
Multi-Purpose Exploratory Mining

of Complex Data

Xiao He

München 2014

Multi-Purpose Exploratory Mining

of Complex Data

Xiao He

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Xiao He

aus Yangling, China

München, den 02 Sep 2014

Erstgutachter: Prof. Dr. Christian Böhm

Zweitgutachter: Prof. Xingquan Zhu

Tag der mündlichen Prüfung: 05 Nov 2014

Contents

Abstract xvii

1 Introduction 1

1.1 Knowledge Discovery in Databases (KDD) 1

1.2 Exploratory Data Mining Tasks . 3

1.2.1 Cluster Analysis . 3

1.2.2 Frequent Pattern Mining . 4

1.2.3 Dimensionality Reduction . 4

1.2.4 Similarity and Dissimilarity Measure 4

1.3 Challenges in Explorative Mining Complex Data 5

1.3.1 High-dimensional Data . 5

1.3.2 Complex Data . 7

1.3.3 Parametrization . 8

1.3.4 Interpretation . 9

1.4 Contributions and Structure of the Thesis 9

2 Background 11

2.1 Clustering . 11

2.1.1 Flat Clustering . 12

2.1.2 Hierarchical Clustering . 14

2.2 Subspace Clustering . 15

2.2.1 Axis-Parallel Subspace Clustering 16

vi CONTENTS

2.2.2 Arbitrarily-oriented Subspace Clustering 20

2.2.3 Co-clustering . 21

2.2.4 Biclustering . 22

2.3 MDL-based Clustering . 23

2.3.1 Minimum Description Length Principle 24

2.3.2 MDL-based Clustering . 25

2.4 Evaluation of Clustering Results . 26

2.4.1 Cluster Purity . 26

2.4.2 Mutual Information . 27

2.4.3 Precision, Recall and F-Measure . 28

3 Relevant Overlapping Subspace Clusters on Categorical Data 31

3.1 Introduction . 33

3.2 Optimization Goal Compression . 34

3.2.1 Notations . 36

3.2.2 Coding Scheme . 36

3.3 Algorithm . 39

3.3.1 Minimum Coding Problem . 39

3.3.2 Algorithm ROCAT . 41

3.4 Experiments . 45

3.4.1 Synthetic Data . 46

3.4.2 Real World Data . 51

3.5 Related Work and Discussion . 58

3.5.1 Categorical Subspace Clustering . 58

3.5.2 Informative Pattern Mining . 59

3.6 Conclusion . 60

4 Multiple Subspace Selection for Hierarchical Clustering 61

4.1 Introduction . 62

CONTENTS vii

4.2 LDA and Orthogonal LDA . 66

4.3 Multiple Subspace Selection . 67

4.3.1 Orthogonal LDA-Kmeans . 68

4.3.2 Multiple Subspace Selection . 71

4.3.3 Runtime Complexity . 73

4.4 Experiments . 74

4.4.1 Setup. 74

4.4.2 Comparing OLDA-Km with LDA-Km 77

4.4.3 The effect of parameter Epsilon . 78

4.4.4 Clustering Quality . 79

4.4.5 A Case Study on Pendigits Data 80

4.4.6 Scalability . 85

4.5 Related Work and Discussion . 86

4.5.1 Exploiting Supervised Techniques for Clustering 86

4.5.2 Subspace Clustering . 88

4.5.3 Hierarchical Clustering . 88

4.6 Conclusion . 89

5 Summarization-Compression Miner 91

5.1 Introduction . 92

5.1.1 Contributions . 93

5.2 Compressing a Bipartite Graph . 94

5.2.1 Coding Scheme . 95

5.2.2 Hidden Relations Between Vertices 97

5.3 Algorithm SCMiner . 100

5.4 Experiments . 103

5.4.1 Clustering Quality . 105

5.4.2 Hidden Structure . 109

5.4.3 Link Prediction Accuracy . 111

viii CONTENTS

5.5 Related Work . 113

5.5.1 Co-clustering . 113

5.5.2 Graph Compression and Summarization 114

5.5.3 Link Prediction . 115

5.6 Conclusion . 115

6 Probabilistic Integral Metric for Multi-instance Data 117

6.1 Introduction . 118

6.1.1 Motivation . 119

6.1.2 Goal . 121

6.1.3 Idea of our Technique PIM . 122

6.1.4 Contributions . 123

6.2 Probabilistic Integral Metric . 124

6.2.1 The Generative Model . 125

6.2.2 Our Similarity Metric . 126

6.2.3 Efficient Evaluation of PIM . 131

6.2.4 Monte Carlo Integration . 133

6.3 Complexity and Index Support . 134

6.4 Experiments . 135

6.4.1 Effectiveness of PIM . 135

6.4.2 Efficiency of Indexing with PIM . 143

6.5 Related Work and Discussion . 148

6.5.1 Similarities for Multi-instance Data 149

6.5.2 Indexing Multi-instance Data . 150

6.5.3 Approaches for Uncertain Data . 151

6.5.4 Multi-instance and Metric Learning 152

6.6 Conclusion . 152

CONTENTS ix

7 Conclusion and Future Work 155

7.1 Parameter-free Relevant Subspace Clustering 155

7.2 Hierarchical Visualization for Subspace Clusters 156

7.3 Summarization-based Co-clustering . 157

7.4 Mining Multi-instance Data . 158

Acknowledgments 173

x CONTENTS

List of Figures

1.1 Knowledge Discovery in Databases (KDD) process. 2

1.2 Subspace clustering examples. 6

1.3 Complex high-dimensional data types. 7

3.1 Using compression to evaluate categorical clustering. 35

3.2 Searching phase of ROCAT. 43

3.3 4 processing candidates in Combining phase of ROCAT. 44

3.4 Synthetic categorical data for subspace clustering. 47

3.5 Robustness against outliers, syn1 to syn4 with outliers from left to right. . 50

3.6 Scalability of ROCAT and comparisons. 51

4.1 An example data set for illustrating the idea of hierarchical visualization. . 64

4.2 Hierarchical clustering and visualization. 65

4.3 The different objective function values on a 3D example data. 70

4.4 The hierarchical structure of dataset Clus10. 75

4.5 The effects of parameter ε on synthetic and real dataset for MSS. 78

4.6 The effects of irrelevant dimensions. 80

4.7 Hierarchy of Pendigits detected by MSS. 82

4.8 Hierarchical visualization on subspaces of Pendigits dataset found by MSS. 83

4.9 Reachability plot from HiCO on Pendigits with µ = 5 and k = 20, NMI=0.271. 84

4.10 Contribution histograms of original features for subspaces in Figure 4.8. . . 85

4.11 The scalability of MSS and comparisons regarding Data size. 86

xii LIST OF FIGURES

4.12 The scalability of MSS and comparisons regarding dimensionality. 87

5.1 Summarization and compression of a bipartite graph. 96

5.2 The strategy of SCMiner used for merging nodes 98

5.3 Results of SCMiner on synthetic data sets for various ε. 106

5.4 Cluster purity comparison on Movielens Data. 108

5.5 Hidden Structure Detected by SCMiner and CA. From Left to Right: Data

Set BP1, BP2, BP3. 109

5.6 Hidden structure of cities detected by CA (left) and SCMiner (right). For

SCMiner results, Square C represents a cluster consisting of capitals, Square

F financial cities, Square E economic cities and Square W is the isolated

city Washington, DC. On the other side, the cluster represented by Circle

C mainly contains accountancy firms, Circle AB advertising and banking

companies, Circle LB banking and law firms, and Circle L law firms. 111

5.7 Hidden structure of MovieLens detected by CA (left) and SCMiner (right).

For SCMiner results, Square O1 and O2 denote clusters containing old users,

Square YW represents a cluster of young women, and Square YM1 and

YM2 young man. On the other side, the cluster represented by Circle

FM represents high scored movies, Circle CD comedy and drama, Circle

CR action, romance and comedy. Circles AA and AS represent adventure,

action, thriller movies and action, sci-fi, thriller movies, respectively. 112

6.1 Three multi-instance objects (X ,Y ,Z), derived from two templates (T1,T2)

through a generative model. 120

6.2 Intuition of Definition 8: The template instance t is varied over the whole

data space Rd=2. Shown are four examples (t1, . . . , t4) with their Gaussian

probability density functions and with those circles colored in red having

cX (ti, r) 6= cY (ti, r) (“differently covered”). 128

6.3 Overlay of the Voronoi diagrams of multi-instance object X and Y 133

LIST OF FIGURES xiii

6.4 A convex combination cell is cut into two pieces by the orthogonal line in

the middle between the instances. 134

6.5 Effects of σ and S of PIM on synthetic data sets introduced in Section 6.4.1

with increasing R. 137

6.6 Comparison of nearest neighbor accuracy on synthetic data introduced in

Section 6.4.1 with increasing R. 138

6.7 Comparing the diversity of NBA teams. First column: Performance of NBA

teams provided by the number of games won (normalized). Remaining

columns: Diversity in team composition as measured by the average dis-

tances among the players (normalized). PIM is the only similarity measure

reflecting the ranking in team performance in team diversity as it can be

expected from domain knowledge. 140

6.8 Nearest Neighbor Query Accuracy on Face data. 141

6.9 MDS on subset of Face (bpm, ch4f, and cheyer). Each point represents a face

image of one of these three persons. Some interesting images are displayed.

Red points: images of bpm, green: ch4f, blue: cheyer. 142

6.10 Number of samples vs Metric property. 145

6.11 Scalability experiments on synthetic data sets in Table 6.2. 146

6.12 Average query processing time on Forest Covertype data. 148

6.13 Average query processing time on HOUSE data. 148

xiv LIST OF FIGURES

List of Tables

3.1 Cluster Quality for Synthetic Data (F-Measure). 48

3.2 Subspace Quality for Synthetic Data (F-Measure). 49

3.3 Cluster Quality for Real Data (Precision). 52

3.4 Results on Congressional Votes. 53

3.5 Results on Mushroom. 54

3.6 Results on Splice. 56

4.1 Datasets description. 76

4.2 Parameterizations on real datasets. 76

4.3 NMI between OLDA-Km and LDA-Km. 77

4.4 F-Measure between OLDA-Km and LDA-Km. 77

4.5 Clustering quality comparison (NMI) . 79

4.6 Clustering quality comparison (F-Measure) 79

5.1 Synthetic bipartite graphs . 104

5.2 Clustering Performance on Synthetic data. 105

5.3 Results on World Cities Data. 107

5.4 Link Prediction Performances. 113

6.1 Top 5 similar players of M. Jordan in NBA data. 139

6.2 Parameters for Synthetic Data Sets . 144

xvi LIST OF TABLES

Abstract

Due to the increasing power of data acquisition and data storage technologies, a large

amount of data sets with complex structure are collected in the era of data explosion.

Instead of simple representations by low-dimensional numerical features, such data sources

range from high-dimensional feature spaces to graph data describing relationships among

objects. Many techniques exist in the literature for mining simple numerical data but

only a few approaches touch the increasing challenge of mining complex data, such as

high-dimensional vectors of non-numerical data type, time series data, graphs, and multi-

instance data where each object is represented by a finite set of feature vectors. Besides,

there are many important data mining tasks for high-dimensional data, such as clustering,

outlier detection, dimensionality reduction, similarity search, classification, prediction and

result interpretation. Many algorithms have been proposed to solve these tasks separately,

although in some cases they are closely related. Detecting and exploiting the relationships

among them is another important challenge. This thesis aims to solve these challenges in

order to gain new knowledge from complex high-dimensional data.

We propose several new algorithms combining different data mining tasks to acquire

novel knowledge from complex high-dimensional data: ROCAT (Relevant Overlapping

Subspace Clusters on Categorical Data) automatically detects the most relevant overlap-

ping subspace clusters on categorical data. It integrates clustering, feature selection and

pattern mining without any input parameters in an information theoretic way. The next

algorithm MSS (Multiple Subspace Selection) finds multiple low-dimensional subspaces

for moderately high-dimensional data, each exhibiting an interesting cluster structure. For

xviii Abstract

better interpretation of the results, MSS visualizes the clusters in multiple low-dimensional

subspaces in a hierarchical way. SCMiner (Summarization-Compression Miner) focuses on

bipartite graph data, which integrates co-clustering, graph summarization, link prediction,

and the discovery of the hidden structure of a bipartite graph data on the basis of data

compression. Finally, we propose a novel similarity measure for multi-instance data. The

Probabilistic Integral Metric (PIM) is based on a probabilistic generative model requiring

few assumptions. Experiments demonstrate the effectiveness and efficiency of PIM for

similarity search (multi-instance data indexing with M-tree), explorative data analysis and

data mining (multi-instance classification).

To sum up, we propose algorithms combining different data mining tasks for complex

data with various data types and data structures to discover the novel knowledge hidden

behind the complex data.

Zusammenfassung

Aufgrund der gestiegenen Leistungsfähigkeit von Datenerfassungs- und Datenspeichertech-

nologien werden stark wachsende Mengen von komplex strukturierten Daten gesammelt.

Statt einfacher Darstellungen, die auf niedrigdimensionalen numerischen Merkmalen basieren,

erstrecken sich solche Datensätze von hochdimensionalen Merkmalsräumen bis hin zu

Graphdaten, die Beziehungen zwischen Objekten beschreiben. In der Literatur wur-

den bereits zahlreiche Ansätze für das Data Mining von einfachen numerischen Daten

beschrieben. Nur wenige Ansätze behandeln die größere Herausforderung, Data-Mining-

Verfahren für komplex strukturierte Daten zu definieren, wie zum Beispiel hochdimen-

sionalen Vektoren mit nicht-numerischen Datentypen, Zeitreihendaten, Graphdaten und

Multiinstanzdaten, bei denen jedes Objekt durch eine endliche Menge von Merkmalsvek-

toren dargestellt wird.

Die Literatur unterscheidet außerdem zwischen vielen wichtigen Aufgabenstellungen

beim Data Mining, wie zum Beispiel Clustering, Outlier Detection, Dimensionsreduktion,

Ähnlichkeitssuche, Klassifikation, Vorhersage und Interpretation der Ergebnisse usw. Viele

publizierte Algorithmen lösen diese Aufgaben lediglich separat, obwohl sie in einigen Fällen

eng miteinander verwandt sind. Das Erkennen und Ausnutzen solcher Beziehungen zwi-

schen diesen Aufgaben des Data Mining ist eine weitere wichtige Herausforderung. Die

vorliegende Arbeit hat zum Ziel, diese beiden Integrations-Aufgaben zu bewältigen, um

neuartige Erkenntnisse aus komplexen Datensätzen gewinnen zu können.

Wir stellen mehrere neue Algorithmen vor, die verschiedene Data-Mining-Aufgaben

vereinen: ROCAT (Relevant Overlapping Subspace Clusters on Categorical Data) erkennt

xx Zusammenfassung

automatisch die relevantesten sich überlappenden Subspace Cluster in kategorischen Daten.

ROCAT integriert Clustering, Feature Selection und Pattern Mining auf informations-

theoretische Weise und benötigt keine Eingabeparameter. Der Algorithmus MSS (Mul-

tiple Subspace Selection) findet mehrere niedrigdimensionale Unterräume für mittel- bis

hochdimensionale Daten, die jeweils eine interessante Clusterstruktur aufweisen. MSS

visualisiert die Cluster in mehreren niedrigdimensionalen Unterräumen in hierarchischer

Anordnung, um die Ergebnisse besser zu interpretieren. Basierend auf der Datenkompres-

sion konzentriert sich der Algorithmus SCMiner (Summarization-Compression Miner) auf

bipartite Graphen und integriert Co-Clustering, Graph Summarization, Link Prediction

und das Erkennen von verborgenen Strukturen in bipartiten Graphen. Außerdem schlagen

wir das neue Ähnlichkeitsmaß PIM (Probabilistic Integral Metric) für Multiinstanzdaten

vor. PIM basiert auf einem probabilistischen generativen Modell. Experimente zeigen die

Wirksamkeit und die Effizienz von PIM für die Ähnlichkeitssuche (Indizierung mittels eines

M-Baums), explorative Datenanalyse und Data Mining (Multiinstanzklassifikation).

Alle in dieser Arbeit vorgestellten Algorithmen kombinieren verschiedene Aufgaben des

Data Mining von komplexen Daten, die aus unterschiedlichen Datentypen und Datenstruk-

turen bestehen. Das gemeinsame Ziel ist es, aus den komplexen Daten neue Erkenntnisse

zu gewinnen.

Chapter 1

Introduction

Nowadays, we are in the era of data explosion. Due to the increasing power of data acqui-

sition and data storage technologies, huge amounts of data are collected in every aspect

of our lives. Obviously, analyzing such data manually exceeds the human capabilities.

Therefore, the incremental demand for automatically discovering the useful information

and knowledge from the data is imminent as well. The concept of Knowledge Discovery

in Databases (KDD) has thus been evolved as an interdisciplinary field that automatically

mine the hidden rules and/or patterns behind the data. The discovered knowledge can be

used for many applications ranging from science exploration to social activities analysis.

In this chapter, the general concept of Knowledge Discovery in Databases (KDD) is

introduced in Section 1.1. Afterwards, the exploratory data mining methods that are

studied in this thesis are elaborated in Section 1.2. Then the current challenges encountered

in complex data are depicted in Section 1.3. Finally, Section 1.4 concludes with an outline

and contributions of the thesis.

1.1 Knowledge Discovery in Databases (KDD)

Knowledge Discovery in Databases (KDD) is the non-trivial process

of identifying valid, novel, potentially useful, and ultimately understandable

2 1. Introduction

Raw	 Data Preprocessed	 Data Pa/ern Knowledge

Preprocessing Data	 Mining
Presenta6on/	
Evalua6on

Figure 1.1: Knowledge Discovery in Databases (KDD) process.

patterns in data [44].

The KDD process is depicted in Figure 1.1 and described by a sequence of steps as

follows:

1. Preprocessing. The raw data is preprocessed for mining, including data cleaning,

integration, selection and transformation. In this step, firstly the raw data is cleaned

by removing noises, handling missing entries, etc. Then data from multiple sources

need to be integrated together. Afterwards subsets of data that are relevant to the

mining task are selected. Finally, data is transformed to representations that are

appropriate for mining by using feature selection or transformation methods. This

step aims to increase the data quality to support the subsequent data mining step.

2. Data mining. The goal of this essential step is to extract unknown and useful

patterns hidden behind the data using automatic algorithms. The algorithms that

perform on the preprocessed data are chosen based on different data mining tasks,

e.g. association rule mining, cluster analysis and classification.

3. Presentation and evaluation. The KDD process concludes with presenting the

extracted patterns using knowledge visualization and representation techniques to

the user. The user may return to previous steps if the result is not satisfactory.

The KDD process can involve iterations or loops between any two steps. Among them

Data mining is the core step in KDD process, which is formally defined as follows.

1.2 Exploratory Data Mining Tasks 3

Data mining is a step in the KDD process consisting of applying data anal-

ysis and discovery algorithms that, under acceptable computational efficiency

limitations, produce a particular enumeration of patterns over the data [44].

1.2 Exploratory Data Mining Tasks

In general, data mining tasks can be classified into two categories: descriptive and predic-

tive [58]. Descriptive or exploratory mining tasks explore patterns from data and determine

the properties, e.g. cluster analysis, association rule mining, outlier detection. Predictive

mining tasks learn patterns from data and perform inference to make predictions, e.g.

classification and prediction.

This thesis mainly focuses on descriptive/exploratory data mining tasks and their re-

lationships, including cluster analysis, association rule mining, dimensional reduction and

similarity measure. In the following, we introduce these tasks in more details.

1.2.1 Cluster Analysis

Clustering is the process of grouping the objects of a data set into clusters, so that the

similarity between objects within a cluster is maximized and the similarity between objects

in different clusters is minimized. Clustering is one of the main tasks for exploratory data

mining, and it can be used to many research areas, including statistics, machine learning,

information retrieval, pattern recognition and etc. Clustering is an unsupervised process

that analyzes data objects without knowing class labels beforehand. Normally, the goal of

clustering is to better understand and describe the data. Sometimes it is also the first step

for other mining tasks such as generating class labels that facilitates the predictive mining

tasks like classification.

4 1. Introduction

1.2.2 Frequent Pattern Mining

Frequent pattern mining is the process of discovering patterns that frequently appear in a

given data set. Frequent patterns express as itemsets, subsequences and substructures that

occur in the same data satisfying a minimum support threshold. Finding such frequent

patterns is a major factor in mining associations and correlations among data. Moreover,

it helps other data mining tasks as well, such as rule-based classification and pattern-based

clustering methods.

1.2.3 Dimensionality Reduction

Dimensionality reduction is the process of obtaining a reduced representation of the origi-

nal data. It consists of feature selection and feature extraction. Feature selection methods

aim at selecting subset of features so that irrelevant and redundant features are elimi-

nated. Feature extraction methods transform the data from the original space to a lower

dimensional space so that the most variances of data are preserved. Feature extraction

methods can be both unsupervised (e.g. Principal Components Analysis) and supervised

(e.g. Linear Discriminant Analysis). Traditionally, dimensionality reduction techniques

are normally used in the data preprocessing step of the KDD process. However, some-

times global process cannot profit the following data mining tasks. Local dimensionality

reduction is thus integrated into the data mining tasks, e.g. clustering, to obtain better

results.

1.2.4 Similarity and Dissimilarity Measure

Similarity measure quantifies the similarity between two objects, which is usually an inverse

of a distance or dissimilarity measure. It plays an extremely important role in exploratory

data mining, e.g. clustering, since no labeling information is available. There are hun-

dreds or even thousands of similarity measures for different types of data. For numerical

data Minkowski distances are wide-spread and well-explored. However, mining complex

1.3 Challenges in Explorative Mining Complex Data 5

information-rich type data (e.g. mixed-type data, time-series data, multi-instance data)

requires more studies on similarity measure.

1.3 Challenges in Explorative Mining Complex Data

The aim of this thesis is to propose novel algorithms that solve the challenges in clustering

complex high-dimensional data by integrating different exploratory data mining methods

introduced in Section 1.2. In the following, we will introduce some open challenges in clus-

tering high-dimensional complex data. This thesis tries to address most of these challenges

by proposing different data mining algorithms.

1.3.1 High-dimensional Data

Real-world data sets are normally represented as high-dimensional feature vectors. Tradi-

tional clustering approaches become difficult to handle such data sets due to the problem

called “Curse of Dimensionality”. With the increasing of dimensionality, similarity mea-

sures gradually loss their usefulness. The distances between objects are progressively get-

ting closer and closer, thus all objects are nearly equidistant from each other and no cluster

can be found in the full-dimensional space. Besides the extreme case of measuring similar-

ity, “Curse of Dimensionality” affects many other aspects of clustering high-dimensional

data, including irrelevant attributes, correlated attributes and overlapping clusters. For

better illustrating these challenges, we use simple examples that is shown in Figure 1.2.

Each of the three example data sets contains two attributes and each of them reflects the

challenges mentioned above.

Irrelevant attributes. Objects in a cluster may only be homogeneous in a subset

of attributes, while many other attributes are not relevant to the cluster. For example,

in Figure 1.2(a) C1 is a full-dimensional cluster, while C2 is a subspace cluster that is

only relevant to Attribute1. The existing of such so-called irrelevant attributes to clusters

distorts the distances between objects in full-dimensional space. Besides, different clusters

6 1. Introduction

A"ribute1

C1

C2 C3

C4

C5

(a)	 Irrelevant	 A"ributes (b)	 Correlated	 A"ributes (c)	 Overlapping	 Clusters

A"
ribute2

A"
ribute2

A"ribute1

A"
ribute2

A"ribute1

Figure 1.2: Subspace clustering examples.

may exist in different subsets of attributes or subspaces, thus some attributes may be

irrelevant to one cluster but relevant to the other one. For instance, in Figure 1.2(a)

Attribute2 is irrelevant to C2 but relevant to C1. Thus preprocessing data by globally

feature selection technique is not useful in such cases.

Correlated attributes. Attributes that are relevant to a cluster may be correlated to

or dependent on each other, which means that only selecting these attributes may not be

helpful for detecting such clusters. Further rotation or transformation of the objects to an

arbitrarily-oriented subspace is essential for clustering such data. Take Figure 1.2(b) for

example, Attribute1 and Attribute2 are correlated and cluster C3 exists in an arbitrarily-

oriented subspace. Same to irrelevant feature challenge, different correlations among the

attributes may be relevant for different clusters as well. Therefore, global feature extraction

technique (e.g. PCA) does not work in such cases.

Overlapping clusters. Different clusters may exist in different subspaces, thus there

may be overlapping clusters. One data object can belong to one cluster in a certain

subspace but to another cluster in a different subspace. In Figure 1.2(c), C4 and C5 overlap

with each other, some objects belong to both clusters in different subspaces. Existing

methods follow the idea of enumerating all the possible subspace clusters satisfying some

input parameters. The number of such subspaces is exponential to the dimensionality.

1.3 Challenges in Explorative Mining Complex Data 7

Therefore, such approaches produce tremendous amount of redundant subspace clusters

and highly depend on parameter settings.

1.3.2 Complex Data

Recently, a large amount of data sets have been generated in the field of biology, finance,

market, multimedia and social network, etc. Most of these data sets are not only repre-

sented as high-dimensional numerical features, but complex and application specific data

as well. Clustering such complex high-dimensional data meets further challenges.

a1 a2 a3

o1 aa 2 0.1

o2 Aa 4 0.4

o3 aA -‐1 0.8

o4 aa 2 0.9

o5 Aa 4 0.1

o6 aA -‐1 0.2

a1 a2 a3

i1 aa 2 0.1

o1 i2 Aa 4 0.4

i3 aa 1 0.2

i1 AA 1 0.5

o2 i2 Aa 3 0.3

i3 aA -‐1 0.8

a1 a2 a3

o1 aa 2 0.1

o2 Aa 4 0.4

o3 aA -‐1 0.8

o4 aa 2 0.9

A&ributes	 A

O
bjects	 O

a1 a2 a3

o1 aa 2 0.1

o2 Aa 4 0.4

o3 aA -‐1 0.8

o4 aa 2 0.9

a1 a2 a3

o1 aa 2 0.1

o2 Aa 4 0.4

o3 aA -‐1 0.8

o4 aa 2 0.9

A&ributes	 A

O
bjects	 O

A&ributes	 A

O
bjects	 O

Instances	 I

(a)	 Mixed-‐type	 Data (b)	 Time-‐series	 Data

Instances	 I

(c)	 MulC-‐instance	 Data

Figure 1.3: Complex high-dimensional data types.

Non-numerical data. Many data sets are collected in non-numerical forms, including

categorical data, categorical/numerical mixed-type data (See Figure 1.3(a)), transactional

data and relational data. Traditional numerical methods do not work on such data sets. In

Categorical data the values of an attribute do not have any order and there is no distance

information between them. e.g. attribute a1 in Figure 1.3(a). These two characteristics

make it harder to cluster categorical data. Transactional data and relational data describe

the relationship between two or more kinds of objects. If we treat the relationship as the

attribute for one kind of objects, the dimensionality may be much higher than expected,

which makes the subspace clustering problem hard to solve.

8 1. Introduction

Multi-component data. Traditionally, we only process Object × Attribute data.

However, in many applications data sets are represented in a higher order form. Multi-

component data is Object × Attribute data extended with the third component. The

entries of the third component are usually related to time or location, like time-series data

(Object×Attribute×Time) with the third component related to time (See. Figure 1.3(b))

and multi-instance data (Object×Instance×Attribute) with the third component related

to location (See Figure 1.3(c)). There are many challenges associated with clustering such

Multi-component data.

Noisy and imperfect data. In real world data, there often exist some noisy objects or

outliers due to the variate measurements or experimental errors. Besides, high-dimensional

data may be contaminated with the noisy attributes as well. Many algorithms are very

sensitive to noisy points or attributes. It is challenging to proposing subspace clustering

algorithms that are robust to outliers and noisy attributes. In another side, imperfect

data may contain missing or uncertain values due to the data collection condition which is

ubiquitous in real world. Preprocessing data may easily remove the objects with missing

values, however it might loss important information that owned by the objects for subspace

clustering. Therefore, it is non-trial to handle imperfect data in subspace clustering as well.

1.3.3 Parametrization

Most clustering algorithms require the users to set parameters and output clusters satis-

fying the parameters. The performances of these algorithms strongly depend on suitable

parameter settings. For instance, the number of clusters, the number of dimensionality

of a subspace cluster or parameters that define a meaningful cluster, e.g. density, mini-

mum number of objects and minimum distance threshold, need to be specified beforehand.

These parameters are hard to estimate without a deep knowledge of the data sets. Some

algorithms require many parameters, which make the tuning parameters process very com-

plicated in real applications. Therefore, parameter-free algorithms or algorithms with

robust parameters are essential in subspace cluster analysis.

1.4 Contributions and Structure of the Thesis 9

1.3.4 Interpretation

High-dimensional data sets usually contain correlated and irrelevant features. In practice,

meaningful clusters often exist in different arbitrarily-oriented subspaces of the original

feature space. Analyzing and understanding the resulting clusters in arbitrarily-oriented

subspaces is difficult. This is due to the fact that the clusters are usually not valid in

the original feature space, and there is no semantic meaning for the resulting subspace.

Further, each cluster may exist in a unique subspace, which makes it hard to analyze

the relationship between clusters. Many techniques exist for detecting subspace clusters,

however only very few approaches touch the challenging of interpreting them.

1.4 Contributions and Structure of the Thesis

The goals of this thesis are studying the relationship between exploratory data mining

methods, integrating them into novel algorithms for clustering the aforementioned com-

plex high-dimensional data, and performing extensive experiments to demonstrate the

efficiency and effectiveness of the proposed algorithms. The following presents the major

contributions and the general structure of the thesis.

Chapter 1 generally introduces the field of Knowledge Discovery in Databases and Data

Mining to give basic context of the thesis. In addition, exploratory data mining tasks and

new challenges in complex high-dimensional data that this thesis focuses are presented in

this chapter.

Chapter 2 provides basic backgrounds of this thesis. The notions of clustering and

subspace clustering in high-dimensional data are introduced. Besides, some state-of-art

clustering and subspace clustering algorithms are surveyed in more details. Moreover, we

provide some basic concept of Minimum Description Length principle, one of the most

important techniques used in this thesis. Finally, the evaluation methods of clustering

that are used in this thesis are presented.

Chapter 3 proposes ROCAT, a novel effective and efficient algorithm that detects the

10 1. Introduction

most informative overlapping subspace clusters on categorical data. It integrates three

exploratory data mining tasks: clustering, feature selection and pattern mining. By com-

bining with the Minimum Description Length principle (MDL), it automatically determines

a meaningful number of clusters to represent the data without any input parameter set-

ting. ROCAT naturally avoids undesired redundancy of the result and guarantees that

each detected cluster is relevant since it contributes to compress the data. Parts of the

material presented in this chapter have been published in [60].

Chapter 4 presents a hierarchical subspace clustering algorithm MSS that finds multiple

low-dimensional subspaces with correlated feature vectors, each exhibiting an interesting

cluster structure. It includes hierarchical visualization with different low-dimensional sub-

spaces for an intuitive interpretation of the clustering result. By doing this, MSS avoids of

specifying the dimensionality of subspace, which is hard to estimate. Parts of the material

presented in this chapter have been submitted in [61].

Chapter 5 introduces SCMiner, which focuses on relational bipartite graph data. It

is a technique that integrates co-clustering, graph summarization, link prediction and the

discovery of the hidden structure of a bipartite graph. It reduces a large bipartite input

graph to a highly compact representation. In addition, while compressing the graph it

detects the truly relevant clusters of both node types and their hidden relationships. Fur-

ther, SCMiner does not rely on any input parameters that are difficult to estimate. Parts

of material presented in this chapter have been published in [45].

Chapter 6 proposes a novel similarity measure PIM (Probabilistic Integral Metric) for

multi-instance data. PIM is a highly effective and efficient metric that based on a proba-

bilistic generative model requiring few assumptions held in many tasks: such as similarity

search (multi-instance data indexing) and data mining (multi-instance classification). PIM

scales linearly in the number of instances, thus is scalable to large data consisting of a high

number of mutli-instance objects represented by massive amounts of instances. Parts of

the material presented in this chapter have been submitted in [62].

Chapter 7 concludes the thesis and points out the possible future work.

Chapter 2

Background

The main goal of this thesis is to propose novel algorithms solving the clustering problem in

complex high-dimensional data by combining different exploratory data mining techniques.

This chapter gives a general background of the clustering problem. Section 2.1 starts

with a general introduction to the clustering problem and briefly surveys the existing

state-of-the-art algorithms. Then, Section 2.2 presents the subspace clustering problem,

reviews various subspace clustering algorithms and analyzes their properties. After that,

Section 2.3 introduces one of the most important techniques used in this thesis: Minimum

Description Length (MDL) principle and reviews some MDL-based clustering algorithms.

Finally, Section 2.4 introduces the common methods of evaluating the clustering results.

2.1 Clustering

Clustering is the process of grouping objects of a data set into clusters, so that the similarity

between objects within a cluster is maximized and that between objects in different clusters

is minimized.

A data set is normally represented as a matrix D with N rows and M columns. The

set of rows in D corresponds to the objects set denoted by O = {O1, O2, ..., ON} and

the set of columns corresponds to the attributes set denoted by A = {A1, A2, ..., AM}.

12 2. Background

The set A refers to a set of M-dimensional attributes and V = {V1, V2, ..., VM} denotes

the corresponding domains. An object o ∈ O is represented by a M-dimensional vector

v = {v1, v2, ..., vM}, where vi ∈ Vi.

Given a data matrix D, a cluster C is defined as a subset of objects set O that exhibits

similarly in attribute set A. To determine the similarity between objects in C, a similarity

measure is essential.

In numerical data, Minkowski distance is wide-spread and well-explored. Given two

M-dimensional objects x = {x1, x2, ..., xM} and y = {y1, y2, ..., yM} in D, the Minkowski

distance is defined as follows:

dist(x, y) = (
M∑
i=1

|xi − yi|p)1/p (2.1)

where p > 0 is the order of the distance. For p > 1 the Minkowski distance is a metric

that satisfies the triangle inequality. Minkowski distance is typically used with p being one

(Manhattan distance) or two (Euclidean distance).

For complex high-dimensional data, such as categorical data, time-series data or multi-

instance data, Minkowski distance is not a good choice. Thus, it is non-trivial to define

domain specific similarity measures for them. In Chapter 3 we introduce a novel method

that uses coding length to measure the similarity of objects inside a cluster for categorical

data. In Chapter 6 a new similarity measure for multi-instance data is introduced.

During the last decades, there are a large number clustering algorithms in the lit-

eratures, with multiple books, e.g. [67, 8], surveys, e.g. [20] and research papers, e.g.

[99, 84, 100] to mention a few. In general, traditional clustering techniques can be divided

into flat and hierarchical methods. In the following, we review the existing clustering

approaches according to the category.

2.1.1 Flat Clustering

Many flat clustering algorithms exist in the literature. In this part, we briefly introduce

the two most widely used type of flat clustering: partitioning clustering and density-based

2.1 Clustering 13

clustering.

Partitioning Clustering

Partitioning clustering refers to the methods that divide data into K partitions, where

each partition represents a cluster. Each object must be assigned to exactly one cluster

and empty cluster is not allowed. Generally a global objective function is required to

measure the quality of clustering, which usually refers to how similar or dissimilar are the

objects within or between clusters. Even we know the number of clusters K before hand,

achieving global optimum of partitioning clustering in numerical data is NP-hard [11].

Normally partitioning clustering techniques use the iterative relocation heuristic method

[58] to achieve the local optimum. Such heuristic method first creates an initial partitioning,

then tries to improve it by relocate objects from one group to another. K-means [83] is the

most well-known and wide-spread partitioning clustering algorithm. K-means represents

each cluster by the mean value of the objects inside the cluster, which is regarded as

the cluster center. The sum of square errors for all objects to their cluster center are

defined as the objective function. K-means algorithm performs by iteratively assigning all

the objects to their nearest cluster center and updating the cluster center based on the

assignment before. K-means is sensitive to noises and outliers, thus K-medoid [69] extends

K-means against outliers, which represents each cluster by one of its objects that is closest

to the cluster center. There are many other variations of K-means, e.g. K-modes [65]

extends K-means for categorical data and EM [35] can be regarded as a soft version of

K-means. EM models the input data as a mixture of k distributions and then iteratively

improves the estimation of the distribution parameters to fit the data. The great benefits

for K-means like algorithms are their efficiency. However, they need the number of clusters

K to be specified in advance, which is usually hard in real applications.

