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Fundamental domains and generators for lattice Veech groups

Ronen E. Mukamel�

Abstract. The moduli space QMg of non-zero genus g quadratic differentials has a natural
action of G D GLC

2
.R/=

˝
˙
�

1 0
0 1

�˛
. The Veech group PSL.X; q/ is the stabilizer of .X; q/ 2

QMg in G. We describe a new algorithm for finding elements of PSL.X; q/ which, for
lattice Veech groups, can be used to compute a fundamental domain and generators. Using
our algorithm, we give the first explicit examples of generators and fundamental domains for
non-arithmetic Veech groups where the genus of H=PSL.X; q/ is greater than zero.
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1. Introduction

Fix an integer g � 2 and letMg be the moduli space of genus g Riemann surfaces.
The space Mg is a complex orbifold and carries a complete, Finsler Teichmüller
metric whose geodesics are explicitly described by Teichmüller’s theorem. The
bundleQMg !Mg of holomorphic quadratic differentials consists of pairs .X; q/
where q is a non-zero holomorphic quadratic differential onX 2Mg . The geodesic
flow onMg gives anR-action onQMg which, together with theC�-action fixingX
and rescaling q, generates an action of G D GLC2 .R/=

˝
˙
�
1 0
0 1

�˛
onQMg .

The Veech group PSL.X; q/ is the stabilizer of .X; q/ in G. There are many
examples of surfaces whose Veech groups are known to be complicated [7,8,11,17].
There are few examples of Veech groups that have been described in their entirety.
For instance, each integer D � 5 congruent to 0 or 1 mod 4 determines a quadratic
differential .XD; qD/ in QM2 as in Figure 3 whose Veech group is a lattice in
PSL2.R/ [5, 10]. The homeomorphism type of H=PSL.XD; qD/ is determined
in [2, 12, 13] but little else is known about PSL.XD; qD/ outside of some small
values forD.

The purpose of this paper is to introduce girth differentials and use them to study
the group PSL.X; q/ and the quotient H=PSL.X; q/. We will describe an algorithm
�The research for this paper was supported in part by grant DMS-1103654 from the National Science

Foundation.
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for finding elements of PSL.X; q/ which, for lattice Veech groups, gives generators
for PSL.X; q/ and a fundamental domain for the action of PSL.X; q/ on H. Using an
implementation of our algorithm in Sage [14], we compute the first explicit examples
of fundamental domains and generators for non-arithmetic Veech groups where the
genus of H=PSL.X; q/ is greater than zero.
Theorem 1.1. Fundamental domains and generators for PSL.XD; qD/ are encoded
in Table 1 forD D 44, 45, 48, 52, 53, 56, 57, and 60.
The discriminantD D 44 is the smallest discriminant giving rise to a positive genus
quotient H=PSL.X44; q44/ (the genus is one). In Figure 1 we give a fundamental
domain for PSL.X44; q44/. It is straightforward to check whether any given element
g 2 G is in PSL.XD; qD/ by comparing the Delaunay triangulations of .XD; qD/
and g � .XD; qD/. Since the Delaunay decomposition of a quadratic differential is
unique, g is in PSL.XD; qD/ if and only if the Delaunay polygons for .XD; qD/
differ from those for g � .XD; qD/ by translations respecting the gluing relations. To
prove Theorem 1.1 without refering to the results in this paper, one simply checks
that the claimed generators are in PSL.XD; qD/ and that the group they generate
has covolume equal to the volume of H=PSL.XD; qD/, which is computed in [2].
We will give another proof of Theorem 1.1, at the end of this introduction, that is
independent of [2]. The rest of this paper is devoted to explaining the algorithm used
to generate Table 1.

Girth differentials and the well-girthed spine. Throughout this paper, we fix a
quadratic differential .X0; q0/ inQMg and setQL D G �.X0; q0/ andL D C�nQL.
The quotient L is a hyperbolic Riemann surface isomorphic to H=PSL.X0; q0/ and
points in L are quadratic differentials inQL up to scale.

We will call a differential .X; q/ 2 QL a girth differential if one of its shortest
saddle connections is horizontal of length one and for each .X; q/ 2 QL we define:

N.X; q/ D f� 2 C� W .X; �q/ is a girth differentialg :

The set N.X; q/ is a non-empty, cyclically ordered and finite set. The number of
elements in N.X; q/ depends only on the differential up to scale ŒX; q� 2 L and
equals the product of the number of girth differentials in C�q with the orbifold
order of ŒX; q� in L. We will call a differential up to scale ŒX; q� 2 L well-girthed
if #N.X; q/ � 2.

Our algorithm for finding elements of PSL.X0; q0/ is based on the study of the
level sets for #N.X; q/:

LŒn� D fŒX; q� 2 L W #N.X; q/ D ng ;

and the well-girthed spine:

SpineWG.L/ D
[
n�2

LŒn�:
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Our main theorem shows that the sets LŒn� stratify L by easy to understand pieces
and L deformation retracts onto SpineWG.L/.
Theorem 1.2. The setsLŒn� give a stratificationL D

S
n�1LŒn� by disjoint sets withS

n�k LŒn� closed for each k � 1 and L deformation retracts1 onto its well-girthed
spine:

L! SpineWG.L/:

Each connected component of LŒ1� is diffeomorphic to the disk or the punctured
disk, each connected component of LŒ2� is a finite length geodesic arc and the setS
n�3LŒn� is discrete in L.

In particular, the well-girthed spine SpineWG.L/ is homeomorphic to a graph.
Examples well-girthed spines are depicted in Figures 1 and 4.

Finite volume orbits. When the volume of L is finite, we use the Veech dichotomy
to show that LŒ1� contains a neighborhood of each cusp, allowing us to prove:
Theorem 1.3. If the volume of L is finite, then SpineWG.L/ is compact, the setS
n�3LŒn� is finite, the set LŒ2� has finitely many connected components and the

set LŒ1� consists of # cusps.L/ components of each of which is diffeomorphic to the
punctured disk.

For finite volume L, the well-girthed spine is homeomorphic to a finite graph.

Decorated Riemann surfaces. Theorem 1.3 should be compared with the decom-
positions of decorated Riemann surfaces studied in [3]. A decoration of a finite
volume, cusped hyperbolic surface X is a subset B � X consisting of disjoint and
simple horocycles about each cusp of X . Associated to each decoration of X is a
spine SpineD.X;B/ � X , similar in spirit to the spine SpineWG.L/ of L, consisting
of all points inX which havemultiple shortest paths toB . In fact, for finite volumeL,
one can show that the well-girthed spine SpineWG.L/ is associated to a particular
decoration of L.

Algorithm. Combining Theorem 1.2 with standard methods for traversing graphs
(e.g. breadth-first search) gives an algorithm for exploring L and enumerating
elements of PSL.X0; q0/. Breadth-first search (BFS) proceeds by iteratively
enlarging a list of “known” vertices and edges by, at each stage, finding the neighbors
of all of the previously known vertices.

