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Zusammenfassung

In dieser Arbeit untersuche ich den Einfluss massiver Quantenfelder auf einen reinen de Sitter Hintergrund.

Nach einer kurzen Zusammenfassung der neuesten Entwicklungen zu diesem Thema gebe ich eine Einführung

in die klassische Geometrie von de Sitter Räumen. Darin behandle ich die physikalischen Eigenschaften

und die verschiedenen Koordinatensysteme, die unterschiedliche Teile des de Sitter Raumes bedecken.

Im anschließenden Kapitel wiederhole ich die Quantenfeldtheorie freier Skalarfelder auf gekrümmten

Hintergründen im Allgemeinen und auf de Sitter im Speziellen. Hier gebe ich die Lösungen für die

Modenfunktionen in geschlossenen und flachen Koordinaten an und diskutiere das Problem der richtigen

Wahl des Vakuums auch im Hinblick auf die Eigenschaften der zugehörigen Green Funktionen. Da sich der

Hintergrund für die Quantenfeldtheorie auf de Sitter mit der Zeitentwicklung ändert, verwende ich den

in/in (Keldysh) Formalismus zur Berechnung von Observablen. Ich fasse den Formalismus zusammen und

erläutere die für Rechnungen benötigten Methoden. Die Einführung des Wechselwirkungspotentials und

der Feynmanregeln für Wechselwirkungsdiagramme bilden schliesslich den Abschluss des einleitenden Teils.

Mit Hilfe des effektiven Potentials für das reskalierte Skalarfeld zeige ich, dass jede Theorie mit ungeraden

Wechselwirkungspotentialen Probleme mit der Stabilität des freien Vakuums aufweist, falls der Skalenfaktor

in der Vergangenheit verschwindet. Dies ist auch ein Argument, auf de Sitter die globalen Koordinaten

anstelle der flachen zu verwenden, da sie im Gegensatz zu diesen den ganzen Raum bedecken und der

Skalenfaktor nur einen nicht verschwindenden Minimalwert annimmt. Ich beweise weiterhin, dass aus

der Betrachtung der Vakuumpersistenz kein Einwand gegen Wechselwirkungen auf de Sitter folgt, da

die resultierende Entwicklung immer unitär ist, falls die Kopplung klein genug gewählt wird. Für die

Schleifenkorrekturen zum Keldyshpropagator in globalen Koordinaten ergeben meine Berechnungen keine

problematischen Divergenzen. Insbesondere finde ich keine Divergenz, die es verbietet, den adiabatischen

Limes in Berechnung zu nehmen, was den Ergebnissen von Polyakov und Krotov widerspricht. Zusammen-

fassend ist meine Schlussfolgerung, dass die wechselwirkenden Quantenfelder zu keinen offensichtlichen

Instabilitäten des de Sitter Hintergrundes führen.
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Abstract

In this work I discuss the influence of interacting massive quantum fields on a pure de Sitter background.

After a short review of recent developments on the topic, I give an introduction to the classical geometry

of de Sitter. I discuss the physical properties and the different coordinate charts covering parts of de Sitter.

In the next chapter I recapitulate free quantum fields on curved backgrounds in general and on de Sitter in

particular. Subsequently I give the solutions to the mode equation for closed and flat coordinates and cover

the problem of the correct choice of the vacuum also with respect to the properties of the corresponding

Green function. As the background for quantum field theory on de Sitter is changing with time I use the

in/in (Keldysh) formalism to calculate observables. I review this formalism and give the mathematical

tools to perform calculations. The introduction of the interaction potential and the Feynman rules for

interaction diagrams concludes the introductory part.

Using the effective potential for the rescaled field, I show that any theory with odd interaction potential

has problems with the stability of the free vacuum on a dynamic background if the scale factor vanishes

in the early past. In particular this is one argument for using the global closed coordinate chart on de

Sitter instead of the flat one covering only half of de Sitter. I also prove that from the vacuum persistence

there is no objection to taking interactions on de Sitter, i.e. the resulting evolution is unitary for small

enough coupling. For the loop corrections to the Keldysh propagator in global coordinates I calculate no

problematic divergence, especially I find no divergence prohibiting the adiabatic limit in calculations in

contrast to Polyakov and Krotov’s result. Summarizing, this shows that there is no obvious instability of

the de Sitter background inferred by interacting quantum fields.
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1. Introduction, motivation and current state

De Sitter space is one of the earliest solutions to Einstein’s equations of motion for gravity. Although its

name originates from Willem de Sitter, the basic concept was introduced by Albert Einstein in 1917. The

equations of motion for the scale factor of the universe derived from his theory of gravity always required

the size of our universe to be dynamically changing. Einstein was very uncomfortable with the notion

of a dynamic universe as at that time no evidence indicated an expanding or contracting universe. He

therefore added a constant energy term to the equations of motion to allow for a static universe. This

constant had the desired effect, but allowed a static universe only for a spatially closed universe and a

value of the constant which is very fine-tuned to the matter content of the universe. Willem de Sitter

discussed the general solution [1, 2] which leads to an exponentially contracting or expanding universe,

depending on the dominating part of the energy contribution and the initial condition. Nowadays de Sitter

space refers to a space-time in which the major energy contribution comes from the cosmological constant

and other matter, if present, is treated as a perturbation. However, after the discovery of the expansion of

the universe by Hubble in 1929 [3], the cosmological constant was less popular, as the expansion of the

universe could be explained by the known matter sources and there was no need to introduce an artificial

new form of energy. This changed with the measurement of the cosmic microwave radiation background

by Penzias and Wilson in 1965 [4]. To explain this uniform background radiation and other cosmological

problems an early phase of accelerated expansion was proposed, which is strongly supported by the recent

observations of Planck [5,6] and BICEP2 [7,8]. Although the exact mechanism is still not fully determined

today, this early quasi de Sitter stage renewed interest in de Sitter space-time. Futhermore the discovery

that today’s expansion of the universe is accelerating in 1998 by Riess et al. and Perlmutter et al. [9, 10]

increased the interest in the study of de Sitter space. Today it is one of the most studied space-times aside

from Minkowski space.

The first discussions of quantum fields on de Sitter space are by Chernikov and Tagirov in 1968 [11,12].

Further discussion on the possible vacua, the Green functions and the renormalization of the energy

momentum tensor and the effective action followed [13–18]. In 1984 Ford [19] discussed toy models of

massless interacting scalar fields and showed them to lead to an energy momentum tensor that could

decrease the cosmological constant. The evolution of a universe with a decreasing cosmological constant

and other matter was considered by Freese et al. shortly thereafter [20]. Tsamis and Woodard showed by

pseudo-quantizing gravity on a de Sitter background that the quantum gravitational backreaction can lead
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to a decrease of the cosmological constant as well [21, 22]. The equations of motion for the mode function

allows for a plethora of solutions. From any set of mode functions corresponding to a definite vacuum,

another set can be constructed by a Bogolyubov transformation. Unlike in Minkowski space, the condition

of minimisation of the Hamiltonian does not work in de Sitter globally, so there is no unique guideline for

the choice of the correct set of mode functions for the vacuum which led to an extended discussion on the

properties of the different vacua which includes particle production [16, 17], thermal properties [18, 23],

application to transplanckian physics [24–27] and analytic properties in perturbation theory [28–32]. Most

analysis concentrated on massless or very light scalar fields as they mimic the behaviour of gravitons

in quantized gravity [17–19, 33–51]. In 2010 Burgess et al. [52] showed that for very light or massless

self-interacting fields on a de Sitter background, standard perturbation theory breaks down for small

enough masses. They argue that the semiclassical treatment is therefore no longer applicable and one has

to resort to non-perturbative methods.

As the de Sitter background does not have a global timelike Killing vector, energy conservation no longer

holds. This leads to the possibility of particle decays that are forbidden in Minkowski space-time. E.g. the

decay of one particle into multiple particles of the same type is allowed if self-interactions are switched

on. The exact amplitude for these processes was calculated by Bros et al. [53–57]. In 2007 Polyakov [30]

conjectured that de Sitter space is intrinsically unstable when the self interaction of massive scalar fields

is switched on and this leads to a screening of the cosmological constant, similar to the screening of the

electric charge. He also argued for a composition principle of the propagator which is satisfied in Minkowski

space, but not for the propagator resulting from the standard euclidean vacuum in de Sitter space. This

would support a different choice of vacuum. In the following publication [31] he calculated vacuum and

particle stability in the in/out formalism and found an averaged decay rate after the use of Fermi’s golden

rule, which leads to a catastrophic increase of the particle density. However, on a changing background

the application of Fermi’s rule is not sensible [53] and one has to find the dynamic Boltzmann equations

for the particle number densities. This has been attempted by several authors [39,58–69]. Together with

Krotov [70], Polyakov showed that a cubic interaction on a contracting de Sitter space leads to a divergency

depending on the time the interaction is active, i. e. the adiabatic limit of sending the time of switching on

to past infinity, which is a crucial element of perturbation theory, is not valid in these coordinates. For

expanding de Sitter, Jatkar et al. [71] showed that the propagators get loop corrections depending on the

logarithm of the geodesic distance of the two events but this contribution can be resumed to a shift of the

mass and thus not leading to a problem of perturbation theory. Several other authors also investigated

this possible decay of de Sitter space e.g. by studying the corrections to the propagators and the kinetic

equations for the particle occupation number [32,44,58–66,72–91].

These references should give a glimpse that the study of de Sitter space and especially quantum fields

on it is a very actively discussed subject. The importance of de Sitter geometry for the early and late

evolution of our universe as emphasized in recent observations Planck and BICEP [5–8] is my motivation

to study it in more detail. To investigate the interactions of different particles, it is important to know
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whether perturbation theory as we are familiar with from Minkowski space can be applied in de Sitter

space. I discuss the influence of a self interaction potential of a massive scalar field on a pure de Sitter

background up to one loop level. The coupling to gravity is supposed to be minimal, but on a constant

de Sitter background a nonminimal coupling will only lead to a shift of the mass. I consider only fields

in the principle series, i.e. the effective mass is larger than a threshold depending on the Hubble scale.

Particles from the principle series exhibit a behaviour distinctly different from light particles. In contrast

to Minkowski space, loop corrections on de Sitter are much more cumbersome due to the more complicated

form of the mode functions. Therefore I follow [70] and use a toy model of cubic interaction, which should

nevertheless give us insights into the relevant physics. Although Hamiltonians with cubic interactions are

unbounded, small perturbations around the free vacuum are stable. By adding a quartic interaction the

potential can then be made bounded again but the resulting loop diagrams are much more complicated to

evaluate than in the cubic case. As I expect particle excitations I use the closed coordinate chart of de

Sitter which covers the complete de Sitter space in contrast to the flat coordinates which cover only half

of it. This is to make sure that no particles can escape or enter through the border of the geodesically

incomplete coordinate system. Moreover the effective potential indicates that for cubic interaction in the

expanding patch of de Sitter the free vacuum is destabilized if the initial hypersurface is sent to past infinity.

As for short distances the behaviour of the mode functions is similar to Minkowski space, I investigate

corrections to propagators with small external momenta which is another argument for a coordinate system

that covers the whole Cauchy surface. In the global coordinates, I show that contrary to [70] the adiabatic

limit is possible and there is no objection to letting the interaction act over an infinitely long time. In

conclusion I do not find any objection to using perturbation theory for massive particles on de Sitter from

this point of view. Nevertheless, if divergencies should appear in future analysis, they first of all signal a

breakdown of perturbation theory but not an instability of de Sitter itself.
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2. Geometry of de Sitter space

2.1. De Sitter space

In this chapter I review the basic properties ofD-dimensional de Sitter space-time (dSD) based on [54,92–95].

De Sitter space is a maximally symmetric space-time of constant curvature discovered by Einstein and

discussed by Willem de Sitter and independently by Levi-Civita in 1917 [1, 2, 96]. D dimensional de Sitter

space can be expressed as a hyperboloid of constant curvature embedded in a D+ 1 dimensional Minkowski

space

ηABX
AXB = −H−2. (2.1)

I use the metric signature (+,−,−, . . . ) throughout this thesis. It is useful to consider dSD as the analytic

continuation of the euclidean sphere SD of radius H−1 embedded in RD+1 by

δijE
iEj =H−2. (2.2)

The continuation is achieved by the Wick rotation E0 → iX0 which transforms (2.2) into (2.1), (see figure

2.1). Wick rotation is a useful tool to easily derive certain properties of de Sitter space from those of the

sphere. However some care has to be taken when using this in the context of quantum field theory on

de Sitter, as the analytic continuation may be hindered by cuts in the complex time plane. From the

X0

Figure 2.1.: Embedding of dS2 in R3 in contrast to the two-dimensional sphere.
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definition (2.1) it is obvious that dS is invariant under rotations in the embedding Minkowski spacetime

with symmetry group SO(1,D). Therefore it has the same number of symmetry generators generators as

a Minkowski spacetime of the same dimension and is maximally symmetric [92]. For maximally symmetric

spaces the Riemann tensor is given by

Rαβµν =
1

D(D − 1)
R (gαµgβν − gανgβµ) .

From this the Einstein tensor Gαβ = Rαβ − 1
2gαβR is given by

Gαβ =
2 −D
2D

Rgαβ .

The Bianchi identity (or conservation of the energy momentum tensor) therefore requires that R is constant.

This space is a solution to the Einstein equations for a cosmological constant with value Λ = D−2
2D R or a

general matter distribution with p = −ε. It is related to the radius of de Sitter space by R =D(D − 1)H2.

Another useful property is the antipodal transformation sending a point to its “inverse”. In the embedding

space the transformation rule is

x→ x̄ ∶XA(x)→XA(x̄) = −XA(x),

i.ei just the reflection through the origin. The antipodal point has some special properties which will be

important later.

2.2. Geodesic distance

In order to determine the geodesic distance between two points we first have to solve the geodesic equation

and then calculate the length of the curve between two points. However, for de Sitter we can make use of

the analytic continuation to the sphere. For two points on the euclidean sphere the geodesic joining the

two points is the segment of the great circle through these two points [93, 94]. The geodesic distance d

between these two points is then proportional to the angle between the two points.

d(E,F ) =H−1θ(E,F ), (2.3)

where the angle θ is defined by

δijE
iF j =H−2 cos θ. (2.4)

Instead of the geodesic distance, it is often more convenient to use directly the quantity

P (E,F ) =H2δijE
iF j . (2.5)

On dS it is not obvious but a similar relation holds here [93, 94]. The geodesic between two points is

the intersection of a plane through the two points and the origin with the de Sitter hyperboloid. Some

geodesics are shown in figure 2.2. We can relate the geodesic distance to the quantity Z defined as
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Figure 2.2.: Geodesics for the sphere S2 and dS2. Time-like geodesics are red, space-like blue and the Null

geodesic is marked in green.

Z(X,Y ) = −H2ηABX
A(x)XB(y). (2.6)

We can formally define the geodesic distance as d(X,Y ) =H−1 arccosZ(X,Y ). The type of separation can

be inferred from Z. If X and Y are time-like separated we have Z(X,Y ) > 1 and the geodesic distance is

imaginary (similar to Minkowski space). Null separation corresponds to Z(X,Y ) = 1 and for space-like

separation we have Z(X,Y ) < 1 (cf. [17]). For Z(X,Y ) < −1 no geodesic exists even though the space-time

is geodesically complete [28]. The points with Z(X,Y ) = −1 correspond to geodesics from a point to its

antipodal point Y = X̄ for which the lightcones cross only in the asymptotic future (or past). There is no

geodesic from X to any point that lies in the future or past lightcone of X̄.

As it is impossible in this form to determine whether one point lies to the future or the past of another, it

is convenient to modify the geodesic distance via the following prescription [17]

Z̃(X,Y ) = −H2ηABX
A(x)XB(y)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+iε for x in the future lightcone of y

−iε for x in the past lightcone of y
(2.7)

to recover the same ε prescription as in Minkowski space.

2.3. Coordinate systems and conformal diagrams

There are several useful coordinate systems covering different parts of de Sitter space. They arise from

different spatial foliations of de Sitter space. Some examples are given in figure 2.3.

I now give a summary of the most commonly used ones, cf. [93, 97].
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Figure 2.3.: Slicing of dS into flat, closed and open spatial sections.

2.3.1. Global coordinates

The global coordinates are defined by

X0 = 1
H

sinh(Ht),

Xi = 1
H

cosh(Ht)ni,
(2.8)

with n⃗ ∈ SD−1 and t ∈ (−∞,∞). The spatial sections for constant t are spheres, so these coordinates are

often called closed coordinates. The coordinates on the sphere SD−1 are given by

n1 = cos θ1,

n2 = sin θ1 cos θ2,

. . .

nD = sin θ1 . . . sin θD−1,

and the line element on SD−1 is

dΩ2
D−1 =∑(dni)2 = dθ2

1 + sin2 θ1dθ2
2 + . . . + sin2 θ1⋯ sin2 θD−2dθ2

D−1.

The induced line element for dS in these coordinates is

ds2 = dt2 − 1
H2 cosh2(Ht)dΩ2

D−1.

This is the metric of a FRLW universe with closed spatial sections and a(t) = cosh(Ht). They cover the

whole hyperboloid of de Sitter space, cf. figure 2.4. Introducing conformal time η in the global coordinates

via dη =H dt
a(t) , i.e. cosh(Ht) = 1

sinη , we get the line element

ds2 = 1
H2 sin2 η

(dη2 − dΩ2
D−1) (2.9)

with η ∈ [0, π]. This metric is conformal to the metric with line element

ds2 = dη2 − dΩ2
D−1. (2.10)

The conformal factor H2 sin2 η does not change the causal structure, i.e. if a geodesic is Null or time-

/space-like in the metric (2.9) it will be so in the conformally scaled metric (2.10), as well. To analyse the
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Figure 2.4.: Covering of dS2 by global coordinates. Blue lines are surfaces of constant time t. Red lines

show the evolution of fixed spatial points with time.

causal structure of de Sitter space, we can therefore draw the conformal diagram (Penrose diagram) based

on (2.10) as it covers the whole space. It is shown in figure 2.5. I plot only the first spatial angle and

every line of constant η corresponds to a sphere SD−1. Each point in the diagram therefore corresponds

to a sphere SD−2, except left and right border which correspond to the north/ south pole respectively.

Lightrays propagate at 45° as is required for conformal diagrams. Apparently, no observer can access the

whole space-time. By using the symmetry rotations on the sphere we can always orient our coordinate

system such that we rest at the south pole. A signal from an observer at the south pole will reach the

north pole only at future infinity if the signal is emitted at past infinity. This visualizes that the lightcone

I
+

I
− χ

η

S
o
u
th

p
o
le

N
o
rt

h
p

o
le

Figure 2.5.: Conformal diagram for global coordinates. I+ and I− correspond to future and past infinity.

The dashed lines correspond to the past and future horizon of observers on the north and

south pole
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of a point and a lightcone from its antipodal point only cross in the asymptotic future or past. The total

space this observer is able to send signals to is marked by O+ in figure 2.6. Correspondingly, all signals he

can receive emanate from the region marked by O− in figure 2.7. This is a distinct difference to Minkowski

space, where an observer can access the whole universe if she waits long enough.

I
+

I
− χ

η

S
o
u
th

p
o
le

N
o
rt

h
p

o
le

O
+

Figure 2.6.: Conformal diagram for global coordinates with region O+

I
+

I
− χ

η
S
o
u
th

p
o
le

N
o
rt

h
p

o
le

O
−

Figure 2.7.: Conformal diagram for global coordinates with region O−

In this coordinate system the geodesic distance (2.6) is given by

Z(x, y) = 1
sin η1 sin η2

(1 − cosη1 cosη2 −
1
2
∣n⃗1 − n⃗2∣2) .

2.3.2. Flat coordinates

The flat slicing of figure 2.3 is obtained by the following coordinate chart

X0 = 1
H

sinh(Ht) + 1
2
HeHt∣x⃗∣2,

XD = 1
H

coshHt − 1
2
HeHt∣x⃗∣2,

Xi = eHtxi, i = 1, . . . ,D − 1,

(2.11)
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with the coordinate ranges (t, x⃗) ∈ RD. These coordinates cover half of deSitter space, (X0 +XD > 0) [97],

cf. figure 2.8. They are also referred to as steady state coordinates or Poincare patch.

Figure 2.8.: Covering of dS2 by flat coordinates. Blue lines are surfaces of constant time t. Red lines show

the evolution of fixed spatial points with time.

The induced line element is

ds2 = dt2 − e2Htdx⃗2.

This is the metric for a Friedmann universe with flat spatial sections and a scale factor a(t) = eHt. There

are two branches corresponding to contracting or expanding de Sitter, depending on the sign of H. Both

together cover the whole de Sitter space. This is made more clear in the conformal diagram in these

coordinates, see figure 2.9.

The change to conformal time is given by η = − 1
H

e−Ht. For an expanding universe the range of the

conformal time is η = −∞→ 0, for a contracting universe, η = 0→∞. The line element in these coordinates

I
+

I
− χ

η

S
o
u
th

p
o
le

N
o
rt

h
p

o
le

Figure 2.9.: Conformal diagram for flat coordinates. Blue lines are surfaces of constant time t. Red lines

show the evolution of fixed spatial points with time.
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is

ds2 = 1
H2η2 (dη2 − dx⃗2) .

In this coordinate system the geodesic distance (2.6) is given by

Z(x, y) = 1 + 1
2η1η2

(∆η2 − ∣∆x⃗∣2) .

