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Summary 

In their habitats, microorganisms are often in competition for limited nutrients. In order to succeed, 

many Gram-positive bacteria resort to production of peptide antibiotics. Therefore, resistance 

mechanisms against these compounds are essential. The first step of ensuring survival is the 

perception of the harmful drugs and mediation of resistance against it. In recent years, a group of 

ABC-transporters have been recognized as important resistance determinate against antimicrobial 

peptides. The expression of these transporters is generally regulated by a two-component system, 

which in most cases is encoded next to the transporter. Together they are described as detoxification 

modules. The permeases of the transporters are characterized by a large extracellular domain, while 

the histidine kinases lack an obvious input domain. One of the best understood examples is the 

BceRS-BceAB system of Bacillus subtilis, which mediates resistance against bacitracin, mersacidin 

and actagardine. For this system it was shown that the histidine kinase is not able to detect the 

substrate directly and instead has an absolute requirement for the transporter in stimulus perception. 

This describes a novel mode of signal transduction in which the transporter is the actual sensor and 

therefore regulates its own expression. To date, mechanistic details for this unique mode of signal 

transduction remain unknown. Several other examples have been described for transport proteins that 

have acquired additional sensing or regulatory functions beyond solute transport, and these have been 

designated trigger transporters. For these bifunctional transporters a direct protein-protein interaction 

with membrane-integrated or soluble components of signal transduction relays has been postulated. 

However, for most sensor/co-sensor pairs, conclusive proof of such an interaction is lacking, and so 

far little is known about the sites that might mediate contacts between the putative protein interfaces 

and how communication is achieved.  

Based on sequence and architectural similarities, we identified over 250 BceAB-like transporters 

in the protein database, which occurred almost exclusively in Firmicutes bacteria. To whether the 

regulatory interplay between the ABC transporter and the two-component system was a common 

theme in these antimicrobial peptide resistance modules, we carried out a phylogenetic study of these 

identified systems. We identified a clear coevolutionary relationship between transport permeases and 

histidine kinases. Furthermore, we identified conserved putative response regulator binding sites in the 

promoter regions of the transporter operons. Additionally, we were able to provide a tool to identify 

TCSs for transporters lacking a regulatory system in their genomic neighbourhood, which was based 

on the coclustering of histidine kinases and transporter permeases. These findings also suggested the 

existence of a sensory complex between BceAB-like transporters and BceS-like histidine kinases. 

To further investigate the signaling mechanism, we performed a random mutagenesis of the 

transport permease BceB with the aim to identify regions or residues within the transporter that are 

involved in signaling and/or resistance. With this approach we were able to identify mutations that 
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affected either the ability for signaling or mediation of resistance. This showed a partial genetic 

separation of the two qualities, which could be achieved by single amino acid replacements. These 

results provide first insights into the signaling mechanism of the Bce system. 

In order to analyse the proposed communication between two-component system and ABC 

transporter, we further characterized their interactions by in vivo and in vitro approaches. We could 

demonstrate that the transporter BceAB is indeed able to interact directly with the histidine kinase. 

Because it was unknown how the signal perception by BceAB-type transporters occurs, we next 

analyzed substrate binding by the transporter permease BceB and could show direct binding of 

bacitracin by BceB. Finally, in vitro signal transduction assays indicated that complex formation with 

the transporter influenced the activity of the histidine kinase. 

In summary this thesis clearly shows the existence of a sensory complex comprised of BceRS-like 

two-component systems and BceAB-like ABC transporters and provides first functional insights into 

the mechanism of stimulus perception, signal transduction and antimicrobial resistance mechanism 

employed by these wide spread detoxification systems against antimicrobial peptides. 

 



 



   Zusammenfassung 
 

VI 
 

Zusammenfassung 

Um sich in solch hart umkämpften Habitaten wie dem Boden zu behaupten sind Bakterien dazu 

übergegangen Antibiotika zu produzieren, um das Wachstum der Konkurrenz einzudämmen. Eine 

Gruppe solcher Substanzen sind antimikrobielle Peptide, die von Gram-positiven Bakterien produziert 

werden. Zum Schutz vor Peptidantibiotika haben Gram-positive Bakterien eine Vielzahl verschiedener 

Resistenzmechanismen entwickelt. Den effizientesten Resistenzmechanismus gegen Peptidantibiotika 

stellt eine Gruppe ATP-abhängiger ABC-Transporter dar. Diese Transporter weisen einen besonderen 

Transmembranaufbau auf. Sie bestehen aus zehn Transmembranhelices und einer großen 

extrazellulären Domäne. Die Expression dieser Transportergruppe wird durch ein 

Zweikomponentensystem reguliert. Die Histidinkinase besitzt ebenfalls einen ungewöhnlichen 

Transmembranaufbau, da sie keine offensichtliche Bindedomäne besitzt. Zusammen bilden der 

Transporter und die Histidinkinase ein Resistenzmodul gegen Peptidantibiotika, das in Firmicutes weit 

verbreitet ist. Eines der am besten verstandenen Systeme ist das BceRS-BceAB System in Bacillus 

subtilis. Dieses System vermittelt Resistenz gegen Bacitracin, Actagardin und Mersacidin. Für dieses 

System konnte gezeigt werden, dass die Histidinkinase BceS alleine nicht in der Lage ist, auf 

Bacitracin zu reagieren, sondern stattdessen für die Reizwahrnehmung und die Vermittlung der 

Resistenz auf den Transporter BceAB angewiesen ist. Der Transporter reguliert somit eine eigene 

Produktion. Wie der Resistenzmechanismus in diesem System genau funktioniert konnte bisher aber 

noch nicht hinreichend geklärt werden. Dass Transporter neben ihrer Funktion Substrate über eine 

Zellmembran zu transportieren auch an der Reizwahrnehmung und der Antwortregulation beteiligt 

sein können, ist in unterschiedlichsten Beispielen beschrieben worden. Um die Signalweiterleitung an 

membranständige oder zytoplasmatische Komponenten des Signalwegs gewährleisten zu können, 

müssen diese miteinander interagieren, zum Beispiel durch direkte Protein-Protein Interaktionen. 

Bisher konnte jedoch für viele solcher Sensorkomplexe keine endgültige Erklärung für solch eine 

Interaktion dargestellt werden.  

Basierend auf einer Datenbankanalyse konnten über 250 BceAB-artige Transporter identifiziert 

und ein Großteil davon einer BceS-artigen Histidinkinase zugeordnet werden. Durch eine 

phylogenetische Studie konnte weiterhin gezeigte werden, dass BceRS-artige 

Zweikomponentensysteme und BceAB-artige Transporter in Firmicutes Bakterien weit verbreitet sind 

und sich über Ko-Evolution gemeinsam zu Resistenzmodulen gegen Peptidantibiotika entwickelt 

haben. Dazu konnte eine konservierte Antwortregulator-Bindestelle in den Promoter Regionen der 

Transporteroperons bestimmt werden. Zudem war es möglich aufgrund dieser Klassifizierung für 

diejenigen Permeasen ohne ein benachbartes Zweikomponentensystem anhand der Genomsequenz ein 

mögliches Regulationssystem zuzuordnen. Diese Erkenntnisse unterstützten die Vermutung über einen 

sensorischen Komplex zwischen BceS-ähnlichen Histidinkinasen und BceAB-ähnlichen ABC 

Transportern. 
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In einer weiteren Studie konnten mittels zufälliger Mutagenese der Transporterpermease BceB 

Aminosäurereste identifizierte werden, die an der Signalweiterleitung und/oder Resistenzvermittlung 

beteiligt waren. Durch einige der eingefügten Mutationen wurde nur die Signalweiterleitung bzw. nur 

die Resistenz beeinträchtigt. Dies spricht dafür, dass eine partielle genetische Trennung der Aufgaben 

des Transporters möglich ist. Hierdurch konnten erste wichtige Einblicke in den 

Signalweiterleitungsmechanismus des Bce-Systems gewonnen werden. 

