
Open Research Online
The Open University’s repository of research publications
and other research outputs

Error Detection and Recovery in Software Development

Thesis
How to cite:

Lopez, Tamara (2016). Error Detection and Recovery in Software Development. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2016 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Error Detection and Recovery
in Software Development

Tamara Lopez
B.S., Northern Arizona University
M.L.S., M.S., Indiana University

Centre for Research in Computing
The Open University

A thesis submitted for the degree of
Doctor of Philosophy in Computing

Submission date: 29th of February, 2016

-ii-

Abstract

Software rarely works as intended when it is first written. Software engineering research

has long been concerned with assessing why software fails and who is to blame, or why a

piece of software is flawed and how to prevent such faults in the future. Errors are

examined in the context of bugs, elements of source code that produce undesirable,

unexpected and unintended deviations in behaviour. Though error is a prevalent, mature

topic within software engineering, error detection and recovery are less well understood.

This research uses rich qualitative methods to study error detection and recovery in

professional software development practice.

It has considered conceptual representations of error in software engineering research

and trade literature. Using ethnographic principles, it has gathered accounts given by

professional developers in interviews and in video-recorded paired interaction. Developers

performing a range of tasks were observed, and findings were compared to theories of

human error formed in psychology and safety science.

Three empirical studies investigated error from the perspective of developers, recon-

structing the view they hold when errors arise, to build a catalogue of active encounters

with error in conceptual design, at the desk and after the fact. Analyses were structured to

consider development holistically over time, rather than in terms of discrete tasks. By

placing emphasis on “local rationality”, analytical focus was redirected from outcomes

toward factors that influence performance. The resultant observations are assembled in an

account of error handling in software development as personal and situated (in time and

the developer’s environment), with implications for the changing nature of expertise.

-iii-

Papers and Presentations

 Portions of this research were presented at the following workshops.

Lopez, Tamara, Marian Petre and Bashar Nuseibeh. Active Error: Examining Error
Detection and Recovery in Software Development. Psychology of Programming
Interest Group, Work-in-Progress Meeting, 2015. School of Science and Technology,
Middlesex University. London, UK, 8-9 January, 2015.

Lopez, Tamara, Marian Petre and Bashar Nuseibeh. Thrashing, Tolerating and Compromis-
ing in Software Development. Psychology of Programming Interest Group, 24th Annual
Workshop, 2012. London Metropolitan University, UK, 21-23 November, 2012.

Lopez, Tamara, Marian Petre and Bashar Nuseibeh. Getting at Ephemeral Flaws. 5th
International Workshop on Cooperative and Human Aspects of Software Engineering,
International Conference of Software Engineering, 2012. Zurich, Switzerland, June 2nd,
2012.

-iv-

To

Dr. Katharina Faust, Professor Vajkoczy
and to all the others

at the Department of Neurosurgery,
Charité Campus Virchow Klinikum, Berlin

-v-

Acknowledgements
First, I thank the managers who welcomed me, the stout-hearted developers who informed

my studies and many who went before. At the turn of the century, I worked for companies

that were “riding the wave” of the web. In that time I came to know men and women who

were very good at writing code. They led me here, and I am so grateful.

My debts extend to Bashar Nuseibeh and Marian Petre who gave me the greatest gift of

freedom to explore this topic. I could never thank them enough. There simply are no

words to thank Marian for her support during the past two years. She never, ever let me

go; others surely would have. I also humbly and deeply thank the faculty and staff

members from the Open University who ensured I could complete this research.

Many folks in computing have permitted me to look through them, including Helen

Sharp and Elizabeth Bjarnason, researchers at the Software Design and Collaboration

Laboratory, U.C. Irvine and their industrial partners, and developers found on the internet.

Though I suspect he is omniscient, Michael Jackson has always been gracious and

encouraging. I likewise thank: Charles Hailey, Brian Randell, Thomas Green, Ben du

Boulay, André van der Hoek, Alex Baker, Nick Mangano, Gerald Bortis, Thein Tun, Hugh

Robinson, Yvonne Dittrich, Harold Osher and Lutz Prechelt.

In other places and times, a number of folks outside of computing taught me how to

look. Mac, Buddy and Bob instilled in me the importance of play. Noriko Hara introduced

me to Social Informatics, giving me the piece I had been looking for. Cesare Pastorino has

long been my memex, may I never stop learning from him! Willard McCarty called me

out for dithering six years ago, and set me firmly on this path. But I am so lucky that he

first shared ideas and challenged me, as did: Jon Dunn, Dazhi Jiao, Stacy Kowalczyk, John

Walsh, Bill Newman, Harold Short, Paul Vetch, Paul Spence, Arianna Ciula, Gerhard Brey

and Vanda Broughton.

In these years, my husband has given me the finest example of steadfast pursuit. He is

one heck of a guy. My girl and boy stood many mornings in doorways and drew their soft,

soft hands from mine. They are the brave ones. I was so fortunate to find kindly other

mothers to guide them, including Karen Harris, Sylvia Sieber and the Erzieher/innen at

Outlaw Kita. I also give heartfelt thanks to Signora Maria Bella for elegantly guiding the

ship and to Stella Chak, the greatest ever mother/sister/friend.

Finally, in the twenty years I spent getting to this moment, I travelled many miles away

from my family in Arizona. Away, but not distant, I am thankful every day for the fullness

of this surprising, blessed life. My life, given such a good start by each of you.

-vii-

Table of Contents

1. Introduction 1

1.1 Error Defined 2

1.2 Research Question 4

1.3 Approach 5

1.4 Notes about the Text 7

1.4.1 Writing about People 9

1.4.2 Writing about Error 9

1.4.3 The Structure of the Thesis 10

2. Background 11

2.1 Error in Software Engineering 11

2.1.1 Dependability 12

2.1.2 Fault Analyses 17

2.1.3 Root-causes 18

2.2 Human Error 26

2.2.1 Action Models 27

2.2.2 Slips of Action 31

2.2.3 Skills, Rules and Knowledge 33

2.2.4 Generic Error Modelling Framework 35

2.2.5 Swiss Cheese Model 38

2.2.6 An Action-Oriented Taxonomy of Errors 41

2.3 Summary 43

3. From Establishing Causes to Examining Actions 47

3.1 Operational Failure in Software Engineering 47

3.2 A Space of Possibilities 49

...

...

...

...

..

..

..

..

...

...

...

...

..

...

..

..

...

...

...

...

...

...

..

...

-viii-

3.2.1 Actions 51

3.3 Error Detection and Recovery 52

3.3.1 Related Research 53

 3.3.1.2 Swedish 55

 3.3.1.3 Italian 55

3.3.2 Detection 57

3.3.3 Identification and Recovery 60

3.4 Summary 64

4. Method 67

4.1 Research Focus 67

4.1.1 The Ethical Impetus 69

4.2 An Ethnographic Stance 71

4.2.1 Ethnography of, for and within 73

4.2.2 Ethnographically-Informed Research 77

4.3 Field Sites and Sources 80

4.3.1 Sites 81

4.3.2 Corpus 82

4.3.3 Informants 83

4.4 Studies 84

4.4.1 At the Drawing Board (Site A) 86

4.4.2 At the Desk (Site C) 89

4.4.3 After the Fact (Sites B and D) 93

4.5 A Prospective Analysis 97

4.5.1 Related Approaches 98

4.5.2 Transcription and Cataloguing 100

4.5.3 Accounts 102

..

...

..

...

...

..

...

...

..

..

...

..

..

..

...

..

..

..

...

..

...

..

..

..

...

...

-ix-

4.5.4 Incidents 104

4.6 Summary 108

5. At the Drawing Board 109

5.1 Related Work 110

5.2 Setting the Scene 112

5.2.1 The Amberpoint Session (Site A) 113

5.3 Findings 114

5.3.1 I don't know if I like the pop-up window anymore. 114

5.3.2 So you think there should be a car out there? 116

5.3.3 Ultimately, you want to know whether it worked. 117

5.4 Discussion 118

5.4.1 Scenarios 119

5.4.2 Constraints 120

5.4.3 Representations 121

5.4.4 Limitations 126

5.5 Conclusion 127

6. At the Desk 129

6.1 Related Work 130

6.2 Setting the Scene 131

6.2.1 Acceptance Test Framework (Site C) 132

 6.2.1.2 How Practice is Organised 133

6.3 Findings 135

6.3.1 Slips of Action 136

6.3.2 Error Handling Illustrated 137

6.3.3 Error-Driven Practice 138

...

...

...

...

...

...

...

..

...

...

...

..

..

..

...

...

..

...

...

...

...

...

..

..

...

-x-

6.3.4 Handling in Context 141

6.3.5 Modulators 143

6.3.6 Rules-of-Thumb 145

6.4 Discussion 148

6.4.1 Limitations 152

6.5 Conclusion 152

7. After the Fact 155

7.1 Related Work 156

7.2 Setting the Scene 158

7.2.1 Digital Humanities (Site B) 158

7.2.2 Course Planning (Site D) 164

7.2.3 Points in Common 170

7.2.4 Exclusions 170

7.3 Findings 171

7.3.1 Settling 171

7.3.2 Tolerating 175

7.3.3 Thrashing 179

7.3.4 Piecing 182

7.3.5 Naming 185

7.3.6 Slipping 188

7.4 Discussion 193

7.4.1 The Nature of Tasks 194

7.4.2 The Need to Witness 195

7.4.3 Rules of practice 197

7.4.4 Limitations 198

7.5 Conclusion 200

...

...

...

...

...

...

...

...

...

..

..

..

..

...

...

..

..

..

...

..

...

...

..

...

...

...

-xi-

8. Discussion 203

8.1 Characteristics of Handling 203

8.1.1 Detection: Knowing that something is wrong 205

8.1.2 Identification: Knowing what should have been done 214

8.1.3 Recovery: Removing effects 218

8.2 The Shape of Experience 220

8.2.1 Expectation and Surprise 220

8.2.2 Feelings 222

8.2.3 Similar Things 223

8.2.4 Seeking Help 225

8.2.5 Weirdness 226

8.2.6 Being Wrong and Getting Lost 227

8.3 Limitations 230

8.3.1 The Vagaries of Access 230

8.3.2 Credibility and Reliability 231

8.3.3 Fixed Records 232

8.4 A Partial View 233

9. Conclusion 235

9.1 Implications 236

9.2 A Framework for Examining Practice 237

9.3 The Changing Nature of Expertise 238

References 241

A. Conventions and Tools 255

A.1 Transcription 255

A.2 Signalling Devices 256

B. Notes on At the Drawing Board 258

...

...

..

.....................................

..

..

..

..

..

..

...

...

..

...

..

...

..

...

...

...

..

...

...

...

..

...

-xii-

B.1 Columnar Analysis 258

B.2 Design Prompt 261

B.3 Kinds of Expert Knowledge 263

C. Notes on At the Desk 264

C.1. Transcription and Cataloguing 265

C.2. Incident Catalogue 266

C.3. Incident Exchanges 271

C.3.1. Slips of Action 271

C.3.2. Prior Experience 272

C.3.3. Blame and Severity 273

C.3.4. Forming Rules-of-Thumb 273

C.3.5. Error-Directed Practice, Local Problem Solving 276

C.4. Sources of Data 277

D. Notes on After the Fact 280

D.1. Transcription and Field notes 280

D.2. Critical Decision Method Protocol 280

D.3. Coding 286

D.4. Information Sheets 288

...

..

...

..

...

...

..

..

...

..

...

...

..

..

..

..

..

..

-xiii-

Figures

Figure 1.1: Errors are specimens. 8

Figure 1.2: Error is alive, teeming. 8

Figure 2.1: Reason’s “Swiss Cheese” model. 40

Figure 3.1: Rasmussen’s space of possibilities. 50

Figure 3.2: Rasmussen’s boundaries of acceptable performance 50

Figure 3.3: Actions and intention. 52

Figure 4.1. Overview of Method and Studies. 84

Figure 4.2: Overview of At the Drawing Board (Site A). 86

Figure 4.3: Overview of At the Desk (Site C). 89

Figure 4.4: Filming dates at the desk in 2009. 90

Figure 4.5. Breakdown of incidents at the desk by episode. 90

Figure 4.6: Overview of After the Fact (Sites B and D). 93

Figure 5.1: User interface representations of traffic signal timings. 115

Figure 5.2: Traffic signals. 115

Figure 5.3: You want to know it worked. 118

Figure 5.4: Gesture invoked to model traffic signal timing 123

Figure 5.5: Gesture invoked to model the problem domain. 124

Figure 5.6: Gesture used to align understanding in the cars incident 125

Figure 6.1: Development sessions were held in offices. 134

Figure 6.2: Filming depicted a screencast. 134

Figure 7.1: An open plan office in the Digital Humanities Department (Site B). 161

Figure 7.2: Tolerating. 175

Figure 7.3: Thrashing. 180

Figure 7.4: Piecing Together. 183

Figure 7.5: Dereck’s Slip. 191

..

..

...

..

..

...

...

...

..

..

..

..

.................................

..

..

..

..

...............................

...

..

.............

...

...

..

..

-xiv-

Figure 8.1: Error handling - Slip of action, software development. 205

Figure 8.2. Error Handling Process - Software Development. 205

Figure 8.3: Something doesn’t look right. 209

Figure 8.4: Now it is “hunky dory” fine. 209

Figure 8.5: Errors aren’t always evident. 212

Figure 8.6: It looks okay to me. 212

Figure 8.7 Error Handling Process - Local Problem Solving. 215

Figure 8.8: The Shape of Error Handling Experience. 221

Figure D.4.1: Information sheet for Digital Humanities (Site B). 289

Figure D.4.2: Information sheet for Course Planning (Site D). 290

.................................

..

...

...

...

..

..

..

....................................

..

-xv-

Tables

Table 2.1: A summary of fault analysis research. 19

Table 2.2: A summary of root-cause analyses. 24

Table 2.3: Rasmussen’s skill-rules-knowledge framework (Rasmussen, 1985). 35

Table 2.4: Relating error types to performance. 37

Table 2.5: Interrelations between production and human activities. 39

Table 3.1: An Overview of Error Detection and Recovery Research. 56

Table 3.2 Frames of reference during action. 64

Table 4.1: Field Sites. 81

Table 4.2. Sources of Data, by field site. 83

Table 5.1: Informant demographics, Site A. 113

Table 6.1: Informant demographics, Site C. 133

Table 6.9: Sources of system responses. 140

Table 7.1: Informant Demographics, Site B. 160

Table 7.2: Projects, Site B. 163

Table 7.3: Informant demographics, Site D. 166

Table 7.4: Tasks, Site D. 169

Table 7.5: Evan’s preferred practices. 197

Table A.1: Transcription conventions. 256

Table A.2. Verbal signals used to develop sequences of error handling. 258

Table B.1.1: Columnar transcription. 259

Table B.1.2 Excerpt of columnar analysis. 260

Table C.1: Incidents analysed at the desk. 271

Table D.2: Prompts for incident selection After the Fact. 284

..

..

................

..

...................................

................................

..

..

...

..

..

...

..

..

...

..

...

...

..........................

..

...

..

...

-1-

1. Introduction

Determining what constitutes failure in software engineering is subjective and difficult to

isolate. Boundaries between systems are fluid and the artefacts used to represent them

complex. Perception and attitudes influence judgements about the causes of failure. The

mechanisms designed to prevent failure are themselves failure-prone. The complexity of

the topic has led different research communities to reinvent and rename related concepts.

A tendency exists to overlook the ways in which various means of achieving dependability

-and thus preventing failure- are relevant to one another (Randell, 1998).

By contrast, the concept of error in software engineering is stable, described using terms

like fault, defect or bug. Bugs written into software produce undesirable deviations in

specified behaviour (Avižienis, Laprie, & Randell, 2004). They must be tracked down so

that they can be removed. It is not always possible to determine the circumstances under

which a bug was written, or why. Nonetheless, they are widely considered to be the result

of human error, attributed to poor understanding, inexperience, lack of skill, or incompe-

tence.

This thesis considers a different sense of error. An error is also actively experienced,

and may manifest only as a misunderstanding, or something that goes wrong and then is

put right before a file is released, committed, or saved. Such errors are ephemeral, and as a

result, there are often few material traces (Scott, 1990) left behind within code, descrip-

tions or project records. The meaning associated with an error is personal. Its significance

may diminish or develop over time as a developer takes on new projects, or faces new

problems in different environments.

In the following pages of the thesis, the terms error as drawn from psychology and

safety science refer to errors that are experienced. Other terms from these disciplines

describe error handling, the process by which developers detect, identify and recover from

Ch. 1 Introduction

 -2-

errors. Particular instances of error handling are encounters or incidents. The terms bug,

fault, or defect signify error as conceived in software engineering.

The following section expands this conceptual foundation for human error. Next, a

section presents the research question with working definitions and descriptions of

influential factors. A brief statement highlights the qualitative analytical approach used in

the reported studies. The chapter concludes with a guide to the text and a brief overview of

each chapter.

1.1 Error Defined

Errors in the workplace are situational, particular; they arise in the form of “misfits” or

“mismatches” between a person and a task or a person and a machine (Rasmussen, 1985,

p. 5-6). Errors often unfold during normal, everyday actions (Norman, 2002). Things go

wrong in the midst of “best attempts” to accomplish desired and reasonable goals (Lewis

& Norman, 1986). They are encountered by workers at the “sharp end” (Woods, Johan-

nesen, Cook, & Sarter, 1994)1.

Errors arise, in part, because human performance is variable, marked by experimenta-

tion, by trial and error and “cutting corners” (Rasmussen, 1985). Variability is a natural

and necessary part of learning and adaptation. It allows workers to be more efficient, to

develop skills and improve performance. Erring is at times inevitable. Things may go

wrong, but workers often are not at fault, given the demands of tasks and the conditions

under which they perform (Hollnagel, 1998, p. 30).

The term “human error” is contentious. In the piece summarised above, Rasmussen

prefers the terms misfits, mismatches, and malfunctions, and argues that rather than

human error, it may be more appropriate to identify features of “unkind” work environ-

1. The term “sharp end” is attributed here to Woods et al., but Woods attributes it to
Reason, and other references suggest it originated with Rasmussen.

Error Detection and Recovery (Lopez)

-3-

ments that cannot support variations in performance (Rasmussen, 1985). Hollnagel argues

that the term “error” cannot be well defined and should instead be replaced with the terms

action or activity (Hollnagel, 1983). In the context of medical safety, Woods writes that

pursuing the question of what error is is a “dead end” (Woods & Cook, 2003, p. 2).

To declare that a human has committed errors that produce an accident or failure

requires that judgements or causal attributions be made after the fact, based upon incom-

plete contextual knowledge about particular situations (Rasmussen, 1990). The boundaries

of the error and its causes are determined in light of known negative outcomes. An analysis

is thus blinkered by hindsight (Woods, Johannesen, Cook, & Sarter, 1994). Analysts select

causes that are “familiar” (Rasmussen, Nixon & Warner, 1990), that can be measured

using externalised criteria (Hollnagel & Amalberti, 2001).

In navigating a space of possibilities (Rasmussen et al., 1990), workers must redefine

the goals and tasks they are given to perform. They transform them into individual plans

and intentions for which actions can be undertaken (Frese and Zapf, 1994). Erring in the

workplace is inevitable, and should be interpreted in the context of personal actions that

are perceived to have been in error.

Error occurrences are actively experienced, they arise when planned sequence of mental

or physical activities fail to achieve intended outcomes. (Reason, 1990, p. 9). A person

becomes aware that he has made an error through feelings or perceptions that arise in the

act (Sellen, 1994), based on suspicion or checks made of recently completed work

(Allwood, 1984). He might also realise that an error has occurred by assessing “deleteri-

ous” outcomes (Norman, 1981). Recognition is made by comparing internalised aims,

expectations and judgements (Rasmussen, 1985) to outcomes in the environment.

 Error detection is a part of error handling (Brodbeck, Zapf, Prümper, & Frese, 1993):

a person realises that something is wrong, identifies what went wrong and what should

Ch. 1 Introduction

 -4-

have been done, and removes effects (Sellen, 1994). Handling an error may be more or

less immediate (Norman, 1981) or may require drawn out, effortful problem solving

(Reason, 1990).

1.2 Research Question

“[A]lmost everyone who has ever written a program that did not immediately

function as intended - a normal occurrence as we all know - has developed his

personal theory about what went wrong in this specific case and why. ” (Endres,

1975, p. 327)

The research reported in this thesis explores the common knowledge expressed by Endres

in the quote above. It aims to understand more about the personal theories developers have

about things that go wrong while making software, to catalogue specific instances, and to

document the process employed to deal with them. To do this, it has addressed the

following research question:

How do professional software developers detect, identify and recover from errors?

Though broad and intended to be exploratory, this question carries within it several related

concerns:

Error: In software engineering, faults are discovered after software is written and,

possibly, released. They are reported to developers as bugs. As defined in the

previous section, errors arise from a personal action or actions that are perceived to

be wrong. Individual experiences are the focus of inquiry. The research does not

aim to establish causes but to explore the environmental and situational factors of

occurrence.

Time: The meaning associated with errors is personal, and their significance may

diminish or develop over time. This research collates data for analysis that gives a

more realistic view of how time functions in software development. This point has

two implications: it permits examination of how an individual error occurrence

may transcend tasks and span time over the course of a project and reveals how

perceptions toward errors change in response to the passage of time.

Error Detection and Recovery (Lopez)

-5-

Professional Developers: Empirical studies in software engineering often study

performance in the laboratory or educational settings (Brandt, Guo, Lewenstein,

Dontcheva, & Klemmer, 2009; Ko & Myers, 2005). Findings from cognitive task

analysis suggest that the way people perform in the workplace is different (Cran-

dall, Klein, & Hoffman, 2006). The analysis used data that depict professional

developers and aimed to isolate examples of naturalistic performance.

Everyday Practice: The nature of the topic suggested that the examined practice

would likely include challenging or even rare, "one-off" events. However, studies

were not designed to perform a retrospective analysis of a large operational failure

or another disastrous outcome. Instead, a commitment was made to examine

routine, everyday practice, with some limitations. For example, no study reviewed

the process of agreeing to specifications with stakeholders. Likewise, reports of

error were considered as developers utilise them, but not as users experienced and

reported them.

Incidents: One aim of the research was to develop an understanding of software

development by identifying incidents in everyday practice, not by examining

particular tasks, methodologies or environments. An incident may have occurred

within a particular task such as bug fixing or writing unit tests, but also during a

design meeting, or in writing a method. Data were selected that included fine-

grained detail about actions (Norman & Shallice, 1986) and performance (Ras-

mussen, 1985) that could be "tightly linked" to personal experience, to goals, to

settings, and cues (Crandall et al., 2006, p. 21).

1.3 Approach

There is growing interest within the research community to find new ways to improve

software quality by examining human error (Walia, Carver, & Bradshaw, 2015). This

interest joins other, related calls that the research community must identify and articulate

theory ((Ekstedt, Johnson, & Jacobson, 2012), and recognise that software engineering is a

human activity (Captretz, 2014). Older examinations of human error in professional

contexts performed retrospective analyses, using bug and modification reports, or retro-

Ch. 1 Introduction

 -6-

spectively administered interviews and questionnaires that probe for detail about these two

activities. A more general examination of errors that are made at other points is lacking.

To fill these gaps, this research has applied and evaluated a methodological framework

for examining human error in software development. In addition to selecting appropriate

methods for data collection, this research established analytical focus, determining what

constitutes an error handling incident. This required identifying the boundaries of

experience that relate to error encounters in software development.

The studies reported in Chapters 5, 6 and 7 were ethnographically-informed

(Robinson, Segal & Sharp, 2007). The research collected data from interactions with and

observation of developers in the field. A theoretical framework drawn from psychology

and safety science was used to situate and interpret data.

It is not always easy to analytically establish the origins of errors (Hollnagel, 1983), nor

for researchers to perceive what informants do (Geertz, 2000). Instead, this research

considers software engineering as a human activity (Endres, 1975; Capretz, 2014) by

examining how human error manifests in a socio-technical context (Rasmussen, 1990).

The aim has been to understand what developers perceive with, the means by which or

“through” (Geertz, 2000, p. 58) they handle errors encountered in daily work. Three

dimensions were explored:

• The particular configurations of circumstances that provide material for problem-

solving to developers (Reason, 1990).

• The process undertaken to detect, identify and recover from an error (Sellen, 1994).

• The feelings that influence process and resonate beyond problem occurrence

(Reason, 1990).

Error Detection and Recovery (Lopez)

-7-

1.4 Notes about the Text

This account has a kinship to the natural histories or framework studies described by

Reason (1990). It is intended to provide a richer set of concepts for discussing error in

professional software development. By extension, it stands to serve researchers in a

number of fields that benefit from knowing what goes on during development practice.

To serve the broadest audience, the text is discursive, countering the skewed, inaccurate

view of human error that can be conveyed by normalising human experience within

typologies or models (Hollnagel & Amalberti, 2001). The approach is, instead, naturalistic

(Le Coze, 2015), though findings in individual study Chapters 5, 6 and 7 and within the

discussion given in Chapter 8 abstract individual experience into more general categories

or themes that relate to established topics drawn from error handling research.

Errors are active, alive, teeming and writhing, like the insects depicted in Figure 1.2.

One aim has been to counter the image of error as specimens of insects that can be fixed

with a pin and neatly ordered, as they are in Figure 1.1. This is a practice that has also

been associated with older object-oriented or specimen focused cultural anthropology (Van

Maanen, 2011).

Ch. 1 Introduction

 -8-

Figure 1.1: Errors are specimens. Detail of “Butterflies”, held by the Art and Picture
Collection, The New York Public Library. Public domain.

Figure 1.2: Error is alive, teeming. Reprint of “Schutzeinrichtungen II”, held by the Art
and Picture Collection, The New York Public Library. Public domain.

Error Detection and Recovery (Lopez)

-9-

1.4.1 Writing about People

The sense of error conveyed in this thesis was formed by studying the actions of a small

number of people. Writing about people is hard, especially when it is necessary to write

about their "less than perfect" aspects (Narayan, 2012, p. 46). The difficulties that arose in

designing research on the topic of human error paled in significance to the subsequent

difficulty of writing about observations. The goal in data collection was to minimise

negative perceptions formed by colleagues and managers of developers who shared

experiences. Reports had to be described respectfully while also acknowledging evidence

of "clangers" or "dropped balls".

1.4.2 Writing about Error

We learn from mistakes, and errors are most clearly explained and understood through

examples. Examples allow readers to associate the terms given to analytic categories with

instances that are recognisable. They may be like or different from another person’s

experience, and compared with features of multiple researchers’ data (Norman, 1981).

The term slip, for example, is relatively connotative, perhaps conjuring in your mind an

image of a hapless encounter with a puddle of water or a banana peel. It takes on a

meaning that is at once more precise and more general when given a definition like:

A slip is an action that was not intended or does not go according to plan.

A puddle of water or a banana peel may be involved, but may not be. Many plans and

intentions are conceivable, after all, and many actions can be imagined to carry them out.

“Slip” becomes a meaningful descriptive device when it is associated both with its

definition and with examples that orient it to particular acts, such as speech:

“I was using a copying machine, and I was counting the pages. I found myself

counting ‘1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King.’ (I have been playing cards

recently.)” (Norman, 1981, p. 12)

Ch. 1 Introduction

 -10-

or physical activity:

“I caught myself as I was about to pour the tea into the opened can of tomatoes

that was just next to (left of) the teacup. (The can was empty.)” (Norman, 1981, p.

12)

In the following pages, the text depicts developers with pseudonyms and reports aspects of

incidents using language that is realistic, "dispassionate" and in the third person (Van

Maanen, 2011, p. 45). However, the text also makes extensive use of examples given by

the developers. The aim is to represent their encounters in “experience-near” terms as they

did: spontaneously, “un-selfconsciously”, colloquially (Geertz, 2000, p. 57).

1.4.3 The Structure of the Thesis

The following chapters in the thesis are structured as follows.

• Chapter 2 provides background literature for this examination of error, describing

perspectives on the topic of human error in software engineering, and fields in

psychology.

• Chapter 3 establishes the commitment made to examine error handling in the

context of actions taken within socio-technical environments.

• Chapter 4 discusses how ethnographically-informed methods were used to conduct

three studies.

• Chapters 5, 6 and 7 detail findings, which, taken together, identify features of error

handling in software development.

• Chapter 8 synthesises a view on error handling in software development.

• Chapter 9 concludes the thesis with a review of contributions and implications for

future research.

-11-

2. Background

The previous chapter established a refocused definition of error. Though an error may

result in faults left behind within source-code (Avižienis, Laprie, & Randell, 2004), an

error may also be actively detected, identified and recovered from in the course of practice.

Error in this sense may leave no clear representation within software artefacts because

effects are removed before software is released, or files are saved and committed to version

control systems.

This chapter surveys perspectives on error in different disciplines, beginning with

software engineering. The following section summarises literature from psychology and

safety science that examines human action, error and aspects of performance in the

workplace.

2.1 Error in Software Engineering

This section considers the topic of error in software engineering discourse. It starts with a

description of the concept of dependability, followed by a brief overview of fault analyses.

The third section, 2.1.3, is a critical review of root-cause studies, taken as an exemplar of

fault analyses in industrial contexts.

This review was conducted by examining research and trade publications that treated

concepts related to error and failure. Software engineers name things, giving operational

definitions to concepts by specifying their attributes within typologies and models

(Svenonius, 2000). Within the natural language used in the discourse, there are also

conceptual definitions given, intentional and connotative statements that describe what is

to be specified (Svenonius, 2000).

Both kinds of statements served as sources of evidence about how researchers and

practitioners conceptualise error. The software engineering discourse employs literary

rhetoric to serve different aims. Language is scientific; it enables “the audience to see the

Ch. 2 Background

-12-

world as it is” (Gusfield, 1976, p. 17). However, articles and papers are also cultural

products (Kling, 1994); they use language in less neutral terms to persuade and communi-

cate (Gusfield, 1976).

The topic of error was explored by performing detailed keyword searching of journals,

by chasing citations within articles, surveys and roadmaps, state- of the art and -of the

discipline pieces, and position papers. Journalistic sources and software engineering

course work and syllabi that specifically address software failure were examined. Materials

related to dependability were selected from work dating back to the 1960’s with some

representation from the ’80s and ’90s; the majority of materials examined are from the first

decade of the 21st century.

2.1.1 Dependability

Since its identification during the 1960s as one of the key problems in computing (Buxton

& Randell, 1970; Naur & Randell, 1969), the provision of reliable software and the

prevention of large and small scale failure has been a core theme in software engineering

research. These aims have been met, for example, by ensuring that software specifications

are correct using mathematical proofs, or by designing and structuring systems to allow

software to degrade gracefully in the presence of errors.

These and related areas of software engineering research make software more depend-

able, a notion that is multivalent. Dependability has developed over several decades

within software engineering research as an overarching concept that subsumes reliability

and other attributes like availability, safety, confidentiality, integrity and maintainability

(Avižienis, Laprie, & Randell, 2004, p. 5).

This overview takes the following form. The first section describes prior notions of

reliability and correctness, drawn from the reports of the 1968 and 1969 NATO confer-

Error Detection and Recovery (Lopez)

-13-

ences. A second section explores a more recent concept, fitness, in the context of software

and systems.

2.1.1.1 Reliability

The topic of reliability figured prominently at the 1968 NATO conference (Naur &

Randell, 1969). Participants of the workshop noted a “conscious need” to consider

reliability within the design process (Naur & Randell, 1969; p.44/26)2. They also linked

reliability to the ability to achieve “freedom from mistakes” when software was in

production (Naur & Randell, 1969; p.100/59).

Though the report stated a perceived need among software engineers to quantify notions

of reliability, the problems associated with the issue were described in qualitative terms.

User expectations were reported to be at once unrealistically high and low. Users were

found to expect software to reach a state of "total system reliability". Even large systems

were supposed to never, or rarely, fail over the course of decades. By contrast, other

participants observed that user expectations were low, that customers were able to continue

to work “even when everything is falling apart” (Naur & Randell, 1969, p.71/p.40).

Rising expectations for software performance were found to be a consequence of

improvements in hardware. Expectations were said to be manageable through careful

tolerance of errors in both software and hardware. Threats to meeting user expectations for

reliability were associated with difficulties and costs associated with testing and integrating

changes to software that was already in operation (Naur, 1969, p. 70/p. 40-41).

