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Summary

Each cell is a complex network of interacting components. It is crucial to un-
derstand biology as a system of strong interactions within submodules and loose
interactions between submodules. It is toward that goal that computational
methods for network inference lead. Ideally these methods help to infer sub-
modules of the global network that is the cell from various biological data.
This thesis presents three statistical methods for the inference of interaction

networks. One method uses linear regression followed by hierarchical clustering
on gene expression data to predict condition speci�c transcription factor inter-
actions. This method can infer the dynamic network of interacting transcription
factors across conditions where transcription factors can have di�erent interact-
ing partners under di�erent conditions.
The second method can infer regulatory networks. It employs dynamic Boolean

networks with unknown time delays on protein abundance data to model interac-
tions between regulators and targets of regulation, allowing for feedback between
the two. This method recovers the interaction network responsible for murine
embryonic stem cell di�erentiation,
The third method is a novel test of independence. It is based on the exact

distribution of ith nearest neighbours (also a part of this thesis) to derive a test
statistic that is especially powerful in the detection of circular dependencies.
This method can be used in the PC algorithm for Bayesian network inference.
The latter are used to model diverse biological networks.
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Preface

Respected Corrector and Dear Reader,

it is with a great sense of accomplishment that I present to you my disserta-
tion. I have taken great care with both the content and the presentation of this
document. The �rst chapter `Transcription Factor combinatorics' contains work
that was done while employed at the GeneCenter of the Ludwig-Maximilians-
Universität in Munich. The second and third chapters `Signal Network recon-
struction' and `Independence testing' contain work that was realized while em-
ployed at the Universität zu Köln and working at the Max-Planck Institute for
Plant Breeding Research, both in Cologne. This change of employers is a di-
rect consequence of my supervisors move to Cologne after being appointed Je�
Schell professor, a joint chair at the University of Cologne and the Max-Planck
Institute for Plant Breeding. This gave me the opportunity to experience two
di�erent scienti�c work environments and two very di�erent german cities.

When working in computational biology it is not important where you work
from. More important are the people you work with. In this matter I have been
blessed with some brilliant collaborators. I am very grateful to the laboratory of
Patrick Cramer, especially to Martin Seizl for designing validation experiments
for me and to Nicole Pirkl and Stefanie Etzold for prompt and accurate realiza-
tion of these experiments. I thank Dietmar Martin for helping me putting the
results in context and for his expertise working on the yeast model organism. I
also thank Ulrich Mansmann for supporting me with his statistical knowledge
and for pertinent remarks on independence testing.

During my thesis I had the opportunity to work with data from many di�erent
organisms, including yeast, drosophila and human data and obtained with many
di�erent experimental techniques such as microarray hybridization, ChIP-chip,
and ChIP-seq. This variety has been a challenge but it helped me hone my skills
and expand my toolbox of statistical methods.

The dissertation is organized as follows: It starts with an introduction into
the �eld of interaction networks, giving the reader background information and a
context into which to place the current work. Then each chapter begins with an
introductory paragraph linking it to the context established in the `Introduction'
and is subsequently organized typically as a research paper containing an intro-
duction, a description of the materials and methods used followed by the results
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and ending with a discussion. Further information for each chapter is bundled
in the appendix. It should serve to �nding answers to speci�c methodological
questions and asides referenced in the main text. You can probably skip this
section in the study of the text and it is not formatted for easy reading. The
dissertation as a whole is concluded by a chapter conveniently named `Conclu-
sion' that will be a summary of the achievements and contributions of this work
to the �eld and context established in the Introduction.
I invite the motivated reader to read through this dissertation cover-to-cover

to gain an in-depth understanding of the interplay between key mechanisms of
genetic regulation. Another reader might prefer to directly skip to the chapter
of most interest to him or only to the result section of each chapter. Others will
be satis�ed in their curiosity with the `Introduction' and `Conclusion' chapters
alone. I hope to have structured the dissertation in a way to accommodate the
di�erent types of readers. Last but not least I wish you all an insightful and
pleasurable reading!

Kind Regards,

Sebastian Dümcke
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Introduction

This thesis explores diverse aspects of biological interaction network inference.
From the detection of speci�c types of interactions (condition speci�c transcrip-
tion factor interactions, see chapter 1) to the inference of complete small scale
interaction networks (using Boolean networks, see chapter 2) via new methods
for independence testing which are used speci�cally in some inference algorithms
(e. g. the PC algorithm [1]) described in chapter 3.
Biological interactions have initially been characterized individually using spe-

ci�c low throughput experimental techniques (e. g. co-immunoprecipitation or
any knockdown technique). This approach has been replaced by high through-
put techniques (e. g. yeast two-hybrid) that yield whole interaction networks.
Using such techniques, nearly complete protein interaction networks have been
proposed for many model organisms (e. g. for yeast [2], �y [3] and human [4]).
New bioinformatic tools have been created to learn from this wealth of data
from which we can learn more about the system as a whole than with individual
interaction experiments.
In parallel it was tried to reconstruct such large interaction networks in sil-

ico without all the �nancial e�orts involved in large scale experiments. So far
computational interaction network inference is still not feasible at global scale.
Bioinformatics has developed a vast toolbox of inference techniques for man dif-
ferent types of networks (e. .g. Bayesian networks [5, 6] and Boolean networks
[7]).
This thesis is structured as follows: In the �rst chapter about transcription

factor (TF) combinatorics (chapter 1, Transcription Factor combinatorics) I in-
vestigate how to detect interactions between TFs under the assumption that
TF combinatorics are speci�c to growth conditions. The second chapter deals
with inferring interaction network that include unknown time delays (chapter
2, Signal Network reconstruction). For this speci�c task I provide the exact
closed form likelihood calculations. The third chapter is about independence
testing (chapter 3, Independence testing) where amongst other results I show
the exact likelihood distribution of the ith nearest neighbour of a point on a
two dimensional torus. This distribution leads to the development of two novel
tests of independence. Finally the thesis contains an appendix with numerous
interesting bits of information that would otherwise have disrupted the �ow of
argumentation in the main text.
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1 Transcription Factor combinatorics

The necessity of combinatorial transcription factor (TF) interaction rapidly be-
comes apparent when one considers that the number of TFs is small but the
number of di�erent and often adverse conditions an organism must adapt to is
vast. Therefore combinations of factors exist that interact with di�erent part-
ners under di�erent conditions. This increases the number of conditions that
any organism can adapt to.
In this chapter I present One Hand Clapping, a method for the detection of

condition-speci�c interactions between transcription factors from genome-wide
gene activity measurements. Using this new method on many TFs and conditions
shows a dense interaction network (refer to Figure 1.8 for an example).

1.1 Introduction

Homeostasis, the ability to respond to a plethora of environmental challenges,
is vital to the cell. This adaptation is achieved by an orchestrated regulation
of gene expression. It was discovered that some TFs act as master regulators
in many di�erent conditions, and that the speci�city of the regulatory response
is obtained through dispatching the signal from the master regulators to down-
stream TFs [8]. It is quite clear that direct TF interactions, both physical and
genetic, are the prevalent mechanisms of this dispatching [9, 10, 11]. A method
for the detection of functionally relevant, condition-speci�c transcription factor
interactions (TFIs) would therefore greatly contribute to our understanding of
gene regulation.
A necessary �rst step towards the detection of TFIs is the quanti�cation of

individual TF activity. It is di�cult to deduce the activity of a TF by its expres-
sion alone (only a small fraction of transcription factors show expression levels
that correlate with those of their target genes [12]), as there are many alternative
mechanisms to activate TFs. A complementary approach is the quanti�cation
of TF-DNA binding with ChIP assays [13]. Computational approaches rely on a
known TF-target interaction graph [13, 14]. A linear model that describes gene
expression as the product of a position-speci�c activity matrix derived from bind-
ing data, and the unknown TF activities is presented in [15]. The experimental
detection of TFIs is based on techniques like co-immunoprecipitation and pro-
tein binding arrays [13, 16], which are costly and time-consuming. A statistical
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Chapter 1 Transcription Factor combinatorics

framework to deduce TF cooperativity from overrepresentation of common TF
motifs at the promoter region of target genes is presented in [17, 18]. However,
these approaches do not make direct use of gene expression pro�les, nor are
their predictions condition-speci�c. The most promising approaches integrate
multiple sources of information, e.g. expression data with binding sites from
chromatin immunoprecipitation. The idea is that if two TFs act cooperatively
then there should exist a su�ciently large target gene set to which both TFs
bind, and the expression pro�les of these target genes should be similar across a
series of experiments [19]. This concept is used to rigorously assess cooperativity
among TFs in the yeast cell cycle [20]. BarJoseph et al. [21] construct regulatory
gene modules by requiring co-regulation and the co-occurrence of binding sites
for a pair of interacting TFs. Beer et al. [22] cluster gene expression pro�les
in a preliminary step, and apply a Bayesian classi�er to predict TF modules,
i.e. groups of TFs that act together in regulating a set of targets. Advanced
statistical models for the integration of binding data and expression data are
used in [23]. Single TFs and TF sets are modeled as hidden variables in a sparse
regression model. In this way, the authors can assign a signi�cance value for the
combinatorial activity of each TF set. Wang et al. [24] view the problem of TFI
identi�cation as a learning task and use Bayesian networks for the integration
of multiple sources of evidence to predict cooperatively binding TFs.
While there are only few studies that focus on TFIs, genetic interactions in

general have been investigated extensively. Classically, the biological concept of
genetic interaction (e.g. epistasis) between two components relies on the simul-
taneous perturbation of two components that yields an e�ect which is di�erent
from what one would expect from the perturbation of the individual components.
This was applied at large scale in synthetic lethality/growth defect screens like
[25, 26, 27], to name a few of them. Typically, as many genes as possible are
screened for interaction in an automated way by measuring the �tness of single
and double gene deletions. Both �tness measures (growth and lethality) are one
dimensional. It is still under debate how the deviation of the double deletion
�tness from the �tness of the single deletions can be appropriately measured and
tested in a rigid mathematical framework [28, 29]. While this direct interaction
measure proved to be rather fragile, the comparison of interaction pro�les (the
vector of all interaction scores of one gene with all others) yielded surprisingly
robust and good results [29]. Furthermore, it became evident that the experi-
mental e�ort can be reduced considerably if not all pairwise combinations of the
genes of interest (∼ 5.4 million combinations tested in [27]) are screened, and
that even more information can be gained from measurements under di�erent
conditions. This insight is re�ected in the work of Bandyopadhyay et al. [30]
which identi�ed genes interacting with DNA damage speci�c partners, screening
a comparably low number of 80, 000 double mutants.
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1.2 Materials and Methods

In the present work, I extend the concept of genetic interaction to high dimen-
sional phenotypes (e.g. genome-wide mRNA measurements, RNA-seq) as these
become increasingly available. I formulate a mathematical concept of TFI which
relies on the assumption that the common targets of interacting TFs should be-
have signi�cantly di�erent than the genes targeted by only one TF alone. So
far, each pairwise genetic interaction had to be tested in an individual exper-
iment, requiring a huge number of combinatorial perturbations. This method
instead needs only one global intervention to the system (the fact that led to
the name One Hand Clapping) in the form of an environmental stimulus, and
a high dimensional gene activity readout in order to score all pairwise TFIs.
As in the case of synthetic genetic arrays, I compare the obtained interaction
pro�les between TFs to obtain reliable and stable predictions. A �rst proof of
concept of this method was given in [31], where the authors applied One Hand
Clapping (OHC) to transcriptional activity data obtained under osmotic stress.
Here I establish a solid methodological basis and provide a proof of its univer-
sal applicability. After benchmarking the performance of OHC, I construct a
compendium of high con�dence, condition-speci�c TFIs based on a large gene
expression screen [32]. Finally, I validate two of the novel TFI predictions under
osmotic stress, one of them in silico, the other one in vivo. OHC is available

as an open source, user-friendly R package (resource OneHandClapping_1.5.tar.gz
and online http://cran.r-project.org/web/packages/OneHandClapping/index.
html). The current best practice in the study of gene regulation, consisting of
quanti�cation of di�erential expression and gene set enrichment analysis, can
now be extended by the screening for combinatorial TF activity.

1.2 Materials and Methods

1.2.1 TF Interaction model

Let there be gene activity measurements eg for all genes g ∈ G. G is the set of
all genes of the organism. In this case, the values eg will be the log folds of the
activity in a perturbation experiment versus a wild-type control. Suppose we
knew all TF-target relations (for a discussion how to obtain such a TF-target
annotation see the next subsection). For each TF T , we then had a binary
indicator function I(g ∈ T ) taking on value 1 if gene g belongs to the target
set of T , and 0 otherwise. The main idea of this method is to divide the set
of all genes into four subsets (Figure 1.1): Those genes that are targeted by
none of the two TFs, those that are targeted by only one of the TFs, and those
that are targeted by both TFs. Apart from a possible baseline shift β0 in gene
activity, TF Tj alone is assumed to have an e�ect βj on its targets (j = 1, 2).
Disregarding the baseline shift, the common targets of T1 and T2 are expected to
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Chapter 1 Transcription Factor combinatorics

g ∈ T2g ∈ T1

eg ∼ β0 + β1I(g ∈ T1) + β2I(g ∈ T2) + β12I(g ∈ T1∩ T2)

g ∈ T1 ∩ T2

β12β1 β2β0

T2T1
}

Figure 1.1: Schematic description of the linear regression model: For two TFs
T1 and T2, expression of all genes that are targets of T1 is described
by coe�cient β1 (cyan), expression of genes that are targets of T2

is described by coe�cient β2(red) and expression of genes that are
targets of both TFs is described by coe�cient β12 (green). β0 (white)
is the coe�cient for the baseline activity. It is connected to all genes
including those that are targets of neither T1nor T2 (white circles).
Remaining connections are symbolized by dotted lines. Circles at
the left symbolize genes and are colored according to the TF that
targets them. The whole formula of the logistic linear regression is
shown at the top, with the relevant parts highlighted at the bottom.
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1.2 Materials and Methods

show a change in activity that amounts to β1 +β2, if the two TFs do not interact.
The deviation from this expectation is quanti�ed by the interaction term β12,
which presents the most interest. Formally, this can be cast as a second order
linear regression of eg versus the covariates I(g ∈ T1) and I(g ∈ T2),

eg ∼ β0 + β1I(g ∈ T1) + β2I(g ∈ T2) + β12I(g ∈ T1)I(g ∈ T2),

with g ∈ G. The regression is performed for each TF pair separately, since
including more TFs and their interaction terms would lead to over�tting. This
cannot be alleviated by using regularization methods like ridge regression or
lasso regression (data not shown). Running the regression in an all-against-all
fashion for a set of TFs T results in a symmetric |T | × |T | interaction matrix
M containing all interaction terms β12. I noticed that the interaction terms
alone are not strong predictors of interaction (data not shown). The possible
explanations for this are threefold: The de�nition of the target sets T1 and T2 is
imperfect, the expression measurements are prone to unsystematic variation, or
the model of TF activity might be too simplistic in some cases.

1.2.2 TF annotation

One cornerstone for �nding TFIs by looking at commonly regulated target genes
is the availability of a su�ciently accurate TF-target gene mapping. Such a
mapping is rarely available, especially for di�erent growth conditions. This is
a limitation of the method that will hopefully be alleviated with the advent of
ChIP-seq data of TFs in many organisms, as they are being generated by the
ENCODE and modENCODE consortia [33, 34, 35].
For Saccharomyces cerevisiae there are fortunately several high-quality TF-

target mappings available. TF-target relations mined from a manually curated
literature repository can be found in the YEASTRACT database [36] which
is used in this work. I �lter this annotation removing TFs with less than 10
annotated target genes. This leaves 165 TFs with a median of 167 annotated
genes per TF. Please refer to the Appendix (chapter A, TF-target graphs for
di�erent organisms and their characteristics) for a discussion of alternative TF-
target graphs and some characteristic numbers on them.
Figure 1.2A shows a box plot of expression folds (total fraction) of the TFs

from YEASTRACT. Prominent di�erentially expressed TFs are explicitly shown
(XBP1, MAG1, SIP4, CIN5, NRG1, CUP2, TEC1, ASH1 and BAS1). Most of
these outliers are not directly involved in the salt stress or general stress response
pathways, con�rming that TF activity is not regulated at the transcriptional
level.
When looking at the coe�cients β1, β2 and β12 from the regression model of

all TF pairs in the YEASTRACT database there is no apparent structure (Fig-
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Figure 1.2: A: mRNA expression folds (data set D1) of genes coding for all TF
from YEASTRACT. Strong di�erentially expressed genes are not
necessarily involved in the osmotic stress response pathway suggest-
ing that TF activity is regulated post-transcriptionally. B: 3D plot
of coe�cients β1, β2 and β12 from the interaction model. β1 is in the
x-direction, increasing to the left, β2 is in the y-direction increasing
upwards and β12 in the z-direction. The coe�cients of interactions
involving Gis1p, Gat4p, Hot1p and Sps18p are highlighted in or-
ange, brown, cyan and yellow respectively. There is no apparent
correlation between the single e�ects and the interaction e�ect. C:
mean expression folds in data set D1 of the target sets of each TF in
YEASTRACT. The target sets of Gis1p, Gat4p, Hot1p and Sps18p
(highlighted in green) show a strong (> log2(1.5) fold) di�erential
expression.
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ure 1.2B). Closer investigation reveals extreme values that are due to pairwise
interactions between a small set of four TFs (Hot1p, Sps18p, Gis1p, Gat4p see
Figure 1.2C). Indeed these TFs have target genes which are strongly di�eren-
tially expressed, thus giving rise to a high β12 coe�cient to every TF having
a considerable overlap with one of these four TFs. The mean expression of all
target genes is above that of all other TFs (Figure 1.2C). A Gene Ontology anal-
ysis revealed that they are stress responder genes involved in response to various
stimuli and to heat shock (Table 1.1) I removed these four outlier TFs from the
TF-target graph, leaving us with a �nal annotation containing 161 TFs.

