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Abkurzungen

Abkilirzungen
CC cheek cells: Wangenschleimhautzellen
BHT Butylhydroxytoluol
CE Cholesterolester
DHA Docosahexaensaure
EPA Eicosapentaensaure
FAME Fettsauremethylester
GPL Glycerophospholipiden
LC-PUFA long chain polyunsaturated fatty acid: langkettige mehrfach ungesattigte
Fettsauren
PC Phosphatidylcholin
PE Phosphatidyletholamin
PI Phosphatidylinositol
PL Phospholipide
PS Phosphatidylserin
RBC red blood cells: Erythrozyten
SM Sphingomyeline

TAG Triglyzeride



Einleitung

1 Einleitung

In den letzten Jahrzehnten sind die langkettigen ungesattigten RBC Fettsauren (LC-
PUFA) in das Interesse wissenschaftlicher Forschungen geruckt, insbesondere die
Docosahexaensaure (DHA) und die Eicosapentaensaure (EPA). Im Rahmen von
zahlreichen, aufwandigen klinischen Studien und laborchemischen Untersuchungen
konnte eine Assoziation zwischen der ausreichenden Versorgung mit LC-PUFA und
der menschlichen Gesundheit (kardiovaskulare Funktion, Herzkreislauferkrankungen
[1, 2], verbesserte fruhkindliche Entwicklung und der Vermeidung von Depression

und anderen psychischen Krankheiten festgestellt werden [3].

All diese Studien beziehen die analysierten Fettsauren auf unterschiedlich definierte
klinische Outcomeparameter, da es derzeit in der Fettsaureanalytik kein Standard-

prozedere gibt. Es werden verschiedene biologische Kompartimente, wie

Gesamtblut, Erythrozyten (Red Blood Cells = RBC), Plasma und Fettgewebe als
Biomarker genutzt, um den individuellen Status an Omega-3 Fettsduren zu
bestimmen.

Phospholipide (PL) bestehen aus Glycerophospholipiden (GPL) und
Sphingomyelinen (SM) [4]. Da Sphingomyeline nur Spuren von Omega-3 Fettsauren
enthalten, sind sie in der LC-PUFA Analytik nicht von erheblichem Interesse [5]. Die
Hauptbestandteile der GPL sind Phosphatidylcholin (PC), Phosphatidyletholamin
(PE), Phosphatidylinositol (Pl) und Phosphatidylserin (PS). Die am haufigsten
genutzten Biomarker sind Plasma bzw. Serum PL, Triglyzeride (TAG),

Cholesterolester (CE), PC und Erythrozyten PL, PC und PE [6, 7].

Die Analytik der individuellen Lipiduntergruppen (PC, PE, PS, PI) bendtigt Separation
mittels Dunnschichtchromatographie oder Festphasenextraktion und Derivatisierung
der Fettsauren. Diese Methoden sind meist zeitaufwandig und kostspielig. In den
letzten Jahren wurden daher neue Methoden entwickelt, mit welchen die Analytik
vereinfacht werden konnte, um den Arbeitsaufwand und dadurch die Kosten zu
minimieren und den Probendurchsatz zu erhdhen [8]. Fur gewdhnlich werden daflr

Gesamtblut, Plasma/ Serum oder RBC Gesamtlipide verwendet.
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Unsere Forschungsgruppe hat eine neue, sensitive und robuste Methode entwickelt,
um selektiv die Fettsauren der Glycerophospholipidfraktion im Plasma zu bestimmen,
welche nur wenig vom postprandialen Status des Probanden beeinflusst werden [9].
Bei diesem neuen Verfahren wird die konventionelle Lipidextraktion und deren
Auftrennung durch eine methanolische Ausfallung der Proteine mit zusatzlicher
Ausfallung von TAG und CE ersetzt. In Kombination mit basenkatalysierter Synthese
von Methylestern bei Raumtemperatur wird die ausschliel3dliche Umesterung der
GPL Fettsauren gesichert [9]. In der Vergangenheit hat sich gezeigt, dass sich dieses
Verfahren nicht einfach von Plasma auf RBC Ubertragen lassen, sodass es
notwendig war die Anwendbarkeit der Plasma-GPL Methode auf RBC zu Uberprufen,
zu optimieren und zu validieren, bevor sie in klinischen Studien Anwendung finden

kann.

Im Rahmen dieser Untersuchung bestimmten wir auch den Omega-3-Index. Er
berechnet sich aus dem Anteil von DHA plus EPA in den RBC, und wird als
Prozentanteil an den gesamten Fettsauren der RBC ausgedruckt und stellt einen
Risikofaktor fur koronare Herzerkrankung dar [10, 11]. Diese Untersuchungen
beschreibt die Publikation 1.

Des Weiteren beschaftigte sich unsere Forschungsgruppe mit der Bestimmung des
Fettsaurestatus aus Wangenschleimhautzellen (cheek cells = CC). Die bisher
verwendeten Verfahren benutzen invasive Techniken zur Gewinnung von zu
analysierenden Proben (Blutproben durch Blutentnahmen, Fettgewebe durch
Gewebebiopsie), was bei Studien mit Sauglingen und Kleinkindern ein limitierender
Faktor ist. Wangenschleimhaut-PL als biologische Marker fur die Fettsdureaufnahme
wurden zwar bisher empfohlen [12], doch kaum in klinischen Studien genutzt. Die
Grinde hierfur konnten in der unsicheren Probenqualitat und -quantitdt und

zusatzlich der Unsicherheit in der Probenaufarbeitung liegen [13].

Wir haben eine robuste Methode fur die Analyse von CC GPL Fettsauren entwickelt,

welche nur wenig Probenmaterial bendétigt und einfach anzuwenden ist [14].

Die genannten Methoden zur Extraktion von GPL wurden im Rahmen einer
klinischen Interventionsstudie evaluiert. Dabei wurden vor allem der DHA-Anstieg im
zeitlichen Verlauf der Studie zwischen den verschiedenen Kompartimenten Plasma,

RBC und Wangenschleimhautzellen verglichen und Korrelationen berechnet, um eine
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Aussage dariiber treffen zu kdénnen, welcher Biomarker, welche Anderungen
widerspiegelt und wie geeignet die Analyse von GPL der Fettsauren im Vergleich zu
langjahrig etablierten Markern, wie PL ist (siehe Publikation 2).
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2 Material und Methoden

Die vorliegende Dissertation basiert auf der Durchfuhrung einer klinischen
Supplementationsstudie mit DHA (510 mg/d), fur welche 13 freiwillige, gesunde
Probanden rekrutiert wurden. Die Studie wurde nach den Richtlinien der Deklaration
von Helsinki durchgefuhrt, von dem Ethischen Komitee der Universitat Munchen
(Medical Center 034-10) gepruft und unter ClinicalTrials.gov NCT01192269

registriert.

Sieben Frauen und sechs Manner im Alter zwischen 20 und 40 Jahren und einem
BMI von 20-25 kg/m? wurden eingeschlossen. Ausschlusskriterien waren die
Einnahme von Omega-3 Fettsauren oder von Medikamenten, die den
Lipidmetabolismus beeinflussen bis zu drei Monate vor Studienbeginn, genauso wie
Schwangerschaft, kurzlich durchgefuhrte Reduktionsdiaten, Alkohol- oder
Drogenabusus und der Genuss von fettem Fisch haufiger als einmal pro Woche. Die
Probanden wurden aufgefordert vor Interventionsbeginn Uber drei Tage ein
Ernahrungsprotokoll auszufullen. Aufgenommene Nahrstoffe wurde mittels PRODI

(version 4.5.LE, Nutri-Science) berechnet.

Die Studie wurde in eine 2-wochige baseline-Periode und eine 29-tagige
Interventionsperiode geteilt. Wahrend diesem Zeitraum wurden an 11 Messtagen
Blutproben und Wangenschleimhautabstriche morgens nidchtern gewonnen: Tag 0
(14 Tage vor Interventionsbeginn), 1 (Interventionsbeginn), 2, 3, 4, 9, 14, 18, 24 und
29 (Interventionsende). Der Wangenschleimhautabstrich wurde mit Hilfe einer
endozervikalen Burste gewonnen, indem der Proband nach vorherigem Ausspulen
des Mundes die Wangeninnenseite ca. 20 Mal abburstete und das erhaltene Sputum
mit den Wangenschleimhautzellen in ein Reagenzglas Uberfuhrte.

Klinische Untersuchungen (Anthropometrie, Korperfettanteil) und laborchemische
Untersuchungen (Lipidprofil) wurden an Tag 0 und Tag 29 durchgefuhrt.

Das Studiensupplement bestand aus 950 pl DHASCO ©-S Mikroalgendl, welches
510 mg DHA pro Kapsel enthielt. Der Anteil anderer Omega-3 Fettsauren und EPA
war vernachlassigbar gering (<0.4%). An den ersten 5 Tagen wurde die Kapsel direkt

nach Blutentnahme und Wangenschleimhautabstrich eingenommen. Im
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weiteren Verlauf der Studie wurde die Kapsel dem Probanden ausgehandigt, zu

Hause nach dem Fruhstick eingenommen, und die Uhrzeit der Einnahme notiert.

Die gewonnenen Proben wurden umgehend auf Eis gestellt und maximal 2
Stunden nach der Gewinnung aufgearbeitet. Die einzelnen Methoden zur
Aufarbeitung von Wangenschleimhautzellen und RBC sind in den folgenden
Publikationen detailliert nachzulesen. Die Analytik der Plasma GPL wurde nach
Glaser et al. durchgefuhrt [9].

Im Rahmen der Validierung der Methode fur GPL in RBC wurden die Proben mit
BHT (0,2 %) bei -80° C gelagert und im Zeitraum von 8 Monaten aufgearbeitet. Die
Vergleichsmethoden zur Analytik von RBC PL und PC und PE sind ebenfalls kurz in
Publikation 1 beschrieben und basieren auf Folch [15] und Geppert [16].

Die, durch oben genannte Methoden erhaltene Fettsauremethylester (FAME) wurden
mit Hilfe der Gaschromatographie quantifiziert (Agilent 5890 series IlI, Waldbronn,
Germany) [9] und die erhaltenen Peaks mittels EZChrom Elite (Version 3.1.7, Agilent)
ermittelt und integriert. Der relative Anteil der Fettsauren (%wt/wt und mol%) wurde
auf der Grundlage von 20 cis-Fettsauren berechnet und als Mittelwert und
Standardabweichung dargestellt.

Die statistischen Analysen wurden mit IBM SPSS Statistics for Windows, Ver.
19.0.0.1 durchgefuhrt werden.

