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1 Introduction 

In order to face the challenges of the 21
st
 century, such as a growing world population, global 

food supply and ongoing climate change resulting in a progressive burden on the ecosystems, 

there is a strong need for products and methods that can provide information for advanced 

analyses of these effects. On a global level, agricultural land resources are limited and also 

endangered by land degradation due to faulty management decisions. To ensure the food 

supply of the world population in the future, one option would be to expand agricultural land, 

which is only possible by clearing even more forests. Since this is neither an appropriate nor a 

long-term solution, the demand can only be met by a sustainable increase in agricultural 

productivity and an associated reduction in the yield gap, that is, in the difference between 

potential and actual yield. This necessitates the introduction of agricultural management 

strategies, such as the selection of suitable plants and cultivars, improved water productivity, 

organic farming, fertilizer and pesticide management, soil conservation, and irrigation 

(KAUFMANN ET AL., 2012). The spatial variability in the landscape due to different climate 

conditions, varying soils, and topography likewise requires accurate spatial information for 

the monitoring of crop and soil characteristics. Since landscape-scale vegetation mapping 

requires expensive and time-consuming field surveys, the remote sensing technique offers an 

alternative which is both time- and cost-effective (GOVENDER ET AL., 2007). The German 

satellite mission EnMAP (Environmental Mapping and Analysis Program), to be launched in 

2017, has the strong potential to provide spatial information products that are relevant to 

agricultural issues. According to KAUFMANN ET AL. (2012) the major scientific goals of the 

EnMAP mission are to study environmental changes, investigate ecosystem responses to 

increasing human activities, and monitor the management of natural resources. For this 

purpose, EnMAP will provide high-quality calibrated hyperspectral data enabling the 

development of novel methodologies for the accurate retrieval of geochemical, biochemical 

and biophysical parameters, analyses of ecological processes and the provision of information 

products that can serve as input for advanced ecosystem models. 

1.1 Challenges of Agriculture in the 21
st
 century 

Within the last decades remote sensing has proved its potential to provide information on a 

full range of agricultural issues. According to HABOUDANE ET AL. (2002) the benefits of this 

technique have been shown for crop classification, crop forecasting, yield prediction, mapping 

of crop status and condition and, last but not least, crop disease and micronutrient deficiency. 
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Yet traditional farming methods are being stretched to their limits. This has led to an 

enhanced interest in products supporting precision farming and the development of smart 

systems for agricultural resource management, which takes the land heterogeneity into 

account and has progressed towards a site specific management that targets spatial variability 

in soils and vegetation performance (PINTER ET AL., 2003). Precision farming aims to boost 

productivity and to optimize profitability in a sustainable way. To achieve these objectives, 

image-based remote sensing offers a technique that supplies spatial information on 

agricultural fields based on its potential by retrieving the biophysical and biochemical 

compounds of the plants growing there. This information can be used in early stages of the 

growing period to serve the quantification of adequate fertilizer demand, enabling ideal 

growth of the crops, which depends in particular on nitrogen supply. Since nitrogen content is 

directly related to chlorophyll content and therefore to photosynthesis, its supply is most 

important for crop growth and productivity. If nitrogen supply is too low, chlorophyll 

becomes ineffective and decreases, which leads to a reduced yield and thus to an economic 

loss. By contrast, if nitrogen supply is too high, it is washed out and infiltrates water bodies, 

which leads to eutrophication of aquatic ecosystems as well as economic loss (WOOD ET AL., 

1993). In consequence, knowledge about the chlorophyll concentration in the canopy is of 

high relevance for assessing nitrogen variability and stress (BLACKMER ET AL., 1996). 

Once agricultural plants reach an advanced development stage, the focus is on health 

monitoring and estimation of yield. For this purpose, agro-ecological land surface process 

models are used to allow the explicit simulation of crop growth. Plant parameters retrieved 

from hyperspectral image data thereby serve as input for these models (e.g., PROMET-V 

(SCHNEIDER & MAUSER, 2001)), resulting in site-specific information on key parameters 

which are not directly observable by remote sensing, such as biomass, plant height, crop 

yield, and nitrogen content. Dynamic vegetation models help to deepen process understanding 

as they are based on eco-physiological processes and feedbacks during the growing period 

(KAUFMANN ET AL., 2012). When linked with agricultural management models (e.g., 

PROMET (HANK, 2008)) and canopy models describing the distribution of assimilates within 

the canopy, valuable and reasonable results can be achieved (e.g., BACH ET AL., 2003; HANK 

ET AL., 2012). In future, the frequent availability of high-quality data provided by EnMAP 

will support further developments and will help such coupled model systems to reach an 

operational stage (KAUFMANN ET AL., 2012). In the context of global agriculture and food 

supply, these models can provide valuable information for reducing the yield gap, especially 

in regions with low-efficiency farming systems. 
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1.2 Airborne and Spaceborne Imaging Spectroscopy 

The surface of the earth interacts with incident radiation in the form of absorption, reflectance 

and transmission as a function of the wavelength, and is dependent on surface characteristics, 

such as roughness, physical state or color. The absorption features are thereby defined by the 

chemical bonds, harmonics and overtones of vibrational electronic transitions of the material. 

Thus, the different surfaces have individual spectral signatures, i.e., specific reflection and 

absorption characteristics over the electromagnetic spectrum. Imaging spectroscopy focuses 

on the 400 to 2500 nm range of the spectrum because solar radiation shows the highest 

intensity in this range (Figure 1-1) (KAUFMANN ET AL., 2012).  

 

Figure 1-1: Solar radiation spectrum of top of the atmosphere radiation and global radiation at sea level 

(composed of incoming, diffuse, and reflected radiation) with major atmospheric absorption bands (KAUFMANN 

ET AL., 2012; based on data derived from the American Society for Testing and Materials (ASTM) Terrestrial 

Reference Spectra). 

Passive remote sensing sensors measure the reflected signal from the surface, which can be 

divided into radiance and reflectance. These can be defined as follows: 

(1) Radiance is the part of incident radiation that is reflected from the surface. It describes 

the energy flux leaving the surface and has a physical unit (W / m² sr nm). 

(2) Reflectance is the dimensionless ratio of reflected to incident radiation, thus it can be 

seen as a pure surface property, which is dependent on illumination and viewing 

geometry if it has no Lambertian properties (ideal diffusely reflecting surface). 

Imaging spectroscopy, which is also known as hyperspectral imaging, acquires simultaneous 

images in a high number of spectral bands, so that for each pixel of the resulting multichannel 

image a contiguous reflectance spectrum can be derived (e.g., GOETZ ET AL., 1985). Figure 

1-2 gives an overview of different types of surfaces and the various spectral signatures within 

the main part of the solar domain. 
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Figure 1-2: Reflectance spectra of selected Earth’s surface components (KAUFMANN ET AL., 2012; based on data 

derived from the USGS Digital Spectral Library). The laboratory measurements represent samples of an oak 

leaf from Colorado (leaf), Aventurine quartz from India (rock), Montmorillonite and Illite from Virginia (soil), 

seawater from the Pacific Ocean (water), fresh snow from Colorado (snow), and black road asphalt from 

Colorado (urban). 

Hyperspectral imaging has its origin in the application of multispectral imagery with airborne 

and spaceborne sensors since the 1960s. Multispectral systems were developed for the 

gathering of information in various scientific fields, such as agriculture, geology and urban 

spaces (LANDGREBE, 1999). These kinds of sensors collect data only with a small number of 

broad and discrete wavelength bands in the visible (380 – 740 nm), near infrared (NIR) (740 – 

1400 nm) and short-wavelength infrared (SWIR) (1400 – 3000 nm). It should be noted that 

the spectral regions of visible and NIR often are summarized as VNIR. Advances in sensor 

technology in the 1980s have led to the first hyperspectral sensors typically containing more 

than 200 contiguous bands, which allowed the construction of quasi-continuous reflectance 

spectra. This enabled far greater in-depth examination of surface features in contrast to the 

relatively coarse bandwidths of multispectral sensors. Hence, the term ‘spectral resolution’ is 

defined by the number and width of wavelength ranges that can be measured separately by a 

sensor. The higher the number of available bands and the lower the width of these bands, the 

higher the spectral resolution (GOVENDER ET AL., 2007), which enables a finer discrimination 

of unique spectral features. 

Hyperspectral imagers were first established in aircrafts as airborne sensors, such as AIS 

(VANE ET AL., 1984), DAIS (COLLINS & CHANG, 1990), CASI (GOWER ET AL., 1992), AVIRIS 

(VANE ET AL., 1993), HyMap (COCKS ET AL., 1998), AVIS (OPPELT & MAUSER, 2007), APEX 

(ITTEN ET AL., 2008) and HySpex (BAUMGARTNER ET AL., 2012). In addition to the very 

successful multispectral systems in space, such as the Landsat program (TM, ETM, OLI) and 

ASTER, hyperspectral spaceborne sensors initially came up in the year 2000 with the 

Hyperion program by the National Aeronautics and Space Administration (NASA) 

(PEARLMAN ET AL., 2003), followed by CHRIS / PROBA by the European Space Agency 
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(ESA) in 2001 (BARNSLEY ET AL., 2004), HJ-1A by the China Aerospace Science and 

Technology Corporation (CASC) in 2008 (WANG ET AL., 2010) and HICO by the NASA in 

2009 (CORSON ET AL., 2008). 

However, these pioneers of spaceborne spectrometers have certain limitations, since some of 

them serve primarily as technology demonstrators (Hyperion, CHRIS), others cover only the 

VNIR range (CHRIS, HJ-1A, HICO) or have a low signal-to-noise ratio (Hyperion) 

(KAUFMANN ET AL., 2012). The German Environmental Mapping and Analysis Program 

(EnMAP) strives to overcome these limitations. From 2017 on, EnMAP will provide high-

quality hyperspectral data on a regional scale. The present study is embedded in the scientific 

preparation of the mission, whose background is described in the following section. 

Apart from the EnMAP mission, further hyperspectral imagers are currently in preparation: 

PRISMA (PRecursore IperSpettrale della Missione Operative) by the Italian Space Agency 

(ASI), HISUI (Hyperspectral Imager Suite) by the Japanese Aerospace Exploration Agency 

(JAXA), HyspIRI (Hyperspectral Infrared Imager) by the NASA and, last but not least, 

HYPXIM by the Centre National d’Études Spatiales (CNES) (KAUFMANN ET AL., 2012).  

1.3 The EnMAP Mission  

 

Figure 1-3: Illustration of EnMAP (KAUFMANN ET AL., 2012). 

Hyperspectral remote sensing provides technology to derive biophysical land surface 

parameters, which are vital for improved land surface management, more precisely compared 

to multispectral methods (STAENZ, 2009). From 2017 onwards, the upcoming German satellite 

mission EnMAP (Figure 1-1) will deliver high-quality hyperspectral data with a spatial 

resolution of 30 meters (KAUFMANN ET AL., 2012). EnMAP will be launched in a sun-

synchronous orbit at a height of 653 km (at 48 °N) and an inclination angle of 97.96°, 

allowing the satellite a revisit time of 23 days. Furthermore, in particular cases, the revisit 
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parameters lead to the following question: Is it possible to gain multiseasonal information 

about biophysical and biochemical land surface parameters from spaceborne imaging 

spectroscopy without being dependent on in-situ data? 

As part of this study, it is examined whether the retrieval of biophysical and biochemical 

parameters is possible throughout the growing period, and valid for different crops by the use 

of a unified method, which must not be adapted to the individual time steps of measurements. 

Further, a main objective must be to derive this information without depending on a-priori 

information in the form of in-situ data, as an implementation of corresponding field 

measurements in the context of EnMAP would not be viable. 

Consequently, this study focuses on the retrieval of leaf area index and chlorophyll content, as 

they are important variables for the monitoring of the current status of plant and of canopy 

physiology, respectively. Leaf area index describes the size of the producing layer (WEISS ET 

AL., 2001) and is important for the estimation of foliage cover, as well as for forecasting crop 

growth and yield. It promotes the understanding of biophysical processes in canopies 

(HABOUDANE ET AL., 2004). Chlorophyll content is of particular significance as it indicates 

photosynthesis activity. As described above, it is directly related to nitrogen concentration and 

thus can serve as a measure of the crop response to nitrogen application (HABOUDANE ET AL., 

2002). These two variables occur on different scales; chlorophyll content as chemical 

compound takes place at the leaf level, while leaf area index is a structural variable describing 

a canopy property.  

The challenge of estimating these parameters from hyperspectral data without the use of in-

situ data leads to the application of physically-based methods. For this purpose, the widely 

accepted coupled leaf optical properties model (PROSPECT-5b) and canopy bidirectional 

reflectance model (4SAIL) PROSAIL (JACQUEMOUD ET AL., 2009) were applied, which 

simulates realistic reflectance data for homogeneous vegetated surfaces (JACQUEMOUD ET AL., 

1995). In contrast to empirical-statistical models, such as vegetation indices which have to be 

calibrated against in-situ data if they are to be used for the derivation of actual vegetation 

variables, physically based methods can be applied without in-situ data available. Due to their 

intrinsic dependency on in-situ data, empirical models may deliver high-quality results, but at 

the same time suffer from a very limited transferability. In addition, vegetation indices are 

limited due to the fact that they are not a measure for a specific variable, such as chlorophyll 

content, since the reflected signal is influenced by the interaction of several biophysical and 

biochemical components (e.g., HABOUDANE ET AL., 2004). The inversion of a reflectance-

generating physically based model, by contrast, enables the determination of several 

biophysical parameters. Furthermore, empirical methods are sensitive to anisotropy effects 

that result from a variable sun-sensor-target geometry within the airborne data. This fact is 

also of importance in regard to the ± 30° pointing capability of EnMAP. Physically based 

approaches may explicitly account for these anisotropies, so that illumination angle dependent 
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nonlinearities may serve as additional information instead of being an error source. This can 

be integrated into the retrieval strategy, thereby improving the overall retrieval quality. Such 

models have previously been applied to field crops and grasslands (e.g., JACQUEMOUD ET AL., 

2000; VERHOEF & BACH, 2003). 

To counteract the non-availability of EnMAP data until 2017, an alternative database was 

necessary for the implementation and examination of retrieval strategies. Hence airborne 

spectroscopy was widely used for the development of these methods. Applying commercially 

available imaging spectrometers, however, is limited by the sensor availability and often 

involves high costs, which makes it almost impossible to generate a multiseasonal dataset for 

a specific test area based on commercial sensors alone. To overcome this limitation, a cost-

effective series of airborne imaging spectrometers called AVIS (Airborne Visible and Near 

Infrared Spectrometer) has been developed at the Department of Geography of the LMU 

Munich (OPPELT & MAUSER, 2007). The goal of obtaining a multiseasonal database which is 

able to project the vegetation dynamics over the growing period was thus achieved by the use 

of the third-generation sensor, AVIS-3. Therefore, four data acquisitions were successfully 

performed during the course of the vegetation period of 2012 over a 12 km² large test site in 

Southern Germany (Neusling, Lower Bavaria). Because AVIS-3 is an experimental sensor, 

the elaborate preprocessing steps are an essential part of this thesis. Furthermore, the 

multiseasonal campaign was complemented by two additional acquisitions from the airborne 

sensor HySpex, which is operated by the German Aerospace Center (DLR). In order to 

accurately validate the methods developed for the retrieval of biophysical and biochemical 

parameters an extensive field campaign was carried out alongside the airborne data 

acquisitions. 

Since the retrieval strategies applied to the multiseasonal database were based on the spectral 

properties of the airborne sensors, which differ from those of EnMAP, and were validated on 

field measurements which reflect a comparatively higher spatial resolution of the very same, 

these methods are neither valid nor easily transferable to the properties of the satellite. To test 

the applicability of the analysis procedure on a spaceborne scale, both the database as well as 

the methods were consequently adapted to the properties of EnMAP. 

1.5 Radiative Properties of Vegetation 

For the retrieval of plant-physiological parameters from remote sensing data it is important to 

understand the biophysical and biochemical processes which regulate the radiative properties 

of leaves and vegetation canopies. While the radiative properties are, on the leaf level, mainly 

controlled by the biochemical composition of vegetation, reflectance is, on the canopy level, 

driven by biophysical or structural processes and properties. Although these effects relate to 
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two different scales and thus are described separately, it should be kept in mind that these 

processes are closely intertwined. An alteration of the biochemical compounds of leaves is 

often associated with alterations of the canopy structure, and vice versa.  

1.5.1 Leaf Level Properties 

The primary process driving plant growth is photosynthesis. Thereby, carbon dioxide (CO2) is 

fixated from the atmosphere and converted to sugar serving as building blocks and as source 

of energy for the synthesis of complex organic molecules. During this process oxygen (O2) is 

released as a secondary product. The process of photosynthesis can be separated into light 

reaction, which is the absorption of photosynthetically active radiation (PAR), and dark 

reaction describing the biochemical processes of CO2 fixation and the production of sugar. 

The rate at which leaves fixate CO2 depends on the diffusion rate of CO2 from the atmosphere 

through the leaf boundary layer, stomata, and intercellular cells into the liquid phase of 

chloroplasts (JONES & VAUGHAN, 2010). 

The way solar radiation interacts with vegetation depends not only on the wavelength of 

incident radiation but also on the structural and biochemical composition of leaves, such as 

pigment content, water content, leaf structure, leaf thickness and leaf age. The chemical and 

structural characteristics of leaves in turn are influenced by plant growth, phenological phase 

and specific stress. The most important substance in leaves is chlorophyll, a green pigment 

molecule located in the chloroplasts, which are organelles of the mesophyll. Mesophyll is the 

basic cell tissue in leaves and is protected by an epidermis, usually containing no chloroplasts. 

In most cases, the epidermis is covered by a waxy cuticle protecting the leaf from degassing 

water. Gas exchange takes place through the stomatal pores.  

Chlorophyll, directly connected to nitrogen content (GITELSON ET AL., 2003), is the main 

component influencing reflectance in the visible spectral domain and gives plants the 

characteristic green color, as it is responsible for most of the absorption of radiation in the red 

but also in the blue wavelength ranges. In addition, there are other photosynthetic pigments 

influencing the reflectance predominantly in the visible domain, called accessory pigments. 

They are usually located on so-called thylakoid membranes of the chloroplasts. Together with 

chlorophyll they are responsible for the absorption of PAR, which excites electrons in the 

pigments. These electrons are also collected as well as regulated by carotenoids in their 

function as antenna pigments. Carotenoids extend the absorption to the blue-green wavelength 

range; they can be differentiated into two main groups: carotenes (e.g., β-carotene), which 

transfer a fraction of the absorbed energy to the chlorophyll, and xanthophylls (e.g., 

violaxanthin, zeaxanthin and lutein), which regulate the amount of excited electrons 

transferred to chlorophyll, thus protecting the plant from the harmful effect of photo 

oxidation. (GITELSON ET AL., 2002; MERZLYAK & GITELSON, 1995). Photo oxidation, resulting 
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in the generation of reactive oxygen species, e.g., hydrogen peroxide (H2O2), indirectly 

influences fluorescence of the leaf. Fluorescence is caused by excited chlorophyll molecules 

and describes the process of an immediate re-emission of around 2-5 % of the absorbed 

radiation (MERONI ET AL., 2009) at a longer wavelength than the exciting wavelength, with 

emission peaks at 690 and 735 nm. It should not to be confused with heat dissipation, a 

mechanism which xanthophylls induce to prevent photo oxidation. This process, however, 

leads to the elimination, also-called quenching, of the fluorescence signal. Thus, the detection 

of fluorescence shows high potential for the derivation of current status of photosynthesis 

process and leaf health (JONES & VAUGHAN, 2010). 

While carotenes have a yellow appearance, xanthophylls are characterized by an orange color. 

Both become visible in autumn or under certain environmental conditions, when chlorophyll 

content decreases. Other important pigments are anthocyanins, which develop at the end of 

the growing period and support the protection of the leaf from high energy ultraviolet 

radiation. They are responsible for the reddish color in autumn leaves. Typical autumn colors 

occur due to the progressive process of senescence. This is triggered by a photoperiodic 

change, which generally occurs towards the end of the growing period. With ongoing 

senescence, even carotenoids and anthocyanins disintegrate and the typical brownish color 

(brown pigments) emerges. 

While vegetation barely absorbs radiation energy in the NIR, cellulose, lignin and proteins 

induce increased absorption in the SWIR range. Furthermore, plant water causes the same 

broad absorption bands as atmospheric water vapor, especially around 1450, 1950 and 

2500 nm. These absorptions are caused by rotation and stretching of chemical bonds between 

light atoms due to a lower energy content of lower wavelengths (CURRAN, 1989). 

Since only a small fraction of incident radiation is reflected at the top surface of a leaf 

(cuticle), radiation interacts in the form of scattering, transmission and absorption processes at 

different levels and at air/water interfaces at the surface of cells within the leaves. 

1.5.2 Canopy Level Properties 

The reflectance of solar radiation does not solely depend on leaf properties, but also on the 

angle of the leaf to incident radiation. Different leaf angles thus result in different brightness 

levels registered throughout the whole solar range. Within a canopy, the leaf angle 

distribution (LAD) is often described by an average leaf angle (ALA), leading to a specific 

assumption on canopy density. This information alone is however less meaningful, since the 

distribution of the leaves may range from horizontal (planophile) to vertical (erectophile). To 

improve the specification of the current distribution, a leaf inclination distribution function 

(LIDF) can be defined, thereby taking into account that there are manifold leaf orientations 

within the canopy.  
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When radiation is incident on a canopy it is scattered by its different components, a process 

known as volume scattering. Apart from photosynthetically active leaves, these components 

include branches, stems and other plant material. In addition, the reflectance of the canopy is 

influenced by its architecture and spatial distribution as well as the underlying soil. These 

scattering effects can be compared to those caused within the leaf structure, but occurring on a 

larger scale. One of the most prominent descriptions of canopy density is the leaf area index 

(LAI). It is defined as the one-sided leaf area [m²] per unit ground [m²] (JONES & VAUGHAN, 

2010). 

Apart from structural parameters, e.g., LAD and LAI, the anisotropic behavior of canopies 

must be taken into account. Anisotropy originates from the fact that leaves are not Lambertian 

surfaces, which means they do not reflect incident radiation ideally diffusely. Moreover, and 

this has a far greater impact, an altering viewing angle implies a varying proportion of sunlit 

and shadowed parts within the canopy. This effect depends on the viewing direction of the 

observer: when the canopy is regarded in the same direction as the incoming solar radiation, 

mainly sunlit areas are within the field of view; when the observer faces the sun, however, the 

canopy shows far more shadowed sections. The first, i.e., when the view direction 

corresponds with the solar angle, leads to the hot spot effect, although it is not only influenced 

by the viewing direction but also by the shape of the leaves and canopy. Thus the reflected 

signal, and thereby the brightness of the canopy, depends both on the incident angle and the 

direction of view of the observer. A full description of this property is given by the 

wavelength-dependent bidirectional reflectance distribution function (BRDF), which is 

defined for all possible illumination and viewing angles. According to JONES & VAUGHAN 

(2010), the BRDF is defined by: 

 

𝑓(𝜃𝑖, 𝜑𝑖; 𝜃𝑟 , 𝜑𝑟 ) =
𝑑𝐿𝑟(𝜃𝑟 , 𝜑𝑟)

𝑑𝐼𝑖(𝜃𝑖 , 𝜑𝑖)
 (Equation 1-1) 

where 

Θi   illumination zenith angle  

Φi   illumination azimuth angle 

Θr   observer zenith angle 

Φr   observer azimuth angle 

dLr   reflected spectral irradiance 

dIr   incident directional spectral irradiance 

Since this definition allows the specification of infinitesimally small view and incident angles, 

which is a level of detail that imaging spectrometers, and sensors in general, do not supply, 

i.e., they have finite acceptance angles, the BRDF can be simplified to the bidirectional 

reflectance factor (BRF). The BRF is the ratio of actual reflected radiance in a certain 
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direction to the hypothetical reflectance of a Lambertian surface under the same geometric 

conditions (NICODEMUS ET AL., 1977). The BRF is theoretically symmetric, but it is 

influenced by structural properties, such as LAI, LAD and leaf size. It also is wavelength-

dependent, since scattering and transmission amount differ within the solar spectral range. In 

vegetation surfaces, these effects are strongest in the near infrared at the red edge. 

Knowledge of the potential variation of reflectance under several illumination and viewing 

conditions may serve as further information. When analyzing the reflectance properties of 

canopies, the processes and properties occurring in vegetation, which have been described 

here, must be taken into account. Consequently, an overview of different methods for the 

analysis is given in the following chapter. 

1.6 Methods for the Retrieval of Biophysical Parameters 

from Remote Sensing Data 

The measured reflectance signal is defined by the properties of the surface. Thus, in an 

agricultural context its purpose is to retrieve information about the canopy by analyzing this 

reflected signal. In general, two completely different approaches can be distinguished for the 

estimation of biophysical parameters from optical remote sensing data: empirical-statistical 

methods and the inversion of physically based models. Both methods are independent of the 

type of the sensor (spaceborne, airborne, spectroscopic field measurements) and are described 

in the following sections. 

1.6.1 Empirical-statistical Methods  

Empirical-statistical methods establish a relationship between the measured reflectance signal 

from the sensor and the sought biophysical information at the ground. Therefore these models 

rely to in-situ measurements, such as leaf area index or water content, because the output of 

these models is usually a dimensionless value. Using one of the numerous regression 

techniques which have been developed over the years these dimensionless values are related 

to the measured ground information of corresponding pixels. Among several approaches the 

use of vegetation indices is the most common and oldest method (GLENN ET AL., 2008). A 

spectral vegetation index is usually a combination of different spectral bands in a ratio, or the 

normalized form of this. The most famous among them is the normalized difference 

vegetation index (NDVI) defined by DEERING & HARLAN (1974), which has been applied in 

numerous studies and is still a powerful tool for the identification of vegetation and its vitality 

status. Moreover, several studies investigated the potential of the NDVI for the retrieval of 

biophysical parameters, such as leaf area index (e.g., BARET & GUYOT, 1991). Generally, 
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normalized indices have the advantage of being applicable to uncalibrated grey values as well 

as compensating for shadow effects in spectroscopic image data, since they are based on the 

brightness relationship of only a small number of bands. Within the last decades hyperspectral 

remote sensing has enabled the development of a whole range of narrowband vegetation 

indices, which serve for the determination of a variety of vegetation characteristics.  

Given the availability of ground truth information, indices represent a sophisticated technique 

for the retrieval of vegetation characteristics, as they are in most cases based on simple 

equations and deliver prompt results through fast calculation time. Therefore, a module called 

AVI (Agricultural Vegetation Indices) containing a collection of 65 hyperspectral vegetation 

indices which were selected in an extensive literature survey, was implemented in the 

EnMAP-Box. The indices of the module are grouped according to their primary purpose: 

estimation of structural (N=13) characteristics, chlorophyll (N=26), carotenoids (N=5), leaf 

water (N=8), dry matter (N=9) and fluorescence (N=4). 

A more recent method is based on the concept of continuum removal, an approach commonly 

applied in chemical sciences for the determination of mixture component concentrations. This 

approach has been developed as an alternative to simple vegetation indices. In contrast to 

narrowband indices, which only use discrete wavelengths, this approach makes use of a 

predefined range in a quasi-continuous dataset, as it is given by hyperspectral sensors, and 

thereby of the full spectral information available from a specific wavelength region. Thus it is 

potentially more sensitive compared to narrowband indices and more suitable for the analysis 

of hyperspectral data. The algorithm compares integrated areas enclosed below the spectrum 

and below an envelope line which is spanned as a spectral hull between two bordering 

wavelengths. It was first used for the retrieval of chlorophyll content by integrating the 

chlorophyll absorption range from 550 to 760 nm (OPPELT, 2002). Compared to conventional 

indices this approach proved superior in that study. Recently, the algorithm was transferred to 

another spectral range and demonstrated high potential for the estimation of canopy water 

content (HANK ET AL., 2010a). However, further biophysical variables, which are particularly 

sensitive in certain regions of spectral absorption, can be estimated as well. 

This method, due to its flexibility, was also realized in the EnMAP-Box. The ASI module 

(Analysis of Spectral Integral) was implemented in a dynamic fashion, which allows the user 

to determine subjectively the extent of the absorption range by changing the border 

wavelengths of the spectral range to be integrated. 