14 2. Background

Density-based clustering

Density-based clustering, e.g. DBSCAN [42], is another wide-spread type of flat clustering.

In DBSCAN, clusters are defined as dense areas of objects which are separated by areas

of lower object density. Clusters grow according to a density-based connectivity analysis,

which is related to two input parameters ε and MinPts. An object is called a core object

if there are at least MinPts objects in its ε-neighborhood. Objects in the ε-neighborhood

of a core object are directly density-reachable from the core object. DBSCAN searches

for clusters by finding all the core object first, and then creates new clusters according to

resulting core objects. After that it iteratively includes directly density-reachable objects

from these core objects, which may merge connected clusters. The process terminates until

no object can be added to any cluster. Usually, density-based clustering is used to find

clusters with arbitrary shape and it is robust to noises and outliers. DBSCAN, DENCLUE

[63] and OPTICS [14] are representative density-based clustering algorithms.

2.1.2 Hierarchical Clustering

Hierarchical clustering methods partition objects in different level and build a hierarchy of

clusters. The resulting tree of clusters named dendrogram is commonly used to represent

the process of hierarchical clustering. Strategies for hierarchical clustering generally belong

to two categories: agglomerative and divisive. An agglomerative clustering works in a

bottom-up merging way. Starting with singleton clusters (each cluster owns only one

object), it recursively merge two or more most similar clusters until all objects belong to one

cluster or a termination condition is satisfied. In comparison, a divisive clustering performs

in a top-down splitting way. It starts with one cluster of all objects and recursively splits the

clusters until all objects belongs to singleton clusters or a termination condition is satisfied.

How to merge or split clusters is the most important component in hierarchical clustering,

where a similarity measure between clusters is essential. Single Link [101] is a simple

agglomerative hierarchical clustering algorithm that uses the minimum pair-wise distance

between two clusters to measure their similarity. Variants of Single Link as Complete Link

2.2 Subspace Clustering 15

and Average Link use different distance functions for pairs of clusters. Complete Link

applies the maximum pair-wise distance between two clusters, while Average Link uses the

average pair-wise distance between two clusters. Single-Link and Complete-Link take two

extreme cases and Average Link is a compromise of them. One important issue of Single-

Link and its variant hierarchical clustering methods is that once the clusters are merged

or split it will process the newly generated cluster at the next step. If a bad merging or

splitting decision is made, the error will accumulate and lead to a low-quality clustering.

Besides, the resulting dendrogram always owns a large number of levels of clusters. How

to choose the appropriate level is important in real application. Thus the termination

condition is essential here as well.

2.2 Subspace Clustering

Traditional clustering algorithms are designed for clustering low-dimensional data and

encounter many challenges facing high-dimensional data (See Section 1.3.1). In real world

data, meaningful clusters often exist in different subspaces, due to the presence of irrelevant

and correlated attributes. The subspace clustering algorithms are proposed to handle such

challenges.

Given a data matrix D, a subspace cluster SC = {C, S} is defined as a subset of objects

set O that exhibits similarly in a subset of attributes set A, where C ∈ O and S ∈ T (A),

where T is an orthogonal transformation.

During last decade, many subspace clustering algorithms are proposed to effectively

and efficiently find such subspace clusters. Global dimensionality reduction techniques do

not work in such case, since different clusters usually exist in different subspaces. Given

a subspace of the original space, traditional clustering algorithms can be used to detect

clusters. While given a cluster, dimensionality reduction techniques can be used to find the

subspace of the cluster. Therefore, subspace clustering algorithms can be regarded as the

combination of dimensionality reduction and clustering techniques that aim at detecting

clusters and subspaces simultaneously.

16 2. Background

Based on the properties of resulting subspaces where clusters exist, these algorithms

can be categorized into: axis-parallel subspace clustering and arbitrarily-oriented subspace

clustering [72]. Axis-parallel subspace clustering integrates with feature selection tech-

niques and arbitrarily-oriented subspace clustering combines with feature transformation

approaches. An axis-parallel subspace is composed of the subset of original attributes, while

an arbitrarily-oriented subspace can be the subset of an arbitrary space that orthogonally

transformed from the original attribute space.

Besides, there are two other branches of subspace clustering: Co-clustering and Biclus-

tering. Although most of Co-clustering and Biclustering algorithms focus on axis parallel

subspace clusters, they treat the subspace clustering problem in different approaches, thus

we introduce them separately.

2.2.1 Axis-Parallel Subspace Clustering

Axis-parallel subspace clustering algorithms assume that clusters only exist in axis-parallel

subspaces. Therefore, the number of possible axis-parallel subspaces is shrank down to

finite compared with arbitrary subspaces. However, for a data set with M dimensions,

there are 2M − 1 possible subspaces, which is exponential to the dimensionality. Thus, the

naive way of performing clustering in all these subspaces is still intractable.

Based on the searching strategies, existing axis-parallel subspace clustering algorithms

can be categorized into: dimension-growth subspace clustering and dimension-reduction

projected clustering [58]. In the following, we will introduce them in more details.

Dimension-growth Subspace Clustering

Dimension-growth subspace clustering techniques use a bottom-up searching strategy.

It usually starts at detecting single-dimensional subspace clusters and grows upward to

higher-dimensional ones.

CLIQUE [10] is the first subspace clustering algorithm which solves the problem in a

bottom-up way. Specifically, CLIQUE is a grid-based algorithm that partitions the data

2.2 Subspace Clustering 17

space by a uniform grid into equally sized intervals of width ξ. If the number of data

objects inside a unit of grid exceeds a density threshold τ , the unit is regarded as dense.

CLIQUE takes the advantage of downward closure property of density, which means that

if a k-dimensional cell is dense, all its projections in (k−1)-dimensional space are dense as

well. Starting from detecting all the single-dimensional dense units, k-dimensional dense

units are derived from the (k − 1)-dimensional dense units until k equals to M . Then

CLIQUE uses minimum description length principle [97] to further prune the dense units.

Finally it identifies all the clusters in all axis-parallel subspaces. A Cluster is defined as the

maximal set of connected dense units. ENCLUS [30] is a variant of CLIQUE, which are

grid-based algorithm as well. Compared with CLIQUE, ENCLUS proposes three criteria

based on the measure of entropy to identify subspaces with good clustering. Further,

the downward closure property based on entropy and upward closure property based on

dimensional correlation are used to prune the subspaces and enumerate all the clusters

in the resulting axis-parallel subspaces. CLIQUE and ENCLUS are suffered from the fact

that their performance in both effectiveness and efficiency are dependent on the granularity

of the grid. A lower grid granularity performs fast but produces low quality clusters and

vise verse.

MAFIA [89], another variant of CLIQUE, uses an adaptive grid to avoid the difficult

input parameter of grid size. The adaptive grid size is determined based on the data

distribution in a unique dimension. Specifically, MAFIA divides each dimension into many

small intervals. Then it computes the histogram for each unit and merges adjacent units if

they share similar histogram value. The process of generating subspace clusters is similar

to CLIQUE. SUBCLU [73] uses a different way to avoid the grids, which uses DBSCAN

[42] to create initial single-dimensional clusters. The resulting density-connected clusters

satisfy the downward closure property as well. Thus SUBCLU further searches for subspace

clusters in an Apriori style. The main drawback of SUBCLU is that it uses the same

parameters ε and MinPts for all the dimensions. It may result low quality initial clusters

if the density of each dimension is diverse. And the error may accumulate in the following

subspace clustering step.

18 2. Background

Dimension-growth subspace clustering methods usually aim at enumerating all the clus-

ters in all the possible axis-parallel subspaces. Since an object can be assigned to multiple

subspace clusters, these techniques usually output huge number of subspace clusters. Many

of these clusters are redundant and do not provide any further information. Besides, the

huge number of resulting clusters makes it difficult for users to understand and interpret

the results. Therefore, STATPC [87] and RESCU [88] are proposed to tackle this problem

by mining the most interesting non-redundant subspace clusters. STATPC is based on

the statistic and defines the significant region as the one that contains significantly more

objects than others. RESCU defines an interestingness function for subspace clusters and

a cost function of a clustering based on a coverage criterion. Further, the redundancy of

a cluster given a clustering is defined as the cluster gain. Since deriving the global opti-

mum result is NP-hard, RESCU greedily includes the cluster with most cluster gain. Both

STATPC and RESCU reduce the size of output clusters and produce most interesting sub-

space clusters. However, their significant clustering models are dependent to many input

parameters, which is hard to estimate for the user.

Dimension-reduction Projected Clustering

Dimension-reduction projected clustering aims at finding partitions of the dataset. Thus,

overlapping clusters are not allowed for simplifying the problem. Each cluster is projected

to a unique subspace with variable dimensionality. Normally, a dimension-reduction pro-

jected clustering method uses a specific distance function to determine the subspace of

each cluster and integrates it into a full-dimensional clustering algorithm, e.g. K-means

and DBSCAN.

PROCLUS [7] adopts the Manhattan Segmental distance and integrates it into K-

medoid [69] clustering algorithm. Manhattan Segmental distance is the Manhattan dis-

tance on a subset of attributes. Firstly, PROCLUS determines a set of potential medoids

and randomly chooses K from them as the medoids of each cluster. Then it assigns all the

objects to their nearest medoids in the full-dimensional space. After that it iteratively up-

2.2 Subspace Clustering 19

dates the subspace and medoid of each cluster and refines the clustering. For each cluster,

a subset of attributes set is chosen as the subspace in the following way. If the distances of

the objects along an attribute are smaller compared to statistical expectation, it belongs

to the attributes subset. The old medoid is replaced with the new one from the set of

potential medoids if the object function is decreased. Finally PROCLUS refines clustering

by reassigning objects to subspace cluster using Manhattan Segmental distance. FINDIT

[111] is a variation of PROCLUS, which uses additional heuristics to improve the efficiency

and effectiveness. The biggest advantage of PROCLUS and FINDIT is their efficiency and

scalability. However, it needs an input parameter which is the average number of attributes

for subspaces, which is hard to estimate for the user.

PreDeCon [22] adopts a weighted Euclidean distance and integrates it into DBSCAN

[42] clustering algorithm. The full-dimensional ε-neighborhood is used to determine the

relevant attributes for each object. If the variance of distance along an attribute between

an object and its neighbors is below a user-defined threshold δ, the attribute is considered

relevant for the subspace preference of the object. The attributes relevant for the subspace

preference of an object are weighted by a constant κ� 1 while the remaining attributes are

weighted by 1. Then preference weighted ε-neighborhood, preference weighted reachability

and subspace preference cluster are defined accordingly. Finally, DBSCAN is performed

to find all the subspace clusters. Inherited from DBSCAN, PreDeCon does not need

the number of clusters as the input parameter and handles outliers implicitly. However,

PreDeCon requires the user to specify three input parameters that are usually hard to

guess.

Dimension-reduction projected clustering approaches usually use a top-down strategy.

PROCLUS first finds initial clusters in the full-dimensional space. Then it estimates the

subspace of clusters and refines the clusters and subspaces in the following step. Simi-

larly, PreDeCon uses full-dimensional ε-neighborhood to determine the relevant subspace

for each object. When the dataset owns very high dimensionality, as mentioned before

in Section 1.3.1, the global distances become closer and closer between all the objects.

Therefore PROCLUS and PreDeCon loss their usefulness in very high-dimensional data or

20 2. Background

dataset with too many irrelevant attributes. Furthermore, dimension-reduction projected

clustering only partition the data set. Thus it cannot handle the case that overlapping

clusters exist.

2.2.2 Arbitrarily-oriented Subspace Clustering

Arbitrarily-oriented subspace clustering methods assume that a cluster could exist in an

arbitrarily-oriented subspace of the data space. The subspace can be regarded as the

subset of an arbitrary space that is orthogonally transformed from the original attribute

space. Thus, arbitrarily-oriented subspace clustering algorithms usually integrate the fea-

ture transformation techniques into traditional clustering algorithms.

ORCLUS [9] is the first arbitrarily-oriented subspace clustering approach which inte-

grates Principal Component Analysis (PCA) into K-means. Given the number of clusters

K, ORCLUS initially selects a large number of cluster centers. Data objects are assigned to

these centers according to their distances in the corresponding transformed subspace (ini-

tially original space) to the center. The distance in the transformed subspace is computed

via the eigenvectors inside clusters. Then the eigenvectors and clustering assignments are

iteratively updated accordingly. After that, the number of clusters is reduced to K by iter-

atively merging nearest pairs of clusters and the dimensionality of each cluster is reduced

to the user-specified dimensionality. ORCLUS needs user to specify the dimensionality

of the resulting subspaces, which is hard to estimate. Moreover, all the clusters end with

the same dimensionality of subspaces, which means that irrelevant transformed dimensions

may be included. This phenomena affects the quality of clustering.

4C [23] is a density-based clustering paradigm that integrates PCA into DBSCAN.

Specifically, the neighborhood of a point is obtained with the proposed distance in the

eigensystems of two points. The eigensystem of an object ~p is based on the covariance

matrix of the ε-neighborhood of ~p in original space. In the eigenvalue matrix E~p, large

eigenvalues are replaced by 1 and small eigenvalues are replaced by κ� 1. Then distance

from an object ~q to ~p is calculated using the modified eigenvalue matrix E ′~p of ~p, which

2.2 Subspace Clustering 21

is provided by
√

(~p− ~q)T · V~p · E ′~p · V T
~p · (~p− ~q). To make the distance symmetric, 4C cal-

culate the distance from ~p to ~q analogously and picks the maximum of both distances.

Finally, DBSCAN are performed to find all the arbitrarily-oriented subspace clusters. CO-

PAC [4] is an extended work of 4C based on a similar idea. It avoids the problem of sparse

ε-neighborhoods of points by taking a fixed number of k neighbors. Additional heuristics

are used to choose a good k. Moreover, COPAC improves the efficiency and effectiveness

of 4C.

The results of above arbitrarily-oriented subspace clustering algorithms are hard to

interpret, since the detected subspaces are arbitrarily-oriented and there is no relation-

ship among the clusters. LDA-Km [40] treated the problem in another way by integrating

the supervised feature transformation technique Linear Discriminant Analysis (LDA) into

K-means clustering. LDA-Km iteratively do LDA and K-means and finally the data are

clustered while the subspace is selected simultaneously. LDA-Km detects a common sub-

space for all the arbitrarily-oriented subspace clusters, which is different from ORCLUS,

4C and COPAC, where each cluster owns a unique subspace. One great benefit of single

subspace is the possibility to project all data to a joint space. If the joint space is low-

dimensional, we can easily visualize the data by scatter plots. However, one drawback of

LDA-Km is that LDA is not an orthogonal transformation like PCA, thus the resulting

clusters are modified by scaling or warping. Besides, LDA-Km could not visualize the data

in the projected space, if the dimensionality is higher than three.

2.2.3 Co-clustering

Co-clustering is a branch of subspace clustering which simultaneously partitions rows and

columns of a data matrix.

Information-theoretic Co-clustering [38] (ITCC) is the pioneering co-clustering algo-

rithm based on information theory. Specifically, ITCC simultaneously maps row elements

to row clusters and column elements to column clusters, mutual information of each clus-

tering state is calculated and compared to the initial state. Thus, the optimal co-clustering

22 2. Background

result is obtained when the mutual information loss is minimal. ITCC iteratively adjust

row clusters to maximize mutual information between row and column clusters followed by

adjusting the column clusters in a similar way. The algorithm terminates until it reaches

the local optimal where there is no improvement in mutual information.

Cross Association [29] is a parameter-free co-clustering method that processes a binary

matrix and seeks clusters of rows and columns alternately. The matrix is divided into

homogeneous rectangles that represent underlying structure of the data. It uses a top-

down splitting fashion to achieve the optimal number of clusters. And clusters are refined

by reassigning each individual rows and columns after splitting. The algorithm terminates

when compression reaches a local minimum.

Long et al. [80] proposed a framework for co-clustering named block value decomposi-

tion (BVD), which formulates co-clustering as an optimization problem of matrix decom-

position. It decomposes the data matrix into three components: row-coefficient, column-

coefficient, and block value matrix. The final co-clusters is approached according to the

decomposed matrices. In [79], Long et al. reconstructs a bipartite graph based on some

hidden nodes and thus an optimal co-clustering result is obtained from the new bipartite

graph which mostly approximates the original graph.

Compared with subspace clustering, co-clustering approaches usually only focus on the

clustering part and ignore the relation between row and column clusters. The resulting

clusters could not provide the information about in which subspace the clusters exist. This

is one key point for subspace clustering.

2.2.4 Biclustering

Biclustering is another branch of subspace clustering that usually adopted in the analysis of

gene expression data. In axis-parallel subspace clustering, subspace clusters are normally

defined based on the density in subspaces. In compare, a bicluster is defined as the pattern

in the gene expression data where a subset of genes share common behavior under a subset

of conditions.

2.3 MDL-based Clustering 23

Cheng et al. [31] proposed the first biclustering algorithm for gene expression data.

They defined the mean squared residue value of a row, a column and a bicluster to assess

the quality of a bicluster. To find a bicluster, the whole data is regarded as the initial

bicluster. Then they greedily remove the row or column with maximal mean squared

residue value, until the value of bicluster satisfies a threshold δ. Finally, the procedure is

iterated K times to discover K biclusters. The found clusters are masked with random

values to enable the searching process in the next iteration. The main drawback of this

algorithm is that the masking procedure may affect the results. Besides, it needs the

number of clusters as the input parameter.

Wang et al. proposed pCluster model [109] that defines a bicluster as subset of genes

exhibiting a coherent shifting pattern on a subset of conditions. The difference between

two genes is measured by their relative differences of two conditions. Further, Wang et

al. proposed a depth-first algorithm to mine pClusters. Specifically, they first find all

the column-pair maximum dimension sets for all the gene-pairs. Then a pruning step is

introduced to satisfying the user demands.

Ben-Dor et al. introduced a model, named OPSM (order preserving submatrix [17]),

to discover a subset of genes ordered among a subset of the conditions. Thus the values

in the selected conditions are strictly increasing in the bicluster. Further, the algorithm

searches the best model in a greedy bottom-up approach. The best model is the one with

largest statistical significance.

Compared with subspace clustering, biclustering usually defines different bicluster mod-

els under unique application.

2.3 MDL-based Clustering

As mentioned in Section 1.3, parametrization is one of the major challenges for clustering

high-dimensional data. Many algorithms require some input parameters to be specified

before hand, e.g. number of clusters, density threshold, distance threshold, .etc. To tackle

such problem, information theoretic measures have been exploited as the clustering criteria

24 2. Background

to choose the proper parameters. For instance, X-means [93] uses Bayesian Information

Criterion (BIC) to choose the K in K-means. Besides BIC, there are numerous information

theoretic criteria for model selection, such as Akaike Information Criterion (AIC) and

Minimum Description Length principle (MDL). We use MDL in this thesis for choosing

the best clustering model, because it is a general framework, and it does not specify any

underlying truth assumption. In the following, we will firstly give a brief introduction of

the concepts of MDL principle and then review some MDL-based clustering algorithms.

2.3.1 Minimum Description Length Principle

Minimum Description Length principle is a very important concept in information theory

and a general method for inductive inference. The basic intuition behind it is described as

follows.

MDL is based on the following insight: any regularity in the data can be used to

compress the data, i.e. to describe it using symbols than the number of symbols

needed to describe the data literally [54].

Briefly, the better the data fits to the model, the more we are able to compress the

data using the model. MDL connects learning the model from data to data compression.

In the other way, we can say that the more we are able to compress the data, the more we

have learned from the data.

For a given set of hypotheses H and data set D, MDL aims to find the hypotheses or

combination of hypotheses in H that compresses D most. The earliest implementation of

the idea is called two-part MDL, which is shown in Equation 2.2. We use two-part MDL,

because it is simple and effective.

L(D,H) = L(H) + L(D|H) (2.2)

Where L(H) is the description length of the hypothesis and L(D|H) is the description

2.3 MDL-based Clustering 25

length of data using the hypothesis.

MDL not only considers the compression of data with the model, but also the descrip-

tion of model itself. Therefore, it naturally avoids over-fitting problem with too complex

model. Besides, it needs no underlying truth assumption, since it has a clear indepen-

dent interpretation procedures. Therefore, MDL is perfect for choosing clustering model

and solving the parameterization issue. The Chapter 3 and 5 we propose two MDL-based

clustering algorithms for categorical data and bipartite graph data.

2.3.2 MDL-based Clustering

Recently, there are numerous MDL-based clustering algorithms, In the following, we will

review a few of the typical ones.

Böhm et al. proposed RIC [21], a framework that can be used to purify and improve

an initial clustering from any other algorithms. Based on MDL principle, they proposed

Volume after Compression (VAC) criterion to measure the goodness of a clustering. They

further proposed two novel algorithms: Robust fitting and Cluster merging to greedily

reach a local minimum of VAC score. Therefore, the performance of RIC depends on the

quality of the initial clustering, since it can only reach the local minimum.

Shao et al. proposed SynC and hSync [99] that exploit the synchronization phenomena

for flat and hierarchical clustering. Specifically, they regard each object as a phase oscillator

and simulate the dynamical behavior of the objects over time. MDl principle is further

integrated to determine the best clustering model and meaningful hierarchical levels of

abstraction.

Rakthanmanon et al. proposed a MDL-based clustering algorithm for time series data

[95]. They showed that ignoring some data is critical for clustering time series streams.

Further, MDL is proved to be very effective for comparing the stream data with different

lengths or different sizes.

MDL has shown its effectiveness as a clustering criterion in many literatures. However,

most subspace clustering algorithms still suffer from the parameterization issue. It is

26 2. Background

definitely worth a try to integrate MDL principle into parameter-free subspace clustering.

2.4 Evaluation of Clustering Results

The goal of clustering is grouping similar objects into clusters. Therefore, a similarity

measure between objects can be used as an internal criterion to measure the quality of

clustering results. However, a clustering result with good internal criterion score may not

indicate a good result in a specific application. In different applications, we must use

different similarity measures as the internal criterion.

Another way to evaluate the clustering is using external criterion, which uses a set

of gold standard classes labeled by domain experts. Then we evaluate the clustering by

how well it matches the gold standard classes. There are many quantitative measures

to compare the results of different clustering algorithms. In the following, three external

evaluation measures (Cluster Purity, Mutual Information and Precision, Recall and F-

Measure) that are used in this thesis are introduced.

2.4.1 Cluster Purity

Cluster Purity is the most straightforward external evaluation measure. Given a data set

with N objects, a testing clustering result T = {T1, T2, ..., TK} and gold standard classes

G = {G1, G2, ..., GL}, each cluster is assigned to the class that dominate the cluster. Then

the Cluster Purity is calculated by computing the percentage of correctly assigned objects

as shown following:

Purity(T,G) =
1

N

K∑
i=1

max
j5L
|Ti ∩Gj| (2.3)

Purity ranges from 0 to 1, where 0 indicates worst clustering and 1 indicates perfect

result. Achieving high purity is easy by producing a large number of clusters. In particular,

accuracy is 1 when each object belongs to a unique cluster. Therefore, Cluster Purity is

usually used to evaluate the clustering with fixed number of clusters.

2.4 Evaluation of Clustering Results 27

2.4.2 Mutual Information

The mutual information between two random variables measures the dependence between

them in an information theoretic way. The testing clustering result T and gold standard

classes G can be regarded as two random variables, thus mutual information can be used

to measure the information shared by them. The definition of mutual information is shown

as below:

MI(T,G) =
K∑
i=1

L∑
j=1

P (Ti ∩Gj)log
P (Ti ∩Gj)

P (Ti)P (Gj)
(2.4)

where P (Ti), P (Gj) and P (Ti ∩ Gj) are the probabilities of an object being in cluster Ti,

in class Gj and in the intersection of Ti and Gj, respectively.

Normalized Mutual Information (NMI) [105] is the most commonly used one,

which is calculated as:

NMI(T,G) =
MI(T,G)√
H(T)H(G)

(2.5)

where H(T) and H(G) are the entropies of clustering result T and gold standard G. H(T)

is defined as Equation 2.6 and H(G) can be calculated similarly.

H(T) = −
K∑
i=1

P (Ti)logP (Ti) (2.6)

The Normalized Mutual Information ranges from 0 to 1 as well, where 1 indicates that

clustering result is identical to gold standard and 0 indicates that they are independent.

NMI is normalized, thus it can be used to compare clusterings with different number of

clusters.

Adjusted Mutual Information (AMI) [107] is another variant of mutual informa-

tion measure. It is proposed to correct the measures for randomness. It is based on the

expected mutual information and defined as follow:

28 2. Background

AMI(T,G) =
MI(T,G)− E(MI(T,G))

max(H(T), H(G)− E(MI(T,G)))
(2.7)

where E(MI(T,G)) is the expected mutual information of clustering T and gold standard

G. It is normalized as well and ranges from 0 to 1, where 1 indicates perfect result.

Adjusted Variation of Information (AVI) [107] is proposed to correct the ran-

domness effect in clustering as well. It is based on the variation of information and defined

as follow:

AV I(T,G) =
2MI(T,G)− 2E(MI(T,G))

H(T) +H(G)− 2E(MI(T,G))
(2.8)

AVI takes value from 0 to 1 as well, where 1 indicates test clustering is identical to gold

standard.

Mutual information based measurements treat the clustering result and gold standard

as random variables and use their probability distribution to estimate the entropies and

mutual information. Therefore, overlapping clusters are not allowed while using them,

since the sum of probabilities of a random variable should be 1 (
∑

x∈X P (x) = 1). NMI,

AMI and AVI are usually used to evaluate partitioning clusterings without overlapping

clusters.

2.4.3 Precision, Recall and F-Measure

Precision, Recall and F-Measure are often used in the field of information retrieval for

measuring binary classification. They can also be used to evaluate clustering by viewing

it as a series of decisions, one for each of the N(N − 1)/2 pairs of objects in the data [86].

It is also called pairwise Precision, Recall and F-Measure in some literature [15, 47].

A true positive decision (TP) assigns two objects to the same cluster when they belong

to the same cluster in gold standard as well. A true negative decision (TN) assigns two

objects to different clusters when they also belong to different clusters in gold standard.

Besides, there are two types of errors. A false positive (FP) decision assigns two objects to

2.4 Evaluation of Clustering Results 29

the same cluster when they belong to different clusters in gold standard. A false negative

(FN) decision assigns two objects to different cluster when they belong to the same cluster

according to gold standard. Then pairwise Precision and Recall are defined based on these

decisions as follow:

Precision =
TP

TP + FP
(2.9)

Recall =
TP

TP + FN
(2.10)

F-Measure is defined as the harmonic mean of Precision and Recall:

FMeasure = 2 · Precision ·Recall
Precision+Recall

(2.11)

F-Measure penalizes both false positive and false negative decisions during clustering.

Besides, it can be used to evaluate clustering with overlapping clusters. When we process

the pairwise decisions, we can handle the overlapping situation by such strategy. If two

objects belong to at least one cluster in test clustering and gold standard, we treat them

as true positive. Similarly, other kinds of decisions can be made.

30 2. Background

Chapter 3

Relevant Overlapping Subspace

Clusters on Categorical Data

As illustrated in Chapter 1, one major challenge for clustering high-dimensional data is

the existence of irrelevant attributes. Existing dimension-growth methods, e.g. CLIQUE

[10], SUBCLU [73], .etc, usually follow such idea. Firstly they define a subspace cluster

with some parameters and then enumerate all the possible ones satisfying these parameters.

However, in such way they produce a large number of clusters with high redundancy. Many

of these clusters share the similar objects assignments and similar subspaces. They are all

reported because they all fulfill the parameters. This makes it very difficult to interpret

the results since there are too many clusters. We do not know which one is useful for our

application and which one is more important. Further their performances strongly rely on

parameters. Tuning parameters is not an easy work in real applications, which needs a

large amount of manually work from domain experts.

Another challenge comes from the data type. In many applications, categorical data

are collected, e.g. gene sequencing data. Due to missing order and spacing among the cat-

egories, selecting a suitable similarity measure is a difficult task. Many existing techniques

require the user to specify input parameters that are difficult to estimate. Furthermore,

compared to the large body of literature on clustering numerical data only relatively few

32 3. Relevant Overlapping Subspace Clusters on Categorical Data

papers focus on subspace clustering of categorical data.

To tackle these challenges, in this chapter we propose ROCAT (Relevant Overlapping

Subspace Clusters on Categorical Data), a novel technique based on the idea of data com-

pression that detects most informative subspace clusters. Parts of the material presented

in this chapter have been published in [60], where Xiao He was mostly responsible for the

development of the main concept, implemented the main algorithms and wrote the largest

parts of the paper; Claudia Plant supervised the project and made contributions to the

building of coding scheme; Jing Feng and Son T.Mai helped with the implementation; Jing

Feng and Bettina Konte performed part of experiments; The co-authors also contributed

to the conceptual development and paper writing.

“Xiao He, Jing Feng, Bettina Konte, Son T.Mai and Claudia Plant. Relevant

Overlapping Subspace Clusters on Categorical Data. The 20th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining 2014, in press.”

Following the Minimum Description Length principle, ROCAT automatically detects

the most relevant subspace clusters without any input parameter. The relevance of each

cluster is validated by its contribution to compress the data. Optimizing the trade-off

between goodness-of-fit and model complexity, ROCAT automatically determines a mean-

ingful number of clusters to represent the data. ROCAT is especially designed to detect

subspace clusters on categorical data which may overlap in objects and/or attributes; i.e.

objects can be assigned to different clusters in different subspaces and attributes may

contribute to different subspaces containing clusters. ROCAT naturally avoids undesired

redundancy in clusters and subspaces by allowing overlap only if it improves the com-

pression rate. Extensive experiments demonstrate the effectiveness and efficiency of our

approach.

The remainder of this chapter is organized as follows: In Section 3.1, it starts with an

introduction. The optimization goal is elaborated in Section 3.2. Section 3.3 presents the

algorithm ROCAT in detail. Section 3.4 contains an extensive experimental evaluation.

Section 3.5 briefly discusses related work and Section 3.6 concludes the chapter.

3.1 Introduction 33

3.1 Introduction

In many applications, ranging from social media to biomedicine, large categorical data

sets are collected. The unique characteristic of categorical data is that the values of an

attribute do not have any order. For example the attribute genotype having four values

AA, Aa, aA and aa, where capital A represents the dominant normal variant of a gene

and lowercase a the recessive version. There is no implicit order or quantitative spacing

between the different categories.

To explore a large categorical data set, clustering is in principle very promising. Among

the most successful approaches to unsupervised data mining, clustering aims at finding a

natural partitioning of a data set into groups called clusters which represent the major pat-

terns in the data. However, there are several special challenges associated with clustering

moderate to high-dimensional categorical data:

1) Many existing algorithms require the user to choose a similarity metric and/or input

parameters which are difficult to estimate, e.g. K-Modes [65], COOLCAT [16] and ROCK

[55]. In comparison to numerical data where Minkowski distances are wide-spread and

well-explored, the choice of a suitable similarity measure for categorical data is much more

difficult: In a comparative survey [26], Boriah et al. studied the properties of 14 similarity

measures and concluded that a suitable choice requires deep knowledge on the envisaged

data mining task and the special characteristics of the data set to be analyzed. The same

holds for input parameters like the number of clusters K in K-Modes [65], COOLCAT

[16], SUBCAD [48], or the similarity threshold in ROCK [55].

2) Most techniques for clustering categorical data are limited to detect clusters in the

full-dimensional space. For numerical data, the effects of the so-called curse of dimen-

sionality have been extensively studied and many specialized techniques for clustering

moderate to high-dimensional data have been proposed, for a survey see e.g. [72]. For

categorical data, fewer approaches have been proposed, e.g. CACTUS [49], SUBCAD [48],

and CLICKS [116], most of them associated with the problems mentioned above.

3) These methods are either partition-based (e.g. SUBCAD) or producing large re-

34 3. Relevant Overlapping Subspace Clusters on Categorical Data

dundancies (e.g. CLICKS). STATPC [87] and RESCU [88] are proposed to find relevant

non-redundant subspace clusters but are applicable to numerical data only. Detecting

relevant overlapping subspace clusters on categorical data is an open research question.

To address these challenges, we propose a novel approach ROCAT (Relevant Overlapping

Subspace Clusters on CATegorical data) combining the following benefits:

1. Data compression as an intuitive notion of similarity. Relating clustering to

data compression, ROCAT considers the co-compressibility of the objects inside a

cluster as one major aspect to evaluate the cluster quality. Thereby, ROCAT does

not require the user to choose a similarity measure to quantify the pair-wise similarity

among categorical data objects.

2. Parameter-free detection of clusters. Following the Minimum Description Length

principle [97], co-compressibility is not the only aspect of cluster quality in ROCAT.

We additionally consider the code length specifying the complexity of the cluster-

ing model and aim at minimizing both parts. Therefore, ROCAT is fully-automatic

without requiring any parameters.

3. Relevant overlapping subspace clusters. The coding scheme of ROCAT allows

overlapping in both objects and attributes set, but punishes redundancies. Therefore

ROCAT finds the most relevant overlapping subspace clusters in the sense that they

contribute to an effective compression of the data.

4. Flexibly handling outliers. ROCAT supports noise objects and noise attributes

which are flexibly identified during the clustering process.

5. Efficiency. ROCAT scales linearly in data size.

3.2 Optimization Goal Compression

In this section, we elaborate how a subspace clustering can be used to effectively compress

a categorical data set. The basic idea is that objects inside a cluster can be compactly

3.2 Optimization Goal Compression 35

a1 b1 c1 d3 e3 f3 g1 h1
a1 b1 c1 d2 e2 f2 g2 h2
a1 b1 c1 d1 e1 f1 g3 h3
a1 b2 c3 d1 e1 f1 g1 h2
a2 b3 c1 d1 e1 f1 g3 h1
a3 b1 c2 d3 e2 f2 g2 h2
a1 b2 c3 d2 e3 f2 g2 h2
a2 b3 c2 d2 e2 f2 g2 h2
a3 b3 c2 d2 e2 f3 g3 h2
a2 b2 c2 d2 e2 f1 g1 h3

(a) Subspace Clustering

a1 b1 c1 d3 e3 f3 g1 h1
a1 b1 c1 d2 e2 f2 g2 h2
a1 b1 c1 d1 e1 f1 g3 h3
a1 b2 c3 d1 e1 f1 g1 h2
a2 b3 c1 d1 e1 f1 g3 h1
a3 b1 c2 d3 e2 f2 g2 h2
a1 b2 c3 d2 e3 f2 g2 h2
a2 b3 c2 d2 e2 f2 g2 h2
a3 b3 c2 d2 e2 f3 g3 h2
a2 b2 c2 d2 e2 f1 g1 h3

(b) Full-D Clustering.

a1 b1 c1 d3 e3 f3 g1 h1
a1 b1 c1 d2 e2 f2 g2 h2
a1 b1 c1 d1 e1 f1 g3 h3
a1 b2 c3 d1 e1 f1 g1 h2
a2 b3 c1 d1 e1 f1 g3 h1
a3 b1 c2 d3 e2 f2 g2 h2
a1 b2 c3 d2 e3 f2 g2 h2
a2 b3 c2 d2 e2 f2 g2 h2
a3 b3 c2 d2 e2 f3 g3 h2
a2 b2 c2 d2 e2 f1 g1 h3

(c) No Clustering.

Figure 3.1: Using compression to evaluate categorical clustering.

represented by joint coding in the corresponding subspace. Since subspace clusters may

overlap, we validate the relevance of each cluster by its contribution to compress the data.

Following the Minimum Description Length (MDL) principle [97], the clustering is regarded

as a model for compression. The better the data fits to the model, the better is the

compression rate since we only need to encode the deviations of the data from the model.

In addition to the data, we also need to encode the model itself, which avoids overly

complex models and naturally balances goodness-of-fit.