1.2.3 TFI prediction

To arrive at robust TFI predictions I use a �guilt-by-association� principle that
has been commonly applied in genetic interaction screens [27]. Instead of com-
paring single interaction values, I compare the interaction pro�les of each TF (the
rows of the interaction matrix M) by means of their correlation. More speci�-
cally, we use 1−Pearson correlation as a distance measure. I apply hierarchical
average linkage clustering to the rows of M using this distance measure. The
two descendants of the terminal branches of this dendrogramm de�ne the TFI
predictions (Algorithm 1.1). The reasoning behind this is that one expects many
TFs to have at least one interaction partner in a given condition, and the most
likely partner is the one with the most similar interaction pro�le. Alternatively,
I tried to predict TFIs based on p-values derived from a null distribution of the
correlation distances. Such null distributions can be either derived from Pear-
son's Product Moment Coe�cient [37] or, more conservatively, from resampling
procedures (shu�ing target genes). Still the simple clustering procedure works
best in terms of area under the curve (AUC) (data not shown; for a de�nition
of AUC see the Results).

1.2.4 Gene activity data

In this thesis I use several data sets as input to the OHC method. First I use
mRNA expression data from a time course experiment exposing a wild-type yeast
strain to osmotic stress by adding 0.8 M NaCl (see [31] for more details). The
paper provides standard total mRNA expression data after 36 minutes of osmotic
stress (data set D1), as well as the corresponding measurements of �newly syn-
thesized� mRNA (data set D2), which are roughly proportional to the mRNA
synthesis rates at the time of measurement. Throughout this thesis I always
mean log expression folds (log quotient of expression under the experimental
condition against expression in the control experiment) when referring to ex-
pression data. To test the reliability of the method, I included an unrelated gene
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1.2 Materials and Methods

input : root of dendrogram obtained through hierarchical clustering
output: list of leaf pairs

dfs (n):
if length(leafs(n)) ≤ 2 then

return leafs(n)
end

else
return [dfs (leftchild(n)),dfs (rightchild(n))]

end

endw

leafs(n): function returning all leafs under node n
leftchild(n): function returning left children node of node n
rightchild(n): function returning right children node of node n

Algorithm 1.1: Depth-�rst search to get TF pairs from a clustering dendrogram.

expression data set generated by Mitchell et al. [38] obtained from S. cerevisiae
under osmotic stress. The total mRNA expression level (corresponding to the
total fraction of Miller et al.) 30 minutes after addition of 0.8 M NaCl was
measured (data set D3). The gene expression data sets from Miller et al. and
Mitchell et al. should be highly comparable, since the same yeast strain, the
same microarray platform and a similar protocol were used. Microarray data
were downloaded as raw �les from GEO [39] (accession number: GSE15936) for
Mitchell et al. data and from ArrayExpress (accession number: E-MTAB-439)
for Miller et al. Normalization was performed using gcrma [40] (as implemented
in R/Bioconductor [41]) without quantile normalization, since I expect global
e�ects of the perturbation on mRNA expression. As a completely di�erent way
of assessing gene activity, Miller et al. [31] also provide RNA Polymerase II (Pol
II) occupancies from ChIP-chip experiments 24 minutes after addition of salt. I
use their Pol II mean occupancy on each gene (between transcription start site
and polyadenylation site) as another proxy for gene activity (data set D4).

1.2.5 Yeast strains and growth assays

The S. cerevisiae deletion strains hog1∆, arr1∆, gcn4∆, as well as the wild-type
strain BY4741 were obtained from Open Biosystems (Huntsville, USA). The
double deletion strain arr1∆/gcn4∆ was generated by integrating a ClonNat
cassette in the ARR1 locus of the gcn4∆ strain. Correct gene disruptions were
veri�ed by PCR. Spot dilutions were done to assess �tness and growth under
osmotic stress. Equal amounts of freshly grown yeast cells in YPD were re-
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Chapter 1 Transcription Factor combinatorics

Figure 1.3: Cultivated growth plates after 4 days of incubation. Strains were
spotted on YPD plates with 1.2 M sodium chloride at 30°C. Starting
with cells grown to an OD600 of 0.1 and a 1:10 dilution series of
length 5 was spotted. From left to rigth, dilutions of 1:1, 1:10, 1:100,
1:1000, 1:105

suspended in water, 10-fold dilutions were spotted on YPD plates and YPD
plates with 1.2 M NaCl. Plates were incubated for 4 days at 30°C. Results are
found in Figure 1.3.

1.2.6 Gene expression microarrays

Overnight cultures were diluted in fresh synthetic complete medium with 2%
glucose to OD600nm = 0.1 (120 ml cultures, 160 rpm shaking incubator, 30°C).
In the early log phase (OD600nm = 0.8) 20 ml of the culture were harvested
by centrifugation (no salt stress sample). Afterwards, NaCl was added to the
remaining culture to a �nal concentration of 0.8 M. 30 min after addition, 20 ml
of culture were harvested (salt stress sample). Total RNA was prepared af-
ter cell lysis using a FastPrep-24 instrument (Millipore) and subsequent pu-

12



1.3 Results

ri�cation using the RiboPure-Yeast Kit (Ambion) following the manufacturer's
instructions. All following steps were conducted according to the A�ymetrix
GeneChip 3'IVT Express Kit protocol. Brie�y, one-cycle cDNA synthesis was
performed with 300 ng of total RNA. In vitro reverse transcription labeling
was carried out for 16 h. The fragmented samples were hybridized for 16 h
on Yeast Genome 2.0 expression arrays (A�ymetrix), washed and stained us-
ing a Fluidics 450 station and scanned on an A�ymetrix GeneArray scanner
3000 7G. Micorarray data have been deposited to the ArrayExpress database
(http://www.ebi.ac.uk/microarray) under accession number E-MEXP-3566

1.3 Results

1.3.1 OHC accurately predicts pairwise TF interactions

I �rst applied OHC to mRNA expression data from the total mRNA fraction
of Miller et al. (data set D1) using the �ltered YEASTRACT database as TF-
target annotation (see Methods). The resulting interaction matrix is shown as a
heatmap (Figure 1.4). The rows of the matrix were clustered and TFI predictions
were made as described in the Methods section. I predict 59 mutually disjoint TF
interaction pairs, while for 43 single TFs no interaction partners were predicted.
Validation of the predictions was done through the BioGRID database ([42],
version 3.1.71). It contains physical and genetic interactions for many yeast
proteins that were derived from high and low throughput experiments in the
literature. The subgraph of BioGRID corresponding to interactions between
TFs, as well as their degree distribution, is shown in Figure 1.5. From the 59
predicted TFIs, I validate 13 of them as listed in BioGRID (a positive predictive
value of 22%). Validated TFI predictions had a signi�cantly lower correlation
distance than unvalidated TFIs (Wilcoxon's test, p-value 0.004). This shows that
interacting TF pairs are more closely related (considering the interaction measure
and distance function) than unvalidated predictions. This is further investigated
through a ROC plot (Figure 1.7A). The area under the curve (AUC, 76%) shows
a strong deviation from random predictions (diagonal) and shows that the pro�le
correlation measure can serve as a proxy for predicting interactions. To better
assess the performance of the clustering and prediction algorithm, I veri�ed
the over-representation of validated prediction using Fisher's test (p-value <
10−5, odds ratio: 5.291, with a 95% con�dence interval [2.67; 10]). When testing
only genetic or physical interactions from BioGRID (p-values < 10−5 and 0.003,
respectively) I �nd a bias towards prediction of genetic interactions, as de�ned
by BioGRID.

I tested the consistency of predictions on incomplete TF-target annotations by
removing an increasing percentage of TFs from the annotation. I measured the

13
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Figure 1.4: Heatmap showing resulting interaction score matrix of running One-
HandClapping on dataset D1 (mRNA folds of total fraction after 30
minutes osmotic stress). Pairs validated by BioGRID are highlighted
in green. Negative interaction scores are colored blue, positive inter-
action scores yellow and interaction scores around 0 are colored grey.
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Figure 1.5: Graph showing all interactions found in BioGRID between TFs from

YEASTRACT. Right plot shows the degree distribution of the graph.
There are many TFs with few edges and few with many edges.

agreement of predictions on the smaller TF annotation with predictions made on
the original annotation (Figure 1.6). Additionally I measured the performance
as the number of validated pairs according to BioGRID. Expectedly the drop
in agreement is stronger than the drop in performance, because removing one
TF from a pair will regroup the remaining TF with another with high probabil-
ity, thus changing the predictions. Simultaneously performance decreases more
slowly, showing that the regrouping of TFs leads to new validated pairs. After
removal of 20% of TFs performance merely drops from 22% to 18%.

1.3.2 OHC is stable on a wide range of gene activity data

To test the stability of the method I applied it to the mRNA expression data
of the labeled fraction from the same osmotic stress experiment used previ-
ously (termed data set D2, see Methods). Both data sets are similar (Spear-
man's ρ = 0.85, Figure 1.7C) and we expect similar results. On this data set
I predict 60 pairwise interactions, 11 validated by the BioGRID database (18%
prediction accuracy; predicted pairs: Nrg1p-Nrg2p, Fhl1p-Ifh1p, Stp1p-Stp2p,
Msn2p-Msn4p, Mbp1p-Swi4p, Ecm22p-Upc2p, Cbf1p-Met28p Ndt80p-Sum1p,
Arg80p-Arg81p, Hap3p-Hap5p and Mga2p-Spt23p). The validated interactions
highly agree between both data sets, 8 pairs being validated by both runs (Figure
1.7B). The interactions Ace2p-Swi5p, Ecm22p-Mot3p, Pdr1p-Pdr3p, Mbp1p-
Skn7p and Flo8p-Phd1p found in the �rst data set are lost in the second, the
interactions Mbp1p-Swi4p, Ecm22p-Upc2p and Cbf1p-Met28p in the second are
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Figure 1.6: Figure showing the consistency of the predictions. I tested the sta-
bililty of OHC's predictions against incomplete annotations. Starting
with the initial set T of transcription factors, I used OHC to predict
an original set P of TFIs. Then I removed a certain fractions of ran-
domly selected TFs to obtain a reduced TF set T'. I applied OHC
again to the reduced interaction matrix to obtain a new prediction P'.
The consistency (i.e agreement between predictions) of OHC was as-

sessed by calculating: |P∩P ′|
|P∩(T ′×T )| This is the fraction of original TFIs

that were also found in the reduced TF screen divided by all original
TFIs that could potentially be found in the reduced TF annotation
(red line). Moreover I calculated the fraction of validated pairs in
each reduced TF set (black line) using BioGRID (as described in the
Methods section). The procedure was repeated 100 times for each
scenario (i.e. for the removal of 10%, 20% . . . 80% of all TFs). The
points in the plot are the medians over 100 runs and the error bars
show the standard deviations.
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Figure 1.7: Validation of OHC predictions A: ROC curve using TF interactions
in BioGRID as benchmark, colored area and horizontal lines are con-
�dence intervals of sensitivity and speci�city, respectively. B: Over-
lap of predicted and validated pairs between all data sets. D1: total
mRNA fraction D2: labeled mRNA fraction D3: mRNA data from
Mitchell et al. D4: Pol II ChIP-chip occupancy measurements; pre-
dictions across data sets agree well, data set D4 having the most
distinct predictions. Each intersect is shown as a circle, with radius
proportional to the intersect size. The black box shows the inter-
sect used as novel predictions. The numbers in parentheses indicate
the subset of interactions that are validated by BioGRID.C: pairwise
comparison of expression or occupancy values for all genes. Numbers
in lower part indicate Spearman's correlation between data sets. D1
and D3 have the highest correlation as they are both total mRNA
expression measurements. D2 has a very good but lower correlation
with D1 and D3. This is due to subtle di�erences when measuring
newly synthesized mRNA. D4 has a very weak positive correlation
as Pol2 occupancy as an indicator of gene activity is very di�erent
from mRNA expression.
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not present in the �rst data set. Comparison of all predicted interactions (Figure
1.7B) features an overlap of 23 pairwise interactions (38%).

Reproducibility was tested by running the method on another osmotic stress
data set from [38] (mRNA expression measurement 30 minutes after addition of
NaCl) termed D3 (Spearman's ρ = 0.88, Figure 1.7C). The method predicts 60
pairwise interactions and 14 validated interactions (23%). The overlap with the
previous two data sets is 26 and 23 pairs for data sets D1 and D2 respectively.
Validated interactions agree strongly; they overlap at 12 and 8 validated inter-
actions for D1 and D2 respectively (Figure 1.7B). It is interesting to notice that
the data sets D3/D1 agree more closely than D3/D2 and D1/D2. This might
be due to the fact that D1 and D3 measure the total mRNA at the extraction
timepoint and thus include mRNAs transcribed before the onset of stress and
not yet degraded, contrary to D2 which corresponds to the labeled mRNA frac-
tion and thus contains only mRNAs transcribed after the onset of stress. Indeed
D1/D3 have a higher correlation than D1/D2 and D3/D2 (Fig 1.7C).

To show that the method also works on proxies of gene activity other than
mRNA expression measurements, I used the Pol II ChIP-chip data from [31]
(termed D4). On this data set the method predicts 57 interactions, 12 of which
can be validated (21% accuracy). Its performance is thus comparable to the
performance on mRNA expression data. The predictions vary strongly as there
are only 12, 10 and 12 predicted interactions shared with the data sets D1, D2
and D3 respectively (Figure 1.7B). This is due to a low correlation between the
data sets D1 to D3 varying between 0.16 and 0.3 (Spearman's rank correlation,
see Figure 1.7C). Despite the low correlation, a core of 8 interactions is shared
between all data sets (including 4 novel predictions) and shows that the method
is robust enough to adapt to various measures of gene activity.

1.3.3 OHC �nds cis and trans TF interactions

I distinguish between two main types of combinatorial TF interactions: cis reg-
ulatory interactions and trans regulatory interactions [43]. Cis interactions are
mediated by a speci�c TF binding site con�guration at the cis regulatory re-
gion of a gene, possibly resulting in cooperative or competitive binding of TFs.
Competitive binding occurs when two TFs share a common or overlapping bind-
ing motif. Cooperative binding of TFs occurs if two TFs are required to bind
simultaneously to be functional, or if the binding of the second TF is enhanced
by the binding of the �rst TF, which is the case e.g. for nucleosome-mediated
cooperativity [44].

Trans interactions are de�ned as direct protein-protein interactions of both
TFs prior to DNA binding, either by forming a protein complex or by complex
formation with other co-factors involved in Pol II recruitment and transcription
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Figure 1.8: Components of the network of con�dent TF interactions predicted in
more than half of the experiments from each condition. Edge width is
proportional to the number of conditions in which the edge was found
and the components are sorted in increasing edge width from left to
right. TF pairs on the right, that are found in many conditions are
either protein complexes or homologous or highly similar proteins.
TF pairs on the left are highly condition speci�c and only interact
in a single condition.

initiation.

TF pairs predicted by the method on data set D1 and validated by BioGRID
include the following types of interaction: Ace2p-Swi5p [45] and Sum1p-Ndt80p
[46] undergo competitive cis regulatory interactions, the former having identical
binding sites, the latter having overlapping binding sites. Mot3p-Ecm22p [47],
Mbp1p-Skn7p [48], Arg80p-Arg81p [49], Hap3p-Hap5p [50] and Pdr1p-Pdr3p
[51] are all examples of trans regulatory protein interactions forming prior to
DNA binding. The pair Ifh1p-Fhl1p represents a special type of trans inter-
action. Fhl1p is by default bound to the promoter of ribosomal protein genes
without in�uencing transcription. The phosphorylation of Ifh1p enables the
binding and activation of Fhl1p [52].

Three interactions (Msn2p-Msn4p [53], Mga2p-Spt23p [54] and Stp1-Stp2p
[55]) could not be categorized unambiguously. They consist of homologous or
functionally redundant proteins, implying that both cis and trans interactions
could serve as regulatory mechanism. I call these interactions ambiguous.

1.3.4 OHC provides a compendium of condition-speci�c TF
interactions

Absolutely no changes to the model are required when applying the method to
large data sets containing gene activity measurements under diverse conditions.
Consequently, I ran the method on mRNA expression data from 173 experiments

19



Chapter 1 Transcription Factor combinatorics

(data compiled by Gash et al. [32]) which is grouped into 16 conditions with at
least �ve experiments. Clustering the experiments according to the correlation
of the expression pro�les across conditions recovers the grouping into 16 condi-
tions de�ned above. Similarly, clustering the predictions made by OHC on each
experiment according to the number of common TF-interactions between exper-
iments recovers the condition classes as well (Figure 1.9). This demonstrates
that predictions by OHC are truly condition speci�c and reproducible.