Although empirical-statistical retrieval strategies lead to valuable and satisfactory results (e.g., 

ATZBERGER ET AL., 2003; PRICE & BAUSCH, 1995), they are limited mainly in three main 

ways: 
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(1) The spectral signal measured by the sensor is usually influenced by multiple surface 

properties, which may impede an isolated derivation of a specific land surface 

parameter. In addition, only parameters measured in-situ could be retrieved; 

(2) The derivation of an empirical relationship requires the collection of corresponding 

measurements of the requested land surface parameter at the ground, which is often very 

time-intensive or even impossible in poorly accessible areas;  

(3) The transferability of an empirical model, which is based on the relationship of a sensor 

signal to the ground measurement, is severely limited due to varying sensor properties, 

illumination and viewing geometries as well as time of recording. This makes the site- 

and sensor-specific empirical-statistical models unsuitable to be applied to other 

datasets, regardless whether they stem from a different sensor or represent seasonal data 

recorded with the same sensor, as these datasets may be subject to a significantly 

different sun-target-sensor geometry (e.g., CURRAN, 1994). It is thus also not possible to 

apply these models to data of a large areal extent. 

These limitations make empirical-statistical models most unsuitable for the multiseasonal 

parameter retrieval from future EnMAP data, as it is planned to (i) retrieve multiseasonal 

information, (ii) of large areas and (iii) without the dependence on in-situ data.  

1.6.2 Physically based Models 

In contrast to empirical-statistical methods, physically based models follow a completely 

different approach. As already mentioned, these models have the advantage of being 

independent of in-situ measurements. Furthermore, while empirical methods suffer from 

anisotropy effects, physically based models explicitly account for bidirectional reflectance 

caused by specific sun-target-sensor geometries. In general, the physically based models 

discussed in this study can be described as radiative transfer models, since they try to 

calculate reflectance, absorption and transmittance of leaves and canopies from biophysical 

plant characteristics. These models can be used in two directions: in forward operation mode, 

where the radiative properties are calculated as a function of the underlying physics of the 

individual components of the leaf or canopy, resulting in a predictive reflectance signal. In the 

other direction, inverse operation mode, biophysical and biochemical parameters are retrieved 

from a measured reflectance signal. Since the inversion process is an important and complex 

matter, it is described in the following chapter in more detail.  

Radiative transfer models which calculate the properties of a leaf are called leaf optical 

properties models, while those addressing whole canopies are called canopy reflectance 

models (CRMs). Since a hyperspectral sensor usually images the surface of the earth and thus 

vegetation canopies, CRMs are used in inverse operation mode to retrieve the respective 

parameters. There are several CRMs described in the literature which differ in architecture 
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and complexity. According to JONES & VAUGHAN (2010), four types of canopy reflectance 

models can be distinguished, which are presented in the following.  

Turbid-medium models describe the canopy as one-dimensional layers of a horizontal slab 

with infinite small elements that follow a statistical distribution. They are based on the same 

theory that describes radiation transfer in gases. Although these models generate bidirectional 

reflectance they are not able to directly simulate the hotspot effect. To counteract this, turbid-

medium models have been extended to so-called hybrid models, considering a finite leaf size 

defined by an empirical correction, which allows the hot spot effect to be calculated. These 

models are most suitable for the description of plant populations within a homogenous 

surface, as they occur in agricultural canopies. The theory of this approach is described in 

more detail in Chapter 3.1.2, as the SAIL model, based on the turbid-medium concept, was 

used in this study. 

Geometrical-optical models, by contrast, assume the canopy to be an array of geometrical 

objects. These objects have defined shapes and optical properties that follow a statistical 

distribution. The model calculates radiation interaction and reflectance analytically, 

considering light interception and shadowing defined by the geometry of the canopy. The 

overall reflectance of the canopy is thus calculated as a weighted average of the single area 

fractions, such as sunlit and shaded leaves/soil. This is possible for any viewing angle. These 

models are in general used to describe forest canopies as Lambertian cones (OTTERMAN & 

WEISS, 1984; LI & STRAHLER, 1985 and 1992). 

Monte-Carlo ray-tracing models simulate how a defined number of light rays emitted by a 

light source would interact with each of a canopy’s elements. A probability density function 

calculates how these rays are absorbed, transmitted and reflected at the single elements of a 

canopy (GOVAERTS & VERSTRAETE, 1998). A single ray is thus either reflected between the 

elements until it leaves the canopy, or its energy level falls below a defined energy threshold 

due to absorption processes. Since only a minimum part of rays would reach a sensor in this 

model, such a theoretical calculation would be very computationally intensive. Consequently, 

many models calculate the pathway of the ray of light inversely, which means the ray starts at 

the sensor and traces back through the canopy to the light source. Ray-tracing models impress 

with their potential for comprehending the way of direct radiation, and because they do not 

rely on analytical solutions of the radiation-transfer equations of canopies (JONES & 

VAUGHAN, 2010). However, when calculating diffuse irradiance, the computation time may 

become excessively long. Closely related to this approach are three-dimensional radiosity 

models that treat the canopy as a number of diffuse reflecting surfaces and calculate the 

energy flux from (in theory diffuse) surfaces, whether it is reflected, transmitted or emitted 

(e.g., BOREL ET AL., 1991). The exchange of radiation between the different surfaces is 

regulated by a view factor, describing the fraction of energy leaving and received by two 

infinitesimal surfaces. In comparison to backward ray-tracing models, radiosity models are 
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more suited for the calculation of diffuse radiation, since they consider radiation from all 

directions. The calculation of the view factor matrix, which describes all possible factors, may 

be, however, time-consuming. 

The last type comprises kernel-driven semi-empirical models that differ significantly from the 

other approaches. These models use the sum of three kernels representing isotropic scattering, 

volume scattering from homogenous canopies and geometrical scattering for the description 

of three-dimensional objects including shadowing effects and consider the hot spot effect 

(e.g., ROUJEAN ET AL., 1992)). Using empirical definitions they have the advantage of being 

much faster and easier to invert than the models described above. 

Most canopy reflectance models are not suitable for considering the biochemistry of the 

canopy. By contrast, leaf optical properties models take these into account to determine the 

reflectance behavior. JACQUEMOUD & USTIN (2001) categorize four classes of models, which 

are presented only briefly here since they have much in common with the CRMs described 

before. 

Plate models (e.g., ALLEN ET AL., 1969) describe the leaf as an absorbing plate with a rough 

diffuse reflecting surface. Extending this approach to a N-flux model, the internal leaf 

structure is separated into N homogenous compact layers and N-1 cell-to-air layers (e.g., 

ALLEN ET AL., 1970). A popular version of this approach is the PROSPECT model 

(JACQUEMOUD & BARET, 1990), which is used in this study. A detailed description of this 

approach can be found in Chapter 3.1.1. 

Furthermore, stochastic models separate the leaf into different tissues, by which the optical 

properties are simulated by a Markov chain (e.g., TUCKER & GRANT, 1977; MAIER ET AL., 

1999). Last but not least, ray-tracing models are used as well to describe the internal leaf 

structure, although a detailed characterization is necessary (e.g., ALLEN ET AL., 1973; 

GOVAERTS ET AL., 1996). 

1.6.3 Inversion of Canopy Reflectance Models 

To estimate biophysical parameters from spectral reflectance data, physically based radiative 

transfer models generally have in common that they must be inverted (DARVISHZADEH ET AL., 

2008), which means that for a measured reflectance spectrum the parameter configuration of a 

corresponding, in an ideal situation identical, modeled spectrum is derived. The quality of the 

parameter estimation from physically based models depends on three factors (JACQUEMOUD 

ET AL., 2000): 

(1) The access to a comprehensive model which is able to generate reflectance data based 

on the physics of biophysical and biochemical parameters at leaf as well as at canopy 

level considering the complex influence of different illumination and viewing angles; 
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(2) The availability of high-quality, calibrated reflectance data;  

(3) An appropriate inversion procedure. 

There are several inversion techniques described in the literature, which differ in computation 

speed, robustness and performance. The most common inversion techniques for parameter 

retrieval are numerical optimization algorithms, artificial neural networks (ANN) and look-up 

tables (LUT) (RICHTER ET AL., 2009). In the following the architecture, advantages and 

disadvantages of these techniques are presented. Subsequently, the comparatively new 

inversion concepts of support vector regression (SVR) and Bayesian inversion are 

summarized in Chapter 1.6.3.4. 

1.6.3.1 Numerical Optimization Algorithm 

Numerical or iterative optimization algorithms have the longest history in the field of 

inversion methods (KIMES ET AL., 2000). The optimization algorithm identifies the minimum 

of a function by applying the model iteratively in forward mode, under a given initial 

parameter setting. Within a certain parameter range this process continues until a cost 

function between measured data and modeled data is minimized. One of the most prominent 

optimization algorithms in remote sensing applications is the quasi-Newton method (e.g., 

KIMES ET AL, 2000, COMBAL ET AL., 2002 & MERONI ET AL., 2004) which is constrained by 

fixed upper and lower boundaries of independent variables using function values only 

(subroutine E04JAF, NUMERICAL ALGORITHMS GROUP, 2012). It approximates a Hessian 

matrix, which describes a square matrix of second-order partial derivatives, at each iteration 

of the function (KIMES ET AL., 2000). JACQUEMOUD ET AL. (2000) as well as KIMES ET AL. 

(2000) list and describe a selection of frequently used algorithms, among them also 

comparatively common algorithms such as the downhill simplex method (NELDER & MEAD, 

1965) or the conjugate direction set method (e.g., subroutine POWELL from PRESS ET AL., 

1986).   

However, iterative optimization methods hold the risk of being trapped in local minima 

(MERONI ET AL., 2004). Another disadvantage of iterative optimization algorithms is that they 

are very time consuming in processing the high-resolute spectral information of imaging 

spectroscopy with its substantial number of bands and several thousands of pixels 

(DARVISHZADEH ET AL., 2012). 

1.6.3.2 Artificial Neural Network 

In theory, neural networks assume that there is an optimal mathematical relationship between 

a set of input parameters and a corresponding set of output parameters. Reflectance spectra 

thereby act as input parameters whereas biophysical parameters act as the output. The 

stronger the mathematical relationship, the better are the results of the output (KIMES ET AL., 
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2000). Neural networks must be trained with examples which are provided by a CRM to 

approximate a relation between a spectral reflectance of a canopy and its structural and optical 

parameters.  

A commonly used method for this is the back-propagation multilayer perception (MLP). A 

multiple number of nodes connect the input information to the output. The nodes represent a 

simple processing element responding to a weighted input from other nodes (ATKINSON & 

TATNALL, 1997).  

The feed-forward neural network in general consists of three layers: a single input layer, a 

multiple hidden layer and a single output layer. The first layer represents the spectral 

information. The number of nodes at the input layer is equivalent to the number of used 

spectral wavelengths. The nodes of the input layer are fully connected to the nodes of the 

hidden layer(s) which respond to a weighted input from the previous ones in a characteristic 

way. Each node in the hidden layer is a nonlinear processor which produces a new output 

signal from the incoming information by weighting it differently. It is not revealed how this 

weighting decision is made, i.e., it is hidden. Thus, the signal which is sent to subsequent 

nodes is hidden too. Finally, the signal reaches the output layer which represents the output 

data, i.e., the biophysical parameters (KIMES ET AL., 2000).  

During the training process the produced network output is compared to a desired output and 

the error is computed. When using the physically based, modeled spectra the output of the 

network is compared to the parameter specification of the RTM. The error then is back-

propagated through the network which leads to an alteration of the weights of the connections 

between the nodes in the hidden layer. This process is carried out iteratively until the error is 

minimized (ATKINSON & TATNALL, 1997). 

To guarantee that the neural network is able to yield consistent results with unknown data, 

several factors can be considered. They include the number of nodes and the architecture of 

the network, the size of the training dataset and the training time. Generally one can say that 

the higher the number of hidden layers, the better the network is able to solve complex 

problems. On the other hand, if the network is too much aligned to the training data due to a 

high number of nodes or an extensive training time, resulting in too-strongly minimized 

errors, it lacks the capability of generalization when confronted with unknown data. The 

network then is overfitted (ATKINSON & TATNALL, 1997).  

Other major disadvantages of neural networks are the exhaustive training times and the lack 

of transparency due to the unexplained decisions in the hidden layer. The neural network can 

thus be described as “black box”. 

The advantages of neural networks include the fact that, once they are trained, they perform 

much faster than other inversion techniques, even faster than a look-up table (VUOLO ET AL., 

2010). Accordingly, neural networks are in general suitable for the processing of large 
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amounts of image data. Furthermore, they are independent of any initial parameter settings 

(KIMES ET AL., 2000). 

1.6.3.3 Look-Up Table 

In the look-up table (LUT) approach the applied model precomputes, in forward operation 

mode, spectral reflectances based on a specific range of predefined parameter combinations. It 

thus produces a multidimensional table of outputs with a certain amount of spectra and their 

corresponding parameter configuration. Based on a cost function, which searches for the 

lowest distance between two spectra, the measured reflectance of a pixel is assigned to the 

reflectance of the LUT which it resembles the most. As a consequence, the underlying 

parameter setting behind the modeled spectrum is assumed to be valid for the measured 

spectrum and thus represents the biophysical variables to be retrieved. The quality of a LUT 

depends on the range, discretion levels, number of parameter configurations as well as an 

optimal search strategy (e.g., KIMES ET AL., 2000). If the distance between the discretion 

levels is too great or the dimension is too low, the LUT inversion may lead to suboptimal 

solutions (RICHTER ET AL., 2009).  

Similar to neural networks, an advantage of the LUT is that a large amount of the computing 

time is completed before the inversion is carried out (KIMES ET AL., 2000). In contrast to 

numerical optimization and ANN, the LUT approach however admits a global search and is in 

this way not in danger of being trapped in local minima (DARVISHZADEH ET AL, 2011) 

Numerous studies, e.g., from COMBAL ET AL. (2002) or VUOLO ET AL. (2010), show that the 

LUTs are often more robust and generate higher accuracies than other approaches. Moreover, 

LUTs have the advantage that they represent a relatively simple method, their content being 

precisely defined (KIMES ET AL., 2000). In this way, intermediate results can also be 

considered as comprehensive, while neural networks are often criticized as being black boxes. 

Compared to iterative optimization algorithms, the LUT method is significantly less time 

consuming (e.g., DARVISHZADEH ET AL., 2012). However, it is not as fast as a neural network.  

A feature that the LUT has in common with the other approaches is the ill-posed nature of 

inversion. This means that different parameter settings of the model may lead to nearly 

identical spectra. There are different ways to solve the ill-posed problem, for example by 

averaging the parameters of a specific number of best fits. The ill-posed problem and the 

solution approach are described in detail in Chapter 3.2.3.4. 

Due to its simplicity, transparency and robustness the LUT approach was chosen to serve as 

the inversion technique for this study. Its transparency in particular was a crucial criterion, as 

it facilitates a deeper understanding of canopy reflectance processes, model output and 

behavior, and the identification of potential weak spots in the data applied, for example 
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minimal atmospheric distortions. A detailed description of the applied LUT can be found in 

Chapter 3.2. 

1.6.3.4 Other Inversion Techniques 

A comparatively new inversion method is the support vector regression (SVR), which is 

based on the theory of statistical machine learning and was developed by VAPNIK (1995). 

SVR, which is a variation of the support vector machine (SVM) approach, is capable of 

identifying a solution through the construction of a so-called optimal hyper plane in a high-

dimension feature space. The hyper plane separates two classes and is defined by a kernel and 

a regulation parameter. For the retrieval of LAI, DURBHA ET AL. (2007) used the SVR 

approach to perform a feature extraction by a kernel principal component analysis (KPCA), 

which represents a non-linear extension of the classical PCA. The application of SVR has 

proven to lead to respectable results, since it features good capabilities for generalization and 

is able to handle linearly non-separable data by the use of multiple hyper planes. However, the 

SVR method is excluded from application in the context of this study, since only one 

parameter can be retrieved at a time. 

Other alternative inversion techniques include Bayesian methods, which are based on the 

Bayes' theorem, a mathematical theorem from probability theory, which describes the 

calculation of conditional probabilities. Bayesian methods, for example Monte-Carlo Markov 

Chains and Importance Sampling (e.g., MAKOWSKI ET AL., 2006), approximate the posterior 

distribution. This means that the probability distribution of the parameters can be determined 

when the measured reflectance is known (BARET & BUIS, 2008). Nevertheless, similar to 

numerical optimization algorithms, there is a risk of trapping into local minima. This 

necessitates the careful choice of starting conditions, e.g., the choice of considered values or 

an optimization of the number of sample angles used. 

 

 



2 Generation of a Multiseasonal Database 

22 

    

2 Generation of a Multiseasonal Database 

The implementation of the objectives of the thesis requires a fundamental data base, on which 

multiple demands are made:  

(1) Hyperspectral quality: methods and algorithms presented in this study must correspond 

to the technical specifications of EnMAP, especially regarding the spectral quality. 

Thus, the database should at least offer spectral properties corresponding to EnMAP. 

(2) Multiseasonality: to capture the wide range of vegetation dynamics occurring within a 

vegetation period, a minimum number of datasets must be defined and acquired.  

(3) Extensive validation fundament; to validate methods a sufficient and independent 

reference database is needed.  

(4) Transferability: methods should be applicable to every type of agricultural land and to 

different kinds of crops. 

To fulfill point (1), methods must be developed and tested on an alternative database, since 

EnMAP data will not be available until 2017, Unfortunately, other already existing 

spaceborne hyperspectral sensors, e.g., Hyperion, do not offer the potential to deliver data in 

an adequate spectral quality and temporal frequency, a prerequisite for item (2). However, 

airborne image spectroscopy is a cost-efficient, flexible and efficient alternative that fulfills 

both demands. For this reason, two airborne sensors were used to provide the required 

database: AVIS-3, operated by the Ludwig-Maximilians-University, and HySpex, operated by 

the German Aerospace Center. To fulfill point (3) an extensive field campaign was carried out 

parallel to the flights, measuring a set of biophysical parameters in-situ. The test site was 

carefully chosen to offer a representative cross-section of important crop types cultivated in 

Germany, Europe and also worldwide. 

This chapter introduces the implementation and data acquisition of the substantial 

multiseasonal campaign carried out in 2012 (Chapter 2.1) including a description of both the 

test site and the airborne and in-situ data collection. This is followed by the specification of 

the hyperspectral sensor systems and complex (pre-)processing steps of the data (Chapter 

2.2). To conclude, the essential transfer process of the airborne data to a simulated EnMAP-

scale is explained (Chapter 2.3). 
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2.1 Field Campaign 2012 

From April until September 2012, a multiseasonal campaign meeting the requirements 

defined above was conducted with a total of six data acquisitions using airborne image 

spectrometers. During the flights, five different biophysically relevant parameters were 

gathered in-situ at more than 500 sampling points. Furthermore, the in-situ database was 

extended by spectroscopic field measurements of defined reference targets, which served for 

calibration purposes. In a predominantly agricultural region in the southeast of Germany an 

investigation area of 12 km² (3x4 km) was identified as offering the necessary diversity of 

crop types. The geographical setting of the study site and the measuring techniques of this 

extensive field campaign are described below. 

2.1.1 Study Site Neusling, Lower Bavaria, Germany 

The study site around the village of Neusling in Lower Bavaria, Germany, is located about 

110 km northeast of Munich and about 50 km southwest of the Bavarian Forest. The region is 

also known as the ‘Gäuboden’, a German expression describing the markedly fertile soils in 

Lower Bavaria. This area was chosen since it offers a representative sample of important 

agricultural crops cultivated in Bavaria, Germany and Central Europe.  

The region is characterized by a humid climate all year round with an average annual 

temperature of 7.4 °C and an annual rainfall amount of 750 – 850 mm. The main geological 

feature in this region is the extensive glacially shaped loess area, partially interrupted by older 

gravel cover originating from the Danube and Guenz glacial periods as well as by upper 

freshwater molasses from the Tertiary. The soil types dominating the area are brown earth and 

luvisol, partially pararendzina, gleyed brown earth and pseudogley (INT 1).  

Figure 2-1 shows the result of the land use examination of the test site, conducted in April and 

August 2012. The dominant crop types in the area are winter wheat, winter barley, potatoes 

and maize, followed by rapeseed, sugar beet and cucumber. The figure reveals that the winter 

crops, such as winter wheat or rapeseed, had already been harvested by the time of the second 

land use recording in August.  
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Figure 2-1: Land use map for spring (April) and late summer (August) in the test site.  

2.1.2 Airborne Image Data Acquisition 

Unquestionably, the basis of this multiseasonal campaign was formed by hyperspectral image 

data from airborne sensors. Besides the data acquired as part of this thesis with LMU’s 

proprietary AVIS-3, further recordings were sourced from the HySpex sensor, operated by the 

German Aerospace Center (DLR). According to HANK ET AL. (2013), at least four flights are 

required to enable the monitoring of the physiological dynamics of a vegetation period. To 

minimize the risk of unforeseen acquisition failures which may occur during the period of the 

campaign due to unfavorable weather conditions or technical complications, and because of 
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site. The details of the resulting GSD can be found in the description of the camera system in 

Chapter 2.2.1.1. Unfortunately, the analysis of the image data of the first three acquisitions 

revealed that six flight strips were not enough for full coverage by the SWIR camera, due to 

the underestimated intensity of flight movements in transverse direction. In consequence, the 

number of required flight stripes was raised to eight at a later date. All flight strips were 

defined by means of three GPS points, whereby the first point served as a point of orientation 

for turning the aircraft to a correct approach angle, and the other two points marked the 

intended beginning and end of the strip for recording purposes. Altogether, 52 separate flight 

strips were recorded using AVIS-3. A detailed specification of both AVIS-3 and HySpex, as 

well as the complex preprocessing of the AVIS-3 data, is described in Chapter 2.2. 

2.1.3 In-Situ Measurements 

Field or in-situ measurements are of great relevance, since they fulfill two important purposes. 

First, reflectance measurements using a field spectrometer at the ground are essential for the 

transformation of airborne raw data to radiance and reflectance. Since they serve to remove 

the influence of the prevailing atmospheric conditions at the time of the airborne data 

acquisition, and to ensure identical sun geometry, the spectrometer measurements were 

performed simultaneously to the flyover. In order to exclude the possibility of the calibration 

process being falsified due to brightness differences and angle-dependent anisotropies effects 

the measurements were taken at unalterable sites, e.g., at extensive asphalt surfaces. The 

second purpose of in-situ measurements is the generation of an exhaustive database, which 

serves for the validation of the subsequent analysis methods. For that reason, biophysically 

relevant variables were measured. Besides leaf area index and leaf chlorophyll content, on 

which this study focuses, three further plant physiological variables were collected: status of 

phenology, stand height and soil moisture content. 

2.1.3.1 Spectral Reflectance and Radiance 

In order to ensure a descriptive data basis for the calibration of the airborne sensor’s signal, 

potential reference targets need to meet certain requirements. The reference should be a 

homogenous, non-alterable and flat surface to guarantee availability and comparability over 

all data acquisitions. Ideally, the reference target should feature Lambertian properties, which 

means it is almost ideal-diffusely reflecting, to be independent from the influence of different 

viewing angles to the signal and resulting BRDF effects. In addition, it should reflect solar 

radiation uniformly over all relevant wavelengths. Furthermore, the size of the target should 

be at least twice the size of a pixel, to ensure that the airborne sensor receives an undistorted 

signal which stems only from the reference target. In regard to the intended AVIS-3 ground 

resolution of 4 m, the reference target therefore should cover at least an area of 8x8 m. Given 





2 Generation of a Multiseasonal Database 

28 

    

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 

Figure 2-2: Radiometric reference targets presenting reflectance with corresponding standard deviation, 

localization in AVIS-3 image (true color) and photo on site. 
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at least 20 m between each ESU was assigned in order to prevent the recording of redundant 

information when allocating the in-situ to the airborne data. 

 

 

Figure 2-3: ESU locations, presented as collected LAI values, for all successful flyovers. Relevant fields 

containing rapeseed, winter wheat, winter barley, sugar beet or maize are highlighted in greenish colors. Field 

boundaries are displayed in yellow. 

In the following section the measuring methods and the corresponding sampling strategies of 

LAI, LCC and phenology are explained in detail. Mean plant height was comparatively 
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simple to measure and was averaged over ten measurements within a four-meter range of an 

ESU using a folding meter stick. Since soil moisture measured with a time-domain reflector 

probe is not of relevance for this study, the description of this method is not included here. 

 

Leaf Area Index 

Data on leaf area index was collected by means of a Li-COR LAI-2200. According to BREDA 

(2003), it is the most widely used instrument for non-destructive determination of LAI in 

agricultural and silvicultural disciplines. Based on hemispherical photography, the device 

determines LAI using the inversion of the gap fraction; this method estimates the probability 

of a ray of light passing through the canopy having no contact with plant material and thus 

quantifies the fraction of visible sky (JONES & VAUGHAN, 2010). Consequently, the LAI-2200 

measures the incident diffuse radiation below the stock and hence its transmission. Radiation 

recordings above the canopy serve as reference. During the measurement, a fish-eye-shaped 

lens with a zenithal field of view of 148° detects radiation of five different concentric sky 

sectors separated by several silicone rings. The measurement is based on the following 

assumptions (LI-COR, 2010): (1) the foliage is black; it neither transmits nor reflects incident 

radiation. Therefore, an optical filter rejects radiation > 490 nm. (2) The foliage is randomly 

distributed within certain foliage-containing envelopes and there are no clumping effects. (3) 

The foliage elements are small compared to the viewing surface of each ring. (4) The foliage 

is azimuthally randomly oriented, and its inclination has no direct effect. All these conditions 

are rarely met in reality because, for example, foliage within a canopy usually tends not to be 

randomly distributed; it is clumped along branches and stems. As a result of the measuring 

technique, these branches and stems in addition directly affect the recorded radiation, so the 

expression ‘leaf area index’ is not really applicable, plant area index (PAI) or green LAI, if 

referred only to photosynthetic leaves (HABOUDANE ET AL., 2004), would be more appropriate 

(BRÉDA, 2003). Further sources of error for the collection may be the influence of direct 

sunlight due to lack of shading or a high proportion of senescent leaves.  

The sampling strategy involved a randomly distributed repeat of eight canopy and two 

reference measurements per ESU, the latter taken under the open sky. During this process, all 

employable standards of measurement conditions were applied, including use of the 180° 

view cap to prevent falsified measurements by the operator, and avoidance of direct sunlight 

and uniform azimuthal orientation of the device throughout the repetitions.  

 

Leaf Chlorophyll Content 

Leaf chlorophyll content was derived through the employment of a SPAD-502Plus from 

Konica Minolta, which is, similar to the Li-COR LAI-2200, a non-destructive measurement 
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instrument. The handheld device with a 2x3 mm large sensor measures the transmitted 

energy, which is emitted by two LEDs at peak wavelengths of 650 and 960 nm (MINOLTA, 

1989). The device therefore uses the spectral properties of the red edge to derive chlorophyll 

content. Before and during the actual measurement a self-calibration of the device is carried 

out. By pinching the plant leaf, the relative amount of chlorophyll content is calculated and 

stored as an internal SPAD value, which is proportional to the relative optical density of the 

material. Although this value seems to be in a realistic range for LCC (µm cm
-1

), it has to be 

calibrated to absolute LCC based on individual calibration curves. Many studies examined 

those relationships for several crops (e.g., MARKWELL ET AL., 1995, MONJE & BUGBEE, 1992 

and UDDLING ET AL., 2005). In this study the polynomial regressions from MARKWELL ET AL. 

(1995) and MONJE & BUGBEE (1992) were tested (see Chapter 3.3.3.2).  

Data on chlorophyll content was collected by averaging four single measurements at different 

positions of a sampling leaf. This step was repeated five times for each ESU. Here, equally 

important aspects pertaining to quality assurance were considered, e.g., a uniformly 

distributed measuring of the leaves at different plant height.  

 

Phenology 

Since there is no technical measuring instrument for capturing phenology, it is determined by 

means of a visual and qualitative description. For this purpose, morphological aspects of 

individual plants are compared to characteristic values of a reference table and assigned a 

scaled number indicating the stage of phenological development. The most common reference 

table is the Zadoks Scale (ZADOKS ET AL., 1974), which is widely accepted among different 

scientific disciplines examining the development of crops. It is based on the scale by Feekes 

(LARGE, 1954) and was prepared by Zadoks, who simplified the code to two digits and added 

addtional features to enable worldwide application. His goal was to create a method that can 

be used at any given location, and any given level of prior knowledge of plant physiology. At 

the beginning of the 1990s the Zadoks Scale was enhanced to allow its use on a variety of 

different crops. This was done in a cooperative effort of the former German Federal 

Biological Research Centre for Agriculture and Forestry, the German Federal Plant Variety 

Office, both now part of the Federal Ministry of Food, Agriculture and Consumer Protection, 

and the German Agrochemical Association, together forming the BBCH (Biologische 

Bundesanstalt, Bundessortenamt und CHemische Industrie) (HACK ET AL., 1992). 

