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Zusammenfassung

In kühlen Sternen wie der Sonne wird die nuklear erzeugte Energie aus dem Inneren an die Oberfläche
transportiert. Diese kann dann in den freien Weltraum entfliehen, und so können wir das Sternenlicht letzt-
lich beobachten. Die theoretische Modellierung des photosphärischen Übergangsbereiches – vom kon-
vektiven zum radiativen Energietransport – ist aufgrund der inhärenten dreidimensionalen (3D) Natur der
Konvektion und der komplexen, nicht-linearen und nicht-lokalen Interaktionen des Strahlungsfelds mit dem
stellaren Plasma sehr anspruchsvoll. Theoretische Atmosphärenmodelle stellen die fundamentale Basis für
die Untersuchung von Sternen dar, daher sind Astronomen für ihr Verständnis der Sterne auf diese letztlich
angewiesen. Die üblicherweise verwendeten eindimensionalen (1D) Atmosphärenmodelle beinhalten ver-
schiedene Vereinfachungen. Insbesondere wird die Konvektion für gewöhnlich mit der Mischungsweg-
theorie berechnet, trotz ihrer wohlbekannten Fehler, da derzeit keine deutlich besseren Alternativen vorhan-
den sind. Der einzige Ausweg, um dieses Problem zu überwinden ist, die zeitabhängigen, dreidimensio-
nalen, hydrodynamischen Gleichungen, welche mit einem realistischen Strahlungstransport gekoppelt sind,
zu lösen. Aufgrund der in den vergangenen Jahrzehnten rasch gestiegenen Rechenleistung wurden be-
deutende Fortschritte mit Simulationen für 3D Strahlungshydrodynamik (RHD) von Atmosphären erzielt.
Diese Modelle sind außerordentlich leistungsfähig, und besitzen eine enorme Vorhersagekraft, wie präzise
Vergleiche mit Sonnenbeobachtungen wiederholt beweisen konnten.

Ausgestattet mit diesen ausgereiften Methoden möchte ich als Ziel meiner Dissertation die drei folgen-
den Fragen näher untersuchen: Was sind die Eigenschaften der Atmosphären von kühlen Sternen? Welche
Unterschiede sind zwischen den 1D und 3D Modellen vorhanden? Wie verändern sich die Vorhersagen für
die Sternstrukturen und Spektrallinien? Um mich dieser Aufgabenstellung systematisch anzunehmen, habe
ich das STAGGER-Gitter berechnet. Das STAGGER-Gitter ist ein umfangreiches Gitter aus 3D RHD At-
mosphärenmodellen von kühlen Sternen, welches einen großen stellaren Parameterbereich abdeckt. In der
vorliegenden Dissertation beschreibe ich die Methoden, welche angewendet wurden, um die vielen Atmo-
sphärenmodelle zu berechnen. Zudem werden die allgemeinen Eigenschaften der resultierenden 3D Mod-
elle, auch deren zeitliche und räumliche Mittelwerte detailliert dargestellt und diskutiert. Die Unterschiede
zwischen den 1D und 3D Schichtungen, sowie die Details der stellaren Granulation (die Manifestation
der Konvektion unterhalb der Sternoberfläche) werden ebenfalls umfangreich erläutert und beschrieben.
Des Weiteren habe ich folgende Anwendungen für die 3D Atmosphärenmodelle untersucht: Berech-
nung theoretischer Spektrallinien, wichtig für die Bestimmung von Sternparametern, Spektroskopie und
Häufigkeiten-Analyse; die sogenannte Randverdunkelung, notwendig für die Analyse interferometrischer
Beobachtungen und Suche nach extrasolaren Planeten; und die Kalibrierung der Mischungsweglänge,
womit 1D-Sternmodelle verbessert werden können.

Die Qualität der hochauflösenden Beobachtungen hat inzwischen die der theoretischen 1D Atmo-
sphärenmodelle aufgrund der technischen Entwicklungen in den vergangenen Jahren überschritten. Da-
her hat sich der Bedarf an besseren Simulationen für Atmosphärenmodelle erhöht. Durch die Bereit-
stellung eines umfangreichen Gitters aus 3D RHD Atmosphärenmodellen wurde dazu ein erheblicher
Beitrag geleistet. Damit werden wir den Anforderungen an die Theorie für die derzeitigen und zukün-
ftigen Beobachtungen gerecht werden, und können somit zu einem besseren Verständnis der kühlen Sterne
beitragen.
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Summary

In cool stars, like the Sun, energy from the inside is transported to its surface by convection, which then
can escape into space as radiation that we can observe. Modeling this photospheric transition region – from
convective to radiative energy transport – is notoriously challenging due to the inherent three-dimensional
(3D) nature of convection itself and the complex non-linear and non-local interaction of the radiation field
with the stellar plasma. Astronomers rely on theoretical atmosphere models, which provide the funda-
mental basis to study and understand stars. The commonly employed one-dimensional (1D) atmosphere
models make use of several simplifications, in particular, convection is usually treated with the mixing-
length theory (MLT), despite its well-known wrongness simply due to the lack of a considerably improved
alternative. Therefore, the only appropriate approach to overcome this issue, is to solve the time-dependent,
3D, hydrodynamic equations coupled a with the realistic treatment of radiative transfer. Due to the soaring
computational power in the recent decades, significant progress has been established with the advent of 3D
radiative hydrodynamic (RHD) atmosphere simulations. Nowadays, these perform exceedingly well and
offer exceptional predictive potential as detailed comparisons with the Sun have repeatedly revealed.

Equipped with this matured, powerful tool, I want to address the following three main questions as the
aim of my thesis: What are the atmospheric properties of cool stars besides the Sun? Which differences
are given between 1D and 3D models? How do the application-based predictions change? To attend to this
matter in a systematical approach, I have computed the STAGGER-grid, a comprehensive grid of 3D RHD
model atmospheres of cool stars covering a wide range in stellar parameters. In this thesis I describe the
methods I have applied for the computation of the grid models, and the general properties of the 3D models,
as well as their temporal and spatial averages are presented and discussed in detail. Also, the differences
between 1D and 3D stratifications are determined, and the details of stellar granulation, the manifestation of
subsurface convection, is extensively depicted. Furthermore, I investigated with the STAGGER-grid several
applications for 3D atmosphere simulations including: spectral line profiles, important for stellar parameter
determination, stellar spectroscopy and abundance analysis; limb darkening, necessary for interferometry
and extrasolar planet search; and the calibration of the mixing length, which will improve stellar evolution
models.

The cumulative technical developments of high-resolution observations in the recent years have sur-
passed the standards of theoretical 1D atmosphere models, thereby, it has given rise to the enhanced de-
mand of improved atmosphere simulations. By providing a comprehensive grid of 3D RHD atmosphere
models to the astronomical community, a major contribution has been achieved to live up to the current and
future high-precision observations, which ultimately will lead to a better understanding of cool stars.
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Preface

The presented dissertation is segmented into eight chapters, with the first one being the introductory one,
while the final chapter (Chapter 8) contains the conclusions to all findings. The content of three chapters
originate partly from the two published publications Magic et al. (2013a,b), and has been supplemented
with additional illustrations, discussions and sections. Both publications have been written by the author
primarily by himself, however, the guidance provided by Martin Asplund at all times and the initial practi-
cal introduction by Remo Collet are to be emphasized. Also, the helpful consultation by Aake Nordlund on
the Section on the energy fluxes in the first paper is also noteworthy. Otherwise, the remaining co-authors
provided only minor support for the completion of the subsequently presented STAGGER-grid project re-
sults. Furthermore, I want to remark that four chapters contain material that has been prepared for four
additional publications.

In Chapter 1, I introduce the subject of stellar atmospheres of cool stars by elucidating its development
in the past and its current status. Subsequently, the theoretical background is covered with a brief discus-
sion of the equations for hydrodynamic and radiative transfer. Then, in Chapter 2 I present all the methods
I have applied for the computation of the large grid of 3D atmosphere models – the STAGGER-grid – that
comprises of ∼ 220 grid models ranging in effective temperature, Teff, from 4000 to 7000K in steps of
500K, in surface gravity, logg, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from −4.0 to
+0.5 in steps of 0.5 and 1.0dex. In order to generate the STAGGER-grid models in a consistent fashion,
I have developed a comprehensive set of routines, which automatizes all the necessary intermediate steps
that involves in the computation of new 3D atmosphere simulations with the STAGGER-code including
realistic input physics for the equation of state (EOS) and for continuous and line opacities. Despite all
automatization, the still laborious computations of all grid models were performed by myself, in particular,
these necessitated the executing, monitoring and checking of the individual jobs. Moreover, I have also
developed an extensive set of routines (during my work a total of ∼ 70000 lines of code were written) for
the detailed analysis of the vast data set that includes the calculation of the temporal and spatial averages
of various statistical properties, which are presented and discussed in Chapter 3. Various interesting scal-
ing relations between different global properties are pointed out, between which I want to accentuate our
finding on the enhancement of the intensity contrast and the reversed granulation in metal-poor simulations
for the first time. Furthermore, the mean stratifications are discussed in great detail and compared with
classical 1D MLT models, in order to quantitatively reveal their discrepancies. We find that metal-poor
stars are most affected, and their temperature stratifications can be mismatched by up to ∼ 1000K. This is
followed by the comparison of the different averaging procedures and the discussion of additional statisti-
cal properties, such as the contrast, histogram and the averages separated in up- and downflows. I have also
performed (by myself) a detailed analysis of stellar granulation in Chapter 4 by applying a granule recog-
nition algorithm to the emergent intensity map, a method that has been developed and applied by solar
observers. For the detected granules I derived extensive details, like granule diameter, intensity, tempera-
ture and density distribution, also vertical velocity and geometrical properties. I would like to highlight my
findings on the dual fractal dimensions, since these challenge the findings by some observational studies.

Besides the analysis of the STAGGER-grid itself, I have also covered solitarily three important appli-
cations for 3D RHD simulations. In Chapter 5 I have performed spectral line formation calculations for
various iron lines. The line profiles resulting from 1D models and mean 3D stratifications based on the
different averaging procedures were compared with the full 3D computations, and we found the interest-
ing outcome that the averages on layers of column mass density leads to better mean representations than
averages determined on layers of constant optical depth. We find that using mean 3D models would signif-
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icantly improve the spectroscopical analysis of metal-poor stars, since the 1D models show here the largest
deviations. The effects of a realistic velocity field and the inhomogeneities arising from the convective
motions on the spectral line profiles were studied with iron line shifts and asymmetries. Furthermore, in
Chapter 6 I utilized full 3D synthetic energy flux computations performed by Andrea Chiavassa to derive
limb darkening and transit light curve predictions for the parameterization of exoplanets. In Chapter 7 I
calibrated the mixing length with both 1D models for atmospheres and envelopes from 3D simulations,
which will be useful for improving stellar structure computations. I derived also the vertical correlation
length of the vertical velocity and the mass mixing length, and their values are qualitatively comperable to
the mixing length. Here, I want to highlight my derivation of the mass mixing length from the hydrody-
namic mean field equations, which has been achvieved for the first-time. Furthermore, I found the mixing
length and the mass mixing length scales with the inverse of the entropy jump.

The STAGGER-grid states a significant contribution to the development of stellar atmosphere model-
ing due to the almost similar large extent in stellar atmospheric parameter space that conventional 1D
models had one or two decades ago. Furthermore, the complete grid will be made publicly available for
stellar astronomical community, so that in the future, the limitations of 1D models can be exceeded. The
3D atmosphere models will lead to improvements in various astronomical applications that will follow in
the coming years, including stellar parameter determination, stellar spectroscopy and abundance analysis,
asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. Fi-
nally, the detailed, comprehensive analysis of the STAGGER-grid models states a spadework for the future,
since due to a better understanding of the subsurface convection in cool stars novel theoretical models
might be developed as a result, which ultimately could substitute the MLT models that are currently still
widely used.



Chapter 1

Introduction

1.1 Motivation

The primary source of information for stellar objects is the light they emit, which carries information about
the physical conditions at its origin. However, in order to interpret the information correctly, one first needs
either theoretical or semi-empirical models of the atmospheric layers at the surface of stars from where the
stellar radiation escapes. Therefore, models of stellar atmospheres are essential for much of contemporary
astronomy.

In the case of late-type stars, the theoretical modeling of stellar atmospheres is complicated by the
presence of convective motions and turbulent flows as well as of magnetic fields in their envelopes (see
review by Nordlund et al., 2009, and references therein). In particular, convection can significantly affect
both the atmospheric stratification and emergent spectral energy distribution in these stars. Hence, in order
to correctly represent the temperature stratifications in the outer layers of stars, from where the stellar
light escapes, it is vital to accurately account for the interaction between radiative and convective energy
transport at the optical surface .

The first realistic grids of line-blanketed atmosphere models for late-type stars appeared with the publi-
cation of MARCS (Gustafsson et al., 1975, 2008) and ATLAS models (Kurucz, 1979; Castelli & Kurucz,
2004). Subsequently, other one-dimensional (1D) atmosphere codes, e.g., PHOENIX (Hauschildt et al.,
1999) and MAFAGS (Grupp, 2004), were developed to model the atmospheres of stars. In general, these
theoretical 1D atmosphere models assume hydrostatic equilibrium, flux constancy, and local thermody-
namic equilibrium (LTE). For the modeling of convective energy transport, they commonly employ the
mixing-length theory (MLT, see Böhm-Vitense, 1958), which is characterized by several free parameters,
the most commonly known being the mixing-length lm, or equivalently, the parameter αMLT = lm/HP.
Alternatively, some relatives thereof are available, such as the full turbulence spectrum (FTS) theory by
Canuto & Mazzitelli (1991), which itself also has a free parameter. The values of these free parameters are
not known from first principles and need to be calibrated based on observations or simulations. The mixing-
length theory has in total four free parameters (see Böhm-Vitense, 1958; Henyey et al., 1965; Mihalas,
1970). These free parameters can be calibrated based on their effect on synthetic spectra, but usually only
αMLT is calibrated based on the reproduction of selected lines (Fuhrmann et al., 1993; Barklem et al., 2002;
Smalley et al., 2002). Moreover, the free mixing length is calibrated in stellar evolutionary calculations by
matching the observed luminosity and radius of the Sun at its current age (e.g. Magic et al., 2010). To con-
struct simple yet realistic 1D models of convection is rather difficult, in particular, convective overshooting
beyond the classical Schwarzschild instability criterion is normally not considered in 1D atmospheric mod-
eling. Attempts have been made at including its effects in 1D model atmospheres albeit with only limited
success (Castelli et al., 1997).

The first numerical 1D model stellar atmosphere codes usually assumed a plane-parallel geometry for
the atmospheric stratification. This was later improved upon by changing to a spherical symmetry, leading
to lower temperatures in the upper layers, in particular, for giant stars, due to the dilution of the radia-
tion field with increasing radial distance, which can cover a significant fraction of the stellar radius at low
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logg (see Gustafsson et al., 2008). Initially line blanketing was included by means of opacity distribution
functions (ODFs, Gustafsson et al., 1975) with a few hundred ODFs covering the entire spectrum, even-
tually replaced by opacity sampling (OS) including thousands of wavelength points (Johnson & Krupp,
1976). Nowadays, thousands of ODFs or hundreds of thousands of OS wavelengths are used. Despite
such high resolution in wavelength, the computational costs for 1D atmosphere models are currently quite
small, at least for LTE models. Large, homogeneous grids of atmospheres with up to ∼ 105 models ex-
ist (Gustafsson et al., 2008; Cassisi et al., 2004; Hauschildt et al., 1999), covering a wide range of stellar
atmosphere parameters.

Even though the 1D atmosphere models are based on numerous simplifications, they have demonstrated
high predictive capabilities owing to major improvements in the atomic and molecular data (e.g., line lists
by Kurucz (1993) or VALD by Piskunov et al. (1995)). Also, the continuum opacity sources and the EOS
have undergone similar developments. Thanks to these, 1D atmosphere models are in many respects very
successful in comparisons with observations and are widely applied in astronomy today.

Another approach, almost exclusively used for solar atmosphere modeling, is the use of semi-empirical
models. In these models, the temperature stratification is inferred from observations (e.g., from lines
forming at different heights or continuum center-to-limb variations). Often-used semi-empirical 1D so-
lar atmosphere models are the Holweger & Mueller (1974), VAL3C (Vernazza et al., 1976), Maltby et al.
(1986) and MISS (Allende Prieto et al., 2001) models. A similar approach can be used to integrate spa-
tially resolved observations and thus infer the three-dimensional (3D) atmosphere structures using inversion
techniques (Ruiz Cobo & del Toro Iniesta, 1992; Socas-Navarro, 2011). Semi-empirical modeling is rarely
attempted for other stars, although exceptions exist (e.g. Allende Prieto et al., 2000). In Fig. 1.1 we show
the semi-empirical temperature stratification derived by Holweger & Mueller (1974), and for comparison
the solar 1D MARCS model (Gustafsson et al., 2008).

Constructing more realistic models requires one to go beyond the 1D framework and model convection
without relying on MLT. Stellar convection is an inherently 3D, time-dependent, non-local, and turbulent
phenomenon. Therefore, one cannot expect 1D models to reproduce all observed properties accurately,
even with access to free parameters to tweak. The next natural step is to abandon some of these crude
simplifications by constructing realistic 3D atmosphere models of solar convection. Early hydrodynamic
simulations (Nordlund, 1982; Nordlund & Dravins, 1990; Steffen et al., 1989) revealed that stellar surface
convection operates in a distinctly different fashion from the MLT picture. Instead of the homogeneous
convective elements, they displayed highly asymmetrical motions with slow broad steady upflows inter-
spersed with fast narrow turbulent downdrafts, sometimes even supersonic (e.g., Stein & Nordlund 1998,
hereafter SN98; Asplund et al. 2000a; Nordlund et al. 2009; Carlsson et al. 2004; Ludwig et al. 1999). The
advent of 3D simulations, which are constructed from first principles, has enabled astronomers to predict
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Figure 1.2: Granulation pattern in the emergent intensity of the Sun, observed with the Swedish Solar
Telescope (left; resolution is 25km) and the numerical simulation (right).

various observables such as solar granulation properties and spectral line profiles astonishingly well. More
recent solar 3D simulations are remarkably good at reproducing the observed center-to-limb variation (e.g.
Pereira et al., 2009a; Asplund et al., 2009; Ludwig, 2006). In Fig. 1.2, we show a comparison between
the observed1 and theoretical solar granulation pattern in the emergent intensity map, which are hardly
distinguishable.

3D atmosphere models are by design free from the adjustable parameters of MLT and other param-
eters such as micro- and macro-turbulence that have hampered stellar spectroscopy for many decades.
Instead, in 3D simulations, convection emerges naturally, by solving the time-dependent hydrodynamic
equations for mass-, momentum- and energy-conservation, coupled with the 3D radiative transfer equa-
tion in order to account correctly for the interaction between the radiation field and the plasma. Also, the
non-thermal macroscopic velocity fields associated with convective motions are rendered realistically, and
various natural kinetic consequences such as overshooting and excitation of waves emerge from the simu-
lations, without the need for further ad hoc modeling or additional free parameters. The inhomogeneities
in the convective motions arise spontaneously and self-organize naturally to form a distinct flow pattern
that exhibits the characteristic granulation at the surface. Furthermore, additional spectral observables such
as limb-darkening and detailed spectral line shapes, including asymmetries and shifts, are also modeled
unprecedentedly accurately with 3D models for the Sun (Nordlund et al., 2009; Pereira et al., 2009b).

For metal-poor late-type stars, it has been shown (Asplund et al., 1999b; Collet et al., 2006, 2007) that
the assumption of pure radiative equilibrium in the convectively stable photospheric layers of classical
hydrostatic models is generally insufficient. In particular, in the upper photosphere, the thermal balance
is instead primarily regulated by radiative heating due to spectral line re-absorption of the continuum-
radiation from below above granules and adiabatic cooling due to the expansion of upflowing gas above
the intergranular lane. While the adiabatic cooling due expansion is less important in metal-rich stars, in
metal-poor stars, the balance between heating by radiation and cooling by mechanical expansion of the gas
occurs at lower temperatures because of the weakness and scarcity of spectral lines at low metallicities. By
contrast, 1D MLT models have no velocity fields outside their convection zones, and are therefore in pure
radiative equilibrium. The temperature stratification there is therefore regulated solely by radiative heating
and cooling, thus neglecting altogether the adiabatic cooling component. This results in an overestimation
of the temperatures by up to ∼ 1000K in 1D models at very low metallicities, which can potentially lead
to severe systematic errors in abundance determinations based on 1D models (see Asplund et al., 1999b;

1Taken form http://www.solarphysics.kva.se/gallery/images/2010/ .

http://www.solarphysics.kva.se/gallery/images/2010/
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Asplund & García Pérez, 2001; Ludwig et al., 2010; Collet et al., 2009; González Hernández et al., 2010).
These shortcomings of 1D models are manifested as inconsistencies in the analysis of observed spectra,
such as abundance trends with excitation potential of the lines (e.g., analysis of NH lines in the very metal-
poor star HE1327-2326, by Frebel et al. (2008)) and discrepant abundances between atomic and molecular
lines involving the same elements (e.g. Nissen et al., 2002). For further discussion, we refer to a review of
possible impacts of 3D models on stellar abundance analysis by Asplund et al. (2005).

Additionally, there are discrepancies between observations and predictions from 1D models of the so-
lar structure in the context of helioseismology, which point to mistakes in the outer layers of theoretical
1D stellar-structure models, and which are usually referred to as surface effects (Rosenthal et al., 1999).
With classical 1D stellar structures, higher frequency p-modes of the Sun are systematically shifted due
to discrepancies at the upper turning points of the modes, which occur in the superadiabatic peak at the
top of the convection envelope. Rosenthal et al. (1999) found better agreement of stellar structures with
helioseismic observations, when including the mean stratification of solar 3D models at the top, since the
turbulent pressure, usually neglected in 1D models, extends the resonant cavity. Also, it was found that
with 3D solar models the predicted p-mode excitation rates are much closer to helioseismic observations
(Nordlund & Stein, 2001; Stein & Nordlund, 2001). Ludwig et al. (2009b) compared the power spectra of
the photometric micro-variability induced by granulation and found good agreement between the theoreti-
cal predictions of 3D solar models and observations with SOHO.

With the comparison of visibility amplitude and phase predictions from 3D simulations with interfer-
ometric observations, stellar radii have been derived for a number of red giants (Chiavassa et al., 2010,
2012) . The determined stellar radii are slightly larger than estimated with the use of 1D models, which
has an impact on the zero point of the effective temperature scale derived by interferometry. Furthermore,
Chiavassa et al. (2012) showed that for interferometric techniques a detailed knowledge of the granulation
pattern of planet-hosting stars is crucial for the detection and characterization of exoplanets.

Several 3D magnetohydrodynamics codes with realistic treatment of radiative transfer have been de-
veloped and applied to the modeling of stellar surface convection. Here, we make use of the STAGGER-
code, which is developed specifically to run efficiently on the massively parallel machines available today
(Nordlund & Galsgaard 19952; Kritsuk et al. 2011). The BIFROST-code is an Oslo derivative of the STAG-
GER-code (Gudiksen et al., 2011), tailored for simulations of the solar photosphere and chromosphere,
and therefore including true scattering (Hayek et al., 2010). Other widely used codes are CO5BOLD
(Freytag et al., 2012), MURAM (Vögler et al., 2005) and ANTARES (Muthsam et al., 2010), which have
been independently developed in the last decades. These codes perform similarly a box-in-a-star setup,
and the differences can be pointed out mostly in the details of the numerics, such as numerical diffusion
and interpolation schemes. Beeck et al. (2012) compared solar models from three of the above 3D stellar
atmosphere codes (STAGGER, CO5BOLD and MURAM), and showed that the models are overall very
similar, despite the distinct numerical approaches. Most of the available 3D stellar convection codes are
now highly parallelized, which when coupled with the computational power available today makes it fea-
sible to construct grids of 3D convection simulations within a reasonable time-scale. Grids of 2D and 3D
atmosphere models already exist (Ludwig et al., 1999, 2009a; Trampedach, 2007; Trampedach et al., 2013;
?). Clearly, the age of 3D atmosphere modeling has arrived, partly driven by the rising demand created by
improved high-resolution spectroscopic and asteroseismic observations.

It is advantageous to reduce the relatively large amount of data from the full 3D atmospheric models
to temporally and spatially averaged (hereafter 〈3D〉) representations. However, this reduction comes at
the expense of physical self-consistency (see Atroshchenko & Gadun, 1994). Nonetheless, in this way
one can deal with more manageable atmospheric data structures compared to the otherwise enormous
amount of information associated with the full 3D models. These mean 〈3D〉 stratifications are usually
compared with classical 1D hydrostatic atmosphere models. Nordlund & Stein (2001) point out that the
large-amplitude fluctuations in the superadiabatic region3 (SAR) leads to deviations from the hydrostatic
equilibrium. Furthermore, the 3D data sets incorporate quantities emerging from the hydrodynamics and
associated with convection itself, such as, self-consistent velocity fields and turbulent pressure, for which

2http://www.astro.ku.dk/~kg/Papers/MHD_code.ps.gz
3The SAR can be approximately located with the superadiabatic gradient, e.g., with ~∇sad > 0.1max

[

~∇sad

]

one obtains typically a

range of −0.5 . logτRoss . 4.0.

http://www.astro.ku.dk/~kg/Papers/MHD_code.ps.gz
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there are no physically consistent counterparts in the case of 1D hydrostatic models.
The definition of the 〈3D〉 stratifications is neither unambiguous nor unique, but depends largely on the

choice of reference depth scale. When dealing with the analysis of the atmospheric layers above the optical
surface, monochromatic or Rosseland optical depth scales are usually considered the appropriate choice
since these are the natural reference depth scales that are used to describe radiative transfer processes in the
photosphere. On the other hand, the optical depth loses its usefulness somewhat in the very deep optically
thick layers below the optical surface, since here the mean free path of photons becomes very short and
the radiative transfer insignificant. Therefore, other reference scales are best suited to describing the main
properties of the stellar stratification. Also, the bimodal and highly asymmetric distribution of bulk upflows
and of downflows in the convective zone complicates the definition of a meaningful unique average value,
particularly near the surface, at the transition between convectively unstable and stable regions.

Uitenbroek & Criscuoli (2011) investigated the application of 〈3D〉 models to spectral line formation.
They computed and compared continuum and atomic line intensities and their respective CLV from 〈3D〉
and 3D models. They conclude that a mean 〈3D〉 stratification is insufficient to represent the full 3D
atmosphere model in the light of spectral analysis. As reasons for the latter they list the non-linearity of the
Planck function, formation of molecules, and the asymmetry of convective motions.

Despite the enormous success and the ab-initio nature of 3D atmosphere modeling, as last we want
to mention the weaknesses. In order to keep the computation costs reasonable, the radiative transfer is
usually simplified with the opacity binning method, which may influence the outcome. Also, the numerical
resolutions of these so called large-eddy simulations are not resolving the microscopic viscous dissipation
length scales, hence, the need to introduce numerical diffusion. However, these do not affect the main
properties of the macroscopic flows and of the physical stratification. Also, we minimize the diffusion
coefficients once under the constraint of numerical stability, and then apply them for all the simulations.
These issues can be solved, and the easiest rectification will be enhancement of the numerical resolution,
in particular, for giants. Accounting for non-LTE effects and magnetic fields is extremely expensive for 3D
simulations, therefore, these are usually neglected.

1.2 Radiation-hydrodynamics of stellar convection

In order to understand stellar atmospheres, we need to establish the fundamental physics of the energy
transport, which is giving rise to the actual thermodynamical stratification in the subsurface layers of stars.
Two intrinsically distinct regimes for the transport of energy can be pointed out at the boundaries of late-
type stars: one being the the convective energy flux below the optical surface, where the hydrodynamic
equations are governing the physics, and other one being the radiative energy flux above the photosphere,
which is described by the radiative transfer equation. To numerically determine the thin superadiabatic
photospheric transition region at the top of the convection is challenging due to the non-linear, non-local
interactions between radiation and matter leading to large-amplitude fluctuations. Therefore, one has to
consider the equations of radiation-hydrodynamics, which we will discuss in the following Section.

1.2.1 Hydrodynamic equations

The hydrodynamic equations – known as the Euler equations – are the conservation laws of mass (Eq. 1.5),
momentum (Eq. 1.2) and energy (Eq. 1.3). In the case of the numerical modeling of stellar atmospheres
we express them as

∂tρ = −~∇ · (ρ~v), (1.1)

∂tρ~v = −~∇ · (ρ~v⊗~v+ τ)−~∇pth +ρ~g, (1.2)

∂te = −~∇ · (e~v)− pth
~∇ ·~v+ qrad + qvisc. (1.3)

Here ρ denotes the density, e the internal energy per unit volume4,~v the velocity field, ~g the gravitational
acceleration, pth the thermodynamic pressure, qrad the radiative cooling and heating rate, and qvisc the
viscous dissipation rate.

4In the following, we will indicate the internal energy per unit mass with ε = e/ρ .
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The passive transport (advection) for any given scalar field, ψ (~x, t), in a velocity field~v can be evaluated
with the advection equation

∂tψ +~∇ · (ψ~v) = 0, (1.4)

which is a nonlinear hyperbolic differential equation of the first order with its general solution being wave
functions of the form

ψ (~x, t) = ψ0 (~x−~vt) .

The scalar field ψ can be any conserved, extensive quantity, e.g., advection of enthalpy (heat), and the
fluids motions are described with the velocity vector field, ~v. The advection equation is equivalent to the
more fundamental Gauss’s theorem (divergence theorem)

∫

V
∂tψ dV =

∮

S

~∇ · f dS,

which states that the temporal change of ψ in the volume V is equal to the flux, f , through its enclosed
surface S = ∂V in the infinitesimal limit. In other words, the scalar fields follows its conservation law.
Then, by considering the conservation of mass-, momentum-, and energy-density one yields the standard
Euler equations. Furthermore, the differential forms in Eqs. 1.2 and 1.3 are derived from the standard
Euler equations by subtracting the velocity times the mass conservation (Eq. 1.5) from the momentum
equation (Eq. 1.2), and subtracting the velocity times the momentum equation from the energy equation
(1.3). The (classical) fluid dynamics are described by a coupled system of five5 non-linear hyperbolic
partial differential equations of the first order, which determine the source and sink terms that give rise
to the temporal variations in density, momentum and internal energy. Due to their so-called conservation
form, their physical origins can be then identified conveniently.

In the quasi-stationary state, the time derivatives of a given variable X vanishes in the hydrodynamic
equations, ∂tX = 0. Furthermore, applying the temporal and spatial averaging operator, denoted by 〈. . .〉,
gives us the mean field hydrodynamic equations, where the only remaining spatial dependence is the verti-
cal one, X (z), and the divergence terms thus reduce to vertical derivatives, i.e., ~∇ · 〈X〉= ∂z 〈X〉.

For stellar surface convection we consider compressible fluids to properly account for the highly strat-
ified layers in stellar atmospheres (for incompressible fluids is ~∇ · ρ = 0). The mass conservation, also
referred as continuity equation (Eq. 1.5), determines the expansion or compression of the advected stellar
plasma. When one considers the stationary continuity equation (anelastic approximation, ∂tρ = 0), then
the right hand side of Eq. 1.5 can be written as

vz∂z lnρ ≈ −∂xvx − ∂yvy − ∂zvz, (1.5)

which states that for an ascending (descending) fluid parcel, the decrease (increase) of the density lnρ is
balanced by lateral and vertical expansion (compression), which results in an acceleration (deceleration).
The main expansion or compression will take place in the horizontal direction, and the horizontal density
gradients can be neglected, since the atmosphere is vertically stratified.

The momentum equations, also referred as the Navier Stokes equations, are the equations of motions,
therefore, the hydrodynamic equivalent to the Newton’s second law of motion. The first term in the right
hand side of the ith component of Eq. 1.2 contains the divergence of the dyadic (tensor) product6 from the
velocity field, ∂ j(ρv jvi). The second one is the viscous stress tensor

τi j = η jρ∂ jvi (1.6)

with η j the viscosity and ∂ jvi the strain tensor, and τi j amounts the diffusion of the velocity field. One can
also express the viscous stress tensor with

si j =
1
2
(∂ jvi + ∂iv j)

5Two scalar (Eqs. 1.5 and 1.3) and three vector equations (Eq. 1.2).
6Here we make use of the Einstein summation convention.
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being the symmetric part of the strain tensor. The other ones being the gradient of the thermal pressure
and the external force being the gravitational downward acceleration due to buoyancy; and ~g = ~∇Φ with
the gravitational potential Φ. The gravitational acceleration contains only the vertical direction, and at the
vicinity of the stellar surface, one can assume it being constant with depth. Furthermore, the buoyancy force
is acting only the density fluctuations, i.e. fb = ρ

′
gz. The over-dense regions will experience a negative

buoyancy force, thereby pulling the heat depleted cool gas downwards, while the under-dense ones will
gain positive buoyant acceleration. The buoyancy term is mediating the convective motions, therefore, this
term is essential for the occurrence of convection.

The stationary mean field equation for the momentum takes

0 = −
〈

~∇ · (ρ~v~v+ τ)
〉

−
〈

~∇pth

〉

+ 〈ρ ,~g〉 , (1.7)

and the first (inertial) term reduces to turbulent pressure pturb = ρv2
z ; we therefore obtain

〈

~∇ · (ρ~v~v)
〉

=

∂z 〈pturb〉. The divergence of the viscous stress tensor, ~∇ · τ , vanishes on average. The last two terms yield
∂z 〈pth〉 and 〈ρg〉, and we retrieve the equation for hydrodynamic equilibrium with

∂z (〈pturb〉+ 〈pth〉) =−〈ρ〉g, (1.8)

which is identical to the equation for hydrostatic equilibrium. The latter states how much mass weight a
certain pressure stratification can support against its directed downwards gravitational force. We remark
that the hydrodynamic equilibrium is only fulfilled on the temporal average.

The kinetic energy equation can be derived by taking the scalar product of the velocity with the mo-
mentum equation (Eq. 1.2), i.e.

∂tekin = −~∇ · (ekin~v+ τ ·~v)−~v · (~∇pth)+ρ~v ·~g.

Then one can obtain that the variation of the kinetic energy, ekin = ρ~v2, is given by the divergence of the
kinetic energy flux, the viscous dissipation, the work performed by the thermodynamic pressure gradient
force and the work by the gravity force. The latter is also referred as the buoyancy work, however, only the
fluctuations of the density and vertical velocity are contributing, i.e. Wb = ρ

′
v
′
zgz. Also, we can see now

that the buoyancy force is entering the energy balance through the kinetic energy equation.
The (internal) energy equation (Eq. 1.3) contains the divergence of the internal energy flux, ~∇ · (e~v).

Furthermore, the second term, pth
~∇ ·~v, determines the adiabatic heating (cooling) due to compression

(expansion) of the stellar plasma, and is the pdV -work. The third term is the cooling and heating rates due
to radiative losses, which we discuss closer in Sec. 1.2.2. Another channel for internal energy losses or
yields is the viscous dissipation rate

qvisc = τi j∂ jvi. (1.9)

The total energy is defined with etot = e+~v2/2 and by adding the kinetic energy to the internal energy
equation (Eq. 1.3) we retrieve the total energy equation with

∂tetot = −~∇ ·
(

e+ pth +ρ~u2/2+ τ
)

~v+ qrad. (1.10)

The first two terms amount the divergence of the enthalpy flux ~Fenth = (ε + pth/ρ)ρ~v, the third the kinetic
energy flux ~Fkin =~v2/2ρ~v, the fourth the the viscous flux ~Fvisc = τi j ·~v, and, the finally the radiative energy
flux ~Frad. Then, we immediately overview all source and sink terms for the total energy with

∂tetot = −~∇ ·
(

~Fenth +~Fkin +~Frad +~Fvisc

)

. (1.11)

We note that the divergence of the sum of the energy fluxes is zero for the quasi-stationary state, which is
the equivalent to the conservation of the total energy, ∂tetot = 0. The variation in one value is transformed
into another one, e.g., enthalpy flux into radiative flux.
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Figure 1.3: The solid angle d~Ω in spherical polar coordinates, illustrating the direction of the specific
intensity radiate.

The thermodynamic pressure, pth, is the sum of the gas and radiation pressure, i.e.

pth = pgas + prad, (1.12)

while the total pressure is defined as the sum of thermodynamic and turbulent pressure, i.e.

ptot = pth + pturb. (1.13)

We emphasize that it is vital to choose a clear notation, since the turbulent pressure is neglected in 1D
calculations, however, in the superadiabatic region its influence can become substantial.

1.2.2 Radiative transfer

The radiative transfer equation describes the interaction between the radiation field and the matter, which
we want to discuss in the following. When we consider the energy dEλ irradiated through the surface dA

in the direction d~Ω (see Fig. 1.3) in the time interval dt in the wavelength range dλ , then we can amount
the specific radiative intensity, Iλ , or surface brightness with

dEλ = Iλ (cosθ )cosθ dAd~Ωdλ dt, (1.14)

which is the macroscopic quantity for the evaluation of the radiative losses. The total (bolometric) intensity
is the specific monochromatic intensity integrated over all wavelength, I =

∫

Iλ dλ .
The coupling of radiative energy flux is taking place in the internal energy equation (Eq. 1.3), where

the radiative heating and cooling rates serve as a source or drain for the energy. The radiative heating and
cooling rate is the divergence of the radiative energy flux, i.e.

qrad = −~∇ ·~Frad, (1.15)

while the radiative flux is evaluated with

~Frad(~r,~n, t) =

∫

λ

∫

Ω
Iλ (~r,~Ω, t)~Ωd~Ωdλ ,
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where Iλ is the monochromatic radiative intensity (Eq. 1.14) at the wavelength λ emitted in the direction
~Ω from the location~r. The radiative intensity is determined with the radiative transfer equation

n̂ ·~∇Iλ (~s) = ρκλ (Sλ − Iλ ) (1.16)

with ~s being the light path, κλ the monochromatic opacity, and, Sλ the radiative source function. The
radiative transfer equation states that when the radiative intensity is lower than the the source function,
cooling is taking place, in particular, in the optical surface layers, where the opacities decrease and the
radiation can escape. The source function is given by

Sλ =
jλ

αλ
, (1.17)

with jλ being the emission coefficient and the αλ extinction coefficient. The extinction the coefficients are
derived from the continuous bound-free and the discrete bound-bound atomic transitions, and is given by

αλ = σλ n,

where σλ are the atomic cross-section and n the number density of the atoms. To simplify the calculations
one make often the use of the assumption of the local thermodynamic equilibrium (LTE). Then, due to
the frequent collisions between the atoms, ions and electrons, thermodynamic equilibrium is established,
and the atomic level populations can be determined by the local kinetic temperature, T , alone without
considering the influence of the radiation field through scattering. Therefore, under assumption of LTE the
non-local effects of scattering are expected to be negligible in the excitation-ionization equilibrium for the
atomic level populations. One determines the (kinetic) velocity distribution with the Maxwell distribution

n(v)dv =
( m

2πkT

)1/2
4πv2 exp

[

−mv2/(2kT )
]

dv, (1.18)

with v being the velocity, m the mass of the particle, and, k the Boltzmann constant. Furthermore, the
excitation between energy levels i and j are calculated with the Boltzmann distribution

nr,i

nr, j
=

gr,i

gr, j
exp [−(χr,i − χr, j)/kT ] , (1.19)

with nr,i the ith level population in the ionization stage r, gi the statistical weight of level i, and χr,i the
excitation energy. And the ionization state r is determined with the Saha distribution

nr+1,1

nr,1
=

1
ne

2gr+1,1

gr,1

(

2πmekT

h2

)3/2

exp [−χr/kT ] , (1.20)

with ne the number density free electrons, me the mass of electrons, h the Planck constant, χr ionization
energy. Then, under the assumption of strong LTE the source function (Eq. 1.17) can be approximated
with

Sλ = Bλ (T ) , (1.21)

i.e. the source function is equal to the Planck function

Bλ (T ) =
2hc2

λ 5

1

e
hc

λkT − 1
. (1.22)

Usually the radiative transfer equation is evaluated instead of the geometrical depth on optical depth

dIλ

dτλ
= Iλ − Sλ (1.23)

with

τλ =

∫

ρκλ ds, (1.24)
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which denotes the monochromatic optical depth along the geometrical path ds. Furthermore, it is more
convenient to express the radiative intensity with monochromatic mean intensity averaged over the entire
solid angle

Jλ = 1/4π

∫

Ω
Iλ dΩ, (1.25)

then the radiative heating and cooling rate can be expressed with

qrad = 4πρ

∫

λ
κλ (Jλ − Sλ ) dλ . (1.26)

The radiative cooling and heating is mainly taking place in the thin photospheric transition region that is
located at the optical surface. For more details we refer to Gray (2005).



Chapter 2

Methods

In this Chapter I will overview the details of the STAGGER-code (Sect. 2.1), and elucidate the methods,
which I have developed and applied to compute the 3D atmosphere simulations for the present work (Sect.
2.2). Furthermore, I will explain my methods to compute the different temporal and spatial averages (Sect.
2.3), and the details of the 1D atmosphere code that is used to compute the 1D STAGGER-grid models (Sect.
2.4). For the reader who is more interested in the results and applications, instead of the technical details,
this Chapter can be safely skipped. Furthermore, I want to remark that this Chapter mostly originates from
two already published works (Magic et al., 2013a,b).

2.1 Multi-dimensional atmosphere modeling

The 3D model atmospheres presented here were constructed with a custom version of the STAGGER-code,
a state-of-the-art, multipurpose, radiative-magnetohydrodynamics (R-MHD) code originally developed by
Nordlund & Galsgaard (1995), and continuously improved over the years by its user community. In pure
radiation-hydrodynamics mode, the STAGGER-code solves the time-dependent hydrodynamic equations
for the conservation of mass (Eq. 1.1), momentum (Eq. 1.2), and energy (Eq. 1.3) in a compressible flow
coupled to the radiation field via the heating and cooling (per unit volume) term, which is computed from
the solution of the radiative transfer equation to account properly for the energy exchange between matter
and radiation. We have ignored magnetic fields in the present grid of 3D convection simulations.

2.1.1 Details on the numerics

The STAGGER-code uses a sixth-order explicit finite-difference scheme for numerical derivatives and the
corresponding fifth-order interpolation scheme. The solution of the hydrodynamic equations is advanced in
time using an explicit third-order Runge-Kutta integration method (Williamson, 1980). The code operates
on a staggered, Eulerian, rectangular mesh: the thermodynamic variables, density and internal energy per
volume, are cell-centered, while momentum components are defined at cell faces. Also, in the MHD mode,
the components of the magnetic field B (electric field E) are defined at the cell faces (edges). In Fig.
2.1, we show the locations within an individual cell. This configuration allows for a flux-conservative
formulation of the magnetohydrodynamic equations, at the same time ensuring that the magnetic field
remains divergence-free. The solution of the discretized equations is stabilized by hyperviscosity1 which
aims at minimizing the impact of numerical diffusion on the simulated flow, while providing the necessary
diffusion for large-eddy simulations with finite-difference schemes (see also Nordlund & Galsgaard 1995
for further details). The values of the numerical viscosity parameters2 are empirically tuned with test cases
like the shock tube: they are set large enough to stabilize the numerical solution of the hydrodynamic

1Hyperviscosity is a numerical viscosity that removes the short wavelength noise without damping the longer wavelength (see
Stein & Nordlund, 1998, for more details).

2To provide stabilization and a weak dispersion of linear waves we used n1 = 0.005 that should be low, and for enhanced dissipation
in shocks we used n2 = 0.8, which should be around unity (see Eq. 9 in Kritsuk et al., 2011).
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Figure 2.1: Eulerian mesh of the solar simulation with the geometrical extent of 8 × 8 × 4Mm (large
blue rectangular box). Notice the equidistant horizontal spacing, while the vertical one is resolving the
photosphere enhanced. Furthermore, we illustrate also an enlarged view of an individual cell (small box).
Scalar values (ρ , ε) are defined at the cell center (black dot), while the vectorial momentum and magnetic
fields are located at the cell faces (red circles), and the electric field at the cell edges (blue dots).

equations and, at the same time, kept small enough to reduce their smoothing of the flow’s structures. The
same optimized values of the parameters are then applied to all other simulations in the grid.

The version of the STAGGER-code we used for this work is fully MPI-parallel. The parallelization
scales well with the number of cores. For this project, the simulations were typically run on 64 cores.

2.1.2 Geometrical properties

The setup of the simulations is of the so-called box-in-a-star type: the domain of the simulations is limited
to a small representative volume located around the stellar photosphere and including the top portion of the
stellar convective envelope. The boundary conditions of the simulation box are periodic in the horizontal
directions and open vertically. In Fig. 2.1 we illustrate the numerical mesh of the solar simulation (notice
the non-equidistant vertical resolution). Gravity3 is assumed to be horizontally and vertically constant over
the whole extent of the box, i.e. ~g(x,y,z) = (0,0,g), neglecting sphericity effects. However, since the size
of the simulation domains correspond to only a fraction of the total radii of the stars (0.4% of the solar
radius for the solar simulation, and ∼ 10% for a typical red giant simulation with logg = 1.5) such effects
can be regarded as small for the purposes of the current grid of models. Also, for simplicity, the effects
of stellar rotation and associated Coriolis forces4 are neglected in the present simulation setup, as it would
add two more dimensions to the grid.

At the bottom, the inflowing material has a constant value of specific entropy per unit mass, which
ultimately determines the emerging effective temperature. While the domains of our simulations cover
only a small fraction of the convective zone, the box-in-a-star setup is still valid because the bulk up-flows
at the bottom boundary of the simulations carry essentially the same entropy value as in deeper layers and
are mostly unaffected by entrainment with cooler downflows. At the beginning of each simulation, the

3The surface gravity, logg, is the external force term in the momentum equation (see Eq. 1.2).
4F-plane rotation is included in large super-granulation simulations of the Sun (see Stein et al., 2006, 2009).
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entropy of the inflowing gas at the bottom is adjusted in order to yield the desired Teff and, after that, is
kept unchanged during the entire run (see Sect. 2.2.2). Furthermore, pressure is assumed to be horizontally
constant over the whole bottom layer.

The physical dimensions in the horizontal directions are chosen to be large enough to cover an area
corresponding to about ten granular cells. The vertical dimensions are extended enough for the simulations
to cover at least the range of −5.0 < logτRoss < +6.0 in terms of Rosseland optical depth (in fact, they
range on average from −7.3 < logτRoss <+7.5), which typically corresponds to approximately six orders
of magnitude in pressure (about 14 pressure scale heights). In each simulation the Rosseland optical depth
logτRoss = 5.0 refers to a different vertical geometrical depth compared to the other simulations, therefore,
the contained mass will be also different for different stellar parameters, in particular, for lower surface
gravity the mass is increasing, e.g., a simulation box with logg = 4.5/2.0 will contain 107/1013g in the re-
gion 0.0< logτRoss < 5.0. All of the simulations have a mesh resolution of 2403, since a resolution of about
2003 − 2503 was found to be adequate to reproduce solar iron line profiles accurately (see Asplund et al.,
2000a). Five layers at the bottom and the top in all simulations are reserved for the so-called ghost-zones:
these extra layers serve to enforce boundary conditions for the high-order derivatives in the vertical direc-
tion. The spacing between cells in the horizontal direction (∆x,∆y) is constant, ranging from about 6 km
in dwarfs to about 25 Mm in giants, while it varies smoothly with depth in the vertical direction, in order
to resolve the steep temperature gradients near the optical surface. These are the layers from where the
continuum radiation escapes; they are characterized by a sharp transition between stellar interior and outer
layers in terms of thermodynamic quantities such as temperature, internal energy, and entropy that marks
the beginning of the photosphere. Also, the steepest temperature gradients are found in the superadiabatic
region just below the optical surface (0.0 < logτRoss < 2.0). Therefore, it is very important that the thin
transition layer around the optical surface is well-resolved in order to ensure an accurate modeling of the
radiative transfer and to avoid spurious numerical artifacts from insufficient spatial resolution (see Figs.
2.1 and 2.5).

2.1.3 Equation of state

We use the realistic equation of state (EOS) by Mihalas et al. (1988), which explicitly treats excitation to
all bound states of all ionization stages, of all included elements. We have custom computed tables for
a mix of the 17 most abundant elements (H,He,C,N,O,Ne,Na,Mg,Al,Si,S,Ar,K,Ca,Cr,Fe and Ni; see
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Figure 2.3: Isocontours of thermodynamic pressure and Rosseland opacity plotted for the density vs. inter-
nal energy to depict the equation-of-state (blue lines). Furthermore, we included also the solar atmosphere
model (black line).

