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ABSTRACT 

We present a dataset combining electrophysiology and eye tracking intended as a resource for 
the investigation of information processing in the developing brain. The dataset includes high-
density task-based and task-free EEG, eye tracking, and cognitive and behavioral data collected 
from 126 individuals (ages: 6-44). The task battery spans both the simple/complex and 
passive/active dimensions to cover a range of approaches prevalent in modern cognitive 
neuroscience. The active task paradigms facilitate principled deconstruction of core components 
of task performance in the developing brain, whereas the passive paradigms permit the 
examination of intrinsic functional network activity during varying amounts of external 
stimulation. Alongside these neurophysiological data, we include an abbreviated cognitive test 
battery and questionnaire-based measures of psychiatric functioning. We hope that this dataset 
will lead to the development of novel assays of neural processes fundamental to information 
processing, which can be used to index healthy brain development as well as detect pathologic 
processes. 
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BACKGROUND AND SUMMARY 

It has become increasingly apparent that there are abundant links between cognitive deficits 
and mental health disorders. Progress towards identifying these relationships has been limited 
on the clinical side by validity and specificity issues pervading conventional diagnostic 
categories, and on the neuroscientific side by the restricted scope of conventional datasets 
(Kapur et al., 2012; Kozak and Cuthbert, 2016). These realities have spurred an imperative for 
clinically-focused cognitive neuroscience research to move from the confined study of specific 
facets of cognition in specific diagnostic groups, towards the ideal of examining all facets in all 
individuals (Insel and Cuthbert, 2015). The National Institute of Mental Health has taken a 
leading role in these efforts by establishing the Research Domain Criteria (RDoC) Project as a 
framework for forging multidimensional characterizations of mental illness. A central aspect of 
this framework is the integration of information across multiple levels (e.g. from genetics to self-
report), and the recognition of human neuroimaging and neurophysiology measures as 
potentially providing key dimensions (Cuthbert and Insel, 2013).  

The field of cognitive neuroscience encompasses a wide breadth of approaches to measuring 
functionally relevant neural activity, each with its own pros and cons. For example, some 
research has focused on neural activity measurements during task performance, which can link 
discrete neural signatures to behavioral outcomes recorded simultaneously. Meanwhile, “task-
free” neural recordings taken during resting or passive stimulation conditions (e.g., naturalistic 
viewing) have increased in popularity because they provide a broader view on neural dynamics 
that transcend specific, circumscribed task scenarios. Additionally, they remove behavioral 
requirements that can at times limit their utility in developing and clinical populations. Another 
principal dimension along which approaches vary greatly is that of paradigm complexity. This 
dimension involves a definite trade-off: on one hand, elementary tasks involving reduced stimuli 
with few attributes and simple action mappings afford greater possibilities to link low-resolution 
neural activity measures to well-defined computations, partly because the computational 
building blocks of a simple task are more easily identified. On the other hand, such reduced, 
simplified tasks correspond to artificial behavioral scenarios, and it is important to measure 
neural activity during more complex, ecologically valid behavioral scenarios that lie closer both 
to real-life behavior and to clinical symptomology. 

Here, we present a novel battery of EEG-based paradigms that attempts to “run the gamut” in 
both of these respects, widely spanning both the passive and active, as well as simple and 
complex paradigm dimensions that typically distinguish approaches at the far corners of 
cognitive neuroscience. This approach embraces the concept of integrating across levels. The 
battery includes three active task paradigms, which allow, to varying degrees, principled 
deconstruction of core components of task performance (see Table 1). The simplest paradigm 
permits the tracing of the three major processing stages for simple contrast decisions (O'Connell 
et al., 2012). The second paradigm involves the learning of simple sequences (Steinemann et 
al., 2016). The third emulates a standard neuropsychological processing speed task, which 
involves multiple perceptual decisions, short-term memory, and motor responses.  For all of 
these tasks, simultaneous eye tracking provides a rich complement to EEG-based 
characterizations of neural processing and cognition. 

The battery also includes three passive paradigms, which permit the examination of intrinsic 
functional network activity during different amounts of external stimulation, namely, no 
stimulation (classical resting-state); simple and reduced (surround-suppression paradigm); and 
complex and rich (videos; Table 1). Whereas the simpler stimulation offers insight into elemental 
facets of information processing such as excitatory/inhibitory balance, the complex video stimuli 
allow measurement of engagement with naturalistic content (Dmochowski et al., 2014). 
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Task 

Depth of 
Processing/Degree 
of Stimulation Description 

Active (Task-Dependent) Paradigms 

Contrast change Minimal 

Probes basic elements of sensorimotor translations, 
e.g. sensory evidence encoding, decision formation 
and motor preparation, providing dynamic 
measurements of each processing stage in 
isolation. 

Sequence 
learning Moderate 

Assesses successive visuo-spatial sequence 
learning by using semantically unloaded stimuli, 
track the progress of gradual memory formation 

Symbol search Complex 

A computerized version of a clinical pediatric 
assessment measuring processing speed capacity 
in a visual search task, which involves multiple 
perceptual decisions, short-term memory and motor 
response. 

Passive (Task-Independent) Paradigms 

Resting-state None Measures endogenous brain activity during rest. 

Surround 
suppression Minimal 

Measures excitatory (using the steady-state visually 
evoked potential; SSVEP) and inhibitory (using the 
surround-suppression effect) neurophysiological 
activity during sensory processing with semantically 
unloaded stimuli. 

Naturalistic 
viewing Complex 

Measures neurophysiological activity during higher-
level audio-visual stimulation (movies).  

Table 1. Experimental Paradigms Included. An overview of the six EEG and eye tracking 
paradigms. 

Alongside these neurophysiological data, abbreviated, standardized tests of intelligence and 
academic achievement, and self- or parent-reported measures of psychiatric functioning have 
been included.  

In our initial release, we present high-density task-based and task-free EEG, eye tracking, and 
cognitive and behavioral data for 126 subjects ages 6-44, the majority of whom do not have a 
history of clinical illness. Our long-term goal is to collect data on this multi-level, multi-modal 
battery from a diverse community sample, including patient populations. Ultimately, we hope 
that this dataset will provide a rich new set of metrics for assaying neural processes 
fundamental to perception and cognition across a continuum from healthy to pathological 
functioning, and thereby contribute to understanding and better diagnosing a broad range of 
brain pathologies.  

METHODS 

Participants and experiment overview 
126 Individuals between the ages of 6 and 44 were invited to participate in a study investigating 
domain-general cognitive processes related to attention, working memory, perception, and 
decision-making across a range of task/stimulation contexts. The participants were recruited 
from both the Child Mind Medical Practice, as well as the wider New York City-area community. 
80.2% were typically developing, and 19.8% were diagnosed with one or more clinical disorders 
(see Table 2 for a summary of diagnostic categories represented in the sample). The 
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participants were 54.8% male, 45.2% female; 45.2% identified as Black or African American, 
32.7% as White, .04% as Asian, and 17.3% as other race or races (see Figure 1). Also included 
are measures of subject handedness (Annett, 1970) and socioeconomic status (MacArthur 
Scale of Subjective Social Status, http://www.macses.ucsf.edu/research/socialenviron/ 
sociodemographic.php). 
 

 
Figure 1. Age and Sex. Age distribution of subjects is displayed on the left plot. Ages ranged 

from 6 to 44. Sex breakdown of participants is displayed on the right plot.  
 
Prior to visiting the laboratory, participants (or their legal guardians, in the case of participants 
under the age of 18) completed a 10 min. pre-screening interview over the phone with a 
research assistant to confirm their eligibility and safety to participate in the study. This brief 
interview obtained information regarding an individual’s psychiatric history, including past or 
present diagnoses and/or treatment, as well as current medications and any neurological 
disorders. If a participant demonstrated no contraindications for EEG (e.g., history of seizures or 
epilepsy), he or she was then scheduled for a research study appointment. 
 
The full battery of EEG and eye tracking tasks and behavioral assessments was five hours in 
duration; participants were permitted to split their visit into two shorter sessions, lasting 3 hours 
(EEG recording and eye tracking portion) and 2 hours (cognitive and behavioral assessment 
portion) respectively. For those who elected to participate in the single, full-length session, the 
EEG and eye tracking tasks always preceded the cognitive and behavioral testing. 
 
The study was approved by the Chesapeake Institutional Review Board. Written informed 
consent was obtained from all participants or their legal guardians prior to the start of the 
experiment; additionally, written assent was obtained from participants under the age of 18 and 
over the age of 6. Consent was also obtained for data sharing through the 1000 Functional 
Connectomes Project [http://fcon_1000.projects.nitrc.org/]. 
 