I compiled a compendium of con�dent condition-speci�c TF interactions. For
each condition, I selected the OHC interactions that are found in more than half
of the experiments for that condition. This compendium is provided as Resource
(table.confident.txt). The graph representation of this compendium (Figure
1.8) is sparsely connected with many isolated pairs. The number of conditions for
a pair of transcription factors is encoded by edge width, indicating the speci�city
of the interaction. Due to false negatives and the limited variety of environmen-
tal conditions in [32], this network is far from being complete, and too sparse
to be conclusive about its topological properties, such as edge degree distribu-
tion and connectivity. Yet it highlights an important organisational feature of
signalling pathways, namely a functional hierarchy, where information is �owing
from general to speci�c regulators: Some TF pairs interact in more than one con-
dition. Most of them are either protein complexes (e.g. Hap2p-Hap3p-Hap5p),
form heterodimer (e.g. Arg80-Arg81p, Ino2p-Ino4p) or are highly similar or
homolog transcription factors (e.g. Nrg1p-Nrg2p, Msn2p-Msn4p, Mga2-Spt23p
and Upc2p-Ecm22p). This is the reason why the aforementioned interactions are
detected in multiple conditions; simply because the activation of one interaction
partner leads to complex formation. The other TFs which interact with di�erent
partners, need both to be active under the same condition for an interaction to
be predicted. This is the case for the interaction between Skn7p and Stb5p which
is exclusively predicted by OHC under diamide treatment, which seems plausi-
ble as both have a role in the oxidative stress response [56, 57]. Skn7p is the
more general transcription factor while Stb5 is diamide speci�c. Indeed STB5
null mutants have a decreased resistance to diamide [58]. Another interesting
�nding is the TF Tye1p which, as this model postulates, regulates glycolysis
together with Gcr1p under H2O2 exposure and together with Rgt1p when cells
are exposed to dithiothreitol (DTT). Condition-speci�c transcriptional control is
achieved by activating Tye1p under several oxidative stress inducing agents and
speci�cally pairing it with TFs only active under one such agent. OHC helps in
discovering this type of combinatorial gene regulation.
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●

constant.0.32.mM.H2O2..160.min..redo

●

constant.0.32.mM.H2O2..80.min..redo

●

constant.0.32.mM.H2O2..100.min..redo

●

X1.mM.Menadione..10.min.redo

●

constant.0.32.mM.H2O2..20.min..redo

●

X1.mM.Menadione..20.min..redo

●

X1.mM.Menadione..80.min..redo

●

X1.mM.Menadione..50.min.redo

●

X1.mM.Menadione..30.min..redo

●

X1mM.Menadione..40.min..redo

●

X1.mM.Menadione..160.min..redo

●

X1.mM.Menadione..105.min..redo

●

X1.mM.Menadione..120.min.redo

●

X2.5mM.DTT.090.min.dtt.1

●

X2.5mM.DTT.045.min.dtt.1

●

X2.5mM.DTT.060.min.dtt.1

●Nitrogen.Depletion.8.h

●Nitrogen.Depletion.12.h

●Nitrogen.Depletion.1.d

●Nitrogen.Depletion.2.d

●Nitrogen.Depletion.3.d

●Nitrogen.Depletion.5.d

●YPD.3.d.ypd.2

●YPD.5.d.ypd.2

●YPD.stationary.phase.13.d.ypd.1

●YPD.stationary.phase.22.d.ypd.1

●YPD.stationary.phase.28.d.ypd.1

●YPD.stationary.phase.5.d.ypd.1

●YPD.stationary.phase.7.d.ypd.1

●YPD.stationary.phase.2.d.ypd.1

●YPD.stationary.phase.3.d.ypd.1

●YPD.2.d.ypd.2

●YPD.stationary.phase.12.h.ypd.1

●YPD.8.h.ypd.2

●YPD.10.h..ypd.2

●YPD.stationary.phase.1.d.ypd.1

●YPD.6.h.ypd.2

●YPD.12.h.ypd.2

●YPD.1.d.ypd.2

●

X1.5.mM.diamide..90.min.

●

X37C.to.25C.shock...45.min

●

X1.5.mM.diamide..5.min.

●Hypo.osmotic.shock...45.min

●Hypo.osmotic.shock...60.min

●Hypo.osmotic.shock...15.min

●Hypo.osmotic.shock...30.min

●

X29C..1M.sorbitol.to.33C....NO.sorbitol...30.minutes

●

X1M.sorbitol...5.min

●

X1M.sorbitol...15.min

●

constant.0.32.mM.H2O2..50.min..redo

●

constant.0.32.mM.H2O2..60.min..redo

●steady.state.36.dec.C.ct.2

●

X1M.sorbitol...30.min

●

X37C.to.25C.shock...60.min

●

X37C.to.25C.shock...90.min

●DBYyap1...37degree.heat..repeat.

●

Heat.Shock.60.minutes.hs.1

●

Heat.Shock.80.minutes.hs.1

●DBYyap1...0.32.mM.H2O2..20.min.

●DBYmsn2.4..real.strain....37degrees..20.min.

●DBY7286.37degree.heat...20.min

●DBYmsn2.4..37degree.heat...20.min

●

heat.shock.33.to.37..20.minutes

●

diauxic.shift.timecourse.18.5.h

●

diauxic.shift.timecourse.20.5.h

●

DBY7286...0.3.mM.H2O2..20.min.

●DBYyap1....0.3.mM.H2O2..20.min.

●

X29C..1M.sorbitol.to.33C...1M.sorbitol...5.minutes

●DBYyap1..37degree.heat...20.min..redo.

●

constant.0.32.mM.H2O2..30.min..redo

●

Heat.Shock.05.minutes.hs.1

●

Heat.Shock.10.minutes.hs.1

●

Heat.Shock.000.minutes.hs.2

●

Heat.Shock.000.minutes..hs.2

●

Heat.Shock.000.minutes..hs.2.1

●

Heat.Shock.40.minutes.hs.1

●

X29C.to.33C...15.minutes

●

X29C..1M.sorbitol.to.33C...1M.sorbitol...15.minutes

●

X1.5.mM.diamide..50.min.

●

X1.5.mM.diamide..30.min.

●

X1.5.mM.diamide..40.min.

●

X1.5.mM.diamide..10.min.

●

X1.5.mM.diamide..20.min.

●

Heat.Shock.20.minutes.hs.1

●

Heat.Shock.15.minutes.hs.1

●

Heat.Shock.30.minutes.hs.1

●

heat.shock.21.to.37..20.minutes

●

heat.shock.29.to.37..20.minutes

●

heat.shock.17.to.37..20.minutes

●

heat.shock.25.to.37..20.minutes

●

dtt.060.min.dtt.2

●YPD.4.h.ypd.2

●

X2.5mM.DTT.120.min.dtt.1

●

X2.5mM.DTT.180.min.dtt.1

●

X1.5.mM.diamide..60.min.

●X37.deg.growth.ct.1

●

dtt.030.min..dtt.2

●

dtt.240.min.dtt.2

●

dtt.000.min..dtt.2

●

dtt.015.min.dtt.2

●

constant.0.32.mM.H2O2..40.min..rescan

●X29.deg.growth.ct.1

●YAP1.overexpression

●

X33C.vs..30C...90.minutes

●

X29C..1M.sorbitol.to.33C...1M.sorbitol...30.minutes

Figure 1.9: Hierarchical average clustering of Gash et al. expression using eu-
clidean distance (left) and hierarchical average clustering of inter-
sect size between predicted pairs in each condition from Gash et al.
(right). The experiments from the dataset are grouped into 16 condi-
tions indicated by di�erent colors. Both clustering procedures group
the experiments according to the condition they belong to. This
validates that predictions made by OHC are condition speci�c
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Chapter 1 Transcription Factor combinatorics

1.3.5 Novel predictions of TF interactions can be validated
experimentally

Novel predictions are de�ned as consensus predictions between data sets D1,
D2 and D3 (indicated by a black box in Figure 1.7B). I left data set D4 out
because of the low correlation with the rest of the data. This gives eight novel
predictions namely the pairs: Cin5p-Yap6p, Gcn4p-Arr1p, Zap1p-Spt2p, Sko1p-
Sok2p, Hsf1p-Aft1p, Sip4p-Cdc14p, Cup2p-Yrr1p and Rim101p-Otu1p.

Cin5p and Yap6p bind competitively

I realized both Cin5p and Yap6p have very similar binding motifs (Figure 1.10A)
according to the YeTFaSCo database [59], choosing the motifs with high expert
con�dence. They are derived from ChIP-chip data by Harbison et al. [13] and
MacIsaac et al. [14] for CIN5 and YAP6 respectively

I searched for both motifs using these position-speci�c weight matrices (PWMs)
and the MEME suite [60] (FIMO version 4.7.0 using default parameters for
pvalue and qvalue thresholds) on intergenic regions de�ned by [13]. Testing for
co-occurence of both motifs on all intergenic regions is highly signi�cant (p-value
< 10−5). I found 135 intergenic regions where both motifs have one or several
matches. In this set I �nd 149 competitive matches, where the distance between
both motif occurrences is 0 and 36 cases having 5 or more nucleotides between
motif occurrences. Motif search also shows, that the TFs can bind alone as for
some intergenic regions only a match for a single TF falls below the p-value
threshold. As there are protein-binding microarray (PBM [16]) derived motifs
for each TF I deduce that both proteins can bind DNA on their own. The
motif similarity from ChIP-chip data is thus not due to a protein complex be-
tween Cin5p and Yap6p and I conclude that both TFs bind competitively to the
promoter of their common target genes.

The other novel predictions do not show such a clear evidence for an interaction
based on their motifs, so I decided to perform experimental validation for one
additional pair. I chose the pair Gcn4p-Arr1p as both interaction partners have
the largest target sets among all predicted pairs (as de�ned by YEASTRACT,
1260 and 743 target genes for Gcn4p and Arr1p, respectively).

GCN4/ARR1 show a synthetic rescue phenotype

To validate the interaction between GCN4 and ARR1 a classical genetic interac-
tion screen was performed (Figure 1.10B and Figure 1.3). It assayed the growth
of a wild-type strain as well as single and double deletion strains in rich medium
(YPD) and under osmotic stress (YPD + 1.2 M NaCl). The single deletions
had no e�ect in rich media due to the condition speci�city of the prediction.
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Figure 1.10: A: Motifs of CIN5 and YAP6 from YeTFaSCo database. Both mo-
tifs are very similar, which is con�rmed by motif search, as a test
for co-occurrence of both motifs is signi�cant (see text). B: Growth
assay on YPD plates and YPD plates containing 1.2 M NaCl af-
ter incubating for 4 days at 30°C. Only cell growth at a dilution
of 1:100 is shown and the relevant parts have been extracted from
Figure 1.3. Growth phenotype is not a�ected in YPD medium.
Wild type cells have decreased phenotype under osmotic stress and
arr1∆ mutants show strong decrease in growth phenotype, while
gcn4∆ mutants and double mutants do not. This shows the syn-
thetic rescue of the e�ect of the knockout of ARR1 in the double
mutant. C: Hypothetical model explaining the observations from
the growth assay experiments (B). This model is focused on the
genes that respond positively to osmotic stress (symbolized by the
line with arrowhead). A double inhibition chain of Arr1p a Gcn4p
leads to the observed phenotypes under osmotic stress: In wild-type
cells the inhibitory e�ect of Gcn4p is prevented by Arr1p and the
cells grow normally. The same observation is made when knocking
out GCN4 as the logic of regulation does not change. The knockout
of ARR1 relieves the inhibition on Gcn4p, which in turn downreg-
ulates the target genes. I speculate that this is causing problems
with osmo-adaptation, leading to a reduced cell growth. The dou-
ble mutant rescues that phenotype as the genes are only driven by
the osmotic stress (as in wild-type). D: Log-expression values of
candidate genes responsible for synthetic rescue across all arrays.
All candidates are a�ected by the knockout of ARR1. Four candi-
date genes are uncharacterized ORFs, two are proteins of unknown
function and the rest has a variety of di�erent roles in di�erent
pathways. The genes have not yet been linked to osmotic stress.
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While wild-type and gcn4∆ grew normal under osmotic stress, arr1∆ showed
a strong decrease in cell growth. The growth defect is rescued in the double
deletion strain gcn4∆ /arr1∆. This indicates an interaction between both pro-
teins, though the experimental design cannot distinguish between a cis or trans
interaction.

My current working hypothesis on the mechanism of the interaction is shown
in Figure 1.10C. I expect most genes commonly regulated by both TFs to be salt
stress responders (because of the condition-speci�city of OHC). It is known from
previous experiments [31] that Gcn4p acts as a repressor under osmotic stress.
By positioning Arr1p upstream of and inhibiting Gcn4p, this model explains the
observations from the growth assay experiments. The removal of Arr1p from the
system probably leads to genes important for osmo-adaptation to be repressed by
Gcn4p, reducing cell growth rate. The removal of Gcn4p has no noticeable e�ect
in this model. The double knockout reestablishes conditions close to wild-type,
where genes are only regulated by the osmotic stress response.

Mutant cycle analysis was performed (see [61]) to elucidate the mechanism of
this interaction. Brie�y, transcriptional pro�ling was done for single and double
deletion strains, before and after exposure to osmotic stress conditions (0.8 M
NaCl, see Figure 1.11 for a comparison of all pro�les). For each gene, its ex-
pression under osmotic stress was explained by a linear model accounting for an
e�ect of the GCN4 deletion, an e�ect of the ARR1 deletion, and their interaction
e�ect. I selected the genes whose interaction e�ect was positive and larger than
log2 1.5 (45 genes). Then, I �ltered this group for genes showing a decrease in
expression in the arr1∆ arrays and an expression similar to wild-type in the dou-
ble mutant (leaving 37 genes). The genes should be salt stress responders and
thus should show a two-fold increase of their wild-type expression under osmotic
stress relative to wild-type expression in synthetic complete medium. This crite-
rion reduced the candidate set to nine genes (Figure 1.10D). The �ltering criteria
were chosen in accordance to the expected model (Figure 1.10C). When shu�ing
the arrays and applying the same criteria I �nd at most two genes, showing that
the result is not random. Four of the nine candidate genes are uncharacterized
ORFs (YDR366C, YJL107C, YMR034C and YGR066C), Bop2p and Spg4p are
proteins of unknown function. The other candidates are involved in a variety
of biological processes such as heme degradation, pheromone induced signalling,
survival at high temperature or as a membrane protein (SGD [62]). This sug-
gests a novel function of these genes as a part of the osmotic stress response
pathway, albeit their roles are unclear and a Blastn/Blastp homology search did
not help reveal their function.
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1.3 Results

Figure 1.11: Pairwise comparison of mRNA log expression from the mutant cy-
cle analysis microarrays. I compared wild-type strains, GCN4 and
ARR1 knockouts as well as double knockouts in normal growth con-
ditions and osmotic stress conditions. Most of the variance between
arrays stems from the comparison of normal growth condition and
osmotic stress (upper right quadrant).
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1.4 Discussion

One Hand Clapping has been established as a method to predict condition-
speci�c TF interactions; its implementation, which does not require any param-
eter adjustments by the user, is provided as a software package for R. It takes ad-
vantage of the increasingly reliable and comprehensive resources on gene-speci�c
transcriptional regulators. OHC is data-inexpensive; two genome-wide gene ac-
tivity measurements (under normal and stress conditions) are already su�cient.
With this sparse input I derive a robust interaction measure that is stable on
many di�erent types of gene activity data. Despite its modest sensitivity, its
predictions are relevant due to their high speci�city.

Applied on osmotic stress data and TF-target relations from YEASTRACT,
OHC predicts 59 interactions. 23 of the interactions can be validated by Bio-
GRID (22%). While gene activity data is available for many di�erent conditions
in all organisms, it may be di�cult to �nd a mapping of TFs to a set of target
genes suitable for OHC in other organisms. For the yeast S. cerevisiae there
are fortunately several options available, the most important being the YEAS-
TRACT database [36] and the data set provided by MacIsaac et al. [14]. When
I run the method using the latter, I predict 38 interactions, only 6 of which can
be validated by BioGRID (16% prediction accuracy). While the annotation from
MacIsaac et al., based on ChIP-chip data, is of high quality, it does not suit my
purpose, as it contains assignments made under standard experimental condi-
tions. YEASTRACT contains many TF-target gene assignments under di�erent
stress conditions and knockout strains.

It is important to note that the predictions made by OHC are entirely di�erent
from predictions based on target genes set alone. Indeed, a straightforward
Fisher test for target gene overlap does not �nd the same TF interactions as OHC
(data not shown). In particular, the method can and does predict interactions
between TFs that have no overlap in target genes and thus no interaction score.
This is possible because I predict interactions based on pro�le similarity which
takes into account the interaction scores with all other TFs. I found three TF
interactions without target gene overlap: Kar4p-Stb1p, Rds1p-YJL206C and
Cbf1p-Mig2p.

In silico validation of the method is based on all interactions between TFs
submitted to BioGRID. As this repository is not exhaustive, the performance
measurements in this chapter represent conservative estimates. Moreover, en-
tries in BioGRID are biased towards interactions present under normal growth
conditions and frequently studied stress conditions, as these account for the large
part of the studies that contributed to BioGRID. I selected one novel candidate
pair (Gcn4p-Arr1p) for in vivo validation by growth assays under osmotic stress.
The growth defect in the arr1∆ strain showed a synthetic rescue phenotype in
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the arr1∆ /gcn4∆ double deletion strain. Subsequent gene expression analysis
revealed nine candidate genes potentially involved in the synthetic rescue, not
previously connected to osmotic stress.
Application to a large data set comprising 16 conditions showed that di�erent

pairs are detected in each condition. I compiled a compendium of con�dent
condition-speci�c interactions, where each pair has to be predicted in at least
half of the experiments for each condition (stability). This provides a resource for
studying functionally relevant condition-speci�c TF interactions. Since di�erent
interactions are predicted in di�erent conditions I con�rm that TF combinatorics
drive adaptation to environmental challenges.
This method can be extended in several ways: First, the linear model from

which the interaction score is derived can be replaced by a more elaborate phys-
ical model of TF activation, as has been attempted by [63, 64]. Currently these
models fall short of describing TF competition adequately [65, 66]. Nonetheless
I speculate that the inclusion of chromatin structure, in particular nucleosome
positioning, in the interaction score will improve the method. Second, OHC can
be generalized to other organisms, as reliable TF-target annotations will become
available. Finally, the screening principle introduced here lends itself to gener-
alization: The only property of TFs that enters the model is that each TF splits
the genes into two disjoint sets (targets vs. non-targets), i.e., each TF de�nes a
binary property on the set of genes. It is therefore straightforward to perform a
condition-speci�c interaction screen on any collection of binary properties, such
as pathway membership (e.g. KEGG [67]) or functional annotation (e.g. GO
[68]).
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2 Signal Network reconstruction

At the center of molecular biology are the processes surrounding transcription
and translation. These well studied processes are accompanied by regulatory
mechanisms. When modelling theses processes one has to account for the tem-
poral dimension. There is for instance a delay between the transcription of
messenger RNA and the existence in the cell of an active translated protein that
can take part in regulating downstream mechanisms. Most of the time this delay
is not known or measurable and has to be treated as missing data in any inter-
action network inference method (though some sensible interval can be safely
assumed for any delay). To solve this task I propose dynamic Boolean networks
and report the exact likelihood for the case of unknown time delays.

