
JRIF: Reactive Information Flow Control for
Java∗

Technical Report

Elisavet Kozyri Owen Arden Andrew C. Myers Fred B. Schneider
Department of Computer Science

Cornell University
{ekozyri,owen,andru,fbs}@cs.cornell.edu

February 12, 2016

Abstract

A reactive information flow (RIF) automaton for a value v specifies (i)
allowed uses for v and (ii) the RIF automaton for any value that might be
directly or indirectly derived from v. RIF automata thus specify how trans-
forming a value alters how the result might be used. Such labels are more ex-
pressive than existing approaches for controlling downgrading. We devised
a type system around RIF automata and incorporated it into Jif, a dialect of
Java that supports a classic form of labels for information flow. By imple-
menting a compiler for the resulting JRIF language, we demonstrate how
easy it is to replace a classic information-flow type system by a more ex-
pressive RIF-based type system. We programmed two example applications
in JRIF, and we discuss insights they provide into the benefits of RIF-based
security labels.

∗Supported in part by AFOSR grants F9550-06-0019 and FA9550-11-1-0137, National Science
Foundation grants 0430161, 0964409, and CCF-0424422 (TRUST), ONR grants N00014-01-1-
0968 and N00014-09-1-0652, and grants from Microsoft.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eCommons@Cornell

https://core.ac.uk/display/79047638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction
Static enforcement of information flow policies is attractive because it helps pro-
grammers to build software that is secure, catching security-critical errors at com-
pile time. Such language-based enforcement mechanisms (e.g., [8, 27, 35, 40])
work by enriching traditional type systems with information flow labels; the la-
bels specify confidentiality policies and sometimes integrity policies, too.

During program execution, information contained in inputs is transformed by
operations in the code. The restrictions that programmers wish to impose on how
the outputs of an operation are used may differ from the restrictions on the inputs
to that operation. Consider a program that tallies votes for an election. Each
vote would be considered confidential, but the winner is public. So, here, fewer
restrictions are imposed on the output than on the inputs. As another example,
consider a conference management application. The list of reviewers and the list
of papers is likely to be considered public information, but the identity of each
paper’s reviewers should be kept confidential. In this case, more restrictions are
imposed on the output of the operation that matches papers to reviewers than the
restrictions imposed on its input.

Previous work has proposed techniques to distinguish restrictions on outputs
from restrictions on inputs: information flow locks [6, 8], explicit expressions
for declassification (for confidentiality) and endorsement (for integrity) [27, 29],
capability-based mechanisms for downgrading security policies [23, 33, 41]. These
approaches are unsatisfying, though, because changes to restrictions are not con-
nected to the restrictions on the input or to the operation performed on that input.
So in this prior work, restrictions can be replaced in arbitrary ways, regardless of
whether some intended operation was performed. For example, an explicit de-
classification expression allows the label of an expression to be replaced with a
new label in much the same way that a type-cast operation changes an expression
from having one type to having another. Like a type-cast, explicit declassification
operators undermine the static guarantees offered by type checking. Moreover,
errors introduced by a misused declassification operation can be far more subtle
than what an erroneous type-cast might cause.

This paper explores information flow labels that not only specify restrictions
on allowed uses of a value but also specify restrictions on allowed uses of derived
values. Reactive Information Flow automata (RIF automata) [22]are automata
whose states represent restrictions and whose transitions are triggered by opera-

2

tions. RIF automata specify arbitrary changes to restrictions on allowed uses of
values, and these changes are associated with transformations to that value. In par-
ticular, RIF automata specify how restrictions are transformed in step with how
the information they protect is transformed. Thus, RIF automata make explicit the
connection between information transformations and changes to restrictions.

We are not the first to contemplate information flow labels that encode allow-
able changes to restrictions. Previous approaches (e.g., [18, 25, 31, 32, 37]) that
specified permitted changes to restrictions within security labels address transfor-
mations only between two kinds of restrictions. Most specify which operations
may transform secret information into public information, although the opposite
transformation (from public to secret) has also been studied [14]. In [14], trans-
formations are triggered by run-time events instead of by applied operations. In
contrast to these prior proposals, RIF automata specify transformations of restric-
tions across a wide spectrum and do so in terms of any specified operations for
transforming protected data.

To better understand the utility of RIF automata, we implemented JRIF, a new
dialect of Java for supporting information flow control. JRIF is based on the
Jif [27, 29] compiler and runtime. The modifications to Jif were straightforward.
Jif’s labels, which are based on the Decentralized Label Model [28], were substi-
tuted with RIF automata, and the restrictiveness relation on labels was modified
accordingly. Our experience in building JRIF gives confidence that other lan-
guages for information flow control could be extended similarly. JRIF has also
provided us with a tool to explore how the expressiveness afforded by RIF au-
tomata compares to ordinary labels. A public release of the source code for the
JRIF compiler and runtime, along with example applications is available at the
JRIF web page [21].

We proceed as follows. Section 2 defines RIF automata. In Section 3, we
present JRIF and discuss its support for dynamic labels, parameterized types, and
method constraints. Section 4 demonstrates the practicality of JRIF by describing
two real programs (a Battleship game and a shared calendar application), and
explores the advantages of JRIF compared to the labels in Jif. The implementation
of JRIF is outlined in Section 5, and the security property that JRIF programs are
expected to enforce is described in Section 6. Section 7 discusses how JRIF could
be extended to support robustness. Section 8 gives comparisons of JRIF to related
work, including other language-based models for controlling declassification and
endorsement. Section 9 considers the relationship between reclassifiers and the

3

operators they annotate, and Section 10 concludes.

2 RIF Automata
A RIF automaton specifies restrictions on uses of values, and how the restrictions
vary according to the history of operations involved in deriving these values.

– For confidentiality, restrictions specify which principals are allowed to read
values.

– For integrity, restrictions specify whether values may be considered trusted
based on which principals might have influenced them. Principals should
be trusted in order for the values they modify to be trusted.

Different operations may have equivalent effects on information in their inputs.
We assume that operations of interest to a programmer are annotated with iden-
tifiers that indicate one of those classes of equivalent operations. We call these
identifiers reclassifiers, since the confidentiality or integrity of the outputs of the
associated operations might differ from that of the inputs. We employ the anno-
tation reclassify(e, F) to associate a reclassifier F with an expression e. For
example, in

z = reclassify(x mod y, F)

reclassifier F identifies a class to which the mod operation belongs.
A RIF automaton is a finite-state automaton whose states are mapped to sets

of principals and whose transitions are associated with reclassifiers. The meaning
of a RIF automaton can be given as a function from sequences of reclassifiers to
sets of principals (which correspond to the state reached after corresponding tran-
sitions are taken by processing the sequence of reclassifiers). A RIF automaton
for confidentiality is called a c-automaton; for integrity, an i-automaton. To spec-
ify both confidentiality and integrity, a value is tagged with a RIF label, which is
a pair comprising a c-automaton and an i-automaton.

Formally, a RIF automaton ρ can be defined to be a 5-tuple 〈Q,Σ, δ, q0,Prins〉,
where:

– Q is a finite set of automaton states,

– Σ is a finite set of reclassifiers,

4

– δ is a total, deterministic transition function Q× Σ→ Q,

– q0 is the initial automaton state q0 ∈ Q, and

– Prins is a function from states to sets of principals.

