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Abstract

Data intensive applications like biology, medicine, and neuroscience require effec-

tive and efficient data mining technologies. Advanced data acquisition methods

produce a constantly increasing volume and complexity. As a consequence, the

need of new data mining technologies to deal with complex data has emerged dur-

ing the last decades. In this thesis, we focus on the data mining task of clustering

in which objects are separated in different groups (clusters) such that objects in-

side a cluster are more similar than objects in different clusters. Particularly, we

consider density-based clustering algorithms and their applications in biomedicine.

The core idea of the density-based clustering algorithm DBSCAN is that each

object within a cluster must have a certain number of other objects inside its

neighborhood. Compared with other clustering algorithms, DBSCAN has many

attractive benefits, e.g., it can detect clusters with arbitrary shape and is robust

to outliers, etc. Thus, DBSCAN has attracted a lot of research interest during

the last decades with many extensions and applications. In the first part of this

thesis, we aim at developing new algorithms based on the DBSCAN paradigm

to deal with the new challenges of complex data, particularly expensive distance

measures and incomplete availability of the distance matrix.

Like many other clustering algorithms, DBSCAN suffers from poor perfor-

mance when facing expensive distance measures for complex data. To tackle

this problem, we propose a new algorithm based on the DBSCAN paradigm,

called Anytime Density-based Clustering (A-DBSCAN), that works in an any-

time scheme: in contrast to the original batch scheme of DBSCAN, the algorithm

A-DBSCAN first produces a quick approximation of the clustering result and then

continuously refines the result during the further run. Experts can interrupt the

algorithm, examine the results, and choose between (1) stopping the algorithm

at any time whenever they are satisfied with the result to save runtime and (2)

continuing the algorithm to achieve better results. Such kind of anytime scheme

has been proven in the literature as a very useful technique when dealing with
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time consuming problems. We also introduced an extended version of A-DBSCAN

called A-DBSCAN-XS which is more efficient and effective than A-DBSCAN when

dealing with expensive distance measures.

Since DBSCAN relies on the cardinality of the neighborhood of objects, it

requires the full distance matrix to perform. For complex data, these distances

are usually expensive, time consuming or even impossible to acquire due to high

cost, high time complexity, noisy and missing data, etc. Motivated by these po-

tential difficulties of acquiring the distances among objects, we propose another

approach for DBSCAN, called Active Density-based Clustering (Act-DBSCAN).

Given a budget limitation B, Act-DBSCAN is only allowed to use up to B pairwise

distances ideally to produce the same result as if it has the entire distance matrix

at hand. The general idea of Act-DBSCAN is that it actively selects the most

promising pairs of objects to calculate the distances between them and tries to

approximate as much as possible the desired clustering result with each distance

calculation. This scheme provides an efficient way to reduce the total cost needed

to perform the clustering. Thus it limits the potential weakness of DBSCAN when

dealing with the distance sparseness problem of complex data.

As a fundamental data clustering algorithm, density-based clustering has many

applications in diverse fields. In the second part of this thesis, we focus on an appli-

cation of density-based clustering in neuroscience: the segmentation of the white

matter fiber tracts in human brain acquired from Diffusion Tensor Imaging (DTI).

We propose a model to evaluate the similarity between two fibers as a combination

of structural similarity and connectivity-related similarity of fiber tracts. Various

distance measure techniques from fields like time-sequence mining are adapted to

calculate the structural similarity of fibers. Density-based clustering is used as

the segmentation algorithm. We show how A-DBSCAN and A-DBSCAN-XS are

used as novel solutions for the segmentation of massive fiber datasets and provide

unique features to assist experts during the fiber segmentation process.



Zusammenfassung

Datenintensive Anwendungen wie Biologie, Medizin und Neurowissenschaften er-

fordern effektive und effiziente Data-Mining-Technologien. Erweiterte Methoden

der Datenerfassung erzeugen stetig wachsende Datenmengen und Komplexität.

In den letzten Jahrzehnten hat sich daher ein Bedarf an neuen Data-Mining-

Technologien für komplexe Daten ergeben. In dieser Arbeit konzentrieren wir uns

auf die Data-Mining-Aufgabe des Clusterings, in der Objekte in verschiedenen

Gruppen (Cluster) getrennt werden, so dass Objekte in einem Cluster untere-

inander viel ähnlicher sind als Objekte in verschiedenen Clustern. Insbesondere

betrachten wir dichtebasierte Clustering-Algorithmen und ihre Anwendungen in

der Biomedizin.

Der Kerngedanke des dichtebasierten Clustering-Algorithmus DBSCAN ist,

dass jedes Objekt in einem Cluster eine bestimmte Anzahl von anderen Objek-

ten in seiner Nachbarschaft haben muss. Im Vergleich mit anderen Clustering-

Algorithmen hat DBSCAN viele attraktive Vorteile, zum Beispiel kann es Clus-

ter mit beliebiger Form erkennen und ist robust gegenüber Ausreißern. So hat

DBSCAN in den letzten Jahrzehnten großes Forschungsinteresse mit vielen Er-

weiterungen und Anwendungen auf sich gezogen. Im ersten Teil dieser Arbeit

wollen wir auf die Entwicklung neuer Algorithmen eingehen, die auf dem DB-

SCAN Paradigma basieren, um mit den neuen Herausforderungen der komplexen

Daten, insbesondere teurer Abstandsmaße und unvollständiger Verfügbarkeit der

Distanzmatrix umzugehen.

Wie viele andere Clustering-Algorithmen leidet DBSCAN an schlechter Per-

formanz, wenn es teuren Abstandsmaßen für komplexe Daten gegenüber steht.

Um dieses Problem zu lösen, schlagen wir einen neuen Algorithmus vor, der auf

dem DBSCAN Paradigma basiert, genannt Anytime Density-based Clustering (A-

DBSCAN), der mit einem Anytime Schema funktioniert. Im Gegensatz zu dem

ursprünglichen Schema DBSCAN, erzeugt der Algorithmus A-DBSCAN zuerst

eine schnelle Annäherung des Clusterings-Ergebnisses und verfeinert dann kon-
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tinuierlich das Ergebnis im weiteren Verlauf. Experten können den Algorithmus

unterbrechen, die Ergebnisse prüfen und wählen zwischen (1) Anhalten des Al-

gorithmus zu jeder Zeit, wann immer sie mit dem Ergebnis zufrieden sind, um

Laufzeit sparen und (2) Fortsetzen des Algorithmus, um bessere Ergebnisse zu

erzielen. Eine solche Art eines ”Anytime Schemas” ist in der Literatur als eine

sehr nützliche Technik erprobt, wenn zeitaufwendige Problemen anfallen. Wir

stellen auch eine erweiterte Version von A-DBSCAN als A-DBSCAN-XS vor, die

effizienter und effektiver als A-DBSCAN beim Umgang mit teuren Abstandsmaßen

ist.

Da DBSCAN auf der Kardinalität der Nachbarschaftsobjekte beruht, ist es

notwendig, die volle Distanzmatrix auszurechen. Für komplexe Daten sind diese

Distanzen in der Regel teuer, zeitaufwendig oder sogar unmöglich zu errechnen,

aufgrund der hohen Kosten, einer hohen Zeitkomplexität oder verrauschten und

fehlende Daten. Motiviert durch diese möglichen Schwierigkeiten der Berechnung

von Entfernungen zwischen Objekten, schlagen wir einen anderen Ansatz für DB-

SCAN vor, namentlich Active Density-based Clustering (Act-DBSCAN). Bei einer

Budgetbegrenzung B, darf Act-DBSCAN nur bis zu B ideale paarweise Distanzen

verwenden, um das gleiche Ergebnis zu produzieren, wie wenn es die gesamte Dis-

tanzmatrix zur Hand hätte. Die allgemeine Idee von Act-DBSCAN ist, dass es

aktiv die erfolgversprechendsten Paare von Objekten wählt, um die Abstände zwis-

chen ihnen zu berechnen, und versucht, sich so viel wie möglich dem gewünschten

Clustering mit jeder Abstandsberechnung zu nähern. Dieses Schema bietet eine

effiziente Möglichkeit, die Gesamtkosten der Durchführung des Clusterings zu re-

duzieren. So schränkt sie die potenzielle Schwäche des DBSCAN beim Umgang

mit dem Distance Sparseness Problem von komplexen Daten ein.

Als fundamentaler Clustering-Algorithmus, hat dichte-basiertes Clustering viele

Anwendungen in den unterschiedlichen Bereichen. Im zweiten Teil dieser Arbeit

konzentrieren wir uns auf eine Anwendung des dichte-basierten Clusterings in den

Neurowissenschaften: Die Segmentierung der weißen Substanz bei Faserbahnen

im menschlichen Gehirn, die vom Diffusion Tensor Imaging (DTI) erfasst wer-

den. Wir schlagen ein Modell vor, um die Ähnlichkeit zwischen zwei Fasern als

einer Kombination von struktureller und konnektivitätsbezogener Ähnlichkeit von

Faserbahnen zu beurteilen. Verschiedene Abstandsmaße aus Bereichen wie dem

Time-Sequence Mining werden angepasst, um die strukturelle Ähnlichkeit von

Fasern zu berechnen. Dichte-basiertes Clustering wird als Segmentierungsalgo-

rithmus verwendet. Wir zeigen, wie A-DBSCAN und A-DBSCAN-XS als neuar-

tige Lösungen für die Segmentierung von sehr großen Faserdatensätzen verwendet
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werden, und bieten innovative Funktionen, um Experten während des Faserseg-

mentierungsprozesses zu unterstützen.



x
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Chapter 1

Introduction

Knowledge Discovery in Databases (KDD) is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns in

data [87]. The KDD process consists of several steps as illustrated in Figure 1.1.

 

Raw Data Processed Data Patterns Knowledge 

Preprocessing Data mining Evaluation 

Figure 1.1: Knowledge Discovery in Databases (KDD) process.

In the beginning of the KDD process, raw data are collected from different

data sources. These data are usually not in a good form as they may contain

noise, missing entries, inconsistencies, etc. From these data, most relevant data

are then selected and preprocessed, e.g., noise removal, by the KDD process in

order to increase data quality to support the subsequent processes. In the next

step, data mining, as the key component of the KDD process, is performed to

extract previously unknown and useful patterns from the data using automatic or

semi-automatic algorithms. At the end of the KDD process, these patterns are

evaluated in order to extract useful knowledge from data.

In this thesis, we focus on data clustering [121], a central task of the data
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mining step, in which objects are separated into different groups (clusters) so

that the ones inside a cluster are more similar than those in different clusters.

In particular, we aim at the density-based clustering algorithm DBSCAN [83], a

fundamental data clustering technique proposed in the literature, its extensions

and its applications in various fields.

1.1 Density-based Clustering

In density-based clustering, clusters are regarded as areas of high object density in

the data space separated by areas of lower object density. The algorithm DBSCAN

[83] formalizes a density notion for clustering using two parameters: ε denoting

a volume and µ denoting a minimal number of objects. An object belongs to

a cluster if it has at least µ objects inside its ε-neighborhood. Compared with

other clustering algorithms, DBSCAN has several attractive benefits, e.g., it can

detect clusters with arbitrary shapes and is robust to outliers. Moreover, the total

number of clusters does not need to be specified beforehand. Thus, DBSCAN has

attracted much research interest during the last decades with many extensions

and applications in various fields, e.g., [45, 160, 228, 157, 16, 272, 32].

Among many different extensions of DBSCAN, density-based clustering algo-

rithms for complex data have become an emerging research topic with many pro-

posed techniques in the literature recently, e.g., [84, 228, 272, 284, 86, 206, 157,

158]. However, the rapid growth of advanced data acquisition methods in many

fields, e.g., medicine, biology and environment, has continuously produced a large

amount of data with increasing volume and complexity, e.g., stream, time-series,

graph or uncertain data. As a consequence, many challenges have been constantly

arisen in order to provide efficient and effective data mining algorithms to extract

knowledge from these data, in particular density-based clustering algorithms.

In the following Section, we address some challenges of complex data for the

density-based clustering algorithm DBSCAN.

1.2 Challenges of Complex Data

Since DBSCAN relies on the pairwise similarities (dissimilarities or distances)

among objects to operate, it suffers from two important problems including ex-

pensive similarity measures and similarity sparseness as described below:
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• Expensive Simmilarity Measures. For complex data, there exist many

effective (dis)similarity measures between objects such as Dynamic Time

Warping [132] and Longest Common Subsequence [261]. However, most of

these similarity measures have high time complexity (usually quadratic time

complexity) which obviously becomes a bottle neck in many applications,

e.g., the clustering of start light curves in [300]. A star light curve is the

measurement of light intensity of a celestial object or region as a function of

time. A light curve can be used to estimate the rotation period of a planet

or comet nucleus in planetology or to discover supernovas in astronomy,

etc. For these tasks, clustering is commonly used to support the analysis

of the digital star light curves. In [300], Dynamic Time Warping (DTW)

is used as an effective similarity measure for the clustering process. How-

ever, it consumes around 127 days to cluster a mere 9236 curves due to the

quadratic time complexity of DTW [300]. Obviously, such the runtime bot-

tle neck is undesired, especially in real time and interactive systems [303].

Thus, it poses an important challenge: how to improve the performance of

clustering algorithms when coping with these expensive similarity measures.

Among various existing approaches for density-based clustering algorithms,

only some of them are designed to handle this problem, e.g., [45, 44].

• Similarity Sparseness. In many applications, obtaining all similarities

among objects is a nontrivial process since they may be difficult or even

unavailable to obtain. For example, in transportation monitoring and con-

trol systems, GPS is usually used to collect the positions of vehicles, people,

airplanes, etc. Then, clustering algorithms are used to discover common

or unusual movement patterns as in [201, 93]. However, in many cases, the

GPS signals may be very noisy or may be lost due to bad weather, obstacles,

etc. Thus, measuring the similarities among moving object trajectories be-

comes very hard or even infeasible. Another example comes from the task of

clustering of photos acquired from a wearable camera in [275], which plays

an important role in a variety of applications, e.g., improving life quality

for Alzheimer’s patients or summarizing personal memories. Since the pho-

tos are collected in an arbitrary manner, assessing the similarities among

these photo is out of the capability of existing automatic image processing

techniques. Consequently, human annotators must be involved to rate the

similarities among photos. It therefore makes the clustering an expensive

process in terms of both time and money. The potential difficulties of ac-

quiring the similarities among all objects raise another important challenge:
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how to perform clustering without accessing the whole similarity matrix in

order to reduce the potential costs or to cope with the unavailability of

pairwise similarities. Though there are many density-based clustering algo-

rithms proposed in the literature [155, 9], to the best of our knowledge, none

of them are designed to deal with this challenge.

Recently, interactive exploring of data has become a significant feature in many

data mining algorithms, especially for complex data, e.g., [234, 33], since it allows

domain experts to be involved into the clustering process to improve the perfor-

mance and outcome. However, throughout the literature review, all the existing

extensions of DBSCAN only work in a batch scheme. They produce a single result

at the end and do not allow user interaction during their runtime. Providing an

interactive extension of DBSCAN, therefore, is another challenge and is extremely

useful for many applications, e.g., the segmentation of white matter structure in

human brain [55], characters recognition [145] or image clustering [33].

1.3 Contributions and Thesis Outline

In this thesis, we aim at providing efficient and effective density-based clustering

algorithms for complex data and their applications for the task of segmentation

of white matter structure in human brain in the neuroscience field. In summary,

this thesis is organized as follows.

Part 1: Introduction. In this first part of the thesis, we briefly introduce our

research focuses and present some backgrounds of our works.

• In Chapter 1, we describe about the KDD process and explain our research

focuses.

• In Chapter 2, we present a literature survey on density-based clustering al-

gorithms and their applications in the literature. In particular, we focus

on algorithms that follow the paradigm of the density-based clustering al-

gorithm DBSCAN. This work provides a comprehensive review about the

evolvement of density-based clustering algorithms during the last decades

and thus could significantly contribute to the evolvement of the clustering

field. We note that, although there exist several surveys about density-based

clustering in the literature, they aim at general density-based clustering al-

gorithms and only cover a small set of existing algorithms.
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• In Chapter 3, we illustrate some related backgrounds, e.g., cluster validation

techniques, lower bounding functions, and the Haar wavelet transformation

technique.

Part 2: Density-based Clustering of Complex Data. In this part of the the-

sis, we focus on the development of efficient and effective density-based clustering

algorithms for complex data.

• In Chapter 4, a literature survey about anytime and active clustering, two

recent emerging researches in data clustering, is presented. Based on of

our knowledge, there is no other survey about these clustering techniques

proposed in the literature so far.

• In Chapter 5, we propose a new approach for density-based clustering called

anytime density-based clustering. In contrast to other clustering algorithms,

our proposed algorithms, called A-DBSCAN and A-DBSCAN-XS, exploit a

sequence of lower bounding distances of the similarity measure to become

anytime algorithms. As anytime algorithms, they can be interrupted at

anytime to provide an intermediate result and then resumed to search for

better results. This anytime scheme provides a very useful way to cope

with high time complexity of the similarity measures for complex data and

allows user interaction during the clustering process. As far as we know, A-

DBSCAN and A-DBSCAN-XS are the first anytime algorithms for density-

based clustering proposed in the literature.

• In Chapter 6, we aim at dealing with data sparseness problem described

above. Our proposed algorithm, named active density-based clustering (Act-

DBSCAN), is capable to provide a desired clustering result without the avail-

ability of the full similarity matrix. By actively choosing which pairwise sim-

ilarities are most important for constructing the clusters, Act-DBSCAN can

only use a small number of pairwise similarities to produce the same result as

if it had the entire distance matrix at hand. Thus, unlike other algorithms,

Act-DBSCAN is able to work quite well under a limited budget constraint,

e.g., time or money. It can also be able to cope with the unavailability of

pairwise similarities. To the best of our knowledge, Act-DBSCAN is the first

active algorithm for density-based clustering proposed in the literature.

Part 3: Application for Fiber Clustering. In this part of the thesis, an

application of density-based clustering is presented. In particular, we focus on the
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problem of segmenting the white matter structure in human brain using Diffusion

Tensor Imaging (DTI) technique.

• In Chapter 7, some backgrounds about Diffusion Tensor Imaging (DTI) is

introduced. Moreover, several literature researches about fiber similarity

measures and fiber clustering techniques are involved.

• In Chapter 8, we focus on developing an efficient and effective similarity

model for density-based fiber clustering algorithms. In contrast to other

model, our proposed similarity model combines both the shape and the con-

nectivity similarity of fibers to enhance the efficacy. We also propose several

novel techniques to measure the shape similarity of fibers. Compared with

existing fiber similarity measures, our proposed model provides a more effi-

cient and effective similarity measure for fibers, especially when dealing with

noisy and spurious fibers.

• In Chapter 9, we show how anytime density-based clustering algorithms like

A-DBSCAN and A-DBSCAN-XS can be used as a novel solution for the

segmentation of massive fiber datasets and for providing unique features to

assist experts during the fiber segmentation process.

Part 4: Summary. This last part contains the summarization of this thesis as

well as some future researches.

• In Chapter 10, we sum up all our contributions in this thesis and discuss

some future researches.



Chapter 2

Density-based Clustering

Algorithms

Density-based clustering is one of the most common techniques for data clustering

and constantly attracts numerous research efforts in many fields. During the last

decades, many density-based clustering algorithms have been proposed in the lit-

erature including applications of density-based clustering, extensions for complex

data and complex tasks, enhancements of existing techniques, etc. Therefore,

comprehensive reviews for density-based clustering algorithms are necessary to

draw deep insights into the research field and thus could significantly contribute

to the development of the field.

Though there are many surveys on density-based clustering algorithms pro-

posed in the literature, most of them are generic surveys that focus on many

different kinds of density-based algorithms and only cover small sets of existing

techniques. Currently, density-based clustering algorithms have evolved very far

from the reach of any existing surveys or text books with hundreds of algorithms

proposed in the literature during the last decades.

In this Chapter, we provide a comprehensive literature review on density-

based clustering algorithms. In contrast to other works, our survey particularly

focuses on the density-based clustering algorithms that follow the paradigm of

DBSCAN [83]. Moreover, our survey covers a wide variety of proposed algorithms

in the literature including extensions and applications of these algorithms in many

different fields such as physic, medicine and transportation.

Publications. Parts of the material presented in this Chapter have been pub-

lished in [181]. The detailed information are described as follows:
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• Son T. Mai. Density-based Clustering: A Comprehensive Survey. Technical

Report, University of Munich, 2013.

In this work, S.T.M. did the major part including the literature review,

experiments and paper writing.

2.1 Introduction

Clustering is the task of assigning unlabeled objects into groups called clusters such

that the similarity of objects within a group is maximized, and the similarity of ob-

jects between different groups is minimized. It plays a vital role for statistical data

analysis in many fields including data mining, machine learning, pattern recog-

nition, image analysis, information retrieval, etc. [9]. During the past decades,

thousands of clustering algorithms have been proposed in the literature from many

different fields [106, 9]. These clustering algorithms can be roughly classified into

different groups including: hierarchical clustering algorithms such as Single-Link,

Average-Link and Complete-Link methods, etc. [106], partitional clustering algo-

rithms such as k-Means, k-Medoids, EM clustering, k-Harmonic Means, etc. [121],

density-based clustering algorithms such as DBSCAN, DENCLUE, OPTICS, etc.

[106], grid-based clustering algorithms such as STING, WaveCluster, etc. [106],

spectral clustering algorithms [263], and many other clustering algorithms such as

Affinity Propagation (AP) [92].

Data clustering surveys. Since there are a vast amount of clustering algorithms

proposed in the literature in term of both diversity and quantity, many research

efforts are spent to summarize these clustering techniques in order to provide more

comprehensive reviews about the field.

Metaheuristic clustering algorithms are the main research topic in [67] and

[117]. The surveys proposed by Kriegel et al. [156] and Parson et al. [212] focus

on the clustering of high-dimensional data including subspace clustering, projected

clustering, pattern-based clustering and correlation clustering algorithms. Moise

et al. [193] proposed an interesting work aims at experimental evaluation and

analysis of subspace and projected clustering algorithms. Luxburg [263] provided

a comprehensive tutorial about spectral clustering algorithms and their nature

and characteristics. Filippone et al. [88] provided a survey about kernel and

spectral methods for clustering. Another work proposed by Kriegel et al. [155]

briefly focused on major density-based clustering algorithms proposed in the lit-
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erature. An interesting tutorial from Müller et al. [199] concentrated on multiple

clusterings, an emerging research field in data clustering. In [70], Davidson et al.

provided a great survey about clustering with instance level constraints. A survey

of clustering methods for wireless and mobile networks is provided in [2, 289].

The work of Liao [171] focused on clustering algorithms for time-series data. The

comparative study of twelve model-based document clustering algorithms is the

main focus of [295]. There exist in the literature many other interesting surveys

about generic data clustering techniques, e.g., [121, 29, 9, 281, 122]. Among these

works, one of the most interesting works proposed recently is the text book from

Aggarwal and Reddy [9] which provides very comprehensive studies about differ-

ent approaches for data clustering including semi-supervised clustering algorithms,

cluster ensembles, alternative clusterings, interactive clustering, clustering high-

dimensional data, big data, stream data, biological data, etc. Interested readers

please refer to these surveys for more details.

However, it is important to note that, the data clustering field has evolved very

far beyond the capability of any text books or surveys proposed in the literature.

Therefore, more and more research efforts are still constantly required in order to

provide more systematic and comprehensive surveys about the field.

Density-based clustering. Many clustering algorithms, e.g., k-Means, implic-
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Figure 2.1: The clustering results on a toy example. Due to its ability of detecting

clusters with arbitrary shapes, DBSCAN can group data exactly as the ground

truth. The traditional algorithm k-Means however cannot group data correctly

since it can detect spherical clusters only.
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itly or explicitly assume that data are generated from a probability distribution

of a given type, e.g., from a mixture of k Gaussian distributions. These clustering

algorithms thus are limited to spherical clusters and are unable to deal with data

which contain nonspherical shape clusters [9]. In density-based clustering, clusters

are regarded as areas of high object density in the data space separated by areas of

lower object density. This notion thus helps density-based clustering algorithms to

be able to detect clusters with arbitrary shapes by following dense connected areas.

Figure 2.1 shows the clustering results of the density-based clustering algorithm

DBSCAN [83] and the traditional clustering algorithm k-Means [121] on a toy

example. Due to its ability of detecting clusters with arbitrary shapes, DBSCAN

can group data exactly as the ground truth. However, the traditional algorithm

k-Means cannot group data correctly since it can only detect spherical clusters.
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Figure 2.2: The clustering results on a toy example. Outliers are drawn in black.

While density-based clustering algorithm DBSCAN can detect those outliers, tra-

ditional clustering algorithm k-Means is unable to classify those outliers.

In contrast to many other traditional clustering algorithms, density-based clus-

tering algorithms have capability to deal with outliers. In density-based clustering,

outliers are regarded as objects which belong to sparse areas and thus cause an

intuition that they are generated from different mechanisms compared with other

objects. Figure 2.2 shows the clustering result acquired by the algorithm DB-

SCAN [83] where outliers are represented by black dots. Traditional clustering

algorithm k-Means, however, is unable to classify these outliers.

Another advantage of density-based clustering compared with other traditional

clustering techniques is that density-based clustering algorithms do not need the
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number of clusters k to be specified beforehand. It is a significant advantage

when dealing with complex datasets where determining the number of clusters

beforehand is a non-trivial task.

Since the first density-based clustering algorithm DBSCAN [83] was proposed,

density-based clustering algorithms have attracted considerable research efforts

due to their many attractive benefits, e.g., robustness again noise, the ability to

detect arbitrarily-shaped clusters described above. There exist in the literature

many density-based clustering algorithms follow different density notions, e.g.,

the cardinality of neighborhood of an object [83], the influence of an object in

its neighborhood [111], and different research directions, e.g., subspace clustering

[160], network clustering [284], data stream clustering [61]. Among them, the

density-based notion of DBSCAN is perhaps one of the most successful paradigms.

In the literature, there exist many algorithms that have been proposed based on

the DBSCAN paradigm, e.g., GDBSCAN [82], SUBCLU [160].

Contents. Though there are many surveys on density-based clustering algorithms

proposed in the literature, e.g., [155, 9]. Most of them are generic surveys that

focus on various kinds of density-based algorithms and only cover small sets of

existing techniques. In this Chapter, we provide a comprehensive literature sur-

vey for density-based clustering algorithms. In particular, we focus on algorithms

which closely follow the paradigm of DBSCAN [83]. The rest of this Chapter is

organized as follows. In Section 2.2, we briefly describe the density-based clus-

tering algorithm DBSCAN, a fundamental data clustering technique. In Section

2.3, we briefly describe the algorithm OPTICS, a hierarchical extension of DB-

SCAN. Other related algorithms are described in Section 2.4. Section 2.5 focuses

on extensions of DBSCAN proposed in the literature. Finally, conclusions and

discussions are given out in Section 2.7.

2.2 The Algorithm DBSCAN

In [83], Ester et al. proposed the first and perhaps the most well-known density-

based clustering algorithm called DBSCAN. DBSCAN formalizes a density notion

for clustering by measuring the cardinality of the neighborhood of each object.

An object belongs to a cluster if it has enough objects inside its neighborhood.

During the past decades, DBSCAN has attracted many research efforts, and thus

many extensions of DBSCAN have been proposed in the literature, e.g., [45, 44,

160, 38, 228, 82, 282, 157, 16, 165, 272, 69, 32].



14 2. Density-based Clustering Algorithms

Given a set of objects O which contains N objects, a distance function d :

O ×O → R and two parameters ε ∈ R+ and µ ∈ N+.

Definition 1 (ε-neighborhood) The ε-neighborhood of p ∈ O, denoted as Nε(p), is

defined by Nε(p) = {q ∈ O|d(p, q) ≤ ε}.

Each object in O is classified either as core object, border object or noise

object depending on its neighborhood. An object p is a core object if it has more

than µ objects inside its ε-neighborhood. If p has less than µ objects inside its

ε-neighborhood and none of its neighbors are core objects, then p is classified as

noise object or outlier. Otherwise, p is called a border object.

Definition 2 (Core object property) An object p ∈ O is a:

1. Core object, denoted as core(p), iff |Nε(p)| ≥ µ.

2. Border object, denoted as border(p), iff |Nε(p)| < µ and ∃q ∈ Nε(p) :

|Nε(q)| ≥ µ

3. Noise object, denoted as noise(p), iff it is not a core object or a border object.

An object q is density-reachable from object p ∈ O if p is a core object and q

lies inside the ε-neighborhood of p. Note that, object q is density-reachable from

object p does not mean that object p is also density-reachable from object q.

Definition 3 (Directly density-reachable) An object q ∈ O is directly density-

reachable from object p ∈ O, denoted as p . q, iff |Nε(p)| ≥ µ and q ∈ Nε(p).

Two objects p and q are density-connected if there exists a chain of density-

reachable core objects xi so that p is density-reachable from xi and q is density-

reachable from xi. Note that, p and q are not necessary core objects.

Definition 4 (Density-connected) Two object p and q ∈ O are density-connected,

denoted as p ./ q, iff there exists a sequence (x1, . . . , xm) of objects so that ∀xi :

|Nε(xi)| ≥ µ and p / x1 / · · · . xm . q.

A cluster is defined as a maximal set of density-connected objects and is com-

posed of core objects and border objects. In DBSCAN, a border object could

belong to several clusters depending on the order of objects. A noise object does

not belong to any clusters and is called outlier.
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Figure 2.3: The notions of DBSCAN : (a) q is directly density-reachable from p;

(b) p and q is density-connected; (c) object a (red) is a core object, b (green) is

border object, c (black) is noise object; (d) the seed list S for cluster expansion.

DBSCAN is currently constructing the cluster C2. Object p is extracted from S

and examined. Object a and b which lie inside the ε-neighborhood of p are not

processed and thus are inserted into S.

Definition 5 (Cluster) A subset C ⊆ O is called a cluster iff the two following

conditions hold:

1. Maximality: ∀p ∈ O, ∀q ∈ O \ C : ¬p ./ q

2. Connectivity: ∀p, q ∈ C : p ./ q

DBSCAN uses a data structure called the seed list S which contains a set of

seed objects for cluster expansion. To construct a cluster, DBSCAN randomly

selects an unprocessed object and puts it into the empty seedlist S as an ini-

tialization. Then, it continuously extracts an object p from S and performs the

ε-range query on p to find objects which are directly-reachable from p and inserts

them into S if they are not processed so far. When the seed list S is empty, the

cluster construction is complete and the construction for a new cluster begins.
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The whole expansion process is repeated until all objects are labeled. Interested

readers please refer to [83] for more details.

The time complexity of DBSCAN is O(N2) where N is the total number of

objects. When an index structure such as R-Tree [26] is used to speed up the

range-query processing, the time complexity of DBSCAN becomes O(NlogN).

It is important to note that, the time complexity of similarity measures among

objects is still not considered here. Assuming that the similarity measure among

objects has time complexity ψ, then the final complexity of DBSCAN is O(ψN2)

or O(ψNlogN) iff an index structure is provided.

Figure 2.3 demonstrates some notions of DBSCAN including the directly density-

rearchable notion (a), the density-connected notion (b), the core property of ob-

jects (c) and the cluster expansion process (d).

2.3 The Algorithm OPTICS

One major drawback of DBSCAN is that it only uses a single density threshold

ε to extract clusters from data. Besides the difficulty of parameter selections, in

real life applications, the intrinsic clustering structures usually cannot be char-

acterized by a global density. They can only be revealed with many different

local density thresholds instead. One simple approach is to repeatedly running

DBSCAN with different parameter sets to find the intrinsic clustering structures.

However, it obviously results in significant performance degradation while it does

not guarantee a proper solution. OPTICS [16] is thus provided to cope with this

problem. In contrast to DBSCAN, OPTICS does not produce explicit clustering

results. Instead, it produces an ordering of objects in a dataset which encapsu-

lates the information of many clusters in this dataset w.r.t. arbitrary values of ε

that are smaller than a predefined threshold ε∗. The outcome of OPTICS is a so

called reachability plot which can be graphically visualized to support interactive

analysis of the cluster structure as show in Figure 2.4. OPTICS is based on the

concepts of core-distance and rechability-distance of an object p to operate.

Given a set of objects O which contains N objects, a distance function d :

O × O → R and two parameters ε∗ ∈ R+ and µ ∈ N+. The core-distance of an

object p is defined as:

core-distε∗,µ(p) =

{
UNDEFINED if |Nε∗(p)| < µ

k-dist(p) otherwise
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where k-dist(p) is the distance between p and its k-th nearest neighbor. The

reachability-distance of an object p w.r.t. object o is defined as:

reach-distε∗,µ(p, o) =

{
UNDEFINED if |Nε∗(o)| < µ

max(core-distε∗,µ(o), d(o, p)) otherwise

OPTICS works by creating an ordering of objects and additionally storing for each

object its core-dist and reach-dist w.r.t. the previous object. The reachability plot

can be constructed from this information in order to provide an interactive way

for extracting clusters. For readability, interested readers please refer to [16] for

more details.
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Figure 2.4: The reachability plots (left) and clustering results (right) of OPTICS

w.r.t. different extract thresholds (the dotted horizon lines in the reachability

plots). Outliers are drawn in black. The parameter ε∗ is set to 6. From the top

to the bottom, the threshold value ε is set to 3, 2.5 and 1.5 respectively.
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The time complexity of OPTICS is similar to that of DBSCAN however with

higher constant factor (around 1.6 times slower than DBSCAN as reported by the

authors). Similar to DBSCAN, an index structure could be employed in order to

reduce the query time, thus makes OPTICS O(NlogN) time complexity algorithm.

There exist some algorithms like DeLi-Clu [7] which also try to produce a

visualization structure similar to the reachability plot of OPTICS however with

different algorithmic schemes.

2.4 Other Algorithms

There exist many different density-based clustering algorithms with different al-

gorithmic schemes like DENCLUE [111], WaveCluster [239], STING [270], etc. In

this Section, we briefly describe some of them as examples.

The algorithm DENCLUE. While the density notion of DBSCAN relies on the

cardinality of the neighborhood of objects, the density notion of DENCLUE [111,

112] is based on the influence of an object into its neighborhood. In DENCLUE,

the density at each point p is modeled by the sum of the influence functions, which

are typically Gaussian functions or square wave functions, of all other objects

with respected to object p. An object p is called density-attractor iff p is local

maximum of the overall density function. An object q is density-attracted to a

density-attractor p iff q can be reached from p through a sequence of objects that

lie within an ε-circle from each other in the direction of the gradient. An arbitrary

shape cluster of a given set of density-attractors X is defined as the set of objects

that are density-attracted to one of the density-attractors x of X and the density

function at x exceeds a predefined threshold ξ. Moreover, all pairs of density-

attractors of X need to be connected by a path of objects P whose density must

exceed the threshold ξ. The main advantage of DENCLUE is that it can robustly

cluster datasets with large amount of noise and it allows a compact mathematical

description of arbitrarily shaped clusters in high-dimensional datasets.

Together with DBSCAN, DENCLUE is one of the most well-known density-

based clustering algorithms. However, to the best of our knowledge, there are

not many algorithms that follow the notion of DENCLUE proposed in the lit-

erature. In [110], the authors proposed an improve version of DENCLUE called

DENCLUE 2.0 which aims at improving the hill-climbing process to determine

density-attractors in the original version of DENCLUE. Klusch et al. [144] pro-
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posed an algorithm called KDEC for distributed data clustering based on sampling

density estimates. In KDEC, each data source transmits an estimate of the prob-

ability density function of its local data to a helper site. The helper then builds

the overall density estimate. Based on the overall density estimate, each data

source executes a density based clustering algorithm that follows the scheme of

DENCLUE to cluster data.

Density estimation algorithms. There exist in the literature many clustering

algorithms which are based on density estimation like DENCLUE. For example,

the local density-based clustering algorithm proposed by Pamudurthy [211] et al.

generally has the same idea with DENCLUE: using Kernel Density Estimation

to calculate the density function and then determining clusters based on a pre-

defined density threshold. However, while DENCLUE uses the fixed predefined

kernel width σ, Pamudurthy et al. proposed to use different kernel widths for each

object using the average distances from the centroid C of k-nearest neighbors to

the k-nearest neighbors themselves. To cluster the data, the cluster boundaries

are extracted from the estimated density of the data, and the objects are labeled

following the contour tests instead of the density-attractor scheme of DENCLUE.

Though the proposed algorithm outperforms DBSCAN in clustering the overlap-

ping clusters and clusters with different densities [211], the performance compari-

son with DENCLUE was unfortunately not performed.

The algorithm WaveCluster. WaveCluster [239] applies wavelet transform on

the spatial data feature space which helps in detecting arbitrary shape clusters at

different scales due to the multi-resolution property of wavelet transform. Out-

liers are automatically removed from the transformed data feature by applying

low-pass filters usually used in the wavelet transform. Concretely, the first step of

WaveCluster is to quantilize the feature space into units by dividing each dimen-

sion of the feature space into equal intervals to form the unit cells. Objects are

assigned into the cells based on their feature values. Then the wavelet transform is

applied on the quantized feature space. Connected components in the transformed

feature space at different levels are then formed by finding dense regions. Labels

are assigned to objects and stored in a lookup table for finally determining the

class label of objects in the original feature space. WaveCluster has O(N) time

complexity in general where N is the total number of objects. Thus, it is very fast

compared with DBSCAN.

The algorithm STING. STING (Statistical INformation Grid) [270] divides
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data space into rectangular cells at different level of resolutions. Each cell at the

higher level is partitioned into cells of the next lower levels. Thus, at the end,

they form a hierarchical structure which allows an incremental update when there

are new objects arrive. Each cell stores statistical information of data inside it in-

cluding the number of contained objects, the mean, standard deviation, minimum

and maximum value of the attribute in this cell, and the type of distribution that

the attribute value in this cell follows. The region query processing is processed in

a top-down scheme: starting from the root node, following the most relevant cells

based on statistical information of them until the lowest level is reached. The time

complexity for a region query is O(K) where K � N is the number of grid cells

at the lowest level and N is number of data objects. Though it is more efficient

than index structures of DBSCAN and thus can be employed as the range query

process of DBSCAN in order to acceleration the performance, STING may cause

the loss of information in query processing.

Other algorithms. There exist in the literature many algorithms which are

capable of detecting arbitrary shape clusters like CURE [99], CHAMELEON [129],

etc. However, we classified them as distance-based clustering algorithms instead

of density-based clustering algorithms. An algorithm is called density-based if it

is based on some local criteria to form clusters [123].

2.5 Applications of DBSCAN

During the past decades, DBSCAN has become one of the most successful data

clustering techniques and has been widely applied in many fields, e.g., neuroscience

[238], trajectories clustering [166], aircraft monitoring [93], biomedical images seg-

mentation [56]. In this Section, we briefly describe some of them as examples.

Lee et al. [166] proposed a trajectory clustering algorithm called TRACLUS for

discovering common sub-trajectories in trajectory databases. TRACLUS consists

of two phases: partition and group phases. In the first phase, each trajectory is

divided into segments using Minimum Description Length (MDL) principle. In the

second phase, these segments are grouped into group using DBSCAN algorithm

on segment objects. The proposed algorithm would be a useful tool to detect

similar common movement patterns of animal immigrants or movement patterns

of hurricanes as demonstrated in the paper.

In [93], DBSCAN is used as principal components of two trajectory clustering
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algorithms that are specifically designed for clustering of aircraft trajectories into

flight patterns. This information can be used to enhance the monitoring and con-

trol of aircrafts, e.g., detecting unusual movement of an aircraft if it does not follow

common movement patterns. In the first algorithm, DBSCAN is used to group all

the turning points acquired from all trajectories into a finite number of way-points

where it has been determined that aircrafts usually turn. These way-points are

then further used by other clustering algorithm for grouping trajectories. In the

second algorithm, DBSCAN is directly used to group trajectories represented by

the first five Principal Components of them.

Segmenting the white matter fiber tracts acquired from Diffuse Tensor Imaging

[194] plays an important role in neuroscience to study the structure of the brain

and onset and progression of neurodegenrative and mental diseases. In [238], Shao

et al. proposed to use DBSCAN to group the white matter fiber tracts in human

brain into anatomical meaningful bundles and to reject noisy and spurious fibers

to enhance the clarity.

The clustering is an essential part of Automated Diffraction Tomography (ADT)

data processing, delivering the lattice basis vectors for single-crystal electron-

diffraction data [230]. In [230], Schlitt et al. proposed to use DBSCAN for group-

ing electron ADT data since it is robust to noisy data, can detect arbitrary shape

clusters and is easily to implement. The acquired clusters can then be used to de-

termine the unit-cell basis vectors, usually as three shortest non-coplanar vectors

within clusters, when a sufficient number of clusters are found [230].

DBSCAN is used to identify clusters of prophage genes (clusters of phage-

like genes within a bacterial genome) in PHAge Search Tool (PHAST), a web

server designed to rapidly and accurately identify, annotate and graphically display

prophage sequences within bacterial genomes or plasmids [299].

Tramacere et al. [250] proposed a slightly extended version of DBSCAN called

γ-ray DBSCAN for the detection of sources in γ-ray astrophysical images obtained

from the Fermi -LAT data where each object is regarded as the arrival direction

of photon. In this case, the robustness to outlier property of DBSCAN provides

a useful solution for the noisy background rejection. γ-ray DBSCAN uses the

angular distance between two photons as a similarity measure and follows the

density-notion of DBSCAN exactly with only a minor change in the cluster ex-

pansion process.

Another interesting application of DBSCAN comes from Celebi et al. [56]

where the authors focused on the problem of identification of homogenous color
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regions in biomedical images, in particular, the segmentation of pigmented skin

lesion images. First, the image is split into sub-regions following a top-down

process to acquire the homogeneity criterion in each region. Then, GDBSCAN

[228], an extension of DBSCAN for clustering spatial data, is used to segment

the image by grouping similar sub-regions. Last, a post processing procedure is

conducted to reduce the total number of grouped regions in order to enhance the

clarity of the results.

The algorithm P-DBSCAN [139] is a variation of DBSCAN for the analysis of

places and events using a collection of geo-tagged photos. P-DBSCAN extends the

notion of DBSCAN by considering the number of peoples (owners of photos) into

the definition of neighborhood and core photos. A notion of adaptive density for

optimizing search for dense areas and faster convergence of the algorithm towards

clusters with high density is also proposed.

Other applications. Huang et al. [118] proposed to use Self Organizing Map

(SOM) and DBSCAN-based models for landslide hazard and spatial correlations

analysis. In [189], the authors proposed an improved Storm Cell Identification

and Tracking (SCIT) algorithm based on DBSCAN Clustering and JPDA Track-

ing Methods. Francis et al. [89] used an slightly adapted version of DBSCAN, in

which the shared border objects between two clusters are randomly assigned to one

of those clusters, for the simulation of DNA damage clustering after proton irradi-

ation. The work of Kumar et al. [162] focused on DBSCAN algorithm for privacy

preversing clustering. In [246], the authors proposed the NETwork-DBSCAN

(NET-DBSCAN) for clustering dynamic linear networks. In [127], DBSCAN is

used to discover moving clusters in spatio-temporal data with many applications

such as discovering the moving groups of migrating animals. Xu et al. [283] pre-

sented an application of DBCLASD, a variant of DBSCAN, to cluster earthquake

data.