2.3.3. Static coordinates

They are defined by

X0 = ( 1
H2 − r

2)
1/2

sinh(Ht),

XD = ( 1
H2 − r

2)
1/2

cosh(Ht),

Xi = rni,

(2.12)

where n⃗ ∈ SD−2 and r ∈ [0, 1
H
]. They span only a quarter of de Sitter space, (X0 +XD > 0,XD > X0),

figure 2.10, but can be analytically continued to r > 1
H

to cover half of de Sitter space [97]. The surface

r = 1
H

is a horizon limiting the radius of observation of any observer sitting in r < 1
H
. The line element is

Figure 2.10.: Covering of dS2 by static coordinates. Blue lines are surfaces of constant time t. Red lines

show the evolution of fixed spatial points with time.

given by

ds2 = (1 −H2r2)dt2 − (1 −H2r2)−1dr2 − r2dΩ2
D−2.

This coordinate systems possesses a timelike Killing vector ∂/∂t. Unfortunately the norm of this vector

vanishes at the horizon r = 1
H
, so there is no global Killing vector.
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2.3.4. Open coordinates

If one chooses the open slicing of figure 2.3 we get the coordinate chart

X0 = 1
H

sinh(Ht) cosh ξ,

XD = 1
H

cosh(Ht),

Xi = 1
H

sinh(Ht) sinh ξ ni,

(2.13)

with n⃗ ∈ SD−2 and t, ξ ∈ R. These coordinates cover one quarter of de Sitter space, figure 2.11. The metric

Figure 2.11.: Covering of dS2 by open coordinates. Blue lines are surfaces of constant time t. Red lines

show the evolution of fixed spatial points with time.

becomes

ds2 = dt2 − 1
H2 sinh(Ht) (dξ2 + sinh2 ξdΩ2

D−2) .

2.3.5. Kruskal coordinates

They are given by the coordinates
X0 = U + V

1 −UV
,

Xi = 1 +UV
1 −UV

ni,

XD = U − V
1 −UV

,

(2.14)

with ni ∈ SD−2 and U,V ∈ R. They cover the whole de Sitter space [93]. The line element is

ds2 = 1
(1 −UV )2 (4dUdV − (1 +UV )2dΩ2

D−2) .
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Figure 2.12.: Covering of dS2 by Kruskal coordinates. Blue lines are surfaces of constant U . Red lines are

surfaces of constant V .



3. Quantum field theory on curved space

Quantum field theory on Minkowski space-time is a well studied and understood theory. The transfer of

the classical equations of motion to curved space-time is straightforward, but upon quantisation problems

arise. The main point is that in Minkowski space-time the quantisation relies on the unique choice of

the vacuum as the state of minimal energy. In most curved space-times however, there exists no global

notion of energy as no global time-like Killing vector can be constructed. This leads to a plethora of

vacua to choose from and it is not always obvious which one is the correct. In this chapter I give a short

introduction to quantum field theory on curved space-times. For detailed discussions see e.g. [97–99].

3.1. Free scalar fields on Friedmann background

3.1.1. Quantisation

The action for a scalar field of mass m is

S = ∫ dDx L = ∫ dVx
1
2
[gµν∂µφ∂νφ − (m2 + ξR)φ2] , (3.1)

where dVx = dDx

sqrt∣g(x)∣ and the background Friedmann metric is given by ds2 = (dt)2 − a2(t)γijdxidxj . Here a(t) is

the scale factor and γij the spatial metric. ξ is a constant giving an additional coupling of the field to

gravity beyond the one encoded in the covariant derivatives. In flat Minkowski background this term is

not present, as there R ≡ 0. The case ξ = 0 is referred to as minimal coupling. If the field is massless, the

case ξ = 1
4
D−2
D−1 is called conformal coupling, as in this case the field equations derived from action (3.1) are

invariant under conformal transformations of the metric. Variation with respect to the field leads to the

Klein Gordon equation
√

∣g∣ (◻ +m2 + ξR)φ = 0. (3.2)

The only difference to Minkowski space is the explicit form of the d’Alembert operator which en-

codes the information about the metric via the covariant derivatives. It is given by ◻ = gαβ∇α∇β =
1√
∣g∣

∂
∂xα

(
√

∣g∣gαβ ∂
∂xβ

). I have kept the factor
√

∣g∣ for the moment as it will be important for the discussion

of Green functions in section 3.1.3. In the FRW background the field equations can be expanded to

φ̈ + (D − 1) ȧ
a
φ̇ − 1

a2 ∆φ + (m2 + ξR)φ = 0,
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or in conformal time
1
a2φ

′′ + (D − 2)a
′

a

1
a2φ

′ − 1
a2 ∆φ + (m2 + ξR)φ = 0, (3.3)

with the Laplacian ∆ = 1√
γ
∂
∂xi

(√γγij ∂
∂xj

). To quantise the field, we would like to express it as a mode

expansion

φ̂ = ⨋ wiâ
†
i +w

∗
i âi. (3.4)

Here i is a generic index, containing continuous and/or discrete parameters and the mode functions are

normalised with respect to the generalized Klein-Gordon inner product

(w1,w2) = i∫
Σ

dΣµ
√

∣g∣f∗1
↔
∂µf2 = i∫

Σ
dΣµ

√
∣g∣ (f∗1 ∂µf2 − ∂µf∗1 f2) = −δ1,2 (3.5)

to provide the standard commutation relations for the field and its conjugate momentum:

[φ(x), φ(y)] = [π(x), π(y)] = 0 if x and y are separated spacelike,

[φ(x), π(y)] = iδ(x − y).
(3.6)

Note that my definition of the mode functions differs from [97,98] by complex conjugation. It is consistent

with [99]. The mode functions wi are more easily obtained if we first consider a rescaled field χ = φaD−2
2

for which the equations of motion are

χ̈ − 1
a2 ∆χ + χ̇ ȧ

a
+ (m2 + ξR + 2 −D

2
ä

a
− (D − 2)2

4
ȧ2

a2 )χ = 0

In conformal time this is

χ′′ −∆χ + (a2m2 + a2ξR + 2 −D
2

a′′

a
+ (4 −D)(D − 2)

4
a′2

a2 )χ = 0.. (3.7)

From (3.7) is becomes apparent why it is useful to consider the equation for the rescaled field. The friction

term proportional to φ̇ disappears and we get the differential equation for a harmonic oscillator with time

dependent frequency. As is standard in Minkowski space, to obtain the mode expansion, we first expand

the field in term of eigenfunctions Yk(x⃗) of the Laplacian

∆Yk = −κ2Yk,

with the proper normalisation

∫ dD−1x γ
1
2Yk⃗(x⃗)Y

∗
k⃗′
(x⃗) = δ(k⃗, k⃗′),

(cf. [97],p. 121). The specific form of the Laplacian and therefore the eigenfunctions depend on the foliation

and coordinates chosen. A different foliation will in general lead also to a different scale factor. For the flat

case the eigenfunctions are the usual exponential Fourier functions with continuous D − 1 dimensional k⃗.

For closed spatial sections they are higher dimensional analogues of the spherical harmonics with discrete

k⃗. We can then express the field χ as a sum over modes

χ(x) = 1√
2 ⨋

vk⃗(t)Yk⃗(x⃗), (3.8)
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where ⨋ has to be replaced by a sum or integral with appropriate measure for the specific cases. Inserting

the expansion (3.8) into (3.7) we get differential equations for the mode functions. The normalisation

condition (3.5) translates to

v∗v′ − v∗′v = 2i. (3.9)

Assuming we have obtained solutions to this equations, we can then quantise the field by expanding it in

terms of creation and annihilation operators

φ̂(x) = a(t)
2−D

2
1√
2 ⨋

(vk(t)â†
kYk + v

∗
k(t)âkY∗k) =

≡ ⨋ (fk(t)â†
kYk + f

∗
k (t)âkY∗k) ,

(3.10)

where I have made the operator dependence explicit. The creation and annihilation operators have to

satisfy the standard commutation relations:

[âk, â
†
k′] = δ(k, k

′).

The perturbative vacuum is defined by

â ∣0v⟩ = 0,

where I have added the subscript v to make the dependence of the vacuum on the mode function explicit.

This dependence arises as (3.7) is a second order differential equation with a two parameter family of

solutions. If vk is a mode function, then

u∗k = αkv∗k + βkvk,

with αk, βk ∈ C is a solution to the equations of motion as well. It is correctly normalised, if the parameters

obey the Bogolyubov condition

∣αk ∣2 − ∣βk ∣2 = 1.

Then we could equally well build our Fock space using the operators defined by the expansion of the field

in terms of the u mode functions:

φ̂(x) = a(t)
2−D

2
1√
2 ⨋

(uk(t)b̂†
kYk + u

∗
k(t)b̂kY∗k) .

The relation between the different creation and annihilation operators is

â† = α∗b̂† + βb̂, â = αb̂ + β∗b̂†. (3.11)

As long as βk ≠ 0 these two Fock spaces will be different. This is most easily seen by calculating the

expectation value of the particle numbers operator with respect to v in the u vacuum:

⟨0u ∣â†
kâk∣0u⟩ = ∣βk ∣2.

There is no general selection rule singling out a vacuum as the correct one. In Minkowski space we choose

the vacuum to minimise the Hamiltonian, i.e. to contain only positive frequency modes, vk = 1√
Ek

eiEt,E =
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√
m2 + ∣p∣2. If a general space-time has asymptotically flat regions, a possible choice of vacuum is to specify

the vacuum by those mode functions which have the Minkowski vacuum as limit in these asymptotic

regions. As any space-time is locally flat, a similar reasonable argument is to demand the Minkowski

behaviour for short distances, i.e. for large momenta. This leads to the Bunch-Davies vacuum proposal in

de Sitter space-time.

3.1.2. Scalar fields on de Sitter background

Let us now focus on the de Sitter background. I will give the mode functions for flat and closed slicing.

The Ricci scalar appearing in the action is constant and in terms of the Hubble constant H given by

R =D(D − 1)H2. This motivates the introduction of an effective mass parameter m̃2 =m2 + ξD(D − 1)H2

and I will omit the tilde in the following for simplicity. As the curvature H of de Sitter space sets a natural

energy scale, I will measure all other dimensionful quantities in units of H. The correct powers of H can

be reconstructed by dimensional analysis. I will however write them explicitly in certain points to make

the dependence on the Hubble scale clear.

Closed coordinates

For closed spatial sections of section 2.3.1, the eigenfunctions of the Laplacian are orthonormal surface

harmonics Yk(x⃗) = Yk,σ⃗(x⃗). Their definitions and useful properties can be found in appendix B.1. The

scale factor is a(η) = 1
sinη and (3.7) becomes

v′′k + (k + D
2
− 1)

2
vk +

1
sin2 η

(m
2

H2 +
D

2
(1 − D

2
)) vk = 0. (3.12)

The mode functions only depend on the absolute value k of the momentum and not on the direction σ,

which is consistent with the O(D) symmetry in space. A solution for the mode function was first found by

Chernikov and Tagirov [11] to be

vk(η) =
1

Γ(p + 1)
√

Γ(p + h+)Γ(p + h−)eipη
2F1 (h+, h−, p + 1, 1

2
− i

2
cotη) , (3.13)

where p = k + D
2 − 1, h± = 1

2 ± n,n =
√

(D − 1)2/4 − (m/H)2. The general solution can be built from the

mode function and its complex conjugate as

uk(η) = coshαkvk(η) + eiβk sinhαkv∗k , (3.14)

where the Bogolyubov conditions have been implemented and an overall phase omitted [17]. In these

coordinates there is no asymptotically flat region but I can take the limit of high momenta, p → ∞ in

which case the mode function approaches the limit

vk(η)
p→∞→ 1

√
p

eipη,
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which is exactly the Minkowski mode function. This corresponds to the choice of αk = 0 for k →∞ and de

Sitter symmetry enforces it for all k. An additional argument for this mode function is the connection of

de Sitter space with the euclidean sphere. We could derive the mode function in de Sitter space by analytic

continuation from the sphere and demanding that the mode function are regular there. This again leads to

α = 0. For this reason the mode functions (3.13) are often called Euclidean vacuum. Further arguments for

this choice of vacuum will be given in section 3.1.3.

The expansion is then

φ = a
2−D

2
1√
2
∑
k,σ⃗

vk(η)a†
k,σ⃗Yk,σ⃗(n⃗) + v

∗
k(η)ak,σ⃗Y ∗

k,σ⃗(n⃗).

Flat coordinates

In this case the eigenfunctions of the Laplacian are Yk(x⃗) = e−ik⃗x⃗, k⃗ ∈ RD−1, the conformal scale factor is

given by a(η) = 1
H ∣η∣ and (3.7) becomes

v′′k + k2vk +
1
η2 (m

2

H2 +
D

2
(1 − D

2
)) vk = 0, (3.15)

where k⃗ is the d dimensional spatial momentum. We have to distinguish two cases: for the expanding

patch, η runs from −∞→ 0, for the contracting patch, from 0→∞. The solutions to (3.15) are Bessel or

Hankel functions, i.e. linear combinations of

v1,k(η) =
√

π∣η∣
2

(H(1)
n (k∣η∣)) einπ,

v2,k(η) =
√

π∣η∣
2

(H(2)
n (k∣η∣)) e−inπ.

The exponential factor will be just an irrelevant phase for n ∈ R but will matter for large mass as n becomes

complex. Because of the absolute value in the expanding case attention has to be paid when determining

the correctly normalised mode functions. For the expanding case the function vk = v2,k exhibit the correct

high momentum behaviour, for the contracting case it is the modes vk = v1,k. The general solution is then

built from Bogolyubov transformation which I parametrized identical to (3.14)

uk(η) = coshαvk(η) + eiβ sinhαv∗k .

Here it is not clear, that the α = 0 vacua in flat and closed case are identical. We only know that both have

the same high energy behaviour. That they are indeed equivalent will become clear in the next section. In

the flat case the mode expansion is

φ(x) = a
2−D

2
1√
2 ∫

dD−1k√
(2π)D−1

(vk(t)a†
ke−ik⃗x⃗ + v∗k(t)akeik⃗x⃗) .

In these coordinates the quantum fluctuations on a given physical scale do not depend on time [15,97, 99].
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3.1.3. Green functions

The Green function or propagator is a solution to the inhomogeneous Klein Gordon equation (3.2) with a

point source
√

∣g∣ (◻x + (m2 + ξR)) G(x, y) = δ(x, y) (3.16)

subject to boundary conditions of retarded, advanced and Feynman Green functions. In Minkowski space,

the propagator can only depend on the geodesic distance between two points because of Poincare symmetry.

It can be calculated using Fourier transform or summation over the modes. The result in position space is

given by

DF (d2) = ⟨0 ∣Tφ(x)φ(y)∣0⟩ = − m
D
2 −1

(2π)D2 (−d2 + iε)D−2
4
KD

2 −1(m
√
−d2 + iε),

[100–102] where d =
√
ηµν(xµ − yµ)(xν − yν) is the geodesic distance. It has a pole at coinciding points

DF
x→0→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−iΓ(D2 −1)

4π
D
2

( 1
−x2+iε)

D
2 −1

D odd

−iΓ(D2 −1)

4π
D
2

( 1
−x2+iε)

D
2 −1 − imD−2

π
D
2 2D−1Γ(D2 )

(−1)D2 logm
√
−x2 + iε D even

.

Most commonly the Fourier transform of the Green function is used in Minkowski space. In general

space-times we cannot make use of the Fourier transform, as the Klein Gordon equation in general contains

time dependent coefficients. We can however make use of symmetries of the space-time. As de Sitter is

maximally symmetric, a function of two points can only depend on the geodesic distance between them.

The homogeneous Klein Gordon equation can be recast in terms of the geodesic distance Z(x, y) to

H2
√

∣g(x1)∣ ((Z2 − 1) d2

dZ2 +DZ
d

dZ
+ m

2

H2 )D0(Z) = 0, (3.17)

where D0(x, y) = ⟨0 ∣φ(x)φ(y)∣0⟩ denotes the Wightman function [17,103]. The solutions to this differential

equations are hypergeometric functions

D0(Z(x, y)) = A F2 1 (D
2
− 1

2
+ n, D

2
− 1

2
− n, D

2
,
1 +Z

2
)+B F2 1 (D

2
− 1

2
+ n, D

2
− 1

2
− n, D

2
,
1 −Z

2
) . (3.18)

The hypergeometric function F2 1(a, b, c, z) has a pole at z = 1 and a branch cut going from z = 1 along

the positive real axis to z →∞. For the first term in (3.18) the pole correspond to points separated by

null geodesics similiar to Minkowski. The second term has the pole if x and y are antipodal points. This

behaviour is not present in Minkowski space-time. I will discuss the choice of the constants in shortly.

To specify the behaviour along the cut we consider the commutator function

⟨0 ∣[φ(x), φ(y)]∣0⟩ =D0(x, y) −D0(y, x).

We can only achieve a non vanishing result for time-like separation (Z > 1), if we go above and below the

cut, depending on the order of time. We get this by replacing Z → Z + iε sgn(x0 − y0) (see (2.7)) [17,30]:

D0(Z(x, y)) =D(Z + iε sgn(x0 − y0)).
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The time ordered propagator can then be built by

DF (x, y) = θ(x0 − y0)D0(x, y) + θ(y0 − x0)D0(y, x) =D(Z + iε).

This propagator has a pole at null separated points (Z = 1) of strength

DF (Z) Z→1→ A
Γ (D2 )21+D2 π

D
2 iH2−D

Γ (D2 − n)Γ (D2 + n)
⎛
⎝
−i

Γ(D2 − 1)
4πD2

( 1
−d2 + iε

)
D
2 −1⎞

⎠
+ [logH2(d2 − iε)].

It has an additional pole at Z = −1 of same strength with A replaced by B. If we demand that our

propagator has the same pole and cut behaviour as in Minkowski space-time, we have to fix the constants

to

A = −i

( 4π
H2 )

D
2

1
H2

Γ(D2 − 1
2 + n)Γ(D2 − 1

2 − n)
Γ(D2 )

, (3.19)

B = 0. (3.20)

The values of the constant also determine the vacuum chosen, as the Green function can be calculated as

sum over modes as well. This has been carried out in [12,14,15]. For closed and flat coordinates the choice

α = 0 leads to the above derived Green function with Minkowski behaviour (B = 0).

Allen [17] derived the change of the Green function under Bogolyubov transformation. Only for β = 0 the

resulting Green function respects the symmetry group of de Sitter. The family of mode functions leading

to invariant Green functions are called α-vacua [16,17].

3.2. Path Integral

The path integral or functional integral is a well known method in quantum field theory to describe the

physics of a system. The methods goes back to Dirac and Feyman [104,105]. The core is the evolution

of an initial state to a final state via all possible intermediate states and weighting each path using the

classical action along that path [102,106]. Often the initial and the final state are taken to be the vacuum

of the quantized theory. However, unlike in Minkowski space in general the initial and final vacuum do not

coincide. This is even less the case if interactions are introduced. For such theories one has to use the

in/in or Schwinger-Keldysh formalism which does only depend on the initial vacuum and is independent of

any point to the future of the observables [107–109]. In the following section I give a short introduction to

this formalism based on [110–119].

3.2.1. Schwinger-Keldysh Formalism

In quantum field theory an observable O is associated to a hermitian operator Ô. The value of the

observable is given by the expectation value of the operator with respect to the state under consideration.
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If our system is specified at the initial time ti, to get the value at time t we have to evolve our system to

time t using the evolution operator Û(t, t′) satisfying

i d
dt
Û(t, t′) = Ĥ(t)Û(t, t′), i d

dt′
Û(t, t′) = −Û(t, t′)Ĥ(t′),

with the initial condition Û(t, t) = 1. It can be formally solved by

Û(t, t′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T̂ exp [−i ∫
t
t′ dt̄ Ĥ(t̄)] t > t′

ˆ̄T exp [−i ∫
t
t′ dt̄ Ĥ(t̄)] t < t′

,

where T̂ denotes time ordering with later times to the left and ˆ̄T denotes anti-time ordering. For actions

with quadratic kinetic term for the field, the evolution operator can be expressed in terms of the Lagrangian

Û(t, t′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T̂ exp [−iS] t > t′

ˆ̄T exp [−iS] t < t′
.

It satisfies the composition principle

Û(t3, t2)Û(t2, t1) = Û(t3, t1).

Then the value of the observable is

O(t) = ⟨ψ∣ Û(ti, t)ÔÛ(t, ti) ∣ψ⟩ =
Tr{Û(ti, t)ÔÛ(t, ti)ρ}

Tr{ρ}

for a pure or mixed state respectively. In the following my system will always start from a pure state,

specified at time ti, mainly my chosen vacuum ∣0i⟩ = ∣in⟩. We can insert additional time evolution operators

to get

O(t) = ⟨0i∣ Û(ti, t)Û(t, tf)Û(tf , t)ÔÛ(t, ti) ∣0i⟩

= ⟨0i∣ Û(ti, tf)Û(tf , t)ÔÛ(t, ti) ∣0i⟩ . (3.21)

The evolution of the vacuum over all time changes the initial vacuum to

∣0f ⟩ ≡ Û(tf , ti) ∣0i⟩ ,

where ∣0f ⟩ is only the notation for the time evolved vacuum. In general it is no longer the physical vacuum

valid at the final time. In Minkowski space-time there is only one vacuum, so the time evolution with the

free action will only contribute a phase (Gell-Mann-Low theorem [120])

∣0f ⟩ = eiα ∣0i⟩ = eiα ∣in⟩ . (3.22)

Therefore we can calculate the observables using

O(t) =
⟨in∣ Û(tf , t)ÔÛ(t, ti) ∣in⟩

⟨in∣ Û(tf , ti) ∣in⟩
. (3.23)
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This is not valid in general, but of course this is the case for Minkowski space-time or space-times which

are asymptotically flat with the same scale factor. For other spaces we can close our eyes and blindly

calculate the matrix element between the in-vacuum and the out-vacuum. With

∣outf ⟩ = Û(tf , ti) ∣outi⟩ , ∣inf ⟩ = Û(tf , ti) ∣ini⟩ ,

we get the matrix element

O(t) =
⟨outi∣ Û(ti, tf)Û(tf , t)ÔÛ(t, ti) ∣ini⟩

⟨outi ∣ ini⟩
. (3.24)

In the case ∣out⟩ = eiα ∣in⟩ we recover the above prescription. Mind however, that in general this procedure

only generates matrix elements and not physical expectation values. In terms of diagrammatic language

(which I will cover in more detail later) the purpose of the denominator is to cancel the unconnected

vacuum loop diagrams. This is the standard procedure in Minkowski space.