2.1.1.2 Correctness

At the time of the second NATO conference in 1969, the topic of quality subsumed the

notion of reliability. Quality had two senses: correctness in performing specified tasks

2. The dual-page citations given for references to the NATO reports reflect changes in
pagination in the accessed version of the reports. The first number signifies the page
number in the original report. The second number reflects the location of the quote in the
pdf report.

Ch. 2 Background

-14-

and efficient performance (Buxton & Randell, 1970). Correctness likewise was described

in two contexts related to errors. Formal correctness concerned preventing errors from

entering software, while debugging techniques centred on how to remove errors “when

you have got them” (p. 20/p. 15).

At this conference, Dijkstra is reported to have made the famous comment that “[T]est-

ing shows the presence, not the absence of bugs” (p. 20/p. 16). His position is of course

well known (Dijkstra, 1972), but this review addresses this sentiment in the context of a

paper he gave at the prior NATO conference, a year earlier.

Entitled “Complexity Controlled by Hierarchical Ordering of Function and

Variability” (Naur & Randell, 1969), that paper anchored a discussion about the design

process, and drew out details about the relationship between design and production.

Dijkstra argued that the conviction of quality or “goodness” of software could not be

achieved through testing, but instead must be proven before software is written. It would

come out of the design process itself:

“If you have your production group, it must produce something, but the thing to be

produced has to be correct, has to be good. However, I am convinced that the

quality of the product can never be established afterwards. Whether the correctness

of a piece of software can be guaranteed or not depends greatly on the structure of

the thing made.” (p.20/p. 16).

The structure he references is the employment of a systematic method to produce software,

a method which “gives proof” that the software is correct.

Other participants challenged Dijkstra’s views. Counterpoints made by Willem van der

Poel are summarised below. They are relevant to the research reported in this thesis

because they address environmental and social aspects of development that influence

notions of dependability, and by extension error handling. van der Poel argued that:

Error Detection and Recovery (Lopez)

-15-

Errors can “cut right across” layers in systems and can have effects that are

illogical, a phenomenon that has been described more recently as the “cause/effect

chasm” (Eisenstadt, 1997).

It is necessary at times to “believe” in the correctness of a piece of software that

was written by someone else.

Formulated precisely, the specification of a problem is equivalent to the

solution. van der Poel asked not what is the solution, but how do we solve the

problem? He questioned the “missing link” in Dijkstra’s method, the elements of

creativity, invention, intuition and process that could not be “symbolised or

mechanised.”

Some errors are due to the handling of software before execution. These

comments regarded the material aspects of software of the time, of punch cards,

transcriptions, of physical ordering and carrying to machines for execution (pp.

51-52/p. 30).

As Dijkstra noted in his rebuttal, van der Poel was interested in how programmers solve

problems and in how they deal with problems that cannot be fully specified. These he

addressed as matters of expertise: an unexplained process by which one comes to be gifted,

to “know” how to manipulate formal specifications in practice. Dijkstra classed the other

comments made by van der Poel together as representative of mechanical or clerical error:

potentially costly if not dealt with, but manageable using available methods of the day.

2.1.1.3 Fitness

Recent writings draw dependability up out of the software toward its creators. The

impression given is of dependability as an adaptive property that emerges and develops

over time to meet the requirements of the environment and culture that create it. Depend-

ability is formed amongst makers, who must confront a ”thousand points of doubt” as they

write software (Ferguson, 1992, p. p.183) and in so doing exhibit the senses of "fitness and

adequacy" that characterise engineering practice more generally (Ferguson, 1992).

Ch. 2 Background

-16-

In the paper “How did software get so reliable without proof?” (1996), Hoare rejected

the need for formal proof in all but the most critical components, instead favouring the

establishment of a ”culture of reliability” enforced through code inspections, reviews and

walkthroughs. He moved the notion of correctness away from design to development,

noting that at the stage of fault removal, reliability in large systems may be a product of a

”natural symbiosis” achieved over many years of mutual adaptation between individual

components maintained by humans.

A symbiotic, adaptive sense of dependability has also been used to explain the differ-

ence between the performance of systems and programs. Shaw contrasted the realities of

”real systems” with programs developed using methodologies of classical computer

science (2002). Programs result in deterministic solutions to clearly defined problems.

Systems, on the other hand, must respond even when the problem space is not completely

understood, or requirements for behaviour change. They must be fit for purpose while

maintaining the quality or ”health” of the system, however imprecisely defined.

Similarly, Randell’s work highlights the complexity of socio-technical “systems-of-

systems”. Such systems have boundaries between them that are ”unknown and unknow-

able”. It is necessary to establish methodologies for achieving a more broadly conceived

notion of dependability that can accommodate human values like trust (Randell, 1998).

In the context of faults and failures, Randell invoked Christopher Alexander’s thoughts

to describe the nature of software design as being one of “fit”: the need to ascertain

appropriateness in the current moment for an unknown future. Often, suitability is

determined by identifying what does not work, by detecting incongruities (Randell, 2003).

Randell argued that in software engineering, such reasoning does not depend on specifica-

tions, but on personal, authoritative judgements taken during design and deployment.

Error Detection and Recovery (Lopez)

-17-

Winograd and Flores characterise this sense of fitness as breakdowns (Winograd &

Flores, 1987) and lend to it the factor of time. Breakdowns are detected by someone who

has been broken out of readiness-to-hand, or “concernful” use of the tools and practices

that underpin work. Errors are problems; they reveal inadequacies of commitment of

“language in action”. They are moments in which when someone's words have not had the

intended effect on the computer. When a problem occurs, each person will bring a unique

background, formed in the past, to understand how and why a problem occurred, whether

the problem can be fixed or not, and the means required to fix it. (p.77).

2.1.2 Fault Analyses

The NATO conferences found that the problem in building quality software was “artisanal

craft”, while the solution was projected to be techniques and theories developed in

software engineering (Buxton & Randell, 1970; Naur & Randell, 1969). One disciplinary

branch of research that subsequently formed to address the problem of creating dependable

software is fault analysis.

Fault analyses address the problem of quality by avoiding operational failure and

employ a range of analytic methods including statistical analysis, program analysis, case

study, formal methods and system analysis. With some exceptions (Magalhães, von Staa,

& de Lucena, 2009), a particular study will often examine a single part of the development

process, such as requirements engineering. The intention is to meet a single dependability

aim, such as fault prevention. As their name suggests, fault prevention studies intend to

prevent the introduction of faults during design and development. In addition to fault

prevention, studies can be categorised in terms of other dependability aims: fault tolerance,

fault removal, and fault forecasting (Pullum, 2001):

Fault removal studies develop processes to remove faults written into software. As

with prevention efforts, removal techniques cannot ensure that all faults are

removed from a system because they can only determine whether or not software

Ch. 2 Background

-18-

matches the specified required behaviour. These analyses cannot determine that

something was left unspecified.

Fault forecasting is likewise employed during software validation to indicate the

presence of faults and to predict the risk of operational failures. It can be used to

determine whether additional testing or other means should be applied to software

before it is released.

Fault tolerance techniques enable systems to tolerate faults that are not removed

before release. They do this by allowing operations to degrade gracefully and to

recover from errors to prevent complete operational failure.

Studies across the categories, as summarised in Table 2.1 are empirical; they analyse

existing bodies of software. However, they often employ quantitative, rather than qualita-

tive analytical techniques. The intentional, connotative significance of concepts (Svenon-

ius, 2000) related to software dependability are reduced into operational terms that can be

measured and thus used to demonstrate, verify and validate that software meets a quantifi-

able, pre-determined degree of dependability. The lens of analysis is retrospective;

examinations are not commonly made of software development practice as it occurs. All

studies, however, are forward-looking, with general aims to improve software development

process and practice in the future.

2.1.3 Root-causes

This section strengthens the case for examining errors in software as outcomes of human

activity. It considers root-cause analysis studies to be both an exemplar of fault analysis

research and a phenomenological source for identifying gaps in understanding about error

in software development. The studies reviewed were selected by chasing footnotes and

were published over the course of approximately twenty-seven years.

Error Detection and Recovery (Lopez)

-19-

Table 2.1: A summary of fault analysis research. This is a brief catalogue of analyses that
treat smaller aspects of failure within systems. The catalogue is representative, not
comprehensive.

Root-cause studies identify the kinds of faults that predominate in a system in order to

determine how software engineering process can be altered to prevent fault occurrence.

The studies draw data from bug and modification reports (Leszak, Perry & Stoll, 2002;

Perry & Evangelist, 1985, 1987), but also make use of in-process questionnaires (Basili &

Perricone, 1984) and retrospectively administered surveys (Perry & Stieg, 1993).

Data are analysed and classified into taxonomies that identify the root-causes for faults.

The classified set of data forms the basis for additional examination of particular code

features such as complexity (Schneidewind & Hoffman, 1979), interface defects (Perry &

Fault prevention

Prevent the introduc-
tion of faults during de-
sign and development

Fault removal

Remove faults during
testing and verification

Fault forecasting

Predict the occurrence
of operational failures

Fault tolerance

Enable systems to de-
grade gracefully

Disciplinary Areas

Requirements engineer-
ing
Structured design
Structured program-
ming
Formal methods
Software reuse

Software testing
Formal inspection
Formal design proofs

Software testing

Program analysis.

Error detection
Diagnosis
Containment and recov-
ery

Representative

Studies

Shaw, 2002
Than et al., 2009

Hanebutte & Oman, 2005
Butler et al., 2010
Zou, 2003
Pugh, 2009
Briand et al., 2003
Cataldo et al., 2009

Bertolino & Strigini,
1998

Sözer, Tekinerdoǧan, &
Akşit, 2009

Ch. 2 Background

-20-

Evangelist, 1985, 1987) or more generally, environmental factors that influence software

dependability (Basili & Perricone, 1984).

2.1.3.1 Establishing a Model for Examining Root Causes

Albert Endres performed an early, influential root-cause analysis of software written for

IBM in 1975 (Endres, 1975). The paper had two outcomes. Its principal outcome was the

establishment of a root-cause taxonomy designed to plot fault distribution and frequency in

systems programming, software characterised by the author as beginning with ”high

quality” requirements that structurally degrade over time (p. 327). The second outcome

was a meditation on the nature of errors in software programming, and reflection about

how they should be studied.

The study examined a single release at IBM of the operating system DOS/VS. It drew

data from failed test cases generated over a five-month period. Two sets of test cases were

run: the first a series of regression tests to ensure that old functionality had not been

compromised by new development and the second to simulate user inputs to the system.

The tests resulted in 740 faults. The original development team categorised the faults

according to the protocol which should be followed to correct them. Four hundred thirty-

two were deemed to be program faults – and thus not duplicates, documentation errors,

hardware failures, operator errors, or feature requests. These formed the data for analysis.

An analysis was performed to determine where, when, and why the fault was made who

made it, what was done wrong, what would have prevented the fault and what would

support detection.

The primary outcome of analysis was a taxonomy of distribution by type of error. This

taxonomy included three main groups:

• faults related to problem understanding

• faults related to implementation

Error Detection and Recovery (Lopez)

-21-

• mechanical errors such as spelling, or errors in integrating modules.

The study found that almost half of the 432 cases were could be attributed to programming

technique, with suggestions given that better programming methodology would reduce the

number. Notably, the remaining errors were found to be due to problem understanding, a

category that included communication, and knowledge of the broader ”possibilities and

procedures for problem solving” (Endres, 1975, p.331). Endres attributed this finding to

the complexity of the tasks, noting that the problems to be solved in systems programming

are inherently ill-formed, dynamic, and require iterative changes. The functional demands

of such systems, he argued, can only be properly understood when they are seen in use. To

reduce faults in this class, Endres concluded that changes must be made to the develop-

ment process, including the use of design and code walkthrough sessions, prototypes of

functionality and user tests.

The study noted two significant limitations. It defined errors in the context of correc-

tions made to source code. The number of errors equaled the number of failed test cases

and did not consider other problems that might be found and corrected along the way, or

those of which the programmer may have ”secretly been aware of for some time” (Endres,

1975, p. 330). The information provided in failed test case reports was sufficient to explain

where and when an error was made, however, more information was required to determine

who made the error. These data were gathered from conversations held with the develop-

ment team.

2.1.3.2 Following the Model

Six root-cause studies that follow a research model like the one used by Endres’ are

profiled and reviewed in the text that follows. See Table 2.2 for a summary of the studies..

As in Endres' case, the studies primarily examined data drawn from bug and modification

reports filed by users and testers (Leszak et al., 2002; Perry & Evangelist, 1985, 1987).

Ch. 2 Background

-22-

Other studies drew data from in-process questionnaires (Basili & Perricone, 1984) and

retrospectively administered surveys (Perry & Stieg, 1993). The study design in one case

was experimental and examined purpose-built software (Schneidewind & Hoffmann,

1979). In the other studies, an empirical examination was made of software written for

industrial environments, in a variety of languages and for different operating systems.

Taxonomies that represent the root causes of errors were the primary tool used in the

analysis. Some schemes were theoretical, designed a priori by the researchers (Basili &

Perricone, 1984; Schneidewind & Hoffmann, 1979) or developed in collaboration with

members of the development team (Perry & Stieg, 1993). The taxonomy used in one study

developed out of an analysis of error data (Perry & Evangelist, 1985, 1987). A second

study used a scheme created earlier, adapting and extending it to represent additional

information (Leszak et al., 2002). Developers were asked to classify errors using tax-

onomies supplied by researchers in two cases. Basili and Perricone included their classifi-

cation in a change report form completed by programmers. Perry and Stieg surveyed

programmers responsible for closing modification reports asking them to classify the error

into one of nine fault type categories and to indicate the phase of testing in which the fault

emerged.

Classified collections of faults provided a lens for examining other features of software

such as complexity, interface defects or environmental factors that influence software

dependability. Complexity was found both to correlate to error frequency (Schneidewind &

Hoffmann, 1979) and not to (Basili & Perricone, 1984). Application programming

interfaces were found to have particularly high frequencies of errors associated with them

(Perry and Evangelist, 1985, 1987). These and other root causes were interpreted according

to the costs of finding and fixing (Basili & Perricone, 1984; Leszak et al., 2002, Schnei-

dewind & Hoffmann, 1979).

Error Detection and Recovery (Lopez)

-23-

Schneidewind
& Hoffmann
(1979)

Basili &
Perricone
(1984)

Perry &
Evangelist
(1985, 1987)

Hypotheses/Aims

Hypothesis: Program
structure has a signifi-
cant effect on error
making, detection, and
correction.

Aim: To find a com-
plexity measure that
can be used to guide
program de-sign and
resource allocation in
debugging and testing.

Aim: To analyze the
relationships between
environmental factors
and errors reported
during software devel-
opment and mainte-
nance.

Hypothesis: Interfaces
are a source of prob-
lems in the develop-
ment and evolution of
large system software.

Characteristics
of Data

173 errors

64 errors deemed to be
potentially relevant to
complexity of structure

231 change report
forms, created by pro-
grammers over a peri-
od of 33 months.

Reports were verified
by team manager, vali-
dated by research
team;

New development, but
existing code re-pur-
posed in some cases

94 randomly selected
modification reports
submitted by testers

85 contained sufficient
data for the study

Software evolution.

Characteristics
of Software

Four projects un-
dertaken by the
same programmer

Algol W for exe-
cution on the IB-
M360/67

Purpose-built
code.

Approximately
90,000 lines of
code

Primarily in For-
tran for execution
on an IBM 360

Aerospace (satel-
lite planning stud-
ies).

350,000 non-com-
mentary source
lines

C programming
language

Fault reports writ-
ten against global
header files.

Domain unreport-
ed, researchers af-
filiated with Bell
Labs and MCC.

Ch. 2 Background

-24-

Table 2.2: A summary of root-cause analyses. The research model established by Endres
was also used in other root cause analyses. This table gives information for six such
studies, highlighting study aims, characteristics of study design, and the environment under
investigation.

The studies, like Endres’ converge on one point: knowledge is one of the largest problems

in software development (Perry and Stieg, 1993). However, the findings represent the

notion of conceptual integrity in different ways. Endres described it as problems of

understanding. The other studies conflate reasoning with constructs taken from software

engineering. For example, Basili and Perricone found that roughly half of all errors related

to requirement and functional specifications. Perry and Evangilist noted that 25 percent of

the interface errors they studied were due to issues in design (Perry and Evangilist, 1987,

Section 2 Background for the study).

The aim to go beyond the source code and to “get at” the reasoning process of develop-

ers in some cases prompted a second phase of data collection. Perry and Stieg designed a

Perry & Stieg
(1993)

Leszak,
Perry & Stoll
(2002)

Aim: To determine
general and application
specific encountered
during software evolu-
tion.

Aim: To determine
problems are found.
Aim: To determine
when problems are
found.

Aim: To analyze defect
modification reports;
establish root causes.

Aim: To analyze cus-
tomer-reported modi-
fication reports

Aim: To propose im-
provement actions to
reduce critical defects
and to lower rework
cost

Total sample size unre-
ported.

68% of surveys were
returned in each of two
surveys

Software evolution.

427 Modification Re-
ports representing 13
domains (func- tional
units of software)

New development
(51%) and evolution.

1,000,000 non-
commentary
source code lines,
distributed real-
time system writ-
ten in C on UNIX

Telecommunica-
tions (AT&T).

900,000 non-com-
mentary source
code lines

Language and en-
vironment unre-
ported

Telecommunica-
tions (Lucent)

Error Detection and Recovery (Lopez)

-25-

survey for their case study that included a section for identifying the “underlying causes”

of design and coding errors. Examples of categories included "Ambiguous design" and

"Knowledge incomplete". All members of this category represented difficulties related to

maintaining conceptual integrity (Perry & Stieg, 1993). Supporting Endres’ findings, their

analysis indicated that lack of information dominated the underlying causes of the errors,

while knowledge-intensive activities such as code inspections dominated the means of

prevention.

Commentary about developer proficiency figures strongly, if indirectly in the studies.

Schneidewind and Hoffman noted that their scheme was superior because it captured the

flawed ”mental processes” of the programmer in representing ideas within source code

(Schneidewind & Hoffman, 1979, p.282-283). Perry and Evangilist gave several causes

for their error categories related to human performance, including several mentions of

inexperience (Perry & Evangelist, 1987). Leszak et al. reported that a mismatch between

the technical skills required and those available among workers is often the root cause of

faults (2002). Echoing Hoare and the recommendations of Endres, Perry and Stieg

concluded that process should be altered to include ”non-technological, people-intensive

means of prevention” (Perry & Stieg, 1993).

In conclusion, on close reading the papers reveal that to fully understand why errors are

made, information must be gathered about human understanding – where it is lacking, how

it is coordinated and maintained (Leszak et al., 2002). The studies led by Perry and Leszak

conclude with suggestions for follow-up work using methods to investigate the human

element of errors, but only Endres’ discussed in any detail the generative qualities of error.

As Endres argued, programming is a human activity shaped by an inner life of motivations

and mental processes, of personal strategies developed to manage the work of program-

ming. The sources of errors must, therefore, be considered not with regard to correction of

Ch. 2 Background

-26-

faults, but instead to intended implementations and subsequent outcomes (Endres, 1974, p.

329).

2.2 Human Error

Human error is an old and vast concern, far too immense to be comprehensively explored

within doctoral research in computing. James Reason’s Human Error has thus served both

as an entry point to error concepts and literatures and as the foundation for understanding

psychological concepts and theories.

Analysis of the literature began with Chapter 6, which surveys error detection and

recovery research. Related ideas are woven through many chapters of the text, expressed in

varying degrees of detail. Problem-solving performed during error handling is detailed in

Chapter 3, within a presentation of the Generic Error Modelling Framework. The notion of

active errors and their relation to intention is best described within Chapter 7, “Latent

errors and systems analysis”.

Perspective on performance in the workplace was developed using strands of research

from safety science and organisational psychology. Rasmussen is possibly best known

within software engineering for the skills-rule-knowledge framework of performance

(Rasmussen, 1985) discussed in Section 2.2.3.2. However, in two pieces written in 1990,

he firmly challenged the view that retrospective, causal analysis yields understanding about

accidents in complex work environments. This represented a powerful shift in thinking

within safety science. Following the argument he made forward, one finds an evolution in

thinking about accident analysis, termed the “New Look” by Woods (2003), and the “Third

Age” of safety by Hollnagel (2011), recently designated within resilience engineering

(Hollnagel, Woods, & Leveson, 2006).

Working within organisational psychology, Michael Frese and Dieter Zapf situated

examination of human error within office environments. Drawing upon the paper “Action

Error Detection and Recovery (Lopez)

-27-

as the Core of Work Psychology: A German Approach” (Frese and Zapf, 1994) they

described the tenets of goal-based action, characteristics of tasks that bridge personal

intentions and work assignments, and developed a theoretic taxonomy of errors. In related

work, they along with colleagues examined errors that arise in computer-based office work.

This vein of research persists, utilised in a book published in 2011 that treated errors in

organisations (Hofmann & Frese, 2011).

To assess the strength of the literature selected from these disciplines, citations patterns

were compared and persistence of the ideas since 1990 was established. Human Error was

published that year, and many sources and threads of analysis that were examined

germinated in the years just before or just following that time. The three disciplines

develop theoretical arguments using similar classes of psychological literature and often

cite the same studies, such as Norman’s “Categorization of Action Slips," from 1981.

Rasmussen’s work has been hugely influential beyond science safety (Le Coze, 2015),

informing the work examined for this thesis of Norman, of Reason, of Frese and Zapf, and

of cognitive task analysis (Crandall, Klein, & Hoffman, 2006).

Human error is often defined in relation to actions taken, described in the following in

Section 2.2.1 alongside related concepts such as intention, attention, and information and

knowledge. Additional sub-sections situate typologies of human error interpreted in

relation to action and to performance.

2.2.1 Action Models

Actions are performed by identifying an intention, which is broken down into individual

acts. The acts form a sequence that begins and ends as required to complete the action.

While an action is underway, activity is monitored, and feedback is assessed to determine

if intentions are being met. When an action deviates from an intention, an error has

occurred (Norman, 1981).

Ch. 2 Background

-28-

This description of action comes from Norman’s Action-Trigger-Sequence system

(Norman, 1981), one of a cluster of models (Norman, 1981; Norman & Shallice, 1986;

Reason, 1984) formulated to explain how “systematic” or “predictable” varieties of human

error arise (Reason, 1990, p. 36). The models were developed by interpreting and compar-

ing accounts of everyday activity.

For example, in categorising slips of action, Norman analysed a thousand incidents that

included his own collection of accounts, and a compilation of similar incidents from other

researchers. The incidents used by him in the analysis were recorded immediately after the

occurrence, either by the person who made the error or by an observer. Reason’s work

with slips of action resulted in a behavioural classification of error categories, a theoretical

action model, and a set of hypotheses about the cognitive mechanisms that fail when action

slips occur (Reason, 1984). His data comprised 625 slips of action compiled out of

catalogues developed in two studies. One study collected sixty-three diaries over seven

days that included information about what happened when deviations in action were

discovered and the completion of a set of standard questions that contextualised individual

occurrences.

The Action-Trigger-Sequence system depicts action as a linear, horizontal sequence. It

represents how people perform well-learned, habitual actions using pieces of stored

knowledge stored that “direct the flow of control” of motor activity (Norman, 1981, p. 4).

Norman is referring in this description to schema, a term made familiar in computer

science through the work of Minsky (Brewer, n.d.). Reason situates schema within

psychology as higher-order, generic cognitive structures underlying all aspects of human

knowledge and skill. Their workings are not consciously experienced, but they “lend

structure” to perceptual experience and to the information that is stored or retrieved from

memory (Reason, 1990, p. 35).

Error Detection and Recovery (Lopez)

-29-

A person selects and activates an action schema when the current state matches the

conditions under which it should be activated, but this is dependent on the perceived

quality, or “goodness” of the match (Norman, 1981, p. 14). Actions may be initiated by

environmental input, previously activated sequences or by thoughts, memories, and

competing aims. Slips of action, or errors, occur because multiple sources of activation are

possible and conditions are variable.

Intention

Intentions define actions. Without intention, there can be no selection of acts, no corre-

sponding activity, and no assessment of completeness or correctness. Intentions are the

result of "many considerations", including personal goals, decision-making and problem-

solving (Norman, 1981, p. 5). Naturally, some errors arise in forming intentions. Norman's

analysis of slips considered only errors, and by extension actions, for which an intention

was stated. However, his scheme also represented errors of intent, such as performing a

reasonable action in the wrong environment or forming the wrong intention because of

incomplete information.

An intention has two components: the expression of the desired “end-state”, and

indications of how it is to be achieved (Reason, 1990, p. 5). Different actions require

differently specified intentions. Small everyday actions become routine over time and do

not require explicit specification. By contrast, a novel or ill-learned action requires greater

intentional specificity until it too is repeated enough to become routine. In assessing

activity, actions that did not meet prior intentions or were not properly executed are

erroneous.

Stated again, actions are at times so well understood and familiar that they can be

performed automatically (Norman & Shallice, 1986). They are routine, habitual. They

arise out of intentions that can be clearly stated and broken down into a series of physical

Ch. 2 Background

-30-

acts (Norman, 1981). Their familiarity “invokes” well-specified expectations (Sellen,

1994, p. 486).

Attention

Attention is paid to ensure that intentions are being met. This is done by comparing

original intent —what one meant to do— with information or feedback. Comparisons are

made between information and expectations, that is what one expects to happen. (Norman,

1981; Reason, 1990). Information thus may come from internal sources, as in statements of

intent or expectation, or external sources, as in the effects or outcomes that are produced

when activities are undertaken.

Attention is variously described as leading to error, as preventing error, as necessary for

diagnosis and for forming intention. Paying attention too closely to simple tasks can lead to

errors, as can paying too little attention at key moments (Reason, 1984).

Conscious Control

Periodic attention is used to monitor routine tasks, however, it is not always sufficient. At

other times attention is commanded, it must be “close and labored”, so that consequences

of actions can be assessed (Reason, 1984, p. 516). Activities that command attention are

often novel. This may be because they are not as well understood by the performer

(Norman & Shallice, 1986), or arise out of “new” circumstances or unfamiliar sequences

that generate unpredictability (Sellen, 1994, p. 486).

There are other special conditions in which “heightened awareness” or conscious

control is required: when plans must be made, decisions taken or errors must be corrected.

As noted, it is needed for tasks that are not well-learned or have novel sequences, but also

for those deemed to be difficult or dangerous, or for actions that counter strong habitual

responses (Norman & Shallice, 1986, pp. 2, 8).

Error Detection and Recovery (Lopez)

-31-

Norman and Shallice accounted for conscious command within the Attention to Action

model (1986). In this model, the supervisory attention system manages activity by

drawing on multiples sources and types of information, including past and present states of

the environment, of intentions, and awareness of prior actions and outcomes. It depends

upon will. Will must be exerted to meet intentions, even if it means performing actions

that one does not want to do. The exertion of will requires attention, but also “conscious

knowledge” of the particular end to be met. Norman and Shallice suggest that this

knowledge must be formed before conscious control is exerted.

The model of human action given by Reason likewise gives emphasis to the force of

needs in regulating action. Needs are the “motivational springs” of human action. In

agreement with Norman and Shallice, Reason argued that attention or deliberate control

must be exerted differently when intentions are in danger of not being met. For Reason,

such moments are those in which intention assumes control as the “chief executive”,

responsible for organising plans, monitoring and guiding activity (Reason, 1984, p. 533).

The following sub-sections present typologies developed using theories of performance

that are action-based. The first reiterates slips of action developed by Norman and

Reason. The next sub-section describes Rasmussen’s skill-rules-knowledge performance

framework. Two models developed by Reason that combine slips of action with Ras-

mussen’s levels of performance are described in Section 2.2.3.3. Finally, a model of action

and error developed using Action Theory to describe organisational practice is

summarised.

2.2.2 Slips of Action

Slips result from actions that do not go according to plan. An intention, aim or a plan might

have been well-formed, but something goes wrong in performance. Slips may be overt or

Ch. 2 Background

-32-

covert, occurring during speech and motor action. They are shaped by intention, execution,

and circumstance (Norman, 1981).

Reason described these errors as “trifling and usually inconsequential blunders” (Rea-

son, 1984, p. 517). Slips of action can be caught in the act, just after the occurrence or after

a long delay. Recovery might require several attempts, and some errors go completely

undetected (Norman, 1981). However, once detected and identified, slips of action have a

more or less obvious solution (Allwood, 1984). They take three forms: slips, lapses and

mistakes.

To review, a slip results from an action that does not go according to plan or which was

not intended (Norman, 1981). This kind of error is often observable as in slips of the

tongue, of the pen, or in operation of a machine. However a slip but may only be apparent

to the person who has slipped, as in a spoken sentence that is grammatically correct, but of

incorrect significance.

Lapses are failures of memory that lead to a failed action. A person may forget a plan

entirely or lose intention in the midst of performance (Sellen, 1994). Going to bed without

taking medicine or wondering why one has entered a room are two examples. Lapses are

often covert (Reason, 1990) and can only be detected by the individual who experiences

them.

When a discrepancy arises between what one intends to do and what one expects to

have happen, a mistake has occurred (Reason, 1990, p. 8). The intentions may have been

inappropriate (Norman, 1981) or ill-formed (Norman, 1981; Sellen, 1994). The actions

undertaken to meet an intention may have been correctly selected and correctly carried out,

but the original intent was wrong. Specifying intentions for complex actions requires

problem-solving, a “blanket term” used by Reason to describe reasoning, judgement,

diagnosis and decision making (1990, p. 158).

Error Detection and Recovery (Lopez)

-33-

Reason associated mistakes with two kinds of problem-solving, tactical and strategic.

Mistakes occur when people make failures in “judging available information, setting

objectives and deciding on the means to achieve them” (Reason, 1990, p. 54). Slips of

action are usually detected by the person who slips using internal criteria. Correct perfor-

mance can be tactically determined because the actions are simple, the intentions are well-

formed, and solutions are clearly recognisable beforehand. By contrast, to meet the

requirements of more complex intentions, correctness must be evaluated using external

criteria. Success depends on two factors: correct goal definition and the ability to “recog-

nise and correct deviations” from the path toward the end. Success or failure of strategic

decisions can only be judged over time, in light of overarching or distant goals (Reason,

1990, p. 158).

2.2.3 Skills, Rules and Knowledge

The skill-rule-knowledge (SRK) framework models cognitive control of human behaviour.

The framework can be used in analysis to explain errors in performance that arise during

an emergency or within hazardous environments (Reason, 1990). The model was devel-

oped based on studies performed by Rasmussen using the think-aloud protocol (Rasmussen

& Jensen, 1974). The framework has been used to examine errors made in writing HTML

and CSS (Park, Saxena, Jagannath, Wiedenbeck, & Forte, 2013). Another notable study in

software engineering by Huang, Liu, Song, & Keyal used Rasmussen’s description of

performance levels to interpret how differences in cognitive styles and personality types

might influence the occurrence of coincident faults in software (2014).

The SRK was described by Rasmussen in multiple reports and articles, and is used and

described by many of the authors surveyed for this research (Hofmann & Frese, 2011;

Reason, 1990; Rizzo, Bagnara, & Visciola, 1987). One criticism of the model is that it

presents a normalised view of human behaviour (Le Coze, 2015). In so doing, many

Ch. 2 Background

-34-

contextual details performance that should be represented by an analysis are omitted

(Rasmussen 1985).

The explanation of the model used to guide research in this thesis was drawn from an

invited talk given in 1984 titled Human Error Data. Facts or Fiction? (Rasmussen, 1985).

This description of the model emphasises that performance on the job develops over time.

This emphasis is particularly relevant in the context of rule-based performance, which in

later treatments (Reason, 1990) is described as the application by a worker of if-then logic.

Performance, as modelled in the framework, is controlled at three levels: skill, rule and

knowledge. Each level represents the cognitive demand required to complete different

tasks. Cognitive demand correlates to the degree of familiarity a worker has with an

environment and the source and character of information that is used to adjust behaviour.

Each level is briefly summarised in the following paragraphs, as well as in Table 2.3.

Skill-based or motor tasks require low-levels of control. The tasks are highly familiar,

routine, and an individual adjusts behaviour in response to signals in the environment.