Phenological status here is defined in a macro scale for the development stage from 0 

(germination) to 9 (senescence) and a micro scale from 0 to 8, which represents a percentage 

associated with a characteristic value. The macro stadia are listed in Table 2-4. 
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Figure 2-4: Crop specific measurement averages of leaf area index, leaf chlorophyll content (SPAD value), 

status of phenology, stand height and soil moisture for each acquisition date. The error bars represent the 

standard deviation. 

Although the field campaign was carefully planned, measurement errors cannot be excluded, 

especially given the wealth of data collected in the 565 ESUs. In individual cases, this added 

uncertainty may lead to measurement averages not being representative for the entire field. A 

critical examination of the quality of the in-situ data was carried out during validation 

(Chapter 3.3.1). 

2.2 The Airborne Image Spectrometer AVIS-3  

Having its origin in geological applications in the early 1980s (GOETZ ET AL., 1985), 

hyperspectral imaging spectroscopy became more and more popular in a variety of earth 

sciences, such as those investigated within the EnMAP context: geology, forestry, agriculture, 
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coastal zones and inland waters, urban systems and ecosystems (KAUFMANN ET AL., 2012). 

Besides well-known airborne sensors like AVIRIS (Airborne Visible / Infrared Imaging 

Spectrometer), CASI (Compact Airborne Spectral Imager) and HYMAP (Hyperspectral 

Mapper) (OPPELT & MAUSER, 2007), a comparatively modern generation of hyperspectral 

imagers, such as HySpex (BAUMGARTNER ET AL., 2012) and APEX (Airborne Prism 

Experiment) (ITTEN ET. AL, 2008) serves an increased demand within the user community. 

Nevertheless, availability through dedicated programs is limited, particularly when 

multitemporal data is needed. However, plant-physiological studies are by nature dependent 

on a high frequency of data acquisitions, since all relevant biophysical processes of 

agricultural crops usually take place within one growing period. Because commercial sensors 

are cost-intensive, the Department for Geography of the Ludwig-Maximilians-University in 

Munich (Germany) started with the development of a proprietary airborne hyperspectral 

system, which was designed to be both cost-efficient and to provide some independence 

concerning flight scheduling. It was introduced in the year 1997, when the first generation of 

AVIS, the Airborne Visible and Near Infrared Imaging Spectrometer, was designed. AVIS, 

operating in the years 1999 and 2000, covered a spectral range from 550 to 850 nm with its 74 

bands (OPPELT, 2002). The availability of enhanced technical components led to the 

development of AVIS-2 in the year 2001. Covering a range from 450 to 880 nm within 64 

bands, the sensor had an improved signal-to-noise ratio and a higher sensitivity in the NIR 

spectral domain. The geometrical correction was enhanced by adding an inertia navigation 

system (INS) to the dGPS system, which was already employed in AVIS. Furthermore, the 

system was now able to record along track multi-angular images between +55 and -55 degrees 

(OPPELT & MAUSER, 2006). Starting in 2006, a third-generation – AVIS-3 – was developed, 

with the intention of increasing the spectral resolution and implementing a wider measurable 

spectral range to the SWIR spectral domain. While the VNIR sensor was designed to cover a 

range of 400 to 1000 nm, the new construction added a second spectrograph unit, which is 

sensitive from 900 to 1750 nm. All AVIS sensors have in common that they are designed in 

lightweight construction and are platform-independent, which allows operation in different 

aircrafts, even microlight aircrafts. Figure 2-5 gives a sense of the size of AVIS-3. 
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Figure 2-5: AVIS-3 running in test mode during a trial measurement out of the window. 

2.2.1 System Description 

The AVIS-3 is characterized in the section which follows. It contains a description of the 

camera system, which represents its centerpiece, and its spectral properties. These properties 

were analyzed in the laboratory prior to any data acquisition, in order to determine the actual 

spectral range, the spectral responsivity and the spectral resolution of the spectrometer. In 

addition, the navigation system consisting of an inertial measurement unit and a differential 

GPS for the determination of the systems position is introduced, followed by a description of 

the aircraft, which served as a platform during the 2012 multiseasonal campaign. 

2.2.1.1 Camera System 

AVIS-3 is an earth observation device that combines two different sensors within one 

compact system. In its function as an imaging spectrometer, AVIS-3 records the land surface 

using a silicon-based VNIR detector covering a spectral range from 400 to 1000 nm. In 

addition, an indium-gallium-arsenide-based SWIR detector takes records in the spectral range 

from 900 to 1700 nm. Table 2-5 shows the spectrometer specifications of the AVIS-3 sensor 

system. 
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Figure 2-7: Side view of the internal structure of the AVIS-3 sensor. It illustrates the different visual axes of the 

spectrometer, the pivotable mirror and the perpendicular axis of the spectral dimension at the CCD (HANK ET 

AL., 2010b, modified). 

The signals from the cameras are transmitted by means of two PLEORA iPORTs PT1000-LV 

via TCP/IP and a GigE protocol over a gigabit network connection to the industrial PC 

(INONET Conception bX Embedded PC). Besides the 40 GB S-ATA data storage device, the 

PC has an additional 30 GB solid state data storage device which can handle the strong shocks 

which the system is exposed to during the flight. This guarantees a constant writing of the 

recorded data even under harsh flight conditions (up to 80 MB/s). 

With respect to the geometrical properties of the components (see Table 2-5), AVIS-3 can 

achieve different spatial resolutions. The across-track resolution is defined by the altitude 

above ground, while the along-track resolution is determined by the aircraft speed. A limiting 

factor for the geometric resolution in across-track direction is the number of image columns in 

each CCD, while in the along-track direction it is limited by the writing rate. The spatial 

resolution ultimately achieved thus depends mainly on the required spatial coverage of the 

study site.  

To ensure the target geometric resolution of 4 m, a swath width was specified of 

approximately 1880 m, resulting in a spatial resolution of 2.94 m based on the VNIR 

spectrometer (swath width = 45°, 640 pixels). As already mentioned in Chapter 2.1.2, this was 

achieved at flight level 86 (2620 m above sea level, 2300 m above ground). Since the final 

spatial resolution was targeted to be 4 m, a higher flight level was theoretically possible and 

also desirable, because fewer strips would have been necessary to cover the study area and 

thus would have led to decreased processing runtimes. However, a higher flight level was not 

possible due to the maximum flight height of the aircraft (see Chapter 2.2.1.4). Because of its 

lower swath width (20°, 320 columns), this adjustment led to an effective swath width of 

approximately 800 m for the SWIR spectrometer, resulting in a spatial resolution of 2.5 m. 

Consequently, the SWIR spectrometer was the limiting factor for the number of necessary 

flight strips to cover the test site. 
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Finally, to adapt the along-track resolution, an airspeed of 42 m/s (151 km/h) was intended. 

With an adjusted frame rate of 14 for both cameras this resulted in an along-track resolution 

of 3 m. 

2.2.1.2 Spectral Properties 

Before the digital numbers of the raw data can be transformed into radiance and reflectance, 

the spectral properties of the spectrometer must be known. This is because the properties 

specified by the manufacturer may differ from the actual properties of the sensor. It is further 

advisable to analyze the spectral responsivity, which enables the identification of bands with a 

lower sensitivity. Finally, the sampling interval may be adapted as appropriate with respect to 

the actual spectral resolution. 

2.2.1.2.1 Actual Spectral Range 

According to the manufacturer (Table 2-5) the two sensors cover the following wavelength 

ranges: 

CCD-1020  400 – 1000 nm 

Xenics-Xeva  900 – 1700 nm 

To ensure that the subsequent calibration of raw data to radiance and reflectance (see chapter 

2.2.2.3) is successful, the exact wavelength of each sensor’s band was examined in the 

laboratory. For this purpose, the radiation of a calibration light source was measured with 

both CCD-1020 and Xenics-Xeva and with an additional field spectrometer (ASD 

FieldSpec 4), covering the spectral range from 450 to 2500 nm. A Model SP-200 Spectrum 

Tube Power Supply from Electro-Technic was used as a light source, which has an integrated 

krypton gas lamp. Krypton shows discrete emission bands from the visible red (~ 630 nm) to 

the short wave infrared (~ 2400 nm) (KELLY & PALUMBO, 1973) and is thus suitable for both 

cameras. Since the ASD FieldSpec 4 is a calibrated instrument, the emission maxima 

occurring in the spectra of all sensors can be assigned to specific wavelengths. Consequently, 

the choice of two wavelength maxima for each sensor allows it to interpolate and extrapolate, 

respectively, the true wavelength for each given band of both sensors. For the CCD-1020 the 

emission maxima were identified at 764 and 913 nm, corresponding to the bands 204 and 307. 

For the Xenics-Xeva the wavelength maxima at 1147 nm (band 74) and 1694 nm (band 239) 

served for the estimation via interpolation /extrapolation. The results of the spectral fit can be 

seen in Figure 2-8 and Figure 2-9. 
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Figure 2-8: Krypton emission bands measured with CCD-1020 compared to ASD FieldSpec 3Jr. 

 

 

Figure 2-9: Krypton emission bands measured with Xenics-Xeva compared to ASD FieldSpec 3Jr. 

The figures prove the success of the determination, as the remaining emission maxima show 

conformity between the measurements with the AVIS-3 sensors and the field spectrometer. 

As a result of this evaluation, a partially significant deviation of the spectral range from the 

manufacturer’s specifications was identified, which led to the determination of the actual 

spectral ranges of the spectrometers as follows: 

CCD-1020  471 – 1045 nm 

Xenics-Xeva  908 – 1753 nm 

The most striking finding was the anterior shift of the CCD-1020 range, which actually does 

not start at a wavelength of 400 nm, but at 471 nm, underlining the necessity of the 

wavelength analysis.  
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Figure 2-10: Band merging of CCD-1020 with a linear factor of 4. Noise is reduced, but the oxygen absorption 

feature at 760 nm is still visible. 

2.2.1.2.3 Spectral Responsivity 

The spectral responsivity is a measure of the wavelength-dependent sensitivity of a CCD. It 

results from the responsivity of each of the sensor’s light passing components (spectrograph, 

lens, filter and camera) (OPPELT & MAUSER, 2007). For the calculation of the spectral 

responsivity of the AVIS-3 sensors, the signal of an integrating sphere containing a halogen 

calibration lamp (OCEAN OPTICS HL-2000) as illumination source was used for both CCD-

1020 and Xenics-Xeva. At the same time, radiance of the integrating sphere was measured 

with the calibrated ASD FieldSpec 4, from which correction factors were calculated to 

simulate a constant illumination source over all wavelengths. The DNs of the AVIS-3 

spectrometers were multiplied by these factors and normalized. Figure 2-11 shows the relative 

responsivity of both spectrometers under theoretical wavelength-independent and constant 

light conditions. 
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Figure 2-11: Spectral responsivity of CCD-1020 and Xenics-Xeva. 

As expected the responsivity is lowest in the spectral periphery of both sensors. The 

responsivity of CCD-1020 is highest in the NIR region, while it is low in the visible spectrum, 

especially up to 520 nm. Xenics-Xeva shows a behavior that is skewed to longer wavelengths 

with a maximum around 1600 nm and is therefore weakest in its lowest wavelengths. 

Moreover, the first and last bands of each sensor are not usable for any analysis, since they do 

not receive any radiation. Knowledge of the spectral responsivity is valuable for later analyses 

of the data, since bands with a lower responsivity are more susceptible to noise and 

uncertainties during calibration of raw data to radiance and reflectance.  

In addition to defining the responsivity of the entire CCDs, the spectral response function of 

each band should be analyzed as well. This may be of importance when adapting bands of 

another instrument to artificial AVIS-3 data. However, this analysis could not be performed, 

since an adequate and calibrated measuring device, operating in a sub-nanometer range, was 

not available. Nevertheless, the need for this step may be considered as negligible for the 

following reasons. Compared with a multispectral system, the spectral resolution of a 

hyperspectral sensor is much higher. In the case of AVIS-3, the resolution encompasses not 

more than 2.8 nm (Xenics-Xeva: 5.0 nm) with a sampling interval of 5.8 nm (Xenics-Xeva: 

6.6 nm) after band merging. Hence, variations in intensity in the scale of some nanometers do 

not carry much weight. It is therefore assumed that the spectral response function corresponds 

to a Gaussian distribution around the center wavelength of each band. Thus, the resulting full 

width half maximum (FWHM) of that distribution is assumed to equal the sampling interval 

of the particular sensor. 

2.2.1.3 Navigation System 

In light of the limited stability of aircraft platforms, the geometric correction of the images is 

of particular importance. Since AVIS-3 is a push-broom sensor, which records individual 
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image rows synchronously, each pixel along a row can be associated with a certain constant 

recording angle. Depending on the current altitude a.s.l., flight situation (roll, pitch and yaw, 

see Figure 2-12) and ground elevation, an individual target-sensor distance and a 

comprehensible camera angle results for each pixel. 

 

Figure 2-12: Aircraft movement caused by roll, pitch and yaw.  

Based on this, the distortion of position can be calculated and corrected for each pixel. To 

reproduce the flight movement and geographical location, a high-frequency GPS (GNSS 

Trimble BD982, GPS L1/L2/L5, GLONASS L1/L2, maximal 50Hz, by extrapolation of FMS 

100Hz) and an inertial measurement unit (IMAR INAV-FMS) are integrated in AVIS-3. 

During data acquisition this data is written in the last column of each CCD. Table 2-7 shows, 

by way of example, the extraction of an AVIS-3 navigation file, taken during the 2012 data 

acquisition. Besides the geographical location measured via the dGPS, and the angles of roll, 

pitch and yaw measured via IMU, the file also contains information about heading and speed 

of the aircraft as well as the time step for each row. The way in which the navigation 

information is used for the geometric correction is described in Chapter 2.2.2.2.1. 
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a direct electrical connection between sensor and platform. An advantage of the Do 27 is its 

minimum flight speed of less than 150 km/h. This ensures that the images are not disturbed by 

data gaps which can occur when the flight speed exceeds a certain limit during data 

acquisition.  

2.2.2 Data Preprocessing 

Before the acquired image data could be analyzed the 52 flight strips had to be preprocessed 

in three major steps. In general, this included sensor calibration to clean the raw data from 

systemic noise and deficiencies, geometric correction to equalize aircraft motions during 

recording, as well as ortho-rectification and radiometric calibration to convert the non-

dimensional grey values to radiance and reflectance. Furthermore, several smaller steps of 

data fusion and preparation were necessary for the final generation of four high-quality 

hyperspectral data cubes of the entire test site. The several stages of preprocessing are 

described in the following section. 

2.2.2.1 Sensor Calibration 

In a first step before any geometric or radiometric calibration is performed, the sensor 

properties must be analyzed and, if necessary, noise effects reduced and systemic 

inhomogeneities accounted for. In particular, these are dark current and flat-field effects. 

Their rectification requires two correction matrices with the column and row size of the CCD 

of each camera which are then applied to the raw data. This ensures homogenous conditions 

among all pixels of both CCDs and thus allows the subsequent geometric and radiometric 

correction steps. Flat-field gain and dark current offset correction is calculated by 

 

𝐷𝑁 = (𝐷𝑁𝑟𝑎𝑤 − 𝐷𝐶𝑖,𝑗) ∗ 𝐹𝐹𝑖,𝑗 (Equation 2-1) 

where 

DN  grey value 

DNraw  grey value of raw data 

DCi,j  dark current offset for each pixel in column i and row j 

FFi,j  flat-field gain for each pixel in column i and row j 

Within the flat-field analysis, the so-called smile effect is analyzed as well. Finally, 

impractical columns in the data which originate from limitations of the aperture angle are 

removed. The sensor calibration is executed with original data before band merging. 
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2.2.2.1.1 Dark Current Correction 

Besides triggering electrons induced by the internal photoelectrical effect, the rigid crystal 

lattice of a charge-coupled device (CCD) provokes inelastic collisions which may trigger free 

carriers. Consequently, these electrons trigger off a signal at the sensor, even without being 

illuminated. As this signal noise is generated thermally, dark current depends strongly on the 

temperature of the sensor (WIDENHORN ET AL., 2002). The total amount of dark current 

aggregates from three different sources: the surface of the Si-SiO2 interface, within the bulk 

region and the depletion region of the CCD, whereas the majority of thermally generated 

electrons originate at the surface (HOLST, 1998).  

As dark current depends on temperature as well as on material properties, it can be measured 

by closing the shutter of the lens. This ensures that no light reaches the CCD and only dark 

current is recorded. Figure 2-14 shows a segment of dark current measurement of the CCD 

1020 sensor, carried out on 1000 rows. The image was recorded in a laboratory with a sensor 

temperature of around 18°C, as this corresponds to flight conditions with AVIS-3. For dark 

current measurements, it is also important to take the integration time as well as the mean 

duration of a typical recorded flight strip above the test site into account, since dark current is 

time-dependent and increases along with the continued duration of the recording.. For this 

reason, a dark current measurement of 1000 rows was taken. 

 

Figure 2-14: Segment of dark current measurement, displayed in RGB (bands 130-51-19). 

For the elimination of the influence of random noise and systemic fluctuations, a correction 

matrix was calculated by averaging the measurement over all rows, resulting in an offset 

value for each column and each band. In Figure 2-15 the histogram proves that, as expected, 

the dark current data is almost normally distributed. 
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Figure 2-15: Histogram of dark current frequency distribution of CCD-1020. 

A correction matrix with offset values for each pixel was calculated on the basis of this data 

(Figure 2-16). It seems that there are two hot spots with higher values of dark current; 

nonetheless a trend of increasing values from the lower right side to the upper left side is 

visible. This can be explained by the direction of current flow from upper right to lower left 

and an associated accumulation of carriers at lower left. 

 

Figure 2-16: Dark current offset matrix of CCD-1020. 

Applying the offset matrix to the recorded data leads to a reduction in image strips, however 

the visible effect is not that distinct as after flat-field correction (see following Chapter 

2.2.2.1.2). 

Apart from their use in the correction of image data, dark current measurements were also 

applied for the determination of the Signal-to-Noise ratio (SNR), which is a measure of the 

efficiency of the sensor. The SNR is the ratio of the measured signal to the variation in 

systemic noise (e.g., OPPELT, 2002) and is defined as a function of exposure time, 

illumination conditions and the reflectance properties of the target. The SNR thus depends on 
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the brightness of the surface in each wavelength. It uses the standard deviation (sigma) of 

dark current measurements of the CCD and is calculated by the following equation: 

 

𝑆𝑁𝑅 =  
𝐷𝑁𝑖

𝜎𝐷𝐶,𝑖
 (Equation 2-2) 

where 

DNi  measured signal (dark current corrected) at band i [DN] 

σDC,i  standard deviation of dark current at band i [DN] 

Although the ideal SNR may be defined in the laboratory with the integrating sphere, the 

conditions during data acquisition are more realistic when trying to evaluate the quality of the 

data and the SNR. This is due to the fact that during data acquisition, the brightness of the 

surface does not meet the same ideal reflection conditions as those which occur when using an 

integrating sphere. Therefore, a raw signal from a representative vegetation surface, taken 

during the fourth flight on September 8
th

, was examined for its SNR. Figure 2-17 shows the 

measured grey values of that pixel and the corresponding SNR: the higher the signal from the 

raw data (blue), the higher the SNR (green). The standard deviation of dark current is 

displayed in red and demonstrates the varying behavior of wavelengths-dependent dark 

current sigma. 

 

Figure 2-17: SNR analysis of CCD-1020. Sigma is the wavelength-dependent standard deviation of dark 

current and refers to the second y-axis. 

In order to calculate the maximal SNR, the ratio of the band with the maximal grey value and 

the corresponding sigma was taken into account as defined by Equation 2-3. The maximal 

SNR of the CCD-1020 was thus determined to amount to 65 dB (1743:1). 
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𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝐷𝑁𝑚𝑎𝑥

𝜎𝐷𝐶
) (Equation 2-3) 

where 

DNmax  measured maximum signal (dark current corrected) [DN] 

σDC  standard deviation of dark current at the corresponding wavelength [DN] 

Dark current correction is necessary only for the CCD-1020 device, as the SWIR-sensor 

Xenics-Xeva is equipped with an integrated Peltier device, a thermoelectric cooler which 

lowers the sensor’s temperature to 263K by pumping the heat from the CCD to a heat sink 

electrically (HOLST, 1998). At this temperature, dark current is significantly lower but still of 

relevance. A manual correction is nevertheless not necessary, because it is corrected internally 

by the device. Consequently, the determination of the SNR of Xencis-Xeva is not possible 

here. 

2.2.2.1.2 Flat-Field Correction 

In addition to the signal noise caused by dark current, there are two further major sources of 

artifacts which affect the electro-optical performance of the CCD: the vignette effect resulting 

from the architecture of the optical aperture on the one hand, and a non-uniform quantum 

efficiency (QE) among the CCD cells on the other (OLSEN ET AL., 2010).  

Vignetting refers to a reduction in brightness from the center of an image to its edges. It 

occurs due to light obstruction by blockage at the frame of the lens, filters and neutral glasses, 

as well as due to different light path lengths and incident angles (LELONG ET AL., 2008). Since 

manifold CCD detectors are rarely identical, each cell inside the CCD has an individual 

quantum efficiency (QE). The QE is the ratio of incident photons to triggered electrons and 

thus is a measure of the electrical sensitivity of a CCD (JANESICK, 2001).  

These effects can be corrected by flat-fielding, a process by which a matrix of gain factors 

generated from a homogenous reference image compensates for the illumination differences. 

Usually an integration sphere serves for the generation of an image under homogenous 

conditions. Due to size of the lenses and the complicated device setup consisting of two 

cameras, it was, however, not possible to ensure identical light conditions among all columns 

of both cameras. Instead, a different correction approach was tested using the images taken 

during the field campaign. 

The flat-field correction was performed based on the assumption that starting from a certain 

length of data recording, i.e., the number of image rows collected in along-track direction, the 

fractions of the different landscape types occurring within the study site, e.g., forest, several 

crops and bare land, will eventually be equally distributed within each image column and can 
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then be averaged to one single image row reflecting the study sites mean landscape 

characteristics in across-track direction. The averaging of the image rows leads to a 

(theoretically) uniform brightness distribution over all 640 columns (Xenics-Xeva: 320), with 

individual characteristics for each band, and thereby makes the formerly heterogeneous 

landscape appear homogeneous. The resulting matrix, which only in theory comprises 

uniform brightnesses throughout all columns, consequently reflects the electro-optical 

inequalities of the CCD and can, when applied to the original flight strip, correct its flat-field 

effect.  

It has been shown that this method is successful when averaging a minimum of 5000 image 

rows. In the case of the AVIS-3 data collected in 2012, a single flight strip consisted of about 

1000 rows. For this reason, all of the strips recorded on an acquisition date were used to 

compute the flat-field gain matrix. The result for the CCD-1020 can be seen in Figure 2-18. 

 

Figure 2-18: Flat-field gain matrix of CCD-1020. The two conspicuous line structures are caused by 

atmospheric absorption due to oxygen and water vapor. 

The most notable features in the gain matrix are the homogenous areas with a correction 

factor of 1.3 at the left and right border. Although the correction factors in this area are in 

some cases much higher, all values > 1.3 are bound to this value for reasons of contrast 

enhancement. This massive deviation is due to limitations of the optical aperture of the sensor 

and is described at the end of this chapter. Apart from this fact, the matrix shows the expected 

trend of higher gain values from the middle to the margins of the CCD. Variations in this 

main trend caused by vignetting can be attributed to the photosensitivity of the CCD cells. 

Further, a couple of rows at the bottom and the top of the image appear to be slightly noisy; 

this is due to the lower responsivity (see Figure 2-11) of the silicon-based CCD-1020 at lower 

(< 520 nm) and higher wavelengths (> 1000 nm).  

Moreover, it must be noted that the flat-field gain matrix also contains atmospheric features 

since it is based on real data acquisitions from the aircraft. Especially the strong oxygen 
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absorption at 760 nm (GREENBLATT, 1990) and the atmospheric water vapor absorption 

around 930 nm (JONES & VAUGHAN, 2010) appear as different-coloured row structures among 

all columns. However, the presence of atmospheric features is an advantage, since they can be 

used to reveal the smile effect. The smile or frown effect describes non-uniformity in the 

wavelength by each row of the CCD (CUTTER & LOBB, 2004). It originates from a 

misalignment of the optical components on the one hand and light dispersion properties of 

grating spectrometers on the other, which may lead to a shift in the actual wavelength in a row 

from the center to the borders of the array (OPPELT & MAUSER, 2007). An analysis of the 

accurate position of the oxygen absorption band at 760 nm thus shows that there is no smile 

effect in the AVIS-3 data or that it is so slight that the deviation is considerably lower than the 

spectral resolution. This makes a correction of the effect redundant. 

As can be seen in Figure 2-19 the CCD of Xenics-Xeva behaves differently. Compared to the 

CCD-1020 the gain factors are distinctly lower, which means the Xenics-Xeva is more 

homogenous. The vignette effect is not, or at best barely, visible and the array is 

predominantly influenced by its individual photosensitivity. The spectral responsivity (see 

Figure 2-11) of Xenics-Xeva is, in contrast to the CCD-1020, also at its margins (< 980 and > 

1700 nm) very low and thus error-prone, which can be explained by the different behavior of 

the gain factors at the upper and lower areas of the array. The figure also shows that the water 

vapor absorption bands ranging from 1100-1170 nm and 1340-1490 nm (JONES & VAUGHAN, 

2010) occur as different-colored structures, whereby the latter is far more distinct than the 

first. 

 

Figure 2-19: Flat Field gain matrix of Xenics-Xeva. 

Figure 2-20 compares the raw data with the images received after they have been cleared from 

dark current and corrected for inhomogeneities. Clearly, the procedure resulted in a distinct 

image enhancement; in addition to the elimination of striations in the data, the images are of 

higher contrast now.  
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Figure 2-20: Raw and sensor-calibrated images of CCD-1020 (true color) and Xenics-Xeva (colored infrared). 

Before the data can be corrected geometrically, the marginal areas at the images with bad 

values have to be removed. As can be seen in the Figure 2-18 and Figure 2-20 these areas of 

the CCD-1020 and its flat-field gain matrix appear corrupt. The reason for this is a limited 

opening angle of the bottom flap of the Do-27 aircraft. What the camera sees at the outer 

borders of the CCD are the flaps of the aircraft. This problem occurs only for the CCD-1020 

as Xenics-Xeva has a lower FOV. Therefore the first 32 and the last 48 columns were 

detached. 

To accelerate the processing time in the following stages, and because it is no longer essential 

or even reasonable to maintain the original number of bands the data will now be spectral 

downsampled, as described in Chapter 2.2.1.2.2. 

2.2.2.2 Geometric Correction 

To resample the data geometrically four steps are necessary: determination of the external 

orientation, analysis of image geometry, its backward transformation to the target geometry 

and the resulting final resampling. Figure 2-21 gives an overview of the geometrical process 

chain by which the raw image was transformed to a rectified image. The different steps are 

further specified in the following sections. 
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Figure 2-21: Organogram of the geometrical process chain. Input / output data differs in image data (blue) and 

meta data (green). 

2.2.2.2.1 External Orientation 

The exact position of each pixel can be determined by means of the navigation information 

registered by the dGPS and the IMU. Figure 2-22 shows the recordings of the navigation 

components for a single strip flown from South to North, consisting of 927 rows. The record 

was taken with the Xenics-Xeva camera, during the fourth flight with AVIS-3 in 2012 (Sept 

8
th

). The graphs for roll, pitch and yaw (Figure 2-22, right) reflect the instable conditions and 

turbulences during the flyover, to which the pilot has to counteract in order to remain in track. 

Even then the resulting flight track does not draw a perfect line from south to north; it should 

be noted that divergences are comparatively slighter in east-west direction than they appear in 

Figure 2-22 (left), due to the different scaling of the two axes.  
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Figure 2-22: Recordings of position, measured via dGPS (lef), and roll, pitch and yaw, measured via IMU 

(right), for a single flight line. 

Before the data can be used it is necessary to determine the external orientation of the sensor. 

This is due to the fact that the data of the inertial measurement unit is oriented to an internal 

reference. The installation position of the two dGPS antennas may vary with each flight, so 

the sensor is distorted in all three spatial directions. To calculate the exact external orientation 

a ground control point file (GCP), containing latitude, longitude, elevation, column number 

and row number, is required in addition to the navigation recordings. By combining the GCP 

file with the image data and the navigation information the rotation angle can be determined. 

The result is corrected angle information for the navigation data. Based on the true external 

orientation, the image geometry can be analyzed in the next step.  