Behavioral/Cognitive Assessments 
All behavioral and cognitive assessments are described in Table 3. 
 
Behavioral: 
Behavioral self-report measures were acquired via the online Self-Assessment Portal of the 
Collaborative Informatics and Neuroimaging Suite (COINS). 
 
Cognitive: 
Cognitive testing was administered by trained research assistants in a sound-shielded room. 
The participants’ responses were first-scored by the research assistant who administered the 
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test; then, to ensure accuracy, the entire set of responses were again scored by another trained 
research assistant. Furthermore, all test scores were double-entered into the database by two 
different research assistants. Both raw scores and standard scores are provided as part of this 
dataset. 
 
Data Acquisition Overview 
Participants were seated in a sound-attenuated and dark experiment room at a distance of 70 
cm from a 17-inch CRT monitor (resolution 800 x 600 pixels, vertical refresh rate of 100 Hz). A 
stable head position was ensured via the chin rest. Subjects were instructed to stay as still as 
possible during the tasks. Two breaks were included in the EEG session, during which electrode 
impedance levels were checked and reduced if necessary. Participants were also offered snacks 
and juice during the breaks, and encouraged to rest. 
 
Stimulus presentation was programmed in MATLAB (6.1, The Math-Works, Natick, MA, 2000), 
using the PsychToolbox extension (Brainard, 1997; Pelli, 1997). The order of the EEG and eye 
tracking paradigms was the same for all participants. Instructions for the tasks were presented 
on the computer screen, and a research assistant answered questions from the participant from 
the adjacent control room through an intercom. Compliance with the task instructions was 
confirmed through a live video-feed to the control room. If participants were approximately 12 
years of age or younger, they were joined in the experiment room by an additional research 
assistant who proctored their testing session; otherwise, participants completed the EEG and 
eye tracking tasks siting alone in the room.  
 
EEG Acquisition 
High-density EEG data were recorded at a sampling rate of 500 Hz with a bandpass of 0.1 to 
100 Hz, using a 128-channel EEG Geodesic Hydrocel system. The recording reference was at 
Cz (vertex of the head). For each participant, head circumference was measured and an 
appropriately sized EEG net was selected. The impedance of each electrode was checked prior 
to recording, to ensure good contact, and was kept below 40 kOhm. Time to prepare the EEG 
net was no more than 30 minutes. Impedance was tested every 30 minutes of recording and 
saline added if needed. 
 
Eye Tracking Acquisition 
During all the EEG paradigms, eye position and pupil dilation were recorded binocularly with an 
infrared video-based eye tracker (iView-X Red-m, SMI GmbH; 
http://www.smivision.com/en.html) at a sampling rate of 120 Hz and an instrument spatial 
resolution of a nominal 0.1°. The eye tracker was calibrated with a 5-point grid before each 
paradigm.  

Paradigm Overview 
Both task-independent (passive) and task-based (active) paradigms were included in the EEG 
battery as they play complementary roles in the comprehensive investigation of human brain 
function. Paradigms were also selected to vary widely in the degree of sensory stimulation 
involved and/or the depth of processing, from simple to complex. Our task-free paradigms 
permit examination of intrinsic functional network responses to different degrees of external 
stimulation, e.g., no stimulation (classical resting-state); simple and reduced (surround-
suppression paradigm); and complex and rich (videos). In general, such passive paradigms 
enable measurement of neurophysiological indices of brain function on a relatively equal footing 
across a wider population, including low-functioning neurological and psychiatric populations for 
whom task-based assays are a challenge. On the other hand, our task-based paradigms aim to 
isolate distinct, fundamental information processing steps that play a core role in most 
neuropsychological and psychometric assessments, and thereby furnish a systems-level, 
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neurophysiologically-based account of the factors underlying observed impairments in accuracy 
and/or response speed. Taken together, our EEG paradigm battery is intended to provide a 
window into neurophysiological mechanisms underlying domain-general cognitive functions, 
which account for a diverse range of behaviors and should thus, in theory, be possible to 
connect with psychiatric symptoms. 
 
Note that the purpose of the “Output Measures” section in each of the following paradigm 
descriptions is to propose or guide possible analysis strategies for other researchers, without 
any intention to restrict the scope for using the present dataset in further creative and distinctive 
ways. 
 
Paradigm #1 (Passive): Resting-State 

Task Overview: 
The acquisition of endogenous brain activity without any external stimulation has become very 
popular in the EEG and functional MRI communities. The low cognitive demand and relatively 
short duration of resting-state recordings make them well suited for studying pediatric and 
clinical populations with low tolerance for standard paradigms and acquisitions (Fox and 
Greicius, 2010). A growing number of studies have shown that many of the brain areas engaged 
during various cognitive tasks also form coherent large-scale brain networks that can be readily 
identified in data recorded during rest (Biswal et al., 1995; Damoiseaux et al., 2006; Smith et al., 
2009).  
 
Numerous studies have demonstrated high intra-individual stability for resting EEG measures 
(Vogel, 2000; Posthuma et al., 2001; Orekhova et al., 2003; Ivonin et al., 2004; Linkenkaer-
Hansen et al., 2007). For example, it was demonstrated that individual participants could be 
identified based only on their resting EEG measures with a sensitivity as high as 88% and 
specificity of 99.5% (Napflin et al., 2007). Intraclass correlation coefficients have been used to 
show strong retest reliabilities for power in the alpha (8-14Hz) and beta (15-30 Hz) bands, which 
ranged from r = 0.8 to r > 0.9 (Kondacs and Szabo, 1999). Finally, (Deuker et al., 2009) 
demonstrated the reproducibility of graph metrics of human brain functional networks obtained 
by resting-state EEG data. Collectively, these results suggest that resting-state EEG is highly 
reliable and thus can potentially provide stable biological markers that can be related to 
cognitive performance across individuals.  
 
Stimuli & Experimental Design: 
Participants viewed a standard fixation cross in the center of the computer screen. The recorded 
voice of a female research assistant instructed them to “now open your eyes” (rest with eyes 
open for 20 s) and “now close your eyes” (rest with eyes closed for 40 s); this procedure was 
repeated 5 times, alternating between eyes opened and eyes closed. For purposes of analysis, 
we were mainly interested in the eyes-closed condition, due to the lower frequency of eye blink 
and muscular artifacts. However, we interspersed the brief eyes-open blocks throughout the 
task in order to ensure that participants remained engaged for the duration of the task session. 
 
Participant Instructions: 
“Fixate on the central cross. Open or close your eyes when you hear the request for it. Press to 
begin.”   
 
Output Measures: 
There are various ways to analyze resting-state EEG data. One can examine the data in the 
frequency domain using classical power spectral analysis, which has been successfully 
employed to characterize subjects’ age (John et al., 1980), state of arousal (Borbely and 
Achermann, 1999), the presence of neurological or psychiatric disorders (John et al., 1988; 
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Jeste et al., 2015; Kitsune et al., 2015; Loo et al., 2015), or task demands (Fernandez et al., 
1995; Gevins et al., 1997). Advanced research on resting-state EEG and fMRI offers a novel 
approach for understanding synchronization of intrinsic fluctuations in neurophysiological 
activity, which is measured as a dependency between time-series obtained from different 
regions in the brain (Friston et al., 1993; Pascual-Marqui, 2007; De Vico Fallani et al., 2010; 
Langer et al., 2012). This includes frequency-domain analyses such as the characterization of 
global and local connectivity between EEG sources (i.e., functional- and effective-connectivity; 
graph theoretical network properties). Several researchers have also emphasized the value of 
investigating resting-state data from a temporal-spatial perspective to reveal microstates, which 
are stable spatial configurations of the electric field that vary across time (Lehmann et al., 1987; 
Pascual-Marqui et al., 1995; Murray et al., 2008). These spatially stationary microstates have 
been proposed to reflect basic building blocks of information processing (Lehmann et al., 1998).  
 
Paradigm #2 (Passive): Surround Suppression 

Task Overview: 
The surround suppression paradigm enables measurement of basic sensory excitation by visual 
stimuli and the suppressive contextual influence of the visual background, thereby providing 
insight into relative levels of excitability and inhibition in the human cortex. In this paradigm, 
periodic, visual, on-off flicker stimulation is used to elicit periodic EEG/MEG responses at the 
exact frequency of stimulation and its harmonics, known as the steady state visual evoked 
potential (SSVEP) (Regan, 1966; Regan, 1989). Being spectrally restricted to a single 
frequency, SSVEPs provide a measure of visual neural response amplitude with a higher signal-
to-noise ratio than standard transient evoked potential approaches (Regan, 1966; Regan, 
1989). SSVEP amplitude and phase can be measured to probe sensory sensitivity and latency 
(timing) information, respectively, and these measures can further be tracked over time to gain 
insight into dynamic aspects of sensory responses such as adaptation and attention orienting 
(Vanegas et al., 2015). SSVEP amplitude and topographic variation across individuals correlate 
with intelligence (Van Rooy et al., 2001) and depend on age (Macpherson et al., 2009). They 
have also been informative in the study of cognitive disorders such as schizophrenia, anxiety, 
stress, and epilepsy (Vialatte et al., 2010). 
 
