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Summary

Treatment efficacy in clinical trials is often assessed by time from treatment initiation to
occurrence of a certain critical or beneficial event. In most cases the event of interest
cannot be observed for all patients, as patients are only followed for a limited time or
contact to patients is lost during their follow-up time. Therefore, certain methods were
developed in the framework of the so called time-to-event or survival analysis, in order
to obtain valid and consistent estimates in the presence of these “censored observations”,
using all available information. In classical event time analysis only one endpoint exists, as
the death of a patient. As patients can die from different causes, in some clinical trials time
to one out of two or more mutually exclusive types of event may be of interest. In many
oncological studies, for example, time to cancer-specific death is considered as primary
endpoint with deaths from other causes acting as so called competing risks. Different
methods for data analysis in the competing risks framework were developed in recent
years, which either focus on modelling the cause-specific or the subdistribution hazard
rate or split the joint distribution of event times and event types into quantities, that
can be estimated from observable data. In this work the analysis of event time data in
the presence of competing risks is described, including the presentation and discussion of
different regression approaches. A major topic of this work is the estimation of cause-
specific and subdistribution hazard rates from a mixture model and a new approach using
penalized B-splines (P-splines) for estimation of conditional hazard rates in a mixture
model is proposed. In order to evaluate the behaviour of the new approach, a simulation
study was conducted, using simulation techniques for competing risks data, which are
described in detail in this work. The presented regression models were applied to data from
a clinical cohort study investigating a risk stratification for cardiac mortality in patients,
that survived a myocardial infarction. Finally, the use of the presented methods for event
time analysis in the presence of competing risks and results obtained from the simulation
study and the data analysis are discussed.



Zusammenfassung

Zur Beurteilung der Wirksamkeit von Behandlungen in klinischen Studien wird häufig die
Zeit vom Beginn einer Behandlung bis zum Eintreten eines bestimmten kritischen oder
erwünschten Ereignisses als Zielgröße verwendet. Da in vielen Fällen das entsprechende
Ereignis nicht bei allen Patienten beobachtet werden kann, da z.B. Patienten nur für
einen gewissen Zeitraum nachverfolgt werden können oder der Patientenkontakt in der
Nachbeobachtungszeit abbricht, wurden im Rahmen der so genannten Ereigniszeit- bzw.
Überlebenszeitanalyse Verfahren entwickelt, die bei Vorliegen dieser

”
zensierten Beobach-

tungen“ konsistente Schätzer liefern und dabei die gesamte verfügbare Information verwen-
den. In der klassischen Ereigniszeitanalyse existiert nur ein möglicher Endpunkt, wie der
Tod eines Patienten. Da Patienten jedoch an verschiedenen Ursachen versterben können,
ist in manchen klinischen Studien die Zeit bis zu einem von zwei oder mehreren sich gegen-
seitig ausschließenden Ereignistypen von Interesse. So fungiert z.B. in vielen onkologi-
schen Studien die Zeit bis zum tumor-bedingten Tod als primärer Endpunkt, wobei andere
Todesursachen sogenannte konkurrierende Risiken (

”
Competing Risks“) darstellen. In den

letzten Jahren wurden mehrere Verfahren zur Datenanalyse bei Vorliegen konkurrierender
Risiken entwickelt, bei denen entweder die ereignis-spezifische oder die Subdistribution-
Hazardrate modelliert wird, oder bei denen die gemeinsame Verteilung von Ereigniszeiten
und Ereignistypen als Produkt von Größen abgebildet wird, die aus den beobachtbaren
Daten geschätzt werden können. In dieser Arbeit werden Methoden zur Analyse von
Competing-Risks-Daten, einschließlich verschiedener Regressionsansätze, vorgestellt. Be-
sonderes Augenmerk liegt auf der Schätzung der ereignis-spezifischen und Subdistribution-
Hazardraten aus einem sogenannten Mixture Model. Diesbezüglich wird auch ein neuer
Ansatz zur Schätzung der konditionalen Hazardraten in einem Mixture Model unter Ver-
wendung penalisierter B-Spline-Funktionen (P-Splines) vorgestellt. Um die Eigenschaften
des neuen Ansatzes zu untersuchen, wurde eine Simulationsstudie unter Einsatz verschie-
dener Simulationsstrategien für Competing-Risks-Daten, die in dieser Arbeit im Detail
beschrieben werden, durchgeführt. Die Regressionsmodelle wurden auf Daten einer klin-
ischen Kohortenstudie zur Evaluation einer Risikostratifizierung für Patienten, die einen
Myokardinfarkt überlebt haben, angewandt. Abschließend werden die vorgestellten Me-
thoden zur Analyse von Ereigniszeitdaten bei Vorliegen konkurrierender Risiken sowie die
Ergebnisse der Simulationsstudie und der Datenanalyse diskutiert.
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Chapter 1

Introduction

In clinical research time from a certain starting point, as diagnosis of a disease or treatment
initiation, to occurrence of a critical or beneficial event is often used to assess efficacy of a
certain therapy or the role of potential predictive or prognostic factors. In most cases event
times cannot be observed for all individuals due to a limited follow-up time or as patients
are lost to follow-up. In order to obtain unbiased estimates for event time distributions
or for covariate effects on event times, using the whole information available for the study
cohort under investigation, methods that can deal with these “censored observations” were
developed in the framework of the so called time-to-event or survival analysis. In stan-
dard survival analysis each subject can fail from one possible endpoint, so the information
obtained for each subject is either his event time or a last observation time the subject
was known to be event-free. Various textbooks on event time analysis are available, as e.g.
Marubini and Valsecchi (1995), Kalbfleisch and Prentice (2002) or Klein and Moeschberger
(2003).
Since certain treatments or risk factors only have an effect on one specific endpoint, the
main interest may be on time to a certain type of event. In oncological trials, intended
to compare different treatment strategies, the primary endpoint often is “time to tumour-
related death”, since it is expected that “time to other causes of death” is not affected or
affected in a different way by the therapies. So each subject can fail from one out of two
or more possible types of event and times to different event types can either be of same
importance or time to one certain type of event may be of major interest. In presence of
these so called “competing risks” the application of standard methods for event time anal-
ysis, which were developed for common survival analysis with one possible type of event,
and ignoring the competing events may give erroneous results. As in the competing risks
framework different event types are considered to be mutually exclusive, only the time to
the first of these events can be observed. So the joint distribution of event times for differ-
ent types of event cannot be estimated from the observed data due to non-identifiability
problems.
Although the issue of competing risks in survival analysis was recognized as early as 1760
by Daniel Bernoulli, who tried to account for patients deaths from other causes in an inves-
tigation of the efficacy of pock immunization, which was published by Bernoulli in 1766,
translated by Bradley (1971), and revisited by Dietz and Heesterbeek (2002), wrong or
inadequate methods are still in use for analysis and presentation of competing risks data in
clinical research and consequently in medical literature. E.g. the popular method proposed



by Kaplan and Meier (1958), which is commonly used for estimation of survival probabil-
ities in standard event time analysis, leads to biased estimates of event probabilities when
competing risks are treated as censored observations. Nevertheless, application of that
procedure can be found in many medical publications with present competing risks. A
systematic review of medical articles with probable competing risks endpoints in medical
journals with high impact factors, which was performed by Koller et al (2012), revealed,
that competing risks were not correctly analysed or that methods and results of the analy-
ses were not adequately presented in many of the investigated articles, although a variety of
publications describing methods for analysis of competing risks data is available in the sta-
tistical literature. Standard methods for the analysis of competing risks data are described
and discussed in various introductory articles in statistical journals (Putter et al, 2007;
Klein, 2010; Bakoyannis and Touloumi, 2011), in textbooks on competing risks (Pintilie,
2006; Beyersmann et al, 2012) or in chapters of textbooks on survival analysis (Marubini
and Valsecchi, 1995; Kalbfleisch and Prentice, 2002). In recent years the competing risks
problem was recognized in some medical disciplines, leading to articles dealing with is-
sues to be considered in the presence of competing risks, that were published in medical
journals, mainly in journals with a focus on cancer research (e.g. Satagopan et al, 2004;
Kim, 2006; Dignam and Kocherginsky, 2008; Dignam et al, 2012), but also in journals for
geriatrics (Berry et al, 2010) or urology (Roobol and Heinsdijk, 2011), including coverage
of software applications for analysis of competing risks data (Scrucca et al, 2007).
Generally, methods considering the presence of multiple event types have to be conducted
for the analysis of competing risks data. Different approaches for analysis of event time
data with multiple, mutually exclusive types of event were proposed in the past. Early
analysis of competing risks data focussed on estimation of the joint distribution of event
times to different types of event, as e.g. the models for exponentially distributed event times
with two types of failure, which were introduced by Cox (1959). Tsiatis (1975) demon-
strated that this joint distribution cannot be estimated in a competing risks setting with
mutually exclusive types of event without making strong, unverifiable assumptions about
the dependence structure between times to different event types, and that for observed
marginal event time distributions different joint distributions can be found. Prentice et al
(1978) proposed to focus on the so called cause-specific hazard rate, the adaptation of the
common hazard rate for the competing risks setting, which can be estimated from observ-
able data. They introduced a Cox-type regression model to assess covariate effects on the
cause-specific hazard rates. When cause-specific hazards are modelled, the estimated prob-
ability for an event of interest up to a given time, represented by the so called cumulative
incidence function in the competing risks setting, depends on the cause-specific hazard
rates for all possible types of event, as these have an influence on the number of patients
at risk (see e.g. Putter et al, 2007). In 1985 Larson and Dinse proposed to represent the
non-estimable joint distribution of event times and types of event by the product of the
marginal event type distribution, assessed e.g. via a multinomial logistic regression model,
and the conditional event time distributions given the type of event, using parametric
survival models. In their original article a piecewise exponential model was proposed to
assess the conditional event time distributions. A common likelihood can be denoted for
the model and the parameters can be estimated from observable data using numerical ap-
proaches for maximum likelihood estimation. In order to find a “hazard-like” quantity in
the presence of competing risks, that is directly linked to the cumulative incidence function
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as known from standard survival analysis, Gray (1988) introduced the so called subdistri-
bution hazard. For the subdistribution hazard an adapted risk set is considered, keeping
individuals that failed from a competing event in the risk set for future timepoints. The
approach was extended to a regression model by Fine and Gray (1999) allowing to assess
the influence of covariates on the subdistribution hazard. In this approach, the coefficients
obtained e.g. from a Cox-type regression model are monotonously linked to the cumulative
incidence function, so covariate effects derived from a subdistribution hazards regression
model can be translated directly to effects on event probabilities, given the model assump-
tions hold. Andersen et al (2003) introduced a method for estimation of covariate effects
on a quantity of interest in survival models using pseudo-values. The method was adjusted
later for the competing risks framework by using the cumulative incidence function as mea-
sure of interest (Klein and Andersen, 2005). The generalized estimating equation approach
(GEE) by Liang and Zeger (1986) is used to estimate the influence of covariates on the
cumulative incidence function and to give robust standard errors leading to valid p values
and confidence intervals. In 2010, Nicolaie et al proposed another way of factorizing the
joint distribution of event times and types of event by expressing the joint distribution as
product of the marginal event time distribution and the conditional distribution of event
types given the time of event. The so called vertical modelling approach, consisting e.g. of
a parametric survival model to assess the marginal event time distribution and a multino-
mial logistic regression model for the conditional event type distribution, using time and
covariates of interest as independent variables, provides estimates for relative hazard rates,
which represent the pattern of events over the course of time.
Most competing risks analyses presented in the medical literature are performed hazard-
based. Often Cox-type regression models for the cause-specific or the subdistribution
hazard rate are considered, assuming proportional cause-specific or subdistribution haz-
ards, respectively. It was shown, that the proportionality assumption generally does not
hold for both quantities in the presence of competing risks (Beyersmann and Schumacher,
2007; Grambauer et al, 2010). In a recent article by Lau et al (2011) the estimation
of cause-specific and subdistribution hazard rates and consequently hazard ratios from a
mixture model, assuming the conditional event times to follow flexible parametric event
time distributions, as the three-parameter generalized gamma distribution, was presented
and applied to a dataset. The method is intended to provide estimates for cause-specific
and subdistribution hazard rates from one common model, to detect time-dependencies
of cause-specific and subdistribution hazard rates and hazard ratios, and to allow for es-
timation of average hazard ratios. The procedure is described in this work and a new
approach using penalized B-splines (P-splines) for estimation of conditional hazard rates
is proposed, as the approach considering the generalized gamma distribution was found to
be numerically unstable. In order to evaluate the new approach and to compare it to the
models, that were proposed by Lau et al, a simulation study was conducted for different
scenarios with prespecified time-constant or time-dependent cause-specific and subdistri-
bution hazard rates and hazard ratios using strategies for simulation of competing risks
data (Beyersmann et al, 2009).
In this work the competing risks framework is described and problems occurring for anal-
ysis of event time data in the presence of multiple, mutually exclusive types of event are
presented. In Section 2 an overview over standard event time analysis with one possible
endpoint is given and relevant quantities and concepts are introduced. The competing risks
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setting is described in Section 3, including discussions on different views on the competing
risks situation and on the non-identifiability problem, and presentation of relevant quan-
tities used for description of competing risks data. In Section 4 regression models for the
competing risks setting, which were proposed in the literature, are described and compared
regarding model assumptions, applicability, and interpretation of obtained results. Various
extensions of the basic models are mentioned and literature for further reading is given.
A special focus lies on the derivation of estimates for cause-specific and subdistribution
hazard rates and hazard ratios from a mixture model. In Section 5 the new mixture model
approach using penalized B-spline basis functions (P-splines) for estimation of conditional
hazard rates is introduced. Different methods for simulation of competing risks data fol-
lowing predefined cause-specific or subdistribution hazards are presented and discussed in
Section 6. In Section 7 a simulation study, performed to investigate the properties of dif-
ferent mixture models for estimation of cause-specific and subdistribution hazard rates and
hazard ratios, is described. The focus lies on a comparison of the newly proposed mixture
model approach, using P-spline functions for estimation of conditional hazard rates, and
parametric mixture models. Different scenarios using predefined cause-specific or subdis-
tribution hazard rates and different censoring distributions were considered. The methods
under investigation were compared regarding numerical stability and ability to detect the
true underlying hazard rates and hazard ratios. In Section 8 application of the presented
methods for competing risks regression and of the newly proposed mixture model approach
to data from a clinical cohort study, investigating risk stratification for cardiac death after
myocardial infarction, is described. Finally, the presented methods as well as the findings
from the simulation study and the data analyses are discussed in Section 9. All analyses
and the simulation study were performed using the statistical software R (R Development
Core Team, 2011). Sketches of R-codes used for data analysis and simulation as well as
further results of the simulation study are presented in the Appendix.
Description of the different competing risks regression models and their application to the
clinical cohort study presented in Sections 4 and 8 were published in the journal Lifetime

Data Analysis (Haller et al, 2013). Presentation and validation of the Binomial Algorithm
for generation of competing risks data following a predefined subdistribution hazard ratio
described in Sections 6.3.3 and 6.3.4 were published in the Journal for Statistical Com-

putation and Simulation (Haller and Ulm, 2013). The proposed mixture model approach
using penalized B-splines for estimation of conditional hazard rates, intended to derive
cause-specific and subdistribution hazard rates, which is introduced in Section 5, the re-
sults of the simulation study for Scenarios II to IV with a moderate amount of censored
observations presented in Section 7, and application of the P-spline approach to the clinical
cohort study and according results (Section 8.3), are described in a manuscript that was
submitted for publication and was under review at the time this work was finalized.
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Chapter 2

Analysis of time-to-event data

The main topic of this work, the analysis of competing risks data, is a special case of event
time or survival analysis. Time-to-event data are often considered in the medical context
or in quality assurance, investigating e.g. the time from therapy onset to time of death
or time of full recovery, or evaluating the time until a machine breaks down and has to
be replaced. There are also applications of event time data analysis methods in social or
financial sciences, investigating e.g. the time an individual is unemployed or the time a
company stays on the market.
When time-to-event data are considered, often the time to the event of interest cannot
be observed for all individuals or subjects, as either subjects have not experienced an
event at the end of the study (administrative censoring), subjects drop-out early from the
study, or are lost to follow-up. These observations are called “censored observations” in
the time-to-event framework. Special methods that are able to deal with these censored
observations were introduced in the context of event time or survival analysis, in order
to obtain unbiased estimates for relevant quantities without losing information. While
methods for consideration of dependent censoring times, i.e. censoring times that depend
on covariate values, were introduced in the literature (see e.g. Robins and Finkelstein,
2000), only non-informative censoring is assumed in this work, i.e. the censoring times are
assumed to be stochastically independent of observed and unobserved covariates and of
the event times. The most important measures and issues relevant for the analysis of time-
to-event data are summarized in this section. Further details on the analysis of event time
data can be found in various textbooks (see e.g. Marubini and Valsecchi, 1995; Kalbfleisch
and Prentice, 2002; Klein and Moeschberger, 2003).

2.1 Observed data

Observed time-to-event data can be represented by a pair of variables, the observed time
T ∗ and a status variable D. For each individual only the minimum of the true event time,
denoted by the random variable T , and the potential censoring time C can be observed

T ∗ = min{T, C}.

The status variable D indicates, whether the observed time T ∗ is a real event time or a
censoring time

D = I(T < C),



2.2 Important measures

with I(·) being the indicator function returning a value of one, if the given expression is
true, and zero else. So for each individual i={1, . . . , n} a couple (ti, di) is observed.

2.2 Important measures

The random variable for the event time T is strictly positive and its distribution is defined
by the density function f(t) or the cumulative density function F (t) with

F (t) = P (T ≤ t) =

t∫

0

f(s)ds. (2.1)

In the context of event time analyses, data are often presented by the so called survivor
function

S(t) = P (T > t) = 1− F (t), (2.2)

denoting the probability that an individual is event-free up to a given time t.
The survivor function can be estimated by the popular Kaplan-Meier method (Kaplan and
Meier, 1958). Denoting the vector of distinct observed event times as t̃ = (t̃1, . . . , t̃N), with
N being the number of distinct timepoints with an observed event, and dt̃i and Rt̃i as the
number of events observed at t̃i and the number of individuals at risk at t̃i, an estimate
for the survivor function at a given time t can be obtained as

Ŝ(t) =
∏

i: t̃i≤t

(
1−

dt̃i
Rt̃i

)
. (2.3)

The Kaplan-Meier estimator returns a step function with jumps at observed event times
and constant estimates of the survivor function for timepoints between observed event
times.
The hazard rate λ(t) indicates the probability for an event in an infinitesimal small time
interval t+∆t, given the subject did not fail before t,

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
. (2.4)

For a timepoint with an observed event t̃i the hazard rate can be estimated as the number
of observed events at t̃i, denoted by dt̃i , divided by the number of subjects under risk at
the time of interest

λ̂(t̃i) =
dt̃i
Rt̃i

. (2.5)

For timepoints without an observed event the non-parametric estimator for the hazard rate
returns zero. Therefore, presentation of the hazard function is mostly conducted showing
an estimate for the cumulative hazard rate Λ(t), which is defined as the integral over the
hazard function from zero to the time of interest t,

Λ(t) =

t∫

0

λ(s)ds. (2.6)
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2.3 Regression models for time-to-event data

The cumulative hazard rate can be estimated using the Nelson-Aalen estimator (Nelson,
1969), summing up the quotients of observed events and the numbers of subjects at risk,
as described above, for all observed event times up to the time of interest t, leading to a
monotonically increasing step function,

Λ̂(t) =
∑

i: t̃i≤t

dt̃i
Rt̃i

. (2.7)

The density function f(t), the survivor function S(t) and the hazard function λ(t) are
directly related via

λ(t) =
f(t)

S(t)
(2.8)

and
S(t) = 1− F (t) = exp

(
−Λ(t)

)
. (2.9)

2.3 Regression models for time-to-event data

In order to investigate the influence of covariates on the event times, regression models
that can be applied in the presence of censored observations were developed. Commonly
used regression models for time-to-event data with one possible endpoint are summarized
in this section.

2.3.1 Cox regression

The most popular regression model for event time data is the proportional hazards model
introduced by Cox (1972). It is assumed that hazard ratios are constant over time and
that each of the P covariates under consideration has a linear effect on the logarithm of
the hazard rate, given the other covariates. The Cox regression model can be written as

λ(t|x) = λ0(t) exp(β
⊤x), (2.10)

with the unspecified baseline hazard rate λ0(t) for a (possibly fictitious) individual with
a covariate vector of zeros, the P -dimensional vector of covariates x and the vector of
regression coefficients β. The hazard ratio between two individuals i and j can be computed
as

λ(t|xj)

λ(t|xi)
=

λ0(t) exp(β
⊤xj)

λ0(t) exp(β⊤xi)
= exp

(
β⊤(xj − xi)

)
. (2.11)

Consequently, the regression coefficient for the pth covariate βp can be interpreted as the
logarithm of the hazard ratio between two individuals, differing in one unit of the covariate
xp, and having equal values for all other covariates xq with q 6= p

βp = ln

(
λ(t|x1, x2, . . . , xp−1, xp+1, xp+1, . . . , xP−1, xP )

λ(t|x1, x2, . . . , xp−1, xp, xp+1 . . . , xP−1, xP )

)
. (2.12)

Assuming N distinct ordered failure times t̃=(t̃1, . . . , t̃N), an estimate for the vector of
regression coefficients β is derived by numerical maximization of the partial likelihood
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2.3 Regression models for time-to-event data

introduced by Cox, treating the unspecified baseline hazard λ0(t) as a nuisance parameter

PL =

N∏

i=1

exp(x(i)
⊤β)∑

j∈Rt̃i

exp(x⊤
j β)

, (2.13)

where x(i) is the vector of covariates of the individual that failed at time t̃i, and Rt̃i

represents the risk set at event time t̃i, i.e. all subjects not having failed before t̃i and still
under observation at t̃i. Usually, a Newton-Raphson algorithm is performed to find the
vector of regression coefficients, that maximizes the log-partial likelihood

β̂ = argmax
β

{
ln
(
PL(β)

)}
. (2.14)

The variance of the estimated regression coefficients is provided by the inverse of the
observed information matrix evaluated at the maximum partial likelihood estimate

V ar(β̂) = I(β̂)−1, (2.15)

which can be obtained as the negative of the second derivative of the log-partial likelihood
function shown in Equation 2.13.
The assumption of linear covariate effects on the log-hazard rate can be checked using de-
viance or martingale residuals (see e.g. Therneau and Grambsch, 2000). Time-dependence
of regression coefficients can be assessed by Schoenfeld residuals (Schoenfeld, 1982). A
more detailed description of the Cox regression model including statistical tests for re-
gression coefficients as well as further extensions of the model, as e.g. stratification using
different baseline hazard functions for predefined groups or frailty models allowing for ran-
dom effects, can be found in various textbooks (Marubini and Valsecchi, 1995; Therneau
and Grambsch, 2000; Kalbfleisch and Prentice, 2002; Klein and Moeschberger, 2003).

2.3.2 Parametric regression models

As an alternative to Cox regression, parametric survival models, assuming the event times
to follow a prespecified distribution and using an adequate link between the linear predic-
tor β⊤x and the parameters of the event time distribution, can be used. Popular event
time distributions are e.g. the exponential distribution, the Weibull distribution or the
log-normal distribution. Event time distributions, which are used later in this work are
presented in Section 2.4.
In a parametric survival model the likelihood, which has to be maximized in order to obtain
parameter estimates, is

L =

n∏

i=1

([
f(ti|xi)

]I(di=1) [
S(ti|xi)

]I(di=0)
)
, (2.16)

with di being the status variable described in Section 2.1, indicating whether an observed
time ti is a real failure time (di=1) or a last time a subject was known to be event-free
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(di=0), f(t) being the density function of the event time distribution, and S(t) denoting
the corresponding survivor function. Consequently, the log-likelihood function is

ll =

n∑

i=1

[
I(di=1) ln

(
f(ti|xi)

)
+ I(di=0) ln

(
S(ti|xi)

)]
=

=
n∑

i=1

[
I(di=1)

(
ln
(
λ(ti|xi)

)
+ ln

(
S(ti|xi)

))
+ I(di=0) ln

(
S(ti|xi)

)]
=

=

n∑

i=1

[
I(di=1) ln

(
λ(ti|xi)

)
+ ln

(
S(ti|xi)

)]
.

(2.17)

Estimates for the parameters are derived by maximizing the likelihood or the log-likelihood
function either analytically or numerically. The variance of the maximum likelihood esti-
mates can be derived from the inverse of the observed Fisher information matrix as common
for parametric regression models (see e.g. Fahrmeir and Tutz, 2001).
Very flexible parametric regression models, e.g. assuming the event times to follow a three-
parameter generalized gamma distribution (Cox et al, 2007, see also Section 2.4.3), were
introduced in recent years. Rosenberg (1995) or Royston and Parmar (2002) presented
approaches for flexible estimation of hazard rates by inclusion of cubic spline functions
(see also Section 5).

2.4 Event time distributions

In this section some event time distributions, which are commonly considered for para-
metric survival models and which are used later in this work for estimation of conditional
event time distributions in competing risks mixture models, are summarized. An overview
over common event time distributions including important quantities as density functions,
survivor functions, and hazard functions can be found in Chapter 2 of the textbook by
Klein and Moeschberger (2003). In contrary to the Cox regression model, the vector of re-
gression coefficients x in a parametric regression model usually includes an intercept term,
which is not mentioned explicitly in the following.

2.4.1 Exponential distribution

The exponential distribution is a one-parametric event time distribution implying a time-
constant hazard rate λ(t)=λ. The density function of the exponential distribution is

f(t) = λ exp(−λt) (2.18)

and the survivor function is
S(t) = exp(−λt). (2.19)

In a regression model investigating the influence of covariates on the event times, the hazard
rate λ is commonly modelled via

λ = exp(β⊤x), (2.20)

to ensure positivity of the estimated hazard rates.
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2.4 Event time distributions

2.4.2 Weibull distribution

The Weibull distribution is defined by the two parameters λ and α, and therefore it is
more flexible than the exponential distribution. Different parametrizations of the Weibull
distribution exist in the literature. One possible formulation of the density function, which
is used throughout this work, is

f(t) = λα(λt)α−1 exp
(
−(λt)α

)
, (2.21)

so the exponential distribution is a special case of the Weibull distribution for α=1. The
survivor function for that parametrization is

S(t) = exp
(
−(λt)α

)
(2.22)

and the hazard function can be denoted as

λ(t) = λα(λt)α−1. (2.23)

For regression purposes the influence of the covariates on the parameter λ as described in
Equation 2.20 or on both parameters λ and α is assessed.

2.4.3 Generalized gamma distribution

A flexible parametric survival model is the generalized gamma model, that was e.g. used by
Cox et al (2007) for comparison of different treatment eras regarding time from diagnosis
of AIDS to death in HIV positive patients. The density function of the generalized gamma
distribution with three parameters can be denoted as

f(t) =
|ν|

α̃tΓ(ν−2)

(
ν−2(λt)ν/α̃

)ν−2

exp
(
−ν−2(λt

)ν/α̃)
, (2.24)

where Γ(·) is the gamma function. The corresponding survivor function for the generalized
gamma distribution is

S(t) = 1− FΓ

(
ν−2(λt)ν/α̃; ν−2

)
for ν > 0,

S(t) = FΓ

(
ν−2(λt)ν/α̃; ν−2

)
for ν < 0,

(2.25)

with FΓ(t, y) being the cumulative density function of the two parameter gamma distribu-
tion. As for the Weibull distribution, different parametrizations for the generalized gamma
distribution are present in the literature.
Due to the complexity of the hazard function, which can be obtained by diving the density
function f(t) through the survivor function S(t), it will not be displayed here directly, but
some examples for the hazard rate λ(t) considering different parameter values are shown
in Figure 2.1.
The generalized gamma distribution allows various shapes of hazard functions including
decreasing and increasing patterns and covers most of the common event time distributions
for certain parameter settings or as limiting distributions. The two parameter gamma dis-
tribution is obtained for ν=α̃. With ν=1 the generalized gamma distribution translates
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Chapter 3

Competing risks framework

3.1 The competing risks problem

In classical time-to-event or survival analysis subjects are under risk for one terminal event.
Examples are time from diagnosis of a certain disease or time from treatment initiation
to patient’s death in a clinical study or lifetime of a machine in quality management of a
company. In some applications subjects cannot fail from just one certain type of event, but
are under risk of failing from two or more mutually exclusive types of event. In a clinical
study the primary endpoint may be time to death from a cardiac reason, which can be
obscured by death from another reason. In a technical application the lifetime of a special
component maybe of interest, which cannot be observed when the machine breaks down
due to the failure of another component. When an individual is under risk of failing from
K different types of event, these different event types are called competing risks (Figure
3.1). In the presence of multiple types of event standard quantities and methods used for
time-to-event analysis as presented in Section 2 have to be adapted for the competing risks
setting.

Figure 3.1: Illustration of the competing risks framework: Subjects are in an initial state at the
beginning and can fail from one out of K mutually exclusive types of event.



3.2 Competing risks presentation

While the competing risks problem is broadly covered in the statistical literature, which
can be seen by the numbers of available textbooks (Crowder, 2001; Pintilie, 2006; Bey-
ersmann et al, 2012), descriptions of the competing risks problem in books on survival
analysis (see e.g. Marubini and Valsecchi, 1995; Kalbfleisch and Prentice, 2002; Klein and
Moeschberger, 2003), and overview articles (Putter et al, 2007; Klein, 2010; Bakoyannis
and Touloumi, 2011; Allignol et al, 2011), the problem is widely ignored in the medical
literature, which is discussed in an article by Koller et al (2012). In that article a review
of 50 clinical studies with possible competing risks endpoints, which were published in
highly ranked medical journals as the New England Journal of Medicine or The Lancet

from October 2007 to October 2010, was performed regarding presence of competing risks
and methods used to account for competing risks. In 37 of the 50 evaluated articles (74%)
at least one of the assessed endpoints implied the presence of competing risks, while the
other articles only presented results on all-cause mortality or on composite endpoints not
relevant for application of competing risks analysis methods. In 35 of the investigated arti-
cles inadequate analysis of competing risks data was observed, as completely ignoring the
competing risks problem or performing “näıve Kaplan-Meier estimation” in the presence
of competing risks, leading to biased estimates for the event probabilities (see Section 3.4).
Competing risks methods were applied in only 10 of the 50 studies and only in two articles
the correct estimates for the cumulative incidence function (see Section 3.3.1) were explic-
itly calculated and described. In summary, it can be seen that although the competing
risks problem is well known and described in the statistical literature, the application of
competing risks methods for analysis of clinical data is not established. In recent years, the
competing risks problem appears to have become more widely recognized in the medical
community, which is indicated by the publication of competing risks articles in medical
journals, explaining and discussing adequate analysis methods for event time data in the
presence of competing risks (Dignam and Kocherginsky, 2008; Berry et al, 2010; Roobol
and Heinsdijk, 2011; Chappell, 2012; Dignam et al, 2012).
In this section different ways for presenting the competing risks framework are described
(Section 3.2) and quantities used for description and analysis of competing risks data are
introduced (Section 3.3). In Section 3.4 application of the standard Kaplan-Meier method
in order to estimate event probabilities in the presence of competing risks, treating indi-
viduals that failed from a competing event as censored observations (a procedure that is
referred to as “näıve Kaplan-Meier estimator” in the literature), is discussed.

3.2 Competing risks presentation

Two different ways of competing risks presentation can be found in the literature. Com-
peting risks data can either be considered via a latent failure time approach, implying a
joint distribution for the times to the K types of event, which is discussed in Section 3.2.1,
or a competing risks process can be represented by two random variables, one random vari-
able for the event time and one for the type of event (Section 3.2.2). Modern competing
risks analyses are based on the latter approach, due to the presence of identifiability prob-
lems in the latent failure times formulation. Discussions on different approaches towards
competing risks data can also be found in Pintilie (2006) and Beyersmann et al (2012).
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3.2 Competing risks presentation

3.2.1 Competing risks as latent failure times

One possible access to a competing risks problem is to assume, that there are random
variables T1, . . . , TK for the time to each of the K possible event types. In a real data
situation, only time to the first event, denoted as T , with

T = min{T1, T2, ..., TK}, (3.1)

can be observed. Additionally, an indicator variable D, denoting the type of the observed
event, is needed.
In order to estimate the survivor function of the joint distribution S(t1, . . . , tK), the corre-
lation between times to different event types has to be assessed. In a classical competing
risks setting, only one event type can be observed for each individual, so the correlation
structure cannot be estimated from observable data and a correlation structure has to be
assumed that cannot be verified. Tsiatis (1975) demonstrated, that for each joint distribu-
tion with assumed independence between the latent failure times, a dependence structure
can be found, that provides the same likelihood. As the correlation structure cannot be
estimated from observable data, Prentice et al (1978) questioned the plausibility of the
latent failure times approach and therefore discouraged its use, while Beyersmann et al
(2012) discussed and illustrated, that there is no gain, but additional problems, when the
latent failure time approach is considered, instead of the approach presented in the next
section (see Chapter 4.3.1 of Beyersmann et al, 2012).
Various analysis methods following the latent failure time approach were introduced in the
literature. Cox (1959) discussed different models for analysis of exponentially distributed
event types with two possible types of failure. In order to estimate plausible ranges for
the joint survivor function and the marginal survivor functions for different types of event
in the lack of an estimable dependence structure, several authors (Peterson, 1976; Slud
and Rubinstein, 1983; Klein and Moeschberger, 1988) developed methods, which allow to
derive bounds for these quantities considering possible dependence structures. In recent
years approaches using copula functions to estimate the joint event time distribution from
marginal distributions assuming a correlation structure between times to different types
of event were presented (Kaishev et al, 2007; Lo and Wilke, 2010; Chen, 2010), which
are mainly popular in the field of finance and insurance mathematics. These approaches
will not be discussed in this work, due to the non-identifiability problem mentioned above
and consequently the reliance on a correlation assumption, that cannot be verified using
observable data.

3.2.2 Competing risks as bivariate variables

An alternative approach to competing risks is consideration of a bivariate random variable
(T,D) with T being a random variable for the event time and D a random variable for the
event type. The competing risks process can then be interpreted as a special case of a multi-
state model (see e.g. Andersen and Keiding, 2012), leading to the intuitive definitions of
cumulative incidence functions and cause-specific hazard rates as presented in Sections 3.3.1
and 3.3.2. The analysis can be performed hazard-based without identifiability problems
and all measures can be estimated from observable data (Prentice et al, 1978). For each
individual i= {1, . . . , n} the couple of event time or last time known to be free of any event

COMPETING RISKS FRAMEWORK 14



3.3 Important measures in the competing risks setting

ti and a status variable indicating the type of event di ∈{1, . . . , K} or a censored event
time (di=0) is observed.
As the competing risks data are not represented by different random variables for the
times to possible event types, but by one variable providing the event time and one variable
indicating the type of event, the concept of statistical dependence between times to different
types of event does not apply for this approach (see discussion in Chapter 7.2 of Beyersmann
et al, 2012).