Figure 3.1 depicts an example of how we use compression to evaluate a clustering of

categorical data. The data is represented by a matrix with 10 rows and 8 columns, each

row represents 40 data objects and each column is an attribute. Figure 3.1(a) indicates a

subspace clustering with 4 subspace clusters marked as colored squares. The clusters share

the homogeneous data in the corresponding subspace, while the white area represents

heterogeneous data, i.e. objects have arbitrary categories of the corresponding attributes.

It costs 6076.5 bits to compress the data with the proposed coding scheme. Figure 3.1(b)

and 3.1(c) depict a full-dimensional clustering and no clustering, where we need 6147.1

bits and 6670.9 bits to represent the whole data sets.

In the following, we firstly provide the necessary definitions and then propose a MDL-

based coding scheme, which is specially designed for clustering categorical data.

36 3. Relevant Overlapping Subspace Clusters on Categorical Data

3.2.1 Notations

Definition 1. A Categorical Data Set is defined as D = (X, V) with N objects and M

attributes. A1, ..., AM denote a set of categorical attributes and V1, ..., VM a set of domains,

where Vj = {Vj1 , ..., Vjm} is the domain for attribute Aj. X ∈ N ×M is a matrix storing

the categorical value X(i, j) of object i in attribute Aj.

Definition 2. A Subspace Cluster Ci = (Xi, Vi) is a subset of the data set D = (X, V),

where Xi is a sub-matrix of X and Vi is a subset of V .

Definition 3. A Pure Subspace Cluster is a Subspace Cluster where the objects share

the same value in all its attributes.

Definition 4. A Non-Clustered Area S of data D modeled by subspace clusters C1, C2

, ..., CK contains all the entries in matrix X that are not in any sub-matrix Xi, the white

area in Figure 3.1(a).

3.2.2 Coding Scheme

Following the concept of MDL principle, the quality of a model is provided by Eq. (3.1),

where L(H) denotes the cost for coding the model and L(D|H) represents the cost of

describing the data D under the model H.

L(D,H) = L(D|H) + L(H). (3.1)

The model H contains K subspace clusters C1, C2, ..., CK and the non-clustered area

S. According to our definition of a Subspace Cluster, C1, C2, ..., CK might overlap in both

points and attributes set. The description of data D under the model H is provided by

describing C1, C2, ..., CK and S separately. Therefore, L(D|H) consists of two parts: the

costs for the clusters and the non-clustered area.

L(D|H) =
K∑
i=1

CCv(Ci) + CCv(S). (3.2)

3.2 Optimization Goal Compression 37

In order to quantify the description length of a subspace cluster Ci or the non-clustered

area S, we need to agree on an encoding scheme for Ci and S. For each cluster Ci, we

encode the corresponding data sub-matrix Xi of Ci column by column. Specifically, for

each assigned attribute Aj of cluster Ci, we calculate the probabilities for all categories

in attribute Aj. Then any lossless coding method can be used to compress the column of

attribute Aj in matrix Xi, i.e. Huffman coding. Practically we only need the coding length

for evaluation, but not the true bits stream. Besides, lossless coding methods are lower

bounded by the Shannon entropy. Therefore, we suggest to calculate the coding length of

an attribute Aj in cluster Ci with categories Vj = {Vj1 , ..., Vjm} by the Shannon Entropy,

which is defined as:

Entropy(P) = −
Vjm∑
k=Vj1

·Pk · log2Pk, (3.3)

P = PVj1 , ...PVjm are the probabilities of the categories in attribute Aj and cluster Ci,

where Pk = |Xi(:,j)==k|
|Ci.obj| and | · | is the number of entries in a set.

Then the coding cost for cluster Ci is provided as:

CCv(Ci) =
∑
j

|Ci.obj| · Entropy(P). (3.4)

The coding cost for the non-clustered area CCv(S) is calculated analogously to Eq. (3.4).

In addition to the data, we also need to describe the model itself L(H). The model

H contains the clustering assignments and probabilities that are used to encode Ci and

S in Eq. (3.4). We need to describe both the object assignments CCo and the attribute

assignments CCa to encode the clustering assignments for each subspace cluster Ci. In

addition, we need to encode the probabilities used to describe data L(D|H) since they are

essential for lossless decoding. These probabilities are encoded as parameters CCr.

L(H) =
K∑
i=1

(CCo(Ci) + CCa(Ci) + CCr(Ci)) + CCr(S). (3.5)

38 3. Relevant Overlapping Subspace Clusters on Categorical Data

Specifically, we describe the clustering assignments with object ID tables and attribute

ID tables. The object ID table for a subspace cluster is a length N binary table. Objects

are assigned 1 if they belong to the cluster, and 0 otherwise. As before, we suggest to

encode the tables using an optimal Shannon code. The coding cost for an object ID table

of Ci is calculated by its Shannon entropy:

CCo(i) = −N · (p(i) · log2p(i) + n(i) · log2n(i)), (3.6)

where p(i) = |Ci.obj|
N

is the percentage of 1s, n(i) = 1 − p(i) is the percentage of 0s. The

coding cost for the attribute ID table is derived analogously to Eq. (3.6).

We encode the probabilities used in Eq. (3.4) as parameters. Following [97], the cost

for the probabilities can be approximated by:

CCr(i) = 0.5 · |Param| · log2|Ci.obj|, (3.7)

where |Param| is the number of parameters or probabilities. For each assigned attribute

Aj of cluster Ci we need to encode |Vj| probabilities. Therefore, |Param| =
∑

j (|Vj|). The

parameter cost for the non-clustered part CCr(S) is calculated analogously to Eq. (3.7).

The relevance of each cluster is validated by its contribution to compress the data. Thus

the proposed coding scheme is perfectly suitable to evaluate relevant overlapping subspace

clusters on categorical data. Firstly, it allows overlapping clusters in both objects and

attributes set, but punishes those redundancies, since the overlapping parts will be encoded

twice. Secondly, it avoids too complex models (too many small clusters) by encoding the

model itself (clustering assignments and the probabilities), thus large informative clusters

are preferred. In summary, clustering with the most relevant overlapping subspace clusters

will achieve a lower coding cost under the proposed coding scheme.

3.3 Algorithm 39

3.3 Algorithm

In this section, we present an effective and efficient algorithm to identify the most relevant

overlapping subspace clusters. Our optimization goal is to find the clustering model that

best describes the categorical data set under the proposed coding scheme in Section 3.2.

3.3.1 Minimum Coding Problem

The proposed coding scheme does not specify how to find a good clustering; it can only

say which of two clusterings is better. The problem, which we call the Minimum Coding

Problem in the following, can be modeled as finding sub-matrices (Subspace Cluster) that

allow the highest compression with respect to the proposed coding scheme. Given a data

set D with N objects and M attributes, there are I = (
∑N

i

(
N
i

)
) · (

∑M
j

(
M
j

)
) possible

sub-matrices, further there are
∑I

i

(
I
i

)
possible clusterings with different combinations of

sub-matrices. Obviously, an naive exhaustive search for the optimal result is infeasible

even for a small data set, since the number of candidates |I| is exponential to M and N .

Even for the case that |I| is polynomial to M and N , the Minimum Coding Problem is a

NP-hard problem.

Minimum Coding Problem is NP-hard. The Set Covering Problem is known to be NP-

hard [50]. Given a set of elements U and a set E of n sets, the Set Covering Problem

finds smallest subsets of E whose union cover all the elements in U . The Minimum Coding

Problem aims at finding sub-matrices of a data matrix X that cover all the entries of X,

but uses a different kind of cost function, i.e. the proposed coding scheme. In the case

that |I| is polynomial and except of using a different cost function, the Minimum Coding

Problem is equivalent to the Set Covering Problem or the Weighted Set Covering Problem.

Since the proposed coding function can be calculated in polynomial time, the Minimum

Coding Problem is NP-hard as well.

In summary, the Minimum Coding Problem is so difficult that we need an efficient and

effective heuristic algorithm to achieve a local optimal result.

40 3. Relevant Overlapping Subspace Clusters on Categorical Data

Algorithm 1 ROCAT

Input: Data set D = (X, V)
Output: Subspace clusters list SubClus

//Searching phase
SubClus = ∅; Queue Matrix = {D};
while Matrix 6= ∅ do
Curr = Matrix.Pop;
C = FindBestPure(Curr, SubClus);
if Eq. (3.1) decreases with SubClus ∪ C then
SubClus.Add(C);
Matrix.PushAll(SplitSpace(Curr, C));

end if
end while

//Combining phase
Priority queue Pairs = ∅;
for Each pair of clusters Ci, Cj ∈ SubClus do
Overlap = |Ci.obj ∩ Cj.obj| · |Ci.att ∩ Cj.att|;
If Overlap > 0, Pairs.Push(Ci, Cj);

end for
while Pairs 6= ∅ do

Process Pairs.Pop as shown in Figure 3.3;
Choose one process with minimum Eq. (3.1);

end while

//Reassigning phase
while Convergence do

for Each cluster Ci ∈ SubClus do
Find all objects set O with same value in Ci.att;
Assign or Remove O to Ci.obj based on Eq.(3.1);

end for
for Each cluster Ci ∈ SubClus do

If Ci.obj changed, Re-select Ci.att based on Eq.(3.1);
end for

end while

return SubClus

3.3 Algorithm 41

3.3.2 Algorithm ROCAT

The best-possible polynomial time approximation algorithm for the Set Cover Problem

is the greedy algorithm [81]. At each stage, the set that contains the largest number of

uncovered elements is selected. However, the greedy algorithm can not be used directly to

solve the Minimum Coding Problem due to the following reasons. Firstly, the Minimum

Coding Problem uses a different cost function, thus including the set that contains the

largest number of uncovered elements may not reduce the proposed coding function. Sec-

ondly, the number of candidates |I| is exponential to M and N , which makes the greedy

algorithm exponential as well.

The proposed algorithm ROCAT is based on the greedy idea as well, but some essential

modifications are made to solve the above two problems. Firstly, we need to iteratively

include the Subspace Cluster that reduces the overall cost under the proposed coding

function. Secondly, we need to reduce the number of candidate Subspace Clusters for

greedy selection. Eq. (3.4) shows that including large Pure Subspace Clusters will lead to

a reduction of the coding cost. Additionally, searching for large Pure Subspace Clusters

will reduce the candidate space to polynomial as well. Therefore, we focus on selecting the

Pure Subspace Clusters at first, then post-process them to get the final Subspace Clusters.

The found Pure Subspace Clusters can overlap and exhibit redundancies. Therefore, during

post-processing we firstly combine or split them to remove redundancies, then refine the

results by locally modifying clustering assignments.

More precisely, there are three phases in ROCAT: Searching, Combining and Reassign-

ing. Firstly, we iteratively include large Pure Subspace Clusters if the coding cost can

be reduced in the Searching phase. Then we merge or split these candidates to remove

redundancies in the Combining phase. The candidates with higher redundancy will be

processed first. Finally, a reassignment step refines the result by reassigning objects and

re-selecting the attributes to the candidate clusters. All phases are guided by the proposed

coding scheme, and so every step guaranties decreasing coding cost, which finally leads to

reaching a local minimum. The pseudocode of ROCAT is provided in Algorithm 1.

42 3. Relevant Overlapping Subspace Clusters on Categorical Data

Algorithm 2 FindBestPure

Input: Matrix, SubClus
Output: C

Att′ = ∅;
PureClus = ∅;
Obj = Matrix.obj;
Att = Matrix.att;
while PureClus.Size < |Matrix.att| do

Find a ∈ Att with min Entropy regarding Obj;
Obj′ = {o ∈ Obj,Xoa = v, |o ∈ Obj| is max};
Att′.Add(a);
Form cluster C with Obj′ and Att′;
PureClus.Add(C);
Att.Remove(a); Obj = Obj′;

end while
C = {Ci ∈ PureClus, Eq.(3.1) is min for (SubClus ∪ Ci)};

return C;

Searching Phase. We iteratively search for the best relevant Pure Subspace Cluster

that reduces the coding cost most. The baseline coding cost is determined from a clustering

model where all data points belong to the non-clustered area. Eq. (3.4) shows that

large Pure Subspace Cluster will reduce the coding cost most, since the entropy of such

clusters is 0. For a given searching matrix we find m large Pure Subspace Clusters, where

m is the number of columns of the matrix. The pseudocode for this procedure called

FindBestPure is depicted in Algorithm 2. The first cluster only contains attribute a

with minimum entropy (see Eq. (3.3)) and objects with largest probability with respect

to a. The second cluster is searched in the sub-matrix that contains the objects in the

first cluster only. We expand the attribute set of the first cluster by the attribute that

has the minimum entropy within the reduced data objects. This procedure is repeated

until m Pure Subspace Clusters are found (see Figure 3.2a). Finally, the one that leads to

minimum coding cost is returned as the best Pure Subspace Cluster. The first searching

matrix is the value matrix X of data set D, in which we search for the best Pure Subspace

3.3 Algorithm 43

f

f

f

e

e

d

d

d

C1

C2

C = C3

CM

C: Cluster with the smallest coding cost

e
C

Searching space1 Searching space2

(a) Search the best pure cluster C.

Searching space 1 Searching space 2

C

(b) Split the search Space by C.

Figure 3.2: Searching phase of ROCAT.

Cluster C. If including C decreases the coding cost, we split the current searching matrix

by C into two new ones (see Figure 3.2b) and add both to the searching matrix queue. We

continue to search for best Pure Subspace Clusters until the searching queue is empty.

Combining phase. The Pure Subspace Clusters found in the Searching phase can

overlap. We remove the redundancies in the Combining phase. The redundancy of each

pair of clusters is modeled by their mutual information, which can be approximated by

the overlapping entries between them. We firstly choose the two clusters Ci and Cj with

the largest redundancy. Then we calculate the value of Eq. (3.1) for 4 different processing

steps that are illustrated in Figure 3.3. We can preserve both clusters, combine the two

clusters into one, preserve Cj and split Ci or preserve Ci and split Cj. Finally, we choose

the step that yields the minimum coding cost. The phase is terminated when every pair

of overlapped clusters has been processed.

Reassigning phase. The described Combining phase removes the redundancies by

combining or splitting pairs of clusters only, thus redundancies may still exist among clus-

ters. Besides, some objects may not be assigned to any cluster yet. Therefore we post-

process the clusters in this phase to refine the result. Firstly, for each cluster Ci we fix

the attributes set and adjust the objects set. In detail, objects set O ⊂ D.obj with iden-

tical value in Ci.att is assigned to Ci or removed from it if this decreases the coding cost.

44 3. Relevant Overlapping Subspace Clusters on Categorical Data

	

Cj	

Ci	

Ci	
C2	

C1	

C2	
Cj	

C1	

Combine	 two	 clusters	 into	 C	

Split	 Ci	 to	 C1	 and	 C2	 Split	 Cj	 to	 C1	 and	 C2	

Ci	

Cj	

Two	 pure	 clusters	 with	 overlap	

C	

Figure 3.3: 4 processing candidates in Combining phase of ROCAT.

Secondly, we fix the objects set and try to improve the subspace of each cluster. Intu-

itively, data objects should be compact in the subspace of Ci and sparse in the remaining

attributes. Therefore, we rank the attributes according to their entropy (see Eq. (3.3)),

since a compact attributes set leads to a lower entropy while a sparse attributes set causes

a higher entropy. Finally, we compare the coding cost for the top-ranked attributes sets

and keep the best one if it yields an improvement over the old attributes set. We iteratively

do the two steps until no attributes or objects set changes. Those objects that still can

not be assigned to any cluster are naturally regarded as outliers.

Runtime Complexity. The runtime complexity of ROCAT for a data set with N

objects and M attributes can also be divided into 3 parts. In the Searching phase, we need

to go through β objects α times for each dimension, where β ≤ N and α ≤M . Suppose we

find γ clusters, controlled by MDL normally γ � N,M . Therefore the runtime complexity

in this phase is O(α·β ·γ ·M), which is equal to O(M2 ·N). In the Combining phase we need

to go through all pairs of clusters, so the runtime complexity in this phase is O(γ2 · κ · ι),

where κ < N and ι < M are the average number of objects and attributes in each pure

cluster. The runtime complexity in the Combining phase is equal to O(M · N). In the

3.4 Experiments 45

Reassigning phase, in each iteration for each cluster we need to go through its objects set

and attributes set once. Therefore the runtime complexity in this phase is O(i · (N ·M)),

which is equal to O(M ·N) since the Reassigning phase normally converges very fast. The

overall runtime complexity of ROCAT therefore is O(M2 ·N).

3.4 Experiments

In this section, we compare the performance of ROCAT to 8 methods from different areas

which are related to this work. Firstly, we compare ROCAT to SUBCAD [48], CLICKS

[116] and CLIQUE [10], 3 algorithms for subspace clustering on high-dimensional cat-

egorical data. CLIQUE is designed for numerical data but can be easily extended for

categorical data. Moreover, we compare our work to two parameter-free algorithms for

categorical data, DHCC [114] and AT-DC [28]. Due to space limitations, we do not com-

pare to classical categorical clustering methods, i.e. K-modes [65], ROCK [55], COOLCAT

[16]. These methods are not designed to find subspace clusters anyway and in addition

DHCC [114] and AT-DC [28] have shown to yield better clustering models. Finally, we

compare to 3 algorithms for informative itemset mining, Tiling [52], MTV [85] and Hyper+

[113], which try to find the most important itemsets. The itemset mining methods can be

treated as categorical subspace clustering, since the detected itemsets can be regarded as

the attributes sets of subspace clusters, while the objects that support the itemset forms

the corresponding clusters. CLICKS and CLIQUE are based on the idea of itemset mining

as well.

We implement ROCAT and SUBCAD in Java and use CLIQUE from the ELKI package

[6]. The codes for all the other methods are provided by the authors. ROCAT, DHCC,

AT-DC are parameter-free methods. SUBCAD and Tiling need the number of clusters K,

where we set the true number for synthetic data and try different K for real data and output

the best results. Besides, the performance of SUBCAD depends on its initialization, thus

we report the average results of 10 runs. MTV is proposed as a parameter-free method,

but as the execution time is too long and it allows the user to set the number of desired

46 3. Relevant Overlapping Subspace Clusters on Categorical Data

itemsets, we set it as for SUBCAD and Tiling. Two parameters are required for CLICKS

(α and minsup) and Hyper+ (false tolerant ratio f and minsup) all from [0, 1]. We vary

these parameters from 0.1 to 0.9 with a step of 0.1 for all data sets and report the best

results. CLIQUE requires to pass grid size ξ and density τ as input parameters. We fix

ξ = 2 ∗W to fit categorical data, where W is the maximal number of categories. Then

we vary τ from 0.1 to 0.9 with step 0.1 and report the best results. For Tiling, MTV and

Hyper+, the points sets that support the detected itemsets might not cover all the points,

thus we regard the rest as outliers like ROCAT.

To evaluate the cluster and subspace quality, we compare pairwise Precision, Recall and

F-Measure as introduced in overlapping clustering literature [15, 47] for all data sets. A

pair of points sharing at least one cluster is regarded as test outcome positive in clustering

results or condition positive in golden standard. Precision is calculated as tp
tp+fp

and Recall

is obtained by tp
tp+fn

, where tp, fp and fn are the numbers of true positives, false positives

and false negatives respectively. F-Measure is the harmonic mean of Precision and Recall.

In addition, we use the confusion matrix and the cluster content to evaluate the quality of

all clusters and subspaces for the used real world data.

All experiments are performed on a workstation with 2.9 GHz Intel Core i7 CPU and

8.0 GB RAM.

3.4.1 Synthetic Data

We generate 4 synthetic data sets with different characteristics as depicted in Figure 3.4.

Syn1 contains only overlapping attributes sets, whereas Syn2 contains only overlapping

points sets. Syn3 adheres both kinds of overlapping, while Syn4 provides a more difficult

scenario. The data sets are generated by first creating Pure Subspace Clusters and then

randomly choosing 10% entries of each sub-matrix and randomly changing their values.

Afterwards we randomly generate values for the remaining non-clustered area. The number

of categories for each attribute is randomly chosen where the average number is 4. For

each scenario we generate 5 data sets and report the average performance.

3.4 Experiments 47

	

C1	

C2	

C3	

C4	

0	 20	

400	

6	 10	 15	

100	

200	

300	

Attributes	

Da
ta
	 O
bj
ec
ts
	

	

12	 8	 18	

(a) Syn1.

	

130	

70	

30	 20	

100	

150	

C1	

C2	

C3	

C4	

0	 40	

200	

10	
Attributes	

Da
ta
	 O
bj
ec
ts
	

	

80	

40	

110	

(b) Syn2.
	

Da
ta
	 O
bj
ec
ts
	

	

32	 16	

80	

120	

320	

8	

200	

280	

C1	

C2	

C3	

C4	

0	 40	

400	

Attributes	
24	

(c) Syn3.

	 Attributes	

Da
ta
	 O
bj
ec
ts
	

	

960	

780	
720	

600	
540	

420	
360	

240
180	

0	 12	 16	 20	 28	 32	 36	 52	 44	

C5	 C5	

C1	
	

C2	
	

C4	
	

C3	
	

(d) Syn4.

Figure 3.4: Synthetic categorical data for subspace clustering.

48 3. Relevant Overlapping Subspace Clusters on Categorical Data

Table 3.1: Cluster Quality for Synthetic Data (F-Measure).

Syn1 Syn2 Syn3 Syn4
ROCAT 0.982 0.985 0.998 0.997

SUBCAD 0.953 0.603 0.798 0.761
CLICKS 0.499 0.604 0.508 0.489
CLIQUE 0.414 0.604 0.507 0.516
DHCC 0.794 0.826 0.856 0.768
AT-DC 0.895 0.794 0.818 0.704
Tiling 0.542 0.532 - -
MTV 0.509 0.496 0.439 0.526

Hyper+ 0.565 0.634 0.565 0.491

Cluster Quality. Table 3.1 summarizes the results. Due to space limitations, the fol-

lowing part presents the F-Measure results only. ROCAT is the only algorithm performing

very well on all the synthetic data sets with a F-Measure above 0.982. Note that these

results are obtained without requiring any input parameters from the user. Designed for

categorical subspace clustering, with suitable parametrization SUBCAD performs well on

data set Syn1 containing clusters overlapping in the attributes (F-Measure 0.95). However,

the performance of SUBCAD severely degrades if clusters overlap in the objects (Syn2,

F-Measure 0.6). CLICKS and CLIQUE perform worse than ROCAT with a F-Measure of

about 0.5, since they output too many redundant clusters (thousands or tens of thousands

clusters). DHCC and AT-DC perform fairly well on all the data sets with a F-Measure of

about 0.8. However, DHCC and AT-DC are limited to find full-dimensional clusters and

therefore do not provide any information about the subspaces in which clusters are con-

tained. Besides, they only find partitioned clusters without any overlapping information.

The three informative itemset mining methods Tiling, MTV and Hyper+ do not perform

well on our synthetic data sets either and yield F-Measures of about 0.5. The results of

Tiling on Syn3 and Syn4 are discarded since the running time is over 1 hour.

Subspace Quality. In contrast to traditional clustering, subspace clustering does not

only aim at finding clusters but also at identifying the subspaces containing clusters with

high accuracy. Table 3.2 shows that ROCAT is the only technique correctly identifying the

subspaces in all cases with a F-measure of 1. We discard DHCC and AT-DC, since they

3.4 Experiments 49

Table 3.2: Subspace Quality for Synthetic Data (F-Measure).

Syn1 Syn2 Syn3 Syn4
ROCAT 1 1 1 1

SUBCAD 0.975 0.524 0.967 0.949
CLICKS 0.742 0.375 0.375 0.528
CLIQUE 0.414 0 0 0

Tiling 0.808 0.849 - -
MTV 0.831 0.777 0.638 0.621

Hyper+ 0.565 0.469 0.744 0.853

do not support subspace clustering. SUBCAD performs well only if there is some overlap

in the attributes (Syn1, Syn3 and Syn4), but the performance severely degrades on Syn2

where we only have overlap in terms of objects with an F-Measure of only 0.52. CLICKS

and CLIQUE perform worst because they output too many redundant clusters. CLIQUE

yields results with pairwise F-Measure values of 0 on Syn2, Syn3 and Syn4 because it

outputs subspaces with a single attribute only. Tiling and MTV perform fairly well in

terms of detecting subspaces with a F-Measure of 0.82 and 0.72 respectively. However,

they only find the subsets of golden standard attributes sets. Hyper+ performs better

with the more difficult scenarios Syn3 and Syn4 (F-Measure of about 0.8), but worse with

the easier scenarios Syn1 and Syn2 (F-Measure of about 0.5). Since Syn1 and Syn2 are

relative sparse, Hyper+ outputs more redundant clusters.

Robustness against outliers. We add different amounts of noisy objects to each

synthetic data set. Particularly, we add 10% new records with random values in all at-

tributes to Syn1 forming the noisy data Syn1 − 10% and analogously obtain other noisy

data with different amounts. The pairwise F-Measure results are shown in Figure 3.5. We

use the same settings for each scenario and for all the algorithms. Obviously ROCAT is

extremely robust against noises. We cannot observe any decline in performance on Syn3

and Syn4. Moreover the decline is also negligible on the other two data sets yielding F-

Measures above 0.96 on all examples even in the presence of 40% outliers. All the other

algorithms severely degrade in performance in the presence of outliers, since they do not

support the detection of noisy objects during the clustering process.

50 3. Relevant Overlapping Subspace Clusters on Categorical Data

0	

0.2	

0.4	

0.6	

0.8	

1	

0%	 10%	 20%	 30%	 40%	

F-‐
M
ea
su
re

Outlier

ROCAT	 SUBCAD	 CLICKS	 CLIQUE	 DHCC	 AT-‐DC	 Tiling	 MTV	 Hyper+	

0	

0.2	

0.4	

0.6	

0.8	

1	

0%	 10%	 20%	 30%	 40%	

F-‐
M
ea
su
re

Outlier

0	

0.2	

0.4	

0.6	

0.8	

1	

0%	 10%	 20%	 30%	 40%	

F-‐
M
ea
su
re

Outlier

0	

0.2	

0.4	

0.6	

0.8	

1	

0%	 10%	 20%	 30%	 40%	

F-‐
M
ea
su
re

Outlier

0	

0.2	

0.4	

0.6	

0.8	

1	

0%	 10%	 20%	 30%	 40%	

F-‐
M
ea
su
re

Outlier

Figure 3.5: Robustness against outliers, syn1 to syn4 with outliers from left to right.

Scalability. To evaluate the scalability of ROCAT with respect to data size and

dimensionality, we generate data sets using scenario 4 in Figure 3.4. For data size, each

data set contains 52 attributes and the number of objects is varied from 10000 to 50000.

For dimensionality, each data set contains 960 points and the dimensionality is varied from

50 to 200. The parameter settings are the same as for Syn4. Figure 3.6 summarizes the

results. Some results are discarded if the running time is longer than 1 hour, i.e. SUBCAD

and Tiling regarding data size and CLICKS and Tiling in terms of dimensionality. Figure

3.6 depicts that all the methods scale linearly in terms of number of objects. ROCAT

performs similarly as DHCC and Hyper+, which is faster than MTV and slower than

AT-DC, CLIQUE and CLICKS. With respect to dimensionality, ROCAT scales similar as

DHCC, faster than SUBCAD and slower than AT-DC. CLIQUE, MTV and Hyper+ scale

worst for dimensionality, where the running time severely increases when the dimensionality

is added to 150 or 200.

3.4 Experiments 51

0	
20	
40	
60	
80	
100	
120	
140	

1	 2	 3	 4	

Ti
m
e	
(S
ec
on

ds
)

Dimensionality

ROCAT	 SUBCAD	 CLICKS	 CLIQUE	 DHCC	 AT-‐DC	 MTV	 Hyper+	

1	

10	

100	

1000	

10	 20	 30	 40	 50	

Ti
m
e	
(S
ec
on

ds
)

Data	 Size	 (103)

0	

20	

40	

60	

80	

100	

120	

140	

50	 100	 150	 200	

Ti
m
e	
(S
ec
on

ds
)

Dimensionality

Figure 3.6: Scalability of ROCAT and comparisons.

3.4.2 Real World Data

In this section, we evaluate the performance of ROCAT and comparison methods on

three real-world data sets: Congressional Votes, Mushroom and Molecular Biology (Splice-

junction Gene Sequences) Data Set, which are publicly available at the UCI machine

learning repository 1. For these data sets, only non-overlapping class labels are available

and there are only 2 or 3 classes. Moreover, most of the algorithms output many subspace

clusters, which are normally the subsets of golden clusters. Therefore, Recall can not man-

ifest the cluster quality anymore and we only use Precision for evaluation. We try different

settings for all required parameters and choose the one with the best Precision as it is done

for synthetic data sets. The results for real data sets are depicted in Table 3.3.

Congressional Votes. The data set consists of 435 instances, represented by 16

categorical attributes. There are 2 classes: democrat and republican. ROCAT and DHCC

automatically output 2 clusters, while AT-DC finds 5 clusters. SUBCAD, Tiling and MTV

output 2 clusters. Additionally, ROCAT, Tiling and MTV find an outlier cluster. CLICKS

outputs 39 clusters, CLIQUE gives 12 clusters and Hyper+ provides 114 clusters. From

Table 3.3 we can see that ROCAT outputs better clusters than most of the other methods

with a Precision of 0.812. The confusion matrices are depicted in Table 3.4. Due to space

1http://archive.ics.uci.edu/ml

52 3. Relevant Overlapping Subspace Clusters on Categorical Data

Table 3.3: Cluster Quality for Real Data (Precision).

Vote Mushroom Splice
ROCAT 0.812 0.999 0.861

SUBCAD 0.845 0.501 0.378
CLICKS 0.525 0.508 0.343
CLIQUE 0.545 0.501 0.384
DHCC 0.793 0.766 0.875
AT-DC 0.521 0.612 0.497
Tiling 0.681 - -
MTV 0.626 0.943 0.754

Hyper+ 0.753 0.624 0.384

limitation, we only show the results of the top 6 methods and clusters with large number

of points for those with too many clusters. Clusters with high purity are highlighted in

bold.

ROCAT yields two clusters with very high purity, see. Table 3.4a. Regarding subspace

quality, the clusters found by ROCAT are more compact in the detected subspace (Cp =

0.194) than in the whole space (Cp = 0.254) and the whole data set (Cp = 0.531). The

compactness value Cp ∈ [0, 1] is defined in [48], and 0 means that all data values in the

corresponding features are the same. Specifically, let us take a look at cluster 0 in Table

3.4a, which is a pure democrat cluster. ROCAT outputs 12 attributes as the subspace for

this cluster. More than 95% of voters in this cluster have the same opinion in 5 of the 12

subspace attributes, they voted yes to aid to nicaraguan contras, yes to adoption of the

budget resolution, no to physician fee freeze, no to el salvador aid, and yes to anti satellite

test ban. Further, at least 80% of the people vote for the same in the other 5 attributes,

while more than 70% of them have the same vote in the final two attributes. We get similar

statistics for the other cluster. Therefore, ROCAT does find meaningful subspaces for the

detected clusters. Since SUBCAD also performs very well on this data set, let us take a

look at its democrat cluster as well (cluster 1 in Table 3.4e). The corresponding subspace

consists of 3 attributes only, which represents much less information. ROCAT is able to

detect higher dimensional subspace clusters due to the ability to label objects as outliers.

In detail, the votes of the instances labeled as outliers are nearly averagely distributed

3.4 Experiments 53

Table 3.4: Results on Congressional Votes.

(a) ROCAT.

Cluster Democrat Republican
0 148 0
1 20 136

Noise 99 32

(b) DHCC.

Cluster Democrat Republican
0 49 159
1 218 9

(c) Hyper+.

Cluster Democrat Republican
0 9 106
1 107 2
92 28 20

(d) MTV.

Cluster Democrat Republican
0 1 79
1 89 0

Noise 177 80

(e) SUBCAD.

Cluster Democrat Republican
0 27 154
1 240 14

(f) Tiling.

Cluster Democrat Republican
0 2 87
1 124 0

Noise 141 81

in these 10 attributes. Therefore the properties of the outlier points are very different

from those of the subspace clusters and thus it makes sense that ROCAT considers them

as outliers. Tiling and MTV found outlier clusters as well. However, they can only find

smaller Pure Subspace Clusters, which results in too many outliers. Some of the outliers

that share similar subspaces as clusters are not detected.

Mushroom. The Mushroom data set contains 8124 records and 22 categorical at-

tributes. Each record describes a mushroom specimen regarding 22 properties (e.g. shape,

color, size) and is identified as definitely edible (4208 records) or poisonous (3916 records).

ROCAT, DHCC and AT-DC automatically output 21, 10 and 6 clusters respectively. SUB-

CAD and MTV output 10 clusters. CLICKS outputs 260 clusters, CLIQUE gives 151 clus-

ters and Hyper+ provides 183 clusters. Table 3.3 shows that ROCAT greatly outperforms

the other methods with a Precision of 0.999. The confusion matrices of the top 6 methods

are shown in Table 3.5. Not class-pure clusters are highlighted in bold.

Table 3.5a clearly shows that nearly all clusters detected by ROCAT are of high purity,

which is much better than the other methods. Cluster 15 is the only one that contains

several differently labeled records. However, DHCC, AT-DC and Hyper+ output clusters

54 3. Relevant Overlapping Subspace Clusters on Categorical Data

Table 3.5: Results on Mushroom.

(a) ROCAT.

Cluster Edible Poisonous
0 1728 0
1 0 1728
2 0 1296
3 512 0
4 192 0
5 0 256
6 768 0
7 96 0
8 0 192
9 0 288
10 192 0
11 288 0
12 192 0
13 96 0
14 0 72
15 48 32
16 48 0
17 48 0
18 0 8
19 0 8
20 0 36

(b) MTV.

Cluster Edible Poisonous
0 0 1728
1 1 1296
2 1728 0
3 768 0
4 288 192
5 512 0
6 480 0
7 528 0
8 384 48
9 496 224

Noise 192 524

(c) CLICKS.

Cluster Edible Poisonous
43 1728 0
56 0 1728

201 2516 80
210 4016 3856
230 2016 8

(d) AT-DC.

Cluster Edible Poisonous
0 0 192
1 798 1223
2 62 1065
3 1296 0
4 1760 0
5 0 1728

(e) DHCC.

Cluster Edible Poisonous
0 2880 736
1 808 72
2 0 1296
3 216 0
4 0 1728
5 32 24
6 64 16
7 192 0
8 0 44
9 16 0

(f) Hyper+.

Cluster Edible Poisonous
1 1152 0
2 16 1296
3 0 1152
5 855 353
10 1056 240

3.4 Experiments 55

with hundreds of misclassified objects, like Cluster 0 in Table 3.5e, cluster 1 in Table 3.5d

and cluster 5 in Table 3.5f. MTV is the second best algorithm on Mushroom data regarding

Precision, because most of the clusters are Pure Subspace Clusters. However, there are still

many clusters with hundreds of misclassified objects, like cluster 9 in Table 3.5b. CLICKS

outputs many high purity clusters, however, some clusters contain 50 percent misclassified

records, like cluster 210 in Table 3.5c. Besides, cluster 210 shows that the overlapping

clusters provided by CLICKS are highly redundant. Cluster 210 contains nearly all the

points and only one attribute as the subspace. In contrast ROCAT also finds overlapping

clusters in the searching phase, however the redundancy is removed during the Combining

and Reassigning phase. Finally, ROCAT outputs the most relevant subspace clusters

without any redundancy.

In terms of subspace quality, the compactnesses Cp of the clusters found by ROCAT

are 0.126 in the detected subspace, 0.171 in the whole space and 0.518 in the whole data

set. Let us take Cluster 2 in Table 3.5a as an example. The 1296 mushrooms in this cluster

are all poisonous. The subspace that this cluster exists in is composed of 14 attributes.

Specifically, the cluster consists of specimen without bruises and foul odor, free close broad

gill, with identical shape, root and surface of stalk, partial white veil, one large ring and

the color of spore is chocolate. Mushrooms with these features are all poisonous. To

validate the relevance of this subspace attributes, we calculate the category distribution of

the remaining 8 attributes. The result indicates that the mushrooms in these attributes

have different category values. For example, the cap-shape attribute, contains one half bell

shaped and the other half flat records. Moreover, the gill-color attribute exhibits buff,

chocolate and green mushrooms. Similar statistics can also be found on other clusters.