In our surround suppression paradigm, we present "foreground” flicker stimuli at a range of 
contrasts to probe basic visual excitation, and we also manipulate the contrast of a static 
surround pattern to probe basic inhibition. Surround suppression is the well-known phenomenon 
whereby the neural response to a delimited stimulus is suppressed by stimulation in the 
surrounding area, which has been widely observed in animal neurophysiology (e.g., Levitt and 
Lund, 1997; Cavanaugh et al., 2002), and in human psychophysics (e.g., Xing and Heeger, 
2000), neuroimaging (e.g., Zenger-Landolt and Heeger, 2003), and electrophysiology (Vanegas 
et al., 2015). In our paradigm we obtain an index surround suppression by measuring the 
reduction in “foreground” SSVEP amplitude that results from the presence of the static 
surround. Surround suppression has become increasingly relevant in clinical research, with 
clear abnormalities reported in a range of disorders such as depression (Golomb et al., 2009), 
autism (Foss-Feig et al., 2013), schizophrenia (Dakin et al., 2005; Seymour et al., 2013), and 
migraine (Battista et al., 2011). 
 
Stimuli & Experimental Design: 
We used the paradigm developed by Vanegas et al. (2015), adapted to include a restricted set 
of conditions that were established to provide the most robust measures. In each sequence of 
discrete 2.4 sec trials, four circular “foreground” stimuli (vertical grating, radius 2°) were flickered 
on-and-off at 25 Hz, embedded in a static (non-flickering) full-screen “surround” (see Figure 3). 
On the basis of recent work in which we demonstrated dramatic improvements in SSVEP 
signal-to-noise ratio (SNR), we flickered the upper discs with opposite temporal phase relative 
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to the lower discs in the foreground, causing oscillatory summation on the scalp because of the 
cortical surface orientation of early retinotopic visual areas (Vanegas et al., 2013). Each trial 
began with the presentation of the fixation spot for 500 ms, after which the foreground and 
surround stimuli were simultaneously presented for 2400 ms. After an inter-trial interval of 
500ms, the following trial was initiated. Foreground and surround patterns were sinusoidal 
luminance-modulated gratings with a spatial frequency of 1 cycle per degree in all conditions 
(see Fig 1A, B, and C in Vanegas et al., 2015). Across trials, we randomly varied foreground 
contrast (0%, 30%, 60% or 100%), surround contrast (0% or 100%) and surround orientation 
(parallel or orthogonal to the foreground, i.e., vertical or horizontal). Eye gaze was monitored 
continually using the eye tracker. The entire task was recorded in two blocks, each consisting of 
64 trials and lasting ~3.6 mins.  

 
Participant Instructions: 
“Just maintain fixation on the central spot at all times. Press to begin. First, we have to measure 
the position of your eyes. Just follow the circle with your eyes.” 
 
Output Measures: 
The flickering foreground elicits a steady-state visual evoked potential (SSVEP) in the EEG over 
posterior scalp at the fundamental frequency of stimulation, the amplitude of which increases 
monotonically with foreground contrast (Lauritzen et al., 2010). Surround suppression is 
measured as a relative reduction in amplitude of the SSVEP due to surround contrast. As 
mentioned above, SSVEP amplitude and phase can also by tracked over time to examine 
temporal aspects of gain control as well as latency effects. These measures have the potential 
to provide a marker of improperly balanced excitation and inhibition in children with 
developmental disorders, as has been implicated in recent studies of autism (Foss-Feig et al., 
2013).   
 
Paradigm #3 (Passive): Naturalistic Stimuli 

Task Overview: 
In recent years, there has been a significant expansion in the scope of studies utilizing naturalistic 
viewing paradigms (Bartels and Zeki, 2004; Hasson et al., 2004; Hasson et al., 2010).  Naturalistic 
viewing paradigms, such as movies, have been shown to evoke patterns of neural activity that are 
synchronized across individuals, and even across species (Hasson et al., 2004; Hasson et al., 
2008). In addition, time courses derived from features of the movie such as luminance and sound 
intensity can be used to investigate different facets of neurofunctional systems with improved 
precision. Movies thus provide a powerful and flexible medium through which to engage multiple 
networks in a concerted and dynamic fashion. From a clinical standpoint, the use of movies in the 
context of functional connectivity allows shorter data collection times and decreases head 
movement in both adults and children (Vanderwal et al., 2015). 
 
The goal of the present paradigm was to measure variable engagement based on the strength of 
higher-level audio-visual responses, and to aid the understanding of the modulation of perception 
across ages and developmental stages (Petroni et al., 2016). Participants viewed 4 short, age-
appropriate video clips taken from television and movies. There is evidence that children’s 
performance on reading, school readiness, and creativity tests improve after viewing educational 
programs such as Sesame Street (Cantlon and Li, 2013). Thus, the content of educational videos, 
such as those used in the current study, can interact with children’s school-based knowledge. 
These advantages of the natural viewing stimuli over a more traditional task with simple stimuli 
suggest that naturalistic studies of brain activity with real-world stimuli could serve as an important 
complement to highly controlled EEG paradigms. 
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Stimuli & Experimental Design: 
Participants viewed 4 short, age-appropriate video clips taken from television and movies. Each 
clip was between 2 and 6 min in length, for a total of 12:50 minutes.  
 
(Prior to this task, parents were given the opportunity to review the full list of clips and exclude any 
video clips they deemed unsuitable for their children; no parents had any objections to the clips.). 
The following are a description of clips that we included in the Naturalistic Stimuli Paradigm.  
 
E-How video: How to Improve at Simple Arithmetic: Lessons in Math: 
Rating: No parental guideline rating 
Description: A female instructor introduces addition and multiplication tricks. 
Rationale: This clip is included to probe for attention related difficulties. 
Link: http://www.youtube.com/watch?v=pHoE7AMtXcA 
Length: 1:40 
 
MIT K-12: "Fun with Fractals”: 
Rating: No parental guideline rating 
Description: This video depicts fractal-based geometry in everyday objects and visually depicts 
how some fractals are created. 
Rationale: This clip is included to probe for attention related difficulties. 
Link: http://www.youtube.com/watch?v=XwWyTts06tU 
Length: 4:40 
 
Diary of a Wimpy Kid Trailer: 
Rating: Rated PG for some rude humor and language 
Description: This comedic movie trailer is a hyperbolic depiction of a child’s experience of 
middle school.  It contains several character vignettes. 
Rationale: This clip is included to probe for socially related anxiety. 
Link: http://www.youtube.com/watch?v=7ZVEIgPeDCE  
Length: 2:00 
 
Despicable Me: 
Rating: Rated PG for rude humor and mild action 
Description:  In this animation, a new adoptive father reads his three children a bedtime story.  
Rationale: This clip is included to probe for attachment formation related issues. 
Link: http://www.youtube.com/watch?v=HNXxJIhVALI 
Length: 2:50 
 
Participant Instructions: 
“Now you can watch video clips. Enjoy! First, we have to measure the position of your eyes. 
Just follow with your eyes the circle. Press to begin.” 
 
Output Measures: 
Naturalistic audiovisual stimuli have been shown to elicit highly reliable neural activity across 
multiple viewers (Hasson et al., 2004), with the level of such inter-subject correlation (ISC) 
linked to successful memory encoding (Hasson et al., 2008), and effective communication 
between individuals (Stephens et al., 2010). ISC usually is increased during scenes marked by 
high arousal and negative emotional valence (Hasson et al., 2004), and is strongest for familiar 
and naturalistic events (Hanson et al., 2009). Here, the EEG data were analyzed using 
Correlated Component Analysis (CCA) in order to parse relative inter-subject correlations (ISC). 
We are mainly interested in the similarity of neural response across subjects for naturalistic 
stimuli experienced in everyday life. To determine the neural similarity among subjects in 
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response to a stimulus, the inter-subject correlation (ISC) of the EEG signal was calculated. The 
procedure is described in detail in previous studies (Dmochowski et al., 2012; Dmochowski et 
al., 2014).  
 