Fig. 2.2). The only molecules that are included in the EOS are H2 and H+
2 , and they are treated on equal

footing with the atoms and ions. For the solar abundances, we employed the latest chemical composition
by Asplund et al. (2009), which is based on a solar simulation performed with the same code and atomic
physics as presented here. Our choice for the EOS, is supported by Di Mauro et al. (2002) who showed that
solar models based on the EOS by Mihalas et al. (1988) show better agreement with helioseismology in
the outer 20Mm (≥ 0.97R⊙), compared to models based on the OPAL-EOS. We inverted the Mihalas et al.
(1988) EOS tables, hence the temperatures and the thermodynamic pressures are tabulated as a function of
density and internal energy. This inversion exploits the analytical derivatives provided in the EOS tables to
minimize losses in accuracy. These analytical derivatives are also used in the bi-cubic spline interpolation
in the inverted tables. In Fig. 2.3 we illustrate the dependence of the thermodynamic pressure and mean
Rosseland opacity with the EOS at solar metallicity (see also Fig. 3.18). The pressure follows closely to
the isobars, while the opacity exhibits a more non-linear complex dependence due to the atomic physics,
and both increase mainly with the density.

2.1.4 Opacity

We use the continuum absorption and scattering coefficients listed in detail and with references by Hayek et al.
(2010). These include the sophisticated calculations by Nahar (2004)5 for the first three ions of all metals
we include, except for K and Cr. These calculations are improvements over those forming the basis for the
OP opacities6 (Badnell et al., 2005). The line opacity is supplied by the opacity sampling (OS) data that
was also used for the newest MARCS grid of stellar atmospheres (Gustafsson et al., 2008), which are in
turn based on the VALD-2 database7 (Stempels et al., 2001) of atomic and molecular lines.

2.1.5 Radiative transfer

The radiative heating and cooling rate (Eq. 1.26) is evaluated by solving the radiative transfer equation
(Eq. 1.23) with a method similar to that by Feautrier (1964). The equation is solved at each time step and

5http://www.astronomy.ohio-state.edu/~nahar/ .
6http://cdsweb.u-strasbg.fr/topbase/ .
7http://www.astro.uu.se/~vald/php/vald/ .

http://www.astronomy.ohio-state.edu/~nahar/
http://cdsweb.u-strasbg.fr/topbase/
http://www.astro.uu.se/~vald/php/vald/
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grid point on long characteristics, along the vertical direction and along eight additional inclined angles
(two µ = cosθ and four ϕ-angles) by tilting the (domain-decomposed8) 3D cube. Given the opacity κλ

and the source function Sλ , the monochromatic intensity Iλ can be obtained by solving Eq. (1.23) and the
radiative heating and cooling rate computed by integrating ρκλ (Iλ − Sλ ) over solid angle and wavelength.
We use the Radau quadrature to determine the optimal ray directions to approximate the angular integral
in the calculation of the radiative heating and cooling rate as a weighted sum. For the radiative transfer
calculations, we employ opacities as described above (Sect. 2.1.4).

Computing the full monochromatic solution to the radiative transfer equation in 3D at each time step is
extremely expensive. The cost of the radiative transfer calculations however can be reduced enormously by
opting instead for an approximated solution based on the opacity binning or multi-group method (Nordlund,
1982; Skartlien, 2000). Following this method, we sort all sampled wavelength points into different bins
based on the spectral range they belong to and on their associated opacity strength or, better, their formation

depth, i.e. the Rosseland optical depth τRoss (τλ = 1), where the monochromatic optical depth equals unity.
In this way, wavelength points characterized by similar formation heights and belonging to the same spec-
tral interval are grouped together (see Fig. 2.6). For each simulation, we use the 1D temporal and spatial
mean stratification to estimate the formation heights of the various wavelengths and sort the wavelengths
into the different opacity bins. The bin selection and wavelength sorting process is performed twice during
the simulation’s relaxation phase after updating the individual mean stratifications, but is kept unchanged
during the production runs.

To each bin, we assign a mean opacity κi which accounts for the contribution from both continuum
and line opacities. To compute the mean opacities, we differentiate between diffusion and free-streaming
limits, i.e. between the optical thick and optical thin regimes, below and above the photospheric transition
zone, respectively. The mean bin-opacity κi is calculated as a Rosseland-like average

κRoss,i =

∫

λ (i)

dBλ

dT
dλ

/

∫

λ (i)

1
κλ

dBλ

dT
dλ (2.1)

in the optical thick regime, and as a mean-intensity-weighted mean opacity

κJ,i =

∫

λ (i)
κλ Jλ dλ

/

∫

λ (i)
Jλ dλ (2.2)

in the optical thin regime, where λ (i) is the set of wavelength points assigned to bin i. For bin i, the tran-
sition from one regime to the other around that bins optical surface is achieved by means of an exponential
bridging of the two averages:

κi = e−2τRoss,iκJ,i +
(

1− e−2τRoss,i
)

κRoss,i. (2.3)

All simulations presented here have been run with the radiative transfer in the strict LTE approximation,
i.e. under the assumption that he monochromatic source function Sλ (in Eq. 1.26) is the Planck function at
the local gas temperature, i.e. Sλ (T ) = Bλ (T ). For each bin i, we compute an integrated source function
by summing up the contributions from all wavelength points in the bin;

Si = Bi =
∫

λ (i)
Bλ dλ (2.4)

Collet et al. (2011) showed that, with this opacity binning implementation, the approximation of strict
LTE results in a temperature stratification is very similar to the case, where scattering is properly treated, as
long as the contribution of scattering to the extinction is excluded when averaging the mean opacities κJ,i

(Eq. 2.2) in the optically thin layers ("free streaming-regime"), but include it as true absorption when aver-
aging the mean opacities κRoss,i (Eq. 2.1) in the optically thick layers ("diffusion approximation regime.").
They also showed that including scattering as true absorption leads to erroneous atmosphere structures
due to overestimated radiative heating in the optically thin layers. However, these findings have so far
being verified for only a small sample of stellar parameters, therefore we cannot rule out that scattering

8For the parallel-computation of a 3D RHD simulation, the numerical box is evenly split into smaller computational subdomains
for the individual CPUs.
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needs to be accounted for properly in certain cases. Nonetheless, evaluating the radiative transfer in strict
LTE greatly eases the computational burden compared to the case, where the contribution of scattering is
included to the total extinction (Hayek et al., 2010).

The radiative transfer equation is solved for the individual opacity bins (Eq. 1.16) for all layers that
have max(τRoss) < 300, while in the deeper layers, we use instead the diffusion approximation, which is
fulfilled to a high degree at such depths. With the opacity binning approximation, the radiative heating rate
term (Eq. 1.26) takes then the form

qrad = 4πρ ∑
i

κi (Ji −Bi) (2.5)

where Ji is the mean intensity computed from the solution of the radiative transfer equation for bin i.

For the relaxation phase of the simulation runs, we considered six bins, while for the final models we
used twelve opacity bins. We have developed an algorithm for the bin selection, which will be explained
further below (see Sect. 2.2.4). Towards lower surface gravities (logg . 2.0) and higher effective tempera-
tures, numerical artifacts in the radiative transfer can occasionally develop and manifest as a Moiré pattern
in the integrated outgoing intensities due to very steep temperature gradients in the photosphere. For those
situations, we solve the radiative transfer equation on an adaptive mesh with finer vertical resolution, which
is dynamically optimized to resolve regions where temperature gradients are steeper. The radiative heating
and cooling rates computed on the adaptive mesh are then interpolated back to the coarser hydrodynamic
depth scale under the consideration of energy conservation.
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2.2 STAGGER-grid models

2.2.1 Stellar Parameters

The STAGGER-grid covers a broad range in stellar parameters with 217 models in total. The range in
effective temperature is from Teff = 4000K to 7000K in steps of 500K, while the gravity ranges from
logg = 1.5 to 5.0 in steps of 0.5. The grid also covers a broad range in metallicity starting from [Fe/H] =
−4.0 to +0.5 in steps of 1.0 below −1.0, and steps of 0.5 above that9. We decided to apply the same
parameters Teff and logg for all metallicities, in order to facilitate the interpolation of (averaged) models
within a regular grid in stellar parameters. In addition, the grid also includes the Sun with its non-solar
metallicity analogs, and four additional standard stars, namely HD 84937, HD 140283, HD 122563 and G
64-12 that are presented in Bergemann et al. (2012). For metal-poor chemical compositions with [Fe/H]≤
−1.0, we applied an α-enhancement of [α/Fe] = +0.4dex, in order to account for the enrichment by
core-collapse supernovae (e.g. Tinsley, 1979; Rana, 1991).

In Figure 2.4, we present an overview of our simulations in stellar parameter space. Therein, we also
show evolutionary tracks (Weiss & Schlattl, 2008) for stars with masses from 0.7 to 1.5M⊙ and solar metal-
licity, in order to justify our choice of targeted stellar parameters. Hence, the grid covers the evolutionary
phases from the main-sequence (MS) over the turnoff (TO) up to the red-giant branch (RGB) for low-mass
stars. In addition, the RGB part of the diagram in practice also covers stars with higher masses, since these
are characterized by similar stellar atmospheric parameters.

2.2.2 Scaling and relaxing 3D models

Generating large numbers of 1D atmosphere models is relatively cheap in terms of computational costs, but
the same is not true for 3D models. Based on our experiences from previous simulations of individual stars,
we designed a standard work-flow of procedures for generating our grid. More specifically, we developed
a large set of IDL-tools10 incorporating the various necessary steps for generating new 3D models, which
we then applied equally to all simulations. The steps are:

• Scale the starting model from an existing, relaxed 3D simulation, and perform an initial run with six
opacity bins, so that the model can adjust to the new stellar parameters.

• Check the temporal variation of Teff and estimate the number of convective cells. If necessary, adjust
the horizontal sizes, in order to ensure that the simulation box is large enough to enclose at least ten
granules.

• If the optical surface has shifted upwards during the relaxation, add new layers at the top of it to
ensure that 〈logτRoss〉top <−6.0.

• Determine the period π0 of the radial p-mode11 with the largest amplitude, then damp these modes
with an artificial exponential-friction term with period π0 in the momentum equation (Eq. 1.2).

• Let the natural oscillation mode of the simulation emerge again by decreasing the damping stepwise
before switching it off completely.

• Re-compute the opacity tables with 12 bins for the relaxed simulation.

• Evolve the simulations for at least ∼ 7 periods of the fundamental p-mode, roughly corresponding
to ∼ 2 convective turnover times. This corresponds typically to a few thousand time-steps, of which
100 – 150 snapshots equally spaced were stored and used for analysis.

9We use the bracket notation [X/H] = log (NX/NH)⋆ − log (NX/NH)⊙ as a measure of the relative stellar to solar abundance
(Asplund et al., 2009) of element X with respect to hydrogen.

10The Interactive Data Language (IDL) is a data analysis software that is developed and licensed by ITT-VIS.
11The p-modes in the simulation box are determined by the center of mass velocity variations, i.e. vz,cm = 〈ρvz〉/〈ρ〉.
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During these steps the main quantities of interest are the time evolution of effective temperature, p-mode
oscillations, and drifts in the values of the mean energy per unit mass and of the mean density at the bottom
boundary, which indicate the level of relaxation. When the drifts in these above properties stop, we regard
the simulation as relaxed. If these conditions were not fulfilled, we continued running the model, to give
the simulation more time to properly adjust towards its new quasi-stationary equilibrium state. Also, when
the resulting effective temperature of an otherwise relaxed simulation deviated more than 100 K from the
targeted Teff, we re-scaled the simulation to the targeted value of Teff and started over from the top of our
list of relaxation steps.

The interplay between EOS, opacities, radiative transfer and convection can shift the new location of
the photosphere, when the initial guess made by our scaling procedure slightly misses it. This is the case for
a few red giant models leading to upwards-shifts of the optical surface and of the entire upper atmosphere
during the adjustment phase after the scaling, with the average Rosseland optical depth ending up to be
larger than required, i.e. 〈logτRoss〉top ≥−6.0. In order to rectify this, we extended those simulations at the
top by adding extra layers on the top, until the top layers fulfilled our requirements of 〈logτRoss〉top <−6.0.

2.2.3 Scaling the initial models

To start a new simulation, we scale an existing one with parameters close to the targeted ones, preferably
proceeding along lines of constant entropy of the inflowing gas at the bottom in stellar parameter space
(see Fig. 3.2). In this way, we find that the relaxation process is much faster. In order to generate an initial
model for a set of targeted parameters, we scale temperature, density, and pressure with depth-dependent
scaling ratios derived from two 1D models, with parameters corresponding to the current and intended
3D model (Ludwig et al., 2009a). For this, we used specifically computed 1D envelope models (MARCS
models taken from Gustafsson et al. (2008) or our own 1D models, see Sect. 3.3.1), which extend to
logτRoss > 4.0. The reference depth-scale for all models in the scaling process is the Rosseland optical
depth above the photosphere and gas pressure normalized to the gas pressure at the optical surface below
it (logτRoss > 0.0).

After the initial scaling, we construct the geometrical depth scale z for the new simulation by enforcing
the same (quasi-)hydrostatic-equilibrium condition as in the starting simulation, but with the newly scaled
pressure and density. The resulting new z-scale is usually not smooth, therefore we generate a new z-scale,
which is optimized to resolve the region with the steepest (temperature) gradients, as shown in Fig. 2.5.
The density-, energy-, and velocity cubes are then interpolated to this new geometrical depth scale. The
new z-scale is constructed using the variation with depth of the (smoothed) maximum of the derivative of
the Rosseland absorption coefficient, max〈d lnαRoss/dz〉, as a guide. The basic idea behind this approach
is to vertically distribute the mesh points as evenly as possible on the optical-depth scale. With such
an optimized z-scale we can efficiently resolve the same features with fewer grid-points, compared to an
equidistant vertical mesh. Furthermore, a limiting vertical-to-horizontal aspect ratio (∆z/∆x and ∆z/∆y) of
1 : 4 over the whole vertical extent is enforced. We find that this value represents in practice an optimal
lower limit to the aspect ratio, with respect to numerical stability and accuracy of the solution of the
radiative transfer equation along inclined rays. Finally, the position of the zero-point in the depth scale is
adjusted to coincide with the position of the mean optical surface, i.e. 〈τRoss〉(z=0) = 1.

At fixed surface gravity and metallicity, the mean diameter of the granules, which is used for deter-
mining the horizontal extent of the simulation, increases with higher effective temperature (see Figs. 3.11
and Sect. 3.1.6). The number of granules present in the simulation box is retrieved with the aid of the
CONTOUR routine in IDL. Based on the map of the temperature below the surface (the vertical velocity
would serve equally well), a contour chart of the significantly hotter granules is extracted, from which the
number of granules is counted. Concerning the temporal resolution of the simulation sequences of the final
production runs, the frequency, at which snapshots are stored, is based on the sound-crossing time of one
pressure scale height, HP, in the photosphere, i.e.

∆tsnap = 〈HP/cs〉(τ=2/3) (2.6)

(see Cols. 14 and 15 in Table B.1). With the help of functional fits of the dependence of granule sizes
and sound-crossing time scales on stellar parameters, the horizontal sizes of the simulation boxes and the
snapshot sampling times can be estimated rather accurately in advance (see App. A).
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Figure 2.5: In the top panel, we display the non-equidistant vertical spacing ∆z of the depth scale as a func-
tion of geometrical depth in our solar model (solid line). The z-scale is optimized to resolve the flows and
thermal structure, which naturally results in the highest spatial resolution around the photosphere. Further-
more, we also show the maximum of the vertical gradient of the absorption coefficient max〈d lnαRoss/dz〉
as a function of depth (dotted line). In the bottom panel, we show the aspect ratio ∆z/∆x (solid line) and
we also indicated its lower allowed limit with 1 : 4 (dashed line). The actual vertical-to-horizontal aspect
ratio ranges from 0.26 at the photosphere to 1.18 at the bottom of the simulation domain.
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Figure 2.6: Left figure: We show the twelve opacity bins selected for the solar simulation by plotting the
opacity strength (or, more precisely, the formation height) against wavelength for all sampled wavelength
points. The individual bin elements are distinguished by different colors. For clarity, we plotted only
a subset of the wavelength points considered for the opacity binning procedure. In the background, we
included the smoothed histogram of the opacity strength distribution (blue contour). This shows how the
majority of λ -points are mostly concentrated close to the continuum-forming layers and only a smaller
fraction contributes to lines. Right figure: Isocontours of the relative differences of the opacity for the
second bin to the Rosseland opacity in dependence of density and temperature. The solar model is also
shown (black line).

2.2.4 Selection of the opacity bins

As we mentioned earlier, in Sect. 2.1.5, the purpose of the opacity-binning approximation is to reproduce
the radiative heating and cooling rates as accurately as possible with a small number of opacity-bins, in
order to reduce the computational burden. For the assignment of wavelength points to bins, we first compute
the opacity strengths for all of the & 105 wavelength points in the opacity-sampling (OS) data from the
MARCS package (Gustafsson et al., 2008). The histogram of their distribution as a function of wavelength
(see left panel of Fig. 2.6) exhibits a characteristic "L"-shape. Shorter wavelengths (UV) require more bins
to resolve the wide range in opacity strength, while the lower part of the L-shaped distribution at longer
wavelengths (optical and IR) calls for a better resolution in terms of wavelength. Therefore, we initially
make a division in wavelength at λX , between the UV and the optical/IR (see boundaries of bin 1, 11 and 12
in the left panel of Fig. 2.6) and comprising approximately an equal number of wavelength points. These
two regions are then in turn subdivided evenly into opacity bins according to the number of λ -points. By
trial and error, we found that a binning scheme with three bins in the λ < λX region and eight bins for
λ > λX , one of which being a large one and comprising the stronger lines in the optical and IR (bin number
10 in Fig. 2.6) gives a good representation of the monochromatic radiative heating and cooling. We iterate
the bin selection with slight differences (e.g., one additional division in opacity strength for the 8 bins
in the lower part of the optical and IR) and by small adjustments, and choose the bin selection with the
smallest relative difference between the total heating rates computed with opacity binning qbin and the full
monochromatic solution qλ for the average stratification of the 3D simulation, i.e.

max [δqbin] =
max |qbin − qλ |

max |qλ |
. (2.7)

We found that the individual selection of some of the bins displays a highly non-linear response to small
changes. In most cases an even distribution was favored by the minimization. Naturally, our method will
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Figure 2.7: Comparison of the radiative heating and cooling resulting from monochromatic computations
qλ (filled dots) and the opacity binning method qbin (solid line) for the solar model mean stratification. In
the left figure we show both qrad vs. optical depth, while in the right figure, we compare the two against
each other.

typically find only a local minimum due to the small sample of iterations instead of a true global minimum.
However, our method is a fast, repeatable, and automatic selection of the opacity bins, which minimizes the
human effort significantly, while at the same time yielding very satisfactory results. Moreover, the possible
deviation from the global minimum due to our automated bin selection and its resulting uncertainties are
smaller than the overall uncertainties associated with the opacity binning method. In Fig. 2.6 (right panel),
we show also the relative differences of an individual opacity bin to the Rosseland opacity. As one can see
the opacity of the bins can be rather distinctive from the Rosseland and can deviate up to 103.

In Fig. 2.7, we compare the resulting radiative heating and cooling rates from the monochromatic
calculation against those from the opacity binning solution for the mean stratification of our solar model.
The radiative heating and cooling rates from the simplified opacity binning appear rather similar to those
from the monochromatic solution, thereby supporting our approach. For the solar model, our algorithm
finds a bin selection that is just slightly less accurate (max [δqbin] = 2.78%) than an optimized manual
bin selection (1.86%). Incidentally, with six bins, we get max [δqbin] = 3.54%. We obtain an average
max [δqbin] for all the grid models of max [δqbin] = 2.38%, while with six bins we get maxδqbin = 3.0%.
We find that max [δqbin] increases slightly with Teff and [Fe/H]. We note that the opacity binning method
with its small number of bins states an approximation for the radiative transfer, therefore, despite the small
values for max [δqbin] further improvement is necessary, e.g., more bins or a new, more efficient binning
method.

2.3 Temporal and horizontal averages

We computed various temporal and horizontal averages for a large number of physical quantities of inter-
est. For the spatial (horizontal) averages, we computed 〈3D〉 stratifications by considering four different
reference depth scales and averaging the various physical quantities on layers of constant

• geometrical height, z;

• column mass density, m =
∫

ρ dz;

• Rosseland optical depth, τRoss =
∫

(ρκRoss)dz;
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• optical depth at 500 nm, τ500 =
∫

(ρκ500)dz,

(hereafter denoted by 〈3D〉z, 〈3D〉m, 〈3D〉Ross, and 〈3D〉500, respectively), where ρ is the gas density, and
κRoss and κ500 are the Rosseland mean opacity12 and opacity at 500 nm, respectively, both defined as
cross-sections per unit mass.

The geometrical averages 〈3D〉z are easily taken directly from the output of the STAGGER-code, since
the numerical mesh of this code is Eulerian in nature. For the three other (Lagrangian-like) averages,
the original data sets have to be remapped to their respective new reference depth scale by individually
interpolating each column of each 3D simulation snapshot (see 2.3.2). Furthermore, we also considered
four additional averages:

• flux-weighted average temperature, 〈T 4〉;

• average brightness temperature at 500nm, 〈Trad〉;

• logarithmic average, 〈3D〉log; and

• enforced-hydrostatic-equilibrium average, 〈3D〉HSE.

We determine the flux-weighted temperature stratification 〈T 4〉 by evaluating the spatial averages of T 4,
motivated by the Stefan-Boltzmann law for wavelength-integrated radiative flux. The brightness tempera-
ture average Trad is computed using the expression B−1

500 (〈B500(T )〉), where B500 and B−1
500 denote the Planck

function at 500 nm and its inverse, respectively (see also Sect. 3.4.1). Therefore, at the height z the average
temperature, 〈Trad〉z, is equivalent to the average black-body emission at 500 nm. For 〈3D〉log, we define
spatial averages of a given 3D variable X as exp(〈logX〉). Finally, since the 〈3D〉 models do not in general
fulfill the hydrostatic equilibrium condition (see Sect. 3.7), for the 〈3D〉HSE averages we enforce hydro-
static equilibrium by adjusting the density and adjusting the thermodynamic pressure pth consistently with
the EOS, until hydrostatic equilibrium is attained. We emphasize that the proper enforcement of hydro-
static equilibrium requires that one considers both the thermodynamic pth and turbulent pturb contributions
to total pressure ptot: the gas pressure in the atmosphere is in fact, significantly reduced because of the
structural support provided by turbulent pressure. Then, a new geometrical depth z is computed (see Eq.
1.8).

Classical hydrostatic 1D models of stellar atmospheres are often defined and computed on an optical
depth scale, since this allows the numerical resolution to be easily adjusted where it is most needed to
achieve the highest accuracy in the solution of the radiative transfer equation in the atmospheric layers,
both during the modeling itself and during line-formation calculations. Therefore, especially for radiative
transfer-oriented applications, these 1D models can be compared most naturally with averages of corre-
sponding 3D models on constant optical depth, 〈3D〉Ross or 〈3D〉500. As mentioned above, in the present
work, we adopted 〈3D〉Ross as our standard averaging choice. One of the main reasons we chose 〈3D〉Ross
over 〈3D〉500 is that during the scaling of the simulations and the construction of the initial snapshots, the
top physical boundary of essentially all models reached up to 〈logτRoss〉top ≈ −6.0 (see Sect. 2.2.2). In
contrast, the vertical extent of the simulations in terms of optical depth at 500 nm varies depending on stel-
lar parameters (logg in particular) owing to the concomitant variations in opacity at 500 nm as a function
of temperature and density. Therefore, the 〈3D〉500 models in general require a careful extrapolation at the
top to be extended up to logτ500≈− 6.0 (see Sect. 2.3.3).

While 〈3D〉Ross or 〈3D〉500 represent natural reference depth scales for the mean photospheric stratifica-
tion, 〈3D〉z or 〈3D〉m is better suited to describing the average physical conditions below the stellar surface;
e.g., only the geometrical averages fulfill conservation of momentum and energy (see Sect. 3.7).

In late-type13 stellar atmospheres, the continuum opacity κλ in the optical is dominated by the H−

bound-free absorption that is sensitive to temperature (∼ T 10). Therefore, even small fluctuations in T will
result in large variations in κλ , which in turn will lead to a high degree of spatial corrugation of layers
at constant optical depth (see Stein & Nordlund, 1998). Furthermore, owing to such highly non-linear

12Including both line and continuum opacity.
13Historically, a late-type star is spectral K or M class star, while in the present a late-type star is a cool star that has a convective

envelope.
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behavior of the H− opacity, temperature fluctuations around the average will be reduced by interpolation
to layers of constant optical depth (see Sect. 3.5.1).

We remark briefly again that only the geometrical averages 〈3D〉z, sampled over a sufficient time length,
preserve the conservation properties of the hydrodynamical equations, such as hydrostatic equilibrium and
conservation of energy. Furthermore, depending on the intended particular application of 〈3D〉 models, it
is very important to use these carefully, since the different types of 〈3D〉 models vary significantly among
the different averaging methods.

2.3.1 Basic averaging procedure

We proceeded with the following steps in order to obtain the 〈3D〉 models:

1. Retrieval of 3D variables of interest;

2. Interpolation to new reference depth scale;

3. Computation of horizontal averages and statistics;

4. Extrapolation of horizontal averages, if necessary;

5. Computation of temporal averages.

In case of the geometrical averages 〈3D〉z, steps 2 and 4 are unnecessary and are therefore skipped. Owing
to the generally non-linear response of the various physical quantities as a function of basic independent
variables and the EOS, the interpolation to a new reference depth scale should be performed after retrieving
the variables. In particular, because of these non-linearities, we caution against the derivation of thermody-
namic variables via the EOS by utilizing averaged independent variables interpolated to the new reference
depth scale (see Fig. 3.41), since the spatial averaging will inevitably break the physical self-consistency
present in the full original 3D data (see Sect. 2.3.2 and Appendix 3.8). Since the ghost zones do not contain
physically meaningful values, we excluded them before the averaging procedure.

To speed up the calculations without noticeably degrading the statistical properties, when computing
the averages we considered only every fourth column of the 3D data cubes in both horizontal directions (x
and y), which means that the initial NxNy = 2402 columns are reduced down to 602. The vertical extent
of the columns is unchanged with Nz = 230 (geometrical) or 101 (all other reference depth scales). Tests
ensured that this horizontal reduction does not influence the horizontal averages owing to the still large
sample of vertical columns considered and the multiple snapshots included in the temporal averaging.

For step 3, we used an arithmetic mean to compute the average values of variable X for snapshot t at
each horizontal layer z:

〈X〉z,t =
1

NxNy

Nx

∑
x=1

Ny

∑
y=1

Xxyz,t (2.8)

with Nx and Ny the number of horizontal elements. For exponentially varying variables like density and
pressure, we computed also logarithmic averages, i.e., replacing Xxyz with logXxyz in Eq. 2.8, denoting the
models with 〈3D〉log. In the final step 5, temporal averages are evaluated with

〈X〉z =
1
Nt

Nt

∑
t=1

〈X〉z,t (2.9)

with Nt ≈ 100−150 being the total number of snapshots considered for each simulation, which corresponds
typically to about two turnover times. In the present work, the combined temporal and spatial averages of
variable X are always denoted with 〈X〉z̃, where z̃ is the considered reference depth scale.

Since the 3D structures display a great plethora of details, for each relevant 3D variable we also de-
termine a number of additional statistical properties (standard deviation σ , root mean square, minimum-
maximum range, and histograms of the distribution of values) at each horizontal layer, which are presented
and discussed in Sect. 3.5. As for the spatial averages, the standard deviation and the root mean square are
evaluated in step 3 for each layer z using the same basic expression as in Eq. 2.8 and, if necessary, doubly
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extrapolated at the top as in steps 2 and 4 (see Sect. 2.3.3). Finally, their temporal averages are computed
in step 5.

Histograms of the distribution of values we determined separately, and we use temporal averages of
the depth-dependent extrema of variable X , 〈minX〉z and 〈maxX〉z to define a depth-dependent range rz =
[

〈minX〉z ,〈maxX〉z

]

for the histograms. For the 3D variable X at time t, we determined a set of 1D
histograms, pr,z,t (X), for each individual layer z. The depth-dependent range rz is resolved with Nr = 200
equidistant points; temporal averages pr,z (X) of the histograms are computed using a subset of Nt = 20
equidistant snapshots (see Sect. 3.5.3 for details).

Finally, we also computed averages and associated statistical properties separately for up- and down-
flows, which we differentiate based on the sign of the vertical component of the velocity. Of course, when
computing such averages and statistics, one has to account for the correct filling factor in either case, i.e.
for the number of elements Nx,y belonging to up- or downflows, respectively (Sect. 3.5.2).

2.3.2 Interpolation to the new reference depth scale

To interpolate to the new reference depth scale (hereafter denoted as z̃) in step 2, we defined a new equidis-
tant logarithmic reference optical depth scale, z̃ = log τ̃ , from −5.0, . . . ,+5.0 in steps of 0.1 for both
optical depth scales τRoss and τ500. In the case of averaging based on the column-mass density scale
m, we used the column-mass density m̃ normalized to the mean value of m at the optical surface, i.e.
z̃= log(m̃) = log(m/〈m〉surf) for the new reference depth scale, where 〈m〉surf was determined at 〈τRoss = 0〉
and considered a fixed range from −3.0, . . . ,+2.0 in steps of 0.05 for all simulations. All variables, X , we
remapped column-wise from the original geometrical depth scale to the new reference depth scale, namely
Xxy (z)→ X̃xy (z̃). We use linear interpolation, since quadratic interpolation introduced numerical artifacts
in some 〈3D〉 models.

We note that owing to the remapping to a new reference depth scale, points at a constant optical depth
or column-mass density will end up probing and spanning a range of geometrical depths, implying that the
averages (and statistical properties) with respect to the new reference depth scale will be qualitatively and
quantitatively different from plain horizontal averages on constant geometrical depth (see Sect. 3.6).

In Fig. 2.8 we show three temperature stratifications of the solar simulation for averages on constant ge-
ometrical depth, column-mass density and Rosseland optical depth. The stratifications are very distinctive
below the optical surface, in particular, at the SAR.
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Figure 2.9: Relative differences of the temperature and density stratifications from the solar 3D model that
are truncated at increasingly deeper layers (logτRoss = −5.0,−4.5,−4.0,−3.5,−3.0) and subsequently
extrapolated to illustrate the level of accuracy achieved with our double-extrapolation method.

2.3.3 Extrapolation at the top

The vast majority of STAGGER-grid models are sufficiently extended vertically, in particular, at the top, to
embrace the full range of log τ̃ with [−5.0,+5.0]. The condition 〈logτRoss〉top ≤ −6.0, is usually fulfilled
for all but a few models. More specifically, surfaces of constant optical depth can become quite corrugated
at the top for some giant models and fall outside the physical domain of the simulations; that is, one can
occasionally have logτ

top
Ross >−5.0 for a limited number of columns. These particular columns are therefore

linearly extrapolated to logτRoss = −5.0 to allow calculating of average quantities in the desired range of
optical depths. Exponentially varying values like density, pressure opacities are extrapolated by considering
their logarithmic values. The extrapolation is needed only for a few giant models (logg ≤ 2.5), and the
concerned columns are usually only a small fraction (. 0.3%). Therefore, we regard these extrapolations
as negligible in the case of the optical depth scale τRoss.

For the optical depth scale τ500, the situation is slightly different. The mean optical depth at 500 nm at
the top 〈logτ500〉top deviates increasingly towards giant models from 〈logτRoss〉top, so that 〈logτ500〉top >
−5.0. Therefore, the necessary extrapolation at the top is considerable, in particular, for giant models.

We notice that careless column-wise extrapolation at the top can lead to a largely uncertain and erro-
neous stratification, which would have a negative impact on spectral line formation. For instance, a wrong
density stratification at the top can dramatically affect the ionization balance. To limit these extrapola-
tion errors, we first restrict the column-wise extrapolation to the region log τ̃500 ≥ log τ̃top where the value
log τ̃top > −5.0 is chosen so that no more than 20% of the columns would require extrapolation up to
that level. We then compute the horizontal averages (step 3) and, after that, linearly extrapolate the 〈3D〉
models a second time to the original log τ̃top = −5.0 for each time snapshot. This particular extrapolation
procedure produces more plausible stratifications since the horizontal 〈3D〉 averages exhibit a smooth and
monotonic behavior with depth at the top compared to individual columns of the 3D data set.

Test calculations of data sets from the solar simulation, which were truncated at the top, revealed
the reliability of this double extrapolation approach, since for the temperature stratifications we find the
maximum error around 1% at the top (log τ̃top = −5.0; see Fig. 2.9). Nonetheless, we favor the use of
averages on mean Rosseland optical depth, i.e. 〈3D〉Ross rather than 〈3D〉500, since these averages are not
plagued by such extrapolation uncertainties. For the extrapolated models on τ500, we kept track of the
extent of the applied extrapolation; in fact, only a few models with the lowest gravities (logg = 1.5/2.0)
exhibit a noteworthy extrapolation (log τ̃top ≃−4.3/4.8, respectively). The 〈3D〉500 averages can therefore
be reduced to the extrapolation-free regime at the top afterwards.
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2.4 The STAGGER-grid 1D atmospheres

The following discussion concerns solely 1D atmosphere models and MLT, therefore, similar quantities
as discussed above may deviate (e.g., the convective flux Fconv). The numerical code that we used for
computing 1D atmospheres for the STAGGER-grid models solves the coupled equations of hydrostatic
equilibrium and energy flux conservation in 1D plane-parallel geometry. The 1D models use the same EOS
and opacity package in order to allow consistent 3D-1D comparisons. The set of equations and numerical
methods employed for their solution are similar to those of the MARCS code (Gustafsson et al., 2008) with
a few changes and simplifications that will be outlined in the following. The resulting model atmospheres
yet maintain very good agreement with MARCS models (see Sect. 3.3.2).

2.4.1 Basic equations

Assuming 1D plane-parallel geometry with horizontal homogeneity and dominance of hydrostatic equi-
librium over all vertical flow simplifies the equation of motion (Eq. 1.2) to the hydrostatic equilibrium
equation

d

dτstd

(

pgas + pturb
)

− ρg

κstd
= 0, (2.10)

where κstd and τstd are a standard opacity and corresponding optical depth (e.g., the Rosseland mean),
pgas and pturb denote gas pressure and turbulent pressure, ρ is the gas density, and g is the surface grav-
ity. Radiation pressure is neglected, as in the 3D simulations. Turbulent pressure is estimated using the
expression

pturb = β ρv2
turb, (2.11)

with the scaling parameter β that corrects for asymmetries in the velocity distribution and the mean turbu-
lent velocity vturb that is used as a free, independent parameter.

The depth-integral of the energy equation (Eq. 1.3) reduces to the flux conservation equation,

Frad +Fconv−σT 4
eff = 0, (2.12)

where Frad is the radiative energy flux, Fconv is the convective energy flux, σ is the Stefan-Boltzmann con-
stant and Teff is the stellar effective temperature. Contrary to the 3D case, effective temperature now appears
as a boundary value and is thus a free parameter. Owing to numerical instabilities of the formulation, Eq.
2.12 is replaced in the higher atmosphere (τRoss . 10−2) with the radiative equilibrium condition

qrad = 4πρ

∫

λ
κλ (Jλ − Sλ )dλ ≡ 0, (2.13)

where Jλ and Sλ are the mean intensity and the source function, similar to Eq. (1.23). In the 3D case, qrad
is explicitly calculated and is nonzero in general. Enforcing the condition of radiative equilibrium qrad ≡ 0
in 1D leads to an atmospheric stratification where an exact balance of radiative heating and cooling in each
layer is achieved, ignoring the effects of gas motion.

The mean intensity and the radiative energy flux at each depth are obtained by solving the radiative
transfer equation,

µ
dIλ

dτλ
= Iλ − Sλ , (2.14)

where µ = cosθ with the polar angle θ off the vertical, Iλ is the specific intensity at wavelength λ , and τλ

is the vertical monochromatic optical depth (with τλ = 0 above the top of the atmosphere). A Planck source
function Sλ = Bλ is assumed. The monochromatic mean intensity and radiative flux are then delivered by
the integrals

Jλ =
1
2

∫ 1

−1
Iλ dµ (2.15)

Frad,λ = 2π

∫ 1

−1
Iλ µdµ . (2.16)



2.4 The STAGGER-grid 1D atmospheres 27

In the absence of an explicit convection treatment, convective energy transfer is estimated using a
variant of the mixing length recipe described in Henyey et al. (1965). The convective flux is given by the
expression

Fconv =
1
2

αMLTδ∆cpTρvMLT, (2.17)

where ρ is the gas density, cp is the specific heat capacity, T is the temperature, and

vMLT =
√

α2
MLTHPgδ∆/ν (2.18)

is the convective velocity with ν being the parameter for the energy dissipation by turbulent viscosity. The
well-known free mixing length parameter αMLT = lm/Hp sets the distance lm in units of the local pressure
scale height Hp over which energy is transported convectively. See Gustafsson et al. (2008) for details of
the expressions used to obtain the convective velocity vMLT and the superadiabatic excess

∆ =
Γ

(1+Γ)
(∇−∇ad) (2.19)

which scales super-adiabaticity ∇sad = ∇−∇ad of the atmospheric stratification (see also Sect. 3.2.7), by a
convective efficiency factor

Γ =
cP

8σT 3 τe

(

y+ τ−2
e

)

ρvMLT (2.20)

with the optical thickness τe = κRosslm and y being the temperature-distribution of a convective element.
We adopt the same parameters y = 0.076 and ν = 8 as Gustafsson et al. (2008) for the additional MLT
parameters that enter the above quantities. We note that in the notation by Ludwig et al. (1999), we would
get f1 = ν−1 and f4 = y−1, f2 = 1/2 and f3 = (8y)−1.

2.4.2 Numerical methods

The system of equations is solved using a modified Newton-Raphson method with an initial stratification
of temperature T and gas pressure pgas on a fixed Rosseland optical depth grid. Discretized and linearized
versions of the hydrostatic equation and the energy flux equation (or radiative equilibrium condition, re-
spectively) provide the inhomogeneous term and the elements of the Jacobian matrix for the system of 2N

linear equations, where N is the number of depth layers. The radiation field is computed for each Newton-
Raphson iteration using the integral method, based on a second-order discretization of the fundamental
solution of the radiative transfer equation (Eq. 2.14).

The corrections ∆T and ∆pgas derived from the system of linear equations are multiplied by a variable
factor < 1 that is automatically regulated by the code to aid convergence. Convergence is assumed when the
(relative) residuals of the 2N equations decrease beneath a preset threshold. Note that, contrary to the 3D
simulations, the effective temperature is now an adjustable parameter; the requirement of minimal residuals
automatically leads to an atmospheric stratification with correct Teff through the energy flux equation.

In order to obtain a 1D model, a given 〈3D〉 stratification provides the initial input for the Newton-
Raphson iterations, along with the targeted effective temperature and surface gravity. The same EOS tables
that were used for the 3D simulation provide gas density, specific heat capacity, and adiabatic gradient as
a function of T and pgas. Likewise, the tables containing group mean opacities and the Rosseland mean
opacity provide the required microphysics for solving the radiative transfer equation, ensuring maximal
consistency with the 3D simulations.

Once convergence has been achieved for the 1D stratification, the mixing length parameter αMLT can
be calibrated to obtain a better approximation to the 〈3D〉 stratification in the convection zone beneath the
stellar surface.
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Chapter 3

STAGGER-grid

In the following, I will discuss spatially and temporally averaged global properties (Sect. 3.1) and mean
3D stratifications (Sect. 3.2) from all of our 3D models, which will be compared with classical 1D models
(Sect. 3.3). For the readers that are unfamiliar with the subject of stellar atmospheres, I advice to read
the short overview of the mean stratification of the solar simulation at the beginning of Sect. 3.2 first, in
order to get a better access to the subsequent Sections. Furthermore, for those who are more interested in
the applications of the 3D atmosphere models and their predictions, and less in the comprehensive details
of the mean stratifications, I recommend to read the Section on the global properties only (Sect. 3.2),
which contains the most important findings. The presented results from Sections 3.1, 3.2 and 3.3 are taken
from the already published study by Magic et al. (2013a). The other five Sections of this Chapter (from
Sect. 3.4 to 3.8), which encompass the comparison of the different averages, the statistical properties,
the reversed granulation, the hydrostatic equilibrium and the deviations from the EOS, originate from
Magic et al. (2013b).

We find a tight scaling relation between the vertical velocity and the surface entropy jump, which
itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity
contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height
sampled at the depth of maximum velocity. We compare the 〈3D〉 models with currently widely applied 1D
atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and
opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic
modeling of convection, rather than the classical mixing length theory (MLT) approach. For the first
time, we are able to quantify systematically over a broad range of stellar parameters the uncertainties
of 1D models arising from the simplified treatment of physics, in particular convective energy transport.
In agreement with previous findings, we find that the differences can be rather significant, especially for
metal-poor stars. Furthermore, the resulting 〈3D〉 stratifications for the different reference depth scales
can be very distinctive. We typically find that in the upper atmosphere and in the superadiabatic region
just below the optical surface, where the temperature and density fluctuations are highest, the differences
become considerable and increase for higher Teff, lower logg, and lower [Fe/H].

3.1 Global properties

In Table B.1, we have listed the stellar parameters together with the thermodynamic values fixed for the
inflows at the bottom, i.e. the internal energy εbot, density ρbot and entropy sbot, as well as important global
properties for our 3D simulations. Before we consider the 〈3D〉 stratifications in Sect. 3.2, we briefly
discuss some (temporally averaged) global properties.

3.1.1 Stellar parameters

Surface gravity and metallicity are input parameters for a simulation, while the effective temperature is a
property ensuing from the fixed entropy of the inflowing material at the bottom sbot. We calculate the effec-
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tive temperature from the spatially averaged emergent radiative energy flux Frad and the Stefan-Boltzmann
law

Teff = [Frad/σ ]1/4 , (3.1)

with σ being the Stefan-Boltzmann constant. In Column 1 of Table B.1 we have listed the resulting
temporally averaged Teff of our final, relaxed simulations. These differ somewhat from the targeted Teffs,
since we do not know a priori, the relation between sbot and Teff. However, the majority of our models
(72%) deviate less than 50K, and the mean deviation for the whole grid is ∆Teff ∼ 32K.

3.1.2 Constant entropy of the adiabatic convection zone

The main input parameter that has to be adjusted is sbot, which has the same value as the entropy in the
deep convection zone due to the adiabaticity of convection, i.e. sbot = sad (Steffen, 1993). This is also
the reason, why the results from our rather shallow boxes are valid. We set sbot by specifying a fixed
value for the density and energy per unit mass for the inflowing material at the bottom, ρbot and εbot.
The actual values of εbot, ρbot and sbot applied in our simulations are given in Table B.1. Furthermore,
we provide functional fits for sbot (see App. A). We compute the entropy by integrating1 the first law of
thermodynamics in the form

ds =
1
T

(

dε − pth
dρ

ρ2

)

, (3.2)

adding an arbitrary integration constant in order to shift the zero-point of the entropy to a similar value as
in Ludwig et al. (1999). We remark that the physical aspects, such as chemical composition and ionization,
implicitly enters the entropy values through the EOS. In Fig. 3.1, we show sbot against Teff for [Fe/H] = 0.0
and −0.5, as an example. The value for sbot increases exponentially with higher Teff and with lower logg,
and linearly with metallicity with a moderate slope.

In order to increase the effective temperature solely, i.e. the emergent radiative flux Frad at the top
boundary, the total energy flux ascending from the convection zone has to increase by that same amount due
to conservation of energy (see Sect. 3.2.8). On the other hand, when the Teff is fixed and the surface gravity
is reducing, this in turn will cause the density to decrease correspondingly (see Sect. 3.2.4). Therefore, to
maintain the same energy flux, either the transported heat content (∆s, ε) or the mass flux (ρ or vz) is going
to enhance. When the energy flux is carried by a larger mass flux, then we speak of an enhancement in
convective efficiency2 (see Sects. 3.2.4, 3.2.2 and 3.2.8). When one considers εbot with stellar parameters,
then it clearly depicts qualitatively the same characteristic changes as sbot. By inserting the perfect gas law3

in Eq. 3.2 one obtains

ds =
dε

T
− k

µmu

dρ

ρ
, (3.3)

from which one can immediately see that the entropy increases with internal energy, ds ∝ dε , and also
increases with lower density ds ∝ −d lnρ .

On the other hand, an increase in metallicity leads to a higher entropy of the adiabat and also a larger
atmospheric entropy-jump (see Fig. 3.1). Furthermore, we find increased velocities (and ∆s) and decreased
densities at higher [Fe/H] (see Sects. 3.2.2 and 3.2.4), which in turn affects the convective efficiency. The
dependence on metallicity can be unveiled with the following approximation. The opacity (and absorption
coefficient) increases with higher [Fe/H], since the opacity depends directly on the metallicity. The hydro-
static equilibrium can be written in terms of optical depth as d pth/dτRoss = g/κRoss. From the EOS (also
ideal gas law), one can see that the pressure scales with the density, pth ∝ ρ (for isotherms). Therefore,
when one would fix Teff and logg, but increase metallicity (and opacity), then the hydrostatic balance will
be realized at a lower density stratification (see bottom and middle panel in 3.20), which is also given by

1The values for pth (ρ ,ε) and T (ρ ,ε) are given in the EOS tables in the covered range of log
(

ρ/
[

g/cm3
])

∈ [−14,1] in 57 steps
and log (ε/ [erg/g]) ∈ [11,14] in 300 steps.

2In 1D MLT modeling the term convective efficiency is commonly referred to the mixing-length. The latter is in 3D RHD
simulations referred to the mass mixing-length, which is the inverse gradient of the mass flux (see Trampedach & Stein, 2011a).

3 p = kT ρ/µmu, with k being the Boltzmann constant, µ the mean molecular weight, and mu the atomic mass constant.
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Figure 3.1: Overview of the constant entropy value of the adiabatic convection zone, which is given by
the fixed entropy of the inflowing plasma at the bottom, sbot, (top) as well as the atmospheric entropy
minimum, smin, (bottom figure) for two metallicities ([Fe/H] = −0.5 and 0.0, blue and black respectively)
against Teff. Simulations with the same gravity are connected with functional fits for sbot and smin (solid
and dashed lines respectively; see App. A), while similar simulations with different [Fe/H] are connected
with short solid black lines. Note the different ordinates in the two figures.
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1D MLT models. The lower density stratification will result in higher sbot and ∆s (Eq. 3.3 and top panel
in3.20).

We emphasize that the dependence of both sbot and ∆s with stellar parameters is quite non-trivial, since
not only is it coupled to the changes in the total energy fluxes, but it is also affected by the differences in the
transition from convective to radiative transport of energy with stellar parameters. In particular, the non-
local radiative transfer depends non-linearly on the conditions present in stellar atmospheres, especially
changes in the opacity and the EOS will strongly influence the radiative transfer. Additionally, sbot will be
influenced by changes in the efficiency of the convective energy transport, that is in the convective fluxes
arising from the hydrodynamics (see Sect. 3.2.8 for more details).

An analytical derivation of sbot as a function of stellar parameters is rather difficult, as explained above.
Nonetheless, we can fit sbot with stellar parameter in a functional form based on the results from our sim-
ulations (see App. A). This has been done previously, based on 2D RHD models with solar metallicity
by Ludwig et al. (1999). In Fig. 3.2, we show how sbot varies across the Kiel diagram (Teff − logg dia-
gram) for [Fe/H] = 0.0 and −3.0. In the case of sbot, our results with solar metallicity are qualitatively in
good agreement with those of Ludwig et al. (1999), despite the inherent differences between 2D and 3D
convection simulations, the adopted EOS, opacities, and radiative transfer treatment (see Fig. 3.3). We
find that sbot (which depicts sad) is regularly distributed along lines in the Kiel diagram, in fact, for the
solar metallicity these lines with the same entropy of the adiabat run almost diagonally. Moreover, towards
lower metallicity, we find two significant differences for the lines of constant sbot, the first one being that
the slopes of the lines steepen, and the second being that the distances in the Teff − logg plane between the
lines decrease. The latter implies metal-poor stars feature a broader range in sbot compared to metal-rich
ones. As we will see in Sect. 3.2, this has important consequences for the stratifications.
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Figure 3.3: Comparison of the constant entropy value of the adiabatic convection zone, sbot, and the entropy
jump, ∆s, between our 3D result and the 2D values found by Ludwig et al. (1999) (dashed and solid lines,
respectively). The surface gravity is indicated.
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3.1.3 Entropy jump

The upflows enter the simulation box at the bottom with the constant entropy value of the adiabatic convec-
tion zone, sbot, and ascend until they reach the superadiabatic region (SAR) just below the visible surface,
where the convective energy is converted to radiative energy (see Fig. 3.27). In the photosphere, the
mean free path for the continuum radiation grows large enough for the gas to become transparent, and
the overturning upflow at the surface loses its internal energy as photons escape and carry away entropy.
Further above in the nearly isothermal atmosphere (with constant ε , see Fig. 3.18) with an exponentially
decreasing density the entropy increases again due to the EOS (see Eq. 3.3). This leads to a minimum,
smin = min [〈s〉], just above the surface (logτRoss < 0.0) in the temporal and horizontal averaged entropy
(see Fig. 3.27). We determined the entropy jump from the difference of the entropy minimum and the fixed
entropy at the bottom, i.e.