Note that, there exist many other applications which are built upon other gen-

eralized density-based clustering paradigms instead of the paradigm of DBSCAN,

e.g., the Density-based Hierarchical Clustering (DHC) method for clustering time

series gene expression data [125], the density-based hierarchical clustering tech-

nique to identify coherent patterns from gene expression data [229]. However,

in this Section, we mainly focus on applications of the density-based clustering

algorithms that closely follow the DBSCAN paradigm.
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2.6 Extensions of DBSCAN

Among various density-based clustering algorithms, DBSCAN perhaps is the most

successful one with many extensions proposed in the literature, e.g., [45, 44, 160,

38, 228, 82, 282, 157, 16, 165, 272, 69, 267, 265, 84, 228, 272]. In this Section, we

briefly summarize some of these works. Note that, we only focus on the algorithms

which closely follow the DBSCAN paradigm. These extensions of DBSCAN can

be roughly classified into different groups as the following.

2.6.1 Parameter Optimization

The algorithm DBSCAN requires two parameters µ, that describes the cardinality

threshold, and ε, that describes the radius of neighborhood, to be set. These

parameters play an important role on the performance of the algorithm DBSCAN,

especially the parameter ε.

In [83], the authors suggested choosing µ = 4 for 2-dimensional data. For the

parameter ε, the authors suggested using a sorted k-dist graph, which contains

the distances from every point p to its k-th nearest neighbor in ascending order,

and an estimated percentage of noise to derive the value of ε. However, for many

datasets, ε may not be easy to pick, especially when the percentage of noise is

small or unknown.

Lee et al. [166] suggested another method for choosing the parameters µ and

ε based on information theory. The proposed technique is generally based on an

observation that |Nε(p)| tends to be uniform in the worst clustering. Thus, if ε is

too small, |Nε(p)| tends to become 1; if ε is too large, |Nε(p)| contains the whole

data. Therefore, the entropy becomes maximal. In a good clustering, the entropy

should be smaller since |Nε(p)| tends to be skewed. The entropy H(O) of a dataset

O with N objects is defined as follows:

H(O) =
N∑
i=1

p(xi)log2
1

p(xi)
= −

N∑
i=1

p(xi)log2p(xi)

where

p(xi) =
|Nε(xi)|∑N
j=1 |Nε(xj)|

The parameter ε can be chosen as ε∗ that minimizes H(O) by using Simulated

Annealing algorithm [68]. Then, the parameter µ can be chosen as avg(Nε∗(p)) +
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1 ∼ 3. Though, the proposed heuristic works quite well on the particular problem

of clustering line segment data, its performance on other kinds of data, however,

remains unknown.

The algorithm OPTICS [16] proposed a different approach for the parameter

setting problem of DBSCAN. Given a predefined value ε∗, OPTICS produces a

reachability plot and an ordering of objects which allow the algorithm to quickly

produce the clustering results for any value of ε that ε ≤ ε∗. Thus, users do

not need to set a specific value for ε beforehand. However, OPTICS still has

two parameters to set including µ and ε∗. Under the assumption of a random

distribution of the objects, the authors suggested choosing ε as the radius r of a

d-dimensional hypersphere R in S where S contains exactly k (k = µ) points.

r =
d

√
V olumeO × k × Γ(d

2
+ 1)

N ×
√
πd

where Γ denotes the Gamma-function. This technique, however, is only applicable

for vector data and not for other kinds of data, e.g., time series. For the parameter

µ, the authors suggested choosing µ between 10 and 20. An automatic technique

to explore the reachability-plot and extract the clusters was also developed based

on the steeps of the reachability plot.

The algorithm Automatic Eps Calculation (AEC) proposed by Gorawski et

al. [96, 97] iteratively and randomly chooses a fixed number of sets of points

and calculates three coefficients: distance between the points, number of points

located in a stripe between the points and density of the stripe. Then the algorithm

chooses the best possible result, which is the minimal distance between clusters as

the value for ε. The calculated result in the previous step has an influence on the

sets of points created in the next iteration. The algorithm AEC, however, suffers

from several major drawbacks. It can only robustly estimate ε for simple datasets

with small amount of noise. It requires a parameter that is hard to set. It has

high runtime, even higher than runtime of clustering algorithm. Moreover, AEC

is only designed for 2-dimensional datasets and mainly aims at finding parameter

for DBRS [272], a variant of DBSCAN, and not for DBSCAN itself.

Summarization. Though there are several techniques to determine the param-

eters of DBSCAN proposed in the literature, they are only designed to deal with

specific datasets [166, 96] or are still hard to select parameter [83, 16] or require

user interaction [83, 16]. There are no automatic techniques which are applicable

for many kinds of data proposed in the literature so far.
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2.6.2 Clustering with Varying Densities

One major drawback of DBSCAN is that it is unable to detect clusters with

varying densities due to the single density threshold usage. Figure 2.5 shows an

example of a dataset with clusters of varying densities. DBSCAN cannot detect

all the clusters exactly. Several approaches have been proposed in order to cope

with this problem of DBSCAN, e.g., [16, 80].
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Figure 2.5: The clustering results on a dataset with clusters of varying densities.

Outliers are drawn in black. DBSCAN cannot detect all the clusters exactly.

OPTICS [16] perhaps is the first algorithm which is able to deal with this prob-

lem of DBSCAN by producing the reachability plot to extract clusters. However,

it only visuals the cluster structures without providing any method for determin-

ing clusters with varying densities. Thus, how to extract clusters with varying

densities from the reachability plot of OPTICS remains an open research.

An approach based on Shared Nearest Neighbors (SNN) was proposed in [80]

to cope with clusters with varying densities. Ertoz et al. defined the similarity

between two objects p and q as the size of the intersection of the nearest neighbor

sets of p and q based on an SNN graph, that is constructed from the dataset by

connecting two objects p and q if p and q lie in the k nearest neighbor sets of each

other, as follows:

similarity(p, q) = |NN(p) ∩NN(q)|

where NN(p) and NN(q) are sets of nearest objects of p and q w.r.t. the SNN

graph respectively. The use of SNN graph can help to remove a lot of noise since

they usually end up having most of their links broken. It also keeps the links in

a region of any density, as long as the region has relatively uniform density. This
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useful property helps to detect clusters with varying densities. An object p is called

core objects if it has more than µ object q around it so that the similarity(p, q)

larger than a predefined threshold ε. The algorithm DBSCAN is then can be used

to cluster the data.

Another approach came from Khani et al. [135] with an algorithm called Al-

gorithm for Clustering Spatial Data with different densities (ACSD). The general

idea of ACSD is to construct a graph on the data by adding edges between objects

so that objects in a cluster lie in a connected component correspond to the cluster,

whereas objects in different clusters are almost disconnected. In the beginning,

ACSD creates a preliminary graph and iteratively improves it by sending feedbacks

from each point to its neighborhood points. The neighborhoods and the feedback

to be sent are determined by investigating the received feedbacks. After a stable

graph is created, the clusters are formed by post-processing the constructed graph.

The core and border objects are determined by calculating angles between edges.

Then, the clustering algorithm DBSCAN is performed to group the data. ACSD

may not perform well on high dimensional data due to its core and border object

calculation scheme. Moreover, it has three parameters to set in comparison with

two parameters of DBSCAN.

The algorithm LDBSCAN [77], a variant of DBSCAN, exploits the Local Out-

lier Factor (LOF) [48] of objects to discover clusters with different densities. An

object p is called core object if its LOF score, denoted as LOF (p), is below a pre-

defined threshold LOFUP . A point q is directly density-reachable from a point

p if q is inside Nµ(p) and LRD(p)/(1 + pct) < LRD(q) < LRD(p) ∗ (1 + pct),

where Nµ(p) contains the µ-distance neighborhood of p, LRD(p) denotes the Lo-

cal Reachability Distance [48] of p and pct is a predefined parameter to control the

fluctuation of local density. Based on these definitions, the algorithm DBSCAN

can be used to cluster the data. One major drawback of LDBSCAN is that it

has three parameters which are hard to set, especially LOFUP and pct, though

the authors has introduced a heuristic to choose them. Moreover, the compari-

son with existing techniques like SNN [80] or OPTICS [16] was unfortunately not

conducted. Thus, it is difficult to assess the performance of LDBSCAN.

In [256], a grid-based algorithm called GRIDBSCAN was introduced as another

solution for varying density problem. The algorithm works by first dividing data

space into grids so that the density of object in each group is homogeneous. Then,

it merges the cells with roughly similar densities and estimates the parameter

ε for DBSCAN in each produced group of cells. Last, DBSCAN algorithm is

performed on the objects in each cell group. Generally, the strategy here is quite
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common: clustering different clusters with different density thresholds ε. Many

other proposed algorithms follow this strategy to tackle with the varying density

clusters. Similar to [77], there was no comparison with other techniques like SNN

or OPTICS. Thus, the performance of algorithm is somewhat hard to evaluate.

Others. In [42], an algorithm called Density Differentiated Spatial Clustering

(DDSC) was proposed to find clusters in which the densities within clusters are

homogeneous. DDSC introduces an additional parameter α to measure the homo-

geneousness of a core object. A core object is homogeneous if its density is neither

more than α1 = (1 +α/(2α) nor less than α2 = 2/(1 +α) times the density of any

of its neighbors. A cardinality test of a currently processed object p is proposed to

guarantee that the number of already processed objects present in the neighbor-

hood of p object should be within a certain minimum limit βmin = 2/(1+d)(1+α)

and maximum limit βmax = α/(1 + α) where d is the dimensionality of data. The

clustering process of DDSC is similar to that of DBSCAN. During the cluster

expansion, the homogeneous test and cardinality test are conducted to ensure the

proper cluster expansion. Assuming that object p is currently being processed dur-

ing the cluster expansion, all object q ∈ Nε(p) will be examined in an ascending

order according to the distance d(p, q) to impose growing of cluster in contiguous

regions. One interesting property of DDSC is that the algorithm is able to find

density based natural clusters that may not be separated by any sparse region.

Besides an additional parameter α which is a challenging to choose, DDSC may

suffer from the inherent sparseness of high dimensional data.

The algorithm Locally Scaled Density-based Clustering (LSDBC) [30] groups

objects by connecting dense regions of space until the density falls below a thresh-

old determined by the center of the cluster. Instead of using a single value of ε

for the whole dataset, LSDBC computes for each object p a local density value εp
based on its k-nearest neighbor distance. The smaller the value of εp, the more

dense the area p lies. During the clustering, objects in denser area will be examined

first. Given an object p as a center object of a cluster, LSDBC expands the cluster

in the way that is similar to DBSCAN except that an object q will be inserted

into the Seedlist S if εq ≤ 2α/Nεp where α is used to determine the boundary of

the current cluster expansion based on its density. It is still unknown how LSDBC

perform when there exist several high density clusters that are close together and

how the algorithm deals with outliers. There are several other algorithms pro-

posed in the literature following the same approach with LSDBC: using different

density thresholds to tackle with varying density clusters. The algorithm proposed
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in [85] has similar approach with LSDBC: using k-nearest neighbor to calculate

local density of each object, sorting each object according to the estimated den-

sity, performing clustering with varying value of ε for each object. However, it is

still unknown how these algorithms perform when there exist several high density

clusters that are close together and how the algorithm deals with outliers.

Summarization. There exist in the literature many other algorithms which are

trying to cope with the varying densities of clusters besides those described above.

However, most of these works suffer from the lack of comparisons and discussions

with existing techniques. The used datasets are also simple and sometimes not

clear enough. Thus it is hard to evaluate the quality of results. Moreover, they

often have many parameters to measure the densities of clusters and to control

the clustering process, which are somehow difficult to set.

2.6.3 Speeding up the Algorithm

During the past decades, many research efforts are being spent in order to speed

up DBSCAN, e.g., [83, 34, 45, 44, 296, 272, 69, 253, 260, 48, 47, 297, 298]. Due to

a vast amount of proposed algorithms in the literature, we only select some major

algorithms as examples. Generally, these approaches can be roughly classified as

the following.

Speeding up the neighborhood query. Since DBSCAN relies on the cardinal-

ity of the neighborhood of each object, speeding up the neighborhood query will

significantly reduce the runtime of the algorithm.

In the original algorithm DBSCAN [83], any indexing structure such as R-

Tree [103] and R∗-Tree [26] can be used to speed up the ε-range query process

thus reducing the time complexity of DBSCAN to O(NlogN) where N is the

total number of objects.

When the data is large enough so that it cannot fit into the main memory,

indexing approach like R-Tree and R∗-Tree may cause serious performance de-

generations for the range query. And so is the performance of DBSCAN. In [34],

the authors proposed a schema to transform the ε-range query of DBSCAN into

a representation using the similarity join, a database primitive prevalent in mul-

timedia database systems, as a basic operation to speed up the query processing

while ensuring the correctness of the result of the algorithm. The same scheme can

also be applied to OPTICS. Experiments on large datasets show the performance
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acceleration of the proposed algorithms by factor of up to 33 times for the use of

X-Tree [27] and 54 times for the use of R∗-Tree [26].

Brecheisen et al. [45, 46] approaches the problem from a different view point

with [83] and [34] to cope with complex data and complex distance measures.

Instead of using index structure, which may not be available, to reduce the query

time, their algorithm relies on a concept of multi-step query processing which is

based on lower bounding (LP) approximate distance functions to reduce to num-

ber of exact distance calculations and consequently to speed up DBSCAN (and

also OPTICS). The general idea of the algorithm is that an object p only need to

have µ neighbors under the true distance to be a true core object. Thus, in order

to determine the core property of an object p, the ε-range query is performed with

the lower bounding distances in order to approximate the neighborhood of p and

to reduce unnecessary true distance calculations due to the filtering property of

lower bounding distances. Then the true distances d(p, q) between p and objects

inside approximate neighborhood of p are calculated until p is surely determined

as a true core object. This process is called µ-range query by the authors and

is a key point of their proposed algorithm, since it helps to significantly reduce

the total number of true expensive distance calculations and thus to significantly

improve the performance of the clustering algorithm. After p is determined as

a core object, the unprocessed true distances d(p, q) are only calculated when

they are necessary to expand a cluster. Inside the proposed algorithm, a special

data structure called the Xseedlist is maintained in order to determine which true

distances need to be calculated during the cluster expansion process. Figure 2.6

shows the detail and operation of the data structure Xseedlist. To be concrete,

the lower bounding distance acts as a guideline for the cluster expansion. Con-

ducted experiments on real datasets have reported the speed up factor of more

than one order of magnitudes. However, since the Xseedlist requires to be contin-

uously resorted during execution, it incurs a significant operation cost which may

overwhelm the distance calculation reduction benefits, especially when the true

distance function is cheap. Moreover, it is required (though not explicitly stated)

that the lower bounding distance function must be significant faster than the true

distance function.

Changing the cluster notion. Several techniques allow the changes in the

density notion of DBSCAN in order to allow more efficient clustering scheme to

enhance the performance, e.g., [296, 272].

The algorithm FDC [296] extends the notion of DBSCAN by introducing a new
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Figure 2.6: The data structure Xseedlist. It consists of an ordered object list

OL. Each object oi in OL is associated with a predecessor list PL(oi) and is

sorted by the first element of PL(oi). Each entry of PL(oi) contains 3 items:

(1) PreID: ID of a neighbor object oi,k (1 ≤ k ≤ n); (2) PreFlag: indicates that

the distance between oi and oi,k is the LB or the true distance; (3) PreDist: the

distance between oi and oi,k. The Xseedlist operates by using a LB distance as a

guideline to extend the clusters. For every object p, the Xseedlist determines all

of its neighbors under the LB distance, sorts them and then updates the distance

between p and its neighbors with the true distances until the core property of

p is determined. The others will be updated only when they are necessary to

determine the density connectivity of objects during the cluster expansion.

notion called density-linked to replace the density-connected notion of DBSCAN.

Two objects p and q are density-linked together if there exist a sequence of object

p = o1, . . . , on = q so that oi is directly density-reachable from oi+1 and vice

versa for all i. Given an object p, it is called noise object iff Nε(p) = 1 or p

does not belong the the neighborhood of any core object. It is core object iff

Nε(p) ≥ µ. In this case, all object inside Nε(p) will belong to the same cluster

with p. Based on these definition, the authors proposed a multi-stage algorithm

to cluster data based on k-d tree. Due to its grid-based scheme of k-d tree, FDC

may face difficulties when dealing with high dimensional data.

Wang et al. [272] proposed a random sampling method called Density-Based

clustering with Random Sampling (DBRS) in order to speed up DBSCAN and also

to tackle with varying densities problem. DBRS randomly selects an unprocessed

object p and finds Nε(p) like DBSCAN. If p is a core object, DBRS checks if Nε(p)

intersects with any existing clusters stored in a cluster list L. If the intersections
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are found, DBRS merges all the corresponding clusters together with Nε(p) to

obtain a new cluster. In contrast to DBSCAN, DBRS does not examine the

neighbors of p to expand cluster. It randomly picks up another object and repeats

the whole process. This scheme allows DBRS to significantly reduce the number of

region query thus improving the efficiency remarkably compared with DBSCAN.

However, the clustering results of DBSCAN and DBRS are clearly not equivalent.

One major drawback of DBRS is that it may miss joining certain clusters as

pointed out by the authors.

Hybrid clustering techniques. Taking the face that k-Means cannot be able

to deal with outlier though it is fast and DBSCAN can produce arbitrary shape

clusters but it is slow, Dash et al. [69] proposed an algorithm called BRIDGES

that merges DBSCAN and k-Means into one algorithm to overcome the limitation

of both algorithms. BRIDGES generally works by first using k-Means to group

data and then using DBSCAN to group objects on each k-Means cluster. Then

noise are removed from the data in order to improve the results of k-Means. In

order to group clusters produced by k-Means, the authors defined a CoreDistance

of a cluster as a half of the distance between its center and its closest cluster

center. An object is called core object of a cluster iff its distance to the cluster

center smaller than CoreDistance − ε. An object is ε-core object iff its distance

to the cluster center is between CoreDistance − ε and CoreDistance + ε. An

object is non-core object if it is not a core or ε-core object. Concretely, the

algorithm works in 6 steps: (1) using k-Means to group data; (2) estimating µ

from ε and clustering result; (3) running DBSCAN for core and ε-core objects of

each k-Means clustering; (4) running DBSCAN for all ε-core and non-core objects;

(5) resolving the cluster conflicts by matching the results acquired from the step

(3) and (4) and generating final clustering results; (6) running k-Means on data

without noise objects using the same cluster centers acquired from previous steps.

Since DBSCAN is performed on much smaller set of objects, the runtime reduces

significantly. And by removing noise objects, the clustering quality of k-Means

clearly is improved. However, the proposed algorithm requires two parameters k

and ε which are somehow hard to set. Moreover, since two clustering results are

produced, which of them is the most suitable result for the dataset?

There exist in the literature several algorithms with the same hybrid scheme,

e.g., [253, 78]. The algorithm NPUST [253], for example, uses k-Means to group

data, then performs DBSCAN on the acquired results and merges the closest

clusters produced by DBSCAN to acquire final clustering result. In [78], CLARAN
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[204] is used instead of k-Means.

Instead of using k-Means, the algorithm l-DBSCAN [260] proposes to use the

leaders clustering method, a fast method which runs in linear time, with two differ-

ent threshold values to provide two level hierarchy of prototypes. These prototypes

are then used to deriving the density-based clusters. In [259] an extended version

of l-DBSCAN called Rough-DBSCAN using rough set theory was also proposed.

Data summarization. Data summarization techniques are proposed to speed up

clustering processes. They first summarize the data by calculating representative

objects. The clustering processes are then performed on those representatives.

And the clustering results for the whole dataset are derived from the results of the

representatives [293].

In [48], a technique called Data Bubbles is first proposed in order to speed

up the hierarchical clustering methods such as OPTICS. Given a set of object X

which contains n objects in d-dimensional space, a data bubble of X is defined

as a tuple B = (n,M, e) where M is the center of X and e is average distance

between all objects in X and is called extend of X.

M =
1

n

n∑
i=1

xi

and

M =

√∑n
i=1

∑n
j=1(xi − xj)2

n(n− 1)

Based on data bubbles, the core-dist and reach-dist are redefined to fit with the

summarization scheme. The expected k-nearest neighbor distance inside a data

bubble B is defined as nndist(k,B) = (k/n)1/de. Given two data bubbles B =

(n1,M1, e1) and C = (n2,M2, e2), the k-distance between B and C is defined as

follows:

distk(B,C) =


dist(M1,M2)− (e1 + e2) + nndist(k,B) + nndist(k, C)

if dist(M1,M2)− (e1 + e2) ≥ 0

max(nndist(k,B), nndist(k, C)) otherwise

The core-distance of B is defined as:

core-distε,µ(B) =

{
UNDEFINED if

∑
X=(n,M,e)∈Nε(B) n < µ

dist(B,C) otherwise
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where C is the data bubble in Nε(B) with minimal dist(B,C) so that the con-

dition
∑

X=(n,M,e)∈Nε(B)∧dist(B,X)<dist(B,C) n ≥ µ holds. Note that core-dist(B =

(n,X, e)) = 0 if n ≥ µ. The reachability-distance of a data bubble B w.r.t. a data

bubble C is defined as:

reach-distε,µ(B,C) =

{
UNDEFINED if

∑
X=(n,M,e)∈Nε(B) n < µ

max(core-distε,µ(C), dist(C,B)) otherwise

Based on these new definitions, traditional OPTICS can be employed to produce

a reachability plot as usual. In order to estimate the output of all objects, the

authors defined the virtual reachability of all points of a data bubble B w.r.t. data

bubble C as follows:

virtual-reachability(B,C) =

{
nndist(µ,B) if n ≥ µ

reach-distε,µ(B,C) otherwise

The proposed algorithm archives the speed up factor from 50 to 1700 on large

datasets compared with original OPTICS. However, it is only applicable for metric

space. Moreover, the performance of algorithm decreases with higher dimensional

data due to the high-dimension sparseness problem.

There exist some extensions of the data bubble technique [48] in the literature.

Breunig et al. [47] studied the performance of data bubble techniques with two

ways to build the bubbles including the Cluster Features (CFs) [293] and a random

technique. The study reveals three factors that seriously degrade the performance

of algorithms including: lost objects, size distortions and structural distortions.

Consequently, the authors proposed a post processing technique to solve the lost

objects and the size distortion problem. In order to solve the structural distortions,

a general concept of a data bubble as a more specialized kind of compressed data

items, suitable for hierarchical clustering was proposed. Two efficient methods

for constructing data bubbles for Euclidean distance were also proposed either by

using sampling plus a nearest neighbor classification or by utilizing BIRCH [293].

In [297], the authors extended the works of [48, 47] for non-metric data space

by introducing a new method for building data bubbles, a new distance measure

function and a new extended clustering notion for OPTICS.

Others. The algorithm SDBSCAN [298] and its extension IDBSCAN [41] are

based on an observation that some objects q in Nε(p) may not need to be examined
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for the cluster expansion since Nε(q) may be fully covered by ε-neighborhood

of some objects r in Nε(p). The authors thus provided some random sampling

schemes to select some objects as seeds for cluster expansion. Objects that are

not processed after the clustering are assigned labels according to the label of

their corresponding core objects. Though, this scheme can help to speed up the

clustering process, it implicitly changes the clustering result in comparison with

the original algorithm DBSCAN, especially with high dimensional data.

Summarization. Many research efforts have been conducted in order to speed

up DBSCAN including many algorithms that are not listed here. Many algorithms

slightly alternate or sacrifice the cluster notion of DBSCAN in exchange to the

performance acceleration. Most techniques cannot go well with high dimensional

and complex data, while the developing of model data acquisition methods are

constantly producing more and more complex data in many fields.

2.6.4 Parallel and Distributed Clustering

Recent development of more powerful hardware and network infrastructures has

led to the explosion of parallel and distributed data mining algorithms. Therefore,

many researchers have been conducted aiming at parallel and distributed density-

based clustering, in particular parallel versions of DBSCAN and OPTICS, e.g.,

[38, 39, 276, 14, 283, 123, 124, 109, 66, 213, 18, 214].

Graphic Processing Units (GPUs). The parallelization for GPUs structure

differs considerabily from previous parallel algorithms which are mainly based on

the share-nothing scheme. GPUs parallel algorithms not only share memory but

also memory and fast memory by groups of processors [38].

Böhm et al. [38, 39] proposed CUDA-DClust, a density-based clustering algo-

rithm specially dedicated to the use of GPUs under NVIDIA’s CUDA architecture

and programming model. CUDA-DClust is based on a new concept called density-

based chain. A subset C is called density-based chain iff all pairs of object p and q

in C are density-connected. A chain thus can be considered as a tentative cluster.

The general idea of CUDA-DClust is starting many different cluster expansions

at the same time via different chains from different starting points. Every chain

is associated with a unique cluster ID. All collisions between all the chains will be

stored in a boolean collision matrix Mm×m where m is the number of chains. Since

M is small, transitive collisions can be determined later by a sequential algorithm.

Since the detailed description is too long, interested reader please refer to [38] for
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more details. The authors also proposed an extended version of CUDA-DClust

called CUDA-DClust∗ that uses an index structure for similarity search which is

particularly composed for the use in GPUs.

Recently, Welton et al. [276] proposed a parallel variant of DBSCAN called

Mr. Scan. Mr. Scan combines the MRNet tree-based distribution network with

GPGPU-equipped nodes into a hybrid parallel implementation scheme. Mr. Scan

uses a programming paradigm that organizes processes into a multi-level tree with

an arbitrary topology. On the GPGPU leaf nodes, DBSCAN is employed to group

the data and the acquired results are then combined on non-leaf nodes. Mr. Scan

is claimed the first parallel version of DBSCAN which incorporates the uses of

GPGPUs architecture. The clustering process of Mr. Scan generally contains 4

main phases: partition, cluster, merge and sweep. In the partition step, MRNet is

used to create one partition per clustering process. In the cluster step, MRNet tree

of processes are first launched, one leaf process for each partition. Each leaf process

uses GPGPU version of DBSCAN to group the data. And a small, constant set of

representative objects is picked and prepared for the merging step. The merging

step operates in a bottom-up scheme until it reaches to the root where the final

merge is performed and a global ID is assigned to each cluster. The sweep phase

then sends the global clusters IDs down the tree to identify the cluster ID of each

object. The result is written to the output by the leaf processes. Experiments

conducted on the paper are very impressive. The author used datasets with up to

6.5 billion data points (compared with 100 million at most from other works) and

the parallel structures of up to 2000 nodes.

There exist in the literature some other parallel variant of DBSCAN based on

the GPUs architecture, e.g., [14].

Parallel and distributed algorithms. In [283], the authors proposed PDB-

SCAN, a first parallel version of DBSCAN based on the share-nothing architec-

ture. PDBSCAN relies on a distributed dR∗-Tree to partition the data among

many computer nodes in the master-slave model. However, it replicates the en-

tire index on each node. The slaves only cluster their local data concurrently by

using DBSCAN. Message passing scheme is used for the master-slaves and slave-

slave communications. The master takes responsibility for dynamic load balancing

and merges the results produced by the slaves. In PDBSCAN, if a node queries

the data that belong to other nodes, it must send messages to acquire the data.

This makes a huge number of messages to be sent among nodes thus limits the

scalability of the algorithm (experiments are conducted in [283] with 8 nodes).
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The algorithm Density Based Distributed Clustering (DBDC) [123] assumes

that objects are resided on different sites to be clustered. It operates on two levels:

local and global level. On a local level, all sites perform a clustering independently

from each other and then transmits only aggregated information about the local

data to a central server including a set of pairs r and an ε-range value εr, where

r is a representative and εr indicates the validity area of the representative. The

global level is responsible for reconstructing a global clustering by using DBSCAN

with two global parameters µglobal and εglobal. The acquired result is then sent back

to all clients to relable their own objects.

Another algorithm from the same authors was proposed in [124], in which a

scalable density-based distributed algorithm which allows a user-defined trade-

off between clustering quality and transmission rates between global and local

sites is introduced. The authors introduced DynRepQ(o), a quality criterion to

measure if an object o is a suitable representative, to order all objects on the local

sites for supporting an incremental clustering scheme in the server. A slightly

enhanced version of DBSCAN is used to cluster representative objects in the

server which takes into account the covering radius and the number of objects

covered by each representative. Due to the incremental clustering scheme in the

server, the clustering process can start as soon as the first representative objects

arrive and allows the tradeoff between clustering quality and transmission rates.

In [44], lower bounding distance function is exploited in order to parallelize the

algorithm DBSCAN. The algorithm is based on the fact that the lower bound-

ing distance can help to produce a close approximation of the cluster structure

acquired by using the expensive distance measure. The data is first partitioned

by using an enumeration calculated by OPTICS so that similar objects have ad-

jacent enumeration. At each client, efficient data clustering technique based on

lower bounding distance proposed in [45] is used to cluster the local data. Then

the acquired local clusters can be efficiently merged in the server by means of

cluster connectivity graphs.

There exist many parallel variants of DBSCAN proposed in the literature in-

cluding: MR-DBSCAN [109] and DBSCAN-MR [66] which are based on MapRe-

duce programming platform, PDSDBSCAN [213] which is built over the Disjoint-

Set data structure and the work in [18], etc. In addition, we aware some parallel

variants of OPTICS proposed in the literature, e.g., POPTICS [214].

Summarization. In order to deal with massive datasets, parallel and distributed

clustering algorithms have been proved a useful approaches. For density-based
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clustering algorithm DBSCAN, its quadratic time complexity makes it a potential

and necessary object for parallelizing. During the past decades, many parallel

variants of DBSCAN have been proposed in the literature. However, only some

of them concern on the clustering of large complex objects which is currently

becoming an emerging research in the literature.

2.6.5 Incremental Clustering

Ester et al. [82] proposed an incremental version of DBSCAN called IncDBSCAN

by us for the task of insertion, deletion and updating of objects in a data warehouse

environment. Due to its special property, the changes of objects in the warehouse

only affect the clustering result locally. When a new objects is inserted into the

database, it may cause the merging of existing clusters. When an object is deleted

from the database, it may lead to the splitting of an existing cluster. When an

object changes its location, it may cause the splitting of its old cluster and the

merging of other clusters at its new location. This locality helps IncDBSCAN

to significantly reduce the runtime w.r.t. each change in the environment since

it does not have to perform clustering on the whole database again. Only the

affected areas need to be reclustered.

Kriegel et al. [152] proposed an incremental version of OPTICS called IncOP-

TICS. IncOPTICS is based on a key observation that the core distances of some

objects may change due to an update. Consequently the reachability distances of

some objects have to be updated as well. Here, the nature of density-based cluster

is also exploited to reorganize the cluster ordering instead of starting from scratch.

First, IncOPTICS maintains two sets of objects called mutating objects (objects

that may change their core distance) and moving objects (objects that may move

forward/backwards in the cluster ordering) for the reorganization process with

each database update. Last, an efficient reorganization scheme is proposed to

rearrange objects in mutating and moving sets. In [3], an extended version of

IncOPTICS, called OnlineOPTICS, is proposed which allows bulk updating mode

to handle very large sets of update operations.

There exist in the literature several incremental algorithms for some variants

of DBSCAN. For example, Singh et al. [243] proposed IncSNN-DBSCAN an in-

cremental version of SNN [80], an variant of DBSCAN described above. Kriegel et

al. [153] proposed an incremental version of PreDeCon [36], a subspace clustering

variant of DBSCAN described below. These algorithms also rely on the locality

of each database update to reduce the runtime of the clustering processes.
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There exist many density-based algorithms for data stream clustering, e.g.,

[206]. These algorithms can be regarded as incremental clustering algorithms and

will be described in the following sections below. The algorithm DBCLASD [282]

described below is also an incremental clustering algorithm.

Summarization. Incremental clustering has been proved as an efficient way to

cope with dynamic data environment and is continuously attracting many research

efforts. During the last decades, many incremental variants of DBSCAN have been

proposed in the literature, especially for complex data such as stream data and

time series data.

2.6.6 Subspace Clustering

Subspace clustering algorithms aim at coping with high dimension data. In high

dimension data, meaningful clusters tend to reside in lower-dimensional subspace

rather than in the full-dimensional space [156]. There exist in the literature many

subspace clustering algorithms which follow the DBSCAN paradigm, e.g., [160,

36, 37, 4, 5, 6].

Subspace clustering. In contrast to the grid-based subspace clustering algo-

rithm like CLIQUE [10], the algorithm SUBCLU (Density Connected Subspace

Clustering) [160] is built upon the density-connected scheme of DBSCAN and thus

can detect clusters with arbitrary shapes in subspaces of data. However, running

density-based clustering on all possible subspaces results in very high running

time since the total number of subspaces is exponential. SUBCLU, therefore, ex-

ploits the monotonicity property of density-connected set to prune subspaces in

the process of generating all subspace clusters in a bottom up scheme. The prun-

ing scheme of SUBCLU helps to reduce the number of examined subspaces and

thus helps to improve the performance, while it still guarantees to have the same

results with the naive exhaustive algorithm. However, experiments reported on

1.7 GHz CPU and 2 GB still show very high runtime of approximately a week for

datasets with 50 dimensions. The runtime grows at least quadratic factors with

both number of objects and dimensionality.

Projected clustering. The algorithm PreDeCon built upon the density-connected

paradigm of DBSCAN like SUBCLU is able to compute all subspace preference

clusters of a certain dimensionality in a single scan over the database and is linear

to the number of dimensions [36]. In PreDeCon, a subspace preference clusters is
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defined as density-connected set of objects associated with a certain subspace pref-

erence vector, i.e., a set of density-connected objects which has a variance smaller

than a given threshold δ along one or more attributes. Given an object p, a sub-

space preference vector of p in d-dimensional space is denoted as wp = {w1, . . . , wd}
where

wi =

{
1 if V ARAi(Nε(p)) > δ

κ otherwise

where κ � 1 is a predefined constant, V ARAi(Nε(p)) is the variance of Nε(p)

along an attribute Ai in the attribute set A and is defined as:

V ARAi(Nε(p)) =

∑
q∈Nε(p)(d(πAi(p), πAi(q))

2

|Nε(p)|

where πAi(p) is the projection of objects p onto an attribute Ai in the attribute

set A. The general preference weighted similarity between two objects p and q is

then defined as:

dpref (p, q) = max{dp(p, q), dq(p, q)}

where dp(p, q) is the preference weighted similarity measure between p and q w.r.t.

the preference weighted vector wp.

dp(p, q) =

√√√√ d∑
1

wi · d(πAi(p), πAi(q))
2

Based on the preference weighted similarity measure, the density notion of DB-

SCAN can be straightforwardly extended as shown in [36]. For building clusters,

PreDeCon performs one pass over the database to find all subspace preference

clusters in a similar way with DBSCAN. One major drawback of PreDeCon is

that it is only designed for vector data.

Correlation clustering. Unlike PreDeCon [36] which focuses on the clustering

of axis parallel subspaces, the algorithm 4C (Computing Correlation Connected

Clusters) [37] aims at discovering clusters in arbitrary oriented subspaces of data.

Generally, it follows the same framework with PreDeCon. First, the authors pro-

posed an extended dissimilarity measure function between objects called the cor-

relation similarity measure by calculating the correlation similarity matrix using
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Principal Component Analysis (PCA). Then, the density-based notion of DB-

SCAN is straightforwardly extended like PreDeCon. Objects are then grouped

in a similar way with DBSCAN. Due to the complexity of 4C, interested reader

please refer to [37] for more details. One major drawback of 4C is that it has cubic

time complexity regarding the dimensionality of data. Moreover, the parameters

are extremely hard to set since there is no obvious way to estimate the parameters

among the correlated features of data.

Other extensions. There exist in the literature various extensions of these algo-

rithms, e.g., Hierarchical Subspace Clustering (HiSC) [4] (an extension of PreDe-

Con [36]), Hierarchical Correlation Ordering (HiCO) [8] (an extension of 4C [37]),

Exploring Relationships among Correlation clusters (ERiC) [5] (an extension of

4C [37] and HiCO [8]), COrrelation PArtition Clustering (COPAC) [6] (an exten-

sion of 4C [37]). There also exist in the literature some generic subspace clustering

framework like FIRES [154] which can incorporate with any clustering algorithm

to produce subspace clusters including DBSCAN itself.

Conclusion. Though, there are various extensions of DBSCAN for subspace

clustering introduced in the literature during the past decades, most of them

suffer from high runtime, e.g., SUBCLU [160], 4C [37]. Moreover, they have many

difficult parameters that need to be set, e.g., 4C [37], etc. Not many algorithms

are proposed to deal with complex data like graphs or trajectories.

One important question in subspace clustering is how to visualize the clustering

results in subspaces. Some algorithms like HiSC [4], HiCO [8], ERiC [5] present

the clustering results in hierarchical structures similar to OPTICS [16] (HiSC and

HiCO) or graph that shows the relationships between subspace clusters (ERiC)

which somehow allow the visualization of clustering results. There exist in the

literature many visualization tools which allow the user to interact with clusters

in low-dimensional subspaces, for example, HD-Eye [113] or Morpheus [198]. These

techniques are, however, out of scope of this work.

2.6.7 Semi-supervised Clustering

In comparison with unconstrained clustering, constrained clustering for density-

based clustering has attracted much less attention, e.g., [224, 40, 167, 294].

Data constraints. In [224], the authors proposed an algorithm called C-DBSCAN

which exploits two set of instance level constraints including must-link (ML) and
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cannot-link (CL) constraints to construct the density-based clusters. The use of

constraints helps to solve many difficult cases which may not be possible to cope

with using the unconstrained algorithms [9]. Generally, C-DBSCAN mainly oper-

ates in three steps: (1) It partitions the data space into dense subspaces by using

the data structure KD-Tree [224] in a depth first travesal; (2) For each leaf node

of the tree, the core property of each object p is determined. If there are CL

constraints inside ε-neighborhood of p then p and all neighbors become disjoint

local clusters. Otherwise, p and its neighbors becomes a single local cluster. This

ensures the satisfaction of all the CL constraints; (3) Clusters which are connected

by ML constraints are merged into new ones to ensure the satisfaction of ML con-

straints; (4) Final clusters are built in a bottom-up scheme and remaining CL

constraints are enforced.

Instead of using ML and CL constraints, the algorithm HISSCLU [40] relies

on a set of labeled objects to expand clusters simultaneously. The general goal is

to determine a hierarchical clustering of the labeled and unlabeled objects with

maximally large class pure sub-clusters of high density [40]. Inside HISSCLU, a

method for cluster consistent assignment of class labels to previously unlabeled

objects and a method for the determination of the overall cluster structure of the

data set in a way which is consistent to original and obtained class labels are

proposed. The result of HISSCLU is a hierarchical semi-supervised cluster struc-

ture that shows both cluster structure and class assignment. HISSCLU, however,

suffers from the setting of four parameters, which are very hard to choose. The

algorithm Semi-supervised DBSCAN (SSDBSCAN) [167] has the same approach

with HISSCLU but focuses on DBSCAN instead.

In [294], the authors proposed a semi-supervised document clustering algorithm

called Constrained DBSCAN (Cons-DBSCAN). Cons-DBSCAN uses instance level

constraints (MLs and CLs) to guide the clustering process of DBSCAN. Given two

sets of ML and CL constraints, Cons-DBSCAN first builds a collection of transitive

closures (TCS) from MLs and updates the CL set. During the cluster expansion

of DBSCAN, if the current examined object p belongs to a transitive closure c in

TCS, all the objects inside c are then assigned to the current cluster. If object p

is an object in the Seedlist S and belongs to a transitive closure c in TCS, then

all the objects in c whose labels are not determined are labeled as current cluster.

These steps ensure the satisfaction of ML constraints. If object p is a core object,

every object q in Nε(p) that (p, q) in CLs will not be added to S in order to satisfy

the CL constraints.
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Active learning for semi-supervised clustering. There exist many algo-

rithms in the literature which do not focus on how to perform clustering with

instant level constraints but focus on the problem of how to choose better con-

straints for semi-supervised clustering instead, e.g., [294, 169, 267, 265, 169]. These

techniques automatically examine the data, choose the most informative objects

and ask users for their opinions regarding their selections. Thus, they are called

active learning techniques since they actively choose whatever they want to learn

from users and query users for the results. For example, in [265], the authors

proposed an approach based on k-nearest neighbor graph to estimate the dense

regions of the data spaces, and queries users for ML and CL constraints of pairs

of objects that may lie around the cluster borders where the cluster memberships

are most uncertain. The acquired ML and CL constraints can help to significant

improve the performance of semi-supervised clustering algorithms like [294, 224]

compared with the use of randomly selected constraint sets. In [169], the au-

thors proposed an active learning scheme for labeling objects as constraints to

use with semi-supervised density-based clustering algorithms HISSCLU [40] and

SSDBSCAN [167].

Conclusion. Though there exist many extension of DBSCAN (and OPTICS)

proposed in the literature, semi-supervised variants of DBSCAN (and OPTICS),

however, are not paid enough attention with only several proposed algorithms

during the last decades.

2.6.8 Clustering Complex Data

Many density-based clustering algorithms have been developed in order to cope

with the emerging complex data, e.g., spatial data [84, 228, 272, 290, 273, 274],

graph data [284, 86, 100, 101], stream data [53, 268, 206], uncertain data [157,

158, 248, 104], dynamic data [165, 201, 32, 221, 222], instead of the traditional

vector data. We summarize some of these approaches below.

Spatial data. The algorithm GDBSCAN [84, 228] generalizes the notion of DB-

SCAN in two important ways. First, any notion of a neighborhood of an object

can be used as long as it is based on a predicate NPred(p, q) that is symmet-

ric and reflexive instead of the ε-neighborhood scheme of DBSCAN. Second, the

cardinality of a neighborhood of an object can be replaced by a more general

function MinWeight(N) where N is a set of objects if MinWeight is monotone

in N instead of the simple counting scheme of DBSCAN. Based on these exten-
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sions, GDBSCAN can be straightforwardly extended from the original algorithm

DBSCAN. However, it not only can cluster point objects like DBSCAN but also

other spatial extended kinds of objects like polygons.

In [272], the authors extend the notion of DBSCAN in order to support non-

spatial attributes. For each object p, a property prop is defined w.r.t. one

or more non-spatial attributes. A matching neighborhood of q is defined as

N∗ε (p) = {q|d(p, q) ≤ ε ∧ p.prop = q.prop}. A threshold minpur is also intro-

duced to confine the homogenerousness of a cluster w.r.t. the property prop.