In brief, the ISC is a measure of correlation among a group of subjects; larger values imply more 
similarity of the EEG signal across subjects in response to identical stimuli. The advantage of 
the ISC technique compared to averaging multiple trials is that it can be calculated with a single 
presentation of a novel stimulus, allowing naturalistic settings with continuous stimulation rather 
than discrete events (Zacks and Tversky, 2001; Fontanini and Katz, 2008; Ben-Yakov et al., 
2012). The technique, based on the correlated component analysis, identifies linear 
combinations of electrodes—called components—that maximize the correlation across subjects. 
In general terms, CCA is very similar to a PCA, but rather than maximizing variance, it 
maximizes correlation between subjects (datasets). The technique has been described in detail 
in (Cohen and Parra, 2016) and applied on the data reported here for the first time in (Petroni et 
al., 2016). These previous studies have shown that the three strongest correlated components 
are usually enough to explain most of the correlation. In the technical validation section below, 
we have thus limited the sum to the first three components. 
 

Paradigm #4 (Active): Contrast Change Detection  

Task Overview: 
Our contrast change detection task is based on a recently presented EEG paradigm innovation 
that enables the isolation and simultaneous tracing of neural dynamics at the three major 
processing stages underlying simple sensorimotor decisions: sensory evidence encoding, 
evidence accumulation over time, and motor preparation (O'Connell et al., 2012). Here we 
employed a modified version of that task in order to probe fluctuations in attentional 
engagement in addition to these three sensory-motor processing levels.  
 
Simple sensory-motor decision making – i.e., choosing a course of action based on a sensory 
judgment – can be regarded as a core component of a large portion of human behavior, and of 
almost any neuropsychological test administered in clinical settings. Such decisions require the 
momentary encoding of sensory information necessary for the decision (evidence), the 
sequential integration of that evidence into a “decision variable,” and the concomitant 
preparation of an appropriate action. Whereas typical EEG tasks involve sudden-onset, discrete 
stimuli that evoke a complex set of overlapping components on the scalp, only a small 
proportion of which relate to the relevant computations underlying task performance, our 
contrast change detection paradigm uses gradual-change targets, thereby eliminating transient, 
task-irrelevant sensory-evoked signals and thus fully unmasks the neural processes of decision 
formation. By asking subjects to indicate detection of a change in contrast of a continuously 
presented, flickering visual stimulus, an independent and continuous neurophysiological 
measure of the momentary sensory input to the decision process can also be extracted. In 
tandem, motor preparatory activity such as contralateral pre-motor movement–selective beta-
band (16–30 Hz) activity can be traced (Pfurtscheller et al., 1999; Donner et al., 2009). Thus, 
discrete, freely evolving neural signatures of sensory evidence encoding, decision formation and 
motor preparation, can be isolated using this paradigm. 
 
In the present task battery, we employ a two-alternative version of the contrast change detection 
paradigm, whereby, instead of detecting a change to a single stimulus component with a single 
response, subjects must monitor the relative contrast of two simultaneous stimuli for gradual 
changes and select one of two responses to indicate the direction of the change. The reasoning 
behind this is that fluctuations in the sensory evidence (the difference in response to the two 
stimuli to be compared) can be dissociated to some degree from fluctuations in general arousal 
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or levels of sustained attention (non-selective changes common to both responses). Such 
fluctuations are of considerable interest in their own right, both in clinical and basic 
neuroscience (Dockree et al., 2005; Dockree et al., 2007; Smallwood et al., 2008; Smallwood et 
al., 2009), and are an inherent aspect of the change detection task which is performed 
continuously in long, uninterrupted blocks with infrequent and unpredictable target onsets. 
 
Stimuli & Experimental Design: 
The contrast change detection paradigm is designed to enable isolation of the neural signatures 
of sensory evidence encoding, accumulation, and motor preparation without the need for 
complex signal processing beyond elementary epoch averaging and spectral estimation 
(O'Connell et al., 2012). In the present task, subjects continuously viewed an annular pattern 
(inner radius: 1°; outer radius 6°) composed of two overlaid gratings tilted 45° to the left and 45° 
to the right of vertical, which continuously phase-reversed at distinct rates of 20 Hz and 25 Hz, 
respectively. At baseline (in between targets), both gratings had an equal contrast of 50%. 
Participants were asked to maintain fixation on a point in the center of this stimulus, and to 
detect contrast-change targets, where one grating gradually increased to 100% and the other 
simultaneously decreased to 0%. They were asked to make a left-hand button click for targets in 
which the left-tilted grating increased in contrast, and to make a right-hand click for right-tilted 
increases. Twelve of each of these two target types were presented in each 3.1-minute block, in 
random order. The changes in contrast from 50 to 100% occurred linearly over 1600 ms, with an 
immediate 800 ms linear return to 50%. Beginning immediately at the end of each target, the 
50% contrast baseline stimulus was presented for an inter-target interval of 2.8, 4.4 or 6 sec. 
Also, immediately following target end, feedback was presented in the form of a smiley (correct 
click) or sad face (incorrect click or no click) for the first 400 ms of the inter-target interval. If a 
subject missed three consecutive targets, a short voice recording was played, which saying, 
“You just missed three targets in a row. Please focus again.” In the current dataset, each 
subject completed 3 blocks of this task. 
 
 
Participant Instructions: 
“Fixate on the central dot. Press the LEFT button with LEFT hand when the LEFT-tilted pattern 
gets stronger. Press the RIGHT button with RIGHT hand when the RIGHT-tilted pattern gets 
stronger. Work as quickly as you can without making mistakes. Press the mouse button to 
begin.“ 
 
 
Output Measures: 
By design, the principal components of activity on this task are the SSVEP over occipital scalp 
sites, the event-related potential over centro-parietal scalp sites, and decreases in Mu (8-13 Hz) 
and Beta (16-30 Hz) spectral amplitude over left/right motor cortical areas (C3/C4), which reflect 
sensory evidence encoding, evidence accumulation and motor preparation, respectively 
(O'Connell et al., 2012). Each of these signals has been shown to bear a systematic relationship 
with the timing and accuracy of the participant’s detection responses. Since this task version 
involves two-alternative decisions mapped to the left and right hands, the relative preparation for 
the two alternative actions can also be tracked via the lateralized readiness potential derived by 
subtracting ERP traces from motor cortical sites of the two hemispheres (Gratton et al., 1988; 
O'Connell et al., 2012). In addition to these measures, posterior parietal alpha-band activity can 
be analyzed to provide measures of vigilant attentional state. In principle, because the 
monitoring task is performed continuously and stimulation is continuous, neural activity 
measures are potentially informative on cognitive/perceptual states and processes at any point 
during the block of task performance.  
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Paradigm #5 (Active): Sequence Learning 

Task Overview: 
In order to evaluate the neural correlates of declarative learning, we included an explicit visual 
sequence learning paradigm, in which subjects repeatedly view a fixed sequence of flashed 
visual locations and attempt to memorize it in order to make regular intermediate recall reports. 
This task was originally developed by Moisello, Ghilardi and colleagues as a control condition 
for the examination of spectral EEG signatures of visuo-motor learning (Moisello et al., 2013), 
and was recently shown to be highly informative in its own right, in providing reliable indices of 
memory formation and surprise-modulated stimulus processing that related systematically to the 
ongoing progress of learning (Steinemann et al., 2016). An important aspect of the paradigm is 
that the information to be remembered (flashed location) is of the most elementary kind and 
computed very rapidly in the brain, so that perceptual decisions regarding the immediately 
presented item are completed quickly, allowing the longer-lasting neural signatures of memory 
formation to be reliably distinguished from the short-lived processes of immediate stimulus 
identification.  
 
During the task, participants were asked to observe and memorize a single sequence of 
elements over repeated observations. This enables the possibility to track the progress of 
gradual memory formation through regular behavioral recall, as an individual element goes from 
being completely unknown to fully committed to memory. Rather than making comparisons 
among different complex items as is commonly done in the field (Schacter and Wagner, 1999; 
Wagner et al., 1999), which may differ in sensory characteristics and/or semantic content, this 
paradigm enables comparisons across successive learning states for each of a set of uniform, 
highly reduced, and semantically unloaded stimuli. This neural and behavioral tracking of the 
gradual learning progress in a way that cannot be done using typically employed paradigms with 
dichotomous subsequent recall outcomes (remembered vs. forgotten) (Karis et al., 1984; Paller 
et al., 1987; Neville et al., 1996).  
 