Um die vorgeschlagene Kommunikation zwischen Zweikomponentensystem und ABC-

Transporter weiterführend zu untersuchen, wurden Interaktionsstudien durchgeführt. Die auf in vitro 

und in vivo Studien basierenden Ergebnisse konnten eine direkte Interaktion zwischen BceS und 

BceAB darstellen. Darüber hinaus konnten wir in dieser Arbeit durch eine Oberflächenresonanz-

Spektroskopie zum ersten Mal zeigen, dass die Transporterpermease Bacitracin direkt und spezifisch 

bindet. Außerdem konnte durch eine in vitro Rekonstruktion des Signalwegs im Bce-System gezeigt 

werden, dass die Aktivität der Histidinkinase durch die Anwesenheit des Transporters beeinflusst 

wird. 

Zusammenfassend zeigt die vorliegende Arbeit direkte Hinweise, dass BceRS-artige 

Zweikomponentensysteme und BceAB-artige ABC-Transporter zusammen einen sensorischen 

Komplex für Peptidantibiotika bilden. Dies wird unterstützt durch erste funktionelle Einblicke in die 

Mechanismen der Reizwahrnehmung und Signalweiterleitung in diesen in Firmicutes Bakterien weit 

verbreiteten Resistenzsystemen. 
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1. Introduction 

Bacterial life is characterized by continuous interaction between the bacterial cell and its environment. 

Bacteria live in harsh environmental conditions, in which they must compete for limited nutrients to 

survive. In order to gain competitive advantage over their rivals, bacterial species have evolved a 

variety of antimicrobial agents, e.g. antimicrobial peptides (AMPs). The main target of these peptides 

is the bacterial cell wall. On the other hand, bacteria have also evolved mechanisms to counteract such 

threatening conditions. Therefore bacteria possess several communication systems, which transduce 

the extracellular information over the cell membrane into the cell. These systems enable bacteria to 

monitor parameters such as osmotic activity, ionic strength, pH, temperature and the concentrations of 

nutrients and harmful components, including antimicrobial substances, facilitating adaptation and 

survival in the harsh conditions. The regulation of antibiotic production is attended by mediation of 

resistance in the bacterial world. As bacterial infections grow increasingly difficult to treat, a deeper 

understanding of the mechanisms behind the production of and resistance to antimicrobial substances 

is coming into scientific focus. Many different types of signal transduction systems have been shown 

to be involved in the biosynthesis of antibiotics and the regulation of resistance modules against them 

(Gebhard, 2012). One of the major signal transduction systems within bacterial resistance mechanisms 

is the two-component system (TCS), consisting of a membrane bound histidine kinase (HK) and its 

cognate response regulator (RR), which often mediates differential gene expression (Jung et al., 2012; 

Capra & Laub, 2012). A deeper understanding of the underlying regulatory principles is urgently 

needed. 

1.1 The cell envelope of Gram-positive bacteria  

The bacterial cell envelope, which includes the membrane and other components such as 

peptidoglycan (PG) surrounding the cytoplasm, is an essential and complex multi-layered structure. Its 

integrity and functionality is crucial for survival of the cell and must be maintained at all times. The 

cell membrane forms a crucial communication interface between the cell and its environment. It 

contains a number of different sensory systems, allowing the cell to monitor and respond to 

environmental fluctuations (Dijkstra & Keck, 1996; Silhavy et al., 2010).  

The cytoplasmic membrane, in Gram-negatives as well as in Gram-positives bacteria, consists of 

a phospholipid bilayer containing integral membrane proteins, which are often involved in essential 

processes including energy production and transport. The cell envelopes of most bacteria fall into one 

of two major groups, defined by their ability to be Gram-stained. Gram-negative bacteria are 

surrounded by a thin PG layer, which itself is surrounded by an outer membrane containing 

lipopolysaccharide. In Gram-positive bacteria, the PG layer is many times thicker and an outer 

membrane is lacking. The cell wall also serves as a scaffold for anchoring other cell envelope 
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for invasive infections (Foster et al., 2014). The bacterial envelope usually has a global negative net 

charge caused by another major component of most Gram-positive cell walls - the teichoic acids 

(TAs). TAs are polymers of glycerol- or ribitol-phosphate units. Two different types of TAs in the 

Gram-positive cell wall have been described. The wall teichoic acids (WTAs), which are covalently 

attached to the PG, or the lipoteichoic acids (LTAs), which are anchored in the cytoplasmic membrane 

(Neuhaus & Baddiley, 2003). The overall negative charge on TAs can be modified by introducing 

positive charges along the polymer backbone, and these modifications can have an effect on the 

interactions of bacteria with other cells and molecules. For example, in Staphylococcus aureus, a D-

alanine transferase couples D-alanine moieties to free hydroxyls on the polyribitol phosphate 

backbone. This decreases the overall negative charge of the cell envelope and reduces the 

susceptibility to cationic AMPs (Collins et al., 2002; Peschel et al., 1999; Peschel et al., 2000). 

1.2 Cell wall biosynthesis 

As mentioned above PG is an essential and specific component of the bacterial cell envelope of almost 

all bacteria. Any degradation of the cell wall or inhibition of its biosynthesis consequently results in 

cell lysis. Although the bacterial cell wall has been extensively studied for decades, even central 

questions regarding its architecture still remain mostly unanswered (Turner et al., 2014). The cell wall 

is highly conserved in its chemical structure (Vollmer, 2008). The proteins responsible for assembly 

are also conserved (Lovering et al., 2012). PG biosynthesis can be divided into three major stages 

according to the location of its biochemical reactions (Figure 2): (1) synthesis of cell wall precursors 

in the cytoplasm, (2) membrane-anchored assembly of these precursors and transport through the 

cytoplasmic membrane, and (3) incorporation of new PG units into the existing cell wall. The starting 

point of the cell wall biosynthesis is UDP-activated GlcNAc, which comes from central carbon 

metabolism. GlcNAc is converted to MurNAc in a two-step reaction catalysed by MurA and MurB. 

Thereafter, the first three amino acids of the pentapeptide are added successively by the ligases MurC, 

MurD and MurE (Barreteau et al., 2008). The last two residues of the pentapeptide are first joined and 

then attached as a D-Ala-D-Ala dipeptide. The corresponding enzymes are the ligases Ddl and MurF. 

The next steps occur at the inner face of the cytoplasmic membrane (Bouhss et al., 2008). The 

resulting MurNAc pentapeptide is coupled to the lipid carrier undecaprenol-monophosphate at the 

interior side of the cytoplasmic membrane by the translocase MraY. The resulting complex is called 

lipid I. Subsequent addition of GlcNAc by the glycosyltransferase MurG results in lipid II, which is 

comprised of the complete PG subunit linked via a pyrophosphate to the lipid carrier. Many Gram-

positive bacteria modify lipid II or nascent PG by the addition of amino acids to position 3 of the 

peptide by Fem-transferases (Fonvielle et al., 2009). The cell wall precursor is then translocated by 

FtsW/RodA or MurJ flippases to the exterior side of the cytoplasmic membrane (Mohammadi et al., 

2011; Mohammadi et al., 2014; Sham et al., 2014) and incorporated into the existing PG through 
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1.3 Cell wall active antimicrobial peptides 

As described above, many enzymatic reactions are needed to ensure the successful biosynthesis of the 

cell wall. For this reason the enzymatic steps are favoured targets for antimicrobial substances (Figure 

2). A diverse group of such compounds produced by bacteria as well as higher organisms, including 

animals and humans, are the AMPs. AMPs show an amphipathic and a cationic property, but they are 

variable in sequence, secondary structure, size and mode of action (Peschel & Sahl, 2006). 