2.1 Introduction

The inference of signaling networks from biological data is of fundamental im-
portance for a systemic understanding of regulatory processes. The statistical
methods that have been developed for that purpose can be grouped according
to the type of data which they expect as input. Many approaches use gene
expression data. Some methods are based solely on static observations of the
unperturbed system; they exploit the fact that �uctuations of interacting com-
ponents are dependent [69, 70]. The use of perturbation data greatly improves
network reconstruction [71, 72, 73]. In order to resolve the order of events in a
signaling cascade, time-resolved measurements after perturbation yield further
improvements [6, 74]. Boolean networks are an appropriate tool for dealing with
this type of data [7, 75, 76, 77]. The most di�cult problem lies in accounting for
the mostly unknown time delays with which the signal is propagated through
the network [78].
In this work, I propose Boolean networks with probabilistic time delays as a

novel statistical network inference method. There have been attempts to cal-
culate the likelihood of a Boolean network in special cases by using MCMC
sampling [79] and for dynamic nested e�ects models [80, 81]. Exact results were
so far obtained only under strong restrictions on the logic functions involved,
like in the context of conjunctive Bayesian networks [82, 83]. By analytically
marginalizing over the unknown delay times, I derive the main result, an ex-
act and e�cient recursive likelihood formula for a very broad class of Boolean
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networks with exponentially-distributed time delays that may include feedback
loops. I evaluate this method in various simulation scenarios for its ability to
recover the unknown topology. The method is then applied to a murine stem
cell knockdown data set by Ivanova et al. [84], which consists of a set of whole
genome gene expression time series after the knockout of six genes (Essrb, Sox2,
Nanog, Tcl1, Oct4 and Tbx3) that are considered key regulators in the main-
tenance and di�erentiation of mouse embryonic stem cells. My analysis reveals
more feedback loops than previously detected.

The algorithm is implemented in the statistical language R. Code and docu-
mentation are available as resource codeboons.zip accompanying this thesis.

2.2 Methods

I aim to model central aspects of dynamic signaling networks, namely combi-
natorial regulation, and time delayed responses in gene activity. All signaling
components are considered either active or inactive, i.e., they are represented
as binary variables. The activity of each component is modeled as a Boolean
function of its parent variables in the network. Signaling in biological networks
occurs with time delays, which are suitably modeled by the Boolean networks
introduced below.

2.2.1 Boolean Networks with unknown time delays and
interventions

Let G = {1, ..., N} be a set of N signaling components that dynamically interact
with each other via transcriptional regulation, and let F = {0, 1} be a Boolean
�eld. This model represents intracellular gene regulation by a directed graph
given by an adjacency matrix Γ ∈ FG×G . It is understood that Γij = 1 whenever
i is a parent, i.e., a regulator of j. At each time point t, a gene j ∈ G is
characterized by two Boolean variables Aj(t) and Bj(t). The induction state
variable Aj(t) tells us whether gene j is either transcribed at its basic rate or
whether it exhibits altered transcription (Aj(t) = 0 or 1, respectively). The
activity state variable Bj(t) reports whether the signaling molecule j is in its
basic functional state or whether its function is altered at time point t (Bj(t) = 0
or 1, respectively, see Figure 2.1). It helps to think of the induction states as
genes and their expression, and the activity states as the corresponding gene
products (proteins) and their activity as transcription factors. Although protein
activity can be measured in some instances, it is generally hard to obtain time-
resolved data. Therefore, I will infer the activity variables from the expression of
their known target genes. The induction state Aj(t) of j at time t is determined
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instantaneously by the activity states Bi(t) of its parents i ∈ pa (j) ⊆ G via a
Boolean function fj : Fpa(j) → F,

Aj(t) = fj(Bi(t); i ∈ pa (j)) , j ∈ G, t ∈ [0,∞) (2.1)

If pa(j) = ∅, fj is a constant. The family {fj | j ∈ G} of Boolean functions
is denoted by F . The changes in the activity state of gene j are transmitted
to changes in the corresponding activity state with a constant time delay dj ∈
[0,∞),

Bj(t) =

{
Aj(t− dj) for t ≥ dj
Aj(0) else

, j ∈ G, t ∈ [0,∞) (2.2)

Let ∆ = {dj | j ∈ G}. The graph Γ, together with F and ∆ de�ne the dynamics
of all binary variables in the model.

In order to completely specify the Boolean network, one needs to initialize the
values of Aj(t) at t = 0. Through an intervention experiment, some induction
states are actively set to 1, Aj(0) = 1 (e.g., by a gene knockdown), while the
rest of the variables are initialized by 0. At the same time, all feedback to an
actively perturbed induction state variable Aj is blocked, which is re�ected by
the removal of all incoming edges to Aj .

In practical situations the delay times ∆ are rarely known. I account for this
fact by considering the delay times as unknowns for which one speci�es their prior
distribution. The prior is a product of independent exponential distributions,
one for each individual delay time,

π(∆; Λ) =
N∏
j=1

πj(dj ; λj) , πj(dj ; λj) =

{
λj exp(−λjdj) if dj ≥ 0

0 otherwise
(2.3)

Here, Λ = (λj) is a tuple of appropriately chosen positive hyper-parameters, and
a complete parametrization of the model is given by the tupleM = (Γ,F ,L,Λ).

2.2.2 The likelihood function

Let B = {Bj(τk); j ∈ G, k = 0, ...,K} the observations of the binary state
variables Bj at K + 1 time points 0 = τ0 < τ1 < τ2 < ... < τK . Given a
parametrizationM of the model and some initial activation pattern, one seeks
to calculate the probability of observing B, by integration over the unknown
delay times,

P (B | Γ,F ,Λ) =
∫

∆ P (B | Γ,F ,∆) · π(∆; Λ) (2.4)
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Figure 2.1: Schematic of the model for a �xed timepoint t: Ai and Bi are the
induction and activity states, respectively of each regulator {1, 2, 3}.
The delays in signaling between an alteration of the gene state and
an ensuing alteration of the activity state, are given by ∆ = (di).
Given all parent-child relationships of the network, F = {f1, f2, f3}
is the family of Boolean functions. Functions for nodes with less than
two parents (A1 and A2) are constant.

The major technical achievement of this work is the closed-form solution of
the integral in Equation (2.4) for arbitrary Boolean networks (possibly including
cycles) that satisfy a rather general admissibility condition (see section 2.2.3).
Note that the class of Boolean networks that can be inferred includes all acyclic
networks, and all networks that allow each node to switch only once, yet it is
substantially larger. As the derivation of this result requires tedious calcula-
tions and elaborate notation, I give the algorithm for the likelihood calculation
separately in Algorithms 2.1 and 2.2 and put the details of the mathematical
derivation of the closed form solution of P (B | M) into its own section (section
2.2.4) . I also prepared a table of all symbols used throughout this chapter in
Appendix A, List of symbols used in dynamic Boolean network learning. Some
quantities arising during the calculation become extremely small which bears the
risk of under�ow errors. Therefore all necessary computations were performed
in log space instead of using standard �oating point arithmetic (see Appendix
A, Calculations in Log space for details). Having scored a Boolean network, we
search the space of all admissible signaling graphs by Markov Chain Monte Carlo
as outlined in Husmeier [85] and Appendix A, Details on MCMC.

Note that this framework easily allows the modeling of a series of intervention
experiments. Each intervention will produce its own sequence of state observa-
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tions B, and each sequence will be evaluated separately by actively initializing
the expression states of perturbed variables with 1 and blocking all feedback to
this state by the removal of all incoming edges.

input: maximal scoring state sequence: Bmax

hyper parameter for the distribution of the delay times: Λ
local probability functions: P (D|B,L)

1 Find N (Bmax), all state sequences at Hamming distance 1 of Bmax

2 Run an MCMC chain over all admissible Boolean networks (Γ,F).
Acceptance or rejection of proposed models (Γ,F) is based on their
likelihood L

3 foreach proposed Boolean network do
4 foreach B ∈ N (Bmax) do

// calculate S = P (B | Γ,F ,Λ)
5 �nd the set K of all compatible κ
6 SB =

∑
κ∈Kscore(B, κ,Λ)

7 end

// calculate likelihood L of (Γ,F)
8 L =

∑
B∈N (Bmax) SB · P (D | B,L)

9 end

Algorithm 2.1: Calculation of the likelihood and search through the space of
admissible Boolean networks. The scoring function (line 6) is
detailed in Algorithm 2.2

2.2.3 Admissibility check for a Boolean Network (Γ,F)

I state a condition on the logical structure (Γ,F) of the Boolean Network under
which one is able to solve the problem of likelihood computation (Equation 4 of
the main text). Starting with an initial con�guration of Aj(0) = Bj(0), j ∈ G,
we update the Boolean network asynchronously, i. e. one node per time. Let
Aoldj , Bold

j , j ∈ G, denote the con�guration before an update step, and Aj , Bj ,
j ∈ G denote the con�guration after the update step. The required condition
is that for all con�gurations that can be reached from any initial con�guration
using asynchronous updates, one has

Aj 6= Aoldj ⇒ Bold
j = Aoldj (2.5)

All networks satisfying (2.5) are called admissible. This condition can be
checked by enumerating all possible trajectories that can result from the starting
states con�guration. Although this might in theory be of complexity 2|G|, this
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Function score(B, κ, α = Λ):
input: state sequence B,

switch time κ,
parameter of the integral α

For each k �nd the interval [τik , τik+1
] where the switch in the state

sequence B happens
calculate:

F (j, β, α;κ) =

∫ τi1+1

t1=τi1

...

∫ τik+1

tk=τik

[
exp(βtj)

k∏
i=1

πi(ti − tκ(i);αi)

]
dtkdtk−1 . . . dt1

This is done using the following recursion formula:

F (k, β, α;κ) =
1

ĉ(k, β;α) · F (k, 0, α̂(k, β;α);κ)

F (0, 0, (α1, ..., αk−1);κ)− exp(−αkτik+1) · F (κ(k), αk, (α1, ..., αk−1);κ)

[exp(−αkτik)− exp(−αkτik+1)] · F (κ(k), αk, (α1, ..., αk−1);κ)
if α = ∅
if α 6= ∅, β > 0

if α 6= ∅, β = 0, tκ(k) ≥ τik
if α 6= ∅, β = 0, tκ(k) < τik

Here, α̂(j, β;α) and ĉ(j, β;α) are constants de�ned as

α̂(j, β;α) = (α̂i(j, β;α))i=1,...,k, α̂i(j, β;α) =

{
αi if i 6∈ {j, κ(j), κ2(j), ...}
αi − β if i ∈ {j, κ(j), κ2(j), ...}

ĉ(j, β;α) =
∏

s∈{j,κ(j),κ2(j),...}

αs
αs − β

Algorithm 2.2: Scoring a single state sequence B, given κ and α. The recursion
will split into two separate cases whenever Bk and its predeces-
sor Bκ(k) switched values within the same observation interval.
If this happens too often, network reconstruction will be im-
possible anyway. In practice, a su�cient temporal resolution
will imply that scaling of the algorithm is roughly linear in the
number of state switches
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is irrelevant for networks of moderate size (|G| < 10). Additionally, the set
of all trajectories that emerge from a given starting con�guration is typically
much smaller than 2|G|. Condition (2.5) can be stated equivalently and more
intuitively: if for some j ∈ G, t1 < t3, we have Aj(t1) 6= Aj(t3) then Bj(t2) =
Aj(t1) for some t2, t1 < t2 < t3
Remark that this is a rather weak restriction. In many practical cases, condi-

tion (2.5) is automatically ful�lled and does not need to be checked at all. E.g.,
if all functions f ∈ F are monotonic in the sense that x = (x1, ..., xn) ≤ y =
(y1, ..., yn) (component-wise inequality, letting 0 ≤ 1) implies f(x) ≤ f(y), then
condition (2.5) always holds. Another important case in which condition (2.5) is
automatically met is if the topology Γ of the Boolean network does not include
cycles.

2.2.4 Closed form solution of P (B | M)

Each observationB can equivalently be represented by a list of 'switching events',
i.e. a list of tuples (js, τs, Bjs(τs)), s = 1, ..., S denoting that variable Bjs
switched its value form Bjs(τs) to ∼ Bjs(τs) in the interval between the ob-
servation time points τs and τs+1. Let σ ∈ Sym(S), denote the true order in
which these switching events occurred. Although σ is unknown, it is strongly
constrained by the intervals [τs, τs+1] in which the switching events occurred.
The reason is that after sorting the events list according to σ, τs ≤ τs+1 must
hold for all s, i.e., the event s+ 1 occur ed in the same or in a later observation
interval than event s. Such an order σ of events is called 'admissible'. For the
moment, �x one admissible σ and rearrange the switching events list according
to σ. By the admissibility condition (2.5), each switching event (js, τs, Bjs(τs))
is preceded by a switch of Ajs(t). Since Ajs(t) = fjs(Bi(t); i ∈ pa (js)), there is
necessarily a unique most recent switching event κ(s) ∈ pa(js) among the input
nodes of fjs which led to the change in Ajs(t). Note that κ(s) < s.

I split the calculation of P (B | Γ,F ,Λ) into disjoint areas. For all permuta-
tions σ ∈ Sym(S), de�ne the pairwise disjoint sets Rσ = {t = (t1, ..., tS) | 0 <
tσ1 < tσ2 < ... < tσN}. The positive orthant of RN is (up to some set of Lebesgue
measure zero) the disjoint union of Rσ, σ ∈ Sym(S). Denote by T = (T1, ..., TS)
the change points at which the switching event s occurred. Thus,

P (B | Γ,F ,Λ) =
∑

σ∈Sym(N)

P (B, T ∈ Rσ | Γ,F ,Λ) (2.6)

I will now provide a closed form solution for each summand in Equation (2.6).
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By Bayes' rule,

P (B, T ∈ Rσ | Γ,F ,Λ) =

∫
∆
P (B, T ∈ Rσ | Γ,F ,∆) · π(∆; Λ) (2.7)

If Aj does not have any parents, κ(j) is set to zero. for all j = 1, ..., N . The
change points T depend deterministically on the delay times ∆ = (d1, ..., dS),
namely

Ts = ds + Tκ(s) , s = 1, ..., S

It is convenient to re-parametrize the integral in (2.7) in terms of the change
point coordinates. To that end, de�ne the transformation

ϕ : RS → RS , ϕ(d) = ϕ(d1, ..., dS) = (t1 = d1 + Tκ(1), ..., tS = dS + Tκ(S))

(in the above de�nition, I set t0 = 0). Note that ϕ is well de�ned, because
the de�nition of tj recurs only on an already de�ned tk, k < j. Moreover, ϕ is a
bijective linear transformation with determinant 1, because it can be represented
as ϕ(d) = Ad, where A is a lower triangle matrix with unit diagonal. Using
integral transformation by ϕ, one can therefore re-parametrize the integral in
(2.7),

P (B, T ∈ Rσ | Γ,F) =

∫
d
P (B, T ∈ Rσ | Γ,F , d) · π(d; Λ) (2.8)

=

∫
t
P (B, T ∈ Rσ | Γ,F , ts − tκ(s); s = 1, ..., S) ·

·
S∏
s=1

πs(ts − tκ(s);λjs) (2.9)

Importantly, here I assume that the delay times from switching events of the
nodes Bjs(t) all have independent delay times sampled from the identical prior
πj(dj ;λj) whenever js = j. Given the protein states B at the observation time
points, the interval within which a variable Bj changed its state is known. This
means that Ts is con�ned to the unique interval Is = [τjs , τjs+1], js ∈ {0, ...,K},
for which Bjs(τjs) = 0 and Bjs(τjs+1) = 1 (here let τ0 = 0 and τK+1 =∞). The
vector T = (T1, ..., TS) can therefore only assume values in the Cartesian product
I = I1 × ... × IS . Thus, realize that P (B, T ∈ Rσ | Γ,F , ts − tκ(s); s = 1, ..., S)
simply is an indicator function δ(t ∈ I ∩ Rσ), and the integral (2.9) can be
written as∫

t∈I∩Rσ

S∏
s=1

πjs(ts − tκ(s);λjs) =

∫ τi1+1

t1=τi1

...

∫ τiS+1

tS=τiS

S∏
s=1

πjs(ts − tκ(s);λjs) (2.10)
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The last expression in (2.10) can be calculated recursively. Evaluating the
innermost integral yields terms of the form exp(αitj) which contain the integrand
and cannot be removed. Thus for any α = (α1, ..., αk), β, j, k ∈ {1, ..., N}, one
will have to evaluate expressions of the form

B(j, β, α;κ) =

∫ τi1+1

t1=τi1

...

∫ τik+1

tk=τik

[
exp(βtj)

k∏
i=1

πi(ti − tκ(i);αi)

]
dtkdtk−1 . . . dt1

(2.11)
A preparatory Lemma is needed which will help us rearrange these terms in the
course of the calculations.