Stimuli & Experimental Design: 
In the current task battery we employed an adapted version of the task of Steinemann et al. 
(2016). Participants were asked to view a sequence of 10 flashed-circle stimuli, which appeared 
among 8 possible, marked locations on the screen. The same sequence was presented a total 
of 5 times; after viewing each presentation, the participant attempted to reproduce the sequence 
to the best of their ability by sequentially clicking the different locations using a computer 
mouse. In pilot testing, we observed a floor effect on this 10-item sequence version in children 
younger than 9 years old; therefore, in the present study, participants 8 years and below were 
shown a shorter sequence of 8 items displayed among 6 possible locations. There was no 
restriction on the time provided to report the recalled sequence, and no feedback was provided 
throughout the task. Visual stimuli consisted of filled white circles with a diameter of 1 cm 
presented at eight different equidistant spatial locations on a radius of 5 cm eccentricity, and 
were continuously marked by static circular outlines  (see Fig. 1 in (Steinemann et al., 2016). 
Stimuli were presented (and gradually faded out) for 200 ms, with an inter-stimulus interval of 
1300 ms. Throughout the task, subjects were asked to hold eye fixation on a central fixation 
point (yellow dot). Before the main task recording, a training block was administered, consisting 
of 5 stimuli on the same 8 locations, in order to familiarize the subjects with the tasks and to 
confirm their comprehension of them. Feedback was provided for the training task only. The 
duration of this paradigm varied between 8-15 min, depending on the speed of recall reports.  
 
Participant Instructions: 
“Fixate on the yellow dot. Try to remember the sequence of the flashing dots. The SAME 
sequence will be repeated 5 times. After each round you have to give a response. If you do not 
know all the locations guess the others. Press the mouse button to begin.”  
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Output Measures: 
In the approach of Steinemann et al. (2016), trials were categorized as “still-unknown”, “newly-
learned” or “known” based on the participants’ recall reports, and the average ERPs for these 
learning states were directly compared to examine processes of immediate stimulus 
identification and their modulation by “surprise,” which reduced over the course of learning, and 
processes of memory formation which were especially strong at the point where a given item 
was newly learned. For the purposes of the current paper, we analyzed behavioral recall 
performance as well as these neural correlates over the successive blocks of sequence 
observation, which provides a simpler, but related, view on the progress of learning over the 
task. The process of immediate stimulus identification is reflected in a “P300” component 
measured over centro-parietal sites. The P300 is a centro-parietal positivity occurring roughly 
300 ms or later after stimulus onset, which famously indexes the level of “surprise”, i.e., the 
degree to which a stimulus was unexpected (Donchin, 1981; Mars et al., 2008). Recently it has 
been established that the P300 corresponds to the centro-parietal positivity (CPP), which 
reflects the accumulation of evidence for a decision, and it has been suggested that its 
sensitivity to surprise may arise from the setting of higher accumulation thresholds for 
unexpected stimuli (O'Connell et al., 2012; Twomey et al., 2015). In the sequence learning 
paradigm, as learning progresses, the location of the stimuli becomes increasingly less 
surprising, and therefore P300 amplitude decreases systematically. In fact, the degree of P300 
reduction from the first to second block of sequence observation was found to correlate 
significantly with behavioral measures of the speed of learning (Steinemann et al., 2016), 
highlighting the potential value of such measures.  
 
Paradigm #6 (Active): Symbol Search 
Task Overview: 
As our final, “active and complex” paradigm, we chose to emulate a standard 
neuropsychological test in widespread, routine clinical use for assessing “processing speed” in 
children. We chose the particular construct of processing speed because it is a good example 
among a wide range of clinical metrics that are almost universally employed yet imprecisely 
defined, with many conceivable computational explanations that can account for variation in the 
lumped, unitary score that is ultimately recorded on completion of the test. The “processing 
speed” construct has been defined as the ability to focus attention, quickly scan, and 
discriminate between (visual) information, and is known to be sensitive to factors such as 
motivation, difficulty working under time pressure, and motor coordination (Wechsler, 2004). 
Previous studies have associated processing speed with age, reading performance, and 
psychiatric and neurological disorders (Donders et al., 2001; Salthouse and Ferrer-Caja, 2003; 
Eckert, 2011; Duering et al., 2014). We selected a test of processing speed in the current 
dataset due to the obvious scope for using neurophysiological and eye tracking measures to 
deconstruct performance into a richer set of computationally tractable component processes. 
 
The specific paradigm used here was a computerized version of the Symbol Search subtest of 
the Wechsler Intelligence Scale for Children IV (WISC-IV), which together with the subtests 
Coding and Cancellation makes up the Process Speed Index (PSI) (Burgess et al., 1992; Lezak, 
1995; Wechsler, 2004). The Symbol Search subtest is designed to assess the speed and 
accuracy with which a child can process nonverbal information. High scores require rapid and 
accurate processing of visual symbols that have no a priori meaning, which hinges on 
processing efficiency at several levels including motor, cognitive, and decisional and memory 
processes (e.g. Royer et al., 1981; Joy et al., 2004). For example, a participant needs to (a) 
detect and encode the target symbols; (b) hold this information in short-term and/or working 
memory; (c) process each of the symbols in the search set, whether in turn or in parallel to 
some degree; (d) identify the symbol among the search set that matches one of the target 
symbols, or conclude that there is no match; (e) select and initiate the appropriate response. 
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This paradigm further enables the study of different strategies or performance styles that might 
cause a decreased performance, such as excessive carefulness (i.e., double-checking, or 
‘making sure’).  
 
It is not entirely clear which components of symbol search task performance are affected by 
decreases in processing speed, as the standard application of the task provides only one overall 
behavioral score (number relatively correct); little or no information on the underlying etiology of 
low performance is offered. Our on-line simultaneous acquisition of eye tracking and EEG data 
during this test thus stands to provide substantial further insights. We believe this integrated 
EEG/eye tracking approach will allow us to decompose the processing speed task into 
interpretable components of cognitive and perceptual processing, such as working memory, 
distractibility, uncertainty, and sustained attention. 
 
Stimuli & Experimental Design: 
The visual geometric stimuli consisted of black symbols with a size of 1cm width and 1cm height 
(Figure 7A). As on each page of the paper version, 15 trials were presented at a time on the 
screen. Each row contained two target symbols and five search symbols, arranged horizontally 
across the row. Participants were instructed to indicate for each row, by mouse-click (mark 
either the yes or no checkbox), whether either of the target symbols matched with any of the five 
search symbols. The participants had the option to correct their initial responses if they desired. 
Participants were instructed to solve as many rows, or trials, as possible within two minutes. 
Before beginning the actual paradigm, participants performed a training block with 4 trials, for 
which they received feedback, to ensure their comprehension of the task. No feedback was 
provided throughout the actual task. 
 
Once a participant finished all 15 trials, they pressed the “next page” button to advance onward. 
There were 4 pages (a maximum of 60 trials) in total. No participant ever reached the end of the 
60 trials.  
 
Participant Instructions: 
“The task is to figure out if either one of the two first symbols are presented again in the same 
line. Press with the left mouse button YES and NO boxes to select your answer. If you 
accidently press the wrong button you can make a correction by simply clicking on the other 
response. You have 2 minutes to solve as many trials as possible.” 

Output Measures: 
In contrast to the traditional pen and paper administration of the symbol search task, our 
computerized, multimodal approach allows for the generation of a range of measures rather 
than a single summary score. These included, but were not limited to: time spent looking at 
each symbol, the number of saccade steps, number of repetitions, pupil size, and the protracted 
gaze dwell times for each sub-region of the screen. These measures supply additional 
information on participants’ strategies for completing the task, and on why they might do well or 
poorly. This eye tracking data can further be complemented with topographic spatial and power 
analyses of the concurrently acquired EEG data. 
 
 
EEG and Eye Tracking Preprocessing Steps 

EEG Data Extraction. The data shared in this project are available as raw data, but also 
preprocessed. The MATLAB code for the preprocessing can be found at 
https://github.com/amirrezaw/automagic. The data from each paradigm is saved as a separate 
file. In the first step of preprocessing, EEG data were imported in MATLAB (pop_readegi.m) and 
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the triggers and latencies for each paradigm were extracted. Based on this information, the 
specific order and availability/existence were determined for each paradigm and participant. The 
electrodes in the outermost circumferences (chin and neck) were excluded to a standard 111-
channel electrode array (Perrin et al., 1987). 

Electrode Quality Check. Bad electrodes were identified and replaced. Identification of bad 
electrodes was based on probability, kurtosis, and frequency spectrum distribution of all 
electrodes. A channel was defined as a bad electrode when recorded data from that electrode 
had a variance more than 3 standard deviations away from the mean across all other 
electrodes. This was realized with the eeglab MATLAB function: “pop_rejchan.m”. Subsequently 
bad electrodes were interpolated by using a using spherical spline interpolation (Perrin et al., 
1989, 1990) ‘eeg_interp.m’. Moreover, after automatic scanning, noisy channels were selected 
by visual inspection and interpolated or replaced entirely by zeros (for the calculation of the ISC 
measures to eliminate the channel’s contribution in subsequent calculation of covariance 
matrices).  