Finite-state automata compactly represent certain mappings from a possibly
infinite number of sequences of reclassifiers to sets of principals. In theory, the
number of states in a RIF automaton could be large, but we have found in practice
that relatively small RIF automata are capable of representing many policies of
practical interest. By requiring transition function δ to be total, any sequence of
reclassifiers is a valid sequence of transitions. Reclassifiers that do not trigger
a transition between states (i.e., self-transitions) need not be specified explicitly,
permitting compact representations of δ, as we illustrate in Section 3.

Changes to the confidentiality or integrity of a value have straightforward de-
scriptions using RIF automata.

– For confidentiality, a reclassifier triggers a declassification when it causes
a transition whose ending state is mapped to a superset of the principals
mapped by its starting state. A reclassifier triggers a classification when it
causes a transition whose ending state is mapped to a subset of the principals
mapped by its starting state.

– For integrity, transitioning to a superset of principals triggers a deprecation
(since a superset must now be trusted) whereas transitioning to a subset
triggers an endorsement (because only a subset must be trusted).

– We use the term reclassification to describe all other relationships between
starting and ending states.

The terminology introduced above is summarized in Figure 1.
We now illustrate with two simple examples how RIF automata express inter-

esting information flow policies. Focusing on confidentiality, consider a system
for paper reviewing. For each paper, three referees submit integer review scores.
The system logs each referee’s name with her submitted review score for a given
paper. At the end, the system accepts the paper if the average review score is
higher than some threshold AcptThreshold. A sensible confidentiality policy
for each review score would be that (i) each review score can be read by the pa-
per’s authors and the referee, (ii) the pair matching a referee to her review score

5

S ⊂ E S ⊃ E

Confidentiality Declassification Classification
Integrity Deprecation Endorsement

Figure 1: Terminology for reclassification based on the relation between the sets of prin-
cipals mapped by the starting (S) and ending (E) state of the corresponding transition.

a, r P

r

avg

log

¬(avg, log) ∗

∗

Figure 2: A c-automaton for a review score. Submitted review scores can be read by
author a and referee r. The result of logging (log) each referee’s score can be read only
by that referee, and the final accept/reject result (avg) can be read by every principal.

may be read by the referee but not by the author (review scores are thus anony-
mous) (iii) the paper’s final accept/reject result can be read by everyone. Notice
that values covered by (i)–(iii) all derive at least partially from review scores. Fig-
ure 2 illustrates the corresponding c-automaton for review scores. Here, r denotes
the referee, a a specific author, and P represents public, a set containing every
principal. Reclassifier avg triggers a declassification, as specified by (i) and (iii),
and reclassifier log triggers a classification, as specified by (i) and (ii). The aster-
isk “∗” matches all reclassifiers and “¬(avg, log)” matches all reclassifiers except
for avg and log. Finally, gray indicates the initial state of the RIF automaton.

A program that implements the above system for paper reviewing is presented
in Figure 3. Operation concat(id,review), which matches a referee to her
review score, is annotated with reclassifier log, because it triggers the classifica-
tion specified by (i) and (ii). Operation partSum/num > AcptThreshold, which
yields the final accept/reject result, is annotated with reclassifier avg, because it
triggers the classification specified by (i) and (iii). Notice that annotated opera-
tions may appear both as assigned expressions and as conditional expressions.

6

partSum = 0;

num = 0;

while (num < 3){
num = num +1;

id = refereeId(num);

review = refereeReview(num);

record = reclassify(concat(id,review),log);
partSum = partSum + review;

}

if (reclassify(partSum/num > AcptThreshold , avg))
result = ‘‘accept’’;

else result = ‘‘reject’’;

Figure 3: Paper reviewing

As a second example1, consider a publisher p receiving a document doc that
everyone trusts. Suppose p has at her disposal two classes of operations. The first
class, which is identified by reclassifier publicize, contains operations related to
publishing documents. The second class, which is identified by reclassifier Xcrpt,
contains operations for excerpting documents (e.g., substring operations). The
publisher is expected to publish doc in its entirety, and so should not only publish
excerpts. The i-automaton in Figure 4 illustrates the desired integrity label for
doc.2 Initially, no principal must be trusted for doc to be trusted; but the result
of p excerpting doc is only as trusted as p (because p may be biasing the overall
message by what p chooses for the excerpt). Here, reclassifier Xcrpt triggers the
deprecation. Notice that, according to this i-automaton, if a publicize operation
is instead applied to doc, then no principal must be trusted for the result to be
trusted.

3 JRIF
Jif [27, 29] extends Java’s types to incorporate information flow labels.3 Jif han-
dles information flows caused by features of Java, including exception handling

1This example is inspired by TruDocs [39].
2The transition function δ for this i-automaton is total, because we consider only two reclassi-

fiers.
3Because Jif extends Java 1.4, it does not support Java Generics, introduced in Java 1.5.

7

∅ p

Xcrpt

publicize ∗

Figure 4: An i-automaton of the document doc. When the excerpt operation (annotated
with Xcrpt) is applied, the result is deprecated to p.

as well as allocation and updating of heap locations. Methods in Jif are annotated
with labels to support compositional type checking and separate compilation. Jif
also supports class declarations with label parameters and a limited form of de-
pendent types, which permits dynamic labels to be used for type checking. The
Jif compiler’s solver automatically infers labels for local variable types, reducing
the annotation burden on the programmer.

JRIF (Jif with Reactive Information Flow) replaces the labels in Jif with RIF
labels. Our JRIF implementation preserves almost all of the abstractions provided
by Jif, including label parameters, dependent label types, and label inference. So,
programmers can tag fields, variables, and method signatures with RIF labels, and
the JRIF compiler checks whether the program satisfies these RIF labels.

3.1 Syntax of RIF Labels and Annotated Expressions
The JRIF syntax4 of a RIF label ρ is given in Figure 5. The set of all principals P is
represented by {_}, and the empty set is represented by {}. Reclassifications that
are not given explicitly in a RIF label are taken to be transitions whose starting
and ending states are identical.

Figure 6 illustrates how the c-automaton in Figure 2 is coded using JRIF syn-
tax. The initial state, s, is distinguished by an asterisk * and maps to principals a
and r. State tmaps to the set of all principals P, denoted by _, and state umaps to
principal r. Reclassifier avg triggers a transition from s to t, and the reclassifier
log triggers a transition from s to u.

In JRIF, the process of annotating expressions with reclassifiers (writing
reclassify(e, F)) is relatively simple, and the type checker quickly detects mis-
matched assumptions between RIF labels and reclassifiers in annotated expres-

4For clarity, the syntax presented in this paper is slightly simplifies the syntax used in JRIF
implementation.