The key ingredients to implementing BFS are methods to (1) list the neighbors of
a particular vertex, and (2) determine whether a particular neighbor is among the list

1If L has orbifold points, we mean that there is a homotopy ht W L! L defined on the coarse space
associated toL and a homotopy Qht W QL! QL defined on a good cover� W QL! L so that Qh0 is the identity,
Qht restricts to the identity on ��1.SpineW G.L// and Qh1 is a retraction onto ��1

�
SpineW G.L/

�
and

� ı Qht D ht ı � .



60 R. E. Mukamel CMH

of known vertices. The vertices of SpineWG.L/ are points ŒX; q� 2 V D
S
k�3LŒk�

and the valence of ŒX; q� is typically #N.X; q/. It is straightforward to compute the
neighbors of ŒX; q� from the saddle periods of .X; q/, and we describe an algorithm
to do so at the end of Section 3 (see also Figure 2). To check whether a particular
neighbor of ŒX; q� is among the previously known vertices, we compare its Delaunay
triangulation with those of the known vertices. In this way, we enumerate the vertices,
edges and cycles on SpineWG.L/ and compute elements on PSL.X0; q0/.

0

i

√11-11+√11 -√11

Example D=12. The Riemann surface L12 has genus zero, three cusps and one
orbifold point whose orbifold order is two. Using our algorithm, we enumerated the
components of L12[n] for n ≥ 2. The set L12[3] consists of three differentials up to
scale, L12[n] is empty for n ≥ 4 and L12[2] has five components.

We also computed a pair (S12,σ12) encoding a fundamental domain and generators
for PSL(X12, q12):
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and σ12 = (1, 1)(2, 3)(4, 5).

The domain D(S12) is the convex hull of
�
−
√
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√

3, 0, 3 −
√

3,∞
�

and PSL(X12, q12)
is generated by:
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The domain D(S12) is depicted in Figure 4.

Example D=13. The Riemann surface L13 has genus zero, three cusps, one orbifold
point whose orbifold order is two. Using our algorithm, we enumerated the components
of L13[n] for n ≥ 2. The set L13[3] (see Figure 4) consists of three differentials up to
scale, L13[n] is empty for n ≥ 4 and L13[2] has five components.

We also computed a pair (S13,σ13) encoding a fundamental domain and generators
for PSL(X13, q13):
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and σ13 = (1, 2)(3, 5)(4, 4).

The domain D(S13) is the convex hull of
�

1−
√

13
2 , −7+

√
13

3 ,−1, 0,∞
�

and PSL(X13, q13)

is generated by:
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The domain D(S13) and the stratification L13 =
�

n≥1 L13[n] are drawn in Figure 4.

Example D=44. The Riemann surface L44 has Euler characteristic −21/2, genus
one, nine cusps and three orbifold points each of which has orbifold order two. The set
L44[n] is empty for n ≥ 4, the set L44[3] consists of 21 points, and the set L[2] has 33
connected components.

The pair (S44,σ44) listed in Table 1 encodes a fuandmental domain and generators
for PSL(X44, q44). The domain D(S44) is the ideal 23-gon equal to the convex hull of:
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Figure 1. The Riemann surface L44 Š H=PSL.X44; q44/ of genus one has nine cusps and
three orbifold points of order two. The convex hull of V � @H (top) is an ideal 23-gon (middle)
and a fundamental domain for PSL.X44; q44/. Our algorithm computes a fundamental domain
and generators for PSL.X44; q44/ by performing a breadth first search on the well-girthed spine
SpineW G.L44/ (bottom).
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By Theorem 1.3, when PSL.X0; q0/ is a lattice, the well-girthed spine has finitely
many vertices and edges. The BFS will terminate yielding a complete list of vertices
and edges for SpineWG.L/ from which one can compute a fundamental domain and
set of generators for PSL.X0; q0/. In Section 4 we apply our algorithm to several
examples of Veech groups of genus two quadratic differentials (see also Figures 1
and 4).

Proof of Theorem 1.1. As described in Section 4, the pair .SD; �D/ listed in Table 1
encodes an ideal hyperbolic polygon D.SD/ and generators �.SD ;�D/ � G for a
Fuchsian group �D with fundamental domain D.SD/. By comparing Delaunay
triangulations as described above, we check that each element of �.SD ;�D/ is in
PSL.XD; qD/ and conclude that �D is finite index in PSL.XD; qD/.

To check that PSL.XD; qD/ is no larger, we compute SpineWG.H=PSL.XD; qD//
via the process outlined in the previous paragraph. Since H=PSL.XD; qD/
deformation retracts onto SpineWG.H=PSL.XD; qD//, we can compute the Euler
characteristic and hyperbolic area of H=PSL.XD; qD/ from the isomorphism type
of the well-girthed spine. Checking that the area of D.SD/ is equal to the area of
H=PSL.XD; qD/ ensures that �D D PSL.XD; qD/.

Other algorithms. There are several other methods for computing elements in
PSL.X0; q0/. The algorithm described in [10] searches for parabolic elements
in PSL.X0; q0/ and will find generators for lattice Veech groups only if the quotient
H=PSL.X0; q0/ has genus zero. A stratification of L by hyperbolic polygons
based on Delaunay triangulations is studied in [19] and an algorithm based on
this stratification is suggested in [4]. While this algorithm will theoretically give
generators and a fundamental domain for arbitrary Veech groups, the stratification
of L in Theorem 1.2 will typically be much simpler than the Delaunay stratification
and Theorem 1.1 is the first example of an explicit computation of fundamental
domains and generators for non-arithmetic Veech groups with higher genus quotients.
An algorithm for finding generators of PSL.X0; q0/when PSL.X0; q0/ is arithmetic,
i.e. commensurable to PSL2.Z/, is given in [15], and in [6] it is shown that every
finite index subgroup of �.2/ D ker.PSL2.Z/! PSL2.Z=2Z// is a Veech group.

Notes and references. The spine SpineWG.L/ is also studied in [16] to give a
characterization of surfaces with lattice Veech groups. In particular, the retraction
L ! SpineWG.L/ we define in Proposition 3.14 also appears there (cf. proof of
Proposition 4.2 in [16]). Theorem 1.3 can be read as a converse to Corollary 4.5
of [16] which shows that if LŒ2� has finitely many components then L has finite
volume.

Our terminology is meant to suggest a comparison with well-rounded lattices,
which form a spine for the homogeneous space SLn.R/=SLn.Z/ [1]. For examples
of quadratic differentials with complicated (and not necessarily lattice) Veech groups,
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see e.g. [11, 17]. It would be interesting to explore those Veech groups using our
algorithm. For further background on the moduli space of quadratic differentials
QMg , the G-action onQMg and Veech groups, see e.g. [9] or [20].

Acknowledgements. I would like to thank C. McMullen and S. Kerckhoff for
useful conversations and the referee for helpful suggestions. I would also like to
thank C. McMullen for sharing computer code that enumerates the saddle periods
on .X0; q0/ on which our algorithm and the computations appearing in this paper
rely. The author was supported in part by National Science Foundation grant
DMS-1103654.