Rule-based or procedural activities are familiar, they are performed and controlled by

past experience. In this case, know-how gained through individual or collective experience

is applied within a situation as a “recipe”. Rules form over time, as similar situations are

encountered to which a recipe applies. Signs that indicate the state of the environment or

internal goals initiate or modify behaviour.

Knowledge-based tasks involve reasoning in unfamiliar situations or conditions. Goals

are developed through analysis of a situation, and plans are physically and conceptually

developed and tested. Information takes the form of symbols, meanings that an individual

develops internally to explain the functional properties of the environment he is in.

Error Detection and Recovery (Lopez)

-35-

Table 2.3: Rasmussen’s skill-rules-knowledge framework (Rasmussen, 1985).

2.2.4 Generic Error Modelling Framework

Reason associated slips of action with Rasmussen’s skill-rule-knowledge (SRK) perfor-

mance behaviour framework within the Generic Error Modelling Framework (GEMS).

GEMS has a history of use in software engineering research. Huang, Liu, and Huang

mapped Reason’s error modes to a taxonomy of common activities in requirement analysis

and software development (Huang, Liu, & Huang, 2012). Ko and Myers likewise drew

from the error typology developed for GEMS and respective modes of failure to define

cognitive breakdowns in using programming environments. Breakdowns were associated

with the concept of latent errors from the Swiss Cheese Model (described in the following

Level of Control

Skill-based

Rule-based

Knowledge-
based

Description

Sensi-motor ac-
tivities, per-
formed without
conscious con-
trol. They are
“smooth”, auto-
mated and high-
ly integrated

Procedural ac-
tivities, devel-
oped through
previous experi-
ence and others’
“know-how”

Plan develop-
ment and selec-
tion and testing,
through trial and
error or concep-
tually

Goal

Explicit

Explicit or im-
plicit, the situa-
tion suggests a
particular con-
vention

Explicit, de-
rived from
analysis of a sit-
uation and guid-
ing personal
aims

Situation

Familiar

Familiar

Unfamiliar

Information
Source

Signals are in-
dicators of the
environment.
They are tem-
poral and spa-
tial, with no in-
herent meaning

Signs Activate
or modify pre-
determined
recipes. They
refer to analo-
gous situations
or proper be-
haviour
Symbols de-
fined by and in
reference to in-
ternal under-
standing of the
environment

Ch. 2 Background

-36-

section, 2.2.5) and situated within a framework used to perform retrospective, causal

analyses of human error in programming activity (Reason, Hollnagel, & Paries, 2006).

The Generic Modelling System is a context-independent framework for considering

varieties of human error. It models the ways in which different kinds of performance error

relate to one another, and the cognitive origins and sources of failure associated with each.

At the heart of the GEMS model is a typology matching slips of action to the levels of

performance in Rasmussen’s SRK model (see Table 2.4 for a summary). Slips and lapses

were related to skill-based performance. Mistakes were delineated into two types, one

associated with rule-based and one with knowledge-based performance.

This delineation accounts for evidence suggesting that some kinds of mistakes fall

between the categories of slips and mistakes. At times, when people slip or make a

mistake, they select a behaviour from experience rather than assessing and responding to

the situation at hand, a phenomenon Reason describes as strong-but-wrong. At other times,

people exhibit failures in judgement, in forming and in determining how to meet

intentions, all behaviours that have been associated with mistakes. Within the same

incidents, these people also exhibit behaviour associated with slips, in that they favour

strong-but-wrong practices.

Reason identified eight dimensions that distinguish error types, summarised in Table

2.3 below, and in the paragraphs that follow.

Skill-based activities are routine, non-problematic and carried out within familiar

environments. As established in the models of action, slips and lapses occur due to failures

of monitoring linked attention to activity. Rule- and knowledge-based activities are

undertaken under less familiar circumstances, spurred by unexpected events. They are

unplanned for, and call for deviation from the current plan (Reason, 1990, p. 56).

Error Detection and Recovery (Lopez)

-37-

Rule- and knowledge-based performance centres around problem-solving that fluctuates

between searches for rule-orientated solutions and conscious, effortful knowledge-based

reasoning toward a solution. Mistakes are made in the course of activities due to a

bounded, “keyhole” ability to view possible solutions or because of incomplete or

inaccurate knowledge of the problem space (Reason, 1990, p. 167).

Table 2.4: Relating error types to performance. Adapted from (Reason, 1990) and
(Hollnagel, 1998).

Performance of skill- and rule-based activities requires feedforward control, that is the

selection and application of stored procedural and situational knowledge. By contrast,

knowledge-based activities are controlled using feedback. Reasoning is functional in that a

problem solver forms an internal mental model of the problem, and then sets local goals,

for which actions can be selected and understood, observed and assessed for completeness

Type

Slips and

Lapses

Rule-based

Mistakes

Knowledge-

based

Mistakes

Activity

Routine actions,
changes in con-
ditions assessed
at the wrong
time.

Problem
solving, changes
anticipated but
when and how
unknown.

Problem solv-
ing, changes are
unanticipated

Attention/
Control

Attention
misdirected,
feedforward
control

Conscious at-
tention to task,
feed-forward
control

Conscious at-
tention to task,
feedback con-
trol

Detection,
situational
influences

Easy, rapid,
effective re-
covery; focus
of attention,
strength of as-
soc.

Difficult to de-
tect, may re-
quire support;
attention,
strength of as-
soc., nature of
task, training.

Difficult, may
require
support; task
and circum-
stance

Rate,
Predictability,
Expertise

Abundant; pre-
dictable; novices
lack routines,
ability to
abstract.

Abundant; pre-
dictable; novices
lack routines,
ability to
abstract.

Few; harder to
predict; mistakes
by experts “look”
like novice mis-
takes.

Ch. 2 Background

-38-

and success. This is an “error-driven,” conscious process that is “slow, sequential,

laborious” and constrained (Reason, 1990, p. 57).

Novices commit slips and rule-based mistakes due to a lack, or inappropriate selection

of stored knowledge. Skilled, expert performance is distinguished by the presence and

application of routines and rules for action that are formulated in more abstract ways than

novices. However, in knowledge-based activities, even highly skilled workers will behave

like novices when presented with a novel situation for which stored rules and routines do

not apply.

2.2.5 Swiss Cheese Model

Reason’s “Swiss Cheese” model represents how concealed, hidden failures and local

triggering events combine during catastrophic events. It was designed to be a heuristic

explanatory device, conveying that catastrophic accidents in organisations are generally

caused not by a single error, but instead by the conjunction at a point in time of multiple,

unlikely and unforeseen factors. It has subsequently been used as framework for retrospec-

tive accident investigation and as a measurement tool to assess the health or vitality of a

system (Reason, Hollnagel, & Paries, 2006). Although the model has undergone several

revisions, the description given here is drawn from the version presented in Chapter 7 of

Human Error.

The model includes several components, depicted in related diagrams within Human

Error. This summary highlights four: a general typology of production that can be taken

to represent any industry working with complex technology, a typology of human

weaknesses that contribute to accidents, a typology of kinds of human error, and a model

depicting the dynamic process of accident occurrence. The production model and human

weakness typologies are composed of five interrelated elements, summarised in Table 2.5.

Error Detection and Recovery (Lopez)

-39-

Table 2.5: Interrelations between production and human activities. Adapted from Reason,
1990, Figures 7.4, 7.5 & pp. 99-209. The productive activities element (highlighted) is the
focus of analysis in this thesis.

As Table 2.5 above shows, weakness at one level of production is dependent on actions

taken at a higher level and have consequences for production elements that follow. Within

a system, the consequences may be latent or active. Latent errors may remain concealed in

a system, with adverse consequences that become evident over time in combination with

other factors. They are generally produced at levels of production that are removed in

space and time from work at the “front line” (Reason, 1990, p. 173). Active errors occur

on the front-line and have effects that are felt “almost immediately” (Reason, 1990, p.

p.173).

Elements of Production

Decision Makers
Set goals, strategies, al-
locate resources

e.g. Designers, architects,
executive managers

Line Management
Implement strategies

e.g. Operations, training,
sales, maintenanc

Preconditions
Infrastructural

e.g. Equipment, Personnel,
schedules, codes of
practice, environment

Productive Activities
Synchronised Perfor-
mance of humans and
machines.

Defences
Safeguards against nat-
ural or intrinsic hazards

Contributory Human Weaknesses

Fallible resource allocations for safety.
Due to:

• Uncertain outcomes
• Feedback often negative, intermit-

tent
• Poor safety is easy to blame on

careless or incompetent operators

Consequent (in part) to fallible decisions.
• Poor training
• Scheduling
• Poor procedures

Consequent (in part) to mgmt. deficien-
cies.

• Stress, Negative life events,
• Imperfect awareness of a system,
• Lack of motivation

Extrinsically defined in relation to partic-
ular hazards and situations.

• Slips, Lapses
• Mistakes
• Violations

Personal safety equipment, physical barri-
ers to hazardous material.

• Redundancy,
• Diversity,
• Human and machine

State

Latent

Latent

Latent

Active

Active &
Latent

Ch. 2 Background

-40-

The error typology used in this model groups human error into a typology of unsafe

acts. These are active errors committed by workers and include unintended actions such as

slips or lapses, and also intended actions that are mistaken. Violations comprise a fourth

category in this typology. Like mistakes, violations are committed with intent. They are

deliberate deviations taken against regulated safety procedures (Reason, Manstead,

Stradling, Baxter, & Campbell, 1990). Violations arise in the context of the social context

of work, a context bounded by mores, rules, and procedures (Reason, 1990).

Accidents are unpredictable, they arise when an unsafe act is committed that correspond

to at a point in time to breaches in safety defenses. This “unlikely” combination of events

aligns along a “trajectory of opportunity” (Reason, 1990, p. 208), famously depicted within

the diagram depicted in Figure 2.1 as multiple slices that correspond to different elements

of production. In the version printed in Human Error on pp. 208, the slice representing

“unsafe acts”, was depicted with numerous holes placed between a layer of psychological

conditions and layers of defence mechanisms. In later versions of the diagram, depicted

below in Figure 2.1, slices with numerous holes were used to depict defences, barriers and

safeguards in organisational settings.

THE NATURE OF ORGANISATIONAL ACCIDENTS
Organisational accidents arise from the concatenation of
several contributing factors originating at many levels of the
system. These, in combination with local triggers, open a
window of opportunity in which the hazards are allowed to
pass unchecked through successive weaknesses in what the
military and the nuclear industry have termed defences in
depth (that is, a defensive system that involves successive
barriers, each designed to support the others). Because of the
many layers of protection, such accidents are rare events.
They require the simultaneous alignment of gaps or absences
within what are usually diverse and redundant defences.
These aspects are encapsulated in the Swiss cheese model of
organisational accidents2 shown in fig 1.
In an ideal world, the defensive layers would be intact. In

reality, they are more like Swiss cheese: full of holes. These
gaps, weaknesses, and failures (or the complete absence of
necessary safeguards) occur for two reasons:

N Active failures—these are unsafe acts (errors or proce-
dural violations) on the part of those in direct contact with
the system that create weaknesses or absences in or
among the protective layers.

N Latent conditions—these are defensive gaps, weak-
nesses, or absences that are unwittingly created as the
result of earlier decisions made by the designers, builders,
regulators, and managers of the system. Such holes exist
in all complex hazardous systems because the decision
makers cannot foresee all the possible accident scenarios.
However, latent conditions (also termed resident patho-
gens) possess two important properties: firstly, their
effects are usually longer lasting than those created by
active failures; and secondly, they are present within the
system prior to an adverse event and can be detected and
repaired before they cause harm. As such, they represent
the primary targets of any safety management system.

Following an organisational accident, the model requires
the asking of two related questions. Firstly, how did each
defence or barrier fail? Secondly, why did it fail? Answers to
the second question frequently, but not always, begin with
unsafe human actions; that is, errors or procedural violations
committed by those at the sharp end, people in direct contact
with the patient or the system. But such active failures rarely
arise solely from wayward psychological processes or
negligence. They are more often the direct consequence of
error provoking circumstances within the local workplace.
And these, in turn, are the product of higher level latent
conditions: prior decisions by equipment designers, senior
managers, the writers of protocols, and the like. They can also
occur through the gradual erosion of safeguards by subtle
and often well intentioned workarounds or changes in
operating practices, as revealed in the case study presented.

CASE STUDY: A WELL DOCUMENTED VINCRISTINE
TRAGEDY
A close examination of this adverse event is possible because
its organisational precursors were investigated by an external
expert in accident causation, and the very detailed findings
made available to the public domain.3 A summary is shown
in box 1.
The hazards of injecting vincristine intrathecally (rather

than intravenously) were well known within the prestigious
teaching hospital where this tragedy happened. This parti-
cular adverse event has occurred several times before. An
influential report commissioned by the UK’s Chief Medical
Officer featured such an accident as a full page case study.4 It
was noted that there had been 14 similar events in the UK
since 1985. Other surveys indicate that a large number of
such occurrences have occurred worldwide (ISP Barker,
personal communication, January 2003).
The precise numbers are not important here. What matters

is that the same procedure has been directly associated with
iatrogenic fatalities in a large number of healthcare institu-
tions in a variety of countries. The fact that these adverse
events have involved different healthcare professionals
performing the same procedure clearly indicates that the
administration of vincristine is a powerful error trap. When a
similar set of conditions repeatedly provokes the same kind of
error in different people it is clear that we are dealing with an
error prone situation rather than with error prone, careless, or
incompetent individuals.1

The hospital in question had a wide variety of controls,
barriers, and safeguards in place to prevent the intrathecal
injection of vincristine. But these multiple defences failed in
many ways and at many levels. The upstream defensive
breakdowns and absences are summarised in boxes 2–6.

THE SITUATION JUST PRIOR TO THE INJECTIONS
At 5 pm, 20 min before the drugs were administered, the
large majority of the ingredients for the subsequent tragedy
were in place. The many gaps and absences in the system’s
multiple upstream defences had been unwittingly created
and were lining up to permit the disaster in waiting to occur.
Two inadequately prepared junior doctors, each with inflated
assumptions about the other’s knowledge and experience,
were preparing to give the patient his chemotherapy.
It was a Thursday afternoon, normally a quiet time on the

ward. Their clinical supervisor, a locum consultant haema-
tologist (in post for only four months prior to this event), was

Figure 1 The Swiss cheese model of accident causation. The slices of
cheese represent successive layers of defences, barriers, and
safeguards.

Box 1 Outline of the vincristine tragedy

An 18 year old male patient, largely recovered from acute
lymphoblastic leukaemia, mistakenly received an intrathecal
injection of the cytotoxic drug vincristine. The treatment was
given by a senior house officer (SHO) who was supervised by
a specialist registrar (SpR). The former (with only two month’s
postgraduate experience in haematology) was unfamiliar
with the usually irreversible neurological damage caused by
the intrathecal administration of vincristine, and while the
latter had 18 month’s experience as an SHO in haematology
(although with fairly limited involvement in chemotherapy),
he had only been in post for three days. It was a requirement
that the spinal administration of drugs by SHO’s should be
supervised by a SpR. This supervisory task fell outside the
scope of the SpR’s duties at that time (see box 5), but no one
else seemed to be available and he wanted to be helpful. The
error was discovered very soon after the treatment and
remedial efforts were begun almost immediately, but the
patient died just over three weeks later.

Beyond the organisational accident ii29

www.qshc.com

Figure 2.1: Reason’s “Swiss Cheese” model. Reprinted from “Beyond the organisational
accident: the need for “error wisdom” on the frontline.” by J. Reason, Quality and Safety in
Health Care, 13(suppl 2), ii28–ii33. Copyright 2004 BMJ Publishing Group Ltd. Reprint-
ed with permission.

Error Detection and Recovery (Lopez)

-41-

2.2.6 An Action-Oriented Taxonomy of Errors

In situating examination of errors within organisational psychology, a cluster of studies

authored by researchers in Germany likewise adopted a conceptualisation of action that

situates the concept of intention in terms of goals (Zapf, Maier, Rappensperger, & Irmer,

1994). Like Reason, Frese and Zapf acknowledge that in general, goals are preceded by

needs, by “wishes” and “wants” (1994, p. 274), that translate into intentions that can guide

action when an urgency or importance arises. However, Zapf and Frese mark a difference

between personal actions and those taken at work.

Actions at work are linked to tasks, actions that must be performed according to rules in

order to help meet organisational goals. In order to perform an organisational or external

task, a worker must redefine it into internal tasks, and then to goals that can be met through

action. The process of redefinition is described as one of interpretation, conducted based

on professional and organisational knowledge, and prior experience.

The interplay between work tasks and personal goals influences aspects of the models

of regulation and error. Hofmann and Frese present a recent synthesis of the German

studies (2011), describing a four-level taxonomy of performance. Three of the levels

correspond to those of the SRK, and by extension to slips of action.

Skill-level or sensori-motor activities, as in the descriptions given by Norman and

by Rasmussen, are those which are performed automatically, and which are

monitored and adjusted based on feedback from the environment.

Flexible action patterns are likened by Hofmann and Frese to schemata within

Norman’s action theory and rules in Rasmussen’s SRK framework. The interpreta-

tion given to flexible action patterns in the German sense signifies a “ready-made”

action sequence, that can be flexibly applied to meet organisational rules. It applies

to situations in which a work task may require a set of established tasks that are

routine, but not automatic. In this case, the rules are organisationally conceived and

Ch. 2 Background

-42-

followed, as in a set of documented procedures or checklists for performing

maintenance tasks.

Conscious or intellectually regulated performance involves active reasoning.

Goals must be considered, actions and sub-actions defined. It is undertaken in

novel, unfamiliar situations. Action is conscious and effortful.

The fourth level is described as meta-cognitive, describing how individuals

formulate and undertake tasks to meet goals. This is a heuristic level of control that

overarches action at all levels of conscious regulation. Heuristics guide how

reasoning is performed: what kinds of plans are developed, which information

search strategies are used, and how feedback from the environment is used.

Heuristics are individual, and the Germans write that an individual may show a

particular preference for a reasoning style, for example, always relying on their

“gut” or by conducting a detailed search for information before taking action.

The interpretation of flexible action patterns is based on a narrow reading of both concepts.

Schemata as used by Norman is only intended to represent how well-learned sensory or

motor actions are stored in memory. He does not use this cognitive structure to explain

how patterns of higher-level reasoning are cognitively managed.

Rasmussen’s description from 1985 suggests that an individual may apply a “recipe” or

a procedure to a situation, but the recipe has been developed through personal experience.

The suggestion is given that the rule may be cultural, know-how that is provided to a

person by a colleague, but it is not something that has been codified into a set of mandated

procedures. It is not a rule that is followed, but rather one that is applied as in a “rule of

thumb”. The process of selecting the rule is described in terms of matching information

from the state of the environment to memories of analogous situations.

The German researchers include several variations of an error taxonomy in their studies.

The kinds of errors are correlated to the levels of regulation. In the most developed version

of the taxonomy, movement errors accompany sensori-motor actions, while errors of habit,

omission and recognition accompany flexible action patterns. They identify six error

Error Detection and Recovery (Lopez)

-43-

variants at the conscious or intellectually regulated level of performance (Frese & Zapf,

1994; Hofmann & Frese, 2011).

Goal setting errors and thought errors relate to goal formation and execution.

Goals may not be adequately developed or improperly decomposed into smaller

goals. As noted by others (Sellen, 1994), the criteria for setting or assessing

achievement may be vaguely specified. Thought errors occur when actions are

“blinkered” and side effects and effects of time are not considered when plans are

carried out.

Mapping errors relate to the collection, synthesis and actions taken upon informa-

tion that is used in the course of action, while prognosis errors relate to the

inability to adequately predict future system states.

Memory errors occur when a plan or part of a plan is forgotten in the midst of

action.

Errors of judgement occur when a person does not understand or interpret informa-

tion that is presented in the course of action.

2.3 Summary

Dependability is an old, multivalent concern in software engineering. A dependable

service can be trusted, but the trust must be justifiable. It must avoid failures that are more

frequent and more severe than are acceptable to the user. Dependability is also assessed in

terms of correctness, an attribute that is gauged in relation to service and specification

(Avižienis, Laprie, Randell & Jacquart, 2004). Correctness may be proven, but a system

does not need to be correct to be dependable. It may also exhibit fitness, an emergent,

dynamic quality that develops in response to the needs of the environment and culture in

which it is created.

Root-cause analysis studies improve software dependability by looking for the sources

of faults in software. These studies use a simplified definition of error in order to produce

measurable improvement. The simplification has limitations; it is difficult to adequately

Ch. 2 Background

-44-

explain why some errors occur, or to account for qualitative factors such as the effects of

time and of human judgement.

At their simplest, actions can be performed automatically, with little or no attention paid

to them. Actions that are well-learned or frequently performed form patterns that are stored

in memory and can be re-used in the future. Actions that are simple or become routine may

be performed with only periodic attentional checks. These checks ensure that intentions are

being met by the actions that are being performed.

More complex intentions require that several actions unfold simultaneously and may

require planning, analysis or decision making. By their nature, they require that conscious

attention be paid to the tasks at hand. Such actions may also be novel, ill-learned, and the

nature of the intention may preclude full understanding beforehand of outcomes. The acts

taken to meet complex intentions are performed consciously, by paying “close and

labored” attention (Reason, 1984, p. 516).

Error is a “generic term” encompassing occasions when planned sequences of mental or

physical activities fail to achieve intended outcomes. Errors do not arise by chance, people

commit them (Reason, 1990, p. 9). They may manifest at low levels, as in physical actions,

or at higher levels, as in mistakes made in problem-solving (Norman, 1981; Reason, 1990).

Error detection and recovery are more difficult in high-level problem-solving than in motor

or skill-based activities because the process is subjective, it relies on goals that have been

set for an undetermined future (Reason, 1990).

Error occurrences are often ephemeral, they are imperfectly represented in the world

after recovery. This type of error is experienced, and must be managed using intrinsic and

extrinsic sources of information. Conditions are likely novel, new or new again. As a

consequence, the experience of managing an error is immediate and immersive, pulling

one away from routine performance and directing attention to the particular action at hand.

Error Detection and Recovery (Lopez)

-45-

Errors are sometimes “caught” in the act, but they may also be recognised after a delay in

time.

In everyday error, the human is engaged in an action when something goes wrong,

spurring an error handling process. In software development research, error handling is

often described as being part of a managed process, triggered by a separate outcome-based

detection and reporting process. Empirical studies of software engineering that examine

aspects of bug fixing or maintenance, for example, generally describe the process as one of

developers beginning from a reported outcome of faulty behaviour, working to establish a

root cause for the error, and then determining how best to fix it (Ko & Myers, 2005).

The next chapter argues that human errors are a natural consequence of performance on

the job (Rasmussen, 1990). They should be examined in terms of actions rather than of

causes.

-47-

3. From Establishing Causes to Examining Actions

Front-line operators, managers and designers commit errors. Sometimes these errors result

in critical failure. Moving from forming these conclusions to making suggestions for

improvement is difficult (Rasmussen, Nixon, & Warner, 1990). The analysis, performed

retrospectively, depends upon causal explanation and a correspondingly narrow definition

of human error.

Causal analyses must establish a chain of significant events “upstream” from a negative

outcome. The establishment of events depends on a subjective determination of stop-rules,

pragmatically defined by analysts to determine how far back in time analysis must go.

Conditions will therefore be explained by "abnormal, but familiar" events and acts, and

causes will tend to reflect concerns relevant to a discipline at the time the analysis is made.

Causal analysis assumes that the sequence in which an error is analysed can be “taken for

granted” (Rasmussen, 1990, p. 1186).

3.1 Operational Failure in Software Engineering

Operational failure in software engineering is often examined in terms of systems-of-

systems, complex environments with boundaries that are difficult to distinguish. (Randell,

1998). The aim of analysis is to identify weak elements within organisations, operations

and software. As in other branches of engineering (Levy, Salvadori, & Woest, 2002), these

studies are retrospective, performed after a service outage as a way to understand what

went wrong, and who was responsible.

In general, operational analyses examine sudden and progressive failures of software,

though this should be treated as a soft categorisation. Systems which primarily exhibit

characteristics of progressive failure could suddenly fail, and sudden failures may show

evidence of progressive issues when analysed.

Ch. 3 From Establishing Causes to Examining Actions

-48-

Sudden failure is service outage on a large scale, often involving a critical piece of

software. Individual or multiple faults become active at a moment in time or within a

clearly bounded interval of time, and result in a large, catastrophic or spectacular system

failure. Sudden failures have been examined in the context of medical devices (Leveson &

Turner, 1993), aero-space engineering (Nuseibeh, 1997), and energy services (Than,

Jackson, Laney, Nuseibeh, & Yu, 2009)

Progressive Failure arises in software systems that are deemed “good enough” to be

released into production but which include significant problems that require maintenance,

redesign and redevelopment, or that result in overextended resource allocation. Often this

software is conceived and implemented within an already failing or flawed organisational

or system initiative. Recent studies include examinations of medical transport scheduling

(Dalcher & Tully, 2002) clinical records (Randell, 2007), and social services case manage-

ment (Ince, 2010).

The case studies produced by these analyses often do not conclude with specific, precise

reasons for failure, instead offering identifications of the system or sub-system that failed,

and general recommendations for improvement going forward. Even when studies do

isolate weaknesses in the processes of software creation or in particular software compo-

nents, they do not tend to produce general frameworks or models that can be extended to

improve software engineering practice.

Commentary about operational failure within grey literature is influential in shaping

discussion about computing, and the directions that computing research takes (Kling,

1994). It is found in unpublished workshop and conference presentations (Easterbrook,

2005), within course work materials (Dix, 2003), and in journalism (Barker, 2007;

Bogdanich, 2010; Charette, 2005; Garfinkel, 2005). In many aspects, these sources

conform to the genre identified by Kling: they universalise technological experience, can

Error Detection and Recovery (Lopez)

-49-

take extreme value positions, and describe technology as a dominant force in social

interactions (1994). Popular treatments are often strongly anti-utopian, while workshop

and conference presentations make claims that are more moderate. However, both present

cases simply and draw on spectacular examples of failure.

Retrospective analyses are powerful, they use stark imagery that is compelling and easy

to understand. However, a retrospective lens cannot provide insight to the internal,

subjective criteria that may direct action (Hollnagel, 1998). It is distorted by the same

weaknesses in human cognition that have been found to contribute to error, including

perceptual biases and strong-but-wrong belief. We as arbiters know how things turned out.

The people working at the sharp end did not, could not (Reason, 1990).

3.2 A Space of Possibilities

A “naturalistic” view on human error (Le Coze, 2015) better represents how error arises in

modern work environments. Modern working conditions are socio-technical, and therefore

different from earlier work environments. Workers operate within a dynamic space of

possibilities (shown in Figure 3.1) and they must employ different skills to operate

technology that is not stable and to meet ill-defined goals. Successful completion of tasks

requires constant exploration of and an interaction between personal resources, accepted

ways of doing things and resources for accomplishing them (Rasmussen, 1990).

Rasmussen describes the navigation process as one of adaptation and learning. Task

completion depends upon continuous exploration, the development of strategies for

decision making, and active control over selecting the path toward goals (Rasmussen,

1990). Errors in such environments are often not critical, they are every day, likely to arise

during routine activity (Reason, 1984). They are an inevitable side effect of the process of

exploration, acceptable and expected to be a natural consequence of of testing and crossing

Ch. 3 From Establishing Causes to Examining Actions

-50-

the boundaries of knowledge, of resources and values within an organisational environ-

ment (depicted in Figure 3.2).

Figure 3.1: Rasmussen’s space of possibilities. Reprinted from “The role of error in
organizing behaviour.” by J. Rasmussen, Ergonomics, 33(10-11), p. 1191. Copyright 1990
by Taylor & Francis. Reprinted with permission.

Figure 3.2: Rasmussen’s boundaries of acceptable performance. Reprinted from “Risk
management in a dynamic society: a modelling problem.” by J. Rasmussen, Safety Science,
27(2), p. 190. Copyright 1997 Elsevier. Reprinted with permission.

Error Detection and Recovery (Lopez)

-51-

Taking a socio-technical view, it is not possible to establish a causal trace that has been

“deflected from its intended course toward one goal” (Rasmussen, 1990, p. 1186). Instead,

events are fluid: several goals and side effects unfold at once, resources are not stable,

performance depends upon workers who have been granted and are exercising freedom of

choice.

3.2.1 Actions

The notion of the space of possibilities is at the heart of the “third wave” (Hollnagel, 2011)

of safety science, a framework for error that models natural or “ecological” safety

(Amalberti, 2001, p. 117). Naturalistic examination of error need not establish blame for

accidents, but strive instead to understand how contributory factors of individual and

organisational activity produce safety. The framework assumes that mistakes are “cogni-

tively useful” flags in the process of learning and impossible to eliminate. In terms of

assessing performance, understanding how errors are detected and recovered from is more

important than examining failures in production.

Ecological safety is achieved by the ways in which individual workers maintain

awareness of the situation in which they are performing. Awareness is informed in relation

to action: assessment and knowledge of possible actions, knowledge of difficulty,

application of attention, choices made about how and whether to avoid error, error

handling mechanisms, and the tolerance and recognition that some errors will still occur.

Ch. 3 From Establishing Causes to Examining Actions

-52-

Figure 3.3: Actions and intention. Adapted from “The emperor’s new clothes: Or whatever
happened to “human error”” by E. Hollnagel and R. Amalberti. (2001). Proceedings of the
4th international workshop on human error, safety and systems development (pp. 1-18).
Adapted with permission (Vector design: Vecteezy.com).

This view challenges the notion of a binary distinction between right and wrong actions, or

between correct and incorrect (Hollnagel & Amalberti, 2001). Instead, actions as they

relate to intention can be considered, as depicted in Figure 3.3, above.

This model demonstrates that operational failure is only one possible outcome of an

error. Errors may also be handled: recovered from, tolerated, identified or missed.

Analysis of incidents can be used to examine circumstances surrounding error occurrence,

the perceptions of the worker in relation to that occurrence, and the significance of the

error to a worker’s broader working life.

3.3 Error Detection and Recovery

To handle an error, a person must know that an error has occurred, identify both what was

“done wrong” and “what should have been done” and then understand how to “undo” the

Error Detection and Recovery (Lopez)

-53-

effects of the error (Sellen, 1994, p. 476). Studies that have specifically examined aspects

of error detection and recovery in psychology are surveyed below. The following section

highlights the methods used in four groups of studies to collect and analyse data, followed

by a synthesis of findings that relate to detection, identification and recovery.

3.3.1 Related Research

Surveys of error detection research already exist. James Reason surveyed the literature in

Chapter 6 of Human Error, providing a general description of the error detection process

that remains relevant, along with a description and analysis of key studies. Erik Hollnagel

treated error detection studies in Chapters two and three of Cognitive Reliability and Error

Analysis Method (Hollnagel, 1998). His purpose was to draw together psychology and

safety science to articulate an updated model of human error, and to highlight existing

approaches to the topic relevant to safety science. Most recently, David Hofmann and

Michael Frese surveyed the literature in the introduction to Errors in Organizations

(2011). An overview of representative papers is given in Table 3.1.

As described in the previous chapter, the studies of Reason and Norman examined

collections of slips of action that were self-reported using a form of diary collection.

Utilising Norman’s slip classification, Sellen examined a collection of 600 self-reported

errors collected using diaries for modes of detection (1994). Allwood used think-aloud

protocol to examine how students detected and recovered from errors while solving set

statistical problems (Allwood, 1984).

Studies conducted by Rizzo, Bagnara and Visciola examined the process of error

detection in the use of computer software in office and steelwork settings. The studies used

think-aloud technique and drew upon the evaluation process identified by Allwood, and the

GEMS framework developed by Reason. Their participants performed set tasks using

computer software, or simulated tasks in the steelworks.

Ch. 3 From Establishing Causes to Examining Actions

-54-

In a series of studies, Brodbeck, Zapf, Frese et al. developed an error taxonomy

developed out of action theory that they validated through observation of office workers

using computer software (Dieter Zapf, Brodbeck, Frese, Peters, & Prümper, 1992). Their

field study relied on constrained access to office workers in several German companies

who performed a range of tasks in computerised environments.

3.3.1.1 British/North American

In the studies reported by Sellen, Norman and Reason, errors are represented in association

with particular actions. Self-reports were recorded as soon as possible after occurrence,

either by the person who erred or by an observer. Norman’s reports included information

about what the person was thinking and how the slip was discovered (Norman, 1981).