8

ρ ::= {ρc; ρi}
ρc ::= c [ListOfTerms]

ρi ::= i [ListOfTerms]

ListOfTerms ::= T | T,ListOfTerms

T ::= State | InitialState | Transition
State ::= ID : {ListOfPrincipals}
InitialState ::= ID∗ : {ListOfPrincipals}
Transition ::= ID : ID → ID

Figure 5: Syntax for labels, where ID represents an alphanumeric string.

c[s∗:{a, r}, t:{_}, u:{r}, avg:s→t, log:s→u]

Figure 6: Syntactic representation of a c-automaton

sions. Expressions not explicitly annotated trigger no transition on RIF labels.

boolean{c[q0*:{_}]} check (int{c[q0*:{_}]} in,
int{c[q1*:{p},q2:{_},C:q1→q2]} pwd)

{

boolean{c[q0*:{_}]} res=false;
if (reclassify(in==pwd,C))

res=true;
return res;

}

Figure 7: Password check

A simple method for password checking written in JRIF is shown in Figure 7.
Here, method check takes as arguments an input in and a password pwd; it checks
if these two arguments are equal. Both arguments are integers (int), but they are
tagged with different c-automata.5 Input in is, for simplicity, considered public
(all principals can read it). Password pwd can initially be read only by principal

5We focus only on confidentiality for this example.

9

p (the principal that picked this password), but the result of applying the equality
check (annotated with reclassifier C) on pwd is public. Method check returns the
boolean value that results from this equality check, which is considered public.
JRIF’s compiler decides whether this method is safe, based on typing rules we
discuss next.

Changes to confidentiality and integrity specified in RIF labels are not ex-
pressible by Jif labels—instead, additional Jif code is required. Reclassifications
in JRIF have a concise description, whereas declassifications and endorsements
in Jif are more verbose, since they have a target label and, sometimes, must in-
clude the source label as well. Finally, a single JRIF reclassifier can trigger a
change in both confidentiality and integrity; Jif requires a separate declassify
and endorse to effect that same change.

Compared to Jif, JRIF better separates program logic from information flow
policies. Suppose, for example, that a programmer decides that some input value—
a game player’s name—should not be declassified when formerly it was.

– In JRIF, this change to the program involves modifying the RIF label decla-
ration on any field storing the player’s name. The c-automaton of the label
would be inspected and edited so that it contains no transitions to automaton
states that map to additional principals.

– To accommodate this change in Jif, the programmer must not only find and
remove all declassification commands that involve the name field explicitly,
but she also must remove all declassification commands that involve any
expressions to which the game player’s name flows. Getting these deletions
right is error prone, since the programmer must reason about the flow of
information in the code—something the type system was supposed to do.

Consequently, changes in information flow policies cause fewer changes in JRIF
programs than those caused in JIf programs.

3.2 Label checking
Label checking in JRIF is performed by a procedure that decides whether the
restrictions imposed by one RIF label are not weaker than the restrictions imposed
by another RIF label. This is a restrictiveness relation between RIF labels, and it
is analogous to the subtyping relation in ordinary type systems. Whenever a value

10

will be stored into a variable, the RIF label that tags this variable must be at least
as restrictive as the RIF label on the value because, otherwise, the restrictions
imposed by the value’s RIF label might be violated (e.g., more principals may
read values than those allowed by that RIF label) as execution proceeds.

We formalize the restrictiveness relation first for RIF automata and then for
RIF labels. Let R map each RIF automaton to the set of principals mapped by its
initial state6, and let T map a RIF automaton and a sequence ~F of reclassifiers to
the RIF automaton obtained by taking the corresponding sequence of transitions.7

For c-automata, we define ρ′c to be at least as restrictive as ρc, denoted ρc vc ρ
′
c, if

for all possible sequences of reclassifiers, principals allowed to read the resulting
value according to ρ′c are also allowed by ρc. Relation vc is thus formally defined
as follows:

ρc vc ρ
′
c , (∀~F: R(T(ρc,~F)) ⊇ R(T(ρ′c,~F))). (1)

For i-automata, ρ′i is at least as restrictive as ρi, denoted ρi vi ρ
′
i, if for all

possible sequences of reclassifiers, principals that must be trusted according to ρ′i
include those that must be trusted according to ρi. So, relation vi is defined as
follows:

ρi vi ρ
′
i , (∀~F: R(T(ρi,~F)) ⊆ R(T(ρ′i,~F))). (2)

We extend these restrictiveness relations to RIF labels by comparing RIF au-
tomata pointwise:

{ρc; ρi} v {ρ′c; ρ′i} , (ρc vc ρ
′
c) ∧ (ρi vi ρ

′
i).

The least restrictive RIF label is denoted with {}; it allows all principals to read
values, and it requires no principal to be trusted. RIF label {ρc} imposes restric-
tions on confidentiality (according to ρc), but it imposes no restriction on integrity
(no principal is required to be trusted). Similarly, RIF label {ρi} imposes restric-
tions on integrity, but it imposes no restriction on confidentiality.

The RIF labels inferred by the JRIF compiler for an expression are at least as
restrictive as the RIF labels of all variables in this expression. In particular, the
c-automaton of an expression allows principals to read derived values only if these
principals are allowed to do so by all c-automata of variables in that expression.
JRIF constructs such a c-automaton by taking the product of all c-automata of

6R(〈Q,Σ, δ, q0,Prins〉) , Prins(q0)
7T(〈Q,Σ, δ, q0,Prins〉,~F) = 〈Q,Σ, δ, δ∗(q0,~F),Prins〉, where δ∗ is the transitive closure of

δ.

11

the used variables, assigning the intersection of the allowed principals at each
state. For integrity, the i-automaton of an expression requires principals to be
trusted whenever these principals are required to be trusted by some i-automata
of variables in that expression. Again, JRIF constructs such an i-automaton by
taking the product of all i-automata of the used variables, assigning the union of
the required principals at each state.

The RIF label of an annotated expression reclassify(e, F) is the RIF label
of expression e after performing an F transition. Specifically, if ρ = {ρc; ρi}
is the RIF label of e, then T(ρ, F) , {T(ρc, F); T(ρi, F)} is the RIF label of
reclassify(e, F). This rather simple rule is what gives RIF labels their expres-
sive power.

Information flows can be explicit or implicit. An explicit flow occurs when
information flows from one variable to another due to an assignment

x = reclassify(e, F). (3)

An implicit flow occurs when assignment takes place because of a conditional
branch, as in the if-statement

if (reclassify(e, F)) x = reclassify(e′, F′)

else x = reclassify(e′′, F′′).
(4)

Knowing the value of x after statement (4) completes will tell whether e evaluates
to true or false.

JRIF, like other static information flow languages, controls implicit flows us-
ing a program counter (pc) label to represent the confidentiality and integrity of
the control flow of the program. Assignment (3) is secure if both the pc label
and the RIF label of reclassify(e, F) can flow to the RIF label of x. In other
words, the RIF label of x is at least as restrictive as the pc label and the RIF la-
bel of reclassify(e, F). When control flow branches, as in (4), the pc label is
increased to being at least as restrictive as the current pc label and the RIF label
of reclassify(e, F). This increase ensures that assignments in either branch are
constrained to variables with RIF labels at least as restrictive as the RIF label of
reclassify(e, F).

JRIF implements label checking rules for all basic Java features, including
method overloading, class inheritance, and exceptions. The formal description for
all rules implemented in JRIF is out of scope for this paper. However, the ideas

12

that underlie these rules (i.e., restrictiveness relation, explicit and implicit flow
control) are based on the rules just explained for explicit and implicit flows.

We illustrate label checking by returning to method check from Figure 7. This
method successfully compiles in JRIF, because:

– the c-automaton of res is at least as restrictive as the c-automata of in and
pwd after their taking a C transition, and

– the c-automaton of the return value is at least as restrictive as the c-automaton
of res.

More JRIF examples can be found on the JRIF web page [21].