3.3 Important measures in the competing risks set-

ting

As in the competing risks setting individuals can fail from different event types, mea-
sures used for standard survival analysis with only one certain type of event have to be
adapted. In this section the most important and commonly used concepts and quantities
are described.

3.3.1 The cumulative incidence function

In the presence of competing risks the probability for occurrence of each event type k out
of the possible event types 1, ..., K up to a given time t can be described. That probability
is mostly called “cumulative incidence function” for event type k in the literature, and is
denoted as F k(t) in this work. So

F k(t) = P (T ≤ t, D= k), (3.2)

where T is a strictly positive random variable for the event time and D is a random
variable for the type of event. Some other names are existent in the statistical literature as
“crude event probability” (see e.g. Tsiatis, 2005; Lambert et al, 2010) or “subdistribution
function” (Resche-Rigon and Chevret, 2006; Pintilie, 2007). The name “subdistribution
function” is motivated by the fact, that F k(t) is not a real distribution function, as it does
not converge to one for t going to infinity, but to the overall probability for an event of
type k

lim
t→∞

F k(t) = P (D=k). (3.3)

For a given time t the cumulative incidence functions of all K event types sum up to one
minus the probability of being event-free up to time t, which is often called the overall
survivor function and is denoted as Sov.(t) here

Sov.(t) = 1−
K∑

k=1

F k(t). (3.4)

So for t going to infinity the cumulative incidence functions for all K types of event sum
up to one

lim
t→∞

K∑

k=1

F k(t) = 1. (3.5)
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In order to estimate the cumulative incidence function for event type k, the so called cause-
specific hazard function, which is introduced in the next section, has to be considered.
Non-parametric estimation of the cumulative incidence function is presented in Section
3.3.5. For convenience and in accordance with the majority of the statistical literature, the
cumulative event probability for an event of type k up to time t, denoted as F k(t), will be
called “cumulative incidence function” throughout this work.

3.3.2 The cause-specific hazard rate

As in standard survival analysis, hazard rates play an important role for the analysis of
competing risks data, as these can be estimated in the presence of censored observations.
The cause-specific hazard rate for event type k is the natural adaptation of the common
hazard rate shown in Equation 2.4, providing an individual’s probability for failing from
an event of type k in an infinitesimal small time interval t to t+∆t given he did not fail
from any event up to time t

λk(t) = lim
∆t→0

P (t ≤ T < t+∆t, D= k | T ≥ t)

∆t
. (3.6)

Considering mutually exclusive terminal events, the cause-specific hazards for all K event
types at time t sum up to the overall hazard rate for failing from any event at t

λov.(t) =

K∑

k=1

λk(t). (3.7)

In analogy to standard survival analysis the cumulative cause-specific hazard rate for event
type k at time t is the integral over the cause-specific hazard function from time zero to t

Λk(t) =

t∫

0

λk(s)ds. (3.8)

The overall survivor function Sov.(t), denoting the probability of being free from any event
up to time t, depends on the (cumulative) cause-specific hazard functions for all K types
of event, which sum up to the overall (cumulative) hazard rate

Sov.(t) = exp

(
−

K∑

k=1

Λk(t)

)
= exp

(
−Λov.(t)

)
. (3.9)

The relationship between the cumulative incidence function for event type k and the cause-
specific hazard functions can be expressed as

F k(t) =

t∫

0

λk(s)Sov.(s)ds =

t∫

0

λk(s) exp

(
−

K∑

l=1

Λl(s)

)
ds. (3.10)

As can be seen from Equation 3.10, the cumulative incidence function for event type k
depends on the cause-specific hazard functions for allK types of event, indicating that risks
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for all event types have an effect on the probability for an event of type k. A consequence
of that fact is, that in group comparisons a higher cause-specific hazard for an event of
type k for one group does not necessarily translate to a higher cumulative incidence of
that event. This issue is described in different articles (see e.g. Putter et al, 2007; Dignam
and Kocherginsky, 2008; Allignol et al, 2011) and is also presented in Section 3.3.4 of
this work in a discussion on differences between the cause-specific and the subdistribution
hazard rate, which is introduced in the following section, and in simulated examples for
hazard-based regression models in Section 4.3.

3.3.3 The subdistribution hazard rate

In order to define a “hazard-type” quantity that is directly linked to the cumulative in-
cidence function in the presence of competing risks, Gray (1988) introduced the so called
subdistribution hazard rate. The subdistribution hazard rate for event type k, denoted in
this work as γk(t), differs from the cause-specific hazard rate shown in Equation 3.6 by
the definition of its risk set. For the subdistribution hazard rate for event type k at time
t individuals that failed from an event other than k prior to t remain in the risk set

γk(t) = lim
∆t→0

P (t ≤ T < t+∆t, D= k | T ≥ t ∪ {T < t,D 6= k})

∆t
. (3.11)

The link between the cumulative incidence function and the subdistribution hazard is as
known from standard survival analysis (see Equation 2.9)

F k(t) = 1− exp
(
−Γk(t)

)
, (3.12)

with Γk(t) denoting the cumulative subdistribution hazard

Γk(t) =

t∫

0

γk(s)ds. (3.13)

Competing events do not have to be accounted for explicitly, as these are considered im-
plicitly in the adapted risk set. As γk(t) provides the properties of a hazard rate for the
subdistribution function F k(t), it is called subdistribution hazard.
Due to its direct relationship to the cumulative incidence function, the subdistribution
hazard became very popular in recent years. Different methods focussing on the subdis-
tribution hazard were proposed, as the widely used proportional subdistribution hazards
regression model introduced by Fine and Gray (1999), which is described in Section 4.2.
Some authors do not use an index for the subdistribution hazard, but only use it for the
event of interest, as the estimation of subdistribution hazards for different event types
is under discussion due to the risk set definition (see e.g. Beyersmann et al, 2012). For
convenience, the index for the type of event is denoted here for the subdistribution haz-
ard. Andersen and Keiding (2012) questioned the usefulness and the interpretability of the
subdistribution hazard due to the unintuitive procedure of keeping individuals that failed
from a competing event in the risk set for later timepoints.
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3.3.4 Relationship between cause-specific and subdistribution haz-
ard rate

The relationship between the cause-specific and the subdistribution hazard rate can be
derived analytically via the relationships to the cumulative incidence function shown in
Equations 3.10 and 3.12 (Beyersmann and Schumacher, 2007). A detailed derivation of
that relationship is presented by Beyersmann et al (2012). In the case of two possible
endpoints

λ1(t) = γ1(t)

(
1 +

F 2(t)

Sov.(t)

)
, (3.14)

with λ1(t) denoting the cause-specific hazard for the event of interest (k=1), γ1(t) the cor-
responding subdistribution hazard, F 2(t) the cumulative incidence function for the com-
peting event (k=2), and Sov.(t) the overall survivor function, providing the probability of
freedom from any event up to time t. As can be seen from Equation 3.14, the subdistribu-
tion hazard for event type k=1 is related to the cause-specific hazards of both event types,
as the cumulative incidence function for event type k=2 and the overall survivor function
depend on the cause-specific hazards for both types of event. Therefore, analysis of the
cause-specific and the subdistribution hazards will generally lead to different results in the
presence of competing risks.
In Figure 3.2 the cause-specific and the subdistribution hazard for an event of interest
are shown for various values of the cause-specific hazard for the competing event. For all
scenarios the cause-specific hazard for the event of interest was chosen to be λ1=0.10. The
cause-specific hazard for the competing event, which is indicated at the top of each picture,
was chosen to be:

a) λ2=0.01

b) λ2=0.05

c) λ2=0.10

d) λ2=0.25

Figure 3.2 reveals, that the difference between cause-specific and subdistribution hazard
depends on the risk for a competing event, which is driven by the cause-specific hazard
λ2(t). It follows from Equation 3.14 and from definition of the risk set in Equation 3.11 that
the cause-specific and the subdistribution hazard are equal in the absence of competing
risks, i.e. in the standard survival setting with one possible endpoint, and that they have
to approach the same value for t going to zero in the presence of competing risks. From
Equation 3.12 follows, that the subdistribution hazard has to converge to zero for t going
to infinity, as the cumulative incidence function approaches a value smaller than one in the
presence of competing risks, and therefore the cumulative subdistribution hazard function
has to converge to a finite value.
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cause-specific hazard at t̃ki is

λ̂k(t̃ki) =
dkt̃ki
Rt̃ki

. (3.15)

For timepoints without an observed event of type k, the nonparametric estimate of the
cause-specific hazard for event type k is zero.
The cumulative cause-specific hazard rate Λk(t) can be estimated analogously to Equation
2.7 considering only events of type k. The Nelson-Aalen estimator for the cumulative
cause-specific hazard function can be derived using the R package mvna (Allignol et al,
2008).

Estimating the subdistribution hazard rate

The subdistribution hazard rate can only be estimated in a similar way to the cause-specific
hazard as shown in Equation 3.15, when no censored observations are present. When an
event was observed for each subject, the subdistribution hazard at a timepoint t̃ki with an
observed event of type k can be estimated as

γ̂k(t̃ki) =
dkt̃ki
R∗

t̃ki

, (3.16)

where dkt̃ki again denotes the number of type k failures at t̃ki and R∗

t̃ki
is the adapted

risk set, including all subjects that did not fail from any of the K events up to time t̃ki
and all subjects that failed from an event other than k before t̃ki (see definition of the
subdistribution hazard in Equation 3.11). For all timepoints without an observed event of
type k, the nonparametric estimator for the subdistribution hazard returns zero.
In the presence of censored observations a potential censoring time has to be derived for
patients that failed from an event other than k, in order to obtain an unbiased estimate for
the subdistribution hazard for event type k. Estimation of the potential censoring time is
described in Gray (1988) and Fine and Gray (1999) for different scenarios of administrative
or non-administrative censoring. The estimation procedure in the presence of censored
observations will be discussed in more detail for the subdistribution hazards regression
presented in Section 4.2.

Estimating the cumulative incidence function

In order to estimate the cumulative incidence function, the overall survivor function shown
in Equation 3.9 and the cause-specific hazard rate for the event of interest k have to be
estimated in a first step. The overall survivor function can be estimated using the Kaplan-
Meier estimator (Kaplan and Meier, 1958) shown in Equation 2.3 treating failures from
any cause as events. An estimate for the cause-specific hazard rate can be obtained as
described in Equation 3.15. An estimate for the cumulative incidence function for event k
can be derived from estimates of these two measures using the following equation (see e.g.
Putter et al, 2007), assuming an ordered vector of event times with events of type k,

F̂ k(t) =
∑

i: t̃ki≤t

λ̂k(t̃ki) Ŝov.(t̃k(i−1)). (3.17)
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A step function is returned by the estimator for the cumulative incidence function, with
jumps at timepoints with an observed event of type k, and constant values for timepoints
without an observed event or with an observed competing event.
That estimator for the cumulative incidence function in a competing risks setting is a
special case of the Aalen-Johansen estimator for transition probabilities in multi-state
models (Aalen, 1978b). Using that equation, cumulative incidence functions for all K
types of event can be estimated separately. Different proposals for variance estimators
for the cumulative incidence function, either based on martingale theory (Pepe, 1991;
Korn and Dorey, 1992; Lin, 1997) or the multinomial normal distribution (Gaynor et al,
1993; Betensky and Schoenfeld, 2001), were presented in the literature. A comparison and
discussion of different variance estimators can be found in Braun and Yuan (2007) with a
special focus on small sample performances.

3.3.6 Illustrative example: Comparison of cause-specific and sub-
distribution hazard estimates

In Figure 3.3 nonparametric estimates of the cause-specific and the subdistribution haz-
ard rates (a) and the cumulative cause-specific and subdistribution hazard rates (b) are
compared for a simulated data example without censored observations, in order to illus-
trate differences between these quantities. The observed event times and the the risk sets,
needed for estimation of the cause-specific and the subdistribution hazards, as well as the
estimated hazard rates are shown in Table 3.1.

i ti di t̃1i d1t̃1i Rt̃1i R∗

t̃1i
λ̂1(ti) γ̂1(ti) Λ̂1(ti) Γ̂1(ti)

1 2 1 2 1 7 7 1
7
= 0.14 1

7
= 0.14 0.14 0.14

2 7 1 7 1 6 6 1
6
= 0.17 1

6
= 0.17 0.31 0.31

3 12 2 — — — — — — 0.31 0.31

4 14 1 14 1 4 5 1
4
= 0.25 1

5
= 0.20 0.56 0.51

5 18 2 — — — — — — 0.56 0.51

6 23 1 23 1 2 4 1
2
= 0.50 1

4
= 0.25 1.06 0.76

7 30 2 — — — — 1.06 0.76

Table 3.1: Fictive example data to illustrate differences in the estimation of cause-specific and
subdistribution hazards. Estimated hazard rates and cumulative hazard rates are also shown in
Figure 3.3.

The table shows:

• i: Index for the ordered event times

• ti: Observed event time

• di: Observed type of event

• t̃1i: Observed event times with an event of type k=1

• d1t̃1i : Number of events of type k=1 at t̃1i
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where Sk(t) can be estimated from the observed data, but cannot be interpreted as a
marginal survival probability in the “real” world (see discussion in Putter et al, 2007).
The näıve Kaplan-Meier estimator overestimates the true event probability in the presence
of competing risks, which can be seen in a comparison to the correct formula for estimation
of the cumulative incidence function,

1− Sk(t) =

t∫

0

λk(s) exp
(
−Λk(s)

)
ds

≥

t∫

0

λk(s) exp

(
−

K∑

l=1

Λl(s)

)
ds = F k(t)

(3.19)

with equality only valid, if λl(t)=0 for all l 6=k and all t, i.e. in the absence of competing
risks. In an example presented by Putter et al (2007) application of the näıve Kaplan-
Meier estimator lead to cumulative incidence functions for the two possible event types
that summed up to a value larger than one. This is shown here using data from a study
published by Essler et al (2013), investigating the time from the beginning of a hypo-
fractionated stereotactic body radiation therapy (SBRT) to either tumour-related death
or death from another cause in a population of 29 patients suffering from non-small cell
lung cancer (NSCLC) of stage I, that were not suitable for surgery. In the left column of
Figure 3.4 results of the näıve Kaplan-Meier estimator are presented for probabilities of
tumour-related death (first row) and death from other causes (second row). These lead to
an estimate for the probability of death from any cause, which was calculated as the sum of
the two former event probabilities, that was greater than one after 40 months of follow-up,
as competing risks were not considered adequately for estimation of the cumulative event
probabilities. In the right column of Figure 3.4 the according cumulative incidence func-
tions were estimated as shown in Equation 3.17, so for each timepoint t one minus the sum
of the cumulative incidence functions provides the value of the Kaplan-Meier estimator for
overall survival, which is shown in the picture in the bottom row of the right column.
In the presence of independence between the event times to different types of event and
independence between the event time distribution and the censoring distribution, assump-
tions that cannot be checked from observable data (see discussion on the latent failure time
approach in Section 3.2.1), Sk(t) can be interpreted as survivor function in a hypothetical
world, where the competing events were eliminated. The applicability and usefulness of
the näıve Kaplan-Meier estimator and its interpretation as marginal event time distribu-
tion in a hypothetical world without the competing events is widely discussed in statistical
and medical literature. This can be seen in a discussion on an Editorial Letter published
by Bodnar and Blackstone (2005) in the Journal of Heart Valve Disease encouraging ap-
plication of the Kaplan-Meier estimator for evaluation of the usefulness of tissue valves,
assessed by time to valve failure with death before valve failure as competing event. A
Letter to the Editor (Grunkemeier et al, 2006) questioning that approach was published
later in the same journal as well as an answer of the editors that still argued for the use of
the Kaplan-Meier estimator in that situation (Bodnar and Blackstone, 2006). A full article
on the topic was published one year later by Grunkemeier et al (2007) in another journal
intended for the same audience.
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3.4 The näıve Kaplan-Meier estimator

From a biological standpoint, some authors question the independence assumption in clin-
ical settings (Moeschberger and Klein, 1995; Crowder, 2001) and therefore discourage the
use of the Kaplan-Meier estimator in the presence of competing risks with an unknown
dependence structure. Andersen and Keiding (2012) recommend to “stick to this world”
for analysis and interpretation of competing risks data, and therefore argue against an
interpretation of the Kaplan-Meier estimate for a hypothetical world, but recommend pre-
sentation of cause-specific hazard rates and cumulative incidence functions.
Regardless of the interpretability of the Kaplan-Meier estimator as an estimator for the
marginal event time distribution in a hypothetical world, in most publications results from
the näıve Kaplan-Meier estimator are presented as an estimate for one minus the event
probability without discussion of hypothetically extinguishing competing events and with-
out questioning the independence assumption. This procedure returns biased estimates for
one minus the cumulative incidence function, since competing events are not considered
adequately, as discussed above.
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Chapter 4

Regression approaches for the
competing risks setting

Since the end of the 1970s several regression approaches for the competing risks setting were
introduced. The most commonly used approaches are the cause-specific hazards regression
proposed by Prentice et al (1978) and the subdistribution hazards regression introduced
by Fine and Gray (1999). Two other approaches are based on the factorisation of the
joint distribution of event times and event types into one marginal and one conditional
distribution. Larson and Dinse (1985) considered the product of the marginal event type
distribution and the conditional distribution of event times given the type of event. The
approach was later extended amongst others by Ng and McLachlan (2003), Escarela and
Bowater (2008), and Lau et al (2008). In the so called vertical modelling approach Nicolaie
et al (2010) proposed to use the product of the marginal event time distribution and the
conditional distribution of event types given the time of event, in order to obtain estimates
for relative hazard rates over the course of time.
In this section these regression approaches are described. Additionally, a computation
technique using pseudo-observations, which was introduced by Andersen et al (2003) and
Klein and Andersen (2005) for regression purposes in a competing risks setting, is sketched.
A summary of the different approaches with an application on a clinical data set was
published (Haller et al, 2013). Results of the data application are also presented in Section
8 of this work.

4.1 Cause-specific hazards regression

In the competing risks setting, as in common survival analysis, a measure of interest that
can be used in the presence of censored observation has to be considered. Prentice et al
(1978) proposed to estimate the effect of covariates on the cause-specific hazard rates. The
cause-specific hazards approach is appealing as these “completely determine the competing
risks process” (Beyersmann et al, 2009) and parameters can be estimated from observable
data using standard software.



4.1 Cause-specific hazards regression

4.1.1 Estimation of regression coefficients

Following the notation by Prentice et al (1978), for each individual i the data (ti, ji, δi,xi)
are observed, where ti is the observed time, ji is the observed cause of failure, δi is a
censoring indicator returning the value of zero for a censored observation and a value of
one if any event was observed, and xi is the vector of covariates, which is assumed to be
constant over time. For a censored observation an arbitrary value can be set for ji. The
likelihood function under independent censoring can be written as

L =

n∏

i=1

(
λji(ti|xi)

δi S(ti|xi)
)
=

=

n∏

i=1


λji(ti|xi)

δi

K∏

l=1

exp
(
−

ti∫

0

λl(s|xi)ds
)

 ,

(4.1)

which is an adaptation of the likelihood function used in standard survival analysis (see
Equation 2.16) considering the relationship between the overall survivor function and the
cause specific hazards shown in Equation 3.9.
Using the representation of competing risks data and covariates as a triple (ti, di,xi) with
di indicating the type of event (di ∈{1, . . . , K}) or a censored observation (di=0), the
likelihood function can be written equivalently as

L =

n∏

i=1

(( K∏

l=1

λl(ti|xi)
I(di=l)

)
S(ti|xi)

)
=

=

n∏

i=1



( K∏

l=1

λl(ti|xi)
I(di=l)

) K∏

l=1

exp
(
−

ti∫

0

λl(s|xi)ds
)

 .

(4.2)

The form of the likelihood function presented in Equations 4.1 or 4.2 leads to some impor-
tant implications, which are further discussed by Prentice et al (1978):

• The hazard functions and the regression coefficients are identifiable and can be esti-
mated from the observed data.

• The score function for estimation of regression coefficients for the event of interest
does not change, when all observed competing events are treated like censored obser-
vations. Therefore, standard methods for estimation of hazard rates or hazard ratios
can be applied treating competing events as censored observations.

• Covariate effects on cause-specific hazards for different event types can be estimated
in separate regression models.

When regression models for all event types are fit to the data in order to model the complete
competing risks process, different sets of covariates might be considered for different types
of event, denoted by an according index. Throughout this work it is assumed, that the set
of covariates is the same for all K types of event.
Using this regression model allows estimation of covariate effects on the cause-specific
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4.1 Cause-specific hazards regression

hazards. Due to dependence of the cumulative incidence function on the cause-specific
hazards for all possible types of event (see Equation 3.10), an effect on the cause-specific
hazard of a certain event type does not necessarily translate into an effect on the event
probability, represented by the cumulative incidence function. This fact is further discussed
and illustrated in Section 4.1.2, describing how the cumulative incidence function can be
estimated from proportional cause-specific hazards regression models for a given vector
of covariates, and in Section 4.3 discussing differences between the cause-specific and the
subdistribution hazards regression model, which is presented in Section 4.2.
Prentice et al (1978) proposed to consider a Cox-type regression model (Cox, 1972) to
estimate covariate effects on the cause-specific hazard rates, assuming proportional cause-
specific hazards

λk(t|x) = λk;0(t) exp(β
⊤
k x). (4.3)

Here λk,0(t) describes the cause-specific baseline hazard for event type k, which is considered
as high-dimensional nuisance parameter, when covariate effects are estimated, x is the P -
dimensional vector of covariates and βk is the vector of regression coefficients of length P
for the kth type of event.
The vector t̃k = (t̃k1, . . . , t̃kNk

) represents the Nk observed failure times with an event of
type k. It is assumed, that at each of these timepoints one individual fails from an event of
type k. Methods for handling tied event times are e.g. discussed in Therneau and Grambsch
(2000).
When a Cox proportional hazards model is used to assess the covariate effects on the
cause-specific hazards, the partial likelihood can be denoted as

PL =
K∏

k=1

Nk∏

i=1

exp(β⊤
k x(i))∑

j∈Rt̃ki

exp(β⊤
k xj)

, (4.4)

with x(i) being the vector of regression coefficients of the individual failing from event k
at time t̃ki and Rt̃ki

denoting the risk set at t̃ki. Due to the factorization of the partial
likelihood, the regression coefficients for the different types of event can be estimated from
separate models, if no common effects or baseline hazards are assumed. Estimation of
regression coefficients can be conducted numerically using a Newton-Raphson algorithm.
The regression coefficients βk,1, . . . , βk,P , can be interpreted as cause-specific log-hazard
ratios for event type k.
In order to estimate the cumulative incidence function from a Cox model for the cause-
specific hazards, the cause-specific baseline hazard functions λk;0(t) have to be estimated
for all event types k= {1, . . .K}. Marubini and Valsecchi (1995) present a generalized
version of the Breslow estimator (Breslow, 1972) for the baseline hazard in a proportional
hazards model

λ̂k;0(t̃ki) =
dkt̃ki∑

j∈Rt̃ki

exp(β̂⊤
k xj)

, (4.5)

where Rt̃ki
describes the risk set at time t̃ki, dkt̃ki is the number of events of type k at

time t̃ki and β̂k is the estimate for the vector of regression coefficients for event type k
from a proportional cause-specific hazards regression model. For each timepoint t without
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4.1 Cause-specific hazards regression

an observed event of type k, the estimate for the cause-specific baseline hazard is zero.
Consequently, the cumulative cause-specific baseline hazard rate for event type k can be
estimated as

Λ̂k;0(t) =
∑

i: t̃ki≤t

dkt̃ki∑
j∈Rt̃ki

exp(β̂⊤
k xj)

. (4.6)

4.1.2 Predicting the cumulative incidence function

The cumulative incidence function for a certain type of event can be estimated according
to Equation 3.17, using the Aalen-Johansen estimator under consideration of the covariate
information. Assuming the vector of event times with an observed event of type k, denoted
as t̃k = (t̃k1, . . . , t̃kNk

), to be ordered, the estimator for the cumulative incidence function
of event type k can be written as

F̂ k(t|x) =
∑

i: t̃ki≤t

λ̂k(t̃ki|x) Ŝ(t̃k(i−1)|x)

=
∑

i: t̃ki≤t

λ̂k;0(t̃ki) exp(β̂
⊤
k x) exp

(
−

K∑

l=1

Λ̂l(t̃k(i−1)|x)

)

=
∑

i: t̃ki≤t

λ̂k;0(t̃ki) exp(β̂
⊤
k x) exp

(
−

K∑

l=1

Λ̂l;0(t̃k(i−1)) exp(β̂
⊤
l x)

)
.

(4.7)

While competing events can be treated like censored observations for the estimation of
cause-specific hazard rates, competing events have to be considered adequately for the es-
timation of cumulative incidence functions. As can be seen in Equation 4.7, the cumulative
incidence function for event type k depends on the cause-specific hazards of all event types,
as previously discussed in Section 3.3.2. Therefore, an observed effect on the cause-specific
hazard does not necessarily translate into an effect on the cumulative incidence function.
This is further discussed in Section 4.3.

4.1.3 Extensions - further reading

A proportional cause-specific hazards model was presented here, as the model originally
introduced by Cox (1972) for common event time analysis is well known and the most
frequently used regression model for standard survival analysis as well as for competing
risks analysis. Nevertheless, a variety of other approaches or extensions were proposed in
the literature.
Lunn and McNeil (1995) presented data duplication methods allowing joint estimation of
regression coefficients in Cox-type cause-specific hazards regression models for different
types of event and to test for differences in regression coefficients for different event types
using standard survival software. An extension of the Cox regression model considering
and testing time-dependence of covariate effects was proposed by Sun et al (2008). Belot
et al (2010) proposed to use smooth cubic regression splines in order to obtain flexible
models allowing different shapes of cause-specific baseline hazards for different event types
and time-dependent covariate effects.
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4.2 Subdistribution hazards regression

4.1.4 Available software

The approach presented above, estimating regression coefficients for different event types
from separate models, is easily applicable using standard survival software, treating com-
peting events as censored observations. This can be obtained using the coxph function of
the survival package in R (Therneau, 2011) or PROC PHREG in SAS. Standard methods
to check model assumptions, as plotting Schoenfeld residuals (Schoenfeld, 1982) or Martin-
gale residuals (see e.g Therneau and Grambsch, 2000), can be conducted. The analysis of
competing risks data focussing on the cause-specific hazards can also be performed using
the timereg package in R. The use of the package in a competing risks setting is described
in Scheike and Zhang (2011).
For comparison of cause-specific hazard rates between a discrete number of groups with-
out further covariate adjustment, the standard logrank test, treating competing events as
censored observations, can be applied.

4.2 Subdistribution hazards regression

In 1999 Fine and Gray developed a regression model for time-to-event data in the presence
of competing risks, that focusses on the subdistribution hazard rate. It is known under
the name Fine and Gray regression model or also – which might be misleading – under the
name competing risks regression.
In their original article published in 1999 Fine and Gray proposed to use a Cox-type
regression model for the subdistribution hazard for an event of interest, here k=1, assuming
proportional subdistribution hazard rates

γ1(t|x) = γ1;0(t) exp(η
⊤
1 x). (4.8)

γ1(t|x) denotes the subdistribution hazard for the event of interest depending on the vector
of covariates x, γ1;0(t) is the baseline subdistribution hazard for a (possibly fictitious)
individual with all covariates equalling zero, and η1 is the vector of regression coefficients.
As the competing events are incorporated implicitly in the adapted risk set (see Section
3.3.3) only a model for the event of interest k=1 is presented. In general, the proportionality
assumption cannot hold true for separate subdistribution hazards regression models for
different types of event (see e.g. the discussion in Chapter 5.3.4 of Beyersmann et al,
2012). Grambauer et al (2010) investigated the impact of model misspecification. They
demonstrated that a subdistribuiton hazards regression model has a proper interpretation,
even when the subdistribution hazards were falsely assumed to be proportional. The
estimated regression coefficients can be interpreted as average subdistribution log-hazard
ratios. It must be considered, that in this case the average subdistribution hazard ratio
will depend on the length of follow-up (see e.g. Schemper et al, 2009).

4.2.1 Estimation of regression coefficients

For estimation of the regression coefficients in a subdistribution hazards regression model a
different risk set is needed than for to the cause-specific hazards regression model described

REGRESSION APPROACHES FOR THE COMPETING RISKS SETTING 30



4.2 Subdistribution hazards regression

in Section 4.1. While estimation of the regression coefficients is straightforward when com-
plete data are observed for all individuals and under administrative censoring, the esti-
mating procedure becomes more complicated for incomplete data with non-administrative
censoring, in order to obtain unbiased estimates. As in the original article by Fine and
Gray (1999), the different scenarios are described separately.

Completely observed data

When complete data are available, i.e. event time and type of event were observed for each
individual, the likelihood for the proportional subdistribution hazards regression model
can be written as shown in Equation 4.4, but an adapted risk set R∗

t̃ki
is considered

R∗

t̃ki
= {j: (tj ≥ t̃ki) ∪ (tj ≤ t̃ki ∩ dj 6= k)}, (4.9)

including all individuals that are still under observation at t̃ki, that means all individuals,
who have not failed from any cause before t̃ki, and all individuals, that have failed from an
event other than k before time t̃ki. Estimation of regression coefficients can be conducted
as described for the cause-specific hazards regression, but using the adapted risk set. The
baseline subdistribution hazard can be estimated as described in Equation 4.5 also using
the adapted risk set, additionally including individuals that have failed from a competing
event before the timepoint under investigation.

Administrative censoring

Administrative censoring, which is called “censoring complete data” in the article by Fine
and Gray, means that individuals are only censored when they are still alive at the end of
the study, but no drop-outs or losses to follow-up are present. As the maximum follow-
up time is known for each individual at trial allocation, the potential censoring time c
is also known for individuals that experienced any event during the trial. When only
administrative censoring is present, the risk set used for parameter estimation is defined
as

R∗

t̃ki
= {j: (min(cj , tj)≥ t̃ki) ∪ (tj ≤ t̃ki ∩ dj 6= k ∩ cj ≥ t̃ki)}. (4.10)

An individual j that either died from an event of interest (k=1) before the timepoint under
investigation t̃ki, was censored event-free before t̃ki, or failed from a competing event before
t̃ki, but has a potential censoring time cj smaller than t̃ki, is removed from the risk set.
So the risk set Rt̃ki

consists of all individuals that are still under observation at t̃ki or that
failed from an event other than k before t̃ki, but have a potential follow-up time larger
than t̃ki.

Incomplete data

In the presence of incomplete data, i.e. when individuals dropped out of the study or
were lost to follow-up (possibly additionally to administrative censoring), Fine and Gray
proposed to use a weighted score function for parameter estimation, in order to obtain
unbiased estimates for the regression coefficients η1. For construction of the score function
the inverse probability of censoring weighting (IPCW) approach introduced by Robins and
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4.2 Subdistribution hazards regression

Rotnitzky (1992) is used. The score function, that is maximized in order to obtain the
maximum partial likelihood estimates, is weighted using time-dependent weights based on
the Kaplan-Meier estimates for the survivor function of the censoring distribution. Each
individual i contributes to the score function with the weight

wi(t) = ri(t)
Ĝ(t)

Ĝ
(
min(ti, t)

) , (4.11)

with ri(t) indicating knowledge of the vital status of individual i at time t, i.e. ri(t) is one,
if individual i is known to be alive at time t or if it is known that individual i had failed
before t from any cause of failure, and ri(t) is zero, if individual i was censored before
time t. Ĝ(t) is the Kaplan-Meier estimate for the survivor function of the censoring time
distribution at time t, that is derived from observable data. The weighted contribution of
each individual is also presented and discussed in Beyersmann et al (2012).
Fine and Gray (1999) derived that their presented procedure provides consistent estimates
for the subdistribution log-hazard ratios. Formulation and derivation of the variance-
covariance matrix can also be found there.

4.2.2 Predicting the cumulative incidence function

The predicted cumulative incidence function for a given vector of covariates x can be
obtained from the estimated regression coefficients using the relationship between the sub-
distribution hazard and the cumulative incidence function (Equation 3.12) without further
consideration of effects on the competing events

F̂ 1(t|x) = 1− exp
(
−Γ̂1(t|x)

)

= 1− exp


−

t∫

0

γ̂1(s|x)ds




= 1− exp


−

t∫

0

γ̂1;0(s) exp(η̂
⊤
1 x)ds


 .

(4.12)

Estimation of a confidence band for the cumulative incidence function derived from a
proportional subdistribution hazards model is described in detail in Fine and Gray (1999).

4.2.3 Extensions - further reading

In recent years different extensions of the proportional subdistribution hazards model were
introduced. Latouche et al (2005) and Beyersmann and Schumacher (2008) investigated
and discussed the incorporation of time-dependent covariates into a subdistribution haz-
ards regression model. A frailty subdistribution hazards regression model was introduced
by Katsahian et al (2006) in order to deal with clinical data collected in a multicentre
study assuming a random centre effect. Another subdistribution hazards model for cor-
related data was proposed later by Dixon et al (2011). Geskus (2011) and Zhang et al
(2011) proposed extensions allowing for left-truncated data. Estimation of the regression
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coefficients in a proportional subdistribution hazards model using a multiple imputation
approach was investigated by Ruan and Gray (2008). The multiple imputation approach
was also performed drawing additional bootstrap variables to account for the uncertainty
in the Kaplan-Meier estimate of the censoring time distribution. Both approaches revealed
similar results, which were also comparable to results obtained from the IPCW approach.

4.2.4 Available software

A Fine and Gray regression model assuming proportional subdistribution hazards can be
estimated in the statistical software packages R and SAS . The Fine and Gray regression
is included in the R library cmprsk provided by Gray (2010) and can be performed using
the function crr, or in the library timereg (Scheike and Martinussen, 2006; Scheike and
Zhang, 2011) as a special case in the function comp.risk. A macro called %PSHREG for
proportional and non-proportional subdistribution hazards regression is available in SAS.
The multiple imputation approach by Ruan and Gray (2008), mentioned in Section 4.2.3,
is implemented in the R library kmi (Allignol, 2011).