The evolution operator can be expressed as a functional integral in field space [97,99,106,121]

⟨in∣ Û(tf , ti) ∣in⟩ = ∫ DΦeiS[Φ]. (3.25)

To calculate observables which can be expressed as powers of the field operator, we introduce a source

term to the action and get the generating functional

Z[J] = ∫ DΦ exp [i(S[Φ] + JΦ)] , (3.26)

where Jφ ≡ ∫ dVx J(x)φ(x). The observables can then be calculated by functional differentiation, taking

into account the denominator in (3.23)

⟨0i ∣φ(x1) . . . φ(xn)∣0i⟩ =
1

Z[0]
1

i
√

∣g(x1)∣
δ

δJ(x1)
. . .

1
i
√

∣g(xn)∣
δ

δJ(xn)
Z[J]∣J=0 . (3.27)

Note that here again the denominator 1
Z[0] appear which cancels unconnected loop vacuum diagrams.

If adiabatic time evolution does change the initial state, i.e. either the underlying space-time changes

our vacuum or the system does not start in equilibrium, relation (3.22) does not hold anymore. We have

to calculate observables starting from (3.21) where we introduce the additional time evolution operators

towards late times and back to the initial time. Schematically we have to evolve along the contour depicted

in figure 3.1. This formalism is called closed time path or Schwinger-Keldysh formalism [107,108]. The

t

ti

ti

Figure 3.1.: Representation of the contour of integration for the closed time path formalism

maximal time can be chosen arbitrarily as long as it is larger than the largest time appearing in the

observable. Using this contour we know all the relevant states, i.e. only the initial state matters and we do
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not have to know any state in the future. We can therefore use path integrals to generate observables with

the generating functional

ZC[J] = ∫ DΦ exp [i(SC[Φ] + JΦ)] , (3.28)

where the integration for the action has to be performed along the contour. To simplify the calculation it

is useful to introduce two fields Φ+,Φ− which live on the forward (upper) and backward (lower) branch

respectively. They are not completely independent as they have to coincide at future infinity: for t→∞,

Φ+(x) = Φ−(x), ∂tΦ+(x) = ∂tΦ−(x). The functional integral representation is

Z[J+, J−] = ∫ DΦ+(x)DΦ−(x) exp{i(S[Φ+] + J+Φ+ − S∗[Φ−] − J−Φ−)} , (3.29)

where S∗ indicates that mass terms carry +iε and JΦ = ∫ dVxJ(x)Φ(x). Note that for J+ = J− the

evolution on the forward and backward branch is identical. Therefore from the construction we have

Z[J, J] = 1.

This is an important point as vacuum loop diagrams are cancelled automatically in this prescription

without having to remove them by hand. Differentiation with respect to the sources J± generates contour

ordered expectation values of fields. We have only one physical field φ, so the ±-fields are only auxiliary to

keep track of the forward and backward branches and have be set equal at the end. From the field φ+ we

get the usual time ordered expectation value.

⟨0∣T [φ(x1) . . . φ(xn)] ∣0⟩ =
(−i)n√

∣g(x1)∣ . . . ∣g(xn)∣
∂nZ[J+, J−]

∂J+(x1) . . . ∂J+(xn)
∣
J+=J−=0

. (3.30)

As the fields φ− live on the backward branch we get anti-time ordered expectation values from this field

⟨0∣ T̄ [φ(x1) . . . φ(xm)] ∣0⟩ = (i)m√
∣g(x1)∣ . . . ∣g(xm)∣

∂mZ[J+, J−]
∂J−(x1) . . . ∂J−(xm)

∣
J+=J−=0

. (3.31)

Finally the combination of J+ and J− generates observables with φ− fields always appearing in front of φ+

fields.

⟨0∣ T̄ [φ(x1) . . . φ(xn)] ⋅ T [φ(y1) . . . φ(yn)] ∣0⟩ =

= (−1)n(i)n+m√
∣g(x1)∣ . . . ∣g(xm)∣∣g(y1)∣ . . . ∣g(yn)∣

∂m+nZ[J+, J−]
∂J−(x1) . . . ∂J−(xm)∂J+(y1) . . . ∂J+(yn)

∣
J+=J−=0

. (3.32)

For a definite theory we can perform the functional integration over the field and simplify the generating

functional. The procedure is standard [106], but I give it in detail, as it is complicated by the appearance

of the two fields and the boundary conditions. For Lagrangians quadratic in the fields we can rewrite the

action as

Sfree[φ] =
1
2 ∫

dVx φ(x) [− ◻ −M2]φ(x) = 1
2 ∫

dVxdVx′ φ(x)D(x,x′)φ(x′),

(cf. [98] p. 186, [97] p. 156) where the kernel is

D(x,x′) = [− ◻x −M2] δ(x − x′) 1√
∣g(x′)∣

.
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The classical fields φ± have to satisfy the Klein-Gordon equation with source terms

[− ◻x −M2]φ±(x) = −J±(x).

We introduce Green functions satisfying

∫ dVx′ D(x,x′)G±±(x′, x′′) = ±δ(x − x
′′)√

∣g(x′′)∣
,

or equivalently in differential form

[− ◻x −M2]G±±(x,x′) = ±δ(x − x
′)√

∣g(x′)∣
.

Using these Green functions we can solve the inhomogeneous equations with source terms. But we have

to keep in mind that the fields are not independent but are related by the boundary condition at future

infinity. Therefore we need the homogeneous Green functions

[− ◻x −M2]G±∓(x,x′) = 0.

Together with the boundary condition that the fields coincide in the far future, t→∞, φ+(x)→ φ−(x) and

∇µφ+(x) = ∇µφ−(x) [111], the solution for the classical fields is [118]:

φ+(x) = ∫ dVx′ [−G++(x,x′)J+(x′) +G+−J−(x′)],

φ−(x) = ∫ dVx′ [G−−(x,x′)J−(x′) −G−+J+(x′)].

The first term in each line is to produce the source term and the second one to satisfy the boundary at

future infinity. We shift the field in the integration in (3.29) by this classical solution (i.e. a constant from

the point of view of the functional integral)

φ+(x) = φ′+(x) + ∫ dVx′ [−G++(x,x′)J+(x′) +G+−J−(x′)],

φ−(x) = φ′−(x) + ∫ dVx′ [G−−(x,x′)J−(x′) −G−+J+(x′)].

This is equivalent to completing the square in the gaussian integral and we get

Zfree[J+, J−] = exp [ i
2 ∫

dVxdVx′ (−J+(x)G++(x,x′)J+(x′) + J+(x)G+−(x,x′)J−(x′)+

+ J−(x)G−+(x,x′)J+(x′) − J−(x)G−−(x,x′)J−(x′))] . (3.33)

If both sources are identical, i.e. the change during the forward evolution is compensated by the backward

evolution we should get the identity. This is satisfied if

G++ +G−− = G+− +G−+. (3.34)

Calculating two point correlation functions, we can relate the ± Green functions to the well known

propagators. We find four different Green functions: the chronological, the anti-chronological Green
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function and the positive and negative “frequency” Wightman functions:

G++(x1, x2) = −i ⟨TCφ+(x1)φ+(x2)⟩ = −i ⟨Tφ(x1)φ(x2)⟩ = GT (x1, x2),

G−−(x1, x2) = −i ⟨TCφ−(x1)φ−(x2)⟩ = −i ⟨T̄ φ(x1)φ(x2)⟩ = GT̄ (x1, x2),

G−+(x1, x2) = −i ⟨TCφ−(x1)φ+(x2)⟩ = −i ⟨φ(x1)φ(x2)⟩ = G+(x1, x2) = G>(x1, x2),

G+−(x1, x2) = −i ⟨TCφ+(x1)φ−(x2)⟩ = −i ⟨φ(x2)φ(x1)⟩ = G−(x1, x2) = G<(x1, x2) = G−+(x2, x1).

Adding the Green functions in this form, we see that (3.34) holds.

3.2.2. Keldysh base

It is convenient to perform the Keldysh rotation to a different basis in field space e.g. [36, 115,116]

φcl = 1√
2
(φ+ + φ−), φq = 1√

2
(φ+ − φ−),

the superscripts “cl” and “q” stand for classical and quantum components of the fields, respectively. The

reason for this notation will become clear shortly.

⎛
⎜
⎝

φcl

φq

⎞
⎟
⎠
= R

⎛
⎜
⎝

φ+

φ−

⎞
⎟
⎠
= 1√

2

⎛
⎜
⎝

1 1

1 −1

⎞
⎟
⎠

⎛
⎜
⎝

φ+

φ−

⎞
⎟
⎠

This transformation takes the action to

S[φcl, φq] = S[φ+] − S[φ−] = 1
2 ∫

dVxdVx′ D(x,x′) (φcl(x)φq(x′) + φq(x)φcl(x′)) . (3.35)

We see that for purely classical configurations φq = 0 the action vanishes. Actually here it is the case

for φcl as well, but for interacting theories it is only the case for φq thus the names. The propagators

are [36,61,115,116]

Gcl,q = −i ⟨φclφq⟩ = GR = G−+ −G−− = θ(η1 − η2)(G+ −G−), (3.36)

Gq,cl = −i ⟨φqφcl⟩ = GA = G+− −G−− = θ(η2 − η1)(G− −G+), (3.37)

Gcl,cl = −i ⟨φclφcl⟩ = GK = G++ +G−− = G+ +G−, (3.38)

Gq,q = ⟨φqφq⟩ = 0. (3.39)

Or, equivalently

GK =
⎛
⎜
⎝

GK GR

GA 0

⎞
⎟
⎠
= RGRT .

The components are called retarded, advanced and Keldysh Green function. The retarded and advanced

components depend only on the spectrum, whereas the Keldysh function depends on the occupation

number [115–117]. We can introduce a graphical representation for the Green functions. We depict the

classical field by a full line and the quantum field by a dashed line. The three propagators are shown in

figure 3.2. In this base the generating functional is
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φcl(t)

DK(t, t′)

φcl(t′)

φcl(t)

DR(t, t′)
φq(t′)

φq(t)
DA(t, t′)

φcl(t′)

Figure 3.2.: Graphic representation of the DK ,DR and DA Green function.

Zfree[Jcl, Jq] = exp [− i
2 ∫

dVxdVx′ (Jq(x)Gclcl(x,x′)Jq(x′) + Jq(x)Gclq(x,x′)Jcl(x′)+

+ Jcl(x)Gqcl(x,x′)Jq(x′))] , (3.40)

where Jcl = 1/
√

2(J+ + J−), Jq = 1/
√

2(J+ − J−). For physical sources Jq = 0 and we have Z[Jcl,0] ≡ 1.

The quantum source is purely fictitious and only needed to generate observables. Expectation values of

the fields are obtained by differentiating with respect to the sources.

⟨φcl(x)⟩ = 1
i

∂

∂Jq(x)
Zfree[Jcl, Jq]∣

Jcl=Jq=0
,

⟨φq(x)⟩ = 1
i

∂

∂Jcl(x)
Zfree[Jcl, Jq]∣

Jcl=Jq=0
.

From (3.38) we can express the Keldysh function using the mode expansion (3.10) as

GK(x1, x2) = − i(⟨φ(x1φ(x2)⟩ + ⟨φ(x2)φ(x1)⟩) =

= − i⨋ YkY∗k [(f∗k (η1)fk(η2) + f∗k (η2)fk(η1)) (1 + 2 ⟨âk⃗â
†
k⃗
⟩)+

+fk(η1)fk(η2) ⟨â†
k⃗
â†
−k⃗

⟩ + f∗k (η1)f∗k (η2) ⟨âk⃗â−k⃗⟩] . (3.41)

The expectation value ⟨âk⃗â
†
k⃗
⟩ is the number of particles with momentum k⃗. The averages ⟨â†

k⃗
â†
−k⃗

⟩ and

⟨âk⃗â−k⃗⟩ are called anomalous quantum averages (cf. [60]). In contrast, the retarded and advanced Green

functions can be expressed as

GR(x1, x2) = −iθ(η1 − η2)⨋ YkY∗k [f∗l (η1)fk(η2) − f∗k (η2)fk(η1)] , (3.42)

GA(x1, x2) = −iθ(η2 − η1)⨋ YkY∗k [f∗k (η2)fk(η1) − f∗k (η1)fk(η2)] . (3.43)

In the Keldysh base. we see that the retarded and advanced functions only depend on the spectrum of

the theory, whereas the Keldysh function contains the information about the occupation number of the

system, cf. [116]. We also see, that the Keldysh Green function is pure imaginary, but the advanced and

retarded functions are pure real. In the ±-base these relations are obstructed. In this thesis I will always

initially start with the vacuum, so occupation number and anomalous expectation value are zero. However,

interaction can lead to the appearance of non-vanishing values.
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Using the Wightman function we can express all other Green functions

D++
0 (x, y) =D0(Z + iε), D+−

0 (x, y) =D0(Z − iε sgn(X0
x −X0

y)),

D−−
0 (x, y) =D0(Z − iε), D−+

0 (x, y) =D0(Z + iε sgn(X0
x −X0

y)).

In the Keldysh base the Green functions can be expressed by

DR
0 (x, y) = θ(X0

x −X0
y)D0(Z + iε), DA

0 (x, y) = θ(X0
y −X0

x)D0(Z − iε),

DK
0 (x, y) =D0(Z + iε) +D0(Z − iε).
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3.3. Interacting scalar fields

As a toy model for interactions between different particles I will consider a power law self-interaction of

the scalar field. To be able to use the results from our free field theory, I assume that the interaction

is switched on adiabatically at some point in the far past. This allows me to define the vacuum at past

infinity with respect to the free theory. The explicit time dependence introduced this way spoils covariance

so I have to check a posteriori, that this adiabatic limit is justified. I use the standard interaction picture in

which the evolution of the states is governed by the free action and the interaction lagrangian determines

the evolution of the operators. My interaction has the form

Sint[φ] = −∑
n

gn
φn

n!
,

The interaction is supposed to be small, so I can treat it perturbatively. The linear and quadratic term are

possible counter terms canceling infinities in loop corrections. Perturbatively the generating functional is

given by

Z[J+, J−]full = ei ∫ dV Sint( −i
√

∣g(x)∣

∂
∂J+

)−i ∫ dV Sint( i
√

∣g(x)∣

∂
∂J−

)
Zfree[J+, J−]

(cf. [111,112]). This allows us to read of the Feynman rules for a diagrammatic calculation of expectation

values. It proceeds in analogy to the flat space case, [106], with the following rules:

The propagators are defined as

Dab
F (x, y) = ⟨0∣TCφa(x)φb(y) ∣0⟩

1) Each propagator between two fields φa(x) and φb(y) gives a factor Dab
F (x, y).

2) Each vertex with n lines gives a factor (−ign) ∫ dDx
√

∣g(x)∣.

3) Each − vertex gives an additional factor −1.

4) Divide by the symmetry factor.

As the Keldysh base makes the relation between the Green functions explicit and only has the three

independent ones, it is more convenient to calculate diagrams in this base. In the Keldysh base, the action

is
Sint[φcl, φq] = Sint[φ+] − Sint[φ−] =

= −∑
n,l

gn
n!

1
√

2n
⎛
⎜
⎝

n

l

⎞
⎟
⎠
(φcl)n−l (φq)l (1 − (−1)l)

= −∑
k,l

gk,l

k!l!
(φcl)k (φq)l

with gk,l = gk+l√
2k+l

(1 − (−1)l). We see, that we have only vertices with odd numbers of quantum fields

i.e. for purely classical configuration the action vanishes. For a cubic interaction this gives Sint[φcl,q] =

− g

3!
√

2
(3(φcl)2φq + (φq)3). The Feynman rules in the Keldysh base are [36]

1) Each propagator between the fields φcl(x) and φcl(y) gives a factor DK(x, y).
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2) Each propagator between a field φcl(x) and φq(y) gives a factor DR(x, y) =DA(y, x).

3) Each vertex with k, l fields φcl, φq gives a factor (−i)gk,l ∫ dDx
√

∣g(x)∣.

4) Divide by the symmetry factor.

Counter terms

To renormalize the theory I have to introduce the standard counter terms. Additional counter terms come

from constraints satisfied by the classical field. The counter terms are [36]:

δL = 1
2
√
−g (δZgµνφµφν − δmφ2 −

δg

3
φ3 − δ1φ) (3.44)

The linear terms origins in the implicit condition for the quantisation of the scalar field that it rests in

the minimum of the potential, i.e. the vacuum expectation value of the field should vanish ⟨φ̂(x)⟩ = 0.

Interactions with odd powers of the interaction allow for tadpole diagrams leading to a non-vanishing

vacuum expectation value. For cubic interaction diagram in figure 3.3 contributes at first order. If the

⟨φcl⟩ = − g

2
√

2

Figure 3.3.: Diagram contributing to the vacuum expectation value in cubic interaction

value for the classical field is to be kept at zero I have to compensate for this diagram by introducing

a linear counter term in the interaction potential. This has to been done for every order, but I am not

concerned with the exact form but just ignore tadpole diagrams in the following calculations. There is no

diagram contributing to the expectation value of the quantum field as all of those contain advanced Green

functions at identical points which therefore vanish. This is necessary for consistency as the linear term in

the action is by construction only φq which cannot couple to the quantum field.
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4.1. Effective potential

The addition of an interaction to the Lagrangian can lead to a shift of the minimum. As perturbative

quantum field theory relies on the expansion about a classical minimum, this can generate problems with

the stability of the theory. The addition of a cubic interaction removes the global minimum and the

classical Hamiltonian becomes unbounded. In Minkowski space-time this is of no great concern as there is

still a local minimum which is a meta stable vacuum. Its instability in the global context will only appear

in non-perturbative effects. In de Sitter space-time the situation is different, as here the changing scale

factor increases the influence of the interaction potential. An interaction of the form g
3!φ

3 amounts to the

following effective potential in the equations of motion for the rescaled field χ = φaD−2
2 which is used for

quantization:

Veff =
1
4 − n

2

2
χ2a(η)2 + g

3!
χ3a(η)2+ 2−D

2 = αχ
2

2
+ βχ

3

6
. (4.1)

This potential has a local minimum at χ = 0 but in addition a local maximum at χ2 = −αβ ∝ a
D−2

2 . The

value of the potential at this maximum is V (χ2) = α3

6β2 ∝ aD. For Minkowski space-time the scale factor is

constant and the position and value of the maximum are constant. The local minimum at zero field values

is always stable against small perturbations, see figure 4.1a. In Friedman-Robertson-Walker spaces the

behaviour is different. For D > 2 the minimum and the maximum coincide for a vanishing scale factor and

the value of the potential in these cases is zero, figure 4.1b. This is an indication that the BD vacuum

is not stable against cubic interactions in flat de Sitter coordinates when the scale factor can vanish. In

global coordinates the maximum is always separated from the minimum so the vacuum should be stable

against small perturbations, see figure 4.1c. Keeping this in mind, I can discuss the stability of de Sitter

space-time against interactions of the scalar field using cubic instead of quartic interactions as here the

calculations are easier because fewer loop momenta appear.

4.2. Vacuum persistence

The first quantity to consider when discussing the stability of a quantum field theory is the vacuum

persistence or vacuum-vacuum transition amplitude. It is a measure for the probability of the vacuum
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χ t

0

Vpot

(a) Effective potential for cubic interaction in Minkowski

space-time

χ a(η)

0

0

∞

Vpot

(b) Effective potential for cubic interaction in flat ex-

panding de Sitter coordinates, D = 4

χ
a(η)

0

Vpot

∞

∞

amin

(c) Effective potential for cubic interaction in global de

Sitter coordinates, D = 4

Figure 4.1.: Plot of the effective potential for φ3 interaction, for the rescaled field χ (χ = a
D−2

2 φ) in

conformal time η for Minkowski and de Sitter space-time. For flat coordinates the local

minimum at φ = 0 is unstable for vanishing scale factor.
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evolving to a different state under the influence of external sources or interactions. In the Schwinger

Keldysh formalism it is given by the generating functional and is interpreted as the overlap of the initial

vacuum time evolved under the influence of different external sources, Jq ≠ 0.

⟨0J ∣0⟩ = Z[Jcl, Jq]. (4.2)

In the free theory the generating functional is given by (3.40). Using the mode expansion of the free Green

function (3.41) to (3.43) we see that the only contribution to the absolute value of the partition function

comes from the Keldysh Green function

∣Z[Jcl, Jq]∣ = exp [− i
2 ∫

dVxdVx′ (Jq(x)Gclcl(x,x′)Jq(x′))] =

= exp [−⨋ ∣∫ dVx Jq(x)Ykfk(η)∣
2
] ≤ 1.