3.3 Dynamic labels and label parameters
Sometimes an information flow specification becomes known only at execution
time. Or we might desire to reuse the same code in connection with multiple in-
formation flow specifications. Jif provides dynamic labels and class declarations
parameterized with label parameters for that purpose. Label parameters are rei-
fied: each instance of a parameterized class definition contains runtime values for
its label parameters. In most cases, dynamic labels and label parameters may be
used interchangeably.

We adapted Jif’s support for dynamic labels and label parameters in JRIF. So,
RIF labels in JRIF may be instantiated as runtime values: they may be constructed
programmatically, passed as method arguments, stored in fields and variables, and
compared dynamically. Furthermore, the labels of static type declarations in JRIF
may range over label parameters and label-valued fields and variables.

Since the actual RIF label that a dynamic label or label parameter denotes
is not known at compile time, the JRIF type system requires the programmer
to insert into code the checks that would prevent unsafe flows at runtime. JRIF
programmers insert comparisons of the restrictiveness of dynamic RIF labels at
runtime by writing expressions similar to those comparing dynamic Jif labels. In
JRIF, it is also necessary to reason dynamically about transitions on RIF labels.
For example, consider

y = reclassify(x mod 4, F) (5)

13

where x is tagged with dynamic label l1, and y is tagged with dynamic label
l2. This assignment statement is secure only when T(l1, F) v l2 holds, which
depends on the values of l1 and l2.

To ensure that T(l1, F) v l2 holds, the programmer would code

if (T(l1, F) v l2) y = reclassify(x mod 4, F) (6)

At compile time, constraint T(l1, F) v l2 informs the type system about the
necessary relationship between l1 and l2, because the type system may assume
T(l1, F) v l2 holds when the then clause starts executing (since that code is
executed only if the dynamic check succeeds). To execute the check, the runtime
system constructs the RIF label that results from an F transition on l1 and checks
whether l2 is at least as restrictive. This check also illustrates an interesting prop-
erty of RIF labels: the same reclassifier may have different effects on different
labels. Figure 8 shows a snippet in JRIF that uses command (6) to ensure that
the modulo of x is assigned to y only if the effect of the F reclassifier on label l1
permits such a flow. Otherwise, it returns an error value. If the programmer were
to omit this check, method mod4 would no longer typecheck.

In Jif, a declassification has the same effect on all labels. So, Jif assignment

y = declassify(x mod 4, l2)

causes any value stored in x to be declassified.8 To achieve the same effect as (6)
in Jif, the programmer would have to use an additional variable, say d, to control
whether x mod 4 should be declassified.

if (d) y = declassify(x mod 4, l2) (7)

But it now becomes the Jif programmer’s responsibility to ensure that d is in-
spected before any declassification of x; the Jif type system provides no assistance
about that. This program construction is error-prone, compared with (6), where
an error from the JRIF type system would alert the programmer that a dynamic
check is necessary.

Dynamic labels and label parameters also relieve some of the annotation bur-
den of writing and rewriting long JRIF labels when the functionality of a program
evolves during development. With dynamic labels and label parameters, program-
mers can specify only the properties of RIF labels that are required for a given

8Robust downgrading places restrictions on the label, but that is orthogonal to this discussion.

14

int{l2} mod4(label{} l1, label{} l2, int{l1} x)
{

int{l2} y=-1;
if (T(l1,F) v l2) y=reclassify(x mod 4,F);
return y;

}

void foo()
{

label{} l1 =
new label {c[q1*:{a},q2:{_},F:q1→q2];

i[q1*:{a},q2:{},F:q1→q2]};
label{} l2 =
new label {c[q1*:{_}]; i[q1*:{}]};
int{l1} x = Random();
int{l2} z;

z = mod4 (l1,l2,x);

}

Figure 8: Dynamic labels and dynamic check

15

method or class to be secure. This, in turn, reduces the number of classes that
must be modified if RIF labels must be changed to accommodate new functional-
ity.

3.4 Constraints
To reduce the need for redundant dynamic checks, a JRIF programmer may de-
clare relationships between labels that must hold when a specific method is called.
These relationships are called where-constraints. These constraints already exist
in Jif, but they are being extended here to accommodate the expressiveness of RIF
labels. Consider method

int{l2} mod4({l1} x) where{T(l1, F) v l2}{
return reclassify(x mod 4, F);

}

for l1 and l2 dynamic labels or label parameters. Constraint where{T(l1, F) v
l2} permits the type system to assume T(l1, F) v l2 while type checking the
body of method mod4. To ensure mod4 executes only when T(l1, F) v l2 holds,
the type system need only check that the where-constraint holds at every call site
naming mod4. For instance, the expression reclassify(x mod 4, F) in (6) could
be replaced by a call to method mod4.

4 Program Examples using JRIF

4.1 Battleship
The Jif distribution [29] includes an implementation of the Battleship game. Bat-
tleship is a good example because both confidentiality and integrity are important
to prevent cheating. Over the course of the game, confidential information is de-
classified. Ship coordinates are initially fixed and secret, but revealed when oppo-
nents guess their coordinates correctly. Also, players must not be able to change
the position of their ships after initial placements.

A rather simple c-automaton suffices to specify the confidentiality policy for
the ship-coordinates of each player. That policy is:

16

p1 P

Q

¬Q ∗

Figure 9: A c-automaton for ship-coordinates.

p1 ∅

A

¬A ∗

Figure 10: An i-automaton for ship-coordinates.

– Values derived from ship-coordinates selected by player p1 should be read
only by p1, because opponent player p2 is not allowed to learn the position
of p1’s ships.

– The result of whether a ship of p1 has been hit by the opponent player p2

may be read by everyone, including p2.

A c-automaton that expresses this policy appears in Figure 9, where Q is the re-
classifier for the operation that checks whether an opponent’s attack succeeded.

The integrity policy of ship-coordinates can be expressed using a simple i-
automaton. Once p1 selects the coordinates of her ships, they are as trusted as p1.
After ship-coordinates are chosen, they may not be changed during the game. So,
before the game actually starts, there is a game operation whose reclassifier raises
the integrity of all ship-coordinates ensuring that neither player can make changes.
An i-automaton that expresses this policy is presented in Figure 10, where A is the
reclassifier annotating the operation that accepts the initial coordinates.