Artifact Signal Correction. One hundred and nine EEG channels were used for scalp recordings, 
while 6 EOG channels were used for artifact removal. The rest of the channels lying mainly on 
the neck and face were discarded before data analysis. Data were then high-pass filtered at 0.1 
Hz and notch filtered at 59-61 Hz. Eye artifacts were removed by linearly regressing the EOG 
channels from the scalp EEG channels. Next, a robust Principal Components Analysis (PCA) 
algorithm, the inexact Augmented Lagrange Multipliers Method (ALM, (Lin et al., 2010) removed 
sparse noise from the data. Briefly, the ALM recovers a low-rank matrix, A, efficiently and 
accurately from a corrupted data matrix D = A + E, where some entries of the additive errors E 
may be arbitrarily large. Finally, the entire dataset for each subject was visually inspected in 
order to discard whole block and/or paradigm recordings that remained noisy after the automatic 
and manual noise removal methods. All signal processing was performed offline using MATLAB 
software (MathWorks, Natick, MA, USA). 

Eye Tracking Data Extraction. Saccades and fixations were detected with an adaptive velocity-
based algorithm. Briefly, a blink can be regarded as a special case of a fixation, where the pupil 
diameter is either zero or outside a dynamically computed valid pupil, or the horizontal and 
vertical gaze positions are zero. The algorithm identifies fixations as groups of consecutive 
points within a particular dispersion. It uses a moving window that spans consecutive data 
points checking for potential fixations. The moving window begins at the start of the protocol and 
initially spans a minimum number of points, determined by the given Minimum Fixation Duration 
(here: 50 ms) and sampling frequency. The algorithm then checks the dispersion of the points in 
the window by summing the differences between the points' maximum and minimum x and y 
values and comparing that to the Maximum Dispersion Value; so if [max(x) - min(x)] + [max(y) - 
min(y)] > Maximum Dispersion Value, the window does not represent a fixation, and the window 
moves one point to the right. If the dispersion is below the Maximum Dispersion Value (here: 50 
pixels), the window represents a fixation. In this case, the window is expanded to the right until 
the window's dispersion is above threshold. The final window is registered as a fixation at the 
centroid of the window points with the given onset time and duration. Following this process, a 
saccade event is created between the newly and the previously created blink or fixation. 

Code availability 

The codes for the EEG preprocessing can be found here: 
https://github.com/amirrezaw/automagic. Code for the ISC analysis is available here: 
http://parralab.org/isc. All the analyses were performed with MATLAB 2014a and EEGlab 
13.3.2b.  
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Data Records 

Data privacy 
All data are de-identified and participants gave permission for their data to be openly shared as 
part of the informed consent process. 
 
Distribution for use 
Raw and preprocessed EEG data, as well as eye tracking data can be accessed through the 
1000 Functional Connectomes Project and its International Neuroimaging Data-sharing Initiative 
(FCP/INDI) based at www.nitrc.org (http://fcon_1000.projects.nitrc.org/indi/cmi_eeg/). EEG data 
are available openly, along with basic phenotypic data (age, sex, handedness, completion 
status of EEG paradigms, and known diagnosis status) and performance measures for the EEG 
paradigms. Public data are distributed under the Creative Commons, Attribution Non-
Commercial Share Alike License (https://creativecommons.org/licenses/by-nc-sa/3.0/). 
 
The more extensive phenotypic data (e.g., behavioral questionnaires, abbreviated intelligence 
and achievement testing; see Table 3) may be accessed through the Collaborative Informatics 
and Neuroimaging Suite (COINS) Data Exchange (http://coins.mrn.org/dx). These data are 
protected by a Data Usage Agreement (DUA), which investigators must complete and have 
signed by an authorized institutional official before receiving access (the DUA can be found at: 
http://fcon_1000.projects.nitrc.org/indi/cmi_eeg/phenotypic.html). The DUA is based upon that 
of the NKI-Rockland Sample, which does not attempt to restrict or curate the focus of analyses, 
but does require users to agree not to attempt re-identification of participants under any 
circumstances. 
 
EEG data organization 
The data on the AWS site are stored in folders by participant. Each participant’s folder contains 
one EEG folder, one eye tracking folder and one behavioral folder. In the EEG folder the EEG 
data are available as of the simple binary file (<ID number>.raw) and ascii file (<ID 
number>.csv) for each paradigm. There are also two eye tracker files for each paradigm: one 
file is segmented into blinks, saccades and fixations (<ID number>.txt). The other file is an 
unsegmented file (<ID number>.txt), with the eye tracking information for each sample. 
Furthermore, a behavioral folder contains a MATLAB file (<ID number>.mat) for each paradigm, 
which includes the information about the paradigm itself, including: inter-trial interval, triggers, 
number of trials, response selection and reaction time (if available). For users who intend to use 
the data without MATLAB, this information is also available as .csv files. Each subject’s folder 
requires on average 5GB storage space. A “MIPDB_EEG_Readme” folder contains “Readme” 
files for each paradigm about the variables and paradigm parameters.  
 

TECHNICAL VALIDATION 
 
Resting EEG. Following standardized EEG preprocessing (described in the Methods section), 
the data were filtered between 1.5 and 30 Hz and segmented into eyes-closed and eyes-open 
segments. Only the eyes-closed segments were further analyzed for display here. The artifact-
free EEG was recomputed against the average reference and segmented into 2-second epochs. 
In a second step, a discrete Fourier transformation algorithm was applied to the 2-second 
epochs. In resting-state EEG, the spectral amplitude of the signals is typically assumed to be of 
interest; therefore the power spectrum of 1.5-30 Hz (resolution: 0.5 Hz) was calculated. The 
spectra for each channel were averaged over all epochs for each subject. Next, the group mean 
spectral amplitude was computed and displayed as an average over all electrodes (Figure 2A) 
and for each electrode individually (Figure 2B). Finally, the group mean relative power spectra 
data were integrated for the following 7 frequency bands classification proposed by (Kubicki et 
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al., 1979): delta (1.5-3.5 Hz); theta (4-8 Hz); alpha 1 (8.5-10 Hz); alpha 2 (10.5-12 Hz); beta 1 
(12.5-18 Hz); beta 2 (18.5-21 Hz); beta 3 (21.5-30 Hz) as well as the theta / (beta1+2) ratio, 
which is often used in ADHD research (Arns et al., 2013) (Figure 2C). As can be seen from the 
figure, the expected distribution of spectral amplitudes in resting-state EEG data was obtained 
(Chen et al., 2008; Barry et al., 2009). These spectral measures have been sensitive and 
successful for describing, for instance, age-related EEG changes or various clinical conditions 
of developmental disorders (Michel et al., 2009). 
 

 

Figure 2. Resting EEG. The spectral amplitude was averaged over all subjects and displayed 
as a mean over all electrodes (A) and for each electrode individually (B). Figure C shows 
the topographical distribution of the group mean relative power spectra data for the different 
frequency bands as well as the theta / (beta1+2) ratio. 

 
Surround Suppression Paradigm. Following standard preprocessing, the EEG data were 
segmented based on the flickering stimulus onset. The segmentation was conducted for each of 
the 4 foreground contrasts (0% 30%, 60% and 100%) and three different background conditions 
(parallel, orthogonal, no background) individually. For each participant, the data were merged 
across the two blocks. For the purpose of technical validation, we computed 1) the SSVEP 
signal without background, and 2) the SSVEP across all conditions with a background. In a next 
step, the FFT was computed to obtain a measure of SSVEP power at 25 Hz flickering 
frequency. In Figure 3, we subtracted the SSVEP power for 25 Hz from its neighboring 
frequency bin to extract the actual evoked activity by the stimulus presentation. An in-house 
algorithm detected the electrode with the highest SSVEP amplitude and computed the SSVEP 
signal based on the average of max electrode and its four surrounding electrodes. Moreover, we 
displayed the SSVEP amplitude for each foreground contrast without a background (black line) 
and with a background (red line) (Figure 3). As expected, the data demonstrate an increase of 
SSVEP amplitude with an increase of foreground contrast. We also demonstrated the surround 
suppression effect, which was measured as a relative reduction in amplitude of the SSVEP due 
to surround contrast. This is in line with a recent study, which originally developed and used this 
paradigm in healthy adults (Vanegas et al., 2015).  
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Figure 3. Surround Suppression Paradigm. The left plot displays the group average 
topographies of the 25 Hz steady-state visual evoked potential (SSVEP) amplitude for the 
mean of all foreground contrasts without a background. On the right panel, we displayed 
the SSVEP amplitude for each foreground contrast without a background (black line) and 
with background (red line). 