Lemma 1. Let α = (α1, ..., αk), j ∈ {1, ..., N}. Provided that

β 6∈ {j, κ(j), κ2(j), ...}

we have

k∏
j=1

πj(tj − tκ(j);αj) · exp(βtj) = ĉ(j, β;α)
k∏
j=1

πj(tj − tκ(j); α̂j(j, β;α)) (2.12)

for

ĉ(j, β, α;κ) =
∏

s∈{j,κ(j),κ2(j),...}

αs
αs − β

(2.13)

and

α̂(j, β, α;κ) = (α̂i(j, β, α;κ); i = 1, ..., k)

= α̂i(j, β, α;κ) =

{
αi if i 6∈ {j, κ(j), κ2(j), ...}
αi − β if i ∈ {j, κ(j), κ2(j), ...}

with the convention that the empty product equals 1.

Proof.

It is su�cient to show

exp(βtj)
k∏
i=1

πi(ti − tκ(i);αi) = ĉ(β, j;α) ·
k∏
i=1

πi(ti − tκ(i); α̂i(β, j;α)) (2.14)

Both sides of Equation (2.14) are zero if ti < tκ(i) for some i = 1, ..., k. One
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may therefore assume without loss that ti ≥ tκ(i) for all i = 1, ..., k , and

exp(βtj) · πj(tj − tκ(j);αj) = exp(βtj) · αj exp(−αj(tj − tκ(j))) (2.15)

= αj exp(−αj(tj − tκ(j)) + β(tj − tκ(j)) + βtκ(j))

=
αj

αj − β
· (αj − β) exp(−(αj − β)(tj − tκ(j))) ·

· exp(βtκ(j))

=
αj

αj − β
· πj(tj − tκ(j);αj − β) · exp(βtκ(j))

The result follows by a simple induction on k in Eq. 2.14.

Lemma 2.

The following equation holds:

∫ τik+1

tk=τik

πk(tk − tκ(k);αk)
(∗)
=

∫ τik+1

tk=max(tκ(k),τik )
αk exp(−αk(tk − tκ(k)))

=

{
1− exp(−αkτik+1) · exp(αktκ(k))

[exp(−αkτik)− exp(−αkτik+1)] · exp(αktκ(k))
(2.16){

if tκ(k) ≥ τik
if tκ(k) < τik

Remember the convention κ(k) = 0 if node Ak has no parent, and t0 = 0.

Proof.

First, note that in step(∗), tκ(k) < tk ≤ τik+1, and the lower integration bound
max(τik , tκ(k)) is indeed not greater than the upper integration bound.

For tκ(k) ≥ τik :

∫ τik+1

tk=max(tκ(k),τik )
αk · exp(−αk(tk − tκ(k))) =

∫ τik+1

tk=tκ(k)

αk exp(−αk(tk − tκ(k)))

= [− exp(−αk(tk − tκ(k)))]
τik+1

tκ(k)

= − exp(−αk(τik+1 − tκ(k))) +

+ exp(−αk(tκ(k) − tκ(k)))

= 1− exp(−αkτik+1) · exp(αktκ(k))

For tκ(k) < τik :
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∫ τik+1

tk=max(tκ(k),τik )
αk · exp(−αk(tk − tκ(k))) =

∫ τik+1

tk=τik

αk · exp(−αk(tk − tκ(k)))

= [− exp(−αk(tk − tκ(k)))]
τik+1

τik

= exp(−αk(τik − tκ(k)))−
− exp(−αk(τik+1 − tκ(k)))

= [exp(−αkτik)− exp(−αkτik+1)] ·
· exp(−αktκ(k))

Theorem 3. Let α = (α1, ..., αk). Set B(0, β, ∅;κ) = 1. The following
recursions hold:

B(k, 0, α;κ) =


B(0, 0, (α1, ..., αk−1);κ)− exp(−αkτik+1)·
·B(κ(k), αk, (α1, ..., αk−1);κ) if tκ(k) ≥ τik

[exp(−αkτik)− exp(−αkτik+1)]·
·B(κ(k), αk, (α1, ..., αk−1);κ) if tκ(k) < τik

(2.17)

B(k, β, α;κ) = ĉ(k, β, α;κ) ·B(k, 0, α̂(k, β, α;κ);κ)

with ĉ and α̂ as de�ned in Lemma 1.

Proof.

Using Lemma 2 (L2),
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B(k, 0, α;κ) =

∫ τi1+1

t1=τi1

...

∫ τik+1

tk=τik

 k∏
j=1

πj(tj − tκ(j);αj)


=

∫ τi1+1

t1=τi1

...

∫ τik−1+1

tk=τik−1

k−1∏
j=1

πj(tj − tκ(j);αj)

[∫ τik+1

tk=τik

πk(tk − tκ(k);αk)

]

L2
=

∫ τi1+1

t1=τi1

...

∫ τik−1+1

tk=τik−1

k−1∏
j=1

πj(tj − tκ(j);αj)

·
{

1− exp(−αkτik+1) · exp(αktκ(k)) if tκ(k) ≥ τik
[exp(−αkτik)− exp(−αkτik+1)] · exp(αktκ(k)) if tκ(k) < τik

=


B(0, 0, (α1, ..., αk−1);κ)− exp(−αkτik+1)·
·B(κ(k), αk, (α1, ..., αk−1);κ) if tκ(k) ≥ τik

[exp(−αkτik)− exp(−αkτik+1)]·
·B(κ(k), αk, (α1, ..., αk−1);κ) if tκ(k) < τik

B(k, β, α;κ) =

∫ τi1+1

t1=τi1

...

∫ τik+1

tk=τik

exp(βtk) k∏
j=1

πj(tj − tκ(j);αj)


=

∫ τi1+1

t1=τi1

...

∫ τik+1

tk=τik

ĉ(k, β, α;κ)

k∏
j=1

πj(tj − tκ(j); α̂i(k, β, α;κ))


L1
= ĉ(k, β, α;κ) ·B(k, 0, α̂(k, β, α;κ);κ)

2.3 Likelihood in the case of hidden activity states

In this application, the activity states can not be observed directly and are
therefore treated as hidden variables that emit data D. The likelihood function
in this case is obtained by formally integrating over all possible state sequences
B,

P (D | Γ,L,F ,∆) =
∑

B∈FN×K
P (D | B,L) · P (B | Γ,F ,∆) (2.18)

The computation of the last factor P (B | Γ,F ,∆) has been described above. In
addition to that, there is another computational challenge. The summation over
all states B ∈ FN×K is not feasible, because the state space is by far too large.
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One can view Equation (2.18) as a weighted sum of the terms P (B | Γ,F ,∆),
weighted P (D | B,L), respectively, then restrict the summation to only those
terms whose weight is su�ciently high. How to �nd the highest weights without
the enumeration of all states? Exploit the fact that in this model, the hidden
state variables Bj change their value from 0 to 1 at most once in their time
course. This means that for each Bj one can summarize its time course by
denoting the time at which the state change occurs by the random variable Tj
called change point. The contribution of the hidden state Bj to P (D | B,L) is

K∏
k=1

P (Dj(τk) | Bj(τk)) =
K∏
k=1

P (Dj(τk) | Bj = δ(τk > Tj)) (2.19)

where δ(τk > Tj) =

{
1 if τk > Tj

0 else
is the indicator function. Thus, there are at

most K + 1 di�erent time courses for Bj ((0,0,...,0), (0,0,...,0,1), ... (0,1,1,...,1),
(1,1,...,1)). Enumerating these, one �nds the time course for Bj that maximizes
the term in (2.19). Doing so for all j ∈ G, one can �nd the best scoring state
Bmax. I realized that each deviation from Bmax reduces the score in (2.19)
substantially. This suggests that all high scoring states can be found in the
direct vicinity (as measured by Hamming distance) of Bmax. I realized that in
practice, to speed up calculations, it is su�cient to use Bmax only (Figure 2.2).

2.4 Results

2.4.1 Performance on synthetic data

Having in mind the application to stem cell di�erentiation data with six genes
(see Section 2.4.2), I manually chose �ve representative topologies with six nodes
for the simulation studies with an OR as sole Boolean function. The delay times
dg for each gene g were sampled uniformly from the interval [1, 30] minutes.
The measurements were generated after t = {0, 15, 30, 45, 60} minutes. For each
topology, I then calculated the binary activity patterns Bg(t) for each single gene
knockout g. The local probability distributions L = {P (Dj | Bj); j ∈ G} are
taken as

P (Dj | Bj) ∼ N (Dj ;µ = Bj , σ
2)

for σ ∈ {0.006, 0.12, 0.24, 0.36, 0.46, 0.58}. I assume that vague prior knowledge
about the delay times is available by choosing the hyper-parameter λg of the
exponential delay time prior such that their expected value equals the respective
true delay time dg.
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Figure 2.2: Time course vectors Bj = (δ(τk > Tj ; j, k ∈ {1, ...,K}) ranked by
score. The scores decrease rapidly with increasing Hamming distance
to the best scoring state Bmax. In my calculation I will use Bmax as
only contribution to the sum in Equation 2.19

For each topology I started 100 MCMC runs with 2000 steps (see Appendix
chapter A, Details on MCMC for details on the MCMC method). The likelihood
requires the summation over all possible state sequences B ∈ FN×K . This makes
calculations infeasible even for medium sized networks. I address this problem by
restricting the model space search to state sequences that are in the immediate
vicinity of the best scoring state sequence Bmax. To �nd Bmax, we exploit
the fact that in this model, the hidden state variables Bj change their value
from 0 to 1 at most once in their time course (due to the monotonicity of the
chosen Boolean function, OR). This means that for each Bj onw can summarize
its time course by denoting the time at which the state change occurs by the
random variable Tj called change point. The contribution of the hidden state
Bj to P (D | B,L) is

K∏
k=1

P (Dj(τk) | Bj(τk)) =
K∏
k=1

P (Dj(τk) | Bj = δ(τk > Tj)) (2.20)

where δ(τk > Tj) =

{
1 if τk > Tj

0 else
is the indicator function. Thus, there are at

most K + 1 di�erent time courses for Bj ((0,0,...,0), (0,0,...,0,1), ... (0,1,1,...,1),
(1,1,...,1)). Enumerating these, I �nd the time course for Bj that maximizes the
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term in (2.20). Doing so for all j ∈ G, I �nd the best scoring state Bmax. Fig-
ure 2.3 shows the results for all �ve topologies. The model shows a good overall
performance for low and moderate noise levels. It performs best on tree topolo-
gies (Figure 2.3E), which are often encountered in biological pathways. Another
frequent pathway motif is the feed-forward loop, as modeled in Figure 2.3B. The
addition of feedback to the linear topology in Figure 2.3A decreases performance,
but it still remains at a reasonable level. Figure 2.3F shows the results on a bi-
ological network from literature (of the stem cell di�erentiation pathway from
[79]). Speci�city and sensitivity are comparable to the simpler topologies A-E.

2.4.2 Application to stem cell di�erentiation data

This model calls for time series measurements of protein activities after single
gene knockouts. Data of that kind is still sparse. I circumvented this problem
and increase the applicability of the method by treating the binary activity state
variables as hidden variables. The data consists of time series of measurements
D = (Dj(τk)) of the activity states Bj(τk), j ∈ G, at a �nite number of K + 1
time points 0 = τ0 < τ1 < τ2 < ... < τK . The data Dj(τk) can be thought of
as a noisy, possibly replicate, quanti�cation of the hidden activity states B =
{Bj(τk); j ∈ G, k = 0, ...,K}. I relate measurements to their underlying activity
state through time-independent local probability distributions L = {P (Dj | Bj);
j ∈ G}. Given the hidden induction states B and the local probabilities L, the
probability of observing D is

P (D | B,L) =
N∏
j=1

K∏
k=1

P (Dj(τk) | Bj(τk)) (2.21)

Note that Equation (2.21) assumes independence of observations. The likelihood
then becomes

P (D | Γ,L,F ,∆) =
∑

B∈FN×K
P (D | B,L) · P (B | Γ,F ,∆) (2.22)

Thus I can apply the method to the dataset of Ivanova et al. [84] who used
short hairpin RNA (shRNA) loss of function techniques to down regulate genes
whose expression patterns suggest self-renewal regulatory functions in mouse
embryonic stem cells. Genome-wide gene expression time series measurements
after t = 0, 1, ..., 7 days were obtained after knockdown of each of the following
genes: Nanog, Oct4, Sox2, Tbx3, Esrrb and Tcl1. These genes are known to play
a major role in stem cell di�erentiation and are therefore called �major genes�.
Anchang et al. [79] built a model with this knock-down data using dynamic
nested e�ect models.
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2.4 Results

The major genes represent the nodes in this network. The variables Aj(t)
and Bj(t) correspond to their gene and protein activities respectively. Since
the activity states Bj(t) are not directly measured by [84], I use the expression
activity of gene groups under the regulatory control of the major genes (the
E-Genes in the nested e�ect model of [79]) as a proxy for their protein activity.
To get the local probabilities P (Dj |Bj) needed in the case of assuming hidden
Bj(t) we use data from 122 genes given as discretized time series representing
admissible patterns (see the Supplemental Materials of [79] for details). In ac-
cordance with this de�nition, genes in their basic state were assigned the value
0, and assumed the value 1 upon activation. I kept the grouping of the 122 genes
into six groups of genes depending on Nanog, Oct4, Sox2, Tbx3, Esrrb or Tcl1
discovered from the E-Genes graph from Anchang et al. Since the data contain

Figure 2.3 (facing page): Results of the simulations study on �ve topologies (�rst
column). The second column shows the performance as
percentage of correctly predicted edges (presence and
absence) for di�erent noise levels σ added to the bi-
nary activity patterns as a box plot over all 100 runs
of the MCMC. The third and fourth column show the
distribution of sensitivity and speci�city of network re-
construction across all runs. A: linear graph. This
topology can be predicted with high accuracy up to
noise level 0.36. B: linear graph with feed-forward
loop. This topology is also correctly predicted up to
noise level 0.36 although losing 0.1 performance points
compared to the linear graph without shortcut. C: lin-
ear graph with forward-jump to the last node. The
model can better predict this case than the intra-node
forward-jump in B. D: full cycle. This di�cult topol-
ogy can be predicted by the model with accuracy over
80% up to noise level 0.36. Performance then rapidly
degrades. This topology has a high variance in sensi-
tivity/speci�city values between the di�erent runs even
for low levels of added noise. E: tree structure. The
model is well adapted to this topology and shows a high
performance until noise level 0.36. Its performance is
comparable to the linear topology (A). F: network of
stem cell di�erentiation as reconstructed by Anchang
et al.
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Chapter 2 Signal Network reconstruction

time series representing the undi�erentiated cell culture (the negative control),
and the cell culture undergoing normal di�erentiation (the positive control), I
�ltered for genes whose expression di�ered more than two fold at the last time
point between the two control experiments. Then, I assigned to each gene at
each time point a probability to belong to the basal or the active state, accord-
ing to whether its expression resembled more the negative or positive control (a
likelihood ratio was calculated under the assumption of Gaussian distributions).
Using the gene groups de�ned earlier I calculated a likelihood ratio for each ma-
jor gene to be active vs. inactive as the product of the corresponding likelihood
ratios of the assigned genes (this was done separately for each time point and
each knockout). The likelihood ratios are then converted into a probability of
being active (at a certain time point, in a certain knockdown experiment), which
corresponds to the input required for this model.
In this application I only use the Boolean function AND, leading to monotonic

activity states B. As described in Section 2.4.1 I chose the state sequence Bmax

that maximizes P (D | B,L).
Using the same MCMC procedure as in the simulation setting, the stationary

chain comprised 155 unique models. We used model averaging and calculated
the weighted frequencies of each edge. Each model was weighted by its number
of occurrences in the Markov chain, resulting in a probabilistic adjacency matrix
(Figure 2.4A). Tcl1 has the lowest connectivity, while Nanog has the highest.
To compare the results of this model with the model from Anchang et al. (Fig-
ure 2.4C), I converted the probabilistic adjacency matrix into a graph by drawing
all edges with a probability above 0.5 (Figure 2.4B). The most striking di�erence
of Figure 2.4B compared to Figure 2.4C is the presence of cycles. In particular,
the major genes Oct4, Sox2, Nanog and Esrrb form a maximal clique of the
graph. The two graphs essentially agree on the position of Tcl1, which in both
cases is targeted by Tbx3 and Esrrb. Also, Tbx3 is located mostly upstream of
the Oct4, Sox2, Nanog, Esrrb clique in both graphs. Still, it is puzzling why
my method �nds a highly interconnected, feedback-loop rich structure, whereas
Anchang et al. �nd a sparser solution. Note that the method in Anchang et al.,
assumes an acyclic graph structure, and hence by de�nition cannot �nd cycles.
As the simulation studies have shown that the model can accurately predict
circular structures in regulatory graphs, the feedback in this network might be
higher, and the signaling hierarchy less pronounced than previously thought.
This is con�rmed by a di�erent approach to mouse embryonic stem cell network
reconstruction [86] that also discovers a large amount of interplay between the
key regulators of stem cell di�erentiation. Zhou et al. have also reconstructed a
mouse embryonic stem cell network based on transcription factor binding sites,
protein interactions and literature annotation. They show bidirectional interac-
tions of Oct4 with Nanog and Sox2 coinciding with my �ndings (Figure 2.4D).
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Figure 2.4: A: Adjacency matrix of the result of the network inference on the
biological dataset. Each entry corresponds to the observed frequency
and is colored accordingly with lighter colors representing lower fre-
quencies B: network obtained from A by setting a threshold of 0.5 on
the edge probability C: Network inferred by Anchang et al. [79] D:
Extract from the network published in Zhou et al. [86]. The authors
did not include Tbx3 and Tcl1 in their �ndings. Dashed edges in
B and C represent edges that are not present in my model (A). All
other edges from B and C are also found in model A.
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Chapter 2 Signal Network reconstruction

2.5 Discussion

In this work I developed an algorithm that permits to analyze gene knockdown
time series experiments which have high dimensional readouts (such as gene ex-
pression). In order to elucidate the interplay of the major regulators, all of them
need to be perturbed and measured individually. On the side of methods devel-
opment, I have solved the problem of calculating the likelihood function for data
generated from a Boolean network with probabilistic, exponentially distributed
time delays (Algorithm 2). The likelihood function can be used for network re-
construction, as has been demonstrated in simulation studies. Having a closed
form solution for the likelihood has several further applications that I did not
mention so far. It is possible to sample the joint distribution P (B | Γ,F ,Λ)
rather e�ciently, because many observations B can be excluded a priori know-
ing Γ and F . This allows for accounting for some hidden variables Bk among
the observed B by integrating them out. Furthermore it is possible to calculate
the expectation of a certain Bj to be on or o� in a given time interval. As an
application, I have devised a method to apply it to data in which the values of
the Boolean network can only be observed indirectly (Algorithm 1). I analyzed
murine stem cell di�erentiation data of Ivanova et al. [84] for the purpose of sig-
naling network reconstruction. Comparison to a previous reconstruction attempt
in Anchang et al. [79] revealed a much richer feedback structure than expected.
The method suggests regulatory feedback loops that lead to a better understand-
ing of the dynamic interplay of some master regulators in murine embryonic stem
cell development. I expect our method to �nd numerous applications, as protein
abundance data becomes increasingly available [87].
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3 Independence testing

Independence testing is useful in many diverse applications such as economics,
sports betting, physics, biology and many more. It is also closely related to
network inference. A well-known inference algorithm for Bayesian networks, the
PC algorithm [1] is based on independence testing to infer network structure.
This algorithm will search for a subset of nodes S such that two nodes X and
Y are conditionally independent (conditioned on S). One writes I(X,Y | S) in
that case. Starting from a complete graph, for each connected nodes X and Y
for which there exists a subset of nodes S such that I(X,Y | S) one removes
the edge between X and Y . After this procedure is done for all nodes of the
node set, the remaining edges in the graph are oriented according to a �xed set
of rules.