∆s = sbot − smin. (3.4)

In order to calculate smin, we used averages of the entropy on constant Rosseland optical depth4, since it is
the radiation losses that cause the sharp changes in the thermodynamic state around the optical surface and,
therefore, the optical depth scale offers a better reference frame for comparisons. The averages on constant
geometrical height 〈3D〉z smear out and thereby overestimate smin increasingly towards higher Teff due to
the increasing level of corrugation of iso-s surfaces on the geometrical scale (see Fig. 3.27). The constant
entropy at the bottom sbot, on the other hand, is a fixed input value for each simulation. It is worthwhile to
mention that the main contribution to the variation in ∆s as a function of stellar parameters is due to sbot,
since smin varies just slightly with stellar parameter compared to sbot (see Fig. 3.1).

It is obvious that the minimum in entropy increases just slightly with increasing Teff (see smin in Fig.
3.1), while the jump increases with the constant entropy value of the adiabatic convection zone quasi-
exponentially at higher Teff and lower logg (see ∆s in Fig. 3.4; compare with sbot in Fig. 3.1). This can
be concluded more easily from Fig. 3.20 (top panel), where we display ∆s vs. Teff (see also Col. 8 of
Table B.1 and for ∆s and smin in App. A). We note that the location of the entropy jump and minimum
essentially represents the boundary of stars and the jump is to be regarded as physically realistic, which
is a result of 3D RHD simulations. The entropy minimum coincides with the position of the upper end of
the SAR. A similar sharp drop occurs for most of the thermodynamic quantities of interest (ε , T and nel),
whereas ρ and ptot display a marked change of gradient. Moreover, the jump in entropy is an important
value, since it is a direct measure of the efficiency of convective energy transport (see Trampedach et al.,
2013). The latter is in 1D modeling set by the four MLT parameters, especially αMLT, in the framework of
MLT (see Böhm-Vitense, 1958; Henyey et al., 1965). Towards cool dwarfs ∆s becomes smaller, indicating
a higher convective efficiency, while towards hotter stars the large entropy jumps reflect a low convective
efficiency. We present a calibration of αMLT based on the entropy jump in Sect. 7.5, as previously done
by using multidimensional convection simulations (see Ludwig et al., 1999; Trampedach et al., 1999). The
variation of ∆s with stellar parameters found by Ludwig et al. (1999) is similar to our results, however, the
differences are larger compared to the sbot (see Fig. 3.3).

By comparing Fig. 3.1 with Fig. 3.4 one can notice the variation of ∆s closely resembles the variation
of sbot with stellar parameters. Motivated by this, we compare directly ∆s against sbot in Fig. 3.5. We find
a nice correlation between ∆s vs. sbot. At lower sbot values, ∆s seems to converge towards 0.0 (a negative
jump is not expected, since the atmosphere is losing energy in form of radiation from the photosphere),
while for sbot & 1.7, ∆s grows linearly with sbot and only a modest level of scatter. In Fig. 3.5, we
color-coded the Teff- and logg-values respectively, to show how the residuals depend systematically on
atmospheric parameters. Models with higher Teff (bright orange dots) and higher logg (dark grey dots)
settle along higher ∆s and vice versa. In order to illustrate this better, we have fitted a set of hyperbolic
tangent functions (see Eq. A.4), which we show also in Fig. 3.5. We included functional fits between
Teff = 4000 and 6000K (red/orange lines in top panel) and between logg = 1.5 and 4.5 (grey lines in
bottom panel). Hence, we find hotter dwarfs along lines at larger ∆s, while cooler giants settle along lines
at smaller entropy jumps.

Interestingly, in the linear part (sbot & 1.7) ∆s(sbot) displays a rather universal slope of ∆s/sbot ∼ 0.85,
even though for different Teff and logg these are slightly offset. Another interesting aspect is that Teff

4Averages on constant column mass density yield a very similar smin.
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shows a similar strong influence as logg. The latter, however, is obviously expressed in logarithmic scale,
therefore the influence of Teff is much stronger. On the other hand, when one performs a similar hyperbolic
tangent functional fit for a fixed value of [Fe/H], then ∆s is dispersed around the functional fit with such a
large scatter that a fit is rather meaningless. Therefore, in contrast to Teff and logg we find no systematic
trends with metallicity.

Based on the strong correlation between the entropy jump ∆s and sbot, it is of interest to investigate
what other scaling relations may be manifested for other stellar properties. With ∆s as an inverse measure
of convective efficiency, we expect that in light of such scaling relations, important quantities depending on
the entropy jump will also similarly scale systematically with sbot, in particular, density and velocity (see
Sects. 3.2.2 and 3.2.4), and therefore also the calibrated mixing-length of a particular MLT implementation.
We note briefly that qualitatively similar relations can be achieved with 1D MLT models with a fixed mixing
length.

3.1.4 Large-amplitude fluctuations

Below the optical surface convective energy is transported to the surface in the buoyant, hot granules, and
at the surface the stellar plasma becomes transparent, so that significant radiative losses generate large
amplitude fluctuations in the thermodynamic properties. Convection is driven by these large amplitude
fluctuations, in particular, in the entropy. The fluctuations can be quantified with the contrast of the re-
spective value, which we will discuss more carefully in Sect. 3.5.1. The contrast of all thermodynamic
properties, including the velocity field, exhibits a maximum in the SAR just below the optical surface,
where the large amplitude fluctuations are taking place (see Figs. 3.37 and 3.36). In Fig. 3.6 we illustrate
the maximum in the temperature-, density-, and entropy-contrast for different stellar parameters. One can
retrieve that for higher Teff, lower logg and higher [Fe/H] the large amplitude fluctuations are increasing,
which is very similar to the entropy jump and the maximum vertical rms-velocity (see Fig. 3.20). The larger
temperature-contrast implies a larger temperature gradient (see Fig. 3.17), and therefore a larger transport
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Figure 3.6: Overview of the maximum in contrast for different stellar parameters; top: temperature; middle: density and bottom: entropy.
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of enthalpy (heat). An increasing density-contrast will result in larger buoyancy, and therefore in higher
velocities. While the entropy-contrast is coupled with both of the former through the EOS. Interestingly
the entropy-contrast scales very tightly with the entropy jump.

3.1.5 Emergent intensity

While classic 1D models are inherently horizontally symmetric, therefore lacking a visible granulation
pattern, the emergent intensity of 3D models features inhomogeneities exhibiting rich details, which arise
due to the presence of turbulent convective motions. We give an overview over the emergent intensity of
our simulations in Fig. 3.7. Therein we display a main-sequence (MS) simulation (the Sun), a turnoff
(TO) simulation, a K-giant, and a K-dwarf model, each with for four different metallicities. To facilitate
direct comparisons among the four metallicities, we kept the horizontal sizes and the color scales for the
continuum intensities fixed from [Fe/H] = 0.0 for the individual stellar categories (we extended the metal-
poor simulations by exploiting the periodic horizontal boundary conditions). The dark regions depict the
cold intergranular lanes, while the brighter areas are the hot granules. The radiation above the granules
originates at higher geometrical heights, while for downdrafts it comes from much lower heights. This is
because the opacity is highly non-linear due to the strong temperature sensitivity of the H−-opacity (κH− ∼
T 10, see SN98), which is by far the dominant continuum opacity source in the visible for late-type stellar
photospheres. Since the temperature difference between the granules and the intergranular lanes is very
large (> 103 K), layers of constant optical depth will be increasingly more corrugated and become largest
around the peak of the SAR. Therefore, the radiation above granules is emerging from higher geometrical
depths, zup, while above downdrafts it originates from deeper geometrical heights, zdn (for the Sun the
largest difference between the averaged geometrical heights can amount up to 〈z〉up −〈z〉dn ≃ −140km at
logτRoss = 2.0).

An immediate, interesting aspect that leaps to the eye from the overview presented in Fig. 3.7 is
the qualitative self-similarity of the granulation patterns despite the large variations in size-scales. The
emergent intensity increases towards higher Teff and decreases for lower surface gravities, as expected.
From Fig. 3.7, it is also clear that the granule sizes decrease with metallicity (due to smaller HP, see Sect.
3.1.6; see also Collet et al., 2007). Also apparent is the change of intensity contrast with stellar parameters,
as we will discuss below.

In order to discuss the changes in the intensity, we show in Fig. 3.8 the temporally averaged histograms5

of the intensity I normalized to their individual mean intensity I, thereby enabling a direct comparison
between different stellar parameters. The histograms of the intensity show often two components: a peak at
lower (darker, I/I < 1.0) intensities, resulting from the cool downdrafts, and an often broader component at
higher (brighter, I/I > 1.0) intensities, arising from the upflowing hot granules. We note that these findings
are qualitatively to be expected (see SN98; Trampedach et al., 2013).

As clearly depicted in Fig. 3.8, the shapes of the two components change with stellar parameters,
in particular, the amplitudes and widths, thereby changing the overall shape. The two components can
be clearly extracted from histograms at higher Teff, where the intensity contrast is increasingly enhanced
and eventually produces a distinctly bimodal distribution, which is a manifestation of the hidden or naked

granulation (see Fig. 3.9 and Nordlund & Dravins 1990). In order to better illustrate this, we also included
the full width at half maxima (FWHM) of the individual intensity histograms IFWHM in Fig. 3.9. On the
other hand, at lower Teff the intensity contrast decreases in general, so that the two components overlap,
leading to a single narrower higher peak in the histogram, thereby becoming indistinguishable from each
other in the histogram. Ludwig & Kučinskas (2012) found also an unimodal intensity distribution in the
context of a 3D giant model with solar metallicity. Furthermore, we find that the individual contribution
to the intensity from upflows and downflows is often asymmetric, meaning that the amplitudes of the two
peaks in the bimodal distribution are unequal (see Fig. 3.8). In general, for dwarfs, we find that the relative
importance of downflows with respect to upflows in terms of the peak contribution to the intensity distri-
bution increases with increasing Teff. However, we also find exceptions, e.g., at lower metallicity where the
behavior at Teff = 4500K is actually the opposite. Also, the balance between upflows and downflows varies

5The histogram estimates the probability distribution of a given data set, i.e. how often a value of the considered bin is given in
the distribution.
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Figure 3.7: We show an overview of the emergent (bolometric) intensity (
[

1012erg/s/cm2
]

) for a selection
of stars, namely main-sequence (MS), turnoff (TO), K-giant and K-dwarf (from left to right, respectively)
at a given time instant. For each star, we show four metallicities [Fe/H] = 0.0,−1.0,−2.0 and −3.0
(from top to bottom, respectively). To facilitate comparisons between the different metallicity of each
star, the intensity scale and the horizontal geometrical size of the metal-poor simulations are identical to
[Fe/H] = 0.0, and the individual intensity contrasts [%] are indicated in each box.
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with surface gravity. The intensity histograms for giants are in general broader (higher contrast) compared
to dwarfs of the same Teff (see IFWHM), hence exhibiting a larger intensity contrast. For dwarfs at lower
metallicity (right bottom panel), the bimodality is more pronounced and the IFWHM (contrast) is broader
(higher) towards higher Teff, while at lower Teff the IFWHM (contrast) becomes narrower (lower) compared
to solar metallicity (left bottom panel). The latter hints at an enhancement of the effect of hidden or naked
granulation.

To illustrate the latter in more detail, we show in Fig. 3.9 the rms of the bolometric disk center intensity
fluctuations for [Fe/H] = 0.0 and −2.0, which is commonly referred as the intensity contrast

∆Irms =
[

∑
(

Ii − I
)2
/NI

2
]1/2

(3.5)

with I being the (spatial) mean intensity and N the number of data points (see Roudier & Muller, 1986).
We remark that the shown ∆Irms are temporal averages. It is essentially defined as the relative standard
deviation, hence it reflects the width of the intensity distribution (see Fig. 3.8). This often measured
value is very suitable for quantifying the range of brightness fluctuations due to granulation. The intensity
contrast increases with higher Teff and lower logg. For our solar simulation, we get an intensity contrast of
15%, which is close to the one found by SN98 with 16% (see Col. 10 in Table B.1).

Towards higher Teff, we find that sbot, ∆s, and the vertical velocity increase, as shown in Sects. 3.1.2
and 3.2.2. For increasingly hotter stars, the top of the convective zone, ztop,cz, penetrates higher and higher
above the optical surface due to larger vertical velocities (see Fig. 3.19). Additionally, at higher Teff
(higher sbot and ∆s), the overall temperatures and their fluctuations also increase, implying that one observes
increasingly higher layers, since the dominant H−-opacity, hence the optical depth, depends sensitively on
the temperature. Therefore, the granulation pattern is enhanced at higher Teff, while on the contrary for
lower Teff the granulation becomes less visible, since ztop,cz recedes below the optical surface in the latter
case (see overview in Fig. 3.7). This phenomenon has been already described by Nordlund & Dravins
(1990) as naked granulation.
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Interestingly, in our simulations, we find for the first time on large parameter range that at lower metal-
licity the effect of naked and hidden granulation is more pronounced, in the sense that the range of contrast
from cool, low-contrast dwarfs, to hotter, high-contrast dwarfs, is 61% larger (from 10.9 to 17.6) for our
[Fe/H] =−2.0 simulations than for solar metallicity (see Fig. 3.9). At lower metallicity the major electron
donors (metals) are depleted, therefore the formation of the dominant opacity source H− depends primarily
on the ionization of hydrogen, which is the reason for the steep increase of intensity contrast with higher
Teff (Nordlund & Dravins, 1990).

The variations in the intensity and in the intensity contrast with stellar parameters have important ram-
ifications for observations. At the one hand, the enhanced naked or hidden granulation at lower metal-
licity affects the formation of spectral lines and the limb darkening. On the other hand, it should also
lead to distinct signatures in the granulation background of asteroseismological observations and spectro-
interferometric imaging.

Finally, we show in Fig. 3.10 the temporally averaged 2D spatial powerspectrum of the (bolometric)
intensity. For lower wavenumber k the logarithmic powerspectrum is increasing, reaching a maximum, and
decreasing again. The inverse wavenumber, where the maximum of powerspectrum is located, depicts the
dominant size-scales of the emergent intensity. Since the granules correlate with brighter regions in the
intensity maps that are hotter, the dominant size-scale is correlating with the typical granule size dgran. We
have derived the granule size in this way, which we want to discuss in the next section.

3.1.6 Granule size

The physical dimensions of the simulations boxes (sx,sy and sz in Cols. 11 and 12 of Table B.1) are selected
based on the mean diameter of granules (see Sect. 2.2.3 and Table B.1) and a target of about 10 granules in
the box. Additionally, we measured the granule sizes by calculating the 2D spatial power spectrum of the
bolometric intensity for the time series, and determining its maximum from the smoothed time average (see
Fig. 3.10). This method is quite robust despite the large variations in gravity. In Fig. 3.11, we present the
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Figure 3.10: The temporally averaged 2D spatial powerspectrum of the
intensity vs. the inverse wavenumber k−1. We remark that the power-
spectra are smoothed for clarity. Furthermore, we indicated the position
of the maximal powerspectrum (box). Note the difference in abscissa
of the top panel.

Figure 3.11: Overview of the granule diameter dgran derived from the
maximum of the mean 2D spatial power spectrum of the bolometric
intensity against Teff for [Fe/H] =−2.0 and 0.0 (blue and black respec-
tively).



42 3. STAGGER-grid

Fi
gu

re
3.

12
:

In
th

e
to

p
pa

ne
l,

w
e

co
m

pa
re

th
e

gr
an

ul
e

si
ze

ap
pr

ox
i-

m
at

ed
w

ith
th

e
pr

es
su

re
sc

al
e

he
ig

ht
d

N
SR

(s
ee

E
q.

3.
6)

ag
ai

ns
t

th
e

m
ea

n
gr

an
ul

e
di

am
et

er
d

gr
an

(s
am

e
as

Fi
g.

3.
11

)
fo

ra
ll

m
od

el
s.

T
he

in
-

di
vi

du
al

st
el

la
rp

ar
am

et
er

s
ar

e
in

di
ca

te
d

(T
ef

f,
lo

g
g

an
d
[F

e/
H
]w

ith
re

d,
gr

ay
,a

nd
bl

ue
re

sp
ec

tiv
el

y)
.

W
e

in
di

ca
te

d
th

e
po

si
tio

n
of

d
N

SR
=

d
gr

an

th
e

so
lid

di
ag

on
al

lin
e.

In
th

e
bo

tto
m

pa
ne

l,
w

e
sh

ow
al

so
th

e
re

la
-

tiv
e

re
si

du
al

s.
W

e
in

di
ca

te
d

al
so

th
e

m
ea

n
re

si
du

al
(d

ot
te

d
lin

e)
,w

hi
ch

am
ou

nt
s

to
∼

30
%

.
H

er
e,

m
od

el
s

w
ith

th
e

sa
m

e
gr

av
ity

ar
e

co
nn

ec
te

d
(s

ol
id

gr
ey

lin
es

).

measured granule sizes dgran (given in Col. 13 in Table B.1; see also App. A), showing that they become
larger with smaller surface gravity. Also, the granules of the simulations with fixed logg, the lowest Teff
are typically ∼ 50% smaller compared to the simulations with the hottest Teff, while for the models with
the lowest metallicity they are typically ∼ 30% smaller than for the metal-rich ones.

We find a remarkable validation for the approximation of the maximal horizontal extent of a granule
based on mass-conservation considerations made by SN98 (see also Nordlund et al., 2009). Hereafter,
we denote the following relation as the Nordlund scaling relation (NSR). The ascending buoyant plasma
inside a cylindrical granule with radius r gives rise to a vertical mass flux with jz = [πr2]ρvz. This mass
flux has to deflect and overturn increasingly towards the top. Due to conservation of mass, the upflow
has to drain off sideways through the edge of the granule within approximately one pressure scale height
HP, hence resulting in a horizontal mass flux jh = [2πrHP]ρvh. The pressure is a quantity that preserves
its characteristic shape with stellar parameters, i.e. the pressure of two different simulations look rather
similar on a uniform depth scale, therefore the pressure scale height is preferred over the density scale
height. Equating jz and jh we can solve for the (maximal) granular diameter, d = 2r:

dNSR = 4 [vh/vz]HP ≈ 4HP (3.6)

We show in Fig. 3.12 a comparison of the granular diameters estimated with dNSR and from the maximum
of 2D spatial power spectra dgran, which is shown in Fig. 3.11. The astonishing tight correlation can solely
be interpreted as clear indication for the validity of the NSR. We find that the mean pressure scale height
taken at the height of the maximum vertical rms-velocity below the optical surface (logτRoss ∼ 2.0, see
Fig. 3.19) gives the best match between dNSR and the granule sizes. Furthermore, we also confirm that
the relevant scale-height is that of the total pressure scale height, HP = ptot/ρg, since we find a better
agreement with the latter. The granular diameters found from the peak of 2D spatial power spectra are
about 30% larger than the estimate from Eq. 3.6, i.e., dgran ∼ 1.3dNSR (see lower panel of Fig. 3.12). The
variation of the velocity ratio vh/vz in the convection zone is rather small (vh/vz∼ 1.0) as both are of the
order of the sound speed, therefore the variation in Eq. 3.6 stems predominantly from HP. In hydrostatic
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equilibrium the pressure scale height is inversely proportional to the surface gravity (HP ∝ 1/g), which
explains the strong correlation between the granular sizes and logg. On the other hand, with increasing
Teff and [Fe/H], the pressure scale height increases slightly because of the increase in the ratio of pressure
and density (HP ∝ ptot/ρ). The ratio actually increases even though both values decrease, since the density
drops with height slightly more rapidly than the pressure.

Finally, we want to mention our finding on the filling factor for upflows and downflows, fup and fdn
respectively. We derived the filling factor from the sign of the velocity field in the unaltered simulations
on layers of constant geometrical height (see Fig. 3.13). Then we computed the mean filling factor in the
convection zone, which yields on average for all simulations fup ≃ 0.65 with a minute deviation of σ =
0.014. Therefore, we find that the mean filling factor is rather universal, and close to previous findings by
SN98 with fup ∼ 2/3 and fdn ∼ 1/3. In deeper solar simulations, which reach down to 20Mm (Stein et al.,
2011), we find very similar values for the filling factor.

3.2 Mean 〈3D〉 atmosphere

In the following, we want to discuss the properties of the mean stratifications and the temporal and spatial
averages of various important quantities. Unless specified otherwise, the 〈3D〉 stratifications presented here
are averages on surfaces of constant Rosseland optical depth, i.e. 〈3D〉= 〈3D〉Ross. Whenever we employ
alternative averages in the text, e.g., on constant geometrical height 〈3D〉z, we indicate that explicitly. We
remark briefly that only the averages on constant geometrical height 〈3D〉z strictly fulfill the equations of
conservation (Eqs. 1.1, 1.2 and 1.3), therefore also the hydrostatic equilibrium, while all other averages
exhibit slight deviations. For the sake of clarity, we display here only a subsample of our grid models
including MS and RGB stars (logg = 4.5 and 2.0) with solar and subsolar metallicity ([Fe/H] = 0.0 and
−2.0). Whenever possible, we compare with corresponding 1D models that are obtained with our 1D code
(see Sect. 2.4).
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Figure 3.14: Temporal and spatial averaged mean 〈3D〉 stratification of the solar simulation, which encom-
passes the temperature, T , density, ρ , vertical rms-velocity, vz,rms, entropy, s, superadiabatic gradient,~∇sad,
and the radiative and convective energy flux. Furthermore, we marked the location of the superadiabatic
region (SAR; vertical dotted lines) and indicated the location of the peak vertical rms-velocity (diamond),
entropy minimum (plus), and the peak of the superadiabatic gradient (triangle).
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Before continuing our discussion, we would like to briefly overview in Fig. 3.14 the temporal and spa-
tial averaged stratification for six important variables – temperature, T , density, ρ , vertical rms-velocity,
vz,rms, entropy, s, superadiabatic gradient, ~∇sad, and the radiative and convective energy flux – from the
solar simulation exclusively, in order to preview the stratifications more clearer, since later on in the fol-
lowing Sections we will display these for multiple stellar parameters. In Fig. 3.14, we show averages on
layers of constant geometrical height, 〈3D〉z, and the optical surface is given at z = 0. Above the optical
surface (z < 0) the highly stratified, almost isothermal atmosphere is located, where the temperature drops
only little, while the density and pressure (not shown, but very similar to the density) are greatly declining
towards higher altitudes. Below the optical surface, one finds the convection zone, where the convective
motions due to the buoyancy force lead to the vertical velocities. Just below the optical surface, we would
like to point out the importance of the superadiabatic region (SAR), as it will be referred repeatedly in the
following (we marked in Fig. 3.14 the SAR with ~∇sad > 0.1~∇peak

sad ). It is the region, where the transport of
energy changes character, from predominantly convective to mainly radiative (see energy fluxes). The top
of the SAR, where the superadibatic temperature gradient becomes zero, i.e. ~∇sad = 0, marks the top the
convection zone, since it is the uppermost point, where the Schwarzschild criterion is fulfilled. At the loca-
tion of the peak of the superadiabatic gradient, one also finds the largest fluctuations and inhomogeneities
in the thermodynamic variables due to the non-adiabatic transition to the photosphere. Furthermore, it is
here in the SAR, where the entropy jump and the peak in the vertical velocity occur (see Fig. 3.14). In
fact, the SAR effectively represents the physical outer boundary of the convective envelope. It is the most
dynamic part in the interior of late-type stars, where the largest fluctuations are found. This is the reason
why hydrostatic 1D modeling has the greatest challenges in this rather small region.

3.2.1 Temperature stratification

We first consider the temperature stratifications in optical depth, which we show in Fig. 3.15. We also show
the corresponding stratifications of 1D theoretical model atmosphere with αMLT = 1.5 based on our 1D code
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(dashed lines) with identical EOS and opacity tables as for 3D models. In the continuum forming layers
around the optical surface (−1.0 < logτRoss < 0.5), the differences between 〈3D〉 models with different
Teffs, but same logg and [Fe/H], are rather small besides the shift in the temperature stratification corre-
sponding to the difference in effective temperature ∆Teff, which is to be expected since Teff ≈ T (τ = 2/3).
Well above and below the optical surface, on the other hand, we find significant differences between the
〈3D〉 models depending on the stellar parameters.

In the upper layers (logτRoss < −2.0) of atmospheres with solar metallicity, we find that the behavior
in mean temperature is similar between 3D and 1D models. On the other hand, the metal-poor 〈3D〉 mod-
els exhibit significantly cooler temperature stratifications compared to 〈3D〉 models with solar metallicity
(∆T/T (logτRoss =−0.5)∼ −1% and ∼ −14% for [Fe/H] = −1.0 and −3.0 respectively), in particular,
for dwarfs (logg = 4.5). The temperature stratification in the upper photospheres of solar-metallicity mod-
els is largely controlled by radiative equilibrium, while for low-metallicity models this is not generally the
case: for metal-poor models, the absorption features become considerably weaker, therefore, the radiative
heating by spectral line re-absorption (qrad) is dominated by the adiabatic cooling due to expansion of the
ascending gas (−pth

~∇ ·~v) in the energy balance (Eq. 1.3), leading to an equilibrium structure at cooler
temperatures (Asplund et al., 1999b). For cool, metal-poor giants (e.g., Teff = 4000K, logg = 2.0), we
recognize the effects of molecule formation on the structure of the high atmosphere. At sufficiently low
temperatures, molecules start to form, which contribute with a large line opacity, shifting the balance from
adiabatic to radiative heating and cooling, resulting in a stratification closer to the radiative equilibrium
one (see Gustafsson et al., 2008). On the other hand, for giants with solar metallicity the radiative equilib-
rium is even more dominating, since these exhibit hotter stratifications than 1D models in the upper layers.
Ludwig & Kučinskas (2012) find the same but on a much milder level. These effects are rather non-linear,
and we find no simple systematic trends within our grid models.

We would now like to examine the influence of individual stellar parameters on the temperature strat-
ification. Therefore, we show in Fig. 3.16 the temperature stratifications of models where we separately
vary one at the time (Teff, logg, and [Fe/H]), while keeping the other two parameters constant. Figure
3.16 (top panel) shows, as expected, that with increasing Teff, temperature becomes overall hotter above,
but also below the optical surface, in order to provide the required total energy flux (higher enthalpy, Eq.
3.10). We find in our simulations (both 1D and 3D) that the increased Teffs with hotter stratifications are
accompanied by lower densities and higher vertical velocities below the surface (see ptot (logτRoss = 2.0)
in Fig. 3.24 representatively for the ρ). The net effect on the convective flows are lower mass fluxes for
higher Teffs, since the decrease in density is predominating the increase in velocity, therefore resulting in a
more inefficient convection. This is compensated with higher entropy jumps (see Fig. 3.20 with ∆s as an
inverse measure for convective efficiency), hence higher temperatures and steeper temperature gradients.
On the other hand, the temperatures in the upper, radiative layers increase less with increasing Teff than in
the deeper, convective ones. We find with decreasing surface gravity (middle panel in Fig. 3.16) the same
correlations as with increasing Teffs before, the temperature stratifications become hotter below the pho-
tosphere, and due to lower densities we find a more inefficient convection, while the upper atmosphere is
less affected. For lower metallicities (bottom panel), the temperature stratifications are significantly cooler,
both above and below the optical surface (∆T/T (logτRoss = 2.0) ∼ −5% and −15% for [Fe/H] = −1.0
and −3.0 respectively). At the top the stratifications are cooler at lower [Fe/H] due to the dominance of
adiabatic cooling over radiative heating. Below the optical surface, we find higher densities with lower ve-
locities and entropy jumps (while the mass flux is increasing), therefore, leading to an efficient convection
with shallow temperature gradients at lower metallicities. We find cooler models that fall below the opacity
edge, which we describe below (compare Teff = 5000K in Fig. 3.18), follow an adiabatic temperature strat-
ification even in the atmosphere, which coincides with the rather sudden change between [Fe/H] = −1.0
and −2.0 in Fig. 3.16 (bottom panel). Besides our standard averages on constant Rosseland optical depth,
we show also the averages on constant geometrical depth scale 〈3D〉z (here is z fixed and τRoss = 〈τRoss〉z),
which are systematically different, in particular, below the optical surface, but behave qualitatively in a
similar way with stellar parameters.

In the sub-photospheric region (logτRoss > 0.5), where convection dominates, the temperature gradients
∇ = d lnT/d ln ptot

6 become increasingly steeper with higher Teff, reflecting the hotter interior stratifica-

6We remark that ∇ increases, if only the thermodynamic pressure is (mistakenly) included, neglecting the turbulent component.
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Figure 3.16: 〈3D〉 temperature stratifications with the variation of one stellar parameter at a time, while
the two others are fixed (Teff, logg, and [Fe/H], from top to bottom, respectively). We show our standard
averages on constant optical depth 〈3D〉 (solid line) and on constant geometrical depth 〈3D〉z (dotted line).
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Figure 3.17: Overview of the maximum temperature gradient ∇peak (top panel) and Rosseland opacity
κRoss taken at the height τRoss ≈ 3.0 (bottom panel) against Teff for [Fe/H] =−2.0 and 0.0 (blue and black
respectively). Models with the same surface gravity are connected by their respective functional fits in the
top panel (solid lines; see App. A).
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tions. This can be illustrated with the maximum in temperature gradient, ∇peak = max∇, which we show
in Fig. 3.17 (functional fits are also given in App. A). The increase of ∇peak with Teff is close to linear,
but it seems to saturate at higher Teff (see Teff ≥ 6500K). We find that the maximum in temperature gradi-
ent ∇peak reproduces qualitatively a similar behavior as the intensity contrast ∆Irms with stellar parameter
(compare Figs. 3.9 and 3.17), which is consistent with the strong temperature sensitivity of the H− opacity.
Furthermore, our metal-poor simulations exhibit a larger range of ∇peak-values than their solar metallic-
ity counterparts, and ∇peak is similarly enhanced at lower metallicity (compare also T (logτRoss = 2.0) for
dwarfs in Fig. 3.15), as the intensity contrast (see Sect. 3.1.5). Our cool metal-poor simulations have flatter
and hot metal-poor simulations have steeper temperature stratifications than the metal-rich part of our grid
(see Fig. 3.16). Curiously, ∇peak is close to constant with metallicity for the solar Teff and logg.

We identify three main effects for the given variations in temperature gradients with stellar parameters
in the SAR, which are rooted in the hydrodynamics and the radiative transfer: velocity field, convective
efficiency, and radiative back-warming.

1. As we discussed above (see Sect. 3.1.3), the entropy jump ∆s increases with effective temperature
according to a power law (see Fig. 3.20). This behavior arises due to the variations in the radiative
losses (see Sect. 3.2.8), which is accompanied by changes in internal energy and density (see Fig.
3.18). The velocities rise rapidly, as exhibited by the growth of v

peak
z,rms and also p

peak
turb with Teff (see

Figs. 3.19 and 3.23 respectively). Similar to ∇peak, both v
peak
z,rms and p

peak
turb occur in the SAR, and both

increase towards higher Teff and lower logg.

2. The mass mixing length αm changes with stellar parameters (Trampedach & Stein, 2011a). It is
evaluated as the inverse gradient of the vertical mass flux, separately in the up- or downflows,
hence α−1

m = d ln jz,up/d ln p, with jz,up being the vertical mass flux in the upflows. Therefore,
the mass mixing length is composed of the gradients of the density and the vertical velocity, i.e.
αm ∝ 1/d lnρ + 1/d lnvz. We find that αm increases for lower ∆s, v

peak
z,rms and ∇peak.

3. In the lower photospheric layers, where the continuum forms, radiation is absorbed (blocked) by
spectral lines; this implies that less radiative flux can be transported at the wavelengths correspond-
ing to spectral lines and, conversely, that more flux has to be pushed through continuum windows,
an effect commonly referred to as line-blanketing. This in turn leads to a steepening of the tem-
perature gradient and to additional heating of the sub-surface layers, also known as back-warming

(see Mihalas, 1970; Nordlund et al., 2009). In 1D models it is straightforward to quantify the ef-
fect of back-warming, as done for example by Gustafsson et al. (2008), who found it to contribute
a slight increase in temperatures below the surface (∆T/T (τRoss = 10) ≃ 5% for solar metallicity
stars with Teff ≈ 5000K and logg = 3.0). In our 3D RHD atmosphere models, line-blanketing and
back-warming effects are also naturally included through our opacity-binning method. Isolating the
radiative back-warming effect in our 3D simulations is, however, a little more involved than in 1D
and we defer the analysis of this mechanism to a future paper in this series.

The three mentioned effects are non-linearly coupled and compete with each other, making it difficult to
disentangle the individual contributions.

We would like now to examine more closely a sample of 〈3D〉 models in the ε −ρ-plane, as shown in
Fig. 3.18, in order to better illustrate the variations with stellar parameters. One can clearly distinguish three
different regimes: the adiabatic convection zone, the photospheric transition, and the almost isothermal
upper atmosphere.

At the bottom boundary, sufficiently deep in the convection zone where entropy fluctuations become
small, 〈δ s〉 = 0.3%, the models follow closely the associated adiabats with s = sbot (green lines). They
deviate increasingly from their adiabats, as the top of the convection zone is approached. This is due to the
entropy deficient downdrafts (cooled in the photosphere) becoming less diluted by the entropic upflows,
as the optical surface is approached. For the 1D models (blue dashed lines), the value of the entropy at
the bottom of the stratifications is evidently overestimated, particularly at higher Teff, but this is because
we haven’t calibrated the αMLT parameter here, and we have used a value of 1.5 for all models. The
transition of energy transport from fully convective to fully radiative is clearly visible, since, at the optical
surface, one finds a sharp isochoric (∆ρ ∼ 0.0) drop in internal energy (this is basically the enthalpy-jump
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Figure 3.18: We show the mean internal energy against mean density for dwarf models (logg = 4.5) with
[Fe/H] = 0.0 and −2.0 (top and bottom panel, respectively). The specific isocontours for the entropy sbot
(green solid) and smin (green dotted), Rosseland opacity per volume, ρκRoss, (blue) and temperature T

(orange) are underlayed. Moreover, the positions of entropy minimum smin (plus), optical surface (large
square), vertical peak velocity v

peak
z,rms (diamonds) and maximum in ∇sad (triangle) are marked respectively.

The amplitude of v
peak
z,rms is indicated with horizontal bars with markings in 1 km/s. We also included the 1D

models with αMLT = 1.5 (blue dashed lines). The range in optical depth is shown from logτRoss = −5.0
to +5.0 for each dex (small squares). However, we note that our simulations boxes are much deeper
(〈logτRoss〉 ≈+7.5).
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∆h in Eq. 3.10). The ε-jump coincides with the sub-photospheric region (0.0 < logτRoss < 2.0), where
the atmosphere starts to become transparent. The transition zone ends eventually at the optical surface
(logτRoss ≃ 0.0, marked with big squares). Above the optical surface (logτRoss < 0.0) the atmosphere is
almost isothermal (compare with the orange isotherms in Fig. 3.18), with exponentially decreasing density
and almost constant internal energy (∆ε ∼ 0.0).

The entropy sbot at the bottom grows exponentially with increasing Teff and decreasing logg. We
showed above that the entropy jump increases in a similar way (see Fig. 3.5). Here we find a similar
behavior for the jump in internal energy (∆ε , hence ∆h) in the photosphere. Moreover, we show in Fig.
3.18 the positions of ∇

peak
sad and v

peak
z,rms located in the ε-jump, and, again, we find both v

peak
z,rms and ∇

peak
sad to

scale exponentially with Teff. For v
peak
z,rms, we have indicated the amplitudes as well, which also increases

exponentially with Teff. All of the aforementioned positions are distributed rather regularly in the ε −ρ-
plane, while they are less so on the logτRoss-scale (see Fig. 3.15). The position of smin is close to the optical
surface and shows little variation in optical depth.

At lower energies and densities in Fig. 3.18 (logε ∼ 0.3 and logρ ∼ 3.0 to 0.0) we notice the effect
of H I and He I opacity in form of an edge in the opacity contours (logκRoss ∼ −5.0 to −1.0), since the
bound-free absorption increases (more excited states) towards higher energy below the ionization energy,
and they fade away again above it. Models that fall below this edge exhibit a rather different stratification.
In particular, towards cool metal-poor dwarfs, i.e. lower Teff, higher logg, and lower [Fe/H], the models
more closely follow adiabats than isotherms, in the atmosphere. This effect of the competition between
radiative and dynamic heating (see beginning of this Sect.) above the convection zone becomes particularly
evident at lower metallicity (for [Fe/H] ≤ −2.0). However, for the 1D models (blue dashed lines), this is
obviously not the case, since these always follow isotherms due to the enforcement of radiative equilibrium.
Furthermore, the cool metal-poor 〈3D〉 models also display higher densities at the optical surface, thereby
spanning a larger ρ-range for different Teffs. The stratifications of simulations of hotter dwarfs, on the
other hand, depend little on metallicity. For the simulations, we have only plotted the range logτRoss ∈
[−5.0,5.0], and the top of this is reached at much higher densities for the metal-poor dwarfs than for the
solar metallicity dwarfs. Therefore, the density ranges covered above the optical surface by the individual
atmospheres is small for metal-poor models (min [logρ ]∼−1.0 and −2.0, respectively; see Fig. 3.18).

3.2.2 Velocity field

Next, we consider the velocity field in our simulations, which arise self-consistently from the solution of
the hydrodynamic equations. In Fig. 3.19 we show the rms-velocity of the vertical component vz,rms, being
the flux carrying component of the convective flows, and being the broadening component of spectral lines
at disk center.

The buoyant uprising plasma will experience increasingly a decrease in density towards the photo-
sphere, hence a strong density gradient, and due to mass conservation, the convective motions will even-
tually overturn. Therefore, vz,rms peaks in the SAR around logτRoss ∼ 1.5 for dwarfs and ∼ 2.3 for giants.
Furthermore, since in the SAR, the transition region from convective to radiative transport of energy takes
place due to decrease in opacity and the subsequent radiative losses, here we find the strongest turbulent
motions concomitant with the greatest fluctuations in all thermodynamical quantities (in particular, entropy,
temperature and density, see Figs. 3.27, 3.15 and 3.20). Further towards the interior, vz,rms drops as the
density increases. From the slightly sub-photospheric maximum, velocities fall off to a minimum above
the optical surface, then increases again in the higher atmosphere (see Fig. 3.19). Towards upper layers,
vz,rms increases again due to p-modes, excited in the SAR but leaking out of the acoustic cavity as they
have frequencies above the acoustic cut-off. The metal poor simulations show a slightly smaller increase in
vz,rms, since their density gradients are shallower due to steeper T -gradients. The declining velocity above
the surface is due to the fact that the convective motions overshoot well above the top of the convection
zone. We find the velocity minimum to occur between logτRoss ∼−2.3 for dwarfs and −1.5 for giants.

As to be expected from spectral observations, the magnitude of the velocity field is enhanced towards
higher Teff, lower logg, and higher [Fe/H], similar as ∆s. The symmetry of the velocity profile changes
with logg and metallicity, while it is little affected by Teff. For lower logg, the peak in the velocity field
is increasingly shifted to optically deeper layers (e.g., at solar metallicity the average peak position for



52 3. STAGGER-grid

Fi
gu

re
3.

19
:

V
er

tic
al

rm
s-

ve
lo

ci
ty

,v
z,

rm
s,

fr
om

th
e
〈3

D
〉s

tr
at

ifi
ca

tio
ns

(s
ol

id
lin

es
)

an
d

co
nv

ec
tiv

e
ve

lo
ci

ty
v M

LT
fr

om
th

e
co

rr
es

po
nd

in
g

1D
M

LT
m

od
el

s
(d

as
he

d
lin

es
)

as
fu

nc
tio

n
of

op
tic

al
de

pt
h

lo
g

τ R
os

s
fo

r
va

ri
ou

s
st

el
la

r
pa

ra
m

et
er

s.
dwarfs is 〈logτRoss〉 ∼ 1.5, while for giants it is ∼ 2.0). The coolest metal-poor simulations display a
flatter profile, and the position of the minimum is increasingly shifted towards higher layers, especially for
extreme metal-poor dwarfs ([Fe/H]<−3.0), and the profile is therefore stretched and skewed.

For comparison, we also show in Fig. 3.19 the convective velocity vMLT of our 1D models determined
by MLT. It is apparent that the general trends of increasing velocities with increasing Teff and [Fe/H]
and decreasing logg, are common between the simulations and the 1D MLT models, although much less
pronounced in 1D. Furthermore, vMLT drops rather sharply at the top of the convection zone (as given by
the Schwarzschild criterion), as no overshooting is allowed for in our implementation of MLT. Several non-
local variants of MLT exists, and they allow for overshooting, but none of them produce velocity profiles
close to that of our simulations. We also want to mention the large asymmetry in velocities of the up-
and downflows (SN98): in 3D simulations, the latter are much faster than the former (up to ∼ 2 faster, in
particular, for cool dwarfs), contrary to what is normally assumed in 1D descriptions of convection.

The peak vertical rms-velocity, v
peak
z,rms (see bottom panel of Fig. 3.20), is a good measure of the global

magnitude of velocities in the simulations. It also serves as a measure of the amount of turbulence present
in the simulations. The actual values are also given in Col. 9 in Table B.1, together with a functional fit
in App. A. The variation of v

peak
z,rms with stellar parameters resembles that of the entropy jump ∆s (compare

top and bottom panel in Fig. 3.20), namely it also increases exponentially with higher Teff and lower logg

and linearly with [Fe/H]. An interesting aspect is the increase of v
peak
z,rms and ∆s with Teff, which are close

to exponential, indicating a correlation between the two. The characteristic variations of v
peak
z,rms correspond

to the inverse variations of the density taken at the same heights as the peaks in vz,rms (see middle panel in
Fig. 3.20). This behavior arises due to conservation of mass (Eq. 1.1), which can be expressed as

〈∂z lnρ〉=−〈∂z lnvz〉 (3.7)

for a stationary flow (∂tρ = 0). Of course, under this assumption, this equation is strictly speaking valid
only locally, while we compare here averaged values. Despite that, we find that this relation is, in general,
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Figure 3.20: Overview of the entropy jump (top panel), maximal vertical rms-velocity below the surface v
peak
z,rms (middle panel) and the density

at the same height ρpeak (bottom panel) vs. Teff for [Fe/H] = −2.0 and 0.0 (blue and black respectively). Models with the same gravity are
connected with their respective functional fits (solid lines; see App. A). Note the inverse correlation between density and velocity.
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qualitatively fulfilled across the whole depth of our simulations. Towards the optical surface, the density
decreases, which has to be compensated by faster velocities, in order to fulfill conservation of mass as
well as sustain the energy flux. The velocity field profile results ultimately from the interplay between the
vertical and horizontal acceleration due to buoyancy and overturning respectively. The latter in turn is set
by the radiative losses that arises from the prevailing opacity conditions according to the thermodynamic
state of the plasma (see Sect. 3.2.8). Furthermore, one can also reason that at a higher effective temperature,
hence hotter temperature stratification, the density will be lower (ideal gas gives for isobars T ∝ 1/ρ ; see
also middle panel in Fig. 3.20), however, at the same time, more energy (enthalpy) has to be carried to the
surface, which necessitates a faster flow (as is given in Eq. 3.11). The entropy jump, density, and velocity
are coupled intimately with each other (the vertical mass flux is jz = ρvz). Therefore, changes in one
quantity imply corresponding variations in the values of the other quantities, and vice versa. The radiative
energy losses at the photospheric transition generate the entropy fluctuations according to the prevailing
opacity and the irradiation-duration, hence it sets the amplitude of the entropy jump ∆s. On the other hand,
the entropy deficient plasma with its density excess determines the buoyancy force, fB ∼ ∆ρ , and therefore
the vertical velocities vz of the downdrafts. The downdrafts in turn will settle the upflows in order to deliver
the required convective energy flux. The subtle details in the chain of causalities are non-trivial and beyond
the scope of the present paper.

Similar to our finding in Sect. 3.1.3 of a scaling relation between the entropy jump and the constant
entropy value of the adiabatic convection zone ∆s(sbot), we find here again another interesting, tight scaling
relations between ρpeak, v

peak
z,rms and ∆s, which we show in Fig. 3.21. The values are plotted on a double

logarithmic scale, to more clearly illustrate the power-law character of the relations. From the above
discussion, it follows that the vertical velocity is also correlated with the constant entropy value sbot of the
adiabatic convection zone and the density. We also show linear fits of the density ρpeak and entropy jump

∆s as a function of v
peak
z,rms in log-log scale (red lines in Fig. 3.21), exhibiting the slopes of log∆s/ logv

peak
z,rms ∼

0.46 and logρpeak/ logv
peak
z,rms ∼−1.20, hence a scaling with the respective slopes.
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In 3D RHD simulations, the non-thermal, macroscopic velocity fields arising from convective instabili-
ties are computed self-consistently from first principles and therefore have an immediate physical meaning.
They represent the buoyant motions associated with convection and its turbulent features, and their statis-
tical properties carry equally important physical information as the mean temperature or density stratifica-
tions. By contrast, in 1D atmosphere modeling, a free-parameter-dependent velocity field vMLT is derived
for the convective flux in MLT. Also, for radiative transfer and spectral line formation calculations, two
ad-hoc Gaussian velocity distributions – the so-called micro- and macroturbulence (ξturb and χturb, respec-
tively) – are usually introduced to model Doppler broadening of spectral lines associated with non-thermal
(e.g., convective, turbulent, oscillatory, etc.) gas motions in stellar atmospheres. The values of the micro-
and macroturbulence parameters are determined by comparing synthetic and observed spectral line profiles
and line strengths. Usually, a depth-independent value of the microturbulence ξturb and one global value of
the macroturbulence χturb are applied in theoretical spectrum syntheses with 1D model atmospheres. Full-
3D line formation calculations using 3D models similar to those described here, have demonstrated that in
late-type stars the required non-thermal Doppler line broadening is indeed primarily the result of Doppler
shifts from the convective motions and to a lesser extent oscillations in the atmosphere (Asplund et al.,
2000a). As such this non-thermal velocity field is clearly depth-dependent, while micro- and macroturbu-
lence are almost always assumed to be non-varying with depth. Furthermore, vMLT is solely assigned to
satisfy the necessary amount of convective flux by the individual prescription of MLT. While, interestingly,
vMLT mimics to a certain extent the run of vz,rms in the interior for cooler dwarfs. We remark that this
interpretation is however not physically consistently motivated. Moreover, the convective velocity varies
depending on its actual implementation (e.g. Böhm-Vitense, 1958; Henyey et al., 1965) and, as such, vMLT
should be interpreted and used with caution. We point out that one important motivation for conducting
3D RHD atmosphere models is the fact that the before mentioned spurious inconsistent velocities become
redundant. The hydrodynamical simulations account consistently for only one unique velocity field.

Another good measure for the turbulence of a velocity field is the absolute value of the vorticity |~ω |=
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∣

∣

∣

~∇×~v
∣

∣

∣
, which is shown in Fig. 3.22. The vorticity arises below the surface in SAR due the overturning

of the upflows and the turbulent downdrafts experiencing the density gradient. The peak in ~ω is associated
with pronounced shear flows, which arise due deflection of the horizontal flows into downdrafts of the
overturning plasma (see SN98). The vorticity is concentrated in tube-like structures in the intergranular
lanes around the edges of granules. The run of the vorticity follows closely that of vz,rms (see Fig. 3.19).

3.2.3 Turbulent pressure

The turbulent pressure, pturb = ρv2
z , is an additional (dynamical) pressure that arises from the (macroscopic)

vertical bulk flows due to the convective motions. It appears when considering the horizontal averages of
the momentum equation (Eq. 1.2), more specifically of the advection term therein. The ratio of turbulent to
total pressure, pturb/ptot, shown in Fig. 3.23, follows qualitatively very closely the run of vz,rms (compare
with Fig. 3.19), namely, it peaks in the SAR (logτRoss ∼ 1.5), reaches a minimum around logτRoss ∼−2.0,
and increases in the upper layers (a functional fit for [pturb/ptot]peak is given in App. A). This is can be
expected, since the pturb is given by the vertical velocity. In the SAR, the shape of the pturb/ptot profile
with optical depth looks similar to a Gaussian function, however, towards lower Teff and metallicity, it
becomes increasingly skewed. Averages on constant geometrical depth 〈3D〉z are similar, only the peak
and the upper layers are slightly lower at higher Teffs.

For hotter stars, in particular, metal-rich giants, the turbulent pressure becomes comparable to the gas
pressure (pturb/ptot ∼ 0.4) in the SAR, and the atmosphere is increasingly supported by pturb. This means
that neglecting the turbulent pressure, as is usually done in 1D models, would significantly overestimate the
gas pressure. The consequence of this is a faulty, inconsistent stratification, since the overestimation in gas
pressure comes at the cost of altering other physical quantities like the density, even when the temperature
stratification looks similar compared to a 〈3D〉 model.