The JRIF implementation of Battleship was obtained by making just a few
modifications to the Jif implementation. We replaced Jif labels with RIF labels,
and we replaced various Jif declassification or endorsement commands with JRIF
reclassifications. Figures 11 and 12 illustrate some differences and similarities
between programming in JRIF and in Jif. Methods in the Jif implementation that
involved only label parameters and dynamic labels could be used without any
modification in the JRIF implementation. We believe that any program written in

17

Jif can be easily ported to JRIF. The JRIF source for the Battleship implemen-
tation is found on JRIF’s web page [21], along with the original Jif source (for
comparison).

boolean{c[q0*:{_}];i[q1*:{}]} processQuery
(Coordinate[{i[q1*:{}]}]{i[q1*:{}]} query)
{

Board[{c[q0*:{P},q1:{_},Q:q0→q1];i[q1*:{}]}]
brd = this.board;
List[{i[q1*:{}]}] oppQueries =
this.opponentQueries;
oppQueries.add(query);

boolean result = brd.testPosition(query);
return reclassify(result,Q);

}

Figure 11: Method processQuery from JRIF implementation. It checks the success of
opponent’s hit

boolean{P<-* meet O<-*} processQuery
(Coordinate[{P<-* meet O<-*}]{P<-* meet O<-*} query)
{

Board[{P->*; P<-* meet O<-*}] brd = this.board;
List[{P<-* meet O<-*}] oppQueries =
this.opponentQueries;
oppQueries.add(query);

boolean result = brd.testPosition(query);
return declassify(result ,{P->*;P<-* meet O<-*}

to {P<-* meet O<-*});
}

Figure 12: Method processQuery from JIF implementation. It checks the success of
opponent’s hit

The compilation and execution time of the JRIF version of Battleship is com-
parable to the Jif version. On an Intel Core i5 (Intel Core i5 CPU M 460 @
2.53GHz × 4) processor with 4G of RAM, 7 seconds are required for compiling
each version of Battleship (The Jif version is ∼ 615 LOC, and JRIF version is
∼628 LOC). To measure execution time, we ran a scripted Battleship game 1000

18

times in a loop. The Jif version executed 1000 games in 7 seconds while the JRIF
version required 21 seconds. The increase in JRIF execution time is mostly due
to the overhead of creating dynamic labels in JRIF, which currently requires more
method calls than Jif’s dynamic labels do.

4.2 A Shared Calendar
To further explore the expressive power of RIF labels, we developed a shared cal-
endar application from scratch in JRIF. This application allows users to create and
share events in calendars. Each event consists of the fields: time, date, duration,
and description. Declassification, classification, endorsement, and deprecation all
appear in this application. Also, users may choose dynamic RIF labels to asso-
ciate with values, so the same reclassifier could have different effects on values
with different labels.

Operations supported by our shared calendar include:

– Create a personal event or a shared event.

– Invite a user to participate in a shared event.

– Accept an invitation to participate in a shared event. Reclassifier: Accept

– Cancel a shared event. Reclassifier: Cancel

– Check and announce a conflict between personal events (not shared or can-
celed events) and an invitation for a new shared event.
Reclassifier: CheckConflict

– Publish an event date and time (but not the event description). Reclassifier:
PubSlot

– Hide an event date and time. Reclassifier: HideSlot

The reclassifiers that annotate these operations change the confidentiality and
integrity of events. Once an event is accepted (Accept is applied), the resulting
shared event is given the highest integrity, since all of the attendees endorse it.
Having the highest integrity implies that no attendee is able to modify this shared
event, thereafter. If an event is cancelled (Cancel is applied), then this event is

19

p1 P

P

PubSlotHideSlot

CheckConflict

(a) A c-automaton that permits de-
classification for conflict checking.

p1

P

PubSlotHideSlot

(b) A c-automaton that does not
permit declassification for conflict-
checking.

Figure 13: RIF automata for event confidentiality. Self-loops are omitted for clarity.

given the lowest integrity, as are all values that may be derived from it by apply-
ing supported operations. With lowest integrity, cancelled events and all values
derived from them can be distinguished. If CheckConflict is applied to a per-
sonal event and an invitation for a new shared event, then the result gets the lowest
confidentiality and the highest integrity. This is because the result is readable and
trusted by all principals that learn about the conflict. If PubSlot is applied to an
event, then the event’s date and time can flow to all principals, until a HideSlot
is subsequently applied to that event.

Figure 13 illustrates c-automata for events created by a principal p1. The c-
automaton in Figure 13a permits a full declassification triggered by reclassifier
CheckConflict; the c-automaton in Figure 13b does not. Both c-automata spec-
ify a declassification under PubSlot, and a classification under HideSlot. Figure
14 gives corresponding i-automata for the events of p1. The i-automaton in Figure
14a permits a full endorsement triggered by reclassifier CheckConflict; the i-
automaton in Figure 14b does not. Both i-automata specify an endorsement under
Accept, and a deprecation under Cancel. Notice that CheckConflict triggers
transitions in both a c-automaton and an i-automaton, contrary to, say, PubSlot.
Source code for this shared calendar implementation in JRIF can be found on
JRIF’s web page [21].

We use dynamic labels and label parameters extensively in the shared calen-
dar application. The event class has label parameters that are typically instanti-

20

p1 ∅ P

∅

Accept

CheckConflict

Cancel

(a) An i-automaton that permits en-
dorsement for conflict checking.

p1 ∅ P

Accept Cancel

(b) An i-automaton that does not
permit endorsement for conflict-
checking.

Figure 14: RIF automata for event integrity. Self-loops are omitted; for instance, the result
of applying CheckConflict to a canceled event has low integrity.

if (T(lEvt,C) v {c[q0*:{_}];i[q1*:{}]}
&& T(lCal,C) v {c[q0*:{_}];i[q1*:{}]}){

if (reclassify(cal.hasConflict(e,lEvt,lCal),C)
result = true; // Conflict detected

else result = false; // No conflict

}

Figure 15: Checking if the conflict is allowed to be declassified and endorsed, where
C corresponds to reclassifier CheckConflict. Here, lEvt is the dynamic label of the
requested shared event e, lCal is the dynamic label of events in the calendar cal, against
which the conflict will be checked, and method hasConflict returns true if a conflict
is detected.

21

ated by dynamic labels. These RIF labels tag the components of events (time,
date, duration, and description). Since events have label parameters, methods that
manipulate events make use of label parameters and dynamic labels in their type
declarations. Figure 15 excerpts from the conflict-checking method. Here, the la-
bel of the event is dynamically checked to see whether it permits the conflict check
to be declassified and endorsed before performing the corresponding operation.

A user’s events may be tagged with different dynamic labels. For example,
a user might pick the c-automaton in Figure 13a for some events but pick the c-
automaton in Figure 13b for others. Events can have different i-automata, too. An
unshared event has one of the i-automata in Figure 14, but an accepted event can
be treated with higher integrity and thus tagged with the i-automaton denoted by
taking the Accept transition. In addition, the time slot of some events could be
either hidden or public. To accommodate these heterogeneously labeled events,
we store events in a data structure that makes it easier to aggregate events with
different labels. The data structure has two fields: one is an event, and the other
is a label. Before processing an event, its label is checked to prevent unspecified
flows. Such data structures are common in Jif programs, and they are studied
formally in [43].

5 Building a JRIF Compiler
We built a JRIF compiler by modifying the existing Jif compiler in relatively
straightforward ways. Applying similar modifications to compilers for other infor-
mation flow languages ought to be straightforward. This should not be so surpris-
ing: RIF labels expose the same interface to a type system as native information
flow labels do. The difference is in how RIF labels evolve.

Our strategy for building JRIF involved three steps:

1. Add syntax for RIF labels and for annotating expressions with reclassifiers.

2. Add typing rules for annotated expressions (according to §3.2).

3. Modify the type checker to handle this more expressive class of labels:

(a) implement the restrictiveness relation (§2) on RIF labels,

(b) add an axiom stipulating that this relation is monotone with respect to
transition relation T,

22

Item (3b) is essential for supporting our richer language of label comparisons and
where-constraints. For example, if a programmer introduces where-constraint
l2 v l1 (or equivalently, checks dynamically that this relation holds), then the
type checker should be able to deduce that T(l2, F) v T(l1, F) holds for every F.