11
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3 Zielsetzung der Untersuchungen

3.1 Fragestellungen der Publikationen

* Validierung und Optimierung einer neuen Methode zur Analyse von GPL
Fettsauren in Erythrozytenmembranen ohne Liquid-Liquid Extraktion und ohne
Dunnschichtchromatographie

o Vermeidung der Verklottung von RBC wéahrend der Aufarbeitung

o Bestimmung der Haltbarkeit von RBC Proben

e Uberprifung der Anwendbarkeit dieser neuen Methode in einer DHA
Interventionsstudie und Vergleich der Ergebnisse zur etablierten Markern (z.B.
Omega-3 Index)

* Untersuchung der Validitat der GPL aus RBC als Fettsaure Statusmarker

* Vergleich des Zeitverlaufs der DHA-Aufnahme in die unterschiedlichen
Kompartimente (Wangenschleimhautzellen, Plasma und RBC) in einer DHA

Supplementationsstudie

* Bestimmung der Korrelationen des prozentualen DHA-Anstieges in den

unterschiedlichen Geweben Plasma, RBC und Wangenschleimhautzellen

* Validierung der GPL-Methode in Wangenschleimhautzellen und Erfassung der
zeitlichen Anderung des Omega-3 Gehaltes in CC im Rahmen einer
diatetischen Supplementation

e Spiegeln Wangenschleimhaut-GPL kurz- oder langerfristige Anderungen der

Fettsdureaufnahme wider?



Zielsetzung
Im letzten Kapitel dieser kumulativen Dissertation sind die Ergebnisse der beiden
Publikationen kurz in deutscher und englischer Sprache zusammengefasst und

allgemeine Schlussforderungen formuliert.
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4 Publikationen

4.1 Publikation 1 - PloS ONE

,Efficient and Specific Analysis of Red Blood Cell Glycerophospholipid Fatty Acid
Composition.”
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Accepted: 21. Februar 2012
Published: 30.Mérz 2012
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Efficient and Specific Analysis of Red Blood Cell
Glycerophospholipid Fatty Acid Composition

Sabrina Klem, Mario Klingler, Hans Demmelmair, Berthold Koletzko*

Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany

Abstract

Background: Red blood cell (RBC) n-3 fatty acid status is related to various health outcomes. Accepted biological markers
for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The
analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be
affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation.

Aim: We developed a method for the specific analysis of RBC glycerophospholipids. The application of the new method in a
DHA supplementation trial and the comparison to established markers will determine the relevance of RBC GPL as a valid
fatty acid status marker in humans.

Methods: Methyl esters of glycerophospholipid fatty acids are selectively generated by a two step procedure involving
methanolic protein precipitation and base-catalysed methyl ester synthesis. RBC GPL solubilisation is facilitated by
ultrasound treatment. Fatty acid status in RBC glycerophospholipids and other established markers were evaluated in
thirteen subjects participating in a 30 days supplementation trial (510 mg DHA/d).

Outcome: The intra-assay CV for GPL fatty acids ranged from 1.0 to 10.5% and the inter-assay CV from 1.3 to 10.9%.
Docosahexaenoic acid supplementation significantly increased the docosahexaenoic acid contents in all analysed lipid
fractions. High correlations were observed for most of the mono- and polyunsaturated fatty acids, and for the omega-3
index (r=0.924) between RBC phospholipids and glycerophospholipids. The analysis of RBC glycerophospholipid fatty acids
yields faster, easier and less costly results equivalent to the conventional analysis of RBC total phospholipids.

Citation: Klem S, Klingler M, Demmelmair H, Koletzko B (2012) Efficient and Specific Analysis of Red Blood Cell Glycerophospholipid Fatty Acid Composition. PLoS
ONE 7(3): e33874. doi:10.1371/journal.pone.0033874

Editor: Matej Oresic, Governmental Technical Research Centre of Finland, Finland
Received August 19, 2011; Accepted February 21, 2012; Published March 30, 2012

Copyright: © 2012 Klem et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was financially supported by the Federal Ministry of Education and Research (project number: 0315680B). B. Koletzko is the recipient of a
Freedom to Discover Award of the Bristol-Myers Squibb Foundation, New York, NY. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: office.koletzko@med.uni-muenchen.de

Introduction Recently, our group developed a new, sensitive and robust
method for the selective determination of plasma glyceropho-
spholipids (GPL) fatty acids, which is independent of the

postprandial state of a subject [6]. The conventional lipid

The supply of n-3 long chain polyunsaturated fatty acids (LC-
PUFA) is related to cardiovascular function, heart disease,
morbidity and mortality, and in the perinatal period to child
development [1,2]. Commonly used biological markers for the
dietary n-3 fatty acid intake are fatty acid composition of plasma or
serum phospholipids (PL), triacylglycerides (TAG), cholesterol esters

extraction and separation has been replaced by the methanolic
precipitation of proteins with co-precipitation of TAG and CE. In
combination with a base catalysed synthesis of methyl esters at

(CE), phosphatidylcholine (PC) and of red blood cell (RBC) PL, PC
and phosphatidylethanolamine (PE) [3,4]. The analysis of individual
lipid species requires lipid separation usually by thin layer
chromatography or solid phase extraction and the acid-catalysed
derivatisation of fatty acids. In recent years, novel methods were
developed avoiding these steps to reduce processing time and costs,
and to increase sample throughput [5]. The application of these
methods usually requires whole blood, plasma/serum, or RBC total
lipids for the evaluation of the fatty acid status. Good correlations
exist between fatty acid contents of these biological matrices and the
diet. This is similar to correlations found between dietary fat intake
and individual lipid classes [4].

@ PLoS ONE | www.plosone.org

room temperature, this ensures the specific transesterification of
GPL fatty acids [6]. In the past, it has been shown that extraction
procedures cannot easily be transferred from plasma to RBC [7].
Therefore, it is essential to test the applicability of the plasma GPL
method on RBC before its use in clinical studies.

The aim of the present study is to optimise and validate a new
method for the analysis of GPL in RBC membranes, which avoids
liquid-liquid extractions steps and chromatographic lipid class
isolation. The application of the new method n a DHA
supplementation trial and the comparison to established markers
such as RBC PL, PC and PE will determine the relevance of RBC
GPL as a valid fatty acid status marker in humans.

March 2012 | Volume 7 | Issue 3 | 33874
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Materials and Methods

Subjects

Thirteen healthy subjects (6 males, 7 females) from the Munich
area with an average age of 25.8£2.7 years (mean *= SD) and a
BMI of 21.9+1.6 kg/m? participated in an open-label, single-
group assignment supplementation study with DHA. Taking
supplements containing n-3 LC-PUFA or drugs interfering with
the lipid metabolism were exclusion criteria as well as fatty fish
consumption of more than once per week. The study was
registered at ClinicalTrials.gov (NC T01192269). The Ethical
Committee of the University of Munich Medical Center approved
the study (034-10) and participants signed informed consent forms
before they entered the study.

Study design and supplements

Participants were asked to take a 950 ul DHASCO®-S
microalgae oil capsule (Martek Biosciences, Columbia, MD)
during breakfast daily over a period of 30 days. The capsule
contained 520 mg DHA, but no other n-3 fatty acids. Participants
were asked to record the intake of the capsules including time and
date of consumption. Blood samples collected before and after the
intervention period were analysed. This study was part of a larger
project evaluating the DHA incorporation into plasma, RBC and
buccal cell GPL.

Sample preparation

After an overnight fasting period antecubital venous blood was
collected into 7.5 ml EDTA-containing monovettes (Sarstedt,
Nimbrecht, Germany). Samples were directly placed on ice and
processed within 2 hours after collection. Plasma and RBC were
separated by centrifugation (1000xg, 10 min, 4°C). RBC were
washed 3 times with saline solution (0.9% NaCl). For the
determination of PC and PE fatty acids aliquots of 500 pl RBC
were haemolysed with 250 pl distilled water and suspended in
8 ml isopropanol containing BHT (0.05%). For the analysis of PL
and GPL 100 pl aliquots of RBC were haemolysed with 100 pl
distilled water and suspended in 260 pl methanol containing BHT
(0.2%). All samples were stored at —80°C until analysis.

GPL fatty acid analysis

The method of Glaser et al. for the analysis of plasma GPL was
adapted for the determination of RBC GPL fatty acids [6,8].
Intra- and inter-assay analyses were performed to validate the
method before study commencement. In total 1.3 ml methanol
and 100 pl of internal standard solution (14.6 mg PC15:0 in
100 ml methanol; Sigma Aldrich, Taufkirchen, Germany) were
added to 200 pl haemolysed RBC. After continuous shaking on a
Vibrax shaker (IKA, Stauffen, Germany) at 1000 rpm for 5 min
samples were treated for 5 min in an ultrasound water bath
(40 kHz, 120 W). The RBC suspension was centrifuged at 3030 xg
for 10 min at 4°C to separate the methanolic supernatant from cell
fragments and precipitated proteins. After the transfer of the
supernatant into a 4 ml brown glass vial synthesis of fatty acid
methyl ester (FAME) was initiated by adding 50 pl sodium
methoxide solution (25 wt% in methanol; Sigma Aldrich). The
reaction was performed at room temperature and stopped after
4 min by adding 150 ul 3 M methanolic HCI (Sigma Aldrich).
FAME were extracted twice with 600 pl hexane and the extracts
were combined. Solvents were evaporated under a nitrogen flow
and FAME redissolved in 50 pl hexane containing BHT (0.2%).
Extracts were stored at —20°C until gas chromatographic (GC)
analysis.

@ PLoS ONE | www.plosone.org
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Analysis of RBC PL fatty acids

1.8 ml chloroform, 540 pl methanol and 100 pl internal
standard solution (PC15:0 in methanol) were added to a thawed
RBC sample to obtain a chloroform-methanol ratio of 2:1 v/v for
lipid extraction [9]. A sodium chloride solution (2%) was added to
the solvent mixture to obtain phase separation after subsequent
centrifugation for 10 min at 3030 xg and 4°C.. The organic phase
containing the lipids was dried under reduced pressure. The dried
extract was redissolved in 400 ul chloroform/methanol (1:1 v/v),
applied on a 20x20 cm silica gel plate (Merck, Darmstadt,
Germany) and lipid classes were separated using heptane,
diisopropyl ether and acetic acid (60:40:3) as mobile phase [10].
Individual lipid bands were visualised with 2,7 di-chlor-fluorescein.
The PL band was scraped off and transferred into a brown glass
vial. FAME were synthesised in a closed vial with 3 N methanolic
HCI at 85°C for 45 minutes. Samples were neutralised with a
mixture of sodium carbonate, sodium hydrogen carbonate and
sodium sulphate (1:2:2, Merck, KGaA). FAME were extracted
twice with 1 ml hexane and redissolved in 50 ul hexane containing
BHT (0.2%). Samples were stored at —20°C until GC analysis.