 
Figure 4. Naturalistic Stimuli Paradigm. Depicted are the scalp projections of the first three 

maximally correlated components (inter-subject correlation), averaged over all movies. 
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Naturalistic Stimuli Paradigm. Consistent with previously established methodologies, within-
subject covariance matrices were computed across subjects and videos after standard EEG 
preprocessing. Thus, we obtained a set of component projections, which can be used as an ISC 
measure. We selected the three strongest correlated components and computed the 
corresponding correlation values separately for each component (Figure 4). It has been shown 
that the sum of the first three components explains sufficient variance of the data. The 
distribution of the ISC measure is in line with previous studies showing congruent distributions 
(Dmochowski et al., 2012; Dmochowski et al., 2014).  
 

Contrast Change Detection Paradigm. After standard EEG preprocessing, for each 
participant we merged the data from the three blocks. Target epochs were extracted from 500 
ms before target onset to 1000 ms after peak sensory evidence. Moreover, response-locked 
epochs were extracted from 1000 ms before a response, to 300 ms after response button press. 
Trials were rejected if any scalp channel exceeded 100 μV. SSVEP (20 or 25 Hz depending on 
left or right target) based on stimulus-locked epochs and motor response signal (12.5-18 Hz) 
based on response-locked epochs were measured using the standard short-time Fourier 
transformation. The CPP analysis consisted simply of averaging the single-trial waveforms, 
which were baseline-corrected relative to the 500 ms interval before response onset. Figure 5 
displays the sensory evidence encoding (SSVEP), the evidence accumulation (CPP), and motor 
preparation topographies. As expected, we found a posterior maximum for the SSVEP around 
the electrode Oz. The CPP signal shows the highest activity near the CPz electrode and the 
preparatory motor response signal (reduction in spectral amplitude relative to baseline) peaks 
over the electrodes C3 and C4.  
 

 
Figure 5. Contrast Change Detection Paradigm. The group average topographies are shown 

for the sensory evidence signal (represented as SSVEP, A), the response-locked CPP 
component reflecting evidence accumulation (B), and the decrease of beta frequency (12.5-
18 Hz) spectral amplitude over left/right motor cortical areas at response relative to before 
target onset, reflecting motor preparation (C). Left-tilted and right-tilted targets are collapsed 
in all cases. 

 

Sequence Learning Paradigm. Following standard preprocessing, the EEG data were 
segmented based on stimulus onsets, which were each defined by the appearance of a filled 
white circle in one of the eight different spatial locations. Each epoch was 900 ms long (100 ms 
pre-stimulus to 800 post-stimulus presentation). For each of the five blocks, all artifact-free 
segments were extracted and subsequently baseline-corrected. For the technical validation, we 
averaged all trials within each block for each subject individually, and then calculated a group 
average. Although this averages across “still-unknown”, “newly-learned”, and “known” 
conditions within each block, the relative dominance of trial numbers in each category 
systematically varied over the course of the blocks as the sequence became better memorized. 
In Figure 6A, the ERP for the electrode CPz is depicted. We found a decrease in the P300 over 
the different blocks. In a next step, the behavioral “performance” was calculated as percentage 

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/092213doi: bioRxiv preprint first posted online Dec. 7, 2016; 

http://dx.doi.org/10.1101/092213
http://creativecommons.org/licenses/by/4.0/


 

21 

correctly learned spatial locations, and the “learning rate” was defined as the newly learned 
locations in relation to all possible locations (Figure 6B). The corresponding P300 amplitude 
was calculated as the amplitude on electrode CPz with a latency of 350 – 500 ms post-stimulus 
presentation. We chose a slightly delayed time window, because recent studies have shown 
that the P300 in children exhibits a greater latency compared to adults (van Dinteren et al., 
2014). Figure 6B reveals that while the performance is increasing with practice, the learning rate 
and the P300 are decreasing. These findings are in line with the assumption that the subjects 
learn to expect the order of the appearance of the targets over the course of the 5 blocks, which 
is represented by the performance and learning rate measure. In other words, over the course 
of the five blocks, the P300 amplitude decreases because the subjects are not as surprised by 
the appearance of the specific location of the stimulus presentation. Equivalent results have 
been reported in the original version of this paradigm from which the current one was adapted 
(Steinemann et al., 2016). 

 

 
Figure 6. Sequence Learning Paradigm.  In (A), the ERP for the electrode CPz is depicted for 

the average of each individual learning block. In (B), the P300 amplitude on electrode CPz, 
behavioral “performance” and “learning rate” are displayed. The black line indicates the 
mean of all subjects, whereas the green lines indicate each subject’s measures.  

 

Symbol Search Paradigm. For this paradigm, we mainly focused on the eye tracking data, but 
the newly established inventory of objective eye tracking measures can be complemented with 
topographic spatial and power analyses of the concurrently acquired EEG data. As described in 
the methods section, the goal of each trial is to determine whether either of two target symbols 
appears among a set of five search symbols. The presented graphic of the symbol search task 
was segmented into three subregions of interest: targets, search group, and response buttons 
(Figure 7A). From the eye tracking data, we calculated the number of saccade steps, number of 
repetitions, pupil size, and protracted gaze dwell times (fixation duration) for each subregion. 
Figure 7A displays all the fixations for a representative subject. The darkness of the color and 
the size of the circle indicate the duration of the fixations. Blue color indicates fixations outside 
of the current trial. Figure 7B represents the distribution of saccade amplitude, peak velocity and 
the angular histogram. In the second row of Figure 7B, the distribution of the durations of the 
fixations, the heat map and the allocation of the fixations are displayed. As expected, the data 
demonstrate that the eye tracker is able to track oculomotor activity while the subject is 
performing the task. This enables us to decompose the processing speed task into interpretable 
components of cognitive and perceptual processing, such as working memory, distractibility, 
uncertainty, and sustained attention.  
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Figure 7. Symbol Search Paradigm. In (A), the three subregions of interest, targets, search 
set and response buttons, are displayed with all fixations for a representative subject 
superimposed. The darkness of the color and the size of the circle indicate the duration of 
the fixations. Blue color indicates fixations outside of the current trial. (B) represents the 
distribution of saccade amplitude, peak velocity and the angular histogram. In the second 
row, the distribution of the durations of the fixations, the heat map and the allocation of the 
fixations are displayed. 
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Diagnostic Category Frequency 
% of clinical 

sample 
% of total 

sample 

No Diagnosis 101 N/A 0.80 

Attention 12 0.48 0.10 

Anxiety 10 0.40 0.08 

Learning 7 0.28 0.06 

OCD 4 0.16 0.03 

ASD 2 0.08 0.02 

Depressive 2 0.08 0.02 

Trauma 2 0.08 0.02 

Disruptive 2 0.08 0.02 

Motor 2 0.08 0.02 

Language 1 0.04 0.01 

Mood 1 0.04 0.01 
 

Table 2. Diagnosis Status. Diagnoses of subjects are shown, spanning 11 categories of 
diagnoses, in addition to no diagnosis. Frequency and percentages are shown. Note that 
subjects may have single or multiple diagnoses. 

 
 

Measure Description 
Population 

Adults Children Parents 

Demographics 

Demographics 
Form (Project 
Developed) 

We will collect information such as 
gender, ethnicity, and education. For 
participants under the age of 18, this 
information will be collected from the 
parent. This measure takes about 5 
minutes to complete. 

X   X 

Barratt Simplified 
Measure of Social 
Status (Barratt, 
2006) 

This measure is built on the work of 
Hollingshead (1957, 1975) who devised 
a simple measure of Social Status based 
on marital status, retired/employed 
status (retired individuals used their last 
occupation) educational attainment, and 
occupational prestige.  This is a measure 
of social status, which is a proxy for 
socio-economic status.  This is not a 
measure of social class, which is best 
seen as a cultural identity. This interview 
takes 1 minute to complete. 

X   X 
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Hollingshead 
Four Factor Index 
of Socioeconomic 
Status 
(Hollingshead, 
1975 

The Hollingshead Four Factor Index of 
Socioeconomic Status is a survey 
designed to measure social status of an 
individual based on four domains: marital 
status, retired/employed status, 
educational attainment, and occupational 
prestige. This interview takes about 5 
minutes to complete. 