We decided to build JRIF by extending the Jif compiler because Jif is a long-
standing, widespread language for information flow control. JRIF adds 6k lines
of code to Jif (which contains 230k LOC). Out of the 494 Java classes used in Jif,
we modified only 31 and added 48 new classes for JRIF. Of these new classes,
37 are extensions of Jif classes—primarily abstract syntax tree nodes for labels,
confidentiality and integrity policies, and code generation classes. Thus, most of
the effort in building JRIF focused on extending Jif’s functionality rather than on
building new infrastructure. The source code for JRIF can be found on JRIF’s
web page [21].

Some features of Jif are orthogonal to enforcing RIF labels, and JRIF ignores
them, for the time being. For instance, Jif uses authority and policy ownership to
constrain how labels may be downgraded. Since RIF labels are concerned with
what operation is applied to what value, authority and ownership is orthogonal to
the enforcement of RIF labels. As discussed below in §7, future versions of JRIF
could extend the type system to support these constraints on downgrading as a
complement to security guarantees offered by RIF labels.

6 What JRIF Label Checking Enforces
Label checking in information flow control systems usually enforces noninterfer-
ence [16] or some variation. For confidentiality, noninterference stipulates that
changes to values that principal p cannot read initially should not cause changes
to values that p can read during program execution. Equivalently, if the initial
states of two program executions agree on values that principal p can read, then
each successive state during program execution should agree on values that p can
read. For integrity, noninterference requires values that initially depend on trust-
ing p do not cause changes to values whose trust does not depend on p. Moreover,
these conditions must hold for each principal p.

Reclassifications complicate a definition of permissible information flow by
changing what values are of concern during an execution. For example, if a re-
classifier causes a transition that permits p to read the result of an operation on

23

secret variables, then classic noninterference would be violated. To accommodate
reclassification in defining permissible information flow, it suffices to partition ex-
ecution into segments that each satisfy noninterference. Segments are delimited
by reclassifications, relative to a single principal p.

Piecewise Noninterference (PWNI) for a principal p. A piece is an inter-
val of a program’s execution beginning with the initial state or a reclassifi-
cation and ending with a declassification, endorsement, or termination.

– If two pieces start at the same point of execution with states that agree
on variables that p can read and on any newly declassified values, then
these pieces agree on the values that get assigned to variables that p
can read throughout execution.

– If two pieces start at the same point of execution with states that agree
on variables whose trust does not depend on p and on any newly en-
dorsed values, then these pieces agree on the values that get assigned
to variables whose trust does not depend on p throughout execution.

We have proven that RIF automata enforce PWNI for a simple imperative
language [22], giving us confidence in the formal guarantees enforced by the JRIF
type system.9 Many models [2, 3, 19, 24, 36] have been proposed for expressing
and enforcing policies that permit changing the restrictions imposed on the use of
values, but PWNI is the first to handle both classifications and deprecations.

7 RIF and Robustness
In JRIF, downgrading (e.g., declassification and endorsement) is an application’s
response to particular operations. A possible extension would be to also stipu-
late that only specific principals be allowed to change restrictions associated with
these operations. This extension is essentially robust downgrading [13] applied

9Despite the similarities in choice of name, reactive noninterference [5] is unrelated to our re-
active information flow specifications. Reactive noninterference is a definition of non-interference
for reactive programs (i.e. programs that, during execution, may wait for user inputs, or produce
outputs). The term “reactive” in our paper characterizes specifications, whereas in [5], it charac-
terizes programs.

24

to RIF automata. Robust downgrading, used in Jif [29] and Fabric [26, 1], re-
quires that downgrades occur only in high-integrity contexts, thereby preventing
untrusted principals from influencing what (and whether) sensitive information is
disclosed. A significant advantage of robust downgrading is that, unlike selective
downgrading, it provides an end-to-end security guarantee: an untrusted principal
cannot cause a robust program to disclose information.

JRIF enforces an end-to-end security guarantee distinct from, and orthogonal
to, robust downgrading. Whereas robust downgrading ensures attackers cannot
control the decision to downgrade or what information is declassified (in the case
of declassification), JRIF guarantees that disclosed values are produced only by
specified sequences of operations. Yet, RIF specifications are compatible with
robust downgrading. And JRIF’s type system could be extended with an enforce-
ment mechanism to enforce RIF specifications and robustness simultaneously.
There are two options.

One option is to restrict where reclassifiers may appear. To enforce robust
downgrading, a reclassifier that causes a declassification to p or an endorsement
of p would be restricted to code where control flow integrity does not require trust
in p. In other words, p should not be able to control whether the operation associ-
ated with the reclassifier occurs. Furthermore, in the case of declassification, the
integrity of the value being declassified should also not require trust in p. These
constraints are a straightforward adaptation of Jif’s rules for robust downgrading
that use the starting and ending state of a RIF automaton transition to identify
declassifications or endorsements.

Another option further generalizes robust downgrading but preserves the first
option as a special case. Rather than implicitly identifying transitions that trigger
declassification and endorsement, RIF automata could be extended by requiring
each transition to be annotated with a set of principals that may influence the
reclassification. The JRIF type system would restrict each reclassifier to appear
in code whose control flow integrity is higher than the integrity specified in all
transitions that reclassifier triggers. Furthermore, the integrity of the inputs to the
operation the reclassifier annotates should be higher than the integrity specified
in all transitions the reclassifier triggers in c-automata. The Jif-style approach
from the first option can be implemented by specifying that the integrity on all
declassifying or endorsing transitions are based on which principals are included
or excluded. The enhanced expressiveness of the second approach should have
interesting applications, but we leave further exploration to future work.

25

8 Related work
Expressive structures, like automata, have previously been used to represent infor-
mation flow specifications. Program dependence graphs [17, 20], which represent
data and flow dependencies between values specify allowable declassifications.
And Rocha et al. [31, 32] employ policy graphs to specify sequences of func-
tions that cause declassifications. However, this work does not handle arbitrary
reclassifications; it only handles declassifications.

Declassifications are usually caused by trusted processes [4], which are per-
mitted to violate noninterference. Several approaches that control declassification
(e.g., [18]) employ some notion of trusted processes or code. Early versions of
Jif used selective downgrading [30], which refines this idea with policies that are
owned [10] by principals who may differ in which code they trust. These sys-
tems enforce a form of intransitive flow policy [34] since direct flows that do not
involve the declassifying operation are prohibited.

Chong and Myers [14] introduce information flow specifications that use con-
ditions on program state as a basis for deciding when a value may be declassified
or should be erased.10 RIF automata can be extended to express such specifica-
tions by associating reclassifiers with conditions on states formulated using some
simple predicate language. Such an approach would generalize the policies ex-
pressible by Chong and Myers [14], since downgrading and erasure policies per-
mit only linear sequences of conditions whereas automata admit more general
structures.

Li and Zdancewic [24] formalize downgrading (i.e. declassification and en-
dorsement) policies by using simply-typed lambda terms. Here, information flow
labels are sets of lambda terms (i.e. functions); when one of these lambda terms
is applied to the corresponding value, the result is downgraded. RIF automata
with no cycles can be modified to express such information flow labels, by as-
sociating reclassifiers with particular sets of lambda terms, by mapping the last
reachable states to a low label (e.g. all sets of principals for confidentiality, empty
set for integrity), and by mapping all other states to a high label (e.g. empty set for
confidentiality, all sets of principals for integrity).