Bacteriocins, generated by Gram-positive bacteria, are gene encoded, ribosomally produced AMPs 

that have been a major focus of scientific interest in recent years. Bacteriocins are small peptides that 

are active against other bacteria and against their producer strains, which have developed specific 

immunity mechanisms (Cotter, 2005). Bacteriocins are generally subdivided into two classes: those 

which are translationally modified (class I), and unmodified or minimally modified peptides (class II) 

(Cotter, 2014; Rea et al., 2011). 

One prominent example of bacterial AMPs are the heavily modified lantibiotics (class I), that 

were named after their characteristic lanthionine or methyllanthionine residues. Their structure can be 

either elongated, for example in nisin or subtilin, or more globular, as is the case for mersacidin or 

actargardine (Bierbaum & Sahl, 2009). Nisin is a 34-amino acid peptide with two well defined 

amphipathic domains. It is widely used in the food industry and has potent activity in the nanomolar 

range against a broad range of Gram-positive (Gross & Morell, 1971), and to a lesser extent Gram-

negative organisms (Stevens et al., 1991). A number of studies have demonstrated that nisin acts by a 

two-step mechanism in which the peptide first binds to lipid II and then inserts itself into the bacterial 

membrane to create a pore (Breukink et al., 1999; Breukink & de Kruijff, 2006). In addition to 

interactions with lipid II, a recent study has demonstrated that nisin also binds to lipid III and lipid IV 

to interfere with biosynthesis of WTAs and/or LTAs (Muller et al., 2012). It has been postulated that 

its interaction with lipid II may contribute to the very low resistance levels seen for nisin, as it would 

likely be very difficult for an organism to alter this highly conserved component of the cell wall 

synthesis pathway (Yount & Yeaman, 2013). 

Another family of AMPs is comprised of cyclic or semi-cyclic lipopeptides and 

lipoglycopeptides. Members of this group include vancomycin, daptomycin, telavancin, and 

dalbavancin. These agents may also interfere with the lipid II pathway, and some share biophysical 

(e.g., Ca2+-binding) and structural features with certain mersacidin-like lantibiotics. The most 

medically relevant compound in this group of antibiotics is vancomycin. It binds tightly to the terminal 

D-alanyl-D-alanine of the peptide chain of lipid II at the outside of the cell and thereby inhibits the 

crosslinking (Kahne et al., 2005). By the modification of the dipeptide terminus of the lipid II to D-

alanyl-D-lactate, the affinity of vancomycin is significantly reduced, and this results in vancomycin 

resistance (Barna & Williams, 1984). 

Cyclic lipopeptides are produced via non-ribosomal synthesis on large, multifunctional peptide 

synthetases, generating a macrocyclic ring structure with an attached lipid adduct. Representative 
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cyclic lipopeptides in preclinical development and clinical use include ramoplanin, empedopeptin, and 

daptomycin. Ramoplanins, such as teicoplanin and ramoplanin A2, are a family of 

glycolipodepsipeptides produced by Actinoplanes ATCC 33076. Synthesis of ramoplanin is 

exceptionally complex, involving many enzymatic steps that produce a 49-member ring structure from 

an initial 17 amino acid template (Hamburger et al., 2009). A number of studies have suggested that 

ramoplanins likely act through the binding and sequestration of lipid II, inhibiting subsequent 

biosynthesis of peptidoglycan. 

In addition, many bacteria also produce non-ribosomally synthesized peptides, such as the small 

circular metallo-peptide bacitracin (Johnson et al., 1945; Economou et al., 2013) which is primarily 

active against Gram-positive bacteria. Bacitracin is produced by strains of Bacillus subtilis and 

Bacillus licheniformis as a mixture of closely related dodecapeptides and requires a divalent metal ion 

for its biological activity (Johnson et al., 1945; Ming & Epperson, 2002). The most potent form is 

bacitracin A (Azevedo et al., 1993; Ikai et al., 1995). Bacitracin interferes with bacterial cell-wall 

biosynthesis by binding UPP. This mode of action weakens cell wall biosynthesis by preventing the 

recycling of the lipid carrier and ultimately leads to bacterial death (Stone & Strominger, 1971; Storm 

& Strominger, 1973; Economou et al., 2013).  

1.4 Resistance mechanisms against antimicrobial peptides 

To counteract AMP action, bacteria have developed a broad range of resistance mechanisms, which 

include drug-specific responses such as proteolytic degradation (Sun et al., 2009) or increased 

production of the inhibited enzyme (Cao & Helmann, 2002), as well as less specific strategies such as 

biofilm formation (Otto, 2006). One widely distributed resistance mechanism is the alteration of the 

global net negative charge of the cell envelope to hinder binding of AMPs. Due to the positively 

charged peptides and the negatively charged bacterial cell envelope, it comes to electrostatic attraction 

between cationic AMPs and bacterial cell envelopes (Peschel & Sahl, 2006). Bacteria can utilize a 

number of mechanisms to modulate their cell envelope charge. The mechanism best understood for 

achieving changing charge of the cell envelope is the D-alanylation of TAs, catalysed by the 

DltABCD system (Perego et al., 1995; Neuhaus & Baddiley, 2003; Reichmann et al., 2013). For 

example, a dltA mutant shows increased sensitivity to several cationic AMPs in Lactobacillus casei 

BL23, relative to the wild type strain. D-alanylation TAs is limited to Firmicutes (Revilla-Guarinos et 

al., 2013; Neuhaus & Baddiley, 2003). Recently, an alternative effect of the Dlt-system was proposed, 

based on steric hindrance of cationic AMP passage through the cell wall due to an increased density of 

the PG sacculus (Saar-Dover et al., 2012).  

Another mechanism to change the net negative charge of the bacterial cell is the lysinylation of 

membrane phospholipids by MprF. Usually, the phospholipid phosphatidylglycerol is modified by 

transferring lysyl or alanyl groups of aminoacyl tRNAs to glycerol moiety of phosphatidylglycerol. 
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Inactivation of MprF in S. aureus Sa113 resulted in an increased sensitivity to nisin, gallidermin or 

protegrin 3 and other AMPs, which shows that mprF involved in mediation of resistance against a 

wide range of AMPs (Peschel et al., 2001). MprF was shown to be involved in the synthesis of Lys- 

phosphatidylglycerol and Ala- phosphatidylglycerol. In addition to this synthetic function, MprF is 

also involved in the inner-to-outer translocation of Lys- phosphatidylglycerol. Both mechanisms are 

thought to reduce the net negative charge of the cell envelope, thus decreasing electrostatic 

interactions between AMPs and the cell. MprF homologues are common in most bacterial species, but 

appear to be most abundant in Firmicutes and actionobacteria (Ernst & Peschel, 2011). 

While changes in charge provide a protection against a wide range of AMPs a further more 

specific mechanism of AMP resistance, are described in bacteria for example against bacitracin. 

