcsin

x√
R2 − y2

min

−xzmin

√
R2 − x2 − z2

min − zmin(3R2 + z2
min) arcsin

x√
R2 − z2

min

−3xymin

√
R2 − x2 − y2

min − 3ymin(R2 − y2
min) arcsin

x√
R2 − y2

min

−3xzmin

√
R2 − x2 − z2

min − 3zmin(R2 − z2
min) arcsin

x√
R2 − z2

min

+ 12zminyminx

)xmax

xmin

(C.1)

=
1

12

(
−2x(3R2 − x2)

(
arcsin

ymin√
R2 − x2

− arccos
zmin√
R2 − x2

)
+4R3 arctan

xymin

R
√
R2 − x2 − y2

min

+ 4R3 arctan
xzmin

R
√
R2 − x2 − z2

min

−4xymin

√
R2 − x2 − y2

min − ymin(6R2 − 2y2
min) arcsin

x√
R2 − y2

min

−4xzmin

√
R2 − x2 − z2

min − zmin(6R2 − 2z2
min) arcsin

x√
R2 − z2

min

+ 12zminyminx

)xmax

xmin

(C.2)

C.1 Analytic formulas for the feedback region volume 315

=
1

6

√
R2 − y2

min − z2
min(2R2 + y2

min + z2
min)

(
arccos

zmin√
y2

min + z2
min

− arcsin
ymin√

y2
min + z2

min

)

+
R3

3
arctan

ymin

√
R2 − y2

min − z2
min

Rzmin

+
R3

3
arctan

zmin

√
R2 − y2

min − z2
min

Rymin

−ymin

3

√
R2 − y2

min − z2
min

√
R2 − (R2 − y2

min − z2
min)− y2

min

−ymin

6
(3R2 − y2

min) arcsin

√
R2 − y2

min − z2
min√

R2 − y2
min

−zmin

3

√
R2 − y2

min − z2
min

√
R2 − (R2 − y2

min − z2
min)− z2

min

−zmin

6
(3R2 − z2

min) arcsin

√
R2 − y2

min − z2
min√

R2 − z2
min

+yminzmin

√
R2 − y2

min − z2
min

+
xmin

6
(3R2 − x2

min)

(
arcsin

ymin√
R2 − x2

min

− arccos
zmin√

R2 − x2
min

)

−R
3

3
arctan

xminymin

R
√
R2 − x2

min − y2
min

− R3

3
arctan

xminzmin

R
√
R2 − x2

min − z2
min

+
xminymin

3

√
R2 − x2

min − y2
min +

ymin

6
(3R2 − y2

min) arcsin
xmin√

R2 − y2
min

+
xminzmin

3

√
R2 − x2

min − z2
min +

zmin

6
(3R2 − z2

min) arcsin
xmin√
R2 − z2

min

−zminyminxmin

(C.3)

316 C. Ramses source code listings

=
1

6

√
R2 − y2

min − z2
min(2R2 + y2

min + z2
min)

(
arccos

zmin√
y2

min + z2
min

− arcsin
ymin√

y2
min + z2

min

)

+
R3

3
arctan

ymin

√
R2 − y2

min − z2
min

Rzmin

+
R3

3
arctan

zmin

√
R2 − y2

min − z2
min

Rymin

−R
3

3
arctan

xminymin

R
√
R2 − x2

min − ymin
2 −

R3

3
arctan

xminzmin

R
√
R2 − x2

min − zmin
2

+
xmin

6
(3R2 − x2

min)

(
arcsin

ymin√
R2 − x2

min

− arccos
zmin√

R2 − x2
min

)

+
ymin

6
(3R2 − y2

min)

(
arcsin

xmin√
R2 − y2

min

− arccos
zmin√

R2 − y2
min

)

+
zmin

6
(3R2 − z2

min)

(
arcsin

xmin√
R2 − z2

min

− arccos
ymin√

R2 − z2
min

)
+
yminzmin

3

√
R2 − y2

min − z2
min +

xminymin

3

√
R2 − x2

min − y2
min +

xminzmin

3

√
R2 − x2

min − z2
min

−zminyminxmin

(C.4)

The wind speeds at the borders of the feedback region are expected to be too small to be resolved –
hence the kinetic wind energy (0.5v2dm [code-mass-unit/code-length-unit/code-time-unit2] with
density increase dm [code-mass-unit/code-length-unit3]) is treated as unresolved kinetic energy
and hence added to the internal energy (see Code Listing C.1).
If mass loss is used, it is assumed that this gas moves with the bulk speed. Thus, inserting mass usu-
ally creates kinetic energy, since the bulk speed in the feedback region is almost always nonzero.
To insert the fixed amount of stellar feedback energy the code subtracts this additional kinetic en-
ergy (that corresponds to the bulk speed of the cell inside the feedback region and the mass that
has been newly inserted into this cell) from the newly inserted internal energy in this cell.
The name of the variable rhodriver used in Code Listing C.1 might be misleading – it is used
for the density increase due to the mass ejection caused by stellar feedback. The module driver
(stored in the file driver.f90) provides arrays and subroutines to handle the feedback. It is
shown in Code Listing C.1 and reads data from a file called “driver” that is located in the local
directory. This file has five entries per line that are separated by blanks: time, internal energy
gain (per time unit and for the whole feedback region), mass loss (per time unit and for the whole
feedback region), wind speed and 26Al yields (percentage of mass loss). The number of lines in the
driver file can either be specified or determined by the code at run-time. As already mentioned, the
code has two ways of adding internal energy: internal energy (column 2 in the driver file) that is
not connected to mass loss of the feedback region and unresolved kinetic energy (computed from
column 3 and 4 in the driver file) that takes mass feeding into account.
The shape (slightly asymmetric feedback regions, 4-symmetric feedback regions) and scaling
of the stellar feedback (energy, mass) is explained in Sect. 4.3 on Sedov-Taylor blasts and in
Sect. 4.4.1 on constant winds.