Sabelfeld et al. [38] introduce a four-dimension categorization (what, where,
who, when) of declassification. In JRIF, a reclassifier that causes a declassification

10Chong and Myers [12] also propose extension of their theory to operations other than declas-
sification and erasure.

26

indicates “what” will be declassified and “where” in the program.
Broberg et al. [9] characterize dynamic policies based on a three-level hierar-

chy of control. Using the authors’ terminology, the components of RIF automata
are described as follows: automata states are Level 0 controls, a function that
makes a RIF automaton take a transition based on a reclassifier is a Level 1 con-
trol (a determining function), a function that returns the principals in the initial
state of a RIF automaton is a Level 2 control (a meta policy). However, whereas
Broberg et al. [9] consider these controls to be the same for all values in a program,
in JRIF this hierarchy is different for each RIF automaton.

8.1 Capability-based systems
Many recent systems for information flow control are based on capabilities, in-
cluding Flume [23], HiStar [42], Asbestos [15], Aeolus [11], Laminar [33], and
LIO [41]. We focus our discussion on Flume, but similar arguments apply to other
systems.

Flume extends standard operating system abstractions with information flow
control. Confidentiality and integrity policies are represented in Flume with un-
forgeable tokens, called tags. System resources are annotated with labels, which
are collections of tags. Each process has an associated process label, which con-
servatively tracks the confidentiality and integrity policy on the process’s memory.
When a process performs input operations on sensitive data, the restrictiveness of
the process label is raised by adding that resource’s tags to the label. Output oper-
ations are constrained to affect resources with labels that are at least as restrictive
as the current process label. For instance, if a process reads a secret file, then any
subsequent attempt to write to a public file will receive an error.

This mechanism alone is usually too restrictive; certain outputs of a program
might not actually depend on any secret data, or the purpose of the program may
actually be to release secret data in a controlled way. Thus, Flume also assigns to
each process a set of capabilities that specify which tags it is permitted to add or
remove from its process label. For instance, to add or remove a tag t, a process
must have capability t+ or t−, respectively. Removing a tag from the process label
is equivalent to declassification or endorsement.

Consider the following scenario. Alice has two files: diary.txt, where she
keeps a personal journal, and pwds.db, where she stores passwords. Both files
contain sensitive information, so she adds a tag, secret, to their labels. She gives

27

her editor the secret+ capability, but not secret−. This capability enables the edi-
tor to read diary.txt, but prevents it from outputting its contents to the network
or to a file lacking the secret tag. In order to read the password file, she gives her
password manager the secret+ capability, but also the secret− capability so that
the passwords can be used to log in to remote hosts.

Unfortunately, this scheme gives the password manager more power than Al-
ice might have intended, since it may both read file diary.txt and export it to
the network. In Flume, Alice’s only option is to create separate tags for each
file to distinguish secrets that should never be exported and to carefully assign
capabilities to processes accordingly.

Extending Flume with RIF specifications would provide a better option. As in
Jif, we can replace Flume labels with RIF automata, but where the states of these
automata are mapped to sets of tags. Thus, each system resource is associated
with a RIF automaton, and the process label is a RIF automaton that is at least
as restrictive as the current process’s memory. Instead of permitting processes to
directly add or remove tags, processes receive capabilities for performing transi-
tions on the process label’s RIF automaton. Output operations are constrained to
resources whose RIF automata are at least as restrictive as the process label.

RIF specifications for Flume would allow Alice to express her policies more
directly. For diary.txt, she assigns a RIF automaton with a single state: se-
cret. For pwds.db, she assigns an automaton with two states, secret and public,
and a transition between them called login. Then granting the login capability
to her password manager does not allow it leak diary.txt, because that file’s
automaton remains in the secret state after the login transition.

8.2 Paragon and Paralocks
The Paragon [8] programming language has information flow control based on
Paralocks [7, 6]. Paragon policies are expressed in terms of information sources
and sinks called actors and guarded by predicates called locks.

Paragon policies determine whether a flow of information to an actor is per-
mitted. When a lock is open, flow is permitted. Paragon uses a type-and-effect
system to track lock state at each program point, and the compiler statically ver-
ifies that all flows are permitted. While Paragon policies can express simple se-
quences of operations, Paragon’s policy language is not expressive enough to en-
code arbitrary finite-state automata. Furthermore, encoding sequences directly as

28

Paragon policies is somewhat cumbersome and detracts from the otherwise ele-
gant declarative policy language Paragon provides. Thus, extending Paragon with
RIF specifications would provide more expressive information flow specifications
to developers.

One could extend Paragon’s policy language so that the initial state of a RIF
automaton defines the lock currently being enforced. Locks specify the set of ac-
tors to which information may flow. A transition in a RIF automaton would cause
a new lock to be enforced. This design composes the enforcement of policies
based on lock-state with the enforcement of RIF specifications in an interesting
way. It allows developers to express policies that permit the lock predicates that
are enforced to evolve based on the sequence of operations that derived the labeled
value.

9 Semantics for reclassifiers
Annotating expressions with reclassifiers is the responsibility of JRIF program-
mers. While it might seem attractive to enforce a formal connection between
reclassifiers and the operations they represent, doing so seems challenging.

Mechanically checking that expressions are annotated with the correct reclas-
sifiers is not trivial. An initial requirement would be having a specification lan-
guage for the semantics associated with each reclassifier. Such a semantics would,
for example, have to express information-theoretic properties of a transformation
associated with a reclassifier. Expressions in the programming language would
also need to be analyzable in terms of this semantics, in order to verify the cor-
rectness of an annotation.

Even given such a specification language and program analyzer, it is still the
author of a policy who specifies how reclassifiers transform restrictions on values.
For example, knowing that the application of a given reclassifier only reveals 1
bit of secret input information does not necessarily imply that the output informa-
tion can be considered public. For some values, it may be that a particular bit is
security-critical, so the output information would still be deemed secret. Thus, the
expressive power of RIF automata is still needed, to enable policy writers to spec-
ify how restrictions on values are transformed given the semantics of the applied
reclassifiers.

29

10 Conclusion
JRIF is a extension of Java for supporting Reactive Information Flow Control
based on RIF automata. RIF labels specify allowed uses of the values they are
associated with, along with the RIF label to associate with derived values. The
JRIF compiler was implemented as a straightforward extension of the Jif compiler
and runtime, demonstrating that RIF specifications are easily incorporated into
existing languages that did not anticipate them but do support information flow
types.

JRIF’s type system is more expressive than classic information flow type sys-
tems. JRIF allows programmers to specify rich policies based on the sequence of
operations used to derive a value. Existing systems can emulate such policies in
the state and control flow of a program, but doing so invariably makes code more
complex and provides few security guarantees. In contrast, JRIF’s type system
enforces end-to-end security guarantees that ensure a value derived from inputs
is protected according to a policy that corresponds to the sequence of operations
involved in this derivation.

We evaluated JRIF by programming two examples: an implementation of
Battleship, and a shared calendar application. Our implementation of Battleship
demonstrates that applications developed with Jif may be ported easily to JRIF;
the shared calendar demonstrates the separation between policies and program
logic that JRIF enables.

References
[1] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C. My-

ers. Sharing mobile code securely with information flow control. In IEEE
Symp. on Security and Privacy, pages 191–205, May 2012.