4.3 Differences between cause-specific and subdistri-

bution hazards regression

The two hazard-based regression approaches, the cause-specific and the subdistribution
hazards regression, are the most popular methods for analysis of competing risks data
in medical settings. Due to the similarity of the approaches, the regression coefficients
obtained from the regression models are often interpreted in an equal manner without
considering that the methods focus on different quantities, namely either the cause-specific
or the subdistribution hazard. Depending on the amount of competing events and on the
covariate effects on the competing events, the two approaches might provide substantially
different regression coefficients, as the cause-specific hazards regression aims on the in-
stantaneous risk, whereas the subdistribution hazard is directly linked to the cumulative
incidence function. These differences are displayed and discussed for some simulated ex-
amples. Other illustrations can be found in Putter et al (2007), Allignol et al (2011), or
Dignam et al (2012).
For each scenario competing risks data with two possible endpoints, one event of inter-
est (k=1) and one competing event (k=2), with cause-specific hazards depending on one bi-
nary covariate with groups called A (X=0) and B (X=1) were generated for 10,000 subjects.
Time-constant cause-specific hazard rates were defined for both groups, so the assumption
of proportionality holds for the cause-specific hazards, leading to time-independent cause-
specific hazard ratios. For convenience, only administrative censoring after five years was
considered. Numbers of patients at risk are displayed under the corresponding figures for
both groups to illustrate the influence of competing events on the risk set.
The cause-specific hazard ratio and the subdistribution hazard ratio will generally be dif-
ferent and proportionality for one of these measures contradicts proportionality for the
other one. For analysis of the simulated data, proportional hazards regression models
for the cause-specific and the subdistribution hazards as described in Section 4.1 and 4.2
were applied, although the assumption of proportionality is violated for the subdistribution
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hazards model. The estimated subdistribution hazard ratio can be interpreted as average
subdistribution hazard ratio as discussed before (see Latouche et al, 2007; Grambauer et al,
2010; Hjort, 1992).

Scenario 1
In the first scenario the standard survival model with one possible endpoint is shown, i.e.
λ2(t|X)=0 for both groups. Cause-specific hazard rates for k=1, which is the only possi-
ble type of failure in that case, were chosen to be λ1(t|X=0)=0.2 and λ1(t|X=1)=0.4,
translating to a hazard ratio of exp(β1) =HRk=1=2. As no competing risks are present,
cause-specific and subdistribution hazards and consequently cause-specific and subdsitri-
bution hazard ratios are equal in this case. The cumulative incidence functions for the
event of interest, displayed in Figure 4.1 (a), are monotonously linked to the corresponding
hazard functions as described in Section 2. In the simulated data example with 10,000
subjects (5,000 per group) a hazard ratio of exp(β̂1) = 2.01 was estimated.

Scenario 2
In a second example the difference between the regression coefficients estimated from a
proportional cause-specific hazards and a proportional subdistribution hazards regression
model in a scenario with two possible endpoints, but a group difference only for the event
of interest, was investigated. The cause-specific hazards for the event of interest were
chosen to be λ1(t|X=0)=0.2 and λ1(t|X=1)=0.4, so a cause-specific hazard ratio of 2
was expected for the event of interest. For the competing event (k=2) the hazard rates
were chosen to be equal for both groups λ2(t|X=0)=λ2(t|X=1)=0.3, implying no group
effect on the risk for the competing event. As was to be expected, the estimated cause-
specific hazard ratio for the event of interest was close to 2, namely exp(β̂1) = 2.01, the
estimated subdistribution hazard ratio for the event of interest was exp(η̂1) = 1.81, which
is slightly smaller than the estimated cause-specific hazard ratio due to the different risk
sets used. The estimated cumulative incidence functions for both groups are shown in
Figure 4.1 (b). The values of the estimated cumulative incidence functions are smaller
than in the first example, as less events of interest were observed due to the presence of
competing events, which can also be seen by the smaller numbers of individuals under risk
at given timepoints. As the cause-specific hazard for the competing event is the same for
both groups, the estimated cumulative incidence functions do not cross.

Scenario 3
In the third scenario the cause-specific hazards for the event of interest (k=1) for both
groups were set as in the previous scenarios, giving a cause-specific hazard ratio for the
event of interest of exp(β1) =HRcs

k=1=2. The hazard ratio for the competing event (k=2)
was defined to be even larger with the cause-specific hazard in group B being 0.8 and the
hazard for group A being 0.2, translating a cause-specific hazard ratio for the competing
event of exp(β2) =HRcs

k=2=4. That scenario corresponds to an illustration presented by
Putter et al (2007). The cumulative incidence functions for event k=1 are displayed in
Figure 4.1 (c). Due to the higher amount of competing events in group B (X=1) compared
to group A (X=0), the number of patients at risk is decreasing more slowly in group A.
Therefore, a higher incidence of events of interest was observed in group A, although
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patients of group B had a higher cause-specific hazard for experiencing an event of type
k=1. In that situation the higher cause-specific hazard of group B compared to group A
does not translate into a higher incidence of events of type 1 in group B for late timepoints.
Analysis of the simulated data gave an estimated cause-specific hazard ratio of 1.99, but a
subdistribution hazard ratio of 0.82, revealing different signs of the regression coefficients.
The covariate effect on the subdistribution hazard has to be interpreted as time-averaged
effect, since the assumption of proportional subdistribution hazards is violated. In the
subdistribution hazards regression model, regression coefficients are directly linked to the
cumulative incidence function. Since the subdistribution hazard for the event of interest is
higher for group A than for group B for most timepoints, a higher average subdistribution
hazard for group A is estimated, translating to an average subdistribution hazard ratio
smaller than one. Cause-specific hazards regression, representing the covariate effect on
the instantaneous risks, and subdistribution hazards regression, showing the effect on the
cumulative incidence function, lead to different conclusions regarding the covariate effect
on the event of interest.

Scenario 4
In a fourth scenario the setting was chosen similar to Scenario 3, but with a much lower
cause-specific baseline hazard for the competing event (λ2(t|X=0)=0.05, λ2(t|X=1)=0.2),
leading to a smaller amount of observed events of type k=2. In the simulations 6029 events
of interest were observed (2870 in group X=0, 3159 in group X=1), but only 2297 individ-
uals failed from a competing event (704 in group X=0, 1593 in group X=1). As was to be
expected for that case, the difference between estimated cause-specific and subdistribution
hazard ratios was smaller than in Scenario 3 with exp(β̂1) = 1.95 and exp(η̂1) = 1.28. The
estimated cumulative incidence functions obtained from the simulated dataset are shown
in Figure 4.1 (d).

Scenario 5
The cause-specific hazard rates for the event of interest were chosen to be equal for both
groups, leading to a cause-specific hazard ratio of one (λ1(t|X=0)=0.4, λ1(t|X=1)=0.4,
exp(β1) =HRcs

k=1=1). For the competing event a cause-specific hazard ratio of exp(β2) = 3
was chosen for the simulation (λ2(t|X=0)=0.1, λ2(t|X=1)=0.3). The corresponding cu-
mulative incidence functions are displayed in Figure 4.1 (e). Due to the different risks for
the competing event, leading to a higher number of competing events in group B than in
group A, the number of patients at risk decreases faster in group B. Therefore, a higher in-
cidence of events of interest was observed in group A compared to group B. A cause-specific
hazard ratio of 1.03 was estimated, whereas subdistribution hazards regression revealed a
hazard ratio of 0.70, since the cumulative incidence curves differ between both groups. In
such a situation careless interpretation of the subdistribution hazards regression coefficient
might lead to biological implausible conclusions, interpretation of the cause-specific haz-
ards regression coefficient for the event of interest, ignoring the effect on the competing
event, will miss important information on the group difference regarding the other type of
event and consequently on the event probabilities for the event of interest.
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Scenario 6
The cause-specific hazard ratio for both types of event were chosen to be of opposite direc-
tion with (λ1(t|X=0)=0.2, λ1(t|X=1)=0.4, exp(β1) =HRcs

k=1=2) and (λ2(t|X=0)=0.4,
λ2(t|X=1)=0.2, exp(β2) =HRcs

k=2=0.5). As this leads to a difference in the estimated cu-
mulative incidence functions for k=1, which are shown in Figure 4.1 (f), that is larger than
in the absence of competing events, the estimated subdistribution hazard ratio is larger
than the estimated cause-specific hazard ratio with exp(η̂1) = 2.64 and exp(β̂1) = 2.06. Due
to the opposite direction of the cause-specific hazard ratios for both event types, leading
to the same overall hazard, which is defined as the sum of the cause-specific hazards for
both types of event as described in Equation 3.7, the number of patients at risk, denoted
under the figure, are similar in both groups for all considered timepoints.

Summary and discussion of simulation results
The simulations described above revealed, that substantial differences in the results of
cause-specific and subdistribution hazards regression may be present in certain scenarios.
Careless interpretation of the estimated regression coefficients may lead to wrong conclu-
sions regarding associations between covariates and risks or event probabilities. Therefore,
investigators should be aware of differences between cause-specific hazards and subdistri-
bution hazards regression to avoid misuse of the methods and misinterpretation of obtained
results. Beyersmann et al (2007) applied both regression models to a real data example for
investigation of occurrence of blood stream infection during neutropenia after peripheral
blood stem-cell transplantation, and compared and discussed differences in the methods
and in the obtained results. Latouche et al (2013) recommended to present covariate effects
obtained from cause-specific hazards regression models for all possible types of event and
from a subdistribution hazards regression model for the event of interest, accompanied by
estimates of the cumulative incidence functions, to assess whether there is a direct effect of
the covariate of interest on the cumulative incidence function (as e.g. in Scenario 2) or an
indirect effect caused by an effect on the competing event(s) (as in Scenario 5). Presenta-
tion of results obtained from the different regression models and display of the cumulative
incidence functions should avoid pitfalls and possible misinterpretations discussed in the
examples above.
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4.4 The mixture model approach

4.4.1 Background and notation

An alternative approach for the analysis of time-to-event data in the presence of competing
risks was introduced by Larson and Dinse in 1985. They proposed to factorize the joint
distribution of event time and type of event, that cannot be estimated from observable
data, into the marginal event type distribution and the conditional distribution of event
times given the type of event

P (D, T ) = P (D)P (T |D), (4.13)

where D is a random variable for the type of event and T a random variable for the event
time. In this work quantities of the conditional event time distributions will be denoted as
follows:

• fk(t) = f(t|D=k) is the density function of the conditional event time distribution
given an individual failed from an event of type k.

• F k(t) =F (t|D=k) is the cumulative density function for the conditional event time
distribution given an event of type k, which is a proper distribution function with
lim
t→0

F k(t) = 0 and lim
t→∞

F k(t) = 1 for all event types k= {1, . . . , K}.

• Sk(t) =S(t|D=k) is the survivor function of the conditional event time distribution
given an event of type k, equalling 1−F k(t).

• hk(t) =h(t|D=k) is the hazard function of the conditional event time distribution.

• Hk(t) =H(t|D=k) =
∫ t

0
h(s|D=k)ds is the cumulative hazard function of the condi-

tional event time distribution.

The marginal event type probability P (D=k) will be denoted as πk. In the case of two
possible types of event π2 = 1−π1.
The cumulative incidence function for event type k can be derived from a mixture model
as

F k(t) = πk F k(t). (4.14)

The overall survivor function, representing an individual’s probability of being free from
any event up to time t, is

Sov.(t) =

K∑

k=1

πk Sk(t). (4.15)

For estimation of a mixture model, assumptions for the conditional event time distributions
have to be made. Different parametric and semi-parametric approaches were proposed in
the literature, some of which are presented and discussed in Sections 4.4.2 and 4.4.3.
Generally, parameter estimation in the mixture model approach is performed by numerical
maximization of the likelihood or the log-likelihood function. The contribution of individual
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i to the mixture model likelihood in the case of K possible types of event and without
explicit notation of covariate effects can be denoted as

Li =
(
π1 f1(ti)

)I(di=1)

×
(
π2 f 2(ti)

)I(di=2)

× . . .

×
(
πK fK(ti)

)I(di=K)

×
(
π1 S1(ti) + π2 S2(ti) + . . .+ πK SK(ti)

)I(di=0)
=

=
K∏

k=1

(
πk fk(ti)

)I(di=k)

(
K∑

k=1

πk Sk(ti)

)I(di=0)

,

(4.16)

with di=0 indicating a censored observation. Usually parameters are estimated by maxi-
mization of the log-likelihood

ll = ln(L) =

=
n∑

i=1

[
K∑

k=1

I(di=k)
(
ln(πk) + ln

(
fk(ti)

))
+ I(di=0) ln

( K∑

k=1

πk Sk(ti)

)]
,

(4.17)

applying a Newton-Raphson-type or an expectation-maximization (EM) algorithm.
The influence of covariates on the event type probabilities and on the conditional event
time distributions can be incorporated by regressing on parameters of the event type dis-
tribution, e.g. using a multinomial logistic regression model (see e.g. Fahrmeir and Tutz,
2001), and on parameters of the conditional event time distributions, which is further dis-
cussed in the following sections. While the set of covariates assumed to influence event
type probabilities and conditional event time distributions, given the type of event, do not
have to be same, the set of covariates is assumed not to vary here, so no additional index
for the vector of covariates x will be used.
Different parametric mixture models will be presented in Section 4.4.2, namely a mixture
model using piecewise exponential distributions for the conditional event times as originally
proposed by Larson and Dinse and mixture models assuming the conditional event times
to follow exponential, Weibull, or generalized gamma distributions, which were introduced
for standard survival analysis in Section 2.4.
Lau et al (2011) presented, how cause-specific and subdistribution hazards and conse-
quently hazard ratios can be estimated from a mixture model. This will be described in
Section 4.5. A new proposal for a mixture model using penalized spline functions, allowing
flexible estimation of conditional hazard rates, will be presented in Section 5. The newly
proposed approach was compared to the parametric mixture models assuming conditional
event times to follow Weibull or generalized gamma distributions in a simulation study,
regarding the estimation of cause-specific and subdistribution hazards with a special focus
on numerical stability of the estimating procedures. The simulation study and the results
are described and discussed in Section 7.
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4.4.2 Parametric mixture models

Piecewise exponential mixture model

In their original article published in 1985, Larson and Dinse considered a piecewise ex-
ponential distribution for the conditional event times. In a piecewise exponential model,
which was described for the common survival setting by Friedman (1982), the hazard rate
is assessed for M different time intervals and is assumed to be constant in each interval

hk(t) = exp(αk,m) for all t in interval m, m= {1, . . . ,M}, (4.18)

with αk,m representing the log-hazard rate in time interval m of the conditional event time
distribution for a given event of type k.
To incorporate effects of covariates on the event type probabilities and the event time
distributions for a given type of event, Larson and Dinse proposed to use a multinomial
logistic regression model for the marginal event type distribution and to regress on the
piecewise constant hazard rates. The marginal probability for an event of type k, depending
on a set of covariates x including an intercept, can be denoted as

P (D=k|x) = πk(x) =
exp(µ⊤

kx)∑K
l=1 exp(µ

⊤
l x)

, (4.19)

where µK is set to be a vector of zeros to avoid redundancies.
In the case of two possible types of event (K=2), the probability for an event of type k=1
can be expressed as

P (D=1|x) = π1(x) =
exp(µ⊤x)

1 + exp(µ⊤x)
(4.20)

and the probability for an event of type k=2 as

P (D=2|x) = π2(x) =
1

1 + exp(µ⊤x)
. (4.21)

Covariate effects on the conditional event time distributions can be considered by mod-
elling the log-hazard rates, e.g. via αk,m=β⊤

k,mx.
Larson and Dinse presented an EM algorithm for joint estimation of the regression coeffi-
cients from the logistic regression model and the piecewise exponential regression models.
Although the piecewise exponential model appears attractive due to its flexibility and ease
of interpretation, its use is often questioned due to the biologically implausible jumps of the
hazard function at certain timepoints. Moreover, the results of the piecewise exponential
approach strongly rely on the number and spacing of the considered time intervals.

Exponential mixture model

When the conditional event times are assumed to follow exponential distributions, the
conditional hazard rates hk(t) are assumed to be constant over time. The exponential
distribution is described in Section 2.4.1 for the standard survival setting with one possible
endpoint and its density and survival function are defined in Equations 2.18 and 2.19.
When no covariate effects are investigated, only one parameter, namely an estimate for the
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conditional hazard rate or the conditional log-hazard rate, respectively, has to be derived
for definition of each conditional event time distribution. The log-likelihood for a mixture
model for two possible types of event without consideration of covariates, assuming the
conditional event times to follow exponential distributions, can be denoted as

ll =
n∑

i=1

[
I(di=1)

(
ln(π1) + ln(λ1)− λ1ti

)
+

I(di=2)
(
ln(1−π1) + ln(λ2)− λ2ti

)
+

I(di=0)
(
ln
(
π1 exp(−λ1ti) + (1−π1) exp(−λ2ti)

))]
.

(4.22)

To assess the influence of covariates of interest, a logistic regression model as defined in
Equation 4.19 can be used to model covariate effects on the marginal event type distribu-
tion. The covariate influence on the conditional event time distribution can be estimated
by modelling the conditional hazard rate

hk(t|x) = exp
(
β⊤
k x
)
, (4.23)

where x is the vector of covariates with an intercept term and βk is the vector of regression
coefficients, representing the conditional log-hazard ratio for a given event of type k. When
P covariates are considered, (K−1) × (P+1) coefficients have to be estimated for the
marginal event type distribution and K× (P+1) coefficients for the conditional event time
distributions resulting in a total number of (2K−1)× (P+1) parameters.

Weibull mixture model

The Weibull distribution, as defined in Section 2.4.2 with density and survivor functions as
presented in Equations 2.21 and 2.22, is a two-parameter event time distribution allowing
more flexible hazard functions than the one-parameter exponential distribution. In the
absence of covariates the log-likelihood for a mixture model with conditional event times
following Weibull distributions can be written for two possible types of event as

ll =

n∑

i=1

[
I(di=1)

(
ln(π1) + ln(λ1) + ln(α1) + (α1−1)

[
ln(λ1) + ln(α1)

]
− (λ1ti)

α1

)
+

I(di=2)
(
ln(1−π1) + ln(λ2) + ln(α2) + (α2−1)

[
ln(λ2) + ln(α2)

]
− (λ2ti)

α2

)
+

I(di=0)
(
ln
(
π1 exp(−(λ1ti)

α1) + (1−π1) exp(−(λ2ti)
α2)
))]

.

(4.24)

Covariate influence on the event type probabilities will be assessed as described before. In a
Weibull regression model the influence of covariates on the parameters λk can be assessed as
in the exponential model, with the shape parameters αk not depending on covariate values.
Additionally, the covariate effect on parameters αk can be assessed, allowing more flexible
conditional event time distributions, but relying on more parameters to be estimated. In
a Weibull mixture model, regressing on the marginal event type distribution and on the
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parameters λk of the conditional event time distributions, (K−1)× (P+1) + K× (P+1)+
K = (2K−1) × (P+1) + K parameters have to be estimated. If the covariate influence
on the shape parameters αk is also modelled, the number of parameters to be estimated
increases to (K−1)× (P+1) + K × (P+1) + K × (P+1) = (3K−1)× (P+1).

Generalized gamma mixture model

In their article on the estimation of cause-specific and subdistribution hazard rates and
hazard ratios from a mixture model, Lau et al (2011) propose to use a flexible parametric
survival distribution as the three-parameter generalized gamma distribution. In this work
the parametrization of the generalized gamma distribution that is considered by Lau et al
and was investigated and discussed by Cox et al (2007) is used. The density function and
the survivor function are shown in Section 2.4.3 in Equations 2.24 and 2.25. The log-
likelihood function to be maximized in order to obtain parameter estimates for a mixture
model, assuming the conditional event times to follow generalized gamma distributions, is

ll =
n∑

i=1

[
I(di=1)

(
ln(π1) + ln(|ν1|)− ln(α̃1)− ln(ti)− ln

(
Γ(ν−2

1 )
)
+

+ ν−2
1

[
ln(ν−2

1 ) +
ν1
α̃1

(
lnλ1 + ln(ti)

)
− ν−2

1 (λ1 ti)
ν1/α̃1

])
+

+(I(di=2)
(
ln(1−π1) + ln(|ν2|)− ln(α̃2)− ln(ti)− ln

(
Γ(ν−2

2 )
)
+

+ ν−2
2

[
ln(ν−2

2 ) +
ν2
α̃2

(
lnλ2 + ln(ti)

)
− ν−2

2 (λ2 ti)
ν2/α̃2

])
+

+I(di=0) ln
(
π1 S1(ti) + (1−π1)S2(ti)

)]
,

(4.25)

where Sk(t) is the conditional survivor function for a given event of type k as defined in
Equation 2.25.
Covariate effects on the conditional event time distributions were assessed in Lau et al
(2011) by modelling the location parameters λk via

λk = exp(−βk,λ
⊤x). (4.26)

The shape and scale parameters were assumed to be independent of the covariate values.
In Cox et al (2007) a generalized gamma regression model was used in a standard survival
setting with one possible type of event assessing covariate effects on all three parameters,
which was called “saturated generalized gamma model” by Cox et al. In the competing risks
mixture model (K−1)×(P+1)+K×(P+1)+2K = (2K−1)×(P+1)+2K parameters have
to be estimated, when only the location parameters λk are allowed to depend on covariates.
In a saturated generalized gamma mixture model, allowing all three parameters of the
conditional event time distributions to depend on covariates, the number of parameters to
be estimated increases to (K−1)× (P+1) + 3×K × (P+1) = (4K−1)× (P+1).
Both generalized gamma mixture models, the model assessing covariate effects on the
location parameters λk only and the saturated model, were investigated in the simulation
study presented in Section 7.
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4.4.3 Semi-parametric mixture models

In order to allow more flexible modelling of the conditional baseline hazard functions,
different semi-parametric approaches, assuming proportional conditional hazard rates, were
proposed in the literature. The conditional hazard rate for a given event type k can be
denoted as known from common Cox regression as

hk(t) = hk,0(t) exp(β
⊤
k x), (4.27)

with hk,0(t) being the conditional baseline hazard function.
One early approach was proposed by Kuk and Chen (1992), who approximated the marginal
likelihood by Monte Carlo methods drawing random variables for censored observations.
The approach was criticised later as the results were heavily depending on the sampling
mechanism (see e.g. Escarela and Bowater, 2008).
Ng and McLachlan (2003) proposed a semi-parametric proportional hazards mixture model
allowing maximum likelihood estimation of the parameters from the full likelihood by using
an expectation conditional maximization (ECM) algorithm, treating the conditional base-
line hazard functions as high-dimensional nuisance parameters. In the ECM algorithm the
expectation of the complete data log-likelihood is estimated in the E-step, considering the
probabilities of failing from the given event types for the censored individuals conditional
on the observed data and the current parameter estimates. In the M-step the expected
log-likelihood considering the completely observed data and the derived expectations for
censored observations is maximized in order to obtain updated estimates. The E-step
and the M-step are altered until some predefined convergence criterion is reached. It can
be shown that the value of the likelihood calculated at the current maximum likelihood
estimate is increased for each step. In order to assess variance estimates and confidence
intervals, Ng and McLachlan recommended to consider bootstrap samples by drawing sub-
samples from individuals that failed from the different event types and from censored
observations with the number of samples equalling the number of observed events and
censored observations, respectively. In a simulation study provided in their article the pro-
posed algorithm was superior to parametric models, if the true underlying baseline hazard
was non-monotonous, but they did not investigate very flexible parametric mixture models
as the generalized gamma mixture model. Although the baseline hazards of the conditional
event time distributions are not needed for estimation of the regression coefficients in the
proportional hazards approach, they have to be estimated in order to derive estimates for
the cumulative incidence functions from the mixture model.
A similar approach was published by Escarela and Bowater (2008) using an extension of
the EM algorithm provided by Larson and Dinse (1985). The large sample properties of
the approaches by Ng and McLachlan (2003) and Escarela and Bowater (2008) were further
investigated by Hernandez-Quintero et al (2011), establishing asymptotic normality of the
derived estimates and proposing a consistent variance estimator.
In this work the approach by Ng and McLachlan (2003) was applied to the data example
presented in Section 8. Regression coefficients were estimated using the ECM algorithm
and bootstrap samples were drawn in order to obtain confidence intervals. The R code
used for the analysis is sketched in Section C.3 of the Appendix.
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4.5 Estimating cause-specific and subdistribution haz-

ard rates from a mixture model

The most frequently used regression approaches for the analysis of competing risks data are
the hazard based regression models, namely the cause-specific and the subdistribution haz-
ards regression models presented in Section 4.1 and 4.2, and the mixture model approach
as presented above. Lau et al (2011) described, how cause-specific and subdistribution haz-
ards and consequently hazard ratios can be derived from a mixture model. The procedure
will be presented in this section. Lau et al (2011) proposed to use a flexible parametric
event time distribution, like the generalized gamma distribution, to model the conditional
hazard rates in order to allow for various shapes of the conditional hazard functions and
consequently of the estimated cause-specific and subdistribution hazard rates and ratios.
In Section 5 an alternative approach using penalized B-spline functions (P-splines) for flex-
ible estimation of conditional hazard rates will be presented.

4.5.1 Estimating the cause-specific hazard rate

The cause-specific hazard rate for event type k, denoted as λk(t|x), can be estimated as
the quotient of the subdensity function f

k
(t|x) and the overall survivor function Sov.(t|x),

which represents an individual’s probability of being free from any event up to time t. The
subdensity function for event type k, which is defined through f

k
(t|x) = d

dt
F k(t|x), can

be expressed using quantities derived from a mixture model, namely as the product of the
density function of the conditional event time distribution for a given event of type k, and
the probability for an event of type k

f
k
(t|x) = fk(t|x)P (D=k|x) = fk(t|x) πk(x). (4.28)

Estimates for fk(t|x) and P (D=k|x) can be derived from the parameters estimated by
maximizing the log-likelihood of the mixture model as presented in Equation 4.16. The
overall survivor function Sov.(t|x) is a weighted average of the conditional survivor functions

Sov.(t|x) =

K∑

k=1

πk(x)Sk(t|x) (4.29)

and can be estimated accordingly from coefficients estimated from a mixture model.
The cause-specific hazard function for event type k, given the vector of covariates x, is the
quotient of the subdensity function and the overall survivor function

λk(t|x) =
f
k
(t|x)

Sov.(t|x)
. (4.30)

Cause-specific hazard ratios can now be determined as a function of time by inserting the
covariate values of interest. To derive the cause-specific hazard ratio for event type k for
a group variable X1 with two possible outcomes (X1∈{0, 1}), adjusted for other covariates
X2, . . . , XP , the quotient of the estimated cause-specific hazards, inserting either zero or
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one for X1 and the mean of the whole study population for all other P−1 covariates, is
calculated

ĤR
cs

k (t) =
λ̂k

(
t|X=(1, x̄2, . . . , x̄P )

⊤
)

λ̂k

(
t|X=(0, x̄2, . . . , x̄P )⊤

) . (4.31)

4.5.2 Estimating the subdistribution hazard rate

Subdistribution hazard rates for event type k, given a vector of covariates x, and conse-
quently subdistribution hazard ratios can be estimated in a similar manner as the cause-
specific hazard ratios. The subdistribution hazard rates can also be derived using quantities
of a mixture model, by dividing the subdensity function f

k
(t|x) through one minus the

cumulative incidence function

γk(t|x) =
f
k
(t|x)

1− F k(t|x)
. (4.32)

The cumulative incidence function can be obtained from a mixture model as shown in
Equation 4.14. A subdistribution hazard ratio can be derived analogously to the cause-
specific hazard ratio (see Equation 4.31) by diving the estimated subdistribution hazard
rates for corresponding covariate values

ĤR
sd

k (t) =
γ̂k
(
t|X=(1, x̄2, . . . , x̄P )

⊤
)

γ̂k
(
t|X=(0, x̄2, . . . , x̄P )⊤

) . (4.33)

4.6 Vertical modelling

In 2010 another approach factorizing the joint distribution of event times and event types
into a marginal and a conditional distribution was introduced by Nicolaie et al. In contrast
to the mixture model approach presented above, in the so called vertical modelling approach
the joint distribution of event times and types is represented as the product of the marginal
event time distribution and the conditional event type distribution

P (T,D) = P (T )P (D|T ). (4.34)

Here again T is a random variable for the event time and D a random variable for the type
of event.
In the vertical modelling approach the marginal event time distribution can either be
estimated using a standard survival function estimator as the Kaplan-Meier method or
the marginal event time distribution can be estimated considering covariate effects on the
overall hazard rate using e.g. a Cox regression model or a parametric regression model for
time-to-event data, treating events of any type as failures.
The conditional event type distribution provides the so called relative hazards, denoted as
π̃k(t), i.e. the probabilities for events of type k= {1, ..., K} given any event was observed
at time t

π̃k(t) = P (D=k | T=t). (4.35)
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The natural estimate for the relative hazard of event type k for an observed event time t̃i,
denoted as ˆ̃πk(t̃i), would be the number of observed events of type k at time t̃i divided by
the total number of events at time t̃i

ˆ̃πk(t̃i) =

dkt̃i
Rt̃i

dt̃i
Rt̃i

=
dkt̃i
dt̃i

, (4.36)

with dkt̃i denoting the number of observed type k events at time t̃i, dt̃i the total number
of events at t̃i, and Rt̃i the number of patients at risk at t̃i.
If events are observed in continuous time, this will lead to a series of zeros and ones and
therefore this method will not produce appropriate estimates for the relative hazards in
general. In order to obtain adequate and interpretable relative hazard estimates, Nicolaie
et al proposed to fit a multinomial (or in the case of two possible endpoints a binomial)
logistic regression model to the data, considering time and probably further variables of
interest as covariates. In order to allow relative hazards to vary over time, the influence
of time can be modelled flexibly. In the article by Nicolaie et al the use of cubic B-spline
functions was proposed to obtain flexible estimates for the relative hazards. In the case of
K possible event types, the estimate for the relative hazard of the kth event type can be
denoted as

ˆ̃πk(t|x) =
exp
(
ξ̂⊤
kB(t) + β̂⊤

k x
)

∑K
l=1 exp

(
ξ̂⊤
l B(t) + β̂⊤

l x
) (4.37)

B(t) denotes the set of B-spline basis functions, which are described in more detail in
Section 5, ξk is the vector of regression coefficients for the B-spline basis functions for
event type k, βk is the corresponding vector of regression coefficients indicating influence
of covariates x. The regression coefficients can be derived as known for a logistic regression
model (see e.g. Fahrmeir and Tutz, 2001), including only subjects with an observed event.
Censored observations can only be considered for estimation of the marginal event time
distribution. If the number of observed events is sufficient, interaction effects between the
covariates of interest and the B-spline components of time can be incorporated, in order to
allow for different patterns of relative hazards for relevant groups or patient characteristics.
The estimated relative hazards ˆ̃π1(t), . . . , ˆ̃πK(t) sum up to one for every timepoint t.
As interpretation of the relative hazards based on the regression coefficients is very difficult
due to the complicated structure of the B-spline components, it is recommended to illus-
trate the results graphically. A plot of the relative hazards, showing estimated probabilities
for all K types of event, given any event occurs at time t, can be used to illustrate the
estimated pattern of conditional event probabilities. To avoid overinterpretation of relative
hazards in time intervals with a small number of events, the relative hazards should always
be displayed in conjunction with estimates for the marginal event time distribution.
Nicolaie et al applied the vertical modelling approach to data of leukemia patients from
the European Group for Blood and Marrow Transplantation in order to investigate pat-
terns of adverse events as relapse, graft-versus-host disease, or infections after allogeneic
hematopoietic stem cell transplantation. In our work, the vertical modelling approach was
used to assess the patterns of cardiac and non-cardiac deaths in patients that survived
a myocardial infarction with a special interest in differences between patients that were
identified as being of high risk for a myocardial infarction and patients that were identified
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as being of low risk. A further description of the analysis and the results can be found in
Section 8.

4.7 Regression models based on pseudo-observations

Andersen et al (2003) introduced a method for the estimation of covariate effects on state
probabilities in multi-state models using pseudo-observations. Since a competing risks
model can be interpreted as a special case of a multi-state model, this approach can be
adjusted for the competing risks setting as demonstrated by Klein and Andersen (2005).
Generally, the pseudo-observation approach can be considered to estimate effects of covari-
ates on any function of event times f(T ), if an unbiased estimator θ̂ exists for

θ = E
(
f(T )

)
. (4.38)

A summary of different methods for survival analysis based on pseudo-observations is
presented by Andersen and Perme (2010). Main idea of the approach is to obtain quantities,
that allow application of standard methods for data analysis without consideration of
censored observations. The estimated pseudo-observations θ̂i, i= {1, . . . , n}, which are
assessed via leave-one-out estimates (see e.g. Miller, 1974) for some measure of interest,
can be used for that purpose

θ̂i = nθ̂ − (n− 1)θ̂(i). (4.39)

Here θ̂ is the estimated measure of interest using all n observations and θ̂(i) indicates
the estimated measure of interest derived from all but the ith observation. The pseudo-
observations can be estimated for one fixed timepoint τ0 or for a prespecified number of
timepoints τ = (τ1, ..., τH). If multiple timepoints are considered, a n×H-matrix of pseudo-
observations is obtained. For regression purposes these pseudo-observations θ̂ih can be used
as dependent variable (Klein and Andersen, 2005) in a generalized linear model

g(θih|xi) = αh + β⊤xi, (4.40)

where g(·) is a link function as the logit or the complementary log-log function and xi is the
vector of covariates of subject i. The influence of the covariates on the pseudo-observations,
that translates to an influence of the covariates on the measure of interest f(T ), can be
estimated using adequate methods for generalized linear models. In the case of multiple
timepoints the generalized estimation equation approach (GEE, Liang and Zeger, 1986)
was proposed for estimation and inference to account for repeated measures on the same
subjects in order to obtain robust and valid standard errors under independent censoring.
Klein and Andersen (2005) discuss different assumptions for the working covariance matrix
used in the GEE model. Since they did not find any relevant effects of the choice of
the working covariance on the estimated regression coefficients and standard errors, they
proposed the use of an independent working covariance structure.
For the competing risks setting the relevant measure f(T ) is the cumulative incidence
function for event type k. So for each individual i a pseudo-observation θ̂ih is derived for
each of the predefined timepoints in τ , using the cumulative incidence function estimated
from all subjects and the estimate based on all but the ith individual

θ̂ih = nF̂ k(τh)− (n− 1)F̂
(i)

k (τh). (4.41)
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If censoring is absent in the whole dataset, the pseudo-value indicates, whether subject i
failed from cause k up to time τh, i.e. θ̂ih=1 if ti≤τh and di=k or θ̂ih=0, else, and the mean
of the pseudo-values for each considered timepoint equals the estimate of the cumulative
incidence function. In the presence of censored observations, pseudo-values can be smaller
than zero for individuals still under observation, for individuals with a censored observation
or for individuals that failed from a competing event, or larger than one after an event of
interest was observed, with the actual value depending on the observation time and the
amount of censoring. An illustration of pseudo-observations can be found in Andersen
and Perme (2010) for different measures of interest, including the cumulative incidence
function, and in Section 8.2.5 of this work for the investigated clinical data (Figure 8.3).
When a complementary log-log link is used between the response (the pseudo-values) and
the linear predictor, the regression coefficients can be interpreted as subdistribution log-
hazard ratios, if all covariates are time-independent (Klein and Andersen, 2005)

ln
(
− ln(θih)

)
= αh + β⊤xi. (4.42)

The analysis can be performed using the R function geese from the R library geepack

(Højsgaard et al, 2005), that allows to specify a complementary log-log link between re-
sponse and linear predictor.
SAS and R functions for the computation of pseudo-values for time-to-event data are pro-
vided by Klein et al (2008). Recently, Andersen and Perme (2010) recommended not to
use pseudo-observations for the analysis of time-to-event data assuming proportional sub-
distribution hazards, since the Fine and Gray model was identified to be more efficient in
a simulation study. However, the pseudo-observation approach can be conducted in more
complex situations when standard regression models are not applicable. Furthermore, the
use of pseudo-residuals and pseudo-scatterplots for investigation of model assumptions in
regression models is encouraged (Perme and Andersen, 2008).
In this work, the pseudo-value approach was applied to data from the clinical cohort study
to complement the other regression approaches. Details of the performed analysis and the
results as well as a discussion on the pseudo-value approach and a comparison to the other
approaches can be found in Section 8.
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Chapter 5

A new approach for flexible
estimation of cause-specific and
subdistribution hazards from a
mixture model using penalized spline
functions

An alternative approach for estimation of conditional hazard rates in a mixture model is
proposed in this section. Instead of assuming the conditional event times to follow a certain
parametric distribution, as the exponential, the Weibull or the generalized gamma distri-
bution, or assuming proportional conditional hazard rates without further specification of
the conditional baseline hazard rates, the hazard functions of the conditional event time
distributions will be estimated using penalized B-spline functions.