We find that vz,rms is very close to vturb = [〈pturb〉/〈ρ〉]1/2, since the latter is basically the density-
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weighted analog of the former. In 1D stellar structure models that include turbulent pressure, the convective
velocity from MLT is considered, i.e. pturb,1D = β ρv2

MLT, with β being a form factor at the order of unity.
However, as shown in Fig. 3.19, the convective velocities, vMLT, are underestimating vturb systematically
towards higher Teff and lower logg. Therefore, the 1D models can be improved by using vz,rms resulting
from 3D simulations, or one can fit the scaling factor β to match vz,rms, which would clearly reduce the
error. Chiavassa et al. (2011) showed that using a realistic turbulent pressure contribution to the hydro-
static equilibrium in 1D red supergiant atmospheres, greatly improves the 1D stratifications, therefore, the
latter being in better agreement with 〈3D〉 stratifications. This extra pressure component also leads to an
expansion of the atmosphere compared to a 1D model stratification without turbulent pressure. This is
referred to as atmospheric levitation (see Trampedach, 2001). This will affect p-modes by affording them
a larger cavity, and hence lowering their frequencies. This is part of the seismic near-surface effect which
has plagued helio- and asteroseismology.

3.2.4 Total pressure and density

In Fig. 3.24, we show the total pressure for various stellar parameters. In contrast to the previous quantities,
ptot decreases with higher Teff, lower logg, and higher metallicity. From the three stellar parameters, the
influence of the metallicity is the strongest. We find the highest pressures (and densities) in the coolest
metal-poor dwarfs and the lowest pressures in the hottest metal-rich giants. In the upper layers of hot
metal-poor dwarfs, we find pressures systematically increased with respect to their 1D counterparts, which
is accompanied by similar behavior in ρ , pgas and pturb. As we showed above, a significant fraction of the
total pressure is contributed by turbulent pressure in the SAR and in the upper layers (see Fig. 3.23), in
particular, towards higher Teff and lower logg. Moreover, we note that the temporal and horizontal 〈3D〉z-
averages from our relaxed simulations are very close to hydrostatic equilibrium, and the turbulent pressure
contributes significantly to this equilibrium.

The mean density stratifications look qualitatively similar to the total pressure ones (Fig. 3.25). Fur-
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thermore, in Fig. 3.20, we show the peak density7 ρpeak, which is the density at the height of the maximum
rms-vertical velocity (see Fig. 3.19). The density ρpeak increases with lower Teff, higher logg, and lower
[Fe/H]. These variations with stellar parameters arise due to the radiative transfer, since the cooling and
heating rates (see Eq. 1.26) depend on density ρ and opacity κ . We showed in Sect. 3.1.2 that with higher
metallicity and opacity, the hydrostatic stratification is set at lower ρ .

3.2.5 Electron number density

Next, we discuss the properties of the electron number density nel (Fig. 3.26), which is the temporal and
spatial average of the local electron density on layers of constant Rosseland optical depth. The electron
number density drops by about ∼ 2dex at the transition from the interior to the photosphere. This is due to
the fact that the density itself decreases here, and due to the recombination of hydrogen at the photospheric
transition. The convective flux consists to ∼ 1/3 of Fion (see Sect. 3.2.8), therefore, as the hot ionized
plasma reaches the surface, it radiates away energy, recombines, and overturns into downdrafts, thereby
reducing the number of free electrons. The electron density increases with higher Teff, lower logg, and
higher [Fe/H]. The electron pressure pel = nelkBT follows similar trends as the electron density in terms
of variations with stellar parameters and depth.

3.2.6 Entropy

Local, box-in-a-star, 3D RHD atmosphere models have well defined boundary conditions at the bottom
boundary because of the adiabaticity of the convection zone, even though they are relatively shallow and
comprise only a small fraction of the convection zone. Indeed, the specific entropy per unit mass of the
plasma stays constant across most of the convective zone, in particular, for the upflows. In Fig. 3.27, we

7The total pressure would lead to a very similar plot.
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Figure 3.26: We present the 〈3D〉 stratifications of the local electron
number density nel against optical depth logτRoss for various stellar pa-
rameters (solid lines). For comparison, we also show the corresponding
stratifications from 1D models (dashed lines).

Figure 3.27: 〈3D〉 and 〈3D〉z mean stratifications (solid and dashed re-
spectively) of the entropy s vs. the total pressure normalized to the pres-
sure at the optical surface log ptot/psurf for various stellar parameters.
We show also the s-stratifications of the 1D models (dotted lines). Some
of the 1D models are slightly shallower due to reasons of convergence.
The 〈3D〉 models are also shorter than the 〈3D〉z, since logτRoss = 5 is
the lower limit and covers only the shorter depth. Note the different
ordinate scale in the top panel.
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show the average entropy. Below the optical surface, the entropy converges asymptotically against sbot
into deeper layers, especially the averages on constant geometrical height 〈3D〉z (dashed lines). As the hot
plasma in the granules reaches the optical surface, it becomes transparent, thereby a large fraction of the
energy is radiated away. This results in a decrease in entropy, until it reaches a minimum at the top of the
convection zone (logτRoss ∼ 0.0). Further up, the entropy then increases again due to the decoupling of
the radiation and matter above the photosphere, which results in an almost isothermal atmosphere. The 1D
models (dotted lines) exhibit larger entropy stratifications in the deeper convection zone, in particular, for
higher Teff, thereby overestimating the entropy jump increasingly due to the fixed mixing-length parameter
αMLT with 1.5 for all stellar parameters.

3.2.7 Superadiabatic temperature gradient

We limit ourselves to show only the superadiabatic gradient ∇sad =∇−∇ad, since it combines the important
properties of both the total and the adiabatic temperature gradient (∇ and ∇ad respectively). In Fig. 3.28, we
show ∇sad averaged over constant geometrical height or Rosseland optical depth. The peak in ∇sad arises
solely from the temperature gradient ∇, since ∇ad drops below the optical depth and reaches an adiabatic
value. The superadiabatic gradient peaks around logτRoss ∼ 1.0− 2.0, and becomes ∇sad < 0.0, above
the optical surface at logτRoss < 0.0− 0.5. The entropy jump correlates directly with the superadiabatic
gradient, since ∇sad = 1/cp [∂ s/∂ ln ptot] and one can show that ∂ s/dz = cP/HP (∇−∇ad). Hence, it is no
surprise that they exhibit similarity in the peak amplitude and position. In particular, the peak amplitude
increases with increasing Teff and logg (see ∆s in Fig. 3.20; a functional fit for ∇peak

sad is given in App.

A). The position of ∇
peak
sad on the optical depth scale 〈3D〉Ross (triangles), hence the position of the steepest

temperature gradient, changes slightly with stellar parameters. However, similar to the position of v
peak
z,rms, in

the ε −ρ-plane, the distribution of ∇
peak
sad is regular (see Fig. 3.18), namely it shifts systematically towards

higher ε and lower ρ with increasing Teff.
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As it is clear in Fig. 3.28, one finds substantial differences in ∇sad when comparing the two 〈3D〉
stratifications with their 1D counterparts, namely, the 1D gradients exhibit distinctively larger amplitudes.
These differences arise partly due the missing turbulent pressure in the 1D case, but do not resolve the
discrepancies. Furthermore, we find an asymmetrically skewed shape towards the optical surface in the
1D gradients, which is shared by the geometrical averages 〈3D〉z, but is not the case for the averages on
constant Rosseland optical depth 〈3D〉Ross. A main reason for the shown differences between 〈3D〉Ross and
1D comes from the averaging over layers of constant τRoss. The underlying ∇ads are rather insensitive to the
deviations between the 〈3D〉Ross and 1D stratifications, so the differences arise mainly due to ∇. Between
〈3D〉z and 1D the adiabatic gradients differ in the sub-photospheric gradient.

3.2.8 Transport of energy

The individual energy fluxes are quantities worthy of further consideration. The energy flux is conserved
only on averages of constant geometrical height 〈3D〉z, therefore, we show and discuss it here. The total
energy flux Ftot = Frad +Fconv +Fvisc emerges from the photosphere solely in the form of radiative energy
flux. The total energy flux is supplied from the convection zone by the convective energy flux, which is the
sum of the enthalpy flux

Fenth =

[

ε +
pth

ρ

]

δ jz, withδ jz = ρvz −〈ρvz〉 (3.8)

(δ jz being the horizontal fluctuations of the vertical mass flux; the average vertical mass flux vanishes)
carried in the upflows and the kinetic energy flux

Fkin =

[

1
2

ρ~v2
]

δ jz (3.9)

arising from the downdrafts (see SN98 and Nordlund et al. 2009). Since the mean kinetic energy flux Fkin
is negative, the positive enthalpy flux Fenth is the major component of the convective energy flux Fconv.

The enthalpy flux in turn consists of the energy fluxes due to ionization8 Fion =
[

ε − 3
2

pth
ρ

]

δ jz, thermal

heat Fth = 3
2

pth
ρ δ jz and acoustic (sound) waves Facous = 〈pthvz〉− 〈pth〉 〈vz〉. In Fig. 3.29, we show the

energy fluxes Frad, Fenth, Fkin, Fion, and Fth normalized to the total emergent energy flux σT 4
eff (for clarity,

we refrain from showing Fvisc and Facous, since their contribution to Ftot is very small). We vary one stellar
parameter at a time, while the other two are fixed (Teff, logg, and [Fe/H], from top to bottom in Fig. 3.29,
respectively). Just below the optical surface (0.5 < log ptot/psurf < 1.0), both Fkin (solid lines) and Fenth
(dashed lines) increase towards cool metal-poor dwarfs, i.e. lower Teff, [Fe/H] and higher logg, due to
higher densities and velocities. The increased reduction of the total flux by Fkin (< 0.0) is compensated
by a simultaneously higher Fenth (> 1.0). On the other hand, in deeper layers (log ptot/psurf > 1.5), both
converge to similar fractions for all stellar parameters (−0.17 and 1.14 for Fkin and Fenth respectively). This
convergence to very similar values is rather remarkable. The convective motions seem to follow an exact
guideline, which might be correlated to the universal filling factor (see Sect. 3.1.6). We remark that in
deeper solar simulations9 (20Mm) that Fenth and Fkin increase with depth, while their sum remains constant
(see Stein et al., 2009).

The majority of the total energy flux Ftot in the convection zone is carried in form of ionized hydrogen10

with Fion ≃ 0.67, while thermal heat is the second most important component with Fth ≃ 0.29. The acoustic
energy constitutes only a small fraction with Facous ≃ 0.04. SN98 found similar fractions with Fkin ∼−0.10
to −0.15, Fion ∼ 2/3 and Fth ∼ 1/3 for the Sun. The Fion and Fth fractions, which are the major constituents
of the enthalpy flux, undergo a significant change below the surface, as we show in Fig. 3.29 for models
with different stellar parameters. In particular, the fraction of thermal heat Fth becomes more significant at
the cost of Fion towards cool metal-poor dwarfs. The thermal flux Fth reaches a maximum (up to Fth,max ≃

8The recombination of the protons at the surface is leading to Fion.
9Our shallow solar simulation is 2.8Mm deep.

10The given fractions are averages of all grid models.
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Figure 3.29: Behavior of the normalized energy fluxes F/Ftot against the total pressure normalized to the
pressure at the optical surface log ptot/psurf as a function of variations in the individual stellar parameters
(Teff, logg, and [Fe/H], from top to bottom, respectively ). In each panel, the various curves are shown
varying one of the parameters while keeping the other two fixed. The individual normalized components of
Ftot are Fenth (dashed), Fkin (dotted), Fion (dash-triple-dotted), Fth (long dashed) and Frad (solid). Averages
are evaluated at constant geometrical height.
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0.5) just below the surface, but eventually converges close to the above mentioned fractions in deeper layers
(long dashed lines).

In 1D MLT models, the convective flux is assumed to consist of the enthalpy flux only, Fconv,1D (see
Appendix 2.4.1). This is a result of the MLT assumption of symmetric flows which means that the kinetic
energy fluxes in the up- and downflows cancel exactly. As remarked by Henyey et al. (1965), the details on
Fkin and Facous are not at hand due to the lack of a self-consistent velocity field. The energy fluxes from 3D
RHD simulations, on the other hand, arise self-consistently from solving the coupled equations of radiative
hydrodynamics, without further assumptions.

As mentioned above, the emergent total energy flux Ftot is carried in the convection zone mainly by the
positive enthalpy flux Fenth (Eq. 3.8). Therefore, one can approximate the convective energy flux with the
mean jump in enthalpy11 ∆h times the mean vertical mass flux of the upflows below the optical surface,
hence

Fconv ≈ 〈∆h〉〈ρvz〉 . (3.10)

At the transition region, the enthalpy jump ∆h is primarily caused by the strong drop in internal energy
ε , hence entropy s, and the thermodynamic pressure work is rather small (note the change of ptot below
the surface logτRoss > 0.0 in Fig. 3.24), i.e. ∆h ≈ T∆s, where T is the temperature at the surface. By
approximating T ≃ Teff, one can expect the total energy flux Ftot = σT 4

eff to depend to first order on the
mean entropy jump12, density, and vertical velocity:

σT 3
eff ∝ 〈∆s〉 〈ρ〉〈vz〉 . (3.11)

The fourth power of Teff reduces to third, since we approximate T ≃ Teff. The approximation in Eq. 3.11
can already be retrieved on dimensional grounds, however, we derived the latter in order to explain the
systematic variations of ∆s, v

peak
z,rms and ρpeak with stellar parameters, which we have observed above (see

Figs. 3.1, 3.20 and 3.20, respectively). The emergent radiative energy flux is correlated with ∆s, ρ and vz,
and the respective composition resulting from the individual contributions varies with stellar parameters.

The interplay between the radiative heating and cooling rates qrad (Eq. 1.26) and hydrostatic equi-
librium, require a different density stratification for different stellar parameters due to the dependence of
opacity on thermodynamic variables, as we showed in Sect. 3.1.2. The resulting density variations will
induce adjustments in the vertical velocity and entropy jump. Furthermore, we find with increasing logg

or lower [Fe/H] at a fixed Teff, the density increases, which is compensated by lower ∆s and vz (∆s ∝ ∆ρ−1,
see Eq. 3.3). We would like also to emphasize the remarkably important (non-local) influence of the rather
thin photospheric transition region on basically the whole convection zone, since the entropy deficiency of
the turbulent downdrafts are generated mainly here. The latter sets the entropy jump and the convective
driving (see Nordlund et al., 2009).

The radiative heating and cooling rates qrad (Eq. 1.26) due to radiative losses enter the hydrodynamic
equations as a source and sink term in the energy equation (Eq. 1.3). It is the divergence of the radiative flux
qrad =−~∇ ·~Frad, and a large, negative qrad, the cooling peak, marks the transition of energy transport from
fully convective below the optical surface to fully radiative close to the photosphere. To better illustrate the
depth dependence of qrad and the comparison among different models, in Fig. 3.30, we show the normalized
cooling and heating rates qnorm

rad =−dFrad/d lnτRoss. One can see that the amplitude of qnorm
rad increases with

higher Teff, accompanied by an increase in the width of the cooling peak. The position of the maximum
absolute amplitude coincides with the position of ∇

peak
sad , since the cooling rate (radiative loss) is setting the

entropy fluctuations, hence the superadiabatic gradient (see Sect. 3.2.7). Furthermore, this location moves
into upper layers for higher Teff (from logτRoss ≃ 1.0 up to 0.2 for Teff = 4000 to 7000K respectively). On
the other hand, the width of the photospheric transition region ∆ph = ∆ logτRoss (qrad < 0) clearly widens
for hotter Teff, but also, in particular, for metal-poor giants (see top right panel in Fig. 3.30). While for cool
dwarfs the width is typically ∆ph ≈ 3.0dex, for hot metal-poor giants, it reaches ∆ph ≈ 5.0dex (see, e.g.,
model with 5000K in right top panel of Fig. 3.30).

11For example, ∆h can be determined at the top and bottom of the photospheric transition region (see Fig. 3.18).
12Here, we prefer to use ∆s instead of directly ∆h or ∆ε due to the adiabaticity of convection.
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3.3 Comparison of the 〈3D〉 with 1D models

3.3.1 1D models

A differential comparison between 1D and 3D in terms of approaches in the modeling of stellar atmospheres
is of obvious relevance here. Therefore, we developed a plane-parallel, hydrostatic, 1D atmosphere code
(hereafter simply referred to as the 1D code) that is based on a similar physical treatment as the MARCS
code with a few simplifications (see Appendix 2.4 and Gustafsson et al. 2008 for more details). We employ
exactly the same EOS and opacities as in the individual 3D models, thereby excluding differences due to
dissimilar input physics. Also, we applied the 〈3D〉 models as initial stratifications for the 1D models.
These mean 〈3D〉 stratifications are defined on an equidistant optical depth scale from logτRoss = −5.0
to +5.0 in steps of 0.1. The well-resolved optical depth scale reduces discretization errors in the 1D
atmosphere calculations, thereby making the 1D-〈3D〉 comparison more reliable.

In Fig. 3.31, we show a comparison of the 1D and 〈3D〉 temperature stratifications. One can immedi-
ately extract that the upper layers of the atmospheres are systematically overestimated in the 1D models by
up to ∼ 1000K, in particular, for metal-poor stars [Fe/H]≤−2.0 (for solar models the maximal difference
is ∼ 500K). In the optically thin layers of 1D models, stable against convection, radiative equilibrium is
enforced. However, in the upper layers of the metal-poor 〈3D〉 models, the effect of the non-vanishing
adiabatic cooling rate is to shift the balance with radiative heating to lower temperatures due to a scarcity
and weakness of spectral lines at lower metallicities (Asplund et al., 1999a; Collet et al., 2007). Interesting
are also the hotter temperature stratifications for a few giants (Teff/ logg = 4500K/1.5 and 5000K/2.0)
towards higher metallicity ([Fe/H] > −2.0), which results from the radiative equilibrium at higher tem-
peratures. On the other hand, with the 1D models, we find systematically cooler temperatures below the
photosphere logτRoss ≃ 2.0 with up to ∼ 1000K (here there is no difference with different metallicities).
Therefore, one has to keep in mind that, with 1D atmosphere models, and for metal-poor stars in particular,
these severe effects on the stratifications can lead to large systematic errors in spectroscopic abundance
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determinations, up to 0.5 dex or more in logarithmic abundance, depending on the formation height of the
individual spectral lines used in the analysis (e.g. Asplund et al., 1999a; Asplund & García Pérez, 2001;
Collet et al., 2006, 2007; Caffau et al., 2008, 2011; González Hernández et al., 2010; Kučinskas et al., 2013a).

In the 1D model calculations the mixing-length parameter is kept constant with αMLT = 1.5, which is
the commonly applied value (see Gustafsson et al., 2008). However, it is well-known that αMLT varies with
stellar parameters (see Ludwig et al., 1999; Bonaca et al., 2012). Therefore, we caution that a single fixed
value will lead to severe differences in atmospheric stratification. The systematic deviations beneath the
optical surface in the temperature stratification between 1D and 〈3D〉 towards cool dwarfs can be interpreted
as the manifestation of the wrong αMLT (see Fig. 3.31). Furthermore, pturb is neglected in the 1D code,
which affects the stratification by reducing the gas pressure (see Sect. 3.2.3).

3.3.2 MARCS and ATLAS models

Last, we would also like to briefly compare our 〈3D〉 stratifications with the currently widely applied
MARCS and ATLAS models (see Fig. 3.32, we show only the comparison with MARCS modes, since the
ATLAS models look qualitatively rather similar). We find qualitatively similar deviations as with the 1D
models above. At the same time, here we also have additional differences due to the different input physics
(EOS and opacities). The largest differences between the 〈3D〉 and 1D MARCS stratifications of metal-
poor stellar atmospheres are slightly higher, with ∼ 1300K at [Fe/H] =−3.0, while for solar metallicity the
temperatures are underestimated in 1D by ∼ 500K at mosts. Below the surface, the differences amount to
∼ 1000K. The ATLAS models are up to ∼ 850K hotter at the top and ∼ 1000K cooler below the surface.
In both cases, the deviations at the top increase towards lower [Fe/H].
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3.4 Comparison of the averaging methods

In the following, we systematically compare the different types of averaging procedures explained in Sect.
2.3 over a broad range of stellar parameters relative to Rosseland optical depth, i.e. 〈3D〉z̃ −〈3D〉Ross. For
the sake of clarity, we illustrate the properties of average stratifications only for a representative selection of
STAGGER-grid models comprising dwarfs and giants (logg = 4.5 and 2.0) at solar and subsolar metallicity
([Fe/H] = 0.0 and −3.0). Besides the most important thermodynamic state variables, temperature and
density, we also investigate averages of electron number density, an important quantity for, say, calculations
of ionization balance and spectral line formation.

Owing to the lack of a unique common global depth scale that is invariant between different averaging
methods, we display their results jointly on the averaged Rosseland optical depth scale, 〈τRoss〉, in order to
enable a direct comparison.

3.4.1 Temperature

We consider four different reference depth scales: geometrical depth, 〈3D〉z, column mass density, 〈3D〉m,
Rosseland optical depth, 〈3D〉Ross, and optical depth at 500 nm, 〈3D〉500. We find that the temperature
stratifications of the two optical reference depth scales, 〈3D〉Ross and 〈3D〉500, are similar, therefore we
refrain from showing these. Only at the top of the metal-poor stars do the 〈3D〉500-averages appear cooler
(∼ 5%, i.e by & 250K at Teff = 6000K). On the other hand, the geometrical 〈3D〉z and column mass
density 〈3D〉m averages deviate distinctively from the 〈3D〉Ross-stratification (see Fig. 3.33). In the regime
1.0 < logτRoss < 3.0, both 〈3D〉z and 〈3D〉m are cooler by ∼ 5− 10%. At the surface (τRoss = 0), the
geometrical averages deviate considerably, while the 〈3D〉m-averages are closer to the optical depth scale
(see Fig. 3.33). In the deeper layers below the superadiabatic regime (SAR), the various averaging methods
are practically indistinguishable. In the upper atmosphere the differences are smaller at higher [Fe/H] due
to relatively low horizontal contrast, but, these increase significantly for lower metallicity. The averages
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〈3D〉z and 〈3D〉m are marginally cooler than 〈3D〉Ross by ∼ 1− 2% at solar metallicity. In the metal-poor
case [Fe/H] = −3.0, the temperature stratifications are distinctively cooler, which will certainly influence
the line formation calculations with 〈3D〉 stratifications. Furthermore, the differences increase with higher
Teff and lower logg.

As mentioned earlier, in the atmospheres of late-type stars, minor temperature fluctuations are am-
plified disproportionally into large variations in the line and continuum opacity κλ owing to the strong
T -sensitivity of the H−-opacity (κλ ∝T 10, see Stein & Nordlund 1998). Therefore, surfaces of constant
optical depth appear strongly corrugated in terms of the range of geometrical heights that they span. The
transformation to layers of constant optical depth will naturally even out these corrugated surfaces and,
at the same time, smooth the temperature fluctuations, since the latter are the source of the former (see
Sect. 3.6). Therefore, these are noticeably smaller on layers of constant optical depth compared to layers
of constant geometrical depth, which is portrayed in the temperature contrast and histogram (see also Figs.
3.37 and 3.40). The SAR exhibits large-amplitude fluctuations as a result of the release of thermal and ion-
ization energy at the photospheric transition, which are the reason for the observed enhanced differences
between the averaging methods (see Sect. 3.5.1).

Steffen & Holweger (2002) found a beneficial mean 〈T 〉-representation for the Sun in the flux-weighted
temperature averages, T 4, taken on constant Rosseland optical depth from their 2D simulations. The idea
behind this approach is that the T 4-averages render radiation-oriented T -stratifications, therefore result-
ing in 1D line profiles that are closer to the multidimensional ones (see also Steffen et al., 1995). To
allow for a similar comparison for our models, we computed such average T 4-stratifications. In Fig.
3.33, the T 4

Ross-stratifications generally appear hotter at the top and in the SAR compared to the simple
T -stratification. Averages taken at the fourth power will weight higher values more, which leads to hot-
ter average temperatures. This could lead to pronounced differences for molecular lines that form high
up in the atmosphere. At solar metallicity, the T 4-stratifications at the top are fairly similar to the plain
T -averages (∼ 1− 2%) in agreement with the findings of Steffen & Holweger (2002). This is different at
lower metallicity ([Fe/H] = −3.0), namely the T 4-averages are clearly higher by ∼ 5− 10%. At higher
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Teff and lower logg, the temperature differences are greater, in particular, for the metal-poor giants, owing
to the enhanced temperature fluctuations (see Sect. 3.5.1).

Under the assumption of local thermodynamic equilibrium (LTE) and neglecting the effects of scatter-
ing, the source function is given by the Planck function, Sλ = Bλ (T ). Within this approximation, we can
thus consider the brightness temperature average Trad defined earlier in Sect. 2.3 as a good representation
of the mean temperature stratification from the point of view of the radiative emission properties: brighter
parts in each depth layer are given more weight with this averaging method. The differences between the
average Trad at 500nm and average T -stratifications are displayed in Fig. 3.33. Their variations with stellar
parameters are very similar to those of T 4-averages, however, slightly more pronounced, in particular, the
metal-poor giants exhibit hotter stratifications by up to ∼ 20% at the top.

3.4.2 Density

In Fig. 3.34, we also illustrate the results of averaging in the case of the density stratifications. In the
deeper interior, the different 〈3D〉 models converge toward the same density stratification. In the SAR,
below the optical surface at logτRoss & 0.0, the geometrical averages 〈3D〉z are smaller than the 〈3D〉Ross
averages by up to ∼ 30%, while at the top these are much denser by up to ∼ 40%. The differences increase
towards higher Teff and lower logg. We find a different behavior in the metal-poor dwarfs, which turn
lower towards the top after the initial increase (∼ 10%). The density stratifications averaged on column
mass density 〈3D〉m are larger in the SAR and in the upper layers closer to 〈3D〉Ross. However, we find
that at lower metallicity 〈ρ〉m they are smaller by up to ∼ 30%. We note that thermal pressure qualitatively
shows the same characteristics as the density.

The shape of the density distribution is symmetric and narrow on layers of constant column mass
density, thanks to the exponential stratification of the atmosphere and to the additional damping of density
fluctuations on the column mass scale (see Fig. 3.40). As a result, the 〈3D〉m averages feature the narrowest
contrast and density ranges, which, on the contrary, are usually greatest for geometrical averages 〈3D〉z;
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for the 〈3D〉Ross averages, these are noticeably reduced due to the mapping onto the optical reference depth
scale (Fig. 3.37). Overall, the density fluctuations at the top of the 〈3D〉Ross stratifications are similarly as
small as those by 〈3D〉m and ∼ 20%; however, for metal-poor dwarfs they reach up to ∼ 80% (see Fig.
3.37). As shown in Sect. 3.5.3, we find that the corrugation of the layers of constant optical depth in the
upper part of 3D model stellar atmospheres at lower metallicity increases considerably towards higher Teff
because of an enhanced T -contrast by the so-called reversed granulation (see Rutten et al., 2004). This in
turn broadens the density distribution during the remapping to the optical depth scale, shifting the mean
density value and leading to the observed deviations between 〈ρ〉Ross and 〈ρ〉m at lower metallicity (see
Sect. 3.6), which will affect the 〈3D〉 line formation calculations.

The highly stratified structure of stellar atmospheres features an exponential decrease with height. Lin-
ear density averages will therefore tend to give more weight to higher density values, leading to a systematic
overestimation of the mean densities. For this reason, we consider the logarithmic averages 〈ρ〉log, which
we compare to the linear ones in Fig. 3.34. As expected, we find the logarithmic ρ-averages are smaller
than the linear ones, with the difference between the two increasing with higher Teff and lower logg by up
to ∼ 30%. The mean densities in the upper layers are lower by ∼ 10% and ∼ 40% at solar and low metal-
licity, respectively. For quantities that vary more moderately (e.g., temperature), the differences between
logarithmic and linear averaging are rather small.

The transformation to constant optical depth and the subsequent averaging will change the physical self-
consistency as shown in Sect. 3.7. To rectify this, we followed the recommendation of Uitenbroek & Criscuoli
(2011) and also computed ρ-stratifications, which are enforced to be in hydrostatic equilibrium13, 〈ρ〉HSE
(Fig. 3.34). These deviate significantly from the plain 〈ρ〉-stratifications, in particular, at the top. Inciden-
tally, we note however that their dynamic nature and the effects of convective flows and turbulent pressure
mean that the 3D models themselves are not strictly speaking in hydrostatic equilibrium at any one time.

In Fig. 3.33 (both panels), we also compare the 1D MLT models with the 〈3D〉Ross stratifications. The
1D models in general show qualitatively similar behavior as the geometrical averages. The metal-poor 1D
models are distinctively hotter, since these enforce radiative equilibrium in the upper layers.

3.4.3 Electron number density

We find large differences among the various averages of the electron number density, nel, which we show in
Fig. 3.35 (right panel). In the SAR the geometrical averages 〈nel〉z are distinctively larger than the averages
on surfaces of constant Rosseland optical depth 〈nel〉Ross, while the column mass density averages 〈nel〉m

are found in between the two. The deviations increase for higher Teff and lower logg considerably, while
at lower Teff the differences are significantly smaller. We show in Sect. 3.6 that the interpolation to a new
reference depth scale changes the statistical properties by redistributing properties from different heights,
so the resulting mean horizontal average will look different depending on the reference depth scale. This
effect seems to be most pronounced in the case of electron density.

To determine the ionization fraction in spectral line calculations, the electron number density is ei-
ther already provided by the model atmosphere or looked up from an EOS using the independent ther-
modynamic variables (typically (T, p) or (T,ρ)). The latter has to be done carefully in the case of the
〈3D〉 models, since, besides potential differences in the EOS compared to the one used for calculating
the model atmosphere, electron densities derived from the EOS based on averaged independent variables,
nEOS

el = nel (〈T 〉 ,〈p〉), can deviate significantly from the more physically consistent averaged 〈nel〉 (see
Sect. 3.8).

3.4.4 Vertical velocity

It is worthwhile to compare how the vertical velocity, vz,rms, changes with the respective averaging methods.
For comparison, we show in Fig. 3.36 (left panel) the rms of the vertical velocity. In the upper layers, we
find the vz,rms on geometrical averages to be higher compared to other averages, while it is lower in the
deeper layers. On optical depth the peak in vz,rms below the surface is somewhat symmetric and slightly
higher, while for averages on geometrical height and column mass density their peaks are flatter and more

13The density and pressure are varied until hydrostatic equilibrium is restored.
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Figure 3.35: Root mean square (rms) of the mean electron number
density nel vs. optical depth. Dashed lines: 〈3D〉z averages; dotted

lines:〈3D〉m; solid lines: 〈3D〉Ross.

Figure 3.36: Root mean square (rms) of the vertical velocity vz,rms vs.
optical depth. Dashed lines: 〈3D〉z averages; dotted lines:〈3D〉m; solid

lines: 〈3D〉Ross.
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skewed towards higher layers, and the peak location is realized in slightly upper layers. For lower Teff and
higher logg, the differences diminish more and more, so that for the coolest models, the difference are
small. The differences in the velocity arise as well due to the redistribution of velocity during the mapping
to the new reference depth scale (see Sect. 3.6).

3.5 Statistical properties

To explore the origins of the differences among the various average 〈3D〉 structures and the resulting
ramifications for line formation calculations, we discuss here the statistical properties of the temperature,
density, and velocity stratifications. Since the statistical properties of 〈3D〉500 and 〈3D〉Ross are fairly
similar, we focus only on the latter.

3.5.1 Contrast

The 3D RHD models usually exhibit a broad range of values at a given height thanks to the fluctuations
arising from the convective motions. The amplitude of these fluctuations can be quantified using the root-
mean-square of the relative deviation from the horizontal mean value,

δXrms =

√

ΣN
i=1 (Xi − X̄)

2
/(NX̄2), (3.12)

which we refer to as the contrast (X̄ is the mean value of X). It is equal to the normalized standard deviation;
i.e., δXrms = σX/X̄ .

The translation to another reference depth scale changes the statistical properties as variables are
remapped, which in turn is reflected in changes in contrast. Among the various averaging methods, ge-
ometric averages 〈3D〉z typically feature the highest contrast. We also find that the level of fluctuations
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generally increases with increasing Teff and decreasing logg. The highest contrast typically prevails in sim-
ulations with the highest Teff and located in the vicinity of the maximum superadiabatic gradient,~∇peak

sad , and

maximum rms-velocity, v
peak
z,rms. These arise from the photospheric transition from convective to radiative

energy transport, and the resulting overturning of the entropy-depleted plasma. At the top of the convection
zone, the fluctuations reach a minimum, and they decrease towards the bottom of the model atmosphere.

In top and bottom panels of Fig. 3.37, we show the temperature and density contrasts, δTrms and
δρrms, respectively. In the case of the optical depth 〈3D〉Ross, the temperature contrast is significantly
reduced compared to the other reference depth scales (δT

peak
rms reduced by a factor of ∼ 3), while the density

contrast is slightly enhanced (δρ
peak
rms ∼ 20− 60% compared to 10− 50%). For averages on column mass

density 〈3D〉m, δρrms is lower, in particular, in the upper layers, and δTrms is slightly smaller compared
to the 〈3D〉z case. Fluctuations of variables that correlate with the new reference depth scale will be
reduced during the transformation. As the translation to layers of constant optical depth partly evens out
the corrugated τ-isosurface, fluctuations of the opacity κλ will be reduced, since the dominant H−opacity
is very sensitive to temperature. Therefore, the temperature fluctuations are also smoothed out. Layers of
constant column mass density will similarly suppress density variations (see Sect. 3.6). At the top, δρrms
is almost similar between 〈3D〉m and 〈3D〉Ross in the case of the solar metallicity (δρ

top
rms ∼ 40%); however,

at lower metallicity, [Fe/H] =−3.0, we find considerable disparity with δρ
top
rms ∼ 80%.

The thermal stratification in the upper atmosphere is determined by adiabatic cooling thanks to me-
chanical expansion and radiative heating because of spectral line re-absorption (Asplund et al., 1999b;
Collet et al., 2007). In metal-poor stars, radiative reheating in upper layers is significantly reduced owing
to the weakness of spectral line features, while the mechanical expansion cooling term is virtually unaf-
fected. The reversed granulation takes place at increasingly lower geometrical height with higher Teff and
lower logg, causing the distribution of the thermodynamic variables to become increasingly broader and
more skewed (see Sect. 3.5.3). This is the reason for the enhancement in δTrms and δρrms towards the
top boundary in metal-poor simulations in Fig. 3.37. Replicating the results of full 3D line formation
calculations in low-metallicity stars with 〈3D〉 models is therefore challenging, since the averages have
to correctly account for such temperature and density fluctuations. Interestingly, the temperature contrast
saturates at 6500K, similar to the saturation of the intensity contrast shown in Sect. 3.1.5 (see Fig. 3.9).

The strength of spectral lines is sensitive to temperature, and the remapping to constant optical depth
decreases δTrms, making 〈T 〉 closer to 〈T 〉rad. However, the transformation to layers of constant optical
depth exhibits the side effect of redistributing the other variables, too, in particular, the gas density; δρrms

is thus much higher than averages on column mass density, due to the additional influence of opacity on the
depth scale (see Sect. 2.3). This in turn will likely affect the line formation calculations with the different
〈3D〉 models.

The strong contrast in the upper part of the convection zone (logτRoss ≥ 0) is induced by the large
amplitude fluctuations owing to the radiative energy losses at the photosphere and the asymmetry of the
up- and downflows, which we discuss further in Sect. 3.5.2. An interesting aspect is that the contrast in
thermodynamic variables is very similar to the rms of the vertical velocity (Fig. 3.36), which is indicative of
the correlation between the mass flux and the fluctuations in the thermodynamic variables. Namely, vertical
velocity is generated by density contrast δρ via to the buoyancy force, fB =−gδρ , which results from an
imbalance of pressure and gravity terms in the hydrodynamical equation for conservation of momentum
(see Sect. 1.2.1) in the highly stratified atmosphere. Lighter fluid elements (δρ < 0) experience positive
buoyancy and thus upward acceleration, while denser elements (δρ > 0) experience negative buoyancy and
are pulled downward. Buoyancy forces will vanish eventually, when the density of the up- or downflowing
element levels with the surrounding gas.

The entropy contrast δ srms (not shown here), qualitatively depicts a very similar dependence on stellar
parameter and reference depth scale as δTrms. Both are very similar in optical depth, while for the averages
〈3D〉z and 〈3D〉m the overall amplitude is a factor∼ 2 smaller. In Sect. 3.2.8, we showed that the convective
energy flux depends on the entropy jump, density, and vertical velocity. Interestingly, here we also find
additional scaling relations concerning the peak contrast in entropy, δ s

peak
rms , and density, δρ

peak
rms , with the

vertical peak velocity v
peak
z,rms. This can be interpreted as convective driving, where the radiative losses

generate large fluctuations in the entropy, temperature, and density.
For the different averaging methods, the variations in the minimum-maximum range for the temperature
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and density are qualitatively very similar to the contrast (even though with larger amplitudes ∼ 5− 8),
therefore, we refrain from discussing these explicitly.

3.5.2 Upflows and downflows

The properties of the convective motions in stellar atmospheres are highly asymmetric in up- and down-
flows. The upflows overshoot into the photosphere leading to non-thermal Doppler shifts imprinted on
spectral line features. We first compute the mean values of various variables separately for up- and down-
flows based on the sign of the velocity at a given height. We then determine the relative difference between
up- and downflows with δXup,dn = (Xup −Xdn)/X̄ (Fig. 3.38). As expected, the buoyant upflows are hotter
and lighter compared to the subsiding downflows. Furthermore, the asymmetries are especially pronounced
in the convection zone below the optical surface. Above the photosphere, the convective motions decay
quickly, and the asymmetries in δTup,dn and δρup,dn are distinctively smaller. The remaining asymmetries
at the top stem from reverse granulation.

The convective flows in granules, slow and almost laminar, radiate away their energy and overturn
into the intergranular lanes characterized by cool, dense, narrow turbulent downdrafts. The subsequent
large-amplitude fluctuations in the thermodynamical properties are caused by the turbulent mixing of the
downflows with the upflows, typically located in the intergranular lane below the optical surface in the
SAR. These regions are arranged in tubelike structures around the granules, and can be identified with
their excessive vorticity. It is remarkable that, across all stellar parameters, the filling factor of the up- and
downflow in the convection zone remains almost constant, with fup ∼ 2/3 and fdn ∼ 1/3, respectively (see
Sect. 3.1.6).

The variable δTup,dn is reduced, and δρup,dn is enhanced on the optical reference depth scale 〈3D〉Ross
compared to the other averages. The column mass density shows a smaller asymmetry in density. This
behavior, similar to what we discussed earlier for the temperature and density contrasts, is not entirely
surprising, since the fluctuations are caused by the presence of the up- and downflows (see also 3.6).
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3.5.3 Histograms

In Fig. 3.39, we illustrate temporally14 averaged histograms of the temperature, p(T ), and density distribu-
tions, p(ρ) for the turnoff simulation with two different [Fe/H] evaluated on layers of constant Rosseland
optical depth, in order to illustrate the differences in the statistical properties. The histogram of the metal-
poor case differs substantially in upper layers from the solar one. Furthermore, in Fig. 3.40, we show p(T )
and p(ρ) in the upper layers (〈logτRoss〉= −4.0) for dwarf models with different Teff and [Fe/H]. In both
cases we compare the distributions on constant geometrical height z, constant column mass density m and
constant Rosseland optical depth τRoss.

At solar metallicity (Fig. 3.40), the temperature distributions are very narrow and symmetric. With
increasing Teff, the average T is as expected higher and the width of the distribution broadens slightly. The
mean values are very similar between the different 〈3D〉 methods and in principle indistinguishable, which
also agrees with Fig. 3.33. Furthermore, the mean values are located very close to the mode.

At [Fe/H] = −3.0, the temperature distributions change considerably. While at cooler Teff the shape
is vey narrow and symmetric, for Teff ≥ 5500K we find a distinct broadening of the T -distribution on
geometrical reference depth scale 〈3D〉z, which is given by a long tail at high T and a decreasing peak at
lower T (see Figs. 3.39 and 3.40). In the column mass density averages 〈3D〉m the temperature peak is
slightly more pronounced at higher Teff, while the high-T tail is slightly reduced. The situation is pretty
different for the averages on Rosseland optical depth 〈3D〉Ross, where we find that the temperature peak
drops faster towards higher Teff, and at 7000K the T -distribution shows an almost unimodal distribution.
The mean values disagree at higher Teff between the different reference depth scales.

The density distributions behave differently depending on the reference depth scale. On 〈3D〉z the
histograms are in general slightly skewed with a fat tail towards lower ρ for all metallicities (Figs. 3.39 and
3.40). The density distributions for the averages on column mass density are very symmetric and narrow
for both solar and low metallicities. At solar metallicity, the density histograms on constant optical depth

14We compute for each layer its histogram individually, and average these over 20 snapshots.
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Figure 3.40: Histograms of the temperature (left) and density (right
panel) distributions taken at 〈logτRoss〉 = −4.0. We show the his-
tograms averaged on constant geometrical height (top), column mass
density (middle) and Rosseland optical depth (bottom). The surface
gravity of displayed models is logg = 4.5 and the metallicity is solar
(dashed lines) and subsolar with [Fe/H] =−3.0 (solid lines). The mean
values are indicated by open and filled circles for [Fe/H] = −3.0 and
0.0, respectively).
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are narrower and higher than the geometrical analogs, but skewed in contrast to 〈3D〉m. In the metal-poor
case, 〈p(ρ)〉Ross becomes very narrow and symmetric at lower Teff, but towards higher Teff we find the
ρ-distribution to also be broader. The mean density stratification varies considerably among the different
averaging methods.

As mentioned above, adiabatic cooling due to mechanical expansion and radiative reheating are com-
peting with each other in the upper photosphere and contribute to the phenomenon of reversed granulation.
At lower metallicity, the reversed granulation is enhanced, so that the optical depth is increasingly strongly
corrugated towards higher Teff, which in turn will amplify the differences in statistical properties during
the translation to the optical depth scale from the geometrical depth scale. This leads to the systematical
broadening in the statistical distribution that we encounter at lower metallicity.

3.6 Reversed granulation

To illustrate the effects of the remapping of the 3D atmospheric structures on new reference depth scales, we
show slices of temperature contours from our TO-simulation in Fig. 3.41. We show horizontal temperature
maps taken in the upper atmosphere (top panel) and three vertical slices with different reference depth
scales, which include geometrical z (second panel), column mass density m (third panel), and Rosseland
optical depth (bottom panel). Furthermore, we indicate three different isocontours of the temperature
(yellow) and density (blue lines) in Fig. 3.41, and we also show lines of constant optical depth τRoss (white
lines in top panel) or geometrical depth z (middle and bottom panels).

The downdrafts just below the optical surface, which are denser and cooler than the lighter and hotter
surrounding granules, are easily identified (by the prominent changes in T,ρ and τRoss above the down-
flows, e.g., x ≈ 1.8Mm). Owing to the lower temperatures in the downdrafts compared with the granules,
the same optical depth value is reached at lower geometrical depths, meaning that the emergent radiation in
the intergranular lanes originate in much deeper geometrical heights. The corrugation of the optical depth
on geometrical depth scale is therefore most pronounced in the downdrafts (see isocontour of logτRoss = 2.0
in second panel of Fig. 3.41).

The opposite is true for the upper atmospheric layers because of the phenomenon of reversed granula-

tion (Rutten et al., 2004; Cheung et al., 2007), namely, above the granules, cooling by adiabatic expansion
is dominant, while above the inter granular lanes the radiative reheating and mechanical compression are
more important for the energy balance. At lower metallicity and higher Teff, the radiative reheating above
granules is reduced by the weakening of spectral line features. The resulting reduction in radiative reheat-
ing leads to significantly cooler temperatures (see top panel in 3.41) and a lower pressure support, and as
a consequence the atmospheric layers at a given constant optical depth subside toward lower geometrical
heights, closer to the optical surface. Therefore, the temperature contrast is enhanced in the upper atmo-
sphere. The subsiding of the atmosphere is similar to what we found earlier, namely that the density range
spanned in the atmosphere is significantly reduced at lower metallicity (see Fig. 3.18). Finally, the en-

hancement of the reversed granulation and the temperature contrast results in strongly corrugated surfaces
of constant optical depth at the top of metal-poor simulations. We note that we also found an enhanced

intensity-contrast for metal-poor stars (see Sect. 3.1.5).
The remapping of the individual columns of the 3D structure from geometrical depth to optical depth

entails a change of perspective between the old and the new scales in terms of the distribution of values
of a particular physical variable at a given constant reference depth. This is again most obvious in the
downdrafts in the convection zone (see line of constant geometrical depth at z = 0.2Mm in bottom panel
of Fig. 3.41). Properties from deeper geometrical heights are mapped onto layers at lower optical depth,
and the temperature differences between upflowing and downflowing regions are reduced, which results in
a less of a temperature contrast and in minimum-maximum ranges (see Sect. 3.5.1). On the other hand,
the deviations in the density are significantly enhanced, which will clearly alter the statistical properties, in
particular, the mean values.

In the upper atmospheric layers of the solar metallicity case, the optical depth is corrugated only a
small amount, therefore the transformation does not affect the temperature and density much (compare
the upper flat blue line with the two lower corrugated ones in the bottom panel of Fig. 3.41). However,
the corrugation of the optical depth in the upper atmosphere is rather large for hotter metal-poor stars
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Figure 3.41: Temperature-contours from our model with Teff = 6500K and logg = 4.5 with [Fe/H] = 0.0 (left) and −3.0 (right). The top
panels display horizontal slices with the reversed granulation pattern imprinted in the temperature map (from 3 to 7×103 K) taken at ∼ 230km
above the surface, which is also indicated in the second panel (dashed lines). The panels below show vertical slices (T -contours from 2 to
17×103 K) ranging from −5.0 ≤ logτRoss ≤ 5.0 on layers of constant geometrical height (second), column mass density (third) and Rosseland
optical depth (last panel). These panels include isocontours of the temperature (5, 10 and 12× 103 K; yellow lines) and density (0.1, 1.0 and
2.5× 10−7g/cm3; blue lines) and both increase with decreasing vertical depth. We show also lines of constant optical depth (second) and
geometrical depth (third and last) indicated with white lines.
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owing to the enhanced reversed granulation. As a result, the effects of remapping on the optical depth
scale for the temperature and density is fairly substantial in these simulations. And the distribution of the
thermodynamic properties is broadened, such that the meaning of the horizontal average is weakened (see
Fig. 3.40).

In a similar way, the translation to column mass density naturally reduces the variations in density
thanks to its definition of the reference depth scale, which is the depth-integrated density. Therefore, the
resulting density fluctuations are rather small in layers at constant column mass density. The variation in
temperature is slightly lower than in the averages on geometrical depth, but larger than in the averages on
optical depth, as one would expect.

We stress once again that the different reference depth scales are equivalent to each other in terms of
the spatial remapping of the 3D atmospheric structures. What differs of course is the statistical properties
of physical variables on layers of constant depth, which vary depending on the choice of reference depth
scale. One has to consider two important aspects concerning the horizontal averaging, the first being what
kind of quantity is considered, and the second which reference depth scale is accounted for. Therefore, the
statistical properties of the density and temperature are relatively distinctive depending on which reference
depth scale is considered (see Sect. 3.5).

3.7 Hydrostatic equilibrium

The STAGGER-code directly solves the discretized time-dependent, radiative-hydrodynamical equations
(see Sect. 1.2.1) for the conservation of mass, momentum, and energy. The conservation properties are
reflected in the mean 〈3D〉z stratifications of relaxed, quasi-stationary 3D hydrodynamical models aver-
aged on layers of constant geometrical depth. In particular, the geometrical averages appear over time to
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be close to hydrostatic equilibrium.15 In Fig. 3.42 we show the hydrostatic equilibrium in the form of
ρgdz/d ptot = 1 for the temporal and geometrical averaged 〈3D〉z stratifications, which are very close to
hydrostatic equilibrium. We emphasize that the hydrostatic equilibrium is only fulfilled by considering the
total pressure ptot, as given in Eq. 1.8, which includes the non-thermal turbulent pressure that occupies a
significant fraction of ptot at the top and in the SAR (see Fig. 3.23).

Furthermore, one can find in Fig. 3.42 that the averages on a new reference depth scales feature dis-
tinctive deviations from hydrostatic equilibrium (see 〈3D〉Ross and 〈3D〉m). The transformation to a new
reference depth scale maps all three components of Eq. 1.8 – geometrical depth z, density ρ , and total
pressure ptot – away from its hydrostatic equilibrium state. Also, the geometrical depth z loses its strict
physical meaning through such a transformation as a mean value. The mean stratifications on constant
Rosseland optical depth 〈3D〉Ross deviate slightly at the top and significantly in the SAR from the hydro-
static equilibrium (〈3D〉500 is very similar). The largest departures can be found in the SAR. Furthermore,
the amplitude of the discrepancy from hydrostatic equilibrium increases for higher Teff and lower logg.

3.8 Deviations from the EOS

In 3D RHD simulations, the thermodynamic state of a simulation is self-consistently determined by the
EOS. This means in particular, that any thermodynamic variable depends on only two independent vari-
ables (namely the gas density ρ and the internal energy ε) in a well-defined way under the assumption
of a constant chemical composition. However, the internal self-consistency is broken by reductions like
temporal or spatial averaging.