Object p is directly purity-density-reachable from p if N∗ε (p)/Nε(p) > minpur or

Nε(p)/N
∗
ε (p) > minpur. The cluster notion of DBRS [272] is defined similarly to

that DBSCAN but with the notion of purity-density-reachability instead of the

density-reachability notion of DBSCAN.

Spatial data with physical constraints. In spatial data, physical constraints

such as obstacles and bridges linking clusters may significantly affect the effective-

ness of the clustering. In [290], the authors proposed an extension of DBSCAN

called DBCluC to cope with this problem, in particular spatial data with physical

constraints including obstacles and crossings. These constraints are modeled us-

ing polygons. To perform the clustering, the reachability concept of DBSCAN is

modified in the context of obstacles and crossings in order to expand clusters in a

DBSCAN like scheme.

In [273, 274], the authors proposed an extension of the algorithm DBRS [272]

described above called DBRS+ which can handle very large datasets with inter-

sected obstacles and facilitators.

Dynamic data. Lai et al. [165] focused on an interesting problem of predicting

density-based clusters over time for clustering in a dynamic environment. The

proposed algorithm is built upon a simple formula to check wherever two objects

p and q lie inside the ε-neighborhood of each other. As a result of neighborhood

checks, one can determine when and where an object will become a core object

and when and where a cluster is formed. The proposed algorithm can be used in

air traffic control as stated by the authors.

In [201], the authors focused on the problem of clustering moving object tra-

jectories using density-based clustering. First, a generalized distance function be-

tween trajectory objects which contains both the temporal and spatial aspects is

proposed. Then, OPTICS is used for clustering trajectories due to its many inter-

esting properties compared with other algorithms as experimentally proved in the
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paper. The proposed algorithm is called T-OPTICS by the authors. The authors

also proposed an extended version of T-OPTICS called Temporal focussing OP-

TIC (TF-OPTICS) to discover clusters of trajectories at determined sub-intervals.

The algorithm ST-DBSCAN [32] extends the notion of DBSCAN by incor-

porating an additional temporal distance measure beside the traditional spatial

distance of DBSCAN. Two objects p and q are in the neighborhood of each other

if they are close by both time and space. The cluster expansion procedure of

DBSCAN is extended to fit with the new definition of neighborhood. In addi-

tional, the authors introduced a new concept called density factor to deal with

vary density clusters.

In [221], the authors proposed an algorithm called Dynamic Density Based

Clustering (DDBC) for the clustering of mobile objects. The general idea of

DDBC is incrementally maintaining a relationship graph to dynamically track

relationships among objects. An adapted version of DBSCAN is then used to

detect groups of objects that are strongly related based on the relationship graph.

In [222], an extended version of [221] is proposed using Support Vector Machines

(SVMs) to estimate the relationship graph.

Graph data. The algorithm SCAN (Structural Clustering Algorithm for Net-

works) [284] generalizes the paradigm of DBSCAN from point data to network

data. The algorithm SCAN is not only able to discover clusters but also hubs con-

necting several clusters and outliers not belonging to any cluster. Given a graph

G = (V,E), where V is a set of vertices and E is a set of edges. The structure of

a vertex v, denoted as Γ(v), is defined by its neighborhood as follows.

Γ(v) = {w ∈ V |(v, w) ∈ E} ∪ {v}.

Based on the structure of a vertex, the structural similarity between two vertexes

v and w, denoted as σ(v, w), is defined as follows.

σ(v, w) =
|Γ(v) ∪ Γ(w)|√
|Γ(v)||Γ(w)|

SCAN straightforwardly extends the notion of DBSCAN by using the structural

similarity γ(v, w) as the distance function. It also uses the same clustering al-

gorithm with DBSCAN to group the vertexes. By using the adjacency list to

represent graph, the time complexity of SCAN is thus only O(m), where m is
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total number of edges, which is much faster than many existing graph clustering

techniques.

The algorithm DENGRAPH [86] is an incremental clustering algorithm de-

signed to detect communities in large and dynamic social networks. DENGRAPH

defines the distance between two actors p and q based on the number of interac-

tions between them and extends the notion of DBSCAN in the similar ways with

SCAN. When there are changes in the network structures including the insertion

and deletion of actors and the changes of distance among objects due to the inter-

actions of actors, DENGRAPH incrementally updates the communities to reflex

the change. In [231], the authors proposed a hierarchical version of DENGRAPH

called DENGRAPH-HO.

Kim et al. [137] proposed a method for clustering dynamic network under the

temporal smoothness framework to discover a variable number of communities of

arbitrary forming and dissolving. The temporal smoothness framework assumes

that the structures of clusters does not change much in a short time and therefore

tries to smooth clustering over time. It aims at trading between the snapshot

quality and the quality of previous snapshots. This algorithm uses SCAN with an

extended structural similarity function to produce clusters in a snapshot.

Beside these works, there exist in the literature several other graph clustering

algorithms based on the DBSCAN paradigm, e.g., [100, 101].

Stream data. Clustering stream data has attracted many research efforts re-

cently. In [53], the authors proposed DenStream, an algorithm for clustering an

evolving data stream. In contrast to other previous techniques, DenStream is able

to detect arbitrary shape clusters and is insensitive to noise. Inside Denstream,

an variant of DBSCAN is proposed for partitioning micro-clusters into arbitrary

shape groups based on the concepts of core-micro-clusters, potential-micro-clusters

and outlier-micro-clusters.

The algorithm proposed by Wan et al. [268] uses a hierarchical grid of cells to

maintain synopsis of streaming data in the online-phase instead of micro-clusters

as in [53]. For the offline-phase, a variant of DBSCAN is proposed to partition cells

into arbitrary shape clusters as in DenStream. In contrast to [53], the proposed

algorithm allows users to discover clusters at multiple resolutions.

There are many other algorithms for clustering stream data proposed in the

literature which follows the notion of DBSCAN or its extensions. For example, the

algorithm HDDStream [206] is an extended version of PreDeCon [36] for subspace
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clustering on stream data. In [108], another extension of PreDeCon for stream

data was also proposed by Hassani et al.

Uncertain data. Uncertain data regard to the data that contain specific un-

certainty and are observed in many fields, e.g., location-based services or sensor

services where the location of objects can only be estimated with some uncertainty.

In [157], an extension of DBSCAN called Fuzzy DBSCAN (FDBSCAN) is

proposed in order to cluster uncertain (fuzzy) data. Traditional distance measure

among objects is replaced by fuzzy distance functions among objects including the

distance density function and distance distribution function. Based on these two

functions, the core object probability of an object can be calculated instead of

the boolean values yes or no in the original DBSCAN. An object is called core

object if its core object probability is larger than a predefined threshold, say 0.5

[157]. Based on the core object probability, one can determine the possibility that

an object p is density-reachable from another object q. The authors called this

possibility the reachability probability. If the reachability probability is larger than

a predefined threshold (default 0.5), p is density-reachable from q. Based on these

definitions, traditional cluster expansion algorithm of DBSCAN thus can be used

to group the data.

In [158], the authors extend the concept of OPTICS to cope with uncertain

(fuzzy) object in a similar way of FDBSCAN: replacing the original definitions of

OPTICS with probabilistic versions. The proposed algorithm was named Fuzzy

OPTICS (FOPTICS).

There are some other algorithms following DBSCAN paradigm proposed in

the literature for clustering uncertain data, e.g., [248, 104]. Habich et al. [104]

proposed an error-aware extension of the density-based algorithm DBSCAN named

DBSCANEA for clustering sensor data where each data is represented by d-dimensional

region (data region) in which all points within this region are equally likely to rep-

resent the object. The algorithm U-DBSCAN [248] extends DBSCAN to work

with uncertain data based on a new deviation function that approximates the

underlying uncertain model of objects.

Other data. The algorithm P-DBSCAN [139] extends DBSCAN to groups a

collection of geo-tagged photos by considering the number of owners of a photo as

an additional factor to determine core object properties.

Kailing et al. [126] proposed an variant of DBSCAN for clustering multi-

represented objects which are objects that might provide several different repre-
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sentations that may be used to analyze it. For example, molecules like proteins

can be represented by a sequence of amino acid, a secondary structure and 3D rep-

resentation [126]. The general idea of the algorithm is to combine the information

of all representations at soon as possible and as late as necessary. The core object

property is determined by using the local ε-neighborhoods of each representation

and combining the results to a global neighborhood.

Conclusion. Advanced data acquisition techniques nowadays constantly produce

large and complex data which consequently require special techniques to be pro-

posed in order to analyze them, in particular, data clustering techniques. Due

to its many attractive properties, DBSCAN has become one of the most used

techniques for the task of clustering complex data.

2.6.9 Other Algorithms

There exists in the literature many interesting extensions of DBSCAN, e.g., [282,

177, 52, 251, 54, 60, 202]. We briefly describe some of them below.

Distribution Based Clustering of LArge Spatial Databases (DBCLASD) [282]

is an variant of DBSCAN proposed in the literature which is relied on the as-

sumption that the points inside a cluster are uniformly distributed. DBCLASD is

based on an observe that the distance from an object to its nearest neighbors is

smaller inside a cluster than outside that cluster. Each cluster has a probability

distribution of objects to their nearest neighbors that can be exploited to define

the cluster. DBCLASD has some interesting properties. First, DBCLASD is an

incremental algorithm that means it can construct the clusters incrementally with

each arrived data objects. Second, it is parameter free. Last, it is robust to noise.

However, DBCLASD is much slower than DBSCAN (up to 3 times).

The algorithm Adaptive Density-based Clustering (ADBC) was introduced by

Ma et al. [177] for the purpose of enhancing clustering quality when clustering

spatial databases based on the distribution of objects. Instead of using spherical

shape neighborhood like DBSCAN, the authors proposed to use dynamic ellipse

which can not only adjust with different radiuses but also can rotate according to

the distribution of the neighbors of an object to improve the clustering quality.

In the beginning, all objects p have spherical shape neighborhood. Inspired by

Newton’s Universal Law of Gravitation, when there is an object q nearby, the

neighborhood of p will be extended along the line pq. Thus, by examining the

neighbors of p, the size of eclipse can be easily determined. Then, the neighbor-
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hood of an object p is defined as objects that belongs to the eclipse around p. To

cluster data, the authors slightly modify the cluster expansion step of DBSCAN

so that only core objects are inserted into the Seedlist. Compared with DBSCAN

and OPTICS, ADBC is more robust to noise and parameter setting. However, it

is not known whether ADBC can be used for higher dimensional data or varying

density clusters.

In original DBSCAN [83], the border objects are assigned into clusters based

on the ordering of objects. In case, two adjacent clusters shares some border

objects, the performance of DBSCAN is thus limited. To tackle this problem,

the algorithm from Tran et al. [251] first performs the cluster expansion pro-

cedure on the core objects only. Then, each border object is assigned to its its

best density-reachablechain. This approach was also introduced in the anytime

clustering algorithm A-DBSCAN [184].

In [52], the authors proposed HDBSCAN, a variant of DBSCAN, which is capa-

ble of producing a hierarchical clustering result, automatically extracting clusters

from hierarchical tree, etc. HDBSCAN is based on proposed stability measure

technique and density estimation in order to extract clusters.

Though they are not the main focus of this works, we would like to mention

here some recent researches on clustering validation techniques for arbitrary shape

clusters that may have strong impact in density-based clustering researches in

the future [197, 288], since they can help to develop more efficient and effective

techniques for improving the existing clustering techniques, e.g., automatically

parameter finding.

2.7 Conclusions

During the recently decades, density-based clustering algorithms have attracted

substantial research efforts with many extensions and applications proposed in

the literature. Consequently, comprehensive reviews for density-based clustering

algorithms are critical to deliver profound insights into the research field and thus

significantly contribute to the development of the field.

In this Chapter, we provide a comprehensive survey about density-based clus-

tering algorithms, their extensions and applications. In particular, we focus on

the algorithms which follow DBSCAN paradigm. Our survey covers a wide variety

of proposed algorithms mainly collected from many major publication venues in

many different fields.
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Among various approaches for density-based clustering, density-based cluster-

ing algorithms for complex data has become an emerging research due to the

explosion of data acquisition techniques in many different fields that lead to the

increasing complex data and consequently complex tasks to analyze these data.

Thus, they are the main research focus on this thesis.
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Chapter 3

Preliminaries

In this Chapter, we briefly describe some backgrounds which are used in the rest

of this thesis.

3.1 Cluster Validation

Cluster validation algorithms aim at assessing the results of clustering algorithms.

Generally, they are divided into two main categories: internal measure and exter-

nal measure.

In external measure, clustering results are evaluated based on external bench-

marks which consist of a set of pre-classified items that are often created by ex-

perts. Thus, the benchmark sets can be thought of as a gold standard or a ground

truth for evaluation. These types of evaluation methods measure how close the

clustering is to the predetermined benchmark classes. In contrast to external mea-

sure, there is no provided gold standard or ground truth in internal measure. A

clustering result is evaluated based on the data that was clustered itself.

In this thesis, we focus on external validation techniques to assess the perfor-

mance of our algorithm. There exist in the literature many external measures for

clustering, e.g., DOM [76], NMI [258], AMI [258], AVI [258], Rand Index [247]

and Jaccard Coefficient [247]. However, in this thesis, we employ three main

information-theoretic validation techniques including DOM [76], NMI [258] and

AMI [258], since these methods can robustly compare results with different num-

bers of clusters.
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3.1.1 Information Theoretic Validation Techniques

Information theoretic validation techniques rely on the information theory to assess

the performance of clustering algorithms.

Encoding Cost (DOM). Given a dataset O, a set of ground truth labels C and

a set of produced labels K of a clustering algorithm, the external measure DOM

[76] is defined as the coding code Q(C,K) for entire dataset O.

Q(C,K) = H(C|K) + CL(C|K)

where H(C|K) denotes the conditional entropy and CL(C|K) is the code length

for the number of clusters.

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

h(c, k)

n
log

h(c, k)

h(k)

and

CL(C|K) =
1

n

|K|∑
k=1

(
h(k) + |C| − 1

|C| − 1

)
where h(c, k) is the number of fibers labeled with class c in C and k in K, |C|
and |K| are the numbers of clusters in C and K respectively. The smaller the

encoding code is, the better the clustering quality is.

Normalized Mutual Information (NMI). NMI [258] is one of the most pop-

ular clustering evaluation techniques which is based on the normalized mutual

information between two set of clusters. Given two clusterings U = {U1, . . . , UM}
and V = {V1, . . . , VN}, NMI(U, V ) is defined as follows:

NMI(U, V ) =
MI(U, V )√
H(U)H(V )

where H(U) = −
∑

u∈U p(u)log(p(u)) and H(V ) = −
∑

v∈V p
′(v)log(p′(v)) are the

entropy of the clustering U and V respectively. And MI(U, V ) is the mutual

information between U and V .

MI(U, V ) =
∑
u∈U

∑
v∈V

p(u, v)log(
p(u, v)

p(u)p′(v)
)

where p(u, v) is the joint probability distribution function of U and V , p(u) and

p′(v) are the probability function of U and V respectively. The result of NMI
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lies in [0, 1] where 0 means the two results are independent and 1 means the two

results are identical.

Adjusted Mutual Information (AMI). AMI [258] is proposed to correct the

effect of chance agreement in clustering evaluation of NMI and is based on expected

mutual information.

AMI(U, V ) =
MI(U, V )− E{MI(U, V )}

max{H(U), H(V )} − E{MI(U, V )}

where H(U) and H(V ) are the entropies of clustering U and V respectively as

described above and E{MI(U, V )} is the expected mutual information of cluster-

ing U and V . Similar to NMI, AMI takes value 0 if the two clustering results are

independent and 1 if the two clustering results are identical.

Adjusted Variation of Information (AVI). The Adjusted Variation of Infor-

mation (AVI) [258] is given by:

AV I(U, V ) =
2MI(U, V )− 2E{MI(U, V )}

H(U) +H(V )− 2E{MI(U, V )}

where H(U) and H(V ) are the entropies of clustering U and V respectively as de-

scribed above and E{MI(U, V )} is the expected mutual information of clustering

U and V . AVI also takes value in the range of [0,1] where 0 indicates that U and

V are independent and 1 indicates that U and V are identical.

3.1.2 Other Validation Techniques

There exist in the literature many other external cluster validity methods besides

the information theoretic ones such as Rand Index and Jaccard Coefficient [247].

Given a dataset O and two clusterings U = {U1, . . . , UM} and V = {V1, . . . , VN}.
Assuming that a is the number of pairwise objects in O that are in the same set

in U and in the same set in V , b is the number of pairwise objects that are in the

different sets in u and in the different sets in V , c is the number of pairwise objects

that are in the same sets in U and in the different sets in V , d is the number of

pairwise objects that are in the different sets in U and in the same sets in V .

Rand Index (RI). The Rand Index [247], denoted as RI(U, V ), is defined as

follows:
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RI =
a+ b

a+ b+ c+ d

RI(U, V ) takes value 0 if U and V are independent and 1 if U and V are identical.

Jaccard Coefficient (JC). The Jaccard Coefficient [247], denoted as JC(U, V ),

is defined as follows:

RI =
a

a+ c+ d

JC(U, V ) takes value 0 if U and V are independent and 1 if U and V are identical.

3.2 Lower bounding Distance

Given a set of objects O and a distance function d : O×O → R, a lower bounding

(LB) distance of d is a distance function dlb : O × O → R where ∀p, q ∈ O :

dlb(p, q) ≤ d(p, q).

In the field of databases, LB distances are widely used to accelerate the query

processing [132, 227, 216] since they are usually much faster than the original

ones. There exist in the literature many different kinds of LB distances for many

different kinds of distance measures such as Euclidean Distance (ED), Dynamic

Time Warping (DTW) and Longest Common Subsequence (LCS) [74, 195]. The

quality of LB distance is usually described by the tightness of LB (TLB) [132]

which is the averaged ratio between the LB and the true distances.

Despite of their interesting properties, LB distances are however not paid

enough attention in the field of data clustering with very limited number of related

works such as [45, 44]. In this thesis, we will demonstrate how LB distances can

be incorporated into the density-based clustering algorithm DBSCAN to make it

anytime and active clustering algorithms.

In the rest of this Section, we illustrate some common lower bounding distances

for the ubiquitous Euclidean distance as examples.

3.2.1 Piecewise Aggregate Approximation

Piecewise Aggregate Approximation (PAA) [133, 286] is a common data reduction

technique in time series data mining. Given a time series X = (x1, . . . , xn), a PAA

of X, denoted as X, is defined as follows:
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X = (x1, . . . , xN)

where N ≤ n is the dimension of X and

xi =
N

n

n
N
i∑

j= n
N
(i−1)+1

xj

Given two n-dimensional time series X and Y , let X and Y is N -dimensional

PAA representation of X and Y respectively. In [133, 286], the author proved that

d(X,Y ) lower bounds d(X, Y ) where d is the Euclidean distance function.

3.2.2 Convergent Bounds on the Euclidean Distance

In [120], the authors proposed the MS-distance which can provide upper and

lower bounds of Euclidean distance of d-dimensional vector data in constant time

assuming that the means and standard deviations of each vector are known. One

interesting property of these bounds is that they can converge monotonically to

the exact Euclidean distance within d refinement steps [120].

Given two d-dimensional vector x = (x1, . . . , xd) and y = (y1, . . . , yd), let µx,

µy, σx and σy be the means and standard deviations of x and y respectively. Let

a = (a1, . . . , ad) and b = (b1, . . . , bd) such that ai = xi − µx and bi = yi − µy.

The MS-distance between x and y in its lower bound form and upper bound form,

denoted as MSL(x, y, k) and MSU(x, y, k) respectively, are defined as follows:

MSL(x, y, k) = d((µx − µy)2 + (σx − σy)2) + σxσy

k∑
i=0

(
bi
σy
− ai
σx

)2

MSU(x, y, k) = d((µx − µy)2 + (σx + σy)
2)− σxσy

k∑
i=0

(
bi
σy

+
ai
σx

)2

where a0 = b0 = 0. In [120], the authors proved that MSL(x, y, k) increases

to d(x, y) with k and MSU(x, y, k) decreases to d(x, y) with k. In case k = d,

MSL(x, y, k) and MSU(x, y, k) are equal to d(x, y).
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3.3 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) [62] is a linear transformation to convert

a discrete time signal whose length is an integer power of two into a discrete

wavelet representation. A key advantage of wavelet transform is that it captures

both frequency and location information (location in time) compared with the

traditional Fourier transforms [62]. There are many kinds of DWT proposed in the

literature, e.g., Haar wavelet transform, Daubechies wavelet transform. Among

them, Haar wavelet transform is one of the most well-known due to its simplicity.

3.3.1 Haar Wavelet Transform

The Haar transform [216, 173] can be seen as a series of averaging and differencing

operations between two adjacent values of a discrete time function f(x) at a given

resolution to form a smoothed, lower dimensional representation of signal. The

wavelet decomposition is the combination of the coefficients at all resolutions: the

first coefficient is the overall average of f(x), while the other coefficients store the

amount of information lost at each resolution. Due to space limitation, interested

readers please refer to [216] for more details.

Resolution    Averages   Differences (Coefficients) 
      4              (9 5 3 7)  
      2                 (7 5)                   (2 -2) 
      1                  (6)                       (1) 

Figure 3.1: An example of Haar wavelet transformation.

Figure 3.1 shows a Haar transform for f(x) = (9, 5, 3, 7) at different resolutions.

Resolution 4 is the full representation of f(x). The values of resolution 2 (7 5)

are obtained from the averages of (9 5) and (3 7) respectively. The coefficients

at resolution 2 are half of the differences of (9 5) and (3 7). The average and

coefficient at level 1 are obtained by the average and half the difference of (7 5)

at resolution 2. The wavelet representation of f(x) is therefore (6, 1, 2, -2), which

contains the overall average value of 6 and all the coefficients at all resolutions.
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3.3.2 Applications of Haar Wavelet Transform

Due to its interesting property, Haar wavelet transform is widely applied in many

fields, in particular the data mining and knowledge discovery field, e.g., [216, 173]

to name a few.

In [216], the Haar wavelet transform is used for time series indexing by first

transforming all objects into the wavelet coefficient domain and selecting some

first coefficient to build an index structure for query processing.

Lemma 1 The Haar transform preserves the Euclidean distance [216].

Proof 1 See Lemma 2 and 3 in [216].

Following the Lemma 3.1 described above, it can be guaranteed that no false

dismissal will occur during the query processing.

The multi-resolution property of Haar wavelet transform was exploited to im-

prove the performance of the clustering algorithm k-Means in [174]. The proposed

algorithm called I-kMeans works in multiple approximate levels w.r.t. the Haar

wavelet transform on time series objects. At each level of resolution, the clas-

sical k-Means algorithm is performed on the coefficient vectors of time series at

that level using the cluster centers returned at the previous level. By this way,

I-kMeans is able to escape local minima thus it usually provides better results

than k-Means itself. Moreover, the total cumulative runtime of I-kMeans is better

than k-Means due to its faster convergency.

In this thesis, Haar wavelet transform is employed in order to construct lower

bounding distances for Euclidean distances among objects.
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Part II

Density-based Clustering of

Complex Data





Chapter 4

Anytime and Active Clustering

In this Chapter, we briefly present some backgrounds and literature researches

about anytime clustering algorithms and active clustering algorithms which are

currently emerging researches in the field of data clustering.

Publications. Parts of the material presented in this Chapter have been pub-

lished in [180]. The detailed information are described as follows:

• Son T. Mai. A Survey on Anytime and Active Clustering Algorithms. Tech-

nical Report, University of Munich, 2013.

In this work, S.T.M. did the major part including the literature review,

experiments and paper writing.

4.1 Anytime Clustering

Recently, anytime algorithms [303] have become an emerging research topic and

attracted a lot of research efforts in many fields due to their many attractive

properties when coping with complex data and complex tasks [145, 304, 71, 164,

49, 15, 219, 215, 245, 146, 136, 203, 188, 190, 13, 196, 302, 303, 161, 218, 143, 105,

115, 172, 107, 134, 143]. In this Section, we first briefly describe about anytime

algorithms: their characteristics and their applications in reality. Then, we focus

on applications of anytime algorithms for data clustering, one of the main tasks

of exploratory data analysis.
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4.1.1 Anytime Algorithms

Most algorithms work in a batch scheme: they run to completion and provide

a single answer at the end. However, in many cases such as limited resource

constraints [116], interaction and real-time systems [303], the users might need to

have a quick result prior to completion [71, 303, 116]. To deal with this problem,

anytime algorithms [305, 71, 116, 303], which work by trading execution time for

quality of results, are proposed. In contrast to the batch algorithms, anytime

algorithms are able to return a partial answer, whose quality depends on the

amount of computation they were able to perform. In particular, they produce a

fast approximate result which is then continuously refined during the further runs.

During their executions, the algorithms can be interrupted at any time to provide

a best-so-far result and to allow user interactions and resumed to produce better

results at any time. Due to this property, anytime algorithms have been widely

used during the past decades in many fields, including object recognition [145],

motion planning [304, 71], image processing [164, 49], scheduling [15], multi-agent

systems [219, 215, 161], surveillance [245], number partitioning [146], autonomous

navigation [203], web services [136], etc.

Characteristics of anytime algorithms. According to [303], an anytime clus-

tering algorithm should satisfy some important properties such as:

1. Measurable quality: The quality of an approximate result can be measured

exactly.

2. Recognizable quality: The quality of an approximate result can be measured

easily during runtime.

3. Monotonicity: The quality of result increases over time and input quality.

4. Consistency: The quality of result is correlated with computation time and

input quality.

5. Diminishing returns: The quality of intermediate result improves much

larger in previous stages of computation and diminishes over time.

6. Interruptibility: After spending some amount of time for the initialization

step, the anytime algorithm can be stopped at any time and provide some

answers.
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7. Preemptability: The algorithm can be suspended and resumed again at any

time in order to investigate the results with minimal overhead.

8. Low overhead: Assuming that it is not interrupted, the total cumulative

runtime of an anytime algorithm should not be much longer than the runtime

of the batch algorithm.

We note that, in many cases, these properties would be relaxed in order to

adapt with the complexity of real-life applications. For example, it is not neces-

sary that the quality of result must be strictly increase at some particular steps

[300]. Besides, the measurement conditions are only applicable if there exists some

methods to measure the quality of the batch algorithm [300]. In many fields such

as clustering, measuring the quality of a clustering result is still an area of active

researches and there is no known techniques that can handle this problem [300].

Thus, the first two conditions could also be relaxed in order to fit with these fields.

 

Time 

Q
uality 

T 

Current  
solution 
at Tb 

Ta Tb 

Solution of the 
batch algorithm 

Solution 
at time Ta 

Figure 4.1: The progress of an anytime algorithm.

Performance of anytime algorithms. Figure 4.1 illustrates the progress of

an anytime algorithm. Generally, the quality of the provided solutions improves

over time. At the current time Tb, the algorithm is interrupted to provide an

intermediate result and then resumed in order to find better solutions. If the

algorithm is interrupted at the time T , it acquires the similar result with the

batch algorithm. In case the algorithm is allowed to run to the time Ta, it may

acquire the same or even better result than the batch algorithm.

Figure 4.2 shows the performance comparison among three different anytime

algorithms A, B and C. The algorithm A clearly outperforms others. However,



64 4. Anytime and Active Clustering

the comparison between B and C is quite complicated since they dominate each

other at different time periods. In this case, Zhu et al. [300] suggested choosing

B since it has better quality improvement at the beginning of execution.

 

Time 

Q
uality A 
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Figure 4.2: The performance comparison among three different anytime algo-

rithms. The algorithm A clearly outperforms others.

Interruptible and contract algorithms. Zilberstein et al. [303] classified any-

time algorithms into two different categories: iterruptible and contract algorithms.

Interruptible algorithms can be interrupted at any time (even unexpectedly) to

produce an approximate result. Contract algorithms also can trade the quality of

result for execution time like interruptible algorithms. However, they require a

particular time allocation in advance. If they are interrupted before their contract

time, they may not provide any useful result. Obviously, interruptible algorithms

are more flexible than contract algorithms and are consequently much harder to

design and implement than contract algorithms. In those cases where an inter-

ruptible algorithm is required, Russell et al. [225] proposed a construction method

that is capable to transform a contract algorithm into interruptible algorithm with

only a small, constant penalty.

Algorithms with Anytime Features. There exist in the literature many algo-

rithms that can have the anytime features though not explicitly stated as some

examples described below:

Local search techniques, e.g., Simulated annealing, Hill climbing, Tabu search

[1], Evolutionary algorithm, e.g., Genetic algorithm [67], Swarm intelligence al-

gorithms, e.g., Ant Colony Optimization, Particle Swarm Optimization [94, 67]
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are families of general-purpose techniques for search and optimization problems.

These algorithms have many applications in reality including scheduling, image

processing, network routing, partitioning, etc. They usually start with one or

some initial solutions and then continuously explore the search space in order to

find better solutions. One of the most important properties of these algorithms

is that they are non-exhaustive search, which means that they do not guarantee

to find an optimal solution, due to their heuristic scheme, but they search non-

systematically until a specific stop criterion is satisfied. Since these algorithms can

be, for example, interrupted at each iteration to provide an approximate result

and resumed in order to search for better solutions, they could be regarded as

anytime algorithms, except that they are usually not able to find optimal results

(regarded as the result of the batch algorithms) and their behaviors are somehow

unpredictable.

Iterative methods provide a sequence of improving approximate results to solve

a problem. They have been attracted a lot of research efforts in many years,

especially in solving large and sparse linear systems, one of the most common

problems in scientific computing [226]. Local search techniques described above

can also be considered as heuristic-based iterative search techniques. Iterative

algorithms start with a simple, initial solution and then continuously refine the

solution until they converge. Due to this property, iterative algorithms also could

be considered as anytime algorithms.

Randomized algorithms [191] are another examples of algorithms with anytime

property. These algorithms first produce an initial solution and then continuously

use a randomized algorithm to try to improve that solution. Due to this scheme,

these algorithms produce a sequence of improving results over time and could be

interrupted and resumed at each iteration to acquire anytime property. Interested

reader can find many examples of these algorithms in [191].

Besides these kinds of algorithms, there exists many other algorithms with

anytime feature in the literature as examples in [302].

Anytime algorithms versus incremental algorithms. Incremental algo-

rithms often use a local update scheme to deal with some changes of the input

incrementally. The randomized incremental algorithms for constructing Voronoi

diagram [21] is an example of this kind. Given a set of points in 2D, the random-

ized incremental algorithm works by randomly choosing each point, inserting it

into the diagram and locally updating the Voronoi cells until all points are pro-

cessed [21]. Similar schemes are also applied to calculate Delaunay triangulation,
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convex hull, etc. of a point set in the field of computational geometry [21]. An-

other examples of incremental algorithms comes from the data mining field, e.g.,

[277, 82]. Ester et al. [82] proposed an incremental density-based clustering al-

gorithm to efficiently deal with the insertion, deletion and updating of objects in

a data warehouse environment. This algorithm exploits the local changes in the

existing cluster structure to incrementally update the density-based clusters w.r.t.

each operation. Widyantoro et al. [277] proposed an incremental algorithm for

building cluster hierarchy.

Though incremental algorithms sometimes are called anytime algorithms in

the literature, e.g., [147], they generally serve different purposes and thus are

fundamentally different. While anytime algorithms aim at producing multiple

approximate results of the whole input data over time, incremental algorithms

focus on dealing with the change of input data efficiently.

Anytime algorithms versus approximation algorithms. Approximation al-

gorithms are algorithms that find approximate solutions for a given problem when

the optimal solution is computational expensive, especially with NP-Hard prob-

lems, e.g., vertex covering problem, graph coloring problem, traveling salesman

problem [63]. Though anytime algorithms could be considered as approximation

algorithms, they differ in the way that traditional approximation algorithms only

produce a single approximate result for a given problem, while anytime algo-

rithms produce an approximate result and continuously refine it during further

runs toward the optimal result of this problem. Thus, anytime algorithms could

be considered as in between approximation algorithms and exact algorithms.

4.1.2 Applications of Anytime Algorithms

During the past decades, anytime algorithms have found their applications in

many fields, e.g., [145, 304, 71, 164, 49, 15, 219, 215, 245, 146, 136, 203, 188, 190,

13, 196, 302, 303, 161, 218, 143, 105, 115, 172, 107, 134, 143]. Due to the vast

amount of anytime algorithms proposed in the literature as stated above, we only

briefly describe some of them as examples.

Kobayashi et al. [145] proposed an anytime character recognition method

which incrementally recognizes characters based on their difficulties. Easy char-

acters, which can be detected in a short time, will be recognized earlier, while

difficult characters are recognized later by accumulating the recognition results

and extracted features though different time frames. The longer the algorithm
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runs the more difficult characters it can recognize. Thus, the algorithm satis-

fies the monotonicity condition of anytime algorithms described above. Since the

recognition process is split into several times, they can be interrupted. Thus,

it satisfies the interruptibility condition of anytime algorithms described above.

Experiments on the task of Japanese characters recognition has shown that the

anytime character recognition algorithm produces the results faster than conven-

tional batch algorithm, however it increases the total cumulative computational

time at the end compared with the batch processing algorithm.

For the sensing, planning and control of robots [304, 71], the control systems

usually have to cope with the changes of complex environments in real-time. The

flexibility of anytime algorithms provides a practical approach for this problem.

Under the time pressure, a coarse, fast sensing and planning is produced thus

allows the robot to quickly response to the environment changes. However, when

time is available, more accurate sensing and extended planning are conducted in

order to provide the optimal operations for the robots [304]. Dean et al. [71]

introduced a general frame work called expected-driven iterative refinement for

the time-dependent planning and control of robots. Given a set of events, time-

dependent planning determines how best to respond to predicted events when the

time available to make such determinations varies from situation to situation [71].

The proposed framework includes a set of anytime algorithms for planning and

a deliberation scheduling algorithm to allocate resources for anytime algorithms

based on their performance expectations. Zilberstein et al. [304] proposed a

method to construct robotic systems and to optimize their performances by using

anytime algorithms for sensing and planning modules. These modules are build

based on a coarse-to-fine grid-based scheme which allows the algorithm to have

the anytime properties described above. The runtime of the algorithm increases

w.r.t. the number of used grids in exchange for the better sensing and planning

results. The control of anytime algorithms is conducted using offline compila-

tion and runtime monitoring via different control frames which contain sensing,

planning and plane execution episodes.

Kywe et al. [164] proposed an efficient scheduling method for image processing

in real-time system. In their method, some basic image processing tasks including

smoothing, edge detection, thinning are converted into anytime algorithms by pro-

cessing the image with predefined patterns from simpler to more complex ones.

The more complex the patterns, the better the acquired results and the slower

the runtime. An adaptive scheduling method based on [302, 303] is also proposed

to schedule the processing task under a condition that the processing time is re-
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stricted. Some other conventional image processing tasks such as shape feature

extraction, etc., however, are not included in this work. Another example comes

from [49] in which Brooks et al. used an anytime algorithms to find the optimal

transformation parameters that maximize the similarity between two images in

real-time. Instead of using all the pixels to calculate the similarity between pic-

tures, the algorithm starts with only a subset of pixels to calculate the similarity.

During the runtime of algorithm, more pixels are incrementally considered based

on the desired accuracy, acquired by an offline training procedure, and and the

current magnitude of the gradient of similarity function. The higher the number

of used pixels, the transformation parameters are further optimized.

Given a set of web services, QoS-aware web service composition (WCS) aims at

finding a sequence of web services with the optimal accumulated Quality of Service

(QoS) value in response to a user request. Due to its global optimization problem,

QoS service is an intractable problem, especially when the number of web service

is large or when real-time scenarios, e.g., e-business, are required. Therefore, Kil

et al. [136] proposed an anytime algorithm for the QoS-aware WCS problem based

on the beam stack search technique which explores a fixed number of candidate

states in each level. Their proposed algorithm can identify high quality results

much earlier compared with optimal algorithms, demonstrated by experimental

analysis on six real WCS problems acquired from the Web Service Challenge 2009

competition.

Rahwan [219, 218] proposed an anytime algorithm for optimal coalition struc-

ture generation. Coalition structure generation is a central problem of coalition

formation problem, which involves the creation coherent groupings of distinct, au-

tonomous, agents in order to efficiently achieve their individual or collective goals,

in the field of multi-agent systems. The purpose of coalition structure generation

involves the partition of agents into exhaustive and disjoint coalitions in order to

maximize the goals. Due to exponential number of possible solutions that needs

to be examined, coalition structure generation has been proved a NP-complete

problem and thus is a very challenging problem. In this scenario, anytime algo-

rithms become a useful solution, since the agents usually do not have enough time

to run the algorithm to completion, especially with an exponential search space.

The proposed algorithm are build upon a new representation of the space of pos-

sible coalition structures which partitions the coalition structures into smaller and

disjoint sub-spaces based on the sizes of the coalitions they contain. These sub-

spaces can be explored independently in order to find an optimal solution. Based

on this representation, the authors proposed an anytime Integer-Partition (IP)
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algorithm to find an optimal coalition structure. The general idea of IP is that:

it computes bounds and the best coalition structures with in every subspace and

then incrementally searches the remaining subspaces and reduces the search spaces

by applying the upper- and lower bounds as well as branch and bound search al-

gorithm. Of course, by this incrementally searching scheme, the algorithm can

be interrupted at anytime to provide a nearly optimal result. Experiments have

shown that the algorithm provides very high quality results (more than 90% of an

optimal solution) within only 10% of time required to find an optimal solution.

Simultaneous Localization and Mapping (SLAM) is a technique used by robots

to estimate their own position and orientation and model the surrounded environ-

ment. Due to its useful applications, SLAM has been studied extensively in the

literature. However, it is also regarded as one of the most challenging problem

in autonomous navigation [203] due to its chicken-and-egg problem, uncertainty

and high complexity. One of the most common techniques for SLAM is the Ex-

tended Kalman Filter (EKF) that recursively computes a concrete measure of the

uncertainty in the covariance matrix. The covariance matrix contains the nec-

essary information in order to reduce the risk of failure while making the data

association and path planning. Unfortunately, storing and updating the covari-

ance matrix are also a major bottle neck in SLAM. To deal with this problem,

Nerurkar et al. [203] proposed an extended technique of ELK-SLAM called Power

SLAM. Power SLAM is based on 3 main techniques: (1) Global-Map Postpone-

ment technique that delays the approximations over multiple time steps; (2) the

Power Method for updating the covariance matrix; (3) the rank-2 update to in-

crease the speed of convergence of the estimator. One of the key advantages of

Power SLAM is the ability to adaptively trade the estimation accuracy in order

to meet the availability of computational resources. This makes Power SLAM an

anytime algorithm.

Sofman et al. [245] proposed an anytime algorithm to detect novel percep-

tion system input on an outdoor mobile robot. At each time step t, features are

extracted from the inputs and then classified based on linear combination of the

similarities w.r.t. previous classified features via an SVM-based classifier called

NORMA. Multiple Discriminant Analysis (MDA) is used in order to reduce the

dimensionality of input features thus enhancing the performance. If the result is

larger than a predefined threshold then the input scene is classified as not novel

and is discarded. Otherwise, the input scene is novel and is used to update the

classifier. The anytime properties of algorithm are acquired via several addition

schemes including: (1) early termination of the similarity calculation when it ex-
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ceeds the threshold; (2) the new novel examples are considered first since they

are more likely to impact the future queries; (3) the maximum number of storage

examples is limited. These schemes help to reduce the calculation time thus allow-

ing the anytime properties of the algorithm. In case the algorithm is interrupted

too early, it returns a safe solution: a false alarm. Thus it does not cause missed

detections.

The number partition problem is an NP-Complete problem that aims at divid-

ing a set of numbers into 2 small subsets so that the sums of the numbers in each

subset are as close as possible. In [146], the author proposed an algorithm called

Complete Karmarkar-Karp (CKK) to efficiently solve this partition problem. One

important advantage of CKK is that it is a complete anytime algorithm. CKK

starts with the first polynomial-time approximation Karmarkar-Karp solution and

continues to find better solutions until it reach the optimal solution.

Others. Saba et al. [188] proposed the construction, instrumentation, online mea-

surement and runtime scheduling for an anytime algorithm that enable imprecise

and approximate real-time computation on parallel architectures, in particular on

the Graphic Processing Units (GPUs) architectures. In [15], Angelopoulos et al.

focused on the design of an interruptible anytime algorithm for scheduling n equal

problem instants on m identical processors using schedules of executions of any-

time contract algorithms. In case of a single processors, the proposed schedule is

proved to be optimal. When there arem processors available, the schedule is nearly

optimal with only a small deviation. McMahan et al. [190] proposed an anytime

algorithm that leverages fast best-response oracles to build a models of the convex

games, that generalize zero-sum matrix by allowing arbitrary convex sets in place

of probability simplices. Aine et al. [13] proposed an iterative anytime heuristic

search algorithm called Anytime Window A* (AWA*) which has many applica-

tions in planning and scheduling. They demonstrated the performance of their

algorithm on 0/1 Knapshack problem [63] and Traveling Sale Man problem (TSP)

[63]. The same efforts to propose an anytime algorithm for the heuristic search

algorithm A* can be found in [172, 107]. Kleinberg [143] proposed an anytime

algorithm to deal with multi-armed bandit problems where learning and optimiza-

tion should be balanced in order to achieve good cumulative performances. Kettle

et al. [134] proposed an anytime algorithm to detect symmetry in the Boolean

functions with reduced ordered binary decision diagrams (ROBDDs) which play

an important role in CAD software to synthesize circuits (logic synthesis) and in

formal verification. Haenni et al. [105] proposed an approximation algorithm for
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computing arguments or explanations in the context of logic-based argumentative

or abductive reasoning. Kumar et al. [161] proposed an anytime algorithm for

Decentralized partially observable MDPs (DECPOMDPs), an emerging problem

for modeling sequential decision making by a team of agents.

4.1.3 Anytime Clustering

Due to their attractive properties, anytime algorithms have been widely studied

in the literature especially in the fields of Artificial Intelligent (AI) during the

last decades. Recently, they are being employed to deal with the increasingly

large and complex datasets in the field of Data Mining and Knowledge Discovery,

e.g., anytime outlier detection for data streams [20], anytime nearest neighbor

classification [279, 255], anytime Bayesian classification for data streams [232, 149,

150], anytime Bayesian network [176, 119], anytime classification for constant data

streams [151, 241], anytime inductive logic programming [175], anytime support

vector machine [72], anytime Näıve Bayes Text Classifier [223], anytime induction

of decision tree [81], anytime data analysis [244], anytime boosting techniques

[200], anytime top-k processing [17], anytime averaged probabilistic estimators for

classification [285].

Anytime Clustering Algorithms

Though there are many anytime algorithms proposed in the literature, most of

them focus on anytime classification, e.g., [279, 255, 232, 149, 150, 176, 119, 151,

241]. Anytime clustering, however, has not paid enough attentions. To the best

of our knowledge, there are not many anytime clustering algorithms proposed in

the literature so far, e.g., anytime clustering of data streams [147, 148], anytime

time series clustering [174, 173, 300].