Sellen and Reason used diaries kept by participants that recorded details of the error.

Reason asked participants specifically to record information about intention, while Sellen

asked respondents to describe circumstances surrounding how the error was detected and

identified.

Findings are descriptive, intended to provide a framework for discussing error (Reason,

1990), presented within typologies (Norman, 1981) or more loose categorisations (Sellen,

1994). Norman developed a typology of action slips that describes the behaviours exhibit-

ed when the error occurred, that is whether a person made omissions, insertions, substitu-

tions or reversals (Reason, 1984, p. 530). Sellen used a modified version of Norman’s

taxonomy as an analytic. Her own findings about detection were categorised in terms of

details of monitoring and feedback that accompany erroneous acts. When error data is used

to describe behaviour more generally, studies may include models such as the models of

action developed by Norman and Reason (Norman, 1981; Norman & Shallice, 1986;

Reason, 1984).

Error Detection and Recovery (Lopez)

-55-

3.3.1.2 Swedish

Errors can also be defined in terms of the problem-solving process that is undertaken after

detection. Allwood’s research identified activities related to error based on data collected

through think-aloud protocol. In his study, students enrolled in statistics classes were asked

to perform set tasks with pre-determined correct solutions that related to their coursework.

3.3.1.3 Italian

Error handling has also been examined in terms of tasks performed in work settings.

These studies examined the relationship between the three action-based error types defined

by Reason in the GEMS model, and the three self-monitoring detection processes identi-

fied by Allwood. Sixteen subjects undertook three training sessions, followed by four

experimental sessions in which the subjects had to perform increasingly complex tasks

with a database system. 924 errors were made, 780 were detected. The study found that

most skill-based slips were detected during error-hypothesis episodes. Most knowledge-

based mistakes were detected based on suspicion.

Studies

British

North

American

Swedish

Italian

Method

Diary Study

self-reports

Think-aloud

set problems

Think-aloud

Computer set tasks

Industrial simulation

Error Taxonomy

Slips

Lapses

Mistakes

Solution method

High level math

Other types

Skip errors

Skill-based

• slips or lapses

Rule-based

• mistakes

Knowledge-based

• mistakes

Error Handling

Action-based,

Outcome-based,

Cued by the environment

Direct-error hypothesis;

Standard Check;

Error Suspicion

Direct-error hypothesis

Standard Check

Suspicion

Ch. 3 From Establishing Causes to Examining Actions

-56-

Table 3.1: An Overview of Error Detection and Recovery Research. Several of the studies
had different combinations of collaborators. To ease reporting, and following Reason’s
convention of grouping the studies by nation (Reason, 1990), the papers are grouped by
linguistic or geographic contexts: British-North American studies, Swedish, Italians and
Germans.

Findings in the first Italian study were supported in a second study in which steel workers

were asked to carry out a simulated production planning exercise. The exercise was

recorded and analysed. 95 errors were made, 74 were detected. Taken together, the

studies demonstrated a consistent association between error type and detection mode.

Slips are detected most often by error hypothesis, while rule-based errors are detected

using a combination of hypothesis and suspicion. Knowledge errors are largely discovered

through standard checks employed in the course of work.

3.3.1.4 German

The German researchers interviewed, observed and administered questionnaires to office

workers at eighteen organisations. Observation of work at computers were made that lasted

in the range of 90 minutes. During this time, observers sat at the desk with the worker, and

identified errors that occurred. These were classified according to the error taxonomy

outlined in Section 2.2.3.4. Typing errors were not recorded. The error handling process

German

Time-slice observation

Interview

Questionnaire

Skill-based

• movement

Flexible-Action Pattern

• habit

• omission

• recognition

Conscious

• goal formation

• mapping

• prognosis

• thought,

memory,

judgement

Internal

• goal comparison

• planning barrier

External

• evident information

• system message

• limiting function)

Error Detection and Recovery (Lopez)

-57-

was considered to have begun at the point of detection, handling time was estimated from

this point to the point of recovery. The observers also noted that external support materials

(including consultation with colleagues) were used, distractions and emotional responses to

the process (Brodbeck, Zapf, Prümper, & Frese, 1993).

3.3.2 Detection

Errors can be detected in the midst of action, on the basis of outcomes, or environmental

cues (Reason, 1990). Detection occurs during “evaluative” problem-solving, at breaks

during which previous actions following a standard practice or a spontaneous check that

arises out of “perceived discrepancies” between actions and expectations for results

(Allwood, 1984, p. 414).

Detection is independent from understanding the nature and source of the error (Zapf &

Reason, 1994). An error detection process may be undertaken by a person regardless of

whether or not an error is actually present. Likewise, error handling may not result in a

clear identification and elimination of an error (Allwood, 1984, p. 414).

3.3.2.1 Action-based detection

In action-based detection, it is the act itself that provides information that an error has

occurred, not the effects of the act. Errors are detected through perception of the act, not on

perception of effects that the action has on the world. Reason describes actions not-as-

planned as resulting from the failure of high-level attention. The tasks are usually

automatically performed, but require occasional checks to make sure that intentions are

honoured, particularly when they involve “deviation from routine practice” (Reason, 1990,

p. p.157). Sellen found that this mechanism presents in two cases, summarised below.

A mismatch may arise between the stated action plan and executed actions. In these

cases, the guiding intention might be sound, but the execution is “misordered or inaccu-

rately articulated” (Sellen, 1994). Errors of ordering, blending or wrong insertions may be

Ch. 3 From Establishing Causes to Examining Actions

-58-

given. These kinds of errors might be evident to others, such as when someone makes a

spoonerism or blends words together (Norman, 1981), however Sellen postulates that it is

internal perception that triggers detection.

3.3.2.2 Outcome-based detection

Error detection can occur after an action is completed. In this case, detection is related to

expectations for outcomes, to the effects of outcomes or to anticipation that an error will

occur. Intentions, and the corresponding expectations may be well or vaguely specified.

Sometimes this is due to familiarity. If a situation is new, it may be unpredictable, while if

it is familiar it will have well-specified expectations. Sometimes it is due to complexity.

Tasks that require problem solving, such as mathematics, often don’t have well-specified

intentions.

Detection may occur as a result of mismatches between conscious intentions and

executed actions. In this case, detection involves an evaluation process that begins with

identifying the action (I did this), and examining the intentions (I meant to do this). It is

outcome-based. Following Norman, Sellen describes the monitoring process in terms of

information, asking in her analysis what information served as the basis for detection of an

error, and with what was the information compared (1994).

Information could come from properties of the action itself, outcomes of the action or,

properties of the environment in which the action was undertaken that prohibit or in some

way alter completion of the act. She writes less explicitly about what that information is

compared to, but in reading her categorisations, it is clear that the information is compared

with expectations for outcomes, or with an evaluation of intention.

Detection arises when mismatches are perceived between the information upon which

an error is detected and the comparisons made between that information and the “criterion

or reference against which that information is compared” (Sellen, 1994, p. p.480).

Error Detection and Recovery (Lopez)

-59-

Outcome-based detection may also occur as a part of standard checks (Allwood, 1984)

undertaken to “look out” for familiar error patterns. Sellen described this in the context of

writing dates after the turn of a new year. In these cases, people become sensitive to the

possibility that an error might occur, and adapt their behaviour to check for it. Allwood

described this as occurring independently, not out of a sense or perception that the solution

was strange.

3.3.2.3 Environmental Conditions

Environmental information influences error handling. Physical constraints and cues spur

error detection. System responses and feedback from colleagues is used to assess and set

goals to support identification and recovery.

The environment may constrain action, thereby triggering an error detection. Norman

defined these as forcing functions, Sellen as “limiting functions”. In this case, the action is

physically barred, and cannot be completed. Forcing functions are unambiguous, and error

detection is guaranteed (Reason, 1990). Reason somewhat ambiguously states that forcing

functions may be a natural part of a task as in locks and bolts or deliberately designed into

the environment as in computer software.

Sellen provides a better example of these two states, describing them as barring or

subtle. In her example, trying to into the system Sellen also suggests that the environment

might also provide a more “subtle” constraint, as when a person tries to unzip a button-fly.

The second category is like Norman’s mode errors, in which the action is not appropriate

for the environment.

In the case of cued discovery, failures arise in considering the larger problem space in

which an action takes place. Reason describes cues not as constraints but rather as

moments in which the environment provides opportunities "for rejoining the correct

Ch. 3 From Establishing Causes to Examining Actions

-60-

path" (p.163). Here Reason describes following a "blinkered line of thought from one

difficulty to the next" while attempting to change a tire on a car.

Information in the environment is commonly evident (Frese & Zapf, 1994), it arises, for

example, from interactions with computer software. The environment provides information

to users in the form of system responses (Lewis & Norman, 1986) and receives informa-

tion from users based on actions taken. By contrast, actions that must be internally

assessed will result in system responses that are not evidently wrong. Lewis and Norman

identified ways in which systems “should” respond to erroneous actions: by gagging,

providing warnings, doing nothing, self-correcting, engaging in dialogue, and by asking

the user to “teach” the system what was intended.

An error may be brought to attention by someone else and reported (Reason, 1990),

cases that are not covered in great detail in the error detection literature. Slips of the

tongue are reported as being noted by an observer (Norman, 1981). Reason reported that

Woods’ examination of nuclear power plant operators found that “fresh eyes” were

necessary to detect errors in diagnosis in complex situations, while operators were able to

self-detect most slips (Reason, 1990). In office work, errors detected by colleague or

clients, were reported as occurring infrequently in the midst of work (Frese & Zapf, 1994).

3.3.3 Identification and Recovery

Determining what should have been done may be clear from the circumstances or by the

nature of the task, but may require more investigation, particularly if a situation or task are

complex or unfamiliar (Sellen, 1994).

The action models of Norman and Reason are concerned with simple actions that can

often be performed more or less automatically. Intentions and expectations are generally

well-formed in these cases and the assessment of information is likewise swift. These

models do not directly address handling for complex actions, how error identification is

Error Detection and Recovery (Lopez)

-61-

achieved, or how a recovery is made. To establish a basis for error identification and

recovery as it may unfold while performing more complex actions, it is necessary to draw

on a broader discussion of problem solving.

3.3.3.1 Progressive and Evaluative Problem Solving

Allwood found that problem solving proceeds in two phases: progressive problem solving,

in which subject tries to achieve a goal, and evaluative, in which the subject reviews

completed work (1984). During an evaluation, a person might be satisfied with previous

activities. Error handling is assumed to happen during negative evaluation episodes, when

a person is not satisfied with previous activities. Allwood identified three types of

negative evaluations: standard checks, direct-error hypothesis formation and suspicion of

error. Allwood’s analysis also represents other activities within error suspicion episodes.

For example, diagnoses were identified, as were hypotheses and detection. Qualitative

aspects of suspicion were also represented, including expressions of discontent and giving

up.

3.3.3.2 Tactics and Strategies

Problem solving is both tactical and strategic (Reason, 1990). It requires defining goals,

and then using tactics to forge an “adequate path” to achieving them. The process hinges

on discovery, it may involve “inspired guesses” but also “trial and error”. The criteria for

success or failure is often only revealed with the benefit of hindsight. Intentions carry with

them expectations, and are thus prone to confirmation bias - there is less objective

information on which to base strategic decisions, while subjective influences restrict the

search for cues that indicate that a choice was wrong or “inadequate” (Reason, 1990).

Reason situates identification and recovery in terms of problem configuration. The

configuration is made of a set of cues, indicators, signs, symptoms and calling conditions.

The set is immediately available, and are used in the handling process (Reason, 1990, p.

Ch. 3 From Establishing Causes to Examining Actions

-62-

87). They demand different approaches and tactics. He identifies three kinds of configura-

tions:

Static: In this case, the problem is fixed and independent of activities undertaken

by a problem solver. They may be represented as abstract or concrete. (Examples:

syllogism; Watson card test; cannibals-and-missionaries)

Reactive-dynamic: Changes in the problem space are a result of actions taken by

the problem solver. Problems in this configuration may be direct, in which effects

are immediately apparent, or indirect, in which the solver relies on augmented

sensory aids for feedback. (Examples: jigsaw puzzles; assembly tasks; the Tower

of Hanoi problem)

Multiple-dynamic: The configuration may change in response to actions taken by

the problem solver, and also due to independent factors in the system or situation.

Problems may be bounded, in which the independent variability is constrained and

known, or complex, in which variability has multiple sources which are uncon-

strained and unpredictable. (Examples: bounded-chess; complex-nuclear power

plant or medical emergencies)

3.3.3.3 Problem Solving and Performance

Skilled performance requires constant switching between skill, rule and knowledge based

activity. When activities are routine and familiar, they proceed in a largely automatic

fashion, with periodic checks to ensure that intentions are being met. Within the GEMS

model, if a check identifies a threat to meeting intentions, rule-based problem solving will

take place. If a rule is found that matches conditions, it will be enacted and activity will

return to skilled performance. If no rule-based solutions are found, the model suggests that

an effortful, conscious, knowledge-based problem solving process will be undertaken.

The initiation of knowledge-based reasoning does not preclude ongoing searches for

patterns out of the rule repertoire. Rapid switching can occur between knowledge- and

rule- based activities in order to form and execute a recovery plan in local problem

Error Detection and Recovery (Lopez)

-63-

solving, a process of establishing local goals that can be carried out and assessed. In this

case, routines or rules will be borrowed from other established activities.

3.3.3.4 Awareness

The switch to knowledge-based problem solving can be influenced by feelings of uncer-

tainty or worry (Reason, 1990) factors that are described by other researchers in terms of

awareness. Allwood examined this in the context of evaluations of completed work that

are undertaken based on the suspicion that something is wrong, while the Italian re-

searchers describe it as mismatch emergence, which is coupled with the understanding that

one is responsible for the erroneous action (Rizzo, Ferrante, & Bagnara, 1995).

Stable Frames: Expectations and
assumptions about intended ac-
tions are not changed during per-
formance. The frame of reference
remains the same.

Shifting Frames: Knowledge is
updated after executing actions.
The frame of reference changes
after completing an action, and
original expectations are adjusted
in terms of outcomes.

Distant Frames: The active
knowledge relates to a context
distant either conceptually or in
time or both from the erroneous
action.

I did some computations with a calculator. I manip-
ulated the data by following a formula kept in my
mind. The final result did not seem correct to me. I
remade the computation two more times and both
results were the same, but different from the first.
These latter results sounded right to me. Actually, I
did not discover what the error was but only that I
had made an error. (E11)
 I had to make many Xeroxes in the shortest time. I
prepared the sequence of articles. I put the sheets
over the machine and collected the copies in order
to rearrange them in "papers". I was Xeroxing a
long paper when I noted that I had to reorder all the
copies, because I was feeding from the first page on.
Then, I realised that starting from the end of the
paper would have spared time and work. (E12)
I decided to clean the luggage rack of my car. To
ease the access to the hollow I removed the rear
panel bus. Since in the panel there were the speakers
of my stereo, I disconnected cables. The day after I
turned on my stereo car: the left speakers did not
work. I thought it was a fault in the system. One
week later, I was in the car talking with a friend the
possible causes of the left speaker’s breakdown. I
recalled that some days before I had my car in a
garage to fix minor faults. The guys in the station
could have forgotten to re-connect some electric
cables. Then, suddenly, I remembered that I had put
my hand on electric cables too… (E13)

Ch. 3 From Establishing Causes to Examining Actions

-64-

Table 3.2 Frames of reference during action. Adapted from (Rizzo et al., 1995).

The Italian researchers also describe awareness during error handling in the context of

active expectations, the frame of reference held by a person performing an action.

Though it shares features with Reason’s description of local problem solving or Norman’s

description of the activation of schema based on the “goodness” of matches (1981), the

notion of frame of reference was developed to counter the prevalent view in error detection

studies that knowledge is static, or that all knowledge necessary to complete a task is

“always available and ready to be used” (Rizzo et al., 1995, p. 8).

Instead, they argue that knowledge, and by extension the active frame of reference, is

updated during interactions with an environment. Internally, this is done through the

selection of alternative knowledge that is “more appropriate” and externally through new

knowledge generated by assessments made of the changing state of the environment.

Drawing on related research in psychology, the authors identified four frames of reference,

for which they provided examples from their data, given in Table 3.2.

3.4 Summary

The causes of accidents are present in a system long before catastrophe occurs, or a clear

sequence of events leading to the accident can be established (Reason, 1990). The notion

of latent problems is familiar within software engineering, perhaps made prominent most

famously by Brooks. In his description of of software development projects, disastrous

schedule slippage is gradual, due to “termites, not tornadoes” (Brooks, 1995, p. 154).

Disaster should be preventable. Often there are warnings of an impending disaster, and

Lack of meaning. There is no
goal governing the ongoing activi-

ty.

I intended to pick up the keys of the car. They are
usually in a box at the entrance. Instead, I entered
another room and searched in a drawer where I did
not find any keys (but there were the documents
about which I was talking before, but I did not pay
attention to them). Then I found myself wondering
what I was looking for and why I was there. I had to
go back to my office before to recall that I was
leaving and so I needed the keys of my car. (E14)

Error Detection and Recovery (Lopez)

-65-

some latent conditions should be able to be spotted and fixed (Reason, 1990). However,

within software development projects, “day-to-day slippage is harder to recognise, harder

to prevent, harder to make up.” (Brooks, 1995, p. 154).

Disastrous events are likely never to occur again and so it is necessary to look beyond

failed outcomes and to examine the particular details of situations (Rasmussen, 1990).

Researchers need to understand how informants select and view events (Crandall et al.,

2006). The key is to understand error from an informant’s perspective, to reconstruct the

view they have when encountering things that go wrong by “standing” in the same

situation. The emphasis placed on “local rationality” retrains analytical focus from

judgement to dynamic factors that influence performance, including knowledge, mind set

and goals (Woods & Cook, 1999).

Software development has been shown to include kinds of work associated both with

active and latent error categories (Curtis, Krasner, & Iscoe, 1988; Pennington & Grabows-

ki, 1990). Work is required that cuts across different kinds of tasks, and must be performed

in response to higher level organisational concerns. If error is studied in the context of the

space of possibilities within which developers perform and not in terms of the overt effects

their actions have on software performance, the lens is shifted, from ends that might

include critical failure or costly redevelopment to the means that make up everyday

practice.

This view affords at once a narrower and a broader perspective. It is narrow in that

focus is taken from software in operation, from the organisational or methodological

environment in which it is produced, and from the artefacts of which it is comprised. Focus

is given to the actions performed by individual developers to create software. It is broader

in that analysis of individual actions permit a more general examination of error in the

Ch. 3 From Establishing Causes to Examining Actions

-66-

context of work at the desk, but also in other contexts that depend on different kinds of

tools, and that produce different outcomes.

-67-

4. Method

For as long as there has been software engineering, there has been error. It is a defining

marker, transcending nations, regions and organisations. Research and methodology have

been devoted for decades to eradicating, to minimising, to preventing it. Tools are built to

manage error; records are kept to track it. Circles of people form in teams, in departments,

in companies and governments to look for error, to talk about it, to plan for it, to fume and

worry. Individual developers spend hours and hours hunting errors down and getting rid of

them.

The problem of error in software development lies with the people who make it.

Developers tinker, they are incompetent, un- or improperly skilled, they do not adhere to

process. If only developers would build correct software, error would go away. If only they

could design and build the right defences, error could be tolerated and the problem of error

would go away. If only designs were better, requirements more clearly defined, if develop-

ment tools were better and easier to use…If methodology and practice were more social, if

only developers were better trained, they could get a handle on it, and the cost of error

would go down.

This reduction of decades of software engineering research and commentary into two

sensational paragraphs was written to provoke a sense of unease (Hammersley & Atkinson,

2007), of strangeness about the relationship between developers and error. Everyone

“knows” that the problem of error in software is people, however little is understood about

what developers on the job make of it. An ethnographic stance has been taken to explore

their perspective. The following pages of this chapter explain what this means.

4.1 Research Focus

Research began with a survey of software engineering research and trade publications that

treated concepts related to error and failure. The outcomes of this exercise, selections of

Ch. 4 Method

-68-

which are reported in Chapter 2 had three immediate, significant methodological implica-

tions for the research design.

First, the methodological approach that was initially, naively, proposed was to be

ethnographic in that it would examine the topic of error after immersive fieldwork within a

single company. The survey of empirical research quickly revealed that with some

exceptions (Prior, 2011), long-term, open, immersive access to developers is rare (Easter-

brook, Singer, Storey, & Damian, 2008).

Second, at the outset, the starting point for analysis was assumed to be source code and

records related to bugs because this is what developers produce and this is where errors are

reified (Avižienis, Laprie, & Randell, 2004). It seemed reasonable to assume software

could and should be read for evidence of the “tinkering” that goes on during development,

to get at an understanding not only of how, but of why it works as it does (Mahoney,

2008).

This is an approach that has been used to good effect, demonstrating among other things

how developers navigate within source code (Lawrance et al., 2013), how they engage

with APIs in companies (de Souza, Redmiles, Cheng, Millen, & Patterson, 2004) or how

programmers use comments to organise and communicate aspects of ongoing work

(Storey, Ryall, Bull, Myers, & Singer, 2008).

However other studies demonstrated clear failings in the software records that are kept

about error (Aranda & Venolia, 2009), that matched calls for future research consistently

made in root-cause analyses. Root-cause analyses studies largely draw upon bug and

maintenance reports. Errors that appear in early stages of a project, with less experienced

programmers, or after a “hectic period of changes” (Endres, 1975, p.328) are not well

represented. Studies have recommended that data about errors should be collected from

the entire development cycle, not just at points of testing and integration (Perry, 2010), and

Error Detection and Recovery (Lopez)

-69-

should not be collected too long an interval of time after events have passed (Perry &

Stieg, 1993).

Third, the root-cause studies consistently suggested that future research should examine

“human erring”, including factors such as problems of understanding (Endres, 1975,

p.331), inexperience (Perry & Evangelist, 1987), lack of information (Perry & Stieg,

1993), and skill mismatch (Leszak, Perry, & Stoll, 2002). This call matches recent interest

to counter technically “saturated” curricula in software engineering with examinations of

of engineering process as a “human activity”. (Capretz, 2014).

This review led to three decisions:

• Fieldwork would have to be undertaken opportunistically, in multiple

environments.

• Examination should establish a fuller chronology for error by examining activities

throughout the development cycle.

• In order to respond to the call to examine “human erring”, individual experience

should be the focus of analysis.

4.1.1 The Ethical Impetus

Other concerns shaped the research design. Data is never “pure” (Hammersley &

Atkinson, 2007), but contamination seemed to be of particular concern in the context of

error. Developers might change their behaviour if they were watched (Hammersley &

Atkinson, 2007). Spoken to after a period of observation, they might swagger or boast in

their responses (Hammersley, 2003) and not be credible. Organisations might not grant

access or treat developers who agreed to partake poorly after the fact.

To address these worries, the responsibility of beneficence as described by Vinson and

Singer (Vinson & Singer, 2008) and vulnerable stirrings (Behar, 1997) provided the best

guidance. Researchers need to consider potential harm toward companies, ensuring, for

Ch. 4 Method

-70-

example, that important trade secrets are not disclosed. This can generally be managed in

the way findings are reported. Beneficence toward informants is not always so straightfor-

ward.

Social research can change the environments in which it is conducted and it can have

effects on the people and cultures that are examined (Hammersley & Atkinson, 2007).

Outcomes can be put to uses after research is completed that researchers cannot control

(Spradley, 1979). These factors were of particular concern during the early stages of this

research. Depictions of “incompetent” developers in the software engineering research

invoked the spectre of Reason, finger extended:

“For those who pick over the bones of other people’s disasters, it often seems

incredible that these warnings and human failures, seemingly so obvious in

retrospect, should have gone unnoticed at the time. Being blessed with both

uninvolvement and hindsight, it is a great temptation for retrospective observers to

slip into a censorious frame of mind and to wonder at how these people could have

been so blind, stupid, arrogant, ignorant or reckless.” [Emphasis added] (Reason,

1990, p. 214).

Thus chastened, the aim was formed to find a way to perform an analysis of error that

would keep ethical concern for developers at the fore. Credible sources of data were sought

that would allow observations of practice and interviewing but in which in the research

presence would not be considered a threat. Methods were sought to encourage developers

to be open and straightforward in their behaviour, and also to ensure that they would not be

censured by colleagues for doing so.

The next sections describe how these aims were met, first by establishing epistemologi-

cal commitments to using ethnographic principles. Next a description is given of gathering

material from multiple sites. The process of organising data into sets for analysis is

described, and an overview is given of the methods used in individual studies to build up a

view on error.

Error Detection and Recovery (Lopez)

-71-

4.2 An Ethnographic Stance

Software development, is, by its nature, socio-technical (Winograd & Flores, 1987), and

well suited to an analysis that takes a relational look at human error. Software engineering

researchers have long argued for looking more closely at the human aspects of erring

related to "knowing", safety science for a naturalistic examination of error using data

collected from fieldwork (Le Coze, 2015). To address these calls, this research has taken

an ethnographic stance. In this section, a brief overview of what ethnography is and how it

is done is given. The section also includes a brief description of uses of ethnography that

have been developed in computing research.

Ethnographers study people’s actions and accounts of actions in everyday contexts

(Hammersley & Atkinson, 2007). The aims of research are often exploratory, beginning

with only the sense of a “foreshadowed problem” (Hammersley & Atkinson, 2007, of

Malinowski) that will focus over time. Doing ethnography is described as examining

"shared order" (Van Maanen, 2011, p. 18), by getting at the means and methods by which

people conduct themselves in a social situation. Examination may focus on routine, on

ritual, on problems, on the rules or decisions that guide and punctuate action (Hammersley

& Atkinson, 2007).

Order is sometimes described as a "mundane feature of everyday life" that serves as the

basis for social interaction (Crabtree, Tolmie, & Rouncefield, 2012, p. 162), but this

research more closely aligns with the notion that features of order can be identified by

examining moments of change:

“In picking their way through the minutiae of routine action, prominence is

(endlessly) given to the innovative, the ad hoc, and the unpredictable…” (Ander-

son, 1997, p. 20)

Ethnography can be identified in terms of how it is done, but also in terms of the stance

from which it is performed. The ethnographic mentality entails interpreting meaning

Ch. 4 Method

-72-

through interaction with and observation of social settings. It is both a commitment to

using field work to gather data and the creation of a post hoc account of what was seen

(Anderson, 1997). Analysis is relational, not causal, by which it is meant that the re-

searcher comes to conclusions without “jumping”, examines appearances in detail, while

not accepting those appearances at face value. Likewise, people’s views are considered

without making assumptions that they are true or false. The ethnographic stance “pays

heed” to things that people may not notice themselves, and may not agree with (Hammers-

ley & Atkinson, 2007).

The romantic view of ethnography holds that fieldwork entails the collection of data

through long-term immersion within an environment, such as in a year spent in a village of

people who live on a distant, sun-drenched island. But fieldwork has come to be viewed in

different terms. Often it is or needs to be conducted in a site or sites (Van Maanen, 2011)

that are closer to home, to examine cultures that are familiar (Spradley, 1980), in a process

that is contingent (Crabtree et al., 2012) and opportunistic (Hammersley & Atkinson,

2007).

Research is generally not conducted to a fixed and detailed design. The advice given to

researchers, while not quite "seat-of-the-pants" (Van Maanen, 2011, p. 74), is expansive:

"[Y]ou should not worry about where to start: you should start anywhere you

can." (Crabtree et al., 2012, p. 95)

It is generally accepted, then, even within social or cultural anthropology (Horst, 2009)

that data may be gathered from fieldwork in "any form" (Anderson, 1997), and may be

drawn from a range of sources and sites (Van Maanen, 2011). Two conventional views

persist: most data will be gathered by participant observation and “relatively” informal

conversation, and the time spent in the field with informants must attain "depth" (Hammer-

sley & Atkinson, 2007).

Error Detection and Recovery (Lopez)

-73-

Analysis in ethnographic research begins at the point of collection as researchers

formulate ideas about what else might be needed to answer a research question. Interpreta-

tions are made by “creating a path” through the data, while reflecting upon different

possible meanings (Hammersley & Atkinson, 2007). The interpretative process is

reflexive, shaped by the researcher’s own experiences and orientations. It is also

pragmatic, in that aspects of the field of study or research process may invite or demand

the use of different or multiple analytic techniques, uses of theory, and kinds of data

(Hammersley and Atkinson, 2007).

Ethnography is both the fieldwork and also the account that is made of the field work

(Anderson, 1997). The meanings formed in analysis must be forged through writing: field

notes, transcriptions, descriptions and ultimately the reports. The account may be realistic,

confessional, or impressionistic (Van Maanen, 2011), drawing together descriptions of

people, of settings and processes, elucidating concepts, themes, and typologies that

exemplify the social world that has been examined. The account must be authentic, it must

inform and illuminate, but must also be authoritative. It must convince the reader of the

legitimacy of what was seen:

"[T]o be taken seriously, you have to have been there, seen them, and if not done it

and brought back the T-shirt, at least captured and recorded their lives…"(Ander-

son, 1997, p. 6-7)

The next section includes a brief description of three uses of ethnography prevalent in

computing research. Following this, one use of ethnography to which this research most

closely aligns is described in more detail.

4.2.1 Ethnography of, for and within

In two articles written in 1997, ethnographic methods were found to support research and

practice in computing in three ways. Beynon-Davies coined the terms Ethnography within,

Ch. 4 Method

-74-

for and of in a survey examining information systems research (Beynon-Davies, 1997).

Anderson similarly described three uses of "technography" to support system design and

human computer interaction research (1997) as Integration, Complementarity and

Independence. Though Beynon-Davies' survey considered a broader number of sub

disciplines of computing, the categories of within, for and of are sufficiently descriptive to

represent the taxonomy given in both.

Ethnography within development employs an ethnographic approach to systems

development tasks like design, requirements elicitation (Martin & Sommerville, 2004) or

training. The ethnographer in this case is a member of the team (Anderson, 1997). He may

perform duties concurrently with development tasks, employing "quick and dirty"

techniques or using ethnography to assess designs or specifications with users (Beynon-

Davies, 1997, of Hughes).

Ethnography for development produces accounts of how work is done within domains

as a way to inform and influence how systems are developed. Anderson makes the point

that the specific aim of these studies is to raise awareness or “sensibilities" about the

environment in which the technology under development will be used (Anderson, 1997).

Ethnography of research aims to remain independent of design, studying developers

and development workplaces. It provides detailed information about the "problems and

practicalities" (Beynon-Davies, 1997, p. 537) that arise in creating software. It might

illuminate, for example, how developers adapt methodology to the demands of practice,

the values given to different kinds of development tasks and the broader cooperative

aspects of development.

4.2.1.1 Knowledge is Cultural

That knowledge is cultural and socially produced is a central theoretical assumption made

by the uses of ethnography described in both surveys. Studies may elucidate how tacit

Error Detection and Recovery (Lopez)

-75-

knowledge is employed in work, or describe details of practical or “articulated” work in

particular settings (Suchman, 1987). These theories underpin interpretations of how

workers perform their duties, how they use, or fail to use and adapt technology to fit the

requirements of their tasks.

Humans routinely perform skilled activity, but cannot always articulate how they do it.

The skills they use are tacit, implicit (Smith, 2003). Beynon-Davies suggests that the

concept has been interpreted within ethnographies for as the knowledge that is required for

individual workers to adapt their practices to those of others in a work environment. He

links the interpretation to the concepts of explicit and activity perspectives on work,

developed by Sachs (1995). The explicit view relates to organisational tasks, as represent-

ed by defined tasks and procedures. The activity view is socially mediated by workers,

through relationships and communication and coordination practices that often involve

interaction with artefacts and tools, such as paper-based forms, drawing tools, and

spreadsheets.

Beynon-Davies finds three thematic strands of relevance to information systems

developers. First, there is the notion the existence and character of tacit knowledge should

be considered in participatory design exercises. Second, tacit work practices may have an

impact the integration of new technology into "everyday" work settings. The last suggests

more generally that tacit work practices underlying cooperative work are situated (Beynon-

Davies, 1997).

Anderson's survey explores in detail situated work, analysing the development of

ethnographies for design in terms of Lucy Suchman’s study of photocopier failure

(Anderson, 1997; Suchman, 1987). He identifies two innovative aspects of her research

methodology: First, she re-orientated conversation analysis from its standard use for

examining how two people interact, to examining how humans interact with machines.