This can be easily understood by investigating the behavior of a function f (X) on a 3D cube of quan-
tity X . For small fluctuations X ′ = X −〈X〉 around the horizontal average at a given depth in the model

15This statement only holds when considering sufficiently long temporal sequences of snapshots: the individual simulation snap-
shots at a given instant in time are not in hydrostatic equilibrium.
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atmosphere, a Taylor-expansion of f up to second order yields

f (X) = f
(

〈X〉+X ′) (3.13)

≈ f (〈X〉)+ d f

dX

∣

∣

∣

∣

〈X〉
X ′+

1
2

d2 f

dX2

∣

∣

∣

∣

〈X〉
X ′2. (3.14)

The horizontal average of this expression evaluates to

〈 f (X)〉 ≈ 〈 f (〈X〉)〉+ d f

dX

∣

∣

∣

∣

〈X〉

〈

X ′〉+
1
2

d2 f

dX2

∣

∣

∣

∣

〈X〉

〈

X ′2〉 (3.15)

= f (〈X〉)+
[

1
2

d2 f

dX2 〈X〉2
]

δX2
rms, (3.16)

where the definition of the contrast δXrms was used in the last equation (see Eq. 3.12 in Sect. 3.5.1). The
linear term in Eq. 3.15 vanishes as 〈X ′〉 = 0 by definition. It is immediately clear that 〈 f (X)〉 = f (〈X〉)
holds for linear functions. It is thus the non-linearity of f that causes a departure of 〈 f (X)〉 from f (〈X〉),
because the departure scales with the square of the contrast δXrms. The discussion can be easily expanded
to functions of two variables f (X ,Y ), since they are found in the EOS.

As a consequence, deriving thermodynamic quantities from averaged independent variables, 〈ρ〉 and
〈ε〉, will lead to inconsistent outcomes. The mean pressure in a given layer of the 3D cube will deviate from
the pressure calculated with the EOS from mean density and mean internal energy, 〈pth〉 6= pth (〈ρ〉 ,〈ε〉).
Therefore, with 〈3D〉 we face another level of complexity.

To quantify the deviations, we compute the temperature T , pressure pth, opacity κRoss, and electron
number density nel from the EOS by employing the mean independent variables 〈ρ〉 and 〈ε〉. Then, we
determine the relative disagreement as δXEOS = (X̄EOS − X̄)/X̄ . In Fig. 3.43, we display the deviations of
thermal pressure δ pEOS

th and opacity δκEOS
Ross . As suggested by Eq. 3.16, we find the maximal deviations

typically below the optical surface in the SAR, where the large fluctuations take place due to the overturning
and to the presence of convective motions with their highly asymmetric up and downflows. The mean value
thus toddles between the bimodal distribution. Furthermore, we find a strong variation in the δXEOS with
stellar parameter, which increases for higher Teff and lower logg. Depending on which reference depth
scale is applied, the disagreement δXEOS are distinct.

This loss of consistency caused by dimensional reduction means that mean 〈3D〉 models can never en-
tirely substitute full 3D models, especially for spectral line formation applications (Uitenbroek & Criscuoli,
2011). The mean stratifications are nothing more than statistically meaningful representations of stellar at-
mospheres, while only the complete 3D data set describes their physical state completely. In 1D model
atmospheres, such internal consistency is maintained at all times, since no spatial averaging of non-linear
variables is involved in the construction of 1D models.



Chapter 4

Stellar granulation

Our host-star, the Sun, shows a distinct granulation pattern on its observable (optical) surface, which is
simply the manifestation of the subsurface convection that transports energy to the surface. The solar gran-
ulation pattern has been subject to manifold observational studies over the last decades with progressively
increasing resolution due to technological advances (e.g. Roudier & Muller, 1986; Hirzberger et al., 1997;
Schrijver et al., 1997; Bovelet & Wiehr, 2001). Nowadays high-resolution solar observations are compa-
rable to the typical numerical resolution with ∼ 77km (see Abramenko et al., 2012a). Until the advent of
realistic 3D RHD simulations, which solve the hydrodynamic equations coupled with a realistic radiative
transfer, direct comparisons of theoretical predications with the solar granulation properties were absent,
since the 1D models are incapable to predict the typical stellar granulation pattern imprinted in the emer-
gent (bolometric) intensity map emerging from the stellar surface. Stein & Nordlund (1998) found similar
solar granule sizes compared to the observations from the quiet-sun with typical diameters of ∼ 1Mm.

In this Chapter I want to address the two key questions: how realistic are the solar granule properties in
our simulation? And, also how do the stellar granules properties change for different stellar parameters? I
will explain the granule recognition method I have used to detect the individual granules from the intensity
map of the 3D simulations (Sect. 4.1), and subsequently I will discuss the various properties of individual
granules, such as their diameter, intensity, temperature, density, velocity and geometry (Sect. 4.2). More-
over, I will consider the fractal dimension (Sect. 4.3), the properties at the optical surface (Sect. 4.4), and
finally the topology of the solar granules (Sect. 4.5).

We find in all of our 3D RHD simulations a dominant granule size very similar to the solar case. The
granules can be divided in a smaller and larger population relative to the dominant granule size, which
generally distinguish in their properties. As the most interesting result in this Chapter, I want to highlight
the Section on the fractal dimension (Sect. 4.3), in particular, the two distinct values with D1 = 1.04 and
D2 = 1.85 for the smaller and larger granules in the solar simulation, respectively. The smaller granules
are regular shaped and dimmer, while the larger ones are fragmenting granules, therefore, these exhibit an
increasingly irregular, complex shape and intensity contrast.

4.1 Granule recognition

Several methods for detecting granules in the observed intensity have been developed over the years. Clas-
sically, a single-level clip of an intensity image is used for the granule recognition, where the small and
large features are filtered out by spatial passband Fourier filtering. These "Fourier-based recognition"
(FBR) techniques have been the most commonly applied ones in the past, and are fast, but also very inaccu-
rate (see Roudier & Muller, 1986; Hirzberger et al., 1997). Another possible approach is to trace granules
with a single fixed relative intensity-levels, e.g., between 0.97 and 1.03, as proposed by Abramenko et al.
(2012b). However, in this present work we prefer, the more robust "multiple level tracking" algorithm that
was developed by Bovelet & Wiehr (2001). It is a simple, yet very powerful tool to extract the granules
from the (bolometric) intensity map alone. The basic idea behind this method is to find (granular) shapes
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8.0 [Mm] 28 [Mm] 2400 [Mm] 1.4 [Mm]

7.2 [Mm] 22 [Mm] 1500 [Mm] 1.2 [Mm]

Figure 4.1: Emergent (bolometric) intensity map (gray contours) over-plotted with the (colored) contours
of the recognized granules (left to right) for the Sun (Teff/ logg = 5777K/4.44), turnoff star (6500K, 4.0),
K-giant (4500K, 2.0) and K-dwarf (4500K, 5.0) with solar and sub-solar metallicity with [Fe/H] = −3.0
(top and bottom, respectively). The granules are numbered in the order of decreasing granule size at its
respective barycenter (large characters refers to large granule size).

repeatedly for decreasing intensity level clips, thereby increasing their filling factors, until a predefined
threshold filling factor is matched. Then, one obtains unambiguously the granules with a single input pa-
rameter being the filling factor for the upflows, fup. Since the latter is basically the same for all stellar
parameters with fup ≈ 2/3, the granule-recognition is in principle unambiguous with the multiple level
tracking algorithm (see Sect. 3.1.6). Furthermore, we find the latter algorithm being very fast, robust, and
works for different stellar parameters similarly as good as for the Sun. To demonstrate this, we show the
results for the Sun, a turnoff star, a K-giant, and a K-dwarf and their metal-poor analogs in Fig. 4.1.

Following the multiple level tracking algorithm, we traced the granules in our simulations with the
IDL CONTOUR routine and computed the respective filling factor, fi, of the considered intensity-level. We
started at the relative intensity Ī = 1.2 and decreased the intensity level down to 0.97 in steps of 0.01, until
fi reached the threshold value1 with fup = 0.60 for all stellar parameters. As next, we enlarged the inten-
sity maps by exploiting their horizontal periodicity, and we determined the area and equivalent diameters
and further properties for each granule. Then, we dismissed very small patches and granules outside the
simulation box located entirely in the enlarged domain, matched the fragmented parts of granules that were
located at the edge, and classified them in two populations: small (fractional) granules, A1, and large gran-
ules, A2, with the latter being larger than the one-third of the average area, i.e., A2 ≥ 1/3Ā. Furthermore,
we singled out dark spots and bright points. Following Abramenko et al. (2010) we enhanced the contrast
of the intensity by subtracting the smoothed values Î (window size of 5 pixels), and computed the rms for
Irms = I − Î. Then, the bright points were detected at the 2σ -treshold relative to the other granules. We
performed the granule-recognition for each snapshot of the time-series, thereby leading to large sample of
granules with typically several thousand granules for an individual simulation (e.g., Sun ∼ 3800 for 150
snapshots), which improves the statistics.

From the area of the granules we determined the equivalent diameter with

dgran = 2
√

Agran/π, (4.1)

1We have chosen the threshold value slightly lower than fup ≈ 0.66 to yield a better distinction between the granules.



4.2 Granule properties 83

Fi
gu

re
4.

2:
T

he
lin

ea
ra

nd
lo

ga
ri

th
m

ic
hi

st
og

ra
m

of
th

e
gr

an
ul

e
ar

ea
,A

,
(t

o
p

p
a

n
el

;b
lu

e
an

d
b

la
ck

lin
e,

re
sp

ec
tiv

el
y)

an
d

th
e

ar
ea

co
nt

ri
bu

tio
n,

f a
c,

(b
o

tt
o

m
)

de
ri

ve
d

fr
om

ou
r

so
la

r
si

m
ul

at
io

n.
W

e
in

di
ca

te
d

th
e

lo
ca

-
tio

n
of

th
e

m
ea

n
gr

an
ul

e
ar

ea
(d

a
sh

ed
)

an
d

th
e

m
ax

im
um

of
f a

c
(s

o
li

d

li
n

e)
.

which is the the diameter of a circle that has the same area Agran. With the granule size we refer to dgran or
Agran in the following. Furthermore, we determined the unique geometric center, which is the barycenter

~xbc = ∑~xiAi/Agran, (4.2)

where the summation runs over all pixels enclosed by the contour of the granule, and ~xi is the vector
pointing to the cell i, and Ai is the pixel area.

The above mentioned granule detection methods assume that bright regions in the intensity maps asso-
ciate with the hotter and lighter stellar plasma leading to the bulk, upflowing granules, which is very good
fulfilled, as we demonstrate in Sect. 4.4.2. Therefore, the remaining dark regions in the intensity maps
inherently consist of cool, dense gas, which one usually refers as the (negatively buoyant) downdrafts.

4.2 Granule properties

The granule size is the first property we want to address, therefore, we show the histogram of the granule
areas of the Sun in Fig. 4.2. The range in granule sizes is very large (typically spanning four orders),
therefore, a histogram considering linear equidistant granules sizes for the bins would overestimate the
smallest values by employing very large bins for the histogram (see Fig. 4.2). This would lead to a bottom-
heavy distribution, which might lead to the misleading conclusion of a dominant a large number of small
granules (see Roudier & Muller, 1986; Hirzberger et al., 1997; Abramenko et al., 2012b). Therefore, we
advise strongly against a linear binning of the histograms for strongly varying quantities like the granule
size. To avoid this mistake we considered the logarithmic granule area for the histograms. Then, the
smallest granule sizes are better resolved, and one yields more accurate distribution, while a linear bin size
would group the smallest granules into just a single bin, thereby leading to an apparently large probability.
In Fig. 4.2 one can withdraw that the histogram exhibits a maximum close the mean granule size, which
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we refer to as the mode of granule size
dh = max [p(A)] . (4.3)

The distribution around the mode of the granule size is very asymmetric. For larger granule sizes than the
mode, the distribution drops rapidly within a short range, while for lower values it also drops after a plateau,
but the range of the smaller half is distinctively larger. These two regimes represent on the one hand the
oversized fragmenting granules and the other hand the resulting fragments. The (fragmented) small-scale
granules were found in high-resolution solar observations by Abramenko et al. (2012b). The fragmentation
of granules is a continuous process, therefore, the distribution of granule sizes is also continuous, and it
covers a fairly large range in size.

Also another possibility to quantify the granule size distribution is the the area contribution function,
which is given by

fac = niAi/Atot, (4.4)

with ni being the number of elements within the area-bin Ai, and Atot = ∑niAi being the total area of all
granules. The area contribution function is in principle a histogram of granule size, which is weighted
with the contribution of area to the total area (see Roudier & Muller, 1986). We noted above that a linear
granule size is overestimating the histogram for smaller granules. The contribution function has the intrinsic
advantage that a large number of small granules contributes only little to the fac, since their area is small.
It depicts the dominant granule size, which contributes most to the radiation, independently of the linear
or logarithmic bin sizes. In Fig. 4.2 we show the area contribution function resulting from the solar
simulation. Here, we can also uniquely label the dominant granule size with the maximum, i.e.

dac = max [ fac] . (4.5)

Similar to the above finding with dh, the dominant granule size divides the distribution into two regimes
at a very similar value, which supports further the location of the "significant" granule size. The decline
towards larger granule sizes is similar, but the lower part is noticeably smaller than the histogram (both are
not expected to coincide entirely due to their different definitions). We remark that the lower values of fac

towards smaller granules sizes illustrates that employing a logarithmic scale for the histograms of the gran-
ule size is essential to yield correct conclusions on the "real" declining distribution of the smallest granules.
We find for the solar simulation a dominant scale of Aac = 2.06Mm2, which is dac = 1.61Mm. Observa-
tional findings have similar values with dac ≈ 1Mm (Roudier & Muller, 1986; Hirzberger et al., 1997), and
the given difference arises probably from atmospherical and instrumental effects (see Stein & Nordlund,
1998).

4.2.1 Diameter of granules

In the following we want discuss the resulting granules sizes for different stellar parameters. Therefore, we
show in Fig. 4.3 the (smoothed) histograms of the granule diameters, dgran (Eq. 4.1; the area histograms
are the same). For higher Teff and [Fe/H] the mean granule sizes are slightly larger, while towards giants
(lower logg) these are significantly larger, since the pressure scale height scales with the surface gravity
directly (see Sect. 3.1.6). In general, the shapes of the histogram are similar to the solar one and also
exhibit a mode in their granule sizes. In the case of dwarfs, the peak at the dh is less pronounced towards
lower Teff and we find increasingly a bimodal distribution with a distinct second peak from the small-scale
granules (in particular, for giants). The second peak at smaller granule sizes varies with stellar parameter,
so that in some cases the two peaks are similar, and in a few the second peak at smaller dgran is even higher
than that at the larger ones. This indicates that in these models the granules fragment into smaller pieces
more frequently (see Sect. 4.3). However, most of radiation still emerges from the larger peak, since the
area contribution function exhibits a single peak, which is located at larger granules sizes (see Fig. 4.3
and Sect. 4.2.2). Furthermore, the decline towards larger fragmenting granules is steeper with higher Teff,
which means that these granules disintegrate within a smaller range of granule sizes. The lower half of the
histograms are similar despite a shift and the second peak.

Our findings carry some uncertainty that might be rooted in the granule detection method or in the
simulation boundaries. However, we assume that our results are robust, since these are qualitatively similar
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to those by Beeck et al. (2013). They find also an asymmetric distribution exhibiting a dominant granule
size with a depressed tail for the small-scale granules. Moreover, they also find the mean granule diameter
being similar and their filling factors are also around fup ≈ 2/3.

4.2.2 Intensity distribution of granules

In Fig. 4.4, we show the mean (bolometric) intensities of granules (seen at the disk-center),
〈

Ig

〉

, that are
normalized by the temporal average of the entire simulation, 〈I〉, against their granule sizes, including also
their ranges of the extrema. Smaller granules are darker (∼ 5− 9%) and larger granules are brighter, and
around the dominant granule size, dac, one finds the brightest granules (∼ 5− 15%). This means that the
most abundant granules with sizes similar to dac cover most of the stellar surface and are the brightest,
i.e. these dominate the bolometric intensity not only due to their size and abundance. Therefore, most of
the radiative energy is lost in these granules. The mean intensities of granules larger than dac are lower
than the maximal, since these large fragmenting (exploding) granules develop dark spots due to pressure
excess and mass flux reversal (see Stein & Nordlund, 1998), which is then reducing the mean intensity.
Hirzberger et al. (1997) finds also a similar granule size dependence for the mean intensity in the observed
solar granules: for the smaller granules, the intensity is rising towards larger dgran and slightly decreasing
above the dominant granule size.

Furthermore, the larger granules have larger extremal ranges in intensity in Fig. 4.4, and around the
mean granule size one finds a distinct enhancement in the darkness (minimum) that arises due to presence
of dark spots typically preceding the granule splitting. For higher Teff, smaller granules are dimmer and
the larger ones are brighter, while for different logg the changes are only subtle. In the case of metal-poor
simulations, the same small-scale granules are darker for hotter Teff and brighter for cooler Teff compared
to the solar case, which correlates with the enhancement of the intensity contrast at lower metallicity (see
Sect. 3.1.5). Namely, due to the lack of metals at lower metallicity, the importance of neutral hydrogen as
primary electron-donors increases for higher Teff, and since the electron density is controlling the formation



8
6

4
.
S

tella
r

g
ra

n
u

la
tio

n

Figure 4.4: Mean normalized intensity vs. granule size. Furthermore,
we indicated the mean granule diameters (dotted lines) and the domi-
nant scales, dac (filled squares). Note the difference in abscissa between
the top and bottom panel.

Figure 4.5: Mean intensity contrast vs. granule size. Furthermore, we
indicated the mean granule diameters (dotted lines) and the dominant
scales, dac (filled squares). Note the difference in abscissa between the
top and bottom panel.
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of negative hydrogen – the dominant opacity source – the opacity is therefore more sensitive to an increase
in temperature.

In Fig. 4.5, we show the intensity contrast of the granules vs. their size. The trends are similar to the
intensity with stellar parameters. The intensity contrast is is lower for small granules, typically reach a
maximum at the mean granule size, and decreasing above it. Higher intensity contrast correlates with more
complex substructures in the granules with dark spots and bright edges. These arise due to differences
in the temperature excess of the granules originating from the granular dynamics (e.g., Hirzberger et al.,
1997; Stein & Nordlund, 1998).

4.2.3 Temperature and density of granules

We averaged the temperatures and densities of the recognized granules (Sect. 4.1) on layers of constant
Rosseland optical depth at the optical surface, which we show in Figs. 4.6 and 4.7 against the granule sizes
for different stellar parameters. Furthermore, to improve the comparison the displayed mean values of the
granules,

〈

Tg
〉

and
〈

ρg
〉

, are normalized with the temporal and horizontal averages, 〈T 〉 and 〈ρ〉, of the
complete layer at the surface (τRoss = 1) determined on layers of constant Rosseland optical depth. In gen-
eral, larger granules feature higher mean temperatures and lower densities. A inverse correlation between
the temperature and density is to be expected (from ideal gas law follows T ∼ p/ρ). The temperature ex-
cess peaks around the mean granule diameters (∼ 1− 4%), while these are the most under-dense granules
at the same time (∼ 1− 15%). The T -peak and ρ-minimum are increasing for higher Teff and lower logg.
The smallest granules exhibit lower-than-average temperatures and higher-than-average densities, since
these are small granule fragments located in the downdrafts. Furthermore, we find a distinctively tight
correlation between the mean granule temperature and intensity with typical values around ∼ 97% with
very small variation of different stellar parameters, while the density is anti-correlated with the intensity
by values around ∼−55%, but with a large variation with stellar parameters. We note that the normalized
mean thermodynamic pressure of granules, 〈pth〉, exhibits very similar dependence with the granule size
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as the density, while the mean entropy resembles the temperature, but on a smaller scale (not shown).

4.2.4 Velocity of granules

In Fig. 4.8, we show the mean rms of the vertical velocity derived for the individual granules on layers of
constant Rosseland optical depth at the optical surface. The rms velocity are for higher Teff, lower logg and
higher [Fe/H], and these are in general flat for cooler Teffs, while for hotter effective temperatures, one can
find a distinct peak close to the mean granule diameter. We have seen above (Sect. 4.2.3) that these granules
with mean diameters have lower densities due to higher temperatures, therefore, these lighter granules will
experience a larger buoyancy acceleration. We remark that the characteristic variations of the rms velocities
arise mainly from the upflows, since the majority of the cells of the granules are flowing upwards. We find
that the lower mean densities around the mean granule diameters are not decreasing the mean upwards
directed vertical mass flux, since the higher velocities are raising the upwards mass transport.

4.2.5 Geometrical properties

To quantify the geometrical properties of the complex granule shapes, we followed Hirzberger (2002) and
determined

fr = 4πA/P2, (4.6)

fc = dgran/dMF, (4.7)

fl = wMF/dMF, (4.8)

fe = b/a. (4.9)

The roundness factor (Eq. 4.6) is the area-perimeter relation for the roundness of a shape that measures
the deviation from a perfect circle, and is also known as the isoperimetric quotient. The isoperimetric
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Figure 4.8: Mean rms vertical velocity of granules vs. granule size,
which is obtained on layers of constant Rosseland optical depth. Fur-
thermore, we indicated the mean granule diameters (dotted lines) and
the dominant scales, dac (filled squares). Note the difference in abscissa
between the top and bottom panel.

Figure 4.9: The smoothed distribution of the geometrical shape fac-
tors for roundness, circularity, elongation and ellipticity vs. granule
area derived from the solar simulation. We outlined the mean (solid),
the standard deviation around mean (dashed) and the extrema (dotted

lines). Furthermore, we included also a (smoothed) histogram of the
shape factor (blue lines), in order to render its distribution. The maxi-
mum of the latter is indicated (horizontal gray line). The vertical lines
indicate mean and dominant granule area (black vertical dashed and
solid line).
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inequality, fs ≤ 1, holds for any arbitrary shape, and yields equality only for the circle. The circularity
factor (Eq. 4.7) is the ratio between granule size, dgran, and the maximal Feret-diameter, dMF, which is the
diameter of the principal axis, i.e. the maximum diameter at the barycenter for all degrees of rotation. It
quantifies the evenness along the boundary, e.g., an even shape will lead to a value close to 1, while a star-
shape will result very low ones. The elongation factor (Eq. 4.8) is determined with wMF being the width
perpendicular to dMF, i.e. it is the aspect ratio of the principal axis, and values towards unity are close to a
circle. Finally, the ellipticity factor (Eq. 4.9) is combined by a = ξ +(ξ 2 −A/π)1/2 and b = A/(πa) with
ξ = [(A/π)1/2 +P/π ]/3, and compares the shape with an ellipse (see Hirzberger, 2002).

The geometrical properties are shown for the Sun in Fig. 4.9. For granules smaller than the dominant
granule size, the geometrical properties are in general similar. While above dac one finds a transition, in
particular, fr and fe are dropping towards zero above the dominant granule size, since the granules start to
fragment and split, and the perimeter is increasing much more faster than the area ( fr ∝ P−2). This is in
agreement with the second, larger fractal dimension, D2, we found in Sect. 4.3. The shape factors fc and
fl are independent of the perimeter, therefore, these are changing only little. The histograms of the shape
factors are symmetrically distributed around a well-defined maximum with different widths. However,
the roundness factor is an exception, it exhibits a skewed distribution that covers almost the whole range
between zero and unity, and the maximum is located at fr = 0.77. As given in Fig. 4.9, the contributions
arise from different granules sizes. Smaller granules tend be in general more regular at their boundaries
(larger fr) with smooth edges, while the fragmenting granules that are larger than dac have increasingly
irregular, complex boundaries (small fr) that are fringed and convoluted (see Fig. 4.1). The granule shapes
are in overall very regular, circular shapes ( fc = 0.68 and fl = 0.61) independently from dgran. Furthermore,
the granules are quite elongated with fe = 0.33. When we compare our four shape factors with those by
Hirzberger (see 2002), then these are qualitatively very similar, only the maximum of the roundness factor
is at much lower values with fr = 0.1, which might due to difference in the recognition methods (FBR).
Therefore, we remark that our solar simulation harbors a very realistic granulation pattern. Since the shape
factors are very similar for different stellar parameters, we restrict ourself to the discussion of the solar
values.

4.3 Fractal dimension

The fractal dimension is a suitable, measurable value to quantify the complexity of a geometrical shape
(Mandelbrot, 1977). In the case of granules, this is given by the area-perimeter relation

P = kAD/2 (4.10)

with k being a shape factor and D the fractal dimension (Roudier & Muller, 1986). Then, the fractal
dimension can be retrieved from the Eq. 4.10 with

D = 2∆ logP/∆ logA. (4.11)

In planar geometry, perfect objects have an integer fractal dimension, e.g., circles or squares have D = 1
(dimension of a line), but with different shape factors k = 2

√
π and 4, respectively. However, real objects

are of fractal nature, i.e. most of patterns in nature exhibit a non-integer dimension. It is a important
measure for the regularity of granules; more regular ones will have a lower D, while more irregular granules
will have higher area-perimeter ratios.

We show the 2D histogram of the area and perimeter determined from the granules of the solar simu-
lation in Fig. 4.10. Interestingly, we find for both a very tight linear correlation. At the dominant granule
size, we find a distinct change in the slope of the correlation, indicating a multi-fractal nature of granula-
tion. Therefore, we determined two fractal dimensions with two separate linear least-square fits. The first
one is performed for the small-scale granules (A < Ā), and the resulting fractal dimension is very close
to unity with D1 = 1.04, which means that the smaller granules are very regularly shaped. One can also
consider this in the way that for an expanding granule with a larger area the perimeter is increasing with
the square root power of the latter (same to a circle), and therefore, these granules are less fringed. The
second linear fit is performed for larger granules (A > Ā), and the fractal dimension is distinctively larger
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with D2 = 1.86 (see Fig. 4.2). This means that large granules, growing above the dominant granule size,
feature increasingly over-proportional larger perimeters, which accounts for the fact that these start to split
and fragment. One could also argue that such a behavior should be expected simply based on geometrical
argumentation, meaning that splitting granules will display incisions in a continuous manner.

The fractal dimensions are often determined from solar observations. In agreement with our result,
Roudier & Muller (1986) also found two clearly distinct fractal dimensions with D1 = 1.25 and D2 = 2.15
(with FBR). Moreover, our fractal dimensions coincide also with Hirzberger et al. (1997), who determined
for smaller granules D1 ≈ 1.3 and for larger granules D2 ≈ 2.1 (with FBR). Also, Bovelet & Wiehr (2001)
derived similarly (with FBR) D1 = 1.2 and D2 = 1.96. On the other hand, they determined with their
multiple layer tracking method, which we also employ, distinctively lower values for the fractal dimensions
with D1 = 1.09 and D2 = 1.28. Their smaller fractal dimension is similar to ours, however, the second one
for the larger granules is much lower, and therefore contradicting our results. They find that the FBR
method is recognizing smaller granules as a larger single one compared to the multiple layer tracking
method. However, since we do not use a FBR method, our results should be similar to their findings. We
also performed a single linear fit, which resulted in D = 1.10, but the latter is clearly insufficient to depict
the larger granules (not shown). In all of these before mentioned cases, the fractal dimensions are slightly
larger than our values, which originates probably from the different granule recognition method (FBR),
but also from the reduced resolution of their observations including atmospheric effects. We find that the
solar simulation yields two clear distinct slopes in their area perimeter relation, which is not affected by
observational constraints.

As next, we want to consider the variations of the area-perimeter ratio based on D1 and D2 for different
stellar parameters. The area-perimeter relations are very similar to the solar one, therefore, we refrain
from showing them (in fact these coincide for smaller granules, and are indistinguishable). The branching
at the dominant granule size scale is always given with a slope close to unity for the smaller granules
and a steeper slope for larger granules, in particular for lower Teff and higher [Fe/H]. In Fig. 4.11, we
show the fractal dimensions from the linear fits for various stellar parameters. The first fractal dimension
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for the smaller granules is strikingly close to unity with the average value being D1 = 1.05± 0.02, and
therefore basically universal in all simulations. The granules smaller than the dominant granule size are
often regularly shaped. Furthermore, a value close to unity (D1 ∼ 1) implies that the perimeter increases to
the square root with the area, i.e. P ∝ A1/2, for the smaller granules (see Eq. 4.10). The second dimensions
are clearly larger, being on average D2 ≈ 1.7± 0.3 with a significant level of scatter. Moreover, D2 is
sensitive to the stellar parameters, featuring a general decreasing trend for higher Teff and [Fe/H], and
lower logg. The values of D2 never exceed 2 in all of our simulations. The larger granules above the
dominant granule size are irregularly shaped, and D2 ∼ 2 translates into a linear area-perimeter relation
of P ∝ A, i.e. for larger granules, the perimeter increases linearly with the area. This is in principle the
manifestation of the fragmentation of oversized, unstable granules. When we consider a hotter and cooler
dwarf (Teff = 7000,5500K, logg = 4.5 in Fig. 4.11), then the values for D2 are ∼ 1.5 and ∼ 1.9. If we
compare two granules with the same (larger) area, A0, from both dwarfs, then the granules of the cooler
dwarf will exhibit much larger perimeters, Phot(A0) < Pcool(A0), i.e. its granules will be in general more
fragmented. This might be due to the higher densities and the lower vertical velocities, thereby shifting the
balance of the characteristic length scales.

The granulation patterns in our simulations exhibit a striking self-similarity despite the large variations
in the horizontal length scales and convective flow properties (see Fig. 4.1). This apparent observation is
backed by the linear correlation of the area-perimeter relations, and the similar fractal dimensions between
the different stellar parameters. Surface convection appears to operate scale-invariant over large ranges.
With the fractal dimension we can support further this aspect. This is true, in particular, for the small-scale
granules. Furthermore, the branching of the two fractal dimensions is taking place at the dominant granule
size for all stellar parameters, since above the latter the granules cannot be supported by the pressure excess
and start to fragment, thereby increasing the granule perimeter and becoming more irregular. Therefore,
the branching area between D1 and D2 can be regarded as the maximal granule size, and granules with
larger sizes are unstable, in particular, the second fractal dimension D2 is the manifestation of the exploding
granules. This simple geometrical fact supports the necessity for a larger second branch, despite the granule
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Teff = 5777K, logg = 4.44 Teff = 6500K, logg = 4.00

Teff = 4500K, logg = 2.00 Teff = 4500K, logg = 5.00

Figure 4.12: The corrugated optical surface including the vertical velocity to illustrate the up- and down-
flows (blue and red; each with a range of 8km/s) for a selection of stars: main-sequence, turnoff, K-giant,
K-dwarf.

detection method and observational effects.

4.4 Optical surface

4.4.1 Corrugation of the optical surface

The optical surface is the defined as the layer with the constant optical depth unity (τRoss = 1), and marks
the photospheric transition boundary from the stellar interior to the outer. The optical surface is corrugated
depending on whether one is considering a region above a granule or one above the intergranular lane,
since the optical depth depth depends on the temperature and its gradient. Namely, at larger temperature
gradients higher temperatures, hence higher opacities, are reached on shorter geometrical distances (see
Stein & Nordlund, 1998). Therefore, we observe the emitted light above granules from higher layers, while
the radiation from the intergranular lanes originates from slightly deeper layers. In Fig. 4.12, we show the
optical surfaces for four different stellar parameters, encompassing the Sun, a turnoff star, a K-giant and
a K-dwarf. Furthermore, we also illustrate the vertical velocity at the optical surfaces, and one can depict
that the downflows are located in the intergranular lane, while the bulk granules are flowing upwards at
the surface. The level of corrugation differs distinctively for the different stellar parameters. The level of
corrugation can be quantified with the temporal averaged rms deviation of the geometrical depth for the
layers of constant optical depth unity, i.e. 〈zrms (τRoss = 1)〉. The solar simulation is slightly corrugated
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with ∼ 33km, which is close to the value found by Stein & Nordlund (see 1998) with ∼ 30km. Compared
to the solar radius this is a very small relative variation with ∼ 5× 10−3 %. The earth has a tolerance of
0.17% from a spheroid, which is ∼ 1.5dex (∼ 30 times) larger than the (quiet) Sun. The turnoff and giant
simulation exhibit distinctively larger corrugated optical surfaces compared to the Sun with ∼ 300 and
∼ 23000km respectively, while the dwarf model has a very smooth optical surface with ∼ 3km. One can
estimate that the turnoff star has approximately the twice solar radius, while the K-giant has the twenty-
fold, then their relative variations are with 0.02 and 0.17% respectively larger than compared to the Sun
and comparable to the earth, however, this would still seem for an observer still very spheric. The K-dwarf
would have the half of the solar radius and a very small relative variation with ∼ 1× 10−3 %.

To illustrate the systematic variation of the corrugation we overview the standard deviation of 〈z(τRoss = 1)〉
in Fig. 4.13. The corrugation increases primarily with lower surface gravity and higher effective tem-
peratures, since from hydrostatic equilibrium (d p/dz = ρg) follows dz ∝ 1/g and the dominant negative
hydrogen opacity source is very temperature sensitive (κH− ∝ T 10). Furthermore, at higher metallicity the
corrugations are also larger due to the lower densities.

4.4.2 Surface velocity correlations

In order to study the surface properties more closely, we determined the temporal averaged (2D) histograms
for the temperature, T , density, ρ , and intensity fluctuations, δ I, as a function of vertical velocity at the
optical surface on layers of geometrical depth (〈τRoss〉= 1) or constant Rosseland optical depth (τRoss = 1),
which are shown in Fig. 4.14. The thermodynamic properties correlate very well with vertical velocity,
and the vertical velocity is separating the different properties between the up- and downflows (see SN98).
All the thermodynamic properties exhibit a bimodal distribution due to the inherent asymmetric nature of
the convective energy transport. On the one hand the stellar plasma in the upflows has hotter temperature
and lower density with brighter intensities located in the granules. On the other hand the downflows are
composed by cooler temperature and higher density with in the darker intensity found intergranular lane.
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Figure 4.14: Correlation of the relative intensity fluctuations, temperatures, and densities with the vertical
velocities at the optical surface for different stellar parameters (top, middle and bottom panel respectively)
shown by the distribution of their histogram (thick lined contour at 0.2). We indicated the mean value (solid
line), and for the up- and downflow separately their mean (horizontal dashed line), range (vertical dotted
line) and standard deviation (vertical solid line). Furthermore, we show the geometrical averages taken the
height with 〈τRoss〉 = 1 (left panel) and the averages on layers of constant optical depth τRoss = 1 (right
panel).
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Furthermore, the (slow) upflows correlate with higher entropy and ionization, while the (fast) downflows
associate with with lower entropy and ionization. In Fig. 4.14 we show the mean values of the histograms
for T , ρ and δ I, which exhibits typically a s-shape like feature. Moreover, we display the contours of the
one-fifth of the maximal probability for the T and ρ , from which one can estimate the distribution of the
histogram. Then one can obtain a temperature jump from the histograms derived on layers of constant
geometrical depth (left panel in Fig. 4.14), where we determined the height of the optical surface on the
temporal average, i.e. 〈τRoss〉 = 1. At higher a effective temperature the density decreases, while the
velocity rises, thereby leading to an enhancement in the overshooting of the convective upflows, which is
also known as the so-called "naked granulation" (see Nordlund & Dravins, 1990). In agreement with the
latter, we find that the T -jump becomes more distinct for hotter Teff, and the bimodal distribution between
the up- and downflows is more evident (compare the mean values between the up- and downflows). The
upflows have distinctively larger values compared to averages on layers of constant optical depth (right
panel in Fig. 4.14). The velocity correlation is tighter at layers of constant optical depth (τRoss = 1), since
the opacity is very T -sensitive due to the negative hydrogen opacity, and layers with similar temperatures
are mapped during transformation to the optical depth (see Sect. 3.4). The fluctuations of the upflows are
broader in temperature and narrower for the density (see Fig. 4.14), while the downflows feature a broad
distribution in ρ and smaller range in T .

4.5 Topology of granulation

The superadiabatic convective flow at the surface correlates very tightly with the fluctuations of the ther-
modynamical properties. Therefore, the fluctuations can be utilized to conveniently illustrate the gran-
ulation pattern. In Fig. 4.15 we display renderings of the temperature, δTz = ∆Tz/〈T 〉z, and density,
δρz = ∆ρz/〈ρ〉z, fluctuations, which we have separated between excess and deficit (over and under-
density). The granules consist of under-dense, pillar-like shaped, confined regions of temperature excess
below the optical depth. The convective flow loses its heat-excess at the optical surface due to radiative
losses and overturns into over-dense, turbulent downdrafts. The fluctuations are largest around the peak of
the superadiabatic gradient, and towards deeper layers the fluctuations decline fast due to efficient mixing
of the of the low-entropy downflows.

In Fig. 4.16 a comparison of the (bolometric) intensity map and the projected temperature excess,
which we yield with

Θ =

∫ bot

τ=1
δTz (δTz > 1.1)dz.

One can obtain that the superadiabatic "convective pillars" (under-dense regions with heat-excess) correlate
with bright granules, while the over-dense regions with dark intergranular lane.

To depict the turbulent downflows in the superadiabatic region, the amplitude of the vorticity is suitable
quantity (see Fig. 4.17). At the interface between an upflow and downflow one finds strong shear flows,
which is giving rise to the high vorticity. Therefore, in the vicinity of the optical surface vortex tubes are
located around the granules, with vortex arcs emerging above the optical surface. Furthermore, the largest
velocities are located in the downdrafts due to the overturning of the granular stellar plasma, often transonic
or even supersonic flow-speed, in particular, for simulations with higher Teff, lower logg (see Fig. 4.18).
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Figure 4.15: The subsurface granulation pattern visualized with the temperature and density fluctuations
(bottom and top, respectively) for the solar simulation. The excess (orange) and deficit (blue) for the
temperature is 5%, and the rendering threshold for the over (blue) and under-density (red) is given at 20%.
The top figure shows the upwards view towards the optical surface, while the bottom figure is a top-down
view.
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Figure 4.16: The bolometric intensity map of the Sun (top) compared with the projected temperature excess
located below the optical surface in the superadiabatic region (bottom figure).
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Figure 4.17: The turbulent downdrafts depicted by the amplitude of the vorticity (purple) for solar sim-
ulation. Furthermore, we display the optical surface (white) and the granules (orange). The top panel
illustrates the fingering plumes of the turbulent downdrafts, while the bottom figure features the the vortex
tubes with vortex arcs located close to the optical surface. The vorticity is color-coded by the optical depth,
where darker colors indicate deeper (higher) layers in the top (bottom) panel. The top figure shows the
upwards view towards the optical surface, while the bottom figure is a top-down view.
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Teff = 5777K, logg = 4.44

Teff = 6500K, logg = 4.00

Figure 4.18: Top figure: Transsonic Mach numbers (M > 0.8; blue contours) in the solar simulation. Bottom

figure: supersonic Mach numbers (M > 1.0) in a turnoff simulation. Furthermore, we display the optical
surface (white) and the granules (orange). The views are shown from the top-down perspectives.



Chapter 5

Spectral line formation

Cool stars are distinguished by their convective envelopes below the optical surface and the concomitant
velocity field and its typical manifestation as granulation patterns are imprinted in the observable spec-
tral line profiles in form of line shifts and asymmetries. Realistic line profiles are broadened by natural,
thermal, pressure, van der Waals, radiative and collisional broadening, and usually these are considered by
convolving them into the line absorption coefficient αν . Spectral lines depend mainly on the number of
absorbers (atomic level population), therefore, it is very sensitive to the temperature due to exponential and
power dependence of excitation-ionization (∝ e−χ/kT ; see Eqs. 1.19 and 1.20 in Sect. 1.2). Moreover, due
to the convective velocities additional non-thermal broadening takes place in form of Doppler shifts. Line
wings are formed in deeper layers close to the continuum forming depth, while the line cores are formed
above in higher layers, therefore, these sample different heights with distinctive physical conditions, in
terms of velocity amplitudes, correlation between temperature and density inhomogeneities, asymmetries
between regions with up- and downflowing material, thereby leading to characteristic asymmetries in the
emergent intensity and flux line profiles (see Asplund et al., 2000a).

Classical theoretical atmosphere models made use of several simplifications in order to facilitate cal-
culations with the computing power at hand in the past (see Gustafsson et al., 2008; Castelli & Kurucz,
2004). The treatment of convection has been the most challenging part in modeling stellar atmospheres,
since a complete theory of convection including a full closure is today still absent, and therefore, in
one-dimensional (1D) modeling simplified treatments have been made use of, such as the mixing-length
theory (MLT; see Böhm-Vitense, 1958; Henyey et al., 1965) or the full spectrum of turbulence model
(Canuto & Mazzitelli, 1991) with a priori unknown free-parameters that has to be calibrated by obser-
vations. Then, for the 1D line formation calculations the lack of knowledge on the convective velocity field
is partially compensated by introducing fudge parameters: micro- and macroturbulence.

However, for the accurate interpretation of high-resolution spectroscopical observations from the latest
ground-based large-aperture or space-born instruments spectroscopical analysis based on classical the-
oretical models is insufficient, therefore, the demand on improved theoretical atmosphere models has
emerged. For the precise modeling of realistic line profiles including line shifts and asymmetries one
has to compute realistic three-dimensional (3D) atmosphere models, where the convective velocity field
emerges from first principles by solving the hydrodynamic equations coupled with non-grey radiative
transfer (Nordlund, 1982; Stein & Nordlund, 1998; Nordlund et al., 2009). The major application for 3D
radiative hydrodynamic (RHD) atmosphere models is the computation of synthetic full 3D line profiles or
spectra as post-processing based on the former in order to derive accurate stellar parameters and abundances
(Asplund et al., 2000a,b, 2005, 2009). The 3D RHD models demonstrated their predictive capabilities pow-
erfully in comparison with observed line profiles for several different stars. Asplund et al. (2000a) found
almost perfect agreement between observed solar iron line profiles and theoretical predictions without any
trends in the derived abundances with line strength. The line strength is evaluated by the equivalent width,
which is the area-integral of the spectral absorption line profile, i.e. Wλ =

∫

(1−Fλ/Fc)dλ . Furthermore,
comparisons of line shifts and asymmetries derived from high-resolution spectroscopical observations of
different types of cool stars advocated additionally for the realistic nature of the theoretical 3D RHD models
(see Nordlund & Dravins, 1990; Atroshchenko & Gadun, 1994; Allende Prieto et al., 2002; Ramírez et al.,



102 5. Spectral line formation

2008, 2009, 2010; Gray, 2009).

The aim of this Chapter is intended to tackle the following two key questions: how do spectral lines
based on 〈3D〉 models compare to full 3D models? And also, how do Fe line properties vary with stellar
parameters? More specifically, I intend to analyze line shifts and asymmetries carefully for a selection of
Fe I and Fe II lines, in order to better understand the variation of spectral line features with stellar param-
eters, which is important for stellar parameter determination, particularly for the metallicity, and for the
characterization of stellar surface convection. Iron lines are often considered useful for this purpose, since
it is an abundant element with accurate atomic data at hand. I will explain the methods for the calculations
of the 3D spectra (Sect. 5.1), decompose the 3D lines into up- and downflows (Sect. 5.2), compare spectral
lines from 〈3D〉 and full 3D models (Sect. 5.3), and, study the lines shapes, shifts and asymmetries of a
number of Iron lines (Sect. 5.4). Furthermore, I note that the Section 5.3 originates from the publication
Magic et al. (2013b).

The differential comparison of spectral line formation computed from 〈3D〉 and 3D models shows
distinctive differences, depending on which reference depth is considered for the 〈3D〉 stratification. The
averages over layers of constant column-mass density yield the best mean 〈3D〉 representation of the full
3D models for LTE line formation, while the averages on layers at constant geometrical height are the
least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are
prone to increasing interference by reversed granulation towards higher effective temperature, in particular
at low metallicity. Furthermore, the resulting variations in line strength, shift, width and bisectors are
rather systematically, and these can be related to the respective physical conditions at the height of the line
formation in the stellar atmospheric environment, in particular the amplitude of the vertical velocity field.
Line shifts and asymmetries arise due to the presence of convective velocities and the granulation pattern
that are ubiquitously found in observed stellar spectra of cool stars. As a major novelty I point out the
surprisingly well working 〈3D〉 two-stream line formation in Sect. 5.2.

5.1 Multi-dimensional line formation calculations

We used the 3D radiative transfer code SCATE (Hayek et al., 2011) to calculate full 3D synthetic spectral
line disk-center intensity and flux profiles with 3D STAGGER model atmospheres. SCATE assumes local
thermodynamic equilibrium (LTE). Furthermore, in the present work, we also neglected the effects of
scattering; i.e. we approximated the source function with the Planck function, Sλ = Bλ . We caution
that LTE is can be a poor approximation, especially for Fe I spectral line formation calculations at low
[Fe/H] (e.g. Bergemann et al., 2012), which should be kept in mind for analyzing the LTE-based abundance
corrections presented here. For the sake of consistency, we used the same EOS (Mihalas et al., 1988) and
continuum opacity data (from the MARCS package; see Gustafsson et al., 2008) as in the 3D STAGGER

simulations.
To reduce the computational costs for line formation calculations, we consider a subset of Nt = 20

temporally equidistant snapshots – the same as used for the temporal 〈3D〉 averages – sampling the entire
time spans of the individual 3D simulation sequences. Additionally, we reduce the horizontal spatial res-
olution from NxNy = 2402 to 602 by considering only every fourth column in each horizontal direction.
Test calculations carried out at full resolution show that differences are negligible for all practical purposes
(see Asplund et al., 2000a). Concerning the vertical direction, while we did not subsample the number of
depth points, we considered only those layers with the temporal and horizontal averaged Rosseland optical
depth being min(〈logτRoss〉)≤3.0. The resulting disk-center (3D) intensity and flux profiles are spatially
and temporally averaged, and then normalized with the respective continuum intensity or flux.

To systematically illustrate the differences between 〈3D〉 and 3D line formation, we computed fictitious
atomic lines for neutral and singly ionized iron, Fe I and Fe II, for the selected STAGGER-grid models and
metallicities (see Fig. 5.1). All lines are defined at the same wavelength, λ = 500nm, and we considered
two lower-level excitation potentials, χexc = 1.0 and 4.0eV. Furthermore, we varied the oscillator strength,
logg f , in order to cover a range of line strengths, from weak to partly saturated lines, with equivalent
widths from Wλ = 5 to 80mÅ. We assumed an iron abundance of logεFe = 7.51 (Asplund et al., 2009) and
logεFe = 4.51, for the solar metallicity and [Fe/H] =−3.0 case, respectively.
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The spectral line calculations with 〈3D〉 models were also performed with SCATE, to guarantee a
consistent comparison. SCATE employs atmospheric structures on geometrical height and computes the
optical depth, τλ , for the individual line. Therefore, we provide the geometrical height by integrating
dz = d 〈τλ 〉/〈κλ 〉, which is of course unnecessary for 〈3D〉z. Furthermore, tests revealed that including
just an averaged velocity, e.g., |~v|/3, is insufficient to reproduce the influence of the 3D velocity field on
the line shape. Analyzing the influence of the velocity field on the line formation surpasses the scope of
the present work. In this study, for the calculations with 〈3D〉 models we neglected the information about
the actual velocity field and instead assumed a fixed microturbulence of ξturb = 1.0km/s for all considered
stellar parameters. To include an average velocity field, we find that a two-stream approach only is capable
of doing so, since otherwise a single-direction oriented average velocity field is overestimating the Doppler
shifts into this direction.

Since the line formation calculations with 〈3D〉 models are obviously much faster, we use the 〈3D〉Ross
averages first to estimate the logg f range, which would result in the designated range in Wλ . We then
consider ten equidistant logg f values within that range for the 〈3D〉 and full 3D models. Finally, we
interpolate the curves-of-growth (logg f vs. Wλ ) using a spline interpolation and retrieve the ∆ logg f

difference between 〈3D〉 and 3D synthetic lines at a given equivalent width; i.e., ∆ logg f = 〈3D〉− 3D.
This curve-of-growth approach is commonly applied to derive the differences between 〈3D〉 and 3D lines.
For trace elements, changes in line strength due to ∆ logg f are equivalent to changes due to abundance
variations ∆ logε; hence, the ∆ logg f differences can be interpreted as 〈3D〉− 3D abundance corrections.
With four fictitious lines and four representative models with two metallicities, we covered 32 cases in
total. In Fig. 5.1 we show a series of fictitious Fe I spectral line profiles with increasing line strength for
higher logg f values computed from the solar simulation, including an illustration of the curves-of-growth
as an example.

Full 3D line profiles are marked by line shifts and asymmetries owing to the non-thermal Doppler
broadening introduced by the up- and downflows of the convective motions, which are present in the
photosphere due to overshooting (Asplund et al., 2000a). In 3D RHD modeling, the velocity field emerges
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naturally from first principles. The buoyant hot rising plasma in the granules blue-shifts the line, while the
fast downdrafts introduce a redshift. Besides the convective motions, another source of line broadening are
the inhomogeneities in the thermodynamic independent variables, ρ and T . The ascending granules are
hotter and less dense than the downdrafts (see Fig. 3.38). The velocities and inhomogeneities prevailing at
formation height of the individual lines will lead to line shifts and asymmetries. The 〈3D〉-based lines are
symmetric without any shifts, however, we can compare the equivalent widths of lines from calculations
based on full 3D models and on the different average stratifications.