2.2.2.2.2 Analysis of Imaging Geometry 

The exact position of each pixel on the surface of the earth can be traced back by applying the 

now-known bias of the external orientation, the navigation information as well as a high 

resolution digital elevation model (DEM). For this purpose a six-band output image was 

calculated, comprising easting, northing, altitude a.s.l., terrain elevation, zenith angle and 

azimuth angle for each pixel. Figure 2-23 shows the result of the analysis for the exemplarily 

stripe, based on the recordings of the Xenics-Xeva camera. The bands containing zenith and 

azimuth angle information are of special interest, as they are an important information source 

for sun-target-sensor geometry during later data analysis. Their variation traces the flight 

track. The zenith angle here ranges from less than -10° up to more than +10°. The values of 

the azimuth angle thereby switch along the absolute zenith track between approximately 60° 

to 0° and < 360° to 300°, which is an indication that the flight direction extends from south to 

north. It can be assumed that the zenith values of the same strip recorded with the CCD-1020 

camera are of a higher range, since the VNIR spectrometer has a larger swath width. 
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Figure 2-23: Analysis of the image geometry. The data is based on the navigation recordings of Xenics-Xeva. 

The elevation band output shows a special feature in the lower section of the image, where it 

seems to be pixelated. This stems from the lower resolution of the ASTER-DEM which was 

used to fill in the gaps of the high resolution DEM in areas outside of the 3x4 km sized study 

area around Neusling. 

2.2.2.2.3 Target Geometry and Resampling 

A two-band image of the target geometry was calculated by the process of backward 

transformation. As part of this step the final spatial resolution was defined. For this purpose 

each pixel in the resulting image was matched to the pixel of the original image which was 

closest based on its geographical location. The two bands contain information on the column 

and the row number, respectively, of the original image (Figure 2-24). Compared to the layers 

of the image geometry (Figure 2-23), the spatial extent of the target geometry appears to be 

much narrower than one would be expected when the underlying aim is only to correct 

distortions. This can be explained by the fact that the Xenics-Xeva camera has a 

comparatively higher spatial resolution in across-track direction than in along-track, due to its 

narrow FOV (20°, 320 columns). By setting the final resolution to 4 m and calculating the 

target geometry, these inequalities of the Xenics-Xeva were compensated for. 
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Figure 2-24: Target geometry with the column (maximal 320) and row number (maximal 927) of the original 

image. 

Geometric correction was finalized by resampling the image data, whereby the cubic 

convolution method was found to perform best. Figure 2-25 illustrates the final resampling 

step of the identical flight strip for both cameras. The success of the geometric correction 

becomes evident when regarding the borders of agricultural fields, which now appear straight 

where they were formerly curved. 

 

Figure 2-25: Final resampling step from only sensor calibrated to geometric corrected images of CCD-1020 

(left, true color) and Xenics-Xeva (right, colored infrared). 
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2.2.2.2.4 Image Mosaicking 

After all of the 52 image strips were processed by means of sensor calibration and geometric 

correction, in a next step the data was layered and mosaicked. For that purpose, the Xenics-

Xeva data (128 bands) was co-registered to the CCD-1020 data (99 bands), since there were 

minimal deviations between the two sensor recordings, even after geometric correction. To 

allow a pixel accurate evaluation of the very important sun-target-sensor geometry during 

later analysis, the previously extracted information on zenith and azimuth angle was 

resampled as well and stacked to the other layers as additional bands. Figure 2-26 gives an 

overview of the data layers. To prevent errors in the wavelength-dependent analysis to come, 

the wavelengths of the new bands of zenith and azimuth were set to 9998 and 9999 nm, 

respectively. 

 

Figure 2-26: Image layers to be stacked:CCD-1020 bands (true color, left below), Xenics-Xeva bands (colored 

infrared, left above), zenith angle (middle) and azimuth angle (right). 

As a result, the new data cube now consisted of 229 bands. It should be noted, however, that 

the actual number of bands had to be reduced due to the overlapping of the spectral ranges of 

both cameras. The reduction was carried out after radiometric calibration (see Chapter 

2.2.2.3). 

Before image mosaicking was carried out, the images were ortho-rectified to a high-resolution 

aerial photo of the study area in order to ensure that the flight strips among all scenes are 

geometrically absolutely congruent to each other. This is necessary due to potential 

geometrical divergences in the resampled image stripes, which may originate from minimal 

measurement inaccuracies of the IMU and the dGPS as well as from recording errors. 

During image mosaicking, the components of the final mosaic are merged based on their 

spatial extent. Here, it was necessary to consider that the strip widths of the CCD-1020 and 

the Xenics-Xeva data differ and should be merged based on the spatial properties of the latter, 
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since it has a lower spatial coverage. When consecutively merging the images over the full 

spectral range, this would, however, lead to the loss of large parts of SWIR information, even 

if they are merged based on the spatial extent of the Xenics-Xeva data. This is due to the fact 

that areas lying outside the Xenics-Xeva extent but inside the CCD-1020 extent of the next 

image strip, holding solely information in the VNIR domain, would replace the SWIR 

information of the previous strip. To prevent this kind of data loss the mosaicking was carried 

out in two steps. First, the extent of the Xenics-Xeva bands served as a mask for the full 

dataset, including CCD-1020 bands and sensor angles. The image mosaic was composed on 

the basis of this segment. Since this mosaic showed data gaps originating from an insufficient 

number of flight strips to achieve full spatial coverage over the whole study area in the SWIR 

domain (see Chapter 2.1.2), another mosaic was calculated based on the full extent of the 

CCD-1020 data, in order to at least gain full coverage in the VNIR domain. The second 

mosaic was then used to fill in the data gaps of the full spectral range mosaic. Figure 2-27 

visualizes the resulting mosaic for the fourth flight on September 8
th

. The position of field 

boundaries on the hyperspectral image proves the quality of ortho-rectification. Further, it is 

shown that even with eight flight strips data gaps in the SWIR may occur. This problem is 

reviewed in chapter 2.2.4. 
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Figure 2-27: Ortho-rectified image mosaic of the fourth AVIS-3 flight consisting of eight single flight strips. The 

extent of the SWIR-based mask is shown in colored infrared (framed in blue), compared with the underlying 

VNIR extent in true color. The test site extent and field boundaries are displayed in yellow.  

2.2.2.3 Radiometric Calibration 

During radiometric calibration the dimensionless grey value signal is transferred to radiance 

and reflectance. While radiance is the physical amount of energy that actually reaches the 

sensor, reflectance is the fraction of incident radiation that is reflected from the surface. 

Reflectance is driven here by color, physical state, surface roughness and illumination 

conditions and thus can be seen as surface property. Consequently, the derivation of 

reflectance data is the major goal of this calibration step, because, from a plant-physiological 

perspective, reflectance allows direct conclusions to be made about the controlling elements 

within vegetation and its state. However, radiance data is of importance too, since it supports 

the interpretation of the strength and width of atmospheric absorption bands, which may 

disturb a later analysis of the data. 
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In contrast to other studies (e.g., OPPELT, 2002; BACH, 1995) in which spectral reflectance 

was derived by the use of an atmospheric radiative transfer model, an empirical alignment 

approach was applied in this study. To support this, spectroscopic field measurements of 

defined reference targets were collected during the flyovers of the field campaign (see 

Chapter 2.1.3.1). Because the field spectrometer has a higher spectral resolution (3 nm with a 

sampling interval of 1 nm) than the airborne AVIS-3 record, the spectral resolution of the in-

situ data was reduced according to the center wavelengths of AVIS-3 bands. Thereafter, a 

correction file was calculated based on the ratio of the AVIS-3 record to its corresponding 

reference measurement and then applied to the full dataset to obtain reflectance and radiance. 

Compared to the inversion of an atmospheric model, this procedure has some advantages, but 

also some limitations, which arise from the method of calibration. An advantage of field 

measurements is the fact that they allow a far more accurate characterization of the 

atmospheric conditions at the time of the flyover than an atmospheric model could ever 

deliver. However, this method is not flawless. Since atmospheric conditions as well as the 

influence of the sun zenith angle can change significantly within minutes, a precise calibration 

of all image strips would require measurements to be collected for each image strip, at 

representative, non-alterable sites, at the exact time of the airborne data recording. These 

requirements cannot be met for both logistical reasons and because of the lack of suitable 

reference targets at the ground. In addition, they are far more time-intensive than the use of an 

atmospheric model. However, the advantages of field measurements outweigh the 

disadvantages since they lead to higher data quality. 

Calibration is essential to ensure comparability between different datasets. This comparability 

is not given for the raw data, since several substances within the atmosphere as well as 

changing atmospheric conditions at each data acquisition influence the signal received by the 

sensor. First, there are absorption processes which are caused by different molecules in the 

atmosphere, such as ozone, oxygen, water vapor and carbon dioxide (e.g., OPPELT, 2002). 

This absorption effect cannot be corrected, since solar radiation in the affected wavelengths 

reaches neither ground nor sensor. Fortunately, this is only the case for specific wavelengths. 

When the absorption effects are too strong, these ranges are in general excluded from the 

analyses of the airborne datasets. Second, there are scattering effects in the atmosphere, which 

can in turn be corrected by calibration. Specifically, these effects are Rayleigh and Mie 

scattering (SCHANDA, 1986). Rayleigh scattering, caused by air molecules whose diameters 

are much smaller than the wavelength, is inversely proportional to the 4th power of the 

wavelength. Mie scattering, by contrast, is caused by particulate matter similar in size to the 

wavelength, such as water vapor, smoke and dust particles. Scattering effects disturb the 

signal that reaches the sensor in two ways. First, they cause path radiance, which is radiation 

scattered in the atmosphere and reaching the sensor without being reflected by the ground 

(OPPELT, 2002). Second, scattering effects lead to overexposure in the data, which is the result 
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of direct and diffuse radiation reflected from surrounding pixels (BACH, 1995). This effect is 

also called ‘adjacency effect’ (VERHOEF & BACH, 2003) 

Since adjacency radiation depends, above all, on the brightness of the immediate surroundings 

in each wavelength, it cannot be calibrated using field measurements. As a consequence, a 

different approach needs to be adopted. In contrast, path radiation is a purely atmospheric 

property. Hence its influence can be eliminated by calibration against field measurements. It 

is based on the assumption that the field measurements register the reflectance, taken at a 

height of about one meter above the ground and calibrated using a white reference, free of 

atmospheric effects; thus it can be used to correct the airborne image data. Although an 

atmospheric influence in an atmospheric layer thickness of one meter may be detectable when 

analyzed, it can nevertheless be neglected here. 

To efficiently calibrate the data into reflectance and radiance values, it is advisable to start 

with the removal of the adjacency radiation from the raw data before correcting the effect of 

path radiance. Adjacency radiation depends on the heterogeneity of the reflection properties 

of the surroundings and its impact is becomes more pronounced, the closer the adjacent pixels 

are to the center pixel. KAUFMANN (1995) quantified the sphere of influence of adjacency 

radiation for spaceborne sensors to 2 km around the center. BACH (1995) investigated the 

possibility to correct the adjacency effect, referring to two studies in which the spatial 

distribution of overexposure influence had been modelled (TANRE ET AL., 1981 and 1987). 

The model calculations revealed that 50% of overexposure is caused within 1 km of the pixel. 

To clear images of this effect, a filter matrix is calculated based on a weighting function 

(TANRE ET AL., 1981) which takes the spatially distributed influence of overexposure into 

account. Nearby pixels are thereby weighted to a higher degree than those lying farther away. 

Based on the weighting function, BACH (1995) found that, in order to consider the adjacency 

effect in its entirety, the filter size should be at least 2 km. If applied to the AVIS-3 data, 

which has a ground resolution of 4 m, the resulting filter box would contain at least 250,000 

singular weightings, which would then have to compute the amount of background radiation 

for each pixel. This would entail a long computation time. In addition, it would make little 

sense to use a 2 km filter at a large, 3x4 km test site. However, the models developed by 

TANRE are designed in particular for spaceborne data. Airborne systems differ not only in the 

reduced operation height, which reduces the size of an influencing neighborhood, but also in 

the smaller-scale distribution of reflection elements (BACH, 1995). Because of these two facts, 

an iterative approach was tested to calculate the optimal size of the filter matrix, which in this 

case is a Gaussian kernel. The kernel is defined by its size in column and row direction and 

the width of the standard deviation (sigma) of the Gaussian function. Different combinations 

of size and sigma of the Gaussian function were tested. Several iterations were required in 

order to obtain the most efficient combination. During each iteration, the current Gaussian 

kernel was tested on the radiometric raw data whereby an offset for each pixel was calculated. 
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This offset represents the overexposure and was subtracted from the original data. In a 

following step, the effect of path radiance was removed from the data and calibrated into 

reflectance. Overexposure correction (OEC) was applied to the raw data and thus before the 

step of reflectance calibration. Due to the iterative approach of the OEC and because it is 

based on the interpretation of reflectance, the derivation of radiance and reflectance is 

described at first. An overview of the whole procedure of radiometric calibration is shown in 

Figure 2-28. 

 

Figure 2-28: Organogram of radiometric correction. 

2.2.2.3.1 Derivation of Radiance and Reflectance 

Once the influence of adjacency radiation is removed, the only remaining source of error in 

the data is path radiance. This is corrected by the calibration of the dimensionless digital 

numbers of grey values. 

The evaluation of all reference targets identified the asphalt surface of the plant site (R7) to 

the north of the village of Neusling as the most suitable for calibration, since its asphalt 

surface is relatively new and thus very homogenous, and free of any coarse damage. The 

surface reflects radiation quite uniformly over all wavelengths and the standard derivation is 

acceptably small (see Figure 2-2). Nevertheless, the total amount of reflected radiation is low. 

For this reason, the reference target of R6 (Parking Area C) was tested too, as it offers a 

comparatively high reflectance and is thus less susceptible to noise and more suitable for the 

deduction correction factors. The standard deviation of that target is acceptably small as well. 

Although the reflectance below 500 nm is significantly lower than in the rest of the 

wavelength spectrum for reference target R6, a characteristic that is not as distinct in the 
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spectral signature of reference target R7, the first is a more appropriate target, because it 

allows a more precise calibration.  

For the generation of a correction file for AVIS-3, both reflectance and radiance data 

(collected in-situ), first had to be sampled down to the band specifications of the airborne 

sensor. This was done based on the spectral response function of AVIS-3, which was defined 

as normal distribution with a FWHM corresponding to the sampling interval around each 

center wavelength (see Chapter 2.2.1.2.3). Next, a ratio of the down-sampled data to the 

AVIS-3 spectrum of the reference target pixel was formed. This resulted in a correction factor 

for each band, which then was applied to the full AVIS-3 dataset. The following Figure 2-29 

shows the raw signal of a sample vegetation surface.  

 

Figure 2-29: AVIS-3 raw data, containing the signals of both the CCD-1020 and the Xenics-Xeva. The 

spectrum is from a sample vegetation surface, taken during the data acquisition on September 8
th

.  

In a first step, the dimensionless grey values registered by the AVIS-3 sensor were converted 

to physical radiance (W / m² sr nm). Only one calibration file was necessary to derive 

radiance from all four datasets, since both the airborne sensor as well as the field spectrometer 

register atmospheric influences, and the correction factors obtained for the individual flights 

were thus very similar. In a final step, the CCD-1020 and the Xenics Xeva data were merged. 

Because there is a spectral overlap of the two sensors (see Figure 2-29), duplicate bands were 

removed from the data. This resulted in a VNIR sensor coverage from 471 to 994 nm, while 

the SWIR sensor covers the range from > 994 to 1750 nm. However, due to the low sensor 

responsivity at the spectral margins of the CCD-1020 and the Xenics-Xeva (see Chapter 

2.2.1.2.3) which could lead to an error-prone calibration affected by noise, these outer bands 

had to be removed as well. Thus, only 197 of the original 227 spectral bands remained, 

covering the range from 477 to 1704 nm. The final result can be seen in Figure 2-30. The 

figure also shows the position of the absorption bands due to oxygen (O2) and water / water 

vapor (H2O).  
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Figure 2-30: AVIS-3 radiance after redundant band removal. The absorption ranges of O2 and H2O are 

illustrated too. 

Neither oxygen absorption at 760 nm nor the first (~ 820 m) and second (~ 930 nm) water 

vapor absorption bands were expected to adversely affect a later analysis of reflectance in 

those spectral areas, because the signal in the local minima is still strong enough for valid 

calibration. Rather, the absorption of H2O in these ranges can be attributed to plant cell water 

and therefore represents valuable information. In the third (~ 1125 nm) water vapor 

absorption range, however, the reflected radiance may be too slight to efficiently support the 

use of this spectral area, while this is definitely the case in the fourth absorption range at 

approximately 1400 nm.  

The retrieval of reflectance, which can be stated as a surface property, involved the generation 

of a correction file for each flight which was then applied to the corresponding dataset. 

Redundant bands were removed, likewise, but in contrast to the retrieval of radiance, the 

calibrated reflectance data had to be further enhanced since the spectra still appeared slightly 

noisy. A modest averaging filter (size=3) was used to smooth the data.  

Since the spectral range affected by water vapor varied between the different data 

acquisitions, a uniform regulation had to be found, to ensure a full comparability of all scenes 

when excluding those spectral ranges. Guided by the outermost areas affected, the borders 

were set to 1120 and 1160 nm and to 1300 and 1500 nm, for the third and fourth absorption 

band, and the gaps linearly closed. When analyzing the resulting data, it should be considered 

that sections of the spectral signature no longer provide valid information. 

The result of reflectance calibration can be seen in Figure 2-31. The figure shows the 

untreated reflectance calibrated for the two sensors and the final result after redundant band 

removal, smoothing and water vapor standardization. For a better overview, the two 

absorption ranges affected most are highlighted in grey. 
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Figure 2-31: AVIS-3 reflectance of CCD-1020 and Xenics-Xeva before and after band removal, smoothing and 

water vapor standardization. Ranges of the latter are marked in grey. The green plot shows the spectrum after 

data fusion. 

2.2.2.3.2 Overexposure Correction 

Overexposure was corrected prior to the processing steps by which radiance and reflectance 

are derived, but since the success of its elimination can be assessed far more precisely after 

the conversion of the grey values to reflectance, it is listed afterwards in this study. The OEC 

was based on a Gaussian kernel which is defined by the sigma of a Gaussian function over a 

specified amount of pixel. Different sigma values, ranging from 0.8 to 20, were tested for 

various filter sizes, ranging from 20 to 400 pixels, and led to the filter matrix finally applied 

to the image data (Figure 2-32). This Gaussian kernel was generated with a sigma of 1.8 and a 

width of 40 pixels, which corresponds to a filter size of 160 m. 

 

Figure 2-32: Gaussian kernel (Sigma = 1.8, Width = 40 Pixel) for overexposure correction. 

For validation purposes, the filter’s influence on the reflectance of three different surface 

types was examined: water, bare soil and vegetation. Their characteristic spectral features 
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were to be at least as, but ideally even more, distinct after the OEC, compared to their initial 

spectral signature. Since overexposure has a more pronounced effect on a pixel’s reflectance 

the closer it is situated to an area of a different land cover, the control pixels were chosen in 

boundary areas. The position of the validation pixels can be taken from Figure 2-35. 

A pond to the south of the test site served for the investigation of the filter’s effect on water 

reflectance. Characteristically, an open water surface absorbs radiation in the SWIR up to 

nearly 100%. In the control pixel, however, the reflectance in this spectral domain was 

significantly higher due to the adjacency effect. The OEC thus aimed to reduce the signal in 

the long-wave range, i.e., for radiation with a wavelength > 1100 nm, without leading to 

negative reflectances, since this would mean the exposure filter was too strong. Figure 2-33 

compares the uncorrected reflectance of the pond with its reflectance after overexposure 

correction. The result is satisfactory, since reflectance in the SWIR is nearly zero. Although 

some peaks remained in the SWIR range of the data, this fact could be ignored as they 

occurred in the water vapor absorption ranges and were consequently excluded from the later 

analysis.  

 

Figure 2-33: Impact of OEC on reflectance of water. The range of atmospheric water vapor absorption is 

highlighted in grey and is therefore not to be considered. 

Figure 2-34 shows the impact of the correction on the spectra of bare soil and vegetation. The 

uncorrected soil spectrum showed an increase in reflectance around 720 nm, which was 

attributed to the red edge, a characteristic feature in vegetation spectra, although the sample 

represents an absolutely fallow field. With the successful application of the overexpose filter, 

the red edge could be eliminated. In the vegetation spectrum the OEC acted in a contrast-

enhancing way. In spectral ranges of absorption, e.g., in the visible and the SWIR region, the 

signal was cleared from the comparatively high reflectance of surrounding bare soil pixels in 

that spectral range. In contrast, high reflecting areas of the spectrum, e.g., in the NIR-plateau, 

had been underestimated due to the lower reflectance properties of soil in this specific range. 
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Through the OEC the reflectance was thus increased. Again, negative reflectance values 

would have led to the rejection of the filter but were not found throughout the whole dataset. 

 

Figure 2-34: Impact of OEC to reflectance of soil (top) and vegetation (bottom). The range of atmospheric 

water vapor absorption is highlighted in grey, since the signal in the affected range tends to be noise. 

Figure 2-35 shows an image section of the AVIS-3 flight on September 8
th

 before and after 

OEC. The enhancement concerning image sharpness and clarity is clearly visible. As 

mentioned above, the figure also contains the positions of the three sampling spectra. The 

completion of sensor calibration, geometric correction, radiometric calibration and all data 

merging steps enabled the meaningful analysis of the AVIS-3 datasets which is discussed in 

Chapter 3. 
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specifications of the processed AVIS-3 data. Consequently, the adapted HySpex data 

comprised 197+2 bands, covering the same range from 477 to 1704 nm. 

2.2.4 Résumé and Results of Preprocessing 

In retrospect, the acquisition and preprocessing of AVIS-3 data brought some unexpected 

challenges, which could be solved in most cases, but were much more time-consuming than 

originally anticipated. One of the greatest challenges was the data acquisition itself, which 

was explicitly dependent on adequate weather conditions and thus turned out to be a limiting 

factor for the creation of a solid image database. The range of potential acquisition days was 

limited further by restrictions imposed by the airport, allowing motorized flights only on 

weekends and holidays. In addition, unexpected weather changes during data acquisition, e.g., 

on the second flight with AVIS-3 at May 25
th

, rendered some in-situ measurements useless 

since the collected imagery data was partly covered by clouds and thus had to be removed 

from the later analysis. 

Further problems arose during data preprocessing, such as the lack of an integrating sphere 

that is large enough for the sensor to carry out a flat-field correction. This could be addressed 

by calculating a correction matrix from the image data acquired. 

During geometric analysis, problems occurred due to the partly disturbed navigation data of 

some flight strips. Fortunately, all files could be reconstructed. However, some image areas in 

the scenes still appeared distorted. Moreover, the inertial measurement unit was not able to 

measure intense and quick flight movements, as occurred especially during the third flight. 

The movements of the aircraft thus could not be traced back and made it impossible to correct 

the image data from this effect. Since it was a small-scaled phenomenon, usually in a range of 

only a few pixels, it could be neglected. 

The radiometric calibration must be viewed critically as well. Although the method of 

empirical alignment by the use of field spectrometer data worked very well and led to 

coherent spectra, it cannot be overlooked that due to the time difference, and thus varying sun 

position between the airborne data recording and the acquisition of reference spectra of the 

corresponding location at the ground, some spectra are minimally corrupted. 

During preprocessing it was discovered that the original flight plan of six overlapping strips 

for covering the test site was not enough to guarantee full coverage by the Xenics-Xeva SWIR 

sensor. Due to the high frequency of the flights and the time-consuming activity of 

preprocessing, this issue was unfortunately only revealed after the third data acquisition had 

taken place on June 16
th

. The gaps were caused by the underestimation of the intensity of 

compensation movements, especially those induced by rolling, that the aircraft had to absolve 

to keep on track. Generally, these movements led not only to gaps between several strips, but 

also to the loss of data at both ends of the flight strips in some cases. This occurred when 



2 Generation of a Multiseasonal Database 

71 

    

pitch angles were too large despite a spatial buffer included in the calculation of the necessary 

length of the flight strips. For the fourth flight on September 8
th

 at least, the number of strips 

was increased to eight, but even then some small gaps appeared. Figure 2-36 shows the four 

AVIS-3 scenes. The images each contain a true color visualization of the data taken with 

CCD-1020, which provides full coverage, and are overlaid by a colored infrared band 

combination that shows the full scope of data gaps in the SWIR range. The different patterns 

of the SWIR extents in the images are the result of varying flight conditions. For example, the 

second data acquisition was much more disturbed by turbulences than the first one due to 

midsummer weather conditions. This is in line with the spontaneous convective cloud 

formation that can be seen in the south and northeast of the second scene. The patchy data 

gaps in the image acquired on June 16
th

 were the result of the lower navigational skills of the 

less experienced reserve pilot who replaced the otherwise booked proficient pilot during the 

third flight.  

 

Figure 2-36: AVIS-3 data mosaics. The coverage of the SWIR data (colored infrared), which is framed in blue 

for better visibility, is layered on top of the VNIR extent (true color).  

A malfunction of the CCD-1020 sensor, which was encountered in the data after the first 

flight, was a further problem that had to be addressed. In high-contrast areas, e.g., at roads and 

edge areas of agricultural fields, a kind of squint effect appeared within the data. This effect 
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caused a sort of overframing from brighter to darker areas with an offset of three to four 

pixels. Since this effect did not occur in test data of the years 2011 and 2010, it was initially 

attributed to an incorrect focusing of the lens. In the laboratory, however, this error was 

identified as being systemic, since no improvement was achieved when modifying the focus. 

Figure 2-37 shows the impact of the effect on an image section of roads with surrounding 

agricultural fields in five different wavelengths from the visible blue (477 nm) to near infrared 

(750 nm). Two arrows mark roads which are along-track or across-track to the flight 

direction.  

 

Figure 2-37: Squint effect of CCD-1020, taken with AVIS-3 on September 8
th

. The arrows mark roads along 

(blue) and transverse (purple) to the flight direction. 

A closer examination of this issue led to three main findings. First, the squint effect only 

appeared on the along-track road in the across-track direction. Second, the second road which 

then appeared was always situated to the right of the flight direction. Third, the effect is 

wavelength-dependent and most distinct in the short-wave bands. Thus, the effect was no 

longer visible in the last image (750 nm). It seems that the lens or a part of the spectrograph 

was damaged, possibly due to harsh flight movements. Although this effect disturbs the 

spectral quality of the data, it is only critical in areas where two contrasting land covers occur 

in high proximity to each other.  

Despite all difficulties mentioned, the acquisition and preprocessing of AVIS-3 data can be 

considered a success. This is because the AVIS-3 records covering both VNIR and SWIR, 

complemented by two HySpex datasets, provide an extensive database for the evaluation of 

methods for the retrieval of biophysical surface parameters throughout the growing season 

2012, when combined with the corresponding field measurements. Figure 2-38 shows the four 

AVIS-3 and two HySpex scenes in the correct timely order and nicely illustrates the dynamics 

of the vegetation period.  
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Figure 2-38: Final data mosaics of all acquisitions with AVIS-3 and HySpex (colored infrared).  

2.3 Data Transfer to EnMAP Scale 

To examine the applicability of the methods investigated in this study to the upcoming 

EnMAP-HSI, the airborne hyperspectral datasets of the study site had to be transferred to 

meet the spatial and spectral properties of the satellite. However, it is not sufficient to simply 
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resample the airborne data taken with AVIS-3 and HySPEX spatially and spectrally. Due to 

the lower ground sampling distance (GSD) of 30 m, at least 49 spectra would need to be 

averaged to represent an EnMAP pixel. This would lead to an unrealistic, almost noise-free 

reflectance signal and thus prevent an appropriate analysis of the potential of the spaceborne 

mission from being made. For that reason, SEGL ET AL. (2012) developed the EnMAP End-to-

End Simulation Tool (EeteS), the image data from the multiseasonal campaign was 

transferred to EnMAP scale using EeteS, with the support of Karl Segl from the GFZ German 

Research Centre for Geosciences in Potsdam, Germany. The steps of the conversion, 

described in detail in SEGL ET AL. (2012), are summarized in the following section. 

As can be seen in Figure 2-39, the EeteS first converted reflectance data to raw sensor data, 

i.e., Digital Numbers (DN), in its forward simulation module, and then further processed the 

raw data in the backward simulation module. There it was subjected to a simulated on-board 

calibration as well as all of the data preprocessing steps that will be integrated in the EnMAP 

image generation process. 