If the set of independence relationships (de�ned by the network) is faithful
(see [1] for a de�nition of this term) to a graph and one has a perfect way of
determining whether I(X,Y | S), then the algorithm guarantees to infer a graph
equivalent (meaning it represents the same set of independence relationships) to
the graph that generated the data. This means that the result of the inference is
strongly dependent on the test used for determining (conditional) independence.

In this chapter I present di�erent novel tests of independence based on the
exact distribution of the ith nearest neighbour of any point on a two dimensional
torus.

3.1 Introduction

Dependence measures and tests for independence have recently attracted a lot of
attention, because they are the cornerstone of algorithms for network inference in
probabilistic graphical models. Pearson's product moment correlation coe�cient
is still by far the most widely used statistic in areas such as economy, biology and
the social sciences. Yet Pearson's correlation is largely constrained to detecting
linear relationships. Spearman [88] and Kendall [89] extended Pearson's work
to monotonic dependencies. In 1948, Hoe�ding [90] proposed a non parametric
test for independence that is suited for many di�erent functional relationships.
Székely et al. introduced the distance correlation (dcor) as a generalization of
Pearson's correlation.
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Chapter 3 Independence testing

Other approaches build on mutual information (MI). MI characterizes inde-
pendence in the sense that the MI of a joint distribution of two variables is
zero if and only if these variables are independent. However, MI is di�cult to
estimate from �nite samples. Kraskov et al. [91] proposed an accurate MI es-
timator derived from nearest neighbor distances. Reshef et al. [92] presented
the maximal information coe�cient (MIC), a measure of dependence for two-
variable relationships which was heavily advertised [93] but lacks any statistical
motivation.
dcor and Kraskov's estimator use the pair-wise distances of the points in a

sample as a su�cient statistic. In this work I provide an exact formula for the
ith nearest neighbor distance distribution of rank-transformed data (i = 1, 2, ...).
Based on that, I propose two novel tests for independence. An implementation of
these tests, together with a general benchmark framework for independence test-
ing, are freely available as a CRAN software package (http://cran.r-project.
org/web/packages/knnIndep) and as resource knnIndep_1.0.tar.gz accompa-
nying this thesis. In this thesis I have benchmarked Pearson's correlation, Ho-
e�ding's D, dcor, Kraskov's estimator for MI, MIC and my two tests. I conclude
that no particular method is generally superior to all other methods. However,
dcor and Hoe�ding's D are the most powerful tests for many di�erent types of
dependence. Circular dependencies, e.g., are best recognized by my tests. This
type of dependence is fairly common, e.g., if two dependent periodic processes
are monitored. An example from biology is the expression of a transcription
factor and one of its target genes during the cell cycle [94].

3.2 Exact distribution of the ith nearest neighbour

distances

Consider a set of N ≥ 4 points that are distributed 'randomly' on a surface. In
what follows, I derive the distribution (conditional distribution) of the (i+ 1)th
nearest neighbor of a point (given the distance to its ith neighbor). I assume
the points drawn from the following model: Let X = (xj)j=1,...,N and Y =
(yj)j=1,...,N be permutations of the numbers 0, ..., N−1 that are drawn uniformly
from the set of all permutations of {0, ..., N − 1}. The points zj = (xj , yj),
j = 1, ..., N , lie on a torus of size N which is endowed with the maximum
distance as a metric. I. e., the distance between two points is given by

dist(z1, z2) = max(min(|x1 − x2|, N − |x1 − x2|),min(|y1 − y2|, N − |y1 − y2|))

Fix a reference point z1. Let di, i = 1, ..., N − 1 denote the distance of
the ith nearest neighbor of z1 to z1 and Di the random variable associated
with it. Since this distance measure is translation invariant, let without loss
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3.2 Exact distribution of the ith nearest neighbour distances

z1 = (x1, y1) = (0, 0). My target is the calculation of the conditional probability
P (Di+1 | Di) and the marginal P (Di). The main work will be the calculation
of the probability P (Di+1 ≥ c, Di ≤ a) for given values a and c. Once this is
done, P (Di) and P (Di+1 | Di) can be derived by the following calculations.

Set d0 = 0 for convenience, and let a ≤ c, a ≤ bN2 c, i ∈ {0, ..., N − 2}. Note
that

P (Di+1 ≥ c, Di = a) = P (Di+1 ≥ c, Di ≤ a)− P (Di+1 ≥ c, Di ≤ a− 1) (3.1)

First calculate the marginal distribution

P (Di = a) = P (Di+1 ≥ a, Di = a)
= P (Di+1 ≥ a+ 1, Di = a) + P (Di+1 = a, Di = a)
= P (Di+1 ≥ a+ 1, Di ≤ a)− P (Di+1 ≥ a+ 1, Di ≤ a− 1)+

+P (Di+1 = a, Di = a)
(3.2)

The three terms in the expression will be explicitly derived further on (Equa-
tions 3.5 and 3.2).

Consequently,

P (Di+1 ≤ c | Di = a) = 1− P (Di+1 ≥ c+ 1 | Di = a)

= 1− P (Di+1≥c+1, Di=a)
P (Di=a)

(3.3)

which then leads to

P (Di+1 = c | Di = a) = P (Di+1 ≤ c | Di = a)−P (Di+1 ≤ c−1 | Di = a) (3.4)

All these formulas of course only hold for those choices of a and i for which
the probability P (Di+1 ≥ a, Di = a) is non-zero.

I determine P (Di+1 ≥ c, Di ≤ a) by counting the number of admissible point
con�gurations and dividing through (N − 1)!, the number of all possible point
con�gurations with z1 = (0, 0) �xed. When counting con�gurations, I repeatedly
exploit the fact that each horizontal and each vertical grid line contains exactly
one point from the sample. In case of c > a, I split the torus into 3 regions
(Figure 3.1). Region I is a square of side length 2a + 1. It contains z1 and
i additional points at arbitrary positions. The number of possibilities to draw
an i-tuple from 2a positions (recall that one position is already taken by z1)

without replacement is (2a)!
(2a−i)! . Thus, there are

(
(2a)!

(2a−i)!

)2
i-tuples describing an

admissible con�guration in region I. However, each con�guration is counted i!
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Chapter 3 Independence testing

times, since the order of the points does not matter. Hence, the number of unique

con�gurations in region I equals 1
i!

(
(2a)!

(2a−i)!

)2
=

(
2a
i

)2

i!. For the second

region there are N−2c+1 possible y-coordinates and 2c−1− (i+1) = 2c− i−2
columns to be �lled with sample points (note that the columns −c and c belong
to region III and that i+1 columns are already taken by points in region I). This

yields (N−2c+1)!
(N−4c−i+3)! unique con�gurations for region II. There are N−2c+1 points

remaining which can be placed freely in the remaining N − 2c columns/rows,
yielding (N − 2c+ 1)! possibilities. Together we obtain:

P (Di+1 ≥ c, Di ≤ a) =
1

(N − 1)!
·
(

2a
i

)2

i!︸ ︷︷ ︸
region I

· (N − 2c+ 1)!

(N − 4c+ i+ 3)!︸ ︷︷ ︸
region II

·

·(N − 2c+ 1)!︸ ︷︷ ︸
region III

N ≥ 4 (3.5)

In the case of c = a there is one more complication, because there is a region
R of points exactly at distance c, containing at least the ith and (i + 1)th
neighbor of z1, where the region I overlaps with regions IIa and IIb (Figure 3.1).
Let r ∈ {2, 3, 4} be the number of points in region R and i0 the number of
points strictly inside the square of distance c. I derive a general formula for all
admissible con�guration in the case of c = a, f(r, i0, N, c). Denote by k(r, i0, c)
the number of admissible point con�gurations in region R .

On each side of the square region R one can place

ε = 2c+ 1− i0 − 1︸︷︷︸
z1

− 2︸︷︷︸
corner points

= 2c− 2− io

points without the two corner points. For each possible number of points r,
in region R, r = {2, 3, 4}, the number of possible con�gurations is counted (see
Figure 3.2 for r = 2). The approach is analogous for r = 3 and r = 4.

Table 3.2 lists all possible admissible combinations of points in region R.
Counting the admissible con�gurations strictly inside regions I, IIa, IIb and III
happens similar to the above cases (Equation 3.5). This leads to the following
general formula for all admissible con�gurations:

52



3.2 Exact distribution of the ith nearest neighbour distances
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Figure 3.1: Diagrams explaining Equations 3.5 and 3.6 for N = 7, a = 1 and
c = 2 (panel A) and a = c = 2 (panel B) with the reference point z1

at coordinates (0, 0). A: Let us de�ne 3 regions I, II and III (black,
red and blue points respectively). Region I has the least number
of constraints and the number of admissible con�gurations is the
number of possibilities to draw i points from 2a positions without

replacement nor ordering:

(
2a
i

)2

i!. The number of admissible

con�gurations for region II is given by the number of rows nr =
N − 2c + 1 available and the number of columns which remain to
be �lled nc = 2c − i − 2 according to nr!

(nr−nc)! . Region III has the

remaining N −2c+ 1 points freely distributed, yielding (N −2c+ 1)!
admissible con�gurations. B: In the case a = c we add an additional
region R of r points exactly at distance c (green points). There
can be r = 2, 3 or 4 such points. Region I has size (2(c − 1))2

and

(
2c− 2
i0

)2

i0! admissible con�gurations with i0 the number of

points strictly inside the square of distance c. Region IIa and IIb
are symmetric and handled analogous to region II in panel A with
nr = N−2c−1 and nc = 2c−i0−r. Region III has (N+i0+r−4c−1)!
admissible con�gurations analogous to panel A.
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f(r, i0, N, c)i =

(
2c− 2
i0

)2

i0!︸ ︷︷ ︸
region I

· k(r, i0, c)︸ ︷︷ ︸
region R

·

 (N − 2c− 1)!

(N − 4c+ i0 + r − 1)!︸ ︷︷ ︸


region IIa+IIb

2

·

·(N + i0 + r − 4c− 1)!︸ ︷︷ ︸
region III

(3.6)

The sum over all possible tuple (r, i0) in Table 3.2 gives the probability
P (di+1 = c, di = c) in the general case:

P (R) =

{
0 if i0 > N − r∑

(r,i0)
1

(N−1)!f(r, i0, N, c) else
(3.7)

Figure 3.2 (facing page): Counting the number of possible con�guration for
placing 2 points on region R. Let ε = 2c − i0 − 2, the
number of free points on an edge of region R (with-
out the corner points shown in blue and the possibil-
ities excluded by z1(at the center in grey), shown as
grey crosses). Here i0 = 0 for convenience, thus ε = 2
points (shown in green) A: One can choose any points
from two adjacent edges. That means ε2 possibilities
to place two points and there are 4 such con�gura-
tions so in total, 4ε2 possible con�gurations. B: When
placing points on opposing edges, the placement of the
�rst point forbids one possibility on the opposing edge
(black cross for the black point and red cross for the
red point). Thus there are 2ε(ε−1) possible con�gura-
tions. C: Placing one point on the corner forbids both
edges connected by this corner (all points marked with
a cross). The points thus have to be on opposite cor-
ners. There are only 2 possible con�gurations in this
case D: Placing the �rst point on a corner leaves one
of the two opposing edges to place points on. There
are 8ε possibilities. In total for all cases there are
2ε(ε − 1) + 4ε2 + 8ε + 2 = 6ε2 + 6ε + 2 possibilities
(see Table 3.2 for the number of possibilities for r = 3
and r = 4).
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3.2 Exact distribution of the ith nearest neighbour distances

A

B C

D

r i0 k(r, i0, c); let ε = 2c− 2− i0 condition

2 i− 1 2ε(ε− 1) + 4ε2 + 8ε+ 2 = 6ε2 + 6ε+ 2
if i0 < N − r3 i− 1,i− 2 4ε2(ε− 1) + 4ε2 = 4ε3

4 i− 1,i− 2,i− 3 ε2(ε− 1)2

Table 3.1: Table of possible con�gurations of r = 2, 3, 4 points lying exactly on
the border region R depending on the parameter i0. Figure 3.2 shows
how the con�gurations are counted in te case of r = 2
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The above calculations only hold if region R is a genuine square, for large
values of c R degenerates to a pair of lines (one horizontal and one vertical line).
These cases are covered in the extended formula

P (Di+1 = c, Di = c) =



i = 1

{
c = 1 : P (d3 ≥ 2, d2 ≤ 1)

c > 1 : P (R), Equation (3.7)

1 < i < N − 2

{
1 < c ≤

⌊
N
2

⌋
: P (R), Equation (3.7)

else : 0

i = N − 2

c = N
2 , N even:

(
N − 2

i− 1

)2

(i− 1)!

else : P (R), Equation (3.7)

i = N − 1

{
c =

⌊
N
2

⌋
: 1

else: 0

Since the above formulas involve tedious calculations, I validated the formulas
for N = 7 and N = 8 by counting the occurrence of each possible con�guration
among all N ! con�gurations. Additionally, I checked the validity of the formula
for larger N (N = 20) by taking 106 random con�gurations and comparing
the empirical frequency h(di) with P (di) (see Appendix A, Validation of the
formula).
Figure 3.3 shows the distribution of P (di+1 | di) and P (di). The conditional

distribution is shown for i = 50. The marginal distribution is highly peaked with
a low variance that decreases with increasing i (and reaches 0 for i = N).
The formulas have been implemented in the statistical language R [95] with

emphasis on a numerically stable implementation as we deal with small num-
bers. The implementation is vectorized for speed. Still there is a computational
penalty through the many factorials and logarithms that have to be calculated.
For a sample of size 320, calculating all P (di+1 | di) takes 4.1 seconds on a single
workstation (single thread, Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz). Run-
time for larger samples is shown in Figure 3.4 and indicates a practical limit on
the sample size of N < 3000 (which takes up to 3 minutes) and a complexity of
O(N2).
For practical reasons, I assumed that the points lie on a torus (distances on the

torus are translation-invariant and therefore the formulas for P (di+1 | di) and
P (di) hold for all points in the sample). This will bias results when applied to
points on a plane, as points on the border will have di�erent nearest neighbors
when projected on the torus. The bias is less pronounced for close neighbors
(i small), thus I limit the statistics to imax = N/2. I do not expect to lose
statistical power, since the information content of P (di) for large i approaches
zero (see Figure 3.3).
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Figure 3.3: A: Conditional distribution pc = P (Di+1 = di+1 | Di = di) for

i = 2, N = 21 (top) and the entropy −∑bN2 cdi+1=1 pc log pc(bottom).

The probability pc of observing large (di+1, di) is zero for distances
larger than (6, 6) when i = 2. The lower triangle is empty be-
cause di+1 ≥ di and the entropy is constantly decreasing for in-
creasing values of di because the possible (di+1, di) decrease towards
(6, 6). B: Marginal distribution P (di) for N = 21 (top) and en-

tropy −∑bN2 cdi=1 P (di) logP (di) (bottom). With increasing i, the dis-
tribution becomes narrower and the entropy tends towards 0, as the
number of possible distances to the ith nearest neighbour decrease.
The non-monotonic behavior of the entropy for large values of i is
due to downstream constraints imposed by the maximal distance N

2 .
For testing independence, we advise using all P (Di+1 | Di) until the
value of i where the entropy starts increasing again (i = 9 in this
example).
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Figure 3.4: Runtime according to sample size N of calculating P (Di | Di−1) for
all points and all nearest neighbors

3.3 Tests based on the ith nearest neighbour

distribution

It has been shown that the distance of the ith nearest neighbour of some point z
can be used to estimate the local (log) density at z [91]. My idea is to use the full
sequence of nearest neighbour distances for assessing local density. For a sample
point z, let (D0 = dz0 = 0, D1 = dz1, D2 = dz2, . . . , DN−1 = dzN−1) the sequence
of neighbour distances. If z lies in a dense region, we expect this sequence to
increase slower than in a region with lower density.