2. Quadratic differentials

In this section, we collect background and fix notation about quadratic differentials
and the G-action onQMg . For further background, see [9, 20].

Quadratic differentials. Aholomorphic quadratic differential on a Riemann surface
X 2 Mg is a holomorphic section of the square of the cotangent bundle on X .
The collection Q.X/ of all holomorphic quadratic differentials on X forms a
.3g � 3/-dimensional complex vector space and, as X ranges in Mg , the non-zero
elements inQ.X/ form a bundleQMg !Mg . A non-zero differential q 2 Q.X/
gives a metric jqj on X which is flat except for cone singularities at the zeros Z.q/
of q. The differential q also determines a foliation F.q/ of X n Z.q/ by horizontal
geodesics.

A typical way to specify a pair .X; q/ is to glue parallel sides of equal length
on a collection of polygons fP1; : : : ; Pkg in C by transition functions of the form
z 7! ˙z C c (see Section 4 for examples):

.X; q/ D
[
i

.Pi ; dz
2/= � :

Lines in C give geodesics on X and horizontal lines give leaves of F.q/. The
quadratic differential up to scale represented by .X; q/ will be denoted by ŒX; q�.

Saddle connections and saddle periods. A saddle connection on .X; q/ is a jqj-
geodesic  W Œa; b�! X beginning and ending atZ.q/ and avoidingZ.q/ otherwise.
Along  there are two choices of square roots for q and the complex numbers

R

˙
p
q

are called periods of  . The image in C�=.z � �z/ of the set of all saddle periods
on .X; q/ will be denoted by:

Per.X; q/ D
� Z



˙
p
q W  is a saddle connection on .X; q/

�
� C�=.z � �z/:
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Note that Per.X; �2q/ D f˙�v W ˙v 2 Per.X; q/g D �Per.X; q/. The set Per.X; q/
is discrete and its preimage in C is bounded away from zero.

The set of all shortest saddle periods in Per.X; q/ will be denoted by:

Perm.X; q/ D
˚
˙ v 2 Per.X; q/ W j ˙ vj � j ˙ wj for any˙w 2 Per.X; q/

	
:

As in Section 1, we will call .X; q/ a girth differential if one of the shortest saddle
periods on .X; q/ is horizontal of length one, i.e. ˙1 2 Perm.X; q/. Since Perm.X; q/
is a discrete subset of a circle, it is a non-empty, cyclically ordered and finite set. The
sets N.X; q/ and Perm.X; q/ are in natural bijection:

Proposition 2.1. The map ˙� 7! ��2 gives a bijection between Perm.X; q/ and
N.X; q/.

Proof. For any � 2 C�, the shortest saddle periods on .X; q/ and .X; �2q/ are
related by � � Perm.X; q/ D Perm.X; �2q/: One of the shortest saddle connections
on .X; ��2q/ is horizontal and of length one if and only if˙� 2 Perm.X; q/.

GLC

2
.R/- and G -actions. Let GLC2 .R/ denote the group of two-by-two matrices

with positive determinant and let G be the quotient GLC2 .R/=
˝
˙
�
1 0
0 1

�˛
. The group

GLC2 .R/ acts on C by real-linear maps: 
a b

c d

!
� .x C iy/ D .ax C by/C .cx C dy/i:

This action covers a G-action on the quotient C�=.z � �z/.
For a quadratic differential .X; q/ obtained by gluing together the polygons

Pi � C and a matrix A 2 GLC2 .R/, the quadratic differential A � .X; q/ is obtained
by gluing together the polygons A � Pi :

A � .X; q/ D
[
i

.A � Pi ; dz
2/= � :

The matrix
�
�1 0
0 �1

�
stabilizes every point in QMg , and this GLC2 .R/-action also

covers a G-action. The Veech group of .X; q/ is its stabilizer in G:

PSL.X; q/ D fA 2 G W A � .X; q/ D .X; q/g :

An important property of saddle periods is that they are equivariant with respect
to G, i.e.:

Per.A � .X; q// D A � Per.X; q/:

In particular, PSL.X; q/ preserves the set Per.X; q/.
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It is not true that the shortest saddle periods are equivariant with respect to G.
Instead, we have:

Proposition 2.2. Fix any .X; q/ 2 QMg , the set:

U.X; q/ D
˚
B 2 G W Perm.B � .X; q// � B Perm.X; q/

	
contains an open neighborhood of the identity.

Proof. The claim follows easily from the fact that Per.X; q/ is discrete. Let l0 be
the length of one of the shortest saddle periods on .X; q/ and let 1=2 > � > 0 be
a number so that there are no saddle periods whose lengths belong to the interval
.l0; .1C �/l0/. We will show that U.X; q/ contains the image inG of the set U.�=3/
of matrices that distort lengths by a factor of at most 1C �=3:

U.�=3/ D
˚
g 2 GLC2 .R/ W .1C �=3/

�1
jvj < jg � vj < .1C �=3/jvj for any v 2 C�

	
:

If g 2 U.�=3/, then the length of the shortest saddle period on g � .X; q/ is at most
.1C �=3/l0 and the longest saddle period in g�1 � Perm.g � .X; q// � Per.X; q/ has
length at most .1C�=3/2l0 < .1C�/l0. Based on our choice of �, Perm.g �.X; q// �
g � Perm.X; q/ and the image of g in G is in U.X; q/.

Proposition 2.2 yields the following as a corollary.

Proposition 2.3. For any k � 1, the set
S
n�k LŒn� is closed in L.

Proof. Wewill show that the complement V D
S
n<k LŒn� of

S
n�k LŒn� is open. If

ŒX; q� 2 V , then Perm.X; q/ contains fewer thank saddle periods. ByProposition 2.2,
there is a neighborhood U of the identity in G consisting of matrices g with
Perm.g � .X; q// � g � Perm.X; q/. The image of U in L under g 7! Œg � .X; q/�

is a neighborhood of ŒX; q� and contained in V , so V is open.

Euclidean similarities and thehyperbolic plane. Wewill denote byC� � GLC2 .R/
the subgroup of Euclidean similarities, i.e. the subgroup commuting with SO.2/. We
will denote by ŒA� the coset representative ofA in C�nGLC2 .R/. We will identify the
quotientC�nGLC2 .R/with the hyperbolic plane via the bijectionH! C�nGLC2 .R/
defined by

� 7! ŒA� � where A� D
�
1 Re �
0 Im �

�
:

In particular, there is a unique holomorphic structure and metric on C�nGLC2 .R/
for which this identification is an isometry. The map f W H ! L defined by
f .ŒA�/ D ŒA � .X0; q0/� is the universal covering map for L.
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Möbius transformations. The quotient C�nGLC2 .R/ has a right GLC2 .R/-action
(and G-action), with B acting by ŒA� 7! ŒAB�. There is a unique Möbius
transformation mB W H ! H with the property that ŒA�B� D ŒAmB .�/�. Namely,
if B D

�
a b
c d

�
, then mB.�/ D

a��b
�c�Cd

. The universal cover f W H ! L

satisfies f ı mB D f for each B 2 PSL.X0; q0/ and f covers an isometry
H=PSL.X0; q0/! L, where B 2 PSL.X0; q0/ acts on the right on H by mB .