 

Figure 2-39: Organogram of the entire EeteS processing chain (SEGL ET AL., 2012). 

The forward simulator consists of four independent parts in the sequential processing chain: 

an atmospheric, spatial, spectral and radiometric module. It is coupled with the backward 

simulation tool encompassing on-board L1-calibration of non-linearity and dark current 

correction as well as absolute radiometric calibration. The subsequent L2-processors of co-

registration, atmospheric correction and ortho-rectification complete the tool. This allows the 

generation of artificial EnMAP data, which incorporates the instrumental and environmental 

configurations of the HSI.  
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In the first step L0 raw data [DN] is generated, for which reflectance data and a digital 

elevation model (DEM) are needed. With respect to the final EnMAP sampling interval the 

data is spectrally and spatially oversampled. The atmospheric module then converts the 

reflectance to TOA radiance by the use of horizontal distributions of aerosol optical thickness 

(AOT), pixel-wise columnar water vapor, surface elevation and an optional cloud 

cover/shadow. The spatial module simulates the spatial recordings, as produced by EnMAP, 

by the use of both a geometry and an optical-sensor model. The geometry model is defined by 

the pointing vector for each detector element, while the optical-sensor model is characterized 

by the modulation transfer function (MTF) of the sensor. After that the spectral module 

executes a spectral resampling, accounting for the spectral response function of all 244 

EnMAP bands as well as non-uniformities in the spectral domain, such as the smile/frown 

effect and the spectrometer shift in the spectral dimension. In a final step, the radiometric 

module converts the data from at-sensor radiance to digital numbers by taking into account a 

range of influence parameters, such as integration time, QE, different kinds of noise, infrared 

background signal, high / low gain modes for the VNIR detector, variable offsets and gains, 

as well as an individual non-linear response for each detector element. This is an important 

step, because these parameters define the sensor-dependent noise, as specified by the detector 

manufacturer. Table 2-9 gives an overview of the individual steps involved in forward 

simulation. 
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Backward simulation is then performed by the L1 and L2 processors. The L1 processor is 

based on the on-board calibration and converts raw DN to TOA radiances. This step is 

comparable to the sensor calibration of AVIS-3 and leads to an enhancement of the images. In 

the following co-registration, the spectral shift of both spectrometers is corrected. Due to the 

separate scanlines of the sensor, the shift amounts to 20 pixels in along-track and to 1.3 pixels 

in across-track direction. The shift correction is conducted without resampling, as this is 

carried out by the L2geo processor in the ortho-rectification module. The L2atm processor 

converts the TOA radiance to reflectance data, accounting for columnar water vapor (CWV) 

maps and AOT, which are estimated automatically from the raw data. Smile effect is analyzed 

by the location of the O2-absorption feature at 760 nm for the VNIR sensor and 1140 nm for 

the SWIR sensor. Finally, the L2geo processor uses the pointing characteristics of each 

detector element, the sensor position and a DEM for the ortho-rectification of the image.  

In an extensive validation of radiance, reflectance and geometry, the authors proved that 

EeteS simulates realistic EnMAP data in line with the expectations (SEGL ET AL., 2012). 

Figure 2-40 presents the data mosaics of the multiseasonal campaign after they have been 

processed by the EeteS software.  



2 Generation of a Multiseasonal Database 

78 

    

 

Figure 2-40: EnMAP simulations of the six scenes of the campaign 2012 (colored infrared). 

In Figure 2-41, a comparison is made of the different scales of AVIS-3 and EnMAP in order 

to illustrate the spatial and spectral differences between the two sensors. The images show the 

same sample section of the scene from September 8
th

. Of particular note is, of course, the 

large difference in the GSD at 4 m and at 30 m. With regard to the spectral differences, a 

minimum of 49 pixels forms the basis of an EnMAP pixel, depending on the resampling 

strategy. For this reason, these 49 spectra of the AVIS-3 image and the EnMAP reflectance of 

one corresponding pixel are displayed in one plot. It shows that the EnMAP spectrum does 
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not behave as if it were just averaged from the 49 spectra. There are certain forms of noise 

occurring especially in the NIR plateau around 800 nm, which can be attributed to properties 

of EnMAP-HSI. In addition, the overlap of the two spectral sensors of EnMAP-HSI between 

900 and 1000 nm is visible.  

  

 

Figure 2-41: Comparison of AVIS-3 and EnMAP scale. The CIR image section of the scene of September 8
th
 

shows the spatial differences of AVIS-3 (above, left) and EnMAP data (above, right). The spectra plot (below) 

involves 49 AVIS-spectra and a corresponding EnMAP spectrum of the same region, which is marked in white 

above.  

It should be noted that the EnMAP simulations could obtain spectral information only in the 

range of AVIS-3, that is, from 471 to 1753 nm. Although the simulation includes the full 

EnMAP spectral range, all bands beyond 1753 nm are of no value here. This constraint is also 

valid for the SWIR data gaps in some areas of the scenes of AVIS-3. 
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3 Estimation of Biophysical Parameters 

This chapter explains the choice and the benefits of the PROSAIL model, the definition of the 

input criteria that generated the LUT and the implemented program sequence of the inversion, 

which allowed a flexible variety of settings, and an extensive analysis of the retrieval 

accuracy. For this study, the coupled PROSPECT leaf optical properties model and SAIL 

canopy bidirectional reflectance model, also referred to as PROSAIL, was used to generate a 

comprehensive Look-Up Table containing reflectance spectra including the information on 

the corresponding parameter settings. This library thus served for inversion of the observed 

hyperspectral data collected with both AVIS-3 and HySpex airborne sensors to retrieve 

several biophysical parameters, with its focus to leaf area index and chlorophyll content.  

3.1 The PROSAIL Model 

The choice of a suitable radiative transfer model was subject to certain requirements. In view 

of the future data that will become available through the EnMAP HSI and its anticipated high 

temporal frequency, the model to be chosen had to be able to project the reflectance of 

agricultural crops throughout the entire annual growing period. Under normal conditions, 

agricultural crops have the advantage of forming a homogenous canopy, a characteristic found 

in most reflectance models. Further, the model chosen must allow the retrieval of multiple 

biophysical variables, such as photosynthetic light absorbing pigments or water content on a 

leaf level, as well as components describing canopy architecture, e.g., leaf area index, average 

leaf angle and the amount of soil reflectance on a canopy level. Since the influence of 

different illumination geometries is of high importance to the reflectance properties, the 

model should also offer the possibility to process information on a solar zenith angle as well 

as on an observer zenith and relative azimuth angle, especially with regard to the potential 

side-looking mode of the EnMAP-HSI. For these reasons, and since it is widely accepted in 

the literature, the combined optical leaf level and canopy reflectance model PROSAIL was 

chosen, which combines two independent models: PROSPECT (A Model of Leaf Optical 

Properties Spectra) and SAIL (Scattering by Arbitrary Inclined Leaves). According to 

JACQUEMOUD ET AL. (2009) PROSPECT and SAIL are the most popular among a range of 

different radiative transfer models published during the last two decades. The success of 

PROSAIL is based partly on the extensive testing of the principles on which the model is 

founded. In their review of the model, JACQUEMOUD ET AL. (2009) give an overview of the 

validation of both PROSPECT and SAIL, performed extensively in several studies. Within 
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those studies, the model outputs were either validated against direct measurements, or 

compared to the outputs of other radiative transfer models or results derived from inversion 

processes.  

In general, PROSPECT performs well on broadleaves and even does well in its prediction 

capability of needles, although the model was not designed specifically to account for these 

optical properties (see following chapter). SAIL was validated against direct measurements of 

the canopy of crops. Commonly, the studies proved a good agreement of the model results 

with observed data. The combined model PROSAIL was tested likewise in several studies, 

e.g., ANDRIEU ET AL. (1997) and DANSON & ALDAKHEEL (2000).  

To ensure an accurate validation of the models even after they are tuned, their output can be 

compared to the results of other radiative transfer models, which then serve as a reference. By 

this means, SAIL was successfully tested against other 1-D and 3-D models for homogenous 

canopies, e.g., from WEISS ET AL. (2000) or WIDLOWSKI ET AL. (2007). The development and 

enhancements of both models in the last decades and their characteristics are described in the 

following two chapters. 

3.1.1 Leaf Optical Properties Model – PROSPECT 

PROSPECT simulates bidirectional-hemispherical reflectance and transmittance based on the 

optical properties of plant leaves in the solar spectrum from 400 to 2500 nm (JACQUEMOUD & 

BARET, 1990). These optical properties are defined through the interaction between incident 

radiation and leaves, which depends to a large extent on the chemical and physical 

characteristics of the latter (VANE & GOETZ, 1988). JACQUEMOUD & BARET (1990) describe 

the absorption process in leaves as a function of changes in the spin and angular momentum 

of electrons, transitions between orbital states of electrons in particular atoms and vibrational-

rotational modes within the molecules. While the absorption properties of different 

photosynthetic pigments within the leaf, such as chlorophyll a and b, carotenoids 

(xanthophylls and carotenes) and brown pigments mainly affect the spectral signature in the 

visible range, leaf water and dry matter are the determining factors in the near and middle 

infrared (HODÁŇOVÁ, 1985).  

PROSPECT was developed in 1990 and based on the plate model developed by ALLEN ET AL. 

(1969), which describes the plant leaf as a compact medium of a transparent plate with rough 

plane parallel surfaces. The plate model was specified based on a refractive index and an 

absorption coefficient. The refractive index is influenced by various plant biophysical 

parameters. It is subject to a theoretical distribution within the leaf and regulates reflectance, 

especially by a low absorption of the near infrared (JACQUEMOUD & BARET, 1990). Since the 

model was not able initially to describe complex leaf structures of non-monocotyledonous, an 

improvement in the approach was published one year later, in which the model had been 
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expanded by a pile of homogenous N layers describing the number of N-1 cell-to-air layers 

within the mesophyll (ALLEN ET AL., 1970 and GAUSMAN ET AL., 1970).  

The initial version of PROSPECT, which incorporated the enhanced version of the plate 

model, described the reflectance spectrum based on three parameters: pigment concentration, 

water content and the structural parameter N, the latter being a continuous, non-integer 

variable in the model. With its growing popularity as key model for the simulation of leaf 

directional-hemispherical reflectance and transmittance, several versions of the model were 

developed following 1990 (FERET ET AL., 2008). Besides an extension for the description of 

dry matter (cellulose and lignin), which absorbs radiation especially in the SWIR (e.g., BARET 

& FOURTY, 1997, FOURTY ET AL., 1996, and JACQUEMOUD ET AL., 1996), and an increase in the 

spectral resolution from 5 nm to 1 nm (LE MAIRE ET AL, 2004, unreleased version), 

PROSPECT was updated to consider leaf surface directional reflectance (BOUSQUET ET AL., 

2005). In 2008 FERET ET AL. (2008) released the PROSPECT versions 4 and 5 comprising a 

refined average refractive index of the leaf interior, which incorporated a more realistic leaf 

surface roughness parameter, and an updated specific absorption coefficient for each 

biochemical constituent. While the first version of PROSPECT by JACQUEMOUD & BARET 

(1990) assumed that chlorophyll is the only relevant absorbing pigment in the visible 

spectrum, and senescent leaves were consequently removed for the calculation and calibration 

of the specific absorption coefficient of chlorophyll, PROSPECT-5 enabled a separate 

description of chlorophyll (a+b) and carotenoids (carotenes and xanthophyll).  

In PROSPECT-5b, which is used in this study, a brown pigment parameter was introduced, 

based on tannin and anthocyanins, to take senescence status into account. Brown pigment 

content is, however, implemented in the form of internal arbitrary units and thus not truly 

retrievable. The influence of the five reflectance-building input parameters can be taken from 

Figure 3-1. It shows the specific absorption coefficients, which were normalized for a better 

overview. 
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SAIL incorporates the same theory for radiation transfer through canopies as it was developed 

for the transfer of radiation in gases (JONES & VAUGHAN, 2010). One of the first theories of 

radiation flux in turbid-media is the general theory of KUBELKA & MUNK (1931), which 

describes the flux vertically to the medium. Besides the upward/downward diffuse energy flux 

in vertical direction, the model of SUITS (1972) also takes directional solar irradiation and 

radiance in viewing angle direction into account, rendering it a four-stream radiative transfer 

model (VERHOEF, 1984). Thus, SAIL, as it is based on the Suits model, calculates the 

interaction of these fluxes with a system of four linear differential equations. For the 

interaction with vegetation the following assumptions are made: 

(1) The canopy is represented by an infinite and horizontal plate; 

(2) Its individual elements are infinitely small and are only leaves; thus stems, branches, 

sprouts and other plant component are non-existent; 

(3) The layer is homogenous and the leaves are homogenously distributed within the canopy.  

Since these models were developed for application on homogenously distributed vegetation, 

they are most suited for use in the agricultural field. The concept of the four-stream turbid-

medium is presented in Figure 3-2. 

 

Figure 3-2: Illustration of the canopy as a four-stream turbid-medium model. The canopy is a homogenous, 

uniformly distributed medium with infinitely small and randomly distributed leaves. The energy flux is 

separated into solar incident flux (i), observer radiance (ii), diffuse downward flux (iii) and diffuse upward flux 

(iv). 

The position of the leaves follows a statistical distribution (JONES & VAUGHAN, 2010). Since 

the Suits model takes into account only the projected area of horizontally and vertically 

inclined leaves, SAIL uses a probability density function to describe the distribution of the 

leaves’ inclination angle as additional input. The azimuth angle of the leaves is, however, 

ignored, since their distribution is considered to be random (VERHOEF, 1984). The resulting 

leaf inclination distribution function (LIDF) is usually described through defined 

characteristic representatives, e.g., by the well-known canopy type-specific functions by 

GOEL & STREBEL (1984). The LIDF, the angular geometry and the leaf area index (LAI), 

representing canopy density, thus describe scattering and extinction coefficients of the canopy 
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(VERHOEF ET AL., 2007). In addition, solar and observer zenith angle as well as a relative 

azimuth angle are taken into account for the calculation of the radiation fluxes. This 

information is used to calculate absorption and scattering of incident light as a function of 

canopy geometry by the four differential equations. Direction and intensity of reflectance are 

thereby based on the bidirectional reflectance distribution function (BRDF) as defined by 

NICODEMUS (1970). Diffuse incident radiation has, in this context, only a very small influence 

on the canopy reflectance (CLEVERS & VERHOEF, 1993). 

Following the first version of SAIL, several updates have extended the model family. 

Although SAIL generates bidirectional reflectance, the hot spot effect cannot be simulated, 

since the turbid-medium model assumes that leaves are infinitely small and homogenously 

distributed in uniform layers. Therefore, KUUSK (1991) added the hot spot parameter in 

SAILH, which is based on his own theory (KUUSK, 1985), as a function of the ratio of the 

average leaf size and the canopy height. Since then, SAILH and all later versions can be 

considered as hybrid models, because of the connection of the hot spot effect to a finite size of 

leaves (VERHOEF & BACH, 2007). GeoSAIL then, as further developed by VERHOEF & BACH 

(2003), was able to simulate vertically heterogeneous canopies using a dual-layer approach. 

This enabled the description of a vertical leaf color gradient, as is for example often seen in 

wheat canopies. With the release of SAIL++ (VERHOEF, 2002) and 4SAIL (VERHOEF ET AL., 

2007) numerical robustness and speed performance were optimized. In addition, 4SAIL was 

capable of calculating internal flux and thermal emission. VERHOEF & BACH (2007) recently 

developed 4SAIL2, which combines GeoSAIL and SAIL++ and also considers the forest-

typical effect of crown clumping. Together with PROSPECT and a modified non-Lambertian 

soil BRDF model (HAPKE, 1981), 4SAIL2 was combined to an integrated radiative transfer 

model called SLC (Soil-Leaf-Canopy). Table 3-1 gives an overview of the different SAIL 

versions and their properties. 
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is presented. Based on a range of criteria, which directly influence the quality of the inversion, 

a strategy is defined for a systematical examination of its potential for multiseasonal analyses.  

3.2.1 Input-Parameter Setting  

Before the LUT was generated by the model running in forward operation mode, its 

dimension had to be defined. This decision affected the number of parameters both in column 

and in row direction of the LUT. The number of columns is thereby defined by the number of 

simulated spectral bands and by the number of parameter specifications that lead to the 

generated reflectance values stored in the first, while the rows are defined by the number of 

spectra within the LUT.  

In order to enable the highest possible flexibility in the determination of an optimal band 

combination for the inversion process, the LUT was designed to contain all the bands 

available in the AVIS-3 data, excluding only the bands affected by water vapor absorption in 

the range of 1300 – 1500 nm. Consequently, 167 bands ranging from 477 to 1299 nm and 

1505 to 1704 nm were calculated by PROSAIL. The model wavelengths of the simulated 

bands correspond to the center wavelengths of the AVIS-3 data. In addition to the 167 

reflectance values stored in column direction of the LUT and the corresponding input 

parameters by which the modeled reflectance spectrum is generated, the LUT also includes 

the modeled fraction of absorbed photosynthetically active radiation (fAPAR) and the fraction 

of vegetation cover (fCover). The fAPAR is useful for the quantification of the photosynthetic 

capacity of green vegetation, while fCover corresponds to the gap fraction of green vegetation 

in the nadir viewing direction and is therefore useful for decoupling vegetation and soil in 

energy balance processes (BACOUR ET AL., 2006). In summary, the LUT consists of 179 

columns containing the essential reflectance information (n = 167), the input parameter 

setting (n = 10) and the simulated parameters (n = 2). 

Subsequently, the size of the LUT in row direction was specified, defining the number of 

reflectance spectra available for the comparative analysis with measured reflectance signals. 

If the size is too small, the estimation accuracy may suffer. By contrast, a too large number of 

modeled spectra would lead to an increase in computation time, without adding value in terms 

of accuracy after a certain accuracy level has been reached. WEISS ET AL. (2000) investigated 

the effect of the LUT size on the accuracy of canopy variables. They tested several LUTs 

ranging from 25 000 to 280 000 in row size and found that an LUT based on 100 000 

modeled spectra provides an optimal compromise between model accuracy and required 

computer-resources. Based on this finding, in the present study the input parameters to the 

model were randomly combined in 100 000 instances, each following a distribution within a 

specific range. Instead of using a uniform distribution, the input parameters were defined to 

follow a Gaussian distribution according to their most probable incidence. This procedure has 
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Figure 3-3: Histograms (500 bins) of PROSAIL input parameters. 

Figure 3-4 (leaf level) and Figure 3-5 (canopy level) illustrate the effects of varying parameter 

settings on the simulated reflectance and absorption processes within the spectral range of 

AVIS-3, by successively altering only one input parameter within its defined range, while 

keeping the others at a fixed value. However, this behavior may be unrealistic under natural 

conditions, because biophysical vegetation variables usually co-vary (JACQUEMOUD ET AL., 

2009). 
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Figure 3-4: Impact of leaf input parameters on the reflectance simulated by PROSAIL, varying within their 

defined range. The respective uninvolved parameters are defined by their mean value. 

The figures clearly demonstrate that the alteration of some of the leaf parameters affects only 

limited parts of the spectrum, such as the pigments which particularly influence in the VNIR 

or water thickness in the SWIR, while others, e.g., leaf mass and the structure coefficient, 

involve a change over the whole spectral domain. Above all, the magnitude of the influence 

that different parameter settings can induce, as caused by, for example, varying leaf mass 

values, emphasizes the difficulty in accurately estimating the parameters focused on in this 

study. 
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Figure 3-5: Impact of canopy input parameters on the reflectance simulated by PROSAIL, varying within their 

defined range. The respective uninvolved parameters are based on their mean value. 

All of the canopy parameters affect the reflectance over the whole spectral domain. However, 

it is striking that LAI and especially average leaf angle cause a far more obvious change when 

varied. By contrast, varying hot spot and soil coefficients exert comparatively low influence 

on the reflectance spectrum. In the case of the soil coefficient this behavior is not surprising, 

since the reflectance represents a standard canopy, not allowing soil to have a greater 

influence. 

As mentioned above, the parameters describing illumination geometry, i.e., solar zenith angle, 

observer zenith and azimuth angle, are fixed for the generation of the 100 000 spectra. 

Nevertheless, due to varying viewing angles in the 2012 images, caused by the broad FOV of 

the sensor, and different solar zenith angles during the six flights, the anticipated BRDF 

effects must be taken into account. This is necessary because different angle settings also 

affect the reflectance in a non-negligible fashion. Figure 3-6 shows the significant changes in 

reflectance induced by varying observer zenith and azimuth angles. 
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3.2.2 Inversion Sequence 

For the LUT inversion an algorithm was constructed that explicitly takes illumination 

geometry into account. Furthermore, the aim was to allow several selection criteria settings, 

which are explained in the following chapter. The main features of the algorithm performing 

the inversion sequence is described in the following.  

When applying the inversion sequence to an image, the algorithm starts with the identification 

of the respective solar zenith angle. This information, including the input of the corresponding 

solar azimuth angle for the time of the flyover, is entered manually by the user and reduces 

the amount of potential spectra within the LUT from over 83 million to 20 900 000. 

Following this step, the algorithm was designed to continue independently. The program 

identifies the first pixel and extracts the observer angle information which is stored in the 

additional bands 198 (zenith) and 199 (azimuth) of the AVIS-3 data. The relative azimuth is 

calculated based on the latter and on the manually supplied solar azimuth angle. According to 

the now specified angle information, the corresponding table, equaling the size of the initial 

LUT of 100 000 spectra, is loaded from the LUT library. In a next step, the information stored 

in the LUT is split up into the simulated reflectance data and the corresponding metadata 

(input and simulated parameters). The measured reflectance signal is then multiplied 100 000 

times and individually compared to the simulated data. Based on a cost function, a curve 

fitting is subsequently performed, whereby best match(es) are identified. When completed, 

the algorithm collects the corresponding metadata of the best fit(s) and stores it with the 

equivalent pixel of the output image, then continues with the second pixel. Since the loading 

of the LUT from the library is one of the most time-consuming steps during computation, the 

algorithm checks if the observer angle setting of the current pixel requires the same LUT 

information as the previous pixel. If so, the table which was loaded for the former pixel is 

used again. 

The result is a comprehensive multiband output image including information on all 

biochemical and biophysical input parameters as well as on simulated fAPAR and fCover. 

Furthermore, since chlorophyll and water content values are often not very meaningful on a 

leaf level, the corresponding canopy products, i.e., canopy chlorophyll content (CCC) and 

canopy water content (CWC) which are calculated by multiplying the above parameters with 

LAI, are stored to the output image as well. The background to this step is discussed in the 

validation section of the retrieved chlorophyll content in Chapter 3.3.3.2. 

The success of the parameter retrieval depends on certain important selection criteria at 

various steps within the inversion sequence. The most critical are the precise choice of the 

data ranges that are compared, the cost function applied in the curve fitting process, and the 

management of the result of the curve fitting. These criteria are discussed in the following 

chapter. 
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3.2.3 Selection Criteria 

3.2.3.1 Band Selection 

The first criterion is the selection of bands to be used for the comparison of the measured and 

simulated reflectance. Since the quality of reflectance data might differ among the available 

bands due to noise, and some spectral ranges simulated by PROSAIL might be modeled 

poorly, they must be selected wisely to avoid potentially corrupt results. Many studies (e.g., 

MERONI ET AL., 2004; LAVERGNE ET AL., 2007; SCHLERF & ATZBERGER, 2006;) found that an 

appropriate band selection, or alternatively, a specific weighting of different spectral bands, 

leads to an improvement in the inversion quality and prevents biases in the parameter 

estimation. Making an informed selection is, however, not trivial. A strategy to consider is the 

one proposed by DARVISHZADEH ET AL. (2011) who suggested discarding those wavelengths 

that are not well simulated by PROSAIL using an iterative approach, starting with the 

elimination of the worst modeled spectral band among all sample plots. The LUT inversion is 

repeated until all bands show acceptable accuracies within a user-specified threshold. 

In view of the capacity of EnMAP, a different approach was applied in this study. Since 

EnMAP will provide contiguous data, it was assumed that the curve fitting will lead to 

increasingly precise results, the higher the number of spectral bands included. Figure 3-7 

gives a sense of a continuous reflectance spectrum compared to the multispectral coverage 

given by the future Sentinel-2 satellite. It is obvious that the contiguous spectrum contains 

much more information, e.g., on specific absorption ranges, than the multispectral dataset. 

 

Figure 3-7: Comparison of a contiguous (hyperspectral) with a multispectral reflectance within the spectral 

range of AVIS-3, simulated with PROSAIL. The multispectral reflectance points refers to the center 

wavelengths of Sentinel-2. 

Although the use of all available bands may provide redundant information when trying to 

retrieve individual parameters, e.g., LAI, this method has the advantage that some surface 
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parameters, affecting reflectance in different, in some cases very small wavelength ranges, 

can be derived by a uniform method. In the case of the AVIS-3 data, it was however found 

that not all of the initial 197 bands can be used successfully in the inversion, for two main 

reasons: first, bands covering the water vapor absorption ranges from 1120-1160 and 1300-

1500 nm hold no relevant information, since these ranges were so strongly affected by errors 

that the measured values were replaced with values stemming from a linear interpolation 

between the bordering values, unaffected by water vapor, in order to retrieve a smooth 

spectrum (see Chapter 2.2.2.3.1). The first water vapor absorption range was consequently 

excluded from the LUT, while the second range had never been included due to the very large 

deviation of the measured reflectance from the reflectance received after preprocessing 

(compare Figure 2-31). Second, bands with a reduced sensitivity, located at the marginal areas 

of the CCD devices, were equally excluded in order to ensure the use of high-quality bands 

only. Thus, bands below 477 and above 1704 nm were removed. This resulted in 146 bands 

that were, in the end, used in the inversion process.  

To examine the value added by the use of (contiguous) hyperspectral data, two additional, 

merely multispectral, band combinations were tested. The first one corresponds to the center 

wavelengths of the upcoming Sentinel-2 instrument (INT 2), given by nine bands within the 

spectral range of AVIS-3. The second band combination refers to the Landsat-TM 

specification, which encompasses distinctly broader wavelength ranges within its bands. In 

contrast to the simulated Sentinel-2 combination, the spectral bands in AVIS-3 corresponding 

to these wavelength ranges were consequently averaged according to the spectral responsivity 

functions of Landsat TM, resulting in four simulated Landsat bands within the spectral range 

of AVIS-3.  

Furthermore, since the AVIS-3 data has spatial data gaps in the SWIR sensor coverage, a 

setting containing only the 88 bands of the VNIR range (477 – 988 nm) was tested as well. 

Table 3-5 gives an overview of all four examined band settings. 
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Similar to the latter two studies, an approach combining different noise types was adopted to 

identify the noise level leading to the best possible results in this study. In this approach, both 

additive and multiplicative Gaussian noise as well as a combination of both was used. Of 

decisive importance for the amount of noise is the variance (σ²) in the Gaussian distribution, 

which corresponds to a percentage of the reflectance. In case of additive noise, the variance 

refers to a theoretical reflectance value of 1. This means that a variance of 0.04 (4%), for 

example, is applied to all bands, independent of the wavelength. In the case of multiplicative 

noise, the variance value is wavelength-dependent and refers to the respective reflectance 

value. For example, for a single band with a reflectance value of 0.5, a variance value of 0.04 

leads to an actual variance of 0.02 (2%).  

Since the impact of multiplicative noise on the reflectance depends on the individual value of 

each band, high reflectance values, for example those occurring in the red edge, obtain higher 

noise values than low reflectances. However, low reflectance values are typically more prone 

to noise due to a lower light intensity reaching the sensor, which results in a low SNR for the 

affected band. Therefore, an inverse form of multiplicative noise, having a stronger impact on 

low reflectance values than on high values, was tested as well. This is achieved by simply 

subtracting the simulated reflectance value at the given wavelengths, which can range from 0 

to 1, from the highest possible reflectance value of 1. The impact of this approach is shown in 

Figure 3-8, in which two different levels (1% and 5%) of the inverse multiplicative Gaussian 

noise are presented. As clearly visible in the figure, the amplitude of the noise is decisively 

higher in low reflectance ranges than in high reflectance ranges. 

 

Figure 3-8: Impact of different noise levels (inverse-multiplicative) compared on an un-noised reflectance in a 

1 nm resolution, simulated with PROSAIL. The noise levels are defined as an amount of the variance of a 

Gaussian distribution that corresponds to a defined percentage of reflectance. 