Ch. 4 Method

-76-

Second, she used the notion of “communities of practice”, or an interpretation of learning

drawn from research by Lave as being cultural rather than cognitive (Lave, 1988).

By combining structured, ethno-methodological analytic technique with the notion of

socially-based learning, her study was pre-disposed to see the structure and order in these

working lives as “situated”, “occasioned” and “co-produced” (Anderson, 1997). Though

ethnographic studies of technology preceded her work, Anderson argues it was the impact

of her methodological stance that galvanised researchers to apply ethnographic methods in

the service of design.

4.2.1.2 Technology in Use

The theme of technology as it is used is a second core assumption within ethnographies for

and within technology. Many of the studies examine work practices that depend on

computing technology to perform other, “real world” tasks.

This perspective has been widely explored in Computer Supported Cooperative Work

(CSCW) research, with studies that examine how employees are affected by new technolo-

gies in the workplace (Orlikowski, 1992; Orlikowski & Gash, 1994), the ways in which

communities of users engage with collaborative software (Kling & Courtright, 2003), how

electronic media support scientific communication Kling, McKim & King, 2003), and how

employees use technology to engage with one another (Markus, 1994). The common

theme in this research is to study adoption of technologies at the organisational level that

have already been developed. While the social environment receives a detailed analysis in

this research, the artefacts themselves are often overlooked (Orlikowski & Iacono, 2001).

This view has been interpreted within software development in studies like Randell's

description of problems in the development of software for the NHS in England (Randell,

2007), or Ince's analyses of software for supporting social work (Ince, 2010). Their view,

like that in CSCW studies, is that domains of work should be considered as socio-technical

Error Detection and Recovery (Lopez)

-77-

in nature. Domains must be studied in these terms to determine how best to make software

in their service.

4.2.2 Ethnographically-Informed Research

The case for writing ethnographies of making software has been made most clearly by

authors advocating for ethnographically-informed research (Robinson, Segal, & Sharp,

2007; Sharp, Robinson, & Woodman, 2000). According to this view, following ethno-

graphic principles is necessary because the essential nature of work practice cannot be

known a priori, and cannot be taken as “official”.

In contrast to other approaches in software engineering, following an ethnographically-

informed approach allows research to be performed that is exploratory and which consid-

ers open ended research questions. The intent is to understand something more about the

work practices of software engineering itself. It is argued that software engineering forms

a culture that transcends national, regional and organisational cultures. Markers of this

culture that have been observed using this approach include community and constituency,

a lack of importance given to evidence-based practice and argument, and the importance of

the role of the local guru (Sharp et al., 2000).

Ethnographically-informed research of software development is performed by re-

searchers who are members of the software engineering discipline. However, the aim is to

understand practice in its own terms and not in terms of prior understandings formed

through membership in the discipline. The researcher must be "more observant" and "more

critical" of the field to which they belong, of "what we do and how we do it" (Sharp,

Robinson, & Woodman, 2000, p. 42). Rigour is achieved through triangulation of different

data sources and feedback gathered from informants.

Ethnographically-informed research entails making two adaptations to classical

ethnography. Both correspond to problems that were also noted by Beynon-Davies in

Ch. 4 Method

-78-

regards to ethnography that is applied within system design. First, in order to meet the

constraints of performing fieldwork in software development environments, ethnographi-

cally-informed research abandons the notion that long-term, immersive access is necessary

(Robinson et al., 2007). Instead, the studies often rely on informal and opportunistic data

collection rather than gaining access to participants in a more formal, structured way.

Second, empirical investigations conducted using ethnographic principles are combined

with other analytic methods. This strategy allows researchers to explore broad questions

of how work is done while responding to the scientific demands of engineering. Rigour is

achieved in analysis through the use of methods such as documentary research, discourse

analysis and grounded theory. For example, analysing talk provides a method for examin-

ing what language is used for, it permits researchers to: "listen to what is being done with

the words." (Sharp et al., 2000, p. 42).

Combining analytic techniques is also a concern of the other two uses of ethnography.

For example, Ball and Ormerod describe cognitive ethnography as an approach for design

that is specific, purposive and verifiable. The approach entails gathering small-scale data

from "representational" time slices, research questions are designed to intervene or

otherwise affect work practice and the validation of results with observers and using

experimental methods to "methodologically" triangulate. They argue that ethnographies

conducted to assist design differ and must differ from features of prototypical ethnogra-

phies because they are “purposive”, they have applied aims for improving teams or design

process (2000, p. 408)

4.2.2.1 Weaknesses

Weaknesses associated with ethnographically-informed studies regard concerns about

achieving depth and overcoming membership. Criticism is made that adaptations of

ethnography often make use of fieldwork "blitzkrieg" (Van Maanen, 2011, p. 164), that

Error Detection and Recovery (Lopez)

-79-

disciplines are guilty of "do-it-yourself" ethnography. Van Maanen is particularly critical

of member-performed ethnographies because of their approach to gathering data, and on

the basis that they have not sufficiently attended to the "invisible work" of ethnography

(Forsythe, 1999) 3.

However, the need to combine methods and to adapt principles of classical ethnography

is pragmatic, and in fact may be necessary to answer particular research questions

(Hammersley & Atkinson, 2007). Field work performed without immersive access often

must depend on data captured on video or audio recordings. Mixed methods are used in

these cases to address demands of the media formats (Heath, Hindmarsh, & Luff, 2010), or

to achieve depth in analyses by performing detailed, fine-grained or "micro" analyses

(Knoblauch, 2005). Ethnographically-informed studies of development are necessarily

focused, and produced by members, in order to examine specialised and fragmented

activities (Knoblauch, 2005).

The mixed analytic approach also has a history within ethnography that predates use in

computing research. As noted, Suchman’s method of examining interaction was drawn

from earlier developments in ethnomethodology (Anderson, 1997). The use of techniques

like card sorting (Ball & Ormerod, 2000) was also advocated by earlier ethnographers who

used the technique to develop and test the strength of informant created taxonomies

(Spradley, 1979).

The substrate underlying ethnographies for, within and of is common: work is done

between people and between people and machines, knowledge is social and culturally

produced. What is different in ethnographies of, and in particularly in ethnographically-

3.The criteria of “sufficient attendance” seem particularly difficult to address. It is not
clear how one proves, for example, that one has engaged deeply enough with anthropologi-
cal writings on ethnography (Van Maanen, 2011) Similar points have been argued in the
context of adaptations to ethnography employed by Computer Supported Cooperative
Work researchers (Bannon, Schmidt, & Wagner, 2011). Bannon et al. argue that it is
difficult to determine studies that employ “scenic” ethnography, but agrees with critics that
it is necessary to determine that data have been sufficiently “analytically worked”.

Ch. 4 Method

-80-

informed studies is that developers are the workers to be examined, and making informa-

tion computing technology is the work that is being done. The emphasis in ethnographi-

cally-informed studies is not to further social science agendas, but to return to classical

ethnographic aims, examining the actions and interactions of people.

In the next section a description is given of the field sites and sources that were used to

inform studies.

4.3 Field Sites and Sources

A pragmatic decision was taken early in the research process to temper collection with

gleaning, to look for data within sources that had been created by other people. Gaining

access to software development sites is difficult (Easterbrook, 2008), particularly when

access is sought to examine mistakes (Perry, 2010). In this research, the vagaries of access

were not overcome, they were worked around. Sources were identified opportunistically.

Relatively unstructured, open access was gained to sites for interviewing through contacts

within standing professional and academic networks.

Data were gathered in a step-wise fashion (Horst, 2009). Step-wise collection has been

described in the context of ethnographies that examine trans-national cultural concerns, for

example of migrant populations. In these cases, research must, of necessity, be undertaken

by a single researcher who travels to multiple sites. In the case of this research, it simply

means that data were sourced, gathered and examined from different sites at different

times.

Implicit in the decision to glean was the assumption that these secondary sources

(McGinn, 2008) would likely take the form of video recordings of practice that could be

indirectly examined for evidence of error. With the help of the supervisory team, contact

was made with other researchers who had already been able to gain access to professionals

and industrial environments. Participant-created video (Hammersley & Atkinson, 2007)

Error Detection and Recovery (Lopez)

-81-

was sought on the internet that depicted professional developers at a sufficient standard of

production to permit rigorous analysis.

4.3.1 Sites

Four field sites were used. One set of data was gathered in the Spring, 2010. The rest of the

corpus was collected between January 2012 and April, 2013 (see Table 4.1 for a

summary). Two departments performing work for universities were represented (Sites B

and D). At site A, the pair of designers observed worked professionally as colleagues for

the same company. The structure of teams at this company is unknown, but was considered

to be inconsequential to analysis.

Table 4.1: Field Sites. The Site column indicates a descriptive name along with a letter that

reflects the order of access. Sets of data were later grouped for reporting, as depicted in

Figure 4.1. Date of access indicates when the data were accessed to support research in

this thesis. The date in parentheses in this column indicates the date when sources were

originally created.

Site

The AmberPoint
Design Session
(Site A)

Digital Humani-
ties
(Site B)

Acceptance Test
Framework
(Site C)

Course Planning
(Site D)

Context

Design, set task
(organisational
simulation); labo-
ratory

Project work, or-
ganisational tasks;
university

Desk work, per-
sonal tasks; indus-
try

Project work, or-
ganisational tasks;
university

Method of Collection

Video recording, gleaned
for secondary analysis

Interview, observation

Video recording, gleaned
for secondary analysis

Interview, observation

Date of Access (Cre-
ation)

2010 (2009)

2012

2012 (2009)

2013

Ch. 4 Method

-82-

4.3.1.1 Access

Though one aim for research was to perform indirect observation, access to environments

and materials was overtly sought. Four managers working in two organisations (Site B and

D, reported in Chapter 7) gave permission to observe and speak with employees. Each

interviewed person was given an information sheet about the project, and signed an

informed consent form. These materials were reviewed and approved for use by the Open

University Ethics Committee.

Researchers working in the Software Design and Collaboration Laboratory in the

Department of Informatics at the University of California in Irvine and their industrial

partner, granted permission to observe video that had been collected for separate research

projects (Site A, reported in Chapter 5).

Two professional developers granted access to examine video that they had created and

released to the internet (Site B, reported in Chapter 6). The videos used in analysis were

uploaded to a public video site by two professional developers, the terms of which permit

free personal use. The creators of the videos gave permission to use the videos for research

in a series of email exchanges. The videos feature audio input from other people collocated

in the office at the time of recording. These participants could not be contacted; it is

assumed that the creators of the videos obtained permission before recording and upload-

ing the videos to the hosting site.

4.3.2 Corpus

The full corpus includes proprietary and participant-created video, audio recordings,

transcriptions of video and interview, and field notes taken during and after site visits.

Table 4.2 lists the sources of data collected from each site. Ephemera were collected that

include photographs, drawings, diagrams, historic and interview related email messages,

screen grabs of social media pages and blog posts, and source code. In the course of

Error Detection and Recovery (Lopez)

-83-

sharing research at workshops and in meetings, a number of anecdotes and observations

about personal encounters with error were collected. These were used to identify points of

resonance and dissonance, and to hone areas for investigation.

Table 4.2. Sources of Data, by field site. Data were later organised into sets for analysis
and reporting (see also Figure 4.1) that relate to their source and media format.

4.3.3 Informants

Fifteen developers informed this research, three females and twelve males. Their shared

experiences represent a range of different software development tasks, including high-level

design, data modelling, interface design and development, and application development.

They also represent diverse working practices including domain-driven development,

open-source development, industry sponsored open-source development.

Site

The AmberPoint
Design Session
(Site A)

Digital Humani-
ties
(Site B)

Acceptance Test
Framework
(Site C)

Course Planning
(Site D)

Sources of Data
- 1 video recording, 2.5
hours long
- 1 preliminary transcription
- 1 enhanced transcription

- 7 audio recordings
- 6 transcriptions
- Field notes taken after in-
terview.
- Photographs of work spa-
ces, design diagrams, email
exchanges, snippets of code

- 60 video recordings
- 20 transcriptions
Blog posts and website in-
formation, social media
alerts and photographs, and
open-source code archive

- 4 audio recordings
- 3 transcriptions
- Field notes taken after in-
terview.
- Field notes recorded in
half-day observation.
- Drawings, diagrams,
email exchanges.

Description
Set design task, followed by a brief
interview in which the designers re-
flect on the session.

Semi-structured interviews collected
using an adaptation of the critical de-
cision method.

Depictions of several months of inter-
mittent development on an open-
source development project. Analysis
performed on one-month subset.

Semi-structured interviews collected
using an adaptation of the critical de-
cision method.

Ch. 4 Method

-84-

Sampling was opportunistic. No effort was made beforehand to identify people who

were considered to be experts or novices, and collection was not restricted to developers

who were performing specific tasks. The informants worked for organisations or compa-

nies; one pair of developers are professional freelance consultants. Additional details

about developers can be read within individual study chapters, in Sections 5.2, 6.2 and 7.2.

Each section has the title Setting the Scene.

Figure 4.1. Overview of Method and Studies. Sets of data were identified to support three
studies. The groupings that were made reflect different periods of practice and also
particularities of the data, i.e. whether they were gathered by video recording or interview
and by whom. The video of design activity analysed for Chapter 5 was recorded by one
researcher, the videos depicting work at the desk in Chapter 6 were created by a pair of
developers, and the interviews used in Chapter 7 were collected by the author of the thesis.

4.4 Studies

Research began with the broad question ‘How do developers find and fix errors that arise

in the course of work’? This question corresponds to principles of error handling that have

been examined in psychology and safety science, and in methods and theories associated

Error Detection and Recovery (Lopez)

-85-

with cognitive task analysis, itself a field with links to both disciplines (Crandall et al,

2006).

The corpus was formed into sets for analysis using principles of thematic analysis. The

groupings that were made are depicted in Figure 4.1, above. This method was selected

because it is not overly structured. It is also “theoretically free”, belonging to a group of

methods that can be used independently of theory and epistemology (Braun & Clarke,

2006). The flexibility of the method made it possible to support opportunistic access to

sites, a broader look at tasks and time, and to examine personal experience. It was also

possible to interweave examinations of related literatures with identification of themes

within individual sets and by comparing instances across sets.

Though the research question preceded knowledge of these related literatures, the

interpretation of diverse sources was increasingly focused over time (Hammersley &

Atkinson, 2007) by drawing on concepts and models found in them. Iterative assessments

were made of software engineering literature, analyses were performed on data, and

literatures associated with human error were consulted.

The following sections given an overview of the research process for each study. In

each case, details are given about the research interest that let to collection, as are a

description of the sources that were accessed, analysis techniques, timeframes. Notes are

given about how examination of each set impacted analyses for other studies.

Ch. 4 Method

-86-

4.4.1 At the Drawing Board (Site A)

Figure 4.2: Overview of At the Drawing Board (Site A).

At the Drawing Board (Chapter 5) explores how designers develop their awareness of

problems. It assumes that software development is primarily a design activity (Pennington

& Grabowski, 1990) and that difficulties can remain active even after local recovery. The

data used in this study was drawn from materials created for for the National Science

Foundation funded International workshop "Studying Professional Software

Design" (SPSD).

The activities that are depicted in the videos (see also figure 4.2) reflect the kinds of work

that are performed before code is written or modified, in settings in which developers do

not have immediate access to source code. The study had two aims:

• First, to identify indicators of awareness of issues in design that might be com-

pared materials that depict problem solving in different development contexts.

• Second, to compare problem solving as conceived in studies of design with

descriptions of problem solving drawn from psychology and safety science.

Analysis began by annotating the transcript of one design session from the SPSD work-

shop. The AmberPoint session transcript was amended to include information about

gesture and whiteboard work, as well as additional linguistic content.

The Amberpoint Design Session

• Two developers

• Activity at a white-
board

• Set-task, video

Error Detection and Recovery (Lopez)

-87-

This was followed by segmentation of the transcript to isolate particular incidents for

study; each incident was additionally broken down into distinct periods within the session

in which the incident was discussed. Incidents were identified selected by isolating topics

discussed more than once over the course of the design session. These repeated discussions

included elements of the following:

• Re-examination of tentative decisions (Guindon, 1990)

• Attachment to concepts (Cross, 2001).

• Disagreement (e.g. “I don't think so”) or (“I don’t think it needs to be…”)

• Lack of understanding (e.g. "I don't know")

• Lack of confidence, for example signalled by repeated turns away from the

whiteboard and the corresponding provision of assent in the form of paralinguistic

utterances (e.g. "mm hmm", "yeah").

• Representation difficulties, as indicated through repeated use of problem framing,

reference to the design prompt, use of gesture, or extensive re-working of diagrams.

After incidents were selected, individual incidents were transcribed within a columnar

catalogue following the conventions given in appendix B.1. The catalogue cross-refer-

enced dialogue with information about:

• Gestures

• Whiteboard work, specifically sketching or amending existing sketches, and;

• Focusing, by making references to the design prompt, or noting longer periods of

examination or re-examination of the design prompt.

Within the broader framework of Cross' principles of design cognition, individual ex-

changes were examined for evidence of the particular kinds of knowledge exploited by

designers as identified by Guindon. A catalogue of Guindon’s work has been extracted and

can be consulted in appendix B. 3.

Ch. 4 Method

-88-

4.4.1.1 Timeframe

A preliminary analysis was performed in 2010 to establish parameters for examining

problem solving in development activities that don’t involve writing code. This analysis

also helped establish methods for analysing video and for examining paired interaction.

The interpretation of the data was subsequently developed in 2013, and completed in 2015

after comparison with data from the other studies, and through examination of a second set

of videos.

4.4.1.2 Relation to other studies

Analysis of the design session revealed gaps in depiction and scope. The experimental

session examined was hypothetical, and analysis of conversation revealed features of

discussion about problems that were suspected to be representative more generally of

software development, rather than of design activity.

The study formed a baseline for examining problem solving prospectively, providing

evidence for visual and verbal signals that were also used during analysis of materials for

Chapters 6 and 7. Signals are described in more detail in appendix A.2

Error Detection and Recovery (Lopez)

-89-

4.4.2 At the Desk (Site C)

Figure 4.3: Overview of At the Desk (Site C).

At the Desk (Chapter 6) examines how developers interpret the software that they use and

write. Focus is placed on moments in which things go wrong in desk work. The data used

in this study was drawn from paired interactions between two developers who filmed

themselves over the course of a month as they modified an open source tool (for a

summary of filming dates, see Figure 4.4)

The aim of the study that was to gather evidence for errors as they occur at the desk,

while software is being written. Three goals were set for the study:

• First, incidents were to be identified in work prospectively, rather than using bug

reports or repository snapshots as a starting point for retrospective analysis.

• Second, filmed sessions of paired work that spanned a calendar month were

examined.

• Third, emphasis was given to illuminating situational and circumstantial factors

in decision making.

Acceptance Test Framework

• Two developers

• Development in an
IDE, web browser

• Self directed tasks,
video

Ch. 4 Method

-90-

Figure 4.4: Filming dates at the desk in 2009. () indicates the source used to establish the
filming date; episodes listed on the right are those for which a date could not be
established. A single programming session can span multiple recorded episodes. For
example, episodes one and two correlated to two programming sessions, which occurred
on different days. By contrast, episodes 3 and 4 comprised a single programming session.

Figure 4.5. Breakdown of incidents at the desk by episode. Forty-three incidents in
episodes 1-18 were examined in detail. An additional twenty-five incidents were consid-
ered. Eleven were used to develop contextual understanding for practice, while fourteen
depicted issues related to conceptual design or to global aims for the project. A catalogue
of common attributes for the forty-three primary incidents has been extracted into
appendix C.2.

Error Detection and Recovery (Lopez)

-91-

The developers produced sixty videos. Figure 4.4 above, gives an overview of filming

dates for the corpus. Transcripts were created of twenty films. Episodes 1-18 were

iteratively segmented to isolate incidents for analysis. Episodes 19 and 20 were tran-

scribed and have been used to inform analysis but were not segmented to isolate specific

incidents (see also Appendix C for more detailed information about the video corpus,

processing and incidents).

Initial thematic analysis of ten transcripts showed that affective factors noted in early

analysis of high-level design and in accounts of past work were useful in broadly identify-

ing “curious incidents” (Crabtree, Tolmie, & Rouncefield, 2012) in the videos. The videos

contained evidence of surprise, suspicion and of doubt, taken to be indicators of shifts

between progressive and evaluative problem solving (Allwood, 1984) They also included

examples of local problem solving (Reason, 1990).

However, in many cases, the activities undertaken when errors arose were simple. The

developers appeared at times to make mistakes that were related to mechanical or routine

skill rather than grappling with conceptual or design problems.

Analysis was subsequently undertaken in three stages, using affective features to draw

out material from videos, but also delineating and marking other features to deepen

analysis of problem solving. Forty-three incidents were selected for detailed analysis, a

figure indicating coverage of the incidents across episodes is given in Figure 4.5.

First: The aim of this analysis was to capture high level details of incidents. A

catalogue was created that noted:

◦ Chronology: duration, start- and end points

◦ Artefacts: files that were accessed in the screencast over the course of

the incident

◦ Roles: determination of which programmer was working at the key-

board

◦ End state: resolution at incident completion, relation to other incidents,

Ch. 4 Method

-92-

◦ Recovery: the actions taken to recover were noted (e.g. changing wiki

syntax or altering a tool configuration)

◦ Detection: mode (e.g. outcome- or action-based), What was said,

source of information (e.g. system response), corroborative verbal and

visual indications

Second: In this analysis, the circumstances surrounding error detection for a subset

of the incidents were examined. To do this, the dialogue and screen activity

associated with detection were catalogued in more detail. The sequence of a subset

of incidents was also diagrammed by hand to explore the handling process. The

catalogue included the following information:

◦ Insight: the source of information that provided information (e.g. some-

thing seen on the screen, prior experience, what was said)

◦ Handling: notes of strategies, tactics, evidence of guessing, trying things,

and manipulations made to the environment

◦ Recovery mechanism: how the recovery was achieved (e.g. changing

syntax, flushing a cache, altering method calls or class signatures)

◦ Number of attempts: a rough assessment of the number of attempts that

were made before recovery was achieved

◦ Rate of understanding: indications that one developer figured out the

problem before the other

Third: Exchanges within twenty-five incidents were segmented and coded line-by-

line to develop understanding about local cycles of problem solving. The aim of

this analysis was not to develop a fixed model, but to gain a better sense for how

stages of detection, identification and recovery are interleaved by tactical ap-

proaches, manipulations of the environment, and emotions that modulate the

process. A portion of one incident that was coded this way can be seen in Ap-

pendix C, Section C.3.3.

Error Detection and Recovery (Lopez)

-93-

4.4.2.1 Timeframe

Near-verbatim transcripts were created of twenty videos in 2012 and early 2013; these

were iteratively segmented and catalogued to isolate incidents for analysis. Sixty-eight

incidents were analysed, initially in 2013, with subsequent interpretation in 2015.

Preliminary findings were presented at the PPIG 2015 work-in-progress meeting (Lopez,

Petre, & Nuseibeh, 2015).

4.4.2.2 Relation to other studies

Analysis of high-level design activity and accounts of recent work revealed gaps in

depiction and scope, which led to the analyses of work at the desk. The second analysis

revealed that error handling in software development is often cyclical, involving more than

one round of problem solving. These observations were used to undertake a more detailed

review of the psychology literature related to human performance and error detection, the

outcomes of which were reported in Chapters 1, 2 and 3.

4.4.3 After the Fact (Sites B and D)

Figure 4.6: Overview of After the Fact (Sites B and D).

After the Fact (Chapter 7) examines accounts given by programmers about problems

encountered in recent work (see the overview in Figure 4.6). Software takes time to write

Digital Humanities and Course Planning

• Six developers

• Solicited reflection
about recent work

• Organisational tasks,
audio

Ch. 4 Method

-94-

and experiences with errors are personal. The significance of errors will reflect passing

time and social and organisational influences. The data in this study was drawn from

semi-structured interviews conducted at two field sites. The aims for this study were two-

fold:

• First, to gather evidence about error from the full development cycle in professional

contexts

• Second, to give developers an opportunity to identify and describe incidents of

error handling in their own terms

Eleven individuals were interviewed in computing departments at two universities in the

United Kingdom. Each informant was asked to recount an incident from recent work in

which they played a discrete role. Interviews were gathered following an adapted protocol

of the critical decision method, a technique used in cognitive task analysis to study how

decisions are made in real world settings (Crandall, Klein, & Hoffman, 2006). An

overview of the method is given in Section 4.5.4.1. A detailed summary and commentary

on the protocol that was applied can be read in Appendix D.2

Informants were sought opportunistically at site B and D; acknowledged experts were

not identified beforehand. Meetings were arranged in person or by email, and each person

was sent an information sheet before the appointment (see Appendix D.4). The information

sheet was reviewed with the informant before the conversation, and each person signed an

informed consent form. Interviews were audio-recorded, and notes were taken, in sessions

that lasted from between forty-five and seventy-five minutes. Interviews concluded with

questions about training and experience.

Nine interviews were selected for analysis and transcribed. Six interviews were

analysed for evidence of error handling. Each was selected because it included sufficient

detail about what the informant did to detect, identify and recover from their problem. It

Error Detection and Recovery (Lopez)

-95-

also provided information about how the informant developed awareness of the problem

through these stages. Three additional interviews taken at Site B were used to inform

contextual understanding; additional explanation is given for exclusions in Chapter 7,

Section 7.2.4.

Transcripts were first coded into segments. Segments were identified by questions and

responses that moved discussion in a distinct direction; this determination was made by

assessing how an area of the transcript broadly corresponded to areas of questioning. The

critical decision method entails examining a single incident in four semi-structured

“sweeps” (for a fuller description of the protocol, see Appendix D.2) Each sweep is used to

elicit details about decision making from different perspectives:

Identification and Accounts -In this sweep, the informant and the researcher

identify a critical incident, and the participant gives a brief account of what

happened. The participant provides the structure of the interview, through the

content of the story and the details they provide about sequence, beginning and end

points. The person must recount a story in which they were a “doer” or decision

maker, and the interviewer must help establish what kind of story is representative

within a domain and relevant to the research problem.

Juncture in Time or Decision Point -a timeline is established to note critical

decision points. A critical point is one in which the informant experiences a major

shift in thinking or understanding about a situation, or takes decisive action. They

are critical in the sense that they are “turning points” at which different decisions or

actions may have been taken (Crandall et al, p. 76).

Deepening -The process of establishing a timeline interleaves with a more detailed

recounting of the incident itself. In the process, deepening probes are used to elicit

information about cues and patterns the participant perceived, the rules-of-thumb

they devised, the kinds of decisions they had to make, and details about particular

cases.

Ch. 4 Method

-96-

Hypothetical Alternatives - each participant is asked to consider hypothetical

alternatives to decisions that were taken, or to consider how someone else might

have handled the incident.

Each segment was coded to reflect themes in the data. Individual segments often included

more than one question and response and almost certainly included information relating to

more than one category. Multiple categories were often assigned to reflect evidence of

more than one area of deepening, such as a response that described information that was

sought, and how that information related to goals or priorities. A fuller description of the

coding process can be read in appendix D.3.

4.4.3.1 Timeframe

Interviews at Site B took place in the Winter of 2012. Interviews at Site D were conduct-

ed in Spring 2013. The lapse in time was largely due to opportunity. It simply took longer

to locate and negotiate access to a second organisation. Transcription, segmentation and

initial coding for interviews at Site B were performed in 2012. Interviews from Site D

were transcribed and segmented in the Spring of 2015. The codebook was developed and

applied through subsequent thematic analysis undertaken in Spring and Summer 2015.

 Preliminary findings of thematic analysis for interviews collected at one site were

presented at the CHASE 2012 Workshop (Lopez, Petre & Nuseibeh, 2012-a) and at the

PPIG 2012 (Lopez, Petre & Nuseibeh, 2012-b) yearly meeting.

4.4.3.2 Relation to other studies

As in qualitative examinations of other fields (Allwood, 1984; Orr, 1986), the first analysis

of accounts of error suggested that problem solving during error occurrence may be

lengthy. The amount of time required for identification and recovery may have effects that

are felt more or less immediately but which take longer to resolve.

Error Detection and Recovery (Lopez)

-97-

Initial analysis of interviews revealed that the degree of precision and depth of the

information in the accounts was different, particularly in relation to what was reported

about what had been done at the computer, and what had been done in the past. This was

interpreted to mean that accounts must be paired with other forms of data, and in particular

data that could show development of code in real-time, and over time. It led to the

identification of the data used in Chapter 6, At the desk.

The lapse in time between site visits was an effect of gaining access, but also served

broader aims. Interviews taken at the second site allowed the critical decision method to be

applied a second time and to differentiate findings related to particular domains or

environments from those that might more broadly characterise general aspects of software

development.

4.5 A Prospective Analysis

The methods used to guide analysis were selected because they are prospective, allowing

actions to be followed forward in time. The approach taken toward interpretation has been

“semantic” (Braun and Clarke, 2006, p.81). Analysis has not looked “beyond” what is said

by the developers themselves. Rather than using accounts to understand values, assump-

tions or social relationships (Sharp, 2000), they have been considered in the narrative sense

(Orr, 1986), as sources from which to identify points in time, including chronology and

sequence, and to define components of problem solving in relation to interactions with

machines and between people.

In the following sections, more detail is given about general principles and methods that

were used to support analysis, beginning with a review of analytics used in relevant

psychology and safety science studies, followed by approaches taken to qualitative

analysis in software engineering research.

Ch. 4 Method

-98-

4.5.1 Related Approaches

Data for the sense of error described in these pages relies on evidence gathered from

observation or that is perceived and reported, at or soon after occurrences. Ideally, the data

should be gathered under naturalistic conditions. Studies of human error in psychology

have used think-aloud protocols (Allwood, 1984), but have primarily relied on reports

collected from diaries (Norman, 1981(Reason, 1984; Sellen, 1994). Studies in safety

science, which more commonly examine error in the workplace, have used think-aloud

(Rasmussen & Jensen, 1974), time-slice observation and interview (Zapf, Brodbeck, Frese,

Peters, & Prümper, 1992), and simulations performed by computer users (Rizzo, Bagnara,

& Visciola, 1987) steel plant (Rizzo, Ferrante, & Bagnara, 1995)4 and nuclear plant

operators (Woods et al., 1994).

The limitations of these methods are evident. Self-reports may be inaccurate, incom-

plete or biased (Reason, 1984, p. 520) while protocols captured using think-aloud, often in

experimental settings, may be forced or artificial (Miyake, 1986). Interviews are difficult

to conduct, and depend upon willing, articulate informants. Observation is costly and hard

to arrange in professional settings, and it may be difficult to focus in the moment on the

significant aspects of the work that is being performed (Crandall et al., 2006).

It is generally recommended that methods be used in combination as resources allow

(Crandall et al., 2006) and as research questions demand (Hammersley & Atkinson, 2007).

Interviews, for example, commonly provide a practical complement to observational data

(Hammersley, 2003), as the data collected in each can be used to “illuminate” the other

(Hammersley & Atkinson, 2007, p. 102). In safety science, interviews taken after a period

of observation have been used to enhance or refute understandings about human error

formed through observation alone (Hollnagel & Amalberti, 2001). This is good practice,

4. The study of steel workers that is commonly cited for these researchers could not be
accessed. Information about it has been drawn from this later analysis, from (Rizzo,
Parlangeli, Marchigiani, & Bagnara, 1996) and by a summary made in Reason, 1990.

Error Detection and Recovery (Lopez)

-99-

because all of the information relevant to research is often not available “first hand” (Ham-

mersley & Atkinson, 2007, p. 98) in observation.

4.5.1.1 Software Engineering

Interviews and observation are often used in software engineering research to fill in gaps

of understanding of practice gathered by examining other evidence, such as source code,

records stored in tools, in bug reports or maintenance requests. It is increasingly accepted

that the “human aspects” of software development cannot be understood solely through

analysis of outcomes (LaToza & Myers, 2011). At the same time, the challenges of

working with unstructured, qualitative data have also been observed (Kitchenham et al.,

2002). Aranda and Venolia describe mixing methods to balance the need to collect large

amounts of rich, contextual data with that of conducting focused analyses (Aranda and

Venolia, 2009).