Geodesics, half planes and horoballs. We now state some facts about geodesics,
half planes and horoballs in H D C�nGLC2 .R/ that are elementary to verify.

For any pair of distinct points˙v and˙w in C�=.z � �z/with v andw linearly
independent over R, the set:

.˙v;˙w/ D
˚
ŒA� 2 H W jA � .˙v/j D jA � .˙w/j

	
is the geodesic with endpoints Re.v/�Re.w/

Im.w/�Im.v/ and �
Re.v/CRe.w/
Im.v/CIm.w/ . For such˙v and˙w,

the set:
T .˙v;˙w/ D

˚
ŒA� 2 H W jA � .˙v/j < jA � .˙w/j

	
is an open half plane with boundary @T .˙v;˙w/ D .˙v;˙w/. Note if
v D �w with � > 1 real, the set .˙v;˙w/ is empty, T .˙v;˙w/ is empty
and T .˙w;˙v/ D H.

For any˙v 2 C�=.z � �z/ and real number C > 0, the set:

B.˙v; C / D

�
ŒA� 2 H W

jA � .˙v/j2

det.A/
� C

�
:

is the closed horoball tangent to @H at �Re.v/= Im.v/ and of radius C
2.Imv/2 .

3. Girth differentials and saddle periods

In this section, we will prove Theorems 1.2 and 1.3 by studying the set Per.X0; q0/
of saddle periods on .X0; q0/ and the action of PSL.X0; q0/ on Per.X0; q0/. We will
associate to each finite subset S � Per.X0; q0/ a set:

Hm.S/ D
˚
ŒA� 2 H W Perm.A � .X0; q0// D A � S

	
:

We will characterize when Hm.S/ is non-empty and then prove the following
proposition, allowing us to establish the claims about the components of LŒn� made
in Theorem 1.2:
Proposition 3.1. Fix S � Per.X0; q0/ withHm.S/ non-empty. One of the following
holds:
(1) Hm.S/ is an open, convex subset of H and contained in a horoball .#S D 1/;
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(2) Hm.S/ is an open geodesic arc of finite length .#S D 2/; or
(3) Hm.S/ is a single point .#S � 3/.
The image ofHm.S/ under ŒA� 7! ŒA � .X0; q0/� is a connected component ofLŒ#S�.

We will then construct an explicit homotopy inverse for the inclusion

SpineWG.L/! L

using theG-action onQL to complete the proof of Theorem 1.2. The key observation
is that the set of girth differentials is closed under multiplication by matrices of the
form

�
1 0
0 e2t

�
for t > 0:

Proposition 3.2. If .X; q/ 2 QL is a girth differential and t � 0, then
�
1 0
0 e2t

�
�.X; q/

is also a girth differential.
This gives a foliation of the set of girth differentials by intervals which project to

geodesic rays inL. The map collapsing these rays to their endpoints gives the desired
homotopy inverse.

Finally, we will conclude this section by turning to the case where L has finite
volume. Using the Veech dichotomy, we will show that LŒ1� contains a horoball
neighborhood of each cusp ofL to conclude that SpineWG.L/ is contained in compact
set and prove Theorem 1.3.

Ellipses. To start, we will characterize when Hm.S/ is empty. By an ellipse
(respectively circle) in C�=.z � �z/ we will mean the image of an ellipse
(respectively circle) in C invariant under z 7! �z. We will say a finite subset S �
Per.X0; q0/ is supported by the ellipse E � C�=.z � �z/ if S D E \ Per.X0; q0/
and the region bounded by E contains no saddle periods. Equivalently, an ellipse E
containing S supports S if and only if Perm.A � .X0; q0// D A � S whenever A �E is
a circle.

The subsets of Per.X0; q0/ supported by ellipses are those for which Hm.S/ is
non-empty:
Proposition 3.3. Fix a finite set S � Per.X0; q0/. The set Hm.S/ is non-empty if
and only if S is supported by an ellipse.

Proof. First suppose ŒA� 2 Hm.S/ and let E � C�=.z � �z/ be the circle passing
through Perm.A � .X0; q0// D A � S . The ellipse A�1 � E supports S . Conversely,
suppose E supports S and let A 2 G be any matrix for which A � E is a circle. For
such an A, Perm.A � .X0; q0// D A � S and ŒA� 2 Hm.S/.

The collection of subsets of Per.X0; q0/ supported by ellipses:

Ell.X0; q0/ D fS � Per.X0; q0/ W S is supported by an ellipseg :

and the collections Ell.X0; q0/Œn� D fS 2 Ell.X0; q0/ W #S D ng will play an
important role in what follows.
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Convex sets. We now associate to each S 2 Ell.X0; q0/ a complete convex setH.S/
in H.
Proposition 3.4. For any S 2 Ell.X0; q0/, the set:

H.S/ D
˚
ŒA� 2 H W The set A � S lies on a circle

	
is a convex and complete subset of H. More specifically, H.S/ D H if #S D 1,
H.S/ is a geodesic if #S D 2 andH.S/ is a point if #S � 3.

Proof. First suppose #S D 1. For any ŒA� 2 H, A � S consists of a single point
˙v 2 C�=.z � �z/ which lies on the circle of radius j ˙ vj. If #S D 2, i.e. S D
f˙v;˙wg, then H.S/ is the geodesic .˙v ˙ w/ defined in Section 2 (note that v
is not a real multiple of w since S is supported by an ellipse). Finally, suppose
#S � 3. The preimage of S in C consists of at least six points and there is exactly
one ellipse E in C�=.z � �z/ containing S . The set H.S/ consists of the single
point ŒA� 2 H for which A �E is a circle.

Next we study the setHm.S/ defined at the beginning of this section:
Proposition 3.5. For any S 2 Ell.X0; q0/, the set:

Hm.S/ D
˚
ŒA� 2 H W Perm.A � .X; q// D A � S

	
is a non-empty, convex and open subset ofH.S/ and is contained in the intersection
of horoballs

T
˙v2S B

�
˙v; Area.X0;q0/

�

�
.

Proof. The setHm.S/ is non-empty by Proposition 3.3.
We will now show that Hm.S/ is open in H.S/. Fix a point ŒA� 2 Hm.S/. By

Proposition 2.2, there is a neighborhood U of the identity in G with the property
that:

Perm.BA � .X0; q0// � B � Perm.A � .X0; q0// D BA � S whenever B 2 U:

The image of U under g W B 7! ŒBA� is an open neighborhood of ŒA�. For any
B 2 U with g.B/ D ŒBA� 2 H.S/, Perm.BA � .X0; q0// is a subset of BA � S , a set
which lies on a circle. It follows that Perm.BA � .X0; q0// D BA � S , ŒBA� 2 Hm.S/
and g.U / \H.S/ is contained in g.U / \Hm.S/.