[2] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification,
encryption and key release policies. In IEEE Symp. on Security and Privacy,
pages 207–221, May 2007.

[3] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification
policies and modular static enforcement. In IEEE Symp. on Security and
Privacy, pages 339–353, 2008.

30

[4] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposi-
tion and Multics interpretation. Technical Report ESD-TR-75-306, MITRE
Corp. MTR-2997, Bedford, MA, 1975. Available as DTIC AD-A023 588.

[5] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic. Reac-
tive noninterference. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, CCS ’09, pages 79–90, New York, NY,
USA, 2009. ACM.

[6] N. Broberg and D. Sands. Flow locks: Towards a core calculus for dynamic
flow policies. In Programming Languages and Systems, pages 180–196.
Mar. 2006.

[7] N. Broberg and D. Sands. Paralocks—Role-based information flow control
and beyond. In 37th ACM Symp. on Principles of Programming Languages
(POPL), Jan. 2010.

[8] N. Broberg, B. van Delft, and D. Sands. Paragon for practical programming
with information-flow control. In 11th ASIAN Symposium on Programming
Languages and Systems, APLAS 2013, pages 217–232. Springer, 2013.

[9] N. Broberg, B. van Delft, and D. Sands. The anatomy and facets of dynamic
policies. In IEEE Symp. on Computer Security Foundations (CSF). IEEE,
2015.

[10] H. Chen and S. Chong. Owned policies for information security. In 17th

IEEE Computer Security Foundations Workshop (CSFW), June 2004.

[11] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling,
D. Curtis, L. Shrira, and B. Liskov. Abstractions for usable information flow
control in Aeolus. In 2012 USENIX Annual Technical Conference, June
2012.

[12] S. Chong and A. C. Myers. Security policies for downgrading. In Proc.
11th ACM Conference on Computer and Communications Security, pages
198–209, Oct. 2004.

[13] S. Chong and A. C. Myers. Decentralized robustness. In 19th IEEE Com-
puter Security Foundations Workshop (CSFW), pages 242–253, July 2006.

31

[14] S. Chong and A. C. Myers. End-to-end enforcement of erasure and declas-
sification. In IEEE Symp. on Computer Security Foundations (CSF), pages
98–111, June 2008.

[15] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazières, F. Kaashoek, and R. Morris. Labels and event processes in
the Asbestos operating system. In 20th ACM Symp. on Operating System
Principles (SOSP), Oct. 2005.

[16] J. A. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symp. on Security and Privacy, pages 11–20, Apr. 1982.

[17] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-
sensitive information flow control based on program dependence graphs. In-
ternational Journal of Information Security, 8(6):399–422, 2009.

[18] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declassification:
high-level policy for a security-typed language. In 1st ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security (PLAS), pages
65–74. ACM, 2006.

[19] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of
information-flow policies. In Foundations of Computer Security Workshop,
2005.

[20] A. Johnson, L. Waye, S. Moore, and S. Chong. Exploring and enforcing
security guarantees via program dependence graphs. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 291–302, New York, NY, USA, June 2015. ACM
Press.

[21] E. Kozyri, O. Arden, A. C. Myers, and F. B. Schneider. JRIF: Java with Re-
active Information Flow. Software release, at http://www.cs.cornell.
edu/jrif, Feb. 2016.

[22] E. Kozyri and F. B. Schneider. Reactive information flow specifications:
Foundation and types. In prep.

32

http://www.cs.cornell.edu/jrif
http://www.cs.cornell.edu/jrif

[23] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and
R. Morris. Information flow control for standard OS abstractions. In 21st

ACM Symp. on Operating System Principles (SOSP), 2007.

[24] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference.
In 32nd ACM Symp. on Principles of Programming Languages (POPL), Long
Beach, CA, Jan. 2005.

[25] P. Li and S. Zdancewic. Practical information-flow control in web-based in-
formation systems. In 18th IEEE Computer Security Foundations Workshop
(CSFW), pages 2–15, 2005.

[26] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. Fabric:
A platform for secure distributed computation and storage. In 22nd ACM
Symp. on Operating System Principles (SOSP), pages 321–334, Oct. 2009.

[27] A. C. Myers. JFlow: Practical mostly-static information flow control. In
26th ACM Symp. on Principles of Programming Languages (POPL), pages
228–241, Jan. 1999.

[28] A. C. Myers and B. Liskov. A decentralized model for information flow
control. In 16th ACM Symp. on Operating System Principles (SOSP), pages
129–142, Oct. 1997.

[29] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif 3.0:
Java information flow. Software release, http://www.cs.cornell.edu/
jif, July 2006.

[30] F. Pottier and S. Conchon. Information flow inference for free. In 5th ACM
SIGPLAN Int’l Conf. on Functional Programming, ICFP ’00, pages 46–57,
2000.

[31] B. Rocha, S. Bandhakavi, J. den Hartog, W. Winsborough, and S. Etalle. To-
wards static flow-based declassification for legacy and untrusted programs.
In IEEE Symp. on Security and Privacy, pages 93–108, 2010.

[32] B. Rocha, M. Conti, S. Etalle, and B. Crispo. Hybrid static-runtime infor-
mation flow and declassification enforcement. Information Forensics and
Security, IEEE Transactions on, 8(8):1294–1305, 2013.

33

http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

[33] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. Lami-
nar: Practical fine-grained decentralized information flow control. In ACM
SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), 2009.

[34] J. Rushby. Noninterference, transitivity and channel-control security poli-
cies. Technical Report CSL-92-02, SRI, Dec. 1992.

[35] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, Jan. 2003.

[36] A. Sabelfeld and A. C. Myers. A model for delimited release. In 2003 Inter-
national Symposium on Software Security, number 3233 in Lecture Notes in
Computer Science, pages 174–191. Springer-Verlag, 2004.

[37] A. Sabelfeld and D. Sands. Dimensions and principles of declassification.
In 18th IEEE Computer Security Foundations Workshop (CSFW), pages 255–
269, June 2005.

[38] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J.
Comput. Secur., 17(5):517–548, Oct. 2009.

[39] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus Authorization Logic
(NAL): Design rationale and applications. ACM Trans. Inf. Syst. Secur.,
14(1):8:1–8:28, June 2011.

[40] V. Simonet. The Flow Caml System: documentation and user’s manual.
Technical Report 0282, Institut National de Recherche en Informatique et en
Automatique (INRIA), July 2003.

[41] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic in-
formation flow control in Haskell. In Haskell Symposium. ACM SIGPLAN,
September 2011.

[42] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making infor-
mation flow explicit in HiStar. In 7th USENIX Symp. on Operating Systems
Design and Implementation (OSDI), pages 263–278, 2006.

34

[43] L. Zheng and A. C. Myers. Dynamic security labels and static information
flow control. International Journal of Information Security, 6(2–3), Mar.
2007.

35

	Introduction
	RIF Automata
	JRIF
	Syntax of RIF Labels and Annotated Expressions
	Label checking
	Dynamic labels and label parameters
	Constraints

	Program Examples using JRIF
	Battleship
	A Shared Calendar

	Building a JRIF Compiler
	What JRIF Label Checking Enforces
	RIF and Robustness
	Related work
	Capability-based systems
	Paragon and Paralocks

	Semantics for reclassifiers
	Conclusion