5.1 Splines in event time analysis

Spline functions are commonly used for smooth estimation of distribution functions or in
regression models to derive relationships between dependent and independent variables
without the assumption of linear relationships. The main idea behind the use of spline
functions is to use a set of predefined basis functions that are weighted by regression coef-
ficients to approximate the quantity or relationship of interest. A detailed description and
discussion on the use of spline functions in statistical models can e.g. be found in Wegman
and Wright (1983), Fahrmeir et al (2007) or Hastie et al (2009).
Different applications of spline functions were introduced in the context of event time anal-
ysis for smooth estimation of hazard functions. Rosenberg (1995) proposed to use B-spline
functions, which are described in detail in Section 5.2.1, to estimate hazard functions in a
flexible way. He applied the proposed method to model the hazard of developing AIDS af-
ter infection with the HI virus. Kooperberg et al (1995) proposed models for the log-hazard
rate using spline functions. They also introduced an algorithm for model selection based
on Akaike’s information criterion (AIC Akaike, 1974). The presented models were applied
to different clinical datasets. Royston and Parmar (2002) described the estimation of a



5.2 Modelling hazard functions using cubic B-spline basis functions

proportional hazards model and a proportional odds model with the baseline cumulative
hazard function or the baseline cumulative odds function estimated flexibly using cubic
spline functions. The methods were applied to data of breast cancer patients comparing
survival between patient groups with different prognosis and to data from a randomized
clinical trial comparing treatments in patients suffering from advanced bladder cancer.
Several applications of spline functions in event time analysis for smooth estimation of
covariate effects relaxing the linearity assumption can be found. In the competing risks
setting application of spline functions for smooth estimation of covariate effects on cause-
specific hazards was presented by Belot et al (2010).

5.2 Modelling hazard functions using cubic B-spline

basis functions

In this work cubic B-spline basis functions will be considered for smooth estimation of
the conditional hazard rates given the type of event in a competing risks mixture model.
For convenience and ease of notation, the approach is presented for a binary covariate X
and for two possible types of event k={1, 2}. Modelling the the hazard functions of the
conditional event time distributions in a similar way as described by Rosenberg (1995) for
a common survival setting is proposed here and the definition of B-spline basis functions
presented there is used.

5.2.1 One possible endpoint

Firstly, the use of B-spline basis functions for hazard estimation in a common survival
setting with one possible type of event is considered. With G predefined interior knots,
the gth component of the set of B-spline basis functions can be denoted as

Bg(t) = (tg+4 − tg)

g+4∑

h=g

{
(th − t)3+

/ ∏

i6=h

i=g,...,g+4

(ti − th)
}
, (5.1)

where (z)+ returns the value of z, if z is larger than zero and zero, else. For a complete
definition of the basis functions, three lower and three upper knots have to be defined.
Different recommendations were made on how to set these so called slack knots. Here the
distance between the three lower knots was chosen to be defined by the distance between the
first observed event time (Tmin), and the first interior knot, and the distance between the
upper knots to be the same as the distance between the last interior knot and the maximum
observed event time (Tmax), as proposed by Fahrmeir et al (2007). The set of cubic B-spline
basis functions with five interior knots is illustrated in Figure 5.1 for equidistant knots (a)
and for knots depending on estimated quantiles of the event time distribution (b). For
each timepoint t in the interval from Tmin to Tmax four of the basis functions are larger
than zero and for each of these timepoints the unweighted basis functions sum up to one.
In his article Rosenberg proposed to model the hazard function in a standard survival
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with IBg(t) as described in Rosenberg (1995)

IBg(t) = −
(tg+4 − tg)

4




g+4∑

h=g

(th − t)4+

/ ∏

i6=h

i=g,...,g+4

(ti − th)


 . (5.5)

The regression coefficients can be estimated by numerically maximizing the log-likelihood
(see Equation 2.17)

ll =
n∑

i=1

I(di=1) ln
(
f(ti|xi)

)
+ I(di=0) ln

(
S(ti|xi)

)
=

=

n∑

i=1

I(di=1) ln
(
λ(ti|xi)

)
+ ln

(
S(ti|xi)

)
=

=
n∑

i=1

I(di=1) ln

(
G∑

g=−3

Bg(ti) exp(β0,g+xiβ1,g)

)

−

G∑

g=−3

(
IBg(ti)− IBg(Tmin)

)
exp(β0,g+xiβ1,g).

(5.6)

5.2.2 Extension to the mixture model approach

In this section the B-spline approach as described in Section 5.2.1 for a standard survival
setting with one possible endpoint is adapted for estimation of conditional hazard rates in
a competing risks mixture model, allowing flexible estimation of cause-specific and subdis-
tribution hazards as described in Section 4.5. As a conditional hazard rate for each possible
type of event has to be estimated, modelling the hazard rate as presented in Equation 5.3
has to adapted by including an additional index k for the type of event

hk(t|x) =

G∑

g=−3

Bg(t) exp(βk,0,g + xβk,1,g). (5.7)

The relationship between basis functions, covariates and the survivor function presented
in Equation 5.4 has to be adapted accordingly

Sk(t|x) = exp

(
−

G∑

g=−3

(
IBg(t)− IBg(Tmin)

)
exp(βk,0,g + xβk,1,g)

)
. (5.8)

The vector of regression coefficients in the mixture model, denoted here as βMM , consists
of different components, namely the components for the marginal event type distribution
and for the conditional event time distributions weighting the B-spline basis functions,
which in the setting with a binary covariate and two possible event types is

βMM = (µ,β1,0,β1,1,β2,0,β2,1)
⊤.
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The log-likelihood to be maximized for parameter estimation in the setting with two pos-
sible types of event considering one binary covariate can be written as

ll =
n∑

i=1

[
I(di=1)

(
ln
(
π(xi)

)
+ ln

(
f 1(ti|xi)

))
+

+ I(di=2)
(
ln
(
1−π(xi)

)
+ ln

(
f 2(ti|xi)

))
+

+ I(di=0) ln
(
π(xi)S1(ti|xi) +

(
1−π(xi)

)
S2(ti|xi)

)]
=

=
n∑

i=1

[
I(di=1)

(
ln
(
π(xi)

)
+ ln

(
h1(ti|xi)

)
+ ln

(
S1(ti|xi)

))
+

+ I(di=2)
(
ln
(
1−π(xi)

)
+ ln

(
h2(ti|xi)

)
+ ln

(
S2(ti|xi)

))
+

+ I(di=0) ln
(
π(xi)S1(ti|xi) +

(
1−π(xi)

)
S2(ti|xi)

)]
,

(5.9)

where π(x) denotes the probability for an event of type k=1 given x, which is modelled
using a binary logistic regression model as shown in Equation 4.20. Maximum likelihood
estimates for the regression coefficients can be derived by numerical maximization of the
log-likelihood function.
The estimated regression coefficients can be used to derive estimates for the conditional
hazard functions, the conditional survivor functions and the marginal event type distribu-
tion for both groups. Using these quantities, estimates for the subdensity functions, the
cumulative incidence functions and the overall survivor functions can be derived as shown
in Section 4.5, and consequently the cause-specific and subdistribution hazard rates can
be estimated as presented in Equations 4.30 and 4.32.
Choices for the number of basis functions and the spacing of knots, when spline methods
are used, are still a matter of research and discussion. A higher number of knots leads to
more flexible functions, but also to a higher number of coefficients to be estimated and pos-
sibly to overfitting or problems in the numerical maximization procedure. One possibility
to reduce these problems is penalizing the roughness of the resulting function by adding
a penalty term to the log-likelihood, as it is done in the P-spline approach introduced by
Eilers and Marx (1996). This procedure is described in the next section.

5.3 Penalization

In the so called P-spline approach roughness of the estimated hazard functions is controlled
by penalizing differences of nearby coefficients. A smoothing parameter µ is introduced for
that purpose. Second order differences are considered here to regulate the flexibility of the
obtained conditional hazard rates.

5.3.1 One possible endpoint

For estimation of the hazard rate in a standard survival setting using penalized spline
functions, the penalty matrix of second order differences D2 is a (G+4)× (G+2) matrix,
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with G being the number of interior knots considered for definition of the set of B-spline
basis functions, as (G+4) regression coefficients have to be estimated

D2 =




1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 1 −2 1 0
0 . . . . . . 0 1 −2 1




. (5.10)

The parameter µ is used to control the penalization and consequently the smoothness of
the estimated hazard function. Parameter estimation can be conducted by maximization
of an adapted likelihood or log-likelihood function including the penalty matrix and the
smoothing parameter µ

llpen = ll −
1

2
µβ⊤D2

⊤D2β, (5.11)

where ll is the log-likelihood described in Section 5.2.1, that is extended by a penalty term
(see e.g. Fahrmeir et al, 2007).

Illustrative example
The effect of the penalization on the basis function weights is illustrated in a small simulated
example. Event times were generated for 3,000 individuals from an event time distribution
with hazard function

λ(t) = 0.06

(
1 +

8

exp(0.2 t)

)
.

Censoring times were assumed to follow an exponential distribution with a hazard rate of
one and observation times were administratively censored at t=5.
The hazard function was estimated using the B-spline and the P-spline approach with
five interior knots and basis functions as described in Equation 5.1. Equidistant knots as
presented in Figure 5.1 (a) were used. The true hazard function and the unweighted basis
functions are shown in Figure 5.2 (a). Weights for the B-spline basis functions were esti-
mated by numerical maximization of the log-likelihood function shown in Equation 5.6 for
the case without penalization and Equation 5.11 for consideration of a smoothing parame-
ter. In Figure 5.2 (b) the weighted basis function and the estimated hazard function, which
was derived as the sum of the weighted basis functions for each timepoint, are presented for
µ=0. As no penalisation was considered, the resulting hazard function is rough due to large
differences in nearby basis function weights. In picture (c) the weighted basis functions
and the estimated hazard rate considering a smoothing parameter of µ=0.1 are shown.
For Figure 5.2 (d) a smoothing parameter of µ=100 was chosen. As differences between
nearby regression coefficients are penalized in Figures (c) and (d), weights are similar for
neighbouring basis functions leading to less rough estimates of the hazard function, with
a smoother hazard function obtained for the higher value of the smoothing parameter µ.

5.3.2 Extension to the mixture model approach

In this section the extension of the penalization described in Section 5.3.1 to a competing
risks mixture model is described and discussed. For convenience the setting with a binary
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with D2 as defined in Equation 5.10. The matrix in the topleft corner will be a 2 × 2-
matrix of zeros, as regression coefficients for the marginal event type distribution are not
penalized. Each of the D2 matrices will be of dimension (G+2)× (G+4) and consequently
the D2

⊤D2 components will have dimension (G+4)× (G+4).
In order to estimate the regression coefficients, the log-likelihood including the penalty
term will be maximized numerically. The log-likelihood of the mixture model approach
using B-spline functions for estimation of conditional hazard rates, displayed in Equation
5.9 without penalization, can be extended as shown in Equation 5.11 replacing the penalty
matrix D2

⊤D2 by DMM, which is presented in Equation 5.12.

5.4 Discussion and outlook

In their article describing the estimation of cause-specific and subdistribution hazards
from a mixture model, Lau et al (2011) recommend to assume, that the conditional hazard
rates follow a flexible parametric survival distribution, as the three-parameter general-
ized gamma distribution, in order to evaluate time-dependence of the hazard rates and
hazard ratios. The approach was applied to a real data set, but no simulation studies
investigating the numerical stability of the approach and the ability to detect time-varying
cause-specific and subdistribution hazard rates and hazard ratios were performed. As in a
small simulation study (results not shown) the generalized gamma approach appeared to
be numerically unstable, an alternative approach using penalized B-spline functions for es-
timation of conditional hazard rates in a mixture model is presented here. Both approaches
are compared in a simulation study regarding their abilities to estimate time-constant and
time-dependent cause-specific and subdistribution hazards and hazard ratios. The simula-
tion study is presented in Section 7, the algorithms for generation of competing risks data
are described in Section 6. The new approach was also applied to a real data set from a
clinical cohort study investigating a risk stratification for cardiac death in patients who
survived a myocardial infarction, with the aim to estimate cause-specific and subdistribu-
tion hazard ratios from a mixture model.
The proposed method using penalized spline functions for estimation of conditional hazard
rates in a mixture model was also described in an article, which was submitted for pub-
lication and was under review when this work was finalized. The article was co-authored
by Prof. Dr. Georg Schmidt from the 1. Medizinischen Klinik of the Klinikum rechts der
Isar of the Technische Universität München and by Prof. Dr. Kurt Ulm of the Institut
für Medizinische Statistik und Epidemiologie of the Technische Universität München. The
article includes a description of the proposed method as shown in Sections 5.2.2 and 5.3.2,
parts of the simulation study presented in Section 7 and results obtained from application
of the method to the clinical data shown in Section 8.3.
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Chapter 6

Simulation of competing risks data

As newly introduced statistical approaches are often of complex nature, including for ex-
ample weighting schemes or resampling methods, an analytical evaluation of these methods
and comparisons of different approaches are often not possible. So, in order to identify the
best method for a given data situation, simulation studies are applied comparing relevant
methods under different scenarios.
A simulation study relies on an adequate algorithm for generation of appropriate data.
Several algorithms for data generation, including methods for simulation of data follow-
ing various survival time distributions, are described by Gentle (2003). The generation of
survival data for proportional hazards models was described by Leemis (1987) and Bender
et al (2005). The simulation of competing risks data following prespecified cause-specific
hazards was presented by Beyersmann et al (2009). It was also described how cause-specific
hazards have to be selected to obtain data providing a given subdistribution hazard rate
using the relationship between cause-specific and subdistribution hazards. In this section
the algorithm for generation of competing risks data following cause-specific hazards and
the choice of hazards to generate competing risks data following predefined subdistribution
hazard rates as well as constraints for hazard rates considered for simulation are described.
In Section 6.3 approaches for data generation with time-dependent cause-specific hazard
rates, intended for generation of competing risks data with a given subdistribution hazard
rate, using the inversion method or adapting a method for generation of time-to-event data
with time-varying covariates originally presented by Sylvestre and Abrahamowicz (2008),
are described. The methods introduced in this section were applied for data generation in
the simulation study described in Section 7 for comparison of parametric mixture models
and mixture models using the spline approach for estimation of conditional hazard rates
introduced in Section 5.
Description of the Binomial algorithm for generation of competing risks data with a pre-
defined subdistribution hazard rate for the event of interest, presented in Section 6.3.3,
and constraints for choices of hazard rates (Section 6.3.2), as well as the simulation study
validating the data generating procedure (Section 6.3.4) were published in the Journal of

Statistical Computation and Simulation (Haller and Ulm, 2013)



6.1 Simulation of time-to-event-data using the inversion method

6.1 Simulation of time-to-event-data using the inver-

sion method

Leemis (1987) and Bender et al (2005) described, how time-to-event data depending on a
vector of covariates x can be generated for proportional hazards models using the inversion
method (see e.g. Gentle, 2003). For application of the inversion method a random number
generator for uniformly distributed random numbers in the interval zero to one is needed.
Event times are assumed to follow a parametric event time distribution fulfilling the pro-
portional hazards assumption, as the exponential distribution or the Weibull distribution
for a fixed shape parameter.
Generally, the inversion method can be applied for generation of random numbers follow-
ing a predefined distribution. For event time data the distribution is mostly defined by
its hazard or cumulative hazard function. Event times can be generated by solving the
equation

U = F (T |x) (6.1)

or
U = S(T |x), (6.2)

with U being a random number following a uniform distribution in the interval [0; 1].
Defining the event time distribution by the hazard function, Equation 6.2 can also be
denoted as

U = exp
(
−Λ(T |x)

)
= exp


−

T∫

0

λ(s|x)ds


 , (6.3)

with λ(t|x) being the hazard function and Λ(t|x) being the cumulative hazard function.
For the exponential distribution, modelling the hazard rate via λ(t|x) = exp(β⊤x), event
times can be generated following Equation 6.3 as

T = −
lnU

exp(β⊤x)
. (6.4)

Transformations of the uniformly distributed random number to generate event-time data
following exponential distributions, Weibull distributions or Gompertz distributions are
presented in the article by Bender et al (2005). Censored event times can be introduced
by additional simulation of censoring times. For each individual the minimum of the
generated event time and the censoring time will be considered as observed time and the
status variable will be set to zero, if the censoring time was smaller than the event time,
indicating a censored observation, or to one else.

6.2 Simulation of competing risks data following pre-

specified cause-specific hazards

Beyersmann et al (2009) presented an algorithm for the generation of competing risks data
using predefined cause-specific hazards. The algorithm is also described in the textbook by
Beyersmann et al (2012). As the cause-specific hazard rates are the forces that “completely
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determine the competing risks process” (Beyersmann et al, 2009), a simulation of competing
risks data using the cause-specific hazard rates appears to be the natural way. As for each
individual the overall hazard at each timepoint is the sum of the cause-specific hazard
rates for all K possible types of event, the event time is generated from an event time
distribution with hazard rate λov.(t|x) =

∑K
k=1 λk(t|x) in a first step. Then the type of

event is determined by a Bernoulli experiment with the probabilities for each event type
k={1, . . . , K} being proportional to the cause-specific hazard rates λk(t|x) at the drawn
event time.
So competing risks data following predefined cause-specific hazards, that possibly depend
on covariates, can be generated for n individuals as described in the following algorithm.
For convenience the algorithm is presented for two possible types of event, i.e. K=2, but
it can be easily adapted to more event types following the description above.

1. Define the cause-specific hazard rates λ1(t|x) and λ2(t|x) for both types of event
e.g. by two Cox-type regression models with possibly time-dependent cause-specific
(log-)hazard ratios λk(t|x) = λk;0(t) exp

(
βk(t)

⊤x
)
for k={1, 2}.

2. Start with subject i=1.

3. Use an adequate procedure to generate an event time with overall hazard rate
λov.(t|xi) = λ1(t|xi) + λ2(t|xi) for individual i.

4. After simulation of the ith event time ti, determine the type of event by a Bernoulli
experiment with probabilities p1=λ1(ti|xi)/

(
λ1(ti|xi)+λ2(ti|xi)

)
for an event of type

k=1 and p2=λ2(ti|xi)/
(
λ1(ti|xi)+λ2(ti|xi)

)
for k=2.

5. Continue with 3. for individual i=1.

The event times in step 3 can be determined using an adequate random number generator
if the event times follow a common survival distribution. The inversion method presented
in Section 6.1 can be applied for any valid distribution defined by the overall hazard
function, possibly using numerical procedures for calculation of the cumulative overall
hazard function and for solution of Equation 6.3. An alternative approach for generation
of event times following an arbitrary hazard function is presented in Section 6.3.3. For
assignment of the event type in step 4, a uniformly distributed random number V can
be drawn and an event of type 1 will be assigned, if V <p1, and an event of type 2, else.
Censoring times can be considered as described in Section 6.1.
Applications of that algorithm can e.g. be found in Beyersmann et al (2009), Grambauer
et al (2010), Allignol et al (2011), and Beyersmann et al (2012).

6.3 Simulation of competing risks data following pre-

specified subdistribution hazards

In recent years different methods focussing on the subdistribution hazard, which was de-
scribed in in Section 3.3.3 (Equation 3.11), were presented (e.g. Katsahian et al, 2006; Ruan
and Gray, 2008; Sun et al, 2008). In order to evaluate the behaviour of these methods un-
der different scenarios, as e.g. varying censoring schemes, or to investigate the robustness
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of the methods under violation of model assumptions, simulation studies using adequately
generated competing risks data have to be performed. For approaches focussing on the
subdistribution hazards, competing risks data providing predefined subdistribution hazard
rates have to be generated. In most articles discussing approaches, that use the subdis-
tribution hazard, competing risks data were generated from a unit exponential mixture
distribution (Fine and Gray, 1999), but this procedure, which is sketched in Section 6.3.1,
does not allow to specify flexible subdistribution hazard rates directly. Beyersmann et al
(2009) showed how cause-specific hazards, used for data generation following the algorithm
presented in Section 6.2, have to be chosen to obtain competing risks data following the
desired subdistribution hazard rates. In order to apply the approach, generation of event
time data with time-dependent hazard rates has to be performed. The theoretical back-
ground presented by Beyersmann et al (2009) is summarized in Section 6.3.2 and certain
constraints, that have to be fulfilled in order to obtain adequate competing risks data, are
described. Generation of event times can be performed using the inversion method pre-
sented in Section 6.1. An alternative approach applying the Binomial Algorithm, originally
proposed by Sylvestre and Abrahamowicz (2008) for simulation of time-to-event data with
time-varying covariates, is presented in Section 6.3.3. In Section 6.3.4 the method using
the Binomial Algorithm is validated for different scenarios using established methods for
subdistribution hazards analysis in the competing risks setting.

6.3.1 Simulation using a unit exponential mixture distribution

In their article presenting the proportional subdistribution hazards regression model, Fine
and Gray (1999) used a simulation approach for generation of competing risks data with a
predefined subdistribution hazard ratio, which was later adapted by different authors (e.g.
Latouche et al, 2004; Deslandes and Chevret, 2010). The cumulative incidence function
for the event of interest (k=1) is defined as

F 1(t|x) = 1−
(
1− p

(
1− exp(−t)

))exp(η⊤
1
x)

, (6.5)

with p being a predefined probability for an event of type k=1 for an individual with all
covariates being equal to zero and η1 representing the vector of subdistribution log-hazard
ratios for event type k=1.
For a covariate vector ofX=0, representing the baseline situation, this is a unit exponential
mixture model, as

F 1(t|X=0) = 1−
(
1− p

(
1− exp(−t)

))exp(η⊤
1
0)

=

= 1−
(
1− p

(
1− exp(−t)

))
=

= p
(
1− exp(−t)

)
= p F 1(t|X=0),

(6.6)

with F 1(t|x) being the distribution function of an exponential model with a hazard rate
of one.
Generation of competing risks data is performed following the mixture model definition
by first drawing the type of event, using the individual’s marginal event type probability,
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and subsequently simulating the event time given the type of event. For individuals with a
covariate vector unequal to zero, the event probabilities can be derived by calculating the
value of the cumulative incidence function presented in Equation 6.5 for t going to infinity.

6.3.2 Using the relationship between cause-specific and subdis-

tribution hazards

Cause-specific hazards needed for simulation

In the appendix of their article, Beyersmann et al (2009) presented how cause-specific
hazards have to be chosen for data generation in a setting with two possible types of failure,
in order to obtain competing risks data, that provide the desired subdistribution hazard for
the event of interest. The approach is based on the relationship between the subdistribution
hazard for the event of interest γ1(t|x) and the cause-specific hazard rates λ1(t|x) and
λ2(t|x) presented in Beyersmann and Schumacher (2007) and shown in Equation 3.14 of
this work. For data generation, two of the three relevant measures, possibly depending on
a covariate vector x, namely the subdistribution hazard for the event of interest γ1(t|x),
the cause-specific hazard for the event of interest λ1(t|x) and the cause-specific hazard for
the competing event λ2(t|x), have to be chosen. The third measure is derived from the
given two using the relationship between cause-specific and subdistribution hazards.
When the desired subdistribution hazard and the cause-specific hazard for the event of
interest are defined, the cause-specific hazard for the competing event can be derived as

λ2(t|x) = γ1(t|x)− λ1(t|x)−
d

dt
ln

(
γ1(t|x)

λ1(t|x)

)
. (6.7)

When λ2(t|x) and γ1(t|x) are defined, the cause-specific hazard for the event of interest
can be determined using

λ1(t|x) =
γ1(t|x) exp

(
−Γ1(t|x) + Λ2(t|x)

)

1−
∫ t

0
γ1(s|x) exp

(
−Γ1(s|x) + Λ2(s|x)

)
ds

. (6.8)

It can be seen easily from Equation 3.14 that determination of both cause-specific hazards
leads to a subdistribution hazard of the form

γ1(t|x) = λ1(t|x)

/(
1 +

F 2(t|x)

Sov.(t|x)

)
. (6.9)

The derivations of these equations are described in more detail in Beyersmann et al (2009)
and Beyersmann et al (2012).
The cause-specific hazards λ1(t|x) and λ2(t|x), either predefined or derived from one of
the Equations 6.7 or 6.8, can be used for generation of competing risks data following
the algorithm described in Section 6.2. As the obtained hazard functions will generally
result in a time-dependent overall hazard function, which is necessary for simulation of
event times, adequate methods for data generation are inevitable. Event times can either
be generated using the inversion method presented in Section 6.1, which can be applied
using arbitrary cumulative hazard functions, or using an algorithm for simulation of event
time data with time-dependent hazard rates, which is based on the Binomial Algorithm
by Sylvestre and Abrahamowicz (2008) and is presented in Section 6.3.3.
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Constraints for hazard functions

In order to obtain event times following the desired prespecified subdistribution hazards,
the following constraints have to be fulfilled:

• All hazard functions have to be non-negative for all time points t > 0.

• In the presence of competing risks, i.e. when λ2(t|x)>0 for any timepoint t, the
cumulative incidence function for event type k=1, that is related to the cumula-
tive subdistribution hazard through F 1(t|x) = 1− exp

(
−Γ1(t|x)

)
, has to converge to

P (D=1) for t going to infinity. γ1(t|x) has to be chosen accordingly, and conse-
quently γ1(t|x) has to converge to zero and Γ1(t|x) must not converge to infinity for
t approaching infinity.

• For t going to zero, λ1(t|x) and γ1(t|x) have to converge to the same value, as
cause-specific and subdistribution hazards are identical before occurrence of the first
competing event.

6.3.3 The Binomial Algorithm for simulation of competing risks
data with time-dependent hazard rates

Time-to-event data following time-dependent hazard rates, necessary for simulation of com-
peting risks data providing predefined subdistribution hazards, can be generated using the
inversion method presented in Section 6.1, but this can be time-consuming, as numeri-
cal approaches might be necessary for calculation of the cumulative hazard rate and for
determination of the event time following Equation 6.3 for each individual. An alterna-
tive approach, which is based on the Binomial Algorithm of Sylvestre and Abrahamowicz
(2008), that was originally introduced for simulation of time-to-event data in the presence
of time-varying covariates, is proposed in this Section. Event time data are generated for
discrete timepoints considering the overall hazard rate as conditional event probability.
The approach is also adapted to the competing risks setting for generation of event time
data with mutually exclusive types of event following a given subdistribution hazard rate
for the event of interest. The algorithm for data generation was evaluated for different
settings in a simulation study, which is presented in Section 6.3.4.

The Binomial Algorithm for generation of event time data following time-
dependent hazard rates

The adapted algorithm of Sylvestre and Abrahamowicz for generation of time-to-event data
with time-dependent hazard rates and one possible endpoint can be denoted as follows:

1. Define the hazard rate possibly depending on a vector of covariates λ(t|x).

2. Start with individual i=1.

3. Begin at time t=1.
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4. Determine the conditional probability of subject i for failing at time t, given it sur-
vived up to time t, depending on its covariate information xi, following the model
defined in the first step: p(t|xi) = λ(t|xi).

5. Draw a random number to determine, whether individual i fails at time t, e.g. by
drawing a uniform random number and comparing it to p(t|xi) or by using an ade-
quate sampling mechanism.

6. If i was determined not to fail at time t, go on with 4. for time t+1, else go on with
3. for individual i+1.

Adapting the Binomial Algorithm for simulation of competing risks data fol-
lowing given subdistribution hazards rates

The method described before can be used to generate event time data with time-dependent
overall hazard, which is necessary for simulation of competing risks data following prede-
fined subdistribution hazards using the method proposed by Beyersmann et al (2009) and
described in Section 6.3.2. The complete algorithm for generation of competing risks data
following predefined subdistribution hazard rates can be denoted as follows:

1. Define the subdistribution hazard rate γ1(t|x) and one cause-specific hazard rate
λk(t|x), depending on the vector of covariates x, and determine the other cause-
specific hazard rate following Equation 6.7 or 6.8, so that constraints described in
Section 6.3.2 are fulfilled for all hazard rates.

2. Start with subject i=1.

3. Begin at time t=1.

4. Define the conditional probability of subject i to fail from any cause at time t, given
survival up to time t, as p(t|xi) = λ1(t|xi)+λ2(t|xi).

5. Draw a random number to determine if the individual failed at time t, e.g. by drawing
a uniformly distributed random number V and assigning an event if V <p(t|xi).

6. If an event was observed, the type of event is determined by a Bernoulli exper-
iment with probabilities λ1(t|xi)/

(
λ1(t|xi)+λ2(t|xi)

)
for an event of type 1 and

λ2(t|xi)/
(
λ1(t|xi)+λ2(t|xi)

)
for an event of type 2.

7. If t was determined to be the event time for individual i go on with 3. for individual
i+1, else return to 4. for time t+1.

Censoring times can be considered as described in Section 6.1. The behaviour of the
algorithm for generation of competing risks data was validated for different scenarios. The
data generating algorithm and the results of the validation were published in Haller and
Ulm (2013).
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6.3.4 Validating the data generating process

Different scenarios were chosen to validate the algorithm for generation of competing risks
data following prespecified subdistribution hazards using the Binomial Algorithm as de-
scribed in Section 6.3.3:

• One population - no covariates

• Two groups - time-constant subdistribution hazard ratio

• Two groups - time-varying subdistribution hazard ratio

• One quantitative covariate

• A multiple regression model

Established standard methods for subdistribution hazards analysis of competing risks data
were used. As the focus of the simulation study is on behaviour of the data generating
process, not on the methods used for analysis, no censored observations were considered.

Example 1: One population - no covariates

Firstly, event times following a predefined subdistribution hazard rate were generated for
one population without consideration of covariate effects, i.e. all subjects follow the same
predefined hazard function, which is independent of the covariate vector x. The subdis-
tribution hazard γ1(t) and the cause-specific hazard for the event of interest λ1(t) were
specified. The subdistribution hazard was chosen to lead to an expected proportion of
events of interest of one half, if each subject will be observed until it failed from one of
the two possible events. The chosen subdistribution and cause-specific hazard rates for the
event of interest and the corresponding cumulative hazards are

γ1(t) = 0.001 exp

(
−

0.001 t

ln(2)

)

λ1(t) = 0.001

Γ1(t) = ln(2)

(
1− exp

(
−

0.001 t

ln(2)

))

Λ1(t) = 0.001 t

According to Equation 6.8, the cause-specific hazard for the competing event, which is
necessary for data generation following the proposed algorithm, was determined to be

λ2(t) = 0.001 exp

(
−

0.001 t

ln(2)

)
− 0.001 +

0.001

ln(2)
.

Since λ1(t), λ2(t) and γ1(t) are strictly positive functions for all t > 0, λ1(t) converges to
γ1(t) for t approaching zero and Γ1(t) converges to ln(2) for t going to infinity, translating to
a cumulative incidence function converging to one half, all restrictions presented in Section
6.3.2 are met. In Figure 6.1 (a) the cause-specific hazard rates, used for generation of
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of the estimated cumulative subdistribution hazard rates between the generated datasets.
Summaries of estimates for the cumulative subdistribution hazard function obtained in
the 4,000 simulation runs are shown for different timepoints in Table 6.1. The expected
values of the cumulative subdistribution hazard function are printed in bold font. Both,
Figure 6.1 and Table 6.1, indicate very good agreement between the expected cumulative
subdistribution hazard function and the mean cumulative subdistribution hazard function
estimated from generated data.

Example 2: Two group comparison - constant subdistribution hazard ratio

When competing risks data for two independent groups are desired, data can be generated
separately for both groups. A binary covariate X is introduced to indicate group mem-
bership. The group with X=0 will be called reference group throughout the section, X=1
indicates the so called study group. For each group the desired subdistribution hazard has
to be specified and the cause-specific hazards for both types of event have to be chosen ad-
equately, so that application of the data generating algorithm will lead to competing risks
data providing the desired subdistribution hazards. The situation can also be described by
a Cox-type regression model. The baseline hazards λk;0(t) and γ1;0(t) denote the according
hazards for the study group and the possibly time-dependent hazard ratios exp(βk(t)) and
exp(η1(t)), respectively, are defined as the ratio of the cause-specific hazards for event k or
the subdistribution hazards for the event of interest between the study group (X=1) and
the reference group (X=0). For each group, two of the three measures under consideration,
the cause specific hazards for both event types λ1(t|x) and λ2(t|x) and the subdistribution
hazard for the event of interest γ1(t|x), have to be specified, while the third measure is
calculated from these two following one of Equations 6.7 to 6.9. All hazard rates for both
groups - predetermined or calculated - have to fulfil the constraints presented in Section
6.3.2, so the hazard rates considered have to be chosen with caution.
In this example, the data should provide a predetermined subdistribution hazard ratio
exp(η1) between both groups, which is constant over time. The subdistribution hazards
for the event of interest γ1(t|x) and the cause-specific hazards for the competing event
λ2(t|x) were specified, so λ1(t|x) had to be calculated from Equation 6.8 for both groups.
As the subdistribution hazard functions for both groups are constrained to a form that
leads to cumulative incidence functions converging to a value smaller than one for t going
to infinity, the choice of these functions is not straightforward. Here, the baseline subdis-
tribution hazard, i.e. the subdistribution hazard for the group with X=0, was chosen to
be

γ1;0(t) = γ1(t|X=0) = 0.001 exp

(
−

0.001 t

ln(1.5)

)
.