Studies that examine practice commonly use data drawn from tasks undertaken at the

desk. For example, Bowdidge & Griswold (1997), Ko and Myers (2005), Lawrance et al.

(2013) and (Park et al., 2013) examined video recordings of developers working on set

tasks. They based their analysis on verbal utterances and other information drawn from the

recordings, and either traced actions backward in a process described as “basically

debugging” (Ko & Myers, 2005, p. 62) or forward in time to identify behavioural cues

such as verbalisations, reactions and strategies (Park et al., 2013) or evidence of “foraging”

for information (Lawrance et al., 2013). Errors that people make while writing HTML

code have been examined by examining In these and other similar studies (Huang, Liu, &

Huang, 2012), interpretations of actions were made in relation to items from classifications

adopted beforehand, and used a definition of error as material, “fragments of code” that are

left behind (Ko & Myer, 2005). Likewise, the emphasis in both was to model in general

terms how developers reason during tasks associated with bugs with aims to suggest

Ch. 4 Method

-100-

improvements to support use of tools or to make suggestions for helping programmers

write code that is better suited to bug fixing tasks.Though it has different aims, the research

reported here has used similar sources and methods to examine error as it is encountered.

However, rather than working backward from outcomes to examine past actions (Ko &

Myers, 2005), analysis has more similarities with the prospective analytic technique

described by Bowdidge and Griswold.

4.5.2 Transcription and Cataloguing

Transcription is part of the interpretative process, but it was also central in this project as a

way to draw materials together for analysis. The opportunistic approach taken toward

collection resulted in a large corpus of unstructured data in various media formats. The

videos used in analysis were filmed by other people in diverse settings. Limitations in the

data brought by having had only “mediate” access to the events they depicted (Scott, 1990)

were overcome by creating a set of familiar texts from which to perform analyses.

Though direct, contemporaneous access was not possible, it was possible to treat the

videos as a sort of “borderline” document between a record and aesthetic material, and to

witness many of the audible, visible and tactile aspects of the action that were depicted

(Scott, 1990). The videos also might be interpreted as including inscriptions of other texts:

of the software that is being written, and diagrams and text that is written on whiteboards.

These other texts were considered to be peripheral, in that emphasis in transcribing all

sources has been to identify speech-based text.

Audio recorded interviews, design video and programming videos were transcribed

using the same basic transcription conventions, defined to capture details of speech and

interaction. Conventions were adjusted to meet requirements of different media. A fuller

description of the methods used to transcribe and process materials can be read in appendix

A, while details particular to individual studies are located in appendices B, C, and D.

Error Detection and Recovery (Lopez)

-101-

4.5.2.1 Interaction Analysis and Focused Ethnography

To learn how to identify and manage sequences of audio and video recorded activity,

principles of interaction design (Jordan & Henderson, 1995), videography (Knoblauch &

Tuma, 2011; Knoblauch & Schnettler, 2012) and more general descriptions of qualitative

analysis using video (Heath, Hindmarsh & Luff, 2010) were studied. Capturing data for

observation on video recordings produces data that is by some accounts more objective

(Knoblauch, 2005). Recordings can be gathered less intrusively (Jordan & Henderson,

1995), allowing researchers the opportunity to “look again”, and also to perform detailed

“micro” analyses.

In a recent survey, Knoblauch describes focused ethnography (Knoblauch, 2005) or

videography (Knoblauch & Tuma, 2011; Knoblauch & Schnettler, 2012) as a “distinct”

form of ethnography adopted in applied research. An earlier description of performing

focused, micro analyses of video recorded material was described Jordan and Henderson as

interaction analysis (1995).

Interaction analysis holds that cognition is socially oriented and distributed, “situated in

the interactions among members of a particular community engaged with the material

world” (p. 41). In practice, it combines the use of ethnographically-informed methods to

establish contextual understanding of an environment with micro-analytic techniques to

examine the details of interactions captured on video. It is necessarily interdisciplinary,

drawing on fields such as sociolinguistics, ethnomethodology, conversation analysis,

kinesics, proxemics, and ethology. The complete method presented by Jordan and Austin is

intensive, involving iterative detailed study of video content by individual researchers,

groups of researchers and with study participants.

Ch. 4 Method

-102-

4.5.3 Accounts

Errors are experienced by people and they become meaningful to others in terms of how

they are talked about. Analysis of error requires an examination of the accounts people

make of actions (Hammersley & Atkinson, 2007).

Examining accounts of practice has been used to characterise problems in other

software engineering research. (Eisenstadt, 1993). High-level software design has been

examined for characteristics of breakdown (Guindon, 1987). Ko and Chilana described

applying an algorithm for ascertaining contention in open source bug report exchanges

(2011). Other ethnographic studies have looked at “code talk” (Higgins, 2007) or design at

the desk (Kristoffersen, 2006)

Accounts are often examined in relation to material objects. For Orr, narration was

examined in relation to a malfunctioning machine (1986). In the community he observed,

narrative was a tool used to fix broken photocopier machines. Keeping track of the state of

machines during diagnosis was difficult, and the way technicians handled it was by

verbally assessing situations as they developed and by providing an historic context for

changes that had been made during the process. Technicians described for each other

what had been done, what these changes meant, they questioned and developed under-

standing, and determined the actions required to fix a machine.

Other researchers in software engineering have used narration in laboratory settings to

examine conceptual design (Guindon, Krasner, & Curtis, 1987), code restructuring

(Bowdidge & Griswold, 1997) or to understand how people learn to use software with

tutorials (Koenemann-Belliveau, Carroll, Rosson, & Singley, 1994).

For the studies reported in Chapters 5, 6, and 7, evidence was sought of developers

verbally “summing up” work (Orr, 1986). The data were drawn out of solicited and

unsolicited oral accounts (Hammersley & Atkinson, 2007).

Error Detection and Recovery (Lopez)

-103-

• The video recordings examined in Chapters 5 and 6 contain unsolicited accounts

(Hammersley & Atkinson, 2007) generated by developers working in pairs. The

videos were created for different purposes, but their relatively unstructured form

permitted them to be examined for evidence of error.

• Chapter 7 drew on accounts that were solicited using semi-structured interview

techniques adapted from the critical decision method (Crandall et al., 2006). To

develop contextual knowledge about working environments at these sites, a day

was spent observing a team at one and drew on prior-formed knowledge of the

second.

4.5.3.1 Interviews and the Critical Decision Method

Interviews may be loosely or firmly structured and can be taken in different environments.

They complement observation because they are social interactions (Hammersley, 2003).

They can reflect an informant’s desire to preserve their own reputation or to persuade the

researcher to a particular point of view. Because informants are asked to reflect on their

own behaviours, attitudes, character, and personality, they become reflexive collaborators

in the research process (Hammersley, 2003). Eisenstadt described this well, noting that he

believed his informants’ accounts on the basis that he had no reason not to, and because

details in the accounts were internally consistent. He concluded that accounts are suffi-

ciently reliable if informants are given the freedom to recount experiences in their own

words (Eisenstadt, 1997).

Interviewing techniques developed out of the critical incident method (Flanagan, 1954)

were used to gather rich accounts of practice that would include evidence of error encoun-

ters. Flanagan’s method described a set of principles to study human behaviour in relation

to specific activities, or as a means to uncover the causal antecedents and critical actions

taken in relation to specific events (Weatherbee, 2009). The technique has been associated

Ch. 4 Method

-104-

with accident analyses such as Perrow’s description of “normal” accidents (Perrow, 1984)

and Weick’s analysis of the Tenerife air disaster (Weick, 1993).

In subsequent adaptations, the technique has been adapted for use in knowledge

elicitation. For example, the critical decision method was designed to understand how

people think in natural settings, developed to address the fact that the way people think in

the workplace is not well explained by the findings of experimental studies of cognition.

In addition to illuminating how people think on the job, the method is said to aid re-

searchers in understanding expertise in individual domains, by revealing the differences

between how experts and novices approach and manage their work. The critical decision

method has itself been adapted to examine group work, and every day and critical incidents

in the distant past and in the “here-and-now” (Crandall et al., 2006). The method was used

in Chapter 7 to elicit focused accounts from developers about recent work, which were

explored in analysis by developing timelines and narrative descriptions.

4.5.4 Incidents

Errors are encountered, they are situational. Unlike war stories (Orr, 1986) or “hairiest”

bug fixes (Eisenstadt, 1997) they are often not the stuff of anecdote. They are everyday

experiences, pouring-tea-into-the-tomatoes (Norman, 1981) rather than critical events that

might arise in hospital emergency rooms (Crandall et al., 2006).

Error handling should be tracked in time and over time. Root-cause researchers have

suggested that data should not be collected too long an interval of time after events have

passed, and should reflect all kinds of development activity, while researchers in psycholo-

gy describe a fluctuating sense of immediacy with which the effects of error are perceived.

Variations in practice have a temporal dimension: tasks performed during the day on a

hospital ward may differ if observed at night (Hammersley and Atkinson, 2007, of

Zerubavel). To account for these differences, fieldwork is often undertaken by identifying

Error Detection and Recovery (Lopez)

-105-

and observing “salient” periods of work and junctures, such as in periods when personnel

changes occur.

In empirical studies of software development, salient periods are often defined in

relation to particular tasks. Studies have examined how programmers learn to use program-

ming environments (Ko and Myers, 2005), how they use tools to restructure code (Bow-

didge and Griswold, 1997), or how they work in professional environments on set tasks

such as removing a bug (Lawrance et al., 2013) or performing specified maintenance

(Sillito, Murphy, & De Volder, 2008).

To meet the need of examining error within broader timeframes, incidents representing

error encounters were constructed by examining accounts for verbal and visual evidence

that informants perceived that something was wrong, and that they subsequently followed

a process to remove effects of the error. Analytics used to identify incidents included

evidence of chronological sequences (Crandall et al., 2006), shifts between progressive and

evaluative problem solving (Allwood, 1984), of environmental constraints that halted work

(Norman, 1981), and indicators that informants understood what was wrong and could take

action to remove the effects (Reason, 1990).

• In Chapters 5 and 6, interactions were examined on video for indications given by

developers that work had stopped, that an error was suspected or by topics that

were repeatedly discussed.

• In Chapter 7, informants were asked to identify a problem from recent work and a

chronological incident was constructed out of the detailed account they provided.

4.5.4.1 Think-Aloud and Constructive Interaction

All of the videos used in studies depicted pairs of developers working together, and so

understanding about how to refine representation of narrative dialogue drew on descrip-

Ch. 4 Method

-106-

tions and examples of protocols developed for think-aloud and constructive interaction

(Miyake, 1986).

Think-aloud protocols are attractive to researchers because they provide an unbiased

view of what a person is thinking while they perform a task. Verbalised thoughts give

insights into how software developers reason about problems, how they shift between

considering problems and solutions, and of the tactics they use to meet small goals for a

larger problem (Hughes & Parkes, 2003).

The technique involves designing a task of sufficient familiarity (Crandall et al., 2006)

complexity, detail and variability (Ko & Myers, 2005) to support the research question,

and then collecting and recording verbalisations for analysis. In the context of software

development, the technique has been used to examine problem solving in a range of

different contexts. High-level design “breakdowns” that arise during set tasks have been

examined for evidence of knowledge and cognitive limitations (Guindon, Krasner, &

Curtis, 1987), as have the kinds of “cognitive breakdowns” made by novice users of

programming systems (Ko & Myers, 2005), and studies have looked at the processes

followed for recognised development tasks like debugging (Lawrance et al., 2013).

Criticisms of the technique regard the difficulties some people have in verbalising their

thought processes (Hughes & Parkes, 2003), the fact that verbalising may interfere with

reasoning or performance, or may be better suited for gathering information about how

experts reason rather than novices (Crandall et al., 2006).

Allaying these factors, think aloud techniques may be a part of work practice in some

domains (Crandall et al., 2006). Constructive interaction is a naturalistic counter-tech-

nique to think-aloud. Developing protocols out of dialogue exchanged by people working

in pairs provides a view on problem-solving that is unsolicited, more naturalistic (Miyake,

1986). Unlike participants who are asked to articulate their reasoning process, pairs

Error Detection and Recovery (Lopez)

-107-

undertaking problem solving tasks naturally explain to each other what they are thinking

and give reasons for their ideas. Because two people are working together, a natural

process of proposing, testing and defending ideas is made available for analysis (Miyake,

1986).

The method shares common points with think-aloud protocol. Studies give participants

a set task which they are to solve together. In Miyake’s study, participants were asked to

"figure out how a sewing machine makes its stitches." (Miyake, 1986, p. p.159). Six

participants with varying degrees of prior experience with the machine were assigned to

one of three pairs and worked together in sessions that were video and audio recorded.

Each pair undertook three sessions during which they solved the problem using different

tools: pen and paper, the machine, and a machine with thread. Miyake analysed the

statements made by participants during each session, which she mapped to one possible

explanation of how the sewing machine creates a stitch.

Constructive interaction has been used in software engineering for human computer

interaction research (Wildman, 1995) and to study collaboration and team work (Flor,

1998; Flor & Hutchins, 1991) Bowdidge and Griswold used the technique to study how

programmers restructure code using different tools (1997). They noted that one of the

strengths of the technique is that it can be moved out of the laboratory and to the desk, and

thus into a familiar environment that may yield dialogue and actions on the computer that

“reflect habits and patterns typical of the programming culture” (1997, p. 230).

Though they do not specifically cite constructive interaction as a methodological

orientation, studies that examine pair programming benefit from access to naturalistic

exchanges of dialogue. Dialog-based verbalisation is necessary during pair programming

(Xu & Rajlich, 2005) and the activity has been studied for attributes like attention (Sillitti,

Succi, & Vlasenko, 2012), and engagement (Plonka, Sharp, & van der Linden. 2012).

Ch. 4 Method

-108-

4.6 Summary

This chapter described the methods used to perform this research. First, the commitment to

using ethnographic principles was described. The aims of the research were given and an

overview of specific methods used for gathering and analysing source material was

provided. Finally, an introduction was given to the field sites and the people who informed

this work.

In the next three chapters, reports are given for studies introduced in Section 4.4 that

examine practice from different perspectives. The studies draw on data gathered using

different methods and have been examined using media and format specific analytic

techniques. Interpretation has grown out of employing principles of thematic analysis, but

the texts and analyses are also structured temporally (Hammersley & Atkinson, 2007, p.

195), according to the broad sequence of activities that have been identified in psychology

research as being a part of the error handling process. Two aims for reporting emerged

from analysis:

• First, to establish a representative catalogue of error handling features detailing

encounters reported by developers working in different settings and on different

tasks.

• Second, to develop the descriptive framework for error used in software engineer-

ing by representing individual encounters within technical, social, and organisation-

al contexts.

-109-

5. At the Drawing Board

Design is a prevalent, central concern in software engineering, comprising both the goals

to be achieved and the means: the particular tools, materials and mechanisms employed to

meet them (Taylor & van der Hoek, 2007). As in other disciplines such as architecture, the

need to continuously comprehend and compose permeate all of the tasks undertaken in

software development: domain problem understanding and representation, the develop-

ment of corresponding technical specifications or plans, writing the code and maintaining

it. Performance of these subtasks alternates over the course of an initiative, interleaved

and interwoven by the basic processes of understanding and construction (Pennington &

Grabowski, 1990).

Taking this perspective, it is possible to consider that features of comprehension and

composition from any one area of software development may resonate or have relevance

when examining other tasks. Findings about design practice can be used to frame and lend

context to examinations of development at the desk, or to stories of recent work gathered

from organisational settings.

Design practice is commonly examined as it is performed (Cross, 2001). One aim of

the study reported in this chapter is to orient descriptions of error encounters and error

handling to prospective analytic techniques that are established in software engineering

research. A second aim is to distinguish aspects of problem solving in software develop-

ment activity that are performed in-the-moment, that are local, tactical (Reason, 1990) or

reactive (Eraut, 1994) from other activities that are strategic (Reason, 1990) or deliberative

(Eraut, 1994).

The following pages examine the ways in which developers manage difficulties that

arise in a paired design session. The chapter begins with a review of concepts from related

Ch. 5 At the Drawing Board

-110-

design studies, followed by a review of concepts and theories related to problem solving

from human error research. The scene is set, followed by findings and a brief discussion.

5.1 Related Work

Prior findings have described the kinds of breakdowns that designers encounter (Guindon,

Krasner & Curtis, 1987). Software design activities are hampered by three kinds of

breakdown. Designers may lack specialized computing knowledge or domain knowledge.

They may also experience failures of memory or possess inadequate tools to support

reasoning. Some breakdowns are blends of the first two: characterised by aspects of

knowledge and aspects of cognition.

Software designers use specialized knowledge when performing early design tasks

(Guindon, 1990). They retrieve or simulate scenarios about the problem, elaborate

requirements, identify inferred constraints and discover new requirements. Solutions are

developed and represented using external representations. Designers use heuristics to

assist solution generation, finding ways to simplify tasks, by delaying commitment and

otherwise reducing the complexity in order to avoid making serious mistakes.

 These attributes have also been described in the more general context of design

cognition. Cross identified three characteristics of design work that provide simple

framing principles for analysis of design activity. Problems are ill-formed, identified in

tandem with solution generation. Solutions are opportunistic, following a realistic

strategy of finding a "satisfactory" rather than "optimal" solution. Process is ad-hoc and

unsystematic; designers are wary of process that has not proven itself (Cross, 2001).

These points also resonate with descriptions of problem solving in the context of error

handling. Strategic problem solving, like much of design work, is future facing, linked to

goals that are ill-formed, dynamic, and which can only be assessed after time has passed

(Reason, 1990). Solutions must, of necessity, therefore be opportunistic, satisfactory rather

Error Detection and Recovery (Lopez)

-111-

than optimal or correct. Design practice is also tactical, particularly at moments of

difficulty. Local problem solving will be used in these cases to work through difficulties.

Designers will draw on tools such as generation of alternatives, and sketching as they

identify local problems that can be solved and assessed in order to return the focus of work

to the larger, strategic task.

Other papers have analysed the same data as the study reported in this chapter. The

studies are notable because they attend to aspects of awareness that arise during design.

Designers must be comfortable with a degree of uncertainty and ambiguity in order to

create (Cross, 2001). Phenomena of uncertainty such as vagueness, hesitation and delay

serve design process by making collaboration possible (McDonnell, 2012).

Within the framework of error handling, these phenomena would be taken as indicators

of suspicion, the sense that something is wrong in work that was previously completed

(Allwood, 1984). They might also be taken as indicators of turbulence, that the designers

have lost or are in danger of losing control of the process (Amalberti, 2001). If evidence of

either factor remains at the close of a session, such as in comments indicating ongoing

dissatisfaction or aborted problem solving, one might also surmise that the issue remains,

in some sense, active.

In Software Design as Subject- Oriented Design Cycles, Baker and Hoek examined the

development of ideas in software design, looking at evidence of strategies and patterns

used by designers in idea generation, evaluation and acceptance. Their method identified

cycles within design, periods of time delimited by moments of focus-setting. As in the

findings presented here, a high incidence of question asking was observed within design

sessions. The study took such activity to be evidence of uncertainty and a lack of creative

forward movement (Baker & van der Hoek, n.d.)

Ch. 5 At the Drawing Board

-112-

Nickerson and Yu examined the nature of the collaboration at moments of conflict, and

included in their analyses examination of speech as well as of other conversational

activities such as gesture and diagram (2010). Their findings suggested that conflicts arise

because designers attach themselves to divergent perspectives that meet the requirements

of individually selected evaluation criteria.

McDonnell examined how designers in the SPSD situations use verbal interaction to

explore the mechanisms designers use to keep a design process moving in spite of

disagreements. One tactic designers use is tentativeness, employed to simplify a task, or to

set aside issues that will be considered elsewhere. Disagreement is accommodated through

the use of indicators, including the use of hypotheticals, by accommodating conflicting

ideas in the design process, either by relating both possibilities to the larger design, or by

using distinct terms to set the solutions apart.

5.2 Setting the Scene

The design session analysed within the former studies and in the study reported here was

collected as a part of the NSF funded International workshop "Studying Professional

Software Design" (SPSD), held February 8th-10th, 2010, at the University of California,

Irvine. The goal of this workshop was to collect observations and insights into software

design, that could be related to theories and methods from a variety of research disciplines

including software engineering, design studies, human-computer interaction, cognitive

science and psychology.

Workshop participants analyzed a common set of data comprised of videos and

transcripts of three paired interactions of professional software designers. Each recorded

session lasted for approximately two hours. The analysis given in this chapter examined

one of the three sessions, commonly referred to in other studies as the AmberPoint

Error Detection and Recovery (Lopez)

-113-

Session. More information about the workshop may be found at: http://www.ics.uci.edu/

design-workshop/ (http://www.ics.uci.edu/design-workshop/).

The next section introduces Kasia and Bill, and describes the setting for their design

session. This chapter does not include a full account of the methods that were used for

collection and analysis. For this information, see Chapter 4, Section 4.3.3. It may also be

helpful to consult Appendices A and B.

5.2.1 The Amberpoint Session (Site A)

The Amberpoint Session depicts design activity performed by Kasia and Bill, identified in

Table 5.1, below. The pair are experienced designers, and are colleagues at an industrial

firm. Kasia and Bill were given a design prompt specifying high level requirements for a

traffic flow simulation program (see Appendix B.2), and were asked to produce a concep-

tual design for the system. The pair were asked to record design decisions on a whiteboard.

Table 5.1: Informant demographics, Site A.

The session lasted for one hour and fifty-three minutes. It was filmed using two fixed

cameras placed at different angles and proximity to a whiteboard. The session began with

Kasia and Bill sitting at a table, reviewing the design prompt. Following this, the pair

move between sitting at the desk and standing at the whiteboard. Bill does most of the

diagramming and note-taking at the whiteboard, though Kasia stands at the board during

discussion to reference and consult diagrams. The final six minutes of the film depict

reflection and review of the session.

Site

Site A

Name

Bill

Kasia

Gender and Age

Male, thirties

Female, thirties

Experience

Professional De-
signer

Professional De-
signer

Ch. 5 At the Drawing Board

-114-

5.3 Findings

In this section, three incidents are analysed. Findings are characterised in terms of

concepts drawn from Guindon’s kinds of knowledge (1990).

5.3.1 I don't know if I like the pop-up window anymore.

Kasia and Bill work through the design of traffic signal timing by diagramming how it will

be represented in a user interface. The difficulty unfolds over three segments, with two

additional minor mentions made to it: one roughly three quarters of the way through the

session and one within the reflection period. The second segment is the longest of the

three, lasting approximately fourteen minutes.

In the course of specifying behaviour, the interface component undergoes several

iterations, depicted in Figure 5.1, below. Bill works predominantly in the solution space,

as indicated by what he draws: how he extends, alters or removes bits of screens on the

whiteboard. Kasia works within the problem space. She verbally explores aspects of the

problem, and uses design heuristics (Guindon, 1990) to simplify the problem.

In the second segment, Bill does not accept Kasia's suggestion, that the problem be

simplified ("Kasia: So, so you don't have to specify all four, because you only need to

specify one or two and the other ones are implied because, you know--"). He pursues

instead an attachment to developing the timing solution visually (#00:35:50.0# "Bill: --I

understand what you mean, I understand what you mean but I think part of the traffic light

problem is figuring out how long we should have the overlapping red lights").

The resolution is opportunistic: the third partial solution that is generated is accepted as

sufficient. The resolution is signalled by the invocation of an external constraint, and

mention is made that more detailed design work will be required. However, no additional

work is done during the session, particularly within the period during which the primary

representation, entity relationship diagram is developed.

Error Detection and Recovery (Lopez)

-115-

Figure 5.1: User interface representations of traffic signal timings.

In the traffic signal timing issue, the resolution is incrementally represented in sketches,

perhaps firmly enough to indicate that the problem is resolved. However, the representa-

tion is uneven. Bill's attachment to a user interface solution and the subsequent lack of

development of the underlying object model could signal that the issue is still active. This

possibility is hinted at by Bill's ongoing suspicion, indicated at the end of the session that

he is not satisfied with the solution produced (#00:40:43.0# M: "I'm still--the input I'm still

unhappy with the light timing").

Figure 5.2: Traffic signals. The entity diagram includes elements for cars and for intersec-
tions, as well as for managing traffic. The diagram on the right is an element of the user
interface, indicating how traffic patterns might be configured within a simulation.

Ch. 5 At the Drawing Board

-116-

5.3.2 So you think there should be a car out there?

Kasia thinks that cars have a distinct identity within the system and must be modelled

while Bill believes that cars are handled more generally as a part of how traffic passes

through intersections. This difficulty has four segments; the second marks the point at

which the difficulty is named, while the resolution comes in the third.

McDonnell noted that the adoption of different terms by designers accommodates

disagreement, but it may also signal more fundamental ill-formed understanding, a

planning barrier (Frese & Zapf, 1994). It may be that the next action to take is unclear

because the intention cannot (yet) be named.

Conceptual consensus is achieved through discussion. The pair make extensive use of

scenario solutions. Two domains figure heavily in this process: that of the way traffic

works, and of how simulations should behave for users. Gesture is used by both designers

in the course of these scenarios to convey level of agreement and to express ideas. At

times, consideration of the problem is constrained by references made to external con-

straints (#00:13:20.5# "Bill:... Professor E must have statistics").

The solution is partial. It takes two representations on the whiteboard, depicted in

Figure 5.2. One is in a low-fidelity representation of a user interface component. The

representation is of a lower fidelity than the one developed for the traffic signal interface:

no colour is used, a second part of the diagram is tacked on to the first, and numerous

abbreviations are given to indicate fields on the screen. The solution is also represented

within the entity relationship diagram showing how major objects within the system relate

to one another.

Both designers seem to be in agreement at the end of the session that traffic patterns

needed to be configured and managed independently of intersections and of cars, and this

is represented in the diagrams. This may mean that the design difficulty has been suffi-

Error Detection and Recovery (Lopez)

-117-

ciently resolved to permit unambiguous action going forward. However, even in the last

moments of discussion surrounding the issue Bill asserts that the intersections should have

some control or knowledge over the way traffic patterns are managed, suggesting that he

remains unsatisfied ("#00:33:15.8# M: But, it might ask the approach what the traffic

configuration is.").

The desire to draw on the support of problem solving at the desk is a marker of contin-

gent recovery. Kasia and Bill mention that a number of the requirements for timing might

be worked out through implementation, a known strategy in development (LaToza &

Myers, 2010).

5.3.3 Ultimately, you want to know whether it worked.

Kasia wonders how the success in performing a simulation using the software is to be

determined. She argues that success relates to how factors such as speed, distance, and car

density on roads should optimally be combined by students to produce simulations. The

difficulty is discussed in three different segments, the first occurring early in the session,

and the last forming a substantial part of the reflection period at the end of active design.

Unlike the previous difficulties, the "working" issue is primarily discussed in relation to

other parts of the system, such as in relation to the creation of a summary area or dash-

board for showing how the simulation is configured (segment 1), or the effects of running

a simulation (segment 2). This means that over the course of the session, very little is

captured about the problem except as it might relate to partial solutions of these related

issues.

Turbulence during design work is indicated with questions, gesture and in terminology

that is fluid, changing. It may also be indicated by repeated discussion about a specific

topic. In these cases, representation may take the form of little information captured in the

Ch. 5 At the Drawing Board

-118-

representation, or of unbalanced capture wherein part of the design is highly detailed,

while other parts are not.

In fact, at the end of the session, the entire discussion is only represented on the

whiteboard via additions to the listing of requirements maintained by the designers: one

question, and three unlabelled references to attributes for intersection approaches as shown

in Figure 5.3.

Figure 5.3: You want to know it worked. The discussion related to this issue is not
represented in diagrams, but in a list of requirements and one question indicated in black.
"How to save different simulations?" is noted on the left as are the notes “Avg/Max Wait
Time", "Avg/Max # of Cars", and "Avg Thru" to indicate the average throughput to be
expected for each intersection per minute.

This is the only difficulty examined that is discussed at length by the designers in the

reflection section, during which they indicate that they didn't feel satisfied with what they

were able to achieve. The issue is left unresolved, though the designers suggest that the

next steps would be to go back to the Professor, and to explore the problem by virtue of

implementing parts of the system that were more firmly captured in the design representa-

tions.

5.4 Discussion

The Amberpoint session has been characterised as an example of expert design. Kasia and

Bill move between contexts: those of design and use, depth and breadth, and between the

requirements and the design (McDonnell, 2012). The session reflects the general features

of design cognition. Evidence is given by the designers that they are engaged in problem

formulation, solution development, and process strategy (Cross, 2001). The session

Error Detection and Recovery (Lopez)

-119-

demonstrates instances of problem framing, co-evolution of problem and solution,

attachment to concepts and modal shifts.

There is also evidence for the more detailed kinds of knowledge observed by Guindon

in the context of software design. For example, there are many examples of requirement

inference, the clear emergence of preferred evaluation criteria, and a number of design

heuristics are used, such as considering a simpler problem first, and delaying commitment.

The incidents that were selected were distinctive for several reasons. Topics were

repeatedly discussed. The designers re-examined tentative decisions (Guindon, 1990), or

exhibited attachment to concepts (Cross, 2001). Exchanges include language that

indicates disagreement (e. g. "I don't think so") or lack of understanding (e. g "I don't

know"). The designers indicated they were doubtful, or that they were not confident in the

ideas being expressed. These moments were signalled by repeated turns away from the

whiteboard and corresponding provisions of assent in the form of paralinguistic utterances

(e. g. "mm hmm", "yeah"). Episodes also exhibited evidence that the concepts under

discussion were difficult to represent, as indicated through repeated use of problem

framing in exchanges, references to the design prompt, or extensive re-working of

diagrams.

5.4.1 Scenarios

Guindon found that designers rely on mental simulations of the solution space to evaluate

the in-progress solution: to determine how complete it is, and to tease out any "bugs" or

inconsistencies it contains. She states that "solution simulations were done in terms of test

cases based on problem domain knowledge” in her case of possible scenarios for how lifts

should behave (1990, p. 291)

 Kasia and Bill appear to use the scenarios to explore two problem domains: that of how

traffic works in the real world, and of how users interact in general terms with simulation

Ch. 5 At the Drawing Board

-120-

software. Simulations in this session often explicitly refer to the use of the system,

particularly in regard to how other simulation user interfaces are known to work, and the

bearing that this knowledge may have on the current design effort. This may simply reflect

the emergence of user experience as a preferred evaluation criterion for this session. It

may also reveal lack of experience in solving this kind of design problem.

Software development must solve problems both within a problem domain and within

software engineering (Pennington & Grabowski, 1990). Within safety science, this has

been described in the context of “object worlds”: the different domains to which an object

of design belongs. Part of the task in these cases is to determine what constitutes accept-

able conditions in each domain for the effects of decisions that are taken (Rasmussen,

Pejtersen, & Schmidt, 1990). Because of this, it is reasonable to assume that analogous

scenarios may. of necessity, draw from both sources.

5.4.2 Constraints

The design prompt was heavily used by designers in the Amberpoint session to select

terminology, to check requirements, and as a means to evaluate the completeness of partial

solutions. These uses may indicate evidence of requirements elaboration, defined by

Guindon as being performed to reduce ambiguity in the design prompt and to decrease the

field of possible solutions (Guindon, 1990, p. 290)

There is some evidence that the prompt is used during exchanges to express uncertainty

(“Did it say that?”, “...or did I read something there that said it has some”), or to signal

disagreement (“Potentially, I don't know if it needs to be that complicated but I could

see”). The purpose of the prompt does not always appear to serve as a direct source of

information, but rather as a marker of something outside the design exchange. It is in

picking up the prompt that a message is conveyed, that conversation is diverted or paused.

Error Detection and Recovery (Lopez)

-121-

More explicit boundaries are set around problem solving by making reference to the

past and to the future. These references locate the problem solving activity in the present,

in the now. They set the current moment apart from decisions that were taken before (e.g.

"[W]e have to talk to Professor E again") and those that will have to be taken later ("That's

version 2.0").

Boundaries set by lack of understanding may signal a difficulty that will occur in later

activities. Indications may take the form of explicit reflections that something is not

understood, naming the difficulty, use of the requirements specification for problem

framing, or by constraining responsibility by making references to the client ("We need to

go back to Professor E").