A total of five types of noise were defined for this study and tested concerning their 

performance. They are described by:  
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1) Additive noise 

 

𝑅𝑛𝑠(𝜆) = 𝑅𝑠𝑖𝑚(𝜆) + 𝜒(0, 𝜎(𝜆)) (Equation 3-1) 

2) Multiplicative noise 

 

𝑅𝑛𝑠(𝜆) = 𝑅𝑠𝑖𝑚(𝜆) ∗ [1 + 𝜒(0, 𝜎(𝜆))] (Equation 3-2) 

3) Inverse-multiplicative noise 

 

𝑅𝑛𝑠(𝜆) = 1 − {[1 − 𝑅𝑠𝑖𝑚(𝜆)] ∗ [1 + 𝜒(0, 𝜎(𝜆))]} (Equation 3-3) 

4) Combined noise 

 

𝑅𝑛𝑠(𝜆) = 𝑅𝑠𝑖𝑚(𝜆) ∗ [1 + 𝜒(0,2𝜎(𝜆))] + 𝜒(0, 𝜎(𝜆)) (Equation 3-4) 

5) Inverse-combined noise 

 

𝑅𝑛𝑠(𝜆) = 1 − {[1 − 𝑅𝑠𝑖𝑚(𝜆)] ∗ [1 + 𝜒(0,2𝜎(𝜆))]}

+ 𝜒(0, 𝜎(𝜆)) (Equation 3-5) 

where 

Rns(λ)  simulated reflectance value for band λ with noise 

Rsim(λ)  simulated reflectance value for band λ  

χ(0,σ)  Gaussian distribution (mean value 0 and variance σ²) 

σ(λ)  uncertainties within the Gaussian distribution for band λ 

In order to account for the fact that a given variance value has a less pronounced effect when 

applied as multiplicative noise, it is double-weighted compared to the additive noise factor in 

the combined methods. 

3.2.3.3 Cost Function 

The cost function measures the discrepancies between observed and simulated reflectance 

values (JACQUEMOUD ET AL., 2009) and therefore serves for the purpose of identifying the 

combination by which the error between the simulated data provided by the LUT and the 

measured reflectance is minimized. One of the most common measure in this context is the 

root mean square error (RMSE), which has been applied in several studies (e.g., COMBAL ET 

AL., 2002; BACOUR ET AL., 2006; RICHTER ET AL., 2009). For this reason, it was chosen as one 
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of the cost functions applied in this study and is also used for validation purposes. It is 

described in detail in Chapter 3.3.2.  

Recently, several studies have investigated the potential of alternative cost functions for the 

retrieval of best fits between measured and simulated data (e.g., LEONENKO ET AL., 2013; 

RIVERA ET AL., 2013; VERRELST ET AL., 2014). In this context, LEONENKO ET AL. (2013) 

classified the statistical measures under examination as information measures of divergence, 

M-estimates, and minimum contrast methods. The first class of information measures tries to 

minimize the distance between two probability functions. The second class of M-estimates (M 

stands for maximum likelihood-type) is described through a nonlinear regression function 

seeking to find a relationship between independent and dependent variables (RIVERA ET AL., 

2013). The last class of minimum contrast methods assumes spectral domain and reflectance 

as a spectral density function of stochastic processes (LEONENKO ET AL., 2013; RIVERA ET AL., 

2013). However, many of the cost functions within the three groups are highly complex and, 

in some cases, require expert knowledge in order to ensure for the accurate specification of 

some of the parameters. 

Therefore, only M-estimates were focused upon, as they exhibit certain robust properties and 

offer comprehendible regression functions. The widely used least-square estimators (L2-

estimators) produce good results when the underlying assumptions, such as noise is Gaussian, 

are true (RIVERA ET AL., 2013). In addition to the RMSE, which belongs to this group, two 

further L2-estimators, i.e., Nash-Sutcliffe Efficiency (NSE) and Geman & McClure Estimator, 

and a L1-estimator (absolute value), which is represented by the Laplace Distribution, were 

tested.  

The Nash-Sutcliffe Efficiency (NSE) is a measure of the mean square error to the observed 

variance, and is sensitive to large errors (WAINWRIGHT & MULLIGAN, 2005). In this study, the 

NSE is not only used as a cost function, it also supports model validation and is for this 

reason further described in Chapter 3.3.2. Among all cost functions, the very general Laplace 

Distribution represents the simplest one. The L1-estimator calculates the distance, or in other 

words the area, between two spectra. As a result of its design, outlier values, which in general 

produce the largest errors, exert a less pronounced influence on the overall result when 

compared to the NSE. This advantage is also the case for the Geman & McClure Estimator. 

However, this last measure cannot guarantee the identification of a unique best fit (RIVERA ET 

AL., 2013), which is a general requirement of a robust M-estimator. The cost functions are 

described by: 



3 Estimation of Biophysical Parameters 

101 

    

1) Root Mean Square Error (RMSE) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑅𝑠𝑖𝑚(𝜆) − 𝑅𝑚𝑠𝑑(𝜆))²

𝑛

𝜆=1

 (Equation 3-6) 

2) Nash-Sutcliffe Efficiency (NSE) 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑅𝑚𝑠𝑑(𝜆) − 𝑅𝑠𝑖𝑚(𝜆))²𝑛

𝜆=1

∑ (𝑅𝑚𝑠𝑑(𝜆) − 𝑅𝑚𝑠𝑑)²𝑛
𝜆=1

 (Equation 3-7) 

3) Geman & McClure Estimator (GM) 

 

𝐺𝑀 =  ∑
(𝑅𝑚𝑠𝑑(𝜆) − 𝑅𝑠𝑖𝑚(𝜆))²

(1 + (𝑅𝑚𝑠𝑑(𝜆) − 𝑅𝑠𝑖𝑚(𝜆))²)

𝑛

𝜆=1

 (Equation 3-8) 

4) Laplace Distribution (LP) 

 

𝐿𝑃 =  ∑ |𝑅𝑚𝑠𝑑(𝜆) − 𝑅𝑠𝑖𝑚(𝜆)|

𝑛

𝜆=1

 (Equation 3-9) 

where 

Rmsd(λ)  measured reflectance at band λ  

Rsim(λ)  simulated reflectance at band λ  

3.2.3.4 Ill-Posed Problem & Averaging Method 

COMBAL ET AL. (2002) declared that for an exact solution of the model inversion, the 

inversion problem must be well-posed. In the sense defined by Jacques Hadamard, a 

physically based model problem is well-posed if (i) a solution exists, (ii) the solution is 

unique, and (iii) the solution depends continuously on the data (GARABEDIAN, 1964). If one of 

these conditions is not met, the problem is ill-posed. The ill-posed nature of radiative transfer 

models is caused by the fact that different parameter settings can produce equal spectra. 

Consequently, the inversion of these models holds the risk that the resulting parameter 

specification does not match the parameters that in fact lead to this reflectance in reality, 

although this specification might have produced a reflectance spectrum which corresponds 

very well to the measured one. Figure 3-9 displays an example of an ill-posed problem, 
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showing two spectra simulated with PROSAIL. Although the input parameters of both 

settings differ greatly, especially concerning the LAI, the resulting spectra are almost equal. 

 

Figure 3-9: Ill-posed problem, displayed with two PROSAIL-generated spectral reflectances (left), which are 

based on highly different input parameter settings (right). 

Further reasons for the ill-posed problem are uncertainties of the model and of the reflectance 

data they are compared to. While physically based models may be quite sophisticated, all 

models remain a mathematical abstraction and thus a simplification of reality. For CRMs that 

means that complex reflectance and scattering behavior at leaf level cannot be considered by 

the model in its entirety (yet). Calibration errors and sensor noise in the reflectance data can 

lead to additional uncertainties (ATZBERGER, 2004). 

As a consequence, the best fit of the model inversion might not lead to a correct parameter 

specification (e.g., VUOLO ET AL., 2010). In contrast to a well-posed problem, a major 

consequence of model and reflectance uncertainties in ill-posed problems is that these lead not 

just to uncertainties regarding the solution, but even more likely to outright errors. This is due 

to the fact that the solution space is very widespread and not centered around one true solution 

(ATZBERGER, 2004).  

Regularization strategies must be formulated in order to solve the ill-posed problem. COMBAL 

ET AL. (2002) used a priori information which can be separated into three categories. The first 

category is the knowledge of in-situ data or products provided by another sensor. The second 

category is the knowledge of the type of canopy architecture that defines the class of the 

CRM. The third category stands for the knowledge of the typical distribution of canopy 

biophysical variables which are used as a parameter setting for the CRM. This information 

can be crop-specific and/or include the phenological status. The application of a priori 

information to the model inversion was realized in two steps. First, only the pure reflectance 

data was considered. In a second step, all parameter configurations resulting in an error lower 

than in-situ measurement uncertainty were extracted. In doing so, only the reduced LUT was 

applied to the data, hence only the best fit between the measured data and the reduced LUT 
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was considered to be the best estimate. In this way, the widespread solution space was 

distinctly minimized. Other a priori information can be given by using growth models, 

whereby vegetation growth is described by a specific curve, which also reduces possible 

solutions (JONES & VAUGHAN, 2010).  

By contrast, ATZBERGER (2004) investigated an object-based approach taking not only the 

spectral signature of the pixel of interest into account, but also its neighboring pixels. Using 

image segmentation, classifications or digitized field boundaries, pixels can be grouped to 

represent distinct objects. This could improve the accuracy of inversion. 

Many studies (e.g., RIVERA ET AL., 2013; DARVISHZADEH ET AL., 2008; COMBAL ET AL., 2002) 

have shown that the single best fit calculated by the cost function does not necessarily lead to 

the best accuracy. This can be addressed by taking a certain number of best fits between 

measured and modeled reflectance signatures into account, rather than just one single best fit. 

A threshold is defined based on the best fit determined by the cost function. Within the 

resulting range, each given input parameter is averaged. To define the threshold, RICHTER ET 

AL. (2009) used the root mean squared error (RMSE) as cost function and considered all 

combinations lying within the range of less than 10% of the lowest RMSE value.  

Alternatively, a predefined number of best fits can be used instead of a percentage weighting, 

which was applied in this study, testing various different amounts. The consideration of a 

certain amount of best fits potentially mitigates the influence of wrong parameter 

configurations. In addition, the effect of averaging the corresponding input parameters of the 

resulting spectra selected from the LUT by both mean and median were examined. This was 

also investigated by DARVISHZADEH ET AL. (2011), who tested the influence of the above 

mentioned averaging methods on the best 10 and 100 simulations, respectively. 

3.2.4 Analysis Strategy 

In view of the multiple options and potential combinations of selection criteria, a strategy had 

to be defined for a systematical examination of the best fit(s). The in-situ measurements of 

LAI and chlorophyll content served here as reference, enabling validation by comparing the 

field measurements to the retrieved information of the corresponding pixels. In order to 

incorporate as many of the above listed selection criteria as possible, an inversion loop was 

implemented, which is described in the following sections. 

The hyperspectral band setting containing 146 AVIS-3 bands served as a basis for the 

inversion loop. In a first step, the artificial noise was added to the LUT reflectances for all 

five types defined in Chapter 3.2.3.2. To find the ideal amount of noise for each type, the 

variance of the Gaussian distribution describing the noise was set to 21 different values, 

beginning with 0 %, which means that no noise was added, up to a maximum of 5, 10 or 20 

%, depending on the noise type. Various ranges were chosen to take into account the different 
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weighting the variance has in each noise type. In the next step, all four cost functions 

(Chapter3.2.3.3) searched for the best fit between the measured and the (noisy) simulated 

data. To find the best solution for the ill-posed problem, a total of 21 solutions incorporating 

multiple solutions (best fits) were defined and averaged. The first solution represents only the 

overall best fit, the second solution represents the average of the best 50 fits. This is 

continued, with step sizes of 50 additional spectra per solution, until the last step, the 21
st
 

solution, is reached, incorporating 1 000 spectra, i.e., 1% of the complete LUT. When 

averaged, both mean and median were used.  

Since every possible criteria combination within the defined range was calculated, the total 

number of single inversions is the product of different noise types (n = 5), various noise 

amounts (n = 21), different cost functions (n = 4), number of best fits (n = 21) and the two 

separate averaging methods (n = 2). Consequently, a total of 17 640 singular inversions were 

conducted, which were executed by means of an inversion loop. The algorithm performing the 

loop was configured to store the parameters of interest, i.e., LAI, leaf chlorophyll content and 

canopy chlorophyll content, of every possible combination in a file in order to enable the later 

evaluation. Given the high number of 17 640 inversion processes, this method could not be 

applied to the whole dataset of six images, each containing more than 750 000 pixels, because 

it would have been beyond the scope of what is technically feasible with the available 

computing capacity in this study. Therefore, based on all six images, a new image was 

constructed containing only those pixels, for which in-situ data was available. The 

requirements of the in-situ data serving for validation are further discussed in Chapter 3.3.1. 

The newly constructed dataset included both the reflectance information as well as the two 

bands with the corresponding observer zenith and azimuth angles. The algorithm performing 

the inversion loop was applied to this dataset, automatically considering the specific solar 

zenith angle of each pixel. This ensured the respective illumination setting to be considered 

and thereby the correct choice of the corresponding LUT. 

Moreover, the method was applied, in a modified form, to the three other band settings 

(VNIR, Sentinel-2, Landsat TM) based on the noise type that was identified to be the most 

successful for the full-range hyperspectral setting (see Chapter 3.3.3.1). 

Table 3-6 gives an overview of the entire setup of selection criteria for the inversion loop. 
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uncertainty. The more heterogeneous the canopy, the less probable is the accurate 

representation of the measurements in regard to the 4 m scale of the image data. This problem 

often occurs where crops grow in row structures and thus a large amount of soil visible. 

Further, it has been shown that the in-situ data is error-prone itself due to measurement 

inaccuracies, resulting from a different usage of the field instruments by various users. 

Unstable weather conditions, e.g., caused by a brief presence of fair-weather clouds during the 

measurement process, can also distort the data quality.  

Other inaccuracies originate from a wrong localization of both the ESUs and the airborne 

data. The geocoding of the ESUs was conducted using handheld GPS devices (Garmin 

GPSmap 60). Although these devices have a high positioning accuracy in the open field and 

benefit from the almost ideal weather conditions during the data acquisitions, an inaccuracy of 

a few meters cannot be ruled out. Further, the accurate geometrical correction of the airborne 

data depended, on the one hand, on the quality of the navigation data provided by the inertial 

measurement unit, leading to faulty results when strong flight movements occurred and 

caused distorted pixel areas (see Chapter 2.2.4). On the other hand, the process of ortho-

rectification is also somewhat error-prone and may have had led to an unprecise localization 

of the corresponding pixels in the image. 

However, as described in Chapter 2.1.3.2, several sampling strategies aimed at addressing, 

and ruling out these uncertainties. It was still necessary to clear the data from unsuitable or 

corrupt measurements. This entailed the removal of all field measurements gathered on June 

29
th

 (n=43), which became useless due to the short-term cancellation of the airborne 

acquisition. Unfortunately, all measurements gathered in ESUs that correspond to pixels that 

contain no SWIR information due to the Xenics-Xeva data gaps, had to be excluded as well 

(n=67) in order to enable a validation of the inversion method based on the full spectral range 

of AVIS-3. In addition, the ESUs corresponding to pixels that were affected by cloud cover in 

the second flight had to be dismissed (n=27). With respect to the properties of SAIL as a 

turbid-medium model, which was developed for a homogenous canopy cover, ESUs in areas 

of high heterogeneity were removed as well (n = 34). With regard to the squint effect (see 

Chapter 2.2.4), all ESUs were excluded that are located too close to high-contrast areas 

(n=21). In a few ESUs (n=10), very high LAIs with values > 6.5 were measured. Since the 

input parameters of the LUT were set based on a Gaussian distribution in order to distinguish 

moderate values occurring within the growing period more precisely, the model quality 

suffered when estimating extreme values. Consequently, these measurements were excluded 

too. Finally, measurements of senescent vegetation (n = 33) were dismissed, since the model 

is not able to project this status.  

This led to the final number of 330 ESUs which were identified to hold valid information and 

could thus be used for the validation of the LAI values retrieved by the inversions methods 

performed. The validation of the chlorophyll content was based on 304 ESUs, their number 
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indices, compares residuals of model estimations to an independent variable. For the purpose 

of estimating biophysical parameters, pattern indices are usually not suitable due to the lack of 

an independent variable.  

In regard to these advantages and drawbacks, the use of just one measure often insufficiently 

describes the model’s accuracy. For the selection of adequate statistical measures, RICHTER ET 

AL. (2012) recommended the indicator set to meet following essential model validation 

criteria:  

(1) Non-dimensionality, to avoid influence from the magnitude of the values;  

(2) Normalization, i.e., the measures are bounded, for an effortless comprehension of their 

meaning (e.g., between 0-no agreement and 1-perfect agreement); 

(3) Symmetry, i.e., datasets should be interchangeable since the assumption of "ground 

truth" is unrealistic in remote sensing applications; 

(4) Dimensionality, i.e., the measurement of the actual differences, supplied in the unit the 

data is measured in, in order to understand the magnitude of the error; 

(5) Model prediction capability compared to measurement statistics (e.g., observed mean 

value). 

Based on to these guidelines, a statistic set of five measures was defined, including root mean 

square error (RMSE) from the category of error indices; coefficient of determination (R²), 

slope and intercept of Theil-Sen regression (FERNANDES & LEBLANC, 2005) from the category 

of correlation-based measures; relative RMSE (RRMSE), and Nash-Sutcliffe efficiency 

(NSE) index (NASH & SUTCLIFFE, 1970) from the category of dimensionless indices. They are 

described by the following equations. It is noted that although RMSE and NSE have already 

been presented as cost functions, they are here listed again in the context of validation 

measures. 

1) Root Mean Squared Error (RMSE) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑉𝑒𝑠𝑡

𝑖 − 𝑉𝑜𝑏𝑠
𝑖 )²

𝑛

𝑖=1

 (Equation 3-10) 

2) Coefficient of determination (R²) 

 

𝑅² = 1 −
∑ (𝑉𝑒𝑠𝑡

𝑖 − 𝑉̂𝑒𝑠𝑡)²𝑛
𝑖=1

∑ (𝑉𝑒𝑠𝑡
𝑖 − 𝑉𝑒𝑠𝑡)²𝑛

𝑖=1

 (Equation 3-11) 
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3) Slope and intercept of Theil-Sen regression (m/b) 

 

𝑉𝑒𝑠𝑡
𝑖 = 𝑚𝑉𝑜𝑏𝑠

𝑖 + 𝑏 (Equation 3-12) 

4) Nash-Sutcliffe Efficiency (NSE) 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑉𝑜𝑏𝑠

𝑖 − 𝑉𝑒𝑠𝑡
𝑖 )²𝑛

𝑖=1

∑ (𝑉𝑜𝑏𝑠
𝑖 − 𝑉𝑜𝑏𝑠)²𝑛

𝑖=1

 (Equation 3-13) 

5) Relative root mean squared error (RRMSE) 

 

𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑉𝑜𝑏𝑠

 (Equation 3-14) 

where 

Vobs  observed variables 

Vest  estimated variables 

RMSE and R² are very common and therefore ensure comparability with previous studies. 

However, R² is not able to specify the absolute difference between observed and estimated 

data, whereas slope (m) and intercept (b) indicate their relationship and allow the localization 

of the regression line in a two-dimensional scatter plot. Slope further serves for the 

identification of asymmetry in the scale of both datasets, whereas intercept describes the main 

bias. These measures are of high relevance, since, in certain cases, all other statistical 

measures provide acceptable results and thus indicate good agreement, although slope and 

intercept values are poor. The NSE is very sensitive to changes in the mean and to variances 

in the observed and estimated values, thus, it is more meaningful than R². Further, the NSE is 

well suited to assess the predictive power of the model, as it indicates whether a model 

performs better than the mean of the observed data (i.e., NSE>0). However, the NSE is 

sensitive to outliers. Thus, the RRMSE was included in the analysis, since it is less sensitive 

to outliers and is also less bias-prone. Further, it is well-suited for comparing different values 

and scales. Table 3-8 summarizes the characteristics, advantages and drawbacks of the 

statistical measures that were applied for validation. 
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based on several combinations of selection criteria, were assessed and led to the identification 

of the ideal combination showing the highest accuracy of estimated parameters when 

compared to the observed in-situ measurements. This was, in a first step, conducted for the 

LAI. Although it was expected that the criteria combination that leads to the highest accuracy 

for estimation of chlorophyll would differ from the one identified for LAI (see Chapter 

3.3.3.2), it was tested whether the latter, that is, the “LAI setting”, could also be applied 

successfully for chlorophyll estimation. This is of importance, as it is a goal of this study to 

provide a consistent analysis method for hyperspectral data allowing several parameters to be 

retrieved. 

3.3.3.1 Retrieval of Leaf Area Index 

3.3.3.1.1 Validation of the Estimation Quality 

The evaluation of the results of the inversion loop for the retrieval of LAI was conducted in 

two steps. First, based on the full-range band setting, the ideal combination of selection 

criteria, containing cost function, noise amount, number of considered best fits and averaging 

method, was identified for all five types of noise. Second, based on the most efficient noise 

type found for the full-range band setting, the evaluation was repeated for the other band 

settings, i.e., VNIR, Sentinel-2 and Landsat-TM, and then in a final step compared to the 

former one. This is described in the following chapter. Due to its good applicability for 

assessing model prediction, the Nash-Sutcliffe Efficiency was used as primary measure for 

the description of the estimation accuracy. The other measures were then used to identify 

weaknesses in the data that are not described by the NSE.  

Since it was expected that the selection criteria with the greatest influence would be the 

amount of noise, i.e., the variance (σ), which was added to the simulated data, and the number 

of multiple solutions, i.e., best fits (n), which were considered and averaged for the parameter 

retrieval, Figure 3-10 shows the result of the inversion loop for the inverse multiplicative 

noise type. The figure contains eight accuracy (NSE) matrices, representing the combinations 

of the four cost functions and two averaging methods. Each of the 441 squares within a matrix 

thereby gives the accuracy for the corresponding noise (σ) and the number of considered fits, 

which were averaged. 
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Figure 3-10: Accuracy matrices for the inverse-multiplicative noise type. The matrices are sorted by cost 

function/averaging method and show the estimation accuracy (Nash-Sutcliffe Efficiency) for each combination 

of noise variance and number of considered best fits. For a better contrast, the range of the scale bar is 

0.50-0.67. The blue-marked square at the Laplace/median matrix represents the combination (σ=9%, n=700) 

with the highest accuracy among all possible combinations of selection criteria, including noise type. 

As shown by the figure, several combinations result in NSE values of over 0.5. According to 

the recommended value range stated in Table 3-8, this indicates a good prediction accuracy of 

the model. It should be noted that for the purpose of contrast enhancement the range of the 

presented NSE values was set to be comparatively narrow (0.50.-0.67), allowing an easier 

interpretation of the results. The comparison of the eight matrices shows that they all feature 

similar patterns and that the ideal amount of noise lies between 7 and 12%. Concerning the 

number of fits, almost all matrices show an increasing accuracy with the increasing number of 

best fits included in the analysis. Some matrices indicate that the highest accuracy values are 

achieved by the use of 1000 solutions. This leads to the question, whether a higher number 

(>1000) than applied to the inversion would have led to even higher accuracies. The further 

evaluation discussed in this section will, however, negate this theory.  
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Due to the narrow range of displayed NSE values, which prohibits a differentiation of NSE 

values < 0.5 since these are, in this illustration, all set to 0.5, it is not apparent which NSE 

values are reached when only the absolute best fit (n=1) is used. In fact, NSE values < 0 

occurred, regardless of the amount of noise applied to the data, which is directly attributed to 

the ill-posed problem and proves that a single fit potentially leads to a faulty parameter 

retrieval.  

The evaluation of the different cost functions revealed that they all led to similar estimation 

accuracies. However, a striking difference in accuracy was caused by the choice of statistical 

method applied for the averaging of the simulated spectra, i.e., whether the mean or the 

median were used. Throughout all cost functions, the median provided higher accuracies. All 

in all, the cost function providing the best result (NSE=0.67) is the Laplace distribution, based 

on 9% noise and averaging the amount of 700 solutions by the median. 

For the comparison of the other four noise types, Table 3-9 lists the highest estimation 

accuracy (NSE) for each noise type, averaging method and cost function among all 17 640 

iterations, depending on a specific noise variance and the number of best fits that were 

considered. The equivalent accuracy matrices of the other noise types containing the detailed 

description can be seen in Appendix A.1 – A.4. 
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The table shows that there is no significant difference in the model accuracies of the different 

noise types. The best results were obtained by inverse-multiplicative noise (NSE=0.67), 

followed by additive and inverse-combined noise (NSE=0.66). Despite the fact that the 

classical multiplicative noise performs worst, implying that the assumptions that led to the 

implementation of an inverse mode of this noise type were correct, the differences in the 

highest accuracy achieved by the different modes are too small to be of meaningful relevance.  

The analysis of the accuracies achieved by the application of different cost functions shows a 

similar trend for all cost functions, and was already noted in the example of 

inverse-multiplicative noise: there are slight differences, which are, however, mainly caused 

by the averaging method. In 17 of 20 cases the median leads to significantly higher accuracies 

than the mean.  

The amount of noise, by contrast, is more difficult to compare, since the noise ranges applied 

in the noise types differ. As listed in Table 3-6, identical ranges were applied to multiplicative 

and inverse-multiplicative noise (maximal 20%), as well as to combined and 

inverse-combined noise (maximal 5%), while the additive noise added to the simulated 

spectra ranges between 0 and 10%. The comparison of the first group (multiplicative 

methods) reveals that the best fits for multiplicative noise were provided through high noise 

values (17 to 19%), while its inverse counterpart (inverse multiplicative) leads to best results 

when 7 to 9 % noise is applied. This can be assigned to the fact the first noise type, due to its 

design, exerts a lower influence on the reflectance spectra than the inverse type, because 

reflectance values rarely exceed 0.5. This relation is reversed in the second group (combined 

methods): inverse-combined noise leads to best fits with noise values of 5%, whereas for 

combined noise the values range from 0.5 to 3.75%. 

A possible explanation for the Laplace/median combination providing the three highest 

accuracies among all possible combinations is the fact that the Laplace Distribution is a 

L1-estimator which is less prone to outliers than the L2-estimators. Among these three 

combinations, the one based on inverse-multiplicative noise, a noise variance of 9% and a 

considered number of 700 fits, provides the best inversion method leading to the highest 

accuracy. This is valid at least when applying the NSE.  

To evaluate this result in a wider range, further statistical measures, which have been defined 

in Chapter 3.3.2, were consulted, since the setting should provide robust values for these as 

well. For that purpose, Figure 3-11 shows the Laplace/median matrix of the inverse 

multiplicative noise, displayed as RRMSE, R², slope (m) and normalized intercept (b) instead 

of NSE. Since the values of intercept depend strongly on the absolute values of data in 

general, a normalized version was generated by dividing it by the standard deviation of the in-

situ data. This ensures comparability and provides a more accurate assessment. Since the 

RMSE shows behavior almost identical to the RRMSE, it is not included in the figure. 
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Figure 3-11: Alternative accuracy matrices (RRMSE, R², m, b) for the Laplace/median combination based on 

inverse-multiplicative noise, which has been identified as having the highest accuracy based on the NSE. The 

marked square shows the position of the best solution provided by the NSE. 

The figure reveals that these measures partially result in different patterns. The matrices of 

RRMSE and R² show a comparatively similar behavior to the NSE matrix of Figure 3-10, 

which almost confirms the position of the best fit. By contrast, slope and normalized intercept 

show a distinct deviation to the NSE pattern. Furthermore, the slope value of 0.68 lies far 

outside the region of recommended values. As mentioned before, a divergent slope leads to an 

asymmetry between the observed and estimated data and therefore makes the former best fit 

combination inappropriate.  

To counteract this, a slope/intercept rejection threshold was defined. This was applied to the 

accuracy estimation by the NSE and led to an exclusion of all combinations, where slope and 

intercept lay outside of the threshold. Following the recommendation of RICHTER ET AL. 

(2012), the slope (m) rejection threshold is defined by: 

0.8 ≤ m ≤ 1.2 

Since intercept depends on the absolute values of the underlying data, a general threshold 

could not be defined. By contrast, a threshold for the normalized intercept is fully 

transferable; consequently the intercept (b) rejection threshold was set to: 

b ≤ 1.00 

This combination of both thresholds means that all combinations based on a slope, which is 

lower than 0.8 or greater than 1.2, and an intercept, which exceeds 100% of the standard 
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deviation of the observed data, are rejected. Figure 3-12 presents the NSE accuracy matrices 

for the inverse multiplicative noise type, after the slope/intercept rejection threshold was 

applied. All accuracies that are rejected as a result were excluded and set to zero.  