X   X 

Cognitive Assessments 

Digit Span, from 
Wechsler's 
Intelligence Scale 
for Children-
Revised 
(Kaufman, 1975) 

The WISC-R is a measure of cognitive 
function in children and adolescents. 
Participants will complete the Digit Span 
subtest, which measures simple 
attention, short-term memory, and 
working memory. In the Digit Span 
Forward task, the examiner read 
successively longer sequences of 
numbers and the participant was asked 
to recall the numbers in the same order 
(a measure of short term memory). In the 
Digit Span Backward task, the examiner 
read successively longer sequences of 
numbers and the participant was asked 
to recall the numbers in reverse order (a 
measure of working memory).  All 
participants completed this measure, 
regardless of age. 

X X   

Wechsler 
Abbreviated 
Scale of 
Intelligence, 2nd 
edition – WASI-II 
(Wechsler, 1999)  

The WASI provides a full-scale 
intelligence quotient (FSIQ), verbal IQ 
(VIQ), and performance IQ (PIQ) for 
ages 6-89 years. The Vocabulary, 
Similarities, Block Design, and Matrix 
Reasoning subtests will be used to 
estimate Full Scale IQ. This scale takes 
about 30 minutes to complete and was 
administered to all participants who were 
not patients of the Child Mind Medical 
Practice (CMMP) or those who did not 
complete a neuropsychological 
evaluation at the CMMP within the year 
before their first research visit. 

X X   

Wechsler 
Individual 
Achievement 
Test, 2nd edition, 
Abbreviated – 
WIAT-IIA 
(Wechsler, 2002)  

The WIAT assesses achievement of 
individuals ages 6-85.  This brief 
assessment includes basic reading, 
math calculation and spelling. This scale 
takes about 45 minutes to complete and 
will be administered to all participants 
that have not been seen previously as 
patients at the Child Mind Medical 
Practice, or who were seen over a year 
ago. 

X X   
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 Self-Worth 
Implicit 
Association Test 
– IAT 
(Greenwald, 
McGhee, & 
Schwartz, 1998) 

The Implicit Association Test assesses 
self-esteem by measuring an individual’s 
automatic associations between the self 
and words of positive valence. 
Participants were seated at a computer 
in a room separate from the EEG 
laboratory for a “categorization game” in 
which single words or phrases were 
presented successively on the computer 
screen (Meade, 2009). Participants were 
instructed to press either the E or I keys 
on the keyboard to categorize the words 
into one group of a given group pair. 
There was one block dedicated to each 
group pair. The five blocks were 
presented in the same order for all 
participants. In block 1 of the task, the 
group pair was Self vs. Other; in block 2, 
Positive vs. Negative; in block 3, 
Self/Positive vs. Other/Negative; in block 
4, Other vs. Self; in block 5, 
Self/Negative vs. Other/Positive. To 
customize stimulus presentation for all 
participants, self-related words (name, 
address, date of birth, and sex) were 
collected following the informed consent 
process and were entered into the 
computer program prior to the IAT 
session. To ensure that participants were 
familiar with all of the negative and 
positive valence words, they were asked 
to read lists of these words out loud to a 
research assistant; any words that they 
did not know the meaning of were 
excluded from the stimulus presentation. 
The final IAT score was computed from 
the difference between the average 
corrected response times for the self or 
negative vs. other or positive block and 
the self or positive vs. other or negative 
block. A positive score indicates a 
weaker association between the self and 
negative words, and therefore indicates 
higher implicit self-esteem. The IAT took 
about 5 minutes to complete, and all 
participants completed this measure, 
regardless of age. 

X X   
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Self-Report Questionnaires 

Children’s Test 
Anxiety Scale – 
CTAS (Wren & 
Benson, 2004) 

The CTAS is a 30-item scale designed to 
measure the effects of test anxiety. The 
measure takes about 5-10 minutes to 
complete. All participants completed this 
measure, regardless of age.  

X X   

Kid-KINDL and 
Kiddo-
KINDL(Ravens-
Sieberer & 
Bullinger, 1998) 

The KINDL questionnaires are generic 
instruments for assessing Health-
Related Quality of Life in children and 
adolescents between the ages of 3 and 
17. The questionnaire takes about 5-10 
minutes to complete, and each version of 
the questionnaire can be completed both 
by children and adolescents, and also by 
their parents. For the present study, 
children and parents of children between 
the ages of 7 and 17 completed the Kid-
KINDL (ages 7-13), Kiddo-KINDL (ages 
14-17), and Kid- & Kiddo-KINDL Parents’ 
Questionnaire KINDL (parents of all 
children ages 7-17). Participants 18 
years of age and older completed the 
Kiddo-KINDL. The KINDL produces six 
subscales: physical well-being; 
emotional well-being; self-esteem; 
family; friends; and everyday functioning.  

X X   

Adult Self Report 
– ASR 
(Achenbach & 
Rescorla, 2003) 

Analogous to the CBCL, the ASR is a 
self-administered instrument that 
examines diverse aspects of adaptive 
functioning and problems in adults. This 
scale takes approximately 10 minutes to 
complete, and it was administered to all 
participants age 18 and older.  

X     

Conners’ Adult 
ADHD Rating 
Scales – CAARS 
(Erhardt et al., 
1999) 

The CAARS is a measure designed to 
assess the presence and severity of 
adult ADHD symptoms. This scale takes 
approximately 10-15 minutes to 
complete. 

X     
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History and 
Demographics 
Questionnaire – 
Adult Self/Parent 
Report (Project 
Developed) 

The History and Demographics 
Questionnaire is an internally developed 
questionnaire that asks the participant a 
series of questions regarding their 
medical history, school history, and 
developmental history, as well as family 
demographics. This measure takes 
about 10 minutes to complete. Parents of 
all participants under the age of 18 
completed this questionnaire. 
Participants age 18 and above 
completed an adapted version of this 
questionnaire about themselves. 

X    X 

Parent’s KINDL, 
Kid-KINDL and 
Kiddo-KINDL 
(Ravens-Sieberer 
& Bullinger, 1998) 

The KINDL questionnaires are generic 
instruments for assessing Health-
Related Quality of Life in children and 
adolescents between the ages of 3 and 
17. The questionnaire takes about 5-10 
minutes to complete, and each version of 
the questionnaire can be completed both 
by children and adolescents, and also by 
their parents. For the present study, 
children and parents of children between 
the ages of 7 and 17 completed the Kid-
KINDL (ages 7-13), Kiddo-KINDL (ages 
14-17), and Kid- & Kiddo-KINDL Parents’ 
Questionnaire KINDL (parents of all 
children ages 7-17). Participants 18 
years of age and older completed the 
Kiddo-KINDL. The KINDL produces six 
subscales: physical well-being; 
emotional well-being; self-esteem; 
family; friends; and everyday functioning.  

    X 
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The Strengths 
and Weaknesses 
of ADHD 
symptoms and 
normal behavior 
scale – SWAN 
(Swanson et al., 
2001) 

Items of the SWAN are scored on a 
seven-point scale, from -3 to 3, with 
average behaviors in the middle and the 
extremes on either end. Questions are 
framed as positive behaviors, and 
parents are asked to rate how their 
children perform on those behaviors. 
Traditional assessment scales, which 
focus on negative symptoms, are prone 
to extreme skewness in a normal 
population, as most people do not have 
symptoms.  By assessing positive 
behaviors, the SWAN yields more 
normally distributed data and captures 
the full range of ADHD-related behaviors 
in a normal population.  This assessment 
takes approximately 10 minutes to 
complete, and was filled out by parents of 
all child participants, ages 6-17. 

    X 

Child Behavior 
Checklist – CBCL 
(Achenbach, 
1991) 

The CBCL is a device by which parents 
or other individuals who know the child 
well rate a child's problem behaviors and 
competencies. The CBCL can also be 
used to measure a child's change in 
behavior over time or following a 
treatment. It consists of 118 items related 
to behavior problems, which are scored 
on a 3-point scale ranging from not true 
to often true of the child. The items are 
grouped into 8 different behavioral 
subscales (e.g., Anxious/Depressed), 
producing a score for each behavioral 
subscale. Some behavioral subscales 
are further summed to provide scores for 
Internalizing (from the Withdrawn, 
Somatic Complaints, and 
Anxious/Depressed scales) and 
Externalizing (from the Delinquent 
Behavior and Aggressive Behavior) 
problem subscales. A Total Problems 
score is also derived from all items, 
except for a few items. This assessment 
takes approximately 20 minutes to 
complete, and it was administered to the 
parents of all child participants, ages 6-
17.  

    X 

 

Table 3. Phenotypic Data Available. The complete list of the phenotypic data for each 
subjects is listed. The name of the cognitive test or questionnaire, a description of the 
measure, and target subjects are described. 
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