For the task of clustering data stream, Kranen et al. [147, 148] proposed a

data structure called ClusTree in order to automatically adapt to the speeds of

the data stream. ClusTree maintains a set of micro cluster features, denoted by

a tuple of number of presented objects n in a cluster, their linear sum LS and

their squared sum SS, into a hierarchical tree structure extended from R-Tree

family [26] at different level of granularity. Each entry of ClusTree contains the

cluster features of its respective subtrees. Each inner node contains a buffer b for

temporary insertions of local aggregates. When a new object arrives, it is inserted

into the subtree with the closest mean w.r.t. Euclidean distance following a top-
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down scheme until the insertion process is interrupted by other coming objects or

by users. The objects that do not reach the leaf node during the insertion process

will be stored in the corresponding buffers waiting to be processed when the time

is available. This scheme allows the algorithm to fully adapt to the changing speed

of the data stream and makes it an anytime algorithm since the more time it has,

the more accurate the object is located and thus the better the clustering. The

final clustering result can be obtained from the set of micro clusters at leaf nodes

using k-center clustering [207] or density-based clustering [53].

Lin et al. [173] proposed an algorithm called I-kMeans for clustering time se-

ries data. I-kMeans exploits the multi-resolution property of the Haar Wavelet

transform to become an anytime algorithm. First, each time series is transformed

into multiple levels of Wavelet coefficients using the Haar transform. At each

level of resolution, the classical k-Means algorithm is performed on the coefficient

vectors of time series at that level using the cluster centers returned at the pre-

vious level. Besides the anytime property, I-kMeans has several other attractive

properties: (1) the clustering quality is usually better than the batch algorithm

due to the avoidance of local minima; (2) it is faster than the batch algorithm

even if it is run to the end. In [174], the authors extended the I-kMeans using

the multi-resolution property of Piecewise Aggregate Approximation (PAA) [74]

instead of the Haar Wavelet transform. A method for clustering streaming time

series is also proposed by locally updating the clusters that contain any time series

belonging to the neighborhood of a new coming time series.

Though Dynamic Time Warping (DTW) [132] has been proved an effective

similarity measure for time series data [74], its quadratic time complexity is a

bottle-neck in many data mining task such as time series clustering. Zhu et al.

[300] proposed an approximation technique to estimate DTW distance between

two time series based on its lower bounding and upper-bounding functions. The

algorithm first initializes the distance matrix with these approximation distances

of DTW. Then it incrementally replaces the approximate distances with the true

DTW distances in a best first order, i.e., the pair of time series with a higher ratio

between Euclidean distance and lower bounding distance will be updated first. The

goal is to quickly approximate as close as possible to the true DTW distance matrix

with each distance update. This scheme allows us to cast any clustering algorithms

which are based on the distance matrix into anytime clustering algorithms, e.g.,

spectral clustering [263], hierarchical clustering [106], k-medoids clustering [106].

Obviously, the more time the algorithm has, the closer the distance matrix reaches

the true DTW distance matrix thus the clustering results come closer to those of
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the batch clustering algorithms.

Clustering Algorithms with Anytime Features

There exist in the literature many clustering algorithms with anytime features

though not explicitly stated, e.g., [114, 67, 79, 121]. We briefly described some of

them as examples below.

Active clustering. In order to deal with the similarity sparseness problem, Hof-

mann et al. [114] proposed a technique called active clustering that can actively

select new data and use tentative knowledge to estimate the relevance of missing

data. The algorithm is built upon a selection procedure, which is based on the

so-called Expected Value of Sampling Information (EVSI), to select data, and a

special clustering technique and objective functions, which is based on aggregate

clustering membership of objects, to recluster data. Another example of this kind

of active clustering algorithm is proposed in [79] where Ericksson et al. inves-

tigated how to perform hierarchical clustering of N objects using only a small

subset of pairwise similarities instead of the complete set of N(N − 1)/2 similari-

ties. The algorithm actively and sequently selects meaningful pairwise similarities

in an adaptive fashion to perform clustering. Under the Tight Clustering (TC)

condition, the algorithm requires at most 3Nlog(N) pairwise similarities to reli-

ably determine the unambiguous hierarchical clustering. In case the TC condition

is not satisfied, the proposed algorithm requires only O(Nlog2N) pairwise simi-

larities to produce high quality hierarchical clustering result.

Though these active clustering algorithms were not presented as anytime al-

gorithms, they actually have some anytime features. For example, they could be

trivially modified to support interruption and the clustering quality improves over

time. However, one major problem of these algorithms is that their active schemes

usually incur high computation cost, thus leads to expensive clustering processes,

which oppose the efficiency purpose of anytime algorithms. In case of very ex-

pensive similarity measure, the benefit or similarity reduction of these algorithms

may overcome the active selection cost. Thus, these algorithms could be regarded

as anytime algorithms. The algorithm of Zhu et al. [300] described above is an

example of this kind.

Metaheuristic clustering. Metaheuristic clustering algorithms [67] are an evolv-

ing research direction for data clustering. These algorithms formulate the clus-

tering problems as optimization problems where the best partition of a dataset is
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achieved by maximizing or minimizing one or multiple objective functions, e.g.,

minimizing the within-cluster sum of squares like classical k-means algorithm [121].

In order to acquire better result while solving these optimization problems, meta-

heuristic search algorithms such as Evolutionary algorithms [67] have been proved

a useful approach and are widely used since they are able to avoid the local min-

ima compared with traditional local search techniques [67, 94]. Some examples

of metaheuristic clustering algorithms are: Genetic Algorithm (GA) [163], Bacte-

rial Evolutionary Algorithm (BEA) [68], Evolutionary Algorithm (EA) [95], Ant

Colony Algorithm [257], Particle Swarm Optimization (PSO) [210], etc. Due to a

vast amount of these algorithms proposed in the literature, we only list a few in

order to maintain readability and clarity, interested reader please refer to [67] for

a comprehensive survey.

As discussed in 4.1.1, these clustering algorithms have anytime features. Thus,

they could be regarded as anytime algorithms. However, one major drawback of

these techniques is that they are only applicable for clustering problem with the

goal of optimizing objective functions.

Iterative clustering. Classical k-Means algorithm and its extensions, e.g., k-

Medoids, k-Medians [121] use an iterative refinement approach to assign objects

to clusters until their objective functions converge to one of numerous local min-

ima. Another examples for iterative clustering algorithms are Expectation Max-

imization (EM) clustering and its extension [121]. As discussed in 4.1.1, these

algorithms also have anytime features and thus could be regarded as anytime

algorithms.

Randomized clustering. The clustering algorithm CLARA [204] randomly

draws a subset S of data (40+2k objects where k is the number of clusters), com-

putes k-medoids for S, labels all objects according to their most similar medoids.

When the objects are drawn in a sufficiently random way, the medoids of S would

approximate the medoids of the whole dataset. In order to acquire a better approx-

imation, multiple sets of objects are drawn and the best results are reported in term

of the average dissimilarity of the clustering results. The algorithms CLARANS

[204] has the same randomized scheme with CLARA. However, it is based on the

randomized search instead. As discussed above in 4.1.1, these algorithms would

also be regarded as anytime algorithms.
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4.1.4 Conclusions

Recent decades have witnessed constantly increasing numbers of large and complex

datasets following the development of advanced data acquisition techniques which

consequently require more efficient and effective algorithms to extract knowledge

from them. Besides, the needs of interactive exploring of data has been arisen in or-

der to let domain experts apply their knowledge by quickly testing hypotheses and

performing exploratory data analysis [234, 9]. During the last decades, anytime al-

gorithms [303] have been proved a flexible solution to cope with these challenges by

providing a sequence of improved approximation results and allowing interruption

during their executions. Consequently, they has been widely used in exploratory

data analysis [279, 255, 232, 149, 150, 176, 119, 151, 241, 244, 17, 147, 148] recently.

In this thesis, we focus on anytime algorithms for the task of data clustering, one

of the main tasks of exploratory data mining.

In contrast to anytime classification [279, 255, 232, 149, 150, 176, 119, 151, 241],

there exist only few algorithms in the literature that explicitly aim at anytime

clustering, e.g., [173, 174, 300] to name a few. However, there exist in the litera-

ture many clustering algorithms with implicit anytime features, e.g., metaheuristic

clustering [67], iterative clustering [121] or randomized clustering [204]. These al-

gorithms would be easily adapted to anytime algorithms. Thus, they could be

somehow regarded as anytime algorithms though they are not explicitly stated so.

Together with the evolvement of complex data such as time series [132] or

trajectories [195], the more complex similarity measures such as Dynamic Time

Warping (DTW) [74] or Longest Common Subsequence (LCS) [74] have been de-

veloped in order to efficiently cope with the new arisen challenges of complex data.

Though they are efficient, these similarity measures have high time complexity

which obviously becomes to a bottle-neck of the data clustering task. Thus, the

need of more effective data clustering methods to deal with this problem has been

arisen during the last decades, e.g., [45, 44]. As described above, anytime cluster-

ing algorithms could be a flexible solution for this problem. However, among those

anytime algorithms described above, only some of them, e.g., [300], are designed

to deal with expensive similarity measures.

In this thesis, we tend to fill in this gap by introducing an anytime cluster-

ing algorithm for complex similarity measures. Our algorithms is built upon the

density-based clustering paradigm and thus called anytime density-based cluster-

ing (A-DBSCAN) [184, 185].
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4.2 Active Clustering

Similar to anytime algorithms, active learning has attracted a lot research efforts

recently [235]. In this Section, we first describe some backgrounds about active al-

gorithms including their characteristics and their applications in reality. Then, we

focus on a literature survey for active clustering algorithms, an emerging research

field in data mining.

4.2.1 Active Learning

Active learning is a special case of semi-supervised machine learning and has be-

come an emerging research field in the literature recently. The key idea behind

active learning is that an algorithm can achieve greater accuracy with fewer train-

ing labels if it is allowed to choose the data from which it learns [235]. Active

learning is a very useful solution for many modern machine learning problems,

where unlabeled data may be abundant or easily obtained, but labeled data are

difficult, time-consuming, or expensive to obtain.
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Figure 4.3: A common active learning scenario.

Figure 4.3 illustrates a common active learning scenario. The machine learning

model actively generates queries, usually in the form of unlabeled data instances,

and asks oracles, e.g., human annotators, for results. The acquired labeled data

are used as training data to update the model. The whole process is repeated

until it is terminated.
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Performance of active algorithms. Generally, the performance of an active

algorithm should increase w.r.t. the number of queries as illustrated in Figure 4.2.

The more queries the algorithm generates, the better the results its produces.
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Figure 4.4: The performances of three different active algorithms. The algorithm

A clearly outperforms others.

Figure 4.4 shows the performance comparison among three different anytime

algorithms A, B and C. The algorithm A clearly outperforms others. However,

the comparison between B and C is quite complicated since they dominate each

other at different time periods. In this case, we prefer choosing B since it has

better quality improvement at the beginning of execution.

4.2.2 Applications of Active Algorithms

During the past decades, active learning algorithms are widely used in many fields,

e.g., [262, 33, 275, 278, 217, 249, 254, 43]. In this Section, we briefly describe some

of them as examples.

Taking the fact that performing N separate pairwise similarity searches is

much slower than a one-versus-all batch search scheme in biology, Voevodski et

al. [262] proposed an active clustering algorithms which relies on one-versus-all

query scheme to operate. Under some assumption about the structure of instances,

their algorithm requires only O(L) (k � N where N is the number of instances)

of one-versus-all queries to efficiently find an accurate clustering.

In [33], the authors proposed an active learning scheme to cluster images in

which humans are involved in order to improve the accuracy. In the beginning, the
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algorithm performs clustering using features extracted from images. The clustering

result is then used to identify pairs of images that need to be justified by users

and poses queries for results. The answers from users are then used as constraints

to improve the clustering results. The process is repeated until the query budget

is exhausted.

Wolf et al. [278] proposed a semi-automatic system for the task of cluster-

ing historical corpora. The proposed system is based on a graphical model that

makes inferences based on catalog information provided for each leaf as well as on

the pairwise similarities of handwriting. To help improve the accuracy in border-

line cases, experts can involve to the clustering process by answering the queries

actively posed by the system.

In [275], the authors introduced a problem of clustering photos acquired from

a wearable camera, which may be useful in a variety of applications, for example,

improving life quality for Alzheimer’s patients or summarizing personal memories.

Since the data is collected in an arbitrary manner, human must be involved to

annotate the similarities among photos. Unfortunately it comes with a high cost.

In order to reduce the payment cost, the authors proposed an algorithm which

can accurately group the photos with only small number of annotated pairwise

similarities. The algorithm starts with empty similarity matrix, iteratively selects

the most informative pairs of photos and asks the annotators for the similarities

between them until it is interrupted or a query budge is reached.

Others. In [217], the authors developed an active learning approach for classifi-

cation galaxies and prediction Alzheimer from the structural MRI scan. In [249],

an active learning support vector machine algorithm was developed for the text

classification purpose. Tuia et al. [254] proposed an active learning system for the

segmentation of remote sensing images. Bowring et al. [43] proposed an active

learning system for automatic classification of software behavior.

4.2.3 Active Clustering

Though there are many active learning algorithm proposed in the literature, most

of them aim to select data that will reduce the model’s classification error or

label uncertainty [235]. Compared with the active classification, active cluster-

ing, sometimes regarded as an unsupervised classification, has gained much less

attention.

We roughly classify active clustering algorithms into two categories: active
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learning for sem-supervised clustering, active learning for unsupervised clustering.

• Active learning for semi-supervised clustering: These algorithms focus on

learning a set of constraints, mostly instance level constraints in the form of

must-link and cannot-link constraints. These constraints are then used as

training sets for semi-supervised clustering algorithms. Examples of these

algorithms include [98, 265, 271, 187, 25, 267, 280, 12, 205, 266, 264], etc.

Most of active learning for clustering algorithms fall into this category.

• Active learning for unsupervised clustering: These algorithms are mainly

designed to deal with the sparseness of distance matrix instead of learning

constraints from data. The general goal of these algorithms is to acquire

a good clustering result with minimum number of used pairwise distances.

In order to do so, a common approach is that these algorithms iteratively

select the most informative pairwise distances with the goal of maximizing

the clustering results to query until a predefined budget limitation is reached.

Recently, these algorithms have attracted a lot of research efforts with many

algorithms proposed recently, e.g., [275, 262, 79, 114, 236, 51].

In this thesis, we mainly focus on the latter case. In the rest of this thesis, we

refer the latter to as active clustering in abbreviation.

Distance sparseness problem. Most data clustering techniques, e.g., k-Means

[121], spectral clustering [263], require a matrix of pairwise distances to operate.

Given N objects, there are N(N − 1)/2 pairwise distances to calculate in total.

However, in many real life applications, these pairwise distances may be diffi-

cult, time-consuming, expensive or event not available to obtain. This problem is

commonly regarded as distance sparseness problem in the literature. As concrete

examples, let consider these examples below.

A star light curve is the measurement of light intensity of a celestial object or

region as a function of time. A light curve can be used to estimate the rotation

period of a planet or comet nucleus in planetology or to discover supernovas in

astronomy, etc. Clustering is commonly used to analyze the digital star light curves

data using Dynamic Time Warping (DTW) as an effective similarity measure [300].

In [300], the authors pointed out that it cost around 127 days to cluster a mere

9236 curves under DTW due to the quadratic time complexity of DTW.

In [275], the authors introduced a real life application of clustering the photos

acquired from a wearable camera, which may be useful in a variety of applications,
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for example, improving life quality for Alzheimer’s patients or summarizing per-

sonal memories. Due to the difficulty of automatically measuring the similarity

among photos, human annotators must be involved to rate those similarities. Of

course, it is a costly process since annotators must be paid for their works.

In model transportation monitoring and control system, GPS is usually used

to collect the position of vehicles, people, airplanes, etc. Then, clustering algo-

rithms are used to discover common or unusual movement patterns as in [201, 93].

However, in many cases, the GPS signals may be very noisy or may be temporarily

lost due to bad weather, obstacles, etc. Thus, measuring the similarities among

moving trajectories becomes hard or even infeasible. This problem is also common

in many other application fields such as sensor networks. Moreover, efficient sim-

ilarity measures for moving trajectories like Dynamic Time Warping (DTW) or

Longest Common Subsequence (LCS) [195, 74] usually have high time complexity

which makes the evaluation a very time-consuming process.

Many other examples can be found in [275, 262, 79, 114, 236, 51, 159], etc.

Interested readers please refer to these works for more details.

Active Clustering. In other to tackle with this data sparseness problem de-

scribed above, many active clustering algorithms have been proposed in the liter-

ature, e.g., [275, 262, 79, 114, 236, 51]. These algorithms often follow the same

scenario: they iteratively select the most informative pairs of objects to query the

distances and update the cluster results until a predefined budget limitation is

reached. We briefly describe some of them below.

Hofmann et al. [114] proposed a technique called active clustering that can

actively select new data and use tentative knowledge to estimate the relevance of

missing data. The algorithm is built upon a selection procedure, which is based on

the so-called Expected Value of Sampling Information (EVSI), to select data, and

a special clustering technique and objective functions, which is based on aggregate

clustering membership of objects, to recluster data. Since the proposed algorithm

is based on its own definition and objective functions, its application may be

limited. In [51], an active clustering algorithm for a hierarchical variant of [114] was

proposed by Buhmann et al. In that work, Bayesian Statistical Decision Theory

is applied as a tool for selecting new data which are most informative for the

clustering task. In both works, the proposed techniques significantly outperform

the naive random selection techniques.

The active k-Median clustering algorithm proposed by Voevodski et al. [262]

uses an active selection strategy to choose a set of landmark points and constructs
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clusters based on the distance between these landmarks and other points. The

main difference between this algorithm and other algorithms in this category is

that it is based on one-versus-all queries to form the clusters in contrast to the

one-to-one query scheme of other techniques [79, 114]. This algorithm requires

O(k) one-versus-all queries in order to efficiently find an accurate clustering.

Ericksson et al. [79] investigated the problem of how to perform hierarchical

clustering of N objects using only a small subset of pairwise similarities instead of

the complete set of N(N−1)/2 similarities. The algorithm actively and iteratively

selects meaningful pairwise similarities in an adaptive fashion to perform cluster-

ing. Under the Tight Clustering (TC) condition, the algorithm requires at most

3Nlog(N) pairwise similarities to reliably determine the unambiguous hierarchi-

cal clustering. In case the TC condition is not satisfied, the proposed algorithm

requires only O(Nlog2N) pairwise similarities to produce high quality hierarchical

clustering result.

Active spectral clustering algorithms were studied in [236]. Concretely, the

authors focused on the problem of finding an approximation ṽ2 of the 2nd eigen-

vector v2 of the Laplacian matrix of spectral clustering. In case ||ṽ2 − v2|| � 1,

the clustering result acquired from ṽ2 and v2 are very similar as proven in the

literature [128]. Besides a fast randomized algorithm, the author proposed an

adaptive algorithm which is based on perturbation theory to choose the most in-

formative pairwise distance. The general idea is to choose a pair of object that

causes the most change on the vector ṽ2 by following perturbation theory. In

[275], the authors pointed out that if the clusters are well-separated then each

pairwise distance should be choose so that the change on ṽ2 is minimal. Their

proposed algorithms are completely analogous to those of [236], except the key

point described before. We note that, the algorithms from [236] and [275] are

mainly designed for the binary spectral algorithm. However, they can be easily

extended to the more general cases.

In [159], another active framework is developed for hierarchical clustering (it

should be partition clustering instead). This framework repeatedly runs an off-the-

shelf clustering algorithm on small subsets of the data and comes with guarantees

on performance, measurement complexity and runtime complexity. The authors

demonstrated their framework on spectral clustering and k-Means. For active

spectral clustering, the authors showed that this algorithm recovers all clusters of

size Ω(logN) using O(Nlog2N) pairwise similarities and runs in O(nlog3N) time

complexity where N is the number of objects under some certain assumptions.
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Other algorithms. Zhu et al. [300] proposed an approximation technique to

estimate Dynamic Time Warping (DTW) distance between two time series based

on its lower bounding and upper-bounding functions. The algorithm first initial-

izes the distance matrix with this approximate distance function of DTW. Then it

incrementally replaces the approximate distances with the true DTW distances in

a best first order, i.e., the pair of time series with a higher ratio between Euclidean

distance and lower bounding distance will be updated first. The goal is to quickly

approximate as close as possible to the true DTW distance matrix with each dis-

tance update. This scheme can be use with any clustering algorithms which are

based on the distance matrix, e.g., spectral clustering [263], hierarchical clustering

[106], k-medoids clustering [106]. Generally, this algorithm could be regarded as

an active clustering algorithm. However, it differs with the algorithms described

above in several ways. First, this algorithm focuses on the change of distance

matrix rather than cluster structure. Actually, maximizing a change in the dis-

tance matrix does not mean that the change in cluster structure is maximized as

well and vice versa. Second, while each pairwise distance is iteratively evaluated

and selected, this algorithm only ranks them one time in the beginning and se-

lects them according to this ranking. In fact, this scheme makes the algorithm

closer to an anytime algorithm than an active algorithm. Last, it requires the

lower bounding and upper-bounding distances to be available while other active

clustering algorithms do not since they start from an empty matrix.

In [22], the authors proposed a sampling technique to generates a hierarchy

over a small set of random sample, which also implicitly represents a hierarchy

over the entire data set. This technique is very useful when the amount of data

is enormous such as in astrophysics and biology, under an assumption about the

good neighborhood properties of data. Obviously, using a small part of data means

that less distance calculations are performed. The proposed algorithm acquires

the same goal however with different algorithmic scheme with the others. While

other techniques like [236] try to maximize the change with each pairwise dis-

tance calculation iteratively, this technique does not operate in such the stepwise

scheme. Thus, it is unable to cope with the budget problem. Moreover, it is not

an incremental algorithm like active clustering algorithms described above.

4.2.4 Conclusions

Recently, advanced data acquisition techniques constantly produce data with in-

creasing complexity. Together with the complexity of data, many difficulties have
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arisen. Among those difficulties, one of the most challenging problems emerged

recently is the distance sparseness problem.

Active clustering algorithms provide an efficient ways to cope with the distance

sparseness problem. By allowing the algorithms to actively select the most infor-

mative pairwise distance to calculate, the total number of distance calculation is

significantly reduced while ensuring good clustering results to be acquired. Due

to its importance and interestingness, active clustering has become an emerging

research in the literature and has attracted a lot of research efforts in recent years.

Though there exist in the literature active learning for k-Means, hierarchical

clustering and spectral clustering. There is no active learning for density-based

clustering proposed in the literature so far. Therefore, in this thesis, we introduce

a first active density-based clustering algorithm called Act-DBSCAN [186] which

is based on the DBSCAN paradigm.
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Chapter 5

Anytime Density-based

Clustering

Many clustering algorithms suffer from scalability problems on massive datasets

and do not support any user interaction during runtime. To tackle these problems,

anytime clustering algorithms are proposed. They produce a fast approximate re-

sult which is continuously refined during the further run. Also, they can be stopped

or suspended anytime and provide an answer. In this Chapter, we present a novel

anytime clustering algorithm based on the density-based clustering paradigm. Our

algorithm called A-DBSCAN is applicable to many complex data such as trajec-

tory and medical data. The general idea of our algorithm is to use a sequence of

lower bounding functions (LBs) of the true distance function to produce multiple

approximate results of the true density-based clusters. A-DBSCAN operates in

multiple levels w.r.t. the LBs and is mainly based on two algorithmic schemes:

(1) an efficient distance upgrade scheme which restricts distance calculations to

core-objects at each level of the LBs; (2) a local reclustering scheme which re-

stricts update operations to the relevant objects only. To further improve the

performance, we propose a significant extension version of A-DBSCAN called A-

DBSCAN-XS which is built upon the anytime scheme of A-DBSCAN and the

µ-range query scheme of the extended Xseedlist. A-DBSCAN-XS requires less

distance calculations at each level than A-DBSCAN and thus is more efficient.

Extensive experiments demonstrate that A-DBSCAN and A-DBSCAN-XS acquire

very good clustering results at very early stages of execution and thus save a large

amount of computational time. Even if they run to the end, A-DBSCAN and

A-DBSCAN-XS are still orders of magnitude faster than the original algorithm

DBSCAN and its variants.



86 5. Anytime Density-based Clustering

Publications. Parts of the material presented in this Chapter have been pub-

lished in [184, 185]. The detailed information are described as follows:

• Son T. Mai, Xiao He, Jing Feng and Christian Böhm. Efficient Anytime

Density-based Clustering. In SIAM International Conference on Data Min-

ing (SDM), pages 112-120, 2013.

In this work, S.T. M. contributed to the theory, implementation and experi-

ment of the algorithm. C.B proposed an idea for the experiments. X.H. and

J.F. helped with some experiments. The technique and results are discussed

among all authors. All authors contributed to paper writing.

• Son T. Mai, Xiao He, Jing Feng, Claudia Plant and Christian Böhm. Any-

time Density-based Clustering of Complex Data. Knowledge and Informa-

tion System (KAIS), 2014. (accepted for publication).

In this work, S.T.M. contributed to the theory, implementation and experi-

ment of the algorithm. C.B. gave out an idea for the experiments. X.H. and

J.F. participated in some experiments. All authors discussed the principles

of the technique and the results and contributed to paper writing.

5.1 Introduction

Clustering is the task of assigning unlabeled objects into groups called clusters such

that the similarity of objects within a group is maximized, and the similarity of

objects between different groups is minimized. It plays a vital role for statistical

data analysis in many fields including data mining, machine learning, pattern

recognition, image analysis, information retrieval, etc. Although there are a vast

amount of clustering algorithms proposed in the literature, most of them work in

a batch scheme. They only produce a single result, and there is no interaction

with end users during their executions.

For large databases, the idea of exploring the results during execution time has

been proved to be a very useful approach [255, 300, 305]. The algorithms quickly

produce an approximate result which is continuously improved over time and

allow user interaction during their runtime. Users can terminate the algorithms

anytime whenever they satisfied with existing results to save computation time.

Moreover, the final results of these algorithms are often very similar to those of the



5.1 Introduction 87

batch algorithms. Such algorithms are called anytime algorithms [255, 300, 305]

and are an emerging research in many fields of data mining such as classification

[232, 255, 149] and outlier detection [20, 19]. However, anytime clustering has not

been paid enough attention. There are only a few works on anytime clustering

algorithms, e.g., I-kMeans [173, 174].

Among various kinds of clustering algorithms such as partitioning methods and

hierarchical methods, density-based clustering algorithms have attracted many

attention in the data mining community due to their advantages compared with

the others [228, 83, 111]. They can detect clusters of arbitrary shapes, do not

require the number of clusters to be specified, and are robust to outliers. Besides

many others, the density-based notion underlying the algorithm DBSCAN [83] is

one of the most successful approaches to clustering with applications in many fields

such as neuroscience and meteorology. Many clustering algorithms are successfully

proposed based on this notion [16, 228, 83]. However, all of them only work in the

batch scheme.

Contributions. Our contributions are summarized as follows:

1. In this Chapter, we propose for the first time a novel anytime clustering

algorithm based on the cluster notion of DBSCAN [83]. Our algorithm

called anytime density-based clustering (A-DBSCAN) is applicable to many

complex data such as trajectory and medical data. The core idea of A-

DBSCAN is to use a sequence of lower bounding functions (LBs) of the

true distance function to produce multiple approximate results of DBSCAN.

LBs are well-studied in the field of database indexing [216]. However, their

applications in clustering have gained much less attention. By using LBs as

distance measures, we are not only able to approximate the true clustering

result but also speed up the algorithm significantly since the LBs often run

very fast compared with the true distance function. A-DBSCAN operates

in multiple levels w.r.t. the sequence of LBs. The result of each level is

calculated by using the results of the previous levels. We propose efficient

distance and cluster update schemes from level to level based on theoretical

study of the way clusters change under the effect of LBs.

2. In order to further improve the efficiency, we propose a significant extension

version of A-DBSCAN called A-DBSCAN-XS which is built upon the any-

time scheme of A-DBSCAN and the µ-range query scheme of our extended

Xseedlist. Compared with A-DBSCAN, A-DBSCAN-XS has better distance
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calculation pruning power at each level. Hence it is more efficient than A-

DBSCAN, especially when dealing with very expensive distance functions.

3. We theoretically prove that the final clustering results of our anytime algo-

rithms A-DBSCAN and A-DBSCAN-XS are identical to that of DBSCAN.

4. Extensive experiments on real datasets such as time series and trajecto-

ries demonstrate that A-DBSCAN and A-DBSCAN-XS acquire very good

clustering results at very early stages of execution, thus saving a large

amount of runtime. Even if A-DBSCAN and A-DBSCAN-XS are run to

the end, they are still orders of magnitudes faster than the algorithm DB-

SCAN and its variants. Such advantages are impressive since A-DBSCAN

and A-DBSCAN-XS, as anytime algorithms, must perform clustering many

times compared with only one time of the batch algorithm DBSCAN and

its variants.

The rest of this Chapter is organized as follows. In Section 5.2, we briefly

present some background. In Section 5.3, we delineate our anytime clustering

algorithm A-DBSCAN. Section 5.4 propose an extension of A-DBSCAN called

A-DBSCAN-XS. The distance measure and lower bounding functions are briefly

described in Section 5.5. Section 5.6 reports experimental results. Section 5.7 is

dedicated to related work and discussion. Section 5.8 concludes with a summary

and future research.

5.2 Backgrounds

In order to enhance the readability, we briefly repeat some important backgrounds

in this Section, though they are presented in previous Chapters.

5.2.1 Anytime Clustering

An anytime clustering algorithm works by trading execution time for quality of

results [300, 305]. Anytime clustering produces a fast approximate result which is

then refined during the further run. Users can examine the intermediate clustering

results while the algorithm is continuing to produce the finer results at the next

levels. According to [300, 305], an anytime clustering algorithm should satisfy

some important properties such as:
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1. It should produce good results which are close to the result of the batch

algorithm at some early stages.

2. The final result should be similar to or better than the batch algorithm.

3. The total cumulative runtime of the algorithm should be only slightly larger

than the batch algorithm.

5.2.2 The Algorithm DBSCAN

In density-based clustering, clusters are considered as areas of high object density

separated by areas of low object density in the data space. The key idea of

density-based clustering algorithm DBSCAN [83] is that the cardinality of the

neighborhood of each object of a cluster has to exceed a predefined threshold.
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Figure 5.1: The notions of DBSCAN : (a) q is directly density-reachable from p;

(b) p and q is density-connected; (c) object a (red) is a core object, b (green) is

border object, c (black) is noise object;

Given a set of objects O, a distance function d : O×O → R and two parameters

ε ∈ R+ and µ ∈ N+.

Definition 6 (ε-neighborhood) The ε-neighborhood of p ∈ O, denoted as Nε(p), is

defined by Nε(p) = {q ∈ O|d(p, q) ≤ ε}.

Each object in O is classified either as core object, border object or noise

object.

Definition 7 (Core object property) An object p ∈ O is a:
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1. Core object, denoted as core(p), iff |Nε(p)| ≥ µ.

2. Border object, denoted as border(p), iff |Nε(p)| < µ∧ ∃q ∈ Nε(p) : |Nε(q)| ≥
µ.

3. Noise object, denoted as noise(p), iff it is not a core object or a border object.

Definition 8 (Directly density-reachable) An object q ∈ O is directly density-

reachable from object p ∈ O, denoted as p . q, iff |Nε(p)| ≥ µ and q ∈ Nε(p).

Definition 9 (Density-connected) Two object p and q ∈ O are density-connected,

denoted as p ./ q, iff there exists a sequence (x1, . . . , xm) of objects such that

∀xi : |Nε(xi)| ≥ µ and p / x1 / · · · . xm . q.

A cluster is defined as a maximal set of density-connected objects and is com-

posed of core objects and border objects. A border object could belong to several

clusters depending on the order of objects.

Definition 10 (Cluster) A subset C ⊆ O is called a cluster iff the two following

conditions hold:

1. Maximality: ∀p ∈ C, ∀q ∈ O \ C : ¬p ./ q

2. Connectivity: ∀p, q ∈ C : p ./ q

Figure 5.1 demonstrates some notions of DBSCAN. DBSCAN uses a data

structure called the seed list S which contains a set of seed objects for cluster

expansion. To construct a cluster, DBSCAN continuously extracts objects from

S and performs the ε-range query to find neighbor objects and inserts them into

S until S is empty.

5.3 Anytime Density-based Clustering

Given a set of objects O and a set D of n lower bounding functions D = {di|di :

O × O → R ∧ ∀p, q ∈ O : di(p, q) ≤ d(p, q) ∧ dn(p, q) = d(p, q)}. Our algorithm

A-DBSCAN works in a sequence of levels from L1 to Ln. At each level Li, the
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clustering is performed by using the function di as the distance measure. Note

that, di+1 should be a tighter bound of d than di.

The naive approach. A naive algorithm should calculate the new distances

between all objects and perform the clustering on the whole dataset at each level.

Though it is simple, it is inefficient since the properties of LBs and DBSCAN are

not exploited at all. Using the results at Li to restrict the calculation in Li+1 is

thus a reasonable approach to speed up the algorithm.

Our approach. A-DBSCAN maintains a neighborhood graph G = (O,E) which

connects each object p ∈ S with objects in its ε-neighborhood. In the beginning,

the graph G is fully connected. At each level, the graph G is updated to reflect

the changes in the neighborhoods of objects w.r.t. the used distance function.

At level Li+1, we define the ε-neighborhood of object p w.r.t. the graph G at

Li (Gi) as follows:

Definition 11 (ε-neighborhood w.r.t. Gi+1) The ε-neighborhood of p at Li+1, de-

noted as N i+1
ε (p), is defined by N i+1

ε (p) = {q ∈ O|(p, q) ∈ Ei ∧ di+1(p, q) ≤ ε}.

Following Definition 11, the graph Gi+1 is created by removing every edge

(p, q) ∈ Ei which di+1(q, p) > ε from Gi. It is more efficient than the naive

approach since only a part of the distances between objects must be updated at

each level instead of all distances. However, while the neighborhoods of objects

in naive algorithm at Li+1 depend only on the distance function di+1, the notion

of the neighborhood of A-DBSCAN considers not only the current distance di+1

but also the distances di at previous levels represented by the neighborhood graph

G. As we shall see, this scheme is the heart of A-DBSCAN that allows it to

be used with arbitrary sequences of LB distance functions, thus enhancing the

applicability of our algorithm.

How the clusters change. A-DBSCAN works by exploiting the way the clusters

change at each level. Assuming that we are currently at level Li+1.

Lemma 2 For every object p ∈ O the neighborhood of p at Li+1 is a subset of the

neighborhood of p at Li.

Proof 2 Straightforward from Definition 11.
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According to Lemma 2, the neighborhood of each object p decreases at each

level. Thus, from Li to Li+1, the core property of each object changes as the

following:

Lemma 3 From level Li to Li+1.

1. If p is a core object in Li then it is a core, a border or a noise object in Li+1.

2. If p is a border object in Li then it is a border or a noise object in Li+1.

3. If p is a noise object in Li then it remains a noise object in Li+1.

Proof 3 According to Lemma 2 and Definition 7, a core object p will become a

border or a noise object if |N i+1
ε (p)| < µ. A border object p will never be a core

object because its neighborhood size never increases. But it will become a noise

object if it does not have any core object in its neighbors. Since the neighborhood

of a noise object p does not contain any core objects, it will remain a noise object

in Li+1.

In DBSCAN, each cluster contains two kinds of objects: core and border ob-

jects and the core objects play a critical role to determine clusters. Because of

their importance, we define a core cluster as follows:

Definition 12 (Core Cluster) A subset C ⊆ O is called a core cluster iff ∀p ∈
C : core(p) ∧ C ⊆ ξ : ξ is a cluster.

Lemma 4 For all objects p, q ∈ O, if p and q are not density-connected at Li
(denoted as ¬p .i q) then they are not density-connected at Li+1.

Proof 4 According to Lemma 2 and 3, if p.i+1q ⇒ p.iq. Assuming that p ./i+1 q,

there exists a sequence of objects (x1, . . . , xm) so that p / x1 / · · · . xm . q at Li+1

according to Definition 9. Thus, p / x1 / · · · . xm . q at Li. Therefore, we have

p ./i q.

Lemma 5 For every core cluster Cu at Li+1 (denoted as Ci+1
u ), there exists a core

cluster Cv at Li which Cu ⊆ Cv.
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Figure 5.2: From level Li to Li+1, the core object a changes to border object.

Object b changes from border to noise. The noise object d remains unchanged.

Cluster C1 at Li is broken into two clusters C11 and C12 at Li+1. Object c becomes

border of cluster C2 at the new level.

Proof 5 Assuming that there exist p, q ∈ Ci+1
u so that p ∈ Ci

k and q ∈ Ci
l . From

Definition 10 and Lemma 4, we have ¬p ./ q at Li ⇒ ¬p ./ q at Li+1. Thus, p

and q belong to different clusters by Definition 10.

Figure 5.2 illustrates the changes of clustering results and core properties of

objects from level Li to level Li+1. A cluster at Li may break into several smaller

clusters at Li+1 following the division of its core cluster. The border objects of a

cluster may be possessed by other clusters at the next level due to the changes of

core properties of its neighbors, even if this cluster does not split. Such property

of A-DBSCAN reminds us the monotonicity property of the subspace clustering

algorithm SUBCLU [160]. Under the Euclidean distance (ED), the distances in

subspace projections of the data could be consider as a sequence of increasing

lower bounding distances (∀p, q ∈ O : di(p, q) ≤ di+1(p, q)), which is a special

case of A-DBSCAN. By exploiting a graph structure, A-DBSCAN acquires the

monotonicity property even for arbitrary sequences of LBs and is not restricted to

ED like SUBCLU. Therefore, the applicability of the algorithm is increased. We

also note that, SUBCLU is not an anytime algorithm.

To conclude, the changes of clustering results of A-DBSCAN are monotonic

w.r.t. the changes of graph G at each level.

Anytime DBSCAN Algorithm. Our anytime algorithm is based on the notions
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of DBSCAN. Let us start with a new enhanced notion for a cluster:

Definition 13 (The border of a core cluster) A set B of border objects is called

the border of a core cluster C iff ∀p ∈ B : (1) ∃q ∈ C : q . p (2) ¬∃q ∈ O \ C :

|Nε(q)| ≥ µ ∧ ∀r ∈ C : d(p, q) < d(p, r).

Definition 14 (A-Cluster) An anytime cluster C is an union of a core cluster Cc
and its border Cb.

Here, a border object is assigned to its nearest core object instead of being

randomly assigned in DBSCAN. This brings up some benefits: (1) the compactness

of clusters and thus the clustering quality are enhanced; (2) the cluster result does

not depend on the the order of the input data. In our experiments in Section 5.6,

this new notion helps to slightly improve the clustering results measured by NMI

scores [258] on 13/32 datasets acquired from the UCR archives 1 while having the

same results on the others [184].

Since A-DBSCAN operates in multiple levels, we have to efficiently solve 2

problems at each level:

1. How to upgrade the graph G?

2. How to perform the clustering?

According to Definition 11, we have to update the whole graph G from Li to

Li+1. It is more efficient than the calculation of the distances between all objects

in the naive approach. However, Lemma 2 to 5 suggest a more efficient way as

follows. In graph G, there exist five kinds of edges: core-core, core-border, border-

border, border-noise and noise-noise (the core-noise edges do not exist according to

Definition 7). Since the edges between border and noise objects do not involve in

clustering process, they can be safely ignored to save computation cost. Therefore,

we just need to update the parts which involve the core objects: the core-core and

core-border edges. This update scheme significantly reduces the cost of graph

construction at each level, especially when the number of core objects is small. In

other words, we only consider the subgraph with core-core and core-border edges.

Note that, the graph G will no longer reflect the neighborhoods of all objects

exactly. However, it will not affect the correctness of our algorithm as shown

below.

1http://www.cs.ucr.edu/∼eamonn/time series data/
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For clustering algorithm, some clusters may be split but there is no merging

of clusters from Li to Li+1 according to Lemma 5.

Corollary 1 From level Li to Li+1, an A-cluster Ck may be split if:

1. ∃u, v ∈ Ck : (u, v) ∈ Ei \ Ei+1 ∧ core(u) ∧ core(v).

2. ∃u ∈ Ck : core(u) at Li ∧ ¬core(u) at Li+1.

Corollary 1 is directly inferred from Definition 9 and 14. The deletion of an

edge between two core objects or degradation of a core object in an A-cluster

would break the density-connectivity of its core cluster, thus causing the splitting

of the A-cluster. Assuming that this happened in cluster Ck at Li, all we need

is to recluster all the core objects in Ck instead of the whole dataset as in naive

approach, thus saving significant amount of time (roughly O(|C|2) time with C is

set of clusters). After that, all the border points are reassigned to the cluster labels

of their nearest core objects following Definition 14. In case we use the original

cluster notion of DBSCAN, only some border objects need to be reassigned, which

is faster but may be less effective in terms of clustering quality.

Figure 5.3 shows the pseudocodes for the algorithm A-DBSCAN. For every

level, first the graph G is updated. After that, we check all clusters to see if

there are splitting possibilities, and recluster all of their core clusters to reflect the

changes using the clustering scheme of DBSCAN again. All the border objects

will then be added to clusters following their nearest core objects.

Correctness of algorithm. We show that, the final clustering result of A-

DBSCAN is identical to that of DBSCAN except for those objects which can be

border objects of two or more different clusters.

Definition 11 guarantees that the final neighborhoods of objects of A-DBSCAN

are similar to DBSCAN. The graph update scheme ignores only the edges between

noise and border objects which do not play any role to determine core properties

of objects and density-connectedness of clusters. Therefore, the core properties of

objects and the core clusters of A-DBSCAN at the last level are identical to those

of DBSCAN. Since the border objects are assigned to their nearest core objects

as stated in Definition 14, they are the only difference between A-DBSCAN and

DBSCAN since the border objects of DBSCAN are assigned based on the order

of objects. If we use original notion of cluster of DBSCAN then the final results

of A-DBSCAN and DBSCAN are totally identical.
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Function A-DBSCAN (O, µ, ε, F) 

     G = fully connected graph 

     C = {O};  
     for all level Li do 

         % update the graph G 

          for all core object p in O do 
               for all adjacent core or border object q of p do 

                    epq = di+1(p,q)   // update edge epq 

                    if epq > ε then remove epq from G endif 

               endfor 

          endfor 

          update the core property of objects 

          % re-clustering  the dataset O 
          for all cluster Ci in C do 

               if Ci may be split then 

                    recluster all core object in Ci and save the                                           
  changes into C again  

               endif 

           endfor 
           for all border objects p do 

                reassign cluster label for p according to the  

    label of its nearest core object 

           endfor 
            return set of cluster C at level Li 

     endfor 

     return final set of clusters C 

EndFunction 

Figure 5.3: Pseudocodes for A-DBSCAN.