 

Figure 3-12: Accuracy matrices for inverse-multiplicative noise (see description for Figure 3-10) after a 

rejection threshold for slope (0.8 ≤ m ≤ 1.2) and intercept (≤ 1.00) was applied. The red-marked square shows 

the combination with the highest accuracy (σ=4%, n=350) after the exclusion of inappropriate combinations 

due to the threshold. For comparison, the blue-marked square shows the position of the former ideal criteria 

combination. 

After applying the rejection threshold to the data, the matrices have distinctly changed in 

appearance. All higher noise levels as well as the higher numbers of considered solutions have 

been rejected. However, the median is still stronger than the mean among all cost functions. 

For the Laplace/median matrix, the best solution has moved to the bottom left, indicating a 

lower noise level and a reduced number of considered best fits compared to the former 

combination with the highest NSE accuracy. The new solution provides the best result with a 

NSE=0.62, which still is a valid value (>0.5), and is based on 4% noise and on the averaging 
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of 350 solutions by the median. To illustrate the impact of the modification, and in order to 

examine whether the statistical measures provide valid values, Figure 3-14 shows the scatter 

plots of the LAI estimation based on the best LUT selection criteria combination before and 

after the slope/intercept rejection threshold was applied. 

 

Figure 3-13: Correlation of observed and estimated LAI. The left scatterplot is based on the LUT criteria 

setting (Laplace/median, n=700, σ=9%, inverse-multiplicative noise) which resulted in the highest accuracy 

(NSE); the scatter plot to the right is based on the highest accuracy after the exclusion of inappropriate 

combinations based on the slope/intercept rejection threshold (n=350, σ=4%). 

Although NSE, R², RMSE and RRMSE provided higher accuracies in the original LUT 

setting, the scatter plot (left) shows an asymmetry which is distinctly reduced after the 

application of the rejection threshold (right). It is assumed that the asymmetry, which is 

visible through a high minimum and a low maximum value in the estimated data, originated 

from the input parameter setting of the LUT following a Gaussian distribution. Since most 

LAI values of the input data scatter around values > 2.0 and < 5.0, a consideration of a high 

number of solutions leads to strong generalization and consequently to a loss of information. 

This is due to the fact that in addition to the LUT spectra that are based on matching LAI 

information, a high number of other spectra are considered, which are based on input 

parameters with the most common LAI values, i.e., > 2.0 and < 5.0. The amount of noise 

might have an influence as well, since all combinations based on higher values than > 5% 

were rejected also.  

Consequently, the scatter plot incorporating the rejection threshold has a more common 

appearance, since it is not as clinched. The now adequate values of slope and intercept 

involved a slight deterioration of the other measures, which are, however, still in an 

acceptable range.  

Figure 3-14 shows how the absolute best solution of the LUT (Laplace, inverse multiplicative 

noise, σ=4%, n=1) and an averaged LUT reflectance of multiple solutions (median, n=350) 
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are fitted to a corresponding, randomly chosen AVIS-3 reflectance (fourth flight). It should be 

emphasized that during the actual inversion, not the reflectance values of the considered fits 

of the LUT were averaged, but only the metadata containing the input parameters as well as 

fAPAR and fCover, as only these are of interest. The figure therefore merely serves as an 

illustration of the fitting process. 

 

Figure 3-14: Comparison of a randomly chosen reflectance spectrum from AVIS-3 data (fourth flight) to the 

absolute best fit found by the LUT inversion solution (Laplace, n=1, σ=4%, inverse multiplicative noise) and to 

the averaged solution (median, n=350). 

The figure also shows how the averaging of multiple solutions affects the fitted reflectance. 

While the singular LUT reflectance of the absolute best fit is clearly noisy, the median-

averaged reflectance adapts to the measured reflectance of AVIS-3. This results from the fact 

that the median values of every band are combined. 

3.3.3.1.2 Assessment of the Hyperspectral Band Setting 

Following the determination of the Laplace/median method based on inverse-multiplicative 

noise as the most suited LUT inversion technique, at least for LAI estimation, the influence of 

the choice of considered bands on the estimation quality was examined, including a review of 

the value added by incorporating the full-range hyperspectral band setting, involving 146 

bands, compared to the reduced hyperspectral setting of VNIR, using only 88 bands, and the 

multispectral settings, which correspond to bands of Sentinel-2 and Landsat-TM (see Chapter 

3.2.3.1). Since it has been found that the influence of different noise types is rather negligible, 

the inversion loop based on the alternative band settings was performed only with inverse-

multiplicative noise. The evaluation partially led to similar patterns concerning the 

combination of noise and multiple solutions for all cost functions. Further, for the Sentinel-2 

and Landsat-TM band settings, the median also provided higher accuracies than the statistical 

averaging of the corresponding parameters by the mean. By contrast, the VNIR setting 

performed better when the mean was used. Because a detailed evaluation of these patterns is 





3 Estimation of Biophysical Parameters 

121 

    

of the recommended range. In case of the settings of VNIR and Landsat-TM, none of the 

possible combinations fulfilled the slope/intercept condition. Hence, even by taking the best 

slope available into account, no acceptable combination could be identified, although the 

Landsat-TM setting succeeds in providing legitimate values for R² and RMSE. Even though 

the table may suggest that the Landsat-TM band setting provides better accuracies than the 

Sentinel-2 setting, the reduction in the rejection threshold applied to the Sentinel-2 setting to 

equal the slope of the Landsat-TM setting would provide a superior NSE value of 0.55 for the 

latter. However, this compromise would not really be satisfactory. 

In Figure 3-15, the scatter plots for the highest accuracy of the Sentinel-2 setting before 

(RMSE/median, σ=3%, n=700) and after (σ=0%, n=50) the application of the threshold are 

presented. The scatter plots illustrate that the thresholds led to a dispersion of the estimated 

and observed LAI-values, which makes an inversion of the LUT based on this setting 

inappropriate. 

 

Figure 3-15: Scatter plot of LAI estimation for the Sentinel-2 band setting. The left scatter plot is based on the 

LUT criteria setting (RMSE/median, n=700, σ=3%, inverse-multiplicative) which resulted in the highest 

accuracy (NSE). The right scatter plot is based on the highest accuracy after the exclusion of inappropriate 

combinations due to the slope/intercept rejection thresholds (n=50, σ=0). The accuracies are listed in Table 

3-10. The different scale of the axes between both plots should be considered. 

3.3.3.2 Retrieval of Chlorophyll Content 

In theory, the algorithm searches for the best fit of the modeled-to-measured reflectance 

among all simulated reflectance spectra stored in the LUT. Once it has been identified, this 

indicates that every individual parameter on which the generation of the modeled spectrum is 

based represents the canopy in a meaningful way. However, for several reasons, e.g., 

uncertainties in the model, the measured reflectance data and the in-situ data, the ill-posed 

problem, and the fact that chlorophyll content and LAI do not influence the same spectral 
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range, the LUT setting leading to the highest accuracy for chlorophyll might differ from the 

setting identified for LAI. This made it necessary to analyze the retrieval capability of the 

different LUT settings for chlorophyll as well. 

Since the leaf chlorophyll contents, measured for validation purposes using a SPAD device 

(see Chapter 2.1.3.2), refer to an internal value, these values are usually calibrated, although 

the raw data also seems to provide realistic values. This is due to the fact that the SPAD 

assumes a linear relationship between measured values and actual chlorophyll content, which 

is only true if pigment concentration alone influenced the absorption. However, scattering 

effects at the boundary layers between cell wall and air spaces, reflection at the leaf surface 

and the distribution of pigments within the leaf play an important role in the absorption 

process as well (VOGELMANN, 1989). After a certain chlorophyll concentration (65 µg / cm²) 

has been reached, the relationship decreases, because it is no longer the number of 

chloroplasts, but only the chlorophyll density within the chloroplasts, which increases 

(TERASHIMA & SAEKI, 1983). Several studies investigated this behavior and tried to formulate 

a mathematical relationship between the SPAD values and the actual chlorophyll 

concentration. Polynomial formulas were defined, e.g., by MARKWELL ET AL. (1995) and 

MONJE & BUGBEE (1992). For the present study, these regression curves were applied to the 

SPAD values and used for the validation of the model results. They are defined by: 

 

𝐿𝐶𝐶𝑀𝑎𝑟𝑘𝑤𝑒𝑙𝑙 = 10.6 + 𝑥 ∗ 7.39 + 𝑥2 ∗ 0.114 (Equation 3-15) 

 

𝐿𝐶𝐶𝑀𝑜𝑛𝑗𝑒 & 𝐵𝑢𝑔𝑏𝑒𝑒 = 1.034 + 𝑥 ∗ 0.308 + 𝑥2 ∗ 0.11 (Equation 3-16) 

where 

x  SPAD value 

LCC  Leaf chlorophyll content [µg / cm²] 

The curves are based on empirical studies, and showed good correlations when applied to 

specific crops within the corresponding studies, e.g., wheat, rice and soy bean in MONJE & 

BUGBEE (1992). Since absorption processes are also influenced by the crops’ characteristic 

structures (DATT, 1998), a general transferability of these curves to all crop types must, 

however, be viewed critically. Hence, not only the calibrated leaf chlorophyll contents, but 

also the raw SPAD values were tested, assuming that they represent valid chlorophyll 

concentrations as well. This assumption is supported by the fact that the SPAD values 

increase linearly with increasing chlorophyll content as long as the latter does not exceed 65 

µg / cm², which was the case for the measurements from the 2012 campaign. Thus these 

values provide a reliable measure of chlorophyll (GAO, 2006). 
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In Figure 3-16, the correlation between the modeled leaf chlorophyll content (LCC) and both 

the raw and the two calibrated SPAD values are presented in scatter plots. Each plot is based 

on the setting providing the highest accuracy (NSE) among all LUT combinations, given by 

the inversion loop. 

 

Figure 3-16: Correlation of measured and estimated leaf chlorophyll content, displayed for raw and calibrated 

SPAD values. Each scatter plot is based on the LUT setting providing the highest accuracy (NSE). 

The figure shows that, on a leaf level, an accurate simulation of LCC is barely possible, 

regardless which SPAD configuration is used. This is not surprising, since the deduction of 

LCC is in general difficult, due to the fact that it is a very small-scale parameter that might 

vary within both the leaf and the canopy level. In addition, the missing information on the 

influence of soil reflectance and a potential disturbance by shadow and illumination effects 

hampers the ability to deduce the LCC.  

The comparison of the three methods showed that the use of raw SPAD values leads to better 

correlations than the use of calibrated values, although the estimation accuracy is very low 

likewise, as can be seen in the accuracy matrix for the coefficient of determination (R²) in 

Figure 3-17. The matrix is based on a Laplace/median setting with inverse-multiplicative 

noise. 

 

Figure 3-17: Accuracy matrix (R²) for LCC, validated on the raw SPAD values, based on Laplace/median and 

inverse-multiplicative noise. 
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WEISS ET AL. (2000) found that for a more accurate LCC retrieval, several recordings, 

captured with different viewing angles, were necessary. This requirement is, however, not 

fulfilled in the data acquired for this study during the 2012 campaign. Since this is a well-

known problem, LCC is often linked to LAI, allowing a more meaningful evaluation, since it 

is thereby related to the optical thickness of the (turbid) medium (WEISS ET AL., 2000). As a 

result of the high correlation found between LAI and LCC (e.g., BARET & BUIS, 2008), 

canopy chlorophyll content (CCC), which is obtained by multiplying LAI by LCC, is 

assumed to be a physically meaningful parameter. 

In a next step, it was not intended to identify the potentially best solution for CCC estimation, 

but to examine whether the LUT setting used for LAI estimation leads to reasonable CCC 

estimates as well. The underlying intention of this is to investigate whether a universal and 

consistent estimation method, which is valid for both LAI and chlorophyll content, can be 

defined, even though the CCC could be estimated at a higher accuracy when it is not linked to 

the ideal setting for the LAI. However, the accuracy matrices based on the raw SPAD values 

can be found in Appendix A.8. Figure 3-18 shows the scatter plots including the 

corresponding accuracies for CCC estimation based on the LUT setting, which proved to be 

the best for the estimation of LAI, i.e., Laplace/median, inverse-multiplicative noise, σ=4%, 

n=350. 

 

Figure 3-18: Correlation of measured and estimated canopy chlorophyll content, displayed for raw and 

calibrated SPAD values. Each scatter plot is based on the identical LUT setting that was identified as being 

most efficient for the estimation of LAI (Laplace/median, inverse-multiplicative noise, σ=4%, n=350). Note the 

different scales of the axes. The grey lines, denoting minimum and maximum of estimated CCC, refer to the 

same values in all three scatter plots and thus emphasize the massive deviation of the three plots. 

By comparing the plots, which are based on the different SPAD configurations, it becomes 

quite evident that the only solution providing rather accurate results is based on the use of raw 

SPAD values. The results obtained for the calibrated versions prove that a transferability of 

the regression curves is not given, or at least not when applying the data from the 2012 

campaign. This is in particular revealed through the bad values of NSE, RRMSE and 

intercept, especially for the Monje & Bugbee polynom. However, although a connection 

between estimated and observed CCC based on the raw SPAD values cannot be denied, the 
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overall result is only partly satisfactory. While R², RMSE, m and b lie within the 

recommended range, NSE and RRMSE provide values slightly below the recommended ones. 

With regard to the general difficulty in estimating chlorophyll contents and the limitation of 

applying the identical LUT setting as used for LAI, and not a setting which was explicitly 

optimized for LCC/CCC, this result can, nevertheless, be seen as acceptable.  
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4 Applicability, Transferability & Results 

The evaluation of the LUT inversion with its manifold combination possibilities in different 

settings has shown that a multitemporal retrieval of vegetation parameters based on a 

consistent method is in theory possible. It has also been shown that the implementation of a 

number of different selection criteria led to an improvement in the estimation quality. In the 

first section of this chapter, the examined ideal LUT setting was applied to the multiseasonal 

dataset and thereby answers the initial question whether the dynamic of the growing period 

can be captured with hyperspectral data on an airborne scale. The second part then clarifies 

whether this analysis concept can be transferred to the spaceborne scale of EnMAP, which is 

defined by a much coarser spatial resolution and divergent spectral characteristics. 

4.1 Applicability to Multiseasonal Data 

Based on the best LUT setting (Laplace/median, inverse-multiplicative noise, σ=4%, n=350), 

which was identified to allow an accurate retrieval of both LAI and chlorophyll content, the 

inversion was repeatedly applied to a total of six hyperspectral scenes. However, since the 

high accuracy of this LUT setting was given only when taking the full hyperspectral range of 

the AVIS-3 data into account, the spatial data gaps, in which no SWIR data records exist, 

could not be considered equally. Therefore, the data gaps were masked out and are displayed 

in black in the resulting map of retrieved LAI (Figure 4-1). The figure features only the 

recordings conducted by AVIS-3, since these alone were affected by data gaps.  

However, due to the data gaps, the result is not satisfying. To counteract this shortcoming, the 

LUT inversion was performed, for these data gaps, based on the VNIR band setting only, in 

full awarness of the less accurate results thereby supplied for these sections, a circumstance 

evidenced by lower estimation accuracies in Chapter 3.3.3.1.2. The retrieved information was 

nonetheless used to fill the data gaps. 
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Figure 4-1: Result of the LUT inversion for leaf area index of the four AVIS-3 scenes, based on the determined 

ideal LUT configuration (Laplace/median, inverse-multiplicative noise, σ=4%, n=350).The method could be 

only applied to the areas in which a SWIR coverage was given. 

In order to achieve a reasonable result with the VNIR setting, the amount of noise and the 

number of considered multiple solutions were chosen carefully. A compromise had to be 

found between acceptable values of NSE and slope, as these measures show an almost 

contradictory behavior (Figure 4-2). 

       

Figure 4-2: Comparison of NSE accuracy and slope accuracy for the VNIR band setting (Laplace/median). 
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Considering the different patterns of the matrices in the figure, a reasonable compromise was 

given by a noise amount of σ=3% and a number of solutions of n=100. The result with filled 

data gaps is given in Figure 4-3, which also includes the LAI estimates for the two HySpex 

flights and thus nicely illustrates the seasonal alteration of the landscape caused by varying 

LAIs. 

 

Figure 4-3: Result of LAI estimation for all six scenes acquired in 2012. 
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The same method was applied for the derivation of canopy chlorophyll content; the resulting 

images are presented in Figure 4-4. Since CCC is dominated by LAI values, the images show 

similar patterns as the former figure. Although the accuracy of CCC estimation was inferior to 

the accuracy achieved for LAI, the figure shows a clear distribution of CCC within the 

landscape.  

 

Figure 4-4: Result of canopy chlorophyll content estimation for all six scenes acquired in 2012. 
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It should be pointed out again that the estimation accuracy for the VNIR-based inversion is 

distinctly lower; hence, the areas affected by SWIR data gaps in both figures must be 

interpreted carefully. In such cases it appeared that both LAI and CCC tended to 

overestimation in these areas, a circumstance which can be identified by dark greenish or blue 

colors next to areas with lighter colors within field borders. However, the benefits of further 

available information outweigh this weakness. 

Based on the estimated vegetation parameters, the progress of specific crops throughout the 

growing season could be analyzed. Figure 4-5 shows the development of LAI and CCC for 

winter wheat, winter barley, rapeseed, corn and sugar beet from April, 28
th

 to September, 8
th

. 

The information was extracted from the retrieved parameter products by randomly choosing 

and averaging 30 pixels per scene and each crop type from the corresponding parameter. 

 

Figure 4-5: Development of LAI and CCC for the five investigated crops throughout the growing period, 

derived from six data acquisitions. 

The figure traces the growth cycles of different crops from emergence until harvest. 

Rapeseed, which was harvested between May 25
th

 and June 16
th

, winter wheat and winter 

barley reach maximal values of LAI and CCC already in late spring and early summer, which 

is typical for winter crops. According to the decreasing values of LAI and CCC, winter barley 

reaches maturity earlier than winter wheat. The development of corn and sugar beet shows the 

typical behavior of increasing LAI and CCC in spring and a maximum in mid-summer. 

Further, all crops show a decrease in these values after maturity, which can be related to 

senescence. However, the decrease in the actual LAI is overestimated compared to reality, 

mostly because the model is not able to simulate senescent vegetation, but rather simulates the 

spectral effects of green LAI, based on the amount of chlorophyll stored within 

photosynthetically active leaves. 
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4.2 Transfer of the Analysis Method to EnMAP Scale 

The transfer of the retrieval method conducted by the LUT inversion to the EnMAP scale 

required an adjustment of the algorithm, since EnMAP will provide a deviant number of 

bands and spectral resolution compared to AVIS-3 data. The adaption process is described in 

the following chapter.  

Further, the application of the inversion method to the simulated EnMAP data (see Chapter 

2.3), requires validation as well. This, however, is not possible based on the in-situ 

measurements, since they are only representative for the spatial resolution for which they 

were gathered, and thus correspond to the 4m scale of the airborne data. Furthermore, since 

the in-situ data is based on point measurements, they are hardly suitable to serve for a 

validation of estimated parameters deduced from EnMAP data with a spatial resolution of 

30m. Consequently, an alternative validation method was defined, which is described in 

Chapter 4.2.2. 

4.2.1 Algorithm Sequence Adaption 

For the application of the LUT sequence to the (simulated) EnMAP data, the program had to 

be modified, in the process of which it was enhanced to allow its application to the image data 

of several sensors. 

The algorithm was designed in a way to process externally supplied image data, including 

multiple sensor specifications, e.g., EnMAP or Sentinel-2. Further, the amount of noise, the 

number of considered solutions, the cost function and the averaging method can be 

dynamically defined, serving the definition of the LUT setup. 

Additionally, the input of the solar zenith and azimuth angle corresponding to the data is of 

decisive importance. Based on this information and the sensor type including the specification 

of the orbit inclination for the derivation of the sensor azimuth angle, the derived illumination 

geometry serves as input for PROSAIL, which then computes the LUT at a size of 100 000, 

by the use of the identical biophysical and biochemical input parameters as applied before. 

Further, the LUT is calculated corresponding to the specified sensor type, which means that 

the reflectance of only the available bands is simulated. Consequently, the parameter retrieval 

by the inversion process is based only on these bands. 

The actual inversion was performed as described in Chapter 3.2.2, resulting in a multiband 

output image containing all relevant parameters. The inversion was now based on the EnMAP 

specific bands. However, the alternative validation method (see Chapter 4.2.2) was based on 

the use of the results obtained for the AVIS-3 scenes. Since the spectral range of AVIS-3 is 

smaller than of the upcoming EnMAP data, a meaningful comparison required the exclusion 
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of the spectral ranges which are not covered by AVIS-3, which, in any case, include no 

information, since AVIS-3 data served as data basis for the simulation of the EnMAP data. 

Therefore, a further setting was integrated into the program, which considers only EnMAP 

bands within the spectral range of AVIS-3. 

4.2.2 EnMAP Scale Validation and Results 

In order to evaluate the capacity of the analysis method for the retrieval of LAI and CCC from 

EnMAP data, the adapted LUT inversion was carried out on the simulated EnMAP data, 

based on the identical setting as used for the AVIS-3 data. Since the in-situ data could not be 

used for model validation on the 30 m spatial scale of the EnMAP data, another approach was 

chosen, which uses the results of the parameter retrieval based on the airborne image data. 

Since the estimation accuracy on the 4 m scale of AVIS-3 was proved to be acceptable by 

validation against in-situ data, the output images were scaled up to the spatial resolution of 

30 m, thereby allowing direct comparison of the inversion results achieved with the simulated 

EnMAP data with the already validated AVIS imagery. However, due to the fact that the 

AVIS-3 scenes suffer from a lack of SWIR information in some areas, the HySpex scene, 

acquired at the second flight and covering the whole spectral range within the specification of 

AVIS-3, served as a basis for the comparison. It is noted that in the further course of the study 

the HySpex scene is referred to as AVIS-3, since it was spectrally and spatially adapted to the 

latter. In Figure 4-6, the retrieved LAI image of the EnMAP scene and the upscaled AVIS-3 

scene are presented. 

 

Figure 4-6: Comparison of estimated LAI (second flight), which was derived by the adapted LUT algorithm 

from the simulated EnMAP data (left) and the upscaled (30 m) LAI estimation based on the 4 m AVIS-3 data 

(right). 

The visual interpretation of the figure shows that the estimations of LAI appear to have led to 

very similar results in both scenes. Using the set of statistical measures, the conformity 
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between both images was calculated by confronting each pixel of the LAI-EnMAP map to the 

corresponding one of the LAI-AVIS-3 map. Figure 4-7 illustrates the correlation between 

both retrievals and presents the accuracies that were found. 

 

Figure 4-7: Scatter plot and accuracies of the retrieved LAIs of the full scene from May 8
th

, derived by the 

application of the LUT inversion to the simulated EnMAP scene and to the AVIS-3 scene, which had been 

upscaled after the inversion process. 

The analysis shows that a very strong agreement exists, as evidenced by the consistently high 

values of the statistical measures. However, the question arises as to why a significant number 

of values would have a larger deviation. In order to examine whether these deviations follow 

a spatial pattern and, if they do, to identify these, a map was calculated showing the difference 

between the EnMAP and the upscaled AVIS-3 estimation. This is presented in Figure 4-8. 

 

 

 

Figure 4-8: Difference map calculated from the LAI estimations of EnMAP and upscaled AVIS-3. 
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The figure clearly shows that strong difference values occur particularly in the marginal areas 

of fields, but also along streets and within developed areas such as villages. In these places, 

the LAI estimation of the airborne data generated almost consistently higher values than the 

one conducted using EnMAP data. This can be explained by uncertainties arising from 

differences in the incorporation of heterogeneities in the landscape of the two images, 

resulting from the different methodologies, by which the two underlying datasets were 

generated. While the LAI-EnMAP estimation was performed on a simulated dataset, which 

had been spectrally and spatially resampled prior to the LUT inversion, the LAI-AVIS-3 map 

was created based on the original dataset and spatially resampled to 30 m after the inversion. 

This means that, in the simulated EnMAP scene, small-scale heterogeneities had already been 

compensated for through the spectral redistribution of the nearly 200 reflectance values and 

the spatial upscaling of the image before the actual parameter retrieval was performed, which 

explains why the LAI values in these areas are lower. The parameter retrieval conducted on 

the 4 m scale (AVIS-3 image), however, explicitly took these spatial heterogeneities into 

account. When the latter was scaled-up afterwards, already existing high LAI values in the 4 

m image had a stronger influence on the corresponding 30 m pixels than did the estimation 

based on the up-scaled reflectance value in the EnMAP scene. Conversely however, this 

means that for homogenous areas, this kind of scaling problem is not at all or barely existent. 

The figure shows that this assumption is correct, as hardly any deviation can be determined 

within the fields themselves. Last but not least, there are areas, especially in the southern part 

of the study area, in which a positive deviation prevails. Compared to the areas with negative 

deviation, these areas occur distinctly less often and follow less clear patterns. When 

compared to the land use map, these areas can be identified as being covered mainly by forest, 

and can, since they do not represent the agricultural areas focused on in this study, for this 

reason be ignored.  

Nevertheless, in order to minimize the influence of the deviations, the application of a low 

pass filter to the upscaled LAI image is advisable, since this results in a smoothing of the 

image. Therefore, two Gaussian low pass filters were applied, based on kernel sizes of 3x3 

and 5x5 pixels. Figure 4-9 illustrates the effect of the filters to the image. 
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Figure 4-9: Upscaled LAI images after the application of a Gaussian low pass filter with kernel sizes of 3x3 

(left) and 5x5 pixels (right). 

Whereas the weaker 3x3 filter has only a minor effect on the appearance, the larger 5x5 filter 

causes a visible smoothing of the image. Both implementations were subtracted from the 

EnMAP-based LAI map, resulting in an improved conformity and an increase in the statistical 

agreement, which is presented in Figure 4-10. 
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Figure 4-10: Difference maps calculated from the LAI estimations of EnMAP and the low pass filtered, 

upscaled AVIS-3 scenes (left). On the right side of the figure the corresponding correlation, illustrated by 

scatter plots, and the accuracies of the statistical measures is shown. 

The analysis of the statistical conformity after the application of the low pass filter confirms 

that the lower filter causes only minor alterations. It does, however, succeed in raising the 

NSE, R², RMSE and RRMSE values. By contrast, the larger filter has a distinctly greater 

impact on the deviation map, and the statistical correlations thereby obtained. Randomly 

distributed, larger deviations within the image were to a major extent compensated for, which 

led to a further increase in accuracy and a visible alteration of the corresponding scatter plot, 

which is now in better agreement with the line of full conformity (red). The application of the 

low pass filter led to a reduction of the negative deviation, i.e., of the overestimation of LAIs 

estimated from the airborne AVIS-3 data compared to those estimated from the EnMAP data. 

The difference in statistical accuracy thereby achieved is very minimal, while leading to 

extraordinary good accuracies of NSE=0.96, R²=0.97, RMSE=0.27, RRMSE=0.16, m=0.96 

and b=0.21.  
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The same procedure was applied in order to examine the capacity for the retrieval of CCC. 

The results can be summarized by the following correlations and accuracies (Figure 4-11) 

between the EnMAP image and the three upscaled versions of the AVIS-3 image (original & 

Gaussian low pass filtered with the corresponding kernel sizes). For reasons of completeness 

it is noted that the both the estimation and difference maps of CCC can be found in Appendix 

A.9 and A.10. 

 

Figure 4-11: Scatter plot and accuracies of the retrieved CCCs of the full scene from May 8
th

, derived by the 

application of the LUT inversion to the simulated EnMAP scene and to the AVIS-3 scene, which was upscaled 

afterwards and to which in two cases (middle and right) a low pass filter was applied. 

The scatter plots reveal that a comparable good agreement can be found for CCC as for LAI, 

even though the accuracy of the statistical measures is somewhat lower.  

The results prove that a transfer of the hyperspectral LUT inversion to spaceborne images is 

possible, with minimal limitations which are mainly caused by the lower spatial resolution of 

these images. For homogeneous regions, the method showed very good agreement also on the 

spaceborne scale.  

To emphasize the advantage of performing the parameter retrieval based on hyperspectral 

data as it will be provided by EnMAP, the analysis method for LAI retrieval was also tested 

on artificial, multispectral Sentinel-2 data. The image data, also simulated by the EeteS tool, 

provides realistic reflectance values which are based on the spectral responsivity function of 

the bands of Sentinel-2, which are broader than those of hyperspectral sensors. As described 

before (see Chapter 3.3.3.1.2), the implementation of an adapted LUT setting applied to the 

center wavelength of Sentinel-2 led to a lower estimation accuracy than for the full-range 

setting based on AVIS-3. However, the following analysis aimed at determining how a 

transfer of the identical analysis method, as applied to EnMAP, impacts the parameter 

estimation when only Sentinel-2 bands are used.  