Consequently, ROCAT can not only detect clusters, but can find the subspaces as well.

Splice. This data set consists of 3190 instances and 60 categorical attributes. The

instances are gene sequences and attributes are the positions on the sequences. The value

of each attribute is a DNA base (A, T, G, C). Splice contains class labels designating

instances as either EI (767 records), IE (768 records) or Neither (1655 records). EI and IE

denote that exon/intron boundaries and intron/exon boundaries can be recognized in the

56 3. Relevant Overlapping Subspace Clusters on Categorical Data

sequence, respectively. Neither states that there are neither EI nor IE sites.

Table 3.6: Results on Splice.

(a) ROCAT.

Cluster EI IE Neth.
0 45 703 16
1 629 16 10
2 1 17 0
3 0 8 0
4 15 0 0
5 9 0 0
6 8 0 0
7 10 0 0

Noise 101 36 1629

(b) AT-DC.

Cluster EI IE Neth.
0 55 78 513
1 151 644 1058
2 561 46 84

(c) Hyper+.

Cluster EI IE Neth.
0 374 8 3
52 153 75 127
197 300 302 709
349 130 4 442

(d) MTV.

Cluster EI IE Neth.
0 489 7 1
1 175 605 38
2 294 50 10
3 28 170 6
4 35 142 5

Noise 130 96 1601

(e) CLIQUE.

Cluster EI IE Neth.
0 174 158 380
95 161 197 378
179 227 123 402
240 136 153 393

(f) DHCC.

Cluster EI IE Neth.
0 15 10 419
1 668 19 28
2 40 3 393
3 11 0 369
4 28 728 34
5 5 8 412

ROCAT, DHCC and AT-DC automatically output 8, 6, and 3 clusters respectively.

Besides, ROCAT identifies 1,766 points as outliers. SUBCAD and MTV output 5 clusters.

CLICKS, CLIQUE and Hyper+ output 256, 241 and 399 clusters respectively. From Table

3.3 we can see that ROCAT outperforms most of the other methods with a Precision of

0.861. The confusion matrices of top 6 methods are shown in Table 3.6. Clusters with

good quality regarding the number of contained points and purity are highlighted in bold.

Table 3.6a clearly illustrates that the clusters found by ROCAT are of very high purity.

Cluster 0 and Cluster 1 contain the majority of all data points and are very pure. Cluster 0

is composed of 92% objects from class IE and Cluster 1 contains 97% objects from class EI.

3.4 Experiments 57

Besides, the outliers detected by ROCAT are mainly composed of records in the Neither

class. DHCC and MTV also perform well on Spice. The resulting clusters are very pure

as well, like clusters 1 and 4 in Table 3.6f and cluster 0 and the noise cluster in Table 3.6d.

Although DHCC finds many clusters that mainly contain records of the Neither class, it

cannot label them as outliers. On the other hand, MTV is able to find noisy cluster, but

also finds clusters of lower purity compared to ROCAT. The other methods do not perform

well on Splice.

The compactnesses Cp of the clusters found by ROCAT are 0.249 in the detected

subspace, 0.371 in the whole space and 0.741 in the whole data set, which indicates the good

quality of detected subspaces. Particularly, we choose cluster 0 of ROCAT in Table 3.6a

as an example to show the effectiveness of ROCAT on detecting subspaces. The subspace

is made up of 25 out of the 60 original attributes. Among the detected 25 attributes, there

are 2 positions (28 and 29) with the same values (A and G) for all sequences. Moreover 90

percent of the genes include C on position 27. Besides, there are 10 and 12 positions where

more than 80 and 60 percent of all genes only take 2 different base values, respectively. On

the other hand, the 4 categories {A, T,G,C} are averagely distributed in the remaining

35 positions by nearly all the gene sequences in Cluster 0. Therefore, ROCAT outputs

reasonable subspaces for the Splice data set.

CLICKS, CLIQUE and Hyper+ output overlapping clusters on Splice data set. How-

ever, there are too many clusters with a large amount of redundancies. It is hard for users

to interpret such results directly. The other methods all provide partition-based results.

In contrast, ROCAT finds relevant overlapping subspace clusters on Splice data set. There

are 63 objects with multiple labels and 5 pairs of clusters sharing objects. Cluster 1 and

4 in Table 3.6a for example, share 15 records. However, they are detected in different

subspaces: 6 attributes for cluster 1 and the other 52 attributes for cluster 4. Cluster 1

is very compact in the 6 detected attributes, while the 15 instances in cluster 4 are also

very similar in further 52 attributes. Therefore, the overlapping clusters provide addi-

tional information over other partition-based algorithms. Further, ROCAT only provides

the most relevant clusters without any redundancy, which facilitates the interpretation of

58 3. Relevant Overlapping Subspace Clusters on Categorical Data

the clustering results.

3.5 Related Work and Discussion

3.5.1 Categorical Subspace Clustering

Compared to the large body of literature on clustering numerical data only relatively

few papers focus on clustering categorical data. Some prominent approaches include the

basic algorithm K-modes [65] extending the famous K-means algorithm to categorical data,

ROCK [55] and COOLCAT [16], to mention a few. It is often difficult to find clusters in

the full dimensional space even in moderate-dimensional data sets, and a problem that is

known as the curse of dimensionality has been extensively studied. For an comprehensive

survey on clustering high-dimensional numerical data see [72]. One of the most prominent

technique is CLIQUE [10]. This grid-based approach actually discretized the numerical

data and therefore is also applicable to categorical data. However, it enumerates all the

possible subspace clusters which produces large redundancies.

Less algorithms have been designed for categorical subspace clustering. Ganti et al.

[49] proposed the categorical clustering method CACTUS, which builds a summary infor-

mation from the data set first and then projects the cluster onto each attribute. It can

be extended to find subspace clusters, however though introduced in the paper, it was not

implemented by the authors [116]. Gan and Wu [48] proposed the categorical subspace

clustering algorithm SUBCAD. They define a cost function based on the idea that data

points in relevant subspaces are compact while being sparse in irrelevant ones. LIMBO

[13] is a hierarchical algorithm based on an information bottleneck framework. They try

to maximise the mutual information between the clusters and attribute values. A good

cluster accurately predicts the attribute values associated with objects of the cluster. Al-

though LIMBO is based on information theories it does - in contrast to ROACT - not take

into account the model complexity. Furthermore, CACTUS, SUBCAD and LIMBO are all

partition-based method, which cannot find overlapping clusters, and need input parame-

3.5 Related Work and Discussion 59

ters. CLICKS [116] is a subspace algorithm which constructs a k-partite graph based on

all the values of all attributes and then searches for maximum cliques. CLICKS supports

overlapping clustering, however, it often includes too many redundant clusters. Besides,

the input parameters are hard to determine without having deeper knowledge of the data.

Subspace clustering methods are either partition-based or produce too many redundant

clusters. To solve the redundant problem, STATPC [87] and RESCU [88] are proposed to

find relevant non-redundant subspace clusters in high-dimensional numerical data. How-

ever, they are not applicable for categorical data. Moreover, they need many parameters

to bound the searching space.

Only very few algorithms support parameter-free clustering of categorical data. Xiong

et al. [114] proposes a divisive hierarchical algorithm DHCC, which iteratively splits the

higher level cluster by Multiple Correspondence Analysis (MCA) and then refines the result.

Cesario et al. [28] proposes a top-down algorithm AT-DC, which iteratively generates and

stabilizes clusters to achieve best quality. DHCC and AT-DC are both parameter-free

methods based on a top-down splitting framework, thus they can only find partitioning

clusters but not overlapping clusters. Besides, DHCC and AT-DC are greatly affected by

outliers, where ROCAT can handle them very well.

3.5.2 Informative Pattern Mining

Pattern mining is another area related to the problem of categorical subspace clustering.

For instance, the frequent itemsets found by pattern mining methods could be regarded as

the subspaces of clusters, while the objects that support the itemsets can be seen as clusters.

Among these pattern mining algorithms, informative itemset mining, which finds the most

informative itemsets or ranks the importance of the itemsets, is the most relative one. For

instance, Tiling [52] defines a tile as a region in the 0/1 database where all values are 1

(Subspace Cluster), which aims at finding a tiling consisting of at most K tiles covering the

largest possible area. Tiling can only find tiles without fault-tolerance, besides it needs the

number of tiles as input parameter. NoisyTile [70] uses the maximum entropy distribution

60 3. Relevant Overlapping Subspace Clusters on Categorical Data

to measure the informativeness of a tile or tiling and it supports noisy tiles. However, it

needs a fault-tolerant itemset mining algorithm, i.e. [94], to generate the candidate noisy

tiles. Moreover it only gives a rank of informativeness on itemsets. Similarly Hyper+ [113]

tries to find overlapped hyper-rectangles (noisy tiles) from candidates that are generated

by an itemset mining method with a different cost function. KRIMP [108] and MTV

[85] are designed for informative itemset mining based on compression. KRIMP needs

a minimum support value as input parameter while MTV is parameter-free. However,

they do not support fault-tolerant itemsets thereby performing worse than ROCAT in our

experiments. The cost function of ROCAT is different and thus their searching or ranking

methods cannot be directly applied. Besides, ROCAT is fully automatic while most of

these algorithms need input parameters. Furthermore, ROCAT scales better than these

algorithms in terms of both data size and dimensionality.

3.6 Conclusion

In this chapter, we introduced ROCAT, an effective and efficient algorithm for detecting the

most relevant overlapping subspace clusters on categorical data. Combining a compression-

based view on clustering with an effective search algorithm, ROCAT identifies the truly

relevant subspace clusters which may overlap in terms of the assigned objects and/or

the constituting attributes. The compression-based approach of ROCAT naturally avoids

undesired redundancy of the result and guarantees that each detected cluster is relevant

since it contributes to compress the data. In ongoing and future work, we explore extending

our idea to support numerical data or mixed-type data.

Chapter 4

Multiple Subspace Selection for

Hierarchical Clustering

The last chapter focuses on improving the effectiveness of subspace clustering. Another

challenge for clustering high-dimensional data is the interpretation of the results. For data

sets with correlated and irrelevant features, meaningful clusters often exist in different

arbitrarily-oriented subspaces. Such situation makes the interpretation even more difficult,

since the detected subspaces are arbitrarily-oriented and there is no semantic meaning for

them. In literature, only very few approaches touch the challenge of interpreting the

arbitrarily-oriented subspace clusters.

In this chapter, we try to handle the interpretation challenge by proposing a clustering

framework named MSS that provides hierarchical clustering and visualization. Parts of the

material presented in this chapter have been submitted in [61], where Xiao He was mostly

responsible for the development of the main concept, implemented the main algorithms and

wrote the largest parts of the paper; Claudia Plant supervised the project and proposed

the initial idea of multiple subspace visualization; Sebastian Goebl and Son T.Mai helped

with the implementation and performed parts of experiments; Christian Böhm revised the

whole paper; The co-authors also contributed to the conceptual development and paper

writing.

62 4. Multiple Subspace Selection for Hierarchical Clustering

“Xiao He, Sebastian Goebl, Son T.Mai, Christian Böhm and Claudia Plant.

Multiple Subspace Selection for Hierarchical Clustering and Visualization. Sub-

mitted for publication.”

MSS integrates Orthogonal Linear Discriminant Analysis, K-means and Kernel Den-

sity Estimation techniques. It detects multiple low-dimensional subspaces, each exhibiting

an interesting cluster structure. Moreover, our technique includes an intuitive visualiza-

tion of the relevant subspaces by scatter plots showing the cluster structure together with

histograms showing the contribution of the original features. Further facilitating the inter-

pretation, MSS discovers a hierarchy of clusters in multiple subspaces. Our algorithm is

robust and provides high-quality clusters even in the presence of a large number features

not relevant for clustering. Extensive experiments on both synthetic and real data sets

show the effectiveness and efficiency of MSS compared to existing methods.

The remainder of this chapter is organized as follows: In Section 4.1, it starts with

an introduction. We briefly give some backgrounds about LDA and orthogonal LDA in

Section 4.2. Section 4.3 presents the algorithm MSS in detail. Section 4.4 contains an

extensive experimental evaluation. Section 4.5 briefly discusses related work and Section

4.6 concludes the chapter.

4.1 Introduction

In many applications ranging from market segmentation to biomedicine, clustering can

offer deep insights into the major trends in our data without requiring much previous

knowledge. Moreover, clustering commonly is the first step in a data mining workflow to

explore an unknown data set. Most existing clustering approaches mainly aim at detecting

high-quality clusters. However, the outputs of many techniques tend to be difficult to

interpret. In the following steps of the data mining workflow, the interpretation of a

clustering result certainly is as important as the quality of the detected clusters. Due to

the presence of irrelevant or correlated features clustering of already moderate-dimensional

4.1 Introduction 63

data is a challenging task since meaningful clusters often exist in different arbitrarily-

oriented subspaces. This phenomenon does not only make clustering difficult, but also the

interpretation of the clustering result.

In literature, arbitrarily-oriented subspace clustering techniques have been proposed to

detect such clusters, e.g. ORCLUS [9], 4C [23] and COPAC [4]. ORCLUS combines PCA

and K-means to achieve arbitrarily-oriented clusters, while 4C and COPAC integrate PCA

into density-based clustering method. These methods assume each cluster being located

in an unique arbitrarily-oriented subspace. The results are hard to interpret, since the

detected subspaces are arbitrarily-oriented and there is no relationship among the clusters.

Specifically, these techniques provide no knowledge of in which subspace two particular

clusters can be well separated.

The technique LDA-Km [40] approaches the challenge in a different way: This approach

integrates the supervised dimensionality reduction technique Linear Discriminant Analysis

(LDA) with K-means into a subspace clustering framework, which finds a single subspace

for all clusters. The greatest benefit of single subspace is the possibility to project all data

to a joint space. If the joint space is low-dimensional, we can easily visualize the data by

scatter plots. By inspecting this joint low-dimensional space we can learn a lot about the

relationships among the clusters. However, in most cases there are many clusters in a data

set, and a single two- or three dimensional subspace is not sufficient to distinguish all the

clusters. In LDA-Km, the authors set the dimensionality of reduced subspace to K − 1,

where K is the number of clusters, which makes visualization impossible when the number

of clusters exceeds four.

Observed from many real datasets, we found that a single low-dimensional subspace is

not sufficient to distinguish all clusters, while each single cluster in its individual subspace

cannot give important relationships between each other. Rather, a group of clusters can

be well distinguished in one subspace and another group of clusters in a different one.

Therefore, we aim at finding a set of low-dimensional arbitrarily-oriented subspaces, which

contain interesting cluster structure. Specifically, we propose a top-down splitting frame-

work based on Orthogonal Linear Discriminant Analysis for detecting subspace clusters

64 4. Multiple Subspace Selection for Hierarchical Clustering

in multiple low-dimensional subspaces. In each detected subspace, there are multiple pro-

nounced clusters and their relationships can be explored by inspecting the corresponding

subset of the data in the subspace. The generated cluster hierarchy further facilitates

interpretation. For simplicity sometimes we use ’subspace’ instead of ’arbitrarily-oriented

subspace’ in the following.

Figure 4.1: An example data set for illustrating the idea of hierarchical visualization.

We use a simple example to illustrate our idea, which is depicted in Figure 4.1. The

data set, with 1000 points and 3 dimensions, contains 5 clusters. There are two groups

of clusters, each sharing a similar orientation: The first group is formed by the purple

and yellow clusters and the second group by the remaining clusters (red, blue and green).

Obviously, it is not possible to transform this data set into a 2-dimensional subspace where

all 5 clusters can be well distinguished. Our aim is to detect hierarchical clusters which

exist in multiple subspaces. Then we can interpret them by a hierarchical visualization,

which is shown in Figure 4.2. At first, the original data is projected to a two-dimensional

subspace shown as Subspace1 in Figure 4.2, where two clusters are well separated. Then,

the original data of each cluster is projected to the other two subspaces shown as Subspace2

4.1 Introduction 65

	
	

	 	 	 	

	

	

	

Figure 4.2: Hierarchical clustering and visualization.

and Subspace3 in Figure 4.2. In Subspace2, two lower level clusters can be found, while

in Subspace3 three clusters can be well distinguished. From this we learn the relationship

between subspace clusters. The blue bar charts in the axis are contribution histograms of

original features. For instance, in Subspace1 original feature 2 and 3 contribute more on

distinguishing blue and brown clusters, while in Subspace2 feature 1 and 3 contribute more

on separating purple and yellow clusters. Furthermore, The difference between subspaces

can be seen from the bar charts as well.

The main contributions of this chapter are:

1. Multiple Subspace Selection. We propose a framework MSS (Multiple Subspace

Selection) that finds multiple low-dimensional subspaces, each exhibiting an interest-

ing cluster structure.

2. Hierarchical Visualization. We provides hierarchical visualization with different

low-dimensional subspaces for an intuitive interpretation of the clustering result.

66 4. Multiple Subspace Selection for Hierarchical Clustering

3. High Quality Clustering Results. Our technique outperforms state-of-the-art

comparison methods on multiple synthetic and real data sets in terms of clustering

quality.

4. No need of specifying parameter of subspace dimensionality. Many methods

need a parameter to specify the dimensionality of subspace, which is hard to estimate.

Our technique avoids this by providing low-dimensional subspaces and hierarchical

structure.

5. Robust to irrelevant Dimensions. Our method is very robust in the presence of

a large number of irrelevant dimensions.

4.2 LDA and Orthogonal LDA

For a data set with K clusters, in Linear Discriminant Analysis (LDA) we use the between-

class scatter and within-class scatter matrices:

Sb =
∑
k

nk(mk −m)(mk −m)T (4.1)

Sw =
∑
k

∑
i∈Ck

(xi −mk)(xi −mk)
T (4.2)

where mk is the mean of class Ck and m is the global total mean.

The optimal subspace U = U1, ..., Ud is obtained by optimizing:

max
U

Tr
UTSbU

UTSwU
(4.3)

where d is the dimensionality of the subspace, which is usually set to K − 1.

In [82] D. Luo et al point out that the classic LDA is implicitly defined with constraints.

The classic LDA is not orthogonal as PCA, i.e. UTU 6= I. However, in many cases we

desire that the projection directions are mutually orthonormal. Therefore, they propose

orthogonal LDA optimizing Eq. (4.3) under the orthogonality constraint UT
orthUorth = I.

4.3 Multiple Subspace Selection 67

According to [82], the solution of Uorth for orthogonal LDA is obtained as follows.

Firstly, we get the principal eigenvectors F = {f1, ..., fd} (associated with d largest eigen-

values) of S
− 1

2
w SbS

− 1
2

w . Then the solution of Sw-orthonormal LDA (with the constraint

UT
wSwUw = I) is:

Uw = S
− 1

2
w F. (4.4)

We have automatically UT
wSwUw = I, because S

− 1
2

w SbS
− 1

2
w is a positive definite symmetric

matrix, and F TF = I. Finally, the solution of orthogonal LDA is:

Uorth = Uw(UT
wUw)−

1
2 (4.5)

With orthogonal LDA, the transformation does not change the scale of the original data,

which is important for interpretation of the clustering result: All the resulting subspaces

during the run of our algorithm correspond to orthonormal rotations followed by projection

and we do not want to modify the data in any other way like scaling or warping. Thus, we

know that the resulting cluster structure is present in a subspace of the original data set.

4.3 Multiple Subspace Selection

For a given data set, our aim is to find a group of transformations that project the data

to different low-dimensional subspaces U = {U1, U2, ..., Up}. In each subspace Ui, a group

of clusters Ci = {Ci1, Ci2, ..., Ciq} can be well clustered, where i ∈ {1, 2, ..., p}. By doing

this, we can interpret the clustering results by visualizing them in different low-dimensional

subspaces. The problem is very difficult to solve since we do not know how many subspaces

we need and how many clusters are in each subspace.

In this chapter, we use a hierarchical framework to model this problem: To allow for

visualization and interpretation, we restrict ourselves to 2-dimensional subspaces in the

following. If desired e.g. by application-specific needs, our framework can also be modified

to detect higher dimensional subspaces. We assume that any data set with cluster structure

can be transformed to an arbitrarily-oriented subspace in which at least 2 clusters can be

68 4. Multiple Subspace Selection for Hierarchical Clustering

Algorithm 3 OLDA-Km

Input: K, Data
Output: Clusters, TransData

Set dimensionality of subspace d = 2;
TransData = PCA(Data, d);
while Not converge do
Clusters = KMeans(TransData, K);
TransData = OLDA(Data, Clusters, d);

end while

return Clusters, TransData;

well separated. Obviously, a one-dimensional subspace is able to separate 2 clusters. If

rotating the data set and projecting it to all possible one-dimensional subspaces cannot

partition the data set into at least 2 clusters, the dataset must be a cluster itself. The

higher level clusters are separately projected to the other arbitrary subspaces, and their

members can be well split into clusters there. Finally, we build the hierarchy of the whole

data set.

4.3.1 Orthogonal LDA-Kmeans

One important step of our framework is to transform the original data set to a 2-dimensional

subspace where we can detect at least two clusters in it. This reminds us about the tech-

nique LDA-Kmeans (LDA-Km) [40] that integrates the supervised method into the clus-

tering process to find clusters in an arbitrarily-oriented subspace. However, the original

LDA-Km projects the data to K − 1 dimensions and changes the scale of original data,

which is, as discussed before not desirable for visualization. Therefore, we use Orthogonal

LDA and fix the projected dimensionality with 2 for visualizing data in the original scale.

Additionally we find that Orthogonal LDA-Kmeans (OLDA-Km) usually performs a su-

perior than LDA-Km in our experiments. The pseudocode code of OLDA-Km is depicted

in Algorithm 3.

Does OLDA-Km always converge? The answer is yes. Similar as LDA-km [40], the

4.3 Multiple Subspace Selection 69

objective function of OLDA-km is the same as of OLDA. There are two steps in OLDA-

km: the K-means in the subspace U and OLDA in the original space. Obviously, the second

step OLDA monotonically maximize the objective function. And the objective function of

OLDA Eq. (4.3) is equivalent to:

min
U

TrUTSwU (4.6)

since the covariance matrix St = Sw + Sb is constant. Therefore the objective of K-means

in subspace U is equivalent to OLDA’s objective function, as Eq. (4.7) shown. Therefore,

the objective function is monotonically maximized in this step as well. Finally OLDA-Km

converges to a local optimum, since each step they increase the objective function of Eq.

(4.3).

min
C

TrUTSwU =
∑
k

∑
i∈Ck

‖ UTxi − UTmk ‖2

= Tr
∑
k

∑
i∈Ck

UT (xi −mk)(xi −mk)
TU

(4.7)

OLDA-Km aims to find the directions U that maximize the between-class distances

and minimize the within-class distances in the transformed subspace. OLDA needs the

correct clustering to find the subspace that best distinguishes clusters, while K-means

performs better when the data is projected to the best subspace. OLDA-Km solves this

chicken-egg problem iteratively by performing transformation and clustering to get the

best clusters and subspace simultaneously. However, since K-means is heavily dependent

on the initialization and only find the local optimum, similarly OLDA-km converges to

local optimum and relies on the initialization as well.

To acquire stable clustering results, we try to avoid this issue in OLDA-Km. The sim-

plest way would be performing OLDA-Km multiple times and choose the best result based

on the objective function of OLDA Eq. (4.3). However, only considering the distances be-

tween different clusters centers and the distances with-in cluster do not work all the time

70 4. Multiple Subspace Selection for Hierarchical Clustering

−20

−10

0

10

20

−3
−2

−1
0

1
2

−4

−2

0

2

4

6

8

10

(a) Original 3D data
−32 −30 −28 −26 −24 −22 −20 −18 −16 −14 −12

−2

0

2

4

6

8

10

12

14

(b) Incorrect clustering
with Eq. (4.3) = 1.56
and Eq. (4.8) = 0.08

−25 −20 −15 −10 −5

6

8

10

12

14

16

18

20

22

24

(c) Correct clustering
with Eq. (4.3) = 0.81
and Eq. (4.8) = 1.34

Figure 4.3: The different objective function values on a 3D example data.

for subspace clustering. Because usually there are heavy correlations among the features.

For example there are two 3-dimensional clusters, which are very close from each other

and their projection is shown in Figure 4.3. Their features are heavily correlated and their

intrinsic dimensionality are 2. LDA-Km and OLDA-Km always converge to bad results

when setting dimensionality of subspace d = 1. For d = 2 LDA-Km and OLDA-Km output

different results from diverse initializations. Unfortunately Figure 4.3b provides incorrect

results with a higher objective function value Eq. (4.3) of 1.56, while Figure 4.3c gives the

correct clustering with a lower objective value of Eq. (4.3) is 0.81.

It is necessary to consider the separation among clusters while choosing the best lo-

cal optimum results, see Figure 4.3. Therefore, we modify Eq. (4.3) by adding a weight

shown in Eq. (4.8), which is the single-link distance between different clusters in trans-

formed subspace. Single-link distance between two clusters is the shortest distance between

their objects as shown in Eq. (4.8). We use single-link distance but not complete-link or

average-link distance. The reason is that complete-link and average-link distance have the

similar effects as the objective function of OLDA, which take all the objects of clusters

into consideration. By adding the single-link distance, we consider the separateness among

different clusters. For the example in Figure 4.3, the new heuristic function gives 0.08 to

the correct clustering in Figure 4.3b and 1.34 to the incorrect situation in Figure 4.3c. In

our experiments, we found that executing OLDA-Km 20 times would be a good choice to

4.3 Multiple Subspace Selection 71

get stable results based on Eq. (4.8).

max
U

(
TrUTSbU

TrUTSwU
· min
Ci,Cj∈C

Dist(Ci, Cj))

Dist(Ci, Cj) = min
x∈Ci,y∈Cj

distD·U(x, y)

(4.8)

where distD·U(x, y) means the distance between object x and y in the subspace U .

4.3.2 Multiple Subspace Selection

LDA-Km reduces the dimensionality of data to d = K − 1, where K clusters can be found

there. However, in practice the number of clusters K is usually larger than expected.

Therefore, the found arbitrarily-oriented subspace owns a higher dimensionality as well,

which makes visualization impossible when K is larger than 4. Further, the performance

of K-means also deteriorates when K increases, which affects the effectiveness of LDA-Km

and OLDA-Km.

We bring a top-down splitting algorithm for multiple subspace selection that make

better clustering and interpretation of the results. Our idea is based on the assumption that

any dataset with cluster structure can be transformed to an arbitrarily-oriented subspace,

in which at least 2 clusters can be well separated. Specifically, we greedily split the cluster

(initial cluster contains all data points) in an arbitrarily-oriented subspace with OLDA-Km

until no cluster can be well partitioned. Kernel density estimation is used to estimate the

densities of points in subspace, and the difference between densities of cluster centre and

border are compared for termination.

The pseudocode of our algorithm MSS is provided in Algorithm 4. At first, we try to

partition all the points in a subspace with OLDA-Km, then each resulting cluster in a lower

hierarchy is partitioned in the other subspace. In each step, OLDA-Km is performed on the

objects in the original space with k ∈ [2, ...,MaxK]. Maxk is a parameter that indicate

the maximum number of clusters can be found in a single subspace. From our experiments,

we found that there is no difference when MaxK > 5 in a wide range. Therefore, MaxK

72 4. Multiple Subspace Selection for Hierarchical Clustering

Algorithm 4 MSS

Input: ε, MaxK, Data
Output: Subspaces, Hierarchy

Add all objects to partition queue Queue;
while Queue is not empty do
Objs = Queue.Pop;
Get the original data Odata of Objs;
for k ∈ [2, ...,MaxK] do

[Clusters, Tdata] = OLDA-Kmeans(k, Odata);
if Eq. (4.11) > ε in two closest clusters then

Break;
else

Keep Clusters and Tdata with maximum Eq. (4.8);
end if

end for
Queue.AddAll(Clusters);
Subspaces.Add(Clusters, Tdata);
Update Hierarchy with Clusters;

end while

return Subspaces, Hierarchy;

is set to 5 in all the following experiments. Kernel density estimation is used to judge

whether the resulting clusters are well-separated. The one with biggest objective function

of OLDA-Km in Eq. (4.8) will be kept and split later. Finally, the splitting is terminated

when no leaf cluster can be partitioned any more and the hierarchy is built in process.

The real parameter for MSS is ε, which is a threshold to evaluate the difference between

densities of cluster center and border.

The multivariate kernel density estimation is defined as follows:

f̂(x) =
1

N

∑
y∈D

(
d∏
i=1

1

hi
F (
x− y
h

)) (4.9)

where h = h1, ..., hd is the bandwidth and the term F (·) is a d-dimensional kernel function

that is non-negative and integrates to one. We use the standard multivariate normal kernel:

4.3 Multiple Subspace Selection 73

F (x) = (2π)−d/2exp(−x2/2). The bandwidth h is selected using an established heuristic

which is proven to work well in various applications [102]:

hi = (4/(d+ 2))
1
d+4 · σi ·N−

1
d+4 (4.10)

where σi the standard deviation of the cluster.

To determine whether clusters are well-separated or not, at first, we find two closest

clusters of the results from OLDA-Km. By closest clusters, we mean that the single-link

distance between the two clusters is shortest in the transformed subspaces. Then we define

the separateness for stopping the partition as Eq. (4.11) shows, where maxDensity is the

maximum density of the object inside the cluster, and P is the object of the cluster which

is nearest to the other cluster, densityP is the density of P .

Separateness =
maxDensity − densityP

maxDensity
(4.11)

If Separateness is bigger than a predefined threshold ε, we think the clusters are well-

separated. From Eq. (4.11) we know that Separateness ∈ [0, 1], therefore ε is set to [0, 1].

In the experiments section, we will study the effect of ε on the proposed algorithm MSS

and show that MSS is quite stable with a wide range of ε choices.

4.3.3 Runtime Complexity

The runtime complexity of MSS for a data set with N points and D dimensions is equivalent

to MaxK · t· (OLDA-Km + SL), where MaxK is a constance and fixed to 5 in MSS, t

is the number of times that OLDA-Km performs, and SL is the complexity for computing

Single-link distances, which is O(N2). Term t relies on the parameter ε and bigger ε

leads to smaller t. Usually t � N . Therefore, the complexity of MSS is equivalent to

(OLDA-Km + O(N2)). The complexity for K-means can be approximated to O(ND)

since it always converge fast. For OLDA we need to make matrix multiplication and

inversion for a D dimensional matrix. Theoretically the time complexity of this procedure

74 4. Multiple Subspace Selection for Hierarchical Clustering

is O(D3). However, it can be calculated in O(D2.375) by Coppersmith-Winograd algorithm

[34]. Therefore, the complexity for OLDA-Km is O(nND + nND2.375), where n is the

number of iterations of OLDA-Km to converge, which is usually small. Finally, the runtime

complexity of MSS can be approximated to O(ND2.375 +N2).

4.4 Experiments

This section provides empirical evidences to show the effectiveness of MSS on both synthetic

and real data sets. After giving the experimental setup, we evaluate MSS in five aspects:

Firstly, we compare OLDA-Km, one important component of MSS, with LDA-Km. Sec-

ondly, we study the effect of the only parameter ε in MSS and show its stability. Thirdly, we

compare MSS with state-of-art arbitrarily-oriented subspace clustering methods in terms

of clustering quality. After that, we show the hierarchical visualization produced by MSS

with a case study. Finally, we evaluate the scalability of MSS.

4.4.1 Setup.

We Compare MSS against all arbitrarily-oriented subspace clustering algorithms imple-

mented in the framework ELKI [6], namely ORCLUS [9], 4C [23] and COPAC [4]. In

terms of detecting hierarchical structure in arbitrarily-oriented subspace, HiCO [5] is the

first algorithm that address the problem. Therefore we show the comparison with HiCO

as well. Furthermore, we compare MSS with LDA-Km [40], which integrates supervised

dimensional reduction technique to subspace clustering. K-means is chosen as the baseline

method as well. We implement K-means, MSS, LDA-Km and OLDA-Km in Java and get

the others from ELKI package 1. All experiments have been conducted on a workstation

with 2.9GHz dual-core CPU and 8.0 GB RAM.

We generate 2 basic synthetic datasets Clus5 and Clus10 with hierarchies. Clus5 is

a 5 dimensional dataset with 5 clusters, while Clus10 is a 10 dimensional dataset with 10

1http://elki.dbs.ifi.lmu.de/

4.4 Experiments 75

clusters. Each cluster contains 200 points. The hierarchical structure of Clus10 is depicted

in Figure 4.4, while Clus5’s structure is like the left child of root in Figure 4.4. Each square

represents a cluster, the purple one is the root cluster containing all the points. Clusters

with same color can be distinguished in an arbitrarily-oriented subspace. Moreover, leaf

clusters with same color are correlated and share the same orientation, e.g. clusters in

Figure 4.1. We generate a correlated cluster by first building a 3-dimensional Gaussian

cluster with standard deviations 1.0, 1.0 and 4.0 in each dimension. Then we rotate it

with a 3d orthonormal matrix. Leaf clusters with same color share the same rotation

matrix. Furthermore, we add irrelevant dimensions to each group of clusters. Take the 3

yellow clusters in Figure 4.4 for example, we put them in the first 3 dimensions and add 7

irrelevant dimensions with uniform distribution ranging from [0,10], and put the following

2 red clusters in 3, 4, 5 dimensions and add irrelevant dimensions analogously. In the same

way, we generate the Clus5 dataset with a easier hierarchy.

	

	 	

Figure 4.4: The hierarchical structure of dataset Clus10.

Six real-world data sets are chosen from UCI machine learning repository 2 for eval-

uation. They are iris, wine, Pen-based Recognition of Handwritten Digits (Pendigits),

Image Segmentation (Segment), Ecoli, and Landsat Satellite (Satellite). The descriptions

of these datasets are depicted in Table 4.1. All the synthetic and real data sets in Table 4.1

have labels. We view the labels of the data sets as the ground truth and use normalized

mutual information (NMI) and F-Measure as performance measure.

2http://archive.ics.uci.edu/ml

76 4. Multiple Subspace Selection for Hierarchical Clustering

Table 4.1: Datasets description.

Datasets Samples Dimensions Class
Clus5 1000 5 5
Clus10 2000 50 10

Iris 150 4 3
Wine 178 13 3

Pendigits 7494 16 10
Segment 2310 19 7

Ecoli 336 7 8
Satellite 6435 36 6

Table 4.2: Parameterizations on real datasets.

ORCLUS (k, l) 4C (ε,m, λ) COPAC (ε,m, k) HiCO (µ, k)
Clus5 5, 5 3.1, 2, 5 2.5, 5, 2 30, 30
Clus10 10, 50 10, 10, 50 6, 2, 2 -

Iris 3, 4 1, 10, 4 10, 2, 12 -
Wine 3, 13 40, 5, 13 6, 8, 39 -

Pendigits 10, 16 21, 2, 8 13.4, 3, 48 5, 20
Segment 7, 19 20, 2, 10 5.5, 2, 57 20, 20

Ecoli 8, 7 0.1, 2, 5 0.02, 2, 21 25, 25
Satellite 6, 36 36, 15, 36 12, 2, 98 -

The same with MSS, K-means and LDA-Km, we execute ORCLU 100 times for each

dataset and show the mean of the NMI and F-Measure values. We give the true number of

clusters to K-means, LDA-Km and ORCLUS as their input parameter. Besides, ORCLUS

needs the average number of intrinsic dimensionality l for subspace clusters, we test l

from [1, .., D] and output the best result, where D is the dimensionality of data. 4C and

COPAC need 3 parameters, we try ε andm (minpts) in a wide range ([0.01, 40] and [2, ..., 25]

respectively), and set the third parameter following the author’s instruction [23, 4]. Finally,

we output the best results. HiCO needs four parameters, we use default δ and α in ELKI

package and try different µ and k. The parameterizations for all comparison methods are

shown in Table 4.2.

4.4 Experiments 77

4.4.2 Comparing OLDA-Km with LDA-Km

OLDA-Km is one important component of MSS, in this part we show the improvement

of OLDA-Km on LDA-Km on datasets with a small number of clusters (Clus5, Iris and

Wine), since no hierarchy can be found there. Besides, OLDA-Km with its objective

function Eq. (4.3) named OLDA-KmO and the proposed heuristic function Eq. (4.8)

OLDA-KmH are compared as well. We execute OLDA-Km 50 times and choose the results

based on Eq. (4.3) and Eq. (4.8) for the results of OLDA-KmO and OLDA-KmH. The

NMI and F-Measure results are summarized in Table 4.3 and Table 4.4. The performance

of these algorithms depend on initialization, thus for each dataset we execute them 100

times and show the mean of the values.