A-DBSCAN and the naive algorithm. At a middle level Li, the neighbor-

hoods of objects of A-DBSCAN are not identical to those of the naive algorithm

due to the new neighborhood notion in Definition 11. Therefore, the clustering

result of A-DBSCAN at Li is actually an approximation of the clustering result

under the distance function di. They are identical if and only if D contains a

sequence of increasing LBs (∀p, q : di(p, q) ≤ di+1(p, q)). Such condition, however,

restricts the applicability of the algorithm since it is harder to satisfy than finding

an arbitrary sequence of LBs.

Complexity analysis. In theory, time complexity of an anytime algorithm is

usually higher than the batch one since it has to run many times. In our setting,
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the complexity of the naive approach and A-DBSCAN is
∑|D|

i=1 θi|O|2 (where θi
is complexity of di). However, since A-DBSCAN has efficient graph update and

reclustering scheme as described above, A-DBSCAN is much faster than DBSCAN

as we shall see in Section 5.6.

5.4 Extended A-DBSCAN

5.4.1 The Xseedlist

There exists several techniques to speed up DBSCAN in the literature by acceler-

ating the ε-range query process [83]. The algorithm B-DBSCAN [45], in contrast,

relies on the µ-range query to determine the core property of objects rather than

the ε-range query. Thus it does not require calculating all the exact distances

between p and its neighbors Nε(p) like others. Therefore, the efficiency of the

algorithm is much improved. B-DBSCAN uses a lower bounding function of the

true distance measure and a data structure called the Xseedlist to perform the

clustering.
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Figure 5.4: The data structure Xseedlist.

Figure 5.4 shows the data structure Xseedlist. It consists of an ordered object

list OL. Each object oi in OL is associated with a predecessor list PL(oi) and

is sorted by the first element of PL(oi). Each entry of PL(oi) contains 3 items:

(1) PreID: ID of a neighbor object oi,k (1 ≤ k ≤ n); (2) PreFlag: indicates that

the distance between oi and oi,k is the LB or the true distance; (3) PreDist: the

distance between oi and oi,k. The Xseedlist operates by using a LB distance as a



98 5. Anytime Density-based Clustering

guide line to extend the clusters. For every object p, the Xseedlist determines all

of its neighbors under the LB distance, sorts them and then updates the distance

between p and its neighbors with the true distances until the core property of

p is determined. The others will be updated only when they are necessary to

determine the density connectivity of objects during the cluster expansion. Due

to space limitation, interested readers please refer to [45] for more details.

Compared with the original Seedlist [83], Xseedlist can help to reduce the total

number of used true distances up to orders of magnitudes [45]. However, it still

suffers from several drawbacks: (1) It requires the full LB distances between all

objects to be calculated; (2) It needs to sort the object list and predecessor list

many times during the clustering process. Thus, the use of Xseedlist pays off only

when the runtime difference between the LB and true distance is significant; (3)

It is originally designed to work with a single LB distance. Though it can be

extended as shown in Section 5.6 to work with multiple LBs, all the LB distances

still have to be calculated.

5.4.2 The Algorithm A-DBSCAN-XS

In this part, we present our anytime clustering algorithm called A-DBSCAN-XS

which is a significant extension of A-DBSCAN described above [184]. The general

idea is to integrate the scheme of the µ-range query of the Xseedlist into the

reclustering process of A-DBSCAN to update the cluster structure from Li to

Li+1. By this way, we can reduce the number of calculated distances at each

level thus significantly enhance the efficiency of the algorithm. A naive approach

could use the Xseedlist with the distance function di−1 as the LB distance for the

distance function di to speed up the clustering process at level Li. However, it

is impossible since the LB function di−1 is generally not a true lower bound of

di in our setting (∃p, q ∈ O : di−1(p, q) > di(p, q)), while the Xseedlist requires

the LB property to operate. Even in a special case when di−1 lower bounds di,

directly applying the Xseedlist to recluster a cluster C in Li is inefficient because

the distance function di−1 must be calculated for every pair of objects in O. Thus,

we only save the distance calculations for the last distance function dn (or d).

To the rest of this Section, we present how the Xseedlist can be extended and

integrated with the anytime clustering scheme of A-DBSCAN to save the distance

calculations for all di.

The extended graph G. Since our algorithm tries to reduce the number of
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calculated distances at each level, the neighborhood graph G should be only partly

updated from Li to Li+1. Therefore, for each edge (p, q), we additionally store

the level lev((p, q)) at which it is already updated and the distance dis((p, q)) =

dlev((p,q))(p, q). The main difference between A-DBSCAN-XS and A-DBSCAN is

that all the edges related to the core objects must be updated at each level in

A-DBSCAN while only a part of these edges is updated in A-DBSCAN-XS at

each level. The extended neighborhood graph G plays a key role to integrate the

Xseedlist into the anytime clustering scheme of A-DBSCAN.

The extended Xseedlist. The original Xseedlist [45] must be modified to work

with our anytime clustering scheme. In our extended Xseedlist, the PreFlag and

PreDist of PL(oi) will contain the value of lev((oi, oi,k)) and dis((oi, oi,k)). The

order condition of the Xseedlist also needs to change to enhance the efficiency. For

every pair of edges (p, q) and (r, s), we define a comparison function φ((p, q), (r, s))

between them as follows:

φ =



> if lev((p, q)) < lev((r, s))

< if lev((p, q)) > lev((r, s))
> if dis((p, q)) > dis((r, s))

= if dis((p, q)) = dis((r, s))

< if dis((p, q)) < dis((r, s))

otherwise

The intuitive of this comparison function is that if an edge (p, q) is currently at

higher level than (r, s), it should be considered to update first since we only need

to calculate only Li−lev((p, q)) distance functions to reach level Li. Therefore, the

number of calculated distances at each level is reduced. In our extended Xseedlist,

we replace all the order conditions of the original Xseedlist which are only based on

the distances of ((p, q)) and ((r, s)) by our new comparison function. As a result,

the total number of calls for each function di is significantly reduced compared

with the original Xseedlist as shown in Figure 5.9.

The algorithm A-DBSCAN-XS. We now can extend the clustering process of

A-DBSCAN to work with the scheme of our extended Xseedlist. We called our

algorithm A-DBSCAN with Xseedlist (A-DBSCAN-XS).

Figure 5.5 shows the pseudocode of our algorithm. Unlike A-DBSCAN, A-

DBSCAN-XS does not separate the update process into two distinguish parts:

distance update and cluster update. They are performed simultaneously during

the clustering process instead. A-DBSCAN-XS starts with the extended neighbor-
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Function A-DBSCAN-XS (O, µ, ε, D) 

 Input: Dataset O, parameter µ and ε, a set of n functions D  

BeginFunction 

 G = ε-neighborhood graph with the LB function d1 at L1 

 C = set of clusters provided by original DBSCAN on G 

 for all level Li (2 ≤ i ≤ n) do 

  for all cluster Ci in C do 

   C = Update-Cluster (core(Ci), µ, ε, G, Li) 

  endfor 

  for all border objects or unclassified objects p do 

   for all core object q in Nε(p) do 

    Update-Edge ((p,q), ε, G, Li) 

   endfor 

   assign p to the cluster label of nearest core object  

   or assign p as noise if there is no core object nearby 

  endfor 

  return set of cluster C at level Li 

 endfor 

EndFunction       

Function Update-Edge ((p,q), ε, G, Li) 

 Input: Edge (p,q) of G, parameter ε, graph G and level Li 

BeginFunction 

 for j = lev(p,q) + 1 to Li do 

  if dj(p,q) > ε then break endif 
  if j = Li then lev(p,q) = Li and dis(p,q) = di(p,q) 

 else remove (p,q) from G 

 endif 

 return dis(p,q) 

EndFunction       

Function Update-Cluster (C, µ, ε, G, Li) 

 Input: List of object C, parameter µ, ε, graph G and level Li 

BeginFunction 

 create an empty Xseedlist OL 

 clear the cluster id of all object q in C 
 cidnow = get a free cluster label 

 for all object q in C do 

  sort Nε(q) in ascending order according to function ϕ 

  t = Core-Check (q, Nε(q), µ, ε, G, Li) 

  if t < µ then set q as noise and continue the for loop endif 
  set cluster id of q as cidnow and mark q as core object in Li 

  Expand -Xseedlist (OL, C, q, Nε(q), µ, ε, G, Li, OL) 

  while OL is not empty do 
   o1 = get first object from OL  

   if PL(o1) = NIL then 

    set cluster id of o1 as cidnow and remove o1 from OL 

    sort Nε(o1) in ascending order according to function ϕ 

    t = Core-Check (o1, Nε(o1), µ, ε, G, Li) 
    if t < µ then  

     set o1 as border object and continue while loop  

    endif 

    set o1 as a core object at Li 

    Expand -Xseedlist (OL, C, o1, Nε(o1), µ, ε, G, Li, OL) 

   else 

    o1,1 = PreID of the first object in PL(o1) 

    d = Update-Edge ((o1,o1,1), ε, G, Li) 

    if d < ε then 
     set cluster id of o1,1 as cidnow and remove o1 from OL 

     sort Nε(o1) in ascending order according to function ϕ 

     t = Core-Check (o1, Nε(o1), µ, ε, G, Li) 
     if t < µ then  

      set o1 as border object and continue while loop  

     endif 

     set o1 as a core object at Li 

     Expand -Xseedlist (OL, C, o1, Nε(o1), µ, ε, G, Li, OL) 

    else 

     if PL(o1).length > 1 then delete entry of o1,1 from PL(o1) 

     else delete o1 from OL 

     endif 

    endif 

   endif 

  endwhile 

  cidnow = get new cluster label 

 endfor 
 return new cluster membership for all object in C 

Endfunction 

 

Function Core-Check (q, Nε(q), µ, ε, G, Li) 

 Input: object q and its neighbor Nε(q), parameter µ, ε,  
    graph G and level Li 

BeginFunction 

 count = 0 

 for all object p in Nε(q) do 

  d = Update-Edge((p, q), ε, G, Li) 

  if d < ε then count = count + 1 endif 

  if count = µ then break endif 

 endfor 
 return count 

EndFunction       

Function Expand-Xseedlist (OL, C, q, Nε(q), µ, ε, G, Li) 

 Input: Xseedlist OL, object list C, object q and its   

   neighbor Nε(q), parameter µ, ε, graph G and level Li 

BeginFunction 

 for all object o in Nε(q) do 

  if o not in C then continue endif 

  if lev((q, o)) = Li and dis(q, o) ≤ ε then 
   put (o, NIL) to beginning of OL and remove the old 

    entry (if exists) 

  else 

   if entry o is not exist in OL then 

    insert (o,(q, lev(o,q), dis(o,q)) into OL and   
     reorder OL according to the function ϕ 

   else 

    if PL(o) ≠ NIL then 

     insert (q,lev(o,q), dis(o,q)) into PL(o) and  

      reorder OL according to the function ϕ 

    endif 

   endif 

  endif 

 endfor 

EndFunction       

Son ♥ Diep 

Figure 5.5: Pseudocode for the algorithm A-DBSCAN-XS.

hood graph G and the cluster structure provided by performing DBSCAN with the

first LB function d1 as the main distance measure. At each level Li, A-DBSCAN-

XS performs the reclustering on the set of core objects of each cluster following

the monotonicity property described in Section 5.3. Note that, A-DBSCAN only

reclusters the clusters which may be split. Therefore, in terms of reclustering

time, A-DBSCAN is more efficient than A-DBSCAN-XS. However, A-DBSCAN-
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XS has much better distance pruning power, thus it is much more efficient than

A-DBSCAN as we shall see in Section 5.6. After all the clusters are reclustered,

A-DBSCAN-XS reassigns each border object to its nearest core object as in A-

DBSCAN.

A-DBSCAN-XS relies on two main subroutines namely Update-Edge and Upd-

ate-Cluster. To update an edge (p, q) to the current level Li, we check all the

functions dj with lev((p, q)) < j ≤ Li one after another. If dj(p, q) > ε, the

edge (p, q) is removed from graph G. Otherwise, we set the new level for (p, q)

as Li (lev((p, q)) = Li). The reclustering process still follows the basic clustering

routine proposed in [45] but with some changes summarized as follows: (1) There

is no range query with LB function. At level Li, |Nε(p)| is selected by all the

neighbors of p in graph G. Therefore, for all object q ∈ |Nε(p)|, lev(p, q) will be

arbitrary in [1, Li−1], instead of Li−1. This is a significant advantage since we can

save a lot of distance calculation compared with the naive use of Xseedlist; (2)

We used the extended Xseedlist described above instead of the original Xseedlist;

(3) The procedure Update-Edge is called to update the distance of each edge to

the current function di at Li instead of the true distance function call; (4) Some

other minor changes are also implemented to fit the extended Xseedlist with the

anytime clustering scheme.

Correctness of the algorithm. We prove that, the result of A-DBSCAN-XS is

identical to that of A-DBSCAN at every level.

First, due to the partly update scheme of graph G, for every object p at Li, the

neighborhood |Nε(p)| acquired with A-DBSCAN-XS will be a superset of |Nε(p)|
acquired with A-DBSCAN. Since the Core-Check function examines all objects

inside |Nε(p)| until it finds µ objects q which has dj(p, q) ≤ ε (1 ≤ j ≤ i),

the core property of p is identical with both algorithm. Second, the Update-

Cluster function guarantees that an object o will be added to the current cluster

if dj(p, o) ≤ ε (1 ≤ j ≤ i). Thus, the cluster structures of A-DBSCAN-XS and

A-DBSCAN are identical at every level.

Complexity analysis. Since Xseedlist uses a sorting procedure to perform, the

time complexity of A-DBSCAN-XS will be
∑|D|

i=1 θi|O|2 + |O|2 log |O| (where θi
is the time complexity of di). However, in case the distance functions di are

expensive, the sorting cost will become negligible compared with the reduction

of the distance calculation cost. In this case, A-DBSCAN-XS enjoys dramatic

performance acceleration due to its efficient distance pruning scheme.
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5.5 Similarity Measure and Lower bounding

Since A-DBSCAN is a general framework. It can be used with any kind of dis-

tance functions and their LBs. Given a distance function d, providing a set of

lower bounding function D = {di‖di : O × O → R ∧ ∀p, q ∈ O : di(p, q) ≤
d(p, q) ∧ dn(p, q) = d(p, q)} is an essential problem in our approach. In order for

A-DBSCAN to work properly, these conditions should be fulfilled: (1) di should be

faster than d; (2) di+1 should be tighter than di (di(p, q) ≤ di+1(p, q) in general).

Euclidean distance. Recent research has introduced many distance measures

for complex data such as Euclidean Distance (ED), Longest Common Subsequence

(LCS) and Dynamic Time Warping (DTW) [74, 195]. Among them, ED is the

most widely used one due to its simplicity and ubiquitousness.

Given two objects A = {a1, . . . , an} and B = {b1, . . . , bn} ∈ O, we have:

d(A,B) =
√∑n

i=1(ai − bi)2.

Though our algorithm can be used with all mentioned distance functions above,

we simply choose ED as a representative to demonstrate our algorithm.

The Haar wavelet transform. Lower bounding functions for the ED are well-

studied in the literature. There exist many proposed techniques such as Piecewise

Aggregate Approximation (PAA) [174], Discrete Fourier Transform (DFT) [173]

and Discrete Wavelet Transform (DWT) [216]. All of these techniques can be

directly applied to A-DBSCAN. In this work, we simply choose DWT as a repre-

sentative to build a sequence of LBs. Interested reader please refer to 3 for more

details on DWT.

To build a sequence of LBs, we first transform all objects using DWT. Then,

at each level Li, we only use the first ki coefficients of each object to calculate the

distance function di with ki ≤ ki+1. According to Lemma 1, the lower bounding

condition 2 holds. Since we only need a few coefficients to have a good approxi-

mation of the original distance function, the runtime of the distance functions di
is significantly faster than the original ED function d, which satisfies the runtime

condition 1. Due to linear complexity of DWT, the time needed to transform the

whole dataset S with dimensionality n is O(n|O|) which is negligible compared

with O(n|O|2) for DBSCAN. For a large time series dataset with 9236 objects

with the length of each object n = 8192, it costs only 2.1 seconds to transform

the whole dataset and an hour for clustering with DBSCAN.
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5.6 Experiments

All experiments are conducted on a Workstation with 3.0 Ghz CPU, 8GB RAM

under Windows Server 2008 using Java.

5.6.1 Evaluation Methodology

Datasets. We evaluate the performance of our algorithms on real datasets ac-

quired from different sources, including:

• The eight real datasets from the UCR archives [131] (http://www.cs.ucr.edu/-

∼eamonn/time series data/) which contain small to large time series data

from diverse fields. They are Mallat, CinC ECG torso, SonyAIBORobotSur-

face, Plane, ECGFiveDays, Symbols, DiatomSizeReduction and OliveOil.

• The two datasets Character Trajectory (CT) and Australian Sign Language

(ASL) from the UCI archives [90] (http://archive.ics.uci.edu/ml). The CT

dataset contains 2858 2D trajectories belonging to 20 different characters.

The ASL contains 5 sign samples collected from five signers as 2D trajecto-

ries. Also, we add to ASL some 5% interpolated Gaussian noise and local

time shifting samples as in [173] to form a dataset with 1050 2D trajectories.

• The COIL20 dataset acquired from the Columbia Object Image Library

(http://www1. cs.columbia.edu/CAVE/software/softlib/coil-20.php). This

dataset contains 1440 pictures of 20 different objects with 72 pictures per

objects.

We note that the UCR and UCI datasets are re-interpolated to the length of

2blog(n)c+3 to use with DWT. However, it does not affect the evaluation of our

algorithm since all the comparable algorithms described below produce almost

identical results with A-DBSCAN and A-DBSCAN-XS (please refer to Section

5.3 and 5.4 for more details). Also, in our experiments on 32 UCR datasets,

the change of the clustering qualities between the original and the re-interpolated

datasets are negligible.

Algorithms. We compare our algorithms A-DBSCAN and A-DBSCAN-XS with

3 different variants of DBSCAN proposed in the literature [45, 83] including:

• The original DBSCAN algorithm proposed by Ester et al. [83].
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• DBSCAN with multi-levels filter and refinement range query (M-DBSCAN)

which uses LBs to speed up the range query process of DBSCAN as stated

in [45]. For all objects p and q, we check all the LBs from d1 to dn (dn is

the true distance as defined in Section 5.3). If di(p, q) > ε then d(p, q) > ε

since di(p, q) ≤ d(p, q). Thus q is not an ε-neighbor of q and vice versa.

Since the runtime of LBs are smaller than the real one, this scheme can

significantly speed up the range query process [227] and thus reduces the

runtime of DBSCAN [45].

• DBSCAN with Xseedlist (B-DBSCAN) proposed by Brecheisen et al. [45].

Since the original algorithm only works with a single LB function, we slightly

extend it to work with multiple LB functions by using multiple LBs from d1
to dn−1 for each LB range query [45] as in M-DBSCAN and keeping dn−1 as

the final LB distance.

The comparison between the naive anytime algorithms, A-DBSCAN and A-

DBS-CAN-XS is omitted for clarity since the naive algorithms clearly perform

much worse than DBSCAN, M-DBSCAN and B-DBSCAN.

Comparison Criteria. To compare the results of different clustering algorithms

with the class labels provided for our experimental datasets, we use the DOM [76],

Normalized Mutual Information (NMI) and Adjusted Mutual Information (AMI)

[258]. However, we only show the NMI for clarity because the results of DOM

and AMI are the same as NMI. The result of NMI is in [0,1], with 0 means that

the clustering result is independent of the ground truth and 1 means that the

clustering result is the same as the ground truth.

For the runtime comparison, we report the cumulative runtime at each level

for A-DBSCAN and A-DBSCAN-XS and the final runtime for B-DBSCAN, M-

DBSCAN and DBSCAN. All the reported results are averaged over 20 runs. It is

important to note that, A-DBSCAN and A-DBSCAN-XS do not necessary to be

faster than B-DBSCAN, M-DBSCAN and DBSCAN in general since they have to

perform the clustering at each level. However, they should quickly produce good

clustering results at early levels [300].

Parameter Setting. For A-DBSCAN, A-DBSCAN-XS, B-DBSCAN and M-

DBS-CAN, we use a sequence of LBs with 10 different functions D = {5, 10, 15, 20,

25, 30, 35, 40, 45, 100}. Each function di at Li uses first Di% Wavelet coefficients

to calculate lower bounding distance (100% means original ED distance). For the

two parameters µ and ε, we first run DBSCAN with 2 ≤ µ ≤ 30 and 100 equally
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distributed values of ε from min to max distance between objects to find the

optimal parameters for DBSCAN for every dataset. Then all other algorithms are

evaluated with these parameters. Therefore, we will have fair comparisons among

all these algorithms and exclude any possible comparison bias. The selection of

parameters will be further studied in Section 5.6.3.

5.6.2 Performance Evaluation

Performance on real datasets. Figure 5.6 and 5.7 show the clustering results

for all real datasets used in our paper. For every figure, the upper part shows the

NMI of the anytime algorithms A-DBSCAN and A-DBSCAN-XS at each level rep-

resented as curves and the NMI of the batch algorithms DBSCAN, M-DBSCAN

and B-DBSCAN represented as horizontal lines (because these batch algorithms

produce only 1 result). The parameters µ and ε of DBSCAN are shown beside the

name of each dataset respectively. The lower part of each figure shows the cumu-

lative runtimes of A-DBSCAN and A-DBSCAN-XS at each level represented as

curves and the runtimes of B-DBSCAN and M-DBSCAN represented as horizontal

lines. The runtimes of DBSCAN are shown beside the name of each dataset.

For the dataset MALLAT (µ = 7, ε = 12.8) as an example, the NMI score of

DBSCAN (and also M-DBSCAN, B-DBSCAN) is 0.824. The runtimes are 15.7,

23.7, 164.4 seconds for B-DBSCAN, M-DBSCAN and DBSCAN respectively. At

the first level L1, A-DBSCAN and A-DBSCAN-XS require 9.7 and 9.4 seconds

respectively to complete, which are about 3 times faster than M-DBSCAN with a

clustering score of 0.747. The clustering scores of A-DBSCAN and A-DBSCAN-

XS come to 0.826 at level 2-3 and 0.824 at level 4-10. When they come to the end,

A-DBSCAN and A-DBSCAN-XS require only 21.3 and 11.3 seconds respectively

and are about 8 and 15 times faster than DBSCAN.

For most datasets, the clustering scores become very close to the clustering

scores of DBSCAN (more than 80% of NMI score of DBSCAN) from level 2.

This means that A-DBSCAN and A-DBSCAN-XS acquire very good and stable

clustering results at very early stages. For the dataset ECGFiveDays and SonyAI-

BORobotSurface, users can terminate the algorithm at level 3 or later to have

satisfactory clustering results. For other datasets, the termination can be even

earlier to acquire the speed up of 5 to 10 times compared with M-DBSCAN and

B-DBSCAN and more than 10 times compared with DBSCAN. It is a remarkable

advantage, especially when we are using the cheap ED as the distance measure.

The difference would be much larger when we use expensive distance functions
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such as DTW or LCS [74]. We demonstrate this fact in Section 9.3 by using DTW

as the true distance measure.

For the dataset Cin ECG torso (µ = 22, ε = 63.9), the NMI scores at the early

levels L1 to L3 (0.743, 0.739, 0.739 respectively) are even slightly better than the

NMI scores of DBSCAN (0.738). For the dataset ECGFiveDays, the NMI score at

level 3 is 0.724 which is slightly better than the NMI scores of DBSCAN (0.702).

These facts are interesting since we can have better clustering results at some

middle levels which could not be acquired with the true distance function. We

will examine this problem more properly in Section 5.6.3.

For the datasets Mallat and DiatomSizeReduction, the final clustering results

are slightly different with those of DBSCAN. It is due to the fact that we assign

the border objects to their closest core objects (see Definition 14 in Section 5.3). In

our experiment, this scheme helps to slightly improve the final clustering scores of

A-DBSCAN and A-DBSCAN-XS on 13/32 real datasets from the UCR archives.
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Figure 5.6: The performance of DBSCAN, M-DBSCAN, B-DBSCAN, A-DBSCAN

and A-DBSCAN-XS on the 8 real datasets from the UCR archives.
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Figure 5.7: The performance of DBSCAN, M-DBSCAN, B-DBSCAN, A-DBSCAN

and A-DBSCAN-XS on the 3 real datasets from other sources.

The final clustering scores of A-DBSCAN and A-DBSCAN-XS are slightly worst

than DBSCAN on only 2/32 real datasets [184]. We note that if we use the

original cluster definition of DBSCAN, then the results of DBSCAN, A-DBSCAN

and A-DBSCAN-XS are identical.

For all datasets, the final cumulative runtimes of A-DBSCAN are slightly better

than or identical to those of M-DBSCAN. The final cumulative runtimes of A-

DBSCAN-XS are much better than those of B-DBSCAN on most datasets, except

on the 3 datasets SonyAIBORobotSurface, Plane and COIL20. A-DBSCAN-XS is

faster than A-DBSCAN on 6/11 datasets and is roughly identical to A-DBSCAN

on 4/11 datasets. There is only one exception case on the dataset COIL20 where

A-DBSCAN-XS is much slower than A-DBSCAN. The fact that A-DBSCAN is

faster than M-DBSCAN and A-DBSCAN-XS is faster than B-DBSCAN is very

interesting since A-DBSCAN and A-DBSCAN-XS have to perform the clustering

process at each level. The main reason is due to the monotonicity property of

A-DBSCAN and A-DBSCAN-XS. We will examine this problem below.

Why are the anytime algorithms faster than the batch algorithms? Fig-

ure 5.8 shows the percentages of the total distance function calls for every LB func-

tion di on 3 real datasets CinC ECG torso, SonyAIBORobotSurface and COIL20.

We note that the percentages of the distance function d1 is always 100% since we

have to perform the full clustering at level 1.
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Figure 5.8: The percentages of the total distance function calls at each level on

the 3 real datasets.

Due to the use of the monotonicity property to restrict the distance update,

A-DBSCAN requires less distance calculations at each level than M-DBSCAN. By

incorporating the monotonicity property and the extended Xseedlist, A-DBSCAN-

XS clearly is the best among the 4 algorithms in terms of the total numbers of calls

to distance functions. Unfortunately, A-DBSCAN and A-DBSCAN-XS must incur

a remarkable cost for cluster update, though the monotonicity property helps to

significantly reduce this cost following the local update scheme. Compared with

A-DBSCAN, the cluster update cost of A-DBSCAN-XS is much larger due to the

operation cost of the Xseedlist. A-DBSCAN-XS also has to update every cluster

while A-DBSCAN only updates a cluster if it may split. Obviously, if the reduced

cost of the distance calculations is larger than the cluster update cost, A-DBSCAN

and A-DBSCAN-XS will be faster than their related algorithms M-DBSCAN and

B-DBSCAN respectively and vice versa. In the case of the dataset COIL20 in

Figure 5.7, the cluster update cost of A-DBSCAN-XS overwhelms the reduced

cost for the distance calculations. Thus A-DBSCAN-XS performs worst.

The more expensive the used distance functions the better the performance

of A-DBSCAN and especially A-DBSCAN-XS compared with M-DBSCAN and

B-DBSCAN due to the trade-off between the cost for the cluster update and the

cost for the distance calculation. In Chapter 9, we demonstrate this property

by using DTW [74], which is much expensive than ED, as the distance function.

The runtime difference among A-DBSCAN, A-DBSCAN-XS and others are much

larger than with the use of ED in this Section.

Other experiments. The sorting scheme of the extended Xseedlist plays an

important role to reduce the total numbers of call to distance functions. Figure

5.9 shows the total numbers of call to distance functions of our algorithm A-
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Figure 5.9: The percentages of the total distance function calls of A-DBSCAN-XS

on the 3 real datasets with different sorting scheme for the Xseedlist.

DBSCAN-XS using the new sorting scheme (proposed in Section 5.4) and the

original sorting scheme for the Xseedlist [45] on the 3 real datasets. As we can

see, the new sorting scheme helps to significantly reduce the numbers of distance

function calls, especially for the dataset ECGFiveDays.

Summary. A-DBSCAN and A-DBSCAN-XS acquire close clustering scores with

DBSCAN at early stages of their execution. Thus, our algorithms accelerate the

runtime up to orders of magnitude compared with B-DBSCAN, M-DBSCAN and

DBSCAN. Though they both use LBs, A-DBSCAN and A-DBSCAN-XS are faster

than M-DBSCAN and B-DBSCAN because they can exploit the monotonicity

property to reduce redundant distance upgrades and reclustering cost as described

in Section 5.3 and 5.4. Due to the high cost of the clustering update in contrast to

the distance calculation reduction power of A-DBSCAN-XS, it works best when

the used distance functions are expensive. In case, the distance functions are less

expensive, A-DBSCAN should be chosen.

5.6.3 Parameter Analysis

The parameters µ and ε. Figure 5.10 shows the relationships between the two

parameters µ (with ε = 4), ε (with µ = 5) and the performance of A-DBSCAN

and A-DBSCAN-XS for the COIL20 dataset. The runtime of A-DBSCAN and

A-DBSCAN-XS increases with ε since the increasing of the graph size leads to the

increasing of the cost for the distance update and reclustering. The runtime of

A-DBSCAN-XS is more sensitive to the choice of ε than that of A-DBSCAN due

to the expensive cost of the data structure extended Xseedlist. The runtime of

A-DBSCAN and A-DBSCAN-XS slightly decreases with µ since the reduction of
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the number of core objects helps to reduce the total number of distance updates

at each level.

The clustering quality is strongly affected by the choices of ε. For ε = 3.5,

A-DBSCAN and A-DBSCAN-XS quickly reach good NMI scores at level 2. The

clustering quality slightly increases at each level until level 6 and then decreases.

For ε = 5.0, the clustering quality of A-DBSCAN and A-DBSCAN-XS increases

and reaches the maximum value at the last level. This phenomenon can be explain

via the relationship between the lower bounding distances and the parameter ε.

Assuming that ε∗ is the optimal parameter for ε (ε∗ = 4.75 for the dataset COIL20),

if ε > ε∗ then the clustering qualities at all levels of A-DBSCAN and A-DBSCAN-

XS will be smaller than the optimal one since the distance functions di lower

bound the true distance d. However, if ε < ε∗ then the distance functions di
at some middle levels may approximate the optimal cluster structure due to the

lower bounding property. Thus, the clustering scores at some middle levels of

A-DBSCAN and A-DBSCAN-XS are better than that of the final level. It is easy

to see that A-DBSCAN and A-DBSCAN-XS work better when ε < ε∗ since they

acquire the best result earlier at some middle levels and have smaller runtime as

discussed above.

In contrast, the choices of the parameter µ seem less affect the clustering quality

of A-DBSCAN and A-DBSCAN-XS. All the NMI score curves are generally the

same with different values of µ. Therefore, A-DBSCAN and A-DBSCAN-XS work

better when µ is big since they have smaller runtime as discussed above.

For real datasets, the relationship between the true distance and LB distance

is somewhat arbitrary. For example, if d(p, q) > d(r, s), it does not mean that

dlb(p, q) > dlb(r, s). Therefore, by using LBs, A-DBSCAN may reach results which

are hard to acquire with DBSCAN at some middle levels since the LB distances

may reflect the relationship of all the objects better than the true distance. For ex-

ample, the best found score for COIL20 is 0.908 for A-DBSCAN and A-DBSCAN-

XS (µ = 3, ε = 4) at level 7, while the best found score for DBSCAN is only 0.857

(µ = 5, ε = 4.75).

In this chapter, we do not focus on the problem of parameters finding for

DBSCAN. The optimal choices for µ and ε could be selected by some existing

heuristics proposed in the literature such as the k-dist graph [83] and entropy

[166].

To summarize, A-DBSCAN and A-DBSCAN-XS seem more robust to the

choices of parameters than DBSCAN due to its anytime scheme as discussed above.
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Figure 5.10: The relationships between the two parameters µ (with ε = 4) and ε

(with µ = 5) and performance of A-DBSCAN for the COIL20 dataset.

Even the parameters are not optimally chosen, A-DBSCAN and A-DBSCAN-XS

may still produce good results at some of its middle levels.

The lower bounding functions. Choosing a sequence of LBs is an important

aspects of A-DBSCAN and A-DBSCAN-XS. Depending on their characteristics,

different datasets require different numbers of coefficients to closely approximate

the true ED distance. For example, for dataset ECGFiveDays, the use of the

first 5% coefficients at level 1 is too small to have a good approximation of the

ED distance. Thus, the clustering quality is too low. In contrast, the first 5%

coefficients are too many for dataset Symbols. The lower bounding distance is

close to the ED distance. Thus, the clustering qualities are the same at all levels.

Figure 5.11 shows the relationship between the performance of A-DBSCAN, A-

DBSC-AN-XS and the tightness of LBs for the dataset Symbol (µ = 30, ε = 16.1).

A-DBSCAN and A-DBSCAN-XS are run with 3 different sequences of LBs D1 to

D3 (10 levels with different numbers of coefficients). As we see, the higher the

numbers of the used coefficients at each level are, the tighter the lower bounding

distances and the better the clustering qualities are.

The relationship between the runtime of A-DBSCAN and A-DBSCAN-XS and

the numbers of the used coefficients at each level is somewhat theoretically com-

plicated. Usually, smaller number of coefficients at each level means that the

calculation time required for each LB function di is smaller. However, the prun-

ing power of LB functions is decreased. Thus, the size of the graph G at each

level is increased. It leads to the increasing of the total number of the distance

updating and the time for reclustering at each level. The tradeoff between these

two problems decides the performance of the algorithm. As we see from Figure

5.11 as an example, the runtime of A-DBSCAN is increased w.r.t. the numbers of

used coefficients while the runtime of A-DBSCAN-XS is decreased. The tightness
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Figure 5.11: Performances of A-DBSCAN w.r.t. the tightness of LBs for the

dataset Symbols.

of LB function could be a solution for this problem. By observing the tightness of

LB function w.r.t. the number of used coefficients, we could balance this tradeoff.

The higher the tightness of LB, the smaller the graph size at the next level but

the larger the distance calculation cost.

Therefore, by randomly drawing a subset of data and calculating the averaged

tightness of LBs w.r.t. the numbers of the used coefficients as demonstrated in

Figure 5.11, users can choose the number of levels and number of used coefficients

for each level based on their purposes.

5.7 Discussions

Anytime Clustering Algorithms. Anytime algorithms are algorithms that

trade execution time for quality of result [305]. The quality of result of an any-

time algorithm typically improves as the time increases to reach the result of the

batch algorithm in the end. An anytime algorithm should satisfy some important

properties described in Section 5.2 and [300, 305]. Anytime algorithms are cur-

rently an area of active research in many fields of data mining such as classification

[255, 149] and outlier detection [20]. However, there is only little work on anytime

clustering algorithms such as [147, 173, 174, 300].

Zhu et al. [300] proposed an approximation technique for Dynamic Time Warp-

ing which allows it to be used with anytime clustering algorithms. Kranen et al.

[147] proposed an anytime clustering algorithm for streaming data.

Lin et al. [173, 174] exploited the multi-resolution property of DWT and PAA

to casting k-Means into an anytime algorithm called I-kMeans. I-kMeans works

by using the final cluster centers of level i as initial centers for level i+ 1. Though

it is simple and efficient, I-kMeans is limited only for spherical shape clusters
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while A-DBSCAN is able to detect clusters with arbitrary shapes and robust to

outliers. The lower bounding property of DWT and PAA are also not exploited

to construct clusters as in A-DBSCAN and A-DBSCAN-XS.

Density-based clustering. In density-based clustering, clusters are considered

as high density areas, separated by low density areas. Among various kinds

of density-based clustering algorithms, DBSCAN is one of the most successful

algorithms with many extensions, e.g., [16, 45, 44, 160] and applications, e.g.,

[183, 166, 93, 56].

Ester et al. [82] proposed an incremental version of DBSCAN in a data ware-

housing environment. Based on the fact that insertion or deletion of an object

affects the current clustering only in the neighborhood of this object, their algo-

rithm called I-DBSCAN significantly speeds up DBSCAN even for large numbers

of updates in a data warehouse environment. I-DBSCAN also exploits the nature

of DBSCAN to do the clustering like our algorithm. However, I-DBSCAN is an

incremental clustering algorithm, not an anytime algorithm. The changes of clus-

ters in I-DBSCAN are caused by inserted or deleted objects, while the changes in

A-DBSCAN are directed by the changes of the used distance functions.

The density-based subspace clustering algorithm SUBCLU [160] is based on

the monotonicity property of DBSCAN w.r.t. distances in subspace projections

of the data. The changes of clusters in A-DBSCAN are also monotonic. However,

the monotonicity of A-DBSCAN and A-DBSCAN-XS is caused by the reduction

of a special neighborhood graph related to a sequence of LBs, which is more

general than SUBCLU. Thus, A-DBSCAN can be used with many different kinds

of distance measures such as DTW and LCS [74] and arbitrary sequences of LBs

while SUBCLU is limited to ED. Moreover, SUBCLU is designed for the discovery

of subspace clustering of vector data and is also not an anytime algorithm.

In [44], a client-server parallel version of DBSCAN is proposed. The mono-

tonicity property of DBSCAN [83] and OPTICs [16] is used to split objects to

different clients and to merge the results returned from clients at the server. This

monotonicity property is also similar to SUBCLU and is a special case of the

monotonicity property used with A-DBSCAN.

LBs could be used in density-based clustering to accelerate the range query

process thus improving the performance [45]. In [45] the authors integrate a lower

bounding function into DBSCAN [83] to speed up these algorithms based on a data

structure called the Xseedlist to reduce the number of true distance calculations.

One major drawback of this technique (B-DBSCAN) is that Xseedlist requires a
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sorting procedure which leads to higher time complexity than the normal Seedlist

of DBSCAN. Thus it may not be suitable for cheap distance functions and very

high number of objects. B-DBSCAN produces only one result and thus is not

an anytime algorithm. In our algorithm, we use many LBs to produce multiple

approximate clustering results during the runtime. A-DBSCAN and A-DBSCAN-

XS rely on the monotonicity property and the restricted neighborhood graph to

perform the clustering, which is fundamentally different from [45].

The idea of A-DBSCAN-XS is built upon the ideas of anytime clustering of

A-DBSCAN and the ideas of the µ-range query from B-DBSCAN [45]. The main

advantage of A-DBSCAN-XS over B-DBSCAN and A-DBSCAN is the way the

Xseedlist is modified and combined with the neighborhood graph G and the mono-

tonicity property of the cluster structure to significantly reduce the distance cal-

culation at each level. We note that the original Xseedlist of B-DBSCAN is only

designed to work with a single LB function, though we can easily modify it to

work with multiple LB functions in a naive way as proposed in Section 5.6. Be-

sides the integration of the Xseedlist, the main difference between A-DBSCAN and

A-DBSCAN-XS is that A-DBSCAN contains two separated phases: the distance

update and the reclustering phase at each level, while A-DBSCAN-XS combines

the distance update and reclustering into a single phase at each level. This combi-

nation allows A-DBSCAN-XS substantially reducing the total number of distance

calculation at each level. However, it increases the cost for updating cluster com-

pared with A-DBSCAN since A-DBSCAN-XS is unable to detect which clusters

will be split to recluster like A-DBSCAN. The high operation cost of Xseedlist of

A-DBSCAN-XS is another difference with A-DBSCAN. Thus, A-DBSCAN-XS is

more suitable to be used with very expensive distance function than A-DBSCAN.

Anytime DBSCAN. In general, A-DBSCAN and A-DBSCAN-XS are unique in

the ways that they: (1) exploit multi-levels lower bounding functions to produce

multiple approximate results of the final clustering result; (2) maintain the graph

structure to acquire the monotonicity property even for arbitrary sequences of

LBs. By this way, A-DBSCAN and A-DBSCAN-XS can be used with any kind

of distance measures and arbitrary sequences of lower bounding functions. Thus

they would have great applicability in reality.

Due to their update scheme, A-DBSCAN and A-DBSCAN-XS work very well

on noisy datasets which contain large amount of noise and border objects. Also,

A-DBSCAN and A-DBSCAN-XS are extremely useful when using with very ex-

pensive distance functions such as DTW or LCS [74]. Moreover, A-DBSCAN and
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A-DBSCAN-XS can easily be parallelized.

5.8 Conclusions

We propose two anytime density-based clustering algorithms called A-DBSCAN

and A-DBSCAN-XS which are applicable for many complex data such as time

series and trajectory. Our algorithms work by exploiting a sequence of LBs to

produce multiple approximate results of the true density-based clusters. To en-

hance performance, we propose an efficient distance update scheme which partially

updates the distances among objects and a local reclustering scheme to save com-

putational time at each level. Some changes in the notions of DBSCAN are made

to improve the clustering results. An efficient heuristic for parameter setting is

also proposed. Experiments on real datasets have shown that A-DBSCAN and

A-DBSCAN-XS produce very good clustering results at very early stages of exe-

cution thus saving a large amount of computational time. Even if they run to the

end, A-DBSCAN and A-DBSCAN-XS are still much faster than DBSCAN and

its variants, despite the fact that they have to produce clustering results at every

level.
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Chapter 6

Active Density-based Clustering

The density-based clustering algorithm DBSCAN is a fundamental technique for

data clustering with many attractive properties and applications. However, DB-

SCAN requires specifying all pairwise (dis)similarities among objects that can be

non-trivial to obtain in many applications. To tackle this problem, in this Chap-

ter, we propose a novel active density-based clustering algorithm, named Act-

DBSCAN, which works under a restricted number of used pairwise similarities.

Act-DBSCAN exploits the pairwise lower bounding (LB) similarities to initialize

the cluster structure. Then, it adaptively selects the most informative pairwise

LB similarities to update with the real ones in order to reconstruct the result until

the budget limitation is reached. The goal is to approximate as much as possi-

ble the true clustering result with each update. Our Act-DBSCAN framework is

built upon a proposed probabilistic model to score the impact of the update of

each pairwise LB similarity on the change of the intermediate clustering structure.

Deriving from this scoring system and the monotonicity and reduction property

of our active clustering process, we propose the two efficient algorithms to itera-

tively select and update pairwise similarities and cluster structure. Experiments

on real datasets show that Act-DBSCAN acquires good clustering results with

only a few pairwise similarities, and requires only a small fraction of all pairwise

similarities to reach the DBSCAN results. Act-DBSCAN also outperforms other

related techniques such as active spectral clustering.

Publications. Parts of the material presented in this Chapter have been pub-

lished in [186, 182]. The detailed information are described as follows:

• Son T. Mai, Xiao He, Nina Hubig, Claudia Plant and Christian Böhm. Ac-

tive Density-based Clustering. In International Conference on Data Mining
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(ICDM), pages 508-517, 2013.