Consequently, the adapted LUT inversion was carried out on the simulated Sentinel-2 data of 

the corresponding AVIS-3 flight in the same manner described above. In addition, the 

retrieved LAI information of the 4 m scale was upscaled to 20 m, according to the spatial 

resolution of Sentinel-2. The resulting images were then compared to each other. Figure 4-12 
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shows the deviation between the LAI estimation with Sentinel-2 data and the upscaled LAI 

image of AVIS-3, which was considered both in original and low pass filtered version with 

the larger kernel size of 5x5 pixels. It is noted that the corresponding difference maps of CCC 

can be seen in Appendix A.11. 

 

Figure 4-12: Difference maps calculated from the LAI estimations of Sentinel-2 and the original (left) and low 

pass filtered, and upscaled AVIS-3 scene (right). For the low pass filter the larger kernel size of 5x5 pixels was 

chosen. When compared to the deviation maps based on EnMAP data in Figure 4-8 and Figure 4-10, the 

different magnitude of the color bar should be considered. 

Compared to the deviation maps based on EnMAP, the resulting images show a much higher 

deviation, which can also be seen by the difference in scale. The figures show similar patterns 

of a high deviation at the edge regions of fields and other heterogeneous areas, but in both 

negative and positive direction. Of substantial relevance, however, is the high deviation also 

in homogenous, mostly vegetated areas. This persists even after low pass filtering of the 

upscaled image and is also expressed by the scatter plots given in Figure 4-13.  
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Figure 4-13: Scatter plots and accuracies of the retrieved LAIs of the full scene from May 8
th

, derived by the 

application of the LUT inversion to the simulated Sentinel-2 scene and to the AVIS-3 scene, which was up-

scaled after the inversion and to which, in the case of the plot to the right, a low pass filter was applied. 

The plots show a distinctly higher scattering, which results in lower accuracies among almost 

all measures (except for slope and intercept). Although the application of the low pass filter 

led to an improvement of the agreement, the very good conformity of the EnMAP data to the 

upscaled information fall very short of being achieved. This emphasizes the value added by 

the use of hyperspectral data compared to multispectral data.  
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5 Conclusion and Outlook 

Based on the data from the extensive field campaign, the validation proved that the LUT 

approach provides a robust and transparent method for parameter estimation from 

hyperspectral data, without requiring the use of in-situ data. However, the specification of the 

different selection criteria on which the final LUT setting was based, including the selection 

of the bands integrated in the analysis, the type and amount of artificial noise added, the cost 

function applied to identify the best fit between measured and modeled spectra, and the 

averaging method for the parameters retrieved from the best-fitting LUT spectra in order to 

reduce the ill-posed problem, had to be thoroughly considered. Further, the analysis 

conducted in this study showed that the different selection criteria exerted an influence on the 

estimation quality that varied strongly, for both LAI and chlorophyll content.  

The analysis of the artificial noise, which was added to the modeled spectra to more 

accurately represent spectra as they are recorded by airborne and spaceborne sensors, led to 

the realization that it is not of decisive importance which noise type is chosen to be added to 

the simulated reflectances, but more so that some type of noise is added at all. Since both 

inverse-multiplicative and inverse-combined noise provided slightly more robust results, it 

seems reasonable to use one of these for future studies.  

Another selection criterion resulting in only minor quality differences was the choice of the 

cost function. All four tested M-estimators led to a consistent identification of appropriate 

spectra. As a matter of fact, the mathematically simplest function, represented by the Laplace 

Distribution, performed best, possibly due to its lower susceptibility to outliers. Due to the 

slight differences in performance an unambiguous definition of an ideal cost function is, 

nevertheless, not possible. 

By contrast, the integration of a number of multiple solutions, the choice of the method by 

which they are averaged, and the amount of noise added to the spectra were identified to exert 

a major impact on estimation quality. The consideration of a multiple number of solutions 

proved to be an efficient way to handle the ill-posed problem, since the parameters retrieved 

by the LUT inversion are thereby based not on a single, potentially faulty result, but on a 

selection of likely solutions. The use of the median rather than the mean as averaging method 

for the parameter combinations thus retrieved was clearly advantageous. This is attributable to 

the fact that the median is potentially less sensitive than the mean to outliers among all 

identified parameters. Further, it was found that adding noise to the simulated data, regardless 
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of the noise type, allows a more flexible identification of spectra and their corresponding 

input parameter setting, which was evidenced in distinctly higher accuracies.  

Following the recommendation of RICHTER ET AL. (2012), the use of a coordinated set of 

various statistical measures supported the specification of the selection criteria named above. 

In consequence, it could be proved that the amount of noise and the number of solutions 

should both not be set too high, since this would lead to a sort of dilution. Especially when 

basing the input parameters on a Gaussian distribution, as is the case here, this would 

compensate for the potential of such a distribution aiming at the precise differentiation of 

parameter values.  

In view of the hyperspectral capacity, it was shown that an increased number of available, and 

thus considered, spectral bands for the inversion contributed to the achievement of robust 

results relating to the estimation accuracy of both leaf area index and chlorophyll content, 

especially when compared to a multispectral band number as provided by Sentinel-2. This can 

be attributed to the improved precision of the curve fitting when a high number of bands, 

representing a quasi-continuous reflectance spectrum, are used. However, the estimation 

accuracy when applying both hyperspectral and multispectral band settings in particular 

depends on the availability of bands covering the SWIR. This fact may appear surprising, 

because LAI does not affect the reflectance in this spectral domain to a larger extent than in 

the VNIR region. In addition, chlorophyll content does not in the least influence the 

reflectance in the SWIR. However, the integration of this range, which is predominated by the 

water content, evidently limited the possible solutions and thus supported a more precise 

deduction of the vegetation parameters.  

EnMAP, which meets these requirements by supplying a number of bands for a contiguous 

high-quality representation of the surface’s reflectance, therefore enables an accurate 

multiseasonal analysis of vegetation parameters on a regional scale. By transferring the 

method, which proved to be consistent and robust for the estimation of vegetation parameters, 

to the scale of the satellite sensor, it was shown that an application of the LUT approach to the 

spaceborne data with its different spatial and spectral properties is possible.  

A further increase in the estimation accuracy might result from the use of the wider spectral 

range of EnMAP, covering also the spectral region from 1700 nm to 2450 nm, which is 

referred to as SWIR 2. The effect of taking this range into account could not be analyzed with 

AVIS-3 data, thus a further examination should be the subject of future studies. As part of 

such investigations, the biophysical and biochemical parameters examined should be 

extended, including well-known properties, such as leaf water content, but also comparatively 

complicated parameters, which are difficult to grasp, e.g., the structural parameter N. This 

would, on the one hand, deepen the understanding of the nature and composition of radiative 

transfer models, such as the combined PROSAIL model, leading ultimately to their 
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improvement. On the other hand, such studies would allow a more detailed description of 

processes in vegetation canopies throughout the growing period, described by the 

phenological status of the plant, which currently is difficult to determine from remote sensing 

data alone. By supplying the high-quality data in the exceptionally temporal frequency of at 

least 23 days EnMAP has the potential to significantly advance the research in these fields. 
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6 Summary 

With the imminent initiation of the hyperspectral satellite mission EnMAP, a powerful 

instrument for the generation of Earth Observation Data will become available. From 2017 

onwards, EnMAP will, for the first time, enable the retrieval of multiseasonal hyperspectral 

observation series from space. For agricultural applications this offers the highly relevant 

opportunity of retrieving information on the seasonal development of vegetation parameters 

not only for single plots, but on a regional scale. The knowledge of the seasonal development 

of crop parameters represents a key product of agricultural information in the context of 

precision farming and is thus extremely valuable.  

The purpose of this study was to investigate whether an analysis method for the retrieval of 

biophysical and biochemical parameters based on hyperspectral image data, developed and 

validated on an airborne scale, is transferable to the spaceborne scale corresponding to the 

future EnMAP mission. Two major subjects were defined in this regard: data supply and data 

analysis. 

Since EnMAP data is not yet available, an alternative data basis had to be created using 

airborne imaging spectrometers and capturing the development of different crops within a 

growing season. As commercial airborne sensors suffer from a limited availability and are 

often cost-intensive, the Airborne Visible and Near Infrared Imaging Spectrometer (AVIS) 

was developed at the Department of Geography of the LMU Munich to achieve this goal. The 

third-generation sensor, AVIS-3, equipped with two camera systems covering VNIR and 

SWIR, was used to establish a multiseasonal database of a 12 km² sized study site dominated 

by agricultural use in Lower Bavaria, Germany. By that means, the database obtained 

encompassed recordings on four different dates within the growing period of 2012 and was 

complemented by two acquisitions from the airborne sensor HySpex, operated by the German 

Aerospace Center (DLR). As a result, six individual acquisitions were acquired which served 

as the basis for the development of an analysis algorithm by which vegetation parameters can 

be retrieved. Parallel to the airborne acquisitions, an extensive field campaign was conducted, 

during which more than 500 in-situ measurements of, in particular, leaf area index (LAI) and 

canopy chlorophyll content (CCC) of different crops were gathered, as these are very 

important variables for the monitoring of the current status of plant and canopy physiology. 

Before the data was analyzed with a view to its potential for parameter retrieval, the spectral 

properties of AVIS-3 had to be characterized in the laboratory, followed by the preprocessing 

of the recorded image data. This included the processing steps of sensor calibration, geometric 
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correction and radiometric calibration to transform the measured grey values to reflectance 

values. The preprocessing resulted in 197 bands covering a spectral range from 477 to 1704 

nm and a corresponding ground sampling distance of 4 m. In order to enable comparability, 

the HySpex data was spectrally and spatially resampled to correspond to the specifications of 

AVIS-3. 

Since it was a goal of the study to investigate the transferability of an analysis method to the 

EnMAP scale, the acquired data served not only the evaluation of an appropriate estimation 

technique, but also the simulation of EnMAP data. By the use of the EnMAP-end-to-end-

Simulator, called EeteS, developed and conducted by the GFZ German Research Centre for 

Geosciences in Potsdam, the airborne data was converted to simulated raw sensor data (DN) 

by its forward simulation module, with respect to the spectral and spatial properties of the 

hyperspectral imager onboard the satellite. Afterwards it was subjected to a simulated on-

board calibration, followed by conversion to realistic reflectance values and a ground 

sampling distance of 30 m in its backward simulating tool.  

Subsequently, the data obtained was used for the second aim of this study – the determination 

of a unified method enabling the retrieval of LAI and CCC from remote sensing data without 

requiring the input of in-situ information, thereby validated, however, for all data acquisitions 

in this study. This led to the investigation of physically based methods, such as the inversion 

of canopy reflectance models. Quite in contrast to empirical-statistical models, such as 

vegetation indices, which have to be calibrated against in-situ data if they are to be used for 

the derivation of actual vegetation variables, physically based methods can be applied without 

using in-situ data. Moreover, empirical-statistical methods have the disadvantage of a limited 

transferability and are sensitive to anisotropy effects resulting from a variable sun-sensor-

target geometry within the airborne data, which, by contrast, are explicitly taken into account 

by physically based models. Consequently, the information on observer zenith and azimuth 

angles of AVIS-3 was stored in the image data for each pixel as additional bands, allowing the 

corresponding illumination geometry to be considered during the analysis.  

The leaf optical properties model (PROSPECT5) and the canopy bidirectional reflectance 

model (4SAIL), combined in the PROSAIL model, were used for the physically based 

retrieval of land surface parameters. This model simulates realistic reflectance data for 

homogeneously vegetated surfaces and thus makes it most suitable for the application in an 

agricultural context. Based on various biophysical input parameters the model simulates 

corresponding reflectance spectra. The model had to be inverted since the parameters 

underlying the modeled spectra are the target variables of this study. There are several 

inversion techniques described in the literature, which differ in computation speed, robustness 

and performance. The most common inversion techniques for parameter retrieval are 

numerical optimization algorithms, artificial neural networks (ANNs) and look-up tables 

(LUTs). Due to its simplicity, transparency and robustness, the LUT approach was chosen for 
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this study. The 100 000 simulated spectra stored in the LUT, including the vegetation 

parameters by which they were produced, were generated by the PROSAIL model and were 

based on a specific range of input parameter combinations. To take the various illumination 

geometries into account, this step was repeated for several classes of different observer zenith 

and azimuth angles, as well as for the different sun position among all six flights, resulting in 

a LUT library including a total of 83 600 000 spectra. When applied to the image data, a cost 

function searched for the highest agreement between the measured signal and the spectra 

stored within the LUT. The underlying parameter combination of the best fitting modeled 

spectrum is, within this method, assumed to represent the biophysical variables to be retrieved 

in a physically meaningful way. However, model results are often ill-posed, which means that 

the solution found by the cost function might not correspond to the parameters which caused 

this reflectance in reality, since various input parameter combinations to the model can 

produce almost identical reflectance spectra. To counteract this problem, multiple solutions 

were considered and their corresponding input parameters averaged. In addition to the ideal 

number of considered solutions, further selection criteria influence the model accuracy, such 

as the averaging method, the choice of cost function as well as the amount of artificial noise 

added to the simulated reflectance data within the LUT, to provide more flexibility in finding 

the optimal solution. For a systematical evaluation of the ideal combination of the selection 

criteria, these were combined in different configurations, resulting in 17 640 individual 

inversion processes applied to the data and analyzed with regard to their performance.  

In order to validate the estimation accuracy using the relevant in-situ measurements, a set of 

statistical measures was introduced (R², RMSE, RRMSE, NSE as well as slope and intercept 

of Theil-Sen regression), allowing an accurate identification of potential weaknesses in the 

retrieval quality. It was found that in particular the averaging method, the amount of noise and 

the number of considered solutions were of distinctive relevance to the model performance. 

Finally, a combination of LUT criteria was found that led to acceptable results for both leaf 

area index and canopy chlorophyll content.  

In addition to the identification of the ideal model configuration, the value added by the use of 

the high number of bands supplied by hyperspectral data was examined. This was achieved by 

comparing the resulting accuracies of the LUT inversion by applying the full range of 

AVIS-3, excluding the bands affected by atmospheric water vapor absorption, to the 

accuracies resulting from the LUT inversion based on the band combination of the future 

multispectral Sentinel-2 mission. The comparison revealed that the use of a hyperspectral 

band setting led to a distinctly higher estimation accuracy than the multispectral band setting.  

Consequently, it was shown that hyperspectral sensors hold the highest potential among the 

available remote sensing techniques to provide data for an accurate estimation of several 

biophysical parameters, with an analysis method which was proven to be both consistent and 

robust and applicable to multiseasonal datasets. In a final stage, the LUT inversion was 
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adapted to the bands of the simulated EnMAP data and validated against upscaled results of 

the airborne parameter estimation. Thus it was shown that the determined analysis method can 

be applied successfully to data supplied by the upcoming EnMAP mission. 
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7 Zusammenfassung (German) 

Ab 2017 wird die hyperspektrale Satellitenmission EnMAP erstmals hochwertige 

Erdbeobachtungsdaten bereitstellen, die eine Ableitung regelmäßiger multisaisonaler 

Informationen aus dem All ermöglichen wird. Für landwirtschaftliche Anwendungen bietet 

dies die Möglichkeit, aus diesen Daten relevante Informationen über die saisonale 

Entwicklung von einzelnen Vegetationsparametern auf regionaler Ebene abzuleiten. 

Kenntnisse über die die Entwicklung dieser Parameter stellen ein wertvolles Schlüsselprodukt 

zur landwirtschaftlichen Informationsbereitstellung dar, gerade im Kontext der sogenannten 

Präzisionslandwirtschaft. 

Das Ziel dieser Studie war es zu untersuchen, ob eine Analysemethode zur Ableitung 

biophysikalischer und biochemischer Blatt- und Bestandesparameter, die auf der Auswertung 

flugzeuggetragener hyperspektraler Sensordaten basiert, auf eine Skala entsprechend der 

EnMAP-Mission übertragen werden kann. In diesem Zusammenhang wurden demnach zwei 

vorrangige Ziele definiert: Datenbereitstellung und Datenanalyse. 

Da EnMAP-Daten noch nicht verfügbar sind, musste anhand flugzeuggetragener abbildender 

Spektrometer eine alternative Datenbasis geschaffen werden, welche die Entwicklung 

landwirtschaftlicher Kulturen innerhalb einer Wachstumsperiode adäquat wiedergeben kann. 

Tatsächlich aber sind kommerzielle abbildende Spektrometer sehr kostenintensiv oder nur 

unregelmäßig verfügbar, was schließlich zur Entwicklung des abbildenden Spektrometers 

AVIS (Airborne Visible and Near Infrared Imaging Spectrometers) am Institut für Geographie 

der LMU München führte. AVIS, mittlerweile in der dritten Generation und mit zwei 

Kamerasystemen ausgestattet, diente daher für die Generierung einer multisaisonalen 

Datenbasis eines 12 km² großen und landwirtschaftlich geprägten Untersuchungsgebietes in 

Neusling, Niederbayern. So konnten während der Wachstumsphase 2012 insgesamt vier 

Datenakquisitionen durchgeführt werden, ergänzt durch zwei weitere Aufnahmen des 

flugzeuggetragenen Sensors HySpex, welches vom Deutschen Zentrum für Luft- und 

Raumfahrt betrieben wird. Die insgesamt sechs Aufnahmen dienten als Grundlage zur 

Entwicklung und Validierung eines Analysealgorithmus zur Ableitung von 

Vegetationsparametern. Parallel zu den Datenakquisitionen aus der Luft wurde eine 

umfangreiche Feldkampagne mit mehr als 500 Messungen durchgeführt, bei der der Fokus 

auf die Aufnahme von Blattflächenindex (engl. leaf area index, LAI) und Chlorophyllgehalt 

lag, da diese wichtige Größen für das Monitoring des aktuellen Zustands der Vegetation und 

der Bestandesphysiologie sind.  
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Bevor die Hyperspektraldaten aber hinsichtlich ihres Potentials zur Parameterabschätzung 

analysiert werden konnten, mussten die spektralen Eigenschaften von AVIS-3 im Labor 

charakterisiert und die gewonnen Bilddaten vorprozessiert werden. Dies umfasste folgende 

Verarbeitungsschritte: Sensorkalibrierung, geometrische Korrektur sowie radiometrische 

Kalibrierung, bei der die gemessenen Grauwerte in spektrale Reflektanzen umgewandelt 

wurden. Die Prozessierung der Daten resultierte schließlich in einer spektralen Abdeckung 

von 477 bis 1704 nm in 197 Kanälen und einer geometrischen Auflösung von 4 m pro Pixel. 

Um eine Vergleichbarkeit der HySpex-Daten mit den AVIS-3-Daten zu gewährleisten, 

wurden erstere entsprechend den räumlichen und spektralen Spezifikationen von AVIS-3 

angepasst. 

Da es ein Ziel der Studie war die Übertragbarkeit eines Analyseverfahrens auf die EnMAP-

Skala zu untersuchen, dienten die Daten nicht nur für die Erprobung eines entsprechenden 

Schätzverfahrens, sondern auch zur Simulation künstlicher EnMAP-Daten. Hierfür wurde das 

Simulationstool „EeteS“ (EnMAP-end-to-end-Simulator) des GeoForschungszentrum GFZ 

Potsdam zurande gezogen, welches aus den Flugzeugdaten simulierte Rohdaten von EnMAP 

berechnete. Dabei wurden insbesondere die spektralen und räumlichen Eigenschaften des 

Satellitensensors berücksichtigt. Die Rohdaten wurden dann einer simulierten On-board-

Kalibrierung unterzogen und anschließend entsprechend einer atmosphärischen und 

geometrischen Korrektur in realistische Reflektanzwerte und einer geometrischen Auflösung 

von 30 m konvertiert. 

Die aufbereitenden Daten konnte anschließend für das zweite Ziel der Studie verwendet 

werden – der Definierung einer einheitlichen Methode zur Ableitung von LAI und 

Chlorophyllgehalt aus Fernerkundungsdaten ohne auf in-situ Messungen angewiesen zu sein, 

diese wurden lediglich zur Validierung eingesetzt. Dies führte zur Untersuchung physikalisch-

basierter Methoden wie der Invertierung von Bestandesreflexionsmodellen. Im Gegensatz zu 

empirisch-statistischen Methoden, wie beispielsweise Vegetationsindizes, die erst gegen 

in-situ Messungen kalibriert werden müssen um biophysikalische Parameter abzuleiten, sind 

physikalisch-basierte Methoden unabhängig von in-situ Messungen. Darüber hinaus haben 

empirisch-statistische Methoden den Nachteil, dass sie kaum übertragbar sind und des 

Weiteren empfindlich auf Anisotropieeffekte reagieren, die sich aus einer variable Sonnen-

Ziel-Sensor Geometrie bei flugzeuggetragenen Aufnahmen ergeben. Physikalisch-basierte 

Modell hingegen berücksichtigen diese ausdrücklich. Infolgedessen wurden Zenit- und 

Azimutwinkel des Sensors, gemessen für jedes aufgenommene Pixel, als zusätzliche Kanäle 

in den Daten abgespeichert, so dass die entsprechende Beleuchtungsgeometrie bei der 

Analyse berücksichtigt werden konnte. 

Als physikalisch-basierte Methode zur Abschätzung von Vegetationsparameter diente das 

optische Blattflächen Modell PROSPECT5, sowie das bidirektionale Reflexionsmodell 

SAIL4, kombiniert zu PROSAIL. Dieses ist in der Lage realistische Reflektanzen für 
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homogene Oberflächen zu simulieren und eignet sich daher insbesondere für eine Anwendung 

in einem landwirtschaftlichen Kontext. Das Modell simuliert Reflexionsspektren nach 

Eingabe verschiedener Blatt- und Bestandesparameter. Da diese Eingabeparameter das 

eigentliche Ziel darstellen, musste das Modell invertiert werden. Hierfür werden in der 

Literatur verschiedene Methoden beschrieben, die sich in Rechengeschwindigkeit, Stabilität 

und Leistung unterscheiden. Die häufigsten Inversionstechniken sind dabei numerische 

Optimierungsalgorithmen, künstliche neuronale Netze (engl. artificial neural network, ANN) 

und Look-Up Tabellen (LUT). Infolge seiner Einfachheit, Robustheit und Transparenz wurde 

der LUT Ansatz für diese Studie gewählt. Basierend auf spezifischen 

Parameterkombinationen simulierte PROSAIL 100 000 verschiedene Reflexionswerte, die 

zusammen mit ihren Eingabeparametern im LUT gespeichert wurden. Um variierender 

Beleuchtungsgeometrien Rechnung zu tragen, wurde dieser Schritt für mehrere Klassen 

verschiedener Zenit- und Azimutwinkel des Sensors sowie für die unterschiedlichen 

Sonnenpositionen zwischen den sechs Flügen mehrfach wiederholt, was schließlich zu einer 

Bibliothek von Look-Up Tabellen geführt hat, in der insgesamt 83 600 000 Spektren 

abgespeichert sind. Bei Anwendung der Tabelle auf die Bilddaten suchte eine Kostenfunktion 

die größte Übereinstimmung zwischen dem gemessenen Spektrum eines Pixels und den 

Spektren aus der Look-Up Tabelle. Dabei wird angenommen, dass die zugrunde liegende 

Parameterkombination des am besten passenden modellierten Reflexionsspektrums die 

gesuchten Variablen repräsentiert. Allerdings sind die Modellergebnisse oftmals 

mathematisch schlecht gestellt (engl. ill-posed), das heißt dass die identifizierte Lösung den 

tatsächlichen Parametern nicht entsprechen muss. Dies ist zurückzuführen auf das Modell, das 

bei Eingabe verschiedener Parameterkombination nahezu identische Reflexionsspektren 

erzeugen kann. Um diesem Problem entgegenzuwirken, wurde eine multiple Anzahl der 

jeweils besten Übereinstimmungen für die Ableitung berücksichtigt und die entsprechenden 

Eingabeparameter gemittelt. Neben der gesuchten idealen Anzahl berücksichtigter Lösungen 

beeinflussen weitere Auswahlkriterien die Modellgenauigkeit, darunter die Methode zur 

Mittelung, die Wahl der Kostenfunktion und der Anteil von künstlichem Rauschen, das den 

modellierten Spektren hinzugefügt wurde, um ein erhöhte Flexibilität bei der Suche der 

optimalen Lösung zu ermöglichen. Für eine systematische Auswertung der idealen 

Kombination von Auswahlkriterien wurden diese in verschiedenen Konfigurationen 

kombiniert, was insgesamt zu 17 640 individuellen Inversionsprozessen geführt hat, die auf 

die Daten angewendet wurden und anschließend entsprechend ihrer Leistungsfähigkeit 

untersucht worden sind.  

Um die Schätzgenauigkeit des Modells mittels der entsprechenden in-situ Messungen präzise 

validieren zu können, wurde ein Set statistischer Maße verwendet (R², RMSE, RRMSE, NSE, 

sowie Steigung und Schnittpunkt der Theil-Sen Regression), das es erlaubt potentielle 

Schwachstellen in der Schätzungsqualität nachweisen zu können. Auf diese Weise zeigte sich, 
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dass insbesondere die Mittelungsmethode, die Menge von künstlichem Rauschen sowie die 

Anzahl der berücksichtigten Spektren entscheidenden Einfluss auf die Performance des 

Modells haben. Schließlich konnte eine Kombination identifiziert werden, die es erlaubt 

sowohl Blattflächenindex als auch Chlorophyllgehalt ausreichend genau abzuschätzen. 

Neben der Identifizierung der idealen Modellkonfiguration wurde ebenso die Anzahl der 

spektralen Kanäle untersucht, die bei der Inversion berücksichtigt werden. Um den 

potentiellen Mehrwert der Hyperspektraldaten zu überprüfen, wurde das Ergebnis der 

Inversion, welches auf dem gesamten Spektrum der zur Verfügung stehenden Kanäle 

abzüglich der von Wasserdampfabsorption betroffenen basiert, verglichen mit einer 

reduzierten Inversion, die auf den Spektralkanälen der zukünftigen multispektralen Sentinel-2 

Mission basiert. Der Vergleich zeigte, dass die Verwendung der Vielzahl hyperspektraler 

Kanäle eine deutlich höhere Schätzgenauigkeit erzielt, als wenn lediglich eine multispektrale 

Auswahl berücksichtigt wird. 

In der Folge wurde gezeigt, dass bei den zur Verfügung stehenden Fernerkundungstechniken 

hyperspektrale Sensoren das größte Potential aufweist Daten bereitzustellen, die eine 

Ableitung biophysikalischer Parameter ermöglichen. Es zeigte sich, dass der untersuchte 

Ansatz eine einheitliche und robuste Analysemethode darstellt, die für eine Anwendung auf 

multisaisonale Daten geeignet ist. Zu guter Letzt wurde die LUT Inversion entsprechend der 

simulierten EnMAP Daten angepasst und das Ergebnis gegen jenes validiert, welches auf der 

Auswertung der flugzeuggetragenen Daten basiert. Dabei konnte bewiesen werden, dass die 

definierte Analysemethode erfolgreich auf die zukünftigen EnMAP Daten angewendet 

werden kann. 
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A.1  LAI Estimation accuracy (NSE) 

Noise type: Additive  

 Band selection: AVIS-3 full range 
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A.2  LAI Estimation accuracy (NSE) 

Noise type: Multiplicative 

 Band selection: AVIS-3 full range 
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A.3 LAI Estimation accuracy (NSE) 

Noise type: Combined  

 Band selection: AVIS-3 full range 
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A.4 LAI Estimation accuracy (NSE) 

Noise type: Inverse-combined 

 Band selection: AVIS-3 full range 
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A.5 LAI Estimation accuracy (NSE) 

Noise type: Inverse-multiplicative  

 Band selection: AVIS-3 VNIR 
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A.6 LAI Estimation accuracy (NSE) 

Noise type: Inverse-multiplicative  

 Band selection: Sentinel-2 

 

 

  



Appendix 

173 

    

A.7 LAI Estimation accuracy (NSE) 

Noise type: Inverse-multiplicative  

 Band selection: Landsat TM 
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A.8 CCC Estimation Accuracy (NSE) 

Noise type: Inverse-multiplicative  

 Band selection: AVIS-3 full range 
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A.9 CCC Estimation Map  

EnMAP | AVIS-3 (upscaled to 30 m) 
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A.10 CCC Difference Map  

EnMAP | AVIS-3 (upscaled to 30 m) 
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A.11 CCC Difference Map & Correlation 

Sentinel-2 | AVIS-3 (upscaled to 30 m) 

 

 