Table 4.3: NMI between OLDA-Km and LDA-Km.

Algorithm Clus5 Iris Wine
K-means 0.693 0.676 0.383
LDA-km 0.703 0.886 0.634

OLDA-Km 0.741 0.919 0.727
OLDA-KmO 0.827 0.919 0.695
OLDA-KmH 0.941 0.919 0.734

Table 4.4: F-Measure between OLDA-Km and LDA-Km.

Algorithm Clus5 Iris Wine
K-means 0.645 0.673 0.459
LDA-km 0.668 0.937 0.733

OLDA-Km 0.701 0.961 0.793
OLDA-KmO 0.811 0.961 0.779
OLDA-KmH 0.938 0.961 0.797

From Table 4.3 and 4.4 we can clearly see that OLDA-Km improves the clustering re-

sults of LDA-Km with higher NMI and F-Measure values on all the three datasets by using

the orthogonal transformation. OLDA-KmO with OLDA’s objective function improves the

clustering quality on synthetic dataset Clus5, but degrades the result on Wine dataset,

which means that the objective function of OLDA is not always a good metric for subspace

clusters. Further, OLDA-KmH produces the best results, which show the effectiveness of

78 4. Multiple Subspace Selection for Hierarchical Clustering

proposed function Eq. (4.8). Besides, all the LDA-based method improve the clustering

results of K-means.

4.4.3 The effect of parameter Epsilon

Before comparing MSS with the other competitors, we first evaluate the parameter ε of

MSS. From Eq. (4.11) we know that ε ∈ [0, 1]. In Figure 4.5, we report the clustering

qualities (NMI) of MSS with ε ranging from 0.05 to 1 with step 0.05 on all data sets.

As we can see, our algorithm is robust to the choices of ε in a wide range of choice. For

example, the clustering quality of dataset Pendigits remains stable from 0.6 to 0.8 for 85%

values of ε. Besides, in most cases we get the best results with ε ∈ [0.4, 0.6], which is our

recommendation for using MSS. There are some exceptions, e.g. Iris. However, ε is still

easy to set, because for a higher ε MSS outputs nothing, which is helpful to address the

boundary.

0	

0.2	

0.4	

0.6	

0.8	

1	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	

N
M
I

Epsilon

The	 effect	 of	 epsilon	 on	 MSS

Clus5	

Clus10	

Iris	

Wine	

Pendigits	

Segment	

Ecoli	

Satellite	

Figure 4.5: The effects of parameter ε on synthetic and real dataset for MSS.

4.4 Experiments 79

4.4.4 Clustering Quality

In terms of clustering quality, we evaluate MSS in two aspects. First, we compare the

NMI and F-Measure values on both synthetic and real datasets. Secondly, we evaluate the

effects of irrelevant dimensions.

Table 4.5: Clustering quality comparison (NMI)

Algorithm Clus5 Clus10 Iris Wine Pendigits Segment Ecoli Satellite
MSS 0.992 0.981 0.907 0.757 0.812 0.675 0.655 0.571

K-means 0.693 0.697 0.678 0.383 0.692 0.524 0.583 0.569
LDA-Km 0.703 0.673 0.886 0.634 0.681 0.337 - 0.578
ORCLUS 0.836 0.801 0.756 0.394 0.678 0.408 0.631 0.446

4C 0.893 0.618 0.733 0.389 0.477 0.574 0.393 0.482
COPAC 0.759 0.644 0.046 0.355 0.664 0.555 0.206 0.291
HiCO 0.456 - - - 0.271 0.272 0.369 -

Table 4.6: Clustering quality comparison (F-Measure)

Algorithm Clus5 Clus10 Iris Wine Pendigits Segment Ecoli Satellite
MSS 0.991 0.965 0.948 0.819 0.756 0.575 0.787 0.561

K-means 0.645 0.514 0.673 0.459 0.616 0.462 0.518 0.569
LDA-Km 0.668 0.499 0.937 0.733 0.595 0.341 - 0.575
ORCLUS 0.825 0.693 0.806 0.591 0.576 0.401 0.597 0.485

4C 0.922 0.415 0.746 0.577 0.214 0.444 0.441 0.501
COPAC 0.787 0.535 0.032 0.588 0.585 0.478 0.454 0.375
HiCO 0.353 - - - 0.254 0.212 0.336 -

Table 4.5 and 4.6 summarize the clustering results. LDA-Km does not work on Ecoli

due to the singular problem. Hico cannot provide any useful clusters for some data sets as

well. It is clear that MSS outperforms all the comparison methods in all the tested data

sets. Specifically, MSS provides nearly perfect results for two synthetic datasets Clus5 and

Clus10. Besides, MSS outputs good NMI and F-Measure values for Iris, Wine, Pendigits

and Segmentation as well, which are at least 0.12 higher than those from comparisons.

In terms of the other two data sets, MSS and ORCLUS perform equally good on Ecoli,

while MSS, K-means and LDA-Km produce similar result on Satellite. Besides MSS works

better than the other methods.

80 4. Multiple Subspace Selection for Hierarchical Clustering

Real world data sets often contain irrelevant features. To test the robustness of MSS

against irrelevant features, we add different amount of irrelevant dimensions to dataset

Clus5. Specifically, we add additional dimensions with uniform distribution ranging from

[0, 10]. The results of MSS and comparison methods are shown in Figure 4.6. For 4C,

COPAC and HiCO, the original parameters for Clus5 do not work, we try different pa-

rameterizations and output the best one in each case. For the other methods, we use the

original parameters for Clus5 including MSS. From Figure 4.6 it is evident that MSS is ex-

tremely robust against irrelevant dimensions. The decline is very minor with a NMI above

0.96 even with 5 data and 25 irrelevant dimensions. All the other algorithms severely

degrade the performance in the presence of irrelevant dimensions. 4C and COPAC are

affected more by irrelevant dimensions.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 5	 10	 15	 20	 25	

N
M
I

Irrelevant	 Dimensions

The	 effects	 of	 irrelevant	 dimensions

MSS	

LDA-‐Km	

ORCLUS	

4C	

COPAC	

HiCO	

Figure 4.6: The effects of irrelevant dimensions.

4.4.5 A Case Study on Pendigits Data

In this section, we give a case study on Pendigits data set for hierarchical clustering and

visualization in multiple subspaces provided by MSS. Pendigits data set contains 7494

4.4 Experiments 81

points and 16 dimensional features of hand-written digits from 30 writers. The objects are

labeled according to the digit.

The hierarchical structure computed by MSS is depicted in Figure 4.7. The root cluster

(purple block) contains all the digits, the blue blocks represent the intermediate hierarchical

clusters while the yellow blocks are leaf clusters. Children clusters from the same father

can be well separated in an arbitrarily-oriented subspace, some of them are labeled in the

figure. The digits in each block mean that the cluster contains these digits. The percentage

following the digit in leaf cluster represents the proportion of the digit the cluster owns.

From Figure 4.7, it is clear that the clustering accuracy is very high. Nearly all the leaf

clusters are dominated by a single digit. Specifically, there are 13 leaf clusters in total and

8 clusters among them are consisted of more than 94% of 7 different digits. Besides, the

other 3 are composed of 2 similar digits and one of them forms the majority (more than

75%), e.g. {1, 7} and {2, 1}. Furthermore, there are 2 leaf clusters in the lower hierarchy

composed of two similar digits with analogous percentages. And they only own a small

number of points compared to the others. Apart from the accuracy, MSS detects interesting

hierarchy from Pendigits data set as well. Take the descendants from the left child of root

cluster for example, at first odd digits and even digits are separated in Subspace3, then

the even digits are further split into {0, 8} and {4, 6} in Subspace4. Clearly, 0 and 8 are

similar as well as 4 and 6. Finally, they are distinguished in Subspace9 and Subspace8.

The detected hierarchy is just as that in real life.

With the hierarchical structure and the transformed data in multiple subspaces pro-

duced by MSS, we build the hierarchical visualization for further interpreting the clustering

results. Due to space limitation the hierarchical visualization for 7 2-dimensional subspaces

(the part inside the red line of Figure 4.7) are shown in Figure 4.8. Clusters are labeled with

different colors in each subspace. The arrow goes from the father cluster to a subspace,

where the father cluster can be well-separated. Besides, the true label of each instance is

shown as the digit itself as well. From Figure 4.8 we can see that different digits can be

distinguished in different subspaces. Particularly, in Subspace4, Subspace8 and Subspace9

where only leaf cluster exists, same digits are close in the corresponding subspace while

82 4. Multiple Subspace Selection for Hierarchical Clustering

Figure 4.7: Hierarchy of Pendigits detected by MSS.

4.4 Experiments 83

	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	
	
	 	 	
	
	

Figure 4.8: Hierarchical visualization on subspaces of Pendigits dataset found by MSS.

84 4. Multiple Subspace Selection for Hierarchical Clustering

different digits are far from each other. The subspaces found by MSS are effective for

separating the corresponding clusters.

MSS provides transformation matrix for each resulting subspace. We further analyze

the contribution of original features for the subspaces in Figure 4.8. We show the con-

tribution histograms for 4 subspaces only with leaf clusters in Figure 4.10. We give the

contribution histograms of horizontal axis since these leaf clusters can be well-clustered

there. From Figure 4.10a, we can easily get that Feature 1, 5 contribute most for distin-

guishing digits 7 and 8 in Subspace4. While separating digits 0 and 8 in Subspace9, feature

6 and 9 contribute most, which is depicted in figure 4.10d.

Figure 4.9: Reachability plot from HiCO on Pendigits with µ = 5 and k = 20, NMI=0.271.

HiCO outputs points order and their reach-abilities like OPTICS [14] as its clustering

results. For example, the best result of HiCO on Pendigits data set with µ = 5 and k = 20

is shown in Figure 4.9. The ordering of the points is on the x-axis and the reachability

distance is on the y-axis. We get the clusters by cutting at the red line with the reachability

of 245.1, and the points in the same valley form a cluster. The result of HiCO on Pendigits

is much worse than that of MSS and MSS provides more information by the proposed

4.4 Experiments 85

0 5 10 15
0

0.05

0.1

0.15

0.2

(a) Subspace 4.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

(b) Subspace 6.

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) Subspace 8.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

(d) Subspace 9.

Figure 4.10: Contribution histograms of original features for subspaces in Figure 4.8.

hierarchical visualization.

From the hierarchical visualization and the contribution histogram, we can learn more

about the relationship between clusters, e.g. in which subspace they can be best separated,

which features contribute more to the subspace, how close are these clusters in the subspace,

are there some instances in the border line and so on.

4.4.6 Scalability

To evaluate the scalability of MSS with respect to data size and dimensionality we generate

datasets using the way of creating Clus5. For data size, each data set contains 5 dimensions

86 4. Multiple Subspace Selection for Hierarchical Clustering

and varying number of points from 2000 to 10000. For dimensionality, each data set

contains 1000 points and varying the dimensionality from 10 to 50. Figure 4.11 and Figure

4.12 summarizes the results. MSS scale similarly as most comparison methods in the

number of objects, which is faster than the other hierarchical subspace method HiCO.

With respect to dimensionality, MSS scales similar with ORCLUS and LDA-Km as we

analyzed before. 4C and COPAC scale better in the dimensionality with correct parameter

settings. However, searching for a good parameterization is a difficult task as well. HiCO

performs worst and is not scalable in dimensionality.

1	

10	

100	

1000	

2000	 4000	 6000	 8000	 10000	

Ti
m
e	
(S
ec
on

ds
)

Data	 Size

MSS	 LDAKM	 ORCLUS	 4C	 COPAC	 HiCO	

Figure 4.11: The scalability of MSS and comparisons regarding Data size.

4.5 Related Work and Discussion

4.5.1 Exploiting Supervised Techniques for Clustering

Clustering and classification are closely related tasks and sometimes clustering can be

considered as unsupervised classification. Classification can profit from clustering, e.g.

clustering inside the classes has been demonstrated to improve classification accuracy [46]

4.5 Related Work and Discussion 87

0	

50	

100	

150	

200	

250	

300	

10	 20	 30	 40	 50	

Ti
m
e	
(S
ec
on

ds
)

Dimensionality

MSS	 LDAKM	 ORCLUS	 4C	 COPAC	 HiCO	

Figure 4.12: The scalability of MSS and comparisons regarding dimensionality.

and is very helpful to accelerate the training of support vector machines [25]. More related

to our work are papers exploiting classification techniques for clustering. There are several

papers on support vector clustering e.g. [18, 76], to mention a few. These methods rely on

the idea that first mapping data to a higher-dimensional feature space, where a minimal

sphere can be found. Then separate clusters can be found when mapping the sphere back

to data space. However, they can not handle moderate ot high dimensional data, which is

not suitable for our problem. Most related to our work is the approach LDA-Km [40] that

integrate Linear Discriminant Analysis into clustering. LDA-Km iteratively do LDA and

K-means and finally the data are clustered while the subspace is selected simultaneously.

We also base our technique MSS on LDA because we can project clusters to a same subspace

and learn their relationship. But instead of classic LDA we use orthogonal LDA [82]. In

contrast to standard LDA, this orthonormal transformation corresponds to a rotation of

the data space but does not alter the original scale and variance of the data. Further,

our framework MSS select multiple subspaces and build hierarchical visualization, which

LDA-Km can not provide.

88 4. Multiple Subspace Selection for Hierarchical Clustering

4.5.2 Subspace Clustering

Subspace clustering is a challenge due to the curse of dimensionality. Meaningful clusters

only exist in subspaces of the original feature space, for a survey see e.g. [72]. Basically,

these methods can be categorized into two classes: axis-parallel subspace clustering and

arbitrarily-oriented subspace clustering. The formal one try to find clusters in a subspace

that formed by the subset of original features, e.g. PROCLUS [7], PreDeCon [22] and

CLIQUE [10]. In this case, the clustering results are easy to interpret, but they cannot

handle datasets with correlated features. The later one, arbitrarily-oriented subspace tech-

niques, e.g. ORCLUS [9], 4C [23] and COPAC [4], are more related to our work. These

methods assume each cluster being located in an unique arbitrarily-oriented subspace. The

results are hard to interpret, since the detected subspaces are arbitrarily-oriented and there

is no relationship among the clusters. Our aim is to find multiple low-dimensional sub-

spaces that hierarchical arbitrarily-oriented subspace clusters can be best distinguished in

the corresponding subspaces, which is different compared with existing methods. Subspace

correlation clustering SSCC [56] try to analyze subspace projections to find subsets of ob-

jects showing linear correlations among this subset of dimensions. Subspace correlation

analysis, e.g. REDUS [121] and CARE [120] is marginally related to this work. They try

to identify subsets of original features that a group of data instances share a correlation.

Therefore they find a unique subspace for each cluster as well. SSCC provides another way

for interpretation on arbitrarily-oriented subspace clusters, however each detected cluster

still own on unique subspace and there is no possibility to visualize the results.

4.5.3 Hierarchical Clustering

Hierarchical clustering algorithms compute a hierarchical decomposition of the data ob-

jects. The most widespread approaches to hierarchical clustering would be SingleLink

[101] and OPTICS [14]. However these methods are not applicable when clusters of high-

dimensional data only exist in subspaces. There are only a few works on hierarchical

subspace clustering. HiSC [1] and DiSH [2] are proposed to find hierarchies of clusters ex-

4.6 Conclusion 89

isting in axis-parallel subspaces, while HiCO [5] and ERiC [3] aim at detecting hierarchies

of arbitrarily-oriented subspace clusters. HiCO and ERiC are more related to our work.

However, first they are designed to detect arbitrarily-oriented subspace clusters of different

dimensionality which are nested into each other, which is different from our problem. Fur-

ther, HiCO and ERiC find a unique subspace for each found cluster and it is not possible

to interpret the results by visualization, which is one of the main contribution of MSS.

Therefore, the proposed method MSS is different from the existing methods.

4.6 Conclusion

In this chapter, we introduce MSS, an effective and efficient clustering framework for detect-

ing multiple low-dimensional subspaces, each exhibiting an interesting cluster structure.

Besides, a hierarchy of clusters in multiple subspaces is provided for better interpretation

the relationship among clusters. Integrating orthogonal Linear Discriminant Analysis, K-

means and Kernel Density Estimation techniques, MSS can not only detect accurate clus-

tering results, but also interpret them in multiple subspaces by hierarchical visualization.

Besides, MSS is robust to irrelevant dimensions. Our extensive experiments on synthetic

and real world data demonstrate that it is very useful to allow for multiple subspaces in

clustering.

90 4. Multiple Subspace Selection for Hierarchical Clustering

Chapter 5

Summarization-Compression Miner

Relational data now arises in various fields like transactional data, user-rating data, etc. In

order to reveal the underlying patterns, an important task is co-clustering that partitions

both types of data into meaningful clusters. Traditional co-clustering methods, as discussed

in Chapter 2, usually only focus on the clustering part and ignore the relation between row

and column clusters.

How to extract the truly relevant information from a large relational data set? The

answer of this chapter is a technique integrating graph summarization, graph clustering,

link prediction and the discovery of the hidden structure on the basis of data compression.

Parts of the material presented in this chapter have been published in [45], where Xiao

He and Jing Feng both contributed for the development of the main concept, Xiao He

implemented the main algorithms and Jing Feng wrote the largest parts of the paper;

Claudia Plant supervised the project and made contributions to the building of coding

scheme; Bettina Konte performed part of experiments; Christian Böhm revised the whole

paper; The co-authors also contributed to the conceptual development and paper writing.

“Jing Feng, Xiao He, Bettina Konte, Christian Böhm and Claudia Plant.

Summarization-based Mining Bipartite Graphs. The 18th ACM SIGKDD Con-

ference on Knowledge Discovery and Data Mining 2012: 1249-1257.”

Our novel algorithm SCMiner (for Summarization-Compression Miner) reduces a large

92 5. Summarization-Compression Miner

bipartite input graph to a highly compact representation which is very useful for different

data mining tasks: 1) Clustering: The compact summary graph contains the truly relevant

clusters of both types of nodes of a bipartite graph. 2) Link prediction: The compression

scheme of SCMiner reveals suspicious edges which are probably erroneous as well as missing

edges, i.e. pairs of nodes which should be connected by an edge. 3) Discovery of the

hidden structure: Unlike traditional co-clustering methods, the result of SCMiner is not

limited to row- and column-clusters. Besides the clusters, the summary graph also contains

the essential relationships between both types of clusters and thus reveals the hidden

structure of the data. Extensive experiments on synthetic and real data demonstrate

that SCMiner outperforms state-of-the-art techniques for clustering and link prediction.

Moreover, SCMiner discovers the hidden structure and reports it in an interpretable way to

the user. Based on data compression, our technique does not rely on any input parameters

which are difficult to estimate.

The remainder of this chapter is organized as follows: In Section 5.1, it starts with

an introduction. We give the model formulation in Section 5.2. Section 5.3 presents the

algorithm SCMiner in detail. Section 5.4 contains an extensive experimental evaluation.

Section 5.5 briefly discusses related work and Section 5.6 concludes the chapter.

5.1 Introduction

Relational or graph-structured data are prevalent in nature, science and economics. Many

aspects of real life can be well represented as a bipartite graph which has two types of

vertices and edges representing the connections between them. Consider for example news-

groups where one type of vertices represents persons and the other type of vertices represent

groups. An edge between a person and a group means that he or she is member of this

group. Or consider the interaction between drugs and proteins: An edge between a par-

ticular substance and a protein means that the corresponding protein is responding to the

drug. Such bipartite graphs are stored as large adjacency matrices often having millions

of vertices and edges. Effective and efficient data mining methods are essential for an-

5.1 Introduction 93

swering high-level domain specific questions like: Which users are potentially interested to

join a newsgroup? Or, which combination of substances is most effective against a certain

disease?

Therefore, in recent years the research topic of mining bipartite graphs has attracted

much attention, with a large volume of research papers, e.g. [29, 37, 53, 77, 78, 90] to

mention a few. To extract knowledge from a large bipartite graph, existing techniques

apply one of the following two basic strategies: (1) Clustering. These approaches reduce

the complexity by partitioning the large input graph into smaller groups of similar vertices

which can be inspected and interpreted by the user. In particular, approaches to co-

clustering like [29, 37] cluster both types of vertices, i.e. the rows and the columns of

the adjacency matrix simultaneously guided by the idea that the clustering of rows and

columns can profit from another. The output of co-clustering is a set of row-clusters and

a set of column clusters. (2) Summarization. These approaches reduce the complexity not

by grouping but by a global abstraction. The output of summarization techniques like

[90] is a bipartite graph which is much smaller than the original input graph. Ideally, it

distills the major characteristics from the input data and is small enough to be accessible

for the user. A third line of chapter focuses on a different, however closely related topic:

Link prediction. These approaches like [78] study the question whether there should be

an edge between two currently disconnected vertices. Link prediction is closely related to

summarization and clustering since a technique for link prediction must capture at least

the local structure of the graph to provide reasonable predictions. Also clustering and

summarization are closely related since during the process of abstraction, both approaches

must identify the relevant major characteristics of the graph.

5.1.1 Contributions

In this chapter, we therefore propose SCMiner, a technique integrating summarization,

clustering and link prediction on bipartite graphs. The name SCMiner stands for Summ-

arization-Compression Miner and the principle of data compression also known as the

94 5. Summarization-Compression Miner

Minimum Description Length Principle (MDL) [97] is the basis of our technique. The

basic idea is to transform the original graph into a very compact summary graph. During

the process of transformation which is controlled by the MDL principle, our technique

discovers the major clusters of both vertex types as well as the major connection patterns

between those clusters. The result of SCMiner comprises a compressed graph, the row-

and column-clusters and their link patterns. The major contributions of our approach can

be summarized as follows:

1. Clustering plus hidden structure mining. Like state-of-the-art co-clustering

methods, SCMiner accurately identifies the row- and column clusters of bipartite

graphs and even outperforms them on some data sets. As a key feature of our

approach, the result does not only consist of two sets of clusters. SCMiner also

reveals the relationships between the clusters which are essential for interpretation.

2. Accurate link prediction. SCMiner accurately predicts missing or future links

and removes noise edges.

3. Unsupervised graph mining all in one. SCMiner integrates summarization,

clustering and link prediction and thus comprehensively supports unsupervised graph

mining.

4. Results validated by data compression. Data compression is an intuitive opti-

mization goal with many benefits: By natural balancing goodness of fit and model

complexity, overfitting is avoided. The results are thus simple and interpretable.

Moreover, supported by the MDL principle SCMiner does not rely on any difficult

to estimate input parameters.

5.2 Compressing a Bipartite Graph

In this section, we first present a simple example to introduce the terminology of graph

summarization. Then an MDL based coding schema is derived to find the best summa-

5.2 Compressing a Bipartite Graph 95

rization of a bipartite graph. At last, we propose a strategy to discover hidden relations

between vertices of different type.

Notation and Example. Figure 5.1 depicts a simple example for graph summa-

rization of a bipartite graph. G = (V1, V2, E) is an unweighted bipartite graph where

V1 = {V11, ..., V16} and V2 = {V21, ..., V26} denote two types of vertices and E denotes the

edges between them. The summarization of graph G consists of two bipartite graphs, a

summary graph GS and an additional graph GA. The summary graph GS = (S1, S2, E
′)

is an aggregated graph and is composed of four super nodes S11 = {V11, V12, V13}, S12 =

{V14, V15, V16}, S21 = {V21, V22, V23}, S22 = {V24, V25, V26}, and super edges E ′. The super

nodes themselves are composed of vertices exhibiting the exact same link pattern. They

indicate the local cluster structure of each type of vertices, whereas the super edges rep-

resent the global relations between local clusters. The additional graph GA = (V1, V2, E
′′)

contains normal nodes and correction edges which are required to reconstruct the bipartite

graph G. The + or − symbols above the edges indicate whether it is required to add or

remove them from GS to recreate G. The correction edges describe the revealed hidden

relations between different types of vertices.

5.2.1 Coding Scheme

A bipartite graph can be represented by thousands of summarizations, however, the chal-

lenge is to find out the one that best represents the data and reflects the hidden structure

behind the surface data. The Minimum Description Length (MDL) principle is an intu-

itive choice for model selection [97]. It follows the assumption that the more we are able

to compress the data, the more we have learned about its underlying patterns. Formally,

the goodness of the model can be stated as shown in Eq.(5.1), where L(M) denotes the

cost for coding the model parameters and L(D|M) represents the cost of describing the

data D under the model M . As the model has to be coded with the data and too complex

96 5. Summarization-Compression Miner

S22S12

S21S11

…

…

…

…V11 V21

=

+

V12 V22

V13 V23

V14

V15

V16

V24

V25

V26

V23

V25V11

V13

GS

GA

－

＋

V11

V13

V14

V16

V21

V23

V24

V26

G

Figure 5.1: Summarization and compression of a bipartite graph.

models result in high compression cost, MDL naturally avoids overfitting.

L(M,D) = L(D|M) + L(M). (5.1)

Inspired by the MDL principle, we propose a coding schema to choose the best graph

summarization. The most direct and simple way to represent a bipartite graph G =

(V1, V2, E) is to compress its adjacency matrix A ∈ |V1|×|V2|, with aij = 1 if (V1i, V2j) ∈ E.

The coding cost of the adjacency matrix A is lower bounded by its entropy which is provided

by:

CC(G) = −|V1| · |V2| ·H(A), (5.2)

where H(A) = −(pn(A) · log2 pn(A) + pr(A) · log2 pr(A)), pn(A) and pr(A) are the proba-

bilities of finding 1 and 0 entries in the adjacency matrix A of G, i.e. the probabilities to

observe edges or not.

As mentioned above, the summarization of a bipartite graph G is composed of two

bipartite graphs, the summary graph GS and the additional graph GA. Instead of trans-

5.2 Compressing a Bipartite Graph 97

ferring G from a sender to a receiver, we can transfer GS, GA and the group information of

super nodes in GS. In addition, there is no need to send the symbol information of edges

in GA, since this information can be obtained by comparing GA and GS. If the symbol of

an edge in GA is +, this edge is not present in GS, and vice versa, if the symbol is −, GS

contains the edge. The following equation defines the coding cost of a summarization of

the graph.

Definition 5 (Coding Cost of a Graph.).

CC(G) = CC(GS) + CC(GA) +
K∑
i=1

Ni∑
j=1

|Sij|log2
|Vi|
|Sij|

, (5.3)

where CC(GS) and CC(GA) denote the coding cost of summary graph GS and the additional

graph GA defined by Eq.(5.2). The third term is the cost of coding the group information,

where K is the number of node types, Ni is the number of super nodes in type i, |Sij| is

the number of members in super node Sij, |Vi| is the number of original nodes in type i.

L(D|M) = CC(GS) is the description of the data under the model M with coding cost

L(M) = CC(GA) + CC(group). The optimization goal of our algorithm SCMiner is to

find the best model or summarization that minimizes Eq.(5.3).

5.2.2 Hidden Relations Between Vertices

The data we record in real life applications does often only approximately represent the

ground truth due to inconsistencies and measurement errors. For example, the same user

often joins newsgroups under different nicknames and email addresses. Or a protein might

show a strong response to a substance simply due to a measurement error. Thus real world

graphs are often spoiled by erroneous connections on the one hand and are also missing

important links on the other hand.

Take a close look at the graph G in Figure 5.1, obviously we have the feeling that

edge (V13, V23) is probably missing, and edge (V11, V25) maybe presents an artifact of noise.

Therefore, if we add edge (V13, V23) to G and remove edge (V11, V25) from G, we can form

98 5. Summarization-Compression Miner

four super nodes, whose members exhibit the exact same connection patterns. These con-

nections probably reflect the true relationships. Based on these observations, we propose

the following strategy to discover the hidden relations between vertices.

Group2

Group1

S21

S2k-1

S2k

S11

S1p

S1p-1

Group1: Nodes to be merged

Group2: Hop 2 neighbors of S2k and common neighbor of Group1

Group3: Hop 2 neighbors of S2k but not common neighbor of Group1

Group4: Neighbors of S2k

Group4 Group3

S2k+1

S2mS1n

S1p+1

… …

… …

: The edge to be deleted

: The edge to be added

Figure 5.2: The strategy of SCMiner used for merging nodes

Figure 5.2 describes our strategy for merging nodes, suppose all the nodes are super

nodes. The nodes in Group 1 share a similar link pattern and could therefore be merged

into a super node. Nodes in Group 2 and Group 3 are both hop two neighbors of node

S2k, specifically nodes in Group 2 are common neighbors of nodes in Group 1 and nodes in

Group 3 are not. To form a new super node of nodes in Group 1 their link pattern should

be exactly the same. However, the link pattern of node S1p in Group 1 is similar to those

5.2 Compressing a Bipartite Graph 99

Algorithm 5 ModifyEdge

//Modify edges of group to make their link same

Input: Group nodes group, GS, GA

Output: GS, GA, hop2Sim

alln = Neighbor(group);
cn = CommonNeighbor(group);
for Each node S ∈ alln and S /∈ cn do

Using Eq.(5.4) and Eq.(5.5) to add or remove edge;
Add or remove edges in GS;
Add additional edges to GA;

end for
Update hop2Sim for each S ∈ alln and S /∈ cn;
return GS, GA, hop2Sim;

of the other nodes, but not the same. Concretely, S1p has an extra link with S2k that the

other nodes lack. As we can see from Figure 5.2, two methods can be adopted to make

nodes in Group 1 exhibiting the same link pattern: we could either remove edge (S1p, S2k) or

add edges (S11, S2k), (S12, S2k), ..., (S1p−1, S2k). The question is, how to distinguish whether

edges should be removed or added?

We can decide if we add or remove edges by calculating some cost function. We define

the cost as the number of edges we add or delete, which is highly related to the MDL costs of

Eq.(5.3), in order to make the link patterns of merging nodes equal. Specifically, as shown

in Figure 5.2, there are p nodes in Group 1 S11, S12, ..., S1p, among which S1p exhibits a

similar but not exact same link pattern as the other nodes. Therefore, the cost of removing

edge (S1p, S2k) is 1 and the cost of adding edges (S11, S2k), (S12, S2k), ..., (S1p−1, S2k) is p−1.

Obviously, the former method should be selected because of the lower cost. The pseudocode

of modifying the edges of a merging group is shown in Algorithm 5. At first we combine

neighbors and common neighbors of nodes in merging groups, then we need to modify the

edges of those nodes which are neighbors but not common neighbors of the merging group

to make the link pattern of all group members exactly the same. Suppose the merging

group contains S11, S12, ..., S1p and S2k is one of their neighbors but not a common neighbor.

The cost of removing and adding edges can be calculated by Eq.(5.4) and Eq.(5.5). The

100 5. Summarization-Compression Miner

cost of a super edge is calculated as |S1i| · |S2k|, where |.| is the number of normal nodes

contained in a super node. However, in some cases the costs for removing might be the

same as for adding edges. If so, we use the similarity proposed in the next section to decide

which action to take. Naturally, if S2k is more similar to the nodes of Group 2 compared

to those of Group 3, we add edges for merging, while otherwise we remove edges.

Cost remove =

p∑
i=1

|S1i| · |S2k| if S1i links to S2k

0 otherwise.

(5.4)

Costadd =

p∑
i=1

0 if S1i links to S2k

|S1i| · |S2k| otherwise.

(5.5)

5.3 Algorithm SCMiner

In this section, we propose our algorithm SCMiner to find the best summarization of a

bipartite graph. It can be proven that finding the global optimal summarization is NP-

hard, therefore SCMiner follows a heuristic approach to search the local optima.

Basic Idea. The idea behind the algorithm SCMiner is that nodes with similar link

patterns can be merged to groups, if the similarity between each pair of nodes in the group

is bigger than some threshold th. By adding and removing edges as proposed in Section 2

we accomplish that all group nodes share the exact same link pattern and so can form a

super node. SCMiner iteratively merges groups of nodes or super nodes whose similarities

are bigger than th. The initial threshold is 1 and th is reduced stepwise by ε when no

pair of nodes can be merged. In each iteration we calculate the new summarization coding

cost. Then the MDL principle is used to choose the best summarization. The algorithm

terminates when th reaches 0.

Finding Super Node Candidates. To find suitable candidate groups of nodes where

merging might pay-off, we introduce the notion of hop two similarity. Suppose two super

nodes S1i and S1j have n common neighbors {S21...S2n} andm neighbors {S2(n+1)...S2(n+m)}

that are connected to only one of the two super nodes. Intuitively, if the two nodes have

5.3 Algorithm SCMiner 101

more common neighbors than neighbors only linking to one node, they are more similar in

link pattern, then different. We can define their similarity as

Definition 6 (Hop Two Similarity.).

sim(S1i, S1j) =

∑n
k=1 |S2k|∑n+m
k=1 |S2k|

(5.6)

where |S2i| is the number of normal nodes contained in super node S2i. This similarity

measure ranges from 0 to 1.

As described above, we only need to calculate the similarity between two nodes if they

share at least one common neighbor and therefore are hop two neighbors of each other. In

the following we call the similarity between a node and all its hop two neighbors its hop

two similarity.

Algorithm. Now we describe our algorithm SCMiner, the pseudocode is provided in

algorithm 6. The input parameters of SCMiner are the bipartite graph G = (V,E), where

V = (V1, V2) and E are the edges between V1 and V2, and stepsize ε for reducing th. The

output of SCMiner is the summarization of G, including the summary graph GS = (S,ES)

composed of super nodes S = (S1, S2) and the additional graph GA = (V,E ′) composed

of single nodes V = (V1, V2), which has the minimum coding cost regarding the proposed

coding scheme. In the initialization phase, we first set the summary graph GS to the input

graph G, which means that all single nodes are treated as super nodes containing only one

normal node, and set the additional graph GA empty. Then we initialize the coding cost

mincc using Eq.(5.3) with GS and GA. Afterwards we compute the similarities between

each node and its hop two neighbors of same node type. In the searching phase, when

th > 0, we do the following steps: First we search for groups of nodes that have at least

one hop two neighbor with similarity larger than th and then we merge every group we

found. When there is no more group of nodes that can be merged, we decrease the threshold

th by ε. In the merging phase, we use the proposed method shown in algorithm 5 to modify

the edges of the merging group that are present in GS to get nodes with exact same link

102 5. Summarization-Compression Miner

Algorithm 6 SCMiner

Input: Bipartite graph G = (V,E), Reduce step ε
Output: Summary Graph GS, Addition Graph GA

//Initialization
GS = G, GA = (V, ∅);
Compute mincc using Eq.(5.3) with GS and GA;
bestGS = GS, bestGA = GA;
Compute hop2Sim for each S ∈ GS using Eq.(5.6);

//Searching for best Summarization
while th > 0 do

for each node S ∈ GS do
Get SN with S ′ ∈ SN and hop2Sim(S, S ′) > th;

end for
Combine SN and get non-overlapped groups allgroup;
for each group ∈ allgroup do
ModifyEdge(group,GS, GA);
Merge nodes of GS with same link pattern;
Compute cc using Eq.(5.3) with GS and GA;
Record bestGS, bestGA, and mincc if cc < mincc;

end for
if allgroup == ∅ then
th = th− ε;

else
th = 1.0;

end if
end while
return bestGS, bestGA;

structure. Subsequently we add the corresponding additional edges to GA and update the

hop two similarity for affected nodes, which are neighbors of merging group nodes but not

their common neighbors. During the merging phase, nodes with similar link patterns are

merged, which decreases the data cost and increases the model cost, while the total cost is

reduced in most cases. After each merging step, we calculate the coding cost using Eq.(5.3)

with current GS and GA and the best summarization with minimum coding cost is stored

in bestGS and bestGA. Finally, we output bestGS and bestGA with coding cost.

Properties. We adjust the parameter ε using the MDL principle. Extensive experi-

ments on synthetic and real data showed that a suitable range for ε is around 0.01 to 0.1.