So the vacuum persistence indicates no problems on the free level. Moreover, for identical external sources

on the upper and lower branch (J+ = J−, Jq = 0) the vacuum persistence is exactly zero by construction as

an expectation value. This corresponds to a real physical source acting on the vacuum. For interacting

theories, the vacuum persistence can not be calculated exactly, but I am only interested if perturbation

theory is consistent up to a certain order. Perturbatively the generating functional is given by

Z[Jcl, Jq] = exp [iSint [−i ∂

∂Jcl
,−i ∂

∂Jq
]]Zfree[Jcl, Jq] =

= Zfree[Jcl, Jq] +Z1[Jcl, Jq] +Z2[Jcl, Jq] + . . . .

Using this equation we can calculate the generating functional to any desired order in perturbation theory.

The first order correction is given by

Z1[Jcl, Jq] = −Zfree[Jcl, Jq]
ig

2
√

2 ∫
dVx1...x4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
3

Jq(x1)

Jq(x2) Jq(x3)

+
x4

Jq

Jq Jq

+ 2

Jq

Jq Jcl

+

+

Jq

Jcl Jcl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.3)
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where the diagrams only depict the connection between the Green functions and the numerical factors and

coupling constants have been extracted. The second order is

Z2[Jcl, Jq] =
1
2
Z1[Jcl, Jq]2 −Zfree[Jcl, Jq]

ig2

4 ∫
dVx1...x6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Jq(x1)

Jq(x2)

Jq(x3)

Jq(x4)

+

Jq

Jq

Jq

Jq

+

Jq

Jq

Jq

Jq

+

+

Jq

Jcl

Jq

Jq

+ 2

Jq

Jcl

Jq

Jq

+

Jq

Jcl

Jq

Jq

+ 2

Jq

Jcl

Jq

Jq

+

+

Jq

Jq

Jcl

Jcl

+ 2

Jq

Jcl

Jq

Jcl

+

Jq

Jcl

Jq

Jcl

+

Jq

Jcl

Jcl

Jcl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

+Zfree[Jcl, Jq]
g2

8 ∫
dVx1...x4

⎛
⎜
⎝

2 Jq Jq + Jq Jq

+4 Jq Jq + 4 Jq Jcl
⎞
⎟
⎠
. (4.4)

From the above diagrams we see that each correction is multiplied by a factor of Zfree. If ∣Zfree∣ < 1 we can

always choose the coupling constant small enough such that the full vacuum persistence amplitude does not

exceed unity. If Jq = 0, Zfree vanishes, but then also each correction vanishes as each diagram contains at

least one quantum source, so Zint[Jcl, 0] = 1. This is a robust property in the Schwinger-Keldysh formalism

(cf. [116]) where the generating functional is always unity for vanishing quantum source, i. e. a physical

source.
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4.3. Correction to the Correlation functions

Switching on the interaction leads to corrections of the tree level Green functions (3.41) to (3.43). As the

Keldysh Green function contains information about the occupation number of particles, any correction to

it can be interpreted as a change in the occupation number and the anomalous quantum average. This is

only an interpretation, if one regards the instantaneous Green function as coming from a state with a fixed

occupation number. We cannot extract the Boltzmann equations for the particle number densities in this

way.

4.3.1. Corrections to the Green functions

Using the Dyson-Schwinger equation we can write the loop correction to the propagators in the following

way

D =D0 +D0ΣD,

where matrix multiplication and integration over the intermediate points with the space time measure is

implicit. The self energy can be calculated from all diagrams contributing to a certain order using the

above stated Feynman rules. e.g. in second order in the coupling we get for φ3

Σ1(x1, x2) = −
g2

2
⎛
⎜
⎝

DR(x1, x2)DA(x1, x2) DKDA

DKDR 1
2((D

K)2 + (DR)2 + (DA)2)

⎞
⎟
⎠
.

The product DADR is zero, as it has no support in the time domain [116]. This ensures that ΣK is alway

zero. From this (or from (4.4)) the corrections to the tree level Green functions are at second order (with

coupling constants and numerical factors extracted)

DK
(2) = −

g2

2

⎛
⎜⎜
⎝

+ +

+1
2

+ 1
2

+

+1
2

⎞
⎟⎟
⎠

= −g
2

2 ∫
dVu,v (DR

0 (x,u)DK
0 (u, v)DR

0 (u, v)DK
0 (v, y) +DK

0 (x,u)DK
0 (u, v)DA

0 (u, v)DA
0 (v, y)+

1
2
DR

0 (x,u)DK
0 (u, v)DK

0 (u, v)DA
0 (v, y) + 1

2
DR

0 (x,u)DR
0 (u, v)DR

0 (u, v)DA
0 (v, y)+

+1
2
DR

0 (x,u)DA
0 (u, v)DA

0 (u, v)DA
0 (v, y)) ,

(4.5)
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DR
(2) = −

g2

2
=

= −g
2

2 ∫
dVu,v DR

0 (x,u)DK
0 (u, v)DR

0 (u, v)DR
0 (v, y),

(4.6)

DA
(2) = −

g2

2
=

= −g
2

2 ∫
dVu,v DA

0 (x,u)DK
0 (u, v)DA

0 (u, v)DA
0 (v, y).

(4.7)

For φ4 interaction the self energy is given by

Σ1(x1, x2) = −
λ2

12
⎛
⎜
⎝

6DRDADK (DA)3 + 3(DK)2DA + 3(DR)2DA

(DR)3 + 3(DK)2DR + 3(DA)2DR (DK)3 + 3DK((DR)2 + (DA)2)

⎞
⎟
⎠
.

This corresponds the following diagramatic correction to the Green functions

DK
(2) = −

λ2

12

⎛
⎜⎜
⎝

+ +

+ 3 + 3 +

+ 3 + 3 +

+
⎞
⎟⎟
⎠
=

= −λ
2

12 ∫
dVu,v (DR

0 (x,u)GR(0)(u, v)
3GK(0)(v, y) +D

K
0 (x,u)DA

0 (u, v)3DA
0 (v, y)+

+ 3DR
0 (x,u)DK

0 (u, v)DR
0 (u, v)2DA

0 (v, y) + 3DR
0 (x,u)DK

0 (u, v)DA
0 (u, v)2DA

0 (v, y)+

+ 3DR
0 (x,u)DK

0 (u, v)2DR
0 (u, v)DK

0 (v, y) + 3DK
0 (x,u)DK

0 (u, v)2DA
0 (u, v)DA

0 (v, y)+

+DR
0 (x,u)DK

0 (u, v)3DA
0 (v, y)) ,

DR
(2) = −

λ2

12

⎛
⎜⎜
⎝

+ 3
⎞
⎟⎟
⎠
=

= −λ
2

12 ∫
dVu,v (DR

0 (x,u)GR(0)(u, v)
3GR(0)(v, y) +D

R
0 (x,u)DK

0 (u, v)2DR
0 (u, v)DR

0 (v, y)) ,

DA
(2) = −

λ2

12

⎛
⎜⎜
⎝

+ 3
⎞
⎟⎟
⎠
=

= −λ
2

12 ∫
dVu,v (DA

0 (x,u)GA(0)(u, v)
3GA(0)(v, y) +D

A
0 (x,u)DK

0 (u, v)2DA
0 (u, v)DA

0 (v, y)) .
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These corrections are general and do not depend on the space-time parametrisation or the mode functions.

I will calculate the integrals in the following sections. I will focus on the closed coordinates and cubic

interaction.

4.3.2. Calculation in closed coordinates

To calculate the corrections to the Green functions explicitly, I insert the expansions (3.41) to (3.43) into

(4.5) to (4.7). For the correction to the Keldysh function this yields

DK
(2) = −

1
2 ∑
k1,k2,k3,k4

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k4, d − 1)

Ck4
1/2(d−1)(1)Ωd

∫
Sd

ddu ddwC1/2(d−1)
k1

(x⃗.u⃗)C1/2(d−1)
k2

(u⃗.v⃗)C1/2(d−1)
k3

(u⃗.v⃗)C1/2(d−1)
k4

(v⃗.y⃗)

∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)D

[θ(η1 − ξ)θ(ξ − χ) (f∗k1
(η1)fk1(ξ) − fk1(η1)f∗k1

(ξ)) (f∗k2
(ξ)fk2(χ) + fk2(ξ)f∗k2

(χ))

(f∗k3
(ξ)fk3(χ) − fk3(ξ)f∗k3

(χ)) (f∗k4
(χ)fk4(η2) + fk4(χ)f∗k4

(η2))

+ θ(χ − ξ)θ(η2 − χ) (f∗k1
(η1)fk1(ξ) + fk1(η1)f∗k1

(ξ)) (f∗k2
(ξ)fk2(χ) + fk2(ξ)f∗k2

(χ))

(f∗k3
(ξ)fk3(χ) − fk3(ξ)f∗k3

(χ)) (f∗k4
(χ)fk4(η2) − fk4(χ)f∗k4

(η2))

− 1
2
θ(η1 − ξ)θ(η2 − χ) (f∗k1

(η1)fk1(ξ) − fk1(η1)f∗k1
(ξ)) (f∗k2

(ξ)fk2(χ) + fk2(ξ)f∗k2
(χ))

(f∗k3
(ξ)fk3(χ) + fk3(ξ)f∗k3

(χ)) (f∗k4
(χ)fk4(η2) − fk4(χ)f∗k4

(η2))

− 1
2
θ(η1 − ξ)θ(ξ − χ)θ(η2 − χ) (f∗k1

(η1)fk1(ξ) − fk1(η1)f∗k1
(ξ)) (f∗k2

(ξ)fk2(χ) − fk2(ξ)f∗k2
(χ))

(f∗k3
(ξ)fk3(χ) − fk3(ξ)f∗k3

(χ)) (f∗k4
(χ)fk4(η2) − fk4(χ)f∗k4

(η2))

− 1
2
θ(η1 − ξ)θ(χ − ξ)θ(η2 − χ) (f∗k1

(η1)fk1(ξ) − fk1(η1)f∗k1
(ξ)) (f∗k2

(ξ)fk2(χ) − fk2(ξ)f∗k2
(χ))

(f∗k3
(ξ)fk3(χ) − fk3(ξ)f∗k3

(χ)) (f∗k4
(χ)fk4(η2) − fk4(χ)f∗k4

(η2))] .

The Heaviside functions set the upper limit of the time integrations to the largest external time appearing,

thus the Keldysh formalism enforces causality. Using the results from the momentum conserving spatial

integrals (B.4) and rearranging the terms I get

DK
(2) = −

1
2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)D

[θ(η1 − ξ)θ(ξ − χ) (f∗k1
(η1)fk1(ξ) − fk1(η1)f∗k1

(ξ)) (f∗k1
(χ)fk1(η2) + fk1(χ)f∗k1

(η2))

(f∗k2
(ξ)fk2(χ) + fk2(ξ)f∗k2

(χ)) (f∗k3
(ξ)fk3(χ) − fk3(ξ)f∗k3

(χ))

+ θ(χ − ξ)θ(η2 − χ) (f∗k1
(η1)fk1(ξ) + fk1(η1)f∗k1

(ξ)) (f∗k1
(χ)fk1(η2) − fk1(χ)f∗k1

(η2))

(f∗k2
(ξ)fk2(χ) + fk2(ξ)f∗k2

(χ)) (f∗k3
(ξ)fk3(χ) − fk3(ξ)f∗k3

(χ))

− θ(η1 − ξ)θ(η2 − χ) (f∗k1
(η1)fk1(ξ) − fk1(η1)f∗k1

(ξ)) (f∗k1
(χ)fk1(η2) − fk1(χ)f∗k1

(η2))

(f∗k2
(ξ)fk2(χ)f∗k3

(ξ)fk3(χ) + fk2(ξ)f∗k2
(χ)fk3(ξ)f∗k3

(χ))] .

.
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Expanding the factors in each line I have

DK
(2) = −

1
2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)D

[θ(η1 − ξ)θ(ξ − χ) (f∗k1
(η1)fk1(η2)fk1(ξ)f∗k1

(χ) + f∗k1
(η1)f∗k1

(η2)fk1(ξ)fk1(χ) − c.c.)

(f∗k2
(ξ)f∗k3

(ξ)fk2(χ)fk3(χ) + fk2(ξ)f∗k3
(ξ)f∗k2

(χ)fk3(χ) − c.c.)

+ θ(χ − ξ)θ(η2 − χ) (f∗k1
(η1)fk1(η2)fk1(ξ)f∗k1

(χ) − f∗k1
(η1)f∗k1

(η2)fk1(ξ)fk1(χ) − c.c.)

(f∗k2
(ξ)f∗k3

(ξ)fk2(χ)fk3(χ) + fk2(ξ)f∗k3
(ξ)f∗k2

(χ)fk3(χ) − c.c.)

− θ(η1 − ξ)θ(η2 − χ) (f∗k1
(η1)fk1(η2)fk1(ξ)f∗k1

(χ) − f∗k1
(η1)f∗k1

(η2)fk1(ξ)fk1(χ) + c.c.)

(f∗k2
(ξ)f∗k3

(ξ)fk2(χ)fk3(χ) + fk2(ξ)fk3(ξ)f∗k2
(χ)f∗k3

(χ))] .

I introduce the shorthand notation f∗k1
(ξ)fk2(ξ)f∗k3

(ξ)fk1(χ)fk2(χ)fk3(χ) = ∗ ○ ∗ ○ ○○ with star denoting

the complex conjugate function and the circle denoting the pure function. The order of arguments and of

momenta is always the same. Sorting the terms to resemble the structure of (3.41) the result is

DK
(2) = −

1
2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)D

[f∗k1
(η1)fk1(η2)

((θ(η1 − ξ)θ(ξ − χ) + θ(χ − ξ)θ(η2 − χ)) (○ ∗ ∗ ∗ ○ ○ + ○ ○ ∗ ∗ ∗ ○ − ○ ○ ○ ∗ ∗ ∗ − ○ ∗ ○ ∗ ○ ∗)+

+θ(η1 − ξ)θ(η2 − χ)(− ○ ∗ ∗ ∗ ○ ○ − ○ ○ ○ ∗ ∗∗))−

− fk1(η1)f∗k1
(η2)

((θ(η1 − ξ)θ(ξ − χ) + θ(χ − ξ)θ(η2 − χ)) (∗ ∗ ∗ ○ ○ ○ + ∗ ○ ∗ ○ ∗ ○ − ∗ ○ ○ ○ ∗ ∗ − ∗ ∗ ○ ○ ○ ∗)−

−θ(η1 − ξ)θ(η2 − χ)(− ∗ ∗ ∗ ○ ○ ○ − ∗ ○ ○ ○ ∗∗))+

+ f∗k1
(η1)f∗k1

(η2)

((θ(η1 − ξ)θ(ξ − χ) − θ(χ − ξ)θ(η2 − χ)) (○ ∗ ∗ ○ ○ ○ + ○ ○ ∗ ○ ∗ ○ − ○ ○ ○ ○ ∗ ∗ − ○ ∗ ○ ○ ○ ∗)+

+θ(η1 − ξ)θ(η2 − χ)(○ ∗ ∗ ○ ○ ○ + ○ ○ ○ ○ ∗ ∗))−

− fk1(η1)fk1(η2)

((θ(η1 − ξ)θ(ξ − χ) − θ(χ − ξ)θ(η2 − χ)) (∗ ∗ ∗ ∗ ○ ○ + ∗ ○ ∗ ∗ ∗ ○ − ∗ ○ ○ ∗ ∗ ∗ − ∗ ∗ ○ ∗ ○ ∗)+

+ θ(η1 − ξ)θ(η2 − χ)(∗ ∗ ∗ ∗ ○ ○ + ∗ ○ ○ ∗ ∗ ∗))] .
(4.8)
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Partially exchanging k2 and k3 I can further simplify this to

DK
(2) = −

1
2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)D

{−2θ(η1 − ξ)θ(η2 − χ) [(f∗k1
(η1)fk1(η2)(○ ○ ○ ∗ ∗∗) + fk1(η1)f∗k1

(η2)(∗ ∗ ∗ ○ ○○))+

+ f∗k1
(η1)f∗k1

(η2) (2θ(ξ − χ) ○ ∗ ∗ ○ ○ ○ + 2θ(χ − ξ) ○ ○ ○ ○ ∗ ∗)+

+ fk1(η1)fk1(η2) (2θ(ξ − χ) ∗ ○ ○ ∗ ∗ ∗ + 2θ(χ − ξ) ∗ ∗ ∗ ∗ ○ ○)]+

+ [θ(η1 − ξ)θ(ξ − χ)θ(χ − η2) + θ(η2 − χ)θ(χ − ξ)θ(ξ − η1)] ⋅

[f∗k1
(η1)fk1(η2) (○ ∗ ∗ ∗ ○ ○ − ○ ○ ○ ∗ ∗ ∗) + fk1(η1)f∗k1

(η2) (∗ ○ ○ ○ ∗ ∗ − ∗ ∗ ∗ ○ ○ ○)]+

+ [θ(η1 − ξ)θ(ξ − χ)θ(χ − η2) − θ(η2 − χ)θ(χ − ξ)θ(ξ − η1)] ⋅

[f∗k1
(η1)f∗k1

(η2) (○ ∗ ∗ ○ ○ ○ − ○ ○ ○ ○ ∗ ∗) + fk1(η1)fk1(η2)(∗ ○ ○ ∗ ∗ ∗ − ∗ ∗ ∗ ∗ ○ ○)]} .

(4.9)

For the retarded and advanced Green functions, I get similar results:

DR
(2) = −

1
2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)Dθ(η1 − ξ)θ(ξ − χ)θ(χ − η2)

[f∗k1
(η1)fk1(η2)(○ ∗ ∗ ∗ ○ ○ − ○ ○ ○ ∗ ∗ ∗)+

+ fk1(η1)f∗k1
(η2)(∗ ∗ ∗ ○ ○ ○ − ∗ ○ ○ ○ ∗ ∗)+

+ f∗k1
(η1)f∗k1

(η2)(− ○ ∗ ∗ ○ ○ ○ + ○ ○ ○ ○ ∗∗)+

+fk1(η1)fk1(η2)(− ∗ ∗ ∗ ∗ ○ ○ + ∗ ○ ○ ∗ ∗∗)] .

DA
(2) =

1
2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)Dθ(ξ − η1)θ(χ − ξ)θ(η2 − χ)

[f∗k1
(η1)fk1(η2)(○ ∗ ∗ ∗ ○ ○ − ○ ○ ○ ∗ ∗ ∗)+

+ fk1(η1)f∗k1
(η2)(∗ ∗ ∗ ○ ○ ○ − ∗ ○ ○ ○ ∗ ∗)+

+ f∗k1
(η1)f∗k1

(η2)(− ○ ∗ ∗ ○ ○ ○ + ○ ○ ○ ○ ∗∗)+

+fk1(η1)fk1(η2)(− ∗ ∗ ∗ ∗ ○ ○ + ∗ ○ ○ ∗ ∗∗)] .
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The integrals cannot be calculated in closed form analytically, so as a first step I evaluate the integrals for

coinciding times η1 = η2 ≡ η. In this case, using the symmetry in ξ and χ and k2 and k3, (4.9) simplifies to

DK
(2)(t, x⃗, t, y⃗) = −

1
2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)∫ dξ dχ g(ξ)g(χ)a(ξ)Da(χ)Dθ(η − ξ)θ(η − χ)

[(f∗k1
(η)fk1(η)) (−4 ○ ○ ○ ∗ ∗ ∗) +

+ f∗k1
(η)f∗k1

(η)θ(χ − ξ) (4 ○ ○ ○ ○ ∗ ∗)+

+fk1(η)fk1(η)θ(χ − ξ) (4 ∗ ∗ ∗ ∗ ○ ○)] =

= − 2
∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗)

[(f∗k1
(η)fk1(η))A + f∗k1

(η)f∗k1
(η)B + fk1(η)fk1(η)B∗] =

=∑
k1

DK
(2)(t, t, k1)

C
1/2(d−1)
k1

(x⃗.y⃗)

C
1/2(d−1)
k1

(1)
h(k1, d − 1)

Ωd
,

(4.10)

with

DK
(2)(t, t, k1) =

∣k1−k2∣≤k3≤k1+k2

∑
k2,k3=0

2Qk2,k3 [(f∗k1
(η)fk1(η))A + f∗k1

(η)f∗k1
(η)B + fk1(η)fk1(η)B∗] (4.11)

and Qk2,k3 = (−1) h(k1,d−1)
Ck1

1/2(d−1)(1)Ωd
h(k2,d−1)

Ck2
1/2(d−1)(1)Ωd

h(k3,d−1)
Ck3

1/2(d−1)(1)Ωd
B(k1, k2, k3, d).

Comparing (4.10) to (3.41) the corrections can be interpreted as occupation number and anomalous

expectation value (cf. [62]). Note however that I use this interpretation in the case of equal external times.

For distinct external times the correction (4.8) is not of the form allowing a comparison to (3.41).

Calculation for Minkowski space-time

To get a first estimate and base to compare to, I calculate the above corrections for a Minkowski background.