	1 Motivation
	2 Background: massive stars and their surroundings
	2.1 Theories of the interstellar medium (ISM)
	2.1.1 Classic equilibrium models for the ISM
	2.1.2 Dynamic multi-phase ISM

	2.2 Mass and energy exchange
	2.2.1 Mean free path
	2.2.2 Evaporation due to thermal conduction
	2.2.3 Molecular diffusion
	2.2.4 Turbulent diffusion
	2.2.5 Ambipolar diffusion
	2.2.6 Cooling and heating processes in the ISM

	2.3 Multi-Messenger Astronomy
	2.4 Messengers from the Orion-Eridanus region
	2.4.1 Cosmic rays: -ray data
	2.4.2 Nucleosynthesis yields: 26Al
	2.4.3 Hot ISM: X-ray data
	2.4.4 Hot ISM: Ovi
	2.4.5 Warm ionized interstellar gas: H
	2.4.6 Total number density of warm, cool and cold gas: infrared emission
	2.4.7 Molecular gas: CO and H2 fluorescence
	2.4.8 Hi: 21 cm line

	2.5 Giant Molecular Clouds (GMCs)
	2.5.1 Simulated clouds

	2.6 Massive stars
	2.6.1 Orion's OB associations

	2.7 Stellar feedback
	2.7.1 Mass loss rates and surface abundances
	2.7.2 Stellar wind velocities
	2.7.3 Computed feedback momentum and kinetic energy
	2.7.4 Supernovae
	2.7.5 Feedback of individual stars in an OB association

	3 Method: hydrodynamic simulations of the ISM
	3.1 Fluid approximation
	3.2 Spatial discretization
	3.2.1 Setting up a grid code simulation
	3.2.2 Geometry of grid code simulations

	3.3 Time discretization and von Neumann stability analysis
	3.4 Hydrodynamic conservation laws (Euler equations)
	3.5 Riemann problem
	3.5.1 Solution of the Riemann problem

	3.6 Godunov's method
	3.7 2nd order Godunov schemes
	3.8 Side note: alternatives to Godunov's method
	3.9 Adaptive mesh refinement (AMR) and parallelization
	3.9.1 Pitfalls of AMR
	3.9.2 Numerical diffusion

	4 Basic building blocks of simulations
	4.1 Waves, discontinuities and shocks
	4.1.1 Contact discontinuity (CD)
	4.1.2 Rarefaction wave
	4.1.3 Shock wave and shock jump conditions

	4.2 Sod shock tube test
	4.2.1 Analytic solution of the Sod shock tube problem
	4.2.2 Initial conditions of the Sod shock tube test
	4.2.3 Results of the Ramses Sod shock tube test

	4.3 Sedov-Taylor blast wave test
	4.3.1 Analytic solution of the Sedov-Taylor blast wave
	4.3.2 Initial conditions of the Sedov-Taylor blast wave test
	4.3.3 Results of the Sedov-Taylor blast wave test

	4.4 Theories of stellar winds
	4.4.1 Wind theory of Castor1975ApJ200p107
	4.4.2 Thin shell approximation
	4.4.3 Steady-state wind of Chevalier1985Natur317p44

	4.5 Snowplow phases
	4.5.1 Adiabatic pressure driven snowplow
	4.5.2 Momentum conserving snowplow

	5 Method: codes and code modifications
	5.1 Hydrodynamic codes
	5.1.1 The Pluto code: spherical symmetry
	5.1.2 The Ramses code: radioactive tracers
	5.1.3 The Athena code: the effect of ionization

	5.2 Implementation of mass, momentum and energy feedback
	5.2.1 Pluto code modifications
	5.2.2 Code tests
	5.2.3 Ramses code modifications
	5.2.4 Code tests: 26Alfeedback

	6 1D: Feedback efficiency in spherical symmetry
	6.1 SNe without progenitor winds
	6.1.1 Previous work
	6.1.2 Grid of models
	6.1.3 Findings and discussion

	6.2 SN blast in a cavity
	6.2.1 Comparison to previous work on SNe in pre-existing bubbles
	6.2.2 Feedback energy efficiency: winds or SNe?
	6.2.3 Zones with enhanced radiative losses
	6.2.4 Convergence of the retained kinetic energy
	6.2.5 Retained kinetic energy

	6.3 Conclusions

	7 3D: Porosity and depth of embedding
	7.1 Setup of the 3D models
	7.2 Grid of models
	7.3 Impact of the cooling-heating model
	7.4 Impact of pre-existing cavities
	7.5 Homogeneous infinite cloud
	7.5.1 Doubling the feedback

	7.6 Homogeneous semi-infinite cloud with ``chimney''
	7.6.1 The ``chimney'' width
	7.6.2 The ``chimney'' length

	7.7 Convergence
	7.8 Conclusions from the 3D ``chimney'' models

	8 3D: Feedback in non-homogeneous clouds
	8.1 Simulation Setup
	8.2 Results
	8.3 Artificial observations of 26Al

	9 Discussion and Conclusions
	Index
	Glossary
	Symbols and Units
	Bibliography
	Danksagung
	A Mathematica source code listings
	B Pluto source code listings
	C Ramses source code listings
	C.1 Analytic formulas for the feedback region volume
	C.1.1 2D: one corner inside the feedback region
	C.1.2 2D: 2 corners inside the feedback region
	C.1.3 2D: 3 corners inside the feedback region
	C.1.4 Integral for 3D feedback region boundary cells