In this work, S.T.M. proposed the theory, did most of the implementation

and experiments. X.H. implemented an active spectral clustering algorithm

and participated in the experimental comparison with Active Spectral Clus-

tering. All authors discussed the technique and the results and contributed

to paper writing.

• Son T. Mai, Xiao He. Active Density-based Clustering for Complex Data.

Technical Report, University of Munich, 2014.

In this work, S.T.M. developed the theory, implemented the algorithm and

did experiments. X.H. implemented an active spectral clustering algorithm

and participated in the experimental comparison with Active Spectral Clus-

tering.

6.1 Introduction

Density-based clustering is a fundamental technique for data clustering with appli-

cations in many fields. In density-based clustering, clusters are regarded as areas

of high object density in the data space separated by areas of lower object density.

The algorithm DBSCAN [83] formalizes a density notion for clustering by measur-

ing the cardinality of the neighborhood of each object. Compared with other clus-

tering algorithms, DBSCAN has many attractive benefits, e.g., robustness against

noise, support of general metric data and the ability to detect arbitrarily-shaped

clusters. Therefore, DBSCAN has attracted a lot of research efforts and many ex-

tensions have been proposed in the literature over the past decades [45, 44, 82, 160].

However, DBSCAN requires specifying all (dis)similarities among all pairs of ob-

jects.

In many cases, gathering all pairwise similarities among objects is a non-trivial

problem due to high computational cost, financial requirement, need for human

annotation or even unavailableness for all pairs of objects [79, 236, 262, 275]. For

example, clustering of proteins often involves a computational expensive alignment

process before two proteins can be compared [28, 275]. In [275], the authors

consider an application of clustering snapshots taken by a wearable camera in

which human annotators have to be involved to rate the similarities between two

pictures. This process is of course time consuming and expensive. For many
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tasks such as detecting community structure in social networks, obtaining full

data on the networks and the relations between its members is often hard or even

impossible due to a large number of interactions [236]. Another example is the

clustering of yeast proteins from the protein-protein interaction network where

measuring all possible interactions reliably is often infeasible [233]. The potential

difficulties of obtaining all pairwise similarities motivate the tradeoff between the

desired clustering quality and the number of required similarities [275]. To tackle

these problems, active clustering algorithms which tradeoff between the desired

clustering quality and required amount of data have become an emerging topic,

e.g., [236, 275, 79, 262, 114, 51]. However, to the best of our knowledge, there is

no density-based active clustering algorithm proposed in the literature so far.

In this chapter, we focus on the novel problem of performing DBSCAN under

a budget constraint, i.e., we can only use a limited number of pairwise similarities

to acquire well comparable clustering result as if we had the entire similarity

matrix at hand. In general, our algorithm does not have access to all pairwise

similarities in the beginning. However, it iteratively and actively selects pairs

of objects and updates the similarity matrix with their real similarities until the

budget limitation is reached. The goal is to approximate as close as possible to

the true clustering result with each similarity update thus reducing the total cost

of accessing similarities. We call our algorithm the active density-based clustering

(Act-DBSCAN).

Act-DBSCAN is based on the assumption that although the true pairwise

similarities of data are time consuming, expensive or hard to obtain, there exists

a fast, cheap and easy to obtain lower bounding (LB) function for them which can

be used to support the clustering process. Such assumption is satisfied in many

situations. For example, many effective similarity measures, e.g., Dynamic Time

Warping, Longest Common Subsequence, have quadratic time complexity which

makes them infeasible to deal with large datasets. However, there exist many

constant or linear time complexity LB functions for them which clearly require

much less computational effort [74]. Another example comes from crowdsourcing

mechanisms where the ratings of multiple annotators for the similarities between

objects are averaged to form the final results as used for the wearable camera

problem in [275]. Instead of waiting all 10 annotators to rate a pair of pictures and

averaging the results, the available ratings of several annotators could be summed

and divided by 10 to form a LB similarity. Thus, the payment for the annotators is

clearly much cheaper. For the clustering of sensor networks time-series, obtaining

the true pairwise similarities may be hard or even impossible due to the missing
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data during the signal transmission. However, the LB similarities can be easily

estimated from the available data, e.g., using the corresponding distances at all

available time-points. Many other examples could be found in other applications

as well.

In general, Act-DBSCAN initializes with the cluster structure provided by a LB

matrix. Then it iteratively selects the most informative pairwise LB similarities

to update with the real ones. The selection is based on a proposed probabilistic

model, which is built upon the Kernel Density Estimation (KDE) and Poisson

Binomial Distribution (PBD), to score the impact of the update of each pairwise

LB similarity to the change of the existing cluster structure. We call this scoring

scheme the Shared Core Object (SCO) score. In our Act-DBSCAN framework, we

propose two algorithms namely Splitting with SCO score (SP-SCO) and Merging

with SCO score (MG-SCO) following the splitting (SP) and merging (MG) schemes

respectively. Inspired by the monotonicity and reduction property of our clustering

update process, these algorithms rely on the SCO scores to actively select the most

informative pairwise LB similarities at each step in order to reconstruct the cluster

structure. The general idea of them is to maximize the change in the existing

cluster structure towards the desired result with each update. We theoretically

prove the correctness of Act-DBSCAN by showing that the clustering result of

Act-DBSCAN is identical with that of DBSCAN if the budget is large enough.

Contributions. Our contributions are summarized as follows:

1. We propose for the first time a novel active density-based clustering algo-

rithm called Act-DBSCAN following the cluster notion of DBSCAN to deal

with the sparseness (incompleteness) of the similarity matrix.

2. The Shared Core Object (SCO) score is proposed to measure the impact of

each pairwise LB similarity based on a theoretical study of the intermediate

clustering structure change and a probabilistic model to predict the core

property of objects.

3. We propose two algorithms, named Splitting with SCO score (SP-SCO) and

Merging with SCO score (MG-SCO) to actively select and update the simi-

larity matrix based on the SCO score, monotonicity and reduction properties

of our algorithm.

4. Extensive experiments have been conducted to demonstrate the performance

of Act-DBSCAN. It acquires good clustering results with only a few pairwise
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similarities, and requires only a small fraction of all pairwise similarities to

reach the DBSCAN results. Act-DBSCAN also significantly outperforms

other related techniques, e.g., active spectral clustering algorithms [236, 275].

This chapter is organized as follows. In Section 6.2, we briefly describe some

backgrounds. Section 6.3 presents our algorithm Act-DBSCAN. Section 6.4 briefly

describes some used similarity measures. Experiments are conducted in Section

6.5. We discuss relevant related approaches in Section 6.6. Finally, Section 6.7

concludes the paper.

6.2 Backgrounds

We briefly repeat some important backgrounds in this Section in order to enhance

the readability, though they are presented in previous Chapters.

6.2.1 Density-based Clustering

The key idea of clustering algorithm DBSCAN [83] is that the cardinality of the

ε-neighborhood of each object in a cluster has to exceed a predefined threshold µ.

Compared with traditional clustering algorithms such as k-Means [121], spectral

clustering [263], etc., DBSCAN has several attractive benefits as described above.

Therefore, it is the main focus of our work.

Given a set of objects O with N objects, a similarity function d : O×O → R,

parameters ε ∈ R+ and µ ∈ N+.

Definition 15 (ε-neighborhood) The ε-neighborhood of p ∈ O, denoted as Nε(p),

is defined by Nε(p) = {q ∈ O|d(p, q) ≤ ε}.

Definition 16 (Directly density-reachable) An object q ∈ O is directly density-

reachable from object p ∈ O, denoted as p . q, iff |Nε(p)| ≥ µ and q ∈ Nε(p).

Definition 17 (Density-connected) Two objects p and q ∈ O are density-connected,

denoted as p ./ q, iff there exists a sequence (x1, . . . , xm) of objects such that

∀xi : |Nε(xi)| ≥ µ and p / x1 / · · · . xm . q.
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Definition 18 (Cluster) A subset C ⊆ O is called a cluster iff the two following

conditions hold:

1. Maximality: ∀p ∈ C, ∀q ∈ O \ C : ¬p ./ q

2. Connectivity: ∀p, q ∈ C : p ./ q

Definition 19 (Core object property) An object p ∈ O is:

1. A core object, denoted as core(p), iff |Nε(p)| ≥ µ.

2. A border object, denoted as border(p), iff |Nε(p)| < µ and ∃q ∈ Nε(p) :

|Nε(q)| ≥ µ.

3. A noise object, denoted as noise(p), iff it is neither a core object nor a border

object.
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Figure 6.1: The notions of DBSCAN : (a) q is directly density-reachable from p;

(b) p and q is density-connected; (c) object a (red) is a core object, b (green) is

border object, c (black) is noise object;

Figure 6.1 (a), (b) and (c) show some notions used in DBSCAN. To construct

a cluster, DBSCAN continuously extracts objects from a seedlist S and performs

ε-range queries to find neighbor objects and inserts them into S until S is empty.

A cluster of DBSCAN contains core and border objects. The noise objects do not

belong to any cluster.
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6.2.2 Active Clustering

Due to the potential difficulties of acquiring all pairwise similarities among ob-

jects in many applications, active clustering algorithms have recently become an

emerging research topic, e.g., active spectral clustering [236, 275], active hierar-

chical clustering [79] and active k-Median clustering [262]. These algorithms focus

on the tradeoff between the clustering quality and the number of used similarities.

However, to the best of our knowledge, there is no active density-based clustering

algorithm proposed in the literature so far.

Function Active_clustering (O, N, b, B) 
     Input:  Dataset O with N objects 
                 Number of similarity updates per step b and budget B 
BeginFunction 
     Initialize a similarity matrix ܯே×ே 
     ܿ	 = 	1 
     while c ≤ B and c ≤ N(N-1)/2 do 
          Choose b entries of M and update them with their true value 
          Perform the clustering update with the updated matrix M 
          ܿ	 = 	ܿ	 + 	ܾ 
     endwhile 
EndFunction  

Figure 6.2: A general framework for active clustering.

Figure 6.2 shows a general framework for active clustering algorithms. The

algorithm starts with an arbitrary similarity matrix M . Then, b pairwise similar-

ities are actively selected and updated with their real values before a clustering

update is performed. The algorithm continues its execution until the matrix M

is fully updated or the number of used pairwise similarities exceeds a predefined

budget B.

6.3 Active Density-based Clustering

6.3.1 The Algorithm Act-DBSCAN

Given a set of objects O and a similarity function d : O×O → R, a lower bounding

(LB) function of d is a function dlb : O × O → R where ∀p, q ∈ O : dlb(p, q) ≤
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d(p, q). In our approach, we use LB similarities as a guideline for Act-DBSCAN

to select meaningful pairwise similarities.

In general, Act-DBSCAN follows the general framework in Figure 6.2 for ac-

tive clustering algorithms. In the initialization step, Act-DBSCAN starts with a

similarity matrix Mlb acquired by the LB function dlb. Due to the lower bound-

ing property, if a pair of objects (p, q) has dlb(p, q) > ε then d(p, q) > ε (since

dlb(p, q) ≤ d(p, q)). Thus the similarity update of (p, q) is meaningless and should

be considered last since it does not cause any change in the intermediate clus-

ter structure following the cluster notions of DBSCAN in Section 6.2.1. In other

words, let Glb = (O,Elb) be the ε-neighborhood graph acquired with the LB func-

tion dlb (for all edge (p, q) ∈ Elb, we have dlb(p, q) ≤ ε). As described above, we

only need to update pairs of objects (p, q) which (p, q) ∈ Elb. It is clearly more

efficient than updating the whole similarity matrix Mlb. For simplicity and read-

ability, we use the ε-neighborhood graph G to represent the similarity matrix M

w.r.t. the cluster notion of DBSCAN in the rest of this chapter.

Following the Framework 6.2, we still need a clustering update scheme and a

pairwise similarity selection scheme.

 

ε ε ε 

Glb                                     SP                                   MG 

µ = 3 

             LB distance                      True distance            
      Noise object                      Border object                        Core object 

Figure 6.3: Two clustering update schemes used in our algorithm based on Glb.

The splitting scheme (SP) starts with G = Glb and removes the edge (p, q) from

graph G if d(p, q) > ε. The merging scheme (MG) starts with empty graph G and

adds an edge (p, q) to graph if d(p, q) ≤ ε.

The clustering update schemes. Figure 6.3 describes two clustering update
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schemes used in our paper based on Glb.

Method 1 - Splitting (SP) starts with G = Glb. At each iteration, an edge

(p, q) is selected and updated with the true similarity. If d(p, q) > ε, (p, q) will be

removed from G and the corresponding cluster may be split into smaller clusters

due to the monotonicity property described in Section 6.3.2.

Method 2 - Merging (MG) starts with an empty graph G and continuously

updates edge (p, q) in Glb. If d(p, q) ≤ ε, (p, q) will be added to the graph G. This

clearly may lead to the merge of the two corresponding clusters.

For both methods, original DBSCAN clustering is performed on the result

graph G to update the cluster structure. While SP can exploit the existing clus-

tering result produced by the LB function and thus has a good starting point,

it may suffer from a problem that many edges might need to be removed before

an object could be separated from a cluster. Thus the improvement of cluster-

ing quality may be stepwise and slow. MG, in contrast, is not affected by this

problem, however, it does not have a good starting point like SP.

The similarity selection scheme. Randomly selecting an edge (p, q) ∈ Elb
to update for both methods (denoted as SP-Rand and MG-Rand) is simple and

straightforward. However the results are unsatisfactory in our experiments. There-

fore, we propose two methods to actively select edges to update based on their

impacts on the change of intermediate cluster structure which are measured by

the Shared Core Object (SCO) scores proposed in Section 6.3.5. These meth-

ods are named Splitting with SCO score (SP-SCO) and Merging with SCO score

(MG-SCO) and described in the Act-DBSCAN framework below.

The Act-DBSCAN framework. Figure 6.4 shows a general framework for SP-

SCO and MG-SCO based on the SCO scores. For both methods, we first calculate

the probability Pdel((p, q)) (Section 6.3.3) that an edge (p, q) of Elb will have the

true similarity d(p, q) > ε. Then all edges of Elb are divided into two separate

lists L1 and L2 so that every pair of objects in L1 has a higher likelihood to have

d(p, q) > ε and vice versa. A list L of edges to update is then created by putting L1

and L2 together. Based on the monotonicity property (Section 6.3.2), we remove

meaningless edges from L to improve the performance of the algorithm. After

that we calculate the SCO scores (Section 6.3.5) of all edges of Elb and initialize

the graph G as described above.

For each iteration of Act-DBSCAN, we select an unprocessed set S of edges

based on their SCO scores and update them with their true similarities. We
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Function Active_clustering (O, N, b, B, µ, ε) 
     Input:  Dataset O with N objects 
                 Number of similarity updates per step b and budget B 
BeginFunction 
 % Initialize the matrix and clustering results 
 Initialize ε-neighborhood graph Glb = (O, Elb) with dlb 
 Perform DBSCAN on Glb  
 % Create an update list L of edges 
 Calculate the edge probabilities for all edges (p,q) in Elb 
ଵܮ								 =	 ,݌)} ,݌)|(ݍ (ݍ ∈ ௟௕ܧ ∧ ௗܲ௘௟(݌, (ݍ ≥ ߬} 
ଶܮ								 =	 ,݌)} ,݌)|(ݍ (ݍ ∈ ௟௕ܧ ∧ ௗܲ௘௟(݌, (ݍ < ߬} 
 Create update list L of all edges from Elb by arranging them  
  according to their appearance in L1 or L2 first 
 Remove redundant edges from L by using monotonicity property 
 % Calculate the impact of each edge by SCO score 
 Calculate SCO score for all edges (p,q) in Elb 
 % Actively select edges to query and update clusters 
 Initialize graph G 
 c = 1 
 while c ≤ B and c ≤ N(N-1)/2 do 
  if L is not empty then  
   Remove set S of b edges of G from L1 or L2 
   Update the true values of all edges (݌, (ݍ ∈ ܵ 
   Update the graph G 
   Perform DBSCAN on G to update the cluster structure 
   Remove meaningless edges from L by using    
    monotonicity  property and reduction property 
   Update the SCO scores for every edge in L 
  else 
   Randomly update  b unprocessed edges or break the alg. 
  endif 
  c = c + b 
 endwhile 
EndFunction  

Figure 6.4: General framework for Act-DBSCAN.

then update the graph G following these changes. After that, DBSCAN is per-

formed based on the graph G to acquire a new clustering result. Then, we remove

meaningless edges from L following the monotonicity property (Section 6.3.2) and
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reduction property (Section 6.3.6) of our algorithm. Lastly, we update the SCO

scores of all edges in L.

When L is empty, all the remaining pairwise LB similarities have no effect on

the current cluster structure. Thus, they can be randomly updated, or we can

stop the algorithm.

The algorithm SP-SCO. The algorithm SP-SCO starts with G = Glb. Due to

its splitting scheme, the cluster structure will change most if the updated edge

(p, q) is removed from G. Therefore, the edges in L1 should be considered first.

Thus, the update list is L = L1⊕L2. Also, to maximize the change in the cluster

structure, (p, q) should cause a cluster to split. Thus, it should be the one with

highest impact following the comparison function φ (Section 6.3.5).

The algorithm MG-SCO. The algorithm MG-SCO starts with an empty graph

G. Due to its merging scheme, the cluster structure will change most if the

updated edge (p, q) is added to G. Thus, the edges in L2 should be considered

first. The update list is therefore L = L2 ⊕ L1. To maximize the change in the

cluster structure, an edge (p, q) should be selected so that it will connect existing

clusters together. Thus, it should be the one with the lowest impact following the

comparison function φ (Section 6.3.5).

6.3.2 Monotonicity Property

The nature of DBSCAN permits efficient clustering algorithms with the mono-

tonicity of cluster structures under some certain conditions, e.g., subspace projec-

tion of data [160], the use of a sequence of LB functions [184]. Here, we prove

that the monotonicity property of the cluster structure still holds under the par-

tial upgrade of the similarity matrix from the LB to the true similarity in our

algorithm.

Let Gi = (O,Ei) and Gj = (O,Ej) be the partial upgraded ε-neighborhood

graphs of dataset O at iteration i and j (i ≤ j) of Act-DBSCAN as stated in

Section 6.3.1. Let NG
ε (p) be the ε-neighborhood of object p under the graph G.

We have:

Lemma 6 For every object p ∈ O, NGi
ε (p) is a superset of N

Gj
ε (p).

Proof 6 Straightforward from LB property and update scheme stated in Section

6.3.1.
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Lemma 7 For every object p ∈ O, we have:

1. if p is a core object under graph Gi, then it is a core, a border or a noise

object under Gj.

2. if p is a border object under graph Gi then it is a border or a noise object

under Gj.

3. if p is a noise object under graph Gi, then it remains a noise object under

Gj.

Proof 7 According to Lemma 6, a core object p will become a border or a noise

object if N
Gj
ε (p) < µ. Due to the reduction of its neighborhood size, a border

object p will never become a core object, but it will become a noise object if all of

its neighbor core objects lose their core property. A noise object p will not change

because it does not have any core object inside its neighbors.

For every cluster C ⊆ O, let core(C) be a set of all core objects in C. We have

the following lemma:

Lemma 8 For all clusters Cv under graph Gi (CGi
v ), there exists a cluster Cu

under graph Gj (C
Gj
u ) such that core(Cu) ⊆ core(Cv).

Proof 8 Assume that there exist p, q ∈ CGj
u so that p ∈ CGi

k and q ∈ CGi
l . From

Definition 18, we have ¬p ./Gi q ⇒ ¬p ./Gj q according to Lemma 6 and 7. Thus,

p and q belong to different clusters under Gj by Definition 18.

Figure 6.5 illustrates the monotonicity property of Act-DBSCAN from Gi to

Gj. Cluster C1 at Gi is broken into two clusters C11 and C12 at Gj due to the

deletion of edge (a, b). The core object a at Gi changes to a border object at Gj.

Similarly, object b changes from a core to a noise object. The border object c

becomes a noise object. The noise object d remains unchanged.

Why is the monotonicity property interesting? In the graph G, there exist

5 kinds of edges: core-core, core-border, border-border, border-noise and noise-

noise (the core-noise edges do not exist according to Definition 19). Due to the

Lemma 7, we do not need to update the border-border, border-noise and noise-

noise edges since they do not participate in the clustering process. Thus, it helps
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Figure 6.5: The change of clustering result of Act-DBSCAN from Gi to Gj. The

core object a changes to a border object. Object b changes from a core to a noise

object. The border object c becomes a noise object. The noise object d remains

unchanged. Cluster C1 is broken into two clusters C11 and C12.

the algorithm to reach the desired clustering result faster by ignoring or postponing

these meaningless updates.

From Lemma 8, a cluster may be split if one of its core-core edges is deleted or

one of its core objects loses its core property. Thus it plays an important role for

the selection of meaningful edges. The two algorithms SP and MG are inspired

from this property. It also motivates the proposed SCO score (Section 6.3.5) to

measure the impact of each edge. By choosing edges which may cause a cluster

to be split to update first, we can quickly acquire the final cluster structure from

the clustering result acquired by the LB similarities.

The monotonicity property allows an efficient reclustering scheme at each iter-

ation of the active clustering. Assume that edge (p, q) is removed from cluster C,

all we need is to perform DBSCAN on C to update the cluster structure instead

of the whole dataset. Thus, it helps to speed up the clustering roughly about

O(N2/|C|2) time.

6.3.3 Edge Probability

Finding an edge (p, q) ∈ Elb of Glb such that the true similarity d(p, q) > ε plays

an important role in Act-DBSCAN to avoid meaningless updates which do not

bring any change to the clustering result. For example, if we choose (p, q) with

d(p, q) ≤ ε to update with the algorithm SP (Section 6.3.1) then the cluster

structure does not change. This problem however is non-trivial. For most kinds of
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similarity measures, the relationship between LB and true similarity is somewhat

arbitrary in our experiments. Therefore, one possible way is using a small training

set T to learn the probability distribution of the difference between them and

predict the true similarities based on the LB similarities. In our work, we use

Kernel Density Estimation (KDE) to estimate this probability distribution rather

than the traditional Gaussian distribution since KDE can robustly estimate the

probability for any unknown distribution [242]. Figure 6.6 (left) shows an example

for the dataset Symbols, the result of KDE is more close to the true distribution,

represented by a histogram, than the Gaussian distribution obviously.

Kernel Density Estimation (KDE). Let (x1, . . . , xn) be a sample drawn from

the difference between LB and true similarity distribution of training set T with

an unknown density f , the kernel density estimation is defined as follows:

f̂h(x) =
1

nh

n∑
i=1

k(
x− xi
h

) =
1

n

n∑
i=1

kh(x− xi)

where k(·) is a symmetric but not necessarily positive kernel function that in-

tegrates to one, h > 0 is a smoothing parameter called the bandwidth and

kh(x) = h−1k(x/h).

The cumulative distribution of KDE is then defined as:

F̂h(x) =

∫ x

−∞
f̂h(u)du =

1

n

n∑
i=1

Kh(x− xi)

where

K(x) =

∫ x

−∞
k(u)du

is integrated kernel and Kh(u) = K(u/h). As common choice, we choose k(x) =

(2π)−1/2exp(−x2/2) (standard Gaussian distribution). And the bandwidth h is

estimated by Silverman’s rule of thumb [242] as follows:

h = (
4σ̂5

3n
)
1
5 ≈ 1.06σ̂n−

1
5

where σ̂ is the standard deviation of the samples. In contrast to parametric statis-

tics, KDE allows to robustly estimate the probability for any unknow distribution

[242].

Calculate the deletion probability. For an edge (p, q) ∈ Elb, the probability

that it is removed from Elb under the true similarity function (the probability that

d(p, q) > ε) is:



6.3 Active Density-based Clustering 131

Pdel((p, q)) = P (d(p, q) > ε)

= P (d(p, q)− dlb(p, q) > ε− dlb(p, q))
= 1− f̂h(x > ε− dlb(p, q))
= 1− F̂h(ε− dlb(p, q))

We note that Pdel((p, q)) can be calculated in constant time since the size of

the training set T is small and fixed.

Estimate the probability threshold. We need to find a probability threshold

θ̃ so that if Pdel((p, q)) ≥ θ̃ then (p, q) has high likelihood to have d(p, q) > ε.

Given n pairwise similarities, for each pair (p, q) (called a trial), we have only

2 states: (1) d(p, q) > ε (success) with probability θ and (2) d(p, q) ≤ ε (failure)

with probability 1 − θ. Then the probability f that we have k successes follows

the Binomial distribution [11] as follows:

f(k, n, θ) =

(
k

n

)
θk(1− θ)n−k

From the training set T , we have δ the percentage of success trials over all

trials. Therefore, for n pairwise similarities, we expect to have δn successes. By

assuming that all trials have same probability, we can estimate the probability θ̃

that k = δn with (1 − α)% confidence interval using Agresti-Coull rule [11] as

follows:

θ̃ =
δn+ z21−α/2/2

n+ z21−α/2

with the confidence interval:

θ̃ ± z1−α/2

√
θ̃(1− θ̃)
n+ z21−α/2

where z1−α/2 is the 1 − α/2 percentile of a standard normal distribution. For

example, for a 95% confidence interval, we have α = 0.05, so z1−α/2 = 1.96.

Clearly, we have n = N(N − 1)/2 is the total number of pairwise similarities.



132 6. Active Density-based Clustering

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Percentage of used coefficients

M
C

C

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

M
a

tt
h

e
w

s
 C

o
rr

e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

−5 0 5 10 15
0

0.2

0.4

0.6

0.8

Difference between true and LB distance

P
ro

b
a

b
ili

ty
 a

n
d

 h
is

to
g

ra
m

 (
x
3

9
0

1
5

7
)

 

 

Hist

Norm

KDE

Random Pos−Random Pos−Binomial

ε = 18ε = 16

Figure 6.6: The dataset Symbols: (Left) Kernel Density Estimation (KDE) can es-

timate the true probability distribution better than traditional Gaussian distribu-

tion. (Right) The proposed technique Pos-Binomial outperforms other techniques

in term of the prediction accuracy.

How good is the prediction? To the best of our knowledge, we are the first to

solve this particular problem. Thus, we compare our technique with two simple

methods. Method 1 (Random) randomly classifies Elb into 2 classes. Method 2

(Pos-Random) randomly selects the threshold θ̃ to perform classification.

We use the Matthews Correlation Coefficient (MCC) [23] to assess the quality

of this binary classification.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP, FP, TN, FN are true positive, false positive, true negative, false neg-

ative respectively. MCC has value in [-1,1] with 1 being perfect prediction, 0

being similar to random prediction, -1 being totally different with the ground

truth. Compared with other techniques such as Accuracy and Precision, MCC

can avoid inflated performance estimates on imbalanced datasets. Thus, MCC

is a reasonable choice in our case, since the numbers of success and failure are

usually very different. We report the best results for Random and average results

for Pos-Random over 100 runs.

Figure 6.6 shows the prediction results for the real dataset Symbols under

Euclidean Distance and Haar Transform as LB function (please refer to Section

6.4 and 6.5 for descriptions). We set ε = 16 and 18 respectively and 5% number of

objects is randomly sampled as the training set T . Our algorithm, denoted as Pos-

Binomial (with 95% confident interval), outperforms Pos-Random and Random in
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most cases, especially when the quality of LB function, denoted by the tightness

of LB (averaged ratio between LB and true similarity), is low. The same results

are also observed with other datasets.
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Figure 6.7: The comparison of different prediction techniques for 4 real datasets.

Pos-Binomial outperforms other techniques in term of prediction accuracy.

Figure 6.7 additionaly shows the comparison of different prediction techniques

on 4 more real datasets. As we can see, the Pos-Binomial outperforms other

techniques, especially when the quality of LB function is low.

The role of the training set T . The training set T is only used to study the

difference between the true similarity and the LB similarity. In case the training

set T is not available, we can assume a probabilistic model such as Gaussian in

the beginning. For each pairwise similarity update, the difference between the

true similarity and the LB similarity is then used with Kernel Density Estimation

(KDE) to recalculate the probability of each edge. The more updated similarities,

the better the prediction. Though continuously updating the edge probability

leads to the improvement of prediction and thus performance of the algorithm, we

use in our paper a fixed training set T to calculate the deleted probability of each

edge for clarity.
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6.3.4 Core Object Probability

If object o ∈ O is a core object under the LB similarity, is o still a core object

under the true similarity?

Let X = (x1, . . . , xn) be the set of neighbors of o under dlb. For each object

xi, let P (xi) = P (d(o, xi) ≤ ε) = 1 − Pdel(o, xi) be the probability that xi is a

neighbor of o under the true similarity d (P (xi) 6= P (xj)). Then the probability

that o has k neighbors follows the Poisson Binomial distribution [58] as follows:

f(k, n) =
∑
A∈Xk

∏
i∈A

P (xi)
∏

j∈X\A

(1− P (xj))

where Xk is the set of all subsets of k objects in X. According to [58], f(n, k) can

be computed in O(kn) time by using the recursive formula:

f(k, n) =

{ ∏n
i=1 P (xi) if k = 0

1
k

∑k
i=1(−1)i−1f(k − i, n)T (i) if k > 0

where

T (i) =
n∑
j=1

(
P (xj)

1− P (xj)
)i.

Let X̃ = (x′1, . . . , x
′
m) be the subset of X whose all pairs (o, x′i) have already

been updated with the true similarity d (P (x′i) = 1). In case m < µ, o will need

at least µ −m objects in its neighbors under the function d to be a core object.

Thus, the possibility that o is a core object (Pcore(o)) is:

Pcore(o) =


1 if m ≥ µ

0 if n < µ

1−
∑µ−m−1

i=1 f(i, n−m) otherwise

Following the recursive formula, Pcore(o) can be calculated inO(N) time (O(N2)

overall) since µ is constant and |Nε(o)| ≤ N .

6.3.5 Edge Score and Comparison

Given a pair of objects (p, q) under dlb, assessing its impact on the cluster structure

under the similarity d is one of the most important problems in Act-DBSCAN.

Let S = {o|o ∈ Nε(p) ∩ Nε(q) ∧ core(o)} be a set of shared core objects inside



6.3 Active Density-based Clustering 135

the ε-neighborhoods of p and q. The Shared Core Objects (SCO) score of (p, q) is

defined as:

SCO((p, q)) =
∑
o∈S

Pcore(o) + β|S|

where β in [0, 1] is used to control the importance of current state versus predicted

state. In our paper, we set β = 1 in all experiments. Intuitively, if (p, q) has a

high SCO score, then (p, q) belongs to a high density area and has higher chance

to be in the same cluster.

SCO score for an edge (p, q) can be calculated in O(N) time. Thus, the time

needed to calculate the SCO scores of the whole edges is O(N3). In our algorithm,

SCO scores are re-computed at each iteration. However, due to its local scheme,

for each iteration of Act-DBSCAN, we only need to update the related SCO scores.

Thus, the time complexity to update SCO scores for each iteration is O(bN) or

O(N), since b is a constant and the neighborhood size is smaller than N .

Given 2 edges (p, q) and (r, s), the comparison function φ between them is

determined by SCO scores and LB functions as follows:

φ((p, q), (r, s)) =



> if SCO((p, q)) < SCO((r, s))− τ
< if SCO((p, q)) > SCO((r, s)) + τ

> if dlb(p, q) > dlb(r, s)

= if dlb(p, q) = dlb(r, s)

< if dlb(p, q) < dlb(r, s)

otherwise

where τ is a user defined threshold (which is always set to 1 in our paper). If

φ((p, q), (r, s)) =′>′ then (p, q) has higher impact than (r, s) to cluster structure

(since its has lower SCO score and higher LB similarity, it is more likely to be

removed under the true similarity d and thus causes a cluster to be split if the

algorithm is SP (Section 6.3.1)).

6.3.6 Reduction Property

Assuming that p and q are core objects of a cluster C under the true similarity

d. Then, the edge (p, q) will never need to be updated since p and q are already

density-connected. This scheme helps to reduce the meaningless updates signif-

icantly, especially for very dense clusters, since each object only needs to have

µ neighbors to be a core object under the true similarity. Figure 6.8 shows an
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 µ = 3 Noise point 
Border point 
Core point 

Not updated edge 
Updated edge 
Meaningless edge 

p p 

q 

q 

Figure 6.8: An example for reduction property. The edge (p, q) is meaningless and

does not need to be updated since p and q are already density-connected. In a

high density area (right), there are more meaningless edges than in a low density

area (left).

example for reduction property of Act-DBSCAN. In the high density areas, there

are more meaningless edges than low density areas.

6.3.7 Algorithm Analysis

Correctness. We prove that Act-DBSCAN requires only B0 � N(N − 1)/2

number of updates to reach the same cluster structure as DBSCAN.

The filter of the LB similarity, the monotonicity property and the reduction

property significantly reduce the number of edges which needs to be updated from

the list L at each iteration. Therefore, the total number of similarity updates

is B0 with B0 � N(N − 1)/2. Since these techniques only ignore edges which

do not play any role in the clustering process, the core properties of objects are

preserved. Thus, Act-DBSCAN produces the same results as DBSCAN, if budget

B ≥ B0. If B < B0, Act-DBSCAN may only approximate the result of DBSCAN.

In our experiments, B0 is usually less than 20% of the total number of all pairwise

similarities. Also, Act-DBSCAN produces identical results as DBSCAN with only

B1 � B0 similarity updates.

Complexity analysis. Since active clustering algorithms repeatedly perform

clustering with each pairwise similarity update, the worst case time complexity

for the naive algorithms such as SP-Rand and MG-Rand will be O(ϑN2 + N4)

where O(ϑ) is the complexity of the similarity function d in general. For the two

algorithms SP-SCO and MG-SCO, the time needed to calculate the edge prob-

ability and the SCO scores of all edges is O(N2) and O(N3) respectively (see
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Section 6.3.3, 6.3.4 and 6.3.5). At each iteration, the time needed to recalculating

the SCO scores and updating the clusters is O(N) and O(N2) in general respec-

tively. Thus the worst case time complexity is also O(ϑN2 + N4). Note that,

we assume B = N(N − 1)/2 and b = 1 for clarity and the time complexity of

the LB function dlb is much lower than d. However, unlike the active spectral

algorithms (with O(ϑN2 + N5) time complexity), the actual time complexity of

Act-DBSCAN is much smaller than the worst case due to many useful properties,

e.g., the monotonicity and reduction property.

In many complex databases such as time-series, multimedia, gene expression

databases, each object contains thousands to millions points which makes the

similarity measure between them extremely time consuming, especially with ex-

pensive distance measures, e.g., such as DTW, LCS (both with quadratic time

complexity) [74]. In this case, the overhead of active scheme will be overwhelmed.

Thus, Act-DBSCAN, due to its monotonicity property and reduction scheme, will

enjoy dramatically performance improvement compared with DBSCAN as shown

in Section 6.5.

6.4 Similarity Measures

Since Act-DBSCAN is a general framework, it can be used with any kind of

(dis)similarity measures and their LB functions.

Euclidean Distance. Recent researches have introduced many kinds of (dis)similarity

measures such as Euclidean Distance (ED), Dynamic Time Warping (DTW),

Longest Common Subsequence (LCS), etc. [74]. In this chapter, we apply the

ED to demonstrate the performance of our algorithm due to its simplicity and

ubiquitousness.

Given two objects A = {a1, . . . , an} and B = {b1, . . . , bn} ∈ O, we have:

d(A,B) =
√∑n

i=1(ai − bi)2.

Lower bounding function. In the literature, there exist many different kinds

of LB functions for ED, e.g., Discrete Wavelet Transform (DWT) [216], Piecewise

Aggregate Approximation (PAA) [74]. Though all of them can be used, we simply

choose DWT as a representative. Interested reader please refer to Chapter 3 for

more details on DWT.

For the LB function, we use DWT to transform each object into a sequence

of Wavelet coefficients. For every pair of objects, we use only first κ% coefficients
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of each object (κ � 1) and calculate the ED between these feature vectors. The

result is a lower bounding of the ED between the two objects as shown in [216].

6.5 Experiments

All experiments are conducted on a 3 Ghz Workstation with 8 GB RAM under

Window Server 2008 using Java.

6.5.1 Algorithms and Comparison Criteria

Datasets. We use six datasets from UCR achieves [131] (http://www.cs.ucr.edu/-

∼eamonn/time series data/), namely Trace, OliveOil, CinC ECG torso, Mallat

and Symbols. These datasets contain many time-series objects acquired from di-

verse fields and are scale from small to large datasets. In addition, the dataset

Coil20 acquired from Columbia Object Image Library (http://www1.cs.columbia.edu/-

CAVE/software/softlib/coil-20.php) is also examined. This dataset contains 1440

pictures of 20 different objects (72 pictures per object). As common methods,

we use ED distance between all pixel intensities to calculate the similarity. Note

that the UCR datasets are re-interpolated to the length of 2blog(n)c+3 to use with

DWT. This however does not affect the comparisons since all SP-Rand, SP-SCO,

MG-Rand, MG-SCO produce the same results as DBSCAN.

Cluster Evaluation. To compare the clustering results with the ground truths,

we use three different cluster evaluation methods, namely Dom [76], NMI [258]

and AMI [258]. However, we only show the NMI for clarity, since the results of

AMI and Dom are similar to NMI. The result of NMI is in [0,1], with 0 means

that the clustering result is independent of the ground truth and 1 means that the

clustering result is the same as the ground truth.

Algorithms. Since there is no active density-based clustering algorithm proposed

in the literature, we compare the 4 heuristics SP-Rand, SP-SCO, MG-Rand, MG-

SCO of Act-DBSCAN proposed in Section 6.3.1. Note that we do not compare

with the pure random techniques SP and MG which randomly select pairwise

similarities from all pairwise similarities because they clearly perform worse than

SP-Rand and MG-Rand which randomly select pairwise similarities only from

neighborhood graph Glb (see Section 6.3.1). We also compare Act-DBSCAN with
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Figure 6.9: The comparison of the four algorithms SP-Rand, SP-SCO, MG-Rand

and MG-SCO for six real datasets. SP-SCO and MG-SCO clearly outperforms

other random techniques.

the active spectral clustering algorithms [236, 275]. The faster the algorithms reach

the true clustering result w.r.t. the number of used true similarity measures, the

better the algorithms are [236, 275].

Parameter Setting. To fully understand the performance of Act-DBSCAN, we

set the budget limitation as the full similarity matrix (B = N(N − 1)/2). Act-

DBSCAN is run with 1000 steps. At each step, b = N(N − 1)/2000 pairwise

similarities are chosen to update with the true ones. For the two parameters µ

and ε, we run DBSCAN with many different values of µ and ε to find the best

parameters. Then these settings are used for our algorithm Act-DBSCAN. Thus

this excludes any possible comparison bias.

6.5.2 Performance Analysis

Figure 6.9 shows the performance of the four algorithms SP-Rand, SP-SCO, MG-

Rand, MG-SCO for the six real datasets. The parameters µ, ε of DBSCAN, and

κ of the Haar transform are shown beside the names of the datasets respectively.

For most datasets, the performance of SP-SCO and MG-SCO clearly outper-

form random techniques SP-Rand and MG-Rand, except on the dataset Coil20

where the performance of MG-SCO and MG-Rand are somewhat hard to distin-

guish. Due to the update problem of the SP heuristic described in Section 6.3.1,
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SP-Rand performs worst and SP-SCO has staircase shapes on dataset OliveOil.

In contrast, MG-Rand and MG-SCO acquire smooth and stable performance since

they are not affected by this problem. In general, SP-SCO performs the best on

most datasets, except the dataset Trace where MG-SCO is clearly the best. MG-

SCO does not start with existing cluster structure provided by the LB function

thus they need more time to reach some certain results. This makes them less

efficient than SP-SCO in many cases.

For all datasets, only small fractions of pairwise similarity are required to reach

the desired results. For most datasets, SP-SCO and MG-SCO require less than

10% the total number of pairwise similarities to acquire satisfactory results, except

for the dataset Trace.

Summary. Act-DBSCAN acquires very good performance on real datasets. It

requires only few true pairwise similarities to reach the true clustering result,

especially with SP-SCO.

6.5.3 Parameter Analysis
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Figure 6.10: The effect of the LB function on dataset Symbols.

The LB function. Figure 6.10 shows the effect of LB functions on dataset

Symbols. The percentages of Haar coefficients κ are shown beside the name of
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dataset together with the Tightness of LB function (TLB). As we can see, the

performance of SP-SCO varies with the quality of the LB function (indicated by

the TLB). When the quality of LB is too low (0.344), SP-SCO performs worse

than MG-SCO and MG-Rand. However, when the quality of LB is good (0.505,

0.625 and 0.676), SP-SCO clearly outperforms the others. MG-SCO, in contrast

with SP-SCO, produces more stable results due to its merging scheme. For both

algorithms, the higher the TLB, the better the performance that they acquire.

The same results are also observed in other datasets as well.

By measuring the TLB on the training set T , we can determine which heuristic

we should use. If the TLB is too low (e.g., TLB < 0.5) then MG-SCO should

be chosen. If the TLB is good enough (e.g., TLB ≥ 0.5) then SP-SCO should

be chosen. On the contrary, if we want to choose the LB function to use with

SP-SCO, then it should have high TLB. In case of ED with Haar wavelet as LB

distance, higher TLB means that κ is bigger.

0 10 20 30 40 50
0

0.2

0.4

0.6
0.7

Percentage of Similarities

N
M

I

 

 

0 5 10 15 20
0

0.2

0.4

0.6
0.7

Percentage of Similarities

N
M

I

0 10 20 30 40 50
0

0.2

0.4

0.6
0.7

Percentage of Similarities

N
M

I

 

 

0 5 10 15 20
0

0.2

0.4

0.6
0.7

Percentage of Similarities

N
M

I

τ = 0.0 τ = 1.0 τ = 2.0 τ = 3.0

b = 10 b = 100 b = 1000 b = 10000

SP−SCO

SP−SCO

MG−SCO

MG−SCO

Figure 6.11: The effect of the parameter b and τ on SP-SCO and MG-SCO for

the dataset Trace.

The parameter b. Figure 6.11 (bottom) shows the relationship between the

clustering quality of SP-SCO, MG-SCO and the parameter b of Act-DBSCAN.

We run Act-DBSCAN with 10, 100, 1000 iterations respectively (that means

b = N(N − 1)/20, N(N − 1)/200 and N(N − 1)/2000 respectively). As we see,
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the smaller the value of b, the better the performance of Act-DBSCAN, since the

cluster structure is updated more frequently thus the role of each pairwise similar-

ity is evaluated more properly. However, too small values would not bring much

benefit.

Parameter τ . Figure 6.11 (top) shows the relationship between the clustering

quality of SP-SCO, MG-SCO and the threshold τ of the comparison function φ

described in Section 6.3.5 for the dataset Trace. As we can see, our algorithm is

robust to the choices of τ . The quality curves are almost the same with different

values of τ .
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Figure 6.12: The effect of the parameter µ and ε on SP-SCO and MG-SCO for

the dataset Trace.