In this case the mode functions are

fk(η) =
1

2
√
Ek

eiEkt,E =
√
m2 +H2k(k +D − 2),

and the scale factor is just unity. When the switching on of the interaction is adiabatically moved to past

infinity, the integrals from (4.10) are

∫
t

−∞
dη fk1(η)fk2(η)fk3(η) =

1
23/2

√
E1E2E3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−i
∑Ej−iεe

it∑Ej t <∞

δ(∑Ej) t→∞
,
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∫
t

−∞
dξ∫

ξ

−∞
dχ fk1(ξ)fk2(ξ)fk3(ξ)fk1(χ)f∗k2

(χ)f∗k3
(χ) =

= − 1
23E1E2E3

1
E1 −E2 −E3 − iε

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−i
2E1−iεe

it2E1 t <∞

δ(2E1) t→∞
.

With these results, the correction (4.10) becomes for finite t

DK
(2) = − 2

∣k1−k2∣≤k3≤k1+k2

∑
k1,k2,k3=0

h(k1, d − 1)
Ck1

1/2(d−1)(1)Ωd
h(k2, d − 1)

Ck2
1/2(d−1)(1)Ωd

h(k3, d − 1)
Ck3

1/2(d−1)(1)Ωd
h(k1, d − 1)

Ck1
1/2(d−1)(1)Ωd

B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗) 1
8E1E2E3

[(f∗k1
(η)fk1(η))(−

1
(∑Ej − iε)2 ) +

+ f∗k1
(η)f∗k1

(η) (− 1
E1 −E2 −E3 − iε

1
2E1 − iε

ei2ηE1)+

+fk1(η)fk1(η) (−
1

E1 −E2 −E3 + iε
1

2E1 + iε
e−i2ηE1)] .

(4.12)

For t→∞ all corrections vanish because of the delta functions and the non-vanishing mass. This result can

now be compared to the calculation for the de Sitter background. I already give the result for k1 ≪ k2 ≈ k3

as this will be most important later on. In Minkowski this limit corresponds the following result for the

coefficient A:

A∝ p−4
2 . (4.13)

Corrections over the complete time domain

The integrals still cannot be calculated for general times, but if the interaction is switched on in the

asymptotic past and the correction is evaluated in the asymptotic future I can make use of the branch

cuts of the mode functions to evaluate the change to the occupation number. I will calculate the following

integral in the limit ε→ 0, η → π, i.e. the interaction starts in the infinite past and I calculate the two point

function of points in the far future:

I1 =∫
η

ε
dξ a(ξ)Dfk1(ξ)fk2(ξ)fk3(ξ) =

=N ∫
η

ε
dξ (sin ξ)D2 −3eiξ∑j pj∏

j
2F1 (h+, h−, pj + 1, 1

2
− i

2
cot ξ)

where N = 1
23/2 ∏

√
Γ(pj+h+)Γ(pj+h−)

Γ(pj+1) . To use the branch cuts, I change variables to z = cot ξ with the

relations

dz = − 1
sin2 η

dη,

sin η = (z + i)− 1
2 (z − i)− 1

2 ,

eiη = (z + i) 1
2

(z − i) 1
2
,
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which results in:

I1 =N ∫ dz (z − i)−
D
4 +

1
2−∑

pj
2 (z + i)−D4 + 1

2+∑
pj
2 ∏ F2 1 (h+, h−, pi + 1, 1

2
− iz

2
) =

=N ∫ dz (z − i)−D+2−∑
kj
2 (z + i)D2 −1+∑

kj
2 ∏ F2 1 (h+, h−, pi + 1, 1

2
− iz

2
) = ∫ dz J1(z). (4.14)

Each hypergeometric function has a branch cut from z = i to infinity. From the momentum conservation

I have the condition ∑kj = 2s, s ∈ N so the first factor has a pole at z = i while the second factor has a

branch cut for odd dimensions from z = −i to infinity. For real z the integrand has the following reflection

symmetry:

J1(−x) = J(x)∗e3iπ(D2 −1), (4.15)

The value along the lower cut (z = ix,x < −1) is

J1(ix + ε)∝ eiπ2 (D2 −1), J1(ix − ε) = (−1)DJ1(−ix + ε), (4.16)

where I have used that the hypergeometric functions are real for negative real arguments. At infinity the

integrand behaves like

J1 ∝ z−
D
2 +1−3h− = z−

D+1
2 +3n (4.17)

(cf. [122]2.3.2.(9)), so for the very massive case I consider (n ∈ iR) it drops off faster than 1
z
. This allows

us to use contour integration to calculate the integral. The complete time limit corresponds to z(ε)→∞

and z(η)→ −∞ so for even D I can close the contour on the lower half-plane, cf. figure 4.2a. For odd D I

cannot close the contour at infinity, but have to integrate around the branch cut, see figure 4.2b. From

Reξ

Imξ

(a) Contour for even D

Reξ

Imξ

(b) Contour for odd D

Figure 4.2.: Contours for integration over the complete time
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the two contour integrations I get for even and odd D

I1,D even = ∫
0

−∞
dx (J1(x) + e3iπ(D2 −1)J∗1 (x)) = 0 (4.18)

I1,D odd = ∫
0

−∞
dx (J1(x) + e3iπ(D2 −1)J∗1 (x)) = −2i∫

−1

−∞
dx J1(ix + ε)) = eiπ2

D
2 ρ (4.19)

where ρ ∈ R. From this we see, that for even dimensions the net number density of particles produced

vanishes, while for odd dimension no result can be drawn. (4.19) only gives a consistent relation but the

value of ρ cannot be determined. Numerical calculations indicate that the value of ρ is non-vanishing for

all momenta. For even dimensions the question arises, whether particles are produced in the contracting

half of the evolution and annihilated in the expanding half or if in both phases no particles are produced.

Unfortunately, contour integrals lead to an equation similar to (4.19) which yields no analytic result for

the occupation number, but again numerical analysis shows a non-vanishing result in either half.

The second integrals for the anomalous expectation value are more tricky. They are of the form

I2 =∫
π

0
dξ a(ξ)Dfk1(ξ)fk2(ξ)fk3(ξ)∫

ξ

0
dχ a(χ)Dfk1(χ)f∗k2

(χ)f∗k3
(χ).

Using the symmetry properties of the mode functions I find that the integral has to be purely imaginary:

∫
π

0
dξ a(ξ)Dfk1(ξ)fk2(ξ)fk3(ξ)∫

π

0
dχ a(χ)Dfk1(χ)f∗k2

(χ)f∗k3
(χ) =

=∫
π

0
dξ a(ξ)Dfk1(ξ)fk2(ξ)fk3(ξ)∫

ξ

0
dχ a(χ)Dfk1(χ)f∗k2

(χ)f∗k3
(χ)+

+ ∫
π

0
dξ a(ξ)Dfk1(ξ)fk2(ξ)fk3(ξ)∫

π

ξ
dχ a(χ)Dfk1(χ)f∗k2

(χ)f∗k3
(χ) =

(4.15)= ∫
π

0
dξ a(ξ)Dfk1(ξ)fk2(ξ)fk3(ξ)∫

ξ

0
dχ a(χ)Dfk1(χ)f∗k2

(χ)f∗k3
(χ)+

+ eiπD ∫
π

0
dξ a(ξ)Df∗k1

(ξ)f∗k2
(ξ)f∗k3

(ξ)∫
ξ

0
dχ a(χ)Df∗k1

(χ)fk2(χ)fk3(χ).

For even D the first line vanishes by the contour integration discussed above, so the final line forces the

real part of I2 to vanish. Analytically there is no reason for this to vanish and numerical calculations

indicate that in general it does not vanish. So generically also for even D I get a non-vanishing anomalous

expectation value.

Calculation by approximation of the mode functions in the adiabatic limit

I am interested in the influence of the adiabatic switching of the interaction. In [70] it was claimed, that

the limit of switching on the interaction in the infinite past leads to a fatal IR/UV mixing. In this section

I will calculate this effect in a different way, with a contradicting result. I find that there is no divergence

upon taking the adiabatic limit.

The integrals in the coefficients A and B in (4.10) are not easily integrated. I concentrate only on

the calculation of the coefficient A, the calculation for B will proceed similarly but is technically more

complicated. For finite time I approximate the mode function by integrable functions, by simplifying the
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hypergeometric functions. The approximations used can be found in B.5. They can be thought of as modes

being inside or outside the horizon.

I am interested in the case of infrared external momenta, i.e. all internal momenta are larger than the

external one k1 ≪ k2 ≈ k3. The interaction is switched on adiabatically in the past, so I will let ε → 0.

During the evolution of time the modes start with super-horizon behaviour and cross the horizon at a time

ηp. To calculate the integrals I split the sum over momenta and the time intervals such that always a fixed

number of modes is outside or inside the horizon and the corresponding approximations hold. The time of

horizon crossing is determined from the approximations of the mode functions to be

pi < pξ =

¿
ÁÁÀ∣n2 − 1∣

sin2 ξ
. (4.20)

For A after the split we can have three different cases:

1) All modes are super-horizon.

2) One mode is super-horizon (p1), and two are sub-horizon.

3) All modes are sub-horizon

To perform the integration I introduce intermediate auxiliary integrals. I also do the limit of large internal

momenta p2, p3 and ignore all lower order corrections. The detailed calculations are in appendix B.6.

Depending on the final time and the physical wavelenghts of the modes at that time I find different

momentum dependence of the coefficient. Together with the approximation for the momentum dependent

coefficient Qp2,p3 an approximation for the first order correction to the Green function (4.11) can be

given. For large internal momenta the sums can be replaced by integrals and as a consequence of the

triangle inequality from momentum conservation it is required that k3 ≈ k2. Corresponding to the different

horizon behaviour of the mode functions at different times, the integrals are split according to the different

approximation for the coefficients made in (B.17) to (B.21). At large momenta the integral has to be

limited using an ultraviolet cutoff. I impose a cutoff in the physical momentum space as

qphys(η) =
Hp

a(η)
≤ ΛUV

and as the global de Sitter has a minimal scale factor at the bounce we have an absolute limit of

p ≤ ΛUV
H

amin ≤
ΛUV
H

a(η).

For small final times η ≈ 0, when the modes with momenta p1 are still outside the horizon, the correction

which can be thought of as the number density is

∑
k2,k3

Qk2,k3A(ηearly) = ∫
kη

k
dk̃ Qp̃,p̃A1 + ∫

kε

kη
dk̃ Qp̃,p̃A2 + ∫

ΛUV
H a(η)

kε
dk̃ Qp̃,p̃A3.
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For large final time, when the external momenta modes cross the horizon during the evolution of the

universe (p1 > pη), the expression is

∑
k2,k3

Qk2,k3A(ηlate) = ∫
kε

k
dk̃ Qp̃,p̃A4 + ∫

ΛUV
H a(η)

kε
dk̃ Qp̃,p̃A5.

Before inserting the approximations from (B.17) to (B.22) let us discuss the terms containing A3 and A5.

Comparing with (B.19) and (B.21) we notice that both terms are of the form

∫
ΛUV a(η)

kε
dk̃ Qp̃,p̃A3,5 ∝ (ΛUV

H

a(η)
a(ε)

)
D−5

.

This seems to indicate the mixing of IR and UV divergencies and lead to a divergent correction to the

two point function in the limit when the switching on of the interaction is sent to past infinity. However,

we have to note, that this contribution is only valid as long as kε < ΛUV a(η). That means that in the

limit when I send ε → 0 the physical momentum of those modes that are sub-horizon at time ε crosses

the physical cutoff and the term is no longer valid. In this case kε has to be replaced by ΛUV a(η) in the

above integrals. With the approximations (B.17) to (B.22) the leading order correction always comes from

the last integral up to the UV cutoff, but the precise form depends on the number of dimensions. As the

appearance of the initial scale factor a(ε) in the remaining coefficients is always in negative powers and

terms containing them will therefore vanish in the limit of adiabatic switching, I omit them immediately.

Therefore the A-part of the correction to the two point function is given by:

DK
2,A(η, η, k)∝ ∑

k2,k3

Qk2,k3A(ηearly)∝ (
kη

a(η)
)
D−1

+
⎛
⎝
(ΛUV
H

)
D−5

− (
kη

a(η)
)
D−5⎞

⎠
+ log ΛUV a(η)

Hpη

where only the time dependent contributions to the coefficients of each term are kept. For late times when

the external momentum has entered the horizon the result is similar:

DK
2,A(η, η, k)∝ ∑

k2,k3

Qk2,k3A(ηlate)∝ (a(η)6−D +C) ((ΛUV
H

a(η))D−5 − kD−5
η ) + log ΛUV a(η)

Hpη
.

Using the time evolution of the scale factor, both results have the same ultraviolet behaviour and time

dependence:

∑
k2,k3

Qk2,k3A(η)∝ (ΛUV
H

)
D−5

+ log ΛUV
H

. (4.21)

4.3.3. Discussion

My first remark is that my result for large internal momenta is consistent with the result for Minkwoski

space-time (4.13). This is not surprising, as in this limit the internal momenta modes behave to leading

order just like plane waves. The important result is that I do not have a divergent dependence on the

scale factor at the time of switch-on of the interaction. This means that I can safely take the adiabatic

limit and start in the interaction in the infinite past. This is in contrast to the results of [70,72] where
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they find a logarithmic dependence on the time since the interaction was switched on. In [70] their

logarithmic correction to the two point function is D(2)(t, t, q)∝ log a(ε) whereas in [72] their correction

is D(2)(t, t, q) ∝ log a(ε)
a(t) . I believe their result is wrong for several reasons. To obtain the result in [70]

they employ the scaling behaviour after the change of integration variable in an integral over the mode

functions,

σq(τ1, τ2) = ∫
ddk

(2π)d
h∗(kτ1)h(kτ2)h∗(∣k⃗ − q⃗∣τ1)h(∣k⃗ − q⃗∣τ2)

where h(x) is proportional to the mode functions in flat coordinates. For large k ≫ q they claim that this

integral has the scaling behaviour

σq(τ1, τ2) = (τ1τ2)−d/2Φ(τ1
τ2

) ,

which seems to be the case on the first glance. Unfortunately this change of integration variable with

unlimited boundaries is only valid if the integrand decays sufficiently fast. A similar problem is addressed

in the calculation of the chiral anomaly in [121] IV.7.(2). Here this condition is not satisfied and the

integral diverges which is clear from the ultraviolet behaviour of the mode functions. The integral has

therefore to be regularized and the desired scaling behaviour cannot be extracted. In [72] the result is

obtained by taking cutoffs for the momentum integral a(t) < k < a(ε). These bounds translate to the

condition that the internal modes should cross the horizon during the evolution from ε to t. The upper

bound however operates as ultraviolet cutoff and the limit a(ε) →∞ leads naturally to a divergent UV

contribution, i.e. the divergence in initial time ε is in faction the UV divergence in disguise. Therefore this

issue cannot be treated without proper UV regularization.

In my calculation I approximated the mode functions for super- and sub-horizon behaviour. I integrated

these approximations over time and expanded the result for large internal momenta. In this approximation,

all dependence on the initial time vanishes and I conclude that there is no obstruction to taking the

interaction over all time. Similiar expressions should be obtained for the remaining component of the

Keldysh function and the other Green functions.
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5.1. Integration by power series

As we saw in the last chapter, the approximative calculation breaks down for the first order correction. To

see whether this breakdown comes from the approximation method used, the breakdown of perturbation

theory or from the background itself it would be useful if the correction to the propagator could be solved

analytically in another way. Therefore I expressed the hypergeometric functions appearing in the definition

of the mode functions by their power series definition. This has the advantage, that the resulting integrals

can be calculated fully analytically. Nevertheless the final result is combined of eight infinite summations,

so I did not pursue this attempt any further for the moment. The full calculation is in appendix C.

5.2. Solution using the Dyson-Schwinger equation and symmetries

Because of the complexity of the mode functions appearing in the quantisation of quantum field theory on

de Sitter space, it is difficult to calculate loop integrals analytically. Using the Dyson-Schwinger equation

for the full propagator and the symmetries of the space time we can however attempt to find a more

general solution than the expansions above. For the retarded Green function, the correction due to one

loop in the cubic interaction is (4.6)

DR
(2)(x, y) = −

g2

2 ∫
dVu,v DR

0 (x,u)DK
0 (u, v)DR

0 (u, v)DR
0 (v, y). (5.1)

From the symmetries of the involved propagators we can conclude that the final result can only depend

on the geodesic distance (plus theta functions ensuring the retardedness). Thus we can act with the

Klein-Gordon operator on the equation. On the right hand side I use the form of (3.16) while on the left

hand side I use (3.17). This results in the following differential equation

[(Z2 − 1) d2

dx2Z +DZ d
dx
Z + (D − 1)2

4
− n2]

2

DR
(2)(Z(x, y)) = −g

2

2
DK

0 (Z(x, y))DR
0 (Z(x, y)). (5.2)

For large geodesic distance of x and y the righthand side decays as Z−d while the homogeneous equations

allows for solutions of the form

DR
(2)(Z)∝ log(Z)DR

0 (Z).
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This is precisely the behaviour found in [71] for the loop corrections to the propagator for large distances.

As it is only the homogeneous solution in our case we still have to prove that it is indeed part of the

solution. This can be obtained by acting on (5.1) only once with the Klein-Gordon operator. As the

left hand side allows only the free large distance behaviour, the logarthmic part has to be contained in

the special solution satisfying the right hand side. By determining the large distance behaviour of the

righthand side it should be possible to confirm the validity of the solution.

This shows the power of the use of symmetries when determining the solution to loop corrections. It seems

promising to pursue this attempt further e.g. by expanding the solution as a power series in the geodesic

distance, determining the coefficients and finding a corresponding analytic function to the series.



6. Conclusion and Outlook

In this work I discussed the implications of a cubic self-interaction for a massive scalar field from the

principal series in global de Sitter space. I showed that from the vacuum persistence amplitude there is

no obvious breakdown of perturbation theory on de Sitter space, as in the in/in (Keldysh) formalism the

vacuum persistence is always unity for physical sources. For arbitrary sources, the coupling can always be

chosen small enough to ensure unitarity. This is in contrast to Polyakov [31] where he finds an imaginary

part in the effective action spoiling the vacuum persistence. The effective potential for the conformally

rescaled scalar field indicates that for the toy model of a cubic interaction the vacuum is destabilized in

the expanding flat coordinate chart if the interaction is switched on in the infinite past, as there is no

local maximum preventing the field from escaping from the free vacuum. It is not the case for the closed

coordinate chart or even interaction potentials. This is another argument for studying interactions on de

Sitter space only in the global coordinate chart instead of the flat expanding one. In the loop corrections

to the propagators due to a cubic interaction I approximated the integrals by expanding the modes around

their leading sub- or super-horizon behaviour and recast the result into a form analytically integrable.

I found that for small internal momenta the leading order correction does not suffer from divergencies

depending on the time the interaction has been in effect, in contradiction to Krotov and Polyakov [70].

This is mainly due to a different treatment of the ultraviolet divergent loop momenta integrals. The time

divergence Krotov and Polyakov discover is in fact an unregularized ultra-violet momentum divergence

in disguise. The conclusion is that perturbation theory on closed or contracting flat coordinate charts

in de Sitter space can proceed just as is known from Minkowski with UV renormalisation. It should be

possible to extend my analysis to higher interactions and determine the leading corrections due to the

interaction. For an exact calculation of the loop corrections one has to refine the mathematical treatment

of the involved mode functions and make use of the underlying symmetry.

Future research should investigate the contribution to large momenta propagators as well and show that

all appearing divergencies can be resummed into a shift of the parameters, i.e. renormalisation. If this

is not possible, the divergencies do not indicate an instability of de Sitter space per se, but first of all

only the breakdown of the perturbation theory used and one has to resort to non-perturbative methods

including the explicit backreaction. Otherwise we cannot distinguish divergencies of the background from

those of the mathematical treatment. This also applies to any attempt interpreting the divergencies as the

explosive creation of particles which is only justified with a rigorous definition of the occupation number
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and the kinetic equation. The study of quantum field theory on de Sitter space remains an important and

exciting topic especially after the strong support of an early de Sitter phase by recent observations like

Plank and BICEP2 [5–8].



A. Definitions and Conventions

A.1. Conventions

In cosmology, most fundamental constants enter the equations for the evolution of the universe. In the

following, I will use Planckian (natural) units to simplify calculations, i.e. I will set G = h̵ = c = 1. The

numerical value in common units for a quantity can be obtained via the Planckian elementary units.

lPl =
√

Gh̵

c3
= 1.616 × 10−33cm,

tPl =
lPl
c

= 5.391 × 10−44s,

mPl =
√

h̵c

G
= 2.177 × 10−5g.

The units for other quantities can be derived by combining the above elementary units.

Throughout this thesis the signature for my metric is (+,−,−, . . .). As I will study only homogeneous,

isotropic universes the metric is the Friedmann-Robertson-Walker metric. The line element in this metric

is given by

ds2 = dt2 − a(t)2 ( dr2

1 −Kr2 + r
2dθ2 + r2 sin2 θdφ2) .

A.2. Fourier transform and Delta distribution

I use the following definition for the Fourier transform in d−dimensional flat space-time (Minkowksi or

Euclidean)

F [f](k) = ∫
ddx

(2π) d2
f(x)e−ik⃗x⃗.

The inverse Fourier transform is given by

f[F ](x) = ∫
ddk

(2π) d2
F (k)eik⃗x⃗.