Analysis of RBC PC and PE

The analysis of PC and PE in RBC membranes was performed
as previously described by Geppert et al. [11]. Briefly, after
extracting total lipids twice with 7 ml isopropanol/chloroform (3:2
v/v) and 3 ml chloroform, the solvents were evaporated under
reduced pressure. The separation of individual lipid fractions was
achieved by thin layer chromatography using chloroform/
methanol/ ammonia solution(25%)/distilled water (73:27:2,2:2,8
by vol) as mobile phase. Corresponding PC and PE bands were
scraped of the plate and transferred into 4 ml brown glass vials.
FAME for GC analysis were obtained as describe above.

Gas chromatography

FAME were quantified by GC with flame ionisation detection
(Agilent 5890 series II, Waldbronn, Germany). The applied
settings have previously been published by Glaser et al [6]. Peak
integration was performed with EZChrom Elite (Version 3.1.7,
Agilent).

Statistical analysis

Relative fatty acid contents (% wt/wt) were calculated based on
20 cis-fatty acids and presented as mean and standard deviation.
Precision analyses were performed by analyzing 8 aliquots of one
RBC sample at the same day (intra-assay) or 26 aliquots over a
period of 2 months (inter-assay) and calculated as coefficient of
variation (CV). Intra-laboratory method performance were tested
by comparing intra-assays (n=8) of different staff members.
Statistics for evaluating the effect of storage was performed with
ANOVA repeated measures. The effect of DHA supplementation
on fatty acid contents of different lipid fractions was assessed using
paired t-tests. Relative DHA changes from baseline between PC,
PE, GPL and PL were assessed with one-way ANOVA and
Bonferroni post-hoc test. Correlations between fatty acid contents
of different RBC compartments were evaluated according to
Pearson. P-values <0.05 were considered to be statistically
significant. All statistical analyses were computed using IBM SPSS
Statistics for Windows, Version 19.0.0.1.

Results

Table 1 shows the intra- and inter-assay data of RBC samples
donated by different volunteers. The CV of the intra-assay
evaluation (n = 8) ranged from 1.0 to 10.5% for all fatty acids and

March 2012 | Volume 7 | Issue 3 | 33874
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Table 1. Intra- and inter-assay reproducibility of the GPL fatty
acid analysis.
Intra-assay (n=8) Inter-assay (n=26)
Mean SD CV [%] Mean SD CV [%]
Saturated Fatty Acids
C14:.0 0.35 0.01 37 0.32 0.04 12.6
C16:0 2299 1.01 4.4 2331 0.80 34
C17:0 0.34 0.02 4.6 0.32 0.04 113
Cci18:0 18.34 0.27 1.5 17.92 0.40 23
Monounsaturated Fatty Acids
C16:1n-7 0.29 0.02 7.6 0.35 0.03 8.6
C18:1n-7 1.45 0.03 2.0 1.42 0.15 10.9
C18:1n-9 14.07 0.22 1.5 13.38 0.22 1.6
C20:1n-9 0.29 0.00 33 0.27 0.01 4.9
n-9 Polyunsaturated Fatty Acids
C20:3n-9 0.11 0.00 4.2 0.11 0.01 9.5
n-6 Polyunsaturated Fatty Acids
C18:2n-6 11.84 0.50 43 12.34 0.16 13
C18:3n-6 0.06 0.00 37 0.08 0.01 10.1
C20:2n-6 0.22 0.01 6.4 0.25 0.01 53
C20:3n-6 237 0.02 1.0 221 0.04 1.7
C20:4n-6 15.39 0.84 5.5 15.57 0.55 35
C22:4n-6 237 0.25 10.5 3.20 0.20 6.3
C22:5n-6 0.67 0.02 3.0 0.64 0.03 5.0
n-3 Polyunsaturated Fatty Acids
C18:3n-3 0.15 0.01 4.6 0.10 0.01 8.7
C20:5n-3 0.75 0.04 55 0.69 0.05 6.6
C22:5n-3 235 0.22 9.3 231 0.14 6.2
C22:6n-3 5.68 0.17 29 5.16 0.26 5.0
Mean and SD are expressed as %wt/wt.
doi:10.1371/journal.pone.0033874.t001

was <5% in most fatty acids. The inter-assay reproducibility
(n =26) was comparable to that of the intra-assay for all fatty acids
(CV 1.3-10.9%), which contributed more than 0.5% to total fatty
acids. Moreover, the inter-observer variability was tested by three
different laboratory members, which achieved constantly a CV
<10% for the 20 analysed RBC GPL fatty acids.

The extraction efficiency for of GPL was tested by applying 4
different extraction procedures (Figure 1). In total 16 aliquots
(4 x4) of an RBC sample were tested. Continuous shaking of RBC
dissolved in methanol for 5 min yielded in 185120 ug total GPL
fatty acids per 100 ul RBC, which was similar to prolonged
shaking for 10 min (241%=63 ug) or additional ultrasound
treatment for another 5 min (301+46 pg). Adding methanol to
RBC without shaking caused clotting of RBC and lower recovery
(37%24 pg). Partial clotting was also observed after shaking the
samples for 5 or 10 min, but not when samples were treated with
ultrasound. The fatty acid pattern of the 16 RBC aliquots did not
differ to any appreciable extent (data not shown).

Contamination of the GPL containing supernatant with TAG
and CE fatty acids was evaluated by separating lipid fractions in the
methanolic supernatant via thin layer chromatography prior to the
base-catalysed transesterification. Based on GPL total fatty acids the
contamination originating from TAG fatty acids was 0.9% and
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from CE 0.4%. Only palmitic-, stearic-, oleic-, and linoleic acids
derived from TAG or CE were detected.

Changes in fatty acid compositions caused by long-term storage
are shown in Table 2. Washed RBC were kept in methanol
containing BHT (0.2%) for 8 months at —80°C. Differences in fatty
acid compositions were calculated based on changes relative to
baseline and expressed in percent. Significant differences were
found for some fatty acids, but values determined without storage
were less than 10%, except for C17:0 (+29.5%), C18:3n-6 (+32.0%)
and C22:4n-6 (+15.8%). The contribution of the first two fatty acids
to total fatty acids was less than 0.5%. Palmitic acid was not affected
under these storage conditions, whereas stearic acid decreased
slightly (—2.8%). Fatty acids with a high potential for oxidative
damage, such as n-3 and n-6 PUFA were affected differently.
During storage the DHA percentage changed by 6.3%, (p =0.061),
whereas arachidonic acid (ARA) contents increased by 3.7%
(p=0.160), but differences were not statistically significant.

Table 3 shows the fatty acid composition of individual PL
classes and total PL before and after the supplementation period.
The micro algae oil supplementation increased DHA contents
relative to baseline in PC by 92.3% *52.1, which was higher then
in PE (33.2%*16.0), GPL (27.4%=*16.5) and PL (13.3%*16.0)
(ANOVA; P<0.001). ARA levels decreased during the supple-
mentation period, which was significant in PL (=9.5%) and GPL
(—3.9%), but not in PE (—0.6%) or PC (—6.9%). Similar results
were shown for n-3 and n-6 docosapentaenoic acid (DPA). EPA
was not affected by the supplementation, although by trend a
slight increase could be observed in all fractions. At the beginning
of the study contents of stearic acid in PC (10.7%=*1.1) and PE
(8.4%*1.1) were lower then in GPL (17.3%=*0.5) or PL
(18.5%=*0.7), whereas oleic acid was more abundant in PC
(17.2%=1.1) and PE (17.3%=0.9) then in GPL (14.6%*0.8) or
PL (13.3%=0.8). All other GPL and PL fatty acid contents ranged
between the levels of the respective fatty acids of PE and PC. The
DHA supplementation had no effect on these observations.

Relationships of individual fatty acids between GPL and PC, PE
or PL before and after the supplementation period are shown in
Table 4. In general, SFA did not correlate between the different
lipid fractions. At the beginning of the study high correlations were
found for DHA between GPL/PE (r=0.818) and GPL/PL
(r=0.940), and a good correlation between GPL/PC (r=0.555).
Similar correlations were shown for other n-3 and n-6 fatty acids,
such as EPA, n-6 DPA and di-homo-y-linolenic acid. GPL ARA
contents were only correlated with PC ARA levels (r = 0.625), but
not with ARA contents of the other fractions. The supplementation
of micro algae oil influenced the correlations of individual fatty
acids. The correlation of DHA between GPL/PE (r=0.725) and
GPL/PL (r=0.729) was lower than at the beginning of the study.
No correlations were found for DHA between GPL and PC. ARA,
which did not correlate between GPL and PE showed a significant
r-value of 0.657 after supplementation. The changes were most
significant between GPL and PL as for most of the n-3 and n-6 fatty
acid no longer correlations were found, except for DHA (r =0.729),
a-linolenic acid (r = 0.853) and di-homo-y-linolenic acid (r = 0.874).

Omega-3-indices based on GPL and PL were calculated from
data determined at study start (Figure 2). The sum of EPA and
DHA percentages was highly correlated between both lipid
fractions (r=0.924; P<0.001). At the end of the study a
correlation of r=0.780 (P=0.002) was found.

Discussion

This study shows that the analysis of RBC GPL is well suited for
a fatty acid status determination in human. The base-catalyzed
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Figure 1. Recovery of total RBC fatty acids using different extraction procedures (P<0.05).
doi:10.1371/journal.pone.0033874.9g001

Table 2. Changes in fatty acids (%ewt/wt) during storage of RBC samples (n = 13) in methanol over a period of 8 months at —80°C.