This leads to a cumulative incidence function for k=1 converging to one third for t going
to infinity. Hence, in the reference group one out of three subjects is expected to fail from
the cause of interest, two out of three from the competing event. The subdistribution
hazard ratio was set to be 2, translating into a regression coefficient of η1= ln(2) and a
subdistribution hazard for the study group of

γ1(t|X=1) = 0.001 exp

(
−

0.001 t

ln(1.5)

)
exp
(
ln(2)

)
= 0.002 exp

(
−

0.001 t

ln(1.5)

)
,
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In Table 6.2 results for simulation scenarios performed analogously to the one described
above, but with different prespecified subdistribution hazard ratios exp(η1), are presented.
Logarithms of the hazard ratios were estimated fitting a proportional subdistribution haz-
ards regression model as proposed by Fine and Gray (1999). Estimation was conducted
using the R function crr from the library cmprsk (Gray, 2010). Means, medians, standard
deviations, and 2.5% and 97.5% quantiles of the estimated regression coefficients are shown.
The standard error provided by the function crr was used to estimate a 95% confidence
interval for each simulation run, assuming normality for η̂1. The proportion of estimated
confidence intervals that include the true value, denoted as CI coverage, are presented in
the last row of Table 6.2. The summaries obtained from generated data reveal good agree-
ment with the preset subdistribution log-hazard ratios, shown in bold font in the first row,
for all values investigated.

η1
ln (0.8) ln (0.9) ln (1) ln (1.25) ln (1.5) ln (2)
= -0.223 = -0.105 = 0.000 = 0.223 = 0.405 = 0.693

Mean -0.221 -0.108 -0.000 0.223 0.403 0.696
Median -0.223 -0.107 -0.002 0.223 0.404 0.695
Std.dev. 0.115 0.110 0.110 0.105 0.103 0.099

Q.025 -0.444 -0.324 -0.219 0.017 0.204 0.508
Q.975 0.009 0.109 0.211 0.426 0.603 0.892

CI coverage 0.950 0.953 0.951 0.951 0.950 0.949

Table 6.2: Example 2 – Summaries of simulation scenarios with different prespecified subdistri-
bution log-hazard ratios. 4,000 datasets, each with 500 observations per group, were generated
per scenario. The Fine and Gray regression approach was conducted to estimate subdistribution
log-hazard ratios.

Example 3: Two group comparison - time-dependent subdistribution hazard
ratio

With an appropriate choice of cause-specific hazard functions, competing risks data fol-
lowing a time-dependent subdistribution hazard ratio can be generated. Using a Cox-type
regression model for the subdistribution hazard, choice of the subdistribution hazard for the
reference group γ1(t|X=0) and the time-dependent subdistribution hazard ratio exp(η1(t))
define the subdistribution hazard of the study group γ1(t|X=1).
For convenience the subdistribution hazard function for the reference group was chosen as
in Example 2, but the hazard ratio was defined to be time-dependent

exp
(
η1(t)

)
= 1 +

1

exp(0.001 t)
,

leading to a subdistribution hazard for the study group of

γ1(t |X=1) = γ1(t |X=0)

(
1 +

1

exp(0.001 t)

)

= 0.001 exp

(
−

0.001 t

ln(1.5)

) (
1 +

1

exp(0.001 t)

)
.
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number of time intervals and to observe an adequate number of events of interest in each
of these intervals, new datasets with 10,000 observations, each, were generated using the
same cause-specific hazard rates as above. The results obtained from 4,000 simulation runs
are displayed in Figure 6.4 (b). The medians of estimated hazard ratios in each interval
are shown as filled dots at the center of the interval. The corresponding 2.5% and 97.5%
quantiles are displayed as open dots. The solid line represents the expected subdistribution
hazard ratio over the course of time decreasing from two to one.
Again, the results presented in the figures and in the table indicate good agreement between
the estimates obtained from the generated data and the expected values of the cumula-
tive subdistribution hazard functions for both groups or the subdistribution hazard ratio,
respectively.

Example 4: Quantitative covariate

Analogously to the proceeding described before for a binary covariate, competing risks
data can be generated considering a quantitative covariate. As common for quantitative
covariates the subdistribution hazard ratio does now, given the effect of the covariate on the
subdistribution log-hazard rate is linear, denote the subdistribution hazard ratio between
two individuals that differ in one unit of the investigated covariate. Special care has to
be taken to fulfil the constraints, as validity of the model might also depend on the range
of the covariate. Specification of the baseline situation, the subdistribution hazard ratio
and the cause-specific hazard ratio for one type of event can result in a hazard ratio for
the other event type that depends on time t and the covariate x. This is illustrated in the
following example.
A Cox-type proportional subdistribution hazards regression model, implying a regression
coefficient η1, that is constant over time, is considered. The covariate x was chosen to
follow a standard normal distribution. The baseline subdistribution hazard was preset to
be

γ1;0(t) = γ1(t|X=0) = 0.001 exp

(
−

0.001 t

ln(2)

)
,

leading to a cumulative incidence function converging to one half for t going to infinity
for an individual with a covariate value of zero. The subdistribution hazard depending on
covariate x is defined by

γ1(t|x) = γ1;0(t) exp(η1x) = 0.001 exp

(
−

0.001 t

ln(2)

)
exp(η1x).

Different subdistribution hazard ratios exp(η1), representing the quotient of the subdistri-
bution hazards for two individuals differing in the covariate x by one unit, of 0.8, 0.9, 1,
1.25, and 1.5 were investigated. To ensure proper hazard functions for all possible covariate
values, the range of x was restricted to the interval [-3; 3].
The cause-specific baseline hazard for the event of interest was chosen to be constant over
time. To fulfil the restrictions presented in Section 6.3.2, it was set to be

λ1;0(t) = λ1(t|X=0) = 0.001.

The cause-specific hazard for the event of interest depending on covariate x was chosen to
approach the cause-specific baseline hazard for t going to infinity and - as required - the
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η1

ln (0.8) ln (0.9) ln (1) ln (1.25) ln (1.5)
= -0.223 = -0.105 = 0.000 = 0.223 = 0.405

Mean -0.224 -0.106 -0.001 0.222 0.406
Median -0.224 -0.106 -0.000 0.222 0.405
Std.dev. 0.045 0.045 0.045 0.045 0.046

Q.025 -0.313 -0.194 -0.093 0.135 0.319
Q.975 -0.137 -0.016 0.088 0.310 0.496

CI coverage 0.952 0.945 0.942 0.952 0.952

Table 6.4: Example 4 – Summaries of estimated subdistribution log-hazard ratios for different
scenarios with one quantitative covariate. For each scenario 4,000 datasets with 1,000 observations
were generated. The prespecified subdistribution log-hazard ratios are printed in bold font.

subdistribution hazard γ1(t|x) for t going to zero

λ1(t|x) = λ1;0(t) exp
(
η1x exp(−0.001 t)

)
.

The cause-specific hazard for the competing event λ2(t|x), necessary for the simulation of
competing risks data following the desired subdistribution hazard, depends on time and
the covariate value, and was therefore derived numerically for each timepoint following
Equation 6.7, using the individual’s covariate value.
For each of the five predefined subdistribution hazard ratios 4,000 datasets with 1,000 ob-
servations were generated. In each dataset the regression coefficient η1 was estimated using
a proportional subdistribution hazards model as proposed by Fine and Gray (1999). Anal-
yses of the simulated data sets were conducted using the R function crr again. Summaries
of estimated regression coefficients are shown in Table 6.4. Confidence interval coverage
was assessed as described for Example 2. The obtained results indicate that the simulated
data follow the desired models.

Example 5: Multiple subdistribution hazards regression

Finally, data for a multiple subdistribution hazards regression model were generated. A
Cox-type regression model with a subdistribution baseline hazard γ1;0(t), describing the
subdistribution hazard for a (possibly fictitious) individual with all covariate values equal
to zero, and subdistribution hazard ratios for all covariates considered was defined. In
order to generate the desired competing risks data, cause-specific hazard rates have to be
chosen adequately so that Equation 3.14 holds for all x and t and well-behaved hazard
functions for each possible combination of covariates are obtained.
As common in multiple regression models, the pth regression coefficient can be interpreted as
logarithm of the subdistribution hazard ratio for the event of interest between two subjects
differing by one unit in the pth covariate xp and being identical in all other covariates
xq, q 6= p.
The baseline subdistribution hazard was set to be

γ1;0(t) = γ1(t|X=0) = 0.001 exp

(
−

0.001 t

ln(1.3)

)
,
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it converges to the value of the subdistribution hazard for a given x for t going to zero.
Here, the model for the cause-specific hazard rate for k=1 was chosen to be

λ1(t|x) = 0.001 exp
(
ln(1.15) exp(−0.0005 t) x1+

+ ln(0.9) exp(−0.0005 t) x2 + ln(2) exp(−0.0005 t) x3

)
,

implying time-dependent cause-specific hazard ratios. The cause-specific hazard rate for
the competing event λ2(t|x), which is necessary for the simulation algorithm to obtain
the desired subdistribution hazards model, was computed following Equation 6.7. The
subdistribution hazard rates for the event of interest and the cause-specific hazard rates
for both types of event are illustrated in Figure 6.5 for the baseline case of X=0 (Figure a),
for an individual with low subdistribution hazard for an event of interest, having covariate
values of X=(0, 10, 0)⊤ (b), and for an individual with a high subdistribution hazard,
having a covariate vector of X=(3, 0, 1)⊤ (c).
Generation of competing risks data was repeated 4,000 times with 1,000 subjects, each.
Data were analysed using the function crr in the library cmprsk of the statistical software R
to obtain estimates of the regression coefficients for a proportional subdistribution hazards
regression model. Results of the simulations are summarized in Table 6.5, bold numbers
denote the desired regression coefficients. Coverage proportions of 95% confidence intervals
were derived as described for Example 2. The R code used for generation of competing
risks data for the multiple subdistribution hazards regression example is presented in the
Appendix (Section A).

Covariate X1 ∼ U(0, 3) X2 ∼ N(5, 1) X3 ∼ B(1, 0.5)
η1 ln (1.15)=0.140 ln (0.9)=− 0.105 ln (2)=0.693

Mean 0.140 -0.107 0.698
Median 0.140 -0.108 0.695
Std.dev. 0.073 0.065 0.134

Q.025 0.002 -0.236 0.442
Q.975 0.281 0.023 0.964

CI coverage 0.960 0.943 0.953

Table 6.5: Example 5 – Summaries of estimated regression coefficients from multiple propor-
tional subdistribution hazards regression models based on 4,000 generated datasets with 1,000
observations, each. True values of subdistribution log-hazard ratios are shown in bold font.

6.4 Discussion on simulation of competing risks data

Different methods for simulation of competing risks data were used in the literature in
order to evaluate and compare statistical methods for analysis of event time data in the
presence of multiple types of event. Beyersmann et al (2009) recommended to use the
cause-specific hazards for simulation of competing risks data, as cause-specific hazards
“completely determine the competing risks process”, and presented an algorithm for gen-
eration of competing risks data following prespecified cause-specific hazards.
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Due to the growing interest in the subdistribution hazard, which is directly linked to the
cumulative incidence function, different methods focussing on that quantity were intro-
duced in recent years (e.g Katsahian et al, 2006; Ruan and Gray, 2008; Sun et al, 2008). In
order to evaluate or compare these methods and to find the best available procedure for a
given data situation, competing risks data providing a prespecified subdistribution hazard
have to be generated. In many research articles competing risks data with predefined sub-
distribution hazards are simulated from a unit exponential mixture distribution (Fine and
Gray, 1999). Beyersmann et al (2009) presented how cause-specific hazards can be chosen
to obtain competing risks data following the desired subdistribution hazards. As this will
generally lead to time-dependent overall hazards, which are considered for generation of
event times, appropriate methods for even-time simulation are inevitable. Generation of
event time data following flexible time-varying hazard rates can be performed using the in-
version method commonly considered for data simulation. An alternative approach based
on the Binomial Algorithm, which was provided by Sylvestre and Abrahamowicz (2008) for
simulation of time-to-event data in the presence of time-varying covariates, is presented.
In complex scenarios, requiring numerical approximation of the cumulative cause-specific
hazard rates and consequently of the cumulative overall hazard rate, and numerical meth-
ods for determination of the generated event time from the cumulative overall hazard rate
and a uniform random variable, the inversion method can become computationally very
expensive. The approach based on the Binomial Algorithm generates event times in dis-
crete time, which might lead to bindings in the simulated event times. The number of
bindings can be kept low by choosing small baseline hazard rates, which will increase the
computation time, as more timepoints have to be considered for each individual. So, haz-
ard rates have to be chosen carefully, in order to obtain adequate event times and to limit
computational burden.
The data generating process using the Binomial Algorithm for simulation of competing
risks data with predefined subdistribution hazard rates was validated for different sce-
narios including time-dependent hazard ratios and multiple regression models. For all
examples a good behaviour of the data generating process was revealed.
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Chapter 7

Simulation study

A simulation study was conducted to evaluate the performance of the mixture model
approach for estimation of cause-specific and subdistribution hazards and consequently
hazard ratios as presented in Section 4.5, using different settings for given cause-specific
or subdistribution hazard rates, respectively. The spline-based approach, which was pro-
posed in Section 5, with different values for the smoothing parameter µ was compared
to parametric mixture model approaches assuming the conditional event times to follow
Weibull or generalized gamma distributions (see Section 4.4.2). Competing risks data were
generated for the following scenarios:

I) Time-constant cause-specific hazard ratio

II) Time-dependent monotonous cause-specific hazard ratio

III) Time-dependent non-monotonous cause-specific hazard ratio

IV) Time-constant subdistribution hazard ratio

Simulation of competing risks data is described in Section 7.1, the methods used for anal-
ysis of the simulated datasets are presented in Section 7.2. A detailed description of the
scenarios considered can be found in Section 7.3. The main results of the simulation study,
namely summaries of estimated hazard ratios for the prespecified hazard type, which is the
cause-specific hazard ratio for Scenarios I to III and the subdistribution hazard ratio for
Scenario IV, are presented in Section 7.4. Summaries for the estimated cause-specific haz-
ards rates and subdistribution hazard rates as well as for the estimated hazard ratio, which
was not presented in Section 7.4, are displayed in the Appendix (Section B.1). The simu-
lation study was performed using the statistical software R (R Development Core Team,
2011). Sketches of the R code used for data generation and analysis of the simulated data
can be found in the Appendix (Section B.2). Results of the simulation study are summa-
rized and discussed in Section 7.5, including a table, that shows numbers and proportions
of datasets with adequately derived maximum likelihood estimates (Table 7.7).
Results of the simulation study comparing the generalized gamma approaches and the
spline approach with smoothing parameters of µ=1 and µ=100 for Scenarios II to IV with
moderate censoring proportions (40% to 60% censored observations) were also described in
a manuscript that was submitted for publication and was under review when this work was
finalized. The article was written in collaboration with Prof. Dr. Georg Schmidt from the



7.1 Generation of competing risks data

1. Medizinische Klinik of the Klinkum rechts der Isar (Technische Universität München)
and Prof. Dr. Kurt Ulm of the Institut für Medizinische Statistik und Epidemiologie of the
Technische Universität München.

7.1 Generation of competing risks data

Simulation of competing risks data was performed as described in Section 6. Data gener-
ation for a given cause-specific hazard ratio (Scenarios I to III) was conducted using the
method proposed by Beyersmann et al (2009), which is described in Section 6.2. When
data were simulated in order to provide predefined subdistribution hazards (Scenario IV),
the simulation algorithm based on the ideas of Beyersmann et al (2009), choosing the
subdistribution hazard for the event of interest and one cause-specific hazard and deter-
mining the cause-specific hazard for the other event type, using the relationship between
cause-specific and subdistribution hazards, as described in Section 6.3, was applied. The
inversion method described in Bender et al (2005) and presented in Section 6.1 was used
to draw event time data from a survival time distribution with the derived overall hazard
rate, and event types were determined from Bernoulli experiments with probabilities pro-
portional to the cause-specific hazard rates at the generated times of event.
For convenience and in correspondence to the method description in Section 5, data were
generated for two independent groups without further consideration of covariates, and each
individual could fail from one out of two possible types of event, the event of interest (k=1)
and a competing event (k=2). The groups are called control group (X=0) and study group
(X=1) throughout the section. For each simulation run 1,000 observations were generated.
Subjects were randomly allocated to the control or the study group with a probability of
50%, each. Different censoring proportions were considered in order to investigate the
effect of censored observations and limited information available on the precision of the
estimates and the numerical stability of the estimating procedures:

a) Low censoring: Administrative censoring after 5 years leading to an amount of censored
observations of 5-20%.

b) Moderate censoring: Administrative censoring after 5 years and additional drop-outs
generated from a Weibull distribution with parameters λ=1

3
and σ=0.7, leading to

proportions of censored observations of 40-60%.

c) High censoring: Administrative censoring after 5 years and additional drop-outs gener-
ated from a Weibull distribution with parameters λ=10 and σ=0.1, leading to propor-
tions of censored observations of 70-80%.

Censoring times were generated independently and for each individual the observed time
was calculated as the minimum of the generated event time, the potential drop-out time
and the administrative censoring time of 5 years. The individual’s status was chosen
accordingly to be either the generated type of event, if the event time was smaller than the
drop-out time and the administrative censoring time, or zero else, indicating a censored
observation. For each scenario 500 simulation runs were performed.
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7.2 Analysis of simulated data sets

For the spline based approach introduced in Section 5, data were analysed using penalized
B-spline basis functions for estimation of conditional hazard rates in a mixture model as
shown in Equation 5.7, using five interior knots located at the quantiles of the observed
event times irrespective of the observed type of event and the covariate information. The
same knot locations were used for both types of event. Lower slack knots were defined
by the interval between timepoint zero and the first inner knot, upper slack knots were
defined by the distance between the last inner knot and the maximum observed event
time. Three different values for the smoothing parameter µ were investigated (µ=0.01,
µ=1, and µ=100), leading to estimated conditional hazard rates that vary from rough,
variable curves to smooth curves.
Three different parametric mixture models (Section 4.4.2) were investigated and compared
to the spline models. A Weibull mixture model, assessing the group influence on parameter
λ via λ=exp(βx), and two different generalized gamma mixture models. In a first gener-
alized gamma model, the location parameter λ was allowed to vary between both groups
as shown in Equation 4.26 and shape and scale parameters of the conditional event time
distributions were assumed to be equal for control group and study group. This approach
is later also called GGλ-approach. In a saturated generalized gamma mixture model, later
also referred to as GGλα̃ν , group effects on all three parameters for each type of event were
assessed, as described in Section 2.4.3 for the standard survival setting.
Parameter estimation for all scenarios was performed by numerical maximization of the
log-likelihood functions shown in Equations 4.24, 4.25 or 5.11, respectively, using the R-
function nlm. In order to derive adequate starting values for the parametric mixture mod-
els, an exponential mixture model (see Equation 4.22) was fit to the data in a first step
using starting values of zero for the regression coefficients of the marginal event type dis-
tribution and for the regression coefficients indicating group differences in the conditional
event time distributions. As starting values for the regression coefficients describing the
conditional baseline log-hazard rates, i.e. the logarithms of the conditional hazard rates for
the control group, ln(0.1) was chosen. Results for the exponential mixture model are not
shown, as the exponential model implies time-constant conditional hazard rates and there-
fore does not allow flexible estimation of cause-specific and subdistribution hazard rates.
For the Weibull model the regression coefficients derived from the exponential model were
used as starting values for the regression coefficients of the marginal event type distribution
and the location parameters of the conditional event time distributions. A starting value
of one was considered for the shape parameters of the conditional event time distributions.
For the generalized gamma model assessing group effects on the location parameter only
(GGλ), the according estimates of the Weibull model (the estimate for α was transformed
to 1/α̂ as starting value for α̃) and a value of one for parameters ν1 and ν2 were used
as starting values. The parameters derived from that model were used as starting values
for the saturated generalized gamma model and starting values for regression coefficients
indicating group differences in shape and scale parameters of the conditional event time dis-
tributions were set to zero. For the spline-based approach the coefficients for the marginal
event type distribution estimated for the exponential mixture model were used as starting
values for those parameters, for the conditional event time parameters values of −0.5 were
used for the baseline parameters (X=0) and values of zero for the parameters assessing
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differences in the conditional hazard rates between the study group and the control group.
Estimates for cause-specific and subdistribution hazard rates and consequently hazard ra-
tios were derived from the mixture models as described in Section 4.5. For a sequence
of 500 equidistant timepoints summaries of estimated hazard rates and log-hazard ratios
were calculated (mean, median, 5% and 95% quantiles). These summaries of estimated
cause-specific and subdistribution hazard rates and hazard ratios are displayed graphically
in Section 7.4 or in the Appendix (Section B.1). Additionally, for the scenarios with true
time-constant hazard ratios (Scenarios I and IV) summaries of the average cause-specific
or subdistribution log-hazard ratios, respectively, are presented. Average log-hazard ra-
tios were derived as means of estimated log-hazard ratios for timepoints with an observed
event of interest. For better interpretability and comparison to the predefined hazard ra-
tios, summary statistics of estimated log-hazard ratios for given timepoints and for average
log-hazard ratios were back-transformed to the scale of hazard ratios. While medians and
quantiles of the exponentiated log-hazard ratios equal medians and quantiles of the hazard
ratios, exponentiated arithmetic means of the log-hazard ratios equal the geometric means
of the hazard ratios. This is indicated in the according figures and tables, but not further
mentioned and discussed in the text. Variance and mean squared error (MSE), calculated
as squared bias plus variance, are presented for average log-hazard ratios.
Maximum likelihood estimates for the mixture model regression coefficients could not be
derived adequately for all simulated datasets for the generalized gamma models and the
spline approach with a smoothing parameter of µ=0.01, as the maximization algorithm
did not converge. Numerical problems for estimation of parameters in generalized gamma
models were observed and discussed before (Gomes et al, 2008; Noufaily and Jones, 2013).
Numbers of datasets without adequately derived estimates are presented in the text and
are summarized in Table 7.7. Datasets, for which maximum likelihood estimates could not
be obtained appropriately, were removed from analyses of model performance for the ac-
cording model. Additionally, cause-specific or subdistribution log-hazard ratios of plus or
minus infinity were derived for the generalized gamma mixture models for some timepoints
in a small number of datasets. These datasets were also not considered for calculation of
summary statistics.

7.3 Simulation scenarios

7.3.1 Scenario I - Constant cause-specific hazard ratio

In a first scenario a time-constant cause-specific hazard was considered for both types of
event for both groups, leading to a constant cause-specific hazard ratio. The cause-specific
hazards were chosen as follows:

λ1(t|X=0) =
1

3
≈ 0.33

λ1(t|X=1) = 0.25

λ2(t|X=0) = 0.20

λ2(t|X=1) = 0.20

So the true underlying cause-specific hazard ratio for the event of interest (k=1) is 0.75
(HRcs

k=1=λ1(t|X=1)/λ1(t|X=0)), but no group effect on the competing event (k=2) exists
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(HRcs
k=2=1). Administrative censoring after five years is considered and additional drop-

outs were generated using censoring distributions as described before to obtain different
proportions of censoring.
Data were generated as described in Section 6.2. For each individual an event time
was simulated from an exponential distribution with the individual’s overall hazard rate
λov.(t|x) = λ1(t|x)+λ2(t|x). The type of event was determined by a Bernoulli experiment
with the probabilities for an event of type 1 or 2 proportional to the cause-specific hazard
rates.
Results of the simulations with time-constant cause-specific hazard ratio can be found in
Section 7.4.1 and in Section B.1.1.

7.3.2 Scenario II - Time-dependent monotonous cause-specific
hazard ratio

In a second scenario the ability of the mixture model approaches to detect time-varying
cause-specific hazards, translating to a time-dependent cause-specific hazard ratio, was
investigated. The cause-specific hazard for the study group (X=1) was chosen to be
constant over time as in the previous scenario, but the cause-specific hazard for the control
group was chosen to decrease non-linearly over time, translating to a cause-specific hazard
ratio for the event of interest that is increasing over time. The cause-specific hazard rates,
which are illustrated e.g. in Figure B.16 for the control group and in Figure B.17 for the
study group, were chosen to be

λ1(t|X=0) = 0.2

(
1 +

3

exp(t)

)

λ1(t|X=1) = 0.2

λ2(t|X=0) = 0.2

λ2(t|X=1) = 0.2

leading to a cause-specific hazard ratio for the event of interest of

HRcs
k=1 =

1

1 + 3/ exp(t)
=

exp(t)

exp(t) + 3
.

Again, competing risks data were generated using the algorithm provided by Beyersmann
et al (2009) shown in Section 6.2. For simulation of event times, the cumulative overall
cause-specific hazard rate, which is time-dependent for individuals of the control group,
is necessary in order to apply the the inversion method presented in Section 6.1. The
cumulative overall cause-specific hazard rate for the control group is

Λov.(t|X=0) = Λ1(t|X=0) + Λ2(t|X=0) =

= 0.2
(
t− 3 exp(−t) + 3

)
+ 0.2 t.

For the study group the cause-specific hazard rates were specified to be constant over time,
giving a time-constant overall hazard rate of λov.(t|X=1) = λ1(t|X=1)+λ2(t|X=1) = 0.40
and a cumulative overall cause-specific hazard rate of Λov.(t|X=1) = 0.40 t. So event times
for the study group were drawn from an exponential distribution with hazard rate 0.40.
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Event types were generated based on Bernoulli experiments as described above. Censored
observations were again introduced using different distributions for drop-out times leading
to the desired censoring proportions.

7.3.3 Scenario III - Time-dependent non-monotonous cause-spe-
cific hazard ratio

In a third scenario the cause-specific hazard rates were specified to lead to a cause-specific
hazard ratio for the event of interest that is time-dependent and non-monotonous. While
for the control group the underlying cause-specific hazard rate for the event of interest was
determined to be increasing for early timepoints and decreasing afterwards, a U-shaped
cause-specific hazard for the event of interest, decreasing early and increasing later, was
chosen for the study group, translating to a cause-specific hazard ratio for the event of
interest decreasing for early points in time and increasing later. The cause-specific hazards
for the competing event again were set to be constant over time and equal for both groups.
The cause-specific hazard rates were chosen to be:

λ1(t|X=0) = 0.25 +
0.5 t

exp(t)

λ1(t|X=1) = 0.05 t+
0.25

exp(t)

λ2(t|X=0) = 0.2

λ2(t|X=1) = 0.2

Illustrations of the true underlying cause-specific hazard rates and the true hazard ratio
can be found in the corresponding figures (e.g. Figures B.31, B.32 and 7.7), which are
presented in Section B.1.3 of the Appendix and in Section 7.4.3. Figures showing summaries
of estimated subdistribution hazard rates and hazard ratios including illustrations of the
expected values can be found in Section B.1.3. For simulation of event times the inversion
method was applied, considering the sum of the cumulative cause-specific hazard rates for
both event types

Λov.(t|X=0) = Λ1(t|X=0) + Λ2(t|X=0) =

= 0.25 exp(−t)
(
(t + 2) exp(t)− 2 t− 2

)
+ 0.2 t

Λov.(t|X=1) = Λ1(t|X=1) + Λ2(t|X=1) =

= 0.025
(
(t2 + 10)− 10 exp(−t)

)
+ 0.2 t.

Censoring times were generated as described before.

7.3.4 Scenario IV - Constant subdistribution hazard ratio

In a fourth scenario the special case of a predefined constant subdistribution hazard ratio,
as also considered in Example 2 of Section 6.3.4, was investigated. The true underlying
subdistribution hazards for the event of interest γ1(t|X=0) and γ1(t|X=1) and the cause-
specific hazard rates for the competing event λ2(t|X=0) and λ2(t|X=1) were chosen under

SIMULATION STUDY 81



7.4 Results of the simulation study

consideration of the restrictions and requirements described in the Section 6.3.2.
The subdistribution hazards for the two groups were chosen to be

γ1(t|X=0) = 0.2 exp(−0.25 t)

γ1(t|X=1) = 0.15 exp(−0.25 t)

translating to a time-constant subdistribution hazard ratio for the event of interest of
HRsd

k=1 = 0.75.
The cause-specific hazards for the competing event were set to

λ2(t|X=0) = 0.3 exp(−0.1 t)

λ2(t|X=1) = 0.15

implying a time-dependent cause-specific hazard rate for the competing event for the con-
trol group and a time-constant hazard rate for the study group.
The cumulative subdistribution hazard rates for the event of interest are

Γ1(t|X=0) = 0.8− 0.8 exp(−0.25 t)

Γ1(t|X=1) = 0.6− 0.6 exp(−0.25 t)

and the cumulative cause-specific hazards for the competing event are

Λ2(t|X=0) = 3− 3 exp(−0.1 t)

Λ2(t|X=1) = 0.15 t.

The cause-specific hazard rates for the event of interest, which are needed for simulation of
competing risks data providing the predefined subdistribution hazard rates, were derived
numerically considering the relationship between cause-specific and subdistribution hazards
shown in Equations 3.14 and 6.8. Event types were generated by Bernoulli experiments as
described above and censoring times were introduced by administrative censoring and by
simulated losses to follow-up as presented in Section 7.1.
Results are presented graphically and by summary statistics for the average subdistribution
(log-)hazard ratio in Section 7.4.4 and in the Appendix in Section B.1.4.

7.4 Results of the simulation study

Results for the four simulation scenarios with three different censoring distributions, each,
are shown in this section. Summaries of the estimated cause-specific hazard ratios (Scenar-
ios I to III) or subdistribution hazard ratios (Scenario IV), derived as described in Section
7.2, are shown. For the scenarios with time-constant constant hazard ratios (I and IV)
summaries of the average log-hazard ratios are presented.
Illustrations of the derived cause-specific and the subdistribution hazard rates as well as
cause-specific hazard ratios (Scenario IV) and subdistribution hazard ratios (Scenarios I
to III) can be found in the Appendix (Section B.1, Figures B.1 to B.60).

7.4.1 Constant cause-specific hazard ratio

In the first scenario a constant cause-specific hazard ratio was used. In the following the
results for the different amounts of censoring are shown.
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Meana Median Q.05 Q.95 Var (log) MSE (log)
Weibull 0.743 0.747 0.644 0.857 0.008 0.008

GGλ 0.743 0.747 0.644 0.856 0.008 0.008
GGλα̃ν 0.743 0.746 0.642 0.857 0.008 0.008
µ=0.01 0.742 0.745 0.642 0.856 0.008 0.008

µ=1 0.742 0.745 0.642 0.857 0.008 0.008
µ=100 0.743 0.746 0.642 0.859 0.008 0.008

Table 7.1: Scenario I - low censoring: Summary of estimated average cause-specific (log-)hazard
ratios.
aMeans of estimates for the average hazard ratio are exponentiated means of average log-hazard ratio estimates.

and scale parameters assumed for the conditional event time distributions for both groups.
The spline based model with low penalization for roughness of the estimated conditional
hazard rates (µ=0.01) provided the most variable results.

Moderate censoring

Results for the scenario with competing risks data following time-constant cause-specific
hazard rates for both groups, but with a moderate amount of censoring, which was in-
troduced by consideration of additional drop-outs as described in Section 7.1 leading to
proportions of censored observations from 40.0% to 49.8% with a mean proportion of 46.2%,
are presented here. Maximum likelihood estimates for the mixture model regression coef-
ficients could be derived adequately for all datasets using the Weibull mixture model and
the mixture models relying on the spline approach. For the generalized gamma mixture
model assessing group differences for the location parameter only (GGλ), the maximization
algorithm converged for 498 datasets (99.6%), for the saturated generalized gamma model
(GGλα̃ν) for 484 datasets (96.8%).
As was to be expected, estimates for the average cause-specific log-hazard ratios, which
are summarized in Table 7.2, were more variable in the scenario with moderate amount of
censoring compared to the results obtained in the presence of a lower amount of censoring,
which were presented before. The true cause-specific log-hazard ratio of -0.288, translating
to a hazard ratio of 0.75, was slightly underestimated by all methods. Variance and mean-
squared errors were very similar for all models with a slightly higher MSE for the spline

Meana Median Q.05 Q.95 Var (log) MSE (log)
Weibull 0.742 0.743 0.615 0.893 0.013 0.013

GGλ 0.742 0.740 0.614 0.897 0.013 0.013
GGλα̃ν 0.740 0.739 0.612 0.897 0.013 0.013

Spline (µ=0.01) 0.739 0.741 0.608 0.895 0.015 0.015
Spline (µ=1) 0.740 0.741 0.611 0.894 0.013 0.013

Spline (µ=100) 0.742 0.742 0.614 0.896 0.013 0.013

Table 7.2: Scenario I - moderate censoring: Summary of estimated average cause-specific
(log-)hazard ratios.
aMeans of estimates for the average hazard ratio are exponentiated means of average log-hazard ratio estimates.
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Meana Median Q.05 Q.95 Var (log) MSE (log)
Weibull 0.743 0.743 0.563 0.959 0.026 0.026

GGλ 0.743 0.743 0.563 0.976 0.027 0.027
GGλα̃ν 0.745 0.744 0.563 0.986 0.028 0.029

Spline (µ=0.01) 0.732 0.742 0.561 0.976 0.119 0.120
Spline (µ=1) 0.740 0.742 0.565 0.962 0.027 0.027

Spline (µ=100) 0.743 0.745 0.565 0.965 0.026 0.026

Table 7.3: Scenario I - high censoring: Summary of estimated average cause-specific (log-)hazard
ratios.
aMeans of estimates for the average hazard ratio are exponentiated means of average log-hazard ratio estimates.

7.4.2 Time-dependent cause-specific hazard ratio

The results of the simulations considering the second scenario with a true hazard ratio,
that is increasing over time, resulting from one time-dependent and one time-constant
cause-specific hazard rate, are presented here. The true underlying cause-specific hazard
rates and the resulting hazard ratio for the event of interest are illustrated e.g. in Figures
B.16, B.17 and 7.4 as solid grey lines. Graphical display of the estimated cause-specific
hazard ratios can be found in this section, illustrations of estimates for cause-specific hazard
rates and subdistribution hazard rates and hazard ratios are presented in the Appendix
(Section B.1.2). As the true underlying cause-specific hazard ratio is time-dependent here,
no estimates for the average log-hazard ratios were derived. The number and proportion
of non-converged estimating procedures are mentioned in the text and are displayed in
Table 7.7.