One representation of the delta distribution is

δd(x⃗) = ∫
ddp

(2π)d
eip⃗x⃗.
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B. Formula and Calculations

B.1. Surface harmonics

The surface harmonics Yk,σ⃗(n⃗) are eigenfunctions of the Laplacian on Sd embedded in D = d+1 dimensional

space, ∣n⃗∣ = 1, n⃗ ∈ RD. See Bateman [123] for an extended definition, but note that the surface harmonics

are Sln in their notation. The complex harmonics Y can be related to the real harmonics S of Bateman

via SRk,σ = 1√
2(Yk,σ + Y

∗
kσ), SIk,σ =

1
i
√

2(Yk,σ − Y
∗
kσ). The surface harmonics obey

∆Yk,σ⃗ = −k(k +D − 2)Yk,σ⃗,

where k ∈ N. k, σ⃗ is the angular momentum of a given mode. The components of σ⃗ are limited similar

to quantum mechanics by k ≥ σ1 ≥ . . . ≥ σd−1. Total multiplicity of surface harmonics for a given k is

(Bateman, Vol 2, 11.2(2))

h(k, d − 1) = (2k + d − 1)(k + d − 2)!
(d − 1)!k!

.

The surface harmonics are orthonormal:

∫
Sd
Yk,σ⃗(n⃗)Y ∗

k′,σ⃗′(n⃗) = δk,k′δσ⃗,σ⃗′

They satisfy the useful addition relation

∑
σ

Yn,σ(n⃗)Y ∗
n,σ(n⃗′) =

C
1/2(d−1)
n (n⃗.n⃗′)
C

1/2(d−1)
n (1)

h(n, d − 1)
Ωd

.

B.2. Solution to the Klein Gordon equation in closed coordinates

The differential equation for the mode functions in closed de Sitter coordinates is

v′′k + (k + D
2
− 1)

2
vk +

1
sin2 η

(m
2

H2 + ξD(D − 1) + D
2

(1 − D
2
)) vk = 0.

This differential equation can be transformed using vk(η) = gk(z)
√

sin η, z = cosη into the differential

equation for Legendre functions for f

(1 − z2)g′′k − 2zg′k + [p2 − 1
4
+ 1

1 − z2 (M2 + D
2

(1 − D
2
) − 1

4
)] gk = 0.
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Via the transformation vk(η) = e±ipηhk(z), z = 1
2 ∓ i cotη

2 , we get the differential equation for hypergeometric

functions

z(1 − z)h′′k + [p + 1 − 2z]h′k − [M2 + D
2

(1 − D
2
)]hk = 0.

Solutions are therefore Legendre functions on the cut or equivalently hypergeometric functions:

vk(η) =
1

Γ(p + 1)
√

Γ(p + h+)Γ(p + h−)eipη
2F1(h+, h−, p + 1,− ieiη

2 sin η
) =

=
√

sin η
√
π

2

¿
ÁÁÀΓ(p + h−)

Γ(p + h+)
eiπ4 e− i

2nπ (Pn
k+D2 −

3
2
(cosη) − 2i

π
Qn
k+D2 −

3
2
(cosη))

with n = 1
2

√
(D − 1)2 − (2m/H)2, p = k + D

2 − 1 and h± = 1
2 ± n. The equivalence of both functions follows

from [122], 3.2.(12), 3.2.(44), and 3.4.(9). An alternative form can be achieved by using [122] 3.3.(13) and

3.3.1.(12) giving

1
Γ(p + 1)

eipη
2F1(h+, h−, p + 1,− ieiη

2 sin η
) = [θ(π/2 − η) + eiπpθ(η − π/2)]P −p

−h+ (i cotη + ε) ,

where the Legendre function has a cut from 1 to −∞ along the real axis, but the additional theta functions

correct for this cut.

B.3. Different forms of the mode functions and Green function

The Wightman function can also expressed in terms of Gegenbauer functions

D0(Z) = [AC
D−1

2
n−D−1

2
(−Z) +BC

D−1
2

n−D−1
2

(Z)]
Γ(−D−3

2 + n)Γ(D − 1)
Γ(D−1

2 + n)
.

In flat coordinates, in spatial momentum space, the Wightman function is in terms of the mode functions

D0(η1, x⃗1, η2, x⃗2) =
1

(2π)d/2 ∫
ddqf∗q (η1)fq(η2)eiq⃗(x⃗1−x⃗2),

with the mode function fq(η) = 1√
2(Hη)

D−2
2

√
π∣η∣
2 (H(2/1)

n (k∣η∣)) for the Bunch Davies vacuum. In global

coordinates, the Laplace-transform is

D0(η1, n⃗1, η2, n⃗2) =∑
k,σ⃗

f∗k (η1)fk(η2)Y ∗
k,σ⃗(n⃗1)Yk,σ⃗(n⃗2).

The sum over the angular directions can be performed using [123]11.4(2)

∑
σ⃗

Sn,σ⃗(n⃗)Sn,σ⃗(n⃗′) =
C

1/2(d−1)
n (n⃗.n⃗′)
C

1/2(d−1)
n (1)

h(n, d − 1)
Ωd

=∑
σ

Yn,σ(n⃗)Y ∗
n,σ(n⃗′),

where Ωd is the area of the d-dimensional sphere: Ωd = 2πd/2+1/2

Γ(d/2+1/2) , h(k, d − 1) = (2k+d−1)(k+d−2)!
(d−1)!k! and

C
1/2(d−1)
k (1) = (k+d−2)!

k!(d−2)! ( [123]11.1.(28) ). Using this relation we can simplify the Green function to

D0(η1, x⃗1, η2, x⃗2) =∑
k

f∗k (η1)fk(η2)
C

1/2(d−1)
k (n⃗1.n⃗2)
C

1/2(d−1)
k (1)

h(k, d − 1)
Ωd

.

This is equivalent to integrating out the angular part in flat spatial section.
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B.4. Spatial integrals - Momentum conservation

Performing the spatial integrals in (4.3.2) over u⃗ and v⃗ utilising (B.1) we get integrals of the form

I = ∫
Sd

ddwddu C1/2(d−1)
k1

(x⃗.u⃗)C1/2(d−1)
k2

(u⃗.w⃗)C1/2(d−1)
k3

(u⃗.w⃗)C1/2(d−1)
k4

(w⃗.y⃗).

Following the reasoning in [123] the result has to be a harmonic polynomial in x⃗ with degree k1, and in y⃗

with degree k4 (missing the radial part). It can also only depend on x⃗.y⃗ as rotations in x⃗ and y⃗ can be

compensated by corresponding rotations in the integrals. Therefore we have

I = δk1,k4B(k1, k2, k3, d)C1/2(d−1)
k1

(x⃗.y⃗).

To determine the coefficient, I consider

I2 = ∫
Sd

ddu C1/2(d−1)
k1

(x⃗.u⃗)C1/2(d−1)
k2

(u⃗.w⃗)C1/2(d−1)
k3

(u⃗.w⃗).

The result will be a harmonic in x⃗ with degree k1. As the result is invariant under simultaneous rotations

in x⃗ and w⃗, the final result can also only depend on x⃗.w⃗. Therefore

I2 = ∫
Sd

ddu C1/2(d−1)
k1

(x⃗.u⃗)C1/2(d−1)
k2

(u⃗.w⃗)C1/2(d−1)
k3

(u⃗.w⃗) = A3(k1, k2, k3,1/2(d − 1))
C

1/2(d−1)
k1

(1)
C

1/2(d−1)
k1

(x⃗.w⃗).

iff ∣k1 − k2∣ ≤ k3 ≤ k1 + k2. To determine the coefficient choose x⃗ = w⃗ and perform the integral. This has

been done in [124].

∫
1

−1
dx (1 − x2)λ−1/2Cλl (x)Cλm(x)Cλn(x) =

= 21−2λ

(Γ(λ))2
π

s + λ
Γ(s + 2λ)
Γ(s + 1)

⎛
⎜
⎝

s − l + λ − 1

s − l

⎞
⎟
⎠

⎛
⎜
⎝

s −m + λ − 1

s −m

⎞
⎟
⎠

⎛
⎜
⎝

s − n + λ − 1

s − n

⎞
⎟
⎠

⎛
⎜
⎝

s + λ − 1

s

⎞
⎟
⎠

,

for k + l +m = 2s with s ∈N and if a triangle with sides k, l,m exists, i.e. ∣k − l∣ ≤m ≤ k + l. Therefore

A3(k, l,m,λ) =
21−2λ

(Γ(λ))2
π

s + λ
Γ(s + 2λ)
Γ(s + 1)

⎛
⎜
⎝

s − l + λ − 1

s − l

⎞
⎟
⎠

⎛
⎜
⎝

s −m + λ − 1

s −m

⎞
⎟
⎠

⎛
⎜
⎝

s − k + λ − 1

s − k

⎞
⎟
⎠

⎛
⎜
⎝

s + λ − 1

s

⎞
⎟
⎠

,

with the above conditions. The second integration over w⃗ can be performed according to Bateman 11.4.(15).

Therefore

B(k1, k2, k3, d) =
A3(k1, k2, k3,1/2(d − 1))A2(k1, d − 1)

C
1/2(d−1)
k1

(1)
,

with A(k1, d − 1) given in Bateman 11.4.(16):

A2(k1, d − 1) = C1/2(d−1)
k1

(1) Ωd
h(k1, d − 1)

= 2π1+1/2(d−1)

(k1 + (d − 1)/2)Γ((d − 1)/2)
.
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So

B(k1, k2, k3, d) =
A3(k1, k2, k3,1/2(d − 1))Ωd

h(k1, d − 1)
=

= 2π(d+1)/2

(k1 + d/2 − 1/2)Γ((d − 1)/2)
1

C
1/2(d−1)
k1

(1)
22−d

(Γ(1/2(d − 1)))2
π

s + 1/2(d − 1)
Γ(s + d − 1)

Γ(s + 1)
×

×

⎛
⎜
⎝

s − k1 + 1/2(d − 1) − 1

s − k1

⎞
⎟
⎠

⎛
⎜
⎝

s − k2 + 1/2(d − 1) − 1

s − k2

⎞
⎟
⎠

⎛
⎜
⎝

s − k3 + 1/2(d − 1) − 1

s − k3

⎞
⎟
⎠

⎛
⎜
⎝

s + 1/2(d − 1) − 1

s

⎞
⎟
⎠

,

with k1 + k2 + k3 = 2s and ∣k1 − k2∣ ≤ k3 ≤ k1 + k2.

B.5. Asymptotic form of the Bunch Davies mode functions

In flat and closed coordinates the mode functions are given by

wk⃗ = a
2−D

2
1√
2

√
π∣η∣
2

(H(2)
n (k∣η∣)e−inπ) ,

wk = a
2−D

2
1√
2

1
Γ(p + 1)

√
Γ(p + h+)Γ(p + h−)eipη

2F1 (h+, h−, p + 1, 1
2
− i

2
cotη) .

The mode functions exhibit nice asymptotic features. Let us first consider the flat case. Using the

asypmtotic behaviour of the Bessel functions [123], 7.13.1., we get for large physical momenta pphys

wk⃗ ≈ a
2−D

2
1√
2k

e−ik∣η∣+iπ4 .

The condition is pphys = k∣η∣ ≫H
√

∣n2 − 1
4 ∣, which can be seen directly from the differential equation (3.15)

or by estimating the remainder of the expansion using [123]7.4.1. For small masses m ≪ H this is can

be interpreted as the mode having a wave length smaller than the Hubble horzion. For small physical

momenta k∣η∣, the asyptotic behaviour for very massive modes from the principal series n ∈ iR we get

wk⃗ ≈ a
2−D

2
i√
2

√
∣η∣
2π

[Γ(−n)(k∣η∣
2

)
n

+ Γ(n)e−inπ (k∣η∣
2

)
−n

] .

In the complementary series (n ∈ (0, 3
2 ]) we have

wk⃗ ≈ a
2−D

2
i√
2

√
∣η∣
2π

[Γ(n)e−inπ (k∣η∣
2

)
−n

] .

In a similar manner, I can determine the asymptotic behaviour of the mode functions in the closed

coordinates. From the differential equation (3.12) I extract the condition for sub or super-horizon modes

to be
n2 − 1
p2 sin2 η

≷ 1.
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To determine the first order correction I employ the relations in [122]2.8.ff. Around the minimal scale

factor (bounce at η = π
2 ) I do a taylor expansion of the hypergeometric functions.

g(η) = 2F1(h+, h−, p + 1, 1
2
− i cotη

2
) =

= 2F1(h+, h−, p + 1, 1
2
) − i

2
cotηh+h−

p + 1
F2 1 (h+ + 1, h− + 1, p + 1 + 1, 1

2).

Using the relations for contiguous functions (cf. [122]2.8.(33),2.8.(42),2.8.(51)) I can transform the second

part

F2 1 (h+ + 1, h− + 1, p + 1 + 1, 1
2) =2p + 1 − h−

h+
F2 1 (h+, h−, p + 1 + 1, 1

2) − 2 p

h+
F2 1 (h+, h− + 1, p + 1 + 1, 1

2) =

=2p + 1 − h−
h+

F2 1 (h+, h−, p + 1 + 1, 1
2)+

− 2 p

h+
[p + 1
h−

F2 1 (h+, h−, p + 1, 1
2) −

p + 1 − h−
h−

F2 1 (h+, h−, p + 1 + 1, 1
2)] =

=2 F2 1 (h+, h−, p + 1, 1
2) [−

p(p + 1)
h+h−

+

+ (p + 1 − h−
h+

+ (p)(p + 1 − h−)
h+h−

)
F2 1 (h+, h−, p + 1 + 1, 1

2)
F2 1 (h+, h−, p + 1, 1

2)
] =

=2(p + 1)
h+h−

F2 1 (h+, h−, p + 1, 1
2) [−p+

+ (p + h−)(p + 1 − h−)
p + 1

F2 1 (h+, h−, p + 1 + 1, 1
2)

F2 1 (h+, h−, p + 1, 1
2)

] =

=2(p + 1)
h+h−

F2 1 (h+, h−, p + 1, 1
2) [−p+

+ (p + h+)(p + h−)
p + 1

1
2
(p + 1)

Γ(p+1+h+
2 )Γ(p+1+h−

2 )
Γ(p+h+2 + 1)Γ(p+h−2 + 1)

⎤⎥⎥⎥⎥⎦
=

=2(p + 1)
h+h−

F2 1 (h+, h−, p + 1, 1
2)

⎡⎢⎢⎢⎢⎣
−p + 2

Γ(p+1+h+
2 )Γ(p+1+h−

2 )
Γ(p+h+2 )Γ(p+h−2 )

⎤⎥⎥⎥⎥⎦
.

We therefore have

g(η) ≈ 2F1(h+, h−, p + 1, 1
2)

⎡⎢⎢⎢⎢⎣
1 − i cotη

⎛
⎝
−p + 2

Γ(p+1+h+
2 )Γ(p+1+h−

2 )
Γ(p+h+2 )Γ(p+h−2 )

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

For large p we can approximate the last gamma fractions using [125]6.1.47

Γ(p+1+h+
2 )Γ(p+1+h−

2 )
Γ(p+1+h+−1

2 )Γ(p+1+h−−1
2 )

= p
2
(1 − 1

2p2 (n
2 − 1

4
) +O(p−3)) .

This yields

F2 1 (h+ + 1, h− + 1, p + 1 + 1, 1
2) =

2(p + 1)
h+h−

F2 1 (h+, h−, p + 1, 1
2)

1
2p

(n2 − 1
4
).
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Summarizing we can approximate the hypergeometric function for sub-horizon modes by

g(η) = 2F1(h+, h−, p + 1, 1
2 − i cotη

2 ) =

= 2F1(h+, h−, p + 1, 1
2) −

i
2 cotηh+h−

p + 1
F 1

2 (h+ + 1, h− + 1, p + 1 + 1, 1
2
) =

= 2F1(h+, h−, p + 1, 1
2) [1 + i(n2 − 1

4
) 1

2p
cotη] =

= 2−p Γ(p + 1)
√
π

Γ(p+1+h+
2 )Γ(p+1+h−

2 )
[1 + i(n2 − 1

4
) 1

2p
cotη] ,

and the approximated mode functions are

wk = a
2−D

2 eipη 1
2
√

2π

¿
ÁÁÁÀ Γ(p+h+2 )Γ(p+h−2 )

Γ(p+1+h+
2 )Γ(p+1+h−

2 )
[1 + i(n2 − 1

4
) 1

2p
cotη] . (B.1)

The approximation is only valid as long as ∣n2∣
p

cotη ≪ 1 and p2 ≫ ∣n∣2.

For early and late time I use the Kummer relations between different solutions of the hypergeometric

differential equation [122], 2.9. to continue the hypergeometric function outside their primary domain of

definition. I use [122]2.11.(22) and 2.9.(34),(9,13) to get

g(η) =2F1(h+, h−, p + 1, 1
2
− i cotη

2
) =

=(1
2
+ i

2
cotη)

p

F2 1 (p + 1 − h+
2

,
p + h+

2
, p + 1, 1

sin2 η
) =

=2−pΓ(p + 1)e−ipη(i sin η) 1
2

⎡⎢⎢⎢⎢⎣

Γ(n)
Γ(p+1+h+

2 )Γ(p+h+2 )
(i sin η)−n F2 1 (p + h−

2
,
−p + h−

2
,1 − n, sin2 η)+

Γ(−n)
Γ(p+1+h−

2 )Γ(p+h−2 )
(i sin η)n F2 1 (p + h+

2
,
−p + h+

2
,1 + n, sin2 η)

⎤⎥⎥⎥⎥⎦
=

⋅=
√

1
2π

Γ(p + 1)e−ipη(i sin η) 1
2

[ Γ(n)
Γ(p + h+)

( i
2

sin η)
−n

(1 − p
2 − (1/2 − n)2

4(1 − n)
sin2 η)+

Γ(−n)
Γ(p + 1 − h+)

( i
2

sin η)
n

(1 − p
2 − (1/2 + n)2

4(1 + n)
sin2 η)] ,

(B.2)

and the approximated mode functions are

wk = a
1−D

2

√
i

2
√
π

√
Γ(p + h+)Γ(p + h−)

[ Γ(n)
Γ(p + h+)

( i
2

sin η)
−n

(1 − p
2 − (1/2 − n)2

4(1 − n)
sin2 η)+

Γ(−n)
Γ(p + h−)

( i
2

sin η)
n

(1 − p
2 − (1/2 + n)2

4(1 + n)
sin2 η)] .

(B.3)

This is valid as long as sin2 η ∣p2−(1/2−n)2∣
4∣1+n∣ ≪ 1.
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B.6. Approximate time integrals

To calculate the time integrals of section 4.3.2 I introduce the following auxiliary integrals:

K1(τ,α) = ∫
τ

sinα ηdη,

K2(τ,α, β) = ∫
τ

sinα ηeiβηdη.

These integrals can be evaluated to give

K1(η,α) = − cosη sin η1+α F2 1 (1,1 + α
2
,
3
2
, cos2 η) ,

K2(η,α, β) = 2−αei(β+1)η (2 sin η)1+α F2 1 (1, α+β2 + 1, β−α2 + 1, e2iη)
α − β

.

I use the approximations from B.5 to calculate the integrals in the two cases. For my current purpose, the

leading order suffices.

1) All modes are super-horizon at all intermediate times, pi < pξ =
√

∣n2−1∣
sin2 ξ

. We get:

M1(η) = ∫
η

dξ a(ξ)Dfk1(ξ)fk2(ξ)fk3(ξ) =

= 1
8π

√
π
(i)3/2 ∫

η

dξ a3−D2 sin3/2 ξ

∏
j=1,2,3

√
Γ(pj + h+)Γ(pj + h−) [

Γ(n)
Γ(pj + h+)

( i
2

sin ξ)
−n

(1 −
p2
j − (1/2 − n)2

4(1 − n)
sin2 ξ)+

Γ(−n)
Γ(pj + 1 − h+)

( i
2

sin ξ)
n

(1 −
p2
j − (1/2 + n)2

4(1 + n)
sin2 ξ)] .

Using the auxiliary integrals, we can express M1 as

M1 =
1
8
(−iπ)3/2∏

j

√
Γ(pj + h+)Γ(pj + h−)

⎡⎢⎢⎢⎣
∏
j

Γ(n)
Γ(pj + h+)

( i
2
)
−3n

K1 (η, D − 3
2

− 3n)+

+ ∑
j=1,2,3

i
2

−n Γ(−n)
Γ(pj + h−)

∏
l≠j

Γ(n)
Γ(pl + h+)

K1 (η, D − 3
2

− n) + (n↔ −n)
⎤⎥⎥⎥⎥⎦
.

(B.4)

2) One mode is super-horizon (p1 < pξ), and two are sub-horizon, (p2, p3 > pξ) in the integration range.
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In this case we have.

M2(η) =
√

i
8(π)3/2

√
Γ(p1 + h+)Γ(p1 + h−) ∏

l=2,3

¿
ÁÁÁÀ Γ(pl+h+2 )Γ(pl+h−2 )

Γ(pl+1+h+
2 )Γ(pl+1+h−

2 )

∫
η

dξ a3−D2 (sin ξ) 1
2 ei(p2+p3)ξ [1 + i(n2 − 1

4
) 1

2p2
cot ξ] [1 + i(n2 − 1

4
) 1

2p3
cot ξ]

[ Γ(n)
Γ(p1 + h+)

( i
2

sin ξ)
−n

(1 − p
2
1 − (1/2 − n)2

4(1 − n)
sin2 ξ)+

+ Γ(−n)
Γ(p1 + 1 − h+)

( i
2

sin ξ)
n

(1 − p
2
1 − (1/2 + n)2

4(1 + n)
sin2 ξ)] =

=
√

i
8(π)3/2 2π∏

i

√
Γ(pi + h+)Γ(pi + h−) ∏

l=2,3

2−pl

Γ(pl+1+h+
2 )Γ(pl+1+h−

2 )

[ Γ(n)
Γ(p1 + h+)

( i
2
)
−n
K2 (η, D − 5

2
− n, p2 + p3) + (n↔ −n)] .