Next, we will show that Hm.S/ is convex. Recall that, for any ˙v and ˙w in
C�=.z � �z/, the setT .˙v;˙w/ D fŒA� 2 H W jA � .˙v/j < jA � .˙w/jg is convex
(and usually an open half plane). The regionHm.S/ satisfies:

Hm.S/ D H.S/ \

 \
˙w2Per.X0;q0/;
˙w 62S;˙v2S

T .˙v;˙w/

!
;

and is also convex.



68 R. E. Mukamel CMH

We will now showHm.S/ is contained in the closed horoball B.˙v; Area.X0;q0/
�

/

for each ˙v 2 S . If A � S D Perm.A � .X0; q0//, then the injectivity radius of the
metric flat metric on A � .X0; q0/ is at least jA � .˙v/j for each ˙v 2 S . Whenever
ŒA� 62 B.˙v;Area.X0; q0/=�/, the area ofA �.X0; q0/ is small enough the injectivity
radius of the flat metric is smaller than jA � .˙v/j.

A stratification of H. We now show that the sets Hm.S/ stratify H and that the
image of Hm.S/ under the universal covering map f W H ! L is an open subset
of LŒ#S�.

Proposition 3.6. The sets Hm.S/ as S ranges in Ell.X0; q0/ are pairwise disjoint
and cover H.

Proof. First suppose Hm.S1/ and Hm.S2/ intersect. If ŒA� 2 Hm.S1/ \Hm.S2/,
thenA �S1 D Perm.A � .X0; q0// D A �S2 and, sinceA is invertible, S1 D S2. To see
that the sets Hm.S/ cover H, note that ŒA� is in Hm.S/ where S D A�1 � Perm.A �
.X0; q0//.

Proposition 3.7. For any S 2 Ell.X0; q0/Œn�, the image f .Hm.S// is an open subset
of LŒn�.

Proof. The set f .Hm.S// is contained inLŒn� since, for any ŒA� 2 Hm.S/, f .ŒA�/ D
ŒA � .X0; q0/� has:

#N.A � .X0; q0// D # Perm.A � .X0; q0// D #A � S D n:

Nowfix any ŒA� 2 Hm.S/. Wewill show thatf .Hm.S// contains a neighborhood
of f .ŒA�/ in LŒn�. By Proposition 2.2, there is a neighborhood U of the identity
in G with the property that Perm.BA � .X0; q0// � B Perm.A � .X0; q0// whenever
B 2 U . The image of U under g W B 7! ŒBA � .X0; q0/� is an open neighborhood
of f .ŒA�/ in L, and g.B/ is in LŒn� if and only if:

Perm.BA � .X0; q0// D B Perm.A � .X0; q0// D BA � S;

i.e. ŒBA� 2 Hm.S/. The neighborhood g.U / \ LŒn� of f .ŒA�/ is contained in
f .Hm.S//.

Veech group. We now study the action of PSL.X0; q0/ on H. We start by showing
that PSL.X0; q0/permutes the pieces of the stratification ofHD

S
S2Ell.X0;q0/

Hm.S/:

Proposition 3.8. Fix B 2 PSL.X0; q0/ and S 2 Ell.X0; q0/. The set B�1 � S is in
Ell.X0; q0/ and theMöbius transformationmB W ŒA� 7! ŒAB� restricts to an isometry
betweenHm.S/ andHm.B�1 � S/.
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Proof. Fix ŒA� 2 Hm.S/, i.e. Perm.A � .X0; q0// D A � S . If E is any ellipse
supporting S , then B�1 � E supports B�1 � S . The coset ŒAB� D mB.ŒA�/ is in
Hm.B

�1S/ since:

Perm.AB � .X0; q0// D Perm.A � .X0; q0// D A � S D .AB/ � .B�1 � S/:

This shows that mB sends Hm.S/ into Hm.B�1 � S/. Since mB�1 D m�1B , mB
restricts to an isometry betweenHm.S/ andHm.B�1 � S/.

Partitions of L and LŒn�. By Proposition 3.8, the Veech group permutes the
components of the stratification H D

S
S2Ell.X0;q0/

Hm.S/, giving a stratification of
the quotient H=PSL.X0; q0/ into disjoint sets:

H=PSL.X0; q0/ D
[

ŒS�2Ell.X0;q0/=PSL.X0;q0/

Hm.S/=Stab.S/:

Here ŒS� is the coset in Ell.X0; q0/=PSL.X0; q0/ containing S and Stab.S/ is the
stabilizer of S in PSL.X0; q0/. Since the universal covering map f W H! L factors
through an isometry H=PSL.X0; q0/ ! L and f .Hm.S// is contained in LŒ#S�,
this stratification of H=PSL.X0; q0/ gives a stratification of LŒn� into disjoint sets:

LŒn� D
[

ŒS�2Ell.X0;q0/Œn�=PSL.X0;q0/

f .Hm.S//:

By Proposition 3.6, f .Hm.S// is open in LŒn�, giving:
Proposition 3.9. For each S 2 Ell.X0; q0/Œn�, the set f .Hm.S// is a connected
component of LŒn�. The map ŒS� 7! f .Hm.S// gives a bijection between the
connected components of LŒn� and Ell.X0; q0/Œn�=PSL.X0; q0/.

Proof. The sets f .Hm.S// as S ranges over coset representatives in Ell.X0; q0/Œn�=
PSL.X0; q0/ are disjoint and open subsets of LŒn�. They are also connected since
Hm.S/ is convex (and therefore path connected).

We are now ready to prove Proposition 3.1 stated at the beginning of this section:

Proof of Proposition 3.1. Fix S � Per.X0; q0/ with Hm.S/ not empty, i.e. S 2
Ell.X0; q0/. In Proposition 3.9 we showed that the image of Hm.S/ under ŒA� 7!
ŒA � .X0; q0/� is a connected component of LŒn�.

The remaining claims about Hm.S/ follow from Propositions 3.4 and 3.5. If
#S D 1, Hm.S/ is an convex, open subset of H.S/ D H and contained in
the horoball B .˙v;Area.X0; q0/=�/ where ˙v 2 S . If #S D 2, Hm.S/ is an
open and convex subset of the geodesic H.S/ and is contained in the intersectionT
˙v2S B

�
˙v; Area.X0;q0/

�

�
which is compact. Such a set must be an open geodesic

arc of finite length. Finally, if #S � 3, thenHm.S/ is a point.
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Connected components of LŒn�. We are now ready to prove the claims in Theo-
rem 1.2 about the connected components of LŒn�. We start with LŒ1�:
Proposition 3.10. Each connected component of LŒ1� is diffeomorphic to the disk or
the annulus.

Proof. By Proposition 3.9, each connected component ofLŒ1� is equal to f .Hm.S//
for some S 2 Ell.X0; q0/Œ1�. By Proposition 3.8, the quotient Hm.S/=Stab.S/
injects into the quotient H=PSL.X0; q0/, and the restriction of f to Hm.S/ covers
a bijection from the quotient Hm.S/=Stab.S/ onto f .Hm.S//. This bijection is a
diffeomorphism since it is a local isometry.