Resistance can be mediated by de novo synthesis of undecaprenol-phosphate (Cain et al., 1993; 

Chalker et al., 2000), the expression of alternative UPP phosphatases (UppPs) (Bernard et al., 2005; 

Cao & Helmann, 2002) and the removal of the antibiotic by specific transporters (Mascher et al., 

2003, Ohki, 2003 #242; Neumüller et al., 2001). The latter mechanism is mediated by antibiotic-

specific adenosine triphosphate-binding cassette (ABC) transporters and is not restricted to the 

detoxification of bacitracin. A number of different types of transporters have been described as self-

resistance mechanisms in AMP-producing strains as well as for protection against foreign AMPs 

(Gebhard, 2012). One type of transporters, which mediates self-protection of lantibiotic producing 

strains, is the so-called LanFEG-type transporter: its expression leads to a specific resistance against 

self-produced lantibiotics. Most transporters of this group act in a very narrow substrate range, 

providing resistance only against the produced lantibiotic or structurally very similar peptides (Otto et 

al., 1998). One example for this transporter family is the NisFEG transporter of Lactococcus lactis. To 

mediate resistance against Nisin, the transporter is thought to move the lantibiotic from the 

cytoplasmic membrane to the culture supernatant (Otto et al., 1998; Stein et al., 2005; Stein et al., 

2003).  

BcrAB-type transporters are also involved in resistance against AMPs, but they are described to 

act specifically against the cyclic peptide bacitracin. One system possessing such a transporter is the 

biosynthetic locus for bacitracin in Bacillus licheniformis ATCC10716 (Podlesek et al., 1995; 

Neumüller et al., 2001). In this system, BcrAB mediates self-resistance together with a co-transcribed 

UppP BcrC. Another homolog of this type of transporter is described in Enterococcus faecalis. Here 

the resistance is mediated against foreign bacitracin (Manson et al., 2004). To date, no information is 

available on the mechanism of AMP transport by BcrAB-type transporters. Some indirect evidence is 

supported by an earlier report that all three genes (bcrABC) of B. licheniformis are necessary to confer 

resistance against bacitracin when heterologously expressed in B. subtilis (Podlesek et al., 1995), 

suggesting the following mode of resistance. Bacitracin is removed by the transporter from the site of 

action, which in turn enables BcrC to dephosphorylate the cellular target UPP.  
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A further group comprises a very unique type of transporter. The permease domain of this 

transporter shows unusual domain architecture with 10 transmembrane helices a large extracellular 

domain of about 200 amino acids between helices 7 and 8. They have been classified as the peptide-7 

exporter (Pep7E) family in the Transporter Classification Database (Saier et al., 2009). One of the best 

understood systems, harbouring such a type of transporter, is the BceRS-BceAB module in B. subtilis 

(Rietkötter et al., 2008). Here the transporter BceAB is part of a detoxification module together with a 

TCS consisting of a so called intramembrane-sensing HK, without any extracellular domain, and an 

OmpR-like RR (Mascher, 2006). A very characteristic feature of this system is the absolute 

requirement of the transporter in signal perception and induction of its own promoter (Bernard et al., 

2007; Rietkötter et al., 2008), which will be described later in detail. A co-occurrence of such a TCS 

and this type of transporter has been described earlier (Joseph, 2002). For most BceAB-type 

transporters several substrates have been identified, and often one transporter will recognize 

structurally very different AMPs, like nisin, bacitracin, ramoplanin and actargardine (Gebhard & 

Mascher, 2011). In this regard, BceAB-type transporters differ from the other resistance transporters, 

which are more restricted in their substrate range and transport either bacitracin (BcrAB group) or 

lantibiotics (LanFEG group). How these type of transporter mediate resistance is still not clear. 

1.5 Regulation of transporter-mediated resistance against AMPs 

Mediation of resistance against AMPs in Firmicutes bacteria is of particular importance to facilitate 

survival in the harsh competition of the microbial world. To ensure that the different mechanisms of 

resistance are expressed at the right time, the harmful AMPs have to be recognised as early as 

possible. For this reason, bacteria have evolved a multitude of signal transduction systems that 

perceive the presence of AMPs and initiate and modulate the expression of specific resistance 

determinates. Generally, they consist of transmembrane proteins that link the input and the 

intracellular response. In the case of TCSs, these transmembrane signaling systems consisting of a HK 

and its cognate RR (Mascher et al., 2006). The N-terminal input domain of HKs from different 

systems shows variations in membrane topology, composition and domain arrangement (Mascher et 

al., 2006). Overall, these kinases can be divided into two groups with respect to their mode of signal 

perception. One type is able to perceive the signal directly and the other type requires an accessory 

transporter for stimulus perception. 

1.5.1 Histidine kinases with direct stimulus perception 

HK, which regulate the expression of transporter by direct stimulus perception fall into the largest 

group of extracellular sensing HKs (Mascher et al., 2006). Sequence analysis of the NisK and SpaK 

HKs, which regulate biosynthesis and immunity for nisin and subtilin, respectively (Kleerebezem, 

2004), shows that both belong to the EnvZ-like subgroup of HK (Parkinson & Kofoid, 1992), and are 
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characterized by a large extracytoplasmic input domain (around 100 amino acids) flanked by two 

transmembrane helices (Mascher et al., 2006). Production of nisin is auto-induced in response to 

extracellular nisin (Kuipers et al., 1995). NisK is suggested to be induced by direct interaction with 

nisin and regulates the expression of the NisFEG transporter, which mediates the self-protection of L. 

lactis (de Ruyter et al., 1996; Kleerebezem, 2004).  

1.5.2 Histidine kinases with indirect signal perception 

BceS-like HKs are also involved in the regulation detoxification transporter of AMPs. This type 

of HKs share striking similarities in their overall domain organization: they are small HKs of less than 

400 amino acids total length. The cytoplasmic transmitter domain harbors only the standard features 

characteristic for all HK (HisKA, HATPase_c for kinase activity). The N-terminal input domain 

consists of two transmembrane helices with a small periplasmic linker (around 25 amino acids) in 

between thus lacking an obvious input domain. This minimalistic type of HK is described to be 

involved in the regulation of self-protection of AMP producer strains. This is shown for the bacitracin 

biosynthesis locus of Bacillus licheniformis, in which BacRS regulates the expression of bcrABC, but 

not the bacitracin biosynthesis itself (Neumüller et al., 2001). The sensing mechanism of bacitracin by 

BacS is not known.  

This type of HK is further involved in the regulation of BceAB-type transporter. In a phylogenetic 

analysis, these so-called intramembrane-sensing HKs formed a distinct group and were found almost 

exclusively in Firmicutes bacteria (Mascher, 2006; Mascher, 2014), where they form part of the cell 

envelope stress response (Mascher et al., 2003). Most of the TCSs containing such a HK are encoded 

next to an ABC transporter (Joseph, 2002). Here the expression of the transporter is induced by 

sublethal concentrations of its substrate AMPs and requires the presence of both the HK and the 

transporter. This unique mode of signal transduction is described and characterized very well in the 

BceRS-BceAB resistance module of B. subtilis and will be described in more detail in the following 

paragraph. 