Low censoring

In a first setting the models were compared in the presence of a low amount of censoring
(range of censored observations from 7.5% to 13.4% with a mean of 10.5%). In Figure
B.16 estimated cause-specific hazard rates for the event of interest for the control group
are shown, according results for the study group are displayed in Figure B.17. Summaries
of the resulting cause-specific hazard ratios can be found in Figure 7.4.
With a low amount of censoring maximization algorithms converged for all investigated
models for all 500 datasets, except for the saturated generalized gamma model, where
maximum likelihood estimates could only be obtained for 492 datasets (98.4%).
Figures B.16 and B.17, showing summaries of estimates for the cause-specific hazard rate
for the event of interest, reveal that for the Weibull model (Figure a), allowing only the
location parameters λk of the conditional event time distributions to vary between groups
and assuming the parameters αk to be the same for both groups, the central tendency of the
estimated cause-specific hazard rates for the event of interest differs from the true hazard
rate for both groups. A similar result was obtained for the generalized gamma model
allowing only the location parameter to vary between both groups (GGλ, Figure b), as the
different shapes of the cause-specific hazard rates for both groups imply different shapes
of the conditional hazard rates in the mixture model. The saturated generalized gamma
approach (GGλα̃ν , Figure c), which allows α̃k and νk to vary between both groups, was
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spline approach with the lowest value for the smoothing parameter (µ=0.01) maximum
likelihood estimates could be derived appropriately for 498 of the 500 datasets (99.6%).
No numerical problems were observed for the Weibull model and the spline approaches
with smoothing parameters of µ=1 and µ=100.
In Figure 7.6 results for the cause-specific hazard ratios are summarized for the investigated
models, cause-specific hazard rates are shown in Figures B.26 and B.27, subdistribution
hazard rates and hazard ratios are illustrated in Figures B.28 to B.30. As for the scenar-
ios with lower censoring proportions, the spline approaches and the saturated generalized
gamma model performed best regarding reflection of the true underlying cause-specific
hazard ratio, but for the spline approach with a low value of the smoothing parameter
large variability and a high mean was observed for estimates ot the cause-specific hazard
ratio, especially for late timepoints. This was mainly caused by some extremely low esti-
mates obtained for the cause-specific hazard rate of the control group (5% quantile at t=5:
2.4×10−5), leading to very high estimates for the cause-specific hazard ratio (larger than
100 for 36 of the generated datasets at t=5). 95% quantiles of the estimated cause-specific
hazard ratios at five years, which are all cut in the figures, were 4.9 for the Weibull mixture
model, 4.2 for the GGλ model and 4.7 for the saturated generalized gamma model. For
the spline models the corresponding 95% quantiles were 2,930 for the spline model with
µ=0.01, 8.2 for the spline model with µ=1, and 3.9 for the spline model with µ=100.

7.4.3 Non-monotonous cause-specific hazard ratio

For the third scenario, which is described in detail in Section 7.3.3, a non-monotonous
cause-specific hazard ratio for the event of interest was considered, which is caused by a
cause-specific hazard for the event of interest in the reference group, that is increasing for
early timepoints and decreasing later, and a cause-specific hazard for the study group, that
decreases first and increases for later points of time. An illustration of the hazard functions
used for data generation can be found e.g. in Figures B.31 and B.32.

Low censoring

When data were generated using the cause-specific hazard rates as described in Section
7.3.3 and considering only administrative censoring after 5 years, but no additional drop-
outs, the censoring proportions observed in the simulation runs ranged from 8.3% to 13.7%,
with a mean censoring proportion of 10.9%. With the low amount of censoring maximum
likelihood estimates of the mixture model regression coefficients could be derived for all
datasets for all models, except for the saturated generalized gamma model. Estimates for
the mixture model regression coefficients were obtained for 454 datasets (90.8%) when that
model was applied.
In Figure 7.7 summaries of the estimated cause-specific hazard ratios for the event of
interest for all models under investigation are displayed. The figure reveals that the true
shape of the cause-specific hazard ratio could not be reflected by the Weibull mixture
model and the GGλ approach, as these models do not allow for different shapes of the
conditional event time distributions in both groups, which lead to biased estimates for
the cause-specific hazard rates (Figures B.31 and B.32 a and b in the Appendix). Best
results regarding the mean or the median of the estimated cause-specific hazard ratios
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cause-specific hazard ratios are near the true cause-specific hazard ratio for all timepoints.
Due to estimates for the cause-specific hazard rates of the control group, that are very close
to zero for late timepoints, when a smoothing parameter of µ=0.01 is used (see Figure B.36
a), some estimates for the cause-specific (log-)hazard ratio of the event of interest are very
high for late timepoints and the mean of the estimated hazard ratios is larger than the true
cause-specific hazard ratio. As the cause-specific hazard rates for the spline approach with
a smoothing parameter of µ=100 tend towards a straight line due to the penalization of
differences between nearby regression coefficients, estimates for the cause-specific hazards
and consequently the hazard ratio were found to be slightly biased. The Weibull and the
GGλ approach do not reflect the true cause-specific hazard rates and hazard ratios well,
for the saturated generalized gamma approach mean and median hazard rates are close to
the true value, but small deviances from the true value are present. The 95% quantiles at
5 years, which are not shown in Figure 7.8, are 128.7 for the spline approach with µ=0.01,
and 9.7 for the spline approach with µ=1. Results for the subdistribution hazards and
the subdistribution hazard ratio can be found in the Appendix in Figures B.38, B.39 and
B.40. Deviations from the expected subdistribution hazards are similar to those described
for the cause-specific hazards.

High censoring

With the censoring distribution leading to a high amount of censored observations, cen-
soring proportions of 70.5% to 78.1% with a mean proportion of censored observations
of 74.6% were observed. Maximum likelihood estimates for the mixture model regres-
sion coefficients could no be derived adequately for the generalized gamma model for nine
datasets (GGλ, proportion of converged algorithms 98.2%), for 158 cases for the saturated
generalized gamma model (GGλα̃ν , proportion of converged algorithms 68.4%) and for
five datasets for the spline approach with the smallest value for the smoothing parameter
(µ=0.01, proportion of converged algorithms 99.0%). For the spline approaches with µ=1
and µ=100 and for the Weibull mixture model maximum likelihood estimates could be
determined for all 500 datasets.
Estimates for the cause-specific hazard ratios are summarized in Figure 7.9 and according
results for the cause-specific hazards are displayed in the Appendix in Figures B.41 and
B.42. Results for the subdistribution hazard rates and hazard ratio can be found in the
Appendix in Figures B.43, B.44, and B.45. Again, the Weibull mixture model and the gen-
eralized gamma mixture model, not allowing shape and scale parameters to vary between
both groups, could not reflect the true shape of the cause-specific and the subdistribution
hazard rates. The (geometric) mean of cause-specific hazard ratio estimates for the spline
approach with µ=0.01, derived as exponentiated mean of cause-specific log-hazard ratio es-
timates, also deviates substantially from the true cause-specific hazard ratio, mainly caused
by estimates for the cause-specific hazard for the event of interest in the control group,
that are very close to zero (see Figure B.41 d). The median of the estimated cause-specific
hazard ratios was close to the true underlying cause-specific hazard ratio for all considered
timepoints. Again, the estimated cause-specific hazard rates for the spline approach with
the smoothing parameter set to µ=100 tend towards a straight line, leading to slightly
biased estimates of the cause-specific hazard rates and consequently of the hazard ratios.
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Figure 7.10 and Table 7.4 reveal similar properties for all investigated models with almost
identical mean squared errors and no indication for systematic bias. Some deviations from
the true cause-specific hazard rate of the control group were found for estimates derived
from the parametric mixture models and the spline model with µ=100 for late timepoints,
but not for the cause-specific hazard estimates for the study group (see Figures B.48 and
B.49). For the saturated generalized gamma approach, variable estimates were observed
for early timepoints again. For the spline approaches with small values of the smoothing
parameter, higher variability was observed for late points of time.

Moderate censoring

When data were generated for the fourth scenario, as presented in Section 7.3.4, considering
additional drop-outs using the censoring time distribution intended to produce a moderate
amount of censored observations, the mean censoring proportion was 52.7.% with a mini-
mum proportion of censored observations of 47.4% and a maximum proportion of 56.7%.
Numerical maximization of the log-likelihood lead to valid results for all datasets using
the Weibull mixture model, for 498 datasets (99.6%) for the GGλ approach, and for 413
datasets (82.6%), when the saturated generalized gamma approach was used. No numeri-
cal problems occurred using the spline approaches.
Summaries of the average subdistribution (log-)hazard ratios are displayed in Table 7.5
and are illustrated in Figure 7.11. According results for the subdistribution hazard rates
of both groups are shown in Figures B.51 and B.52 in the Appendix, estimates for the
cause-specific hazard rates and the cause-specific hazard ratio can be found in Figures
B.53, B.54, and B.55. Again all models performed similarly well with almost identical val-
ues for the mean-squared errors for the average subdistribution (log-)hazard ratios. When
only those 413 datasets were considered, for which an adequate estimate could be obtained
for the saturated generalized gamma approach, MSEs were 0.018 for all six models under
investigation. As was to be expected, variances and consequently mean-squared errors were
larger than in the setting with a lower amount of censored observations presented before.
As observed before ,large variability was found for the estimated hazard ratios using the
saturated generalized gamma approach for early timepoints and for the spline approach
with a smoothing parameter of µ=0.01 for late timepoints.

Meana Median Q.05 Q.95 Var (log) MSE (log)
Weibull 0.748 0.744 0.606 0.940 0.019 0.019

GGλ 0.746 0.743 0.605 0.934 0.019 0.019
GGλα̃ν 0.745 0.746 0.597 0.927 0.018 0.018

Spline (µ=0.01) 0.741 0.735 0.597 0.929 0.019 0.019
Spline (µ=1) 0.744 0.740 0.600 0.929 0.019 0.019

Spline (µ=100) 0.747 0.743 0.602 0.935 0.019 0.019

Table 7.5: Scenario IV - moderate censoring: Summary of estimated average subdistribution
(log-)hazard ratios.
aMeans of estimates for the average hazard ratio are exponentiated means of average log-hazard ratio estimates.
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Meana Median Q.05 Q.95 Var (log) MSE (log)
Weibull 0.750 0.749 0.549 1.022 0.038 0.038

GGλ 0.748 0.743 0.547 1.017 0.039 0.039
GGλα̃ν 0.747 0.755 0.534 1.008 0.042 0.042

Spline (µ=0.01) 0.728 0.730 0.527 1.015 0.061 0.062
Spline (µ=1) 0.741 0.736 0.546 1.015 0.039 0.039

Spline (µ=100) 0.748 0.746 0.552 1.019 0.038 0.038

Table 7.6: Scenario IV - high censoring: Summary of estimated average subdistribution
(log-)hazard ratios.
aMeans of estimates for the average hazard ratio are exponentiated means of average log-hazard ratio estimates.

7.5 Summary and discussion of the simulation study

In this section a simulation study is described, that was performed in order to evaluate
the ability of different mixture models to reflect given cause-specific and subdistribution
hazard rates and hazard ratios. Parametric approaches assuming the conditional hazard
rates of the mixture model to follow Weibull or generalized gamma distributions, either
estimating one scale and shape parameter for both groups under investigation or allow-
ing the shape and scale parameters to vary between both groups, that were presented in
Section 4.4.2, and the approach estimating the conditional hazard rates using penalized
B-spline basis functions, that was proposed in Section 5, were investigated and compared.
The main findings regarding the estimated cause-specific or subdistribution hazard ratios
were presented in this section, further results can be found in the Appendix (Section B.1).
Competing risks data were simulated by application of algorithms presented in Sections 6.2
and 6.3 to generate scenarios with predefined cause-specific or subdistribution hazard rates
and hazard ratios. Different true cause-specific or subdistribution hazard rates were used,
leading to cause-specific hazard ratios either constant over time (Scenario I) or varying over
time (Scenarios II to IV), and time-constant (Scenario IV) or time-dependent (Scenarios I
to III) subdistribution hazard ratios. Different censoring distributions were considered in
order to investigate the influence of the amount of censored observations on precision of the
estimates and numerical properties of the estimation procedure. Results are illustrated by
graphical display of summary statistics of the estimates obtained from the different models
for prespecified timepoints. For scenarios with constant hazard ratios summary tables for
estimated average (log-)hazard ratios are shown
As presented in the results section (Section 7.4), all methods performed pretty equally
in scenarios with a true underlying cause-specific or subdistribution hazard ratio, which
was constant over time and a low to moderate amount of censored observations. For the
scenario with a time-constant subdistribution hazard ratio and a high amount of censored
observations (about 75% of 1,000 observations) the spline model with a low value for the
smoothing parameter (µ=0.01) showed a higher variability in the obtained estimates for
the average log-subdistribution hazard ratio than the other models. When the true hazard
ratios were time-dependent, the spline-based approach provided medians and exponenti-
ated means of estimated log-hazard ratios, that were close to the true underlying hazard
ratios, when the smoothing parameter was chosen adequately, while corresponding medians
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and means obtained from the parametric approaches deviated from the true value, which
was especially true for the Weibull and the generalized gamma mixture model, allowing
only the location parameters to vary between groups.
For the generalized gamma models numerical maximization of the log-likelihood was not
possible for a relevant number of datasets, as the maximization algorithm did not con-
verge. This was especially noticeable for the generalized gamma approach, allowing all
parameters to vary between the groups, in settings with a high amount of censoring, where
mixture model regression coefficients, which are necessary for derivation of cause-specific
and subdistribution hazard rates, could not be determined in up to almost one third of
the investigated datasets. For the spline approach these numerical problems were only
observed for the model with a low value of the smoothing parameter (µ=0.01), but the
maximum number of datasets without adequately converged maximization algorithm was
5 (1.0%). For the spline models using higher values of the smoothing parameter, leading to
smoother estimates of the conditional hazard rates, no numerical problems were observed.
Numerical properties of the models under investigation for the considered scenarios are
summarized in Table 7.7.
The simulation study revealed, that derivation of cause-specific and subdistribution haz-
ard rates and consequently hazard ratios from a mixture model with conditional hazard
rates estimated using the newly proposed spline approach, presented in Section 5, allows to
reflect time-dependencies in the hazard rates and hazard ratios, when enough information
is available. Penalizing the flexibility of the estimated conditional hazard rates, leading to
smoother results, will improve the stability of the results, as models with a low value for the
smoothing parameter showed a large variability, especially for later timepoints with only a
low amount of information available. Parametric mixture models, which were proposed by
Lau et al (2011) for flexible derivation of cause-specific and subdistribution hazard ratios
from one mixture model, did not detect the true hazard ratios as adequately as the spline
approaches, but estimates were less variable due to less parameters to be estimated, which
was especially prevalent in simulation scenarios with a high amount of censored observa-
tions. For flexible parametric mixture models, as the generalized gamma mixture model
allowing all three parameters of the conditional event time distributions to vary between
groups, numerical problems were observed for the estimating procedure, especially for sce-
narios with time-dependent hazard rates and high amount of censored observations. So
the newly proposed spline-based method appears to be an appealing approach for estima-
tion of cause-specific and subdistribution hazard rates and hazard ratios from one model
and for detection of time-dependencies in these quantities with better properties than the
investigated parametric models in various scenarios.
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Parametric approaches Spline approach
Cens. Weib. GGλ GGλα̃ν µ=0.01 µ=1 µ=100

Scen. I low 500 500 500 500 500 500
(100%) (100%) (100%) (100%) (100%) (100%)

med. 500 498 484 500 500 500
(100%) (99.6%) (96.8%) (100%) (100%) (100%)

high 500 491 419 499 500 500
(100%) (98.2%) (83.8%) (99.8%) (100%) (100%)

Scen. II low 500 500 492 500 500 500
(100%) (100%) (98.4%) (100%) (100%) (100%)

med. 500 499 465 500 500 500
(100%) (99.8%) (93.0%) (100%) (100%) (100%)

high 500 484 384 498 500 500
(100%) (96.8%) (76.8%) (99.6%) (100%) (100%)

Scen. III low 500 500 454 500 500 500
(100%) (100%) (90.8%) (100%) (100%) (100%)

med. 500 500 417 500 500 500
(100%) (100%) (83.4%) (100%) (100%) (100%)

high 500 491 342 495 500 500
(100%) (98.2%) (68.4%) (99.0%) (100%) (100%)

Scen. IV low 500 500 485 500 500 500
(100%) (100%) (97.0%) (100%) (100%) (100%)

med. 500 498 413 500 500 500
(100%) (99.6%) (82.6%) (100%) (100%) (100%)

high 500 474 341 498 500 500
(100%) (94.8%) (68.2%) (99.6%) (100%) (100%)

Table 7.7: Numbers and proportions of converged algorithms for determination of maximum
likelihood estimates for the investigated models in the different scenarios of the simulation study.
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Chapter 8

Application to data from a clinical
cohort study

The competing risks regression models described in Section 4 and the approach for estima-
tion of cause-specific and subdistribution hazards from a mixture model, using P-splines
to model the conditional hazard rates, presented in Section 5, were applied to a dataset
from a clinical cohort study. Background information on the data is given in Section 8.1.1
and summaries of event time data are presented in Section 8.1.2. Details on the applied
competing risks regression models and results obtained from the analyses are shown in
Section 8.2. In Section 8.3 the hazard rates and ratios smoothly estimated from a mixture
model are shown and details on the estimation procedure are given. Application of compet-
ing risks regression models including details on the applied methods and results obtained
from analyses, which are presented in Section 8.2, were published in Haller et al (2013).
Application of the mixture model using the P-spline approach and according results shown
in Section 8.3 are described in a manuscript, which was under review when this work was
finalized.

8.1 Description of the data

8.1.1 Study description

The presented methods were all applied to a dataset collected in a cohort study, which
was conducted in the Klinikum rechts der Isar and in the German Heart Centre Munich,
both located in Munich, Germany, between January 1995 and March 2005. A total of 2343
patients, who survived an acute myocardial infarction (MI) at an age of 75 years or younger,
were included in the study. The analysed data are presented in Bauer et al (2006, 2009)
and Barthel et al (2003), including medical details and a more substantial description of the
study cohort. Two of the patients were excluded from the analyses due to missing values, so
the results presented are based on the evaluation of 2341 individuals. Patients were planned
to be followed for five years. Time from myocardial infarction to death and type of death
(cardiac or non-cardiac reason) were documented. Patients were stratified regarding their
risk for cardiac death. Patients with a left ventricular ejection fraction (LVEF) of less than
30% and patients with an LVEF of more than 30%, but severe autonomic failure (SAF),
were specified to be of high risk for cardiac death (n=236), patients with an LVEF of more
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than 30% and no SAF to be of low risk (n=2105).
1140 patients were followed for five years, so the median follow-up time was five years
assessed by the inverse Kaplan-Meier method (Schemper and Smith, 1996). About 75% of
the patients were followed for at least three years. Patients lost to follow-up or retreating
from the trial were considered as censored observations. During follow-up 181 of the 2341
patients died, 104 of them from cardiac reasons (55 sudden cardiac deaths), 77 patients
died from other causes or types of death were not specified (n=14). For ease of analysis
and interpretation these 77 patients were defined to have died from non-cardiac reasons.

8.1.2 Summary of observed events

The cumulative incidence functions for cardiac death and non-cardiac death for the whole
study population and for both risk groups were estimated as shown in Equation 3.17,
confidence intervals were derived using the estimator for the asymptotic variance proposed
by Aalen (1978a). Estimates were calculated using the function cuminc of the R package
cmprsk (Gray, 2010).
The estimated probability of dying in the first five years after myocardial infarction for
the whole study population was 9.2% (95% confidence interval 7.9% to 10.5%) with a
cumulative incidence for cardiac death of 5.1% (95% ci 4.2% to 6.1%) and for non-cardiac
death of 4.1% (95% ci 3.1% to 5.0%). For cardiac death a large difference between the
cumulative incidence functions of both groups was observed, with an estimated five year
probability for cardiac death of 27.5% (95% ci 21.1% to 33.9%) in the high risk group and
2.7% (95% ci 1.9% to 3.4%) in the low risk group. Estimated five year probabilities for
non-cardiac death also differed between both risk groups, but the observed difference was
smaller, with 10.9% (95% ci 6.3% to 15.7%) for the high risk group and 3.3% (95% ci 2.4%
to 4.2%) for the low risk group.
Estimates of the cumulative incidence functions five years after myocardial infarction with
95% confidence intervals for death from any kind and for both types of death are presented
in Table 8.1 for the whole study population and stratified for risk groups. In Figure 8.1
non-parametric estimates of the cumulative incidence functions for the two competing types
of event are presented. The sum of the cumulative incidence functions for both types of
event, presented as solid line in Figure 8.1 (a), can be interpreted as an estimate for one
minus overall survival (see Equation 3.4).

Cardiac death Non-cardiac death

F̂ card.(5 years) 95% ci F̂ non-card.(5 years) 95% ci

Overall 5.1% 4.2% to 6.1% 4.1% 3.1% to 5.0%
Low risk 2.7% 1.9% to 3.4% 3.3% 2.4% to 4.2%
High risk 27.5% 21.1% to 33.9% 10.9% 6.3% to 15.7%

Table 8.1: Estimated cumulative incidences five years after myocardial infarction with 95%
confidence intervals.
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Cardiac death

β̂ exp(β̂) Std. error p-value

Risk group 2.36 10.53 0.20 <0.001
Diabetes 0.72 2.06 0.21 0.001
Age≥ 65 0.48 1.60 0.20 0.016

Non-cardiac death

β̂ exp(β̂) Std. error p-value

Risk Group 1.06 2.89 0.26 <0.001
Diabetes 0.70 2.01 0.25 0.005
Age≥ 65 1.28 3.69 0.24 <0.001

Table 8.2: Results of the cause-specific hazards regression models.

Cumulative incidence functions were predicted from the Cox regression models following
Equation 4.7 for both risk groups, using the mean of diabetes, i.e. the proportion of patients
with diabetes (17.6%), and the mean of the indicator variable for age, i.e. the proportion of
patients being at least 65 years of age (30.2%). Cause-specific baseline hazards, which are
required for calculation of cumulative incidence functions, were derived using the general-
ized Breslow estimator shown in Equation 4.6. The predicted cumulative incidence curves
are displayed in Figure 8.4 (a).

8.2.2 Subdistribution hazards regression

A proportional subdistribution hazards model as described in Equation 4.8 was fit to the
data in order to assess the influence of risk group, diabetes, and age on the subdistribution
hazards for both types of event. The analysis was performed using the function crr in the
R library cmprsk. Due to conceptual problems present when proportional subdistribution
hazard models are fit for both types of event, as shown by Beyersmann et al (2012), results
from the subdistribution hazards models have to be interpreted as time-averaged effects
(Grambauer et al, 2010).
Results of the two regression models investigating the influence of the covariates on the
subdistribution hazards are shown in Table 8.3 for both types of failure. Effects on the
subdistribution hazards can be translated directly to effects on the cumulative incidence
functions. A comparison between the high risk and the low risk group revealed an average
subdistribution hazard ratio for cardiac death (HRsd

c ) of 10.21 (95% ci 6.91 to 15.08),
indicating a much higher incidence of cardiac events for patients categorized to be of high
risk compared to low risk patients. The effect of the risk group allocation was weaker
for non-cardiac death (HRsd

nc=2.31, 95% ci 1.39 to 3.97). Effects of diabetes were similar
for both types of failure with a higher subdistribution hazard for patients suffering from
diabetes, whereas age had a higher effect on the subdistribution hazard of non-cardiac
death. Cumulative incidence functions for cardiac death comparing high and low risk
group at mean of age and diabetes are shown in Figure 8.4 (b), which is displayed on page
112.
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Cardiac death

β̂ exp(β̂) Std. error p-value

Risk group 2.32 10.21 0.20 <0.001
Diabetes 0.68 1.98 0.21 0.001
Age≥ 65 0.47 1.60 0.20 0.017

Non-cardiac death

β̂ exp(β̂) Std. error p-value

Risk Group 0.84 2.31 0.28 0.002
Diabetes 0.62 1.85 0.24 0.011
Age≥ 65 1.28 3.58 0.25 <0.001

Table 8.3: Results of the subdistribution hazards (Fine and Gray) regression models.

Due to the high amount of censored observations and the low number of competing events,
leading to similar risk sets for estimation of cause-specific and subdistribution hazards (see
Equations 3.6 and 3.11, and Figures 3.2 and 3.3), both hazard based regression models
lead to similar results for the data example.

8.2.3 Semi-parametric mixture model assuming proportional con-
ditional hazard rates

For analysis of the data using a semi-parametric mixture model, the approach proposed
by Ng and McLachlan (2003), which is described in Section 4.4.3, was applied, so no as-
sumption for the failure time distribution for a given type of event had to be made, but
conditional hazard rates were assumed to be proportional. Parameter estimates were ob-
tained via an expectation-conditional maximization (ECM) algorithm, where parameters
are estimated iteratively by altering the expectations of failure types for censored observa-
tions and consequently the expectation of the log-likelihood function, given the observed
data and the current parameter estimates (E-step), and maximization of the log-likelihood
given the observed data and the expected failure-type probabilities for censored observa-
tions (M-step). These steps were repeated until the sum of the absolute differences for
all regression coefficients between two consecutive steps was smaller than 10−5. Different
starting values were used to avoid finding a local maximum, but all computations led to
the same results.
Five hundred bootstrap samples were generated to estimate confidence intervals for the
regression coefficients. As described by Ng and McLachlan, subsamples were randomly
drawn with replacement from patients experiencing cardiac death, from patients failing
from non-cardiac death, and from censored individuals according to the numbers observed
in the original dataset. Results of the analysis are presented in Table 8.4.
The coefficients of the logistic regression model, assessing the marginal event type dis-
tribution, indicate that high risk patients were more likely to die from cardiac events
(OR= exp(2.22)=9.21, 95% bootstrap ci 0.24 to 52.98). For a low risk patient aged at
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Event types

Cardiac

β̂ 95% ci (bootstrap)

Constant -2.30 -3.92 to 1.65
Risk group 2.22 -1.44 to 3.97
Diabetes -0.43 -2.00 to 1.82
Age ≥ 65 0.96 -1.45 to 2.66

Event times

Cardiac Non-cardiac

β̂ 95% ci (bootstrap) β̂ 95% ci (bootstrap)

Risk group 0.88 -0.92 to 3.19 1.76 -0.21 to 2.76
Diabetes 1.17 -0.44 to 2.02 0.52 -0.49 to 2.07
Age ≥ 65 -0.25 -1.60 to 1.02 1.54 0.71 to 2.54

Table 8.4: Regression coefficients obtained from the mixture model analysis with 95% confidence
intervals based on 500 bootstrap samples. Regression coefficients for the marginal event type
distribution model are presented in the upper table, coefficients for the conditional event time
models in the lower table.

least 65 years and having no diabetes a probability of dying from a cardiac event of 20.7%
was estimated, for a person of the same age, who is also free of diabetes, but who was
identified to be of high risk, the predicted probability increases to 70.7%. For both types
of failure, patients from the high risk group tended to survive for a shorter time period,
as their estimated risk for failing from the given type of event is increased (hazard ratios
of exp(0.88)=2.41 and exp(1.76)=5.81). Due to the low number of events and the large
amount of censoring, confidence intervals derived from the bootstrap samples are very
wide.

8.2.4 Vertical Modelling

In the vertical modelling approach, which was proposed by Nicolaie et al (2010) and is
described in Section 4.6, patterns for the occurrence of events in the course of time can
be investigated. Marginal survivor functions for both risk groups, adjusted for age and
diabetes, were estimated from a Cox regression model using the R function coxph of the
survival library, considering time to death irrespective of the event type, and are presented
using the mean of diabetes and the mean of age derived from the whole study population
(Figure 8.2 a).
In order to estimate relative hazards of the event types in the course of time, a logistic
regression model was fit considering all uncensored subjects (n=181). Time, risk group,
diabetes, and age were included as covariates, an indicator variable giving one, if the
observed event was death from a cardiac reason and zero for death from a non-cardiac
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β̂ exp(β̂) Std. error p-value

Constant -6.81 0.00 0.35 <0.001
Risk group 2.36 10.59 0.22 <0.001
Diabetes 0.81 2.25 0.25 0.001
Age ≥ 65 0.53 1.70 0.26 0.043

Time = 3 months 1.04 2.83 0.30 <0.001
Time = 6 months 1.21 3.35 0.26 <0.001
Time = 9 months 1.65 5.21 0.23 <0.001
Time = 12 months 1.73 5.64 0.22 <0.001

. . . . .

. . . . .

. . . . .
Time = 57 months 2.68 14.59 0.18 <0.001
Time = 60 months 2.74 15.49 0.18 <0.001

Table 8.6: Regression coefficients obtained by the pseudo-value approach. Coefficients are not
shown for all time points. Skipped coefficients, which are needed for estimation of the cumulative
incidence functions, are monotonously increasing. exp(β̂) for risk group, diabetes, and age can
be interpreted as subdistribution hazard ratio.

These pseudo-values were used as dependent variable in a GEE model, to account for mul-
tiple observations of the same subjects. Age, diabetes, and 20 dummy variables indicating
the timepoint were included as covariates. The independence working covariance matrix
was used in the GEE model, which was suggested by Klein and Andersen (2005). The
influence of the covariates of interest on the pseudo-values was estimated using a comple-
mentary log-log (cloglog) link between the response and the linear predictor, applying the
function geese of the R library geepack (Højsgaard et al, 2005), so the estimated coefficients
can be interpreted as logarithms of subdistribution hazard ratios. The results of the GEE
model are presented in Table 8.6.
Effects observed in the pseudo-value approach are similar to those obtained in the Fine
and Gray model and can be interpreted analogously as an effect on the subdistribution
hazard, translating to an effect on the cumulative incidence function (Klein and Andersen,
2005). A subdistribution hazard ratio comparing the high risk to the low risk group of
exp(2.36)=10.59 was estimated (95% ci 6.88 to 16.28). As described by Andersen and
Perme (2010), the standard errors obtained in the pseudo-value approach are higher than
those in the Fine and Gray regression model.
Regression coefficients for the different timepoints specified for calculation of the pseudo-
observations, which are partly presented in Table 8.6, are not of major interest, but are
necessary for estimation of the cumulative incidence function. The estimated cumulative
incidence function, derived from results of the pseudo-observation approach, which is shown
in Figure 8.4 (c), is similar to the cumulative incidence functions obtained from the cause-
specific hazards regression or the subdistribution hazards regression. Steps of the function
are obtained for each of the timepoints specified for the estimation of pseudo-values (three
month intervals between t=0 and t=5 years).
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8.4 Summary of results and applicability

The most popular models, the cause-specific hazards regression considering a Cox-type
regression model and the Fine and Gray regression model, being a Cox-type regression
model for the subdistribution hazard, revealed very similar results in this data example
with a cause-specific hazard ratio of 10.53 between the two risk groups after adjustment
for diabetes and age and a corresponding subdistribution hazard ratio of 10.21, due to the
high amount of censored observations and the low number of competing events. This will
generally not be the case, as discussed in Section 4.3. In order to estimate the cumula-
tive incidence functions for cardiac death, using results obtained from the cause-specific
hazards regression approach, models for cardiac and non-cardiac type of death have to be
estimated separately and regression coefficients for both types of event have to be consid-
ered. For the subdistribution hazards regression model the cumulative incidence functions
are monotonously linked to the coefficients obtained from a regression model for the event
of interest (cardiac death) and estimation does not rely on a model for the competing
event, as shown in Equation 4.12.
The semi-parametric mixture model approach proposed by Ng and McLachlan (2003),
which is discussed in Section 4.4.3 and which was applied to the dataset (results in Section
8.2.3), uses a factorization of the joint distribution of event times and event types by mod-
elling the marginal event type distribution and the conditional event time distributions,
given the type of event. Therefore, estimates of event probabilities can be obtained from
the mixture model approach under the assumption, that models for the conditional event
time distributions also hold true for timepoints after the end of the study. Applying the
semi-parametric mixture model to the study data revealed an odds ratio of 9.21, indicating
a higher probability for a cardiac event for patients identified as being of high risk com-
pared to low risk patients, but the 95% bootstrap interval was very wide (0.24 to 52.98)
due to the high amount of censored observations.
The vertical modelling approach proposed by Nicolaie et al (2010) uses another factoriza-
tion of the joint distribution for event times and event types by considering the marginal
event time and the conditional event type distribution. Graphical display of the relative
hazards, representing the estimated conditional probabilities for the different event types
given any event was observed, was recommended. Estimates of the relative hazards can be
derived from a logistic regression model using time and other measures of interest as inde-
pendent variables. Incorporation of spline functions and interaction terms allows flexible
estimation of the relative hazards, if enough information is available. For the investigated
example the influence of time on the event type probabilities was assessed using B-spline
functions and an interaction term between time and risk group was used. Graphical dis-
play of the relative hazards over time for both risk groups revealed a higher risk for cardiac
death than for non-cardiac death in the high risk group and similar risks for both types
of event for the low risk group. For both groups the relative hazard for cardiac death
appeared to decrease over time. The marginal event time distribution was also illustrated
and should always be considered, in order to assess the overall risk for any event and to
avoid overinterpretation of relative hazards for time intervals with a low number of ob-
served events. In this example the probability of failing from any event five years after
myocardial infarction is substantially higher for a high risk patient compared to a low risk
patient.
The pseudo-value approach, for which the theoretical background is presented in Section
4.7, gave results similar to the subdistribution hazards regression, with a subdistribution
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hazard ratio of 10.59. This result was to be expected, as the complementary log-log link,
which was used in the GEE model, leads to a link between linear predictor and cumulative
incidence function as in the proportional subdistribution hazards regression model. An-
dersen and Perme (2010) discussed, that application of the pseudo-value approach with a
complementary log-log link does not have any advantages over the subdistribution hazards
regression approach proposed by Fine and Gray, as it leads to similar results with larger
standard errors, which could also be observed for this data example, but that the pseudo-
value approach in general allows more flexible modelling in settings where the proportional
hazards assumption does not hold.
The hazard based approaches, the cause-specific and the subdistribution hazards regres-
sion, could be applied most easily using standard functions available e.g. in the statistical
software packages R or SAS. Application of the semi-parametric mixture model approach
required implementation of the ECM algorithm presented by Ng and McLachlan (2003),
as no software routines were available. A sketch of the R code used can be found in the
Appendix (Section C.3). The vertical modelling approach could be applied using a stan-
dard logistic regression model for estimation of the relative hazards including splines and
interactions, and an estimate for the marginal event time distribution could be obtained
using common survival methods. Little implementation was necessary to derive the relative
hazards from the regression coefficients of the logistic regression model and for adequate
graphical presentation. For the pseudo-value approach R and SAS functions were provided
by Klein et al (2008). These functions can be used to generate the pseudo values, which
are considered as response in a GEE model, that can be applied using available functions
in R or SAS.
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Chapter 9