We need to show thatHm.S/=Stab.S/ is diffeomorphic to the disk or the annulus.
SinceHm.S/ is a convex open set inH.S/ D H,Hm.S/ is diffeomorphic to a disk.
The stabilizer Stab.S/ is a unipotent subgroup of the discrete group PSL.X0; q0/.
Either Stab.S/ is trivial and f .Hm.S// is diffeomorphic to the disk, or Stab.S/ is
isomorphic to Z, acts freely and properly discontinuously on Hm.S/ and Hm.S/ is
diffeomorphic to the annulus.

Proposition 3.11. Each connected component of LŒ2� is a finite length geodesic arc.

Proof. By Proposition 3.9, each connected component ofLŒ2� is equal to f .Hm.S//
for some S 2 Ell.X0; q0/Œ2�. By Proposition 3.5,Hm.S/ is an open convex subset of
the geodesicH.S/ and is contained in the intersection of a pair of horoballs tangent
to distinct points in @H. The set Hm.S/ is a finite length geodesic arc and so is its
image f .Hm.S// in L.

Proposition 3.12. The set
S
n�3LŒn� is discrete in L.

Proof. Let ŒA� 2 H be any point with f .ŒA�/ D ŒA � .X0; q0/� 2 LŒn� for n � 3. Set
S D A�1 Perm.A � .X0; q0//, so that ŒA� 2 Hm.S/. By Proposition 2.2, there is a
neighborhood U of the identity in G with the property that Perm.BA � .X0; q0// �
B � Perm.A � .X0; q0// D BA � S whenever B 2 U .

The image of U under g W B 7! f .ŒBA�/ is an open set in L. Suppose
g.B/ 2 LŒk� with k � 3, and choose S 0 � S so Perm.BA � .X0; q0// D BA � S 0.
Since S 0 contains at least three points, there is a unique ellipse E supporting S 0. The
matrix B takes the circle A � E into the circle BA � E and is therefore a Euclidean
similarity. In other words, the only point in g.U / \

S
n�3LŒn� is f .ŒA�/.

Retraction and homotopy equivalence. We now show that L deformation retracts
onto

S
n�2LŒn� by constructing an explicit homotopy inverse. We start by showing

that LŒ1� is foliated by geodesic rays. To do so, we will show that the set of girth
differentials inQL:

GL D
˚
.X; q/ 2 QL W .X; q/ is a girth differential
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is invariant undermultiplication bygt D
�
1 0
0 e2t

�
for t � 0. The followingProposition

implies Proposition 3.2:
Proposition 3.13. There is a continuous function T W GL ! R�0 so that, for any
.X; q/ 2 GL, we have:
(1) gt � .X; q/ is a girth differential and #N.gt � .X; q// D 1 for t > T .X; q/;
(2) gt � .X; q/ is not a girth differential for t < T .X; q/; and
(3) gt � .X; q/ is a girth differential and #N.gt � .X; q// � 2 for t D T .X; q/.

Proof. For any˙.xC iy/ 2 Per.X; q/ with jxj < 1, the number t0 D 1
4
log

�
1�x2

y2

�
is non-positive since x2 C y2 > 1. The number t0 also has the property that
j
�
1 0
0 e2t

�
� .˙.x C iy//j is greater than one for t > t0, equal to one when t D t0 and

is less than one for t < t0. It is straightforward to verify that the function T .X; q/
given explicitly by:

T .X; q/ D sup
˙.xCiy/2Per.X;q/

jxj<1

1

4
log

�
1 � x2

y2

�
:

satisfies the desired properties. Note that the intersection of Per.X; q/ with the strip
fx C iy W jxj < 1g is non-empty since the area of jqj is finite.

Proposition 3.13 shows that LŒ1� is foliated by open half-infinite geodesic rays
whose endpoints lie in

S
n�2LŒn�. The map sending ŒX; q� 2 LŒ1� to the endpoint

of the leaf of this foliation gives a homotopy inverse for the inclusion
S
n�2LŒn�:

Proposition 3.14. The inclusion SpineWG.L/! L is a homotopy equivalence, with
homotopy inverse:

Nh W L! SpineWG.L/

defined by Nh.ŒX; q�/ D ŒgT.X;q/ � .X; q/� whenever .X; q/ 2 GL.

Proof. For .X; q/ 2 GL and t � 0 define:

ht .X; q/ D gmax.�t;T .X;q// � .X; q/:

The functions ht W GL ! GL are continuous and depend continuously on t . Also,
ht covers a well defined map Nht W L! L since, whenever C�q contains more than
one girth differential, T .X; qi / D 0 for each i . The function Nh0 is the identity map
on L and the function Nht restricts to the identity on SpineWG.L/ for every t � 0.
As t tends to infinity, Nht tends uniformly on compact sets to the retraction Nh1 D Nh.

The functions Nht gives the desired homotopy equivalence, at least between the
coarse space associated to the orbifold L and the subset

S
n�2LŒn�. If L has

orbifold points, we can replace L by a good cover � W QL ! L, say by marking the
Z=nZ-homology of ŒX; q� 2 L for n large enough. It is straightforward to define a
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homotopy Qht between the identity on QL and a retraction onto ��1
�S

n�2LŒ2�
�
which

satisfies � ı Qht D ht ı� . Note that the orbifold points ofL all lie in
S
n�2LŒn� since

the orbifold order of ŒX; q� 2 LŒn� divides n.

Proof of Theorem 1.2. The sets LŒn� are clearly disjoint and give a stratification
L D

S
n�1LŒn�. The set

S
n�k LŒn� for each k is closed by Proposition 2.3. The

other claims about the components of LŒn� are established in Propositions 3.10,
3.11 and 3.12. That

S
n�2LŒn� ! L is a homotopy equivalence is established in

Proposition 3.14.

Lattice Veech groups. We now turn to the case when PSL.X0; q0/ is a lattice andL
has finite volume.

Cusps. A cusp of a Fuchsian group � is the fixed point x 2 @H of any unipotent
element g 2 � . The set of all cusps of � we will denote by C.�/. A cusp of the
quotient V D H=� is a �-orbit in C.�/ and we will denote the set of all cusps on V
by C.V /. When the volume of V is finite, the set C.V / is finite and can be added
to V to give a closed surface V D V [ C.V /.

Cylinder decompositions. It is well known that if PSL.X0; q0/ contains a unipotent
element stabilizing the line L D R � .˙.x C iy// of slope y=x, then there is a
collection f1; : : : ; ng of saddle connections whose periods lie in L and whose
complement in .X0; q0/ is a disjoint union of metric cylinders fC1; : : : ; Ckg. We will
need the following partial converse for lattice Veech groups which is a consequence
of the famous Veech dichotomy [18]:
Theorem 3.15 (Veech). Suppose PSL.X0; q0/ is a lattice. Each saddle period
˙v 2 Per.X0; q0/ is parallel to a cylinder decomposition of .X0; q0/ and is stabilized
by a unipotent element in PSL.X0; q0/.