3.3.1 Distributional tests

Note that (D0 = dz0 = 0, D1 = dz1, D2 = dz2, . . . , DN−1 = dzN−1) is a Markov
chain, i.e.,

P (dz0, d
z
1, d

z
2, . . . , d

z
N−1) =

N−2∏
i=0

P (dzi+1 | dzi )

That way, taking z as the center point, the distances dzi+1, given the previous
distance dzi , are pairwise independent for all i. On the other hand this is not true
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3.3 Tests based on the ith nearest neighbour distribution

for the distances dz1i+1 and d
z2
i+1 (not even if one conditions on dz1i and dz2i respec-

tively). This follows from the triangle inequality in metric spaces, dist(z1, x) ≤
dist(z2, x) + dist(z1, z2), which implies that dz1i+1 ≤ dz2i+1 + dist(z1, z2)).
Let the random variable Ci be de�ned by the process of drawing Z uniformly

from 1, ..., N and then drawing Ci according to the distribution P (Di | Di−1 =
dzi−1). Let fi denote the probability function of Ci, it is given by

fi(c) = P (Ci = c)

=

N∑
z=1

P (Ci = c | Z = z) · P (Z = z)

=

N∑
z=1

P (Di = c | Di−1 = dzi−1) · P (Z = z)

=
1

N

N∑
z=1

P (Di = c | Di−1 = dzi−1)

Consider the observed values dzi , z = 1, ..., N , as (not necessarily independent)
realizations of Di. Their empirical frequency ei is

ei(c) =
1

N

N∑
z=1

I[dzi = c]

where I[.] denotes the indicator function with values in {0, 1}. Pearson's χ2

test [96] can be used to test for the �t of fi to ei:

Xi =

bN2 c∑
c=1

(ei(c)− fi(c))2

fi(c)
∼ χ2

φi−1

Xi is a χ
2-distributed test statistic with φi− 1 degrees of freedom where φi is

the number distances c with fi(c) strictly positive. The �nal test statistic is:

N−1∑
i

Xi ∼ χ2∑N−1
i (φi−1)

Alternatively one can compare the empirical and theoretical cumulative dis-
tribution functions Fi(c) and Ei(c) de�ned as follows:

Fi(c) = P (Ci ≤ c) =
1

N

N∑
z=1

P (Di ≤ c | Di−1 = dzi−1)
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Ei(c) =
1

N

N∑
z=1

I[dzi ≤ c]

Ei can be compared to Fi by an Anderson-Darling [97] or a Cramér-von Mises
test, which proved inferior to Pearson's χ2 test (see Figure 3.5)

3.3.2 Test for location

I have the idea to compare the distribution of the ith neighbour distances ob-
served in a sample with a suitable null distribution by means of their location.
The most robust measures of location are mean or median, however in my studies
of samples taken from joint distributions with low mutual information, I realized
that many points do not show exceptional nearest neighbour distances. The dif-
ference to a sample drawn from independent X and Y distributions was made
up by few points that had extreme nearest neighbour distances. This lead me to
use extreme values as a test for location. The pvalue of a two-sided test based
on P (Dz

i | dzi−1) is pzi = 2 min(vzi , 1 − vzi ), with vzi = P (Dz
i ≤ dzi | dzi−1). I

summarize, for all ith neighbours, the 2-sided pvalues by their minimum

Vi = min(pzi ; z = 1, ..., N)

Our test statistic V is obtained by aggregating the Vi values:

V = −2
N−1∑
i=1

lnVi

.

3.4 Construction of a benchmark set

Benchmarking was done on distributions (X,Y ) given by X ∼ U [0, 1], and
Y ∼ f(X) + N (0, σ2). Here, U [0, 1] denotes a uniform distribution on the
interval [0, 1], and N (0, σ2) denotes a Gaussian distribution with mean 0 and
variance σ2. The function f was chosen as one of the following: linear, quadratic,
cubic, sine with period 4π, circular, f(x) = x1/4 and a step function (see
Figure 3.6). This choice was inspired by a comment by Simon & Tibshirani
(http://statweb.stanford.edu/~tibs/reshef/script.R, [98]) to the publi-
cation of the method MIC by Reshef et al. [92]. The noise parameter σ2 deter-
mines the degree of dependence between X and Y , i.e., the mutual information
MI(X,Y ; f, σ²). The latter was estimated using an approximation qXY (X,Y )

60

http://statweb.stanford.edu/~tibs/reshef/script.R


3.4 Construction of a benchmark set

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Linear

Mutual Information

po
w

er

0

0.
03

0.
05

0.
08

0.
11

0.
13

0.
16

0.
18

0.
21

0.
24

0.
26

0.
29

0.
32

0.
34

0.
37 0.

4

0.
42

0.
45

0.
47 0.

5

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● chisq
AD
CvM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quadratic

Mutual Information

po
w

er

0

0.
03

0.
05

0.
08

0.
11

0.
13

0.
16

0.
18

0.
21

0.
24

0.
26

0.
29

0.
32

0.
34

0.
37 0.

4

0.
42

0.
45

0.
47 0.

5

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● chisq
AD
CvM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cubic

Mutual Information

po
w

er

0

0.
03

0.
05

0.
08

0.
11

0.
13

0.
16

0.
18

0.
21

0.
24

0.
26

0.
29

0.
32

0.
34

0.
37 0.

4

0.
42

0.
45

0.
47 0.

5

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● chisq
AD
CvM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sine: period 4π

Mutual Information

po
w

er

0

0.
03

0.
05

0.
08

0.
11

0.
13

0.
16

0.
18

0.
21

0.
24

0.
26

0.
29

0.
32

0.
34

0.
37 0.

4

0.
42

0.
45

0.
47 0.

5

●
●

●

● ●
●

●
●

●

●

●

● ● ●

●
●

● ● ● ●

● chisq
AD
CvM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X^(1/4)

Mutual Information

po
w

er

0

0.
03

0.
05

0.
08

0.
11

0.
13

0.
16

0.
18

0.
21

0.
24

0.
26

0.
29

0.
32

0.
34

0.
37 0.

4

0.
42

0.
45

0.
47 0.

5

●

●

●

● ●

● ● ●
● ●

●
● ● ● ● ● ● ● ● ●

● chisq
AD
CvM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Circle

Mutual Information

po
w

er

0

0.
03

0.
05

0.
08

0.
11

0.
13

0.
16

0.
18

0.
21

0.
24

0.
26

0.
29

0.
32

0.
34

0.
37 0.

4

0.
42

0.
45

0.
47 0.

5

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● chisq
AD
CvM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Step function

Mutual Information

po
w

er

0

0.
03

0.
05

0.
08

0.
11

0.
13

0.
16

0.
18

0.
21

0.
24

0.
26

0.
29

0.
32

0.
34

0.
37 0.

4

0.
42

0.
45

0.
47 0.

5

●
●

● ●

●

●

●

●

●

●

● ● ● ●

●

● ●

● ● ●

● chisq
AD
CvM

Figure 3.5: Benchmark comparing Pearson's χ2 test as novel distributional test
based on the theoretical and empirical probability functions (black
curve labeled chisq) against using an Anderson-Darling (red curve,
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on the cumulative distribution functions.
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Figure 3.6: All considered functional dependencies at MI= 0.5. Top row from
left to right: linear, quadratic, cubic, sine with period 4π, bottom
row: x1/4, circle, step function and the dependence called �patchwork
copula�.

to the density p(X,Y ) for which the mutual information can easily be calcu-
lated. Make qXY a piecewise-constant density on a su�ciently �ne quadratic
grid {(εx, εy,) | x, y ∈ Z} with qXY (x, y) = p(ε

⌊
x
ε + 0.5

⌋
, ε
⌊y
ε + 0.5

⌋
). In this

case, ε = 0.01 yielded su�cient precision. It is elementary to calculate the
mutual information of q by

MI = ε² ·
∑
x,y∈Z

qXY (εx, εy) · log
qXY (εx, εy)

qX(εx)qY (εy)

Here, qX and qY denote the marginal densities with respect to x and y.
To make the results comparable for di�erent f , I �xed an MI value M and

chose σ2
f,M such that MI(X,Y ; f, σ2

f,M ) = M . This was done for 20 MI values,

M ranging from 0.01 to 0.5. The noise levels σ2
f,M are listed in Table 3.2. Samples

from all dependencies f with M = 0.5 is shown in Figure 3.6.
So far performance evaluation of measure of dependence was only done on

functional dependencies. Here I introduce �patchwork copulas� as a new non-
functional dependence of x and y. Fix a grid size B, say B = 10. My density
q will be a piece-wise constant function de�ned on a rectangular 2D grid on the
unit square (with uneven grid line spacing) such that its marginal distributions
are uniform (i.e., I will de�ne a copula). The parameters of my distribution
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3.4 Construction of a benchmark set

MI lin para quadratic sin1 sin2 circ x14 step

0.001 6.39 6.59 15.88 15.64 15.64 6.39 3.60 11.05
0.027 1.21 1.25 2.71 2.97 2.97 1.21 0.69 2.10
0.054 0.86 0.88 1.79 2.10 2.10 0.86 0.48 1.48
0.08 0.69 0.71 1.37 1.70 1.70 0.69 0.39 1.20
0.106 0.59 0.61 1.11 1.45 1.45 0.59 0.33 1.02
0.132 0.52 0.54 0.93 1.28 1.28 0.52 0.29 0.91
0.159 0.47 0.49 0.79 1.15 1.16 0.47 0.26 0.81
0.185 0.43 0.44 0.68 1.05 1.05 0.43 0.24 0.74
0.211 0.40 0.41 0.59 0.97 0.97 0.40 0.22 0.69
0.237 0.37 0.38 0.52 0.90 0.90 0.37 0.21 0.64
0.264 0.35 0.35 0.45 0.84 0.84 0.35 0.19 0.59
0.29 0.32 0.33 0.39 0.79 0.79 0.32 0.18 0.56
0.316 0.31 0.31 0.34 0.75 0.75 0.31 0.17 0.52
0.342 0.29 0.30 0.30 0.71 0.71 0.29 0.16 0.49
0.369 0.27 0.28 0.25 0.67 0.67 0.27 0.15 0.47
0.395 0.26 0.26 0.22 0.64 0.64 0.26 0.14 0.44
0.421 0.25 0.25 0.18 0.61 0.60 0.25 0.14 0.42
0.447 0.24 0.24 0.15 0.58 0.58 0.24 0.13 0.40
0.474 0.23 0.23 0.12 0.55 0.55 0.23 0.12 0.37
0.5 0.22 0.22 0.09 0.53 0.53 0.22 0.12 0.35

Table 3.2: All noise levels generated from the target mutual information values
between 0.001 and 0.5 shown in the �rst column. Each column start-
ing from the second represents a functional dependency in the order:
linear, quadratic, cubic, sine with period 4π, sine with period 16π,
circular, x1/4 and step function and gives the 20 di�erent noise levels
used in the benchmark for each case.
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Chapter 3 Independence testing
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Figure 3.7: Scatterplots of the patchwork copula dependence for 320 points and
20×20 grid (parameters for Beta distribution: (0.01, 1)) for di�erent
MI values This data is uniform in x and y but the joint distribu-
tion has a non-functional dependence. The mutual information is
indicated above each plot.

are the values pij , i, j = 1, ..., B, with
∑B

i,j=1 pij = 1. Let pi∗ =
∑B

j=1 pij and

p∗j =
∑B

i=1 pij . Let (I, J) be a random variable which selects the grid rectangle
(i, j) with probability pij , i.e., P ((I, J) = (i, j)) = pij , i, j = 1, ..., B. My

distribution (X,Y ) is then de�ned by X ∼ ∑I−1
i=1 pi∗ + UI , UI ∼ U [0, pI ], and

Y ∼∑J−1
j=1 p∗j + VJ , VJ ∼ U [0, pJ ]. The density in the grid rectangle (i, j) can

be computed as qij =
pij

pi∗p∗j
. It is elementary to verify that the marginals of q

are uniform and that the mutual information of (X,Y ) is

MI(X,Y ; (pij)) =

B∑
i,j=1

pij log

(
pij

pi∗p∗j

)
To generate samples with a desired MI value, choose suitable values for α and

β. Then draw i.i.d. samples pij ∼ Beta(α, β), i, j = 1, ..., B, and rescale the
pij by dividing them by their sum. This process is repeated with di�erent α,
β until MI(X,Y ; (pij)) is close enough to the desired MI value.The resulting
dependence resembles a patchwork quilt of dense and spread out point clouds
(see Figure 3.7).
Typically the points are considered embedded in Euclidean spaces [91], how-

ever the distance function can easily be adapted to model the geometry of a
torus. I benchmarked some methods on both geometries (Euclidean plane and
torus) and found that all methods were sensitive to changes of geometry.
I made the benchmark framework publicly available under a GPL 3.0 li-

cense. It is implemented in R [95] and contains code for generating the de-
pendence structures as well as plotting the results. It is provided as Resource
knnIndep_1.0.tar.gz accompanying this thesis as well as on CRANhttp://
cran.r-project.org/web/packages/knnIndep.
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3.5 Comparison of methods

3.5 Comparison of methods

I compared both my tests (based on χ2 and extreme paths, see section 3.3)
to Pearson's product moment correlation coe�cient, distance correlation (dcor,
[99]) , Hoe�ding's D [90], Kraskov's estimator for mutual information [91] and
MIC [92]. For each type of dependence and each given value of MI, I generated
a test set of 500 samples each consisting of 320 points from the respective de-
pendence type. Test statistics were calculated for each sample. Additionally I
generated a reference set of 500 samples with x and y values drawn indepen-
dently which is used to calculate the cuto� value corresponding to a signi�cance
level of 5%. The power of each method was estimated as the fraction of samples
that were called signi�cant according to the cuto�. Results are shown in Figure
3.8. Additionally I generated receiver operating curves (ROC) for each type of
dependence and MI value as Appendix A, ROC curves for each method.

The method of Hoe�ding and dcor perform well throughout all types of de-
pendence considered except for the circular dependence. My methods have a
performance that places them after dcor and Hoe�ding's method and before
MIC. In the case of the circular dependence, my methods perform best, achiev-
ing maximum power at mutual information of 0.03. I suspect that is due to the
fact that a circle geometrically resembles two crossing lines when projected onto
a torus. To test this hypothesis we projected all types of dependence onto the
torus and reran the whole benchmark (see Figure 3.9) . I observe that the cubic,
sine and step functions are not detected by any method, even at the same MI.

The scaling of the plots in Figure 3.8 to the MI of the underlying joint dis-
tribution, enables the direct visual comparison of di�erent dependence types.
On the one hand this reveals that some types of dependence seem to be more
di�cult to detect for all methods (step function and sine curve). On the other
hand each method performs best on di�erent types of dependence.

3.6 Discussion

I have derived an exact formula for the distibution of the distances of the ith
nearest neighbour of a given point. This distribution assumes rank transformed
bivariate data from two independent variables. While this result is of indepen-
dent interest, I used it to construct two non-parametric tests of independence
for bivariate data. Similar to Kraskov's estimator, this test statistic is purely
based on nearest neighbour distances. In contrast to Kraskov's estimator which
requires an arbitrarily �xed i, I simultaneously take into account the whole se-
quence of ith nearest neighbours (i = 1, 2, ...). This improves on Kraskov's
estimator, if used as a score for independence testing. My tests use rank trans-
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3.6 Discussion

formed data, because this is a prerequisite for applying the exact nearest neigh-
bour distributions derived in Section 3.2. The rank transformation is often used
as a primary step to estimating mutual information, therefore I consider it an
uncritical step in the procedure. My tests perform almost as well as the best
competitors dcor and Hoe�ding's D and they perform better than the recently
proposed MIC statistic. I believe that the power of this method could be further
improved in the Euclidean plane if my ith neighbour statistic would be adapted
to account for boundary e�ects in the Euclidean plane. Although the methods
try to account for the dependence of the variables Dz

i , z = 1, ..., N , I necessarily
lose power because their exact dependence structure is not known. Alternatively
I propose to take all distances dzi for a point z and apply a sequential testing
approach for calling points that are located in dense regions. The number of
these points could serve as a test statistic. The rationale is that under the null
hypothesis of independence there should be fewer points z considered signi�cant
in the sequential test than for dependent samples.
Next I reviewed competing methods and presented a benchmark framework

for performance testing on di�erent types of dependence structures and topolo-
gies (Euclidean and toroidal). The benchmark framework and our novel tests
for independence are publicly available as an R [95] package on CRAN (http:
//cran.r-project.org/web/packages/knnIndep). By scaling each type of de-
pendence to a common set of mutual information values I allow comparison
between all dependence types. Remarkably, when benchmarked on patchwork
copulas, all methods fail. This is particularly intriguing for MIC as by design
it should detect the grid structure of the data. In the case of the circular de-
pendence, my methods perform best, while the method of Hoe�ding and dcor
perform well throughout all types of dependence considered. This in turn shows,
that all tests I investigated are biased towards the detection of certain types of
dependence structures.

Figure 3.8 (facing page): Benchmark of all methods. cor denotes Pearson's prod-
uct moment correlation coe�cient, dcor distance co-
variance, hoe�d Hoe�ding's D, MIC denotes MIC, nov-
elTest.chisq is my test based on Pearson's χ2 test and
novelTest.ext is my test based on extreme paths. Each
plot shows the power (on the y-axis) against the MI (x-
axis). I examine 8 di�erent types of dependence: lin-
ear, quadratic, cubic, sine with period 4π, x1/4, circle,
step function and the dependence called �patchwork
copula� (A-H)
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3.6 Discussion

Figure 3.9 (facing page): Benchmark of all methods on all functional dependence
structures projected onto the torus. Cubic, sine and
step function dependence are harder to detect on the
torus even though the projection does not change to
mutual information of the dependence. For the novel
test only 100 samples were used to measure power,
which explains the higher variance of these curves. My
novel test for location beats all other method on data
with a quadratic functional dependence.
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Conclusion

In this thesis I examined three di�erent statistical methods for the inference of
interaction networks. In the �rst chapter I have shown how to detect condition
speci�c transcription factor interactions and gave the network of transcription
factor interactions across 16 conditions from the yeast gene expression com-
pendium of Gash et al. [32].