1.6 The BceRS-BceAB module of Bacillus subtilis 

The BceRS-BceAB module of B. subtilis confers resistance against bacitracin, actagardine, and 

mersacidin (Mascher et al., 2003; Ohki et al., 2003; Rietkötter et al., 2008; Staron et al., 2011). The 

module is comprised of a TCS and an ABC transporter. The TCS consists of a HK BceS belonging to 

the so called intramembrane sensing HKs and an OmpR-like RR BceR. They regulate together the 

expression of bceAB encoding for an ABC transporter in the adjacent operon (Figure 3). This 

transporter consists of an ATPase domain and a permease domain, which shows very unusual domain 

architecture with ten transmembrane helices and a characteristic, large extracellular domain between 

transmembrane helix seven and eight. Upregulation of the transporter is induced in the presence of 
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sublethal concentrations of its substrate AMP, and this requires the presence of both the TCS and the 

transporter itself. Due to the architecture of BceS it was further described, that the HK has an absolute 

requirement for BceAB in signal perception and mediating resistance (Bernard et al., 2007; Rietkötter 

et al., 2008). Furthermore it has been shown that the extracellular domain of the permease BceB is 

indispensable for signaling and contributes to the specificity of the transporter, proposing to be the 

signal perception domain of the module (Rietkötter et al., 2008; Falord et al., 2012; Hiron et al., 

2011). Importantly both, the signal transduction and the mediation of resistance are dependent on 

ATP-hydrolysis (Rietkötter et al., 2008; Hiron et al., 2011). In B. subtilis there are two further paralog 

Bce systems described, the PsdRS-PsdAB and the YxdJK-YxdLM module. These systems are very 

similar in sequence, genomic context organization and topology of their proteins, but they differ in 

their substrate range. The Psd system is induced by a lipid II-binding lipopeptide, enduracidin, and the 

lipid II binding lantibiotics nisin, subtilin, actagardine, and gallidermin. At the same time the 

transporter also recognizes substrates that differ considerably to that of actagardine like the 

lipodepsipeptide, enduracidin, but not the similar ramoplanin (Staron et al., 2011; Joseph et al., 2004). 

In the recent years, several BceAB-type transporters have been identified as resistance 

determinates against AMPs in nonproducing strains (Becker et al., 2009; Collins et al., 2010; Meehl et 

al., 2007; Ohki et al., 2003). The regulating TCS of these transporters is generally encoded in an 

operon adjacent to that of the transporter. (Collins et al., 2010; Joseph et al., 2004; Li et al., 2007; 

Meehl et al., 2007; Ohki et al., 2003; Ouyang et al., 2010). This widespread co-occurrence of BceS-

type HKs and BceAB-type transporters have been described in Firmicutes bacteria earlier (Joseph, 

2002). 

Recently, the functional relationship between BceRS-type TCS and BceAB-type transporter for 

signal transduction and resistance was also observed in several other detoxification modules against 

AMPs in S. aureus, L. casei and E. faecalis (Hiron et al., 2011; Falord et al., 2012; Revilla-Guarinos 

et al., 2013; Gebhard et al., 2014). In some cases a separation of the two functions, sensing and 

detoxification, of the transporter were observed. A transporter is present, which ensures the signal 

perception to maintain the induction of a second transporter that in turn mediates the actual resistance. 

Such a scenario is found for example in S. aureus, where the TCS BraRS together with its sensing 

transporter BraDE induces expression of the transporter VraDE, which provides resistance against 

bacitracin (Hiron et al., 2011).  

Taken together, these results proposing an actual model for the mechanism of signal transduction 

in the Bce module of B. subtilis and the current working model assume the existence of a sensory 

complex between transporter and TCS (Figure 3). Bacitracin is first detected by BceAB this leads to a 

proposed conformational change due to the ATP-hydrolysis. The signal perception is then transmitted 

to BceS, which in turn is autophosphorylated and transfers the phosphate to BceR. This leads to 

binding of BceR to the PbceA promoter and an up regulation of bceAB expression. The elevated amount 
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2. Aims of this thesis 

Recent studies of BceS-like HKs, which lack an obvious input domain, have raised the question of the 

function of such HKs. As described in several examples, these minimalistic HKs require accessory 

ABC transporter to act as their sensors. Together they are thought to build a sensory complex against 

AMPs. The aim of this thesis was to analyse the functional relationship between BceS-type HKs and 

BceAB-type ABC transporters. Further we wanted to characterize the functional role of BceAB-like 

transporter concerning the signal transduction and the mechanism of resistance. Therefore we 

combined different approaches to emblaze this unique signal transduction pathway in more detail. 

 

Chapter II 

A comprehensive phylogenetic study of these systems was carried out to obtain insights into the 

distribution and potential conservation of such resistance modules. Additionally, we had a closer look 

on the extracytoplasmic domain of BceAB with regard to their primary sequences and secondary 

structures to get valuable insights of the substrate specificity. Moreover, we wanted to identify a 

conserved putative RR binding motif for BceR-like regulators.  

 

Chapter III 

In this study, we performed a random mutagenesis analysis of the transport permease BceB of B. 

subtilis with the aim of identifying regions or residues within the transporter that are involved in 

signaling and/or resistance. A central question in this was whether transport and signalling are 

genetically separable processes.  

 

Chapter IV 

To gain a deeper understanding of the molecular mechanisms underpinning these unusual resistance 

modules, we set out to characterize the protein-protein and protein-substrate interactions within these 

modules in more detail. Therefore we investigated the formation of protein contacts with an in vivo 

approach using bacterial two-hybrid assay and in vitro using a pull-down assay. Further, we tested 

whether BceB is able to bind its substrates directly, as an understanding of the transporter’s affinity for 

its substrates would provide valuable first insights into resistance mechanism. Finally, we 

reconstructed the entire Bce-system in vitro to test for the effect of the transporter of HK activity. 
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1. Concluding Discussion 

There is increasing evidence that certain transport proteins have acquired additional sensing or 

regulatory functions beyond solute transport, and these have been designated as trigger transporters. 

For these bifunctional transporters a direct protein-protein interaction with membrane-integrated or 

soluble components of signal transduction relays has been postulated (Tetsch & Jung, 2009). 

However, for most sensor/co-sensor pairs, conclusive proof of such an interaction is lacking, and so 

far little is known about the sites that might mediate contacts between the putative hetero-oligomeric 

interfaces and how communication is achieved. 

One type of such transporters, the BceAB-like ABC transporter, was the focus of this thesis. 

Together with BceRS-like TCSs, this type of transporters forms detoxification modules against 

peptide antibiotics (Mascher, 2006). The aim of this thesis was to gain a better understanding of the 

distribution and function of these systems, using a range of approaches from comparative genomics to 

molecular genetics and biochemical investigation. 

1.1 Phyletic distribution and co-evolution 

Most compounds of the class of lantibiotics, cyclic peptides like bacitracin, glycopeptides 

(vancomycin) and lipodepsipeptides (ramoplanin) are produced mainly by Firmicutes bacteria and 

target closely related species. Several ABC transporters of the BceAB-type have been identified as 

resistance determinants against AMPs, but they are not described to be related to biosynthetic loci 

(Becker et al., 2009; Collins et al., 2010; Meehl et al., 2007; Ohki et al., 2003). In order to investigate 

the phyletic distribution of resistance modules possessing such a BceAB-type transporter, we applied a 

database analysis based on the typical domain architecture of BceB-like permeases (Chapter II). By 

analysing the genetic neighbourhood of the identified ABC transporters, we observed a conserved co-

occurrence of the encoding genes with operons encoding BceRS-like TCSs. We investigated the 

evolutionary and regulatory relationship between BceS-like HKs and BceAB-like ABC transporters. 

They are mostly found in Bacillales, Lactobacillales and Clostridiales. The number of systems per 

organism showed a great disparity. For examples species of the Bacillales harboured up to six BceAB-

type transporters, while others like the Lactobacillales, possessed only one or two. This reflects the 

strong need for soil living bacterial species for such detoxification modules in order to respond to the 

great variety of AMPs in this environment (Chapter II). Since the study of 2011, described in 

Chapter II, additional resistance modules of this type were described in E. faecalis, L. casei BL23 

and S. aureus (Gebhard et al., 2014; Revilla-Guarinos et al., 2013; Falord et al., 2012).  