Parameter µ and ε. Figure 6.12 shows the effects of µ and ε on SP-SCO and

MG-SCO. The bigger the parameter µ and the smaller the parameter ε, the faster

SP-SCO reaches the final result and the slower MG-SCO reaches the final result.

The reason is that SP-SCO needs to remove less edges to change the core property

of an object thus causing a cluster to be split while MG-SCO needs to add more

edges to cause the merging of two clusters.
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6.5.4 Comparison with Spectral Clustering

Although there exist several active clustering algorithms for spectral clustering

[236, 275], hierarchical clustering [79], etc., the comparison between these al-

gorithms and our algorithm seems unintuitive since they have different natures

which have been extensively studied in the literature. However, it is still of in-

terest for us to evaluate the performance of our algorithm. Here, we compare

Act-DBSCAN with the four active spectral clustering algorithms denoted as As-

pecW, AspecW-Inter [275] and AspecS, AspecS-Inter [236] (”Inter” means inter-

leave version [236, 275]) since they are closest to the nature of DBSCAN and can

be extended to used with the LB functions. For each algorithm, we also report

the result of an extended version using LB similarity matrix as an initialization,

denoted by the suffix ”-LB”, to ensure the fair comparison with Act-DBSCAN.

We note that the comparison with active spectral clustering is conducted on

two cluster datasets as in [275] and [236].
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Figure 6.13: Comparison with Active Spectral clustering on 2 real datasets

OliveOil (6, 0.18, 2%, 0.08) and Coil20 (6, 2.5, 5%, 2). SP-SCO and MG-SCO

acquire better performance than active spectral clustering algorithms.

Figure 6.13 shows the comparison results for two real datasets OliveOil and

Coil20. However, we only show the 2 best results out of 8 different algorithms for

clarity. The parameters µ, ε of DBSCAN, κ of Haar and σ of Gaussian Kernel of

spectral clustering are shown beside the names of datasets. As we can see, SP-

SCO and MG-SCO have better performance since the use of LB function provides

an efficient way to select meaningful pairwise similarities. Unlike Act-DBSCAN,

the use of LB similarity matrix does not benefit the overall performance of active

spectral algorithms due to the non-correlation between the LB and true similarity.



144 6. Active Density-based Clustering

With the use of LB similarity matrix, they acquire better performance in the

beginning. However, their performance becomes worse in the long term. The

reason why the LB similarity matrix does not help to improve the performance of

active spectral clustering is that the relationship between LB and true similarities

is somewhat arbitrary, i.e., two objects with very big similarity may have very

small LB similarity and vice versa. Thus, the second eigenvector cannot reflex

the cluster structure correctly with the LB similarities. Act-DBSCAN, however,

is less affected by this phenomenon.
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Figure 6.14: Comparison with Active Spectral clustering on dataset OliveOil. SP-

SCO and MG-SCO outperforms active spectral clustering algorithms.
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Figure 6.15: Comparison with Active Spectral clustering on dataset COIL20. SP-

SCO and MG-SCO outperforms active spectral clustering algorithms.

Figure 6.14 and 6.15 show the comparison between SP-SCO, MG-SCO and all

the eight variants of active spectral clustering for the real dataset OliveOil and
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COIL20.
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Figure 6.16: Stability of active spectral algorithm AspecS and MG-SCO on dataset

Coil20. The performance of AspecS varies significantly.

Figure 6.16 shows the min, max and average performance of active spectral

clustering algorithms AspecS and MG-SCO for dataset Coil20. The performance

of AspecS varies significantly at each run. The same results are observed with other

active spectral clustering algorithms. In contrast to active spectral clustering, the

performance of Act-DBSCAN (MG-SCO and SP-SCO) is much more stable. The

result varies negligible at each run. The instability of active spectral clustering

algorithms are caused by the eigen decomposition of the similarity matrix while

the instability of Act-DBSCAN is caused by the choice of parameter τ . The larger

the parameter τ , the more unstable the result of Act-DBSCAN.

Summary. Act-DBSCAN requires less pairwise similarities to produce the same

results as active spectral clustering.

6.5.5 How many similarities do other algorithms use?

In Figure 6.17, the vertical lines indicate the total numbers of true pairwise similar-

ities that other algorithms used to produce the final results of the dataset Symbols.

These algorithms, namely anytime DBSCAN (A-DBSCAN) [184], DBSCAN with

LB as a filter (M-DBSCAN) [45], DBSCAN with XSeedList (B-DBSCAN) [45],

try to speed up DBSCAN by reducing the total number of used pairwise similar-

ities. Note that, none of these algorithms is active clustering algorithm and can

not deal with the budget problem of Act-DBSCAN. Thus, we only use the vertical

lines to represent the total numbers of pairwise similarities that they used.
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Figure 6.17: The total numbers of used pairwise similarities acquired from different

algorithms.

It is interesting to see that Act-DBSCAN, especially with SP-SCO, requires

very small number of pairwise similarities to reach a satisfactory result. The

same results are also observed with other datasets as well. The effectiveness of

Act-DBSCAN comes from the combination of the monotonicity and reduction

property of our algorithm which leads to significant reduction of unnecessary pair-

wise similarity updates. Moreover, the efficiency of the SCO scoring system helps

the algorithm to efficiently identify the most informative pairwise similarities to

update first. Hence, Act-DBSCAN reaches the desired results much faster than

random scheme.

6.5.6 Runtime Analysis

In many complex databases such as time-series, multimedia, gene expression databases,

each object contains thousands to millions points which makes the similarity mea-

sure between them extremely time consuming, especially with expensive distance

measures, e.g., such as DTW, LCS (with O(M2) time complexity) [74]. In this

case, the overhead of active scheme will be overwhelmed. Thus, Act-DBSCAN,

due to its monotonicity property and reduction scheme, will enjoy dramatically

performance improvement compared with DBSCAN.

To demonstrate this property of Act-DBSCAN, we use DTW as the similarity

measure. In contrast to EU, DTW [132] allows flexible matching between object
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points and thus is one of the most effective similarity measures for many kinds of

complex objects such as time-series, etc. [74]. However, its O(M2) time complexity

remains a bottle neck in many applications. DTW requires a parameter ξ ∈ [0, 1]

which determines the size of matching window to be set in percentage of the length

of objects. Base on this window scheme, Keogh et al. [132] proposed an O(M)

time complexity LB distance called LB Keogh which is still one of the best LB

techniques for DTW nowadays.
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Figure 6.18: Runtime comparison for the dataset Trace. The parameters µ, ε and

warping window size for LB Keogh are 30, 75.0 and 30% respectively. Since they

produce only 1 result during their runtime, the results of DBSCAN, M-DBSCAN

and B-DBSCAN are presented by horizontal lines.

Figure 6.18 shows the comparison among Act-DBSCAN, DBSCAN [83], M-

DBSCAN and B-DBSCAN [45] and A-DBSCAN [184] for the dataset Trace using

DTW and LB Keogh [74] as the similarity and LB measures. As we see, SP-

SCO and MG-SCO acquire the same result with DBSCAN after 5% percents of

all similarity measures. Thus if we stop the algorithm at this point, SP-SCO and

MG-SCO require around 25 seconds, which is up to 20 times faster than DBSCAN

(494 seconds) and its variants. Even if they run to the end, SP-SCO and MG-SCO

is still faster than or at least equivalent to others. That means the pruning power

of Act-DBSCAN overwhelms the overhead for the active scheme in this case.

6.6 Discussions

Active Clustering. Most active learning algorithms for clustering focus on the

learning of pairwise constraints (usually in the form of must-link and cannot-link

constraint) for semi-supervised clustering such as [98, 265, 271, 187, 25, 267, 280,
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98]. Recently, active clustering algorithms which focus on the sparseness of the

similarity measure matrix have become an emerging research in the literature, e.g.,

[51, 79, 114, 236, 262, 275].

Eriksson et al. [79] propose an active clustering method for hierarchical clus-

tering which requires O(N logN) pairwise similarities under the Tight Clustering

(TC) condition. The active k-median clustering proposed by Voevodski et al. [262]

uses an active selection strategy to choose a set of landmark points and constructs

clusters based on the distance between the landmarks and other points. This al-

gorithm requires O(k) one-versus-all queries to form the clusters. In [236, 275],

the authors propose active spectral clustering algorithms based on matrix pertur-

bation theory under some certain assumptions about the cluster structures. Other

approaches include the use of expected value of information and mean field an-

nealing optimization to produce efficient active clustering methods [51, 114]. To

the best of our knowledge, there is no active density-based clustering algorithm

proposed in the literature.

Density-based clustering. Ester et al. [82] propose an incremental version

of DBSCAN (I-DBSCAN) for data warehouse environment. The splitting and

merging of clusters of I-DBSCAN are caused by the update, insertion and deletion

of objects while those of our algorithm are caused by adding or removing an edge to

the neighborhood graph. SUBCLU [160] is axis-parallel subspace clustering and

is based on the monotonicity of DBSCAN under subspace projection of vector

data. In [44], the authors propose a client-server parallel version of DBSCAN by

exploiting the monotonicity property of DBSCAN under a LB function. Mai et al.

[184] introduce an anytime version of DBSCAN by exploiting the monotonicity

of DBSCAN under a sequence of LB functions to reduce number of similarity

calculations and to have faster cluster updates. In contrast to these algorithms,

the monotonicity of Act-DBSCAN is caused by the partial update of the similarity

matrix from the LB to the true similarities. Brecheisen et al. [45] integrate a

LB function into the clustering process to speed up DBSCAN based on a data

structure called Xseedlist. This algorithm tries to reduce computation cost by

using µ-query instead of ε-query to determine the core objects. This idea somewhat

closes to the reduction property used in Act-DBSCAN. In [157], the authors extend

DBSCAN to deal with uncertain databases using a probabilistic model to calculate

the probability of a core object. However, it is also fundamentally different from

our work which is based on the exact similarities between objects. There also exist

many other extensions of DBSCAN proposed in the literature (see Chapter 2 for
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more details). However, none of them is designed to deal with the budget problem.

Act-DBSCAN. Act-DBSCAN is unique in the way that it exploits a LB function

to become an active clustering algorithm. The use of LB function: (1) provides

useful information to select meaningful pairwise similarities to be updated; (2)

allows the detection of meaningless pairwise similarities and exclude them to help

Act-DBSCAN to reach the desired clustering result faster. The Act-DBSCAN

framework can be easily extended to work with the upper-bounding functions or

the combination of both the lower bounding and the upper-bounding functions

to further enhance the efficiency. However, we only focus on lower bounding

functions in this work for clarity. Note that, existing techniques for reducing the

number of calculated pairwise similarities to enhance the efficiency of DBSCAN

like [83, 45, 184] fundamentally differs from solving an active clustering problem

which the algorithm has to produce as close as possible to the desired clustering

structure within an arbitrary allowed number of used pairwise similarities.

The anytime clustering algorithm proposed in [300] exploits the lower bounding

and upper-bounding functions of Dynamic Time Warping (DTW) to approximate

the similarity matrix in the beginning. Then, each entry in the similarity ma-

trix is sequentially selected and updated with its true DTW similarity following

a predetermined ranking scheme. The general goal is to approximate the true

similarity matrix at much as possible with each entry update. By this way, the

proposed algorithm can be used to transform all clustering algorithms that use the

similarity matrix into anytime clustering algorithms including the density-based

clustering algorithm, though the authors only mentioned hierarchical clustering,

k-Medoids and spectral clustering in their work. Due to its ranking and selection

scheme, the proposed algorithm could somehow be regarded as an active clustering

algorithm. However, it differs with our algorithms in some major ways. First, this

algorithm focuses on the change of distance matrix rather than cluster structure.

Actually, maximizing a change in the distance matrix does not mean that the

change in cluster structure is maximized as well and vice versa. Thus, it limits the

performance of the algorithm. Second, while each pairwise distance is iteratively

evaluated and selected, this algorithm only ranks them one time in the beginning

and selects them according to this ranking. In fact, this scheme makes the algo-

rithm closer to an anytime algorithm than an active algorithm. In contrast, our

algorithm iteratively re-evaluates each remaining entry of similarity matrix after

each entry update. Last, the proposed algorithm is limited with Dynamic Time

Warping where both the lower and upper bounding functions are available while
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our algorithm can be used with any kind of similarity measure assuming that only

lower bounding function is provided. Due to these differences, the comparison

between this algorithm and our algorithm is thus excluded.

6.7 Conclusions

In this chapter, we propose a novel active density-based clustering algorithm to

deal with the sparseness (incompleteness) of the pairwise similarity matrix in many

applications. Based on the availability of a LB similarity matrix, Act-DBSCAN

iteratively selects the most informative pairwise LB similarities to update with

their true similarities and refines the cluster structure. The general idea is to

reach as close to the desired clustering result of DBSCAN as possible with each

update. Act-DBSCAN contains an efficient probabilistic model and a scoring

system called the Shared Core Object (SCO) score to evaluate the impact of the

update of each pairwise LB similarity on the change of the intermediate cluster

structure. Deriving from the monotonicity and reduction property of our clustering

scheme and the SCO score, the two algorithms Splitting with SCO (SP-SCO) and

Merging with SCO (MG-SCO) provide two different and efficient ways to actively

select and update pairwise similarities and cluster results. Experiments on various

real datasets have shown that Act-DBSCAN requires only a tiny fraction of all

pairwise similarities to reach the clustering results of DBSCAN. Act-DBSCAN

also outperforms other related techniques such as active spectral clustering.



Part III

Application for Fiber Clustering





Chapter 7

Background on Fiber

Segmentation

Recently, fiber segmentation has become an emerging technique in neuroscience

for grouping the white matter fiber tracks acquired from Diffusion Tensor Imaging

(DTI) into anatomical meaningful bundles for the study of various brain structures

and diseases. In this Chapter, we briefly present some backgrounds and related

works for fiber segmentation problem including Diffusion Tensor Imaging (DTI),

fiber similarity measure techniques and fiber clustering techniques.

7.1 Diffuse Tensor Imaging

Understanding anatomical connectivity of human brain is one of the major chal-

lenges in neuroscience. However, how to study the brain structures in a non-

invasive way is a critical issue. In the past decades, the emergence of the Diffusion

Tensor Imaging (DTI) technology [194] provides a promising way to study the

white matter structure in human brain in vivo by exploiting characteristics of

water diffusion in biological tissues [194]. In such fibrous tissues, water tends to

diffuse parallelly along fiber pathways. By following the major direction indicated

by principal eigenvector of the underlying diffusion tensor field, the neural fiber

tracts can be reconstructed as a set of 3D streamlines. Such kind of techniques is

called fiber tractography [24, 194, 31]. Fiber tractography has been widely used

in visualization and brain connectivity analysis and is an important tool surgical

planning and in studies of various diseases such as Alzheimer and Parkinson. Fig-

ure 7.1 shows a full brain fiber dataset acquired from tractography technique as
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Figure 7.1: An examples of a full brain fiber dataset. Each fiber is represented by

a streamline in three-dimensional space.

an example.

Figure 7.2: The eight major fiber bundles in human brain including Arcuate (A),

Cingulum (B), Corticospinal (C), Forceps Major (D), Fornix (E), Inferior Occip-

itofrontal Fasciculus (F), Superior Longitudinal Fasciculus (G) and Uncinate (H).

These bundles are parts of datasets used in our study.

In brain connectivity analysis, fibers are classified according to their anatomi-

cal function and shape. Fibers with same anatomical structure are grouped into a

bundle. Each bundle connects different parts of brain and has different functions.
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Figure 7.2 shows eight major fiber bundles in human brain including Arcuate, Cin-

gulum, Corticospinal, Forceps Major, Fornix, Inferior Occipitofrontal Fasciculus,

Superior Longitudinal Fasciculus and Uncinate. Each bundle connects different

parts of brain. For example, the superior longitudinal fasciculus is a long associa-

tive bundle composed of long and short fibers that connect the frontal lobe with

the parietal, occipital, and temporal lobes. The long fibers of the inferior longitu-

dinal fasciculus bundle runs through the temporal lobe, connecting the temporal

pole with the occipital pole. The short fibers emerge from nonpolar temporal and

occipital areas and connect neighboring gyri. The uncinate fasciculus connects

the temporal pole to the orbitofrontal cortex. The long fibers of the cingulum

bundle connect the frontal lobe to the temporal lobe, whereas the short fibers

connect neighboring areas of the cingulate and medial gyri of the frontal, parietal,

occipital, and temporal lobes [55].

Fiber segmentation. The tractography process produces a large number of

fibers (usually from 103 to 106 fibers), which embarrasses the analysis of the white

matter structures. They need to be grouped into anatomical meaningful bundles

before experts can use them for their studies. Various techniques are proposed

to segment fibers into meaningful anatomical structures for quantification and

comparison between individuals. Catani et al. [55] used a technique called virtual

dissection to interactively select fibers passing through some manually defined

regions of interests (ROIs). Though this technique is highly flexible, it is expensive

and also very time consuming due to a large amount of complex fiber structures.

Moreover, the results may be biased by subjective opinions of experts. Therefore,

automatic fiber clustering algorithms, e.g., [64, 75, 50, 209, 208, 291, 192, 65, 168,

291, 140], which do not require user experts and thus exclude undesirable bias

have become interesting and supplementary approach.

Contents. In this Chapter, we briefly review some techniques for fiber similarity

measures (Section 7.2) and fiber segmentation algorithms (Section 7.3) proposed

in the literature.

7.2 Fiber Similarity Measures

From DTI images, we acquire a set of fiber tracks after tractography. Each fiber

trajectory is represented by an ordered set of points in 3D space with different

numbers of points and arc-lengths. Providing an efficient and effective similarity
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measure for fibers is one of the most important task for fiber segmentation problem.

Brun et al. [50] consider two fibers similar if their start and end points are

close together. However, this assumption is not always reasonable, since fibers

in the same bundle may start and end in different regions [55]. Also, the shape

similarity is totally ignored.

Most successful techniques use point-to-point correspondences to measure sim-

ilarity. Zhang et al. [292] used the average of distances from points in the shorter

fiber to their closest points in the longer one if they are larger than a predefined

threshold. The choice of the threshold may be a drawback of this approach. Ding

et al. [75] defined similarity by using the mean Euclidean distance and ratio

between corresponding segments of fibers. One of the major drawbacks of this

technique is that there is no clue to find those segments.

Corouge et al. [64] introduced the three widely used similarity functions: clos-

est point distance, mean of closest point distance (MCP) and Hausdorff distance

(HDD) which measure fiber similarity by using distances between pairs of points

of two fibers. Shao et al. [238] used Dynamic Time Warping (DTW) to measure

shape similarity between fibers. All these techniques are sensitive to noise which

may occur in fibers. Their distance mechanism is not strong enough to tell us

whether two fibers have similar shape or they are separated by a small distance.

The contribution of start and end points of fibers is also ignored although it plays

an important role in the segmentation [55]. Moreover, they have O(n2) time com-

plexity which is obviously undesirable especially for very large fiber datasets.

There exists some techniques which use some techniques to approximate fibers

such as [142]. However, these techniques are out of scope of our study.

7.3 Fiber Segmentation Algorithms

Fiber segmentation algorithms are used to automatically segment fibers into anatom-

ical meaningful bundles.

In Corouge et al. [64], two fibers are considered in a same cluster if the distance

between them is lower than a predefined threshold. Clusters with a low cardinality

(less than 10% of total number of fibers) are regarded as outliers and thus are

removed from the final results. To construct clusters, the algorithm calculates the

distance matrix among all fibers and then propagates label from neighboring fiber

to neighboring fiber until all fibers are labeled. Though the algorithm is simple,

it may connect different bundles together due to its transitivity property.
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The k-most-similar-fibers algorithm from Ding et al. [75] has similar label

propagation mechanism with [64]. However, a label of a fiber is only propagated

to its k-nearest neighbor instead of all neighbors that lie within a predefined

threshold like [64]. This algorithm suffers from the same problem with [64].

Brun et al. [50] use spectral embedding techniques called Laplacian eigenmaps

to map the fibers to a 3D feature space forming by the first, second and third

largest eigenvectors. Each point in feature space is then mapped to a color using a

color map. A fiber will be colored according to the color of its corresponding point.

We note that, this algorithm is not a clustering algorithm. It is only used to color

the fibers. In [141, 208], spectral clustering algorithms are used to group fibers into

bundles. The main different between these algorithms and the algorithm of Brun

et al. is that k-Means is used on the feature space to group the fibers instead of

mapping the colors to fibers. One significant drawback of these spectral clustering

algorithms is that they require quadratic space and have cubic time complexity.

These make them infeasible when clustering large fiber datasets.

In [292], an agglomerative hierarchical clustering method was used to group

fibers. It starts by putting each data point into an individual cluster, then at

each stage of the algorithm the two most similar clusters are joined until all fibers

are in a same cluster. The main drawback of this techniques is to find a suitable

partition of the dendrogram.

The algorithm k-Means was used in [252] to group fibers in low dimensional

projected space acquired from Locally Linear Embedding (LLE) technique on the

distance matrix produced by the minimum spanning trees between pairwise fiber

tracts. One major drawback of this technique is that it may not be able to deal

with large fiber datasets.

Recently, the density-based clustering algorithm was used in [237] in order

to group fibers and to reject spurious fibers as outliers. This algorithm requires

parameters that may be hard to set.

In contrast to previous algorithms which produce a hard segmentation of fiber

structure, the EM clustering algorithm is used to produce a soft segmentation of

fibers into bundle in [178, 179].

7.4 Conclusions

Fiber clustering provides a useful tool in neuroscience for visualization and brain

connectivity analysis. Though, there are many fiber clustering algorithms pro-
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posed in the literature, they are still suffer from various problems, especially per-

formance on large fiber datasets.

In order to enhance the efficiency, we propose a novel similarity model for fibers

based on the combination of the shape and the connectivity similarity which helps

to improve the classification accuracy [35, 183]. To enhance the performance

when segmenting large fiber datasets, we introduce the novel concept of anytime

fiber clustering algorithm which trades off between quality of results and runtime

[185]. To the best of our knowledge, there is no anytime fiber clustering algorithm

proposed in the literature so far.



Chapter 8

Advantage Fiber Similarity

Measure Techniques

Though there are many similarity measures for fiber tracts proposed in the litera-

ture, they mostly focus on the shape similarity or have high time complexity. Thus,

this limits their efficiency. In this Chapter, we propose a novel similarity model for

fiber tracts based on shape similarity and connection similarity. For shape similar-

ity, we propose some new techniques adapted from existing similarity measures for

trajectory data. Besides, a new technique called Warped Longest Common Sub-

sequence (WLCS) for which we additionally developed a lower bounding distance

function to speed-up the segmentation process is also proposed. Our segmentation

algorithm is based on an outlier-robust density-based clustering algorithm. Ex-

tensive experiments from diffusion tensor images of the white matter of the brain

demonstrate the efficiency and effectiveness of our technique.

Publications. Parts of the material presented in this Chapter have been pub-

lished in [183, 35]. The detailed information are described as follows:

• Christian Böhm, Jing Feng, Xiao He, Son T. Mai, Claudia Plant and Jun-

ming Shao. A Novel Similarity Measure for Fiber Clustering using Longest

Common Subsequence. In ACM SIGKDD Conference on Knowledge Dis-

covery and Data Mining (KDD), Workshop on Data Mining for Medical and

Healthcare (DMMH), pages 1-9, 2011.

In this work, S.T.M. developed the theory and the algorithms and imple-

mented them. J.F and X.H helped with some experiments. J.S. provided
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some datasets for experiments. All authors discussed the principles of the

technique and the results and contributed to paper writing.

• Son T. Mai, Sebastian Goebl and Claudia Plant. A Similarity Model and

Segmentation Algorithm for White Matter Fiber Tracts. In International

Conference on Data Mining (ICDM), pages 1014-1019, 2012.

In this work, S.T.M. developed the theory, implemented the algorithm and

did experiments. All authors discussed the principles of the technique and

the results and contributed to paper writing.

8.1 Introduction

Over the past decades, Diffusion-Tensor Magnetic Resonance Imaging (DTI) has

become an important tool for quantification and comparison of white matter struc-

tures of human brains in vivo [194]. From DTI images, thousands of fiber tracts

are extracted via tractography technique. They need to be grouped into meaning-

ful anatomical structures for quantification and comparison between individuals

by some fiber segmentation techniques.

Most automatic techniques for segmenting fibers are based on geometric prop-

erties of fibers. Two fibers are usually grouped into a bundle if they are separated

by a small distance, have comparable length and have similar shape [75]. However,

these criteria might be insufficient, since two fibers with different shapes can be

grouped into a bundle if they start and end at the same region [50]. Moreover,

the white matter tracts contain many spurious and noisy fibers which make the

similarity measure and segmentation non-trivial problems. So, fiber segmentation

remains an area of active research [50, 64, 75, 292], etc.

The most successful techniques use point-to-point distance as a basis for mea-

suring similarity [64, 75, 292, 238]. However, these techniques are sensitive to

noise due to their point-to-point distance mechanism. Their effectiveness is also

limited when detecting fibers with similar shapes. They also ignore the contribu-

tion of the start and end points of fibers which actually plays an important role in

the segmentation [55, 50]. Moreover, their quadratic time complexity makes them

hard to deal with very large fiber datasets.

Contributions. In this Chapter, we investigate the problem of the efficient and

effective similarity measure for the segmentation of the white matter fiber tracts
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in human brain. Our major contributions are:

1. We propose some new techniques for fiber similarity measure by employing

and adapting various existing similarity techniques for trajectory databases

[195, 74] and study their performances in comparison with existing tech-

niques for fibers [64]. Such comparison is essential and interesting since the

performances of these new techniques have never been studied properly in

neuroscience.

2. For shape similarity, we introduce a new view about the similarity of fibers

using fiber envelope. Based on this scheme, a technique called Warped

Longest Common Subsequence technique (WLCS) is also proposed. Com-

pared with other techniques, WLCS is more accurate and more robust to

noise and local time shifting within fibers. A lower bounding distance is

also proposed for WLCS to speed up the comparison thus enhancing the

efficiency of segmentation process.

3. We introduce a novel and robust similarity model called SIM for fiber seg-

mentation by combining both shape similarity and connection similarity of

fibers. Such approach provides a robust and flexible way to deal with the

complexity of white matter structures.

4. Extensive experiments on real datasets are conducted to demonstrate the

efficacy of our algorithms and to provide a close view about their character-

istics.

The rest of this Chapter is organized as follows. In Section 8.2, we introduce

various new techniques for fiber similarity measure including WLCS technique, its

lower bounding and our fiber similarity model. Section 8.3 presents fiber segmen-

tation algorithm. Experiments are displayed in Section 8.4. Further discussions

about our approaches, related works and other important issues are located in

Section 8.5. Finally, Section 8.6 summarizes our work.

8.2 Fiber Similarity Measure

Providing a similarity measure for fibers is an essential problem in any automatic

fiber segmentation algorithm. During the past decades, many techniques are pro-

posed such as [50, 75, 292, 64, 238, 252, 142]. However, most of them suffer from
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high time complexity such as [64, 238]. Their performance are somewhat limited

due to the complexity of fiber structure. Also, most algorithms focus only on the

shape similarity and ignore the contribution of start and end points of fibers.

In this section, we propose a novel fiber similarity model which encapsulates

structure and connectivity similarity of fibers. We propose some new techniques

to measure shape similarity of fibers by adapting various existing techniques for

trajectory databases. We also introduce a new technique called Warped Longest

Common Subsequence and its lower bounding distance for fibers.

8.2.1 Shape Similarity of Two Fibers

After tractography, fibers are extracted from DTI images and represented as a set

of streamlines in 3D space.

To measure the shape similarity between two fibers A and B, we build an

ε-envelope around A, and then compare this envelope with B. If B is inside

the envelope of A, they have similar shape. Such comparison provides a new

view about the shape similarity, which differs from the previous approaches like

distance-based techniques [64]. Consider Figure 8.1, by distance-based mechanism,

we cannot know whether the shape of fiber B or C is more similar to A, because

Dist(A,B) ≈ Dist(A,C). However, the envelope scheme successfully discovers

that the shape of C is more similar to A than to B, because a large part of C lies

inside the envelope of A.

 

A 

C 

B Point-to-point distance 

Dist(A,B) ≈ Dist(A,C) Envelope(A) 

A 

 

Figure 8.1: By distance-based techniques, both B and C are similar to A. By

envelope-based techniques, C is more similar to A than to B.

This envelope scheme can be simulated by considering fibers as trajectories

and adapting existing techniques such as LCS [261] or EDR model [57] to measure
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their shape similarity. Table 8.1 shows the definitions of LCS and EDR adapted

for the shape similarity of fibers together with the existing techniques HDD, MCP

[64] and DTW [238]. The parameter subcost of EDR equals to 1 if ai ∼ bj and 0

otherwise. All algorithms have O(n2) complexity.

Since LCS and EDR only allow one-to-one matching mechanism, the measure

is coarse. As a result, they do not distinguish fibers with similar common sub-

sequences, although they belong to different bundles. They also perform poorly

when fibers have very few points or have very different lengths. To enhance the

accuracy, one-to-many matching mechanism like DTW [261] should be employed,

which means that one point in a fiber can be matched to many points in the

others. The similar idea can be found in music retrieval community. Guo et al.

[102] proposed Time-Warped Longest Common Subsequence (T-WLCS) technique

to efficiently deal with problems like variations in speed and inaccuracies in the

rhythm. We extend this scheme to deal with 3D fiber trajectories.

Assuming that we have two fibers A = (a1, · · · , an) and B = (b1, · · · , bm). And

let Ai be the first i points of A.

Definition 20 Two fibers A and B are close to each other at position i and j

respectively if the coordinates of points at i and j are not different more than a

predefined similarity threshold ε.

ai ∼ bj ⇔ |ai(x)− bj(x)| ≤ ε ∧ |ai(y)− bj(y)| ≤ ε

∧|ai(z)− bj(z)| ≤ ε

Definition 21 Given a time constraint δ and a similarity threshold ε, the longest

common subsequence of two fibers A and B, denoted as wlcsδ,ε(An, Bm) (or wlcsδ,ε(A,B)

in short), is defined as follows:

wlcsδ,ε(An, Bm) =



0 if A or B is empty

1 + max(wlcsδ,ε(An−1, Bm−1),

wlcsδ,ε(An, Bm−1),

wlcsδ,ε(An−1, Bm))

if an ∼ bm ∧ |n−m| ≤ δ

max(wlcsδ,ε(An−1, Bm),

wlcsδ,ε(An, Bm−1)) otherwise

where δ constrains the matching regions in time to avoid two sequences to be

compared at too far away positions, which may be nonsense and unnecessary.
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WLCS can also be calculated by using dynamic programming approach [261]

to construct a cumulative cost matrix Mn×m, where the value of Mi,j can be

calculated by the values of its adjacent cells. The time complexity is thus O(δ(n+

m)).

Definition 22 Given two fiber A, B and a cost matrix Mn×m, the warping path

P = p1, ..., pK is defined as a sequence of matrix cells Mi,j, in which the points at

position i of A and j of B match. For any two parts pk = Mi,j and pk+1 = Mi′,j′,

the following properties hold:

• Non-Boundary: The warping path needs not to start at p1 = M1,1 and end

at pK = Mn,m.

• Monotony: i′ − i ≥ 0 and j′ − j ≥ 0, which means that the warping path is

monotonically spaced in time.

• Non-continuity: Some parts of A and B may remain unmatched, which

means that the property i′ − i ≤ 1 and j′ − j ≤ 1 does not hold.

• The length K of the warping path (or the value of wlcs(A,B)) cannot be

larger than n+m− 1.

Figure 8.2 illustrates the calculation of WLCS for two fibers A and B in 1D.

One point in fiber A can be matched with many points in fiber B and vice versa.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

B

A
i

i+δ
δ

ε

j

Unmatched
points i−δ
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path

Figure 8.2: The comparison of two fibers A and B by WLCS model in 1D with

time constraint δ and similarity threshold ε. For each point ai in fiber A, every

point bj in fiber B (with j in [i − δ, i + δ]) which lies inside the ε-circle of ai can

be matched with ai.
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Definition Similarity Function

dhdd(A,B) = maxai∈A{minbj∈B‖ai − bj‖} HDD(A,B) = max(dhdd(A,B), dhdd(A,B))

dmcp(A,B) = avgai∈A{minbj∈B‖ai − bj‖} MCP (A,B) = avg(dmcp(A,B), dmcp(A,B))

ddtw(A,B) = ‖an − bm‖+min(ddtw(An−1, Bm),

ddtw(An, Bm−1), ddtw(An−1, Bm−1))
DTW (A,B) = ddtw

K

lcsδ,ε(An, Bm) =



0 if A or B is empty

1 + lcsδ,ε(An−1, Bm−1)

if an ∼ bm ∧ |n−m| ≤ δ

max(lcsδ,ε(An−1, Bm),

lcsδ,ε(An, Bm−1)) otherwise

LCSδ,ε(A,B) = 1− lcsδ,ε(A,B)

min(n,m)

edrδ,ε(An, Bm) =



n if B is empty

m if A is empty

min(edrδ,ε(An−1, Bm1) + subcost,

edrδ,ε(An, Bm−1) + 1,

edrδ,ε(An−1, Bm) + 1) otherwise

EDRε(A,B) = edrε(A,B)
max(a,b)

Table 8.1: Some similarity measure techniques for fibers used in our papers. MCP, HDD and DTW are existing techniques,

and LCS and EDR are new adapted techniques.



166 8. Advantage Fiber Similarity Measure Techniques

In order to be able to compare sequences with different lengths, we need to

normalize the cost of WLCS.

Definition 23 Given a time constrain δ and a similarity threshold ε, we have:

WLCSδ,ε(A,B) = 1− wlcsδ,ε(A,B)

n+m− 1

We use WLCSδ,ε(A,B) as the shape similarity of two fibers A and B. The

smaller the value of WLCSδ,ε(A,B) is, the more similar the shapes of two fibers

A and B are.

8.2.2 Lower Bounding Distance for WLCS

In this part, we propose a lower bounding distance to speed up the comparison

of WLCS. We assume w.l.o.g. that fiber A is longer than fiber B. The lower

bounding distance of WLCSδ,ε(A,B) can be calculated by using the Minimum

Bounding Envelope of A (MBEδ,ε(A)) [261]. For clarity, we also assume that A

and B are now 1D fibers. However, the notion of the MBEδ,ε can be trivially

extended to 3D.

Envlow ≤MBEδ,ε(A) ≤ Envhigh

where {
Envhighi = max(aj) + ε ∀j, |i− j| ≤ δ

Envlowi = min(aj) + ε ∀j, |i− j| ≤ δ

Figure 8.3 illustrates the construction of MBEδ,ε(A). The envelope defines

areas of possible matching for all points of A. Every point which lies outside MBE

of A can never be matched.

Definition 24 The longest common subsequence between B and MBEδ,ε(A) is

the number of points of B which lie inside the MBEδ,ε of A.

lcs(MBEδ,ε(A), B) =
n∑
i=1

{
1 if bi is in the envelope of A

0 otherwise

Lemma 9 For two fibers A and B, lcs(MBEδ,ε(A), B) +n−1 is the upper bound

of wlcsδ,ε(A,B) with assumption that A is longer than B.
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Figure 8.3: The Minimum Bounding Envelope (MBE) of fiber A with respect to

the time constraint δ and similarity threshold ε. Only points of B that lie inside

MBEδ,ε of A can be matched with A.

Proof 9 Let x be the number of points of B which lie outside the MBE of A. For

any point bk ∈ B which lies outside MBE of A, assuming that bi and bj are the

closest front and rear points of bk which lie inside MBE of A. Also, ai′ and aj′

are matched points of bi and bj under WLCS respectively. There always exists a

way to add a pair (bk, ak′) where i′ ≤ k′ ≤ j′ to the warping path P which does not

violate the monotony property in Definition 22 (see Figure 8.4 as an example).

Since the full-length warping path is bounded by n+m− 1, we have:

wlcsδ,ε(A,B) + x ≤ n+m− 1

⇒ wlcsδ,ε(A,B) ≤ m− x+ n− 1

⇒ wlcsδ,ε(A,B) ≤ lcs(MBEδ,ε(A), B) + n− 1.

Lemma 10 For two fibers A and B, 1− lcs(MBEδ,ε(A),B)+n−1
m+n−1 is the lower bound of

wlcsδ,ε(A,B) (assuming that A is longer than B).

Proof 10 Straightforward derived from Definition 23 and Lemma 9.

8.2.3 Connection Similarity of Two Fibers

Definition 25 Given two fibers A and B with the start points pA, pB and the end

points qA, qB. The connection similarity between them is defined as follows:

Conn(A,B) = ‖pA − pB‖+ ‖qA − qB‖
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Figure 8.4: A matched pair (bk, ak′) can be added to the existing warping path

without violating the monotony property.

The connection similarity measures how close the two fibers start and end. Thus

it plays an important role to distinguish fiber bundles. Many techniques rely only

on this scheme to segment fibers either manually [55] or automatically [50].

8.2.4 Unified Fiber Similarity Measure

Definition 26 The similarity between two fibers A and B is defined as a weighted

sum of their shape and connection similarities.

Simδ,ε,α(A,B) = α · Shapeδ,ε(A,B) + (1− α) · Conn(A,B)

where α ∈ [0, 1] is used to control the balance between the shape and connection

similarities.

Figure 8.5: Two bundles Arcuate and Superior Longitudinal Fasciculus are close

to each other and hard to distinguish if only based on the shape similarity.

Simδ,ε,α(A,B) unifies both important aspects: anatomical structure similarity

and connectivity similarity of fiber bundles. As a result, it provides a flexible way



8.2 Fiber Similarity Measure 169

to enhance the effectiveness of fiber similarity measure. For example, with two

close bundles Arcuate and Superior (Figure 8.5), it is hard to distinguish them

only by shape similarity. Therefore, the use of connection similarity could help to

enhance the result.

8.2.5 Other Important Characteristics of Fiber Similarity

Due to the process of DTI tractography, the fibers may contain noise, which affects

the similarity between them [55]. Assuming that A and B in the upper part of

Figure 8.6 are two real fibers and in the lower parts are noisy fibers, we calculate

EDR0.2, LCS10,0.2, DTW, HDD, MCP and WLCS10,0.2 (or SIM10,0.2,1)) to see the

effect of noise in each measure. As we see, LCS, EDR and WLCS are more robust

to noise than other methods. Their values do not change because the noisy parts

are just ignored.
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Figure 8.6: The effect of noise on different similarity measure functions between

two fibers A and B. LCS, EDR and WLCS (SIM) are more robust to noise than

other techniques.

When using techniques like DTW, LCS, EDR and WLCS, the similarity be-

tween A and B changes significantly with respect to the orders of points in A and

B. This phenomenon often happens in tractography when one fiber is recognized

in a direction which is contrary to the rests in a group. To overcome this prob-

lem, we use 2-phases approach. We calculate the similarity between (A, B) and

(Reverse(A),B) and choose the smallest result as follows:

Sim2δ,ε,α(A,B) = min(Simδ,ε,α(A,B) + Simδ,ε,α(Reverse(A), B)
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Figure 8.7 (a) shows the result of the clustering using 1-phase approach. There

are many false direction fibers which could not be grouped correctly. Figure 8.7

(b) shows perfect clustering result (exactly the same as gold standard) if we use 2-

phases approach. In the rest of this chapter, we always use the 2-phases approach

for DTW, LCS, ERD and WLCS.

Figure 8.7: The results of clustering using (a) 1-phase similarity measure (10

clusters) and (b) 2-phases similarity measure (5 clusters). The 2-phases approach

produces the gold standard exactly.

8.3 Fiber Segmentation

To segment fibers into bundles, many clustering algorithms are used such as such

as EM clustering [178], spectral clustering [50], hierarchical clustering [292] and

density-based clustering [238, 35, 237].

In density-based clustering algorithms, clusters are considered as areas of high

object density and separated by areas of low object density. This notion has

several attractive benefits. It helps to detect clusters of arbitrary shapes, and is

robust to outliers. Moreover, users do not need to specify the number of clusters.

Among many proposed approaches namely DENCLUE, OPTICS and DBCLASD,

we employ the well-known algorithm DBSCAN [83] to segment fiber bundles and

to reject spurious fibers. DBSCAN is based on the idea that each core-point of a

cluster has to contain at least minpts points within its eps-neighborhood. Figure

8.8 shows the pseudocode for DBSCAN clustering algorithm.
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 Function  DBSCAN(D, minpts, eps) 

currentID = Fist_ID 

set all object p in D to unprocessed 

for all object p in D do 

   if p is processed then continue endif 

   S = rangeQuery(p, ε, D) 

   if S.size < minpts then 

      assign cluster id of p as noise 

   else 

      assign cluster id of p as currentID 

      assign cluster id for all objects in S as CurrentID 

      while S not empty do 

         q = S.first( ) 

         T = rangeQuery(q, ε, D) 

         if T.size >= minpts then 

            for all objects r in T do 

               if r is unprocessed or noise 

                  if r is unprocessed then 

                     insert r into S 

                  endif 

                  set cluster id of r as currentID 

               endif 

            endfor 

         endif 

         remove q from S 

      endwhile 

      currentID = Next_ID 

   endif 

endfor 

EndFunction  
 

Figure 8.8: Pseudocode for DBSCAN algorithm used in our work.
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8.4 Empirical Evaluation

In this section, we present our experiments on real datasets to prove the efficiency

and effectiveness of our algorithm. First, we study the performances of different

shape similarity measure techniques including HDD, MCP, DTW, LCS, EDR and

WLCS. Then, we demonstrate the effectiveness of the unified similarity measure

(SIM) and explore some of its characteristics. Last, we discuss the efficiency of

the algorithms.

All experiments are conducted on a Workstation with 2.0 Ghz CPU, 4GB RAM

under Window XP SP2 using Java language. The labeled datasets are acquired

from Pittsburgh Brain Connectivity Competition (http://pbc.lrdc.pitt.edu/?q=20-

09b-home).

To compare the clustering results with the gold standards, we use three dif-

ferent cluster evaluation methods, namely Dom [76], NMI [258] and AMI [258].

These methods, in contrast to others, namely Rand Index or Cluster Purity, can

compare results with different numbers of clusters. However, we only show the

NMI for clarity, since the results of AMI and Dom are the same with NMI. The

result of NMI is in [0,1], with 0 means that the clustering result is independent of

the gold standard and 1 means that the clustering result is the same as the gold

standard.

For DBSCAN, we need to adjust two parameters minpts and eps. After trying

some values, we fix the parameter minpts = 5 as suggested in [83]. For the

parameter eps, we explore the search space from the minimum value 0.01 to 1.0

with search step 0.01 to ensure that we do not miss any good result. For DTW,

LCS, EDR and WLCS, we try various combinations of δ (up to 100) and ε (between

0.01 to 2.0) and report the best found results.

8.4.1 Effectiveness of The Shape Similarity Measures

To evaluate the effectiveness of different similarity measures, we use one nearest

neighbor classification technique as suggested by Keogh et al. [130]. The class

label of each fiber is predicted based on the class label of its nearest neighbor.