Discussion and conclusion

9.1 Discussion

In this work the analysis of event time data in the presence of competing risks, i.e. when
subjects can fail from one out of two or more mutually exclusive types of event, is described
and discussed. Adequate analysis of competing risks data is relevant for various applica-
tions. In medical research time to a certain cause of death might be of major interest in
order to assess efficacy of a therapy or the predictive or prognostic effect of a certain risk
factor, with other causes of death being competing risks. In a recent article by Koller et al
(2012) the availability of methods for adequate analysis of competing risks data, assessed
by reviewing the most important biostatistical journals, and the application of competing
risks methods for analysis and presentation of clinical data in the highest ranked medical
journals was investigated. While a large number of methods for analysis of competing
risks data was found in the statistical literature, adequate application and description of
these methods was only found in a relatively small proportion of the investigated articles
in medical journals. Nevertheless, problems and pitfalls present in the competing risks
setting have become more recognized in the medical community in recent years, which is
indicated by publication of articles in medical journals, describing and discussing adequate
analysis of competing risks data (e.g. Dignam and Kocherginsky, 2008; Berry et al, 2010;
Roobol and Heinsdijk, 2011).
The description of competing risks data, especially in medical research, is often conducted
using standard survival methods, which were developed for the analysis of time-to-event
data with one possible endpoint, without adequate consideration of competing risks. Re-
sults of the “näıve” Kaplan-Meier estimator, treating competing events as censored ob-
servations, are presented in many articles as estimates for the probability of being free of
the event of interest up to a given time. As this violates a fundamental assumption of
the Kaplan-Meier estimator, namely the independence between event times and censoring
times, the event probabilities are overestimated by that procedure, which was discussed in
various articles (e.g. Putter et al, 2007; Andersen and Keiding, 2012) and is illustrated for a
data example in this work. Unbiased estimates for the probability of failing from a certain
event up to a given time, which is represented by the cumulative incidence function in the
competing risks setting, can be obtained by application of the Aalen-Johansen estimator,
that relies on the so called cause-specific hazard rates. The cause-specific hazard rates are
the natural adaptations of the common hazard rate for the competing risks setting and



9.1 Discussion

many authors argue for the use of the cause-specific hazard rates, as these “completely
determine the competing risks process” (Beyersmann et al, 2009) and allow “for a ‘direct’
formulation of the effect of exposure on the instantaneous forces that drive the patients
remaining at risk at each time point t, that is, those without any prior event” (Koller
et al, 2012). Since the probability for an event of interest is not directly related to the
cause-specific hazard for the event of interest, but relies on the cause-specific hazards for
all types of event, as risks on competing events have an influence on the number of patients
at risk, an alternative hazard rate was constructed by Gray (1988), the so called subdistri-
bution hazard rate. For the subdistribution hazard rate the risk set is adapted by keeping
individuals in the risk set, that failed from an event other than the event of interest. This
results in a direct relationship between the subdistribution hazard rate and the cumula-
tive incidence function as known from standard survival analysis. For estimation of the
subdistribution hazard rate in the presence of censored observations, a potential censoring
time has to be determined for each individual to obtain unbiased estimates. While use
of the subdistribution hazard rate appears appealing due to its direct relationship to the
cumulative incidence function, its use was argued against, because of the unintuitive risk
set formulation (Andersen and Keiding, 2012).
Different methods for analysis of event time data with multiple types of event were pro-
posed, in order to estimate the joint distribution of event times to different types of event,
assuming a correlation structure for times to different event types, as e.g. models for expo-
nentially distributed event times with two possible types of event, which were introduced
and discussed by Cox (1959). As in a classical competing risks setting event types are
mutually exclusive, the correlation structure cannot be estimated from observable data
and the assumption for the correlation structure cannot be verified. Various models for
estimation of possible ranges for the correlation structure based on the marginal event time
distributions were developed (see e.g. Peterson, 1976; Klein and Moeschberger, 1988), but
these were not presented in this work, as only models, that are estimable from observable
data and that do not rely on unverifiable assumption, are considered.
Various regression models for competing risks data were introduced since the end of the
1970s, that can be estimated from observable data. While Prentice et al (1978) proposed to
analyse competing risks data by modelling the cause-specific hazard rates, Fine and Gray
(1999) introduced a regression model for the subdistribution hazards. The two hazard
based models are the most popular regression models for competing risks data. Alter-
native approaches for regression analysis were proposed by Larson and Dinse (1985) and
Nicolaie et al (2010), who proposed to split the joint distribution of event types and event
times in one marginal and one conditional distribution. Larson and Dinse (1985) repre-
sented the joint distribution by the product of the marginal event type distribution and the
conditional event time distributions, given the type of event, which is known as mixture
model approach in the competing risks setting. Nicolaie et al (2010) introduced the so
called vertical modelling approach, assessing the marginal event time distribution and the
conditional event type distribution given the time of event, which provides relative haz-
ards for the different event types over time. Andersen et al (2003) introduced a calculation
technique for estimation of covariate effects on event probabilities in multi-state models
using pseudo-values, that are derived by jackknife estimates from the original data. This
approach was later described for the competing risks setting (Klein and Andersen, 2005),
which is a special case of a multi-state model.
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The different regression models are presented in this work and were applied to a dataset
from a clinical cohort study, investigating a risk stratification for cardiac death in patients
that survived a myocardial infarction. Due to the high amount of censored observations,
results from the two hazard-based methods were similar in that example, which does not
have to be the case, as the effect on different quantities is investigated. The mixture model
approach, which focusses on the marginal event type distribution, revealed a substantially
higher probability of dying from a cardiac event for patients, defined as being of high
risk for cardiac mortality, than for low risk patients. In the vertical modelling approach
a higher relative hazard for death from a cardiac reason than from a non-cardiac reason
was estimated for the high risk group, while relative hazards for both types of death were
similar in the low risk group. For both groups the relative hazard for death from a cardiac
reason was found to decline over time. The pseudo-value approach with a complementary
loglog-link gave results similar to the hazard-based regression models. A more compre-
hensive discussion on the results of the data analysis and applicability of the different
regression approaches can be found in Section 8.4 of this work and in a publication, in
which the competing risks regression models are described and compared, and results from
data application are shown (Haller et al, 2013).
In a recent publication Lau et al (2011) demonstrated, how cause-specific and subdis-
tribution hazard rates and consequently hazard ratios can be derived from one mixture
model. They proposed to use a flexible parametric mixture model in order to assess time-
dependencies of cause-specific and subdistribution hazard ratios. In a data application
presented in their article, Lau et al used a three-parameter generalized gamma distribu-
tion to model the conditional hazard rates in a mixture model. As the generalized gamma
mixture model was found to be numerically unstable in a simulation study (results not
shown), an alternative approach for flexible mixture model estimation using penalized B-
spline basis function is proposed in this work (Section 5). The approach is based on an
estimation procedure for the hazard rate, presented by Rosenberg (1995) for a standard
survival model with one possible endpoint, using B-spline functions. The method was
adapted for the mixture model approach including a penalty term to obtain smooth and
numerical stable estimates for the conditional hazard rates. The newly proposed approach
was compared to parametric mixture models assuming the conditional event times to fol-
low Weibull or generalized gamma distributions in a setting with a binary covariate and
two possible types of event, regarding their abilities to reflect given cause-specific and sub-
distribution hazards and their numerical properties. Competing risks data were generated
following predefined cause-specific or subdistribution hazards using algorithms provided
by Beyersmann et al (2009), which were described and investigated in Section 6 of this
work and partly published in Haller and Ulm (2013). The simulation study revealed, that
the newly developed spline approach was able to reflect true underlying cause-specific and
subdistribution hazards and hazard ratios, even when these were time-dependent, but vari-
ability of the obtained results was high, especially for late timepoints with low amount of
information left, when the smoothing parameter was chosen to be low in order to allow very
flexible estimation of the conditional hazard rates. Using a higher value for the smoothing
parameter lead to less variable results, but also to estimates for the conditional hazard
rates and consequently for the cause-specific and subdistribution hazard rates, that tended
towards a straight line resulting in slightly biased estimates, when shapes of the true hazard
rates were time-dependent. Parametric mixture models, that only assessed group effects
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on the location parameter, provided biased estimates for cause-specific hazard rates and
hazard ratios, when shapes of the underlying hazard rates differed between the groups. A
generalized gamma mixture model, allowing location, shape, and scale parameters to vary
between the groups, was able to reflect the general shape of the underlying hazard rates,
but estimates were biased and very variable for early timepoints. Maximum likelihood es-
timates could not be determined for all generated datasets, as the numerical maximization
procedure did not converge in some cases. In scenarios with a high proportion of censored
observations, this was the case for up to almost one third of the generated datasets, when
a generalized gamma mixture model, that allowed different shape and scale parameters
for both groups, was applied, whereas maximum likelihood estimates could be determined
for all generated datasets, when the spline approach with a smoothing parameter of µ=1
or µ=100 was considered. In summary, the new spline-based approach with an adequate
choice for the smoothing parameter appears to be superior to the parametric mixture mod-
els for deviation of cause-specific and subdistribution hazard rates and hazard ratios, when
the true cause-specific and subdistribution hazard rates are time-dependent. A wider dis-
cussion on the results of the simulation study can be found in Section 7.5.
For convenience and ease of notation, the new approach was presented for a comparison of
two groups in the presence of two possible types of event. The approach can be adapted to
more complex settings, but additional assumptions have to be made and model notation
has to be adapted. For the simulation study a fixed number of five interior knots for def-
inition of the set of basis functions was used and three different values for the smoothing
parameter were investigated. So no recommendations for number and placing of interior
knots and the choice of the smoothing parameter can be given yet, as this will be subject
to further investigations. One possible strategy for the choice of the smoothing parameter
can be the determination of an optimal parameter by the means of a cross validation pro-
cedure (see e.g. Hastie et al, 2009).

9.2 Conclusion

This works describes different methods for analysis of competing risks data. The adequate
choice of the methods to use is still under discussion, but in recent years most authors
argued for modelling the whole competing risks process, which is naturally defined by
the cause-specific hazard rates (Beyersmann et al, 2012; Andersen and Keiding, 2012;
Koller et al, 2012). Nevertheless, other approaches might provide additional information
in certain applications or might be the better fit to answer specific research questions. The
subdistribution hazards regression allows a direct translation of the covariate effects on the
hazard rate to an effect on the event probability, which appears to be much more intuitive
for applicants and readers not familiar with the concept of hazard rates. Mixture models,
although conditioning on future events and therefore not allowing adequate prediction of
an individual’s event time, provide marginal event type probabilities. Application of the
vertical modelling approach gives estimates of the marginal event time distribution and of
event type probabilities for given event times. Cause-specific and subdistribution hazard
rates can be derived from a mixture model, allowing to assess estimates for both quantities
from one model as described by Lau et al (2011). A newly proposed spline approach
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performed better than parametric mixture models in a simulation study.
One major task remains the transfer of available methods for the analysis of competing
risks data to the medical community, in order to avoid misinterpretation of study data,
possibly leading to erroneous therapy decisions or risk stratifications, due to inadequate
application of statistical methods in the presence of competing risks.
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Appendix A

Simulation with predefined
subdistribution hazards

The R-code for simulation of competing risks data with predefined subdistribution hazards
for the multiple regression model shown in Section 6.3.4 is presented.

# Simulation of a multiple regression model - Example 5

# Required libraries
library(numDeriv) # Compute derivatives
library(cmprsk) # Estimate subdistribution hazard ratios

# assuming proportionality

# Defining baseline hazards for the event of interest
gamma1_0 <- function(t) 0.001 * exp(-0.001 * t/log(1.3))
lambda1_0 <- function(t) 0.001
# Calculating the cause-specific baseline hazard for
# the competing event
lambda2_0 <- function(t)
gamma1_0(t) - lambda1_0(t) - grad(gamma1_0,t)/gamma1_0( t) +

grad(lambda1_0,t)/lambda1_0(t)

# Defining the regression coefficients (=log-hazard ratio s)
xi <- c(log(1.15),log(0.9),log(2))

# Hazards as functions of time, regression coefficients and
# covariate values
gamma1_x <- function(t,xi,X) gamma1_0(t) * exp(sum(xi * X))
lambda1_x <- function(t,X)

lambda1_0(t) * exp(xi[1] * X[1] * exp(-0.0005 * t) +
xi[2] * X[2] * exp(-0.0005 * t) + xi[3] * X[3] * exp(-0.0005 * t))

# Calculating the cause-specific hazard ratio for the event of
# interest dependening on the covariates
lambda2_x <- function(t,xi,X)

gamma1_x(t,xi,X) - lambda1_x(t,X) -



grad(gamma1_x,t,xi=xi,X=X)/gamma1_x(t,xi,X) +
grad(lambda1_x,t,X=X)/lambda1_x(t,X)

# Alternatively - to save computation time -
# the cause-specific hazard # for the
# competing event can be determined analytically
# lambda2_x <- function(t,xi,X)
# 0.001 * exp(-0.001 * t/log(1.3)+sum(xi * X)) -
# 0.001 * exp(sum(xi * X* exp(-0.0005 * t))) + 0.001/log(1.3) -
# sum(xi * X* 0.0005 * exp(-0.0005 * t))

# Number of simulation runs
Runs <- 4000
# Number of subjects in each run
n <- 1000
# Matrix to save results
CRR <- matrix(nrow=Runs,ncol=3)

# Loop for repeated runs
for(RR in 1:Runs)
{
# Random sampling of covariates from the defined distributi ons
# X2 is restricted to values between 0 and 10

X1 <- runif(n,0,3)
X2 <- pmax(pmin(rnorm(n,5,1),10),0)
X3 <- sample(0:1,n,repl=T)
XX <- cbind(X1,X2,X3)

# Vectors to save results within a loop
Evstat <- rep(0,n)
Evtime <- c()

# determine event time and type for each individual
for(j in 1:n)
{

Ti <- 0 # time variable

while(Evstat[j]==0) # repeat until an event was observed
{

Ti <- Ti+1
# Probability of an event for individual j at time Ti
Prob <- lambda1_x(t=Ti,X=XX[j,]) +

lambda2_x(t=Ti,xi=xi,X=XX[j,])
# Determine, if any event happened at Ti
Event <- sample(0:1,1,prob=c(1-Prob,Prob))

# if an event happened, determine which type
if(Event==1)

Evstat[j] <- sample(1:2,1,prob=c(
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lambda1_x(t=Ti,X=XX[j,]),
lambda2_x(t=Ti,xi=xi,X=XX[j,])))

}
Evtime[j] <- Ti

}

# Transform generated data to a data frame
dat <- data.frame(Time=Evtime,Stat=Evstat,X1=X1,X2=X2 ,X3=X3)

# Perform Fine and Gray regression and save
# the regression coefficients
CRR[RR,] <- crr(dat$Time,dat$Stat,

cov1=cbind(dat$X1,dat$X2,dat$X3))$coef
# Calculate means of current
# subdistribution log-hazard ratios
MEAN <- apply(CRR,2,mean,na.rm=T)
# Print current proceeding and
# mean of subdistribution hazard
# ratios over all loops performed
print(paste("Run: ",RR," - Means: ",round(MEAN[1],3)," / ",

round(MEAN[2],3)," / ",round(MEAN[3],3)))
}
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Appendix B

Appendix to the simulation study

B.1 Further results

B.1.1 Constant cause-specific hazard ratio

Further results for the simulation scenario with a time-dependent monotonous cause-
specific hazard ratio, as described in Section 7.3.1 and Section 7.4.1, are shown here.
The most important results, namely estimates for the average cause-specific (log-)hazard
ratio and illustrations of the estimated cause-specific hazard ratios, are presented in Sec-
tion 7.4.1. Summaries of estimates of the cause-specific hazards for the event of interest
are shown here for both groups as well as summaries of estimates for the subdistribution
hazards and hazard ratios.
Expected subdistribution hazard rates were derived from the prespecified cause-specific
hazard rates following Equation 3.14 and are illustrated in the according figures by solid
grey lines. The expected subdistribution hazard ratio was derived as quotient of the ex-
pected subdistribution hazard rates.
Results using the different censoring distributions presented in Section 7.1 are displayed
on the following pages:

• Low amount of censored observations - pages 126 to 128

• Moderate amount of censored observations - pages 129 to 131

• High amount of censored observations - pages 132 to 134





















B.1 Further results

B.1.2 Time-dependent monotonous cause-specific hazard ratio

Further results for the simulation scenario with a time-dependent monotonous cause-
specific hazard ratio, as described in Section 7.3.2 and Section 7.4.2, are shown here. The
most important results, namely illustrations of the estimated cause-specific hazard ratios,
are presented in Section 7.4.2. Summaries of estimates for the cause-specific hazards for
the event of interest are shown here for both groups as well as summaries of estimates for
the subdistribution hazards and hazard ratios.
Expected subdistribution hazard rates were derived from the prespecified cause-specific
hazard rates following Equation 3.14 and are illustrated in the according figures by solid
grey lines. The expected subdistribution hazard ratio was derived as quotient of the ex-
pected subdistribution hazard rates.
Results using the different censoring distributions presented in Section 7.1 are displayed
on the following pages:

• Low amount of censored observations - pages 136 to 138

• Moderate amount of censored observations - pages 139 to 141

• High amount of censored observations - pages 142 to 144
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B.1 Further results

B.1.3 Time-dependent non-monotonous cause-specific hazard ra-
tio

Further results for the simulation scenario with a time-dependent non-monotonous cause-
specific hazard ratio, as described in Section 7.3.3 and Section 7.4.3, are shown here. The
most important results, namely illustrations of the estimated cause-specific hazard ratios,
are presented in Section 7.4.3. Summaries of estimates for the cause-specific hazards for
the event of interest are shown here for both groups as well as summaries of estimates for
the subdistribution hazards and hazard ratios.
Expected subdistribution hazard rates were derived from the prespecified cause-specific
hazard rates following Equation 3.14 and are illustrated in the according figures by solid
grey lines. The expected subdistribution hazard ratio was derived as quotient of the ex-
pected subdistribution hazard rates.
Results using the different censoring distributions presented in Section 7.1 are displayed
on the following pages:

• Low amount of censored observations - pages 146 to 148

• Moderate amount of censored observations - pages 149 to 151

• High amount of censored observations - pages 152 to 154
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B.1 Further results

B.1.4 Constant subdistribution hazard ratio

Further results for the simulation scenario with a time-constant subdistribution hazard
ratio, as described in Section 7.3.4 and Section 7.4.4, are shown here. The most im-
portant results, namely estimates for the average subdistribution (log-)hazard ratio and
illustrations of the estimated subdistribution hazard ratios, are presented in Section 7.4.4.
Summaries of estimates for the subdistribution hazards for the event of interest are shown
here for both groups as well as summaries of estimates for the cause-specific hazards and
hazard ratios.
Expected subdistribution and cause-specific hazard rates are illustrated in the according
figures by solid grey lines. The expected cause-specific hazard ratio was derived as quotient
of the expected cause-specific hazard rates.
Results using the different censoring distributions presented in Section 7.1 are displayed
on the following pages:

• Low amount of censored observations - pages 156 to 158

• Moderate amount of censored observations - pages 159 to 161

• High amount of censored observations - pages 162 to 164
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B.2 Sketch of the R-code

B.2 Sketch of the R-code

B.2.1 Functions for simulation

Data generation

For illustration of the code used for data generation, the according function for Scenario
III is presented. Variables C1 and C2 are parameters of the Weibull distribution for
generation of potential censoring times and can be set as described in Section 7.1. It has
to be considered, that the parametrization of the Weibull distribution used in rweibull is
different from the parametrization used throughout this work (see Equation 2.21), and that
C1 and C2 have to be adapted accordingly.

Gen.Data.Sz3 <- function(n,AdminCens,C1,C2)
{
group <- sample(0:1,n,repl=T)

# Definition of cause-specific hazard functions
# for the event of interest
h1_A <- function(zz) 0.25 + 0.5 * zz / exp(zz)
h1_B <- function(zz) 0.25 / exp(zz) + 0.05 * zz
# Cumulative cause-specific hazard functions
H1_A <- function(zz) 0.25 * exp(-zz) * ((zz+2) * exp(zz)-2 * zz-2)
H1_B <- function(zz) 0.025 * exp(-zz) * ((zzˆ2+10) * exp(zz)-10)

# Definition of cause-specific hazard functions
# for the competing event
h2_A <- 0.2
h2_B <- 0.2
H2_A <- function(zz) h2_A * zz
H2_B <- function(zz) h2_B * zz
S.fct_A <- function(z,U) exp(-H1_A(z)-H2_A(z)) - U
S.fct_B <- function(z,U) exp(-H1_B(z)-H2_B(z)) - U

# Generation of event times using the inversion method
ev.time <- c()
for(i in 1:n)
{
if(group[i]==0) {

Uz <- runif(1)
ev.time[i] <- uniroot(

S.fct_A,c(0.00000000000001,500),U=Uz)$root}
if(group[i]==1){

Uz <- runif(1)
ev.time[i] <- uniroot(

S.fct_B,c(0.00000000000001,500),U=Uz)$root}
}
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# Determination of event types
ev.type <- c()
for(i in 1:n)
{
if(group[i]==0)
ev.type[i] <- sample(1:2,1,prob=c(h1_A(ev.time[i]),h2 _A))
if(group[i]==1)
ev.type[i] <- sample(1:2,1,prob=c(h1_B(ev.time[i]),h2 _B))
}

# Generation of censoring times
# and determination of status variable

CT <- rweibull(n,C1,C2)
CensTime <- pmin(rep(AdminCens,n),CT)
obs.time <- pmin(CensTime,ev.time)
stat <- ev.type * as.numeric(ev.time<CensTime)

# Sorting data
ind <- sort(obs.time,index.return=T)$ix
s.obs.time <- obs.time[ind]
s.stat <- stat[ind]
s.group <- group[ind]

# Generation of data frame
Data <- data.frame(

Time=s.obs.time,Status=s.stat,Group=s.group)
return(Data)

}

Initiation of simulation runs

Code used for initiation of simulation runs calling the functions shown above and in Section
B.2.2.

for(rr in 1:Runs)
{
# Generate and save data
if(Szen==1)
Data <- Gen.Data.Sz1(n=n,lam1A=1/3,lam1B=0.25,

lam2A=0.2,lam2B=0.2,AdminCens=Admin.Time,C1=C1,C2=C 2)
if(Szen==2)
Data <- Gen.Data.Sz2(n=n,AdminCens=5,C1=C1,C2=C2)
if(Szen==3)
Data <- Gen.Data.Sz3(n=n,AdminCens=5,C1=C1,C2=C2)
if(Szen==4)
Data <- Gen.Data.Sz4(n=n,AdminCens=5,C1=C1,C2=C2)
Data.List[[rr]] <- Data
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#################################
# Estimate coefficients
#################################

# Exponential distribution
Estim.Expo <- EST.EXPO(Data,c(0,0,log(0.1),0,log(0.1) ,0))
Expo.Coef[rr,] <- Estim.Expo$estimate
Conv.Expo[rr] <- Estim.Expo$code
# Define starting values for Weibull distribution
SV.Weibull <- c(Estim.Expo$est[1],Estim.Expo$est[2],

Estim.Expo$est[3],Estim.Expo$est[4],1,
Estim.Expo$est[5],Estim.Expo$est[6],1)

# Weibull distribution
Estim.Weibull <- EST.WEIBULL(Data,SV.Weibull)
Weibull.Coef[rr,] <- Estim.Weibull$estimate
Conv.Weibull[rr] <- Estim.Weibull$code
# Define starting values for gen. gamma distribution
SV.Ggv <- c(Estim.Weibull$est[1],Estim.Weibull$est[2] ,

Estim.Weibull$est[3],Estim.Weibull$est[4],
1/Estim.Weibull$est[5],1,
Estim.Weibull$est[6],Estim.Weibull$est[7],
1/Estim.Weibull$est[8],1)

# Gen. gamma distribution
Estim.Ggv <- EST.GGV(Data,SV.Ggv)
Ggv.Coef[rr,] <- Estim.Ggv$estimate
Conv.Ggv[rr] <- Estim.Ggv$code
if(Estim.Ggv$code==1)
# Define starting values for sat. gen. gamma distribution
SV.Sat.Ggv <- c(Estim.Ggv$est[1],Estim.Ggv$est[2],

Estim.Ggv$est[3],Estim.Ggv$est[4],
Estim.Ggv$est[5],0,Estim.Ggv$est[6],0,

Estim.Ggv$est[7],Estim.Ggv$est[8],
Estim.Ggv$est[9],0,Estim.Ggv$est[10],0)

if(Estim.Ggv$code!=1)
SV.Sat.Ggv <- c(Estim.Weibull$est[1],Estim.Weibull$es t[2],

Estim.Weibull$est[3],Estim.Weibull$est[4],
1/Estim.Weibull$est[5],0,1,0,

Estim.Weibull$est[6],Estim.Weibull$est[7],
1/Estim.Weibull$est[8],0,1,0)

# Sat. gen. gamma distribution
Estim.Sat.Ggv <- EST.SAT.GGV(Data,SV.Sat.Ggv)
Sat.Ggv.Coef[rr,] <- Estim.Sat.Ggv$estimate
Conv.Sat.Ggv[rr] <- Estim.Sat.Ggv$code

APPENDIX TO THE SIMULATION STUDY 167



B.2 Sketch of the R-code

# Define starting values for spline approach
SV.Spline <- c(Estim.Expo$est[1:2],

rep(-0.5,N.InnerKnots+4),rep(0,N.InnerKnots+4),
rep(-0.5,N.InnerKnots+4),rep(0,N.InnerKnots+4))

# Spline approach (mu=0.01)
Estim.Splines_0.01 <- EST.SPLINE(Data,mu=0.01,

N.innerKnots=N.InnerKnots,Start.Vals=SV.Spline)
Splines.Coef_0.01[rr,] <- Estim.Splines_0.01$estimate
Conv.Splines_0.01[rr] <- Estim.Splines_0.01$code

# Spline approach (mu=1)
Estim.Splines_1 <- EST.SPLINE(Data,mu=1,

N.innerKnots=N.InnerKnots,Start.Vals=SV.Spline)
Splines.Coef_1[rr,] <- Estim.Splines_1$estimate
Conv.Splines_1[rr] <- Estim.Splines_1$code

# Spline approach (mu=100)
Estim.Splines_100 <- EST.SPLINE(Data,mu=100,

N.innerKnots=N.InnerKnots,Start.Vals=SV.Spline)
Splines.Coef_100[rr,] <- Estim.Splines_100$estimate
Conv.Splines_100[rr] <- Estim.Splines_100$code

################################################### ##
# Derive cause-specific and
# subdistribution hazard rates for observed times
################################################### ##

Haz.Weibull.ObsTime[[rr]] <- Deriv.Weibull(
Timepoints=Data.List[[rr]]$Time,theta=Weibull.Coef[ rr,])

Haz.Ggv.ObsTime[[rr]] <- Deriv.Ggv(
Timepoints=Data.List[[rr]]$Time,theta=Ggv.Coef[rr,] )

Haz.Sat.Ggv.ObsTime[[rr]] <- Deriv.Sat.Ggv(
Timepoints=Data.List[[rr]]$Time,theta=Sat.Ggv.Coef[ rr,])

Haz.Splines_0.01.ObsTime[[rr]] <- Deriv.Splines(
Basis=Bsplines.quant(TimeEval=Data$Time,
TimeKnots=Data$Time,Status=Data$Status,IB=TRUE,
n.Knots=N.InnerKnots+2),theta=Splines.Coef_0.01[rr, ])

Haz.Splines_1.ObsTime[[rr]] <- Deriv.Splines(
Basis=Bsplines.quant(TimeEval=Data$Time,
TimeKnots=Data$Time,Status=Data$Status,IB=TRUE,
n.Knots=N.InnerKnots+2),theta=Splines.Coef_1[rr,])

Haz.Splines_100.ObsTime[[rr]] <- Deriv.Splines(
Basis=Bsplines.quant(TimeEval=Data$Time,
TimeKnots=Data$Time,Status=Data$Status,IB=TRUE,
n.Knots=N.InnerKnots+2),theta=Splines.Coef_100[rr,] )
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################################################### ###
# Derive cause-specific and
# subdistribution hazard rates for given timepoints
################################################### ###

Haz.Expo.GivenTime[[rr]] <- Deriv.Expo(
Timepoints=Given.Times, theta=Expo.Coef[rr,])

Haz.Weibull.GivenTime[[rr]] <- Deriv.Weibull(
Timepoints=Given.Times, theta=Weibull.Coef[rr,])

Haz.Ggv.GivenTime[[rr]] <- Deriv.Ggv(
Timepoints=Given.Times, theta=Ggv.Coef[rr,])

Haz.Sat.Ggv.GivenTime[[rr]] <- Deriv.Sat.Ggv(
Timepoints=Given.Times, theta=Sat.Ggv.Coef[rr,])

Haz.Splines_0.01.GivenTime[[rr]] <- Deriv.Splines(
Basis=Bsplines.quant(TimeEval=Given.Times,
TimeKnots=Data$Time,Status=Data$Status,IB=TRUE,
n.Knots=N.InnerKnots+2),theta=Splines.Coef_0.01[rr, ])

Haz.Splines_1.GivenTime[[rr]] <- Deriv.Splines(
Basis=Bsplines.quant(TimeEval=Given.Times,
TimeKnots=Data$Time,Status=Data$Status,IB=TRUE,
n.Knots=N.InnerKnots+2),theta=Splines.Coef_1[rr,])

Haz.Splines_100.GivenTime[[rr]] <- Deriv.Splines(
Basis=Bsplines.quant(TimeEval=Given.Times,
TimeKnots=Data$Time,Status=Data$Status,IB=TRUE,
n.Knots=N.InnerKnots+2),theta=Splines.Coef_100[rr,] )

print(rr)
}

B.2.2 Analysis of simulation runs

Log-likelihood functions

Code for the log-likelihood functions, which are to be maximized for estimation of the
regression coefficients.

# Exponential mixture model
Loglik.Expo <- function(theta,Time,Status,Group){

bpi0 <- theta[1]
bpix <- theta[2]
b0_1 <- theta[3]
bb_1 <- theta[4]
b0_2 <- theta[5]
bb_2 <- theta[6]

LoLi <- sum(
as.numeric(Status==1) * (
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ln.Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) +
Expo.log.dens(b0=b0_1,b1=bb_1,X=Group,ti=Time)) +

as.numeric(Status==2) * (
ln.Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) +
Expo.log.dens(b0=b0_2,b1=bb_2,X=Group,ti=Time)) +

as.numeric(Status==0) *
log(Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) *
Expo.Surv(b0=b0_1,bb_1,X=Group,ti=Time) +

Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) *
Expo.Surv(b0=b0_2,bb_2,X=Group,ti=Time))

)
return(-LoLi)

}

# Weibull mixture model
Loglik.Weibull <- function(theta,Time,Status,Group){

bpi0 <- theta[1]
bpix <- theta[2]
b0_1 <- theta[3]
bb_1 <- theta[4]
alpha_1 <- theta[5]
b0_2 <- theta[6]
bb_2 <- theta[7]
alpha_2 <- theta[8]

LoLi <- sum(
as.numeric(Status==1) * (

ln.Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) +
Weibull.log.dens(b0=b0_1,b1=bb_1,
alpha=alpha_1,X=Group,ti=Time)) +

as.numeric(Status==2) * (
ln.Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) +
Weibull.log.dens(b0=b0_2,b1=bb_2,
alpha=alpha_2,X=Group,ti=Time)) +

as.numeric(Status==0) * log(
Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) *
Weibull.Surv(b0=b0_1,bb_1,
alpha=alpha_1,X=Group,ti=Time) +

Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) *
Weibull.Surv(b0=b0_2,bb_2,

alpha=alpha_2,X=Group,ti=Time))
)
return(-LoLi)

}

# Generalized gamma (lambda) mixture model
Loglik.Ggv <- function(theta,Time,Status,Group){

bpi0 <- theta[1]
bpix <- theta[2]

APPENDIX TO THE SIMULATION STUDY 170



B.2 Sketch of the R-code

b0_1 <- theta[3]
bb_1 <- theta[4]
a.tilde_1 <- theta[5]
nu_1 <- theta[6]
b0_2 <- theta[7]
bb_2 <- theta[8]
a.tilde_2 <- theta[9]
nu_2 <- theta[10]

LoLi <- sum(
as.numeric(Status==1) * (

ln.Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) +
Ggv.log.dens(b0=b0_1,b1=bb_1,a.tilde=a.tilde_1,
nu=nu_1,X=Group,ti=Time)) +

as.numeric(Status==2) * (
ln.Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) +
Ggv.log.dens(b0=b0_2,b1=bb_2,a.tilde=a.tilde_2,
nu=nu_2,X=Group,ti=Time)) +

as.numeric(Status==0) * log(
Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) *

Ggv.Surv(b0=b0_1,b1=bb_1,a.tilde=a.tilde_1,
nu=nu_1,X=Group,ti=Time) +

Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) *
Ggv.Surv(b0=b0_2,b1=bb_2,a.tilde=a.tilde_2,

nu=nu_2,X=Group,ti=Time))
)

return(-LoLi)
}

# Saturated generalized gamma mixture model
Loglik.Sat.Ggv <- function(theta,Time,Status,Group){

bpi0 <- theta[1]
bpix <- theta[2]
b0_1 <- theta[3]
bb_1 <- theta[4]
a.tilde0_1 <- theta[5]
b.a.tilde_1 <- theta[6]
nu0_1 <- theta[7]
b.nu_1 <- theta[8]
b0_2 <- theta[9]
bb_2 <- theta[10]
a.tilde0_2 <- theta[11]
b.a.tilde_2 <- theta[12]
nu0_2 <- theta[13]
b.nu_2 <- theta[14]

LoLi <- sum(
as.numeric(Status==1) * (
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ln.Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) +
Sat.Ggv.log.dens(b0=b0_1,b1=bb_1,
a.tilde=a.tilde0_1,b.a.tilde=b.a.tilde_1,

nu_0=nu0_1,b.nu=b.nu_1,X=Group,ti=Time)) +
as.numeric(Status==2) * (

ln.Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) +
Sat.Ggv.log.dens(b0=b0_2,b1=bb_2,

a.tilde=a.tilde0_2,b.a.tilde=b.a.tilde_2,
nu_0=nu0_2,b.nu=b.nu_2,X=Group,ti=Time)) +

as.numeric(Status==0) * log(
Pi_1.x(bpi0=bpi0,bpix=bpix,X=Group) *

Sat.Ggv.Surv(b0=b0_1,b1=bb_1,a.tilde=a.tilde0_1,
b.a.tilde=b.a.tilde_1,nu_0=nu0_1,b.nu=b.nu_1,
X=Group,ti=Time)

Pi_2.x(bpi0=bpi0,bpix=bpix,X=Group) *
Sat.Ggv.Surv(b0=b0_2,b1=bb_2,a.tilde=a.tilde0_2,

b.a.tilde=b.a.tilde_2,nu_0=nu0_2,b.nu=b.nu_2,
X=Group,ti=Time))

)
return(-LoLi)

}

# Log-likelihood for the spline approach
Loglik.Splines <- function(
theta,Time,Status,Group,Basis,D.square,mu)
{

n.th <- dim(Basis$Basisfkt)[2]
bpi0 <- theta[1]
bpi1 <- theta[2]

eta.pi <- bpi0 + bpi1 * Group

theta.basis.1_A <- theta[3:(2+n.th)]
theta.basis.1_B <- theta[(3+n.th):(2 * n.th+2)]
theta.basis.2_A <- theta[(3+2 * n.th):(3 * n.th+2)]
theta.basis.2_B <- theta[(3+3 * n.th):(4 * n.th+2)]

h1.cond_A <- as.vector(
exp(theta.basis.1_A)% * %t(Basis$Basisfkt))

h1.cond_B <- as.vector(
exp(theta.basis.1_A + theta.basis.1_B)% * %t(Basis$Basisfkt))

h2.cond_A <- as.vector(
exp(theta.basis.2_A)% * %t(Basis$Basisfkt))

h2.cond_B <- as.vector(
exp(theta.basis.2_A + theta.basis.2_B)% * %t(Basis$Basisfkt))

S1.cond_A <- as.vector(
exp( - exp(theta.basis.1_A)% * %t(Basis$IFkt-Basis$IB.Min) ) )

S1.cond_B <- as.vector(
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exp( - exp(theta.basis.1_A + theta.basis.1_B)% * %
t(Basis$IFkt-Basis$IB.Min) ) )

S2.cond_A <- as.vector(
exp( - exp(theta.basis.2_A)% * %
t(Basis$IFkt-Basis$IB.Min) ) )

S2.cond_B <- as.vector(
exp( - exp(theta.basis.2_A + theta.basis.2_B)% * %
t(Basis$IFkt-Basis$IB.Min) ) )

f1.cond_A <- h1.cond_A * S1.cond_A
f1.cond_B <- h1.cond_B * S1.cond_B
f2.cond_A <- h2.cond_A * S2.cond_A
f2.cond_B <- h2.cond_B * S2.cond_B

loglik <- sum(
(Status==1) * (eta.pi - log(1+exp(eta.pi)) +
log(f1.cond_A * (Group==0) + f1.cond_B * (Group==1) ) ) +

(Status==2) * ( - log(1+exp(eta.pi)) + log(
f2.cond_A * (Group==0) + f2.cond_B * (Group==1) ) ) +

(Status==0) * log( exp(eta.pi)/(1+exp(eta.pi)) *
(S1.cond_A * (Group==0) + S1.cond_B * (Group==1)) +

( 1/(1+exp(eta.pi)) * (S2.cond_A * (Group==0) +
S2.cond_B * (Group==1) )) ) )

Pen.Mat <- t(theta) % * % D.square % * % theta
return( - loglik + 1/2 * mu* Pen.Mat)

}

Density and survivor functions

Code for density and survivor functions, used for estimation of marginal event type distri-
butions and conditional event time distributions, is presented.