3) All modes are sub-horizon. This integral is given by

M3(η) =
1

8(π)3/2)∏
j

¿
ÁÁÁÀ Γ(pj+h+2 )Γ(pj+h−2 )

Γ(pj+1+h+
2 )Γ(pj+1+h−

2 )
∫

η

dξ a3−D2 eiξ∑j pj∏
j

[1 + i(n2 − 1
4
) 1

2pj
cot ξ] =

= 1
8(π)3/2)∏

j

¿
ÁÁÁÀ Γ(pj+h+2 )Γ(pj+h−2 )

Γ(pj+1+h+
2 )Γ(pj+1+h−

2 )
K2 (η, D

2
− 3,∑

l

pl) .

Summarizing we can express the coefficient A in the following way for the different range of momenta

1) p1 < p2 < pη:

A1 = ∣M1(η) −M1(ε)∣2 . (B.5)

2) p1 < pη < p2 < pε:

A2 = ∣M2(η) −M2(ηp2) +M1(ηp2) −M1(ε)∣2 . (B.6)

3) p1 < pη < pε < p2:

A3 = ∣M2(η) −M2(ε)∣2 . (B.7)

4) pη < p1 < p2 < pε:

A4 = ∣M3(η) −M3(ηp1) +M2(ηp1) −M2(ηp2) +M1(ηp2) −M1(ε)∣2 . (B.8)

5) pη < p1 < pε < p2:

A5 = ∣M3(η) −M3(ηp1) +M2(ηp1) −M2(ε)∣2 . (B.9)

I now give the approximations for the functions M1,M2,M3 for the times to be evaluated. My interest is

in very early final times (η ≈ 0), final times around the bounce (η ≈ π
2 ) and very late final times (η ≈ π).

Making excessive use of the Kummer relation in [122] we find the following approximations.
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• For K1 for very early or very late times I use [122]2.9.(33,5,22) to get

K1(η,α) = −
Γ( 3

2)Γ( 1
2 +

α
2 )

Γ(1)Γ(1 + α
2 )

− cosη sin η1+αΓ( 3
2)Γ(− 1
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α
2 )

Γ( 1
2)Γ( 1

2 −
α
2 )

F2 1 (1,1 + α
2
,
3
2
+ α

2
, sin2 η)

= −
Γ( 3

2)Γ( 1
2 +

α
2 )

Γ(1)Γ(1 + α
2 )

+ 1
1 + α

cosη sin η1+α (1 + 2 + α
3 + α

sin2 η +O(sin4 η)) .

• For K1 around the bounce we get

K1(η,α) = − cosη sin η1+α F2 1 (1,1 + α
2
,
3
2
, cos2 η) =

= − cosη sin η1+α (1 + 2 + α
3

cos2 η +O(cos4 η)) .

• For K2 for very early or very late times I use [122]2.9.(34,11,14) to get

K2(η,α, β) = 2ei(β+1)η (sin η)1+α F2 1 (1, α+β2 + 1, β−α2 + 1, e2iη)
α − β

=

= (−2i)−α−1 Γ (β−α2 )Γ(1 + α)
Γ (α+β2 + 1)

+ ei(β+1)η (sin η)1+α

α + 1
(1 − iα + β + 2

2 + α
eiη sin η +O(sin2 η)) .

• For K2 around the bounce I use [122]2.9.(34,11,14), which yields

K2(η,α, β) =
2−α
α − β

ei(β+1)η (2 sin η)1+α ⎛
⎝
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+
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2

,
1
2
+ i

2
cotη) .

AsK2 is always evaluated for times η > ηp2 and the coefficient β ∝ p2 I can use the series approximation

for the hypergeometric functions. This gives the result:

K2(η,α, β) =
2−α
α − β

(i)−β(−1)−1−αΓ (β−α2 + 1)Γ(−α+β2 )
Γ(−α)

−

− i
α + β

eiβη (sin η)α (1 − i α

2 − α + β
e−iη

sin η
+O(β−2 sin η−2)) .

The above approximations can be used to get the leading order results for the coefficients in the cases

(B.5), (B.6), (B.8). The final time can be so early, that some modes with momenta p2 and p3 enter the

horizon at some time, but the modes with momenta p1 are still outside the horizon at the final time η. In

this case (B.5) and (B.6) are relevant.

1) If the final time is so early, that no modes enter the horizon and all stay super-horizon we get with
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(B.5)

A1 = ∣M1(η) −M1(ε)∣2 =

= π
3
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(B.10)

The dependence on the initial time ε vanishes in the limit ε→ 0.

2) When the high momenta modes are inside the horizon at the final time, (B.6) is valid with

A2 = ∣M2(η) −M2(ηp2) +M1(ηp2) −M1(ε)∣2 =

= π
3

64∏i
Γ(pi + h+)Γ(pi + h−)

RRRRRRRRRRR

2
π2 ∏

l=2,3

2−pl

Γ(pl+1+h+
2 )Γ(pl+1+h−

2 )
Γ(n)

Γ(p1 + h+)

( i
2
)
−n i
p2 + p3 + D−5

2 − n
(ei(p2+p3)η (sin η)

D−5
2 −n − ei(p2+p3)ηp2 (sin ηp2)

D−5
2 −n)+

+ cosηp2 sin η
D−1

2
p2

⎡⎢⎢⎢⎣
∏
j

Γ(n)
Γ(pj + h+)

( i
2
)
−3n sin η−3n

p2
D−1

2 − 3n
+

+ ∑
j=1,2,3

( i
2
)
−n Γ(−n)

Γ(pj + h−)
∏
l≠j

Γ(n)
Γ(pl + h+)

sin η−np2
D−1

2 − n

⎤⎥⎥⎥⎥⎦
−

− cos2 ε sin εD−1
⎡⎢⎢⎢⎣
∏
j

Γ(n)
Γ(pj + h+)

( i
2
)
−3n sin ε−3n

D−1
2 − 3n

+

+ ∑
j=1,2,3

( i
2
)
−n Γ(−n)

Γ(pj + h−)
∏
l≠j

Γ(n)
Γ(pl + h+)

sin ε−n
D−1

2 − n

⎤⎥⎥⎥⎥⎦
+ (n↔ −n)

RRRRRRRRRRRR

2

.

(B.11)

3) If the high momenta modes are always inside the horizon, even at the initial time, we get with (B.7)

A3 = ∣M2(η) −M2(ε)∣2 =

= π
3
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(B.12)

4) In this case the universe has contracted by such an amount that all modes are inside the horizon at



B.6 Approximate time integrals 63

the final time but are outside at the initial time, so (B.8) is valid. We get
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(B.13)

5) In the last case only the p1 mode crosses the horizon during the evolution of the universe, whereas

the other two modes are always inside. With (B.9) we have

A5 = ∣M3(η) −M3(ηp1) +M2(ηp1) −M2(ε)∣2 =

= π
3
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(B.14)

I can now insert the approximated coefficients into (4.10). To be able to discuss the momentum behaviour

of the first order correction to the Green function I still have to perform the sum over the internal momenta

p2, p3. As we can see from the above structure of the coefficients, these sums can in general not be

performed analytically. But as I am interested in large internal and small external momenta I can take the

limit p1 ≪ p2 ≈ p3 →∞, keep only the leading order in momenta and replace the sums by integrals after

that.
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The Gamma functions can be approximated for large arguments using [122]1.18(4)

Γ(p + h+)
Γ(p + h−)

= p2n (1 +O(p−1)) . (B.15)

Moreover I use [122]1.3(15) to get
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, (B.16)

where I have used the symmetry in n in the last steps. The sine functions at horizon crossing are given by

(4.20), sin ηp2 =
√

∣n2−1∣
p2

2
.

Using these approximations for the coefficients in (B.10), (B.11) and (B.13) we get the following:

A1 =
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(B.17)
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A2 =
π3
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(B.21)

To make a complete approximation of the first order correction the momentum dependent factor Qk2,k3 in

(4.11) has to be approximated for large momenta. It is given by
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Qp2,p3 = (−1) 1
C

1/2(d−1)
k1

(1)Ω2
d

22−dπ

(Γ (d+1
2 ))2

⎛
⎜
⎝

k1
2 + 1/2(d − 1) − 1

k1
2

⎞
⎟
⎠

2

kd−1
2 =

= kd−1
2 (−1) 1

(2π)dC1/2(d−1)
k1

(1)Ωd

⎛
⎜
⎝

k1
2 + 1/2(d − 1) − 1

k1
2

⎞
⎟
⎠

2

. (B.22)



C. Alternative attempts

I try solving the integrals for the first order correction to D++(x, y) analytically by expressing the

hypergeometric functions appearing in the definition of the mode function by their power series. The

correction to first order is

G++
(1)(ZXY ) =

∣k3−k2∣≤k1≤k2+k3

∑
k1,k2,k3=0

P ⋅C1/2(d−1)
k1

(x⃗.y⃗)B(k1, k2, k3, d)×

×
⎛
⎝

h(k1, d − 1)
C

1/2(d−1)
k1

(1)Ωd

⎞
⎠

2
h(k2, d − 1)

C
1/2(d−1)
k2

(1)Ωd
h(k3, d − 1)

C
1/2(d−1)
k3

(1)Ωd
, (C.1)

where the part depending on the integrals of mode functions has been denoted by

P =∫
π

0
dξ1dξ2 C(ξ1)C(ξ2)a(ξ1)Da(ξ2)D

[f∗k1
(η>(η1,ξ1))fk1(η<(η1,ξ1))f

∗
k2

(η>(ξ1,ξ2))fk2(η<(ξ1,ξ2))×

× f∗k3
(η>(ξ1,ξ2))fk3(η<(ξ1,ξ2))f

∗
k1

(η>(η2,ξ2))fk1(η<(η2,ξ2))+

+ f∗k1
(ξ1)fk1(η1)f∗k2

(η<(ξ1,ξ2))fk2(η>(ξ1,ξ2))f
∗
k3

(η<(ξ1,ξ2))fk3(η>(ξ1,ξ2))f
∗
k1

(ξ2)fk1(η2)+

− f∗k1
(η>(η1,ξ1))fk1(η<(η1,ξ1))f

∗
k2

(ξ2)fk2(ξ1)f∗k3
(ξ2)fk3(ξ1)f∗k1

(ξ2)fk1(η2)+

− f∗k1
(ξ1)fk1(η1)f∗k2

(ξ1)fk2(ξ2)f∗k3
(ξ1)fk3(ξ2) f∗k1

(η>(η2,ξ2))fk1(η<(η2,ξ2))] .

(C.2)

Without loss of generality I can take η1 ≥ η2. Evaluating the lesser and greater times, collecting all terms

and using the substitution of (4.14), this can be simplified to

P =fk1(η1)f∗k1
(η2) [−∫

cot ε

cotη1
du∫

cot ε

cotη2
dv] (a(u)a(v))D

(1 + u2)(1 + v2)
f∗k1

(u)f∗k2
(u)f∗k3

(u)fk3(v)fk2(v)fk1(v)+

+ f∗k1
(η1)fk1(η2) [−∫

cotη2

cotη1
du∫

cotη2

u
dv − ∫

cot ε

cotη1
du∫

cot ε

cotη2
]

(a(u)a(v))D

(1 + u2)(1 + v2)
fk1(u)fk2(u)fk3(u)f∗k3

(v)f∗k2
(v)f∗k1

(v)+

+ f∗k1
(η1)fk1(η2) [∫

cotη2

cotη1
du∫

cotη2

u
dv] (a(u)a(v))D

(1 + u2)(1 + v2)
fk1(u)f∗k2

(u)f∗k3
(u)fk3(v)fk2(v)f∗k1

(v)+

+ f∗k1
(η1)f∗k1

(η2) [2∫
cot ε

cotη2
du∫

cot ε

u
dv + ∫

cotη2

cotη1
du∫

cot ε

cotη2
dv]

(a(u)a(v))D

(1 + u2)(1 + v2)
fk1(u)f∗k2

(u)f∗k3
(u)fk3(v)fk2(v)fk1(v)+

+ fk1(η1)fk1(η2) [2∫
cot ε

cotη1
du∫

u

cotη1
dv − ∫

cot ε

cotη1
du∫

cotη2

cotη1
dv]

(a(u)a(v))D

(1 + u2)(1 + v2)
f∗k1

(u)f∗k2
(u)f∗k3

(u)fk3(v)fk2(v)f∗k1
(v).

(C.3)
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Now the mode functions can be expressed using the definition for the hypergeometric functions ( [122]

2.1.1.(2))

F2 1 (a, b, c, ζ) =
∞
∑
j=0

(a)j(b)j
(c)jj!

ζn,

where (a)j = Γ(a+j)
Γ(a) . This is absolutely convergent for ∣ζ ∣ < 1 and for ∣ζ ∣ = 1, ζ ≠ 1 if Re(c − a − b) > 0, and

convergent if 0 ≥ Re(c − a − b) > −1 ( [126]). For the coefficient used for the mode functions, the series

for F 1
2 (h+, h−, p + 1, 1

2 ± i z2) is absolutely convergent for ∣z∣ ≤
√

3. For ∣z∣ >
√

3 I have to use Kummer’s

relations to perform the analytic continuation outside the original domain. The relation [122] 2.9.(4)

transform the hypergeometric function to a form which is always convergent except for ∣z∣→∞. The result

is

F2 1 (a, b, c, ζ) = (1 − ζ)−b F2 1 (c − a, b, c, ζ

ζ − 1
)

fk(η) = (H sin η)D−2
2

1√
2

√
Γ(p + h+)Γ(p + h−)

Γ(p + 1)
eipη ( i

2
(z − i))

−h−
2F1 (p + h−, h−, p + 1, z + i

z − i
) =

= (H sin η)D−2
2

1√
2

√
Γ(p + h+)Γ(p + h−)

Γ(p + 1)
eipη ( i

2
)
−h− e−(−h−)iη

sin η−h− 2F1 (p + h−, h−, p + 1, e2iη) .

In this case c̃ − ã − b̃ = 2n, so unless ζ = 1 the series is convergent, even for imaginary n. For real n it is

absolutely convergent for all z. Transforming all mode function in the integral in (4.10) using this relation

I get two different types of integrands:

L1 = (z − i)−
D
4 +

1
2−∑

pi
2 (z + i)−D4 + 1

2+∑
pi
2

3
∏
i=1

F2 1 (h+, h−, pi + 1,− i
2
(z + i)) =

= (z − i)−
D
4 +

1
2−∑

pi
2 (z + i)−D4 + 1

2+∑
pi
2

3
∏
i=1

(z − i)−h− ( i
2
)
−h−

F2 1 (pi + h−, h−, pi + 1, z + i
z − i

) =

= ( i
2
)
−3h−

(z − i)−3h−−D4 +
1
2−∑

pi
2 (z + i)−D4 + 1

2+∑
pi
2 ×

×
∞
∑

j1,j2,j3=0
(z − i)−∑i ji(z + i)∑i ji

3
∏
i=1

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

and

L2 = (z − i)−
D
4 +

1
2+

p1
2 −∑ p

2 (z + i)−D4 + 1
2−

p1
2 +∑ pi

2 F2 1 (h+, h−, p1 + 1, i
2
(z − i))

× ∏
i=2,3

F2 1 (h+, h−, pi + 1,− i
2
(z + i)) =

= (z − i)−
D
4 +

1
2+

p1
2 −∑ pi

2 (z + i)−D4 + 1
2−

p1
2 +∑ pi

2 ×

× (− i
2
)
−3h−

(z + i)−h− F2 1 (p1 + h−, h−, p1 + 1, z − i
z + i

) ∏
i=2,3

(z − i)−h− F2 1 (pi + h−, h−, pi + 1, z + i
z − i

)

= (−1)−h− ( i
2
)
−3h−

(z − i)−2h−−D4 +
1
2+

p1
2 −∑ pi

2 (z + i)−h−−D4 + 1
2−

p1
2 +∑ pi

2 ×

×
∞
∑

j1,j2,j3=0
(z − i)j1−j2−j3(z + i)−j1+j2+j3

3
∏
i=1

Γ(h− + ji)Γ(h− + pi + ji)Γ(pi + 1)
Γ(h−)Γ(h− + pi)Γ(pi + 1 + ji)ji!

.
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These integrals of powers of z + i and z − i can be integrated using [122] 2.12.(1) and with 2.9.(4) can be

brought into the convergence radius

∫
x

(z − i)α(z + i)βdz = (−2i)α (x + i)β+1

β + 1
F2 1 (−α,β + 1, β + 2,− i

2
(x + i)) =

= (−2i)α+β+1

β + 1
(x + i
x − i

)
β+1

F2 1 (α + β + 2, β + 1, β + 2, x + i
x − i

) = (C.4)

= (−2i)α+β+1Bz(β + 1, γ). (C.5)

For real x the condition for convergence is c − a − b = −α − β − 1 = D
2 − 1

2 − 3n > 0, so for massive particles

with n ∈ iR this is satisfied. The parameters α and β for the two different integrals are

α1 = −3h− −
D

4
+ 1

2
−∑

pi
2
−∑

i

ji, β1 = −
D

4
+ 1

2
+∑

pi
2
+∑

i

ji,

α2 = −2h− −
D

4
+ 1

2
+ p1

2
− ∑
i=2,3

pi
2
+ j1 − ∑

i=2,3
ji, 2 = −h− −

D

4
+ 1

2
− p1

2
+ ∑
i=2,3

pi
2
− j1 + ∑

i=2,3
ji.

Therefore the antiderivatives of the integrals are

I1(x) = I1(cotχ) =N(−1) 1
2−

D
2 +3n(2)2−D2 (i)6n−1−D2

∞
∑

j1,j2,j3=0

1
β1 + 1

(x + i
x − i

)
β1+1

×

× F2 1 (γ + 1, β1 + 1, β1 + 2, x + i
x − i

)
3
∏
i=1

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

=

= N(−1) 1
2−

D
2 +3n(2)2−D2 (i)6n−1−D2

∞
∑

j1,j2,j3,j4=0

1
β1 + 1

(x + i
x − i

)
j4+β1+1

×

× Γ(γ + 1 + j4)Γ(β1 + 1 + j4)Γ(β1 + 2)
Γ(γ + 1)Γ(β1 + 1)Γ(β1 + 2 + j4)j4!

3
∏
i=1

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

and

I2(x) = I2(cotχ) =N
∞
∑

j1,j2,j3=0
(−1)−h−(−1) 1

2−
D
2 +3n(2)2−D2 (i)6n−1−D2

1
β2 + 1

(x + i
x − i

)
β2+1

×

× F2 1 (γ + 1, β2 + 1, β2 + 2, x + i
x − i

)
3
∏
i=1

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

=

=N
∞
∑

j1,j2,j3=0
(−1)−h−(−1) 1

2−
D
2 +3n(2)2−D2 (i)6n−1−D2

1
β2 + 1

(x + i
x − i

)
j4+β2+1

×

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

3
∏
i=1

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

,
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where γ = αi + βi + 1 = −D2 + 1
2 + 3n. Substituting all these results into (C.3) we get

P = − fk1(η1)f∗k1
(η2) [I∗1 (cot ε) − I∗1 (cotη1)] [I1(cot ε) − I1(cotη2)]−

−f∗k1
(η1)fk1(η2)( [I1(cot ε) − I1(cotη1)] [I∗1 (cot ε) − I∗1 (cotη2)] + [I1(cotη2) − I1(cotη1)] I∗1 (cotη2)−

−∫
cotη2

cotη1
du a(u)D

1 + u2 fk1(u)fk2(u)fk3(u)I∗1 (u))+

+f∗k1
(η1)fk1(η2)([I∗2 (cotη2) − I∗2 (cotη1)] I2(cotη2) − ∫

cotη2

cotη1
du a(u)D

1 + u2 fk1(u)f∗k2
(u)f∗k3

(u)I2(u))+

+f∗k1
(η1)f∗k1

(η2)(2 [I∗2 (cot ε) − I∗2 (cotη2)] I1(cot ε) − 2∫
cot ε

cotη2
du a(u)D

1 + u2 fk1(u)f∗k2
(u)f∗k3

(u)I1(u)+

+ [I∗2 (cotη2) − I∗2 (cotη1)] [I1(cot ε) − I1(cotη2)] )

+fk1(η1)fk1(η2) (− [I∗1 (cot ε) − I∗1 (cotη1)] [I2(cotη2) − I2(cotη1)] − 2 [I∗1 (cot ε) − I∗1 (cotη1)] I2(cotη1)

+2∫
cot ε

cotη1
du a(u)D

1 + u2 f
∗
k1

(u)f∗k2
(u)f∗k3

(u)I2(u)) .

The remaining integrals are of the form

I4(x) = ∫
x

du a(u)D

1 + u2 fk1(u)fk2(u)fk3(u)I∗1 (u),

I5,m(x) = ∫
x

du a(u)D

1 + u2 fk1(u)f∗k2
(u)f∗k3

(u)Im(u),

I6(x) = ∫
x

du a(u)D

1 + u2 f
∗
k1

(u)f∗k2
(u)f∗k3

(u)I2(u),

and can be expressed in the same manner using power series. The result is

I4(x) =∫
x

du N ( i
2
)
−3h−

(u − i)−3h−−D4 +
1
2−∑

pi
2 (u + i)−D4 + 1

2+∑
pi
2 ×

×
∞
∑

j′1,j
′

2,j
′

3=0
(u − i)−∑i j

′

i(u + i)∑i j
′

i

3
∏
i=1

Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

×

×N(−1) 1
2−

D
2 +3n∗ (2)2−D2 (−i)6n∗−1−D2

∞
∑

j1,j2,j3,j4=0

1
β∗1 + 1

(u − i
u + i

)
j4+β∗1+1

×

× Γ(γ∗ + 1 + j4)Γ(β∗1 + 1 + j4)Γ(β∗1 + 2)
Γ(γ∗ + 1)Γ(β∗1 + 1)Γ(β∗1 + 2 + j4)j4!