The error rate is then defined as the percentage of wrongly predicted fibers.

We randomly extract 5 labeled datasets from the PBC datasets. Each data

set contains from 500 to 1500 fibers that belong to 5 to 8 different bundles. To

evaluate the robustness of the similarity measure, we also create 10 noisy datasets
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? HDD MCP DTW LCS EDR WLCS

Norm 2.815 0.367 0.319 0.228 0.135 0

Noisy 13.03 3.110 3.208 1.287 1.724 0.64

Table 8.2: The error rates of one nearest neighbor classification for the six simi-

larity measure techniques.

Figure 8.9: Effectiveness of different shape similarity measure techniques for real

data set DS0. Only WLCS produces the gold standard exactly.

by adding some Gaussian noise and local time shifting to each fiber of the five

datasets above as in [57]. Then, for each data set, 25 fibers are randomly selected

as the training set, the rest is used as the test set. Table 8.2 shows the average

results of the error rate for each technique over the 5 normal and 10 noisy datasets.

WLCS performs better than other techniques on normal and especially on noisy

datasets. Since HDD uses max distance of closest point-pairs as a measure, it is

extremely affected by noise and performs worst. All threshold-based techniques

LCS, EDR and WLCS show better performances than distance-based techniques

like HDD, MCP and DTW.
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Figure 8.10: Effectiveness of different shape similarity measure techniques for

noisy data set. The clustering score of WLCS reduces slightly compared with the

clustering scores of other techniques. WLCS is more robust to noise than the

others.

Figure 8.9 shows clustering results on data set (DS0) which contains 500 fibers

belonging to 5 bundles namely Arcuate, Cingulum, Fornix, Inferior and Superior.

Also, 5 fibers from other bundles are added as noise. Only WLCS (δ = 75,

ε = 0.1, eps = 0.24) produces the gold standard exactly, while HDD (eps = 0.26)

and MCP (eps = 0.06) result in 6 clusters. DTW (σ = ∞, eps = 0.11), LCS

(σ = 75, ε = 0.07, eps = 0.12) and EDR (ε = 0.17, eps = 0.18) detect 5 clusters

with some minor errors. We do not show HDD in Figure 8.9 for clarity.

In order to to see how all techniques perform on noisy datasets, we add 5%

random Gaussian noise to dataset DS0 and do the clustering again. Figure 8.10

shows the results for noisy dataset. While the clustering scores of WLCS is slightly

reduced, the clustering scores of other techniques are significantly reduced. WLCS

is more robust to noise than other techniques.

Let us consider another important aspect of the effectiveness of similarity mea-

sure. As we know, the parameter eps of DBSCAN specifies the range of the core

objects. Thus, it plays an important role to distinguish fiber bundles. Therefore,
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Figure 8.11: Effectiveness of different similarity measure techniques based on the

range of eps. WLCS is more robust and can distinguish bundles better than other

techniques.

a better similarity measure should support the wider range of eps (assuming that

we fixed minpts). In this experiment, we let eps run in the range from 0.01 to

1.0 with step size 0.01 and count the numbers of eps values which result in NMI

score larger than 0.9 on the data set DS0 in Figure 8.9. As we can see from

Figure 8.11, the performances of WLCS and LCS are very stable, while the per-

formances of the others decreases quickly when eps becomes bigger. Compared

with the predefined threshold, WLCS succeeds 61 over 100 times, while the values

for LCS are 48 times. The performance of EDR varies significantly with different

values of ε. However, it is still more stable than DTW, MCP and HDD. Compared

with distance-based techniques, threshold-based techniques are more robust. The

results are the same for all other datasets in our experiments.

Further comparisons can be found in Table 8.3. WLCS outperforms other

techniques on all real datasets. LCS, EDR and DTW are ranked next while

HDD performs worst. All threshold-based techniques provide better results than

distance-based techniques since they are based on the efficient envelope-based

scheme for fiber similarity.

To conclude, WLCS acquires better and more stable performance than other

techniques on both normal and noisy fiber datasets.

8.4.2 Effectiveness of the Unified Similarity Measure SIM

In this section, we examine the effectiveness of the unified similarity measure (SIM)

and its characteristics. For the parameters of SIM, we simply choose δ = 50,
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ε = 0.05 and α = 0.5 unless otherwise stated.

Figure 8.12 demonstrates the clustering ability of SIM on 4 real datasets DS1,

DS2, DS3 and DS4. All of them are clustered exactly as the gold standard.

Table 8.3 shows the clustering results for various techniques on the 10 real

datasets DS0 to DS9, which are randomly extracted from labeled PBC datasets.

These datasets contain 500 to 1500 labeled fibers belonging to 8 famous bundles

namely Arcuate, Cingulum, Fornix, Inferior Occipitofrontal Fasciculus, Superior

Longitudinal Fasciculus, Forceps Major and Corticospinal. Some fibers from other

groups are also added as noise. SIM significantly improves the clustering results.

DS0-5 and DS7-8 are clustered exactly as gold standards, the other three are

grouped with nearly perfect results. To further evaluate the performances of our

algorithms on the task of whole brain clustering, we use 10 more datasets. Each

dataset contains 5000 fibers which are randomly extracted from the PBC whole

brain data set. The clustering scores are measured based on the labeled fibers

only. The last column (Full Brain) in Table 8.3 shows the averaged NMI scores

for all techniques. Threshold-based techniques are better than distance-based

techniques. WLCS outperforms the other shape similarity measure techniques.

And SIM significantly improves the clustering results.

Figure 8.13 shows clustering results for some real datasets acquired from [238]

to assess our algorithm. Although we do not have gold standards to compare, all

results are well confirmed by our experts. DF1 was clustered with δ = 100, ε = 0.1

and eps = 0.31. DF2 was clustered with δ = 100 and eps = 0.46.

8.4.3 Characteristics of SIM

Although SIM is superior to other techniques, it requires 3 parameters: the time

constraint δ, the similarity threshold ε and the weight α, which may confuse us at

the first glance. However, these parameters are relatively easy to set up.

Figure 8.15 shows the relationships between δ, ε and NMI score for the data

set DS0. SIM is more robust to the choices of the parameters δ and ε than WLCS.

The combination with connection similarity not only enhances the effectiveness

but also the robustness of the fiber similarity measure. The same results are

observed with the other datasets as well.
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Figure 8.12: Clustering results with SIM for 4 datasets DS1, DS2, DS3 and DS4 with eps = 0.62, 0.57, 0.41 and 0.48

respectively.

? DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 Full Brain

HDD 0.943 0.925 0.952 0.953 0.945 0.938 0.974 0.954 0.955 0.945 0.871

MCP 0.940 1 1 0.953 0.976 0.935 0.907 0.904 0.922 0.971 0.897

DTW 0.977 1 1 0.991 0.976 0.970 0.907 0.975 0.972 0.975 0.907

LCS 0.979 1 1 0.993 0.986 0.972 0.976 0.989 0.962 0.981 0.916

EDR 0.986 1 1 0.974 0.976 0.986 0.932 0.957 0.958 0.973 0.913

WLCS 1 1 1 0.993 0.990 0.995 0.984 0.991 0.979 0.993 0.932

SIM α = 0.5 1 1 1 1 1 0.995 0.995 1 1 0.998 0.942

SIM Best 1 1 1 1 1 0.995 0.995 1 1 0.998 0.956

Table 8.3: NMI scores of some similarity measure techniques for some real datasets.
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Figure 8.13: All datasets are well grouped according to our experts.

Figure 8.14 shows the relationship between α and NMI scores as well as their

eps ranges (with the threshold of 0.9) for the five datasets from DS0 to DS4. As

we see, each data set depends on α in slightly different ways. But all acquire good

and stable performances when α ≥ 0.3. Besides, the eps ranges in all datasets

increase with α (usually best at α = 0.8 or 0.9), which means that the larger the

value of α is, the more robust our algorithm is.
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Figure 8.14: The relationship between α and the clustering scores NIM as well as

its eps ranges on five real datasets.
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DS0. SIM is more robust to the choices of parameters than WLCS.
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8.4.4 Efficiency of the Unified Similarity Measure

The combination of the shape and the connection similarity enhances not only

the effectiveness but also the efficiency of algorithm. When comparing two fibers,

the connection similarity measure serves as the first level lower bounding with

only O(1) time complexity. After the first level has failed, the second level, the

lower bounding distance of WLCS, is then examined with O(n) time complexity.

And the final step is WLCS itself. By the use of this multi-levels lower bounding

distance, the running time of algorithm speeds up significantly.
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Figure 8.16: The total CPU times for (a) fiber segmentation and (b) eps-range

query on real datasets with 5000 to 50000 fibers.

Figure 8.16 (b) shows the running time of eps-range queries of SIM with differ-

ent values of α. As we can see, the smaller the value of α is, the faster the query

time is. And so is the segmentation process. Figure 8.16 (a) shows the running

times of WLCS on some real datasets. The parameters are α = 0.5, δ = 50 and

ε = 0.05. Since other techniques have O(n2) complexity like WLCS, we do not

show them for clarity. As we can see, the use of the lower bounding distance sig-

nificantly improves the performance of WLCS, especially for large datasets. With

the multi-level lower bounding distance, the running times are further decreased.

For example, with 5000 fibers, WLCS requires 8416 seconds. WLCS with lower

bounding distance requires about 607 seconds. And SIM requires only 196 sec-

onds. Compared with the other techniques, for the data set with 25000 fibers,
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SIM requires 30 minutes to finish, while DTW [238] requires 10 hours and MCP

requires 3 days. SIM is faster than the others up to about 150 times. For a massive

data set with 250000 fibers, SIM finishes within a day.

8.5 Discussions

Brun et al. [50] consider two fibers similar if their start and end points are close

together. However, this assumption is not always reasonable, since fibers in the

same bundle may start and end in different regions [55]. Also, the shape similarity

is totally ignored.

Most successful techniques use point-to-point correspondences to measure sim-

ilarity. Zhang et al. [292] used the average of distances from points in the shorter

fiber to their closest points in the longer one if they are larger than a predefined

threshold. The choice of the threshold may be a drawback of this approach. Ding

et al. [75] defined similarity by using the mean Euclidean distance and ratio

between corresponding segments of fibers. One of the major drawbacks of this

technique is that there is no clue to find those segments. Corouge et al. [64] in-

troduced the three widely used similarity functions: closest point distance, mean

of closest point distance (MCP) and Hausdorff distance (HDD) which measure

fiber similarity by using distances between pairs of points of two fibers. Shao et

al. [238] used Dynamic Time Warping (DTW) to measure shape similarity be-

tween fibers. All these techniques are sensitive to noise which may occur in fibers.

Their distance mechanism is not strong enough to tell us whether two fibers have

similar shape or they are separated by a small distance. The contribution of start

and end points of fibers is also ignored although it plays an important role in the

segmentation [55]. Moreover, they have O(n2) time complexity which is obviously

undesirable especially for very large fiber datasets.

In data mining community, there exist many similarity measure techniques, for

example, HMM-based distance [195], Longest Common Subsequence (LCS) [261],

Edit Distance on Real sequence (EDR) [57], Sequence Weighted Alignment model

(Swale) [74], etc. Although the most promising techniques like LCS and EDR are

well-studied in the data mining fields, they are still unknown in the field of neuro-

science. Therefore, understanding their performances on fiber context is essential

for further researches on more efficient and effective methods for segmenting fibers.

And our paper provides such a comprehensive study for this problem.

The envelope scheme proposed in this chapter provides an effective view about
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the shape similarity measure of fibers. Our new techniques based on this scheme

like LCS, EDR and WLCS also have a point-to-point mechanism like MCP, HDD

and DTW. However, while these distance-based techniques can only detect whether

two fibers are separated by a small distance or not, the threshold-based techniques

can provide us more information, for example, the shape similarity between fibers,

etc. As a result, our new envelope-based techniques acquire better performances

and robustness than the existing distance-based techniques on fiber datasets. By

allowing one-to-many matching mechanism, WLCS allows more efficient matching

of coarse and different length fibers than other techniques. WLCS can be seen as

a combination of DTW and LCS. But it is more suitable for the nature of fiber

tracts than DTW and LCS.

The combination of shape and connection similarity provides a novel and ro-

bust similarity model for the white matter fiber tracts. The connection similarity

serves as a lower bounding distance, which decreases the running time of fiber

segmentation, as well as a supplement for the shape similarity measure. As a

result, SIM is more robust to the choices of parameters and acquires better per-

formance than the sole use of the shape similarity. In case the shape similarity

is solely required in cross-subject comparison, WLCS still performs better than

the others. Moreover, the combination of the shape and the connection similarity

provides a flexible way for experts to customize their notions of fiber similarity.

Depending on their opinions and their purposes, the experts can decide which is

more important: the shape or the connection similarity by setting a suitable value

for α. Thus, they may have diversified views about the white matter structures.

In Demiralp et al. [73], the authors assigned for each pair of points a weight

based on their positions. This scheme is totally different with our SIM model

which measure the shape similarity by weighting two important factors: structure

and connectivity similarity of fibers. WLCS, LCS and EDR can also be improved

by using weighted model of Demiralp et al. [73]. Also, in [170] the authors used

a weighted scheme which looks similar to our scheme. However, this scheme has

a totally different meaning. It focus on the shape similar only.

There exists some techniques which use some techniques to approximate fibers

such as [142]. However, these techniques are out of scope of our study.

Moreover, our proposed lower bounding distance allows us to use the Minimum

Bounding Envelope technique proposed in [132, 261] to index the time series.

When it is applied to fiber segmentation, it could significantly improving the

performance of algorithm by reducing the time needed for range query [83]. This
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issue however is also out of scope of this chapter.

8.6 Conclusions

In this chapter, we propose a novel and robust similarity model (SIM) for fiber

segmentation based on the combination of the shape and the connection similarity

measure. By using the connection similarity as a supplement, this combination not

only significantly improves quality but also speeds up the segmentation process.

Based on the new view about shape similarity of white matter tracts, we pro-

pose a new technique called WLCS which can efficiently and effectively capture

the shape similarity between fibers. Also, various existing similarity models for

trajectory like LCS, EDR are also adapted to measure the shape similarity of

fibers. Our experiments have shown that WLCS outperforms other techniques

on real fiber datasets. Also, threshold-based techniques like LCS, EDR acquire

better and stable performances than distance-based techniques like HDD, MCP

and DTW. A lower bounding distance is also proposed for WLCS to speed up the

comparison, thus significantly decreasing the computation time.

Our future works aim at the development of an efficient approximation tech-

niques for fiber similarity measure to further speed up the segmentation as well

as the applications of WLCS on different fields such as biomedicine and spatio-

temporal data mining.
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Chapter 9

Advantage Fiber Clustering

Techniques

Most existing fiber segmentation techniques suffer from high runtime and do not

allow interaction with experts during their executions. To tackle with these lim-

itations, we present a novel approach for fiber segmentation following an any-

time clustering scheme. The general idea is to allow the algorithm quickly pro-

duces an approximation result and the continuously refines it until terminated.

In this Chapter, the anytime density-based clustering algorithm A-DBSCAN and

A-DBSCAN-XS are employed for segmenting fibers using Dynamic Time Warping

as a represented technique for fiber similarity measure. Experiments on real fiber

datasets are conducted to demonstrate the performance and characteristic of the

proposed approaches.

Publications. Parts of the material presented in this Chapter have been pub-

lished in [181]. The detailed information are described as follows:

• Son T. Mai, Xiao He, Jing Feng, Claudia Plant and Christian Böhm. Any-

time Density-based Clustering of Complex Data. Knowledge and Informa-

tion System (KAIS), 2014. (accepted for publication).

In this work, S.T.M. contributed to the theory, implementation and experi-

ment of the algorithm. C.B. gave out an idea for the experiments. X.H. and

J.F. participated in some experiments. All authors discussed the principles

of the technique and the results and contributed to paper writing.
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9.1 Introduction

Exploring and analyzing fiber tracts are non-trivial problems due to the com-

plexity of the white matter structure and huge amounts of fiber tracts (usu-

ally from 103 to 106 fibers) [55]. Therefore, many fiber clustering techniques

[50, 75, 64, 252, 59, 178, 238] have been used to automatically group similar fibers

into anatomical bundles. They help to reduce the complexity of data, improve the

visualization and allow robust quantification and comparison between subjects to

find out abnormalities or unusual features in the brains.

Although they are useful, most fiber clustering algorithms still suffer from sev-

eral problems. First, they have very high running times which are caused by the

high time complexity of the fiber similarity measures and clustering algorithms

(usually quadratic time complexity). For example, the density-based fiber clus-

tering algorithm [35] with the well-known Mean of Closest Point (MCP) distance

[64] as the fiber similarity measure requires about 10 hours to group 10000 fibers

of average length 75 points per fiber on 2Ghz Workstation with 4GB RAM. Since

fiber datasets are usually large, this limitation is truly undesirable. Second, in-

teractive exploration of DTI fibers has been proved to be a useful approach for

brain connectivity analysis [59, 240, 91]. However, many existing fiber clustering

algorithms such as [50, 64, 178] only work in a batch scheme. They do not allow

interaction with experts during their runtime. Third, providing multiple results

for experts to examine would be more useful due to complex structures of fiber

tracts [269]. However, most existing techniques only produce one clustering result.

Since experts usually expect fast response times and interaction with program

during the clustering process of the white matter fiber tracts, the anytime cluster-

ing scheme would be very useful. The algorithm quickly produces an approximate

result which is continuously refined during the further runs. During its runtime,

experts can examine the results, suspend, resume or stop the algorithm anytime

whenever they satisfy with the existing results to save computation cost, or con-

tinue the algorithm to look for better results. On the other aspect, experts can

have different views about the fiber structure and they can choose the best results

according to their opinions from many results produced by the algorithm. To

the best of our knowledge, this anytime scheme has never been applied for fiber

clustering before.

Contributions. Our contributions are summarized as follows:

1. We proposed advantage techniques for fiber clustering using anytime density-
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based clustering algorithm A-DBSCAN [184] and A-DBSCAN-XS [185].

2. Extensive experiments on real datasets are conducted to demonstrate the

performance of our algorithms.

The rest of this Chapter is organized as follows. In Section 9.2, we propose a

similarity measure for fiber using DTW and construct a sequence of LB distances

for it. Experiments are displayed in Section 9.3. Section 9.4 summarizes our work.

9.2 Fiber Similarity Measure

After tractography, fibers are represented as a set S of streamlines in 3D with

different lengths. Recent researches have introduced many similarity models for

fibers such as Hausdoff distance [64], Mean of Closest Point distance [64] and

Dynamic Time Warping [237]. Although these similarity models are efficient and

widely used, they have quadratic time complexity which is a bottle neck of the

fiber clustering algorithms. Therefore, anytime clustering model becomes a use-

ful approach. In this work, we adopt Dynamic Time Warping (DTW) as the

main similarity model for fibers due to its simplicity and ubiquitousness in many

fields [132]. However, we note that our algorithm can be used with all mentioned

techniques above.

Given two fibers A = (a1, · · · , aN) and B = (b1, · · · , bM) which contain N and

M points in 3D. Let Ai be the first i points of A. We need to find a warping

path W = (w1, · · · , wK) (min(M,N) ≤ K ≤ M + N − 1) which contains pairs

of indices of A and B (wk = (i, j)) so that
∑K

k=1 f(ai, bj) is minimum. We define

distance function f between two 3D points as f(ai, bj) =
∑3

d=1 |aid − bjd|.

DTW can be calculated by using dynamic programming approach [132] to fill

the cost matrix DN×M with D(i, j) = f(ai, bj)+min(D(i, j−1), D(i−1, j), D(i−
1, j − 1))). We have DTW (A,B) = D(N,M).

To reduce the effect of different lengths of fibers, we define the similarity of

two fibers A and B as follows:

Sim(A,B) =
DTW (A,B)

N +M − 1

Note that this formula is slightly different with [237] which uses the length of

warping path between two fibers as the denominator.
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Lower bounding Fiber Similarity. In order to construct a sequence of lower

bounding functions, there exist many lower bounding techniques for DTW [220]

which can be employed such as LB Keogh [132], LB Zhu [301], LB Yi [287, 132]

and LB Kim [132, 138]. Sakurai et al. [227] propose a technique called LB Sakurai

which divides 1D time-series into smaller segments and constructs the lower bound-

ing distance for DTW based on the upper and lower values of these segments. By

decreasing the length of each segment to 1, the lower bounding distance increases

towards the true DTW distance. This property is well suited with our philosophy.

Therefore, we extend the LB Sakurai to use with 3D fiber trajectories.
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Figure 9.1: Example of LB Sakurai: (a) A and B is divided into 4 and 3 segments

respectively; (b) the cost matrix and the warping path for DTW (A,B) (yellow

cells) and DTW (A,B) (bold gray cells).

Assuming that, A and B are divided into n and m non-overlapping segments

at positions P = (p1, · · · , pn = n) and Q = (q1, · · · , qm = m) respectively. For

each segment i, we calculate its upper value (Ui) and lower value (Li) at each

dimension. The lower bounding distance of A and B is calculated by DTW of

segmented representations of A (denoted as A) and B (denoted as B) respectively.

Figure 9.1 shows an example of LB Sakurai in 1D. Since the size of the cost matrix

of A and B is much smaller than the cost matrix of A and B, the running time of

LB Sakurai is much faster than the original DTW.

To calculate LB Sakurai, we define the distance between two segments p and

q with length lp and lq as follows:

fs(p, q) = min(lp, lq) ·
3∑
d=1


|Upd − Lqd| (Upd ≥ Lqd)

|Lqd − Upd| (Lqd ≥ Upd)

0 (otherwise)
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Figure 9.2 illustrates the distance between two segments p and q in 1D (a) and

in 2D (b).

 

p 

q 

Up 
y 

Uq 

Lq 

fs(p,q) 

Upx Uqx Lpx x 

Lp 

Lqx 

Upy 

Uqy 

Lpy 

Lqy 

0 

|Lpy - Uqy| 

|Lqx - Upx| 

(a) (b) 

i 

j 

lp 

lq 

Figure 9.2: The distance between two segments p and q in 1D (a) and in 2D (b).

Lemma 11 Given two points pi in p and qj in q, we have:

∑3
d=1 |pid − qjd| ≥

∑3
d=1


|Upd − Lqd| (Upd ≥ Lqd)

|Lqd − Upd| (Lqd ≥ Upd)

0 (otherwise)

Proof 11 The expression is true at each dimension (see Figure 9.2 (a) for an

example). So is the sum.

Lemma 12 Given two fibers A and B and their segmented representation A and

B respectively. We have DTW (A,B) ≤ DTW (A,B).

Proof 12 Following Lemma 11, the proof of Lemma 12 is similar to the lower

bounding proof in [227].

Following Lemma 12, the LB Sakurai of Sim(A,B) is defined asDTW (A,B)/(N+

M − 1).

In this work, we divide each fiber into equal segments of length l (except the

last segment). Therefore, the running time of LB Sakurai is around O(n2/l2) (as-

suming that the length of fibers are n), which is l2 times faster than original DTW.
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Figure 9.3: The average of tightness of LB Sakurai on real fiber datasets.

To construct a sequence of lower bounding functions to use with our algorithms

A-DBSCAN and A-DBSCAN-XS, all we need to do is decreasing the value of l to

1 (in case l = 1 it is clear that DTW (A,B) = DTW (A,B)). Figure 9.3 shows

the averaged tightness of lower bounding [132] which is measured by the ratio

between DTW (A,B) and DTW (A,B) w.r.t. different values of l on all our real

fiber datasets. The smaller value of l, the higher the tightness of LBs.

9.3 Empirical Evaluation

Datasets. We evaluate the performance of our algorithm on 6 real labeled

datasets DS1 to DS6 which are randomly extracted from Pittsburgh Brain Compe-

tition (PBC) dataset (http://pbc.lrdc.pitt.edu/?q=home). These datasets contain

500 to 1500 fibers belonging to 5 to 8 famous fiber bundles namely Arcuate, Cingu-

lum, Fornix, Inferior Occipitofrontal Fasciculus, Superior Longitudinal Fasciculus,

Forceps Major and Corticospinal. For each dataset, 5 fibers from other bundles

are also added as noise.

Parameters Setting. A-DBSCAN and A-DBSCAN-XS always run on 8 different

levels with the length of segment l = {35, 30, 25, 20, 15, 10, 5, 1} respectively (l = 1

means the original DTW distance). Note that, experts can construct different

sequences of lower bounding functions based on their need: large l means worse

results and shorter running times and vice versa. We fix the parameter µ = 5 as

suggested by various researchers [83].
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Figure 9.4: The comparison of A-DBSCAN-XS and the others on 6 real datasets

DS1 to DS6. Good results are acquired at very early stages which require very

small running times.

Performance comparison. Figure 9.4 shows the comparison of A-DBSCAN-

XS, A-DBSCAN, M-DBSCAN, B-DBSCAN and DBSCAN on 6 real datasets DS1

(ε = 0.07), DS2 (ε = 0.1), DS3 (ε = 0.08), DS4 (ε = 0.12), DS5 (ε = 0.055)

and DS6 (ε = 0.1) (the runtime of DBSCAN is written beside the name of

each dataset). The NMI scores of the anytime algorithm (A-DBSCAN and A-

DBSCAN-XS) come closer to NMI scores of the batch algorithm (DBSCAN, M-

DBSCAN and B-DBSCAN) at each level. On all datasets, the NMI scores of

A-DBSCAN-XS become very close to the results of DBSCAN after level 3 or 4.

Therefore, experts can stop the algorithm as soon as it reaches level 3 or 4 to save

computation time. For DS1, A-DBSCAN-XS acquires the NMI score of 0.842 at
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level 3 which is a good score compared with the final score 0.988. The cumulative

running time of A-DBSCAN-XS at level 3 is only 2.62 seconds which is 112 times

faster than DBSCAN (293.6 seconds), 18 times faster than M-DBSCAN (47.9 sec-

onds) and 5 times faster than B-DBSCAN (11.4 seconds). When it comes to the

end, A-DBSCAN-XS requires only 5.3 seconds which is 55 times faster than DB-

SCAN, 10 times faster than M-DBSCAN, 2 times faster than B-DBSCAN, and 8

times faster than A-DBSCAN. For the dataset DS4, DS5 and DS6, the cumulative

runtime of A-DBSCAN-XS at some mid-levels is slightly slower than A-DBSCAN

since the overhead of the Xseedlist is much higher than its benefits. For DS1,

DS2, DS3 and DS6, the best results are found at some mid-levels instead of the

last one. It is interesting since we can have results which might never be acquired

with the batch clustering algorithm.

Figure 9.5 (a) shows the numbers of calls to different LBs for all techniques on

dataset DS6 as an example. The result clearly proves the performance acceleration

of A-DBSCAN-XS compared with the others. Figure 9.5 (b) shows the numbers

of calls to different LBs between using the extended Xseedlist with the sorting

function φ and the original one. The extended Xseedlist helps to reduce the

numbers of calls to LBs significantly.

To summarize, good results are found at very early levels by A-DBSCAN-XS.

Thus it helps to speed up A-DBSCAN-XS by orders of magnitudes compared

with other techniques. Since DTW is much expensive than ED, the performance

acceleration of A-DBSCAN and A-DBSCAN-XS on DTW is much higher than on

ED as described in Section 5.6. Even when it runs to the end, A-DBSCAN-XS

is about 50 times faster than DBSCAN, 2 times faster than B-DBSCAN, and 8

times faster than A-DBSCAN.

More experiments. Figure 9.6 shows the clustering results of A-DBSCAN-XS

at each level for DS5 which contains 5 bundles. A-DBSCAN-XS detects only 1

bundle at level 1, 2 bundles at level 2, 3 bundles at level 3. From level 4 to 7, it

discovers 4 bundles with only some minor changes. The result at level 8 is closest

to the ground truth.

One of the advantages of our algorithm is that experts can be able to choose

whatever they think reasonable from the bunch of results produced by our al-

gorithm. For example, since many experts consider the 2 bundles Arcuate and

Superior as similar (the yellow and red bundles at level 8), they prefer the results

at level 3 to 7 while other experts prefer the results at level 8. This is extremely

useful in neuroscience since the goodness of the classification of fibers sometime
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Figure 9.5: The numbers of call to LBs (a) for all algorithms and (b) for the

original and extended Xseedlist on the dataset DS6

Figure 9.6: The clustering results for dataset DS5 at each level (outliers are always

draw in black). All the results from level 4 to 8 are well-grouped.
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depends on different opinions of experts. Experts can stop the algorithm at level

4, thus acquiring up to 70 times speed up compared with DBSCAN.

Corpus Callosum. Figure 9.7 shows the clustering results of A-DBSCAN-XS

for the Corpus Callosum (µ = 5, ε = 0.03), the biggest and the most important

bundles which connects the left and right cerebral hemispheres in human brain.

Although we do not have the ground truth to compare, the results are well con-

firmed by our experts. Moreover, the results show the Corpus Callosum with

different resolution from the coarser to finer one.

Other results. Figure 9.8 shows the clustering results for the dataset DS1 at

each level. The clustering results at level 4 to 8 are well-grouped with 8 bundles

are detected with only some minor errors. The best clustering results are at level

6 and 7.

Figure 9.9 shows the clustering results for the dataset DR1 at each level. Al-

though we do not have a gold standard to compare. The results are well-grouped

according to our experts.

Figure 9.7: The clustering results for the Corpus Callosum dataset at each level

(outliers are always draw in black). The clustering results at level 4 to 8 are well

confirmed according to our experts.
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Figure 9.8: The clustering results for the dataset DS1 at each level (outliers are

always draw in black). The clustering results at level 4 to 8 are well-grouped with

8 bundles are detected with only some minor errors.

Figure 9.9: The clustering results for the dataset DS1 at each level (outliers are

always draw in black). The clustering results at level 4 to 8 are well-grouped with

8 bundles are detected with only some minor errors.

Scalability. Figure 9.10 shows the scalability of different algorithms for very large

fiber datasets which contain 2000 to 8000 fibers with D = {8, 6, 4, 2, 1}, µ = 5 and

ε = 0.04. A-DBSCAN acquires better performance than M-DBSCAN. Among all

the algorithms, A-DBSCAN-XS is the best one. For the large dataset with 8000

fibers, it requires only 1467.3 seconds to finish and 754.4 seconds to acquire a good
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result, while DBSCAN requires more than 5 hours and still does not finish. Note

that, we report the final cumulative runtimes of A-DBSCAN and A-DBSCAN-XS

in this experiment. If A-DBSCAN and A-DBSCAN-XS are terminated at some

middle levels, the acceleration factor will be much larger.
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Figure 9.10: Scalability of different algorithms for very large fiber datasets.

9.4 Conclusions

In this Chapter, we propose a novel approach for fiber clustering using anytime

clustering scheme. In contrast to the fiber clustering techniques, our algorithm

quickly produces a segmentation result and then continuously refines it during

the runtime. Moreover, it allows the interaction with experts during its execu-

tion. Experiments confirm that our proposed fiber clustering techniques can help

to speed up the segmentation process significantly. Since it produces multiple

segmentation results during the runtime, experts thus could have different views

about fiber structures.

To summarize, our approach provides a unique scheme to tackle with the fiber

segmentation problem.
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Summary





Chapter 10

Summary

In this thesis, we focused on developing anytime and active techniques for the

density-based clustering algorithm DBSCAN and their applications in neuroscience.

In this Chapter, we sum up all our contributions in this thesis and discuss some

future researches.

10.1 Conclusions

Nowadays, the developments of model technologies have opened the possibility of

generating, storing and collecting a large amount of complex data acquired from

many different fields, e.g. medicine, environment. As a consequence, the need of

new data mining technologies to deal with the new challenges for complex data

has been arisen during the last decades. In the first part of this thesis, we aimed

at the task of data clustering, one of the most common techniques in advanced

data analysis, for complex data. In particular, we focused on the density-based

clustering algorithm DBSCAN, a fundamental data clustering technique proposed

in the literature.

The core idea of the density-based clustering algorithm DBSCAN is that each

object within a cluster must have a certain amount of other objects inside its

neighborhood. Compared with other clustering algorithms, DBSCAN has many

attractive benefits, e.g. it can detect clusters with arbitrary shape and is robust

to outlier. Thus, DBSCAN has attracted a lot of research interest in many fields

during the last decades.

However, like many other clustering algorithms, DBSCAN suffers from poor

performance problem when facing with expensive distance measures for com-
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plex data. To tackle this problem, we proposed a new approach for DBSCAN,

called Anytime Density-based Clustering (A-DBSCAN), that works in an any-

time scheme. In contrast to the original batch scheme of DBSCAN, the algorithm

Any-DBSCAN first produces a quick approximation of the final clustering result

and then continuously refines the result during the further run. Experts can in-

terrupt the algorithm, examine the results and stop the algorithm at any time

whenever they satisfied with the result to save runtime or continuous the algo-

rithm to acquire better results. Such kind of anytime scheme has been proved

in the literature as a very useful technique when dealing with time consuming

problems. Concretely, A-DBSCAN works in multiple levels w.r.t. a sequence of

LB distances of the true expensive distance function. At each level, the density-

based clustering algorithm is performed on different LB distance functions. And

the clustering results at previous levels are used to refine the clustering result at

current level. From the current level to the next level, the monotonicity property

of density-based clusters is exploited to exclude redundance distance upgrades and

to reduce cost of cluster update time. Hence the total final cumulative runtime of

A-DBSCAN is usually better than that of DBSCAN. The speed up factor is much

better if A-DBSCAN is interrupted at some middle levels.

We also introduced an extended version of A-DBSCAN called A-DBSCAN-XS

which is more efficient and effective than DBSCAN when dealing with expensive

distance measures. The algorithm A-DBSCAN-XS is built upon the data struc-

ture called the extended XSeedlist to further reduce the total number of distance

calculations at each level. Here, the monotonicity of clustering results also plays

an important role to improve the runtime in the similar way with A-DBSCAN.

Beside the power of the extended XSeedlist in reducing the number of distance

calculations, maintaining the XSeedlist is an expensive process due to its sorting

scheme. Thus, A-DBSCAN-XS is more useful than A-DBSCAN when handling

expensive distance measures.

Since DBSCAN relies on the cardinality of the neighborhood of objects, it

requires all the distance among objects to perform. For complex data, these dis-

tances are usually expensive, time consuming or even unavailable to acquire due

to financial problem, high time complexity, noisy and missing data, etc. Moti-

vated by these potential difficulties of acquiring the distances among objects, we

proposed another approach for DBSCAN, called Active Density-based Clustering

(Act-DBSCAN). Given a budget limitation B, Act-DBSCAN is only allowed to

use up to B pairwise distances to produce the same result as if it has the entire

distance matrix at hand. The general idea of Act-DBSCAN is that it actively
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selects the most meaningful pairwise objects to calculate the distances between

them and tries to approximate as much as possible the desired clustering result

with each distance calculation. This scheme provides an efficient way to reduce the

total cost needed to perform the clustering. Thus it limits the potential weakness

of DBSCAN when dealing with the distance sparseness problem of complex data.

In particular, Act-DBSCAN is initialized with a lower-bounding distance ma-

trix of the true distance measure to guide the clustering process. At each iteration,

some pairwise distances are actively selected and updated with the true distances

until the budget limitation is reached. Act-DBSCAN contains an efficient proba-

bilistic model and a scoring system called the Shared Core Object (SCO) score to

evaluate the impact of the update of each pairwise LB similarity on the change of

the intermediate cluster structure. Deriving from the monotonicity and reduction

property of our clustering scheme and the SCO score, the two algorithms Splitting

with SCO (SP-SCO) and Merging with SCO (MG-SCO) are proposed to provide

two different and efficient ways to actively select and update pairwise similarities

and cluster results. Extensive experiments on real datasets have demonstrated

the performance of Act-DBSCCAN. It requires only a small fraction of all pair-

wise similarities to reach the clustering results of DBSCAN. Act-DBSCAN also

outperforms other techniques such as active spectral clustering.

In the last part of this thesis, we focused on applications of density-based

clustering algorithms in the field of neuroscience, in particular the problem of au-

tomatically segmenting the white matter structure in human brain via Diffusion

Tensor Imaging technique. In order to segment the fibers into anatomical mean-

ingful bundle, a similarity model between fibers is required beforehand. Therefore,

we proposed a model to evaluate the similarity between two fibers as a combina-

tion of the structure and connectivity similarity of fiber tracts. Various distance

measure techniques from other fields are adapted to calculate the structure sim-

ilarity of fibers. Density-based clustering algorithm is used as the segmentation

algorithm to evaluate the efficiency of our proposed model. Our similarity model

not only is more efficient than other existing similarity measure techniques for

fibers but also is more robust to noise. Moreover, it can help to speed up the

clustering process due to its multi-level lower-bouding property. It also provides

a flexible way to cope with the complex notion of fiber similarity.

For segmenting the fibers into bundle, we showed how anytime density-based

clustering algorithms like A-DBSCAN and A-DBSCAN-XS can be used as novel

solutions for the segmentation of massive fiber datasets and for providing unique

features to assist experts during the fiber clustering process.
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10.2 Future Works

Based on the results presented in this thesis, several promising and challenging

directions of future works arise.

Though the use of LB distance to initialize the cluster structure in DBSCAN

provides an efficient way to estimate the true cluster structure and to select mean-

ingful pairwise distances to update, it limits the applicability of Act-DBSCAN

in case the LB distance is not available. Thus, how to extend Act-DBSCAN to

work with an approximate distance matrix or an empty distance matrix in the

beginning is thus an interesting work. However, it is a non-trivial problem since

there are less obvious available information to choose meaningful pairwise distance

to update due to the lack of some important properties such as the monotonicity

property of the cluster structure.

Building an interactive system for fiber clustering under the anytime and active

density-based clustering scheme is another extension of our work. Obviously, such

kind of system would be a very useful tool for analyzing fiber structure. One of

the main challenges is how to capture the changes or constraints posed by experts

during the clustering process instead of allowing them to interactively explore the

results only. A promising direction is to allow expert to continuously pose instance

level constraints during the clustering process.

There exists in the literature many other extensions of DBSCAN. Since these

algorithms rely on the pairwise similarities among objects, they also suffer from

the similarity sparseness problem described in Chapter 1. Therefore, develop-

ing anytime and active schemes for these algorithms to cope with the similarity

sparseness problem remains open and interesting works.

Another promising direction is to parallelize the clustering process of A-DBSCAN,

A-DBSCAN-XS and Act-DBSCAN to enhance the performance on large-scale

complex datasets.
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[34] C. Böhm, B. Braunmüller, M. M. Breunig, and H.-P. Kriegel. High Perfor-

mance Clustering Based on the Similarity Join. In CIKM, pages 298–305,

2000.



206 BIBLIOGRAPHY
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[152] H.-P. Kriegel, P. Kröger, and I. Gotlibovich. Incremental optics: Efficient

computation of updates in a hierarchical cluster ordering. In DaWaK, pages

224–233, 2003.
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[155] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek. Density-based clustering.

Data Mining and Knowledge Discovery, 1(3):231–240, 2011.
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[199] E. Müller, S. Günnemann, I. Färber, and T. Seidl. Discovering Multiple

Clustering Solutions: Grouping Objects in Different Views of the Data. In

ICDE, pages 1207–1210, 2012.

[200] K. Myers, M. J. Kearns, S. P. Singh, and M. A. Walker. A boosting approach

to topic spotting on subdialogues. In ICML, pages 655–662, 2000.

[201] M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of mov-

ing objects. J. Intell. Inf. Syst., 27(3):267–289, 2006.

[202] E. N. Nasibov and G. Ulutagay. Robustness of density-based clustering

methods with various neighborhood relations. Fuzzy Sets and Systems,

160(24):3601–3615, 2009.

[203] E. D. Nerurkar and S. I. Roumeliotis. Power-SLAM: a linear-complexity,

anytime algorithm for SLAM. I. J. Robotic Res., 30(6):772–788, 2011.

[204] R. T. Ng and J. Han. Clarans: A method for clustering objects for spatial

data mining. IEEE Trans. Knowl. Data Eng., 14(5):1003–1016, 2002.

[205] B. M. Nogueira, A. M. Jorge, and S. O. Rezende. Hierarchical confidence-

based active clustering. In SAC, pages 216–219, 2012.

[206] I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and H.-P. Kriegel. Density-
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C. Plant. Hierarchical Density-Based Clustering of White Matter Tracts in

the Human Brain. IJKDB, 1(4):1–25, 2010.

[239] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A Multi-

Resolution Clustering Approach for Very Large Spatial Databases. In VLDB,

pages 428–439, 1998.

[240] A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell. Ex-

ploring Connectivity of the Brain’s White Matter with Dynamic Queries.

IEEE Trans. Vis. Comput. Graphics, 11(4):419–430, July 2005.

[241] J. Shieh and E. J. Keogh. Polishing the Right Apple: Anytime Classification

Also Benefits Data Streams with Constant Arrival Times. In ICDM, pages

461–470, 2010.

[242] B. W. Silverman. Density Estimation for Statistics and Data Analysis.

Chapman & Hall, 1986.

[243] S. Singh and A. Awekar. Incremental shared nearest neighbor density-based

clustering. In CIKM, pages 1533–1536, 2013.

[244] P. Smyth and D. Wolpert. Anytime exploratory data analysis for massive

data sets. In KDD, pages 54–60, 1997.

[245] B. Sofman, J. Bagnell, and A. Stentz. Anytime online novelty detection for

vehicle safeguarding. In ICRA, pages 1247–1254, May 2010.

[246] E. Stefanakis. NET-DBSCAN: Clustering The Nodes of A Dynamic Linear

Network. Int. J. Geogr. Inf. Sci., 21(4):427–442, Jan. 2007.

[247] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.

Addison-Wesley, 2005.



BIBLIOGRAPHY 223

[248] A. Tepwankul and S. Maneewongvatana. U-DBSCAN : A density-based

clustering algorithm for uncertain objects. In ICDE Workshops, pages 136–

143, 2010.

[249] S. Tong and D. Koller. Support vector machine active learning with applica-

tions to text classification. Journal of Machine Learning Research, 2:45–66,

2001.

[250] A. Tramacere and C. Vecchio. gamma-ray dbscan: a clustering algorithm

applied to fermi-lat gamma-ray data. i. detection performances with real

and simulated data. 2012.

[251] T. N. Tran, K. Drab, and M. Daszykowski. Revised {DBSCAN} algorithm

to cluster data with dense adjacent clusters. Chemometrics and Intelligent

Laboratory Systems, 120(0):92 – 96, 2013.

[252] A. Tsai, C.-F. Westin, A. O. Hero, and A. S. Willsky. Fiber Tract Clustering

on Manifolds With Dual Rooted-Graphs. In CVPR, 2007.

[253] C.-F. Tsai and H.-F. Yeh. Npust: An efficient clustering algorithm using

partition space technique for large databases. In IEA/AIE, pages 787–796,

2009.
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