In the second chapter I have given a closed form solution for the likelihood
of dynamic Boolean networks with unknown time delays. This allows for the
inference of such networks via a search and score approach using Markov chain
Monte Carlo methods. I applied this method to derive the interaction network
between the main TFs involved in the murine embryonic stem cells di�erentiation
pathway.

Instead of the search and score approach to network inference there exists
constraint based inference methods. A well known constraint based inference
algorithm for Bayesian networks is the PC algorithm [1]. Instead of enumerating
all possible model from the model space it starts with the complete graph and
removes edges between nodes based on the result of a test of independence
between two variables (conditioned on a third). I devised such a test in the third
chapter and also show the exact distribution of the ith nearest neighbour of
any point in a sample. This test is also applicable outside of network inference
and can be used as a replacement for Pearson's product moment correlation
coe�cient when the expected functional relationship between two variables is
not linear.

As noted in the Discussion section ending each chapter I see some potential
for improvement in all three methods. The method for transcription factor
interactions will bene�t from better experimental techniques for the detection of
transcription factor binding sites or simply through new method of aggregating
all new datasets generated by (mod)ENCODE projects. I also suspect that the
study of organisms under non optimal conditions will increasingly become the
center of investigations.

The inference of dynamic Boolean networks will greatly pro�t from advances
in proteomics that will allow the direct measurement of protein activity. So far
in my applications of the model I circumvented the problem of missing protein
activity measurements by using e. g. that target genes of a transcription factor
as proxy for the activity of that transcription factor. That would become unnec-
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essary if one can directly measure the activity of protein and remove a source of
errors form the model.
As I have seen in my benchmarks there exists very strong contestants in the

�eld of independence testing. Yet all methods are biased, meaning they perform
better in some types of dependencies even though all types of dependence were
calibrated to the same mutual information values. I believe the next break-
through will com from better estimators of entropy (and thus of mutual infor-
mation) which will be adapted for independence testing.
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A Additional Resources

Additional Data for Chapter 1: Transcription Factor

combinatorics

TF-target graphs for di�erent organisms and their characteristics

At the heart of the OHC method lies the availability of a TF-target graph of
good quality. This data should assign each TF a set of regulated genes. Ideally
we would have such a graph for each condition and cell type, as the assignment of
TFs and target genes changes over these variables. However there are currently
no resources to construct such a graph at that level of detail. Therefore it is
helpful to have a graph that encompasses as much variation as possible. We
thus prefer data that has more edges than necessary and prefer to devise robust
methods to handle false positives for each condition.
There are several possibilities to obtain a TF-target graph. Either compile val-

idated TF-gene binding event from literature, mostly issued from low-throughput
experiment, or use ChIP-chip or ChIP-seq techniques to either derive binding
motifs for the TFs or assigning the binding peaks to genes directly. The analysis
of ChIP-* data is still di�cult due to the high amount of noise and because the
binding events cannot be attributed to a speci�c strand. These methods are of-
ten combined with phylogenetic data to look at the conservation of binding sites
through di�erent species. Conserved binding events should represent functional
binding of the TF. Binding motifs can be transformed into a TF-target graph
by scanning gene promoters for these motifs and assigning matching promoters
as regulated genes to the TF.
I will present of few TF-target graphs for S. cerevisiaethat I have used through-

out my work. For each graph I present the sources and a few key statistics.
As S. cerevisiae is an extremely well studied organism, there is a wealth of

resources available for TFs and their regulators. Table A.1 present TF-target
resources I found most helpful.
Using these resources lead to the TF-target graphs detailed in the following.

JASPAR The JASPAR TF-target graph is determined by scanning the region
500 base pairs (bp) upstream of the open-reading frame for all motifs available
for S. cerevisiae using PSCAN [102] with a score threshold of 0.9. This results
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Type Name (citation) #TF

Experimental
Harbison et al. ([13]) 203
MacIsaac et al. ([14]) 118

Motif based
JASPAR ([100]) 177
YeTFaSCo ([59]) 256
ScerTF ([101]) 196

Literature YEASTRACT ([36]) 185

Table A.1: Useful resources for TF-target annotations and TF binding motifs.
Indicated number of TFs are approximate values and subject to
change (as of July 2012)

in a graph with 176 TFs having on average 1447 annotated target genes (see
Figure A.1. This TF-target graph can be found as jasparList.RData in the
accompanying Resources.

YEASTRACT TF-target relations mined from a manually curated literature
repository can be found in the YEASTRACT database [36]. This resource has
the advantage to contain annotations from many di�erent experiments under
di�erent conditions and is thus the favored TF-target graph for S. cerevisiae. It
is used, after �ltering in Chapter 1. In its original form it contains 183 TFs each
with, on average 263 genes (see Figure A.2). This TF-target graph can be found
as yeastract.RData in the accompanying Resources.

ChIP-chip data from Harbison et al. The experimental data set from Harbison
et al. is substantially smaller than the rest. TF binding sites have been inferred
under di�erent conditions and validated by conservation across Saccharomyces
species. I took all TF-target relations with a p-value below 0.001. Keeping the
same conservative criteria than the original study, [14] reanalyzed the Harbison
data set and identi�ed some more regulatory interactions. This leads to an
annotation for 118 TF with an average 69 genes annotated (see Figure A.3).
This TF-target graph can be found as fraenkelList.RData in the accompanying
Resources.

ScerTF The entire database of optimal matrices selected for all S. cerevisiae-
transcription factors is available for download from the ScerTF homepage http:
//stormo.wustl.edu/ScerTF/ . Each matrix included in this collection was cho-
sen based on its discriminative ability to correctly identify bound and unbound
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Figure A.1: Histogram of annotated target genes for all TF motifs found in the
JASPAR database. Regulated genes where associated to each motif
through a motif search using PSCAN on a promoter region de�ned
as 500 bp upstream of the ORF. The red line shows the mean size.
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Figure A.2: Histogram of the number of annotated target genes to each TF of
the YEASTRACT database. The red line shows the mean size.
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Figure A.3: Histogram of the number of annotated target genes to each TF at
conservation threshold 0.001 in the work of MacIsaacs et al.. The
red line shows the mean size.
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probes in the Harbison ChIP-chip dataset as well as its information content and
agreement with corroborating evidence in the literature. The recommended ma-
trices were converted to the MEME format using the tool jaspar2meme from the
MEME suite (version 4.8.1) on the count matrices provided in the PCM folder of
the download from the ScerTF homepage. The conversion was done using the
default arguments.
To �nd regulated target genes for each motif, I used the FIMO web server

(version 4.8.1, [103]). to search for motif occurrences in the region 1000 base
pairs upstream and 200 base pairs downstream of the start codon (database
provided by the FIMO web interface as �Saccharomyces cerevisiae (upstream)
(nucleotide only)�). The pvalue threshold was set at 10−4 and I used the motif �le
described above. Resulting matches below threshold were mapped to the nearest
yeast ORF using data supplied by SGD [62] (accessed on July 26th 2012).
These are 169 matrices all unique, each regulating 775 genes on average. The

minimum number of regulated genes is 198. The plot shown in Figure A.4 has
bell curve shape which shows one problem of motif search: it returns many
results that are probably false positive results.
This TF-target graph can be found as scertf.RData in the accompanying

Resources.

YeTFaSco This dataset consists of 244 expert curated matrices. Duplicates
(matrices for the same TF) were merged. The �nal 198 matrices given as IUPAC
strings are converted using iupac2meme from the MEME suite. The target genes
search was done as for ScerTF dataset (previous paragraph) using the FIMO
webserver. In this annotation each TF has on average 735 target genes and all
motifs have at least 203 genes (see Figure A.5). This TF-target graph can be
found as yetfasco.RData in the accompanying Resources.

78

file:resources/scertf.RData
file:resources/yetfasco.RData


Additional Resources

number of annotated target genes

F
re

qu
en

cy

500 1000 1500

0
5

10
15

20

Figure A.4: Histogram of the number of annotated target genes found by FIMO
for each TF motif from the ScerTF database of recommended motifs.
The red line shows the mean size.
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Figure A.5: Histogram of the number of annotated target genes found by FIMO
for each TF motif from the YeTFaSco database of recommended
motifs. The red line shows the mean size.
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Additional Information for Chapter 2: Signal Network

reconstruction

Calculations in Log space

When calculating the likelihoods/probabilities, I face the problem of dealing with
very small numbers. Over�ow/under�ow errors are almost inevitable for larger
networks. Therefore, I need to perform my calculations in log space, which I
will de�ne shortly. More speci�cally, I introduce a new algebra (R,⊕,�) which
is isomorphic to (R,+, ·), and in which the quantities I actually deal with are
essentially the logarithms of the corresponding (absolute) values in R.
De�nition. Let R = (R× {±1}) ∪ {−∞}. De�ne the maps log∗ : R→ R and

exp∗ : R→ R by

log∗(a) =

{
(log |a| , sign(a)) if a 6= 0

−∞ if a = 0

and

exp∗A =

{
A2 exp(A1) if A = (A1, A2)

0 if A = −∞

It is easy to see that log∗ and exp∗ are inverse to each other and hence bijec-
tions between R and R. I make log∗ an isomorphism of algebras by de�ning an
additive and a multiplicative structure on R via

A⊕B = log∗(exp∗(A) + exp∗(B)) for A,B ∈ R
A�B = log∗(exp∗(A) · exp∗(B)) for A,B ∈ R (A.1)

Note that this de�nition is equivalent to requiring

log∗(a)⊕ log∗(b) = log∗(a+ b) for a, b ∈ R
log∗(a)� log∗(b) = log∗(a · b) for a, b ∈ R

If one would apply this de�nition in order to e�ectively calculate A⊕B or A�
B, nothing would be gained, since we recur on the original addition/multiplication
task. In the following, I will develop alternative ways to evaluate these ex-
pressions, avoiding over�ow/under�ow problems. First note that if A or B,
or both, equal −∞, then A � B = −∞. If A = −∞, then A ⊕ B = B;
analogously if B = −∞, then A ⊕ B = A. Excluding these trivial cases, let
A = (A1, A2) = (log |a|, sign(a)) = log∗(a), and B = (B1, B2) = log∗(b), for
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some a, b ∈ R \ {0}. Observe that

A�B = log∗(a · b) = (log |ab|, sign(ab)) = (log |a|+ log |b|, sign(a)sign(b))

= (A1 +B1, A2 ·B2)

Multiplication in R is therefore very easy. The addition in R requires more care.
If A1 = B1, then

A⊕B =

{
−∞ if sign(A2) 6= sign(B2)

(A1 + log 2, A2) if sign(A2) = sign(B2)

Hence without loss, one may assume A1 > B1, i.e., |a| > |b|. It follows that
sign(a+ b) = sign(a) = A2 , and

|a+ b| = A2(a+ b) = A2a+A2b = |a|+A2B2|b| = |a| · (1 +A2B2|b|/|a|)

the last term, 1 +A2B2|b|/|a|, is necessarily positive, thus

A⊕B = log∗(a+ b)

= (log |a+ b| , sign(a+ b))

= (log |a|+ log(1 +A2B2|b|/|a|) , A2)

= (A1 + log(1 +A2B2 exp(log |b| − log |a|)) , A2)

= (A1 + log(1 +A2B2 exp(B1 −A1)) , A2) (A.2)

Since A1 > B1 implies exp(B1−A1) < 1, the calculation of (A.2) is numerically
stable, except for A1 ≈ B1 (equal up to many signi�cant digits), A2 = −B2.
This however is unavoidable, because the addition using standard �oating point
arithmetic in R is numerically unstable in this situation as well.

One is now able to rephrase Theorem 2.17) in the algebra (R,⊕,�), which
leads to a numerically stable rule for the calculation ofB(k, β, α;κ). Let b(k, 0;α) =
log
∗
B(k, 0;α). The recursion in Theorem 3 becomes

b(k, 0, α;κ) =


b(0, 0, (α1, ..., αk−1);κ)⊕ (−αkτik+1,−1)�
� (b(κ(k), αk, (α1, ..., αk−1);κ), 1) if tκ(k) ≥ τik

[(−αkτik , 1)⊕ (−αkτik+1,−1)]�
� (b(κ(k), αk, (α1, ..., αk−1);κ), 1) if tκ(k) < τik

b(k, β, α;κ) = log∗(ĉ(k, β, α;κ))� b(k, 0, α̂(k, β, α;κ);κ)

with ĉ(k, β, α;κ) and ˆα(k, β, α;κ) de�ned as in Lemma 1.
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List of symbols used in dynamic Boolean network learning

Symbol Description

G = {1, . . . , N} a set of N signalling components that
dynamically interact with each other via
transcriptional regulation

F = {0, 1} a Boolean �eld

Γ ∈ FG×G adjacency matrix describing a directed
graph

Aj(t) induction state variable of gene j (at time-
point t)

Bj(t) induction state variable of signaling
molecule j (at timepoint t), usually a pro-
tein

pa (j) set of parent nodes of component j

F = {fj | j ∈ G} family of Boolean functions

t time

∆ = {dj | j ∈ G} time delays of all components

π(∆; Λ) prior distribution over the delays

Λ = (λj) tuple of appropriately chosen positive
hyper-parameters

B = {Bj(τk); j ∈ G, k = 0, ...,K} observations of the variables Bj at K + 1
time points 0 = τ0 < τ1 < τ2 < ... < τK

M a speci�c, complete parametrisation of
the model

Tj change point (modeled as a random vari-
able)

Bmax state sequence with the maximum score

κ(j) index of the last parent protein Bκ(j) of
Aj which needs to become active in order
to activate Aj

Tκ(j) smallest time point for which
fj(pa (Aj)(Tκ(j))) = 1

α, β parameters of F (j, β, α;κ), the recursive
integral

(R,⊕,�) logspace algebra de�ning the equivalent of
sum (⊕) and product (�)
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Details on MCMC

The Markov chain is initialized with a random graph Γ. In each step the algoritm
proposes a graph Γ′ drawn uniformly from the neighborhood N(Γ) of the current
graph. The neighborhood is de�ned as those graphs that di�er by exactly one
edge. Acceptance or rejection of Γ′ is done according to the Metropolis-Hastings

ratio α = min(P (D|Γ′,L,F ,Λ)·|N(Γ)|
P (D|Γ,L,F ,Λ)·|N(Γ′)| , 1). I run the chain for 2000 steps discarding

the �rst 100 as burn-in period.
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Figure A.6: Log-likelihood scores of accepted models throughout an exemplary
MCMC run. On average 150 models are accepted in a run with 2000
MCMC steps. After ∼ 60 acceptance steps the likelihood reaches
stationary level.
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1 2 3 1 2 3

1 0.6000 0.4000 0.0000 0.6000 0.4000 0.0000
2 0.0667 0.9333 0.0000 0.0667 0.9333 0.0000
3 0.0000 0.6000 0.4000 0.0000 0.6000 0.4000
4 0.0000 0.0667 0.9333 0.0000 0.0667 0.9333
5 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
6 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Table A.2: Exact probabilities (right) and P (Di = a) (left) for N = 7. The rows
show the values of i and the columns the values of a.

1 2 3 4 1 2 3 4

1 0.5238 0.4762 0.0000 0.0000 0.5238 0.4762 0.0000 0.0000
2 0.0476 0.8381 0.1143 0.0000 0.0476 0.8381 0.1143 0.0000
3 0.0000 0.3714 0.6286 0.0000 0.0000 0.3714 0.6286 0.0000
4 0.0000 0.0286 0.9714 0.0000 0.0000 0.0286 0.9714 0.0000
5 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
6 0.0000 0.0000 0.1429 0.8571 0.0000 0.0000 0.1429 0.8571
7 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

Table A.3: Exact probabilities (right) and P (Di = a) (left) for N = 8. The rows
show the values of i and the columns the values of a.

Additional Data for Chapter 3: Independence testing

Validation of the formula

To verify the correctness of the formulas, I calculated the exact distribution of
P (Di = a) for N = 7 and N = 8 by generating all N ! possible point con�gura-
tions and counting the relative frequency of each possible value for Di. Then I
compared the exact values to the values for P (Di = a) calculated from Formula
3.2 and found that they agree (Tables A.2 and A.3).
Additionally, I checked the validity of the formula for larger N (N = 20)

by taking 106 random con�gurations and comparing the empirical frequency
h(di) with P (di). The Mean relative di�erence between h(di) and P (di) is
0.0001979655. The absolute di�erences in each cell are shown in Table A.4.

ROC curves for each method
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Table A.4: Di�erences between the theoretical values of P (di) and the empirical
frequencies h(di) from 106 samples. I sampled data with N = 20, a
is in the columns of the table and runs form 1 to

⌊
N
2

⌋
, i is in the rows

in goes from 1 to N − 1.
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Figure A.7: Pearson's product moment correlation coe�cient: ROC curves for
all 20 noise levels per functional dependency.88
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Figure A.8: dcor: ROC curves for all 20 noise levels per functional dependency.
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Figure A.9: Hoe�ding's method: ROC curves for all 20 noise levels per functional
dependency.90
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Figure A.10: MIC: ROC curves for all 20 noise levels per functional dependency.
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Figure A.11: Novel distributional test: ROC curves for all 20 noise levels per
functional dependency.92
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Figure A.12: Novel test for location: ROC curves for all 20 noise levels per func-
tional dependency. 93
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