We probed different formation heights with the parameters of our fictitious lines. The Fe II lines form
deeper in the atmosphere, closer to the continuum forming layers, while the Fe I lines are more sensitive to
the intermediate heights of the atmosphere. Spectral lines with lower (higher) excitation potential form at
smaller (larger) optical depths. We showed in Sect. 3.4 that the metal-poor model stellar atmospheres ex-
hibit rather different temperature stratification at the top depending on the averaging method, consequently
the latter should show the largest differences between the 〈3D〉 models.

5.2 Two components of the line profile

In order to elucidate the individual contribution from the granules and the intergranular lane on the line
shape and asymmetry, we show in Fig. 5.2 (top panel) a Fe I line computed from a single solar simulation
snapshot (black filled circles). We averaged the spatially resolved line profile separated into (bright) gran-
ules and (dark) intergranular lane (up- and downflows; blue and red lines respectively) based on a threshold
at 90% from the mean continuum intensity, Ic = 〈Ic〉, which resulted in a filling factor of fup ∼ 2/3 and
fdn ∼ 1/3 (see Stein & Nordlund, 1998, ) for the up- and downflows respectively. We find the following
renormalization to work well for the intensity profile,

Ĩup =
(〈

Ĩup
〉

λ
−∆Ĩc

up
)

fup + fdn (5.1)
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Figure 5.3: Normalized flux vs. wavelength for a Fe I and Fe II line (top and bottom panel respectively) for different stellar parameters
comparing full 3D and the 〈3D〉 two-stream models (solid and dashed lines, respectively). In each column, one stellar parameter is varied,
while the other two are fixed (indicated); left panel: effective temperature; middle panel: surface gravity; right panel: metallicity. Furthermore,
the respective lines computed with the 〈3D〉 models are also shown (dotted lines). Note the different the ordinates.
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Ĩdn =
(〈

Ĩdn
〉

λ
−∆Ĩc

dn

)

fdn + fup (5.2)

with Ĩ = I/Ic being the normalized intensity, 〈. . .〉λ the average over the wavelengths and ∆Ĩc
ud =

〈

Ic
ud/Ic

〉

−1
the continuum-correction of the up- and downflows. The bracketed term in Eq. 5.1 (5.2) for the upflows
(downflows) is weighted by its respective filling factor fup ( fdn) and renormalized to continuum level of
1 with the shift by the complementary filling factor fdn ( fup). By considering relative intensity values we
find the separation being more accurate compared to absolute values. The superposition of the individual
components is achieved with Ĩ = Ĩup + Ĩdn − 1 (black line), which restores the undivided line profile (black
filled circles), since the separation is still keeping the total line depression constant (the shift by 1 is the
continuum-correction). From Fig. 5.2 one can depict the individual components, being the stronger blue-
shifted upflows and the weaker red-shifted downflows that leads to the complete line profile. Furthermore,
one can notice a distinct difference in the line depth of the individual components, which unveils the fact
that the effect of the downflows being restricted to the upper part of the bisector, while the lower part is
dominantly arising form the upflows in the granules.

Furthermore, we performed line formation calculations in the framework of a two-stream model ap-
proach with two mean 〈3D〉 models separated in the up- and downflows (see bottom panel in Fig. 5.2).
Therefore, we computed two line profiles individually based on the 〈3D〉up and 〈3D〉dn model, which in-
clude temperature, density stratification and rms-velocity retrieved from the up- and downflows separately.
We find that weighting the rms-velocity by the depth-dependent filling factors leads to better results, since
otherwise these are overestimating the velocity field. Then, the resulting two normalized intensity profiles,
Ĩ∗up and Ĩ∗dn, are weighted and renormalized with a single filling factor, fup = 2/3 and fdn = 1/3, similar
to the above (Ĩ∗ud = (. . .) in Eqs. 5.1 and 5.2). Finally, the two components are superposed to a singe line
profile as well with Ĩ∗ = Ĩ∗up + Ĩ∗dn − 1. We note that the two intensity profiles, Ĩ∗up and Ĩ∗dn, include the same
microturbulence that leads to the same line strength for a standard 〈3D〉 model compared to the full 3D
line. Finally, the combined intensity profile is convolved with macroturbulence (Gaussian broadening) in
order to match the line depth, and the matching value is also applied for Ĩ∗up and Ĩ∗dn. The resulting line
profiles are also shown in Fig. 5.2 (bottom panel), which are interestingly often very close to the full 3D
profile. However, we note some slight variations in accuracy with different lines or stellar parameters (see
Fig. 5.3, which includes more line profiles for other stellar parameters).

5.3 Spectral line formation: 〈3D〉 and 3D LTE calculations

To explore the differences between the line formation based on 〈3D〉 and full 3D models, we have chosen a
set of representative models consisting of a main-sequence (MS) star (Teff/ logg = 5777 K/4.44), a turn-off
(TO) star (6500/4.0), a red-giant (RG) star (4500/2.0), and a dwarf (4500/5.0). For all these models, we
considered metal-poor analogs with [Fe/H] =−3.0 in addition to the solar metallicity.

5.3.1 Comparison of 〈3D〉 and 3D line formation

We show an overview of the differences between the 〈3D〉 and the full 3D calculations in Figs. 5.4 and
5.5. The first noticeable observations are the systematic trends in form of a slope towards higher line
strength, which are due to the fixed value of the microturbulence, ξturb, with 1km/s in the 〈3D〉 models.
An increasing slope with line strength indicates an underestimation of ξturb, in particular, for the TO and
RG (see panel 5 to 12 in Fig. 5.4 and 21 to 28 in Fig. 5.5). By contrast, in cool dwarfs, the adopted
ξturb seems to be overestimated due to the increasing negative trends in ∆ logε . These findings agree with
comparisons of 1D models with observations (e.g., Edvardsson et al., 1993; Bensby et al., 2009), where
they needed only a small microturbulence to correct for trends in ∆ logε . We tested this by applying a
number of ξturb values1, which showed that a fine-tuning can rectify the present slope. However, for the
sake of clarity, we prefer to limit the already large number of stellar and line parameters to just a single
ξturb.

1We find a reduction of the slope in the curve-of-growth with ξturb = 0.5, 1.5, 2.0km/s for the dwarf, RG and TO models respec-
tively (while a fine-tuning could flatten it completely).
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Figure 5.4: Overview of the 〈3D〉−3D line formation differences given in abundances displacement ∆ logε
vs. equivalent width Wλ for the Fe I and Fe II fictitious spectral lines with the excitation potentials χexc = 1.0
and 4.0eV. Showing the representative selection including the Sun, TO, RG and dwarf (from top to bottom;
notice their different ordinates). The averages on layers of constant geometric height 〈3D〉z (blue dashed),
constant column mass density 〈3D〉m (black dotted), constant Rosseland optical depth 〈3D〉Ross (black solid
lines) and at 500 nm 〈3D〉500 (red dashed triple-dotted lines) are indicated. For these averages, we show the
solar (black) and sub-solar (blue lines) metallicity. Furthermore, we show 1D models (red solid), T Ross

rad -
averages (green solid) and 〈3D〉HSE

Ross (green dashed lines). The microturbulence of ξturb = 1.0km/s has been
used throughout.
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Figure 5.5: Similar as Fig. 5.4 but showing overview of the abundance corrections for metal-poor models.
Note the larger ranges of the y-scales.
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Weak lines are insensitive to ξturb, yet they show variations in strength, which can be attributed to
differences in the mean 〈3D〉 stratifications of temperature and density. Interestingly, when one compares
this regime between the different averages in Fig. 5.4, the averages on column mass density are often the
closest to the full 3D spectral lines and perform in this respect often better than the averages on constant
Rosseland optical depth. The stratification on constant optical depth at 500 nm always shows spectral
line features slightly closer to the full 3D case compared to the Rosseland optical depth. However, this
is because we chose our fictitious iron lines at 500nm, which leads to an inherent advantage of 〈3D〉500
over 〈3D〉Ross. The geometrical averages show large deviations in the case of the TO and RG star at solar
metallicity (see panels 5 to 12).

The differences in the metal-poor case (Fig. 5.5) are clearly greater than in the solar metallicity models
(Fig. 5.4). It is obvious that 〈3D〉 models at low [Fe/H] struggle to reproduce the 3D case properly, in
particular, Fe I lines with small excitation potential, and the differences are particularly pronounced for the
hotter metal-poor TO stars (panel 21). This is in accordance with our findings from Sects. 3.4 and 3.5 at
low metallicity and high Teff. The differences in the statistical properties among the various 〈3D〉 averages
increases at low [Fe/H]. In particular, the widths of the temperature and density distributions become
broader at lower metallicity (Fig. 3.40), and their mean values become increasingly less well-defined in its
statistical representation. The reason for the broadening is the enhanced contrast of the reversed granulation
due to the reduced radiative re-heating with weak spectral line features at low metallicity (see Sect. 3.6).

To facilitate an overall comparison between the different averages with respect to line formation, we
show in Fig. 5.6 (left) the mean abundance deviations for weak lines that are determined between Wλ =
5 − 20mÅ. For the model representing the Sun, the differences between 〈3D〉 and 3D are in general
small: . 0.1dex. For the TO stars at solar [Fe/H], the differences are considerably larger: . 0.2dex.
We find the largest deviations for Fe I lines with small excitation potential χexc = 1.0eV, which are the
most temperature sensitive; in particular, the geometrical averages exhibit strong differences. At lower
metallicity, the differences increase, in particular, for the TO and RG model with . 0.4dex, and the line
profiles resulting from the mean stratification on Rosseland optical depth shows the largest deviation to the
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full 3D line profiles for metal-poor TO star. In general the deviations become smaller at higher χexc and for
Fe II lines. The dwarfs show very small differences compared to the full 3D case. These models exhibit the
lowest velocities and temperature contrast with the mean stratifications closely resembling the 1D models
based on same EOS and opacities.

The averages on column mass density 〈3D〉m typically exhibit the best agreement with the predictions
of the full 3D model, in particular, at low metallicity. This stems from the fact that a lower contrasts will
result in more accurate and realistic averages. The geometrical averages 〈3D〉z exhibit large deviations
(in agreement with Uitenbroek & Criscuoli, 2011), especially for the TO stars. When one considers the
comparison of the temperature and density in Figs. 3.33 and 3.34, then one can deduce that the models with
cooler stratifications are closer to the full 3D line strength. Both models, averaged on constant optical depth,
〈3D〉Ross and 〈3D〉500, lead to systematically larger deviations from the full 3D line formation calculations
than those obtained with 〈3D〉m models, in particular, for low excitation Fe I for the metal-poor TO star.

The resulting spectral line features with the logarithmic averages 〈3D〉log are similar to plain 〈3D〉Ross
(therefore we refrain from showing the latter), while averages enforcing hydrostatic equilibrium, 〈3D〉HSE,
clearly fail to closely reproduce the results from 3D line formation (similar to Uitenbroek & Criscuoli,
2011) and lead to rather large errors in the line formation, in particular, for the metal-poor TO model (Fig.
5.5). Furthermore, both the flux-weighted and brightness-temperature averages, T 4 and Trad, are in general
very close to the plain average, but often slightly less accurate, which is a somewhat surprising result (see
Trad in Fig. 5.6).

Another meaningful way to test the performance of the different averages can be accomplished by
comparing the deviation of the center-to-limb variation (CLV) of the continuum intensity. In Fig. 5.7, we
show the differences of the continuum intensity, δ Iµ = (I

〈3D〉
µ − I3D

µ )/I3D
µ , i.e. between the 〈3D〉 and full

3D models. We find in general that the 〈3D〉 models overestimate the continuum intensity at disk center
(µ = 1), while towards the limb (µ = 0.2) the 〈3D〉 often underestimate the intensity. The deviations of the
different averages are similar to the above findings with the comparison of the curve of growth. The disk-
center intensities of the 3D RHD models are matched best by the averages on column mass density 〈3D〉m,
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whereas the geometrical averages 〈3D〉z display the largest discrepancies, in particular, for the RG model
at solar metallicity with an overestimation by ∼ 60%. The results for the averages on optical depth are
once again midway between the two other kinds of averages. An interesting aspect is that the brightness-
temperature averages Trad fail to render the continuum intensities exactly, which has to be interpreted as a
consequence of the non-linearity of the Planck function. Our findings are qualitatively similar to those by
Uitenbroek & Criscuoli (2011).

5.3.2 Cautionary remarks

We remind the reader that LTE is often a very poor assumption at low [Fe/H] (e.g. Asplund, 2005) and
thus that the abundance differences presented in Figs. 5.4 and 5.5 should not be added indiscriminately to
results from standard 1D LTE abundance analyses. In LTE, the difference between 3D and 1D models can
be very substantial for metal-poor stars for especially low excitation and minority species like Fe I (e.g.,
Asplund et al., 1999b; Collet et al., 2007), but those same lines also tend to be sensitive to departures from
LTE (e.g., Bergemann et al., 2012; Lind et al., 2012) in 1D and 〈3D〉 models, mainly due to over-ionization
and over-excitation in the presence of a hotter radiation field than the local kinetic temperature (i.e., Jλ >
Bλ ). Although not explored for more than Li, one would expect that the very cool upper atmospheric
layers, hence steep temperature gradients in metal-poor 3D models compared with classical 1D models,
are even more prone to substantial non-LTE effects (e.g., Asplund et al., 2003; Sbordone et al., 2010). In
particular, neutral species of relatively low ionization energy, such as Fe I, typically suffer from significant
positive NLTE abundance corrections due to over-ionization (e.g., Asplund, 2005; Bergemann et al., 2012;
Lind et al., 2012) with low excitation lines are especially prone. For low-excitation Fe I lines, one would
therefore expect the 3D NLTE line strengths to be more similar to the 1D case than the 3D LTE results due
to the positive NLTE corrections, partly compensating for the negative 3D LTE corrections. We therefore
caution the reader that the 3D LTE abundance corrections presented here (3D LTE - 1D LTE) for Fe I lines
are likely to be too negative compared to the NLTE case (3D NLTE - 1D NLTE). As a corollary, it is
inappropriate to apply a 1D NLTE abundance correction to a 3D LTE-inferred abundance when the latter
is very significant, as is often the case at low [Fe/H].

5.3.3 Comparison with 1D models

In Sect. 3.3 we compared the 〈3D〉Ross stratifications with 1D models computed with the same EOS and
opacity as used in the STAGGER-code, in order to quantify the differences arising solely from 1D modeling
based on MLT. The line formation calculations with 1D models perform quite well at solar metallicity, with
the exception of the cool dwarf models (Fig. 5.4). However, in the metal-poor case, the lines based on the
1D models obviously do not correctly reproduce the full 3D lines by overestimating the T -stratifications
due to the enforcement of radiative equilibrium in the upper atmosphere (Fig. 5.5). This is, in partic-
ular, distinctive for low-excitation neutral iron lines as previously found by Asplund et al. (1999b) and
Collet et al. (2007). Kučinskas et al. (2013b) present similar findings for a solar-metallicity RG simulation
as well, namely that neutral iron lines based on 1D MLT models are slightly closer to the full 3D lines
compared to the 〈3D〉 lines.

We note that in our 1D models the turbulent pressure is neglected, and the mixing length is fixed with
αMLT = 1.5, both choices that will influence the stratification significantly. Since their effect is strongest in
convective zone below the optical surface and the line formation region, the influence in terms of abundance
is likely small; in fact, Kučinskas et al. (2013b) only found a very small effect < 0.02dex for the reduction
in αMLT from 1.5 to 1.2. However, for metal-poor giants the influence can be greater for lines with very
high excitation potential.
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Figure 5.8: Normalized flux vs. wavelength for a Fe I and Fe II line (top and bottom panel respectively; solid lines) for different stellar
parameters with an enlarged, off-center view of the bisector (dashed lines). In each column, one stellar parameter is varied, while the other two
are fixed (indicated); left panel: effective temperature; middle panel: surface gravity; right panel: metallicity. Furthermore, the respective lines
computed with the 〈3D〉 models are also shown (dotted lines). Note the different the ordinates.
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5.4 Fe line shapes, shifts and asymmetries

5.4.1 Line shape

Real spectral absorption lines exhibit a more complex shape than just a Gaussian or Lorentz profile due
to the nature of turbulent convection prevailing at their origin in the atmospheres of cool stars, and not to
mention that actual spectral lines form over a range of depths and are sensitive to local physical conditions
as well as, in general to non-local effects such as radiation generated in other parts of the atmosphere. The
convective velocities are imprinted in the line profile in form of Doppler shifts, which introduce shifts and
asymmetries, thereby also changing the line shape and strength. In Fig. 5.8, we illustrate for a single Fe I

and Fe II line (top and bottom panel respectively) overviews of profiles including the bisectors, where one
stellar parameter is varied, while the two others are fixed, in order to illustrate the individual influence of
Teff, logg and [Fe/H] on the line shape and asymmetry.

The variation of the line profiles and asymmetries is rather systematic, namely the line strength is
decreasing for Fe I (increasing for Fe II) with hotter Teff, while it reduces with lower [Fe/H], and the asym-
metries are increasing for higher Teff and lower [Fe/H] for both Fe I and Fe II. The opposing trends of the
Fe I and Fe II line strength with Teff stems from the ionization of neutral iron at higher temperatures. In the
case of the Fe I line, towards lower logg, the line strength is changing only little, while for the Fe II line,
the line strength is rising significantly. In fact, the Fe II line strength shows always a clear ascend for lower
logg, while for Fe I lines this is the case only for cooler Teff, and hotter ones show even smaller trends with
logg (compare the range in line strength with logg in Fig. 5.9). Also, towards giants (lower logg) the
asymmetries are increasing considerably for both lines due to the larger amplitude and velocity asymmetry
between up- and downflows (see Fig. 5.17). The wider and stronger line profiles in giants exhibit a more
pronounced red-shift in the upper bisector (see lines with logg = 2.0 in middle panel of Fig. 5.8) due to the
increasing influence of the contribution from the downflows on the red wing. For the highest Teff (6500K)
or the lowest logg (2.0) the largest span in asymmetry is achieved for both lines (see Fig. 5.8; also bottom
panel of Fig. 5.12).

The height of line formation is in general very important, namely weaker lines show more pronounced
line shifts and asymmetries, since they tend to be formed in deeper layers (see Sec. 5.4.6) where the
maximum velocities and temperature contrasts happen (τRoss ∼ 1; see Sec. 5.17). Stronger lines have their
formation height shifted outwards where velocity and contrast is lower and less well anti-correlated (see
Fig. 5.17). Similarly, Fe II lines are formed deeper than Fe I, since their number density increases in the
deeper layers with the temperature.

It is customary to distinguish between the central and outer regions of a line profile with respect to
central wavelength, that is, between the core and the wings. The line core is the (unique) location depicted
by the minimum in flux or intensity, i.e. lc = min [Fλ ]. The wings are formed in deeper layers leading to a
/-shape in the bisector arising from the granules (see Fig. 5.2), while the line core originates from higher
depths, therefore, with increasing line strength the line asymmetry of the line core (line shift) is receding
after a maximum, leading with the \-shape to the typical C-shape of the bisector (see Fig. 5.8). Therefore,
the final shape of the bisector is the result of a superposition of the blue-shifted contribution from the up-
flows arising from the granules and a red-shifted part from the downflows in the intergranular lane. The
line profile is often dominated by the granules, since these exhibit a brighter intensity, steeper temperature
gradients and more importantly larger area contribution (filling factor) compared to the downflowing inter-
granular lane. However, this correlation decreases quickly above the optical surface. Furthermore, the line
shape and bisector depends on the vertical velocity field, its amplitude, asymmetry and the extent of over-
shooting into convective stable layers (see Sec. 5.4.6). The radial p-mode oscillations generally broaden
the line profile, however without altering the overall line strength, since the vertical oscillations cancel out
on the temporal mean.

Additionally, we included in Fig. 5.8 also the symmetric line profiles resulting from the corresponding
mean 〈3D〉 models, in order to depict the influence from the inhomogeneities and in particular, the vertical
velocity field resulting from convection and granulation. The homogenous 〈3D〉 models include micro-
and macroturbulence in order to yield the same line strength and depth respectively as the considered full
3D line, therefore, one can isolate visually the Doppler shifts arising from the realistic 3D velocity field. At
cooler Teff the line shape is more symmetric, therefore the differences are rather small, while towards higher
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line shifts the differences grow apparently. Due to the Doppler shifts the 3D lines are more dominantly
blue-shifted, therefore one finds larger line depression (absorption) on the blue half of the profile, and a
lower one on the red part compared to the symmetric 〈3D〉 line.

5.4.2 Line strength

The equivalent width is the area-integral of the spectral absorption line profile, Wλ =
∫

(1−Fλ/Fc)dλ ,
and also referred as the line strength. Therefore, it is a quantitive measure, how effective a spectral line is
absorbing radiation from the continuum radiation. In the following we want to discuss the variation of line
strength for Fe I and Fe II with stellar parameters.

From the overview in Fig. 5.8 one can infer immediately that the line strength is for Fe I increasing in
general for lower Teff (higher Teff for Fe II) and higher [Fe/H]. The line strength depends in the first place on
the number density of the absorbing species, i.e. nFe I and nFe II , which in turn depends on the excitation
(Boltzmann eq.) and ionization level (Saha eq.). The iron abundance is given by [Fe/H], therefore, the
iron number density is proportional to it, i.e. nFe ∝ [Fe/H], hence the nFe I and nFe II as well. At hotter
temperatures the minority species, neutral iron (Fe I), is getting increasingly ionized, therefore, the nFe I
decreases in favor of nFe II and the line strength of Fe I lines decreases, while for Fe II it increases2. At
cooler temperatures the opposite is the case, namely the minority species, Fe I, is increasing dramatically in
its number density and Fe II is decreasing. On the other hand, nFe II is less sensitive to Teff and temperature,
since most of Fe is in Fe II, and therefore it is changing only little. Another reason for the decline in line
strength towards hotter Teff is the extremely temperature-sensitive H−-opacity in the subsurface region of
cool stars (κ ∝ T 10), which increases its continuum opacity (see Gray, 2005) due to the higher electron
pressure with hotter T . To elucidate the strong (and opposite) dependence on Teff and [Fe/H], we show
the line strength for an individual Fe I and Fe II line in Fig. 5.9 (in particular, compare ranges and slopes

2Higher ionization degrees than the first are occur at much higher temperature for iron, and since we consider cool stars in this
work, these are irrelevant.
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between Fe I and Fe II in the latter). The metallicity has the strongest impact on the line strength, and the
effective temperature is also very important, while the surface gravity changes the Wλ only little or much
depending on the line at consideration. We note that at cooler Teff we find the influence of logg being
in general more pronounced for Fe I lines, while Fe II lines are less sensitive to logg. Moreover, we find
that the hot metal-poor stars to have very small Fe I line strength, while the cool metal-rich ones show the
largest ones. In the case of Fe II lines the Teff-dependence is qualitatively the opposite to Fe I, since the
ionization of neutral iron increases nFe II, thereby the line strength. One finds also a wider range in logg

for Fe II, while for Fe I the dependence is much smaller.
Now, we evaluate the difference in the line strength between the full 3D predictions and the 〈3D〉

models without any microturbulence, i.e. δWλ =W3D/W〈3D〉− 1. In Fig. 5.10 we display the average dif-
ference separated in Fe I and Fe II lines with stellar parameters. We remark that the individual lines exhibit
distinctive values between different lines, however, the average values depict qualitatively an overview of
the variations. The difference δWλ quantifies the effect of the non-thermal Doppler broadening, since the
〈3D〉 models include no velocity field or microturbulence. As expected the Doppler broadening due to the
convective velocities is enhancing the line strength of the full 3D lines, with the consequence of the latter
being stronger than the 〈3D〉 lines. The enhancement in Wλ is increasing for hotter Teff, lower logg and
higher [Fe/H], which corresponds to the variation of the vertical rms-velocity (see Fig. 5.18). The trends
of δWλ with stellar parameters are between Fe I and Fe II in general qualitatively rather similar. Lines with
higher excitation potential energy feature a smaller range in δWλ .

5.4.3 Line width and depth

In order to depict the variations of the shape of a line profile with stellar parameters, we determine the line
width and depth from fictitious Fe I lines that has the same line strength (Wλ = 80mÅ). The line width,
lw, is quantified by the full-widh-at-half-maximum (FWHM) of the line profile, and states a measure for
the Doppler shifts experienced from the velocity field. From Fig. 5.11 (top panel), one can obtain that
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the line width increases for higher Teff and [Fe/H], and lower logg, which correlates with the variations
of the vertical rms-velocity for the atmosphere models (see Fig. 5.18). The line depth is the relative flux
or intensity of the line core, ld = 1−min [Fλ/Fc], and depicts the maximal absorption from the continuum
radiation of a line. The line depth shows a clear anti-correlation with the line width for different stellar
parameters (bottom panel in Fig. 5.11). However, the line depth is declining faster than the line width is
increasing, which means that the line profile is becoming flatter and broader, when considering the same
line strength. This broadening of the line profile for different stellar parameters is a consequence of the
higher velocity amplitudes leading to larger Doppler shifts. The aspect ratio between depth and width,
adw = ld/lw, is diminishing very quickly for hotter Teff, lower logg and [Fe/H] for Fe I lines. In the case of
Fe II lines, the variation with Teff is slightly different, namely it increases towards higher Teff until 5500K
and drops above, and the largest adw being slightly smaller. In general the aspect ratio is increasing with Wλ ,
reaching a maximum around 50mÅ, and then decreasing, while for higher χexc it is smaller. The changes of
the width, depth and their aspect ratio are for 〈3D〉 qualitatively similar, however their amplitude is rather
different. This indicates that the flattening of line profile is partly due to thermal broadening as well.

5.4.4 Line shift

When one depicts the wavelength of the line core with lc, then the line shift is given by the difference of
the line core with respect to the wavelength of the line at consideration, i.e. ls = λc −λ , and commonly
quantified in units of velocity. In Fig. 5.12 (top panel), we show an overview of the mean line shift of
the Fe I lines with stellar parameters. Furthermore, we show in Fig. 5.13 an overview of the line shift
against the line strength for various stellar parameters, in order to depict the influence of Teff, logg and
[Fe/H] individually (from top to bottom respectively) for the complete Fe I and Fe II line set (circles and
triangles respectively). Furthermore, for the Fe I lines we performed also least-square linear functional fits
to illustrate the trends with Wλ (red lines). The linear fits consider only Fe I lines, since these cover the
largest span, and the fits are clearer without the contribution of Fe II lines. We depict also the mean line shift
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(grey solid) and the ranges in line strength and shift (vertical and horizontal grey dashed lines respectively)
for the Fe I lines. The lower excitation potential energy, χexc, and line wavelength of the lines are indicated
to illustrate trends with line parameters (blue colors and symbol size respectively). We display also the line
shifts from the fictitious iron lines as well.

In the following we discuss the Fe I lines first. Towards hotter effective temperatures (top panel of
Fig. 5.13), we find the line shifts of Fe I lines to rise considerably (from ∼ 0.1 to 0.8km/s), while the
maximal line strength is diminishing (from 140 to 40mÅ). At higher Teff, one finds convection to operate
less efficient and therefore more rigorous with higher T -contrast and rms-velocity (see Fig. 5.17 or Sec.
3.5.1 for more details). On the other hand, at higher Teff, iron is more likely to be ionized and also the
(continuum) H−-opacity increases as well, hence, both effects are reducing the line strength. We noted that
weaker lines originate from lower depth, where the velocity and T -contrast are larger, therefore imprinting
a larger line shift. The line core of stronger lines are formed at higher altitudes, therefore, their line shift
is weaker (notice the generally smaller line shifts towards stronger lines in Fig. 5.13). Moreover, for
higher Teff the range in line shift and the slope of the linear fits are decreasing. For lower surface gravity
(middle panel), the line shift, its range and the slope of the linear fits are increasing, reach a maximum at
logg = 3.0 and decrease again, while the range in line strength is almost unaffected. For lower metallicity
(bottom panel), the line shifts and line strength are reducing, and the slope of the linear fit are becoming
steeper.

We find in general that the line shifts and strengths are anti-correlated, i.e. for weaker (stronger) lines
their shifts are higher (lower), which arises from the deeper (higher) location of line formation, and the
respectively larger (lower) velocity amplitude (compare top panel of Fig. 5.12 with Fig. 5.9). On the other
hand, lines with lower (higher) excitation potential energy, χexc, exhibit smaller (larger) line shifts. The
lines are on average blue-shifted (negative line shift; see top panel of Fig. 5.12), since the granules occupy
a higher filling factors and intensity contribution over downdrafts. The mean line shift is increasing for
higher Teff, lower logg and enhanced [Fe/H]. Only a few of the strongest lines in giants exhibit red-shifted
line cores, since the relative contribution of the red-shifted downflows in these are pronounced. We find
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Figure 5.13: The line shift vs. line strength for the Fe I and Fe II lines (circles and triangles, respectively)
for different stellar parameter. Also fictitious Fe I and Fe II lines (blue solid and dashed lines) are shown.
The excitation potential energy χexc (blue colors, where brighter refers to higher χexc) and wavelength λ
are indicated (symbol sizes, where bigger refers to higher λ ). In each row, one stellar parameter is varied,
while the other two are fixed (indicated); top panel: effective temperature; middle panel: surface gravity;
bottom panel: metallicity. Furthermore, linear functional fits (red solid), mean (grey solid) and range in
line shift and strength (grey dashed lines) are indicated.
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that the fictitious Fe I and Fe II lines have qualitatively very similar line shifts as the mean line shifts shown
in Fig. 5.12. The latter show a distinct dependence on the line strength.

The Fe II lines exhibit in general similar trends for line strength and shift with stellar parameter as
found for the Fe I lines. However, the ranges in line strength are distinctively smaller and its variations are
much less pronounced, in particular, the line strength is less sensitive to Teff, since it is the majority species.
Furthermore, the mean line shift and the slope of the linear fits are in general higher compared to the Fe I

values.

5.4.5 Line asymmetry

The bisector of a spectral line profile is the set of midpoints that equipartitions the line segments into
two equal halves, depicting the asymmetry arising from the individual Doppler shifts experienced at the
respective heights. A line without asymmetries (e.g., 1D or 〈3D〉 line) has a straight bisector, while a
realistic line profile exhibits a bisector with the characteristic C-shape that results from the superposition of
the contribution from the (strong, blue-shifted) dominant granules and the (weak, red-shifted) intergranular
lane (see Fig. 5.2).

In Fig. 5.14, we show an overview, each including five Fe I and Fe II bisectors (solid and dashed lines,
respectively) that are selected based on their increasing line strength (green colors) for different stellar
parameters. In general, the typical C-shape is present in most of the bisectors, however more or less
pronounced and "uncovered" depending on the line strength. Weak lines feature a blue-shifted bisector
with a typical /-shape depicting only the upper part of the C-shape, where the line core coincides with
the maximal line asymmetry, max [|v|], i.e. maximal absolute velocity shift of the entire bisector. On
the other hand, stronger lines cover a larger optical path and its cores are forming in higher layers above
the overshooting region, therefore, the line centers are less blue-shifted and tend towards zero, thereby
increasingly featuring the entire the C-shape. The maximal asymmetry of strong lines is located around the
mid-height of the line depth.

For higher Teff (top panel of Fig. 5.14), the bisectors increase significantly their ranges, while the
line strength becomes weaker and also more blue-shifted, until the C-shape finally disappears (6500K).
Towards giants (lower logg; middle panel) the line asymmetries (range of bisectors) rise in general, and
the C-shape is getting more pronounced until logg = 3.0 and less below. Furthermore, the upper part of
the bisector recedes towards lower velocity-shifts and are even red-shifted for the lowest surface gravity
(logg = 2.0), since the contribution on the red wing from the downdraft is then dominating towards the
continuum flux. With lower metallicity (bottom panel) the lines are weaker, therefore the bisectors loose
their C-shape until it vanishes eventually, also the range in bisector diminishes. The variations in the line
asymmetry with stellar parameters result from the differences in line strength, continuum level, filling
factor and Doppler shift. We note that considering the variations of a single line with different stellar
parameters changes significantly its shape (see Fig. 5.8).

In Fig. 5.12 (bottom panel) we show the maximal range of the bisectors with stellar parameters, which
are increasing for higher Teff and [Fe/H], lower logg similar to the vertical rms-velocity in the 3D at-
mosphere models (see Fig. 5.17). One would assume that the line asymmetries are correlating with the
velocity field, since these arise from the Doppler shifts. Therefore, we compare the maximal range of the
bisectors with the maximal vertical rms-velocity for different stellar parameters in Fig. 5.16. The line
asymmetries correlate clearly with amplitude of the vertical velocity, only there is a slight scatter due to
the different heights of line formation.

In Fig. 5.15 we illustrate bisectors from the fictitious Fe I line flux profiles for different stellar parame-
ters, which have the same (interpolated) line strength, considering weak (40mÅ) and intermediate (80mÅ)
line strength (top and bottom panel respectively). The basic idea behind this comparison is to isolate and
illustrate the effect and signature on the line profile due to the intrinsic structural differences between the
individual 3D atmosphere models arising solely from the variations in the convective flow properties. We
vary one stellar parameter individually, while the other two are fixed (Teff, logg and [Fe/H]). The three
different excitation potential energies (χexc = 0,2,4) are also considered (solid, dotted and dashed, respec-
tively).

The intermediate strong lines feature often a more explicit C-shape compared to the weak lines with
smaller maximal bisectors, otherwise, the changes with stellar parameters are qualitatively rather similar.
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Figure 5.14: A subset of five bisectors of Fe I and Fe II lines for different stellar parameters (solid and dashed lines respectively), sorted by
increasing line strength, which are indicated (green colors; brighter refers to higher Wλ ). Similar to Fig. 5.13, in each row, one stellar parameter
is varied, while the other two are fixed (indicated); top panel: effective temperature; middle panel: surface gravity; bottom panel: metallicity.
Note the changes in abscissae for the different rows.
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Figure 5.15: Bisectors from fictitious Fe I lines for two line strengths (40,80mÅ; top and bottom panel respectively) and three different
excitation potential energies (0,2,4eV; solid, dotted and dashed lines respectively) for different stellar parameters. In each column, one stellar
parameter is varied, while the other two are fixed (indicated); left panel: effective temperature; middle panel: surface gravity; right panel:
metallicity. Furthermore, the respective lines computed with the 〈3D〉 models are also shown (dotted lines).
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For hotter Teff and lower logg, their effect on the weak and intermediate strong lines is rather similar,
namely the line depth is decreasing (for the same line strength) and the line width is rising, which means
that the line shape is becoming increasingly flatter and broader (see also Sec. 5.4.3), while the line shift and
maximal bisector is enhancing considerably, primarily due to concomitant higher velocity and T -contrast
(see Sec. 5.4.6). On the other hand, at lower metallicity the changes in the line shape are less pronounced,
only the exhibited blue-shifts are lower due to the smaller level in velocity and T -contrast. In the case of
the weak lines (top panel) with lower Teff and [Fe/H], higher logg the bisectors are increasingly uniform
over the entire line depth, and the C-shape is less distinct, since weak lines are arising from a smaller extent
in height. The variations of the fictitious Fe II are rather similar to those by Fe I, therefore we refrain from
showing them. The only noteworthy differences are the slightly smaller ranges in line shift, depth and
maximal bisector for fictitious Fe II lines, while the giants feature a stronger influence from the red-shifted
downflows. Lines with higher excitation potential energy depict in general more blue-shifted bisectors,
since these lines form in deeper layers with higher velocity and T -contrast.

5.4.6 Conditions at the height of line formation

In the following we want to discuss the different physical conditions based on the properties of the velocity
and temperature prevailing in the 3D RHD model atmospheres, which are in the end responsible for the
various line asymmetries we seen above. In Fig. 5.17, we show the vertical rms-velocity, vz,rms, the
asymmetry between up- and downflow rms-velocity, δvup,dn, temperature contrast, δTrms, the asymmetry
between up- and downflow temperature, δTup,dn, the correlation function of the temperature and vertical
velocity, C [vz,T ], and the filling factor of the upflows fup.

In the superadiabatic region (SAR) just below the optical surface (logτRoss > 0) the vertical rms-
velocities and temperature contrasts are reaching their maxima, since at the thin photospheric transition
region the radiative losses from the upflows generate large entropy fluctuations, which drives essentially
convection (see Nordlund et al., 2009, for more details). Further above the convection zone ends, there-
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Figure 5.17: The vertical rms-velocity and its asymmetry (top); T -constrast and its asym-
metry (middle); correlation function C [vz,T ] and filling factor (bottom panel) shown against
the optical depth for models with logg = 4.5 and solar metallicity. The different Teff’s are
color-coded (red/orange colors).
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fore, vz,rms and δTrms are declining towards the upper layers. Also, the asymmetries between the up-
and downflows in velocity and temperature drop fast, while in convection zone, in particular, the SAR,
δvup,dn and δTup,dn are rather large. Furthermore, below the optical surface, one can obtain a tight (anti-
)correlation3 between the vertical velocity and temperature due to convective transport of energy, while
above the correlation is distinctively smaller (see C [vz,T ] in Fig. 5.17). The convective heat transport is
established by the tight correlation between the buoyant upflow that carries the heat-excess to the optical
surface. At the optical surface the convection zone ends, therefore the correlation declines towards zero.
Due to this one can estimate the extent of overshooting with the zero crossing of the correlation function,
C [vz,T ], and for higher Teff’s with concomitant higher velocity the overshooting is clearly reaching into
higher layers. On the other hand, the convective properties change obviously with stellar parameters. In
order to illustrate this, we depict the maxima of vz,rms and δTrms in Fig. 5.18 for different stellar parameters.
Both of the latter are increasing distinctively for hotter Teff, lower logg and higher metallicity, in particular,
for higher effective temperatures (see Sec. 3.5.1 for a detailed discussion).

Therefore, one finds in general that lines forming in deeper layers carry larger signatures from the
velocity field and temperature contrast, i.e. resulting in larger line broadening and Doppler shifts, and in
higher layers the opposite is the case. And also the variations of the line shifts and asymmetries with stellar
parameters, which we discussed above, are in agreement with the properties in the 3D RHD models.

3The anti-correlation is due to the negative definition of the upwards direction for the vertical velocities.



Chapter 6

Limb Darkening

The emergent intensity across the surface of stars diminishes gradually from the center of the stellar disk
towards the edge (limb), since the optical depth depends on the angle of view. Rays crossing the stellar
photosphere near the limb reach optical depth unity in layers at higher altitude and at typically lower
densities and temperatures than rays crossing the stellar disk near the center. The intensity is very sensitive
to the temperature, therefore, one observes darker brightness from the limb, which emerges from higher and
cooler regions of the stellar atmosphere. This effect is known as limb darkening. An accurate knowledge
of the surface brightness distribution is essential for the analysis of light curves from stars with transiting
objects in the line of sight, such as exoplanets and eclipsing stellar companions in binary systems. The
variation in surface intensity with angular distance from the stellar disk center is usually expressed in
form of limb darkening laws. Multiple functional basis have been used in the past, from simple linear to
higher order non-linear laws, in order to fit the surface brightness variations predicted by theoretical model
atmospheres leading to so-called limb darkening coefficients (LDC). The individual shape of a transiting
light curve is important, because it contains information about the structure of the external layers of the
occulted stellar object. The observed light curves are interpreted by comparisons with theoretical transit
light curves that are based on limb darkening predictions arising from model atmospheres. More accurate
theoretical atmosphere models will reduce the uncertainties in the comparison, and thereby improving
the quality of the analysis in favor of other transit-parameters like planet-to-star ratio or the inclination
of the orbit. Also, the goodness of the transmission-spectroscopy of exoplanet atmospheres relies on the
underlying theoretical atmospheres of the host stars.

The first approximation of the intensity variation over the disk was performed with a simple linear law.
However, with theoretical 1D model atmospheres it was shown that a linear law is insufficient to describe
the limb darkening of a real star adequately (see van Hamme, 1993). Then, every conceivable alternative
with a two-parameter law was introduced starting from a quadratic, over square root to a logarithmic,
and finally an exponential law (e.g. see Diaz-Cordoves et al., 1995; Claret et al., 1995). These restricted
functional bases are only marginally accurate for a certain range in effective temperatures, therefore, Claret
(2000) introduced a new non-linear power law with four coefficients, which is powerful enough to fit the
LDC for a broad range in stellar parameters, while conserving the flux to a high accuracy. Later on, limb
darkening variations were fitted and provided for the community derived from extensive grids with the
latest model atmospheres (ATLAS and PHOENIX) for several broad band filters, e.g. the Sloan (Claret,
2004), Kepler and CoRoT (Sing, 2010). An extensive comparison of the various limb darkening laws has
been performed by Southworth (2008). All of these developments revealed that a well-considered choice
of an appropriate functional basis is mandatory for a precise description of the intensity variations.

The next step in improving the systematic errors prevailing in the predicted limb darkening laws, hence
transit light curves, was yielded in the underlying model atmospheres, since the limb darkening is mainly
determined by the temperature gradient (see Knutson et al., 2007; Hayek et al., 2012). Therefore, flaws in
the theoretical atmospheric temperature stratification will directly propagate into the predicted limb dark-
ening. The hydrostatic 1D models make use of several simplifications, the most prominent one being the
use of the mixing length theory to account for convective energy transport (Böhm-Vitense, 1958). Cool
late-type stars feature a convective envelope, thereby convective motions are present in the thin photo-
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spheric transition region due to overshooting of convective flows. These stars exhibit a typical granulation
pattern in its emergent intensity due to inhomogeneities arising from the asymmetric up- and downflow-
ing stellar plasma. Therefore, only 3D atmosphere models are able to predict these properties accurately.
With the advent of 3D atmosphere modeling (Nordlund, 1982), which solves from first-principle the hy-
drodynamic equations coupled with a realistic radiative transfer, the deficiencies of the 1D models were
revealed and quantified (see the review by Nordlund et al., 2009). Comparisons of the 3D models with the
Sun showed that these models can predict rather accurately the intensity distribution (Pereira et al., 2013),
while 1D models overestimate the limb darkening of our resolved host star. Bigot et al. (2006) studied the
limb darkening of α Centauri B by comparing its interferometrically observed visibility curves with theo-
retical predictions. The latter is sensitive to the limb darkening, and they found a significant improvement
with the predictions from 3D models. Furthermore, Hayek et al. (2012) showed on the basis of the ex-
tremely accurately measured light curves of the transiting exoplanet HD 209458 that the intrinsic residuals
of the 1D models can be resolved with the more realistic 3D model atmospheres. The largest differences
were found close to the limb, hence during the ingress and egress of the transition. With 1D model pre-
dictions, the well-studied close-orbit Jupiter-like transit planet HD 209458 exhibited priorly systematic
residuals due to the simplified treatment of convection leading to insufficient temperature stratifications
(see Knutson et al., 2007). Furthermore, Chiavassa et al. (2010) derived interferometric visibility ampli-
tude and phase predictions from synthetic stellar disk images, including the center-to-limb variation, based
on 3D RHD simulations for four K giants. They conclude that the stellar granulation pattern is affect-
ing the observed visibility curves and closure phases, therefore, 3D corrections should be considered in
interferometric studies. Chiavassa et al. (2012) compared a 3D model with interferometric observation
from another well-studied star, Procyon, and the resulting stellar diameter prediction from the 3D RHD
simulation is supported by additional independent asteroseismic estimation.

After the first detection of a Jupiter-like extra solar planet through radial velocity detection (Mayor & Queloz,
1995), five years later, eventually a transiting exoplanet around a solar-like star was also found (Charbonneau et al.,
2000). These spectacular landmark discoveries triggered literally a gold-rush in the hunt for new exoplan-
ets. With advanced satellite missions, like Kepler and CoRoT, nowadays up ∼ 230 transiting extra solar
planets have been detected. Both of the mentioned satellite missions operate in the visible spectral range,
therefore, the effects of limb darkening are strong. These sophisticated observations evoke rightfully a
demand in more accurate theoretical limb darkening predictions. In order to fulfill this call, we present in
this work LDCs derived from realistic full 3D synthetic spectra based on a comprehensive grid of 3D RHD
atmosphere models.

In this Chapter I want to address the following key question: how large are the differences in the
predictions of theoretical limb darkening laws between the 3D and 1D models? The search for exoplanets is
currently a very active field and relies on optimal theoretical limb darkening predictions, therefore, deriving
these states an important application for the 3D RHD atmosphere models. In the following, I will introduce
the different limb darkening laws (Sect. 6.1), and discuss the resulting limb darkening coefficients (Sect.
6.2). Furthermore, I will discuss the resulting predicted transit light curves (Sect. 6.3), and the differences
in the limb darkening compared to previous 1D predictions (Sect. 6.4).

The discovered differences are largest at the limb between the 1D and 3D models due to the differences
in the temperature gradients, however, the resulting differences in the transit light curves are very small.
Nonetheless, in high-precision observed transit light curves, the differences can be measured as shown
by Hayek et al. (2012). Furthermore, the use of an insufficient limb darkening law is leading to incorrect
matches with strong deviations at the limb, therefore, we advise the use of the four-parameter law by Claret
(2000).

6.1 Deriving the limb darkening

Based on the 3D RHD models from the STAGGER-grid, we computed a comprehensive library of full 3D
synthetic spectra. Therefore, we used the OPTIM3D-code (see Chiavassa et al., 2009, 2010, for further
details), which is a post-processing 3D radiative transfer code that assumes local thermodynamic equilib-
rium (Sλ (T ) = Bλ (T )). The code considers the realistic velocity field due to convective motions present
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5777K/4.44 6500K/4.00 4500K/2.00 4500K/5.00

8.0 [Mm] 28.0 [Mm] 2400.0 [Mm] 1.4 [Mm]

Figure 6.1: The emergent monochromatic intensity at 500nm shown for eight µ angles: 0.2, 0.3, 0.5, 0.7,
0.8, 0.9, 1.0 (from top to down, respectively) and for a selection of stars: main-sequence, turnoff, K-giant,
K-dwarf (from left to right, respectively) with solar metallicity. Furthermore, we indicated the normalized
mean intensity and the intensity contrast (both in percent).
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Figure 6.2: Spectral energy distribution vs. wavelength for models with logg = 4.5, [Fe/H] = 0.0 and
various Teff (red/orange colors). The continuum flux is also shown (solid black).

in the 3D RHD simulations, thereby taking Doppler broadening and shifts into account. OPTIM3D em-
ploys pre-tabulated extinction coefficients, which are the same as in the MARCS code, thereby accounting
for continuous and sampled line opacities (Gustafsson et al., 2008). We assumed the latest solar compo-
sition by Asplund et al. (2009) consistently in OPTIM3D as in the 3D RHD simulations performed with
the STAGGER-code. In contrast to the RHD-code, the spectral synthesis code computes the large number
of wavelength points with Nλ = 105767 explicitly, thereby raising the computational costs enormously.
We achieve a wavelength resolution with a constant sampling rate of λ/∆λ = 20000, however, we cover
a broad range with λ = 1010.0 to 199960.0 Å. We apply Nt = 10 snapshots for each simulation, while
we keep the horizontal mesh resolution fixed with Nxy = 240. Four (equidistant) azimutal φ -angles are
considered (Nφ = 4), while the center-to-limb resolution is resolved higher with nine µ-angles besides the
disk-center (µ = 0.01,0.05,0.10,0.20,0.30,0.50,0.70,0.80,0.90,1.00). As shown by Hayek et al. (2012)
the numerical resolution of our 3D RHD models and the resolution for the spectral flux computations
are sufficient to predict realistic observed limb darkening laws accurately. The synthetic spectra will be
discussed in a separate work (Chiavassa et al. in perp.).

We show an overview of spatially resolved intensity maps with different inclined µ angles for a selec-
tion of distinct stellar parameters (see Fig. 6.1). These exhibit the typical granulation pattern of cool stars
due to convection. The bright, bulk regions are the hotter upflowing granules, which are interspersed with
the dark intergranular downdrafts. From the disk-center towards the limb, the brightness is diminishing
significantly, and the intensity contrast is also slightly dropping. Moreover, one can also obtain that bright
features are often highly angle dependent.

In Fig. 6.2, we show a subset of the resulting averaged synthetic fluxes in the range 2000− 10000 Å

for a number of dwarfs with solar metallicity. Furthermore, we show also the continuum fluxes as well,
and one can discern spectral absorption features, the prominent one being the Balmer lines (indicated in
the figure). For higher Teff the continuum flux is increasing, while individual spectral absorption features
are changing as well.

The variation of the inclination of the line of sight from the disk-center is parameterized with the
projected polar angle, µ = cosθ , where θ is the angle between the line of sight and the direction of the
emergent radiation. Therefore, the disk-center is depicted with µ = 1, while µ = 0 is the limb. The limb
darkening law is expressed as the variation in intensity with µ-angle that is normalized to the disk-center,
i.e. I (µ)/I (1). The resulting monochromatic intensity depends on the horizontal position x and y, the
viewing angles φ and µ and the time, t, thus Iλ (x,y,µ ,φ , t). In order to yield the mean monochromatic
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Table 6.1: The precision of the functional fits for the different limb darkening laws (see text for details).
Value Lin Quad Sqrt Log Three Four

χ2 1.53 1.20 0.72 13.38 2.13 2.35×10−6

maxδ 1.20 1.79 1.56 2.00 1.37 1.65×10−3

µ 0.07 0.05 0.05 0.08 0.06 0.10

intensity 〈Iλ 〉(µ) from the latter, we average the intensity first spatially, then over the azimutal angles, and
finally over all time steps, i.e.