Analysis without storage Analysis after 8 months storage Difference*

Mean SD Mean SD [%] P
C14:.0 0.28 0.07 0.29 0.08 4.09 <0.001
C16:0 22.62 1.21 22.81 1.00 0.85 ns.
C17:0 0.33 0.04 0.42 0.08 29.50 <0.001
C18:0 17.75 0.55 17.26 0.58 —2.75 <0.001
C16:1n-7 0.35 0.13 0.37 0.14 6.90 ns.
C18:1n-7 1.35 0.11 1.39 0.12 332 n.s.
C18:1n-9 15.04 0.89 14.73 0.74 —2.03 0.040
C20:1n-9 0.31 0.07 0.29 0.04 —7.59 ns.
C20:3n-9 0.11 0.03 0.10 0.02 —345 ns.
C18:2n-6 11.79 1.29 11.57 1.10 —1.90 ns.
C18:3n-6 0.06 0.03 0.07 0.03 31.97 0.014
C20:2n-6 0.28 0.04 0.26 0.03 —6.41 ns.
C20:3n-6 1.91 0.43 1.82 0.39 —4.42 ns.
C20:4n-6 16.04 1.24 16.63 0.86 3.69 ns.
C22:4n-6 2.76 0.44 3.19 0.52 15.79 0.004
C22:5n-6 0.78 0.15 0.70 0.15 —9.74 0.048
C18:3n-3 0.14 0.03 0.14 0.03 —-1.15 ns.
C20:5n-3 0.58 0.21 0.60 0.20 3.10 ns.
C22:5n-3 2.04 0.31 222 0.35 8.44 ns.
C22:6n-3 5.61 1.16 5.26 0.93 —6.30 n.s.
*Differences in fatty acid contents caused through sample storage were related to fatty acid contents of samples without storage. Mean and SD are expressed as %wt/
wt. n.s.: not significant.
doi:10.1371/journal.pone.0033874.t002
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transesterification of RBC GPL fatty acids presented here has been
applied for the analysis of plasma and cheek cell GPL before
[6,8,12]. A good precision and robustness, a high sample
throughput and a low-sample volume distinguish this method
from fatty acid analyses using chromatographic separation of lipid
fractions [13]. RBC GPL fatty acids before and after DHA
supplementation were very similar to the fatty acid composition of
total RBC PL analysed by the much more cumbersome
conventional methodology.

A major challenge was clotting of RBC in methanol, which
affected the total GPL fatty acid recovery. Extending the shaking
time of RBC in methanol to 10 min had little effect on clot
formation, but variations between measurements decreased
compared to shorter shaking periods of 5 min. The application
of ultrasound (indirect application in a water bath) after shaking
resulted in a fine grained RBC suspension. The ultrasound
treatment increased the recovery rate of the total fatty acid
concentration and further decreased the variation of results
between measurements. However, the PC standard did not
compensate for the differences in extraction efficacy. We assume
that the inclusion of PL into clots causes the loss of PL and not the
partitioning of PL between solid and liquid phase during

@ PLoS ONE | www.plosone.org

Table 3. Effects of DHA supplementation on fatty acid composition (%owt/wt) of individual RBC PL fractions.

PC PE GPL PL

study start study end study start study end study start study end study start study end

% % % %

mean SD mean SD diff mean SD mean SD diff mean SD mean SD diff mean SD mean SD diff
C16:0 36.2 1.3 36.0 1.4 —05 177 19 173 15 —26 224 1.1 228 0.8* 1.9 256 1.1 276 1.5* 8.0
C18:0 106 1.1 104 1.1 —16 84 1.1 8.1 0.5 —36 173 05 168 0.6** —3.0 185 0.7 19.1 14 47
c16: 0.6 02 06 0.2 156 0.3 0.1 0.2 0.1 —6.7 04 0.1 04 0.1 —57 03 0.1 04 0.1 46.4
1n-7
c18: 20 0.1 21 0.1 1.0 1.4 03 13 0.1 —9.0 14 0.1 13 0.1* —53 12 02 1.1 0.1 -39
n-7
c18: 17.2 1.1 170 1.1 —14 173 09 170 1.2 —8.8 146 0.8 145 0.7 —0.7 133 0.8 13.1 0.7* —17
1n-9
C20: 0.1 00 0.1 0.0 —33 0.1 00 0.1 00 86 0.1 00 0.1 0.0 —58 0.1 0.0 0.1 00 311
3n-9
c18: 19.5 16 19.7 1.6 1.2 56 09 54 0.9 —40 116 1.2 113 1.0 —2.1 10.2 1.0 99 0.8 -2.1
2n-6
c18: 0.1 0.0 0.1 0.0 —6.4 0.1 0.0 0.1 00 04 01 0.0 0.1 0.0 —5.0 0.1 0.0 0.1 0.0 205
3n-6
C20: 2.1 06 2.1 0.5 =28 13 03 1.2 0.2 —34 19 04 17 04***  —77 1.6 05 14 0.4*** —14.6
3n-6
C20: 6.8 1.0 64 0.9 —5.8 254 19 255 1.4 —06 16.8 09 16.1 0.7* -39 163 1.1 147 0.9%** —9.5
4n-6
c22: 0.4 0.1 03 0.0 —69 82 1.1 78 1.0* —6.0 3.1 06 3.2 0.5 22 37 04 3.1 0.4*** —16.2
4n-6
c22: 0.2 0.1 0.1 0.0 —3.0 1.0 02 09 0.2** —13.30.7 02 07 0.1***  —11.00.6 02 04 0.2%** —36.7
5n-6
c18: 0.2 0.1 0.2 0.1 193 0.1 0.0 0.1 00 151 0.1 0.0 0.1 0.0 20 0.1 0.0 0.1 00 —97
3n-3
C20: 0.5 04 05 0.1 275 1.0 03 1.0 03 43 06 03 06 0.1 93 06 0.2 06 02 95
5n-3
c22: 0.5 0.1 04 0.1* —12545 06 42 0.6*** =79 23 04 2.1 0.3 —44 23 03 19 04** —174
5n-3
c22: 14 02 26 0.5*** 923 6.2 09 83 0.9*** 33.2 4.6 08 58 0.6*** 273 43 08 49 0.9** 133
6n-3
Differences between study start and end were based on baseline values. Paired t-test: *p<<0.05, **p<<0.01, *p<<0.001.
doi:10.1371/journal.pone.0033874.t003

extraction, in line with the observation that fatty acid compositions
were not affected. The ultrasound treatment is an integral part of
the procedure to optimise recovery. Ultrasound treatment of
5 min seems to be sufficient to totally disperse the RBC clots in
methanol.

For the analysis of GPL fatty acids in plasma an intra-assay CV
of <3.7% and inter-assay CV of <10.7% was achieved for all
studied fatty acids [6]. The precision of the fatty acid analysis in
cheek cells was comparable, with CV ranging from 0.7% to 14.1%
[12]. The precision data determined in this study for RBC were
similar. This shows that the two step procedure, methanolic
protein precipitation and base catalysed transesterification, is
reliable for the GPL fatty acid determination in plasma, RBC, and
cheek cells.

Storage of RBC samples over a longer period may be necessary
in trials with large subject numbers [14]. Fatty acids of RBC
samples are stable at temperatures below —50°C with or without
free radical scavenging or iron binding agents [15]. Treating the
washed RBC samples prior to freezing seems unnecessary, but
when adding BHT a solvent is required as this antioxidant is
insoluble in water. When our samples were stored in methanol
containing BHT (0.05 mg/ml of RBC) for 8 months at —80°C,
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most of the fatty acid proportions did not change to an appreciable
extent from pre-storage values. This is comparable with other
published RBC conservation methods, which stored samples for
12 months or longer [14,15,16,17]. However, a non significant
trend towards a selective degradation of DHA was observed, and
losses might become significant after 12 months of storage.
Increasing the BHT concentration in the sample [15] or excluding
the hemolysis of RBC with distilled water prior to freeze storage
[14,17] might improve the DHA stability, but this needs to be
determined for GPL bound DHA.

The supplementation of micro algae oil, rich in DHA,
significantly increased the DHA contents of PC and PE in the
study subjects. The relative increase in PC was higher then in PE,

@ PLoS ONE | www.plosone.org

Table 4. Correlations between RBC GPL fatty acids and other RBC PL fractions before and after n-3 supplementation.
Correlation of individual GPL fatty acids before study:
PC PE PL
R P R P R P

C16:0 0.525 n.s. 0.081 n.s. 0.343 n.s
C18:0 0.529 ns. 0.291 n.s. 0.162 ns
C16:1n-7 0.801 0.001 0.893 <0.001 0.874 <0.001
C18:1n-7 0.509 ns. 0.725 0.005 0.409 n.s
C18:1n-9 0.919 <0.001 0.441 n.s. 0.898 <0.001
C20:3n-9 0.352 ns. 0.142 n.s 0.743 0.006
C18:2n-6 0.797 0.001 0.446 n.s 0.970 <0.001
C18:3n-6 0.436 ns. 0.104 n.s. 0.427 ns
C20:3n-6 0.766 0.002 0.905 <0.001 0.967 <0.001
C20:4n-6 0.625 0.022 0.497 n.s. 0.473 n.s
C22:5n-6 0.746 0.003 0.909 <0.001 0.820 0.001
C18:3n-3 0.930 <0.001 0.723 0.005 0.566 ns.
C20:5n-3 0.899 <0.001 0.779 0.002 0.966 <0.001
C22:5n-3 0.739 0.004 0.704 0.007 0.594 0.042
C22:6n-3 0.555 0.049 0.818 <0.001 0.940 <0.001
Correlation of individual GPL fatty acids after study:

PC PE PL

R P R P R P
C16:0 0.420 n.s. 0.281 ns. —0.073 ns.
ci18:.0 0.529 n.s. —0.363 ns. 0.163 ns.
C16:1n-7 0.943 <0.001 0.952 <0.001 0313 ns.
C18:1n-7 0.470 n.s. 0.547 ns. 0.446 ns.
C18:1n-9 0.878 <0.001 0.739 0.004 0.807 <0.001
C20:3n-9 0.341 n.s. 0.376 ns. —0.034 ns.
C18:2n-6 0.524 ns. 0.833 <0.001 0.498 ns.
C18:3n-6 0.529 ns. 0.489 ns. —0.141 ns.
C20:3n-6 0.816 <0.001 0.913 <0.001 0.874 <0.001
C20:4n-6 0.681 0.010 0.657 0.015 0.427 ns.
C22:5n-6 0.575 0.040 0.948 <0.001 0.226 n.s.
C18:3n-3 0.875 <0.001 0.761 0.003 0.853 <0.001
C20:5n-3 0.255 n.s. 0.946 <0.001 0.291 ns.
C22:5n-3 0.577 0.039 0.885 <0.001 0.016 ns.
C22:6n-3 0.454 ns. 0.725 0.005 0.729 0.005
n.s. not significant.
doi:10.1371/journal.pone.0033874.t004

which has also been described by other authors [11,18,19]. The
non-uniform distribution of PC and PE in the RBC membrane
and the different mechanisms for the fatty acid exchange of PC
and PE with plasma may explain these observations.