By calculating phylogenetic trees of BceS-like HKs and BceB-like permeases we were able to 

show a clear coevolutionary relationship between the two protein families in a qualitative (comparison 

of the phylogenetic trees) and quantitative way (correlation coefficient) (Chapter II). Coevolution of 
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the two protein families could, for example, be due to direct physical interaction between BceS-like 

HKs and BceB-like permeases. This case is highly likely, because BceS was shown to have an 

absolute requirement for the ABC transporter BceAB in B. subtilis (Bernard et al., 2007; Rietkötter et 

al., 2008). In the meantime several other studies showed this conserved functional link between HK 

and ABC transporter to cooperate in signaling and detoxification of AMPs (Falord et al., 2012; Hiron 

et al., 2011; Gebhard et al., 2014). Together, these data show the widespread distribution of a unique 

resistance module against AMPs, in which the transporter plays an important role in signaling and 

mediation of resistance (Chapter II). 

1.2 Sensing Process – the extracellular binding domain and its specificity 

One of the known inducing compounds of the BceRS-BceAB system of B. subtilis is bacitracin. Until 

now it is still not clear what kind of stimulus is sensed by the resistance module. For example 

Bacitracin could be detected directly as the free peptide, or as the target:peptide complex (UPP-

bacitracin). Alternatively, it could be detected indirectly by sensing the caused damage. For the Bce 

system it was shown that the BceRS-dependent promoter PbceA responds to bacitracin in L-forms (cell 

wall-deficient bacteria) of B. subtilis (Wolf et al., 2012). This response, irrespective of the presence or 

absence of the cell wall, suggests a direct drug-sensing mechanism of stimulus perception by Bce-like 

detoxification modules. Based on the architecture of the N-terminal input domain of BceS-like HKs it 

was not clear if this type of HKs are able to sense the signal directly. Instead, these HKs were shown 

to require BceAB-like transporters for sensing (Joseph, 2002; Rietkötter et al., 2008; Hiron et al., 

2011). The membrane topology of BceB-like permeases is, characterized by the presence of a large 

extracellular loop, which was shown to be essential for bacitracin perception by BceB (Rietkötter et 

al., 2008). Additionally Msadek and colleagues showed recently, that the extracellular domain indeed 

is involved in signal perception as it was shown to determine the specificity of the transporter (Hiron 

et al., 2011). The analysis of the phylogenetic groups could not find any correlation between the group 

assignment of BceB-like permeases and their substrate range. In addition the sequence conservation 

the extracellular domain is very low (less than 10 %) and a detailed investigation of the predicted 

secondary structure also did not reveal any correlations with substrate range. This high degree of 

variability is probably required for adaptation to the large variety of substrates recognized by these 

modules (Chapter II). Moreover, we were not able to identify any mutation by a random mutagenesis 

of BceB in the extracellular domain of the transporter, despite its large size of around 200 amino acids, 

(Chapter III). Form this results it is still not predictable how the substrate perception of the 

transporter occurs or whether the extracellular domain is involved in perception of AMPs at all. Most 

of the Bce-like detoxification modules analyzed are not specific for a single substrate but instead 

distinguish between often structurally very diverse peptides (Gebhard, 2012). For example substrate 

spectra of the paralog systems Psd and Bce in B. subtilis are different. The Psd system distinguishes 
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between very similar actargardine and mersacidin, and reacts to enduracidin but not to ramoplanin. B. 

subtilis provides two different systems to detoxify bacitracin (Bce) and nisin (Psd) (Staron et al., 

2011), whereas S. aureus utilises only one system to detoxify both substances (Hiron et al., 2011). By 

testing the binding of bacitracin and nisin to BceB via a surface plasmon resonance spectroscopy in 

the present thesis, we were able to clearly show that BceB binds its substrate bacitracin directly and 

specific (Chapter IV). The affinity to the transporter is high (60 nM) and consistent with the in vivo 

threshold of the target promoter, PbceA, of 70 nM (own unpublished data). This is coherent with the 

observation, that bacitracin is sensed at the same time that detoxification starts, at very low 

concentration (Rietkötter et al., 2008). Here is the first time shown, that the direct binding of BceB-

like permeases is the likely mechanism for signal perception in these resistance modules. 

1.3 Conserved regulation mechanism in Bce-like systems 

The ABC transporter BceAB is shown to be required for signal perception and detoxification of 

bacitracin. Furthermore, both processes are functionally linked to transport activity of BceAB 

(Rietkötter et al., 2008; Hiron et al., 2011). Conformational changes in the transporter are proposed to 

trigger the autophosphorylation of BceS, which in turn leads to a phosphotransfer to the RR BceR. 

This is followed by the binding of BceR to the PbceA promoter and to an up regulation of the expression 

level of bceAB (Bernard et al., 2007; Rietkötter et al., 2008). To proof if a regulatory link between 

BceRS like TCSs and expression of BceAB-like transporters is common in this type of resistance 

module, we analysed regulatory elements of the ABC transporter expression, especially RR binding 

sites of BceAB-like systems (Chapter II). Several binding sites have already been identified in the 

promoter of the transporter operon (Joseph et al., 2004; Ohki et al., 2003; Ouyang et al., 2010). 

Similar RR binding sites were also identified in AMP detoxification modules of S. aureus (Hiron et 

al., 2011) and L. casei BL23 (Revilla-Guarinos et al., 2013), where the authors could also show a 

regulatory relationship between TCS and ABC transporter to maintain resistance against AMPs. We 

were able to identify a putative binding site in about 70 % of all promoter regions analysed. With these 

findings we could clearly show that the transporters are indeed likely to be regulated by their adjacent 

TCS (Chapter II).  

Furthermore we used the phylogenetic analysis to identify putatively corresponding TCS for ABC 

transporters whose genes were not directly associated with a TCS operon. These candidate TCSs can 

be identified by genome analysis for BceS-like HKs and by the phylogenetic analysis it is possible to 

match these kinases to orphan transporters (Chapter II). Several predictions were successful and that 

the regulatory relationship is true was shown recently for example in E. faecalis. Here two putative 

ABC-transporters, EF2050-2049 and EF2752-2751 were shown to be involved in bacitracin 

resistance. The transporter EF2752-2751 was previously identified by our phylogenetic analysis as an 

orphan transporter and indeed the genome of E. faecalis encoded for a single BceRS-like TCS, 
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EF0926/0927 (Chapter II). The transporter (EF2752-2751) was described to be responsible for 

sensing bacitracin and regulating the expression, together with the HK EF0927, of the second 

transporter EF2050-2049, which was shown to be responsible for detoxification (Gebhard et al., 

2014). A similar complex regulatory relationship between HK and ABC transporters have also been 

described in S. aureus and in L. casei (Gebhard & Mascher, 2011; Hiron et al., 2011; Revilla-Guarinos 

et al., 2013).  

As shown previously, the BceAB transporter in B. subtilis is required for both sensing and 

detoxification. By a random mutagenesis of the transporter permease BceB in Chapter III we 

identified residues, which affected only one function of the transporter but not the other. With this we 

were able to show for BceAB a partial genetic separability of signaling and resistance. This leads to a 

speculation, that BceAB-like transporters at first possessed both functions and in S. aureus and E. 

faecalis a duplication event occurred by which the transporters specialised in either resistance or 

signaling. 

In contrast to this described positive effect of BceAB-like transporters on the activity of HKs, 

there are also cases described, where transporters show repressing function on the activity of the 

cognate HKs. In recent years, a number of systems were described in which transport proteins are used 

as co-sensors for the signal transduction machinery. They are able to interfere with signal transduction 

processes by either transporting effector molecules into the cytoplasm or by interacting directly with 

sensory components (Tetsch & Jung, 2009).  