〈Iλ 〉 (x,y,µ ,φ , t) =
1
Nt

∑
t

1
Nφ

∑
φ

1
NxNy

∑
x,y

Iλ (x,y,µ ,φ , t) .

As next, we compute the inclination-dependent total emergent intensity I (µ) by integrating the mean
monochromatic intensity 〈Iλ 〉 over all wavelength points with

I (µ) =

∫

〈Iλ 〉(µ) dλ .

Then, the total surface brightness variation can be easily derived by normalizing the angular intensities
with the disk-center value, Iµ/I1, and we can fit the various (bi-parametric) functional bases,

Iµ/I1 = 1− u(1− µ), (6.1)

Iµ/I1 = 1− a(1− µ)− b(1− µ)2 , (6.2)

Iµ/I1 = 1− c(1− µ)− d (1−√
µ) , (6.3)

Iµ/I1 = 1− e(1− µ)− f µ ln µ , (6.4)

Iµ/I1 = 1− g(1− µ)− h/(1− eµ) , (6.5)

which are the linear (Eq. 6.1), quadratic (Eq. 6.2), square root (Eq. 6.3), logarithmic (Eq. 6.4) and
exponential (Eq. 6.5) limb darkening law. Also the three-parameter non-linear limb darkening law,

Iµ/I1 = 1− a2(1− µ)− a3(1− µ3/2)− a4(1− µ2), (6.6)

introduced by Sing (2010) is also considered. However, we recommend the use of the standard four-
parameter non-linear functional basis (Eq. 6.7) introduced by Claret (2000), which is the default limb
darkening law in the present study. The four-parameter power law is the fourth order Taylor-series expan-
sion in µ1/2 given by

Iµ/I1 = 1−
4

∑
k=1

ak

(

1− µk/2
)

, (6.7)

This functional basis conserves the flux to better than 0.05% (see Claret, 2000). In order to fit the LDC, we
applied the Levenberg-Marquardt least-square minimization, since Claret (2000) showed that this fitting
method performs best.

To illustrate the performance of the individual functional basis we show in Fig. 6.3 (top panel) the limb
darkening laws of the solar simulation seen in the Kepler filter. The two-coefficient laws are obviously
rather inadequate and show the largest deviations at the limb (µ ∼ 0.0), in particular the linear, quadratic,
logarithmic and exponential law (Eqs. 6.1, 6.2, 6.4 and 6.5), while the square root law (Eq. 6.3) exhibits
a rather good match (it is already known that the square root law performs better for hotter stars, while
for cooler stars the quadratic law is better see Claret 2000). The three-parameter functional basis (Eq.
6.6) is performing well, however, it mismatches the limb rather significantly. The standard four-parameter
non-linear power law (Eq. 6.7) is an excellent functional basis, and due to its versatility the fits result in
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extreme small residuals. In order to depict the precision of the individual laws quantitatively, we list the
average χ2, average maximal relative deviation and average location of the latter from all stellar models
in Table 6.1. The four-parameter law performs for all stellar parameters significantly much better than any
other limb darkening law, therefore, we will discuss subsequently the latter only.

We consider a number of broad band filters b by convolving the response function Sλ , which considers
the transmission of the filter b, with the integration of the intensity,

Ib (µ) =

∫

Sλ 〈Iλ 〉(µ) dλ .

We applied multiple standard broad band filters taken from the SYNPHOT package1, which comprises
Bessel (JHK), Johnson (UBVRI) and Stroemgren (uvby). Additionally we considered individual important
instruments with CoRoT, Kepler2, Manua Kea (JHKLM), Sloan survey (SDSS, ugriz) and HST (ACS,
STIS). In Fig. 6.3 (bottom panel) we show the five different Johnson filters for the solar model. The
brightness distribution and its curvature are becoming more enhanced towards higher wavelength from the
ultra-violet to the infra-red, which is a general feature for all stellar parameters. The optical depth and the
temperature gradient are dependent on the considered wavelength, since radiation at higher wavelength is
emerging from higher geometrical depth.

6.2 The resulting limb darkening predictions

The radiation at disk-center emerges from lower depths, while towards the limb one observes light from
higher layers, where the temperature stratification has dropped very quickly, hence lower (darker) bright-
ness (I ∝ T 4). We mention that the limb darkening has obvious boundary constraints being that the intensity

1http://www.stsci.edu
2http://keplergo.arc.nasa.gov/

http://www.stsci.edu
http://keplergo.arc.nasa.gov/
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Figure 6.4: Disk-center normalized intensity, I (µ)/I (1), against the in-
clination, µ , in the Kepler filter showing the limb darkening for different
stellar parameters. Furthermore, we illustrate also the 1D ATLAS pre-
dictions for comparison (dashed lines), and the deviations ∆ = 1D−3D
(dashed dotted lines), which are enhanced by a factor of 2 and shifted
by +0.2 for clarity.
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is maximal with I (µ = 1) = 1 and minimal with I (µ = 0)≃ 0. Furthermore, we note briefly that the vari-
ation of the limb darkening with stellar parameter depends also on the considered filter, and the results can
differ significantly (see Fig. 6.3).

In Fig. 6.4, we show an overview of different limb darkening variations for various stellar parameters.
One finds in general that the variations are rather smooth and systematic, and the largest differences are
given close to the limb (µ ∼ 0.2), however, the variations with Teff and logg are distinctive for different
metallicities. For higher Teff the decline in brightness exhibits a more pronounced convex curvature between
µ = 0.2−0.7, while at cooler ones it is close to a linear drop. Therefore, hotter models end up with brighter
intensities towards the limb around µ ∼ 0.2 and a steeper drop beyond. For instance for dwarfs with solar-
metallicity we find I0.2/I1 = 0.4−0.6 for Teff = 4500−7000K. In order to illustrate the relative brightening
at the limb for hotter dwarfs with solar metallicity, we show synthetic stellar disks in Fig. 6.5 with higher
Teff. Towards giants (lower logg) the brightness is higher than for dwarfs, however the changes are more
subtle compared to the effective temperature. At lower metallicity, we find the differences with Teff between
metal-poor dwarfs (logg = 4.5, [Fe/H] = −3) being distinctively smaller, so that a pronounced curvature
is given even for the coolest effective temperature (compare bottom panels in Fig. 6.4). In fact, we find
basically no increase with Teff around µ ∼ 0.2 (I0.2/I1 = 0.59− 0.61). As we show further down, the T -
insensitivity of the limb darkening at [Fe/H] = −3 arises due to the temperature gradient. Claret (2000)
had also found an enhanced curvature at lower metallicity with 1D models. The hottest and most metal-
poor dwarfs are the brightest at the edge, and the sharp drop is the steepest. Furthermore, we note that the
center-to-limb variation curves for metal-poor models cross the corresponding ones for solar-metallicity
models with otherwise the same stellar parameters (Teff), with the exception of the models at high Teff,
however, this is not the case towards higher Teff. On the other hand, the metal-poor giants are more similar
to the solar-metallicity case, and exhibit also a clear Teff sensitivity.

As next, we want to discuss the individual coefficients for the four-parameter limb darkening law (Eq.
6.7). Therefore, we show in Fig. 6.6 the four coefficients for different Teff and [Fe/H] and logg = 4.5,2.0.
Towards higher Teff both coefficients, a2 and a4, are increasing until 6000K, then above they decrease,



6.3 Transit light curves 133

while the coefficients a1 and a3 vary the opposite at solar metallicity. For lower [Fe/H] the T -dependence
is inverted for ak and the even coefficients, a2 and a4, are decreasing, and the odd ones, a1 and a3, are
increasing. Another aspect worthy of attention is the correlation between the coefficients with half-integer
exponents in µ (a1 and a3), and integer one (a2 and a4) with Teff and [Fe/H] (compare left with right
panels in Fig. 6.6). In the Kepler filter we find the correlations to amount with C [a1,a3] = 0.82 and
C [a2,a4] = 0.91 for all stellar parameters. Furthermore, the half-integer exponents anti-correlate with
the integer ones (compare top with bottom panels in Fig. 6.6). While the distant coefficients are less
anti-correlated with C [a1,a4] = −0.76, we find the anti-correlation between the successive coefficients
being much tighter with C [a1,a2] = −0.95 and C [a3,a4] = −0.99. Claret (2000) noted also correlations
between the coefficients. The coefficients ak of the four-parameter law can be decomposed and considered
individually. Then the integer exponents with the coefficients a2 and a4 are leading to a linear and quadratic
polynomial respectively, which are describing the general slope of the limb darkening. On the other hand,
the half-integer exponents with the coefficients a1 and a3 are square root like functions, and are responsible
for the curvature towards the limb.

The coefficient u for the linear limb darkening law (Eq. 6.1) is rather crude, however, it has the major
advantage of simplicity, since the linear law reduces the complex shape of the limb darkening into a single
value. We display in Fig. 6.7 u against Teff for different stellar parameters (top panel). A larger value in
u relates to a steeper drop in intensity and indicate lower brightness at the limb, and a lower value for u

results in brighter limbs (see Eq. 6.1). The coefficient u is mainly sensitive to the effective temperature
and is decreasing with higher Teff, and for different logg and [Fe/H] the differences are rather small. As a
remark we note that the linear coefficients a and c from Eqs. 6.2 and 6.3 are similar, while the quadratic and
square root coefficients, b and d, behave oppositely and increase for higher Teff (not shown). The values
for u ranges from 0.56 to 0.77 in the Kepler filter, which would yield I = 0.44 and 0.23 at the limb (µ = 0)
respectively (the global range in u is from 0.03 to 1.05).

With a linear approximation of the Planck function one can derive the slope of the linear limb darkening
law, u (e.g. Gray, 2005; Hayek et al., 2012), which depends primarily on the temperature gradient at the
optical surface and is given by

u
′
λ ≈ loge

Bλ (T (τλ = 1))
dBλ

dT

∣

∣

∣

τλ=1

dT

d logτ

∣

∣

∣

τλ=1
(6.8)

The approximation implies that a steeper temperature gradient at the optical surface will lead to stronger
(steeper) limb darkening (larger u). In Fig. 6.7 (middle panel) we show also u

′
500nm considered at the

optical surface (τ = 1) vs. Teff, and we find u
′
500nm to correlate well with u (top panel). Also, similar as

given in u, we find u
′
500nm being T -insensitive for dwarf models with very low metallicity ([Fe/H] = −3),

which arises from the temperature gradient term dT/d logτλ in Eq. 6.8. The intensity is given by the
source function and the lost radiation, which is stated by the radiative transfer eq., dIλ/dτλ = Sλ − Iλ .
And under the assumption of LTE, the source function can be approximated with the Planck function at
the local temperature, Sλ (T ) = Bλ (T ). Therefore, the variation of the intensity with µ is sensitive to the
temperature structure and in particular the temperature gradient. In Fig. 6.7 we show also the temperature
gradient, ~∇ = d lnT/d ln ptot, considered at the optical surface (bottom panel). For lower metallicity the
range in temperature gradient is enhanced, which is very similar to the intensity contrast. We had already
mentioned the enhancement of the intensity contrast and temperature gradient at lower metallicity in Sect.
3.1.5. We find the reason for the enhancement being the lack of metals that are usually the most important
electron donors for the formation of H−, which is the dominating opacity source (see Nordlund & Dravins,
1990). Therefore, in metal-poor models, the main contribution of electrons arises from the ionization of
hydrogen. This is the reason for the strong enhancement of the temperature gradient towards Teff = 6000K
with [Fe/H] = −3, which is the reason for the T -insensitivity of u and the limb darkening that we found
for metal-poor dwarfs (see Fig. 6.4).

6.3 Transit light curves

During exosolar planet transits the planet eclipses its host star in the line of sight to earth, thereby dimin-
ishing the emergent intensity and leaving a characteristic imprint in the observed light curve. Theoretical
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Figure 6.8: Transit light curve vs. transit phase with p = 0.1 in the
Kepler filter for different stellar parameters. The predictions from the
1D ATLAS models are also included (dashed lines).

Figure 6.9: Relative deviations in the the transit light curve with p= 0.1
between 3D atmosphere models and 1D ATLAS models given in %.
The difference is δ = 1D/3D− 1.
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light curve predictions are described by two main parameters, namely the ratio of the radii of planet and
parent star, p = rplanet/rstar, and the normalized separation of the centers, z = d/rstar, with d being the
center-to-center distance of the two occulting bodies. For computing the theoretical transit light curves, we
used the publicly available code by Mandel & Agol (2002). In Fig. 6.8, we show light curves with p = 0.1,
i.e. for the case that the radius of the planet is 1/10 of the star, in the Kepler filter for the same LDC as
discussed in Sec. 6.2. Then one can extract that the dwarfs with solar-metallicity exhibit for higher Teff
light curves with a more rectangular shaped feature, where the transit center is shallower and the width of
the transit is broader than lower Teff. The giant models show similar features with Teff for both [Fe/H]. On
the other hand, the metal-poor dwarfs are similarly box-shaped and do not vary much for lower effective
temperatures. The limb of the intensity distribution will shape the ingress and egress of the light curve,
e.g. when the limb darkening would be a step function (a2 ≃ 0. and ak = 0.), then the light curve would
be entirely rectangular. A straight linear dropping intensity distribution (a2 = 1 and ak = 0.) results in a
more elliptical shape with a narrow width, while a curved square root drop (a1 = 1 and ak = 0.) would
lead to an evenly circular shaped light curve. Therefore, we caution for the use of limb darkening laws that
are incapable of rendering the drop-off at the limb, such as the bi- and three-parametric laws, since these
will introduce inevitably systematic errors in the theoretical transit light curves. Mandel & Agol (2002)
found in a comparison between the quadratic and the four-parameter non-linear power law (with p = 0.1)
differences by 3%! Furthermore, the depth of the transit light curve depends primarily on the ratio of planet
to host p. For larger p the the light curves are increasingly deeper at the center, since more stellar light is
effectively blocked during the transition due to a larger surface ratio of the planet. The limb darkening is
also sensitive to the considered wavelength-regime (see Fig. 6.3). Therefore, the transit light curve will be
different depending on the actual considered broad band filter, which samples its specific range in λ . We
find in general that the light curve is towards shorter wavelength (ultra-violet) systematically more convex
shaped with a deeper center and more slender width, while towards longer wavelength (infra-red) the light
curve is more box-shaped with shallower centers and broader width. We note that a multi-band photometry
approach states a solution to this issue (see Knutson et al., 2007).

6.4 Comparison with results from 1D models

The ATLAS models are the widest applied 1D atmosphere models for retrieving LDC, since its grid covers
the broadest range in stellar parameters leading to seamless coverage. The differences between the 1D and
3D models arise mainly from the differences in the temperature stratification, in particular the temperature
gradients.

For the comparison we show in Fig. 6.4 also the limb darkening derived from 1D MLT models from
the ATLAS grid (see Sing, 2010). To ensure consistency the four-parameter non-linear laws for 1D models
are also shown in the Kepler filter. The 1D dwarf models with solar metallicity exhibit similar increasing
curvatures for higher Teff as given by the 3D models, only the 1D models are slightly brighter than the 3D,
except for the coolest one (4500K). In the case of giants the 1D limb darkening is distributed at much
lower and also more linear intensities. The limb of the metal-poor 1D models lacks of a similar smooth
sharp drop-off that is given in the 3D models, instead they depict a rather discontinuous behavior at the
limb, which is doubtful to be correct. For metal-poor models it is known that the enforcement of radiative
equilibrium is leading to an overestimation of the temperature stratification in the upper layers due to lack
of spectral line absorption (see Asplund et al., 1999b; Collet et al., 2007). The radiation at the limb is
emerging from higher layers, therefore, the deviations at the limb are consistent (see Sect. 3.2.1).

The largest deviations are usually found at the limb, since some of the 1D models depict an almost
linear run at the edge, while the 3D models exhibit a comparably smooth drop-off at the limb. In Figure
6.10, we show the deviations at the limb, ∆I0/I1, between the 1D and 3D limb darkening predictions.
The differences increase significantly towards lower metallicity. Therefore, we advise the use of 3D limb
darkening coefficients, in particular, for interferometric observations of metal-poor stars.

We display the relative differences in the transit light curve between the 3D and 1D predictions in Fig.
6.9. Similar to the findings of Hayek et al. (2012), we find a characteristic shape in the residuals with two
extrema that are usually of opposite sign. One being at the ingress and egress phase, which arises from
differences at the limb, and the other one taking place at the disk-center. We found in Sec. 6.2 the 1D
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models being brighter than the 3D limb darkening, except for the giants at solar-metallicity. The transit
light curves for the 1D models are a similarly brighter at the disk-center and dimmer at the transit phase
edges for all models, only for the solar-metallicity giants it is the opposite. However, the maximal residuals
are relatively small with a global maximum of ∼ 0.04% in the transit light curve.
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Chapter 7

STAGGER-grid and 1D models

To account for the convective energy transport Böhm-Vitense (1958) formulated the mixing length theory
(MLT), which was initially proposed by Ludwig Prandtl in analogy to the concept of the mean free path in
the kinetic gas theory. In the framework of MLT, it is assumed that the heat flux is carried by convective

elements for a typical distance, before dissolving instantaneously into its surrounding, which is the so-
called mixing length, lm, usually expressed in pressure scale height, αMLT = lm/HP. The mixing length
is a priori unknown, hence it has to be calibrated with stellar evolutionary calculations by matching the
radius, age and luminosity of the Sun with a single depth-independent αMLT, and then applied for all
stellar parameters, assuming being constant. Furthermore, MLT is a local and time-independent theory and
contains in total four free parameters, and assumes symmetry in the up- and downflows, hence also in the
vertical and horizontal direction. The actual formulation of MLT can vary slightly (e.g. see Henyey et al.,
1965; Mihalas, 1970).

Many attempts have been made to improve MLT, with one substantial one being the derivation of a
non-local mixing length theory (Gough, 1977; Unno et al., 1985; Deng et al., 2006; Grossman et al., 1993).
The standard MLT is a local theory, i.e. the convective energy flux is derived from local thermodynamical
properties, thereby, non-local effects (e.g. overshooting) of the flow are neglected. Usually, the non-local
models are derived from the hydrodynamic equations, which are a set of non-linear moment equations
including higher order moments. For their solution, closure approximations are considered (e.g. diffusion
approximation, anelatistic approximations or introducing a diffusion length). Also, further aspects have
been studied: the asymmetry of the flow by a two stream MLT model (Nordlund, 1976), the anisotropy of
the eddies (Canuto, 1989), the time-dependence (Xiong et al., 1997) and the depth-dependence of αMLT
(Schlattl et al., 1997). The standard MLT accounts only for a single eddy size (being lm), therefore,
Canuto & Mazzitelli (1991, hereafter CMT) extended the standard MLT to a larger spectrum of eddy sizes
by including the non-local second order moment (see also Canuto et al., 1996). However, the CMT ap-
proach necessitates the depth of the convection zone lCZ as a free parameters. Arnett et al. (2010) found
the geometric factor, gMLT, to measure the thickness of the SAR, including a dissipation length ld .

These approaches are often non-trivial and so far, a sweeping breakthrough has been absent, and de-
spite all the trials of improvements, the standard MLT is still currently widely in use. In 1D atmosphere
modeling, the current procedure is to assume for the mixing length parameter αMLT an universal value of
1.5 (see Gustafsson et al., 2008; Castelli & Kurucz, 2004). While for stellar evolutionary models, αMLT
is calibrated with solar models that match the age, radius and luminosity of the Sun, and yielding values
around ∼ 1.7− 1.9 (see Magic et al., 2010). This approach is valid to an extent, however, the single cal-
ibrated value is erroneously adopted for all stellar parameters. The actual value of the mixing length is
vital, since it sets the convective efficiency and therefore changes the whole structure of the stellar models.
Therefore an accurate knowledge of αMLT for different stellar parameter is desirable.

The mixing length can be deduced from multidimensional RHD simulations, where convection emerges
from first principles. Over the past decades, the computational power has increased and the steady devel-
opment of 3D RHD simulations of stellar atmosphere has established their undoubted liability by mani-
fold successful comparisons with observations (Nordlund, 1982; Steffen et al., 1989; Ludwig et al., 1994;
Freytag et al., 1996; Stein & Nordlund, 1998; Nordlund & Dravins, 1990; Nordlund et al., 2009). The 3D
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RHD models had shown that the basic picture of MLT is incorrect, namely the convective elements were
not present, instead highly asymmetric convective motions were found. Nonetheless, the equivalent mixing
length has been calibrated by Ludwig et al. (1999, hereafter LFS99) based on 2D hydrodynamic models by
matching the resulting adiabats with 1D MLT models (see Freytag et al., 1999, for the metal-poor cases).
They had shown that αMLT varies significantly with the stellar parameters (from 1.3 to 1.75), and they also
studied the impact of a variable αMLT on globular clusters (Freytag & Salaris, 1999). Also, Trampedach
(2007) applied a grid of 3D atmosphere models with solar metallicity for the calibration of the mixing
length and the so-called mass mixing length (Trampedach & Stein, 2011a).

In this Chapter I discuss the calibration of the mixing length, which I performed with a 1D MLT atmo-
sphere code that employs the identical EOS and opacity (Sect. 7.1), as well as with a 1D stellar envelope
code that solves the equations for the stellar structure, however, neglecting the nuclear burning (Sect. 7.2).
Furthermore, I elucidate the variation the T (τ) relations, since these are influencing the calibration of αMLT
with the stellar evolutionary models. We derive the vertical correlation length of the vertical velocity (Sect.
7.4) and the mass mixing length (Sect. 7.5) directly from the 3D atmosphere models. Furthermore, we
derive the connection of the mass mixing length, which is the inverse gradient of the vertical mass flux,
with the mixing length from the hydrodynamic mean field equations.

The mixing length varies clearly with stellar parameters, and the variation tightly correlates with the
inverse of the entropy jump. As a highlight I point out the derivation of the mass mixing length from the
hydrodynamic mean field equations.

7.1 Mixing Length from 1D atmosphere models

We have developed our own 1D MLT atmosphere code, which uses exactly the same opacities and equation-
of-state as the 3D models (see Sect. 2.4). The code uses the MLT formulation by Henyey et al. (1965), sim-
ilar to the MARCS code (Gustafsson et al., 2008). The turbulent pressure, pturb = β ρv2

turb, can be included
optionally, however, it uses a depth-independent turbulent velocity, vturb, which is the common approach for
atmospheric modeling. The resulting temperature stratifications are similar to MARCS (Gustafsson et al.,
2008) and ATLAS models (Kurucz, 1979; Castelli & Kurucz, 2004). In Sect. 3.3 we compare the mean
〈3D〉 stratifications with our 1D models, and show that below the surface the 1D models are systematically
cooler than the 〈3D〉 startfications due to the fixed αMLT with 1.5, in particular for hotter Teff.

Following the method by Ludwig et al. (1999), we calibrated αMLT by matching the asymptotic entropy
value of the deep convection zone from the 1D and 3D models (sad and sbot respectively). We determined
sad as the maximal entropy value in the adiabatic convection zone of the 1D models, i.e. sad = maxscz. On
the other hand sbot is an input value for the 3D simulations, and for a given set of logg, [Fe/H] and sbot,
the resulting radiative cooling and convection lead a to unique Teff. The value of sbot is a fixed boundary
condition for 3D simulations, and it depicts the adiabatic entropy value of the incoming upflows at the
bottom of the box that are replenishing the outflows. The mean entropy value at the bottom, 〈s〉bot, considers
the up- and downflows, therefore, it is slightly lower than sbot due to the entropy-deficient downflows
(〈s〉bot − sbot ≪ 1%). However, in our simulations the deeper layers are very close to adiabatic conditions,
and the entropy contrast at the bottom is extremely small, therefore, the difference can be neglected.

For the calibration, we computed 1D models with αMLT from 1.0 to 2.5 in steps of 0.1 and deter-
mined αMLT by minimizing the difference δ s = sad − sbot and also the difference in the entropy jumps
δ s = ∆s1D −∆s3D. We fitted the differences, δ s, with a second order polynom to get the exact value of
αMLT, since δ s(αMLT) features a rather smooth variation, and therefore, spared additional iteration steps.
The calibration of αMLT is more meaningful, when the EOS are identical, and in particular, the entropy is
consistently computed compared to the 3D case. The turbulent pressure, pturb, reduces the gas pressure,
thereby, all thermodynamic properties of the 1D model are indirectly affected, in particular, in the SAR,
where pturb is reaches is maximum. However, we remark that in our calibrations we neglected the turbulent
pressure entirely. In Fig. 7.1, we illustrate the calibration of the solar model by illustrating the mean en-
tropy, s, in the convection zone. One can depict, how s converges asymptotically against the adiabatic value
of the deep convection zone, sbot. The upflows are essentially adiabatic, i.e. 〈s〉up ∼ sbot, until they reach the
optical surface and are rather uniform, while the entropy deficient downflows only contribute to the large
entropy fluctuations just below the optical surface, which is driving convection (see Stein & Nordlund,
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1998). Furthermore, one can also obtain from Fig. 7.1, how for a higher αMLT the adiabat of the 1D mod-
els (sad) is decreasing in the convection zone, i.e. αMLT ∝ s−1

bot. For the solar simulation, we determined a
mixing length of αMLT = 1.98 and 2.09 with the adiabatic entropy value and the entropy jump respectively.

7.1.1 Matching the adiabatic entropy value

In Fig. 7.2, we illustrate the overview of the variation of the αMLT values calibrated with sbot for different
stellar parameters. The mixing length varies rather systematically, namely, αMLT increases for lower Teff
and [Fe/H], and higher logg. Some minor deviations towards cooler Teff for metal-poor models can be
attributed to the differences in the outer boundary of the 1D models. Cool dwarfs exhibit the largest mixing
length values, while hotter models the lower values. A larger αMLT relates to a higher convective efficiency,
which implies a smaller entropy jump is necessary to carry the same convective energy flux. Indeed, we
find the entropy jump to increase higher Teff, lower logg and higher [Fe/H], and we find that αMLT varies
qualitatively inverse to the entropy jump. The mixing length is inversely proportional to the variation of
the logarithmic values of the entropy jump, the peak in the entropy contrast and vertical rms-velociy (see
Figs. 3.6 and 3.20). This is can be expected based on dimensional considerations, since both the entropy
jump and mixing length are setting the convective efficiency.

7.1.2 Matching the entropy jump

We also calibrated the mixing length with 1D MLT atmosphere code by matching the entropy jump ∆s. The
resulting values are depicted in Fig. 7.3, which are very similar to the above findings in Sect. 7.1.1. Here,
the variations with stellar parameters are slightly more systematical, since the entropy jump is a relative
value, therefore, the matching is less prone to the outer boundary effects. Furthermore, the αMLT values
based on ∆s are slightly larger than the values based on sbot (Fig. 7.2) due to the boundary effects in the
latter.
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Figure 7.2: Overview of the mixing length αMLT, calibrated with the
constant entropy value of adiabatic convection zone sbot, vs. Teff for
different stellar parameters.

Figure 7.3: Overview of the mixing length αMLT, calibrated with the
entropy jump ∆s, vs. Teff for different stellar parameters.
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In Fig. 7.4, we compare the logarithm of the inverse of the entropy jump with the mixing length, and

one can see that both correlate very well with each other, while the slight scatter arises probably from the
outer boundary conditions in the 1D models. The entropy jump results from the radiative losses at the
optical surface, therefore, the correlation of αMLT roots in the interplay of the opacity, radiative cooling
rates and vertical velocity of the overturning upflows close the optical surface.

7.1.3 Additional MLT parameters

In the Henyey et al. (1965) formulation of MLT, besides the free mixing length αMLT, there are at least three
other free parameters, which are often swept under the rug. These are the scaling factor of the turbulent
pressure, β , the energy dissipation by turbulent viscosity, ν , and temperature-distribution of a convective
element, y. The default values are usually β = 1/2, ν = 8 and y = 3/4π2 = 0.076, but, the turbulent
pressure often is neglected.

The turbulent pressure is given by pturb = β ρv2
turb, and β has the indirect influence on the T -stratification,

gradients and hydrostatic equilibrium by reducing the gas pressure. The parameter ν enters the convective
velocity inverse proportionally, vMLT ∝ ν−1 (see Eq. 2.18), and since vMLT ∝ αMLT, an increasing ν would
have the same effect as a reduction in αMLT, i.e. ν ∝ sbot. On the other hand, y enters in the (non-linear)
convective efficiency factor, Γ, for the superadiabatic excess (see Eq. 2.20), therefore, y is slightly more
complex correlated with αMLT, however, this time not inverse to αMLT.

When we consider the variation of the three additional parameters for the solar 1D model, then we
notice that the adiabatic entropy value of the deep convection zone is altered significantly (see Fig. 7.5).
Furthermore, both of the parameters, ν and y, also change the the entropy jump and the superadiabatic
temperature gradient, ~∇sad, in particular, the maximum of ~∇sad. The inverse variation of y is very similar
to that by αMLT, while the y parameter exhibits a non-linear dependence, and converges towards higher
values. The increasing turbulent pressure with higher β changes the stratification only slightly, however,
interestingly, the location of the maximum of ~∇sad is shifted towards the interior. Another noteworthy
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Figure 7.5: The entropy and superadiabatic gradient vs. depth (left and right panel respectively) to illustrate
the variation of the additional MLT parameters ν , y and β (top, middle and bottom panel, respectively),
the latter with the depth-independent vturb = 1km/s. In all cases the mixing length is kept fixed with
αMLT = 1.5. We included also the standard values with β = 0, ν = 8 and y = 0.076 (dashed line).
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aspect, to point out, is the diminishing influence of the MLT parameters towards the optical surface, since
the convective flux is gradually dropping to zero. A fine-tuning of β , ν and y is only useful, when these
parameters introduce an independent influence to the mixing length, since otherwise its effects can be
summarized in αMLT solely. In the present work we desist from including these additional parameters for
the calibration in favor of simplicity and clarity.

7.2 Mixing Length from 1D envelope models

The Arhus STellar Evolutionary Code (ASTEC; Christensen-Dalsgaard, 2008) solves the stellar structure
equations (Kippenhahn et al., 2013), and can be operated in the envelope mode, where all time-dependent
chemical changes due to nuclear burning and diffusive settling are neglected. In contrast to atmosphere
codes, stellar structure codes cover the complete depth of the convection zone, therefore, the adiabatic
entropy value of the convective envelope can be retrieved. This code uses the same EOS and chemical
composition as the STAGGER-code. The opacities are also the same for T . 104 K, while for higher T , we
use opacities from the Opacity Project (Badnell et al., 2005) , and both transit smoothly between each other.
In stellar evolutionary codes, like ASTEC, it is custom to include the depth-dependent convective velocity
determined by MLT, vMLT, for the evaluation of the turbulent pressure, i. e. pturb = β ρv2

MLT. We tested
the degeneracy of atmospheric stratifications with mass, and we find the differences to be rather small and
negligible, even for giant models, where the depth is more extended. For the outer boundary conditions are
Eddington gray atmospheres assumed, which is leading to inconsistent αMLT values, in particular, for very
cool metal-poor dwarfs models, as we will show. Furthermore, we remark that in this Section we match
only sbot.
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7.2.1 Matching the adiabatic entropy

In order to illustrate the calibration of αMLT with the ASTEC code, we show the mean stratification of the
entropy determined on geometrical height, 〈s〉z, for the solar model and a metal-poor dwarf including 1D
ASTEC models with different αMLT values in Fig. 7.6. For the solar simulation we yielded a match with
αMLT = 1.94, which is rather similar to the value from Sect. 7.1. Moreover, the entropy minimum close to
the optical surface is matched closely by the 1D models, while the SAR deviates significantly due to the
shortcomings of MLT. In the case of the metal-poor dwarf, sbot is larger than the 1D models with the highest
sad being αMLT = 1.5 (see bottom panel in Fig. 7.6). Therefore, the estimated match for αMLT is leading
to a lower value with αMLT = 1.48 for the cooler model. This is in general the case for cooler metal-poor
models. The entropy minimum is increasingly deviating between the 1D and 3D models towards cooler Teff,
since the outer boundary condition of the 1D models with the Eddington gray atmosphere is increasingly
differing from the T (τ)-relations of the 3D models (see Sec. 7.3). Also, cooler metal-poor models have
smaller entropy jumps, therefore, differences in the boundary conditions are increasingly affecting the
calibration. When one derives the mixing length with Eddington gray atmospheres, then the resulting
mixing length values include the corrections for the differences in the T (τ)-relations. Ludwig et al. (1999)
noted also the same issue with the entropy jump.

In Fig. 7.7 we show an overview of the calibrated mixing length values, and one can obtain that αMLT
is systematically distributed with stellar parameters, namely αMLT is decreasing for higher Teff, lower logg

and [Fe/H]. Towards lower metallicity, in particular, [Fe/H]≤−2 the cooler models have lower αMLT than
the hotter ones due to the influence of the boundary condition. We have above discussed the increasing
influence of the deviations in the entropy jump between 1D and 3D models. The hotter dwarf models
with Teff ≥ 6000K and logg = 4.5 exhibit a better match of the entropy jump, in particular, for the metal-
poor models. The mismatch starts clearly below 6000K in effective temperature (see Fig. 7.7). These
lower mixing length values for the cooler metal-poor models include the correction for the mismatch of the
insufficient T (τ)-relation with the Eddington gray atmospheres, therefore, these values should be doubted
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to be accurate. Such an influence of the outer boundary might lead to wrong conclusions on the variation
of mixing with stellar parameter, therefore, we caution against the indiscriminate derivation of αMLT from
3D RHD simulations or observations with simple boundary conditions (see Sec. 7.2.4).

Finally, it is noteworthy to mention that the solar calibrations of stellar evolutionary calculations lead to
similar mixing length values around ∼ 1.7−1.9 (see Magic et al., 2010). Furthermore, we find the vertical
correlation length of the vertical velocity and the mass mixing length being also qualitatively similar to
αMLT (Sects. 7.4 and 7.5).

7.2.2 Comparison with 2D calibrations

It is worthwhile to compare the differences between the mixing length values we derived with 3D RHD
models and the previous results by Ludwig et al. (1999). They employed a grid of 2D RHD atmosphere
models and matched the resulting sbot by varying αMLT of a 1D code that uses the same EOS and opacity.
We remark that Ludwig et al. (1999) derived T (τ)-relations from the 2D models, and used them for the 1D
models as boundary conditions to render the entropy minimum of the 2D simulations closely. In Sect. 3.1.2
we noticed that sbot resulting from the STAGGER-grid is very similar to values from the 2D grid, while the
entropy jump ∆s exhibits slight differences.

In Fig. 7.8 we show the calibrated mixing length from both studies in comparison, which are obviously
very distinctive. The results of Ludwig et al. (1999) similarly show a clear Teff-dependence, however,
the surface gravity implies only very little change in αMLT. The 3D mixing length shows a clear logg

dependence, towards lower surface gravity these are decreasing, while the 2D values are slightly increasing.
Their solar mixing length is αMLT = 1.59, which is lower by 0.35 compared to our mixing length value. The
dwarf models (logg = 4.5) are in general around 20% lower. Towards giants the difference is diminishing,
since the 3D results are smaller. For lower metallicity, the relative differences exhibit qualitatively similar
trends (Freytag et al., 1999). In the case of 3D convection simulations, it is known that convection is more
efficient in comparison to the 2D case. Therefore, the mixing length values derived from the 3D models
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are in general systematically larger.

7.2.3 Impact on stellar evolutionary tracks

When one considers the variation of αMLT along stellar evolutionary tracks1, then one can notice a clear
distinction in αMLT with stellar mass, which is ranging from 1.6 to 2.2 from larger to lower masses, respec-
tively (see Fig. 7.9), which relates to a deviation of ±15% from the solar value. During the main-sequence
evolution αMLT varies only little and is almost constant. Larger influence of a variable mixing length takes
systematically place during the later evolutionary stages, namely during the TO and the rise along the RGB;
αMLT increases first towards values around ∼ 1.9− 2.0, then drops sharply down to values of ∼ 1.7. With
the 2D mixing length values derived by Ludwig et al. (1999), the stellar tracks are qualitatively similar,
however, these are systematically smaller and also the sharp drop is more or less absent. However, the 2D
grid spans the RGB only up to logg ≃ 2.5, therefore, the extrapolation above that is dangerous.

7.2.4 Comparison with observations

Observations provide an opportunity to constrain free parameters in theoretical models, like overshooting
or mixing length, however, this has to be performed cautiously. Bonaca et al. (2012) calibrated the mixing
length αMLT from Kepler-observations of dwarfs and sub-giants (90 stars). They used the frequency of
the maximal power, νmax, and the large frequency separation, ∆ν , together with Teff and [Fe/H] from
spectroscopic observations to estimate the masses and radii. Then, with a grid of stellar evolutionary tracks
that was computed with different αMLT values, they matched the inferred stellar parameters.

Bonaca et al. (2012) found with an average mixing length of 1.60 being in general lower than the solar-
calibrated value with 1.69. We compare the functional fit of αMLT with stellar parameter that are inferred

1We estimated the variation of αMLT based on stellar tracks with a constant mixing length.
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from observations against our results in Fig. 7.10. We remark that we compare the calibration resulting
from of the complete data set, since the fit from the dwarf subset deviates completely from our results. Their
solar mixing length value is αMLT = 1.59, which is 18% smaller than our result with 1.94. Interestingly,
the variation with Teff for a given logg and [Fe/H] is rather similar besides an almost constant offset. For
different logg and [Fe/H] we find significant systematical differences (see Fig. 7.10). The values for dwarfs
are in general smaller by up to ∼ 20− 40% depending on the gravity and metallicity, while the giants are
greater by the similar amount. Unfortunately, the sample of Bonaca et al. (2012) is in logg rather small and
biased towards dwarfs. Also, their calibration method might carry systematical differences, and the input
physics (EOS and opacity) are also different. Therefore, it is difficult to evaluate the actual source for the
differences.

7.3 T(τ) relations

In stellar evolutionary calculations the stellar structure equations are solved with an implicit Henyey-
scheme (Henyey et al. 1964) by considering predefined upper boundary conditions, which describe the pho-
tospheric transition from optical thick to optical thin regime at the optical surface (see Kippenhahn et al.,
2013). The outer boundary conditions are usually expressed in form of T (τ)-relations that employ the
so-called Hopf-function,

q(τ)+ τ = 4/3(T/Teff)
4 . (7.1)

Then the temperature structure can be retrieved with

T = Teff [3/4(q(τ)+ τ)]1/4 , (7.2)

to which we refer as T (τ)-relations. The most widely used one is the Eddington approximation (Kλ =
1/3Jλ ) for a gray (monochrome, i.e. τ = τλ ) atmosphere, resulting in a linear Hopf-function with q(τ = 2/3)=
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Figure 7.11: Hopf-functions vs. optical depth for different stellar
parameters for the averages over layers of constant Rosseland opti-
cal depth (solid) and 1D models (dashed lines). The locations for
τRoss = 2/3 and q = 2/3 are indicated (vertical and horizontal dotted
lines respectively).

Figure 7.12: Overview of the Hopf-function at τRoss = 2/3 vs. Teff for
various stellar parameters. Furthermore, we indicated the Eddington
approximation (long dashed line).
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2/3. Another commonly used one is the semi-empirical T (τ)-relation by Krishna Swamy (1966), which
is derived from solar observations, leading to the fitting formula q(τ) = 1.39−0.815e−2.54τ −0.025e−30τ.
Both of the latter are usually used for all stellar parameters, with the assumption of being a good approxima-
tion, however, is incorrect. Therefore, the inconsiderate use of these outdated T (τ)-relations will certainly
introduce systematical errors, since the outer boundary conditions will influence the stellar structure.

In Fig. 7.11, we show the Hopf-function (Eq. 7.1) from our 3D RHD simulations averaged over layers
of constant Rosseland optical depth. Furthermore, we show the Eddington gray atmosphere in comparison,
which assumes a constant Hopf-function, however, it is clear that q(τ) changes with stellar parameters. To
depict the variations at τRoss = 2/3 with stellar parameters more clearer, we show in Fig. 7.12 the latter. As
remarked, the Eddington approximation is not varying with stellar parameter, while the 3D Hopf-functions
are doing so. Towards higher Teff, lower logg and higher [Fe/H] the latter is decreasing. Hotter metal-poor
dwarfs are close to 2/3, i.e. these models are very close the Eddington gray approximation, while the
cooler models exhibit stronger deviations, in particular, the cool metal-rich giants take a value around 1.

7.4 Velocity correlation length

The physical interpretation of the mixing length is conceptually the mean free path of a convective eddy,
over which it can preserve its identity, before it resolves into its environment. In a real stratified hydro-
dynamic fluid the spatial two-point (auto)correlation function of the vertical velocity can be regarded as
the 3D analog of the mixing length αMLT as proposed by Chan & Sofia (1987). The two-point correlation
function for the values q1 and q2 is given by

C [q1,q2] =
〈q1q2〉− 〈q1〉 〈q2〉

σ1σ2
, (7.3)

with σi being the the standard deviation of qi and 〈. . .〉 depicts the spatial horizontal average.
To derive the vertical correlation function of the convective velocity field, we consider the vertical

component of the velocity field, vz, of a single fixed layer z0 and derive the correlation functions for all
other layers zi, i.e. C

[

vz0 ,vzi

]

, which is performed for twenty equidistant layers covering the whole depth
scale. In Fig. 7.13 we show the two-point correlation function of the vertical velocity field, C [vz,vz], derived
for the solar simulation for the individual snapshots and then temporally averaged. For convenience, the
correlation function is shown in differences of logarithmic pressure to the considered layer, ∆ logPth =
logPth(z0)− logPth(zi). Then, the correlation function reaches always unity for zi = z0 and exhibits a
Gaussian-like shape. Furthermore, it is broader above the optical surface (ptot/psurf = 1), which is due to
the rapid decline of the pressure scale height; while below the latter the width seems to converge against
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a certain adiabatic value. When one considers the width of the correlation function in geometrical depth,
instead of pressure, then it is constant around ∼ 0.6Mm down to 1Mm and increases then (not shown),
which is the same finding as Robinson et al. (2003).

The full-width-half-maximum (FWHM) of the two-point correlation function of the vertical velocity,
W (vz), gives an estimate on the size or length scale of the coherent vertical structures. The characteristic
local length scale for the turbulent convective eddies can be determined with W (vz). With the term vertical
correlation length we refer to W (vz). Similar to the mixing length, it is preferable to scale the correlation
length by the pressure scale height, i.e. W (vz)/HP, since the the latter is increasing towards deeper layers.
Then, for the solar simulation (see Fig. 7.13) the convergent value for the width is W (vz)/HP = 1.71. This
means that the coherent vertical structures are extending 1.71HP in the convection zone, and is roughly
comparable with the mixing length (αMLT = 1.94). For different stellar parameters we find a rather sim-
ilar convergence of the correlation length of the vertical velocity in the convection zone (see Fig. 7.14).
Chan & Sofia (1987, 1989) found also a similar scaling of C [vz,vz] with pressure scale height in a 3D
simulation for the Sun.

We determined also the mean value of correlation length in the convection zone below log ptot/ log psurf >
1 and close to the bottom boundary, the correlation function will increasingly overturn due to missing in-
formation in the deeper layers, therefore, we applied a cut for the consideration of a mean correlation
length. The resulting values for different stellar parameters are depicted in Fig. 7.15, which are distributed
around ∼ 1.65. This is a interesting result, since it confirms the physical motivation for the mixing length
αMLT, namely the vertical velocity field, hence the vertical mass flux, correlates along ∼ 1.65 pressure
scale heights in the convection zone. The correlation length is significant for the transport of convective
energy, and the MLT has the underlying assumption,

Fconv =C [vz,δT ]cPT
′
ρv

′
z,

which states that the convective flux is carried by the fluctuations of T and vz, scaled by the correlation of
the latter.
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The vertical scaling of the vertical velocity with the pressure scale height is indeed very similar to the
horizontal scaling of the granule size with the pressure scale height (see Sect. 3.1.6). The granular cells we
find with the temperature excess in Sect. 4.5 show a distinct regular flat cylindric or pillar-like topology
among each other. These findings are connected to the fact that convection operates in a very self-similar
way, despite very different physical conditions, and the universal filling factor is here also involved.

Unfortunately, there is no specific systematic variation of the correlation length with stellar parameters
in Fig. 7.15, which we found for αMLT and αMML (see Sect. 7.5). The reason for this might be due to poor
temporal statistics. Furthermore, we considered the correlation length of other variables, and we find that
the horizontal velocity is rather similar, but with slightly lower correlation with ∼ 1.4. Also, we find for
the entropy, temperature and pressure values around ∼ 1.3, while for the density it isclose to unity.

7.5 Mass mixing length

The temporal and spatial averaged momentum equation for a stationary system yields in the equation for
hydrodynamic equilibrium (Eq. 1.8),

∂z(pth +ρv2
z ) = ρg.

This equation states that a given mass stratification (ρg) has be supported by the joint thermodynamic (pth)
and turbulent pressure (pturb = ρv2

z ) forces, in order to sustain equilibrium. Since the vertical (turbulent)
velocity, vz, appears here, we solve for the latter and get

vz =

√

g− pth/ρ∂z ln pth

∂z lnρ + 2∂z lnvz

.

Then, similar to the temperature gradient, ~∇ = d lnT/d ln ptot, we introduce the notation for the gradient
for a value X , however, instead of the total pressure it is scaled by the thermodynamic pressure scale height,
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∇X = ∂z lnX/∂z ln pth,

and we can rewrite the vertical velocity to

vz =

√

g/∂z ln pth − pth/ρ

∇ρ + 2∇vz

. (7.4)

This analytical exact equation depicts the correlation of the vertical velocity with the gravity and pressure
stratification, as well as the gradient of the density and the gradient vertical velocity itself in the hydrody-
namic equilibrium. Now, we consider the gradient of the absolute vertical mass flux, jz = ρvz, for the up-
or downflows with

∇ jz = d ln
∣

∣

∣
j↑↓z

∣

∣

∣

/

d ln pth ,

which indicates the length, over which the up- or downflow has changed by the e-fold, expressed in pressure
scale heights. Furthermore, we define the mass mixing length as the inverse of the gradient of the vertical
mass flux,

αMML ≡ 1
∇ jz

, (7.5)

and we decompose the gradient of the vertical mass flux into its components and find

αMML =
1

∇ρ +∇vz

,

which states that the mass mixing length is the sum of the changes in the density and vertical velocity
gradients. Finally, we can now identify the mass mixing length in the denominator of the vertical velocity
(Eq. 7.4) and get the following expression

vz =

√

αMML

1+αMML∇vz

(

g

∂z ln pth
− pth

ρ

)

. (7.6)

This illustrates, why the vertical velocity depends on the mass mixing length, similar to the MLT velocity
vMLT that depends on mixing length with vMLT ∝ αMLT (see Eq. 2.18). The mass mixing length was
introduced by Trampedach & Stein (2011b), however, they ignored to explain and motivate further its
connection to the mixing length.

To complete the comparison of the mass mixing length with the MLT mixing length, we derive its
dependence with the convective energy flux. The mean convective energy flux consists of the fluctuations
of the total energy (εtot = ε + pth/ρ +~v2/2), which we depicted with f , and is carried by the mean vertical
mass flux, i.e.

Fconv = f ρvz,

where we assume that vz is the hydrodynamic velocity given in Eq. 7.4. We determine the divergence of
the convective energy flux, i.e. ∂zFc, and solve for the total energy fluctuations

f = =
1

∇ρ +∇vz

∂zFconv/ρvz + ∂z f

∂z ln pth
.

Then, we can substitute the convective energy losses, ∂zFconv, with the radiative cooling rate, −qrad, due to
conservation of total energy, and we can identify the mass mixing length in the convective energy flux as
well with

Fconv = −αMML
(qrad +ρvz∂z f )

∂z ln pth
. (7.7)
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This equation is basically the expression for the conservation of energy. Both of these equations for the
velocity and the convective energy flux are just reformulations of the hydrodynamic mean field equations.
To close this set of equations one still would need information about the gradient of the velocity and total
energy fluctuation, as well as the radiative cooling rates.

In Fig. 7.16, we illustrate the temporal averaged, depth-dependent mass mixing length for different
stellar parameters, which we have derived from our 3D RHD simulations. Above the optical surface, αMML
exhibits lower values around ∼ 0.5, in the convection zone it has larger values around ∼ 2. For higher Teff,
the transition in between increases, while in the convection zone it is the flatter. Furthermore, we show
also the gradients of the density and vertical velocity in Fig. 7.16, which are the components of αMML.
One can depict that the variation of αMML in the convection zone arises only due the different velocity
gradients, since the density gradient converges always against its adiabatic value (γ−1

ad ). The cooling rates
are imprinted in the gradients for the density and velocity at the vicinity of the optical surface.