SM in the RBC membrane behave differently during n-3
intervention and may affect the n-3 fatty acid status determination,
as PC and PE proportions decrease and the SM proportion
increases slightly with n-3 LC-PUFA supplementation [20]. This
might be explained by the fact that the RBC membrane
homeostasis is not only maintained by the exchange of other
highly unsaturated fatty acids with DHA, i.e. ARA, but also by an
increase of SM, which counteracts effects of high n-3 levels in PC
or PE on membrane fluidity [21]. Our findings of increased SFA
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Figure 2. Correlation of RBC total PL and RBC GPL omega-3 index (n=13).

doi:10.1371/journal.pone.0033874.9002

and decreased ARA contents in PL at the end of the study agree
with this hypothesis.

Our data show a trend towards increased EPA levels after the
supplementation of DHA in all studied fractions. This might be
related to the retroconversion of DHA to EPA. In humans a retro
conversation rate of at least 5% is observed [22]. This needs to be
considered when DHA is given as the only n-3 fatty acid source.

The omega-3 index, based on the relative EPA+DHA content,
is described as risk factor for coronary heart diseases [23]. We
found a high correlation between the omega-3 index in RBC PL
and GPL. It has to be determined, whether the omega-3 index
proposed by Harris and von Schacky is comparable to our results,
as different methods are applied and calculations of EPA+DHA
might be based on different definitions of total fatty acids [23].
However, our results show a strong correlation between PL and
GPL based omega-3 indices, therefore DHA and EPA proportions
of GPL analysed with our method may be applicable for an
omega-3 index determination.
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Abstract

Adequate intake of n-3 fatty acids plays an important role in human health. The analysis of various blood lipids is used as a measure of fatty
acid status in humans. Cheek cell phospholipids (PL) have also been proposed as biological markers, but are rarely used in clinical studies
due to limitations in sample quality and quantity. An improved method for the analysis of cheek cell glycerophospholipid fatty acids is
applied in a 29 d supplementation trial with 510 mg DHA daily. The DHA increases in cheek cell, plasma and erythrocyte glycerophospho-
lipids are compared. High correlations are shown for glycerophospholipid DHA between cheek cells and plasma (7 0-88) and erythrocytes
(r0-76) before study commencement. After the daily supplementation of DHA, the half-maximal glycerophospholipid DHA level is reached
after about 4d in plasma, 6d in erythrocytes and 10d in cheek cells. The mean DHA increase (mol%) relative to baseline was most pro-
minent in plasma (186 %), followed by cheek cells (180%) and erythrocytes (130 %). Considering a lag phase of about 5d, cheek cells
reflect short-term changes in dietary fat uptake. Based on the data of the present study, they can be used alternatively to plasma and eryth-
rocyte PL as non-invasive 7-3 fatty acid status markers.

Key words: Cheek cells: DHA: Glycerophospholipids: Fatty acids

Adequate intake of #-3 long-chain PUFA, such as DHA and
EPA, plays an important role in human health®”. High DHA
and EPA levels in blood lipids have been associated with
improved infantile development, lower risk of CHD, lower
incidence of cancer and avoidance of mental diseases'”.

A modest increase in DHA and EPA uptake (<300 mg/d)
can rapidly alter the fatty acid composition of blood lipids® .
The incorporation of EPA and DHA into individual blood
lipid fractions is time- and dose-dependent and differs
between 7-3 fatty acids®. The quantity of administered n-3

=0 Plasma

fatty acids determines total changes in tissues
phospholipids (PL) or cholesteryl esters reach 7n-3 fatty acid
equilibrium within 2 weeks, erythrocytes after approximately
120d and adipose tissues after 1-2 years(6'7) . In most biologi-
cal compartments, changes of EPA levels occur earlier and are
more pronounced than changes of DHA“™%® This might be
related to different affinities of EPA and DHA to lecithin-
cholesterol acyltransferase®, different clearance rates of
both 7-3 fatty acids from plasma to adipose tissue® or the dis-
placement of DHA by EPA in plasma PL”’. Moreover, the
conversion of EPA to DHA is very limited"”
retroconversion of DHA to EPA was observed after DHA

supplementation®.

, whereas

Strong correlations exist for EPA and DHA percentages

between plasma and erythrocyte lipids”'? and other tissues,
13 a4

)

such as cardiac tissue brain cortex and cheek cell
glycerophospholipids (GPL)'>. Correlations of #-3 long-
chain-PUFA contents between adipose tissue and blood
lipids are low or absent'®”. While the fatty acid analysis of
blood lipids offers a measure for the fatty acid intake over
the last few weeks, the analysis of subcutaneous fat reflects
long-term fat intake™®. Plasma PL or cholesteryl esters, eryth-
rocyte PL, whole blood or plasma total lipids and adipose
tissue are the preferred markers for n-3 fatty acid status in
humans since 7-3 long-chain-PUFA contents of these tissues
are strongly correlated with dietary fat intake™®.

Cheek cell PL have also been recommended as a biological
marker for dietary fatty acid intake®®®”| but they have rarely
been used in clinical studies. This might be related to insecure
sample quality and quantity and additionally required sample
handling procedures’®. On the other hand, sampling of
cheek cells is less invasive than blood or adipose tissue
sampling and therefore better accepted, particularly when
applied in infants or children. Recently, we developed a
robust method for the analysis of cheek cell GPL fatty acids,
which requires only minimal sample amounts™®.

Abbreviations: ARA, arachidonic acid; FAME, fatty acid methyl ester; GPL, glycerophospholipids; PL, phospholipids.

*Corresponding author: Professor B. Koletzko, fax +49 89 5160 7742, email office koletzko@med.uni-muenchen.de
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This method has been applied in a 29d DHA supplemen-
tation trial. The supplement did not provide appreciable
amounts of 7-3 fatty acids other than DHA to avoid influences
of these fatty acids on DHA incorporation into the studied
compartments. The aims of the present study were the com-
parison of the time course of DHA incorporation into cheek
cell, plasma and erythrocyte GPL, and the determination of
the correlation of DHA between these tissues. The results of
this study will show whether cheek cells reflect short-term
or long-term changes in dietary fat intake and may underpin
the suitability of cheek cells as a fatty acid status marker.

Materials and methods
Subjects

A total of thirteen volunteers were recruited for a supplemen-
tation study with DHA. Towards this, seven healthy females
and six males between 20 and 40 years of age with a BMI
of 20-25kg/m? were invited. Participants ought not to have
taken 7-3 long-chain-PUFA supplements or medication
assumed to interfere with the lipid metabolism 3 months
before the start of the study. Further exclusion criteria were
pregnancy, fatty fish consumption more than once per
week, a weight reduction diet 4 weeks before study com-
mencement and the abuse of alcohol or drugs.

The present study was conducted according to the guide-
lines laid down in the Declaration of Helsinki and all pro-
cedures involving human subjects were approved by the
Ethical Committee of the University of Munich Medical
Center (034-10). Written informed consent was obtained
from all subjects before study commencement. The trial was
registered at ClincialTrials.gov (NCT01192269).

Experimental design and supplements

The study consisted of a 2-week baseline period followed by a
29d intervention period and included clinical examinations at
the beginning and the end of the study. Blood and cheek cells
were sampled eleven times during the trial, on days — 14,
0 (start of intervention), 1, 2, 3, 4, 9, 14, 18, 24 and 29 (end
of intervention). The study supplement consisted of a 950 .l
DHASCO®-S microalgae oil capsule (Martek Biosciences) con-
taining 510 mg DHA (Table 1). The content of EPA and other
n-3 fatty acids was negligible (<0-4%). Over the first 5d, cap-
sules were administered directly after blood and cheek cell
sampling. The capsules for the remaining intervention
period were handed out at day 5, and the participants were
asked to take one capsule daily with breakfast and to record
the time of consumption. Capsule counts were conducted at
the end of the study.

Glycerophospholipid fatty acid analysis of erythrocyte,
cheek cell and plasma lipids

The analysis of erythrocytes was conducted with a modified
method for plasma GPL analysis®". Briefly, after an overnight
fast, venous blood was collected into 7-5 ml EDTA Monovettes

Table 1. Selected fatty acids of the study
supplement (950 nl capsule) according to
the manufacturer

Fatty acid % wiw
C14:0 11.3
C16:0 6-0
C18:0 0-2
Cc18:1 9-6
C18:2n-6 0-2
C20:4n-6 ND
C22:5n-6 <0-1
C18:3n-3 0-3
C20:5n-3 <0-1
C22:6n-3 59-8

ND, not detected.

(Sarstedt) and directly placed on ice. Cooled samples were
centrifuged (1000g, 10 min, 4°C) within 2h after sampling.
Plasma was separated, the buffy-coat was discarded, and
remaining blood cells were washed three times with saline
(0-9% NacCD.

A volume of 100wl erythrocytes was haemolysed by
the addition of 100wl water; thereafter, 1300 ul methanol
plus 100 pl internal standard (14-6 mg dipentadecanolyl-sn-
glycero-phosphocholine, phosphatidylcholine 15:0, in 100 ml
methanol; Sigma Aldrich) were added during continuous
shaking. The suspension was kept in an ultrasound water
bath (40kHz, 120W) for 5Smin. Precipitated proteins were
separated by centrifugation (3030g, 10min, 4°C), and the
methanolic supernatant containing polar lipids was transferred
into a small brown glass. Then, 50 ul of sodium methoxide
solution (25 wt% in methanol; Sigma Aldrich) were added to
synthesise fatty acid methyl esters (FAME) from erythrocyte
GPL at room temperature. After 4min, the reaction was
stopped with 150 pl 3 M-methanolic HCl (Sigma Aldrich).
FAME were extracted twice into 600 ul hexane, the extracts
were combined, hexane was evaporated under a continuous
flow of N,, and the FAME were re-dissolved in 40 wl hexane
(containing 2g/1 butylated hydroxytoluene). Samples were
stored at —20°C until GC analysis.

The analysis of GPL fatty acids from cheek cells and plasma
required a slightly different sample preparation and was per-
formed as recently described >V, Briefly, cheek cells were
collected with an endocervical brush and additional mouth
rinse. Cheek cells were isolated by centrifugation before
they were suspended in 1400 pl methanol including phos-
phatidylcholine 15:0 as internal standard. The methanolic
cell suspension was treated with ultrasound for 20 min and
the precipitated proteins were removed by centrifugation.
FAME synthesis and extraction were performed as described
previously. The analysis of plasma GPL did not require
sample pre-treatment. Methanol and internal standard were
added directly to plasma for protein precipitation.

FAME were quantified by GC with flame ionisation detec-
tion (Agilent 5890 series ID), using a 25m X 0-22mm (inner
diameter) BPX70 column (SGE). Injection temperature was
set to 250°C, the split ratio was 1/30 and He was used as the
carrier gas. The oven temperature was programmed to rise
from 150 to 180°C at 2-5°C/min, followed by 1-5°C/min to
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a final temperature of 200°C, which was held for 1min. The
pressure program started at 0-9 bar, and pressure increased
by 0-02 bar/min to 1-2 bar, 0:05 bar/min to 1-5 bar, and
0-1 bar/min to a final pressure of 2-:0 bar. This pressure was
held until the temperature program was completed??.