The Veech dichotomy allows us to prove:
Proposition 3.16. The following three subsets of @H are equal:

� T1 D C.PSL.X0; q0//,
� T2 D f�x=y 2 @H W ˙.x C iy/ 2 Per.X0; q0/g, and
� T3 D f�x=y 2 @H W f˙.x C iy/g 2 Ell.X0; q0/g :

Proof. The sets T1 and T2 are equal by Theorem 3.15. The sets T2 and T3 are equal
since a collection S D f˙vg � Per.X0; q0/ of saddle periods consisting of a single
saddle period is supported by an ellipse if and only if˙v is the shortest saddle period
in the line R � .˙v/.

Proposition 3.17. Suppose L has finite volume, and S D f˙vg 2 Ell.X0; q0/. The
setHm.S/ contains B.˙v;K/ for some K > 0.
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Proof. When L has finite volume, the complement in .X0; q0/ of the set of all
saddle connections with periods parallel to˙v is a disjoint union of metric cylinders
fC1; : : : Ckg. Let K > 0 be a number smaller than Area.Ci / for each i . For any
point ŒA� 2 B.˙v;K/, the height of the cylinder A � Ci is larger than jA � .˙v/j.
For such an ŒA�, any saddle period in A � .X0; q0/ not parallel to A � .˙v/ is longer
than A � .˙v/. The saddle periods parallel to A � .˙v/ are also longer than A � .˙v/
since S is supported by an ellipse, so A � .˙v/ is the unique shortest saddle period
on A � .X0; q0/. The point ŒA� is inHm.S/.

Proposition 3.18. Suppose L has finite volume. The set LŒ1� has #C.L/ connected
components, each of which is diffeomorphic to the annulus and LŒ1� contains a
horoball around each cusp of L.

Proof. By Proposition 3.9, each connected component ofLŒ1� is equal to f .Hm.S//
for some S D f˙vg 2 Ell.X0; q0/Œ1�. By Theorem 3.15, ˙v is stabilized by a
unipotent element of PSL.X0; q0/, and Stab.S/ is isomorphic to Z. The component
f .Hm.S// is diffeomorphic to the annulusHm.S/=Stab.S/.

To see that LŒ1� has #C.L/ connected components, note that the equality of sets
T1 D T3 from Proposition 3.16 gives a bijection between the cusps of PSL.X0; q0/
and elements of Ell.X0; q0/Œ1� which is equivariant with respect to PSL.X0; q0/. So
we have:

#C.L/ D #C.PSL.X0; q0//=PSL.X0; q0/ D # Ell.X0; q0/Œ1�=PSL.X0; q0/

and the right hand side is in bijection with the number of components of LŒ1� by
Proposition 3.9.

Now fix a cusp c of L and let t 2 @H be any cusp of PSL.X0; q0/ mapping
to c. By Proposition 3.16, t D �x=y for some S D f˙.x C iy/g 2 Ell.X0; q0/.
The set Hm.S/, whose image under f lies in LŒ1�, contains a horoball about t by
Proposition 3.17.

Proposition 3.19. If the volume of L is finite, then SpineWG.L/ is compact, the setS
n�3LŒn� is finite, the set LŒ2� has finitely many components.

Proof. By the previous proposition, the set LŒ1� contains a neighborhood of each
cusp in L. The spine SpineWG.L/ is closed by Proposition 2.3 and is contained
in a compact subset of L since it is contained in the complement of LŒ1�. SinceS
n�3LŒn� is a discrete subset of this compact set,

S
n�3LŒn� is finite. Since L

has finite volume, the Euler characteristic of L is finite. The homotopy equivalent
set

S
n�2LŒn� also has finite Euler characteristic. But the Euler characteristic ofS

n�2LŒn� is equal the difference between the number of points in
S
n�3LŒn� and

the number of components ofLŒ2� (and possibly a finite contribution from the orbifold
points on L) so LŒ2� has finitely many components.
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Proof of Theorem 1.3. The remaining claims about LŒn� when L has finite volume
are established in Propositions 3.18 and 3.19.

Algorithm. Fix a point ŒX; q� 2 LŒk� with k � 3. We conclude this section by
describing an algorithm for finding the neighbors of ŒX; q� in the graphwhose vertices
are points in

S
n�3LŒn� and whose edges are components of LŒ2�.

Choose a matrix A 2 G so ŒX; q� D ŒA � .X0; q0/� and set S D A�1 Perm.A �
.X0; q0// so Hm.S/ D fŒA�g and f .Hm.S// D ŒX; q�. Let ˙v1; : : : ;˙vk be the
elements in S ordered by the counterclockwise cyclic ordering induced by the unique
ellipse supporting S . The components ofLŒ2� emanating from ŒX; q� are the geodesic
arcs f .Hm.f˙vi ;˙viC1g//, where subscripts are read modulo k.

One endpoint ofHm.
˚
˙vj ;˙vjC1

	
/ isHm.S/. To compute the other endpoint

ofHm.
˚
˙vj ;˙vjC1

	
/:

(1) Compute the matrix B 2 G with B � .˙vj / D ˙1 and B � .˙vjC1/ D ˙i . The
cyclic ordering on the vi ’s ensures that B � S lies in the quadrant f˙.x C iy/ W
xy � 0g.

(2) Find the minimum Ecc0 of the quantity:

Ecc.˙w/ D .1 � x2 � y2/=.2xy/ where ˙ .x C iy/ D B � .˙w/

and ˙w ranges in the saddle periods for which B � .˙w/ D ˙.x C iy/ with
jx � yj < 1. The condition on˙w ensures there is an ellipse E passing through
˙1,˙i and B � .˙w/ and the quantity Ecc.˙w/measures the eccentricity ofE.

(3) The collection of saddle periods:

S 0 D
˚
˙w 2 Per.X0; q0/ W B � .˙w/ D ˙.x C iy/ with x2 C 2Ecc0 xy C y2 D 1

	
contains at least three saddle periods and is supported by an ellipse. The endpoints
ofHm.

˚
˙vj ;˙vjC1

	
/ areHm.S/ andHm.S 0/.

Figure 2 gives an example of a quadratic differential up to scale with #N.X; q/ D 3,
as well as its three neighbors.
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Figure 2. Gluing parallel sides of equal length on the polygons (top) gives four genus two
differentials .Xi ; qi / D .Pi ; dz

2/= � with #N.Xi ; qi / D 3. The thick lines in Pi give the
shortest saddle connections on .Xi ; qi /. The three neighbors of the differential up to scale
ŒX1; q1� are ŒXi ; qi � for i � 2 as is easily computed by enumerating a small number of the
saddle periods on .X1; q1/ (bottom, generated by code written by C. McMullen).
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4. Examples

In this section, we study several examples of Veech groups in genus two using our
algorithm.