One well-known example is the widespread Pst/Pho system, which senses environmental 

phosphate. Transcription of the genes for bacterial high-affinity phosphate transport systems is usually 

regulated by a TCS, PhoBR in Gram-negative bacteria (van Veen, 1997), PhoPR in Gram-positive 

bacteria (Qi et al., 1997; Sola-Landa et al., 2005) and SenX3-RegX3 in Mycobacteria (Glover et al., 

2007), where PhoR/SenX3 acts as the sensor kinase and PhoB, PhoP or RegX3 as the cognate RR. 

Mutations in Pst have been shown to lead to constitutive activation of the Pho regulon genes in a 

number of bacteria such as Escherichia coli (Wanner, 1996), Sinorhizobium meliloti (Yuan et al., 

2006), and Mycobacterium smegmatis (Gebhard & Cook, 2008). The PstSCAB ABC transporter and 

the peripheral membrane protein PhoU are required for signal transduction (Steed & Wanner, 1993) 

and, together with PhoR/SenX3, are thought to form a membrane-bound repressor complex under 

phosphate-replete conditions (van Veen, 1997). An additional example is represented by a sensory 

complex consisting of a one-component system and a secondary transporter, the CadC/LysP system in 

E. coli. The central component of the Cad system is the membrane-integrated pH sensor and 

transcriptional activator CadC, which regulates induction of the cadBA operon under low pH. CadC 

activity is also lysine-dependent (Haneburger et al., 2012). Lysine-dependent activation of CadC 

requires the co-sensor LysP, a lysine-specific permease (Tetsch et al., 2008). Together these example 

show a repressing regulatory effect of the transporter on the signal transduction system, which stands 

in contrast to the BceAB-like systems described above. 
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One system, where the transporter also acts as an activator or a HK is the UhpABC/UhpT system 

for glucose 6-phosphat (G6P) sensing and transport in E. coli. Here two homolog transporters UhpT 

and UhpC are able to transport G6P, but the latter nearly lost transport activity. UhpC works as a 

receptor and shows a high affinity for G6P and a low rate of transport relative to UhpT. By signal 

perception UhpC transfers the signal to and activates by direct interaction UhpB HK that up regulates 

the expression of uhpT, which in turn transports G6P (Island & Kadner, 1993). This example shows 

that the transport activity of UhpC is not necessary for signal transfer to the cognate HK. One similar 

situation is described in BraRS-BraDE/VraDE system of S. aureus. Here the BraDE transporter is 

shown to be a signal transporter and VraDE is the detoxification transporter controlling bacitracin and 

nisin resistance. It is shown that both distinct roles are dependent on ATP-hydrolysis. This stands in 

contrast to situation in the Bce-system where the transport activity is mediating the signal transfer and 

the resistance in one transporter (Rietkötter et al., 2008; Hiron et al., 2011). Despite the striking 

similarities between BceAB and other transporters in signal transfer, the Bce-systems show a very 

unique mode of regulatory mechanism. 

1.4 Interaction between histidine kinase and ABC transporter 

Coevolution of two protein families can be due to a number of reasons, such as participation of both 

proteins in the same process, interaction of both proteins with the same ligand, or direct physical 

interaction between two proteins. Because of the described absolute requirement of the ABC 

transporter in stimulus detection and detoxification in Bce-like resistance modules, such a direct 

interaction between HK and transporter is conceivable to ensure the information transfer between both 

proteins and was proposed based on the observed coevolution of both proteins (Chapter II). A direct 

functional link between HK and transporter permease is further likely, considering the architecture of 

the N-terminal input domain of BceS-like kinases. Based on the lack of any obvious extracellular input 

domain this type of HK is thought to detect the stimulus at or within the cytoplasmic membrane 

(Mascher, 2006). Furthermore, they lack any cytoplasmic domains with which they could directly 

perceive an intracellular stimulus. Together with the observation that no BceS-like kinase was found 

without an ABC transporter we proposed that BceS-like kinases are not able to sense the stimulus 

directly but instead transfer the information coming from the transporter into the cell (Chapter II). 

An important question in such a model that remains unanswered is how do BceS-like HKs and 

BceAB-like transporters communicate. One possibility is that the perception of AMPs leads to a 

conformational change of the permease domain which leads to an interaction with and an activation of 

the cognate HK (Hiron et al., 2011), assuming a direct interaction between both proteins. First 

experimental evidence for a direct interaction was provided in S. aureus, where the interaction 

between the HK GraS and the permease VraG was shown by a bacterial two-hybrid assay (BACTH). 

Beside the transporter and the TCS, this system requires an additional cytosolic component, the GraX, 
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in order to function. Here GraX is also shown to interact with the HK and the ATPase domain of the 

transporter (Falord et al., 2012). However, the Bce system in B.subtilis possesses no GraX-like protein 

but also observed an interaction between BceS and BceB. Importantly, we provided first direct 

experimental confirmation by an in vitro pull-down assay, which showed a direct and specific 

interaction between BceS and BceAB. Furthermore we applied an in vitro phosphorylation assay, 

where we observed a basal activity of BceS, which was significantly reduced by the presence of the 

ABC transporter BceAB. This further supports a direct interaction of both proteins. In none of the 

described assays we observed an effect of bacitracin on the interaction, concluding that the complex 

between HK and ABC transporter is formed constitutively (Chapter IV). Further, in S. aureus the RR 

GraR was shown to interact with the ATPase VraF and the cytosolic GraX, and is thought to be a part 

of the multicomponent complex (Falord et al., 2012). We could also observe such an involvement of 

BceR in the sensory complex, based on our BACTH analysis, but only when BceS and BceB were 

simultaneously expressed in the cells (Chapter IV). This strengthens the role of the HK and the 

transporter as the central components of the sensory complex, giving the other components a scaffold 

to interact for maintaining signal transduction. 

Following demonstration of complex formation, other central questions that remain to be 

answered are where the interaction occurs and how this interaction influences signal transduction. 

There are three possibilities: (I) interaction between extracytoplasmic regions (II) interaction within 

the membrane or (III) cytoplasmic interaction. The latter two options appear more likely because 

BceS-like HKs lack an extracellular domain (Mascher, 2006). To begin to address this question 

experimentally we carried out a random mutagenesis on the permease BceB. With this, we were able 

to identify residues that are involved in signaling and resistance by the Bce system and are thus 

interesting candidates for further investigations of the interaction (Chapter III). This approach 

showed an accumulation of mutations in the C-terminal part of BceB, especially in transmembrane 

helix VIII. Most of the residues of transmembrane VIII were affected in both signalling and resistance. 

The transmembrane helix VIII is directly connected to the large extracellular domain of the permease, 

which is thought to be the binding domain of the transporter and plays a role in substrate specificity 

(Hiron et al., 2011; Rietkötter et al., 2008). It is conceivable that the transmembrane helix VIII serves 

as transmitter to communicate extracellular bacitracin binding to the cytoplasmic face of the 

membrane (Chapter III). In the N-terminal part of BceB we also identified mutations affecting highly 

conserved residues. One interesting mutation of residue G215 is located in transmembrane helix V and 

abolished interaction between BceS and BceB in the BACTH assay. However, this mutation is still 

able to mediate resistance similar to wild type and significant signaling activity was observed in B. 

subtilis. This suggests that the mutation weakens the interaction to give negative results in the two-

hybrid assay, but that the signal can still be passed to the HK. There are also other mutations 

described, which inhibit the signaling but allow a physical interaction between BceS and BceB in the 

BACTH (Chapter III). 
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One could imagine, that these residues are involved in serving as an interaction surface for the HK 

BceS to ensure the central scaffold of BceS and BceAB in the sensory complex mentioned above. To 

further investigate the region of interaction between BceS and BceAB we choose a genetic approach. 