FAME were identified by comparison with a FAME standard
mixture (GLC-569B, Nu-Check Prep, Inc.). All FAME response
relative to pentadecanoic acid methyl ester (internal standard)
was determined using GLC-85 (Nu-Check Prep, Inc.) as exter-
nal standard. EZChrom Elite (version 3.1.7, Agilent) was used
for peak integration.

Dietary records

Participants recorded their total food and beverage consump-
tion on three consecutive days including one weekend
day a week before the start of the intervention period. Nutri-
ent intakes were calculated using PRODI (version 4.5 LE,
Nutri-Science), which is based on the nutrient data bank of
Souci-Fachmann-Kraut (version 2000) and the ‘Bundeslebens-
mittelschlissel’ (version 2.3).

Mathematical modelling and statistical analysis

Curves of averaged DHA percentage increases () of plasma,
erythrocyte and cheek cell GPL were fitted according to the
least square using OriginPro, version 8.5 software (originLab),
by varying the parameters a, b and ¢ of the equation

y=ax(l — e hxye

where x is the time in d since the onset of supplementation,
and a, b and ¢ are constants. The parameter a represents
the upper limit of the DHA percentage increase, which is
approached with infinitive time (x), while parameters b
and ¢ define the shape of the exponential increase. With
¢ =1, this equation was used by Katan et al® to model
changes of EPA and DHA in cholesterol esters, erythrocytes
and adipose tissue during fish oil supplementation. The time
of the half-maximal DHA incorporation #,, can be calculated
as DHAf,» = — 1/b X In(1 — 279,

Statistical analysis was performed using IBM SPSS Statistics
for Windows, version 19.0.0.1 (IBM). Relative fatty acid con-
tents (mol%) are given as mean and standard deviation
based on twenty detected cis-fatty acids with chain lengths
between 14 and 24 carbon atoms". Changes from baseline
to day 29 were expressed as mean difference and 95 % CI, sig-
nificance of differences was evaluated using paired ¢ tests.
Correlation coefficients between compartments at baseline
were evaluated according to Pearson. P values <0:05 were
considered as statistically significant.

Results
Baseline characteristics and nutrient intake

The compliance of the subjects was very good, and twelve of
the thirteen participants followed exactly the study protocol.
However, one participant consumed twenty-eight instead of

twenty-nine capsules. This resulted in a DHA intake of
about 96% of the planned dose; therefore this subject was
not excluded from the study.

Baseline characteristics of the study subjects and their
average nutrient intake are presented in Table 2. The charac-
teristics described did not change during the study (data not
shown). No adverse effects were reported during the inter-
vention period.

Plasma, erythrocyte and cheek cell glycerophospholipid
fatty acid compositions

Table 3 shows the GPL fatty acid compositions of plasma,
erythrocytes and cheek cells, determined before (averaged
fatty acid baseline values of day —14 and day 0) and after
the supplementation period (day 29). The majority of individ-
ual GPL fatty acid proportions differed significantly between
the three compartments. Palmitic-, stearic-, oleic-, linoleic-
and arachidonic acids (ARA) were the predominant fatty
acids in plasma and erythrocytes, averaging 880 (sp 1-4)
and 85:0 (sp 1-2) mol%, respectively. In cheek cells, palmitic-,
stearic-, oleic-, linoleic- and palmitoleic acids presented the
major fatty acids comprising 863 (sp 1-0) mol%. Erythrocytes
contained the highest levels of ARA and DHA averaging 15-2
(sp 1:6) and 43 (sp 0-8)mol%, followed by plasma with
10:1 (sp 1-5) and 2-7 (sp 0-5) mol% and cheek cells with 3-2
(sp 0-6) and 0-7 (sp 0-1) mol%, respectively.

Table 2. Characteristics of the study participants (n 13) and their
nutrient intake at baseline

(Mean values and standard deviations)

Mean sD
Characteristics
Age (years) 25-8 27
BMI (kg/m?) 21.9 1.6
Body fat (%) 209 8.2
Waist circumferrence (cm) 81.7 5.7
Blood pressure
Systolic (mmHg) 128 15
Diastolic (mmHg) 70 6
Heart rate (beats/min) 69 7
GT (U/1) 16 5
GPT (U/) 16 5
GOT (U/) 20 4
Cholesterol (mg/l) 1640 190
TAG (mg/l) 830 260
CRP (high sensitivity) (mg/l) 2 4
LDL (mg/l) 800 200
HDL (mg/l) 670 90
LDL:HDL ratio 1.2 0-3
Nutrient intake
Energy (MJ/d) 91 14
Protein (percentage of energy) 14.8 2.9
Carbohydrates (percentage of energy) 49-6 9.7
Total fat (percentage of energy) 338 11.3
SFA (percentage of energy) 151 4.9
MUFA (percentage of energy) 11.8 33
PUFA (percentage of energy) 4.9 1.8
DHA (mg/d) 79 51
EPA (mg/d) 43 28

GT, glutamyl transpeptidase; GPT, glutamic pyruvic transaminase; GOT, glutanic
oxaloacetic transaminase; CRP, C-reactive protein.
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Table 3. Fatty acid compositions (mol%) of plasma, erythrocytest and cheek cells at baseline

(Mean values, standard deviations, mean difference and 95 % confidence intervals; n 13)

Plasma Erythrocytes Cheek Cells
Baseline Baseline Baseline
Change at Change at Change at

Mean sb day 29 95% Cl Mean sbD day 29 95% Cl Mean sp day 29 95% Cl
C16:0 31.16 1.54 0-90 0-45, 1-35* 24.99 2.15 059 —0-80, 1-99 16-55 1-81 -0.09 -0-85,068
C18:0 12.29 1-00 -015 —-0-53,0:23 17-84 0-55 -0-32 -0-63, —0-01* 15.31 1.43 -0-30 —1-05,046
C16:1n-7 0-94 0-46 —-0.06 —0-16, 0-04 0-41 0-19 -0.02 -0-07,0-02 7-06 1-13 -0-31 -0-57, —0-05*
C18:1n-7 1.52 017 0-11 0-03, 0-20* 1.35 013 -0.01 -0-05, 0-03 4.68 0-61 014 —0-14,0-42
C18:1n-9 11.68 1.30 -022 -0-75,0-31 15.02 0-78 0-09 —0-26, 0-44 30-06 2-04 -023 -1.10,0:65
C18:2n-6 22-80 2.70 -1.35 —2.47, -0-23* 12.02 1.22 —-0.08 —0-58, 0-42 17.32 1.77 0-56 —0-28,1-39
C18:3n-6 0-16 0-07 -0.06 —0-10, —0-03** 0-08 0-03 -0-04 -0-06, —0-02*** 0-20 0-08 0-02 —0-04,0-07
C20:3n-6 2.93 0-75 -023 —0-47,0-01 1.82 0-36 -012 -0-18, —0-07*** 1.42 0-35 -0.05 -0-15,0:05
C20:4n-6  10-07 1-49 -1.01 —1.52, —0-49** 15-16 1-59 -0.76 —1.78,0:25 320 0-64 -0.31 -0-67,0-04
C22:5n-6 0-28 0-10 -010 -0-13, —0-06*** 0-71 0-15 -0.09 -0-12, —0-05*** 0-07 0-03 -0.01 -0-02, 0-00
C18:3n-3 0-28 0-13 -0.02 -0-07,0-03 0-15 0-04 0-00 —0-01, 0-01 0-24 0-12 0-06 —0-09, 0-20
C20:5n-3 0-76 0-53 -0.01 -0-22,0-21 0-55 0-23 0-01 —0-05, 0-06 0-21 0-11 0-04 —0-02,0-10
C22:5n-3 0-73 0-22 -021  —-0-27, —0-14** 1.85 0-36 -016 —0-36, 0-03 0-23 0-08 -0.04 —0-08, 0-00
C22:6n-3 2-69 0-52 2-20 1.66, 2.73** 4.28 0-76 1-18 0-89, 1.46*** 0-69 0-14 0-54 0-43, 0-66***

Significant changes of individual fatty acid contents during intervention are indicated as * P<0-05, ** P<0-01 or ***P<0-001; one-sample t test.

1 Erythrocyte values for samples stored for 8 months have been reported elsewhere

The additional DHA intake of 510mg/d significantly
increased the DHA content in all three compartments, which
was by 2:20mol% (95% CI 1-66, 2-73; P<0:001) in plasma,
1-18 mol% (95% CI 0-89, 1:46; P<0:001) in erythrocytes and
0-54 mol% (95% CI0-43, 0-66; P<0-001) in cheek cells at the
end of the study. ARA proportions decreased during the
same period, but differences were only in plasma statistically
significant (—1:01 mol%; 95% CI —1-52, —0:49; P < 0-002).
Proportions of plasma linoleic acid decreased during the inter-
vention period (—135mol%; 95% CI —247, —0-23;
P=0-022), but this change was not observed in erythrocytes
or cheek cells. EPA contents were not significantly affected
by DHA supplementation. The study was not adequately pow-
ered to determine reliably changes in fatty acids other than
DHA,; thus the changes and correlations between percentages

(34)

in different compartments were analysed on an explorative
basis only.

Correlation coefficients were computed between individual
fatty acids of all three compartments at baseline (Table 4).
Major cheek cell fatty acids, such as oleic- and linoleic acid
did not correlate with erythrocytes and plasma, while signifi-
cant correlations were found for palmitic (» 0-64) and stearic
acids (» 0-70). High correlations were found for DHA contents
between cheek cells and erythrocytes as well as cheek cells
and plasma (r 0-88 and 076, respectively), and for EPA
between the same compartments (» 0-79 and r 0-66, respec-
tively). The sum of both #n-3 fatty acids DHA and EPA
was also highly correlated (» 0-87 and » 0-72, respectively).
Correlations for ARA were only found between cheek cells
and plasma (r 0-65), but not between other compartments.