5.4.3 Representations

Sketching has been named by Cross to be the “primary” tool that supports design

cognition, facilitating the “the uncertain, ambiguous and exploratory” aspects of design. It

assists designers in generating tentative solutions, identifying what is still not known and

revealing emergent properties and features (Cross, 2001, p. 17).

In addition to sketching, Kasia and Bill employ gesture and use questions to structure

and frame problems. These devices do not stand alone, but are used in reference to an

immediate aim, such as in uses of the design prompt to elaborate requirements, or as a part

of solution simulation.

5.4.3.1 Sketching

Kasia and Bill were given the requirement that they use the whiteboard to record decisions,

and so the session includes extensive sketching and listing. Different kinds of information

are depicted using different colours. The main simulation interface is depicted in blue,

while lists of requirements are always recorded in black, bulleted points. The object model

Ch. 5 At the Drawing Board

-122-

is sketched in brown. As one would expect, the user interface elements that correspond to

traffic signal lights make use of red, green and yellow.

Colour selection is purposeful within the representations, but may also indicate a

preferred working practice. Most of the sketching at the board is done by Bill, an arrange-

ment that appears to be comfortable to both members of the pair. At one point, Bill uses

humour-infused blame to suggest that someone has “taken” a colour away from him, as

depicted in the exchange below. This comment is made in jest. Kasia laughs in response,

and the sense is given that this is how they normally work together.

(00:39:43.5)

Bill:--If you wanted to. And then we could have something, we could have another

color, we could have another color that represents green arrow if we need to. Left,

left-turn is orange, I don't know.

Kasia: Purple.

Bill: Purple?

Kasia: (Do you have a purple?)

Bill: Who took purple away from me (inaudible)?

Kasia: (Laughs.)

Bill: Brown, how 'bout brown?

Kasia: Okay.

5.4.3.2 Gesture

Bill and Kasia perform gestures over diagrams, in the air, or over a physical object, such as

a table. Guindon does not mention the use of gesture in her analysis of software design,

but it reasonable to group this device with other uses of external representation.

Error Detection and Recovery (Lopez)

-123-

Figure 5.4: Gesture invoked to model traffic signal timing (Section 5.5.1). In this example,
Kasia uses her hands to indicate a road being placed into the grid space. Her hands are
roads, the diagram on the whiteboard represents the simulation. The gesture is low-
commitment: Kasia can use the gesture without altering the diagram that is represented on
the board.

Gestures provide reference points to discussion (e.g. "if you click on here and double click

on here") (Nickerson & Yu, 2010). They do this by providing common objects that serve

discussion. They are unambiguous and commitment free: it is easy for individual designers

to make or to replicate a simple gesture over a diagram. Nothing needs to be committed to

the design in this way, nothing needs to be altered or removed. An example of this is

shown in Figure 5.4, above.

00:20:02.7
Kasia: --So we assume they have some sort of a pallet here where they grab a road and
they start dragging [F makes motions with both over the diagram]
Bill: Yeah, that's true.
Kasia: and then they drag that, so there is some sort of drawing pallet right, that says okay
I have this thing I drag something, I'm drawing a road and I call it something and I draw
and I call it B and I draw my roads and then--

Ch. 5 At the Drawing Board

-124-

Figure 5.5: Gesture invoked to model the problem domain. In this example, Bill uses the
table to represent streets, and his hands are cars. The gesture is communicative, but also
knowledge bearing, representing how cars are known operate in the world.

The same gesture can be used to serve discussion about the problem and solution space.

Gestures are often knowledge bearing, conveying how something behaves in the world or

how it is intended to operate within software that is being built. An example of this is

given in Figure 5.5, above. Gestures may be used to inform but also to persuade, invoked

to punctuate the idea that is being conveyed with a visual example. An example of this is

given in Figure 5.6, below.

#00:56:32.2#
Bill: ...and usually stay the speed limit then they usually stay and go green throughout and
so then, then on a given street, [Bill makes motions on table with hands] all the lights have
to be timed in such a way that if you follow that, if you follow that speed limit then you
will get to the next green light and you'll never have to stop as long as you stay at the
speed limit.

Error Detection and Recovery (Lopez)

-125-

Figure 5.6: Gesture used to align understanding in the cars incident. In this case, Bill
illustrates the principle of turning with his hands to support an argument for managing
timing. Kasia responds by discussing directions.

5.4.3.3 Questions

A high incidence of questions was observed to be asked by designers in two contexts. As a

part of problem framing, Kasia and Bill use questions to introduce different (but ultimately

a defined set of) terms to articulate concern about the problem they are trying to solve. As

a part of solution framing, questions are asked to clarify understanding in situations in

which one designer has put forth an idea. Guindon does not cite question asking as a

00:46:25.6
Bill:--No, no, then I think you would say um between these hours, 50 cars start at B and
then
Kasia: mm hm
Bill: given the percentages, they're going to turn at--
[Bill holds hands together and then moves them apart.]
Kasia: --mm hmm
Bill: 9am.
Kasia: So that's what I was getting at, so you need direction, south.

Ch. 5 At the Drawing Board

-126-

significant feature of either activity. The sense given is that this activity may relate more

to the attributes of discussion than to the use of particular kinds of knowledge.

Questions may also indicate that the designers are becoming aware of an error, or mark

shifts from prospective to evaluative problem solving (Allwood, 1984). Suspicion

indicated through questions, as do tentativeness or hesitation, signal that something is not

right. They are part of the emergent, contingent process of assessing what works through

the detection of things that don’t work (Alexander, 1964), but also can serve as markers of

reasoning, shifting frames of reference that accompany error handling (Rizzo, Ferrante &

Bagnara, 1995).

Other modulators that are often framed as questions such as doubt or worry could also

be grouped as a representative tool that supports design work. In all three of the incidents,

there is a moment when the designers articulate what they perceive to be the crux of the

design difficulty. In the context of the "So what does 'It worked' mean" episodes, it is the

high frequency of questions that indicates a problem. In the other episodes, declarations

and banter are used (“Gosh, who knew this was so complex?”, “I know, it’s amazing”) ,

through an admission that a miss-communication has occurred (“You see, I thought-”), or

that something has gone wrong (“I feel”).

5.4.4 Limitations

The data were examined in recognition of several limitations. Though the film depicts

naturalistic exchange between professional colleagues, the session was laboratory-based

and the informants were given a set design task. The sources were secondary (McGinn,

2008), it was not possible to develop a full understanding of the professional context for

the session: the environment in which the designers normally work, their individual

backgrounds or preferred working styles, or of the kinds of design problems they normally

solve.

Error Detection and Recovery (Lopez)

-127-

Partial understanding of industrial design was developed by comparing findings in this

data with a second set of films that depict “real world” design activity in an industrial

setting. Those films depicted design of a “real world” problem in an organisational

context. Though informative, the second set of films was not rigorously analysed, and

findings have not been used in reporting.

5.5 Conclusion

This chapter reported a qualitative study undertaken to examine how designers work

through difficulties encountered in high-level design. It examined the activities of two

designers working at a whiteboard on a set design task. The analysis demonstrates the

applicability of principles from design cognition to collaborative laboratory sessions. It

provided evidence of active qualities of problem solving in deliberative activities like

design that align with factors of problem solving characterised as being used during error

handling.

Agreement and shared understanding are not necessarily indicators of resolution. They

may be indicators, however, of undoing effects within a local recovery. As McDonnell

noted, strategies like vagueness, hesitation and tentativeness support collaboration and

allow work to move along. Indicators of suspicion may also signal that recovery is

provisional.

One way that designers resolve issues is to set boundaries (Guindon, 1990). Kasia and

Bill state at points that that the next step to take would be to return to the client for

clarification of the requirements. By admitting a lack of knowledge, designers set a

boundary on their responsibility, but they also indicate an awareness that the issue remains

active, that it may require additional handling. Likewise, designers can recover from

difficulties by banking on future work: through additional discussion with stakeholders,

Ch. 5 At the Drawing Board

-128-

but also work at the desk. The best indicator in this case is how designers discuss future

activities like prototyping in the context of current activity.

Recovery can be roughly assessed by how steady the process is, and how by how

satisfied designers are with results. A process that leaves the designers satisfied is marked

by the adoption of unambiguous terminology, and by the degree of capture within and

balance between individual design representations. Within a turbulent process, developers

may not be able to represent a solution, but only to frame the problem; discussion of the

solution space may primarily reveal inconsistencies and gaps within the requirements.

-129-

6. At the Desk

Problem solving in software development is often strategic: success will be determined

only after time has passed and the outcomes of decision making can be assessed. The

strategic element is particularly strong in software design, in which plans and preparations

are made for other software development tasks. Decisions taken at the whiteboard that

result in clear representations in diagrams or verbal agreements suggest resolution of

immediate concerns. However, setting constraints on problem solving and other indicators

such as feelings of unease or dissatisfaction may signal that problems remain active.

Resolution may be achieved only on the promise of work that will performed at a later

time.

At the desk, developers must continually interpret what has been recorded within

software that they use and write. Distinctions that were previously made must be exam-

ined, and new commitments must be made within a process that is never-ending and never-

complete (Winograd & Flores, 1987, p. 73). Software is social and historic, a medium that

reflects the intentions of other developers and of individual developers at particular

moments in time.

The aim of this chapter is to examine how such distinctions are made by developers,

how comprehension and composition is undertaken at the desk (Pennington & Grabowski,

1990). The focus is on moments when “misfits” between developers and machines

(Rasmussen, 1985) or “break-downs” (Winograd & Flores, 1987) in action arise.

The chapter first reviews studies that have examined problem solving in software

development, and concepts and theories related to problem solving from human error

research. The project depicted in video recordings made by two open-source developers is

introduced. Following this, an analysis is made features that were observed in different

Ch. 6 At the Desk

-130-

incidents, culminating in a discussion of activity at the desk in the context of error

handling.

6.1 Related Work

Traces of decision making undertaken at the desk have long been kept and reported in tools

and mechanisms designed for other purposes. Bug trackers are used to keep track of

information about “almost bugs” (Bertram, Voida, Greenberg, & Walker, 2010). Com-

ments are used to track information about work that is yet to be completed (Storey, Ryall,

Bull, Myers, & Singer, 2008), bugs are reassigned so that those known to have active

experience with issues can see them through (Guo, Zimmermann, Nagappan, & Murphy,

2011). Reports of error often drive and organise practice, but have also been shown to be

incomplete and inaccurate, with gaps of information that must be filled through interac-

tions between developers (Aranda & Venolia, 2009).

Social interaction is considered to be a cornerstone of writing good software. Hoare

argued that a culture of reliability would result over time in the “natural” emergence of

dependable software (1996). Weinburg famously described this as “ego-less

programming”, environments in which shared, open access to software replaced older

cultural values of programming as a secretive, solitary practice. Ego-less groups increase

awareness of what is in code, and in so doing facilitate error detection during writing

(1998).

 Study of interactions in formal meetings and in work at the desk support these ideas.

Study of code inspections has shown that the length of meeting times and the physical

proximity between developers can influence the number of defects that are reported

(Seaman & Basili, 1997) Examinations of work at the desk argue that software is social

“to the core”, that meanings within software arise out of the interactions developers

(Higgins, 2007).

Error Detection and Recovery (Lopez)

-131-

Interaction has long been argued to make programmers “better” (Weinberg, 1998),

however, less is known about how individual developers make decisions. Studies have

examined the information needs of developers (Ko, DeLine, & Venolia, 2007), how they

“forage” for information during bug-fixing (Lawrance et al., 2013) and the personal

strategies they utilise more generally during development (LaToza & Myers, 2010).

The argument has been made that decision making at the desk is like problem solving

associated with design. Design work cannot be moved "upstream" from programming,

because it is a constitutive element of programming. (Kristofersson, 2006). The names

given to elements of software become the design and the design depends on what things

are called. Some errors at the desk are handled by designing them away, making them

acceptable by accounting for them. Likewise, renaming pieces of code can make them

"right", so that they fit new, emerging requirements (Kristofersson, 2006).

Collaboration and coordination studies examine the environment in which software is

created and the ways that tools and process support the coordination of activities. They

also explore how work is mediated by talk and by the records associated with software

development: bug databases, code repositories, and in some cases, source code. As in the

root-cause analyses, the studies primarily consider error in terms of outcomes, and

examine most closely activities like bugfixing that have long been associated with error

detection and removal.

6.2 Setting the Scene

This section sets the scene for the findings reported in Section 6.3. The videos used in

analysis were created by Marcus and Joe, two active members of the professional agile

community. The following sections introduces the project, developers, and provides an

overview to how practice is organised.

Ch. 6 At the Desk

-132-

The section does not include a full account of the methods that were used for data

collection and analysis. For this information, consult Chapter 4, Section 4.3.3 and

appendices A and C.

6.2.1 Acceptance Test Framework (Site C)

This project is extending an open-source acceptance test framework to allow users to

specificy "literate" acceptance tests. Wiki-based and written in JAVA, the framework was

designed to allow non-technical users to specify and run acceptance tests for software. The

altered project will permit tests to be written that follow the Given-Then-When pattern

(North, n. d.). Classes and packages will be named so that they can be parsed and present-

ed to readers on webpages in a form that approximates natural language. Likewise, users of

the framework will be able to create tests with names that are readable and easy to

understand.

Development draws upon a JAVA interface written by Marcus some months prior to

filming. That project had two aims: to test out ideas about writing human object oriented

application programming interfaces (API), and to support the separation of roles and tasks

in behaviour driven development frameworks. It included examples which demonstrated

the use of the API in conjunction with the open source acceptance test framework that is

being altered by the pair. The API is used directly at points, and examples included in its

documentation are referred to and borrowed from.

6.2.1.1 Informants: Marcus and Joe

Marcus and Joe, identified in Table 6.1 below, perform all programming tasks together.

The two are more or less evenly paired, each has been programming professionally for

over ten years. Both programmers are familiar with the acceptance test framework,

however Marcus appears to have more recent experience in developing within it.

Error Detection and Recovery (Lopez)

-133-

Table 6.1: Informant demographics, Site C.

By contrast, Joe exhibits greater familiarity with the tools that are being used, in particular

with the IDE and a continuous unit testing plugin for the IDE. Evidence is given that he

takes the lead on performing upgrades on these tools between filming. There is also

evidence to suggest that he is an advocate for using Linux or Unix variant operating

systems, and that his most recent development work has been done in Cocoa.

 Watchers

The episodes that were analysed were filmed in office environments, as depicted in Figure

6.1, and there are frequently people co-located in the room where development is happen-

ing. Watchers predominantly follow along with the programming action, but also comment

from time to time. At times, their input affects the work. Watchers differ between episodes;

no single Watcher is consistently present.

Episodes were webcast using web meeting software and Watchers also participate via

the internet. People drop in and out of the sessions, at times commenting or asking

questions in real-time via chat. When this happens, a co-located Watcher brings the

question to the attention of Marcus and Joe, or one of the developers notices that a question

has been asked in real-time chat. In both cases, the question is addressed in the course of

ongoing work.

6.2.1.2 How Practice is Organised

Marcus and Joe use the Eclipse integrated development environment (IDE), and create

extensions to the wiki-based acceptance test framework. They also use the wiki to direct

Site

Site C

Name

Joe

Marcus

Gender and Age

Male, thirties

Male, thirties

Experience

Professional Con-
sultant, 10 years

Professional con-
sultant, 10 years

Ch. 6 At the Desk

-134-

their work, writing stories within it that define the functionality they intend to add to the

framework. The wiki environment is viewed in Firefox.

Figure 6.1: Development sessions were held in offices.

Figure 6.2: Filming depicted a screencast. After episode 20, the screencast included video
of the developers at work, prior to that, only the IDE or web browser output was visible.
This figure also depicts a screen explaining test-driven development principles followed by
the developers, and displays the “pomodoro” timer Marcus and Joe used to keep track of
episodes.

Error Detection and Recovery (Lopez)

-135-

The developers take turns driving and navigating. One writes a unit test, defining proposed

behaviour for a class, and the other implements the behaviour by adding necessary

methods to the class. The driver often informally “thinks aloud” to indicate the actions he

is taking. Likewise, the navigator often acts as narrator for the audience, explaining in

broader terms what is being done, and how it is oriented within the larger goals for the

project. In addition, the two interact with each other, discussing the work that is being

performed.

Development is undertaken on a Windows laptop owned by Marcus (see Figure 6.2 for

a representative image of the screencast depicted in video recordings). In the first and

subsequent episodes that were analysed, the performance of this laptop distracts the

developers and slows progress.

6.3 Findings

As described in Chapter 3, Section 3.3, error handling is generally described as a three-

stage process (Brodbeck, Zapf, Prümper, & Frese, 1993). A person must know that an error

has occurred, identify both what was “done wrong” and “what should have been done” and

then understand how to “undo” the effects of the error (Sellen, 1994, p. 476). Handling

unfolds in the course of “progressive” problem solving. An error is suspected or detected,

and an evaluation is made to identify the source of the problem (Allwood, 1984). Environ-

mental cues supply feedback to the problem solver by blocking forward progress (Norman,

1981), communicating about problems in system state (Lewis & Norman, 1986) or by

circumstantially guiding a problem solver to recovery (Reason, 1990).

Following this rubric, features of error are illustrated in the findings that follow using

statements and exchanges of dialogue drawn from error handling incidents. Forty-three

incidents were examined in detail; a diagram depicting the spread of incidents across

episodes can be seen in Figure 4.4. Taken as a group, incidents are notable for the time

Ch. 6 At the Desk

-136-

they span: many are fewer than five minutes in length with clearly defined points of

detection and resolution. Other handling processes took much longer, with the longest

taking approximately fifty minutes and spanning two videos. In most cases, incidents are

resolved on camera within a single video episode, though some span multiple films and

several incidents are resolved off camera. For a fuller description of the methods used in

analysis, see Chapter 4, Section 4.4.2

Incidents were selected for reporting because they represent a cross section of the

various kinds of development tasks that characterise encounters with error. They also

illustrate different aspects of handling. Finally, they are incidents that are brief enough to

be presented in total or near total entirety, allowing the reader to form a sense of how error

handling unfolds from start to finish.

Excerpts of dialogue from videos are presented to illustrate aspects of handling.

Dialogue that does not pertain to the immediate topic has been removed for brevity and

clarity. Exchanges are presented in italics, with the name of the speaker in a strong font.

A catalogue of incidents is given in Appendix C.2. Full exchanges are given in Appendix

C.3. For fuller transcription conventions, see Appendix A.

6.3.1 Slips of Action

Actions sometimes do not go as planned, or were not intended. They are often simple,

routine, and are commonly detected in the act based on perceptions that arise while doing

something (Sellen, 1994). Often described in software engineering in terms of backtrack-

ing (Bowdidge & Griswold, 1997), they could also be described as slips of action

(Norman, 1981). Selecting the wrong item from a drop down menu or improperly referenc-

ing a variable are two examples:

Marcus: Oops, that's not what I want to do. (Ep. 12, 00:04:45)

Error Detection and Recovery (Lopez)

-137-

Joe: No can't do that cause it's. Oh we can move it outside the [try block]... (Ep. 7,

00:06:51)

In these cases, the full exchanges for which can be viewed in Appendix 6.3.1, each

developer gives a clear indication that something is wrong. What should have been done is

evident, and recovery is simple. It is likely that Marcus caught his error in the act.

Detection is also commonly made by assessing outcomes, and Joe’s statement suggests

that he may have responded to effects his actions had on the development environment.

6.3.2 Error Handling Illustrated

The exchange given below illustrates an error in software development that requires

handling. In the incident, catalogued as 11-B in Appendix C.2, Marcus is writing a test.

He passes a piece of text to as an argument to a method. A red bar appears under the text.

Several features of the exchange are notable. As in the examples given in the previous

section, Marcus indicates that the red bar was unexpected (“Oooh.”). Joe immediately

identifies that the problem is with syntax. The text contains an apostrophe, (e. g. “Do

something you don’t know”) which is causing a parsing error. The action was small, and

might have been interpreted as a slip, however, Marcus indicates that he is uncertain about

how to proceed. Marcus uses questions to engage Joe in higher-level discussion. Joe

signals that he is engaged by questioning in turn. He offers a solution that will allow work

to continue. He indicates that the proposed fix is tactical (“for the time being”).

00:02:55

Marcus (Driver): Oooh.

Joe (Navigator): You've (just) got an apostrophe in there. (Chuckle)

Marcus: What do you want to do about that?

Joe: What? The apostrophe?

Marcus: Yeah.

Ch. 6 At the Desk

-138-

Joe: Umm. Don't, uh, don't use it for the time being. That's a, we'll come back to

that later if it becomes a problem. /Okay. / It shouldn't be difficult to remove non

characters.

00:04:44

The error is unexpected and the source of the red bar must be identified. Though the

interruption is brief, forward progress stops while a solution is identified and implemented.

This issue is not exclusively skill-based. Marcus indicates that he doesn’t know what to

do, but it is likely that he also recognises that the error is technically simple to resolve.

Recovery requires decision making that is both tactical and strategic. The pair need to

come to a decision about what to do now, but they also have to consider larger goals for

the project.

Joe’s admission that the pair can “come back to it” if necessary demonstrates that the

issue has a strategic dimension. Joe provides the rationale he is using for accepting the

risk. It should not be difficult, he reasons, to handle non-characters. This statement links

the issue to one of the global aims that have been given for the project, to allow users of

the acceptance test wiki to write tests in natural language. Though this particular problem

does not reoccur, the global aim factors into several other incidents that come up over the

course of different sessions.

6.3.3 Error-Driven Practice

In keeping with test driven development principles (Ambler, 2012), Marcus and Joe write

tests for intended behaviour that initially fail, and are then proven within the implementa-

tion. They rely on the environment to “catch” errors (“It needs to go into the right

package... If we’re wrong, it will tell us.”). Similarly, errors thrown within the testing

framework are taken to indicate what to do next.. The developers use error-driven tactics to

guide work along the way and also to provide placeholders or bookmarks between

sessions. Unit tests are left at the close of a programming session that fail, as are accep-

Error Detection and Recovery (Lopez)

-139-

tance tests that fail with stack trace output in the wiki. As Marcus comments in the first

minutes of one episode:

“That’s what I love about ending the last thing I was doing with a failed test cause

then I come back and I know exactly what I need to do next.”

There is also evidence that errors are sometimes spurred. An example of this tactic is given

in the exchange presented in Appendix C.3.5. In this case, one of the developers might

write something in the code that he knows will result in an error. He does this because he

has an idea of what needs to be done, but does not know how to achieve it. He is counting

on the feedback from the system to circumstantially guide his practice.

Marcus and Joe expect problems to be signalled by system responses (Lewis &

Norman, 1987): red bars under method calls or arguments, error messages in the problems

pane, or stack traces in the web browser. In spite of this, and as seen in the exchange given

in Section 6.3.2, errors frequently come up that catch the developers by surprise. Error

handling across the incidents is most often triggered by cues in the environment (Reason,

1990), summarised in Table 6.9, below.

Lewis and Norman described six kinds of system responses that can be designed into

software to facilitate error handling during use. As noted in the findings, gags and

warnings provide clear indications that something is wrong, either by limiting or caution-

ing against future action. However, a system might also do nothing, it may self-correct,

suggest that the system and user “talk about it”, or that the user teach the system what

should be done, features that have been explored by researchers investigating new ways to

support tool-based development (Ko & Myers, 2008).

In this catalogue, the system responses to which Marcus and Joe respond are often

subtle. The display of a screen may not “look right”, prompting suspicion that something

is wrong. As has been noted in other studies (Lawrance et al., 2013), the developers are

also designing and populating messages for system responses. They notice when a

Ch. 6 At the Desk

-140-

message does not contain information they expect to see, or when it has been improperly

interpreted (for a fuller discussion of subtle environmental cues, see Chapter 8, Section

8.1.1). At times, detection is made as a result of interaction between the developers and

one of the Watchers. In one case, Marcus notes while explaining designed behaviour to a

Watcher that it does not “feel right”. In a second, a Watcher points out a weakness in the

use of a feature of JAVA.

Table 6.9: Sources of system responses. In this dataset, the following system responses
signal to the developers that something has gone wrong. These broadly correspond to the
system responses outlined by Lewis and Norman (1987)

Marcus and Joe always indicate that something has gone wrong, usually with verbal

comments. In a small number of cases, visual confirmation of the error accompanies verbal

comments. The screencast may show a cursor moving along a message or hovering over a

red bar to reveal additional information. Often the pair verbally indicate that something has

System

Response

Red bar

Problem pane

Stack trace

output

Wiki

“Output captured”

Wiki Error Mes-

sage

Description

A red bar appears under a variable or statement.

Most commonly, this pane is used to access errors reported
by the unit test framework. The unit test framework places a
visual icon at the point in the code where the error is made,
however developers tend to indicate that an error has oc-
curred using the textual output in the problems pane of the
IDE, and not by making reference to the icon.

In the wiki that fronts the acceptance testing framework.
These appear when the acceptance test requires a piece of
functionality that has not yet been written. In general, these
errors are used to identify what to do next, but in the case of
things that have gone wrong, the error that appears is not
what the developers expected to see.

Other error messages that come up while executing tests.

Code can fail in the course of acceptance test that does not
result in a stack trace. In these cases, error messages are
captured from the failing component and displayed on a
separate webpage. The output that has been captured is
indicated to the developers with a graphic.

In the web-based acceptance test framework, system re-
sponses returned by the wiki.

Error Detection and Recovery (Lopez)

-141-

gone wrong with simple utterances including “Oooh”, or “Oops” or exclamations like

“Ugh. That’s interesting.” Questions are asked that refer to the appearance of the system

response (Why is that red at the moment?), that personify the code (Why is that complain-

ing?) or more generally question functionality (Why is that not working then?).

6.3.4 Handling in Context

The handling process is managed by how Marcus and Joe assess situations, the information

they draw upon, and the mechanisms they try. Attention is often commanded because

conditions are unexpected or new, but a situation can turn out to be familiar. Subsequent

handling may draw upon knowledge gained through previous experience. The following

exchange drawn from Episode 2, and provided in full in Appendix C.3.2, demonstrates

both perspectives:

Marcus: Now this is something to do, I had to solve this recently and I can't

remember how I did it.

Joe: It's an import, you need to import it, don't you? Or it needs to be umm, oh

wait, its trying to execute that as a--

Marcus: --It’s the, the look. There's a, I did this before. It's to do with the way it

does the test running stuff. Let's just have a quick look [Driver opens Eclipse] in

examples that we were messing about with hums. (Ep. 2, 00:20:43)

Guessing is a prominent feature of the incidents in this dataset. Guesses are informal and

pervasive. They are both right and wrong, often made solely in response to perceived

effects. Joe responded to the error message by making three swift guesses about what was

wrong. Later in the exchange, he takes a fourth stab about which configuration file will

contain the information. All of the guesses Joe makes in this incident turn out to be

incorrect. They are an indicator of novelty, and suggest that Joe has encountered a problem

that will require conscious problem solving.

Ch. 6 At the Desk

-142-

Sometimes guessing is used to propose tactics or mechanisms that have an information-

al basis. In the exchange given above, Marcus takes an informed guess to look at configu-

ration files within the IDE. The handling process he follows demonstrates that knowledge

drawn from prior experience is often of limited utility. The environment does not always

effectively guide problem solving. In this incident, configuration files are located in

different parts of the JAVA project filesystem and they all have the same name. Marcus

knows he needs to look in one of the files, but he does not know which file will contain the

information. He takes guesses about which files to open and examine. The identification

of a solution, as in this case, is often also perceptual. Marcus had to open and look at

several files before recognising information in one that he perceived was correct (“That's

the one I wanted”).

Errors may be encountered together, but they are handled individually. One member of

the pair may indicate that a problem is new, while the other may indicate that it is familiar.

In this incident, Marcus was able to identify behaviour in the software that the configura-

tion manages, but he didn’t explain exactly what the configuration does. Joe’s experience

was new. His understanding formed by watching how Marcus handled the problem: the

actions he took in the development environment and the connection he mades between

information stored in the development environment and the wiki.

Likewise, the two do not always notice that something has gone wrong at the same

moment, or attribute the same significance to system responses or behaviour in the

software. Information is often freely given, but not received: the developer at the desk may

not respond to suggestions given about actions to take or warnings about problems. At

times, each developer appears to privilege behaviour in the environment over what he is

told, only making a detection once he can assess effects. Thus the same error may be

caught in the act by one developer, but be detected based on outcomes by the other.

Error Detection and Recovery (Lopez)

-143-

Differences in rates of understanding are not necessarily evidence of differences in

reasoning skill or expertise. They serve informational purposes in paired work. Dialogue

and commentary are important sources of feedback. Comments can focus a partner’s

attention, correct an assessment, or trigger an evaluation. The act of explaining a choice

triggered detection in one case. Evidence was also given that pairs guide each other on

occasion, dictating changes to be made in the code. The steps in these cases are not

intended to produce a recovery for the error. Instead, they are given to stabilize the

process, restoring immediate behavior so that problem solving can continue.

6.3.5 Modulators

Questioning is prominent in the incidents, found in the context of guessing, but also of

other modulators like doubt and blame. Marcus and Joe ask questions when they are not

able to make sense of a situation. They question the behaviour of the software (“What is

going on?”), the stability of the environment (“What has changed?”), and the location of

resources (“Where is it?”). They are doubtful about actions they have taken (“Oh that was

the wrong page, wasn't it?”) and about where the source of the problem might be (“I

wonder if it’s like, no?”).

Blame is used to deflect responsibility (“That's nothing to do with us.”), and to probe

for information about a potential source of the error (“What have you done?”). Blame

often targets limitations of the environment. In this sense, it functions as an invocation of

an external constraint (Guindon et al., 1987), allowing the developers to set boundaries on

responsibility. As noted by Eisenstadt (1997), blame is sometimes misdirected, but in this

dataset, it appears more often to be a feature of setting boundaries for investigative

activities. In these videos, the laptop on which work is being performed is commonly used

in this way.

Ch. 6 At the Desk

-144-

Blame may be associated with knowledge transfer between developers. Throughout the

episodes, the pair is working on Marcus’ machine, and there is some evidence to suggest

that in between episodes, development software is installed and updated by Joe. Given this

context, blame may be placed in order to draw out information about the work that was

performed, particularly when there is evidence to suggest that it may have a role to play in

something that has gone wrong.

Emotive statements like doubt, blame and questioning are sometimes indicators that the

developers have entered a “turbulent area” (Amalberti, 2001, p. 119). Within exchanges

that are not stable, such statements are recognisable because they are often partially

articulated and do not indicate directed reasoning. An example of a severe incident with

evidence of blame can be read in Appendix C.3.3. Severe incidents begin like other error

handling processes. Marcus and Joe use established tactics and mechanisms, for example

by gathering information, or verifying that they are looking at the right page in the web

browser. They also manipulate the environment, doing things like flushing caches,

stopping and starting a web server or reloading web pages. However in severe handling

instances, these techniques do not work.

The severity of issues is linked not to the amount of time an issue takes or the number

of tries, but to how “in control” the developers perceive themselves to be. In the most

severe incident in the catalogue, Marcus and Joe encountered an incident two thirds of the

way through a filmed episode. The issue took over the remainder of the episode, and was

not resolved in the whole of the next film, captured on the same day. In total, some 50

minutes of filmed time were spent in problem solving to identify what was wrong.

In this incident, problem solving efforts progressed from very simple examination of

files, to discussion about design commitments, and consideration of prior work that used

similar principles. At one point, the developers were so flummoxed by the error, and by

Error Detection and Recovery (Lopez)

-145-

incremental unexpected outcomes produced during local problem solving, that they

resorted to adding a println() statements to code that would appear in output. Their level of

stress and doubt were high, one of them remarking that such tactics were needed to allow

them to “prove” that the basic “laws of programming” were intact.

In fact, the very first guess that the developers made about the source of the error

brushed up against what went wrong: the framework has a dependency on a jar file that is

placed at runtime into the filesystem. The developers were aware of this, and checked to

see that it was in place. They failed to notice, however, that they checked for the existence

of the file in the wrong place.