3
∏
i=1

Γ(h∗− + ji)Γ(pi + h∗− + ji)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + ji)ji!

=

= N2(−1) 1
2−

D
2 +3n∗ ( i

2
)
−3h−

(2)2−D2 (−i)6n∗−1−D2
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3=0

1
β∗1 + 1

× Γ(γ∗ + 1 + j4)Γ(β∗1 + 1 + j4)Γ(β∗1 + 2)
Γ(γ∗ + 1)Γ(β∗1 + 1)Γ(β∗1 + 2 + j4)j4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h∗− + ji)Γ(pi + h∗− + ji)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + ji)ji!

]×

× ∫
x

du (u − i)−3h−−D4 +
1
2−∑

pi
2 −∑i j

′

i+j4+β
∗

1+1 ×

× (u + i)−D4 + 1
2+∑

pi
2 +∑i j

′

i−j4−β
∗

1−1,
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I5,m(x) =∫
x

du N(−1)−2h− ( i
2
)
−3h−

(u − i)−h−−
D
4 +

1
2−

p1
2 +∑i=2,3

pi
2 (u + i)−2h−−D4 +

1
2+

p1
2 −∑i=2,3

pi
2 ×

×
∞
∑

j′1,j
′

2,j
′

3=0
(u − i)−j1+j2+j3(u + i)j1−j2−j3

3
∏
i=1

Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

×

× (−1)−h−(m−1)N(−1) 1
2−

D
2 +3n (2)2−D2 (i)6n−1−D2

∞
∑

j1,j2,j3,j4=0

1
βm + 1

(u + i
u − i

)
(j4+βm+1)

×

× Γ(γ + 1 + j4)Γ(βm + 1 + j4)Γ(βm + 2)
Γ(γ + 1)Γ(βm + 1)Γ(βm + 2 + j4)j4!

3
∏
i=1

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

=

= (−1)−h−(m−1)N2(−1)−2h−(−1) 1
2−

D
2 +3n ( i

2
)
−3h−

(2)2−D2 (i)6n−1−D2
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3=0

1
βm + 1

× Γ(γ + 1 + j4)Γ(βm + 1 + j4)Γ(βm + 2)
Γ(γ + 1)Γ(βm + 1)Γ(βm + 2 + j4)j4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

]×

× ∫
x

du (u − i)−h−−
D
4 +

1
2−

p1
2 −j′1+∑i=2,3(

pi
2 +j′i)−j4−βm−1 ×

× (u + i)−2h−−D4 +
1
2+

p1
2 +j′1−∑i=2,3(

pi
2 +j′i)+j4+βm+1,

and

I6(x) =∫
x

du N(−1)−3h− ( i
2
)
−3h−

(u + i)−3h−−D4 +
1
2−∑

pi
2 (u − i)−D4 + 1

2+∑
pi
2 ×

×
∞
∑

j′1,j
′

2,j
′

3=0
(u + i)−∑i j

′

i(u − i)∑i j
′

i

3
∏
i=1

Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

×

× (−1)−h−N(−1) 1
2−

D
2 +3n (2)2−D2 (i)6n−1−D2

∞
∑

j1,j2,j3,j4=0

1
β2 + 1

(u + i
u − i

)
j4+β2+1

×

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

3
∏
i=1

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

=

= (−1)−4h−N2(−1) 1
2−

D
2 +3n ( i

2
)
−3h−

(2)2−D2 (i)6n−1−D2
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3=0

1
β2 + 1

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

]×

× ∫
x

du (u + i)−3h−−D4 +
1
2−∑

pi
2 −∑i j

′

i+j4+β2+1 (u − i)−D4 + 1
2+∑

pi
2 +∑i j

′

i−j4−β2−1,

with the parameters αi

α4 = −3h− −
D

4
+ 1

2
−∑

pi
2
−∑

i

j′i + j4 + β∗1 + 1 = −3h− −
D

2
+ 2 + ∑

i=1,2,3
(ji − j′i) + j4,

α5,m = −1 + (m − 2)h− + (m − 2)p1 + (−1)mj1 − ∑
i=2,3,4

ji − j′1 + ∑
i=2,3

j′i,

α6 = −
D

4
+ 1

2
+∑

pi
2
+∑

i

j′i − j4 − β2 − 1 = h− − 1 + p1 + j1 − ∑
i=2,3,4

ji + ∑
i=1,2,3

j′i,
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and βi

β4 = −
D

4
+ 1

2
+∑

pi
2
+∑

i

j′i − j4 − β∗1 − 1 = −1 − j4 + ∑
i=1,2,3

(j′i − ji),

β5,m = −2h− −
D

4
+ 1

2
+ p1

2
+ j′1 − ∑

i=2,3
(pi

2
+ j′i) + j4 + β1,m + 1 = .

= −(1 +m)h− −
D

2
+ 2 + (2 −m)p1 − (−1)mj1 + ∑

i=2,3,4
ji + j′1 − ∑

i=2,3
j′i,

β6 = −3h− −
D

4
+ 1

2
−∑

pi
2
−∑

i

j′i + j4 + β2 + 1 = −4h− −
D

2
+ 2 − p1 − j1 + ∑

i=2,3,4
ji − ∑

i=1,2,3
j′i.

and γ = αi + βi + 1 = −D2 + 1
2 + 3n. Again these integrals can be integrated using (C.4) to yield

I4(x) =N2(−1)− 1
2−D+9n∗(2) 7

2−
D
2 −3n(i)6n∗+3n− 5

2−
D
2

∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3=0

1
β∗1 + 1

× Γ(γ∗ + 1 + j4)Γ(β∗1 + 1 + j4)Γ(β∗1 + 2)
Γ(γ∗ + 1)Γ(β∗1 + 1)Γ(β∗1 + 2 + j4)j4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h∗− + ji)Γ(pi + h∗− + ji)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + ji)ji!

]×

× (−2i)γ
β4 + 1

(x + i
x − i

)
β4+1

F2 1 (γ + 1, β4 + 1, β4 + 2, x + i
x − i

) =

= N2(−1)−D+9n∗+3n(2)4−D(i)6n∗+6n−2−D
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0

1
β∗1 + 1

1
β4 + 1

× Γ(γ∗ + 1 + j4)Γ(β∗1 + 1 + j4)Γ(β∗1 + 2)
Γ(γ∗ + 1)Γ(β∗1 + 1)Γ(β∗1 + 2 + j4)j4!

Γ(γ + 1 + j′4)Γ(β4 + 1 + j′4)Γ(β4 + 2)
Γ(γ + 1)Γ(β4 + 1)Γ(β4 + 2 + j′4)j′4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h∗− + ji)Γ(pi + h∗− + ji)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + ji)ji!

]×

× (x + i
x − i

)
j′4+β4+1

=
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0
V4 (x + i

x − i
)
j′4+β4+1

,

I5,m(x) =(−1)−h−(m−1)N2(−1)− 1
2−

D
2 +5n(2) 7

2−
D
2 −3n(i)9n− 5

2−
D
2

∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3=0

1
βm + 1

× Γ(γ + 1 + j4)Γ(βm + 1 + j4)Γ(βm + 2)
Γ(γ + 1)Γ(βm + 1)Γ(βm + 2 + j4)j4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

]×

× (−2i)γ
β5,m + 1

(x + i
x − i

)
β5,m+1

F2 1 (γ + 1, β4 + 1, β5,m + 2, x + i
x − i

) =

=(−1)−h−(m−1)N2(−1)−D+8n(2)4−D(i)12n−2−D
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0

1
βm + 1

1
β5,m + 1

× Γ(γ + 1 + j4)Γ(βm + 1 + j4)Γ(βm + 2)
Γ(γ + 1)Γ(βm + 1)Γ(βm + 2 + j4)j4!

Γ(γ + 1 + j′4)Γ(β5,m + 1 + j′4)Γ(β5,m + 2)
Γ(γ + 1)Γ(β5,m + 1)Γ(β5,m + 2 + j′4)j′4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

]×

× (x + i
x − i

)
j′4+β5,m+1

=
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0
V5,m (x + i

x − i
)
j′4+β5,m+1
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and

I6(x) =N2(−1)− 3
2−

D
2 +7n(2) 7

2−
D
2 −3n(i)9n− 5

2−
D
2

∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0

1
β2 + 1

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

]×

× (−2i)γ
β6 + 1

(x + i
x − i

)
β6+1

F2 1 (γ + 1, β6 + 1, β6 + 2, x + i
x − i

) =

= N2(−1)−1−D+10n ( i
2
)
−3h−

(2)4−D(i)6n−1−D2
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3=0

1
β2 + 1

1
β6 + 1

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

Γ(γ + 1 + j′4)Γ(β6 + 1 + j′4)Γ(β6 + 2)
Γ(γ + 1)Γ(β6 + 1)Γ(β6 + 2 + j′4)j′4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

]×

× (x + i
x − i

)
j′4+β6+1

=
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0
V6 (x + i

x − i
)
j′4+β6+1

.

Plugging all of the above integrals into (C.3) and collecting terms, we get:

P =fk1(η1)f∗k1
(η2) [I∗1 (cotη1) − I∗1 (cot ε)] [I1(cot ε) − I1(cotη2)]

+ f∗k1
(η1)fk1(η2) ([I1(cotη1) − I1(cot ε)] I∗1 (cot ε) + [I1(cot ε) − I1(cotη2)] I∗1 (cotη2)+

+ [I∗2 (cotη1) − I∗2 (cotη2)] I2(cotη2) + I4(cotη2) − I4(cotη1) − I5,2(cotη2) + I5,2(cotη1))+

+f∗k1
(η1)f∗k1

(η2) ([2I∗2 (cot ε) − I∗2 (cotη1) − I∗2 (cotη2)] I1(cot ε) − 2I5,1(cot ε) + 2I5,1(cotη2)+

+ [I∗2 (cotη1) − I∗2 (cotη2)] I1(cotη2))

+fk1(η1)fk1(η2) ([I∗1 (cotη1) − I∗1 (cot ε)] I2(cotη2) + [I∗1 (cotη1) − I∗1 (cot ε)] I2(cotη1)

+2I6(cot ε) − 2I6(cotη1)) .

Each of these terms will have 8 sums over j1, . . . , j4, j′1, . . . , j′4. I have three different type of products, I1I∗1 ,

I2I
∗
2 und I∗1 I2. I collect the x independent factors in constants defined in the following way:

I1(x1)I∗1 (x2) =N2(−1)1−D+3(n+n∗)+6n∗(2)4−D(i)6(n+n∗)×
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0

1
β1 + 1

1
β′∗1 + 1

(x1 + i
x1 − i

)
j4+β1+1

(x2 − i
x2 + i

)
j′4+β

′∗

1+1
×

× Γ(γ + 1 + j4)Γ(β1 + 1 + j4)Γ(β1 + 2)
Γ(γ + 1)Γ(β1 + 1)Γ(β1 + 2 + j4)j4!

× Γ(γ∗ + 1 + j′4)Γ(β′∗1 + 1 + j′4)Γ(β′∗1 + 2)
Γ(γ∗ + 1)Γ(β′∗1 + 1)Γ(β′∗1 + 2 + j′4)j′4!

3
∏
i=1

[Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

× Γ(h∗− + j′i)Γ(pi + h∗− + j′i)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + j′i)j′i!

] =

=∶
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0
V1 (x1 + i

x1 − i
)
j4+β1+1

(x2 − i
x2 + i

)
j′4+β

′∗

1+1
,
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I2(x1)I∗2 (x2) =N2(−1)2−D+4(n+n∗)+6n∗(2)4−D(i)6(n+n∗)×
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0

1
β2 + 1

1
β′∗2 + 1

(x1 + i
x1 − i

)
j4+β2+1

(x2 − i
x2 + i

)
j′4+β

′∗

2+1
×

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

× Γ(γ∗ + 1 + j′4)Γ(β′∗2 + 1 + j′4)Γ(β′∗2 + 2)
Γ(γ∗ + 1)Γ(β′∗2 + 1)Γ(β′∗2 + 2 + j′4)j′4!

3
∏
i=1

[Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

× Γ(h∗− + j′i)Γ(pi + h∗− + j′i)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + j′i)j′i!

] =

=∶
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0
V2 (x1 + i

x1 − i
)
j4+β2+1

(x2 − i
x2 + i

)
j′4+β

′∗

2+1
,

I2(x1)I∗1 (x2) =N2(−1) 1
2−D+4(n+n∗)+5n∗(2)4−D(i)6(n+n∗)×
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0

1
β2 + 1

1
β′∗1 + 1

(x1 + i
x1 − i

)
j4+β2+1

(x2 − i
x2 + i

)
j′4+β

′∗

1+1
×

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

× Γ(γ∗ + 1 + j′4)Γ(β′∗1 + 1 + j′4)Γ(β′∗1 + 2)
Γ(γ∗ + 1)Γ(β′∗1 + 1)Γ(β′∗1 + 2 + j′4)j′4!

3
∏
i=1

[Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

× Γ(h∗− + j′i)Γ(pi + h∗− + j′i)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + j′i)j′i!

] =

=∶
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0
V3 (x1 + i

x1 − i
)
j4+β2+1

(x2 − i
x2 + i

)
j′4+β

′∗

1+1
.

Summarizing with the other prefactors from I4, I5, I6 we have:

V1 =N2(−1)1−D+3(n+n∗)+6n∗(2)4−D(i)6(n+n∗) 1
β1 + 1

1
β′∗1 + 1

×

× Γ(γ + 1 + j4)Γ(β1 + 1 + j4)Γ(β1 + 2)
Γ(γ + 1)Γ(β1 + 1)Γ(β1 + 2 + j4)j4!

× Γ(γ∗ + 1 + j′4)Γ(β′∗1 + 1 + j′4)Γ(β′∗1 + 2)
Γ(γ∗ + 1)Γ(β′∗1 + 1)Γ(β′∗1 + 2 + j′4)j′4!

3
∏
i=1

[Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

× Γ(h∗− + j′i)Γ(pi + h∗− + j′i)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + j′i)j′i!

] ,

V2 =N2(−1)2−D+4(n+n∗)+6n∗(2)4−D(i)6(n+n∗) 1
β2 + 1

1
β′∗2 + 1

×

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

× Γ(γ∗ + 1 + j′4)Γ(β′∗2 + 1 + j′4)Γ(β′∗2 + 2)
Γ(γ∗ + 1)Γ(β′∗2 + 1)Γ(β′∗2 + 2 + j′4)j′4!

3
∏
i=1

[Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

× Γ(h∗− + j′i)Γ(pi + h∗− + j′i)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + j′i)j′i!

] ,

V3 =N2(−1) 1
2−D+4(n+n∗)+5n∗(2)4−D(i)6(n+n∗) 1

β2 + 1
1

β′∗1 + 1
×

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

× Γ(γ∗ + 1 + j′4)Γ(β′∗1 + 1 + j′4)Γ(β′∗1 + 2)
Γ(γ∗ + 1)Γ(β′∗1 + 1)Γ(β′∗1 + 2 + j′4)j′4!

3
∏
i=1

[Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

× Γ(h∗− + j′i)Γ(pi + h∗− + j′i)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + j′i)j′i!

] ,
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V4 =N2(−1)−D+9n∗+3n(2)4−D(i)6n∗+6n−2−D 1
β∗1 + 1

1
β4 + 1

× Γ(γ∗ + 1 + j4)Γ(β∗1 + 1 + j4)Γ(β∗1 + 2)
Γ(γ∗ + 1)Γ(β∗1 + 1)Γ(β∗1 + 2 + j4)j4!

Γ(γ + 1 + j′4)Γ(β4 + 1 + j′4)Γ(β4 + 2)
Γ(γ + 1)Γ(β4 + 1)Γ(β4 + 2 + j′4)j′4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h∗− + ji)Γ(pi + h∗− + ji)Γ(pi + 1)
Γ(h∗−)Γ(pi + h∗−)Γ(pi + 1 + ji)ji!

] ,

V5,m =(−1)−h−(m−1)N2(−1)−D+8n(2)4−D(i)12n−2−D 1
βm + 1

1
β5,m + 1

× Γ(γ + 1 + j4)Γ(βm + 1 + j4)Γ(βm + 2)
Γ(γ + 1)Γ(βm + 1)Γ(βm + 2 + j4)j4!

Γ(γ + 1 + j′4)Γ(β5,m + 1 + j′4)Γ(β5,m + 2)
Γ(γ + 1)Γ(β5,m + 1)Γ(β5,m + 2 + j′4)j′4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

] ,

V6 =N2(−1)−1−D+10n ( i
2
)
−3h−

(2)4−D(i)6n−1−D2
1

β2 + 1
1

β6 + 1

× Γ(γ + 1 + j4)Γ(β2 + 1 + j4)Γ(β2 + 2)
Γ(γ + 1)Γ(β2 + 1)Γ(β2 + 2 + j4)j4!

Γ(γ + 1 + j′4)Γ(β6 + 1 + j′4)Γ(β6 + 2)
Γ(γ + 1)Γ(β6 + 1)Γ(β6 + 2 + j′4)j′4!

×
3
∏
i=1

[Γ(h− + j′i)Γ(pi + h− + j′i)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + j′i)j′i!

Γ(h− + ji)Γ(pi + h− + ji)Γ(pi + 1)
Γ(h−)Γ(pi + h−)Γ(pi + 1 + ji)ji!

] .
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With these prefactors and cotχ+i
cotχ−i = e2iχ, P can be expressed as:

P =
∞
∑

j1,j2,j3,j4,j′1,j
′

2,j
′

3,j
′

4=0

fk1(η1)f∗k1
(η2)V1ei2ε(j4+β1+1)e−i2η1(j′4+β

′

1+1)−

− fk1(η1)f∗k1
(η2)V1ei2ε(j4+β1+1)e−i2ε(j′4+β

′

1+1)−

− fk1(η1)f∗k1
(η2)V1ei2η2(j4+β1+1)e−i2η1(j′4+β

′

1+1)+

+ fk1(η1)f∗k1
(η2)V1ei2η2(j4+β1+1)e−i2ε(j′4+β

′

1+1)

+ f∗k1
(η1)fk1(η2)V1ei2η1(j4+β1+1)e−i2ε(j′4+β

′

1+1)−

− f∗k1
(η1)fk1(η2)V1ei2ε(j4+β1+1)e−i2ε(j′4+β

′

1+1)+

+ f∗k1
(η1)fk1(η2)V1ei2ε(j4+β1+1)e−i2η2(j′4+β

′

1+1)−

− f∗k1
(η1)fk1(η2)V1ei2η2(j4+β1+1)e−i2η2(j′4+β

′

1+1)+

+ f∗k1
(η1)fk1(η2)V2ei2η2(j4+β2+1)e−i2η1(j′4+β

′

2
∗+1)−

− f∗k1
(η1)fk1(η2)V2ei2η2(j4+β2+1)e−i2η2(j′4+β

′

2
∗+1)+

+ f∗k1
(η1)fk1(η2)V4ei2η2(j′4+β4+1)−

− f∗k1
(η1)fk1(η2)V4ei2η1(j′4+β4+1)−

− f∗k1
(η1)fk1(η2)V5,2ei2η2(j′4+β5,2+1)+

+ f∗k1
(η1)fk1(η2)V5,2ei2η1(j′4+β5,2+1)+

+ 2f∗k1
(η1)f∗k1

(η2)V ∗
3 e−i2ε(j4+β∗2+1)ei2ε(j′4+β

′

1+1)−

− f∗k1
(η1)f∗k1

(η2)V ∗
3 e−i2η1(j4+β∗2+1)ei2ε(j′4+β

′

1+1)−

− f∗k1
(η1)f∗k1

(η2)V ∗
3 e−i2η2(j4+β∗2+1)ei2ε(j′4+β

′

1+1)−

− 2f∗k1
(η1)f∗k1

(η2)V5,1ei2ε(j′4+β5,1+1)+

+ 2f∗k1
(η1)f∗k1

(η2)V5,1ei2η2(j′4+β5,1+1)+

+ f∗k1
(η1)f∗k1

(η2)V ∗
3 e−i2η1(j4+β∗2+1)ei2η2(j′4+β

′

1+1)−

− f∗k1
(η1)f∗k1

(η2)V ∗
3 e−i2η2(j4+β∗2+1)ei2η2(j′4+β

′

1+1)+

+ fk1(η1)fk1(η2)V3ei2η2(j4+β2+1)e−i2η1(j′4+β
′

1+1)−

− fk1(η1)fk1(η2)V3ei2η2(j4+β2+1)e−i2ε(j′4+β
′

1+1)+

+ fk1(η1)fk1(η2)V3ei2η1(j4+β2+1)e−i2η1(j′4+β
′

1+1)−

− fk1(η1)fk1(η2)V3ei2η1(j4+β2+1)e−i2ε(j′4+β
′

1+1)−

+ 2fk1(η1)fk1(η2)V6ei2ε(j′4+β6+1)−

− 2fk1(η1)fk1(η2)V6ei2η1(j′4+β6+1).

Unfortunately, the resulting power series is not of a form easily summed to a closed form.
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