L-shaped polygons. Each integer D � 5 satisfying D � 0 or 1 mod 4 determines
a Euclidean octagon P.D/ as in Figure 3. Gluing parallel sides of equal length
together by translations gives a genus two Riemann surface with a holomorphic
quadratic differential:

.XD; qD/ D .P.D/; dz
2/= � :

An important result of Calta and McMullen is that the Veech group of .XD; qD/ is a
lattice:
Theorem 4.1 (Calta, McMullen). The Veech group PSL.XD; qD/ is a lattice.

SetQLD D G � .XD; qD/ and LD D C�nQLD .

0 b

(1+λ)i

λ

i

Figure 3. Each integer D � 5 with D � 0 or 1 mod 4 determines a Euclidean octagon
P.D/ � C built out of a square of side length � D eC

p
D

2
and a b � 1-rectangle where

b D .D � e2/=4 and e D �1 or 0 so that e � D mod 2. Gluing parallel sides of equal length
together by translations gives a genus two quadratic differential .XD ; qD/ D .P.D/; dz

2/= �

with lattice Veech group.

Fundamental domains and generators. We now describe how to encode an ideal
n-gon D.S/ and generators �.S;�/ for a Fuchsian group with fundamental domain
D.S/ by a pair .S; �/ consisting of a finite set S � R2 and a gluing involution � in
the permutation group of S .

Let v1 D
�
x1
y1

�
; : : : ; vn D

�
xn
yn

�
be the elements of S ordered so that �x1=y1 <

�x2=y2 < � � � < �xn=yn and set zj D xj C iyj . Define D.S/ � H to be the
convex hull of the set f�x1=y1; : : : ;�xn=yng � @H.
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Given a pair vj and vk in S , there is a unique element A.vj ; vk/ 2 G satisfying:

A.vj ; vk/ � .˙.zj // D ˙zkC1 and A.vj ; vk/ � .˙zjC1/ D ˙zk :

The Möbius transformation mA.vi ;vj / takes the edge of D.S/ connecting �xj =yj
to �xjC1=yjC1 to the edge connecting �xkC1=ykC1 to �xk=yk . If � is an order
two element in the permutation group of S , the set:

�.S;�/ D fA.vi ; �.vi // W vi 2 Sg

generates a Fuchsian group withD.S/ as fundamental domain.

Example: D D 12. The Riemann surface L12 has genus zero, three cusps and one
orbifold point whose orbifold order is two. Using our algorithm, we enumerated the
components of L12Œn� for n � 2. The set L12Œ3� consists of three differentials up to
scale, L12Œn� is empty for n � 4 and L12Œ2� has five components.

We also computed a pair .S12; �12/ encoding a fundamental domain and
generators for PSL.X12; q12/:

S12 D
n�p

3
1

�
;
�
3�
p
3

1

�
;
�
0
1

�
;
�p

3�3
1

�
;
�
3�
p
3

0

�o
and �12 D .1; 1/.2; 3/.4; 5/:

The domain D.S12/ is the convex hull of
˚
�
p
3;�3 C

p
3; 0; 3 �

p
3;1

	
and

PSL.X12; q12/ is generated by:

�.S12;�12/ D

�
˙

�
3C2
p
3 �3�4

p
3

2C 4p
3
�3�2

p
3

�
;˙

�
1 0

�1� 1p
3
1

�
;˙

�
1 �3
0 1

��
:

The domainD.S12/ is depicted in Figure 4.

Example: D D 13. The Riemann surface L13 has genus zero, three cusps, one
orbifold point whose orbifold order is two. Using our algorithm, we enumerated the
components of L13Œn� for n � 2. The set L13Œ3� (see Figure 4) consists of three
differentials up to scale, L13Œn� is empty for n � 4 and L13Œ2� has five components.

We also computed a pair .S13; �13/ encoding a fundamental domain and
generators for PSL.X13; q13/:

S13 D

�� p
13
2 �

1
2

1

�
;

� p
13�1

1
2C

p
13
2

�
;

� p
13
2 �

1
2p

13
2 �

1
2

�
;
�
0
1

�
;
� p

13
2 �

1
2

0

��
and

�13 D .1; 2/.3; 5/.4; 4/:
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The domain D.S13/ is the convex hull of
n
1�
p
13

2
; �7C

p
13

3
;�1; 0;1

o
and

PSL.X13; q13/ is generated by:

�.S13;�13/ D

‚
˙

�
0 1

2 .1�
p
13/

1
6 .1C

p
13/ 0

�
;˙

�
0 1

2 .1�
p
13/

1
6 .1C

p
13/ 1

2 .�1�
p
13/

�
;

˙

�
7C2
p
13 �2.5C

p
13/

1
6 .41C11

p
13/ �9�2

p
13

�
ƒ

:

The domainD.S13/ and the stratificationL13 D
S
n�1L13Œn� are drawn in Figure 4.

√3- -3+√3 3-√30

i

L12

-1 0(1-√13)/2

i

(√13-7)/3

L13

Figure 4. The Riemann surfaces LD for D D 12 (top) and D D 13 (bottom) both have genus
zero, three cusps and one orbifold point of order two. The stratification LD D

S
n�1 LD Œn�

decomposes LD into easy to understand pieces. Enumerating points in LD Œn� for n � 3

and components of LD Œ2� allows us to compute a fundamental domain and generators for
PSL.XD ; qD/.
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Example: D D 44. The Riemann surface L44 has Euler characteristic �21=2,
genus one, nine cusps and three orbifold points each of which has orbifold order two.
The set L44Œn� is empty for n � 4, the set L44Œ3� consists of 21 points, and the set
LŒ2� has 33 connected components.

The pair .S44; �44/ listed in Table 1 encodes a fundamental domain and generators
for PSL.X44; q44/. The domain D.S44/ is the ideal 23-gon equal to the convex hull
of:
‚

�11C
p
11;�11

2
;�
p
11; 1

3

�
� 11C

p
11
�
; 1
7

�
� 11 � 2

p
11
�
; 4
7

�
� 11C 2

p
11
�
; 1
5

�
� 22C 3

p
11
�
;

3
10

�
� 11C

p
11
�
;�2; 1

5

�
� 33C 7

p
11
�
; 1
4

�
� 11C

p
11
�
; 1
7

�
� 22C 3

p
11
�
; 1
5

�
� 11C

p
11
�
; 0; 1

5

�
11 �

p
11
�
;

1
4

�
11 �

p
11
�
; 1
5

�
33 � 7

p
11
�
; 2;� 3

10

�
� 11C

p
11
�
; 1
5

�
22 � 3

p
11
�
; 1
3

�
11 �

p
11
�
;
p
11;1

ƒ

:

The domainD.S44/ and the preimages of L44Œn� for n � 2 are drawn in Figure 1. A
few examples of elements the Veech group of .X44; q44/ include:

˙
�
1 �11
0 1

�
;˙

�
5C2
p
11 �11�6

p
11

2C 8p
11
�5�2

p
11

�
;˙

�
25C6

p
11 �6.11C2

p
11/

�10� 30p
11

25C6
p
11

�
2 PSL.X44; q44/:

A full list of generators for PSL.X44; q44/ can be easily computed from the pair
.S44; �44/ listed in Table 1.
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