5.4 Experiments 103

Therefore we try out every setting with a step size of 0.01 and let MDL select the best

result. The runtime complexity for the computation of the similarity between each vertex

v and its hop two neighbors is O(N · d3av), where N is the number of vertices and dav is

the average degree of each vertex. During each merging step in SCMiner, we only compute

the similarities between some affected vertices and their two hop neighbors. Therefore

the runtime complexity is roughly O(d4av). The number of merging steps, affected by the

reduction stepsize ε, is N in average. So the whole runtime complexity is O(N · d4av).

5.4 Experiments

This section provides empirical evidence to show the effectiveness of SCMiner on syn-

thetic and real data. In particular, we evaluate SCMiner three aspects: First, we compare

SCMiner with state-of-the-art co-clustering algorithms in terms of quality of the clusters

detected on each type of nodes. Secondly, we evaluate the hidden structure, i.e. the rela-

tionships between both types of nodes found by SCMiner. Finally, we compare SCMiner

with some state-of-the-art link prediction methods to evaluate the validity of hidden rela-

tionships discovered by SCMiner.

Data Sets. The generated synthetic bipartite graphs with different parameters are

shown in Table 5.1. Both V1 and V2 contain the same number of clusters, and each cluster

has 100 nodes. The matrix T shows the ground truth links between clusters of different

type, where Tpq can take the values 1 or 0, which means the pth cluster of V1 and the qth

cluster of V2 are fully connected or separated. The matrix S introduces link parameters to

matrix T , where Spq denotes the percentage of links generated between the pth cluster of

V1 and the qth cluster of V2. In other words, if link parameters are introduced based on 0,

noisy links are added to the ground truth graph. If link parameters are introduced based

on 1, links are removed from the ground truth graph, where the percentage is 1 minus the

link parameters.

Three real data sets are evaluated in our experiments. World cities1 data consists of

1http://www.lboro.ac.uk/gawc/datasets/da6.html

104 5. Summarization-Compression Miner

Table 5.1: Synthetic bipartite graphs

Data Set S T

BP1

(
0.8 0.2
0.1 0.9

) (
1 0
0 1

)
BP2

 0.9 0.8 0.1
0.1 0.9 0.8
0.1 0.2 0.9

 1 1 0
0 1 1
0 0 1

BP3

0.8 0.7 0.2 0.8
0.9 0.3 0.8 0.2
0.3 0.8 0.2 0.7
0.9 0.8 0.7 0.2

1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0

the distribution of offices from 46 global advanced producer service firms over 55 world

cities. Global firms are defined as firms owning offices in at least 15 different cities. Service

values for a firm in a city are given as 3,2,1 and 0. We binarize the data set such that

positive service values become 1 and then generate the bipartite graph. The advanced

producer service firms can be categorized into 4 clusters: accountancy firms, advertising

firms, banking and finance firms and law firms.

MovieLens2 data was collected through the MovieLens web site during the seven-month

period from September 19th, 1997 to April 22nd, 1998 by the GroupLens Research Project

at the University of Minnesota. It consists of 100,000 ratings (1-5) from 943 users on 1682

movies. We preprocess the data by removing movies which are rated by less than 30 users

and users that rated less than 30 movies. Therefore, we got a bipartite graph of 361 users

and 334 movies. Then we binarize the preprocessed data set such that 3-5 entries become

1 and others become 0.

Jester3 is a joke rating data set. The original data set contains over 1.7 million con-

tinuous ratings (-10.00 to +10.00, +10.00 best) of 150 jokes from 63974 users collected

between April 2006 to May 2009. We remove 22 jokes which are never rated or rated by

less than 0.01 of users, and randomly pick 1000 users who rate all the picked jokes. Then

we binarize the data set such that 5-10 entries become 1 and others become 0. The ground

2http://www.grouplens.org/node/12
3http://eigentaste.berkeley.edu/dataset/

5.4 Experiments 105

truth is generated for evaluating link prediction, such that the non-negative entries become

1 and the negative entries become 0.

5.4.1 Clustering Quality

Firstly, we evaluate the quality of clusters detected by SCMiner. SCMiner can be used as

a parameter-free bipartite graph partition method and therefore we choose the approaches

Cross-association (CA) [29] and Information-theoretic Co-clustering (ITCC) [38] as com-

parison methods. In addition, we compare SCMiner to the graph summarization technique

(GS) of [90]. The algorithms SCMiner, CA and GS are both parameter-free, ITCC requires

the number of clusters in rows and columns. The algorithm GS does not output a clus-

tering, however, the summarized nodes can also be regarded as clusters. We therefore

create a cluster for each summarized node of the algorithm. For synthetic data we set the

number of clusters of ITCC to the true number of the data set. We use the Normalized

Mutual Information (NMI) [107] to measure the clustering performance. The value of NMI

ranges between 0 and 1. The higher the value the better the clustering. We further report

the Adjusted Mutual Information (AMI) and Adjusted Variation Information (AVI) scores

proposed in [107].

Table 5.2: Clustering Performance on Synthetic data.

BP1 BP2 BP3
SCMiner 1 1 0.9949

CA 0.6683 0.7897 0.8750
ITCC 1 1 0.8750

GS 0.2568 0.4069 0.5493

Synthetic Data. Table 5.2 depicts the clustering performance comparison on synthetic

data sets evaluated by NMI, which shows that SCMiner yields better results than CA,

ITCC and GS. For BP1 and BP2 both ITCC and SCMiner give perfect results, however

ITCC needs the true number of clusters as input parameter, whereas SCMiner determines

the number of clusters automatically without user input. CA outputs worse NMI results,

106 5. Summarization-Compression Miner

because it splits the clusters into some smaller ones. Worst NMI results yields GS, this

is mainly because GS is designed for summarization but not for clustering. For space

limitations, Table 5.2 reports only NMI but the other scores are similar.

For SCMiner we try out several ε and choose the best results with the minimum MDL.

Figure 5.3 shows the clustering results for all synthetic data sets with different ε and one

can see that the results are quite stable on a wide range of ε. We also test the relationship

between NMI and MDL, for space limitation we only mark several MDL values for synthetic

data BP3 in Figure 5.3. The coding costs are 127102 bits when ε = 0.01 and NMI = 0.89,

and it costs 123723 bits when ε = 0.07 and NMI = 0.99, which proofs that smaller MDL

values lead to better NMI results.

MDL=127102

MDL=125010

MDL=123723

0,85

0,9

0,95

1

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

N
M

I

e

BP1
BP2
BP3

Figure 5.3: Results of SCMiner on synthetic data sets for various ε.

World Cities Data. The World cities real data set contains cluster labels of global

firms and thus we can use NMI to evaluate clustering quality of this type of nodes. We run

SCMiner, CA, ITCC and GS on this data set. SCMiner, CA and GS are all parameter-free

methods (the chosen ε of SCMiner for cities is 0.01). We set the true number of clusters of

global firms and 4 as the number of clusters of world cities as input parameter for ITCC.

The NMI results for global firms are depicted in Table 5.3 and the table shows that SCMiner

clearly outperforms CA, ITCC and GS in all clustering quality scores. The evaluation of

cities type clusters is much more difficult, since the cluster labels are not provided along

5.4 Experiments 107

Table 5.3: Results on World Cities Data.

NMI AMI AVI
SCMiner 0.4345 0.3807 0.3824

CA 0.3109 0.2447 0.2604
ITCC 0.2522 0.1845 0.1891

GS 0.2515 0.0467 0.0683

with the data set. Looking in detail at the cluster contents, SCMiner finds 3 clusters and

a separated city Washington, DC. The first cluster contains 13 cities, including Atlanta,

Boston, Dallas, Munich, Montreal etc. and all these cities are strong in economics. In

detail, all 5 accountancy firms have services in these cities, and there are 3 advertising,

5 banking and 2 law companies in average owning offices in these 13 cities. The second

cluster contains 17 cities, including Toronto, Paris, London, New York, and Beijing. All

these cities are metropolis in the world. Moreover most of these cities are capital of their

country. In terms of service, all 5 accountancy firms have services in these cities, and

there are 9 advertising, 11 banking and 7 law companies in average having offices in these

17 cities. The third cluster contains 24 cities, including Amsterdam, Barcelona, Seoul,

Shanghai etc., which are all kind of financial cities. In terms of service, all 5 accountancy

firms have services in these cities as well, and there are 7 advertising, 8 banking and 2

law companies in average having offices in these 24 cities. The cluster analysis shows that

SCMiner outputs reasonable clusters regarding the cities type nodes. To sum up, the cities

can be categorized into 3 types, capital metropolis, financial cities and economic cities.

Capital metropolis are the economic, financial and politic center of a country, therefore

all kinds of companies have offices in these cities. Financial cities offer a lot of banking

and advertising company services, but lack law services, because they are not politically

oriented. Some local manufactories are located in economic cities, whereas advertising,

banking and law companies are not. Washington, DC is quite different compared to the

other cities, since it is a politic, but not a financial city and therefore owns lots of law

firms’ offices but fewer advertising and banking firms’ offices. Thus it is reasonable that

this city is separated in its own cluster.

108 5. Summarization-Compression Miner

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P

Clusters

SCMiner

ITCC

CA

Figure 5.4: Cluster purity comparison on Movielens Data.

Movielens Data. MovieLens data set does not provide cluster labels, however, it

provides movie categories and personal information of users that can be used to analyze

the cluster contents. We separately perform SCMiner, CA, ITCC and GS on this data set,

SCMiner, CA and GS are both parameter-free (the chosen ε of SCMiner for MovieLens is

0.05). CA outputs 9 user clusters and 8 movie clusters. In addition some isolated nodes

and small clusters with less than 5 instances are found. SCMiner gives 10 user clusters and

15 movie clusters, whereas all the clusters found by GS are single nodes or just contain a

few nodes (< 5). To be fair, we set the number of user and movie clusters to 10 and 15

for ITCC, which corresponds to the number of clusters found by SCMiner. In this data

set, movies are classified into 19 genres, such as action, adventure, animation, etc, and a

movie can be categorized into several genres at once. According to the basic concept of

clustering that objects in the same cluster are similar, we define purity P to evaluate the

movie clusters. By counting genres of movies, we can acquire the genre that dominates the

cluster and let this genre be the cluster representative. The purity of a cluster is defined

as the percentage of movies belonging to the most represented genre. We calculate the

purity P for each movie cluster detected by SCMiner, CA and ITCC, and sort them by p

value, which is shown in Figure 5.4. The figure shows that SCMiner outputs more pure

movie clusters than the two comparison methods. In terms of user clusters, it is difficult to

5.4 Experiments 109
R

ow
 C

lu
st

er
s

Column Clusters
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

R
ow

 C
lu

st
er

s

Column Clusters
50 100 150 200 250 300

50

100

150

200

250

300

R
ow

 C
lu

st
er

s

Column Clusters
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

C11 C21

C12 C22

C11

C12

C13

C21

C22

C23

C11 C21

C12 C22

C13 C23

C14 C24

Figure 5.5: Hidden Structure Detected by SCMiner and CA. From Left to Right: Data
Set BP1, BP2, BP3.

compare the results. Analyzing the content of user clusters detected by SCMiner, reveals

that some clusters contain old users, some are composed of young users, some groups

contain only males, while others own mainly women. This reflects that SCMiner outputs

meaningful user clusters.

5.4.2 Hidden Structure

For bipartite graph data, we do only want to analyze the clusters in each type, but we

also want to evaluate the relationship between clusters of different types. Besides our

SCMiner algorithm, CA is the only comparison method providing information about these

relationships (in the form of a re-arranged adjacency matrix) to users.

Synthetic Data. Figure 5.5 depicts the hidden structure detected by SCMiner and

CA, the top row shows the re-arranged adjacency matrix of data output by CA, the bottom

row depicts the hidden structure found by SCMiner, where squares and circles denote the

two different types of clusters. For BP1 and BP2 SCMiner gives perfect results and for BP3

110 5. Summarization-Compression Miner

just one node is categorized incorrectly, as cluster C12 contains 99 nodes and clusterC14

contains 101 nodes, but the whole structure is correct, whereas the cross association output

by CA for BP3 is incorrect and it is really hard to tell the relationship between the second

row and fourth column cluster. In summary, the visualization of cross-associations is only

clear and interpretable for data having a relatively easy structure.

World Cities Data. Figure 5.6 depicts the hidden structure of World cities data set

detected by SCMiner and CA. The left shows the re-arranged adjacency matrix of data

output by CA. It is hard to identify the relationship between two types of nodes from

the matrix itself. The right depicts the hidden structure found by SCMiner, the squares

represent the cities clusters and circles denote clusters of companies. The figure shows that

capital metropolis have connections to all kind of firms, financial cities do not have law

companies services, most service in economic cities are from accountancy companies, and

Washington, DC owns lots of law companies but fewer banking and advertising firms. From

the figure, the major structure of the complex network becomes obvious at first glance.

The result of SCMiner is a highly compact bipartite graph, a data representation which

is easy to understand for the user. In contrast, the re-arranged adjacency matrix is still

quite noisy and it is very difficult to infer the structure from this representation.

Movielens Data. Figure 5.7 depicts the hidden structure of MovieLens data set

detected by SCMiner and CA, the left shows the re-arranged adjacency matrix of data

output by CA, which is hard to understand, the right depicts the hidden structure found

by SCMiner which is much easier to analyze. For clarity we only show the relation between

the 5 biggest clusters in each type. Squares and circles represent the user and movies

cluster. Cluster O1 and O2 contain user groups that are older than the average regarding

the whole data set, and their male-to-female ratio is just about whole data set average.

Square YW represents a user group with a much larger female ratio compared to the

average, and the users are younger than the average as well. Square YM1 and YM2

denote clusters with groups of users containing almost all young man. On the other side,

circle FM represents a cluster of famous movies, containing Schindler’s List, Shawshank

Redemption, and Seven etc. that all have high rating scores in IMDB, which shows that

5.4 Experiments 111

R
ow

 C
lu

st
er

s

Column Clusters
5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

50

55

C C

F AB

E LB

W L

Figure 5.6: Hidden structure of cities detected by CA (left) and SCMiner (right). For
SCMiner results, Square C represents a cluster consisting of capitals, Square F financial
cities, Square E economic cities and Square W is the isolated city Washington, DC. On the
other side, the cluster represented by Circle C mainly contains accountancy firms, Circle
AB advertising and banking companies, Circle LB banking and law firms, and Circle L law
firms.

all groups of users like it. This fact is embodied in the revealed hidden structure, since this

cluster has connections to all user groups. Circle CD is mainly consisting of movies from

comedy and drama category, so it makes sense that older people like it. The movies in

circle CR are mostly from action, romance and comedy genre, so young women and young

men like it. Circle AA and AS represent adventure action thriller movies and action sci-fi

thriller movies respectively, therefore young man like them. The above analysis shows that

the hidden structure found by SCMiner is reasonable.

5.4.3 Link Prediction Accuracy

SCMiner outputs the summarization of the input graph that yields the minimum coding

cost. The summarization itself consists of a summary graph and an additional graph,

where the ”-” edges in the additional graph denote missing links which should be added

to the original graph, and ”+” edges might be noisy links which should be removed from

the original graph. Since it is hard to determine whether a ”-” edge represents noise, we

only use link prediction to evaluate whether a ”+” edge is a missing link.

112 5. Summarization-Compression Miner

R
ow

 C
lu

st
er

s

Column Clusters
50 100 150 200 250 300

50

100

150

200

250

300

350

O1 FM

O2 CD

YW CR

YM1 AA

YM2 AS

Figure 5.7: Hidden structure of MovieLens detected by CA (left) and SCMiner (right).
For SCMiner results, Square O1 and O2 denote clusters containing old users, Square YW
represents a cluster of young women, and Square YM1 and YM2 young man. On the
other side, the cluster represented by Circle FM represents high scored movies, Circle CD
comedy and drama, Circle CR action, romance and comedy. Circles AA and AS represent
adventure, action, thriller movies and action, sci-fi, thriller movies, respectively.

The link prediction problem has been studied on graphs by several approaches which

can be divided into two categories, supervised, e.g. [78], [59] and unsupervised methods,

e.g. [77]. Since SCMiner is unsupervised, we only compare our results to unsupervised

approaches. There are two types of unsupervised methods: based on node neighbors and

based on paths between nodes. However, some of these methods, like common neighbor,

are not suitable for link prediction on bipartite graph data and therefore we choose two

methods, PA preferential attachment [91] and Katz [68], that are suitable for bipartite

graphs. We use precision and recall to evaluate the accuracy. SCMiner automatically

outputs K predicted edges and for reasons of fairness we choose the top K predictions of

the ranking list of PA and Katz to compare the precision and recall of the prediction results.

We also compare our approach to GS Graph Summarization, since the algorithm changes

the edges of the original graph as well. Table 5.4 shows the link prediction comparison on

our synthetic data sets as well as on the real data set Jester. All the results are averaged

over runs on 10 randomly generated or the selected data sets. SCMiner predicts the missing

links of BP1 and BP2 completely and those of BP3 nearly completely correct and therefore

5.5 Related Work 113

Table 5.4: Link Prediction Performances.

Algorithm
BP1 BP2 BP3 Jester

Precision Recall Precision Recall Precision Recall Precision Recall
PA 0.084 0.084 0.436 0.436 0.442 0.443 0.406 0.369

Katz 0.984 0.984 0.943 0.943 0.547 0.548 0.406 0.369
GS 0.965 1 0.981 1 0.994 0.973 0.356 0.05

SCMiner 1 1 1 1 0.997 1 0.431 0.389

yields better results on all synthetic data sets than all comparison methods. Moreover it

outperforms the other approaches on the Jester data set. Interestingly, GS performs better

on the synthetic data sets than on Jester. The reason might be that the Jester data set is

sparser than the synthetic data sets, and therefore GS reaches a local minimum very fast,

which results in fewer predicted edges.

5.5 Related Work

During past decades, many algorithms were proposed for graph clustering, graph compres-

sion, graph summarization and link prediction. Due to space limitations, we only provide

a very brief survey on some related research directions.

5.5.1 Co-clustering

Bi-clustering or co-clustering is a creative approach which simultaneously clusters rows

and columns of a data matrix. It avoids the problems caused by sparseness and high-

dimensionality that traditional one way clustering algorithms suffer from. There are some

state-of-the-art co-clustering algorithms, such as Information- theoretic Co-clustering [38],

Cross Association [29] etc. Specifically, Information theoretic co-clustering [38] simultane-

ously maps row elements to row clusters and column elements to column clusters, mutual

information of each clustering state is calculated and compared to the initial state. Thus,

the optimal co-clustering result is obtained when the mutual information loss is mini-

mal. However, the drawback of the method is that the number of both row and column

114 5. Summarization-Compression Miner

clusters must be predetermined. Cross Association [29] is a MDL-based parameter-free co-

clustering method that processes a binary matrix and seeks clusters of rows and columns

alternately. Then the matrix is divided into homogeneous rectangles which represent un-

derlying structure of the data. However, compared with our algorithm, it only addresses

the clustering problem. Moreover, Long et al. [80] proposed a framework for co-clustering

named block value decomposition (BVD), which formulates co-clustering as an optimiza-

tion problem of matrix decomposition. Similarly, in [79], Long et al. reconstruct a bipartite

graph based on some hidden nodes and thus an optimal co-clustering result is obtained

from the new bipartite graph which mostly approximates the origin graph. However, these

two algorithms both need the number of clusters as input parameter. Besides, Dhillon [37]

proposed a spectral algorithm for bipartite graph partition. Shan and Banerjee [98] pro-

posed a Bayesian co-clustering model and considered co-clustering as a generative mixture

modeling problem. George and Merugu proposed a co-clustering algorithm based on the

collaborative filtering framework [53]. In terms of real life data sets, [32] applied co-

clustering on gene expression data and [37] effectively processed documents and words

data.

5.5.2 Graph Compression and Summarization

In real life, it is common that a graph consists of tens of thousands nodes and complex

linkages. Graph compression and graph summarization [90, 106, 117] are effective ways

to simplify the original large graph and to extract useful information. Many algorithms

are based on Subdue [64], which is a classical graph compression system. It makes use of

the MDL Principle to find a subgraph suitable for compression. Bayesian Model Merging

(BMM) [103, 104] also is a kind of compression method which is based on Bayesian for-

mula. The best compressed model can be achieved by maximizing the posterior probability.

Navlakha et al. [90] represented a graph by a summary graph and a correction matrix, and

summarization is implemented by greedy merging and randomized algorithms. MDL is

used to find the local optimum. However, the algorithm is designed for compressing only

5.6 Conclusion 115

and performs poorly in clustering or link prediction. In [106], according to group nodes

based on their attributes and relationships, which are selected by the user, Tian et al.

propose a graph summarization algorithm.

5.5.3 Link Prediction

Predicting whether two disconnected nodes will be connected in the future, based on avail-

able network information is known as the challenge of link prediction. Liben-Nowell and

Kleinberg [77] summarize some unsupervised link prediction approaches for social net-

works. For example, common neighbor, Jaccard’s coefficient, preferential attachment [91],

Katz [68] etc. Specifically, preferential attachment is based on the idea that two nodes with

higher degree have higher probability to be connected. Katz [68] defines a score that sums

up the number of all paths between two nodes where short paths are weighted stronger.

By ranking these scores, the probability of whether two disconnected nodes will be linked

in the future can be acquired. However, when dealing with bipartite graphs, Kunegis et

al. [75] stated that scores based on common neighbor are not suitable, because two con-

nected nodes do not have any common neighbors in a bipartite graph. But scores like

preferential attachment and Katz, which are used in this chapter as comparison methods

are reasonable.

5.6 Conclusion

In this chapter, we propose SCMiner, a technique that integrates graph summarization, bi-

partite graph clustering, link prediction and hidden structure mining. Based on the sound

optimization goal of data compression, our algorithm finds a compact summary represen-

tation of a large graph. In addition, while compressing the graph SCMiner detects the

truly relevant clusters of both node types and their hidden relationships. Thus, SCMiner

is a framework comprehensively supporting the major tasks in unsupervised graph mining.

Our experiments have demonstrated that SCMiner outperforms specialized state-of-the-art

116 5. Summarization-Compression Miner

techniques for co-clustering and link prediction. In ongoing and future work we want to

extend this idea to support multi-partite graphs as well as graphs with different edge types.

Chapter 6

Probabilistic Integral Metric for

Multi-instance Data

In this chapter, we study another type of complex high-dimensional data: Multi-instance

data. In many application domains, like life science, multimedia retrieval, etc., data is

often modeled as multi-instance objects. How to define a useful similarity measure for

multi-instance objects? This topic has received considerable attention during the last

years with approaches like the Hausdorff distance (HD), the Sum of Minimum Distances

(SMD), Relational Instance Based Learning (RIBL) etc. However, it remains unclear what

are precisely the intuition, the basic assumptions and finally, which of these similarity

measures is suitable for a given application scenario.

To overcome this lack of substantiation and to bridge the gap between similarity mea-

sure and application, in this chapter we define a generative probabilistic model for the

multi-instance objects suggesting a novel similarity measure: The Probabilistic Integral

Metric (PIM). Parts of the material presented in this chapter have been submitted in [62],

where Xiao He was mostly responsible for the development of the main concept, imple-

mented the main algorithms and wrote the largest parts of the paper; Christian Böhm

supervised the project and contributed to the mathematic concept of PIM; Linfei Zhou

helped with the algorithm implementation; Jing Feng performed part of the experiments;

118 6. Probabilistic Integral Metric for Multi-instance Data

Claudia Plant revised the whole paper; The co-authors also contributed to the conceptual

development and paper writing.

“Xiao He, Linfei Zhou, Jing Feng, Claudia Plant and Christian Böhm. A Prob-

abilistic Integral Metric for Multi-instance Objects. Submitted for publication.”

The generative model of PIM is based on the idea that each multi-instance object is a

manifestation of some template defining the major patterns of the data distribution in the

instance space. In contrast to existing similarity measures, PIM has a sound probabilistic

foundation and combines the following benefits: (1) PIM is a metric which is essential

for effective data mining and efficient similarity search. Many data mining techniques like

clustering or embedding approaches require metric properties. Metric index structures

like the M-tree are ready to speed up similarity search with PIM. (2) Our experiments

demonstrate that PIM is a highly effective metric providing superior similarity query and

accurate classification and yielding a high index selectivity. (3) PIM is scalable to large

data consisting of a high number of multi-instance objects represented by massive amounts

of instances.

The remainder of this chapter is organized as follows: In Section 6.1, it starts with an

introduction. We give our similarity definition PIM in Section 6.2. Section 6.4.2 analysis

the efficiency and index support of PIM. Section 6.4 contains an extensive experimental

evaluation. Section 6.5 briefly discusses related work and Section 6.6 concludes the chapter.

6.1 Introduction

Multi-instance objects have become important in database research areas like similarity

search and data analysis. In application domains like life sciences, multimedia retrieval, and

statistical analysis it is important, to represent each object Oi of similarity search not only

by a fixed number of attributes (a single feature vector xi ∈ Rd) but by a finite set of feature

vectors Xi = {xi,1, ...,xi,ni} ∈ P(Rd) each of which is an element of a multi-dimensional

feature space. Thus each of these multi-instance objects is an element of the power set

6.1 Introduction 119

P(Rd) of the d-dimensional feature space. For instance, the performance statistics of

an athlete can be naturally captured as multi-instance data: Each athlete, for example

an NBA player, is an object which is represented by multiple instances representing the

games he/she played. Each instance is a feature vector composed of various performance

statistics, including, e.g., the number of points, rebounds, assists, steals, etc.

6.1.1 Motivation

To be able to search for similar objects and to do some analysis on the basis of similarity,

we need a similarity measure (actually in most cases a dissimilarity measure) which assigns

to each pair of multi-instance objects a score value indicating the degree of (dis)similarity.

Many proposals have been made like the sum of minimum distances (SMD, [92]), the

Hausdorff distance (HD, [41]), and others.

Most of these dissimilarity measures are distance functions

d : P(Rd)×P(Rd)→ R+
0 ,

meaning that they are, for all objects X ,Y ,Z ∈P(Rd):

(M1) positive definite: d(X ,Y) = 0⇔X = Y

(M2) symmetric: d(X ,Y) = d(Y ,X)

A distance function is called a metric if it additionally fulfills:

(M3) triangle inequality: d(X ,Z)≤ d(X ,Y) + d(Y ,Z)

For instance, SMD (sum of minimum distances) is defined:

dSMD(X ,Y) = 1
|X |+|Y |

(∑
x∈X

min
y∈Y
|x− y|+

∑
y∈Y

min
x∈X
|x− y|

)

where |x−y| is the Euclidean distance of the vectors. SMD is a distance function but not

a metric.

120 6. Probabilistic Integral Metric for Multi-instance Data

Figure 6.1: Three multi-instance objects (X ,Y ,Z), derived from two templates (T1,T2)
through a generative model.

The properties (M1), ..., (M3) are particularly important because they allow us to store

the multi-instance objects in an indexing structure for metric objects (like the M-tree [33],

GNAT [27] and others). These structures facilitate queries for similar database objects

in sublinear time by exploiting (M3). Moreover, some analysis techniques like clustering

and embedding (e.g. DBSCAN [42], FASTMAP [43], Multidimensional Scaling [74]) either

fully require the properties of a metric (and are not at all applicable to non-metric distance

functions), or become more efficient in runtime and/or more reliable in the result quality

by the properties of a metric. If a similarity measure is not a metric, the only way to

guarantee the runtime efficiency and the applicability of certain analysis techniques is to

propose specialized indexing and analysis techniques just for the given application. So

having a metric as a similarity measure prevents us from re-inventing the wheel for every

new application.

A second example of a well-known multi-instance similarity measure is the Hausdorff-

distance (HD), defined as follows:

dHD(X ,Y) = max
{

max
x∈X

min
y∈Y
|x− y|,max

y∈Y
min
x∈X
|x− y|

}
This similarity measure happens to be a metric, and therefore, it has become very popular.

6.1 Introduction 121

However, HD appears to be unsuitable for many applications due to its locality character-

istic: On the one hand, every instance x ∈ X is compared to its nearest counterpart in

y ∈ Y such that |x− y| = min (and vice versa) which makes the similarity measure good

and intuitive. On the other hand, we have a problem if at least one of the instances of X

or Y has no good partner in the other set, because the worst of these outlier instances

determines the overall dissimilarity due to the usage of the maximum function. Maybe all

of the instances have a very close partner in the other multi-instance object but this is all

not considered in the final similarity value if one instance has no good match. So HD is

extremely sensitive to such outlier instances which are often understood as insertions and

deletions of instances in this context.

In the obvious solution of this problem, to replace the maximum by the minimum,

called the minimum Hausdorff distance, unfortunately the metric property (M3) is lost.

Moreover, it can happen just by chance that two instances of two objects match well while

the majority of instances are not similar at all. A good and robust similarity measure

should not rate the overall similarity among two multi-instance objects based on a single

pair of instances which may match or mismatch but use all available information to a

profound rating.

6.1.2 Goal

We identify the following essential requirements for a multi-instance object similarity mea-

sure:

• Metric,

• use all available information,

• robust against outlying instances,

• scalable to large data.

Since none of the existing similarity measures meet all these requirements, our goal is to

design a novel one. But how to formalize these intuitive desirable properties of a similarity

122 6. Probabilistic Integral Metric for Multi-instance Data

measure? While the classical way is just to define a similarity measure by a mathematical

formula like that of HD or SMD and then to state the properties and prove them, we

believe that a better alternative is first to formalize a generative model which describes

the stochastic processes that generate the multi-instance objects, and then to derive the

actual similarity model from the generative model. The advantage of this approach is that

the generative model is closer to the intuition and that it is easier to assess the quality and

properties of the similarity measure and to judge if the corresponding similarity measure

is suitable for the similarity search problem at hand. Thus, the generative model gives

us a more principled transition from the intuition of the similarity measure to its formal

definition.

6.1.3 Idea of our Technique PIM

The generative model underlying the similarity measure of this chapter is visualized in

Figure 6.1. We assume that the multi-instance objects in our database are manifestations of

some unknown template multi-instance objects, or simply templates. A template is a multi-

instance object where we call the instances template instances. Typically, a few templates

generate all the multi-instance objects in the database as follows: each instance of a multi-

instance object is a manifestation of a template instance with some associated randomness

as a consequence of measurement errors, noise etc. One template instance may generate

several object instances. Some template instances may also not generate any manifestation

in some of the objects. Two similar multi-instance objects have been generated using a

common template. Note that this does not mean that we have a specific assumption

(like Gaussianity) about the distribution of instances of the whole multi-instance object

(which could be too prohibitive for some applications). We only assume that the error of

a template instance follows some probability distribution, defined by a variance parameter

σ2.

Revisiting our NBA example, this generative model perfectly makes sense: as the bas-

ketball coach Alex Roberts notes, each position of the game (point guard, center, shooting

6.1 Introduction 123

guard, small forward, power forward) ideally requires a specialized prototype player with

specific skills 1. The prototype players can be regarded as templates, each exhibiting a

unique performance profile of template instances. The actual players and their perfor-

mance statistics are manifestations of their template, e.g. the center Dwight Howard and

the shooting guard Kobe Bryant. If two players are very similar according to our met-

ric they are manifestations of a common template, e.g. both shooting guards. For team

building, dissimilar players should be combined.

From our generative model, we derive our new similarity measure, called Probabilistic

Integral Metric (PIM). Whenever we determine the distance between two multi-instance

objects X and Y , we only know the manifestations, not the templates from which they

have been generated. Therefore, our idea is to assume a possible template instance (and

thus a generating Gaussian function) at every position t of the feature space Rd. For a

fixed Gaussian centered by t we can determine the likelihood with which instances of X

and Y have been generated. But we can also vary t and sum up all these likelihoods by

an integral, which is interestingly always finite. We will prove that the resulting similarity

measure fulfills (M1), ..., (M3) and thus is indeed a metric.

6.1.4 Contributions

In contrast to established similarity measures, the Probabilistic Integral Metric (PIM)

combines all the following benefits:

• Metric. In contrast to many other similarity measures (like SMD, RIBL, AL, etc.)

our new method PIM is a metric which is essential for effective data mining and

efficient similarity search.

• Probabilistic foundation. We base our similarity measure on a probabilistic gen-

erative model for multi-instance data. This model integrates all available information

to evaluate the similarity among multi-instance objects and is robust against outlying

1http://bleacherreport.com/articles/174989-how-to-build-a-championship-basketball-team

http://bleacherreport.com/articles/174989-how-to-build-a-championship-basketball-team

124 6. Probabilistic Integral Metric for Multi-instance Data

instances. Our model introduced in Section 6.2 requires only few simple and very

general assumptions about the probability distribution of the instances and gives a

deeper understanding of the properties of our similarity measure.

• Effectiveness: Superior similarity query and accurate classification. Our

experiments in Section 6.4 comparing our metric to Hausdorff, SMD, Quantile dis-

tance and the very expensive Netflow distance demonstrate that PIM is the best

choice for similarity query in multi-instance data.

• Efficiency: Scalable to data with a high number of instances. Among all

comparison methods, our metric is the only similarity measure which scales linearly in

the number of instances and thus clearly is the best choice or even the only applicable

method in applications involving a high number of instances.

6.2 Probabilistic Integral Metric

Our application defines a d-dimensional feature space Rd which describes the various prop-

erties of our data objects. While a classical (single-instance) object is represented by a

single feature vector xi ∈ Rd, a multi-instance object is represented by a finite set of

feature vectors Xi = {x1, . . .xni}, where ni = |Xi| is the cardinality of the set. Since a

multi-instance object is a set of feature vectors, the multi-instance object is an element of

the power set P(Rd) (while the power set P(Rd) contains all (finite and infinite) subsets

of Rd, usually only the finite subsets are used as multi-instance objects). Following the

usual mathematical conventions, we will always denote vectors with x,y, z, the elements

of vector x with (x1, . . . , xd), and sets with X ,Y ,Z . Our database D consists of n multi-

instance objects D = {X1, . . . ,Xn} ⊂P(Rd). The task of our metric is to identify objects

which are similar to a query object Y ∈ P(Rd) which could be defined by a threshold

ε ∈ R+
0 for the similarity:

{
X ∈ D

∣∣ d(X ,Y) ≤ ε
}

(Range- Query)

6.2 Probabilistic Integral Metric 125

A further possibility is the Nearest Neighbor Query:

{
X ∈ D

∣∣ d(X ,Y) = min
Z ∈D

d(Z ,Y)
}

6.2.1 The Generative Model

Before actually defining our new similarity metric PIM, we propose a generative statisti-

cal model which clarifies our understanding of how similar and dissimilar multi-instance

objects come into existence. We believe (and finally demonstrate in Section 6.4) that the

actual, observed multi-instance objects are manifestations of template multi-instance ob-

jects and are generated from them through stochastic probability distribution functions.

We do not assume that these templates are known to the similarity metric and do not

require to estimate or predict these templates but we assume that templates exist and

that two similar objects have a single template in common. Like the manifestations of

multi-instance objects, a template T ∈ P(Rd) is a set of d-dimensional feature vectors.

A template represents a specific pattern of instances which establishes a probability distri-

bution function in the instance space.

Definition 7. (Template Distribution Function)

A template T = {t1, t2, . . . } ∈ P(Rd) is a set of vectors. Together with a variance

parameter σ2 ∈ R+ a template defines the following probability distribution function in

Rd:

gσ2(v) =
1

|T |
∑
t∈T

1

(2πσ2)d/2
· e−

|v−t|2

2·σ2

In Figure 6.1 we can see template T1 consisting of |T1| = 4 instances, and template

T2 consisting of |T2| = 5 instances. Each of these templates define a distribution function

shown below the templates. From T1, the manifestation X is derived, consisting of six

instances. While one instance in the template has not generated any manifestation instance

in X , each of the others has generated up to three instances. The template T2 has two

associated multi-instance objects Y and Z , also with a varying number of instances. We

126 6. Probabilistic Integral Metric for Multi-instance Data

will see that those objects sharing a common template will be spotted as similar by our

similarity measure PIM.

6.2.2 Our Similarity Metric

Our similarity measure is motivated by two aspects. Firstly, we aim at maintaining the

generative model in order to profit from its properties. Since we assume that the set of

templates is unknown to the similarity measure and we do not want to estimate the set of

templates (our similarity measure needs only the information of the two objects X and Y

the similarity of which has to be determined, not that of any other objects), our strategy is

to assume a template instance t at every position of the data space Rd, and to determine

the likelihoods of the actual instances under this assumption. These likelihoods are finally

summed up using a volume (multidimensional) integral iterating over the whole data space.