B. subtilis possess a homolog Psd system, which is very similar in sequence and topology of the 

proteins to the Bce system but is induced by nisin, not by bacitracin. We constructed a chimeric HK by 

fusing the transmembrane region of BceS and the cytoplasmic domain of PsdS. The chimeric HK 

showed signaling activity by induction with nisin, but not with bacitracin (C. Fang and T. Mascher, 

personal communication). This suggests that the transmembrane region of the HK is not involved in 

the specificity because the transmembrane region of BceS enabled the communication of cytoplasmic 

domain of PsdS with the transporter PsdAB to ensure the signal transduction. In summary, these 

results propose that BceS and BceB interact in the cell membrane by several residues to ensure the 

above discussed constitutive sensory complex. This probably enables the communication of bacitracin 

binding to the extracellular domain of BceB to the cytoplasmic domain of BceS. 

1.5 Working model for the BceRS-BceAB system of B. subtilis 

Based on the results obtained in this thesis using comparative genomics, molecular genetics and 

biochemical approaches (Chapter II, III and IV), we propose the following model for the signal 

transduction in Bce-type detoxification modules in Firmicutes bacteria, exemplified by the Bce system 

of B. subtilis (Figure 4). The membrane-bound signaling complex consists of HK BceS and the ABC 

transporter BceAB, which is comprised of a permease and two ATPase subunits. This signaling 

complex is proposed to be formed consistently both in the presence an absence of its substrate AMPs. 

The module perceives its signal AMP by direct binding to the transporter, which results in ATP 

dependent transport activity and the caused conformational changes of the transporter are suggested to 

trigger the activation of its cognate HK. The autophosphorylation of the HK in turn leads to a 

phosphorylation of the RR and an elevated expression of bceAB. The following increased amount of 

ABC transporter in the membrane leads to resistance against AMPs most likely by removal of the 

peptide from its site of action. The response threshold of PbceA promoter is at very low substrate 

concentrations in the nanomolar range (Chapter IV). This promoter activity is gradually increased 

over 3 – 4 orders of magnitude bacitracin concentration (Rietkötter et al., 2008). The careful 

adjustment of amount of transporter to the increasing amount of bacitracin makes the BceRS-BceAB 

system to a very efficient detoxification module against AMPs. 
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2. Outlook 

Clearly, in this working model several crucial questions remain unanswered concerning the sensing 

process, the direction of transport and the mediation of resistance in this unique signal transduction 

pathway. In the next few paragraphs some ideas are discussed which could generate further valuable 

information on the functionality of these modules. 

2.1 Signal perception in BceAB-like transporters 

The membrane topology of BceB-like permeases is very characteristic, and the amino acid sequence 

of transporters is well conserved (25 – 40 %) among Firmicutes bacteria. However, the large 

extracellular domain of the permease shows a great variability in its sequence (less than 10 %) 

(Chapter II). As it was shown that the extracellular domain is essential for signaling and for substrate 

specificity, the extracellular domain is thought to be the binding site of the transporter (Rietkötter et 

al., 2008; Hiron et al., 2011). While we could show the first time, that BceB binds bacitracin directly, 

it is still not clear where exactly the binding of bacitracin occurs (Chapter IV). Further work will be 

required to solve this fundamental mechanism of resistance. In the future, truncation experiments 

would be helpful to narrow down regions of the transporter which contribute to the signal perception 

as was for example applied in the characterisation of the lipid II flippase FtsW (Mohammadi et al., 

2014) and of the Lys-PG flippase MprF (Ernst et al., 2009). Further, it would be interesting to produce 

the extracellular domain in isolation as purified soluble protein and test the interaction with different 

AMPs by a binding assay to gain more information about signal perception in these systems. This 

would be a definite test to determine if extracellular domain is the actual binding site. Due to the low 

sequence similarity mentioned above, it is also unsure how binding occurs. By assuming that the 

extracellular domain is the true binding site it would be also interesting to analyse the crystal structure 

of extracellular domain:bacitracin complex.  

2.2 Direction of transport 

Another important open question is how this type of transporter confers resistance against AMPs. 

Until now the mechanism of transport remains unknown and is still a matter of speculation. Some 

studies favour the transporter to be an exporter or a flippase, expecting the complex of UPP:bacitracin 

to freely diffuse within the cytoplasmic membrane. In this scenario the transporter would work as a 

flippase, accumulating the complex of UPP:bacitracin in the outer leaflet of the membrane (Bernard et 

al., 2007). Alternatively, BceAB may flip UPP to the inner face of the membrane where it is now 

protected from bacitracin and can be dephosphorylated by a cytosolic acting UPP phophatase (UppP) 

(Kingston et al., 2014). It is also possible that the transport mechanism is more similar to that of 

LanFEG-type transporters, which mediate self-resistance in lantibiotic producer strain. These 
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transporters act by removing the AMP from the cell membrane to the extracellular space (Stein et al., 

2003; Okuda et al., 2010). Others suggest an import function due to the general architecture of the 

ABC transporter, where the ECD might act as a substrate binding domain (Rietkötter et al., 2008; 

Hiron et al., 2011). To address the direction of the transport mechanism in the future, it would be 

interesting to investigate the transport activities of cells with fluorescently labelled substrate as was 

shown for the NukFEG transporter (Okuda et al., 2010) Alternatively, direction of transport could be 

analyzed by quantitative HPLC analyses of the cells supernatant after incubating them with substrate 

AMP as was applied for the NisFEG transporter (Stein et al., 2003).  

2.3 Is the response regulator part of the complex? 

As mentioned above, there initial observations indicate that the RR GraR of S. aureus and BceR of B. 

subtilis might interact with the ATPase domain of their cognate ABC-transporters, suggesting that the 

regulators could contribute to the signal transduction complex (Falord et al., 2012) (Chapter IV). 

Does this interaction have a physiological role in the cell? In order to answer this question, it is 

important to investigate the localization of the RR in its native surrounding for example by a western 

blot analysis of the cell fractions (cytoplasm, cell membrane), and to test if localisation is changed in 

the absence or presence of the inducing AMP. A similar study was done, for the transcriptional 

activator MalT of E. coli, which was shown to be sequestered by the maltose transporter MalFGK2. 

MalT was shown to be localized to the membrane in the absence but not in the presence of maltose. 

This approach provided evidence that MalT interacts with the resting transporter, thereby preventing 

induction of MalT by endogenous maltotriose. These results suggest a coupling between transport and 

regulation by this type of ABC transporter (Richet et al., 2012). 

In the case of BceR, interaction with BceAB might prevent dimerization of BceR, which is a pre-

requisite for BceR activity. It could be also possible to prevent an unspecific phosphorylation of the 

RR or the interaction brings the regulator and the HK in close proximity to support the 

phosphotransfer between them. The physiological meaning of such a shuttling of BceR between the 

membrane and the cytoplasm is less obvious. Possibly, direct sensing of the transport activities by 

BceS and BceR is increasing the regulatory speed and allow for a large dynamic range in the 

regulation of bceAB expression. The dynamic interactions of transport proteins with other cellular 

proteins are difficult, but will give us valuable insights into this unique mechanism of signal 

transduction. 
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Supplementary Material 

The following supplementary material can be found under following link: 

http://jb.asm.org/content/early/2011/06/10/JB.05175-11/suppl/DC1 
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Supplemental file 1 - Fig. S1, multiple-sequence alignments of permease ECDs (PDF file, 142K) 
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modules (MS Excel file, 810K) 
Supplemental file 3 - Table S2, dataset of YycG- and OppB homologs from 26 genomes containing 
BceRS-BceAB-like modules (MS Excel file, 76K) 
Supplemental file 4 - Table S3, identification of putative response regulator binding sites in 
promoters of BceAB-like transport operons (MS Excel file, 74K) 
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