# Maringal event type distribution:
Pi_1.x <- function(bpi0,bpix,X)
exp(bpi0 + bpix * X) / (1 + exp(bpi0 + bpix * X))

# Function for P_2(X):
Pi_2.x <- function(bpi0,bpix,X)
1 / (1 + exp(bpi0 + bpix * X))

# Function for ln(P_1(X)):
ln.Pi_1.x <- function(bpi0,bpix,X)
bpi0 + bpix * X - log(1+exp(bpi0 + bpix * X))
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# Function for ln(P_2(X)):
ln.Pi_2.x <- function(bpi0,bpix,X)
- log(1+exp(bpi0 + bpix * X))

###############################################
# EXPONENTIAL DISTRIBUTION
###############################################

# Density Function
Expo.dens <- function(b0,b1,X,ti)
exp(b0+b1 * X) * exp(-exp(b0+b1 * X) * ti)

# Logarithm of the Density Function
Expo.log.dens <- function(b0,b1,X,ti)
b0+b1 * X - exp(b0+b1 * X) * ti

# Survivor Function
Expo.Surv <- function(b0,b1,X,ti)
exp(-exp(b0+b1 * X) * ti)

###############################################
# WEIBULL DISTRIBUTION
###############################################

# Density Function
Weibull.dens <- function(b0,b1,alpha,X,ti)
exp(b0+b1 * X) * alpha * (exp(b0+b1 * X) * ti)ˆ(alpha-1) *
exp(-(exp(b0+b1 * X) * ti)ˆalpha)

# Logarithm of the Density Function
Weibull.log.dens <- function(b0,b1,alpha,X,ti)
( b0+b1 * X) + log(alpha) + (alpha-1) * ((b0+b1 * X)+log(ti)) -
(exp(b0+b1 * X) * ti)ˆalpha

# Survivor Function
Weibull.Surv <- function(b0,b1,alpha,X,ti)
exp(-(exp(b0+b1 * X) * ti)ˆalpha)

###############################################
# GENERALIZED GAMMA DISTRIBUTION
###############################################

# Density Function
Ggv.dens <- function(b0,b1,a.tilde,nu,X,ti)
abs(nu) / (a.tilde * ti * gamma(nuˆ(-2))) * (nuˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ(nu/a.tilde))ˆ(nuˆ(-2)) *
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exp(-nuˆ(-2) * (exp(b0+b1 * X) * ti)ˆ(nu/a.tilde))

# Logarithm of the Density Function
Ggv.log.dens <- function(b0,b1,a.tilde,nu,X,ti)
log(abs(nu)) - log(a.tilde) - log(ti) - log(gamma(nuˆ(-2) )) +

nuˆ(-2) * (log(nuˆ(-2)) + nu/a.tilde * (b0+b1 * X+log(ti))) -
nuˆ(-2) * (exp(b0+b1 * X) * ti)ˆ(nu/a.tilde)

# Survivor Function
Ggv.Surv <- function(b0,b1,a.tilde,nu,X,ti)
as.numeric(nu>0) * (1 - pgamma(nuˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ(nu/a.tilde),nuˆ(-2))) +

as.numeric(nu<0) * pgamma(nuˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ(nu/a.tilde),nuˆ(-2))

###############################################
# SATURATED GENERALIZED GAMMA DISTRIBUTION
###############################################

# Density Function
Sat.Ggv.dens <- function(
b0,b1,a.tilde_0,b.a.tilde,nu_0,b.nu,X,ti)
abs(nu_0+b.nu * X) / ((a.tilde_0+b.a.tilde * X) * ti *
gamma((nu_0+b.nu * X)ˆ(-2))) * ((nu_0+b.nu * X)ˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ((nu_0+b.nu * X)/
(a.tilde_0+b.a.tilde * X)))ˆ((nu_0+b.nu * X)ˆ(-2)) *

exp(-(nu_0+b.nu * X)ˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ((nu_0+b.nu * X)/(a.tilde_0+b.a.tilde * X)) )

# Logarithm of the Density Function
Sat.Ggv.log.dens <- function(
b0,b1,a.tilde_0,b.a.tilde,nu_0,b.nu,X,ti)
log(abs(nu_0+b.nu * X)) - log(a.tilde_0+b.a.tilde * X) -
log(ti) - log(gamma((nu_0+b.nu * X)ˆ(-2))) +

(nu_0+b.nu * X)ˆ(-2) * (log((nu_0+b.nu * X)ˆ(-2)) +
(nu_0+b.nu * X)/(a.tilde_0+b.a.tilde * X) *
((b0+b1 * X)+log(ti))) - (nu_0+b.nu * X)ˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ((nu_0+b.nu * X)/(a.tilde_0+b.a.tilde * X))

# Survivor Function
Sat.Ggv.Surv <- function(
b0,b1,a.tilde_0,b.a.tilde,nu_0,b.nu,X,ti)
as.numeric((nu_0+b.nu * X)>0) * (1 - pgamma((nu_0+b.nu * X)ˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ((nu_0+b.nu * X)/(a.tilde_0+b.a.tilde * X)),
(nu_0+b.nu * X)ˆ(-2))) + as.numeric((nu_0+b.nu * X)<0) *
pgamma((nu_0+b.nu * X)ˆ(-2) *
(exp(b0+b1 * X) * ti)ˆ((nu_0+b.nu * X)/(a.tilde_0+b.a.tilde * X)),
(nu_0+b.nu * X)ˆ(-2))
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###############################################
# SPLINES
###############################################

# Density Function
haz.Splines <- function(Basis,b.spl)
as.vector(exp(b.spl) % * % t(Basis$Basisfkt))

# Survivor Function
Surv.Splines <- function(Basis,b.spl)
as.vector(exp(-exp(b.spl) % * % t(Basis$IFkt - Basis$IB.Min)))

B-spline basis functions and penalty matrix

Definition of basis functions and of the penalty matrix, used for smooth estimation of the
conditional hazard rates.

###############################################
# Splines
###############################################

# Basis functions
Bsplines.quant <- function(
TimeEval,TimeKnots,Status,n.Knots,IB=TRUE)
{
# Definition of knots

Knots <- quantile(
TimeKnots[which(Status!=0)],seq(0,1,length=n.Knots) )

stime <- sort(TimeEval)
slack.low <- c(Knots[1]-3 * (Knots[2]-Knots[1]),
Knots[1]-2 * (Knots[2]-Knots[1]),Knots[1]-(Knots[2]-Knots[1]))
slack.upp <- c(rev(Knots)[1]+1 * (rev(Knots)[1]-rev(Knots)[2]),
rev(Knots)[1]+2 * (rev(Knots)[1]-rev(Knots)[2]),

rev(Knots)[1]+3 * (rev(Knots)[1]-rev(Knots)[2]))
All.Knots <- c(slack.low,Knots,slack.upp)

B_k.t <- matrix(
nrow=length(TimeEval),ncol=length(All.Knots)-4)

IB_k.t <- matrix(
nrow=length(TimeEval),ncol=length(All.Knots)-4)

# Definition of basis functions
for(k in 1:(length(All.Knots)-4))
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{
B_k.t[,k] <- (All.Knots[k+4]-All.Knots[k]) *

((All.Knots[k]-stime)ˆ3 * as.numeric(
(All.Knots[k]-stime)>0) / ((All.Knots[k+1]-All.Knots[ k]) *
(All.Knots[k+2]-All.Knots[k]) *
(All.Knots[k+3]-All.Knots[k]) *
(All.Knots[k+4]-All.Knots[k])) +
(All.Knots[k+1]-stime)ˆ3 * as.numeric(
(All.Knots[k+1]-stime)>0) /
((All.Knots[k]-All.Knots[k+1]) *
(All.Knots[k+2]-All.Knots[k+1]) *
(All.Knots[k+3]-All.Knots[k+1]) *
(All.Knots[k+4]-All.Knots[k+1])) +
(All.Knots[k+2]-stime)ˆ3 * as.numeric(
(All.Knots[k+2]-stime)>0) /
((All.Knots[k]-All.Knots[k+2]) *
(All.Knots[k+1]-All.Knots[k+2]) *
(All.Knots[k+3]-All.Knots[k+2]) *
(All.Knots[k+4]-All.Knots[k+2])) +
(All.Knots[k+3]-stime)ˆ3 * as.numeric(
(All.Knots[k+3]-stime)>0) /
((All.Knots[k]-All.Knots[k+3]) *
(All.Knots[k+1]-All.Knots[k+3]) *
(All.Knots[k+2]-All.Knots[k+3]) *
(All.Knots[k+4]-All.Knots[k+3])) +
(All.Knots[k+4]-stime)ˆ3 * as.numeric(
(All.Knots[k+4]-stime)>0) /
((All.Knots[k]-All.Knots[k+4]) *
(All.Knots[k+1]-All.Knots[k+4]) *
(All.Knots[k+2]-All.Knots[k+4]) *
(All.Knots[k+3]-All.Knots[k+4])))

}

# Integral of basis functions
if(IB==T)
{

for(k in 1:(length(All.Knots)-4))
{

IB_k.t[,k] <- -(All.Knots[k+4]-All.Knots[k])/4 * (
(All.Knots[k]-stime)ˆ4 * as.numeric(
(All.Knots[k]-stime)>0) /
( (All.Knots[k+1]-All.Knots[k]) * (All.Knots[k+2]-
All.Knots[k]) * (All.Knots[k+3]-All.Knots[k]) *
(All.Knots[k+4]-All.Knots[k])) +
(All.Knots[k+1]-stime)ˆ4 * as.numeric(
(All.Knots[k+1]-stime)>0) /
((All.Knots[k]-All.Knots[k+1]) *
(All.Knots[k+2]-All.Knots[k+1]) *
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(All.Knots[k+3]-All.Knots[k+1]) *
(All.Knots[k+4]-All.Knots[k+1])) +
(All.Knots[k+2]-stime)ˆ4 * as.numeric(
(All.Knots[k+2]-stime)>0) /
((All.Knots[k]-All.Knots[k+2]) *
(All.Knots[k+1]-All.Knots[k+2]) *
(All.Knots[k+3]-All.Knots[k+2]) *
(All.Knots[k+4]-All.Knots[k+2])) +
(All.Knots[k+3]-stime)ˆ4 * as.numeric(
(All.Knots[k+3]-stime)>0) /
((All.Knots[k]-All.Knots[k+3]) *
(All.Knots[k+1]-All.Knots[k+3]) *
(All.Knots[k+2]-All.Knots[k+3]) *
(All.Knots[k+4]-All.Knots[k+3])) +
(All.Knots[k+4]-stime)ˆ4 * as.numeric(
(All.Knots[k+4]-stime)>0) /
((All.Knots[k]-All.Knots[k+4]) *
(All.Knots[k+1]-All.Knots[k+4]) *
(All.Knots[k+2]-All.Knots[k+4]) *
(All.Knots[k+3]-All.Knots[k+4])))

}

IB.Min <- c()
for(k in 1:(length(All.Knots)-4))
{

IB.Min[k] <- -(All.Knots[k+4]-All.Knots[k])/4 * (
(All.Knots[k]-0)ˆ4 * as.numeric((All.Knots[k]-0)>0) /
((All.Knots[k+1]-All.Knots[k]) * (All.Knots[k+2]-
All.Knots[k]) * (All.Knots[k+3]-All.Knots[k]) *
(All.Knots[k+4]-All.Knots[k])) +
(All.Knots[k+1]-0)ˆ4 * as.numeric((All.Knots[k+1]-0)>0) /
((All.Knots[k]-All.Knots[k+1]) * (All.Knots[k+2]-
All.Knots[k+1]) * (All.Knots[k+3]-All.Knots[k+1]) *
(All.Knots[k+4]-All.Knots[k+1])) +
(All.Knots[k+2]-0)ˆ4 * as.numeric((All.Knots[k+2]-0)>0) /
((All.Knots[k]-All.Knots[k+2]) * (All.Knots[k+1]-
All.Knots[k+2]) * (All.Knots[k+3]-All.Knots[k+2]) *
All.Knots[k+4]-All.Knots[k+2])) +
(All.Knots[k+3]-0)ˆ4 * as.numeric((All.Knots[k+3]-0)>0) /
((All.Knots[k]-All.Knots[k+3]) * (All.Knots[k+1]-
All.Knots[k+3]) * (All.Knots[k+2]-All.Knots[k+3]) *
(All.Knots[k+4]-All.Knots[k+3])) +
(All.Knots[k+4]-0)ˆ4 * as.numeric((All.Knots[k+4]-0)>0) /
((All.Knots[k]-All.Knots[k+4]) *
(All.Knots[k+1]-All.Knots[k+4]) *
(All.Knots[k+2]-All.Knots[k+4]) *
(All.Knots[k+3]-All.Knots[k+4])))

}
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IB.Min.matrix <- matrix(rep(IB.Min,length(TimeEval)),
byrow=T,nrow=length(TimeEval),ncol=length(IB.Min))

}

return(list(Time=stime,Basisfkt=B_k.t,IFkt=IB_k.t,
IB.Min=IB.Min.matrix,Knoten=All.Knots))

}

# Penalty matrix
PenMat <- function(N.InnerKnots)
{
n.th <- N.InnerKnots + 4
DM <- diff(diag(n.th), diff = 2)
Mat.part <- t(DM) % * % DM
M0 <- matrix(0,nrow=2,ncol=4 * n.th+2)
M1 <- cbind(matrix(0,ncol=2,nrow=n.th),
Mat.part,matrix(0,ncol=3 * n.th,nrow=n.th))
M2 <- cbind(matrix(0,ncol=2,nrow=n.th),
matrix(0,ncol=n.th,nrow=n.th),Mat.part,
matrix(0,ncol=2 * n.th,nrow=n.th))
M3 <- cbind(matrix(0,ncol=2,nrow=n.th)
matrix(0,ncol=2 * n.th,nrow=n.th),Mat.part,
matrix(0,ncol=n.th,nrow=n.th))
M4 <- cbind(matrix(0,ncol=2,nrow=n.th)
matrix(0,ncol=3 * n.th,nrow=n.th),Mat.part)

Dsquare <- rbind(M0,M1,M2,M3,M4)
return(Dsquare)
}

Functions for maximum likelihood estimation

Functions used for numerical derivation of maximum likelihood estimates.

# Exponential mixture model
EST.EXPO <- function(Data,Start.Vals){
tryCatch(
NLM.EXPO<<-nlm(Loglik.Expo,Start.Vals,Time=Data$Tim e,
Status=Data$Status,Group=Data$Group,iterlim=1000000 00),
error=function(e)
NLM.EXPO <<- list(estimate=rep(NA,6),code=99,minimum= NA,
terations=NA,gradient=rep(NA,6)) )
return(NLM.EXPO)
}
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# Weibull mixture model
EST.WEIBULL <- function(Data,Start.Vals){
tryCatch(
NLM.WEIBULL<<-nlm(Loglik.Weibull,Start.Vals,Time=Da ta$Time,
Status=Data$Status,Group=Data$Group,iterlim=1000000 00),
error=function(e)
NLM.WEIBULL <<- list(estimate=rep(NA,8),code=99,minim um=NA,
iterations=NA,gradient=rep(NA,8)) )
return(NLM.WEIBULL)
}

# Gen. gamma (lambda) mixture model
EST.GGV <- function(Data,Start.Vals){
tryCatch(
NLM.GGV<<-nlm(Loglik.Ggv,Start.Vals,Time=Data$Time,
tatus=Data$Status,Group=Data$Group,iterlim=10000000 0),
error=function(e)
NLM.GGV <<- list(estimate=rep(NA,10),code=99,minimum= NA,
iterations=NA,gradient=rep(NA,10)) )
return(NLM.GGV)
}

# Saturated gen. gamma mixture model
EST.SAT.GGV <- function(Data,Start.Vals){
tryCatch(
NLM.SAT.GGV<<-nlm(Loglik.Sat.Ggv,Start.Vals,Time=Da ta$Time,
Status=Data$Status,Group=Data$Group,iterlim=1000000 00),
error=function(e)
NLM.SAT.GGV <<- list(estimate=rep(NA,14),code=99,mini mum=NA,
iterations=NA,gradient=rep(NA,14)) )
return(NLM.SAT.GGV)
}

# Spline mixture model
EST.SPLINE <- function(Data,mu,N.innerKnots,Start.Val s){
tryCatch(
NLM.SPLINE<<-nlm(Loglik.Splines,Start.Vals,Time=Dat a$Time,

Status=Data$Status,Group=Data$Group,
Basis=Bsplines.quant(TimeEval=Data$Time,
TimeKnots=Data$Time,
Status=Data$Status,IB=TRUE,n.Knots=N.innerKnots+2),
D.square=PenMat(N.innerKnots),mu=mu,
iterlim=100000000),

error=function(e)
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NLM.SPLINE <<- list(estimate=rep(NA,
2+4* (N.innerKnots+4)),code=99,
minimum=NA,iterations=NA,
gradient=rep(NA,2+4 * (N.innerKnots+4))) )

return(NLM.SPLINE)
}

Estimation of cause-specific and subdistribution hazards from the mixture
models

Functions for derivation of cause-specific and subdistribution hazards and hazard ratios
are presented for the saturated generalized gamma and the spline approach. For the
exponential and the Weibull mixture model cause-specific and subdistribution hazards
were calculated accordingly.

###############################################
# Functions for Estimation of
# Cause-specific and Subdistribution Hazards
###############################################

# Saturated gen. gamma mixture model
Deriv.Sat.Ggv <- function(Timepoints,theta)
{

# Define parameters
bpi0 <- theta[1]
bpix <- theta[2]
b0_1 <- theta[3]
bb_1 <- theta[4]
a.tilde0_1 <- theta[5]
b.a.tilde_1 <- theta[6]
nu0_1 <- theta[7]
b.nu_1 <- theta[8]
b0_2 <- theta[9]
bb_2 <- theta[10]
a.tilde0_2 <- theta[11]
b.a.tilde_2 <- theta[12]
nu0_2 <- theta[13]
b.nu_2 <- theta[14]

# Event type probabilities
Pi1_A <- exp(bpi0) / (1+exp(bpi0))
Pi1_B <- exp(bpi0+bpix) / (1+exp(bpi0+bpix))
Pi2_A <- 1-Pi1_A
Pi2_B <- 1-Pi1_B

# Density functions of conditional event time distribution s
f_1.A <- Sat.Ggv.dens(b0_1,bb_1,a.tilde0_1,
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b.a.tilde_1,nu0_1,b.nu_1,X=0,ti=Timepoints)
f_1.B <- Sat.Ggv.dens(b0_1,bb_1,a.tilde0_1,

b.a.tilde_1,nu0_1,b.nu_1,X=1,ti=Timepoints)
f_2.A <- Sat.Ggv.dens(b0_2,bb_2,a.tilde0_2,

b.a.tilde_2,nu0_2,b.nu_2,X=0,ti=Timepoints)
f_2.B <- Sat.Ggv.dens(b0_2,bb_2,a.tilde0_2,

b.a.tilde_2,nu0_2,b.nu_2,X=1,ti=Timepoints)

# Survivor functions of conditional event time distributio ns
S_1.A <- Sat.Ggv.Surv(b0_1,bb_1,a.tilde0_1,

b.a.tilde_1,nu0_1,b.nu_1,X=0,ti=Timepoints)
S_1.B <- Sat.Ggv.Surv(b0_1,bb_1,a.tilde0_1,

b.a.tilde_1,nu0_1,b.nu_1,X=1,ti=Timepoints)
S_2.A <- Sat.Ggv.Surv(b0_2,bb_2,a.tilde0_2,

b.a.tilde_2,nu0_2,b.nu_2,X=0,ti=Timepoints)
S_2.B <- Sat.Ggv.Surv(b0_2,bb_2,a.tilde0_2,

b.a.tilde_2,nu0_2,b.nu_2,X=1,ti=Timepoints)

# Cumulative incidence functions
sub.F_1.A <- Pi1_A * (1 - S_1.A)
sub.F_1.B <- Pi1_B * (1 - S_1.B)
sub.F_2.A <- Pi2_A * (1 - S_2.A)
sub.F_2.B <- Pi2_B * (1 - S_2.B)

# Subdensity functions
sub.f_1.A <- Pi1_A * f_1.A
sub.f_1.B <- Pi1_B * f_1.B
sub.f_2.A <- Pi2_A * f_2.A
sub.f_2.B <- Pi2_B * f_2.B

# Overall survivor functions
S.overall_A <- Pi1_A * S_1.A + Pi2_A * S_2.A
S.overall_B <- Pi1_B * S_1.B + Pi2_B * S_2.B

# Estimates for cause-specific hazards (k=1)
csh1_A <- sub.f_1.A / S.overall_A
csh1_B <- sub.f_1.B / S.overall_B
csHR_1 <- csh1_B / csh1_A

# Estimates for subdistribution hazards (k=1)
sdh1_A <- sub.f_1.A / (1 - sub.F_1.A)
sdh1_B <- sub.f_1.B / (1 - sub.F_1.B)
sdHR_1 <- sdh1_B / sdh1_A

# Estimates for cause-specific hazards (k=2)
csh2_A <- sub.f_2.A / S.overall_A
csh2_B <- sub.f_2.B / S.overall_B
csHR_2 <- csh2_B / csh2_A
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# Estimates for subdistribution hazards (k=2)
sdh2_A <- sub.f_2.A / (1 - sub.F_2.A)
sdh2_B <- sub.f_2.B / (1 - sub.F_2.B)
sdHR_2 <- sdh2_B / sdh2_A

return(data.frame(Time=Timepoints,
csh1_A=csh1_A,csh1_B=csh1_B,csHR_1=csHR_1,

sdh1_A=sdh1_A,sdh1_B=sdh1_B,sdHR_1=sdHR_1,
csh2_A=csh2_A,csh2_B=csh2_B,csHR_2=csHR_2,
sdh2_A=sdh2_A,sdh2_B=sdh2_B,sdHR_2=sdHR_2 ))

}

# Spline mixture model
Deriv.Splines <- function(Basis,theta)
{

# Define parameters
n.th <- dim(Basis$Basisfkt)[2]
bpi0 <- theta[1]
bpix <- theta[2]

# Event type probabilities
Pi1_A <- exp(bpi0) / (1+exp(bpi0))
Pi1_B <- exp(bpi0+bpix) / (1+exp(bpi0+bpix))
Pi2_A <- 1-Pi1_A
Pi2_B <- 1-Pi1_B

# Hazard functions of conditional event time distributions
h_1.A <- haz.Splines(Basis=Basis,

b.spl=theta[3:(n.th+2)])
h_1.B <- haz.Splines(Basis=Basis,

b.spl=theta[(3:(n.th+2))]+theta[(n.th+3):(2 * n.th+2)])
h_2.A <- haz.Splines(Basis=Basis,

b.spl=theta[(2 * n.th+3):(3 * n.th+2)])
h_2.B <- haz.Splines(Basis=Basis,

b.spl=theta[(2 * n.th+3):(3 * n.th+2)]+
theta[(3 * n.th+3):(4 * n.th+2)])

# Survivor functions of conditional event time distributio ns
S_1.A <- Surv.Splines(Basis=Basis,

b.spl=theta[3:(n.th+2)])
S_1.B <- Surv.Splines(Basis=Basis,

b.spl=theta[(3:(n.th+2))]+theta[(n.th+3):(2 * n.th+2)])
S_2.A <- Surv.Splines(Basis=Basis,

b.spl=theta[(2 * n.th+3):(3 * n.th+2)])
S_2.B <- Surv.Splines(Basis=Basis,

b.spl=theta[(2 * n.th+3):(3 * n.th+2)]+
theta[(3 * n.th+3):(4 * n.th+2)])
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# Calculation of density functions of conditional event
# time distributions from conditional hazard rates and
# conditional survivor functions
f_1.A <- h_1.A * S_1.A
f_1.B <- h_1.B * S_1.B
f_2.A <- h_2.A * S_2.A
f_2.B <- h_2.B * S_2.B

# Cumulative incidence functions
sub.F_1.A <- Pi1_A * (1 - S_1.A)
sub.F_1.B <- Pi1_B * (1 - S_1.B)
sub.F_2.A <- Pi2_A * (1 - S_2.A)
sub.F_2.B <- Pi2_B * (1 - S_2.B)

# Subdensity functions
sub.f_1.A <- Pi1_A * f_1.A
sub.f_1.B <- Pi1_B * f_1.B
sub.f_2.A <- Pi2_A * f_2.A
sub.f_2.B <- Pi2_B * f_2.B

# Overall survivor functions
S.overall_A <- Pi1_A * S_1.A + Pi2_A * S_2.A
S.overall_B <- Pi1_B * S_1.B + Pi2_B * S_2.B

# Estimates for cause-specific hazards (k=1)
csh1_A <- sub.f_1.A / S.overall_A
csh1_B <- sub.f_1.B / S.overall_B
csHR_1 <- csh1_B / csh1_A

# Estimates for subdistribution hazards (k=1)
sdh1_A <- sub.f_1.A / (1 - sub.F_1.A)
sdh1_B <- sub.f_1.B / (1 - sub.F_1.B)
sdHR_1 <- sdh1_B / sdh1_A

# Estimates for cause-specific hazards (k=2)
csh2_A <- sub.f_2.A / S.overall_A
csh2_B <- sub.f_2.B / S.overall_B
csHR_2 <- csh2_B / csh2_A

# Estimates for subdistribution hazards (k=2)
sdh2_A <- sub.f_2.A / (1 - sub.F_2.A)
sdh2_B <- sub.f_2.B / (1 - sub.F_2.B)
sdHR_2 <- sdh2_B / sdh2_A

return(data.frame(Time=Basis$Time,
csh1_A=csh1_A,csh1_B=csh1_B,csHR_1=csHR_1,

sdh1_A=sdh1_A,sdh1_B=sdh1_B,sdHR_1=sdHR_1,
csh2_A=csh2_A,csh2_B=csh2_B,csHR_2=csHR_2,
sdh2_A=sdh2_A,sdh2_B=sdh2_B,sdHR_2=sdHR_2 )) }
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Sketch of R-Code used for data
analysis

In this section the R-code used for analysis of the data from the clinical cohort study,
which is presented in Section 8, is sketched. Variables considered:

• Time: Event time or censoring time

• Status: Indicating type of event or a censored observation

1 = cardiac death

2 = non-cardiac

0 = censored

• Group: Indicating risk group

0 = low risk group

1 = high risk group

• Age: Indicating patient’s age

0 = (age<65 years)

1 = (age≥65 years)

• Diab: Indicating diabetes

0 = no diabetes

1 = diabetes

C.1 Cause-specific hazard regression for the event of

interest

require(survival)
COXcsh <- coxph(Surv(Time,Status==1) ˜ Group + Age + Diab)



C.2 Subdistribution hazard regression

C.2 Subdistribution hazard regression

require(cmprsk)
COXsdh <- crr(Time,Status,cbind(Group,Age,Diab),failc ode=1)

C.3 Mixture model

ECM algorithm as described by Ng and McLachlan (2003) for two possible types of failure
and three covariates. For estimation of the cumulative hazard functions a dataset ordered
by observed times is required. Expectation and conditional maximization steps have to be
iterated until some predefined convergence criterion is fulfilled.

• Expectation for τi denoting the probability for a failure of type 1 for individual i in
the (j+1)th iteration given jth estimates for µ, π, β1, β2 and the baseline survival

functions S01(ti,xi,β
(j)
1 ) and S02(ti,xi,β

(j)
2 ) according to Equations (8) and (10) from

Ng and McLachlan (2003):

p1 <- exp(mu+Group * pi1+Age * pi2+Diab * pi3) /
(1+exp(mu+Group * pi1+Age * pi2+Diab * pi3))

p2 <- 1-p1

tau <- p1 * S01ˆexp(Group * b1_1+Age * b1_2+Diab * b1_3) /
(p1 * S01ˆexp(Group * b1_1+Age * b1_2+Diab * b1_3) +
p2* S02ˆexp(Group * b2_1+Age * b2_2+Diab * b2_3))

• Function for (j+1)th estimation of µ and π. Q0 denotes the logistic regression
component of the expectation of the complete-data log-likelihood given the current
parameter estimates.

require(rootSolve)
Q0 <- function(MU) {
mu.opt <- MU[1]
pi1.opt <- MU[2]
pi2.opt <- MU[3]
pi3.opt <- MU[4]
P1 <- exp(mu.opt+pi1.opt * Group+pi2.opt * Age+pi3.opt * Diab)/

(1+exp(mu.opt+pi1.opt * Group+pi2.opt * Age+pi3.opt * Diab))
fct.mu<-sum((

as.numeric(Status==1)+(Status==0) * tau-P1))
fct.p1<-sum((

as.numeric(Status==1)+(Status==0) * tau-P1) * Group)
fct.p2<-sum((

as.numeric(Status==1)+(Status==0) * tau-P1) * Age)
fct.p3<-sum((
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as.numeric(Status==1)+(Status==0) * tau-P1) * Diab)
return(c(fct.mu,fct.p1,fct.p2,fct.p3)) }

opt <- multiroot(Q0,c(0,0,0,0))

mu.new <- opt$root[1]
pi1.new <- opt$root[2]
pi2.new <- opt$root[3]
pi3.new <- opt$root[4]

• Calculation of the cumulative baseline hazard function and the baseline survivor
function for event type 1 in the (j+1)th iteration according to Equation (12) from
Ng and McLachlan (2003). Measures for event type 2 can be estimated analogously:

h01 <- c()

# Estimation of baseline hazard rate
n <- length(Time)
for(i in 1:n)

h01[i] <- 1 / sum((((Status[i:n]==1) +
(Status[i:n]==0) * tau[i:n]) * exp(Group[i:n] * b1_1+
Age[i:n] * b1_2+Diab[i:n] * b1_3))) * (Status[i]==1)

# Replace empty components at the end with zeros
h01[which(is.na(h01))] <- 0

# Calculate cumulative baseline hazard function
H01 <- cumsum(h01)

# Calculate baseline survival function
S01 <- exp(-H01)

• Conditional maximization step to obtain the (j+1)th estimate for β1. According
to Equation (9) from Ng and McLachlan (2003) maximization can be conducted

separately for all types of event. β
(j+1)
2 can be obtained analogously.

# Event type 1:
Q1 <- function(b1.opt) {

b1.opt_1 <- b1.opt[1]
b1.opt_2 <- b1.opt[2]
b1.opt_3 <- b1.opt[3]
eta1 <- Group * b1.opt_1 + Age * b1.opt_2 + Diab * b1.opt_3

fct1 <- sum((
(Status==1)-((Status==1)+(Status==0) * tau) *
H01* exp(Group * b1.opt_1+
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Age* b1.opt_2+Diab * b1.opt_3)) * Group)
fct2 <- sum((

(Status==1)-((Status==1)+(Status==0) * tau) *
H01* exp(Group * b1.opt_1+

Age* b1.opt_2+Diab * b1.opt_3)) * Age)
fct3 <- sum((

(Status==1)-((Status==1)+(Status==0) * tau) *
H01* exp(Group * b1.opt_1+

Age* b1.opt_2+Diab * b1.opt_3)) * Diab)
return(c(fct1,fct2,fct3)) }

b1 <- multiroot(Q1,c(0,0,0))$root
b1_1.new <- b1[1]
b1_2.new <- b1[2]
b1_3.new <- b1[3]

C.4 Vertical Modelling

• Cox regression for marginal event time distribution considering covariates

coxph(Surv(Time,Status>=1) ˜ Group + Age + Diab)

• Estimation of relative hazards from a logistic regression model including B-splines for
flexible influence of Time and interaction between Group and Time. Only individuals
with an observed event can be considered. Estimates of relative hazards for cardiac
and non-cardiac death for the high risk group are calculated from the regression
coefficients.

library(splines)
GLM <- glm(Status==1 ˜ Group * bs(Time) + Diab + Age,

family=binomial(link="logit"),subset=Status>0)

# Relative hazard for cardiac death
# in the high risk group
rel.haz.highrisk.cardiac <-

predict(GLM,type="response",newdata=data.frame(Grou p=1,
Time=seq(0,5,length=300),Diab=mean(Diab),Age=mean(A ge)))

# Relative hazard for non-cardiac death
# in the high risk group
rel.haz.highrisk.noncardiac <- 1 - rel.haz.highrisk.car diac

C.5 Pseudo observations

R code for generation of pseudo observations and estimation of covariate effects applying
a GEE model can be found in Klein et al (2008).
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C.6 P-spline mixture model approach

Application of the P-spline mixture model approach was performed using the R functions
presented in Section B.2.2 for analysis of the simulated data.
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