Secondly, we aim at defining a similarity measure which is a metric and specifically fulfills

(M3), the triangle inequality. To achieve this, we use the Hamming distance as a basis.

The Hamming distance, originally designed for vectors of categorical values, corresponds

to the number of components in which the two vectors are not equal:

dHamming(v,w) =
∑
1≤i≤d

 1 if vi 6= wi

0 otherwise.

Since the Hamming distance is a metric, we adopt this idea in the following way: we

decompose the feature space into an infinite number of overlapping (hyper-) spheres having

varying radius r and center t. We treat each of these spheres from the space decomposition

as a categorical variable. If it is covered by an instance of multi-instance object X ,

then this categorical variable is set to one, otherwise to zero by a function cX (t, r) ∈

{0, 1}. In our distance measure, the variable is weighted by the probability density of the

corresponding radius r, mainly for two reasons: Firstly, we obtain exactly the behavior of

our generating model if we apply the Gaussian function with variance σ2. Secondly, for our

similarity measure we can sum up all these weighted differences between the coverages of

6.2 Probabilistic Integral Metric 127

the spheres by object X and Y by an integral operator, and this integral becomes finite

and solvable by this weighting factor.

First of all, we need to derive the distribution function of the radius r from the Template

Distribution Function, cf. Def. 7. If the likelihood of a vector v is

p(v) =
1

(2πσ2)d/2
· e−

|v−t|2

2·σ2

then the likelihood that the distance between v and t equals r can be determined by

multiplying this formula with the surface of the sphere πd/2 · d/Γ(d
2
− 1) · rd−1 with Γ(1) =

1,Γ(1
2
) =
√
π,Γ(x+ 1) = x · Γ(x). Note that the sphere is centered by t and all vectors v

with the same distance from t have the same likelihood. The probability density function

of the radius r is:

p(r) =
d · rd−1

(2σ2)d/2Γ(d
2

+ 1)
· e−

r2

2·σ2

Using p(r), our dissimilarity measure is defined as follows:

Definition 8. (Probabilistic Integral Metric)

dPIM(X ,Y) =

∫
Rd

∫ ∞
0

p(r) · hX ,Y (t, r) dr dt.

where hX ,Y (t, r) tells us if the circle centered by t with radius r is differently covered by

instances from X and Y :

hX ,Y (t, r) =

 1 if cX (t, r) 6= cY (t, r)

0 otherwise.

cX (t, r) =

 1 if minx∈X |t− x| ≤ r

0 otherwise.

The volume integral of some function f(v) stands for:

∫
Rd
f(v) dv =

∫ +∞

−∞
. . .

∫ +∞

−∞
f(v) dv1 . . . dvd.

128 6. Probabilistic Integral Metric for Multi-instance Data

Instances of

Instances of

t2

t4

t1

t3

Figure 6.2: Intuition of Definition 8: The template instance t is varied over the whole data
space Rd=2. Shown are four examples (t1, . . . , t4) with their Gaussian probability density
functions and with those circles colored in red having cX (ti, r) 6= cY (ti, r) (“differently
covered”).

A cell is differently covered if it contains at least one instance of object X and no instances

of the other object Y (or vice versa). In Definition 8, it is sufficient to always apply only

that instance x which has minimal distance to the center of the cell t since we integrate

over all possible centers t and all possible radii r.

The intuition of PIM is visualized in the 2D example of Figure 6.2 where we have the

instances of X marked by crosses and the instances of Y marked by circles, respectively.

The template Gaussian is actually moved over the whole data space from −∞ to +∞

in all dimensions, but shown are only 4 sample instances together with their probability

6.2 Probabilistic Integral Metric 129

density functions. Each of these Gaussians consists of an infinite number of concentric

circles (hyper-spheres in the general-dimensional case of d > 2). We have marked those

circles in red color that are differently covered according to our definition of function

hX ,Y (t, r). For instance in the upper right Gaussian centered by t2, the area of marked

circles starts with the second innermost drawn circle (covered by an instance of Y) and

ends at the outermost drawn circle (covered by an instance of X). Note that for our

notion of differently covered we do not count the exact number of instances of X and Y ,

respectively, but only determine if the circle is covered at least by one instance.

Next, we give the proof that PIM fulfills the properties (M1), (M2), and (M3) of a metric,

before refining PIM in the next section for an efficient computation of dPIM(X ,Y).

Lemma 1. PIM is a metric

Proof. (M1) Positive Definiteness:

The integrated function is everywhere ≥ 0. If the instances of X and Y are exactly

equal, then none of the spheres are differently covered. Therefore hX ,Y (t, r) = 0 for all

t and r, and thus dPIM(X ,Y) = 0. If some instances are different then there exist some

spheres which are differently covered. In this case these spheres are multiplied with some

positive factor, and have thus a positive influence on the integral. Therefore, in this case,

dPIM(X ,Y) > 0.

(M2) Symmetry:

From the definition of hX ,Y (t, r) we can see:

hX ,Y (t, r) = hY ,X (t, r).

As p(r) is independent of X and Y , we obtain also

∫
Rd

∫ ∞
0

p(r)hX ,Y (t, r)drdt =

∫
Rd

∫ ∞
0

p(r)hY ,X (t, r)drdt

dPIM(X ,Y) = dPIM(Y ,X)

130 6. Probabilistic Integral Metric for Multi-instance Data

(M3) Triangle Inequality:

We have to show that

dPIM(X ,Z) ≤ dPIM(X ,Y) + dPIM(Y ,Z)

always holds. First, we show an analogous property for hX ,Y (t, r) by a case analysis on

cX (t, r) ∈ {0, 1}. We can distinguish only the following four cases:

1. cX (t, r) = cY (t, r) = cZ (t, r)

hX ,Z (t, r) = 0 ≤ 0 + 0 = hX ,Y (t, r) + hY ,Z (t, r)

2. cX (t, r) = cY (t, r) 6= cZ (t, r)

hX ,Z (t, r) = 1 ≤ 0 + 1 = hX ,Y (t, r) + hY ,Z (t, r)

3. cX (t, r) = cZ (t, r) 6= cY (t, r)

hX ,Z (t, r) = 0 ≤ 1 + 1 = hX ,Y (t, r) + hY ,Z (t, r)

4. cX (t, r) 6= cY (t, r) = cZ (t, r)

hX ,Z (t, r) = 1 ≤ 1 + 0 = hX ,Y (t, r) + hY ,Z (t, r)

Since hX ,Y (t, r) fulfills the triangle inequality and p(r) > 0 for all r and independent of

X ,Y ,Z , we know also that

p(r) · hX ,Z (t, r) ≤ p(r) · hX ,Y (t, r) + p(r) · hY ,Z (t, r).

For the Riemann integral the following monotonicity is valid:

If ∀v ∈ Rd : f1(v) ≤ f2(v) then

∫
Rd
f1(v) dv ≤

∫
Rd
f2(v) dv

6.2 Probabilistic Integral Metric 131

and analogously for
∫∞
0
. . . dr. Thus, we obtain

∫
Rd

∫ ∞
0

p(r)hX ,Z (t, r)drdt ≤
∫
Rd

∫ ∞
0

p(r)hX ,Y (t, r)drdt +

+

∫
Rd

∫ ∞
0

p(r)hY ,Z (t, r)drdt

dPIM(X ,Z) ≤ dPIM(X ,Y) + dPIM(Y ,Z)

6.2.3 Efficient Evaluation of PIM

How to simplify the formula given in Def. 8 and how to restrict it to local neighbors of

some instances in X and Y only? The inner integral of dPIM(X ,Y) varies from 0 to ∞,

but as we can see from Figure 5.2, hX ,Y (t, r) = 0 for all r ≤ rmin and for all r ≥ rmax

where rmin is the smallest distance of t to any instance of X ∪ Y . If rmin is determined

by an instance of X , then rmax is the smallest distance of t to an instance of Y and vice

versa:

rmin = min
{

min
x∈X
|x− t|,min

y∈Y
|y− t|

}
rmax = max

{
min
x∈X
|x− t|,min

y∈Y
|y− t|

}
Therefore, we can adapt the integration boundaries instead of applying hX ,Y (t, r):

dPIM(X ,Y) =

∫
Rd

∫ rmax

rmin

p(r) dr dt.

The cumulative distribution function P (r) =
∫ r
0
p(r′) dr′ can be determined as follows:

P (r) =

∫ r

0

d · (r′)d−1

(2σ2)d/2Γ(d
2

+ 1)
· e−

(r′)2

2·σ2 dr′

= C1 ·
∫ r

0

(r′)d−1e−
(r′)2

2·σ2 dr′

132 6. Probabilistic Integral Metric for Multi-instance Data

Let x = (r′)2

2·σ2 and s = d/2, then

P (r) = C2 ·
∫ r2

2·σ2

0

xs−1e−xdx = C2 · γ(s,
r2

2 · σ2
)

where C1 and C2 are constants that can be safely left out and γ(s, z) is the lower incomplete

gamma function which can be solved recursively as:
γ(s, z) = (s− 1) · γ(s− 1, z)− zs−1 · e−z

γ(1, z) = 1− e−z

γ(1
2
, z) =

√
π · erf(

√
z)

(6.1)

For our similarity measure, we obtain:

dPIM(X ,Y) =

∫
Rd
P (rmax)− P (rmin) dt. (6.2)

To determine for a given vector t those instances x ∈X ,y ∈ Y which are responsible

for rmax and rmin, we need to find the nearest neighbor of t in X and Y , respectively. The

locus of all points of the feature space which have a common nearest neighbor is determined

by the Voronoi diagram. Figure 6.3 shows us the overlay of the Voronoi tessellations of X

(in lite green lines) and Y (in dark blue lines). The overlay defines a number of at most

|X | · |Y | convex combination cells in which the same pair of instances is responsible for

the values of P (rmax) and P (rmin). As the two instances change their roles with respect to

rmax and rmin at the orthogonal line (plane) in the middle of the two instances, we have

to cut some of the convex combination cells into two pieces, as depicted in Figure 6.4. We

can further see, that for each of the pieces, we determine the integral P (rmax) and P (rmin).

These are summed up for all pieces of all convex combination cells. This observation proves

also that the result of dPIM(X ,Y) is always finite because it is the sum of a finite number

of Gaussian integrals (each of which is finite).

6.2 Probabilistic Integral Metric 133

Instances of

Instances of

Voronoi Cells of

Voronoi Cells of

Figure 6.3: Overlay of the Voronoi diagrams of multi-instance object X and Y .

6.2.4 Monte Carlo Integration

We use Equation (6.2) in a Monte Carlo integration approach. We generate random samples

s ∈ Rd from an independent uniform distribution (in a suitable interval). For each sample,

we determine the nearest neighbors in X and Y , respectively, then rmax and rmin and

estimate thus the average value of the function P (rmax) − P (rmin) to be integrated. This

average value times the volume of the interval from which the samples have been taken

gives us an accurate approximation of dist(X ,Y).

The sample range of integration is determined from the statistics of object X and Y .

We calculate for each dimension i the minimum (maximum) instance coordinate:

x̌i = min
x∈X ∪Y

xi − σ x̂i = max
x∈X ∪Y

xi + σ

In each dimension i, the random samples are taken from the interval [x̌i, x̂i]. In the follow-

ing, we denote the number of samples used for Monte Carlo integration by S.

134 6. Probabilistic Integral Metric for Multi-instance Data

Instance of

Instance of

Voronoi Cell of

Orthogonal Line

Voronoi Cell of

P1(rmin) P1(rmax) P2(rmin) P2(rmax)- + -

Figure 6.4: A convex combination cell is cut into two pieces by the orthogonal line in the
middle between the instances.

6.3 Complexity and Index Support

If we consider two multi-instance objects X and Y , computing dPIM(X ,Y) requires

S · (|X |+ |Y |) Euclidean distance calculations in Rd. For each sample point, we just need

to identify the closest instance in both multi-instance objects, see Section 6.2.4. Obviously,

PIM is linear in terms of number of samples. In the Experiment section, we will show that

hundreds of samples are enough for PIM to achieve satisfied quality. Furthermore, PIM

scales linearly regarding the number of instances. This is a great improvement compared

to the existing similarity measures. The best scalable ones own the runtime complexity

of |X | · |Y |, e.g. Hausdorff distance (HD [41]), sum of minimum distance (SMD, [92])

and quantile distance (QD, [118]). There are other more complex similarity measures,

like Netflow distance [96]. Netflow is obtained by solving a minimum cost maximum flow

problem, which usually needs |X | · |Y | · (|X |+ |Y |) calculations.

Additionally, in applications involving massive amounts of instances, we could speed

up PIM in instance space by a multivariate index structure, e.g. the X-tree [19] reducing

the runtime complexity of PIM to O(S · (log |X | + log |Y |)). In our experiments, we did

6.4 Experiments 135

not perform such instance-level indexing, since the total number of instances within the

multi-instance objects is not so large in our real data.

Rather, we exploit the metric properties of PIM by performing indexing on the level

of the multi-instance objects. More specifically, we organize the multi-instance object in

an M-tree [33] which is a hierarchical index structure for metric data. M-tree supports

K-nearest neighbor and ε-range queries by exploiting the pruning power of the routing

objects using the triangle inequality. We use the basic M-tree since this relatively simple

index structure allows us to directly assess the effectiveness of our metric.

6.4 Experiments

In this section, we provide extensive experiments on both synthetic and real data sets to

show the effectiveness of PIM and the efficiency and scalability of indexing with PIM.

6.4.1 Effectiveness of PIM

Data Sets and Evaluation Methods

Firstly, we generate synthetic data sets to evaluate the effectiveness of PIM. Each data set

contains 2 clusters, each with 100 objects and 3 dimensions. Objects in the same cluster

share the same center: [0, 0, 0] and [1, 1, 1] for each cluster. The number of instances of

an object follows a uniform distribution in range [1, 2 ∗ 500]. Locations of instances in an

object follow a mixed distribution. They are generated from either Uniform or Normal

distribution. For Uniform distribution, instances are located in [Ci − R,Ci + R], where

Ci is the center of dimension i. The standard deviation of normal distribution is set to

0.2 ∗ R. Finally, the data set is normalized to [0, 1]3. We generate synthetic data sets by

varying R so that objects from different classes may contain different amount of overlapping

instances. For each R we generate 10 synthetic data sets and report the average nearest

neighbor query accuracy.

Besides, we use two real data sets to evaluate PIM regarding effectiveness: NBA data

136 6. Probabilistic Integral Metric for Multi-instance Data

and Face image data.

The NBA data is extracted from NBA players’ game-by-game statistics from 1986 to

2013 season, containing 621, 052 instances of 2154 players. Each player is regarded as a

multi-instance object, where 5 statistics (points, rebounds, assists, steals, and blocks) of

a player per game is treated as an instance after normalization. We compare the similar

NBA players and NBA team building for evaluation.

The CMU Face Images data set consists of 640 gray scale images of people taken with

varying pose, expression and wearing glasses or not. Each image is an object that is

smoothed by a Gaussian filter and sub-sampled to 11× 11. The 9× 9 grid of non-border

pixels are chosen as the instances for an image. Each instance contains five features, which

are its color and color differences with four neighbors after normalization. CMU Face image

data contains class label. Thus we use nearest neighbor accuracy and Multidimensional

Scaling to measure the performance of PIM.

In all effectiveness experiments, we compare PIM to the only two metrics between points

sets that we know: Hausdorff [41] and Netflow [96]. Besides, we compare PIM to the other

two non-metric ones: Sum of Minimum Distances (SMD) [92] and Quantile-distance (QD)

[118]. QD requires a parameter φ ∈ (0, 1), for the quantile resolution. We experiment QD

with φ = [0.1, ..., 0.9] and report the best one.

Synthetic Data sets

The effects of parameters. The calculation of PIM needs two parameters: number

of samples S and σ. Therefore, before comparing PIM to other competitors we firstly

evaluate the effects of these two parameters in terms of effectiveness. Specifically, we use

nearest neighbor query accuracy to evaluate S and σ on synthetic data sets introduced in

Section 6.4.1. S only affects the accuracy of Monte Carlo integration. Thus more samples

give more accurate approximation. Therefore, we first fix the number of samples S = 1000

and evaluate σ. Then we evaluate S with the best σ.

The left part of Figure 6.5 depicts the nearest neighbor query accuracy of PIM with

6.4 Experiments 137

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0.1	 0.2	 0.3	 0.4	 0.5	

Ac
cu
ra
cy

Sigma

Sigma	 VS	 Accuracy	 (S=1000)

Syn(R=0)	
Syn(R=10)	
Syn(R=20)	
Syn(R=30)	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

200	 400	 600	 800	 1000	
Number	 of	 Samples	 (S)

S	 VS	 Accuarcy	 (Sigma=0.3)

R=0	
R=10	
R=20	
R=30	

Figure 6.5: Effects of σ and S of PIM on synthetic data sets introduced in Section 6.4.1
with increasing R.

σ = [0.1, ..., 0.5] on synthetic data sets. From the figure we can see that PIM performs

best with σ = 0.3 and provides stable results for σ from 0.2 to 0.4 for all the data with

different R. Thus, in the following, we will fix σ = 0.3 for all the data sets. Then, we vary

S = [200, ..., 1k]. The performance of PIM is shown in right part of Figure 6.5. Generally,

the performance of PIM is increasing with S. Larger S gives a better accuracy of PIM,

however less efficiency for calculation. In the following, we will evaluate PIM with both

S = 1k and S = 200 samples.

Comprison with competiors. The synthetic data sets become more difficult for clas-

sification with increasing R, since there are more overlapping instances for objects from

different classes. We evaluate the performance of PIM compared to competitors on these

data sets with increasing R, see Figure 6.6. Generally, all methods degrade their perfor-

mances with increasing R. Among them PIM and with S = 1k expensive Netflow perform

best especially when R is large. With S = 200 PIM provides slightly worse results, which

are still better than all the others. SMD performs similar with PIM when there are less

overlaps. However, it degrades its performance more with increasing R compared to PIM.

138 6. Probabilistic Integral Metric for Multi-instance Data

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 10	 20	 30	

Ac
cu
ra
cy

Edge	 Length	 (R)

Nearest	 Neighbor	 Accuracy	 on	 Synthe9c	 Data	

PIM(S=1k)	
PIM(S=200)	
SMD	
Ne5low	
Hausdorff	
QD	

Figure 6.6: Comparison of nearest neighbor accuracy on synthetic data introduced in
Section 6.4.1 with increasing R.

Hausdorff and HD perform worst. PIM performs best due to its probability foundation.

NBA Data

K-nearest neighbors of NBA players. We use K-NN queries on NBA data to compare

the usefulness of the results and the rankings. For example consider the top 5 similar NBA

players of one of most famous NBA player Michael Jordan listed in Table 6.1. PIM with

1k samples provides sensible similar players for Michael Jordan, who is the most successful

shooting guard in the NBA history. His first, third and fifth neighbors Clyder Drexler,

Dwyane Wade and Kobe Bryant are top shooting guards in NBA history as M. Jordan.

The second and fourth neighbor Scotte Pippen and Lebron James are all excellent utility

players as M. Jordan. They all have similar performance profiles with M. Jordan: They

are top scorers and good at assists and rebounds as well. The performance of PIM using

200 samples is only slightly different: 4 out of 5 nearest neighbors are the same with a

slightly different ranking. Hausdorff gives high ranks for Gilbert Arenas and Gary Payton.

G. Arenas has outstanding games from 2004 to 2006. However, since 2007 he only played

134 games and his performance degrades a lot. Therefore he is definitely less similar to

M. Jordan than D. Wade and K. Bryant. Besides, G. Payton is generally regarded as a

6.4 Experiments 139

Table 6.1: Top 5 similar players of M. Jordan in NBA data.

PIM(S = 1k) PIM(S = 200) Hausdorff Netflow SMD QD(φ = 0.5)
M. Jordan M. Jordan M. Jordan M. Jordan M. Jordan K. Durant
C. Drexler C. Drexler C. Drexler L. James K. Bryant L. James
S. Pippen D. Wade P. Pierce A. Iverson P. Pierce C. Anthony
D. Wade P. Pierce G. Arenas D. Wade R. Allen M. Jordan
L. James S. Pippen L. James K. Bryant C. Drexler K. Bryant
K. Bryant K. Bryant G. Payton C. Drexler V. Carter D. Wade

better assister than a scorer. This result demonstrates that Hausdorff is heavily influenced

by outlying instances. QD provides a strange result since it is not a metric. Three players

are ranked before M. Jordan and thus considered to be more similar to M. Jordan than M.

Jordan to himself. SMD reports more sensible similarities compared with Hausdorff and

QD, because they consider the whole distribution of the instances. Besides C. Drexler and

K. Bryant, SMD provides Ray Allen, and Paul Pierce, who are top scorers as well. Netflow

also reports reasonable results, e.g. Allen Iverson. Results from PIM, SMD and Netflow

share some overlapping players. Comparing which one is better must involve subjective

judgment. However, it is clear that PIM, SMD and Netflow can provide more sensible

results than Hausdorff and QD on NBA data set, since they use all the available instances

information.

NBA team building. As we mentioned in the introduction, another application of our

proposed multi-instance metric PIM is sports team building. Taking NBA team building

as an example, dissimilar players should be combined for making a better team. We

analyze the performance and the diversity of five NBA teams in regular season 2012-2013,

cf. Figure 6.7. We selected with Miami Heat (MIA, Eastern Conference Champion) and

Oklahoma Thunder (OKC, Western Conference Champion) the two top performing teams.

The Atlanta Hawks (ATL) and the Milwaukee Bucks (MIL) are average performers and

the Charlotte Bobcats (CHA) finished last in the Eastern Conference. The first column

of Figure 6.7 shows the success of the teams in terms of the normalized number of games

won. MIA is the best performing team with 66 games won, followed by OKC (60), ATL

140 6. Probabilistic Integral Metric for Multi-instance Data

0	

0.2	

0.4	

0.6	

0.8	

1	

Games	 Won	 PIM(S=1k)	 PIM(S=200)	 Hausdorff	 Ne?low	 SMD	 QD(0.5)	

MIA	 OKC	 ATL	 MIL	 CHA	

Figure 6.7: Comparing the diversity of NBA teams. First column: Performance of NBA
teams provided by the number of games won (normalized). Remaining columns: Diversity
in team composition as measured by the average distances among the players (normalized).
PIM is the only similarity measure reflecting the ranking in team performance in team
diversity as it can be expected from domain knowledge.

(44), MIL (38) and finally CHA with 21 games won. The remaining columns of the figure

show the ranking of the teams in terms of diversity as computed by the average distances

among players with PIM and the comparison partners (normalized). PIM is the only

method reflecting the domain knowledge that better teams are also more diverse teams.

With sample size 200 and 1000 the diversity team rankings determined with PIM match

the performance ranking in the first column. Hausdorff ranks MIL as the most diverse

team. SMD, Netflow and QD rate the best team MIA also as the most diverse team but

the worst team CHA as the average diverse team.

CMU Face Data

Nearest Neighbor Accuracy. CMU Face image data contains class label. Thus we firstly

use nearest neighbor accuracy to compare PIM with competitors. The results are depicted

in Figure 6.8. Netflow and SMD perform best with the accuracy of 0.981. With 1000 and

200 samples PIM performs slightly worse with accuracy of 0.98 and 0.978. Hausdorff gives

6.4 Experiments 141

0.98	 0.978	
0.886	

0.981	 0.981	

0.178	

0	

0.2	

0.4	

0.6	

0.8	

1	

PIM(S=1k)	 PIM(S=200)	 Hausdorff	 Ne=low	 SMD	 QD(0.1)	

Nearest	 Neighbor	 Accuracy	 on	 Face	 Data	 	

Figure 6.8: Nearest Neighbor Query Accuracy on Face data.

a worse accuracy of around 0.88 and QD provides the worst result. This is because PIM,

Netflow and SMD take all the instances information into account, while Hausdorff and QD

only consider the extreme instances or part of the instances. This experiment demonstrates

the importance of using all the available information to measure the similarity between

Multi-instance Objects.

Multidimensional Scaling on Face data. In this part, we use multi-dimensional scaling

to evaluate PIM and the competitors. A good metric or distance function should be able to

put the faces of the same person closer together than those of other persons. To facilitate

visualization and comparison, we project the data to 2D space. However, there are 20

people in the data set. It is not possible to distinguish all these people in a single 2D space.

Therefore, we choose subsets for evaluation. Particularly, we choose the first three persons

(an2i, at33, boland) and the second three persons (bpm, ch4f, and cheyer). For space

limitations, we only show the results from faces of bpm, ch4f and cheyer, since there are

more differences in this subset. The result is depicted in Figure 6.9. Each point represents

a face image, and the points with same color represent images of the same person. Besides

the points, we show some interesting images with different head positions. Clearly, PIM

outperforms all the other methods giving the best arrangement. Faces of different people

are well separated in the projected space. With 200 samples PIM provide nearly the same

142 6. Probabilistic Integral Metric for Multi-instance Data

(a) PIM(S = 1k). (b) PIM(S = 200).

(c) Hausdorff. (d) SMD.

(e) Netflow. (f) QD(φ = 0.1).

Figure 6.9: MDS on subset of Face (bpm, ch4f, and cheyer). Each point represents a face
image of one of these three persons. Some interesting images are displayed. Red points:
images of bpm, green: ch4f, blue: cheyer.

6.4 Experiments 143

results as that with 1000 samples. QD is not able to distinguish these faces. Hausdorff,

Netflow and SMD perform better. However, they cannot distinguish all the faces from ch4f

(green points) and cheyer (blue points). For example, in Figure 6.9c and 6.9e Hausdorff

and Netflow put the straight pose face of ch4f closer to the faces of cheyer. And in Figure

6.9d SMD poses the left pose face of ch4f close to the faces of cheyer.

6.4.2 Efficiency of Indexing with PIM

Setting and Data Sets

We support PIM, Hausdorff and Netflow with the Metric Tree (M-tree) [33] and compare

the average K-NN query processing time. Further, we compare PIM with M-tree to QKNN

(quantile-based KNN) [118] which is, to the best of our knowledge the only specialized

technique for indexing multi-instance data. As a baseline for indexing, we also consider

sequential scan for each method.

To guarantee comparability, we implement our technique and all comparison methods

in C++. For M-Tree the former routing object and the object which is farthest from it are

promoted in the splitting process. After several experiments, the node capacity for M-tree

is set to 25 and the block size of R-tree (QKNN) is set to 2048. The parameter φ of QKNN

is set to 0.5. Experiments have been performed on a workstation with 3.4GHz Intel Core

i7 and 32G memory.

We follow the way that is used in [118, 122] to generate the synthetic data sets. Specifi-

cally, the number of objects N varies from 20K to 100k. Dimensionality D varies from 5 to

25. The centers follow either Uniform, Normal, or Mixed distribution. Mixed distribution

is randomly generated from one of the first two distributions. Centers are normalized to

[0, 1] in each dimension. The number of instances of an object varies from 500 to 2.5k.

Locations of instances in an object follow either Uniform, Normal, or Mixed distribution.

For Uniform distribution, instances are located in [Ci−R,Ci+R], where Ci is the center of

dimension i and R varies from [0.05, 0.25]. The standard deviation of normal distribution

is set to 0.2 ∗ R. The instance of Mixed distribution is randomly generated from one of

144 6. Probabilistic Integral Metric for Multi-instance Data

Table 6.2: Parameters for Synthetic Data Sets

dimensionality D 5, 10, 15, 20, 25
number of objects N 20K, 40K, 60K, 80K, 100K

edge length R 0.05, 0.1, 0.15, 0.2, 0.25
number of instances M 500, 1k, 1.5k, 2k, 2.5K

K 5, 10, 15, 20, 25
object location Uniform, Normal, Mixed

instance location Uniform, Normal, Mixed

the first two distributions. All instances of an object share the same weight. Table 6.2

summarizes the parameters used in our experiments with the default values in bold font.

In the following, we use default values unless otherwise specified.

For real data sets, we generate two data sets according to [122] from the Forest Cover-

Type (FC) and Household (HOUSE) data sets. Specifically, we select the normalized

horizontal distances of each observation point to the Hydrology and roadways as the centers

of objects in FC. In House, each record represents the percentage of an American family’s

annual income spent on 3 types of expenditures. Then instances are generated following

the mixed distribution against each center. In FC, there are 581,012 objects and 116.6m

instances, while in HOUSE the number is 127,932 and 51.2m respectively.

In all our efficiency experiments, we randomly choose 100 objects as query objects and

report the average query time.

Metric Property of PIM

The calculation of PIM involves the process of Monte Carlo integration. The number of

samples may affect the metric property of PIM. Therefore, before using M-tree to evaluate

the efficiency of PIM, we firstly experiment the effect of S on metric property of PIM. S

only affects the accuracy of Monte Carlo integration, thus intuitively enough samples will

fulfill the metric property.

We use synthetic data sets with different dimensionality shown in Table 6.2 for evalu-

ation. Specifically, we randomly choose 100 objects from the data sets, and check all the

triplets on whether the PIM distance between them fulfill the triangle inequality equation.

6.4 Experiments 145

0.95	

0.96	

0.97	

0.98	

0.99	

1	

200	 400	 600	 800	 1000	

Va
lid

	 R
at
e

Number	 of	 Samples

Number	 of	 Samples	 VS	 Metric	 Property	 (Sigma	 =	 0.3)	

5d	
10d	
15d	
20d	
25d	

Figure 6.10: Number of samples vs Metric property.

We report the valid rate of those ones that satisfy the equation. From Section 6.4.1 we

know that, PIM performs best with σ = 0.3. Therefore, we evaluate PIM varying number

of samples S = [200, ..., 1k]. The results are depicted in Figure 6.10. PIM already hold

the metric property when number of samples are equal or larger than 200 for all the data

sets. For data sets with equal or less than 20 dimensions, 99.9% of triplets fulfill the tri-

angle inequality equation. For 25d data, the percentage is 99.8%. In the following, we will

evaluate indexing with PIM using samples S = 1k and S = 200.

Efficiency

We evaluate the efficiency of PIM by comparing to competitors on performing indexing

against synthetic and real data sets. The index construction time of M-Tree with Netflow is

longer than 1 week even for the smallest data set. Thus it is eliminated from our efficiency

experiments.

We firstly study the scalability of PIM with M-Tree indexing on synthetic data sets

varying the dimensionality (D), number of instances (M), objects size (N), the K in K-

NN query processing and the edge length (R), see Table 6.2. The average query time is

shown in Figure 6.11. To better distinguish the performances between PIM and QKNN, we

146 6. Probabilistic Integral Metric for Multi-instance Data

0.1	

1	

10	

100	

1000	

5	 10	 15	 20	 25	

Ti
m
e	
(S
ec
on

d)

Dimensionality	 (D)

0.1	

1	

10	

100	

1000	

0.5k	 1k	 1.5k	 2k	 2.5k	
Instances	 Size	 (M)

0	

5	

10	

15	

20	

20k	 40k	 60k	 80k	 100k	
Objects	 Size	 (N)

0	

2	

4	

6	

8	

10	

12	

5	 10	 15	 20	 25	
K

0	

5	

10	

15	

20	

0.05	 0.1	 0.15	 0.2	 0.25	
Edge	 Length	 (R)

PIM(1k)	

PIM(200)	

Hausdorff	

QKNN(0.5)	

Figure 6.11: Scalability experiments on synthetic data sets in Table 6.2.

use logarithmic scale for D and M and normal scale for the others. PIM and QKNN scale

linearly regarding dimensionality (D), while Hausdorff scale super-linearly. The calculation

of Hausdorff is linear in terms of dimensionality. Thus this is mainly caused by the bad

index selectivity of Hausdorff. In terms of instances size, Hausdorff also scales super-

linearly, while PIM and QKNN are linear. This is because the calculation of Hausdorff is

quadratic with instances size, see Section 6.3. With more instances (M > 1.5k), PIM with

sample size S = 200 performs better than QKNN. Regarding objects size N and K in K-NN,

all methods scale linearly, where PIM with S = 200 performs best with more objects (N

> 60k). Edge length (R) indicates the overlapping of instances between objects. PIM and

QKNN are not affected by R, while the query time with Hausdorff significantly increased

with R > 0.15. Overall, PIM and QKNN give similar scalability in our experiments. With

sample size S = 200, PIM provides better query response time than QKNN when there are

more instances and objects. Due to the bad index selectivity, Hausdorff performs worst in

all the experiments.

6.4 Experiments 147

As real data we take the Forest Covertype and HOUSE data sets. The results are

shown in Figure 6.12 and 6.13.

The average processing time for 10 nearest neighbor query on Forest Covertype data

set is shown in Figure 6.12. PIM profits very much from indexing: With M-tree support,

PIM with S = 1k is around 489 times faster than without index support. For sample size

S = 200 indexing still yields a speedup factor of about 465. The superior index selectivity

demonstrates the effectiveness of PIM. Compared to PIM, Hausdorff profits by indexing

with a speedup factor of around 339 in average query processing time. The worse index

selectivity of Hausdorff indicates its less effectiveness compared to PIM. QKNN achieves a

even worse speedup factor of 196 and it provides a higher response time of 5.71 seconds. In

comparison, PIM with sample size 200 provides the second fastest average query response

time of only 1.49 seconds. Overall, PIM with M-tree provides the best speedup factor and

very fast query time with proper samples on Forest Covertype data.

Figure 6.13 depicts the results on HOUSE data set. Similar to that on Forest Covertype

data, PIM profits from indexing supported by M-tree. PIM with S = 1k is about 153 times

faster than sequential scan. For sample size S = 200 indexing still provides a speedup factor

of about 132. Hausdorff does not profit that much by indexing with a speedup factor of

only 60. QKNN achieves the best speedup factor of around 359 on HOUSE data set.

Regarding response time, PIM with S = 200 is the featest among them all.

From Section 6.4.1, we know that PIM with S = 200 is only slightly worse than S = 1k

and much better than Hausdorff and QD in terms of effectiveness. Therefore, PIM with

S = 200 is a better method than Hausdorff and QKNN in both effectiveness and efficiency.

Even with S = 1k samples, PIM is much efficient than Hausdorff. Moreover, PIM with

M-tree provides higher speedup factor than QKNN in FC data, but lower one in HOUSE

data. This is mainly because there is cluster structure inside FC data. This indicates

that PIM with M-tree performs better on data sets with cluster structure than QKNN.

Besides, note that QKNN is a specialized technique for efficient K-NN query processing

on multi-instance data and not just a basic M-tree. QKNN is specially designed for K-NN

query processing and cannot perform range queries, while PIM with M-Tree can do both

148 6. Probabilistic Integral Metric for Multi-instance Data

K-NN and range queries directly inherited from the M-tree.

6.32	

1.49	 0.89	

5.61	

3389	

694	
302	

1102	

0.1	

1	

10	

100	

1000	

PIM(S=1k)	 PIM(S=200)	 Hausdorff	 QKNN(0.5)	

Ti
m
	 (S
ec
on

d)

Forest	 Covertype
Average	 Query	 SequenFal	 Scan	

Figure 6.12: Average query processing time on Forest Covertype data.

6.64	

1.66	

4.78	
2.35	

1021	

220	 291	

845	

1	

10	

100	

1000	

PIM(S=1k)	 PIM(S=200)	 Hausdorff	 QKNN(0.5)	

Ti
m
	 (S
ec
on

d)

HOUSE
Average	 Query	 SequenGal	 Scan	

Figure 6.13: Average query processing time on HOUSE data.

6.5 Related Work and Discussion

This section gives a survey and discussion of similarity measures and indexing techniques

for multi-instance data.

6.5 Related Work and Discussion 149

6.5.1 Similarities for Multi-instance Data

Recently, various similarity measures for multi-instance data have been proposed, ranging

from relatively simple and efficient proposals like the Hausdorff distance and the Sum

of Minimum Distances (SMD) to more sophisticated measures like the Quantile-distance

(QD) and Netflow distance [92, 41, 118, 96]. These similarity measures suffer from one

or several of the following drawbacks: (1) Many of the mentioned similarity measures do

not fulfill the metric properties, e.g. SMD and QD, many data analysis and data mining

methods are not applicable or cannot be guaranteed to give reasonable results. Moreover,

due to the lack of metric properties, these methods cannot be supported by metric index

structures. (2) others do not consider all available information, like Hausdorff and QD or

(3) are not scalable to large data sets, like the Netflow distance. Let us discuss in more

detail the performance of the comparison similarity measures in the experiments.