Table 4. Correlation coefficients of individual glycerophospholipid fatty acids between cheek cells,
erythrocytes and plasma before DHA supplementation

Fatty acid R P R P R P
C16:0 0-32 NS 0-64 0.026 0-33 NS
C18:0 0-33 NS 0-70 0-010 0-59 0-04
C16:1n-7 -0-47 NS -0-37 NS 0-84 <0-001
c18:1n7 0-14 NS 0-15 NS 0-23 NS
C18:1n-9 0-10 NS 0-40 NS 0-26 NS
c18:2n6 -0.05 NS ~0.04 NS 0-71 <001
C18:3n-6 057 NS (0-05) 0-50 <0-001 0-86 <0-001
C20:3n-6 0-65 0-020 0-74 <0-001 078 <001
C20:4n-6 017 NS 065 0.01 0-49 NS
C22:5n-6 070 0-010 078 <0-001 0-94 <0-001
C18:3n-3 013 NS 0-11 NS 0-72 <001
C20:5n-3 079 <0.01 0-66 NS 0-88 <0-001
C22:5n-3 0-39 NS 0-85 NS 0-59 0-04
C22:6n-3 0-88 <0-001 0-76 <0-001 0-89 <0-001
EPA + DHA 0-87 <0-001 0-72 <001 0-88 <0-001

NS, P>0-05, Pearson’s correlation coefficient.
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Most of the fatty acids in plasma and erythrocytes were highly
correlated, except for palmitic acid, oleic acid, vaccenic acid,
and ARA. Correlations calculated for EPA, DHA and EPA
+DHA were similar to those of cheek cells and erythrocytes.

At the end of the study, correlations for DHA levels between
cheek cells and plasma (7 0-60, P=0:03) or erythrocytes (r0-77,
P =0002) tended to be lower, whereas DHA levels did
not correlate any more between plasma and erythrocytes
(r 0-353, NS).

Incorporation of DHA in plasma, erythrocytes and cheek
cells

Fig. 1 shows changes of DHA mol% in plasma, erythrocyte and
cheek cell GPL over the course of supplementation. The mean
DHA increase (mol%) relative to the baseline level was most
prominent in plasma (186%), followed by cheek -cells
(180 %) and erythrocytes (130 %).

The parameter a, representing the estimated maximal
increase of DHA4 was 2:25, 1:09 and 0-68 for plasma, erythro-
cytes and cheek cells. The parameters b and ¢ describe the
course of the increase over time with 0-:07 and 0-52 for
plasma, 0-10 and 0-97 for erythrocytes, and 0-10 and 1-68 for
cheek cells. The parameters are based on the collected data
points until day 29 and thus may not reflect processes
mostly effective during longer intervention periods. Solving
the equation used for time until half of the expected maximal
increase is reached (DHA#,»), yielded 4-4d for plasma, 6-4d
for erythrocytes and 10-4 d for cheek cells.

Discussion

This is the first study evaluating the incorporation rate of DHA
into cheek cell GPL in comparison to plasma and erythrocyte
GPL. High correlations are found for DHA between all three
compartments. In our 29d supplementation trial (510 mg
DHA/d), a half-maximal GPL DHA level is reached after
about 4d in plasma, 6d in erythrocytes and 10d in cheek

30
2:5

2:0

DHA changes (mol%)
&

0-0

01234 9 14 18 24 29
Time from start of intervention (d)

Fig. 1. DHA changes from baseline in different compartments of subjects
supplemented with 510mg DHA daily over 29d. Values are means with
standard deviations represented by vertical bars. Curves were fitted to
y=ax(1— e ¢ resulting in the following parameters for plasma (M):
a= 225, b=0-07, c= 0-52; erythrocytes (®): a=1-09, b=0-10, c= 0-97
and cheek cells (A): a=0-68, b= 0-10, c= 1-68.

cells. The relative response to DHA supplementation is highest
in plasma and cheek cells. Our findings support the use of
cheek cells as a n-3 fatty acid status marker.

The distribution of total GPL fatty acids in cheek cell and
plasma determined in our study cohort is comparable to
(152122 Data for fatty acid contents of total
GPL in erythrocytes are not available. However, our results
can be compared to those reported for erythrocyte total fatty
acids"'?, although differences for some individual fatty acids
are indicated. This might be related to the contribution of
sphingomyelin fatty acids to erythrocyte total fatty acids.
Sphingomyelin contains high amounts of palmitic acid and
only traces of n-3 fatty acids®®. This is reflected in the
respective patterns of erythrocyte total and GPL fatty acids.

At the start of the study, GPL DHA proportions of cheek
cells in our subjects averaged 0-7mol% (0-8 wt%), which is
comparable to DHA levels in cheek cell PL reported for
breastfed infants®*?>, elderly people™™® and cheek cell GPL
in adults"®. In comparison to plasma and erythrocytes, the
DHA content of cheek cells is approximately one-third. This
may limit the validity of cheek cell GPL as a fatty acid status
marker, but it has been shown that changes of n-3 and 71-6
fatty acid uptakes are reflected in cheek cell lipids similarly
to erythrocytes or plasma(13’24’2(’
our supplementation study shows that the relative DHA
increase in cheek cells is comparable to that in plasma,
which is in agreement with DHA changes reported for
plasma (104 wt%) and cheek cell PL (95 wt%) in patients
receiving 400 mg DHA per d over a period of 6 months'?.

Little is known about DHA incorporation into cheek cells.
The oral mucosa is an avascular stratified squamous epi-
thelium™@”. Cells of the base membrane are continuously
renewed by mitosis, and migrate through the epithelium to
the surface®. The nutrient and metabolite content of the
outer epithelium layer is determined by cell migration and
to a smaller extent by diffusion®”. The estimated renewal
time of buccal cheek cells is 5-8d®3”. These characteristics
of the oral mucosa suggest that DHA changes in the analysed
outer epithelial layer can be expected not earlier than 5 d after
the onset of supplementation. Such a delay is observed in our
study, although an increase is indicated after 1d, which might
be explained by passive transport mechanisms. However, we
have no information about the exact time when the increase
took place, as samples between day 5 and day 8 were not col-
lected. Considering the lag-phase of at least 5d, half-maximal
DHA levels are reached quickly, which is comparable to
plasma. DHA contents in cheek cells do not further increase
after 24d, suggesting that DHA equilibrium is reached at
about this time. These data indicate that cheek cells reflect
short-term changes of the dietary n-3 fatty acid pattern; how-
ever, a delayed increase at the start of the intervention has to
be considered.

Plasma and erythrocyte lipids are used as biological markers
for dietary fat intake. Their 7-3 and 7-6 fatty acid contents are
highly correlated®. Correlations described for cheek cells
with other biological markers are mainly related to DHA,
EPA and ARA. Strong correlations have been shown for DHA
between cheek cell PL and plasma PL (r 0-83), erythrocyte

other studies

>, Moreover, the outcome of
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total lipids (r 0-72)®”, plasma total lipids (» 0-61)* and

serum PL ( 0-72)?V. In our study, correlation coefficients of
r >0-75 have been determined between DHA in cheek cell,
plasma and erythrocyte GPL. Correlations between cheek
cell and plasma EPA have been only reported in a single
study® in which the rvalue of 0-56 is similar to that in
our study. Correlations of ARA levels between cheek cells
and blood compartments have also already been determined,
but results are inconsistent. Whereas ARA contents correlated
between cheek cell and serum PL®Y, none or weak relation-
ships were reported between cheek cell PL and plasma PL or
erythrocyte total lipids®®*?. No correlations have been found
between ARA levels in plasma and erythrocyte total fatty
acids®*®. Our results confirm previous findings, where corre-
lations were only indicated between cheek cells and plasma,
but not between the other compartments.

The supplementation of DHA as an individual 7-3 fatty acid
was chosen to exclude the effects of other fatty acids on the
incorporation of DHA into GPL. Consuming fish or fish oil
capsules may result in different DHA levels than those
observed in our study due to the competition of EPA and
DHA for the sn-2 position of GPL. There was no control
group without DHA supplementation included, and hence
we cannot compare the intervention effects to a reference
group. Systematic changes of fatty acid compositions during
the study period cannot be excluded, but such changes are
not expected during a 4-week period. An estimate for
random variation was obtained by duplicate baseline
measurements within 2 weeks before study start. In all com-
partments, differences for DHA percentages were small com-
pared to those observed after supplementation (data not
shown). Also, providing DHA only allows detecting changes
in EPA related to retroconversion. Based on the EPA results,
retroconversion did not take place during the supple-
mentation period of 29d. We cannot exclude that with a
prolonged intervention time a further increase in DHA pro-
portions would have occurred in the three compartments.
However, this seems unlikely as DHA in cheek cells derives
from plasma lipids, and plasma DHA levels reach equilibrium
within 1 month.

While the studied daily supplementation with 510 mg DHA
is clearly above the average habitual DHA intake in most
3 this dosage has frequently been applied in inter-
ventional studies to test DHA effects®. We tested only the
kinetics of DHA incorporation following a change in intake
from about 80 mg DHA to 590mg per d. Nevertheless, we
assume that with lower DHA intakes similar curves, with
lower maximal changes, would be observed as for DHA sup-
plementations up to 1 g/d increases in plasma PL DHA percen-
tages have been found to be proportional to intake
increases'”. On the other hand, a further increase of the sup-
plementation dose leads to disproportional increases of DHA
in plasma” and kinetics will probably differ. In case of very
low basal DHA levels and/or minute changes of DHA intakes,
cheek cell GPL analysis might be disadvantageous compared
to plasma or erythrocytes, as cheek cells contain less GPL
DHA which may influence the relative error of measurements
unfavourably.

countries

In summary, after a lag-phase of a few days, cheek cells
respond quickly to DHA supplementation. The relative
increase over 4 weeks is comparable to plasma, although
the proportion of DHA in cheek cells is small compared to
plasma and erythrocytes. This indicates that cheek cells reflect
short-term changes in dietary fatty acid composition. Further-
more, sampling of cheek cells is simple and applicable in a
non-clinical environment. Based on the results of this study,
cheek cell GPL are an alternative to plasma and erythrocyte
PL as biological markers for 7-3 fatty acid status, especially
in n-3 fatty acid supplementation trials and studies, where
blood sampling is difficult or not applicable.
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5 Zusammenfassung

5.1 Zusammenfassung (deutsch)

Ziele: Klinische und epidemiologische Studien zeigen die Wichtigkeit von Omega-3
Fettsauren in der menschlichen Ernahrung und deren Zusammenhang mit Morbiditat
und Mortalitat bei Erkrankungen des Herz-Kreislaufsystems, psychischen
Erkrankungen und ihre Bedeutung in Schwangerschaft und Sauglingsalter.
Detaillierte Untersuchungen der Zusammenhange zwischen der individuellen
Fettsaurezusammensetzung und der Gesundheit erfordern die Analytik des
Fettsaurestatus bei groRen Probenzahlen. Es gibt verschiedene Verfahren in der
Fettsaureanalytik, welche oft durch aufwandige Probenaufarbeitungsprozeduren
begrenzt, kostspielig oder unangemessen invasiv sind.