We determined also the mean mass mixing length in the convection zone for log ptot/ log psurf > 1 and
due to artificial boundary effects, we removed several layers at the bottom. The results are displayed in Fig.
7.17. The mass mixing length depicts qualitatively very similar systematic variations with stellar parameter,
as we found for αMLT above. In particular, it decreases for higher Teff and [Fe/H], and lower logg, and the
range in αMML is qualitatively similar to the αMLT. Furthermore, the inverse variation of αMML is similar
to the logarithmic variation of the entropy jump, the peak in the entropy contrast and vertical rms-velociy
(see Figs. 3.6 and 3.20). In Fig. 7.18 we compare αMML with the logarithm of the inverse of the entropy
jump scaled with log(1/∆s)/5+ 1.55, and we find a similar tight correlation between the two, as we have
found for the mixing length αMLT above (Sect. 7.1.2). The stronger deviations for the metal-poor giants
originate from the fact that these models are slightly shallower, therefore, the match of the mass mixing
length is perturbed due to the lower boundary effects on the velocity.
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Figure 7.17: Overview of the mass mixing length αMML for different
stellar parameters.

Figure 7.18: Corrrelation of the mass mixing length αMML with the
logarithmic inverse of the entropy jump ∆s.



Chapter 8

Conclusions

We presented here a comprehensive grid of realistic, state-of-the-art, three-dimensional (3D), time-dependent,
radiative-hydrodynamic (RHD) stellar atmosphere models for late-type stars, covering a substantial por-
tion of stellar parameter space, and provided a detailed description of the approach we followed for the
construction of models. With the aid of our realistic 3D RHD simulations, we are able to access and render
details of stellar atmospheres and subsurface convection, that are out of reach for 1D models and also in-
accessible by observations. We presented and discussed a number of important global physical properties
of the simulations as well as the mean stratifications resulting from the relatively large amount of data.

The constant entropy value of the adiabatic convection zone has a profound influence on several aspects
and properties of the 3D RHD simulations. In particular, we find systematic correlations among the con-
stant entropy value of the adiabatic convection zone, the entropy jump, and the vertical velocity, which we
interpreted as scaling relations. In addition, we find that the variation in intensity contrast is enhanced at
lower metallicity. Also, we determined that the granule size scales basically with the pressure scale height
close to the surface, which can be explained in the picture of what we refer to as Nordlund scaling relation.

We discussed in great detail the depth-dependent temporal and spatial averages of various important
physical quantities. In particular, we determined and examined various systematic trends in the variations
of the entropy jump, the density, and the vertical velocity with stellar parameters. The latter can be dis-
cussed by regarding the changes in the transition of energy transport from convective to radiative at the
photosphere. Namely, for different stellar parameters, the coupling between radiation and matter through
the radiative transfer necessitates specific physical conditions due to changes in the opacity, which in turn
alters the density. These variations in the density on the other hand require adjustments in the entropy jump
and the vertical velocity. This can be illustrated under consideration of the total energy flux and conserva-
tion of energy. The named important values are coupled with each other, and these also set basically the
general physical framework of the stellar atmosphere. The actual particular connections of these correla-
tions have to be studied carefully in more detail, thus possibly leading to an improved understanding of the
physical mechanisms operating in subsurface convection, hence stellar atmospheres.

Also, we compared our 3D models and their mean stratifications to 1D models employing the same
input physics, thereby revealing important systematic differences between the two kinds of models due
to the incomplete treatment of convection by the 1D mixing-length theory (MLT) and the assumption of
radiative equilibrium. The latter leads to an overestimation of the temperature stratification in metal-poor
stars. While below the optical surface, we find that the temperatures are typically underestimated due to
a fixed mixing length (αMLT = 1.5), in particular, for higher Teff and lower logg. Also, we find that MLT
fails to render a realistic vertical velocity field. The often neglected turbulent pressure has towards giants
a non-negligible contribution on the total pressure, thereby, indicating that the thermal gas pressure is also
overestimated significantly. We also quantified the differences with widely used 1D atmosphere models, in
particular, ATLAS and MARCS. For a number of important values we provide functional fits with stellar
parameters, so that these can be accessed immediately. Thereby, one can easily scale new 3D models based
on these informations.

We have investigated the properties of different methods in detail for computing temporal and horizontal
average stratifications from 3D RHD STAGGER-grid simulations of stellar surface convection. The choice
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of the reference depth is critical, as comparisons of the various 〈3D〉 demonstrated. We find in general that
the temperature stratifications of the 〈3D〉z and 〈3D〉m are hotter close to the continuum forming layers and
cooler in the upper layers compared to averages on surfaces of constant optical 〈3D〉Ross and 〈3D〉500, while
the density shows differences in the opposite sense. The flux-weighted temperature average and brightness
temperature average are distinctively hotter than the plain averages, both close to the optical surface and
in the upper atmosphere, since the Planck function and the fourth powers weights the larger temperatures
higher. Averages obtained from the logarithmic values lead to lower temperature and density distributions
by giving more weight the lower values in the distribution. These characteristics increase with higher Teff,
lower logg and especially with lower [Fe/H].

The statistical properties change depending on the reference depth scale, since the transformation to the
new depth scale will inevitably imply a remapping of the values from different heights. The translation to
layers of constant optical depth will smooth out temperature fluctuations as a byproduct: the temperature
is in fact, the main source of spatial corrugation of the surfaces of constant optical depth due to the strong
temperature sensitivity of the dominant H− continuum opacity source. Therefore, the temperature contrast
and extrema are distinctively reduced, in particular, in the superadiabatic region. However, this has also
the side effect of enhancing both contrast and minimum-maximum range of the density. The concomitant
remapping of properties from deeper or higher layers during the transformation to the new reference depth
scale will in turn change the average values.

Furthermore, we examined the effects of reversed granulation in the upper layers of metal-poor stars,
namely the lowering of temperatures above the granules in metal-poor 3D models compared to classical
1D models. We found that the contribution of radiative reheating due to weak spectral line absorption
features relative to cooling due to mechanical expansion in the upper atmospheric layers is reduced towards
higher Teff. On the other hand, the temperature in the regions immediately above the intergranular lanes
are primarily controlled by mechanical expansion or compression and do not appear to be affected by the
reduced metallicity. The two combined effects result in an enhanced contrast in the reversed granulation.
This in turn leads to an increase in the corrugation of the surfaces of constant optical depth, which implies
that the averages on constant optical depth are sampling values from a very wide range in geometrical
height, thereby affecting the statistical properties such as mean value and contrast.

We derived extensive details of stellar granulation by applying the multiple layer tracking algorithm
for the detection of granules imprinted in the emergent (bolometric) intensity map, which was originally
developed for solar observations. This method works very reliable for different stellar parameters. Then,
we determined for the individual detected granules properties: diameter, intensity, temperature, density,
velocity and geometry. The granule diameters span a large range, therefore, we advise the use of a log-
arithmic equidistant histogram, since otherwise, the smaller scales are under-resolved, which leads to the
misinterpretation of a large population of small granules. A distinguished dominant granule size can al-
ways be determined with the maximum of the area contribution function, which is often very close the
maximum of the diameter distribution. Furthermore, we find two distinct fractal dimensions (slopes of
the area-perimeter relation) that are divided at the dominant granule size. For smaller granules the fractal
dimension is always very close to unity, which points out that these evenly shaped. The larger granules are
distinctively larger and closer to 2, depending on primarily on the effective temperature. For lower Teff we
find fractal dimension being larger. In the case of the solar simulation, the dual fractal dimension we find is
in contradiction to the finding by Bovelet & Wiehr (2001), who finds only a single fractal dimension with
the same method from solar observations, and the discrepancy might root in observational constraints. The
bifurcation of the fractal dimension above the dominant granule size arises simply due to the fragmentation
of granules, which will inevitably entail that the perimeter increases. We studied also the the properties
prevailing at the optical surface in our stellar atmosphere simulations. We find that the corrugation of the
optical surface increases for higher Teff and lower logg. Also, we revealed the systematic correlation of
the intensity, temperature and density with the vertical velocity as a natural consequence of the convective
energy transport. For solar simulation, we illustrated the convective cells with the temperature excess, and
the complex topology of the turbulent downdrafts in the convection zone with the vorticity, which depicts
often transsonic velocities.

The comparison of Fe I and Fe II calculated in full 3D and different 〈3D〉 atmosphere models reveals the
surprising result that the averages on column mass density 〈3D〉m typically provide the best representation
of the 3D model with respect to the line formation. The commonly preferred averages on layers of constant
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optical depth 〈3D〉Ross or 〈3D〉500 in general perform worse. We located the reason for the underperfor-
mance in the predictions of 3D RHD by the 〈3D〉τ models being due to the optical depth, dτλ = ρκλ dz,
which contains the additional non-linearity of opacity κλ , in contrast to the column mass density, dm=ρdz;
therefore, the statistical properties, in particular, the mean value, are more prone to distinctive temperature
fluctuations present in the superadiabatic region and the upper layers, where the reversed granulation takes
place. The differences between the lines calculated with the 〈3D〉τ models and the full 3D RHD models
are significant, in particular, for metal-poor simulations due to the enhanced reversed granulation in the
upper layers. We find that the neutral Fe I lines with low excitation potential feature the largest differences
between the mean 〈3D〉 and full 3D line calculations. The 1D MLT models perform quite well at solar
metallicity; however, for metal-poor models the mismatch is evident. Therefore, we caution against using
1D models for metal-poor stars, which will lead to systematic errors in the spectral analysis.

For spectral line formation calculations with 〈3D〉 models from the STAGGER-grid, we recommend
using averages obtained on layers of constant column mass density, 〈3D〉m, since these provide the clos-
est match to the spectral line strengths obtained with the full 3D RHD models. Furthermore, we advise
strongly against using geometrical averages 〈3D〉z for spectral line formation calculations. For purposes
of improving stellar structures and asteroseismology, the 〈3D〉z models are, however, useful, since these
averages alone fulfill the hydrostatic equilibrium, and therefore, comparisons with helioseismological ob-
servations are in better agreement. It is obvious that the temporally and spatially averaged models are
incapable of substituting the full 3D atmospheric structure. The reduction due to the averaging will un-
avoidably lead to sacrificing required information. A promising intermediate approach could be the so-
called "1.5D" approximation. This approach emulates atmospheric inhomogeneities, which are probed by
the traversing radiation, by considering a series of perturbed 1D stratifications for spectral synthesis (e.g.,
see Ayres et al., 2006). In the spirit of the latter, one could utilize the temporal averaged histograms for an
improved spectral line synthesis, since these contain additional information on the statistical distribution
of the 3D simulations. A initial proof-of-concept was shown with the minimal approach considering mean
averages for the up- and downflows separately. Interestingly, the resulting spectral line profiles exhibit
astonishing similarity to the full 3D line profiles, and therefore mark a promising start.

We explored the properties of synthetic spectral lines from neutral and singly ionized iron in late-
type stars with the aid of 3D hydrodynamical model atmospheres. We studied the variations with stellar
parameters of aspects such as the strength, width, and depth of spectral lines, as well as line asymmetries
and wavelength shifts. We related such variations and the morphology of the asymmetries to the structural
and thermal properties of the 3D models, with particular focus on velocity and temperature inhomogeneities
and their correlation with depth in the stellar atmosphere.

We derived the limb darkening coefficients on the basis of the STAGGER-grid for the various bi-
parametric and non-linear limb darkening laws. The non-linear four-parameter power law introduced by
Claret (2000) is the only limb darkening law that is sufficiently versatile enough to express the intensity
distribution with an excellent accuracy, while all other limb darkening laws are insufficient, in particular,
at the limb. Therefore, we recommend the use of the four-parameter functional basis only, in particu-
lar for the comparison with high-precision measurements in the hunt of extrasolar planets. We discussed
the limb darkening in the Kepler filter for various stellar parameters, and outlined systematical variations
that exposed the complex changes of the brightness distribution, in particular with the effective temper-
ature. We compared also our new LDC with predictions from widely used 1D ATLAS models, and the
largest differences are given towards the limb. The 1D models are often brighter than 3D predictions, only
for giant models with solar-metallicity we find opposite differences. Furthermore, we displayed the sys-
tematical (anti-)correlations between the coefficients ak between half-integer and integer exponents of the
four-parameter law. We found the coefficient of linear limb darkening law, u, to scale with the temperature
gradient and the Planck function. Theoretical transit light curves indicate similar systematical differences
between 1D and 3D as the limb darkening variations implied, which are relatively small. However, as ob-
servations indicate (Knutson et al., 2007; Hayek et al., 2012), these can be measured with high-precision
observations. Therefore, we advise to use of of the new LDC.

We calibrated the mixing length by employing a 1D code for stellar structure and also a 1D code for
stellar atmospheres. The calibration was achieved by varying the mixing length and matching the adiabatic
entropy value of the deeper convection zone, sbot, or alternatively matching the entropy jump. In both ways
we find the mixing length to decrease for higher Teff and [Fe/H], and lower logg. However, the calibration



160 8. Conclusions

depends on the assumed T (τ) relation, which influences the thermal stratification as input parameter. In
particular, metal-poor 1D models with a fixed T (τ) relation, such as the Eddington-grey atmosphere, will
suffer from the latter, and will result in wrong mixing length values. The 1D atmosphere code manages
without the need for any T (τ) relation, since it solves the radiative transfer by itself, therefore, the resulting
calibrations show no mismatches at lower metallicity. We derived also the vertical velocity correlation
length, which is interestingly similar to the mixing length with approximately ∼ 1.5 of pressure scale
height. Furthermore, we derived from the hydrodynamic mean field equations for the first-time a physical
motivated connection of the mass mixing length, which is the inverse of the vertical mass flux gradient,
with the mixing length. We determined the mass mixing length, and find that its varies qualitatively similar
to the mixing length. Finally, in both cases, the mass mixing length and mixing length, we find a strong
correlation with the logarithmic inverse of the entropy jump for different stellar parameters.



Appendix A

Functional fits

The resulting amount of data from our numerical simulations is enormous. A convenient way to provide
important key values is in form of functional fits, which can be easily utilized elsewhere (e.g., for analytical
considerations). In the present paper we have frequently discussed various important global properties that
are reduced to scalars. Some of them are global scalar values and some are determined at a specific height
from the 〈3D〉 stratifications, i.e. temporal and spatial averages on layers of constant Rosseland optical
depth. We fitted these scalars with stellar parameters for individual suitable functions, thereby enforcing a
smooth rendering. However, we would like to warn against extrapolating these fits outside their range of
validity, i.e. outside the confines of our grid. Also, one should consider that possible small irregularities
between the grid steps might be neglected, which arise due to non-linear response of the EOS and the
opacity. On the other hand, we provide also most of the actual shown values in Table B.1.

We use three different functional bases for our fits and we perform the least-squares minimization with
an automated Levenberg-Marquardt method. Instead of the actual stellar parameters, we employ the fol-
lowing transformed coordinates: x = (Teff − 5777)/1000, y = logg− 4.44 and z = [Fe/H]. Furthermore,
we find that in order to accomplish an optimal fit with three independent variables, fi (x,y,z), simultane-
ously, the metallicity should be best included implicitly as nested functions in the form of second degree
polynomial ζa (z) = ∑2

i=0 aiz
i, each resulting in three independent coefficients ai. The linear function

f1 (x,y,z) = ζa (z)+ xζb (z)+ yζc (z) (A.1)

is applied for the following quantities: smin (Fig. 3.1), logρpeak (Fig. 3.20), logv
peak
z,rms (Fig. 3.20), logdgran

(Fig. 3.9), log∆tgran and f
peak
u . The resulting coefficients are given in Table A.1. On the other hand, we

considered the exponential function

f2 (x,y,z) = f1 (x,y,z)+ ζd (z)exp
[

xζe (z)+ yζ f (z)
]

(A.2)

for sbot, ∆s (Figs. 3.1 and 3.20) and [pturb/ptot]peak (Fig. 3.23). For ~∇peak and ~∇
peak
sad 3.17 we applied the

following function
f3 (x,y,z) = f1 (x,y,z)+ x2ζd (z) , (A.3)

with coefficients for f2 and f3 listed in Table A.2. Finally, we showed in Fig. 3.5 the entropy jump ∆s as a
function of sbot, which we fitted with

f4 (x) = a0 + a1x+ a3 tanh [a4 + a5x] . (A.4)

The resulting coefficients are listed in Table A.3.
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Table A.1: The coefficients ai of the linear function f1 (Eq. A.1) for smin [1011erg/g/K], logρpeak

[10−7g/cm3], logv
peak
z,rms [10km/s], logdgran [Mm] and log∆tgran [102s]. In the last two rows, we listed

the root-mean-square and maximal deviation of the fits.

ai smin lgρpeak lgv
peak
z,rms lgdgran lg∆tgran

a0 1.5440 0.3968 -0.4626 0.2146 -0.7325
a1 0.0387 -0.2549 0.0568 0.0666 -0.0054
a2 0.0046 -0.0344 0.0068 0.0108 -0.0016
b0 0.0621 -0.4232 0.1988 0.1174 0.0410
b1 -0.0189 0.1260 -0.0255 0.0187 0.0046
b2 0.0013 -0.0007 0.0050 0.0033 0.0000
c0 -0.0898 0.6814 -0.1845 -1.0922 -0.9970
c1 0.0038 -0.0282 0.0116 -0.0462 -0.0038
c2 -0.0004 -0.0021 -0.0006 -0.0075 -0.0006

rms∆ 0.0711 20.3286 1.0018 483.4921 47.6416
max∆ 0.1843 138.7171 1.3365 2697.2449 144.2399

Table A.2: The coefficients ai of the functional bases f2 and f3 (Eqs. A.2 and A.3) for sbot [1011erg/g/K],
∆s [1011erg/g/K], [pturb/ptot]peak,~∇peak and ~∇peak

sad . In the last two rows, we listed the root-mean-square and
maximal deviation of the fits.

ai sbot ∆s p
peak
turb/tot

~∇peak
~∇

peak
sad

a0 1.5789 -0.0006 0.0321 1.0941 0.8713
a1 0.0455 0.0043 0.0459 -0.0089 0.0338
a2 0.0111 0.0064 0.0111 0.0000 0.0076
b0 0.0784 0.0017 0.0138 0.2498 0.3401
b1 -0.0183 0.0049 0.0007 -0.0532 -0.0717
b2 0.0071 0.0060 0.0019 -0.0050 -0.0091
c0 -0.1076 0.0028 -0.0260 -0.4004 -0.4847
c1 -0.0028 -0.0029 -0.0087 0.1052 0.0990
c2 -0.0042 -0.0032 -0.0016 0.0142 0.0155
d0 0.1602 0.1979 0.1335 -0.0600 -0.0622
d1 0.0618 0.0675 -0.0257 0.0016 -0.0006
d2 0.0062 0.0059 -0.0081 -0.0133 -0.0128
e0 1.2867 1.1479 0.5894 – –
e1 -0.0824 -0.0866 0.1141 – –
e2 0.0970 0.0788 0.0337 – –
f0 -1.2136 -1.0996 -0.5330 – –
f1 -0.0338 -0.0316 -0.0864 – –
f2 -0.0764 -0.0614 -0.0249 – –

rms∆ 0.2555 0.2047 0.0758 0.4533 0.5016
max∆ 0.7268 0.6602 0.1841 1.1245 1.2550
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Table A.3: The coefficients ai of the hyperbolic tangent function f4 (Eq. A.4) for fitting ∆s as function of
sbot.

Teff a0 a1 a2 a3 a4

4000.0 1.2910 -0.3559 1.0367 -2.6408 1.2059
4500.0 5.1768 -2.1859 4.5280 -1.4475 0.6756
5000.0 7.0730 -3.0946 6.8382 -1.2330 0.5799
5500.0 7.6382 -3.4144 7.5981 -1.1812 0.5636
6000.0 6.8963 -2.9796 6.9907 -1.1769 0.5504
logg a0 a1 a2 a3 a4

1.5 5.3693 -2.0610 5.3770 -1.2576 0.5461
2.0 1.1012 -0.2599 0.9218 -2.8316 1.2958
2.5 1.5805 -0.5023 1.2081 -2.5467 1.1888
3.0 5.2106 -2.1433 4.6691 -1.4254 0.6548
3.5 4.9821 -2.0989 4.2522 -1.5136 0.7111
4.0 8.0957 -3.5548 7.9721 -1.1979 0.5625
4.5 14.1757 -6.3782 17.4802 -0.8936 0.4180
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Appendix B

Tables

In Table B.1 we have listed important global properties with the stellar parameters. Due to the lack of
space, we show only an excerpt with solar metallicity ([Fe/H] = 0.0). The complete table is available at
CDS http://cds.u-strasbg.fr.

In Table B.2, we present the Fe I and Fe II line parameters that are used for the line formation calcula-
tions, in the present work. While in Table B.3 we show a subset from the main results we presented in our
work retrieved for the solar simulation. The complete list is online available on CDS.

In Table B.4 we listed a subset of the limb darkening coefficients. The full table is available at CDS.

http://cds.u-strasbg.fr
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s Table B.1: The stellar parameters: effective temperature, surface gravity (Cols. 1 and 2 in [K] and [dex]). The main input variables: the density ρbot, internal

energy per unit mass εbot (Cols. 3 and 4 in
[

10−7g/cm3
]

,
[

105erg/g
]

). We also added the temperature Tbot, thermodynamic pressure pbot
th and entropy values sbot

at the bottom (Cols. 5, 6 and 7 in [K] ,
[

105dyne/cm2
]

,
[

109erg/g/K
]

). Furthermore, the jump in entropy ∆s, the maximal vertical rms-velocity v
peak
z,rms and intensity

contrast ∆Irms values are given (Cols. 8, 9, 10 in
[

109erg/g/K
]

, [km/s] , [%]). Finally, we display the horizontal sx,y and vertical box size sz (Cols. 11 and 12 in
[Mm] , [Mm]), the mean granule diameter dgran (Col. 13 in [Mm]), the time step ∆t and total time t (Cols. 14 and 15 in

[

102s
]

,
[

102s
]

).

Teff logg lgρbot lgεbot lgTbot lg pbot
th sbot ∆s v

peak
z,rms ∆Irms lgsx,y lgsz lgdgran lg∆t lg t

4023 1.50 0.717 1.124 4.272 1.061 2.300 0.602 5.145 18.4 3.820 3.490 3.121 2.176 4.352
4052 2.00 1.125 1.004 4.233 1.368 2.018 0.361 4.167 17.1 3.322 2.971 2.623 1.695 3.871
3938 2.50 1.691 0.908 4.239 1.889 1.775 0.174 3.210 14.4 2.740 2.446 2.041 1.188 3.364
4569 2.00 0.679 1.187 4.342 1.120 2.411 0.723 5.845 18.4 3.380 3.069 2.778 1.740 4.041
4532 2.50 1.357 1.060 4.279 1.669 2.039 0.395 4.391 17.2 2.845 2.517 2.243 1.241 3.282
4492 3.00 1.785 0.955 4.266 2.029 1.808 0.210 3.486 14.5 2.342 1.966 1.643 0.692 2.692
4530 3.50 2.103 0.900 4.269 2.322 1.682 0.126 2.903 12.2 1.778 1.442 1.079 0.188 2.364
4513 4.00 2.419 0.858 4.277 2.625 1.578 0.069 2.367 9.4 1.146 0.895 0.544 -0.319 1.681
4516 4.50 2.721 0.835 4.292 2.927 1.500 0.037 1.937 7.7 0.602 0.399 -0.000 -0.824 1.276
4512 5.00 3.013 0.819 4.308 3.226 1.434 0.021 1.541 6.3 0.146 -0.102 -0.553 -1.301 0.875
4932 2.00 0.042 1.291 4.535 0.700 2.757 1.047 8.331 50.4 3.544 3.127 3.544 1.876 4.052
5013 2.50 0.883 1.202 4.374 1.358 2.376 0.706 5.880 18.0 2.903 2.586 2.204 1.287 3.463
4998 3.00 1.534 1.082 4.308 1.882 2.024 0.399 4.407 16.9 2.362 2.055 1.663 0.765 2.765
5001 3.50 1.960 0.987 4.295 2.243 1.805 0.223 3.608 14.8 1.813 1.496 1.114 0.220 2.317
4978 4.00 2.292 0.919 4.293 2.538 1.661 0.125 2.896 11.7 1.279 0.952 0.580 -0.292 1.749
4953 4.50 2.604 0.877 4.301 2.837 1.560 0.068 2.363 8.8 0.699 0.455 0.000 -0.824 1.217
4963 5.00 2.885 0.854 4.314 3.118 1.485 0.038 1.868 6.8 0.176 -0.048 -0.301 -1.301 0.796
5465 3.00 1.084 1.215 4.403 1.589 2.337 0.685 5.815 17.7 2.447 2.125 1.748 0.819 2.995
5560 3.50 1.663 1.119 4.345 2.062 2.040 0.428 4.598 17.4 1.903 1.572 1.204 0.318 2.415
5497 4.00 2.139 1.010 4.322 2.456 1.791 0.226 3.597 15.3 1.362 1.023 0.663 -0.284 1.892
5510 4.50 2.486 0.947 4.322 2.769 1.649 0.128 2.959 12.1 0.845 0.503 0.146 -0.770 1.230
5480 5.00 2.791 0.905 4.330 3.060 1.547 0.072 2.323 9.0 0.301 0.001 -0.398 -1.301 0.699
5768 4.44 2.367 0.997 4.336 2.688 1.725 0.186 3.293 14.6 0.903 0.601 0.204 -0.678 1.419
6023 3.50 1.130 1.266 4.493 1.737 2.395 0.751 6.183 17.9 1.903 1.703 1.301 0.467 2.564
5993 4.00 1.865 1.122 4.364 2.281 1.991 0.397 4.514 17.9 1.415 1.095 0.716 -0.155 1.942
5998 4.50 2.301 1.026 4.344 2.644 1.771 0.222 3.572 16.1 0.845 0.552 0.146 -0.721 1.279
6437 4.00 1.384 1.263 4.495 1.989 2.315 0.686 5.818 18.3 1.447 1.221 0.748 -0.081 2.016
6483 4.50 2.008 1.134 4.386 2.448 1.969 0.386 4.516 18.7 0.903 0.624 0.204 -0.638 1.403
6918 4.50 1.545 1.283 4.543 2.201 2.292 0.673 5.737 18.6 1.041 0.781 0.342 -0.638 1.362
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Table B.2: The Fe I and Fe II line parameters with reference number, ionization degree, wavelength λ ,
lower excitation potential χexc, oscillator strength logg f , weighting factor gu, radiation damping logγrad,
lower level ll , upper level lu.

# id λ χexc logg f gu logγrad ll lu
1 1 4445.4717 0.087 -5.412 1 4.22 s p
2 1 5247.0503 0.087 -4.961 1 3.63 s p
3 1 5491.8315 4.186 -2.188 2 8.09 d p
4 1 5600.2242 4.260 -1.420 2 8.01 p s
5 1 5661.3457 4.284 -1.756 2 8.00 p s
6 1 5696.0896 4.548 -1.720 2 8.33 p d
7 1 5705.4648 4.301 -1.355 2 8.38 p s
8 1 5778.4531 2.588 -3.440 2 8.21 s p
9 1 5784.6582 3.396 -2.532 3 8.05 p s

10 1 5855.0767 4.608 -1.478 2 8.33 p d
11 1 5956.6943 0.859 -4.552 1 4.00 s p
12 1 6151.6182 2.176 -3.282 1 8.29 s p
13 1 6240.6460 2.223 -3.287 3 6.81 s p
14 1 6311.5003 2.831 -3.141 2 8.20 s p
15 1 6498.9390 0.958 -4.695 1 4.36 s p
16 1 6518.3671 2.831 -2.448 2 8.21 s p
17 1 6574.2285 0.990 -5.010 1 4.22 s p
18 1 6609.1104 2.559 -2.682 1 7.99 s p
19 1 6699.1416 4.593 -2.101 2 8.09 s p
20 1 6739.5220 1.557 -4.794 3 7.24 s p
21 1 6793.2593 4.076 -2.326 2 7.56 d p
22 1 6837.0059 4.593 -1.687 2 7.85 s p
23 1 6854.8228 4.593 -1.926 2 7.81 s p
24 1 7401.6851 4.186 -1.500 2 8.01 d p
25 1 7912.8670 0.859 -4.848 1 3.68 s p
26 1 8293.5146 3.301 -2.203 2 8.20 s p
27 2 4620.5129 2.828 -3.210 31 8.56 s p
28 2 5264.8042 3.230 -3.130 31 8.56 s p
29 2 5414.0717 3.221 -3.580 31 8.56 s p
30 2 6432.6757 2.891 -3.570 31 8.49 s p
31 2 6516.0767 2.891 -3.310 31 8.49 s p
32 2 7222.3923 3.889 -3.260 31 8.56 s p
33 2 7224.4790 3.889 -3.200 31 8.56 s p
34 2 7515.8309 3.903 -3.390 31 8.56 s p
35 2 7711.7205 3.903 -2.500 31 8.56 s p
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Table B.3: Table with main results from synthetic spectral flux profiles: line strength, width, depth, shift,
minimum and maximum of bisector for the solar simulation. The line number in the first column is the
same as used in Table B.2.

# Wλ ls lw ld min max
1 43.948 -0.374 4.850 0.561 -0.373 -0.248
2 67.517 -0.192 5.381 0.664 -0.276 -0.195
3 13.965 -0.501 4.867 0.145 -0.500 -0.288
4 41.099 -0.420 5.213 0.382 -0.432 -0.241
5 25.989 -0.475 5.040 0.246 -0.473 -0.247
6 18.203 -0.476 5.037 0.172 -0.490 -0.254
7 43.520 -0.420 5.312 0.385 -0.421 -0.242
8 24.787 -0.432 4.757 0.248 -0.431 -0.254
9 30.014 -0.440 4.965 0.282 -0.434 -0.237

10 25.239 -0.483 5.108 0.227 -0.473 -0.249
11 54.501 -0.272 4.997 0.505 -0.303 -0.202
12 51.801 -0.310 5.085 0.453 -0.332 -0.203
13 49.442 -0.315 5.027 0.432 -0.337 -0.204
14 28.465 -0.422 4.802 0.258 -0.412 -0.235
15 45.180 -0.318 4.802 0.399 -0.321 -0.214
16 59.973 -0.286 5.283 0.476 -0.308 -0.191
17 29.505 -0.375 4.595 0.267 -0.371 -0.224
18 63.179 -0.224 5.325 0.487 -0.295 -0.190
19 8.560 -0.481 4.802 0.073 -0.481 -0.237
20 16.198 -0.392 4.541 0.145 -0.403 -0.236
21 14.832 -0.442 4.880 0.122 -0.443 -0.243
22 18.876 -0.473 4.880 0.155 -0.463 -0.226
23 12.255 -0.476 4.807 0.102 -0.474 -0.229
24 44.531 -0.357 5.134 0.317 -0.360 -0.203
25 48.607 -0.280 4.773 0.353 -0.291 -0.187
26 58.154 -0.297 5.216 0.360 -0.306 -0.193
27 56.562 -0.352 5.702 0.584 -0.425 -0.279
28 45.612 -0.372 5.453 0.433 -0.414 -0.259
29 28.478 -0.495 5.210 0.278 -0.487 -0.264
30 42.298 -0.314 5.268 0.341 -0.344 -0.209
31 53.208 -0.247 5.458 0.410 -0.306 -0.205
32 19.331 -0.456 5.141 0.143 -0.470 -0.226
33 21.188 -0.448 5.141 0.156 -0.457 -0.226
34 15.578 -0.488 5.105 0.112 -0.483 -0.224
35 48.518 -0.238 5.437 0.312 -0.304 -0.204
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Table B.4: Limb darkening coefficients derived from 3D RHD models in the Kepler filter for different
stellar parameters (Cols. 1,2,3). The linear (Col. 4), quadratic (Cols. 5,6), square root (Cols. 7,8) and
four-parameter non-linear laws (Cols. 9,10,11,12) are listed.

Teff logg [Fe/H] u a b c d a1 a2 a3 a4
3941 2.50 +0.0 0.7540 0.6785 0.0890 0.6046 0.1951 0.5990 -0.4726 1.0476 -0.3332
4023 1.50 +0.0 0.7684 0.6494 0.1403 0.5441 0.2930 0.8608 -1.0485 1.6560 -0.5755
4038 2.50 -2.0 0.7422 0.5071 0.2772 0.3434 0.5209 0.9583 -0.9036 1.3231 -0.4712
4048 2.00 -2.0 0.7533 0.5602 0.2278 0.4293 0.4233 0.7804 -0.6288 1.1742 -0.4396
4054 2.00 +0.0 0.7478 0.6437 0.1227 0.5483 0.2606 0.8231 -1.0372 1.6583 -0.5805
4061 1.50 -2.0 0.7437 0.5735 0.2006 0.4555 0.3765 0.7604 -0.6899 1.2810 -0.4836
4445 2.50 -2.0 0.7211 0.4438 0.3270 0.2835 0.5718 0.7194 -0.2703 0.7589 -0.3418
4491 3.00 +0.0 0.7249 0.5963 0.1515 0.4995 0.2944 0.7125 -0.7275 1.3470 -0.4986
4498 2.00 -2.0 0.6953 0.4067 0.3403 0.2394 0.5956 0.7239 -0.2435 0.6632 -0.2992
4504 4.00 +0.0 0.7464 0.5897 0.1848 0.4746 0.3552 0.7620 -0.6927 1.2480 -0.4484
4515 5.00 +0.0 0.7427 0.5235 0.2585 0.3809 0.4727 0.6645 -0.1364 0.5109 -0.1660
4518 4.50 +0.0 0.7475 0.5811 0.1962 0.4682 0.3648 0.5975 -0.1796 0.6672 -0.2292
4523 2.50 +0.0 0.7126 0.5668 0.1720 0.4624 0.3270 0.7578 -0.8409 1.4793 -0.5671
4532 3.50 +0.0 0.7350 0.5877 0.1737 0.4776 0.3364 0.7766 -0.8008 1.3862 -0.5061
4561 2.00 +0.0 0.6996 0.4989 0.2366 0.3703 0.4301 0.7433 -0.6130 1.1598 -0.4616
4912 2.00 +0.0 0.6342 0.3729 0.3081 0.2040 0.5620 1.0760 -1.4316 1.9551 -0.7880
4955 4.50 +0.0 0.7063 0.5219 0.2175 0.4122 0.3842 0.6170 -0.3960 1.0439 -0.4496
4965 5.00 +0.0 0.7291 0.5310 0.2337 0.4208 0.4027 0.4763 0.0861 0.5163 -0.2512
4971 5.00 -2.0 0.6677 0.1788 0.5766 -0.1094 1.0153 1.0223 -0.1248 0.0105 -0.0014
4972 4.50 -2.0 0.6886 0.2313 0.5393 -0.0329 0.9426 0.8534 0.2272 -0.2835 0.1041
4974 4.00 +0.0 0.6992 0.5192 0.2123 0.4060 0.3830 0.6923 -0.6002 1.2283 -0.5045
4997 3.50 +0.0 0.6932 0.5118 0.2138 0.4025 0.3798 0.6349 -0.4662 1.1038 -0.4691
5001 3.00 +0.0 0.6744 0.4956 0.2108 0.3903 0.3712 0.6142 -0.4649 1.1166 -0.4850
5019 2.50 +0.0 0.6752 0.4877 0.2210 0.3724 0.3955 0.6738 -0.5504 1.1461 -0.4778
5063 4.00 -2.0 0.6757 0.3013 0.4414 0.0918 0.7628 0.5381 0.7597 -0.7436 0.2794
5457 2.50 -2.0 0.6145 0.2464 0.4341 -0.0011 0.8042 1.2077 -1.0587 1.0038 -0.3082
5458 5.00 -2.0 0.6434 0.1859 0.5394 -0.0762 0.9402 0.6630 0.8211 -1.0901 0.4458
5460 4.50 -2.0 0.6431 0.2014 0.5208 -0.0648 0.9248 0.8651 0.2191 -0.4478 0.2207
5460 3.00 +0.0 0.6294 0.3857 0.2873 0.2516 0.4936 0.4160 0.4190 -0.1084 0.0097
5481 4.00 -2.0 0.6398 0.2278 0.4857 -0.0393 0.8873 1.2188 -0.9165 0.8428 -0.2634
5488 5.00 +0.0 0.6648 0.4376 0.2679 0.3173 0.4539 0.4739 0.0915 0.4573 -0.2538
5493 4.00 +0.0 0.6489 0.4214 0.2683 0.2955 0.4617 0.5413 -0.0765 0.5818 -0.2854
5509 4.50 +0.0 0.6632 0.4384 0.2651 0.3119 0.4590 0.5493 -0.0749 0.5772 -0.2752
5552 3.50 +0.0 0.6321 0.3764 0.3015 0.2358 0.5176 0.5239 0.0998 0.2968 -0.1694
5556 3.00 -2.0 0.6036 0.2157 0.4573 -0.0528 0.8575 1.3578 -1.3509 1.2117 -0.3623
5767 4.44 +0.0 0.6391 0.3926 0.2906 0.2535 0.5037 0.5850 -0.1023 0.5371 -0.2580
5784 4.44 -2.0 0.6210 0.2036 0.4922 -0.0700 0.9028 1.3022 -1.1507 1.0719 -0.3504
5977 4.00 -2.0 0.5986 0.2085 0.4599 -0.0604 0.8608 1.4362 -1.6302 1.5751 -0.5231
5996 3.50 -2.0 0.5915 0.2386 0.4161 -0.0099 0.7856 1.4091 -1.7317 1.7550 -0.5948
5999 4.00 +0.0 0.6117 0.3409 0.3193 0.1872 0.5546 0.5399 0.1729 0.0875 -0.0614
6002 4.50 +0.0 0.6204 0.3557 0.3122 0.2071 0.5400 0.5319 0.1504 0.1629 -0.1009
6025 3.50 +0.0 0.5791 0.2739 0.3599 0.0827 0.6484 0.7083 0.0037 -0.0342 0.0616
6057 4.50 -2.0 0.6032 0.2186 0.4535 -0.0359 0.8349 1.2365 -1.1144 1.0596 -0.3421
6437 4.00 -2.0 0.5686 0.1783 0.4602 -0.0941 0.8658 1.3962 -1.4639 1.2697 -0.3755
6437 4.00 +0.0 0.5718 0.2641 0.3627 0.0758 0.6479 0.8062 -0.3950 0.5247 -0.1973
6483 4.50 +0.0 0.5953 0.2805 0.3712 0.0931 0.6561 0.7390 -0.1722 0.3189 -0.1292
6490 4.50 -2.0 0.5907 0.2356 0.4186 -0.0043 0.7773 1.2572 -1.3322 1.3574 -0.4620
6915 4.50 +0.0 0.5623 0.2066 0.4194 -0.0169 0.7566 0.9738 -0.6262 0.6324 -0.2190
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Kučinskas, A., Steffen, M., Ludwig, H.-G., et al. 2013a, A&A, 549, A14
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Ludwig, H.-G. & Kučinskas, A. 2012, A&A, 547, A118

Ludwig, H.-G., Samadi, R., Steffen, M., et al. 2009b, A&A, 506, 167

Magic, Z., Collet, R., Asplund, M., et al. 2013a, A&A, 557, A26

Magic, Z., Collet, R., Hayek, W., & Asplund, M. 2013b, A&A, 560, A8

Magic, Z., Serenelli, A., Weiss, A., & Chaboyer, B. 2010, ApJ, 718, 1378

Maltby, P., Avrett, E. H., Carlsson, M., et al. 1986, ApJ, 306, 284

Mandel, K. & Agol, E. 2002, ApJ, 580, L171

Mandelbrot, B. B. 1977, The fractal geometry of nature

Mayor, M. & Queloz, D. 1995, Nature, 378, 355

Mihalas, D. 1970

Mihalas, D., Dappen, W., & Hummer, D. G. 1988, ApJ, 331, 815

Muthsam, H. J., Kupka, F., Löw-Baselli, B., et al. 2010, New A, 15, 460

Nahar, S. N. 2004, Phys. Rev. A, 69, 042714

Nissen, P. E., Primas, F., Asplund, M., & Lambert, D. L. 2002, A&A, 390, 235

Nordlund, A. 1976, A&A, 50, 23

Nordlund, A. 1982, A&A, 107, 1

Nordlund, A. & Dravins, D. 1990, A&A, 228, 155

Nordlund, Å. & Stein, R. F. 2001, ApJ, 546, 576

Nordlund, Å., Stein, R. F., & Asplund, M. 2009, Living Reviews in Solar Physics, 6, 2

Pereira, T. M. D., Asplund, M., Collet, R., et al. 2013, A&A, 554, A118

Pereira, T. M. D., Asplund, M., & Kiselman, D. 2009a, Mem. Soc. Astron. Italiana, 80, 650

Pereira, T. M. D., Kiselman, D., & Asplund, M. 2009b, A&A, 507, 417

Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W., & Jeffery, C. S. 1995, A&AS, 112, 525

Ramírez, I., Allende Prieto, C., Koesterke, L., Lambert, D. L., & Asplund, M. 2009, A&A, 501, 1087

Ramírez, I., Allende Prieto, C., & Lambert, D. L. 2008, A&A, 492, 841

Ramírez, I., Collet, R., Lambert, D. L., Allende Prieto, C., & Asplund, M. 2010, ApJ, 725, L223

Rana, N. C. 1991, ARA&A, 29, 129

Robinson, F. J., Demarque, P., Li, L. H., et al. 2003, MNRAS, 340, 923



BIBLIOGRAPHY 175

Rosenthal, C. S., Christensen-Dalsgaard, J., Nordlund, Å., Stein, R. F., & Trampedach, R. 1999, A&A,
351, 689

Roudier, T. & Muller, R. 1986, Sol. Phys., 107, 11

Ruiz Cobo, B. & del Toro Iniesta, J. C. 1992, ApJ, 398, 375

Rutten, R. J., de Wijn, A. G., & Sütterlin, P. 2004, A&A, 416, 333

Sbordone, L., Bonifacio, P., Caffau, E., et al. 2010, A&A, 522, A26

Schlattl, H., Weiss, A., & Ludwig, H.-G. 1997, A&A, 322, 646

Schrijver, C. J., Hagenaar, H. J., & Title, A. M. 1997, ApJ, 475, 328

Sing, D. K. 2010, A&A, 510, A21

Skartlien, R. 2000, ApJ, 536, 465

Smalley, B., Gardiner, R. B., Kupka, F., & Bessell, M. S. 2002, A&A, 395, 601

Socas-Navarro, H. 2011, A&A, 529, A37

Southworth, J. 2008, MNRAS, 386, 1644

Steffen, M. 1993, in Astronomical Society of the Pacific Conference Series, Vol. 40, IAU Colloq. 137:
Inside the Stars, ed. W. W. Weiss & A. Baglin, 300

Steffen, M. & Holweger, H. 2002, A&A, 387, 258

Steffen, M., Ludwig, H.-G., & Freytag, B. 1995, A&A, 300, 473

Steffen, M., Ludwig, H.-G., & Kruess, A. 1989, A&A, 213, 371

Stein, R. F., Benson, D., Georgobiani, D., & Nordlund, Å. 2006, 624

Stein, R. F., Georgobiani, D., Schafenberger, W., Nordlund, Å., & Benson, D. 2009, 1094, 764

Stein, R. F., Lagerfjärd, A., Nordlund, Å., & Georgobiani, D. 2011, Sol. Phys., 268, 271

Stein, R. F. & Nordlund, A. 1998, ApJ, 499, 914

Stein, R. F. & Nordlund, Å. 2001, ApJ, 546, 585

Stempels, H. C., Piskunov, N., & Barklem, P. S. 2001, 223, 878

Tinsley, B. M. 1979, ApJ, 229, 1046

Trampedach, R. 2001, Journal of Astronomical Data, 7, 8

Trampedach, R. 2007, 948, 141

Trampedach, R., Asplund, M., Collet, R., Nordlund, Å., & Stein, R. F. 2013, ArXiv e-prints

Trampedach, R. & Stein, R. F. 2011a, ApJ, 731, 78

Trampedach, R. & Stein, R. F. 2011b, ApJ, 731, 78

Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., & Nordlund, Å. 1999, 173, 233

Uitenbroek, H. & Criscuoli, S. 2011, ApJ, 736, 69

Unno, W., Kondo, M.-A., & Xiong, D.-R. 1985, PASJ, 37, 235

van Hamme, W. 1993, AJ, 106, 2096



176

Vernazza, J. E., Avrett, E. H., & Loeser, R. 1976, ApJS, 30, 1

Vögler, A., Shelyag, S., Schüssler, M., et al. 2005, A&A, 429, 335

Weiss, A. & Schlattl, H. 2008, Ap&SS, 316, 99

Williamson, J. H. 1980, Journal of Computational Physics, 35, 48

Xiong, D. R., Cheng, Q. L., & Deng, L. 1997, ApJS, 108, 529



Acknowledgment

I want to thank my (co)supervisor Achim Weiss, for giving me the opportunity to perform an internship and
subsequently my Diploma thesis work at the Max Planck Institute for Astrophysics, which was the initiation
of my scientific endeavors in stellar astrophysics. Also, I want to express my highest gratitude towards my
(main)supervisor for my PhD thesis, Martin Asplund, for giving me the freedom to bloom and develop
myself with his excellent, inspiring mentorship and guidance. Furthermore, I want to thank Remo Collet
for helping me getting acquainted with the STAGGER-code and his support throughout several projects, and
hosting me in Canberra, Australia. I want to thank also Aake Nordlund for his helpful discussions. Finally,
I would like to thank my collaborators Wolfgang Hayek, Regner Trampedach and Andrea Chiavassa for
their contribution for the individuals projects they were involved with.

This PhD thesis is dedicated to my mother, Algaa Magic, who early on inspired my interest for physics.
I am very thankful for the unrestrained support by my father, sister and brother.



178



Curriculum vitae

Zazralt Magic

Personal information

Born 17. December 1981 Ulan Bator, Mongolia
Male, Single, German Citizen

University education

2010 - 2014 Max Planck Institute for Astrophysics Garching, Germany
PhD in Astrophysics

2006 - 2010 Ludwig-Maximilians-Universität Munich, Germany
Diploma in Physics

2004 - 2006 Ludwig-Maximilians-Universität Munich, Germany
Preliminary Diploma in Physics

School education

2002 - 2004 Upper Vocational School Munich, Germany
Abitur (University-entrance Diploma)

1999 - 2002 Apprenticeship at HypoVereinsbank AG Munich, Germany
Graduation as a bank clerk

1995 - 1999 Maria-Probst Secondary High School Munich, Germany
Mittlere Reife (General Certificate of Secondary Education)


	Zusammenfassung
	Summary
	Preface
	Introduction
	Motivation
	Radiation-hydrodynamics of stellar convection
	Hydrodynamic equations
	Radiative transfer


	Methods
	Multi-dimensional atmosphere modeling
	Details on the numerics
	Geometrical properties
	Equation of state
	Opacity
	Radiative transfer

	Stagger-grid models
	Stellar Parameters
	Scaling and relaxing 3D models
	Scaling the initial models
	Selection of the opacity bins

	Temporal and horizontal averages
	Basic averaging procedure
	Interpolation to the new reference depth scale
	Extrapolation at the top

	The Stagger-grid 1D atmospheres
	Basic equations
	Numerical methods


	Stagger-grid
	Global properties
	Stellar parameters
	Constant entropy of the adiabatic convection zone
	Entropy jump
	Large-amplitude fluctuations
	Emergent intensity
	Granule size

	Mean "426830A 3D"526930B  atmosphere
	Temperature stratification
	Velocity field
	Turbulent pressure
	Total pressure and density 
	Electron number density
	Entropy 
	Superadiabatic temperature gradient 
	Transport of energy 

	Comparison of the "426830A 3D"526930B  with 1D models
	1D models
	MARCS and ATLAS models

	Comparison of the averaging methods
	Temperature
	Density
	Electron number density
	Vertical velocity

	Statistical properties
	Contrast
	Upflows and downflows
	Histograms

	Reversed granulation
	Hydrostatic equilibrium
	Deviations from the EOS

	Stellar granulation
	Granule recognition
	Granule properties
	Diameter of granules 
	Intensity distribution of granules
	Temperature and density of granules
	Velocity of granules
	Geometrical properties

	Fractal dimension
	Optical surface
	Corrugation of the optical surface
	Surface velocity correlations

	Topology of granulation

	Spectral line formation
	Multi-dimensional line formation calculations
	Two components of the line profile
	Spectral line formation: "426830A 3D"526930B  and 3D LTE calculations
	Comparison of "426830A 3D"526930B  and 3D line formation
	Cautionary remarks
	Comparison with 1D models

	Fe line shapes, shifts and asymmetries
	Line shape
	Line strength
	Line width and depth
	Line shift
	Line asymmetry
	Conditions at the height of line formation


	Limb Darkening
	Deriving the limb darkening
	The resulting limb darkening predictions
	Transit light curves
	Comparison with results from 1D models

	Stagger-grid and 1D models
	Mixing Length from 1D atmosphere models
	Matching the adiabatic entropy value
	Matching the entropy jump
	Additional MLT parameters

	Mixing Length from 1D envelope models
	Matching the adiabatic entropy
	Comparison with 2D calibrations
	Impact on stellar evolutionary tracks
	Comparison with observations

	T() relations
	Velocity correlation length
	Mass mixing length

	Conclusions
	Functional fits
	Tables
	Acknowledgment
	Curriculum vitae