SMD performs quite reasonable in terms of effectiveness. However, since SMD is not

a metric, many data analysis and data mining methods are not applicable or cannot be

guaranteed to give reasonable results. For example, classical multi-dimensional scaling

must not perform well on non-metric data and in this experiment, the performance of

SMD is rather weak, see Figure 6.9d. Moreover, due to the lack of metric properties, SMD

cannot be supported by metric index structure.

The Hausdorff distance is a metric but is largely affected by single outlying instances,

since actually these instances determine the overall similarity among two multi-instance

objects, since only the worst matching instance pair is considered. As expected, Hausdorff

performs bad in all effectiveness experiments, e.g. it fails in measuring the NBA team

diversity see Figure 6.7, and is the second worst method for the Face data, see Figure 6.8.

Hausdorff can be supported by a metric index structure. However, our experiments with the

M-tree [33] demonstrate that the weakness of Hausdorff in effectiveness yields a relatively

bad index selectivity. Therefore, the performance gains of indexing over sequential scan

are relatively low compared to PIM.

With proper instance weighting, the Netflow distance is a metric, i.e. when we set

150 6. Probabilistic Integral Metric for Multi-instance Data

the weights of all instances within an object such that they sum up to one, and performs

relatively well in effectiveness. The effectiveness results are as good as with PIM, with ex-

ception of NBA team diversity, where PIM is the only method giving the intuitively correct

ranking of teams. Netflow evaluates the multi-instance similarity by defining a transport

network between two multi-instance objects. Netflow then transforms the distances of one

object to those of the other and the flow required for this transformation corresponds to

the final distance. This procedure is cubic in the number of instances, thus Netflow is the

least efficient comparison method. Index support is in principle possible but not practical,

since the time for index construction is excessive, see Section 6.4.2.

Finally, we also compared to the Quantile-distance (QD) which is used in a specialized

technique for efficient K-NN query processing on multi-instance data [118]. The Quantile

distance is not a metric and performs worst in nearly all effectiveness experiments, e.g. on

similarity query on the Face data. Another example is that QD judges other players more

similar to Michael Jordan than Jordan himself, see Table 6.1. With QD the QKNN is

very efficient for K-NN query. However, in practice we also require high quality of effective

query results.

To summarize, our novel similarity metric PIM achieves everything we want: It is just

as effective as the most expensive Netflow distance, on some data even better. Due to its

metric properties, PIM can be significantly speed up using metric index structures. With

an M-tree, we can speed up the query processing time by a factor about 450 over sequential

scan on the Forest Covertype data data which indicates superior index selectivity.

6.5.2 Indexing Multi-instance Data

To the best of our knowledge, only one technique has been proposed for general indexing

multi-instance data [118, 119]. In this work, Zhang et al. propose a quantile-based method

for efficiently processing K-nearest neighbor queries. The authors use quantiles because

they want to capture the data distribution within the instance space. Based on this

idea, they use the non-metric Quantile Distance discussed above and propose an efficient

6.5 Related Work and Discussion 151

algorithm for K-NN query processing using this distance. The instances of each multi-

instance object are stored in a local aR-tree [118] and minimum bounding boxes containing

the instances of the multi-instance objects are organized in an R-tree [57]. Sophisticated

pruning routines speed up the K-NN search in a seeding and refinement phase. We compare

this approach to PIM and the other similarity measures supported by the basic M-tree [33].

The M-tree is based on the idea to exploit the triangle inequality for pruning using routing

objects. In our experiments QKNN scales similarly as PIM. Generally, it provides faster

query than PIM with S = 1k and slower one than PIM with S = 200 with larger number

of objects and instances. Moreover, PIM performs better than QKNN on data sets with

cluster structure, e.g. Forest Covertype data. Besides, QKNN is specially designed for

K-NN query processing and cannot perform range queries, while PIM with M-Tree can do

both K-NN query and range queries directly inherited from the M-tree.

Kriegel et al. [71] used the Netflow distance with a different weighting function for

similarity search on CAD multi-instance objects. However, it is specifically designed for

the cover sequence model [66] for querying 3D CAD objects. The number of instance fo

each object is fixed to 7 in [71]. Thus, it makes no sense to use it for indexing general

multi-instance objects with different dimensionality and number of instances. Furthermore,

our experiments demonstrate that Netflow distance is very computational expensive and

cannot be applied for indexing multi-instance data with large number of instances.

6.5.3 Approaches for Uncertain Data

Approaches for uncertain data may seem at first glance related to our approach as they

often involve probabilistic models like Gaussian [24] or Graphical Models [36] (for a survey

see [110]). However, the characteristics of uncertain data are largely different to those of

multi-instance data. The major challenge of query processing is to trade off the score, i.e.

the closeness to the query, with the existence probability of a potential result. Existing

approaches to query processing on uncertain data can be classified into two methods (1)

returning only results that can co-exist in a possible world and (2) methods returning

152 6. Probabilistic Integral Metric for Multi-instance Data

results that exist in all possible worlds with a high probability [51]. In our setting of multi-

instance data, we face a different challenge: how to quantify the similarity among objects

which are represented by multiple co-existing instances. When modeling multi-instance

objects as uncertain data, we would need to aggregate the distribution of the instances

to the corresponding uncertainty model. Since all instances in our setting are certainly

existing, we would loose important information. Therefore, we consider in the experiments

only approaches focusing on multi-instance data.

6.5.4 Multi-instance and Metric Learning

The other related topic is multi-instance learning [39, 12], where an object is labeled

negative if all the instances are negative, and is labeled positive if at least one of the

instances is positive. In Multi-instance learning, only specific instances are important

for classification and the proportion of these important instances to the total number of

instances in a set might be low [112]. Therefore, the aim of Multi-instance learning is

quite different with the problem studied in this paper, where considering all available

information is essential. Furthermore, one of the most important application of PIM is

indexing Multi-instance object, where no Multi-instance learning approaches concern.

Metric or distance learning approaches for multi-instance objects try to learn a metric or

distance from a labeled data [112, 115]. Their aim is to learn the distance that distinguishes

the objects from different classes most. Therefore, these methods are only applicable in

a supervised condition. In comparison, PIM is a similarity metric that benefits both

supervised and unsupervised applications, e.g. indexing multi-instance data.

6.6 Conclusion

In this chapter, we introduced the Probabilistic Integral Metric (PIM), a novel similarity

measure for multi-instance data. The definition of PIM is based on a probabilistic gener-

ative model requiring few assumptions which hold in many applications: We assume that

6.6 Conclusion 153

the concrete multi-instance objects within a database have been generated by some tem-

plate multi-instance objects which represent characteristic patterns of the data distribution

in the instance space. Note that this generative model does not imply any distribution

assumption in the instance space but only assumes that each concrete instance has been

sampled from a template instance with some error variance.

Our extensive experiments on synthetic and real data demonstrate the effectiveness of

PIM for similarity search, exploratory data analysis and data mining. PIM outperforms

established similarity measures in effectiveness because the generative model includes all

available information into the distance calculation, i.e. all instances of a multi-instance

object and their spatial location. PIM considers two multi-instance objects as similar if

they have been generated by a common template, which means that most instances of

one object have matching instances in the other object. However, due to the probabilistic

generative model, not all instances must have matching partners. Therefore, PIM not

only measures the similarity among two multi-instance objects very accurately but also

is very robust against outlying instances. Efficiency experiments demonstrate that PIM

scales better than other similarity measures for multi-instance data, like the Hausdorff and

Netflow distance. Moreover, since PIM is a metric, many index structures are available

to speed up similarity search. We demonstrated that PIM supported by an M-tree can

even outperform a specialized technique for K-nearest neighbor query processing on multi-

instance data especially on large data represented by massive amounts of instances.

154 6. Probabilistic Integral Metric for Multi-instance Data

Chapter 7

Conclusion and Future Work

This thesis has been focusing on proposing novel clustering algorithms that solve the chal-

lenges in mining complex high-dimensional data by integrating different data mining meth-

ods. We analyze four different types of data: numerical data, categorical data, bipartite

graph data, and multi-instance data. For the first three data resources, we study the

relationship between different data mining tasks, e.g. clustering, pattern mining, dimen-

sional reduction, and prediction. Furthermore, we integrate them into novel algorithms.

For multi-instance data, we provide a novel similarity measure that facilitates similarity

search, clustering and classification on multi-instance data. Our results show that cluster-

ing can be improved by combining with other data mining tasks and novel patterns can

be discovered from the complex high-dimensional data. In the following, we conclude the

major contributions of this thesis and point out the possible future directions.

7.1 Parameter-free Relevant Subspace Clustering

In real applications, clusters usually exist in the subspace of the original feature space.

Subspace clustering approaches suffer from the problem of producing redundant results and

depending on parameters. ROCAT is designed to unveil truly relevant overlapping subspace

clusters in categorical data. It automatically detects most informative subspace clusters by

156 7. Conclusion and Future Work

integrating clustering, feature selection and pattern mining without any input parameter

in an information theoretic way. Relating clustering to data compression, ROCAT does

not require users to choose a similarity measure to quantify the pair-wise similarity among

categorical data objects. The resulting subspace clusters might be overlapping in both

objects and attributes set. The relevance of each cluster is validated by its contribution

to compress the data. In such way, ROCAT naturally avoids undesired redundancy in

clusters and subspaces by allowing overlap only if it improves the compression rate. Besides,

ROCAT is robust to noisy objects and noisy attributes which are flexibly identified during

the clustering process. Furthermore, ROCAT satisfies the efficiency requirement for big

data which scales linearly in data size and quadratic in dimensionality. A preliminary

version of this work has been published in [60], where Xiao He made the main contribution.

ROCAT studies the problem of automatically finding the most relevant and non-

redundant patterns given a high-dimensional data set without any primary knowledge.

It focuses on categorical data, which is definitely necessary to extend it for numerical data

or mixed-type data. For numerical data, the Gaussian distribution assumption could be

used to compress the data. However, how to find the initial clusters would be more difficult

in such case. Moreover, it is very interesting to extend this idea to multi-component data,

e.g. time-series data and multi-instance data. Time-series data could be compact in a

period of time and instances of a multi-instance object might be from different distribu-

tions. Detecting such relevant subspace clusters without input parameters is potentially

beneficial for the following data analysis steps. Moreover, it is interesting to apply the

algorithms to very large data sets, e.g. gene expression data analysis and recommendation

systems.

7.2 Hierarchical Visualization for Subspace Clusters

Another tackled challenge for clustering high-dimensional data is how to interpret the

results. Meaningful clusters often exist in different arbitrarily-oriented subspaces of the

original feature space. While many techniques exist for detecting them, only very few

7.3 Summarization-based Co-clustering 157

approaches touch the challenge of interpreting them. MSS is proposed as a hierarchical

subspace clustering algorithm that integrates the supervised dimensional reduction method

(Orthogonal Linear Discriminant Analysis) and clustering methods (K-means), as well as

Kernel Density Estimation technique. It finds multiple low-dimensional subspaces with cor-

related feature vectors, each exhibiting an interesting cluster structure. The hierarchical

visualization is provided with different low-dimensional subspaces for an intuitive inter-

pretation of the clustering result. With the hierarchical visualization, MSS improves the

analysis of clustering results by providing the information of relationship between clusters.

Besides, MSS avoids specifying the dimensionality of subspace that is hard to estimate and

MSS is robust to irrelevant dimensions. Parts of the material presented in this work have

been submitted in [61], where Xiao He made the main contribution.

MSS partitions the data set and provides hierarchical visualization in different levels. It

is interesting to extend the visualization idea for non-partition clustering tasks, e.g. Multi-

view Clustering. Besides, MSS adopts the idea of integrating supervised techniques into

clustering. Extending the work for other supervised learning and clustering methods is an-

other possible direction, e.g. using non-linear Linear Discriminant Analysis for non-linear

correlation clusters, integrating with DBSCAN for density-based subspace clusters. More-

over, the efficiency would be a problem while applying MSS to very high-dimensional data,

since MSS needs an iterative adaptation of LDA. Using incremental Linear Discriminant

Analysis could be one possible solution to solve the problem. Furthermore, it is interesting

to apply the algorithm to large real applications, e.g. image segmentation.

7.3 Summarization-based Co-clustering

SCMiner focuses on the relational bipartite graph data. It reduces a large bipartite input

graph to a highly compact representation which integrates co-clustering, summarization,

link prediction and the discovery of the hidden structure of a bipartite graph. The principle

of data compression also known as the Minimum Description Length Principle (MDL)

[97] is the basis of SCMiner. Controlled by the MDL principle, SCMiner discovers the

158 7. Conclusion and Future Work

major clusters of both vertex types as well as the major connection patterns between those

clusters. In addition, SCMiner predicts missing or future links and removes noisy edges.

Based on data compression, SCMiner does not rely on any input parameters which are

difficult to estimate. Parts of the material presented in this work have been published in

[45], where Xiao He contributed for the development of the main concept, implemented

the main algorithms and wrote part of the paper.

One possible direction of extending the idea of summarization-based mining would be

to consider the weighted bipartite graphs and to apply it to unsupervised user rating data.

It is a challenge to summarize the weighted graph, since the weights do not follow the usual

distribution assumptions. It costs a lot of bits to encode the weight difference between each

vertex and its representing vertex. One possible solution would be using lossy compression

and adopting rate-distortion principle for model selection. Besides, many real data can be

modeled by multi-relation graph, e.g. K-partite graph. It is interesting to see the effects

of applying summarization idea on K-partite graph. Furthermore, one issue of SCMiner

is that it only discovers the locally dense connected clusters and fails to detect global

communities that are normally sparse. Finally, it is interesting to study the problem of

summarizing a sparse graph.

7.4 Mining Multi-instance Data

In application domains like life sciences, multimedia retrieval, and statistical analysis,

data is often modeled as multi-instance objects. It is important to measure the similarity

between such kind of data objects. Thus we propose a novel similarity measure PIM

(Probabilistic Integral Metric) for multi-instance data. The definition of PIM is based on

a probabilistic generative model requiring few assumptions. We assume that the concrete

multi-instance objects within a database have been generated by some template multi-

instance objects which represent characteristic patterns of the data distribution in the

instance space. Note that this generative model does not imply any distribution assumption

in the instance space but only assumes that each concrete instance has been sampled from a

7.4 Mining Multi-instance Data 159

template instance with some error variance. PIM is a metric which is essential for effective

data mining and efficient similarity search. Experiments demonstrate that PIM performs

and scales better than other similarity measures for multi-instance data. Besides, since

PIM is a metric, many index structures are available to speed up similarity search. Parts

of the material presented in this work have been submitted in [62], where Xiao He made

the main contribution to this work.

One interesting possible direction of future work would be extending the PIM for Sub-

space Clustering on Multi-instance data. A subset of instances might follow the generative

model while the whole set does not. Mining the most informative subspace clusters for

Multi-instance is interesting as well. Besides, extending PIM for efficient indexing struc-

ture is another possible direction. PIM is perfect for metric tree, but a specific indexing

structure for Multi-instance data is essential to further improve the efficiency.

160 7. Conclusion and Future Work

Bibliography

[1] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, and A. Zimek.

Finding hierarchies of subspace clusters. In PKDD, pages 446–453, 2006.

[2] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, and A. Zimek.

Detection and visualization of subspace cluster hierarchies. In DASFAA, pages 152–

163, 2007.

[3] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. On exploring complex

relationships of correlation clusters. In SSDBM, page 7, 2007.

[4] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. Robust, complete,

and efficient correlation clustering. In SDM, 2007.

[5] E. Achtert, C. Böhm, P. Kröger, and A. Zimek. Mining hierarchies of correlation

clusters. In SSDBM, pages 119–128, 2006.

[6] E. Achtert, H.-P. Kriegel, and A. Zimek. Elki: A software system for evaluation of

subspace clustering algorithms. In SSDBM, pages 580–585, 2008.

[7] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms

for projected clustering. In SIGMOD Conference, pages 61–72, 1999.

[8] C. C. Aggarwal and C. K. Reddy, editors. Data Clustering: Algorithms and Appli-

cations. CRC Press, 2014.

162 BIBLIOGRAPHY

[9] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimen-

sional spaces. In SIGMOD Conference, pages 70–81, 2000.

[10] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace cluster-

ing of high dimensional data for data mining applications. In SIGMOD Conference,

pages 94–105, 1998.

[11] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. Np-hardness of euclidean sum-

of-squares clustering. Machine Learning, 75(2):245–248, 2009.

[12] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for

multiple-instance learning. In NIPS, pages 561–568, 2002.

[13] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik. Limbo: Scalable clustering

of categorical data. In EDBT, pages 123–146, 2004.

[14] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points

to identify the clustering structure. In SIGMOD Conference, pages 49–60, 1999.

[15] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney. Model-based

overlapping clustering. In KDD, pages 532–537, 2005.

[16] D. Barbará, Y. Li, and J. Couto. Coolcat: an entropy-based algorithm for categorical

clustering. In CIKM, pages 582–589, 2002.

[17] A. Ben-Dor, B. Chor, R. M. Karp, and Z. Yakhini. Discovering local structure in

gene expression data: the order-preserving submatrix problem. In RECOMB, pages

49–57, 2002.

[18] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clustering.

Journal of Machine Learning Research, 2:125–137, 2001.

[19] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-tree : An index structure for

high-dimensional data. In VLDB, pages 28–39, 1996.

BIBLIOGRAPHY 163

[20] P. Berkhin. A survey of clustering data mining techniques. In Grouping Multidimen-

sional Data, pages 25–71. 2006.

[21] C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. Robust information-theoretic clus-

tering. In KDD, pages 65–75, 2006.

[22] C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger. Density connected clustering

with local subspace preferences. In ICDM, pages 27–34, 2004.

[23] C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of correlation

connected objects. In SIGMOD Conference, pages 455–466, 2004.

[24] C. Böhm, A. Pryakhin, and M. Schubert. The gauss-tree: Efficient object identifica-

tion in databases of probabilistic feature vectors. In ICDE, page 9, 2006.

[25] D. Boley and D. Cao. Training support vector machines using adaptive clustering.

In SDM, pages 126–137, 2004.

[26] S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data: A

comparative evaluation. In SDM, pages 243–254, 2008.

[27] S. Brin. Near neighbor search in large metric spaces. In VLDB, pages 574–584, 1995.

[28] E. Cesario, G. Manco, and R. Ortale. Top-down parameter-free clustering of high-

dimensional categorical data. IEEE Trans. Knowl. Data Eng., 19(12):1607–1624,

2007.

[29] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic

cross-associations. In KDD, pages 79–88, 2004.

[30] C. H. Cheng, A. W.-C. Fu, and Y. Zhang. Entropy-based subspace clustering for

mining numerical data. In KDD, pages 84–93, 1999.

[31] Y. Cheng and G. M. Church. Biclustering of expression data. In ISMB, pages 93–103,

2000.

164 BIBLIOGRAPHY

[32] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-

clustering of gene expression data. In SDM, 2004.

[33] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for simi-

larity search in metric spaces. In VLDB, pages 426–435, 1997.

[34] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.

J. Symb. Comput., 9(3):251–280, 1990.

[35] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY,

SERIES B, 39(1):1–38, 1977.

[36] A. Deshpande, L. Getoor, and P. Sen. Graphical models for uncertain data. In

C. Aggarwal, editor, Managing and Mining Uncertain Data. Springer, 2009.

[37] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph

partitioning. In KDD, pages 269–274, 2001.

[38] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In

KDD, pages 89–98, 2003.

[39] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance

problem with axis-parallel rectangles. Artif. Intell., 89(1-2):31–71, 1997.

[40] C. H. Q. Ding and T. Li. Adaptive dimension reduction using discriminant analysis

and k-means clustering. In ICML, pages 521–528, 2007.

[41] T. Eiter and H. Mannila. Distance measures for point sets and their computation.

Acta Inf., 34(2):109–133, 1997.

[42] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-

ering clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

BIBLIOGRAPHY 165

[43] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for indexing, data-mining and

visualization of traditional and multimedia datasets. In SIGMOD, pages 163–174,

1995.

[44] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery and data

mining: Towards a unifying framework. In KDD, pages 82–88, 1996.

[45] J. Feng, X. He, B. Konte, C. Böhm, and C. Plant. Summarization-based mining

bipartite graphs. In KDD, pages 1249–1257, 2012.

[46] D. Fradkin. Clustering inside classes improves performance of linear classifiers. In

Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE International Confer-

ence on, volume 2, pages 439–442, 2008.

[47] Q. Fu and A. Banerjee. Bayesian overlapping subspace clustering. In ICDM, pages

776–781, 2009.

[48] G. Gan and J. Wu. Subspace clustering for high dimensional categorical data.

SIGKDD Explorations, 6(2):87–94, 2004.

[49] V. Ganti, J. Gehrke, and R. Ramakrishnan. Cactus - clustering categorical data

using summaries. In KDD, pages 73–83, 1999.

[50] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[51] T. Ge, S. Zdonik, and S. Madden. Top-k queries on uncertain data: on score distri-

bution and typical answers. pages 375–388. ACM, 2009.

[52] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Discovery Science,

pages 278–289, 2004.

[53] T. George and S. Merugu. A scalable collaborative filtering framework based on

co-clustering. In ICDM, pages 625–628, 2005.

166 BIBLIOGRAPHY

[54] P. D. Grünwald. The Minimum Description Length Principle (Adaptive Computation

and Machine Learning). The MIT Press, 2007.

[55] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categor-

ical attributes. In ICDE, pages 512–521, 1999.

[56] S. Günnemann, I. Färber, K. Virochsiri, and T. Seidl. Subspace correlation clustering:

finding locally correlated dimensions in subspace projections of the data. In KDD,

pages 352–360, 2012.

[57] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD,

pages 47–57, 1984.

[58] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

[59] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using supervised

learning. In Proc. of SDM Workshop on Link Analysis, 2006.

[60] X. He, J. Feng, B. Konte, S. T.Mai, and C. Plant. Relevant overlapping subspace

clusters on categorical data. In KDD, page in press, 2014.

[61] X. He, S. Goebl, S. T.Mai, C. Böhm, and C. Plant. Multiple subspace selection for

hierarchical clustering and visualization. Submitted for publication.

[62] X. He, L. Zhou, J. Feng, C. Plant, and C. Böhm. A probabilistic integral metric for

multi-instance objects. Submitted for publication.

[63] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia

databases with noise. In KDD, pages 58–65, 1998.

[64] L. B. Holder, D. J. Cook, and S. Djoko. Substucture discovery in the subdue system.

In KDD Workshop, pages 169–180, 1994.

BIBLIOGRAPHY 167

[65] Z. Huang. A fast clustering algorithm to cluster very large categorical data sets

in data mining. In SIGMOD Workshop on Research Issues on Data Mining and

Knowledge Discoery, 1997.

[66] H. V. Jagadish. A retrieval technique for similar shapes. In SIGMOD Conference,

pages 208–217, 1991.

[67] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1988.

[68] L. Katz. A new status index derived from sociometric analysis. PSYCHOMETRIKA,

18(1):39–43, 1953.

[69] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to

Cluster Analysis. John Wiley, 1990.

[70] K.-N. Kontonasios and T. D. Bie. An information-theoretic approach to finding

informative noisy tiles in binary databases. In SDM, pages 153–164, 2010.

[71] H.-P. Kriegel, S. Brecheisen, P. Kröger, M. Pfeifle, and M. Schubert. Using sets of

feature vectors for similarity search on voxelized cad objects. In SIGMOD Conference,

pages 587–598, 2003.

[72] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey

on subspace clustering, pattern-based clustering, and correlation clustering. TKDD,

3(1), 2009.

[73] P. Kröger, H.-P. Kriegel, and K. Kailing. Density-connected subspace clustering for

high-dimensional data. In SDM, pages 246–256, 2004.

[74] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis. Psychometrika, 29(1):1–27, 1964.

[75] J. Kunegis, E. W. D. Luca, and S. Albayrak. The link prediction problem in bipartite

networks. CoRR, abs/1006.5367, 2010.

168 BIBLIOGRAPHY

[76] D. Lee and J. Lee. Dynamic dissimilarity measure for support-based clustering. IEEE

Trans. Knowl. Data Eng., 22(6):900–905, 2010.

[77] D. Liben-Nowell and J. M. Kleinberg. The link prediction problem for social networks.

In CIKM, pages 556–559, 2003.

[78] R. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods

in link prediction. In KDD, pages 243–252, 2010.

[79] B. Long, X. Wu, Z. M. Zhang, and P. S. Yu. Unsupervised learning on k-partite

graphs. In KDD, pages 317–326, 2006.

[80] B. Long, Z. M. Zhang, and P. S. Yu. Co-clustering by block value decomposition. In

KDD, pages 635–640, 2005.

[81] C. Lund and M. Yannakakis. On the hardness of approximating minimization prob-

lems. J. ACM, 41(5):960–981, 1994.

[82] D. Luo, C. H. Q. Ding, and H. Huang. Linear discriminant analysis: New formula-

tions and overfit analysis. In AAAI, pages 417–422, 2011.

[83] J. MacQueen. Some methods for classification and analysis of multivariate obser-

vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 1: Statistics, pages 281–297, 1967.

[84] S. T. Mai, X. He, N. Hubig, C. Plant, and C. Böhm. Active density-based clustering.

In ICDM, pages 508–517, 2013.

[85] M. Mampaey, N. Tatti, and J. Vreeken. Tell me what i need to know: succinctly

summarizing data with itemsets. In KDD, pages 573–581, 2011.

[86] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.

Cambridge University Press, 2008.

BIBLIOGRAPHY 169

[87] G. Moise and J. Sander. Finding non-redundant, statistically significant regions in

high dimensional data: a novel approach to projected and subspace clustering. In

KDD, pages 533–541, 2008.

[88] E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl. Relevant subspace

clustering: Mining the most interesting non-redundant concepts in high dimensional

data. In ICDM, pages 377–386, 2009.

[89] H. S. Nagesh, S. Goil, and A. N. Choudhary. Adaptive grids for clustering massive

data sets. In SDM, pages 1–17, 2001.

[90] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded

error. In SIGMOD, pages 419–432, 2008.

[91] M. E. J. Newman. Clustering and preferential attachment in growing networks.

PHYS.REV.E, 64:025102, 2001.

[92] I. Niiniluoto. Truthlikeness, volume 185. Springer, 1987.

[93] D. Pelleg and A. W. Moore. X-means: Extending k-means with efficient estimation

of the number of clusters. In ICML, pages 727–734, 2000.

[94] A. K. Poernomo and V. Gopalkrishnan. Towards efficient mining of proportional

fault-tolerant frequent itemsets. In KDD, pages 697–706, 2009.

[95] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans. Time series epenthesis:

Clustering time series streams requires ignoring some data. In ICDM, pages 547–556,

2011.

[96] J. Ramon and M. Bruynooghe. A polynomial time computable metric between point

sets. Acta Inf., 37(10):765–780, 2001.

[97] J. Rissanen. Information and Complexity in Statistical Modeling. Springer, 2007.

[98] H. Shan and A. Banerjee. Bayesian co-clustering. In ICDM, pages 530–539, 2008.

170 BIBLIOGRAPHY

[99] J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant. Synchronization-inspired parti-

tioning and hierarchical clustering. IEEE Trans. Knowl. Data Eng., 25(4):893–905,

2013.

[100] J. Shao, X. He, Q. Yang, C. Plant, and C. Böhm. Robust synchronization-based

graph clustering. In PAKDD (1), pages 249–260, 2013.

[101] R. Sibson. Slink: An optimally efficient algorithm for the single-link cluster method.

Comput. J., 16(1):30–34, 1973.

[102] B. W. Silverman and P. J. Green. Density Estimation for Statistics and Data Anal-

ysis. Chapman and Hall, London, 1986.

[103] A. Stolcke and S. M. Omohundro. Hidden markov model induction by bayesian

model merging. In NIPS, pages 11–18, 1992.

[104] A. Stolcke and S. M. Omohundro. Inducing probabilistic grammars by bayesian

model merging. In ICGI, pages 106–118, 1994.

[105] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research, 3:583–617,

2002.

[106] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summariza-

tion. In SIGMOD, pages 567–580, 2008.

[107] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings

comparison: is a correction for chance necessary? In ICML, pages 1073–1080, 2009.

[108] J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: mining itemsets that compress.

Data Min. Knowl. Discov., 23(1):169–214, 2011.

[109] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in large

data sets. In SIGMOD Conference, pages 394–405, 2002.

BIBLIOGRAPHY 171

[110] Y. Wang, X. Li, X. Li, and Y. Wang. A survey of queries over uncertain data. Knowl.

Inf. Syst., 37(3):485–530, 2013.

[111] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee. Findit: a fast and intelligent

subspace clustering algorithm using dimension voting. Information and Software

Technology, 46(4):255–271, 2004.

[112] A. Woznica and A. Kalousis. Adaptive distances on sets of vectors. In ICDM, pages

579–588, 2010.

[113] Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Summarizing transactional databases

with overlapped hyperrectangles. Data Min. Knowl. Discov., 23(2):215–251, 2011.

[114] T. Xiong, S. Wang, A. Mayers, and E. Monga. A new mca-based divisive hierarchical

algorithm for clustering categorical data. In ICDM, pages 1058–1063, 2009.

[115] Y. Xu, W. Ping, and A. T. Campbell. Multi-instance metric learning. In ICDM,

pages 874–883, 2011.

[116] M. J. Zaki, M. Peters, I. Assent, and T. Seidl. Clicks: an effective algorithm for

mining subspace clusters in categorical datasets. In KDD, pages 736–742, 2005.

[117] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph summarization. In

ICDE, pages 880–891, 2010.

[118] W. Zhang, X. Lin, M. A. Cheema, Y. Zhang, and W. Wang. Quantile-based knn

over multi-valued objects. In ICDE, pages 16–27, 2010.

[119] W. Zhang, L. Zhan, Y. Zhang, M. A. Cheema, and X. Lin. Efficient top-k similarity

join processing over multi-valued objects. World Wide Web, 17(3):285–309, 2014.

[120] X. Zhang, F. Pan, and W. Wang. Care: Finding local linear correlations in high

dimensional data. In ICDE, pages 130–139, 2008.

172 BIBLIOGRAPHY

[121] X. Zhang, F. Pan, and W. Wang. Redus: finding reducible subspaces in high dimen-

sional data. In CIKM, pages 961–970, 2008.

[122] Y. Zhang, W. Zhang, J. Pei, X. Lin, Q. Lin, and A. Li. Consensus-based ranking

of multivalued objects: A generalized borda count approach. IEEE Trans. Knowl.

Data Eng., 26(1):83–96, 2014.

Acknowledgments

During the time I was working on this thesis I have been fortunate to receive a lot of sup-

ports and encouragements. I would like to express my sincere appreciation to the people

who helped me grow academically and personally during my study in Germany.

First, I would like to express my deep gratitude to Prof. Dr. Christian Böhm, my super-

visor, for his patient supervision, enthusiastic encouragement and endless support during

this research. His research style, sharp thoughts, open-mindedness inspired me all the time.

Then I would like to offer my special thanks to Dr. Claudia Plant for her pleasant coop-

eration, excellent guidance, and friendly encouragement. Furthermore, I am also greatly

thankful to Prof. Xingquan Zhu, who kindly agreed to allocate his time to be the second

referee on this thesis.

My warmest thanks also to all my current and past colleagues at the data mining group

of LMU and iKDD group of Helmholtz Zentrum München. Without the discussions and

cooperations with them, this thesis could never have been grown. In particular, I want to

thank Dr. Junming Shao, Qinli Yang, Dr. Bianca Wackersreuther, Dr. Annahita Oswald,

Jing Feng, Son Mai Thai, Bettina Konte, Sebastian Goebl, Nina Hubig, Sam Maurus,

Annika Tonch, Wei Ye, Linfei Zhou, Dr. Wolfgang zu Castell, Dr. David Endesfelder,

Can Altinigneli, Frank Fiedler, Peter Wackersreuther and Andrew Zherdin for productive

team-work and inspiring discussions. Furthermore, I want to thank Susanne Grienberger,

Sandra Mayer and Franz Krojer for their kindly background and technical supports.

174

I would like to acknowledge China Scholarship Council and University of Munich for pro-

viding me the financial support (CSC-LMU joint Scholarship) during my PhD study.

Finally, I like to express my deepest gratitude to my parents, my wife and my daughter

for their understanding, patience and endless love. Without them this work would never

have seen its conclusion.

Xiao He

Munich, Germany

July, 2014

Curriculum Vitae

Xiao He received the B.Eng. degree in Electronic Information Engineering and M.Eng.

degree in Circuit and System from Xidian University , Xi’an, China. He is currently a

Phd student at the Institute for Mathematics, Informatics and Statistics, University of

Munich, Munich, Germany. His research interests include data mining, machine learning,

pattern recognition, image processing, with a focus on clustering, subspace clustering,

feature selection, graph mining, and application scenario of computational biology and

bioinformatics.

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

	Xiao(Thesis)
	Abstract
	Introduction
	Knowledge Discovery in Databases (KDD)
	Exploratory Data Mining Tasks
	Cluster Analysis
	Frequent Pattern Mining
	Dimensionality Reduction
	Similarity and Dissimilarity Measure

	Challenges in Explorative Mining Complex Data
	High-dimensional Data
	Complex Data
	Parametrization
	Interpretation

	Contributions and Structure of the Thesis

	Background
	Clustering
	Flat Clustering
	Hierarchical Clustering

	Subspace Clustering
	Axis-Parallel Subspace Clustering
	Arbitrarily-oriented Subspace Clustering
	Co-clustering
	Biclustering

	MDL-based Clustering
	Minimum Description Length Principle
	MDL-based Clustering

	Evaluation of Clustering Results
	Cluster Purity
	Mutual Information
	Precision, Recall and F-Measure

	Relevant Overlapping Subspace Clusters on Categorical Data
	Introduction
	Optimization Goal Compression
	Notations
	Coding Scheme

	Algorithm
	Minimum Coding Problem
	Algorithm ROCAT

	Experiments
	Synthetic Data
	Real World Data

	Related Work and Discussion
	Categorical Subspace Clustering
	Informative Pattern Mining

	Conclusion

	Multiple Subspace Selection for Hierarchical Clustering
	Introduction
	LDA and Orthogonal LDA
	Multiple Subspace Selection
	Orthogonal LDA-Kmeans
	Multiple Subspace Selection
	Runtime Complexity

	Experiments
	Setup.
	Comparing OLDA-Km with LDA-Km
	The effect of parameter Epsilon
	Clustering Quality
	A Case Study on Pendigits Data
	Scalability

	Related Work and Discussion
	Exploiting Supervised Techniques for Clustering
	Subspace Clustering
	Hierarchical Clustering

	Conclusion

	Summarization-Compression Miner
	Introduction
	Contributions

	Compressing a Bipartite Graph
	Coding Scheme
	Hidden Relations Between Vertices

	Algorithm SCMiner
	Experiments
	Clustering Quality
	Hidden Structure
	Link Prediction Accuracy

	Related Work
	Co-clustering
	Graph Compression and Summarization
	Link Prediction

	Conclusion

	Probabilistic Integral Metric for Multi-instance Data
	Introduction
	Motivation
	Goal
	Idea of our Technique PIM
	Contributions

	Probabilistic Integral Metric
	The Generative Model
	Our Similarity Metric
	Efficient Evaluation of PIM
	Monte Carlo Integration

	Complexity and Index Support
	Experiments
	Effectiveness of PIM
	Efficiency of Indexing with PIM

	Related Work and Discussion
	Similarities for Multi-instance Data
	Indexing Multi-instance Data
	Approaches for Uncertain Data
	Multi-instance and Metric Learning

	Conclusion

	Conclusion and Future Work
	Parameter-free Relevant Subspace Clustering
	Hierarchical Visualization for Subspace Clusters
	Summarization-based Co-clustering
	Mining Multi-instance Data

	Acknowledgments

	eidesstattlversicherung_3_2_

	Name, Vorname: He, Xiao
	Ort Datum: München, 02.09.2014
	Text1: He, Xiao