Ziel dieser Arbeit war die Optimierung und Validierung zweier Biomarker fur den
Fettsaurestatus im Menschen: Wangenschleimhautzellen-Glycerophospholipide und
RBC-Glycerophospholipide basierend auf einer klinischen Supplementationsstudie
mit DHA. Des Weiteren wurden beide neuen Verfahren mit etablierten Methoden
verglichen und Korrelationen berechnet, um eine Aussage Uber deren Nutzen
und Anwendbarkeit treffen zu konnen und zu bestimmen, ob Wangenschleimhaut-
Glycerophospholipide und RBC-Glycerophospholipide kurz- oder langfristige
Biomarker des Fettsaurestatus sind.

Methoden: Die Methylester der Glycerophospholipid-Fettsauren sowohl in den RBC,
als auch in den Wangenschleimhautzellen werden durch Fallung der Proteine und
die anschlieRende basenkatalysierte Methylestersynthese selektiv herausgelost. Die
Losung der GPL innerhalb der Probe wird durch die Behandlung mit Ultraschall
verbessert.

Der Fettsaurestatus in RBC GPL und Wangenschleimhaut-GPL wurde in einer 29-
tagigen Supplementationsstudie mit DHA (510mg/d) ausgewertet. Zum Vergleich
wurde der DHA-Anstieg in den unterschiedlichen Kompartimenten und deren
Korrelationen mit SPSS bestimmt.

Ergebnisse: Bei der Validierung der RBC GPL Methode fanden sich im Intra-Assay
Variationskoeffizienten zwischen 1,0 und 10,5 %, im Inter-Assay Werte zwischen 1,3
und 10,9 %. In allen analysierten Lipidfraktionen (PE, PC, GPL und Gesamt-PL) stieg

der DHA-Anteil wahrend der Supplementation signifikant an. Aul3erdem wurden hohe
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Korrelationen fur die meisten einfach- und mehrfach ungesattigten Fettsauren und fur
den Omega-3-Index zwischen RBC GPL und RBC PL (r=0.924) gefunden.

Ebenso ergaben sich hohe Korrelationen zwischen dem DHA-Gehalt in
Wangenschleimhaut-GPL und Plasma-GPL (r=0,88) und RBC-GPL (r=0,76) vor
Studienbeginn.

Das ,half-maximal-Level von DHA in den GPL fand sich nach 4 Tagen in Plasma,
nach 6 Tagen in RBC und nach 10 Tagen in Wangenschleimhautzellen nach taglicher
DHA- Supplementation. Der mittlere DHA-Anstieg (mol%) im Bezug zum
Ausgangswert war am deutlichsten im Plasma (186%) zu erkennen, gefolgt von
Wangenschleimhautzellen (180%) und RBC (130%).

Diskussion und Schlussfolgerungen: Im Rahmen der Studie der RBC GPL Methode

zeigte sich eine grol’e Herausforderung in der Vermeidung der Verklottung der RBC
in Methanol, was die Ausbeute an Methylestern deutlich beeinflusste. Das Verfahren
wurde durch die Behandlung der Proben mit Ultraschall im Wasserbad optimiert,
nachdem die Verlangerung der Schuttelzeit kaum Erfolg zeigte. Deshalb sehen wir
die Ultraschallbehandlung als essentiellen Bestandteil des Aufarbeitungsprozesses in
der Analyse der RBC GPL an um die Ertragsrate zu erhdhen. Die Uberprifung der
Prazision mit Intra- und Inter-Assay war vergleichbar mit den bereits etablierten
Verfahren der GPL in Wangenschleimhautzellen und Plasma, sodass die Prozedur
der Proteinfallung mit anschlieRender basenkatalysierter Umesterung fur alle 3
Kompartimente angewandt werden kann.

Fur die Lagerzeit konnen folgende Empfehlungen ausgesprochen werden: eine
Lagerung in Methanol mit BHT (0,05 mg/ml) fur 8 bis 12 Monate bei -80° C
beeinflusst die meisten Fettsduren kaum, was vergleichbar ist zu anderen
Lagerungsmethoden der RBC. Jedoch konnte eine nicht signifikante Abnahme des
DHA-Gehaltes nachgewiesen werden, was im Rahmen einer Lagerungszeit von Uber
12 Monaten kritisch werden konnte.

Der Omega-3-Index in RBC GPL zeigte eine hohe Korrelation zu dem Omega-
3-Index der RBC Gesamt-PL, sodass mit der Methode auch die Bestimmung
des Omega-3-Indexes moglich scheint.

Zusammenfassend léasst sich festhalten, dass die Analytik der Fettsduren in GPL
RBC eine exzellente Alternative zum Monitoring der Fettsduren wéhrend einer
Omega-3- Supplementation ist und zusatzlich eine prazise und robuste Methode

darstellt, die es erlaubt schnell und kostengunstig eine groRe Zahl von kleinen
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Probenvolumina zu untersuchen, indem sie auf zeitraubende Aufarbeitungsschritte,
wie Dunnschichtchromatographie, verzichtet.

In dieser Studie wurde erstmals gleichzeitig die Aufnahme von DHA in GPL der
Kompartimente Wangenschleimhautzellen, RBC und Plasma untersucht. Es fanden
sich hohe Korrelationen. Der DHA-Anteil in CC betrug jedoch im Vergleich zu
Plasma und RBC nur ein Drittel, aber es wurde gezeigt, dass die Anderung der
Omega-3 und Omega-6-Fettsdureaufnahme sich in allen Kompartimenten ahnlich
aulert.

Unter Beachtung einer Verzogerungsphase von 5 Tagen (durch Erneuerung der
Mundschleimhautzellen) spiegeln die Wangenschleimhautzellen kurzzeitige
Anderungen der diatetischen Fettsdureaufnahme wider und reagieren schnell auf
DHA- Supplementation. Nicht auller Acht zu lassen sind die Vorteile der
Probengewinnung der Wangenschleimhautzellen, welche durch Abbursten einfach,
schnell, nicht invasiv und in einer nicht klinischen Umgebung durchzufuhren ist.

Somit 1asst sich schlussfolgern, dass Wangenschleimhaut GPL als Biomarker des
Omega-3-Fettsaurestatus herangezogen werden konnen, vor allem in klinischen

Studien, in denen Blutentnahmen schwierig oder nicht zumutbar/ anwendbar sind.
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5.2 Zusammenfassung (englisch)

Objectives: Clinical and epidemiological studies demonstrate the importance of long chain
omega-3 fatty acids in human nutrition and their relationship to morbidity and mortality in
diseases of the cardiovascular system, mental illness and their importance in pregnancy
and infancy. Detailed studies of the relationships between fatty acid composition and
health require the analysis of the fatty acid status of large numbers of samples. There is a
variety of methods for fatty acid analysis available, but they are often limited by time-
consuming sample preparation procedures or invasive sample collection is required.

The aim of this thesis was to optimize and validate two biomarkers for fatty acid status in
humans: cheek cell glycerophospholipids (GPL) and red blood cell (RBC)
glycerophospholipids based on a clinical supplementation trail with docosahexaenoic acid
(DHA). The new method was compared with established methods and correlations were
calculated to evaluate their usefulness and applicability and to determine, whether cheek
cell GPL and RBC GPL are short- or longterm biomarkers of fatty acid status in human.
Methods: The methylesters of the GPL fatty acids, in both the RBC and in cheek cells are
selectively transferred into methylesters by a combination of methanolic precipitation of
proteins and base-catalyzed transesterification. The solubility of GPL in the sample is
improved by ultrasound treatment.

The fatty acid status in RBC GPL and CC GPL was evaluated in a 29-day supplementation
trial with DHA (510mg/d). In order to compare the increase of DHA, the different
compartments were measured and their correlations were determined.

Results: In the validation of the RBC GPL method intra-assay coefficients of variation were
found between 1.0 and 10.5% in the inter-assay values from 1.3 to 10.9% were obtained.
In all analyzed lipid fractions (PE, PC, GPL and total PL) DHA-content increased
significantly during supplementation. In addition, high correlations for most mono- and
polyunsaturated fatty acids and the omega-3-index between RBC GPL and RBC total
phospholipids (r = 0.924) were found.

Similarly, high correlations between the DHA-content in cheek cell GPL and plasma GPL
(r=0.88) and RBC GPL (r = 0.76) were found at baseline.

The half-maximal GPL DHA-level was detected after 4 days in plasma, after 6 days in RBC
and after 10 days in CC, after daily DHA-supplementation. The mean increase in DHA
(mol%) in relation to baseline, was seen most clearly in the plasma (186%), followed by CC
(180%) and RBC (130%).
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Discussion and Conclusions: In the study of the RBC GPL method a major challenge was

to avoid the clotting of RBC in methanol, which significantly influenced the yield of
methylesters. The process has been optimized by treating the sample with ultrasound in a
water bath, after extension of the shaking time was hardly successful. Therefore, we see
the ultrasound treatment as an essential part of the analysis of RBC GPL. The precision
indicated by intra- and interassays was similar in CC and plasma. Thus, the procedure of
protein precipitation followed by base-catalyzed transesterification can be applied for all 3
matrices with slight adaptations.

Concerning the storage stability of samples the following recommendations can be made:
a storage in methanol with BHT (0.05 mg/ml) for 8 to 12 months at -80° C hardly affects
most fatty acids, which is comparable to other conservation procedures for RBC. However,
a non-significant decrease in DHA content, which could be critical for a storage time of
about 12 months was observed.

The omega-3-index in RBC GPL showed a high correlation with the omega-3 index of RBC
total PL, which indicates the possibility to determine an omega-3 index with this method.
In summary, it can be stated that the analysis of fatty acids in RBC GPL is suitable to
monitor the fatty acid status during an omega-3 supplementation and is an accurate and
robust method that quickly allows to investigate a large number of samples from small
sample amounts and with relatively low costs by avoiding time-consuming purification
steps, such as thin layer chromatography.

In this study the incorporation of DHA into GPL of the compartments cheek cells, RBC and
plasma was investigated simultaneously for the first time. High correlations were detected.
Although the DHA-content in CC was only one-third compared to plasma and RBC, it was
shown that the relative change of the omega-3 and omega-6 fatty acids is similar in the
compartments.

Taking into account a lag phase of 5 days for renewal of oral mucosal cells, the CC reflect
short-term changes and respond quickly to DHA-supplementation. Besides, the collecting
samples of cheek cells by brushing is simple, fast, non-invasive and easy to apply in a
non-clinical setting.

Thus, it can be concluded that CC GPL seem to be valuable biomarkers of omega-3 fatty
acid status, especially in clinical studies in which blood sampling is not adequate or

applicable.
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