6.3.6 Rules-of-Thumb

Some error handling incidents, like those reported in Section 6.3.1 are handled almost

instantaneously. Evidence suggests that tasks were simple and the error truly was just a

slip of the hand, or a momentary misapplication of attention. However, in other cases, the

evidence suggests that the task is not so simple and that the error requires procedural

knowledge. There are examples in the catalogue of incidents handled in this way that draw

upon well-formed prior knowledge. In some cases, the prior knowledge may match the

current situation so closely, it can be applied as a “recipe” or rule (Rasmussen, 1985):

Marcus: So we have a problem there...that I've noticed happens sometimes. If you

actually stop it, now go back to Eclipse and stop it. And then start it again... (Ep. 1,

00:08:18)

Recovery using the rule is straightforward. Marcus has seen the issue and is able to provide

Joe with a mechanism for recovery. The solution is clear, but the circumstances surround-

ing the issue’s earlier occurrence are unknown: Marcus does not indicate how difficult it

was to solve, what was tried or how long it took.

Ch. 6 At the Desk

-146-

To understand how such knowledge forms, it is necessary to compare data from

different incidents. The catalogue includes instances of the same error occurring in three

different films that were made on different days. The full exchanges for each of the three

instances and the prior example can be read in Appendix C.3.4. In each case, Marcus and

Joe do not extend an exception class when it is created to satisfy conditions in a test. Here

is what handling looks like the first time the error is signaled by a red bar:

Joe:...why is that complaining? Oh that's because we haven't got the constructors.

Marcus: That's right.

Joe: Oh, no, that's not, it says it’s not a subtype of Exception. Oh [The class giving

the error is opened]--

Marcus: --‘Cause it doesn't extend RuntimeException (Ep. 7, 00:02:57)

Detection in this case is delayed, spurred some time later when Joe tries to throw the

exception. This kind of error could be interpreted as latent and analyzed deductively to

determine the cognitive failure that led to its introduction in the code (Ko & Myers, 2005).

However, it is also possible to follow problem solving forward. Joe makes a guess about

the source of the problem, signaling a shift from detection to identification and the pair

undertake a brief cycle of local problem solving (Reason, 1990) to identify what is wrong.

The value of prospective analysis is made clearer by examining the subsequent occur-

rences. The second time a detection is made, the issue is familiar. Circumstances are

slightly different; this time Marcus is adding a constructor to the exception class when a

red bar appears. Joe is able to swiftly identify the source of the problem, and he takes

responsibility for the error. He indicates that it might have been avoided:

Joe: Oh, that's 'cause it doesn't extend runtime. I was lazy and I didn't (inaudible).

Marcus: But do you know what? Actually, ...I think now is the right time to actually

put that in there. (Ep. 11, 00:16:53)

Error Detection and Recovery (Lopez)

-147-

Joe explains that the error was one of omission and that the class had not been created with

strategic oversight (Reason, 1990). However, Marcus counters that the omission is

acceptable, because it upholds a preferred practice. This instance represents an example of

the development of know-how or the formation of a rule-of-thumb. Rules in this sense are

cultural (Rasmussen, 1985), a point that is emphasized in these exchanges. The pair may

be following principles of test-driven development and object-oriented programming, but

reserve the right to determine how classes are managed in relation to one another, even if

this results in an error that reoccurs.

Joe’s handling the third time enforces the practice and demonstrates the prior knowl-

edge he has gained. There is no additional dialogue about how the error should be handled.

It is still unexpected, but familiar, and handling has become routine. It is an error that can

be caught more or less in the act and one that can be quickly recovered from using a rule.

Joe: Ahh [a red bar appears in the IDE]. So we didn't include the, when we created

it we haven't made it extend exception. So now to make it... runtime exception. And

we need a constructor with a message... (Ep. 18, 00:15:26)

Taken together, the occurrences reveal three things. First, they demonstrate that responses

to error are modified over time. They also demonstrate how preferred practices are

formed. Rasmussen described this as the formation of a rule or rule-of-thumb. He indicated

that these rules are cultural (Rasmussen, 1985), a point that is emphasised here. Finally,

these occurrences also demonstrate that error occurrences are not always avoided

(Brodbeck, et al., 1993). The fact that the incidents repeat and are so similar suggest that

the developers see little of value in this kind of error; it provides them no impetus to

change behaviour to prevent subsequent occurrence. Instead, they place greater value in

consistently following the practice they have adopted.

Ch. 6 At the Desk

-148-

6.4 Discussion

This section builds upon the rubric given at the start of Section 6.3. It gives a fuller

characterisation of error handling in software development at the desk, drawing evidence

from the points discussed in the findings, and from other instances in the broader

catalogue. For reference, it may be helpful to consult Appendix C.3, which gives full

exchanges for incidents.

Error handling begins with detection, with knowing that something is wrong. Errors are

detected in terms of perceived discrepancies between intentions (What I mean to do),

expectations (What I expect will happen) and outcomes (What actually happened)

(Reason, 1990). Marcus and Joe use and rely upon system responses to organise practice

and detection is thus usually based on an assessment of outcomes (Sellen, 1994). There is

evidence in the catalogue of self-detection within acts, and of errors that are detected by

the other member of the pair or by a Watcher.

Marcus and Joe invariably indicate that they recognise that something has gone wrong,

responding to system responses with verbal comments. Sometimes the significance of an

outcome may relate to visual or communicative elements in the interface that are signifi-

cant to the developers, but which might not be evident to an observer. Corroboration given

by the developers indicates that development activity has shifted from problem solving

undertaken to do something, to looking over what was done previously (Allwood, 1984).

In terms of error handling, corroboration indicates that developers are aware that a problem

exists and that the handling process has shifted from detection to identification.

Once they realise an error has occurred, Marcus and Joe must identify what was done

wrong, determine what should have been done, and take steps to remove the effects of the

error. As the examples show, error handling is often simple and compressed. However,

sometimes recovery requires several rounds of local problem solving (Reason, 1990).

Error Detection and Recovery (Lopez)

-149-

Guided by system responses (Lewis &Norman, 1986), information gathering (Eisenstadt,

1997) is interspersed by manipulations of the environment. The process is action-based

(Norman, 1981), the developers set local, immediate goals, and identify actions that can be

undertaken, observed and assessed (Reason, 1990; see also Chapter 2, Section 2.2.4 for a

summary of Reason’s GEM framework). Evidence is given that Marcus and Joe search for

commonalities between prior experience and the current situation (Rasmussen, 1985), but

also that they express uncertainty about how to proceed and communicate that they do not

understand what is wrong. An example demonstrating local problem solving can be read

in Appendix C.3.5.

Within software engineering, a similar process has been described as being “bottom

up”. In the stories Eisenstadt gathered, the developers may have had a rough idea of what

they were looking for, but they were not systematically testing hypotheses. Instead, they

were gathering data (1993). More recently, this has been described as information

seeking (Ko et al., 2007) or scent-following during bug-fixing, with sources of information

reported as being source code, run-time information, and the internet, among others

(Lawrance et al., 2013). These authors, unlike Eisenstadt, differentiated the process of

finding what was wrong from identifying what should have been done, a process they

describe as fix-the-fault and which they note took longer than any other bug fixing

activity.

Error handling is often required when conditions and situations are novel (Norman &

Shallice, 1986), when something comes up that has not been seen or done before. This is

true even in the context of error-directed practice. Handling is guided by the techniques

Marcus and Joe use to develop their frame of reference toward the problem (Rizzo,

Ferrante, & Bagnara, 1995). Information is gathered by looking at files, by examining

system responses, and by reflecting on prior work. Using these sources, the developers

Ch. 6 At the Desk

-150-

confirm understanding of how related components work, identify areas of code to alter and

generate ideas for possible sources of problems.

Information gathering is interspersed by manipulations of the environment. The pair

change algorithms, class declarations, tinker with syntax, stop and start tools, alter

configurations, flush caches. These mechanisms generate changes in the environment that

must in turn be assessed for their effects. Handling is punctuated by things that do not

work: making changes to code that do not remove the problem, looking in a file for an

error and not finding it, stopping and starting a server to no effect.

Mechanisms that may fix the problem are proposed by developers at different points in

the handling process. Sometimes the correct mechanism is suggested in response to the

detection, but may not immediately be employed. At other times, the same fix is proposed

more than once, punctuating other investigative activities that turn out not to work.

Though the successful removal of a system response is often noted, the fix itself often is

not remarked upon at recovery.

The process is also modulated by emotion. Marcus and Joe ask questions, express

doubt, they are suspicious and lay blame, they take guesses and make declarations.

However, the pair are rarely critical of each other. It is much more common for them to be

critical of the environment in which they are working, or to use blame to elicit information

about changes made to the environment by tools or by the other member of the pair.

Error handling can be prolonged. A single sequence of activity may represent the entire

process, however some occurrences thread through the completion of other tasks. These

issues invariably relate to “higher-order” concerns such as how to define conceptual

boundaries for classes or how an object in a model should be expressed using features of a

language. Incremental progress is made through verbal consensus that satisfies the

Error Detection and Recovery (Lopez)

-151-

developers and permits the issue to be set aside. In all cases, a subsequent instance occurs

in which changes are made to the software.

Recovery is not always permanent or complete. Evidence of compromise in solution

selection is given, of deferring solutions by addressing symptoms, and of backing out

significant changes. In the case of particularly severe issues, problem solving may be

aborted. In these cases, the interruption to development is significant; the handling process

may take longer. Filming on the day may cease, with the developers providing a short

explanation in the following episode about what was found to be wrong and how it was

fixed.

The aim of error handling is to return the software to a running state so that work can

progress. Marcus and Joe do not always indicate that they understand what was wrong or

why a particular mechanism yields a recovery. Gaps in understanding are also revealed in

instances in which a recovery mechanism is drawn from prior experience. This was

demonstrated in the findings by juxtaposing how prior experience for one developer

accompanies a novel experience for the other. Joe did not need to understand why the

mechanisms given to him by Marcus fixed the problem; he only needed to employ them.

Prior experience is useful if can be used to direct similar processes that occur later.

The suggestion is given that gaps in understanding are acceptable and that fragments of

knowledge are sufficient. Beyond acknowledging that something is “strange” or “weird”,

the developers do not always exhibit curiosity to learn more. In most cases error handling

is successful. The pair are able to continue working, suggesting that an identification has

been made, and a change can be made in the code, in a configuration, or within a tool that

will remove effects.

Ch. 6 At the Desk

-152-

6.4.1 Limitations

This study depended upon secondary sources that were gleaned for data. As with other

studies that leverage paired work to gather naturalistic data (Bowdridge & Griswold,

1997), it was not always possible to establish motivation and meaning for the actions

depicted in the films. Explanations and justifications for activity were provided when the

interaction between the developers demanded it, not in order to meet research protocol

requirements.

The limitations observed in the videos used in Chapter 5 were augmented in this study

by elements of the production. The camera depicts a screencast of the machine on which

the developers are working. As a result, it was difficult at times to discern who is driving

or how work performed in different episodes relates. There were gaps between tapings,

during which conversation and programming occur that are only obliquely referred to on

film.

Intermittent, various technical difficulties made comprehensive analysis difficult

beyond episode 20 (for a fuller description of the corpus and processing, see appendices

C.2 and C.4). Sampling of the later episodes suggests that the quality of the discussion

changes, with fewer brief incidents and distractions from third party software and

hardware. Changes in quality of discussion might have a bearing on how errors would be

characterised in analysis.

6.5 Conclusion

This chapter reported a qualitative study undertaken to examine how developers deal with

error in day-to-day work. It examined the activities of two developers performing tasks

over the course of a month on an open-source programming project.

Error handling suffuses development practice. It is required for all kinds of activities at

the desk. Errors occur when developers specify behaviours in tests, while they implement

Error Detection and Recovery (Lopez)

-153-

classes, in periods when they first implement functionality and when they refactor. They

occur in relation to software that is being used and written. The aim of error handling at

the desk is to move forward in development, and is predominantly cued and directed by

system responses (Lewis & Norman, 1986).

Though in some cases developers indicate awareness of what they are trying to achieve

for a project, what comes through most strongly during error handling are efforts to

understand minute, material details of the environment in which they are working.

When the developers in this study encounter an unexpected system response, they behave

in ways that are consistent with other findings of problem solving at the desk (Kristof-

fersen, 2006). They solve their problem by assessing what is before them. They try to

understand what they are seeing at this point, and only gradually, as necessary, expand

their investigations to higher-order concerns about features of programming languages,

architectural concerns or design.

Instances were identified and interpreted in relation to stages of detection, identification

and recovery. Data in the catalog reflect the broad characteristics of error handling as

conceived in research from psychology and illuminate how developers consider and

manage local and global aims during problem solving. Error handling is influenced by

prior experience, and modulators that include guessing, doubt and blame. The severity of

issues, as in Chapter 5, is revealed by evidence of turbulence: problem solving that

includes many of the same factors as normal handling but which gets out of hand. Rules of

practice develop between developers over time. However, even in collaborative work,

errors are experienced individually.

-155-

7. After the Fact

When errors come up at the desk, developers must assess what is before them to ascertain

what is wrong and how to remove the effects of what they are seeing. Very often, the

errors that are encountered relate to the behaviour of tools and software that is being used,

though they may also relate to lingering conceptual errors. Errors arise in the context of

actions taken to implement behaviour using features of programming languages and those

taken within libraries and frameworks that are being used. While global project aims

figure into handling, error detection and recovery are more often concerned with managing

immediate, material conditions that arise in the working environment.

 Software development is managed through process but is continuous, “embedded in

everyday work practice” (Dittrich, 2009, p. 394). The experience of individual developers

is likewise continuous. Software takes time to write, developers often work on multiple

projects serially and concurrently. They bring to each day understanding (Winograd &

Flores, 1987) formed out of prior experiences that can stretch back in time for many years.

A developer’s state of mind at any moment is inherently ephemeral (Eisenstadt, 1997),

and the errors they encounter are likewise experienced, they are active and fleeting

(Reason, 1990). They leave few material traces (Scott, 1990) within code, descriptions or

project records. The meaning associated with them is personal, shaped by passing time and

the social and organisational boundaries that form the space in which workers perform

(Rasmussen, Pejtersen & Schmidt, 1990).

The following pages of this chapter report a study that examines how developers

recount problems in recent work. The aim is to explore individual experiences with error

handling within the broader timeframes and situations that characterise software develop-

ment in professional contexts. The chapter begins with a brief review of related work. The

Ch. 7 After the Fact

-156-

scene is set for two sites at which interviews were collected. An analysis is given of six

accounts, followed by a discussion of the nature of errors in organisational work.

7.1 Related Work

Software engineering research generally reports the experience of developing code

sparingly. A small number of sources provide descriptions of what it is like to write code.

Though written for different purposes, these sources include reflection about strategies,

successes and failures. Turkle’s The Second Self includes profiles of hackers and of

maintainers of early personal computers, who are “intensely” involved with computers

(Turkle, 2005). Oral accounts have been taken to provide a glimpse into professional life

(Lammers, 1986). Other first-hand accounts describe the experience of language develop-

ment (Krasner, 1983) or of developing a piece of software over time (Knuth, 1989).

There is growing awareness within software engineering of the power of rich accounts

to illuminate aspects of practice (Sim & Alspaugh, 2011). They have been used, for

example, to gather stories about “hairiest” bug fixes (Eisenstadt, 1993, 1997) and to learn

how developers “really” use documentation (Lutters & Seaman, 2007). Accounts are

useful because they are “phenomenological” (Eisenstadt, 1993, 1997), they can be used to

develop understanding of how developers think, and what they experience.

Reflecting on the experience of writing the first version of TeX, Knuth described how

he encountered “loose ends” in the design, an outcome that ran counter to his understand-

ing heading into the process. Though he had imagined that the specification was “quite

complete”, the process of writing the code involved twists and turns, requiring that “policy

decisions” be made (Knuth, 1989, pp. 612-613). He concluded from this that designers of

“new systems” must participate in implementation.

Following Knuth, Eisenstadt collected anecdotal accounts via email of professional

developers’ “thorniest” experiences with bugs (1993, 1997). After performing an inductive

Error Detection and Recovery (Lopez)

-157-

analysis of the anecdotes, he pursued a more detailed analysis to examine why the problem

was perceived to be difficult, how the error was found, and what the developer perceived

the root cause to be. Eisenstadt found that most bugs were found either through “bottom

up” data gathering, or by “thinking about” the code. Other categories included those that

were found with the help of fresh eyes or through controlled experiments.

Accounts of debugging practice have also been gathered using interviewing techniques.

One notable study that collected accounts from developers was conducted at Bell Labs to

produce a training course to promote expert debugging skill (Freeman, Riedl, Weitzenfeld,

Klein, & Musa, 1991; Riedl, Weitzenfeld, Freeman, Klein, & Musa, 1991; Weitzenfeld,

Riedl, Freeman, Klein, & Musa, 1991). Like the report given in this chapter, data were

drawn from critical decision method interviews. Interviews were taken with experts who

were selected after consultation with managers. Findings were corroborated and enlarged

through a focus group and surveys distributed to developers throughout the company.

The study found that expert debuggers think before taking action, wait longer to employ

debugging tools, and seek information about what to try next rather than jumping into

“poorly directed” but hopeful activities. Less experienced developers, by contrast, were

perceived to thrash around, to follow an ineffective process of going over and over a

problem. Thrashing, not to be confused with the term used to describe memory manage-

ment on hardware, was described as a negative novice behaviour of no perceived value.

Novices were reported to fail to recognise when they thrash, and to be unable to break out

of it. Experts, on the other hand, might thrash, but are able to attend more quickly to

emotional cues that they are doing it, and to seek help sooner from colleagues with greater

expertise.

Experts and novices were found to employ "close reading" to establish what code does,

but they responded to information in different ways. Novices were less critical of what

Ch. 7 After the Fact

-158-

they read, while experts treated the comments as evidence of the number of hands present

in a piece of software, and to signal the conditions under which developers were working

when code was written. Experts read code as a last resort, preferring instead to seek help

first from other developers with detailed knowledge of the software.

The study collected detailed information about technical aspects of bug fixing, however

the aims of the study were to develop a training course. Because of this, feedback given by

participants led the analysts to focus their efforts on explicating the social aspects of

debugging. Likewise, the researchers did not examine expertise in the context of other

kinds of development activity. Findings were reported based on the views of a small

number of developers from a single organisation. Data were collected primarily from

experts, which may have affected findings related to differences between novice and expert

behaviour.

7.2 Setting the Scene

This section sets the scene for the analyses given in the findings. It presents an overview

of how work is organised at the two sites that were visited. In this section, quotes from

informants are given anonymously.

This section does not include a full account of the methods that were used for collection

and analysis. For this information, see Chapter 4, Section 4.3 and Section 4.4. It may also

be helpful to consult Appendices A and D.

7.2.1 Digital Humanities (Site B)

The developers at Site B work in an established digital humanities centre at a university in

the United Kingdom. Digital humanities departments use new media and technology to

support humanities-based research, teaching, and to promote “intellectual engagement and

experimentation” (Zorich, 2008, p. 4).

Error Detection and Recovery (Lopez)

-159-

Seven people were interviewed: six men, and one woman. Each developer was asked to

recount an incident from recent work, in audio-recorded sessions that lasted from between

forty-five and seventy-five minutes. Interviews were conducted at the desk; five of the

people interviewed were located in a large, open plan office. For an example of one of the

offices, see Figure 7.1. Desks were clustered together and informants were within hearing

and sight of one another. Not everyone in the office was interviewed; all of the people

located in the office were aware that interviews were being conducted. The sixth developer

was located in a different open plan office, and the final interview was held in the infor-

mant’s private office.

Developers old and new to the organisation were interviewed, with one having less than

a year at the organisation, and one more than ten years (see also Table 7.1, below). Two

informants had computing degrees, one had a computing postgraduate degree, one had a

computing applications postgraduate degree, and one had a postgraduate computing

diploma. Three had industry computing experience in the web media, financial, education

and GIS sectors. Two had post-graduate or research degrees in the social sciences and

humanities.

There were also humanities computing specialists, with one informant having at least

two twenty years of experience in digital humanities work, and a second having a decade

and a half. These informants had worked in multiple organisations on digital humanities

projects. For the other informants, the current position was their first in a digital humani-

ties centre.

The choice to conduct these interviews in situ was deliberate. It was felt that conducting

them in the developer’s own environment would allow for better access to physical and

digital artefacts mentioned in conversation. Given the topical focus, it was also hoped that

holding discussions in the open would signal to informants that the purpose was not to

Ch. 7 After the Fact

-160-

establish or assign blame. Informants gave no indication that the choice of venue made

them uncomfortable, though in several cases individuals displayed discretion in referring

to colleagues who were located in the same office, either by lowering their voices or by

referring to them simply as “my colleague”.

Table 7.1: Informant Demographics, Site B. Detailed accounts are given in Section 7.3 for
Joachim, Evan and Valentin, the informants highlighted in grey. The accounts from the
other three informants were used to characterise how work is organised at the site.

Information on computer screens, paper diagrams and a poster on the wall were used to

initiate discussion in three cases. In addition, informants shared source code with the

interviewer, explained the output of stack traces and demonstrated debugging tools,

prototypes and software under development. Several developers appeared to remember

with their fingers, verbally recounting details while at the same time accessing files and

Site

Digital Humanities

(Site B)

Name

Joachim

Evan

Valentin

James

Marisa

Richard

Gender and Age

Male, thirties, 5.5

years

Male, thirties, <1

year

Male, thirties, 3

years

Male, sixties, +10

years

Female, twenties,

2.5 years

Male, Forties, 1.5

years

Experience

Computing, Edu-
cational Software,
10yrs.

Computing post-
graduate, GIS,
5yrs.

Computing post-
graduate, Web
Media, Financial
Industries, 11 yrs.

Humanities Com-
puting, 20 yrs. +

Humanities +
Postgraduate com-
puting diploma,
3.5yrs.

Humanities Com-
puting, 15 years

Error Detection and Recovery (Lopez)

-161-

websites and conducting internet searches similar to those they had used while solving

problems.

Figure 7.1: An open plan office in the Digital Humanities Department (Site B).

7.2.1.1 How Developers Work

Developers in this centre tend to work alone, even when assigned to tasks for the same

project. A single person may be assigned to work on all deliverables, or different people

may be assigned to different areas of the software. It is common for developers to perform

tasks periodically for the same project over time. Developers know the others who are

working on their projects, and report that they attend meetings at which other developers

are present, however each works in reference to the overarching project team which is led

by domain specialists.

Informants identified particular technical expertise such as in application or interface

development or in data modelling. Despite this, several recounted the need to learn new

skills to meet requirements for projects that emerged after the project had begun. For

example, one application programmer described learning and implementing client-side

Ch. 7 After the Fact

-162-

technologies, while another developer who was proficient in XML data modelling

described a need to learn relational data modelling.

Developers also take the initiative for prioritising and organising their work. This can

involve adopting new working practices, as in the case of one who described introducing a

new working style on his project as “agile-like,” with rapid iterations and frequent

meetings with project partners. Another explained that his responsibilities at the organisa-

tion are growing, and how he extended a recent task he had been given on his own

initiative, more or less as “the accepted order of things”.

Though developers work independently, there is the sense given that they possess

historical and cultural knowledge. References were made to technologies used on projects

in the past by different developers., and ad-hoc technical teams are formed to solve

particular problems. One informant described “finding” his way on a project with the help

of an “amazing” colleague who offered technical advice and guidance about how to

manage relationships with partners. Another felt the luck he had in finding a solution was

due to the technical expertise of a colleague who had not been formally assigned to the

project. A third described looking to a trusted colleague for help before relying on internet

fora and other technical documentation.

7.2.1.2 Projects

Projects at the centre take a similar form: tools are created for use by humanities scholars

who need to manage and create data related to physical, often historical materials. These

data are in turn presented to the public using other pieces of software that are also

developed by the centre. Public facing outputs take the form of web editions of texts and

web reference tools. In some cases, monographs are also published.

Developers assigned to project teams produce software for both of these user groups.

Scholars that are performing research within projects are prepared to work with tools that

Error Detection and Recovery (Lopez)

-163-

require complicated installation procedures or which have a less than finished feel. Their

priority is to have a piece of software finished enough so that they can advance their

research. By contrast, readers of public-facing web editions and reference tools, them-

selves also typically domain specialists, have an expectation that the tools they use will be

finished to a very high standard.

Developing research tools for the public, and doing so in new and innovative ways, is a

central priority for the centre, but the requirements for these tools emerge slowly, some-

times over a period of years as the specialists work with original materials and interpret

their meaning and significance.

Joachim, Valentin and Evan (detailed accounts for whom are given in the Section 7.3

Findings, below)described incidents related to work performed for two projects. Valentin

described a project for which he was the sole application developer, tasked with creating

both an editorial tool and a web edition for displaying a critical edition of texts (sum-

marised under Legal Texts in table 7.2). Joachim, and Evan described performing different

tasks for a single project to support detailed annotation and display of medieval handwrit-

ing (summarised under Medieval Handwriting in Table 7.2 below).

Table 7.2: Projects, Site B.

The data produced and managed to support humanities research are different from

commercial data: they are less structured, orientated around natural language and approxi-

mate. One developer characterised them in this way:

Person

Valentin

Joachim,

Evan

Project

Legal Texts

Medieval Handwriting

Description

Research Project, Editorial

tool, and web-based critical

edition of Legal Texts

Research Project, Editorial

tools, Web-based annota-

tion tool.

Ch. 7 After the Fact

-164-

“So a good example are dates. If you say the date of this manuscript is around

1113 well it could be this date or it could be that date. Or even worse somebody is

saying it is that date, somebody is saying it is that date, somebody is saying it is

that date. In the commercial world it is just a single precise date to the millisecond.

Here you want many dates by different people and you want all the opinions shown

on your website and preserved. So the interpretation is very important.”

Every informant at Site B reported a working pattern of “fits and starts”, the need to pick

up a task and set it down as required to meet the demands of multiple projects. The issues

described by informants included relevant details that were at times temporally distant

from one another. Projects have relatively long time frames, some lasting three or more

years. This means that developers have more freedom to take time with issues, but they

are not free from time-based constraints. One developer indicated that he felt pressures on

his time, the need to “get something working” for this project, while still meeting the

demands of other projects.

7.2.2 Course Planning (Site D)

Developers at Site D are employed in the information and communication technology

(ICT) department at a public university in the United Kingdom. The department is

developing a new set of web-based software tools for student administration and curricu-

lum management. The team develops a subset of the services related to course manage-

ment. At the time the interviews were taken, the department had recently re-organised,

adopting Agile development practices centred around Scrum. The products under develop-

ment were not yet in production, though some were nearing completion. In the month

during which interviews were taken, a test release of a small component was made to the

wider university.

Access was granted by an internal manager responsible for multiple development teams.

This manager circulated an email to developers that introduced the study and invited

Error Detection and Recovery (Lopez)

-165-

participation. The email communicated that developers who took part would be allowed to

“cost” an hour of working time to the interview. Four application programmers responded

to the invitation and were interviewed in sessions that lasted between forty-eight and fifty-

eight minutes. All of the developers belong to a single team within the department.

As in the visit to Site B, all informants were asked to recount a story about a recent

problem. Each informants met at their desk, but interviews were conducted in other places.

Three interviews were conducted in public areas within the university. One was conducted

in a small meeting room adjacent to the desks.

Each developer created a diagram in the course of discussion, one voluntarily and two

upon request. These diagrams depicted aspects of screens and component models. A rough

timeline was drafted during the interview that captured points related to time and decision

making. Both kinds of artefacts guided conversation; the developers used the diagrams to

explain how screens looked and behaved, and to relate aspects of how underlying features

of software architecture related to the behaviour of information on screens. They also used

the diagrams to explain how elements of the software related to one another.

Upon completion of the interviews, access was negotiated with the team leader to

observe the developers in practice. Aims for the observation were to gain a sense for

circumstances that led developers to come together. Clear decision points and sequences

were not as easy to identify through questioning at this site; informants made extensive use

of the term “we” to describe actions taken or decisions that were made.

In addition, though each developer was asked to recount a piece of personal work they

had found challenging, two developers interviewed a week apart elected to discuss what

appeared to be the same issue. Both indicated that they had solved the issue, both indicated

that they had used similar resources to support the resolution. The second person inter-

viewed explained that some of the work had been performed with another team member,

Ch. 7 After the Fact

-166-

and that he had taken responsibility for the issue when the colleague left for holiday.

Observation was made to clarify how team members share responsibility.

Table 7.3: Informant demographics, Site D. Detailed accounts for Robert, Dereck and
Thomas are given in Section 7.3 below.

As shown in Table 7.3, developers have a range of professional experience. Dereck has

around six years of experience at work after having taken a degree in information systems

analysis. He reported having worked for two small companies prior to joining the depart-

ment. Robert has a degree in computer science, and has been working professionally for

twelve years. For five of those years, he has worked as an independent consultant. He is a

certified scrum master, and one of his responsibilities on the team is to help increase

knowledge within the team, to “make sure that things are kept moving or progressed a bit

quicker than they have been”. Thomas reported having worked professionally for twenty

years at “software houses” and in other companies. All three have worked on the current

team and within the university for less than a year.

7.2.2.1 How the Team Works

The developers sit together in a compact space; the floor on which they work is filled with

several similar “pods” of desks. This team uses a storyboard to track tasks for individual

Site

Course Planning

(Site D)

Name

Robert

Dereck

Thomas

Gender, Age
Time (in team)

Male, thirties, 3

months

Male, thirties, 6

months

Male, forties, 10

months

Experience

Computer Science/
Software Engi-
neering, E-com-
merce, Airline 12
yrs.

Computing & Ac-
counting, Media
6yrs.

Degree Unknown,
Commercial devel-
opment 20yrs.

Error Detection and Recovery (Lopez)

-167-

sprints, and also a physical board to manage bug fixing tasks, two techniques that have

been introduced by a member of the team who is also a scrum master.

The “bug board” has magnets with photos of developers’ faces. The faces are queued on

the board, and the first person in the queue is the next to take on a new bug. This physical

system was developed in part to work around the task management software in use by the

organisation. One informant explained that the system groups tasks of different kinds

together and it is not always easy to differentiate tasks related to maintenance or feature

requests from bug reports. In addition, application developers have not been granted access

to all parts of the system that contain information about bugs.

The team was recently formed and members give the impression that they are still

getting to know one another and the department. References to past development deci-

sions are criticised, but there are indications given that knowledge of what actually

happened is vague. Observation was made of the team members informally discussing

preferred practices for committing software to the version control system. Commits must

happen frequently; the conversation indicated that the team members were not yet familiar

with each other’s preferred habits.

The sense was also given that the team are still forming their practices; one informant

described that the team had recently set a plan to use the whiteboard for discussion, but

that the idea had not been regularly taken up.

“(T) he idea was in the sprint plan we'd come up with the tasks and then when we

got back to the desks as you'd picked a task up then we'd head round the white-

board but at the moment that hasn't happened”.

Another reported having used a standard practice to send an email to the team to give

background to the problem he described. However, when he reviewed his records, he

realised that he had not actually followed the practice in this case. When asked for detail

on this point, he noted that he tended to be brought into issues that required problem

Ch. 7 After the Fact

-168-

solving, and that his personal practice was to share what he had learned verbally, through

email, or within a documentation tool like a wiki

The team is newly formed, but is situated within a mature department. This is perceived

to impact how decisions are made and policies are set. One informant described data

modelling practices that differed from those he had been taught, but which reflected how

things had been done in the past in the department using older generation technologies.

This is the largest, most mature company one informant has ever worked in and he has

noticed differences in how decisions are made that he links to the stability of the

workforce:

“… it takes a very long time for a decision to get made… [Given the nature of] this

company people just don't leave…I mean it is brilliant because it means in terms of

industrial knowledge it is great, you know the people there they know things, not

because they've read things, or because they've been taught things, but because

they were there when it happened. So background knowledge in this place is

brilliant… there will be somebody within these walls that will tell you everything

that's happened in the last twenty years.”

7.2.2.2 Sprints and Tasks

The course planning team is organised using principles of scrum. Work is conducted in

two-week sprints, during which a set of tasks to be addressed are agreed to and undertaken.

The sprint begins with a task setting meeting and finishes with a review meeting, during

which information is shared about particular problems that came up. This meeting is also

used to reflect on work practice.

Incidents were described in terms of tasks that had been set for work sprints, sum-

marised in Table 7.4. The relation of the tasks to one another was not made clear in the

interviews, nor was any clear sense given of projects to which the tasks belonged. That is,

Error Detection and Recovery (Lopez)

-169-

the incidents may have occurred during the same sprint or in different sprints; they may all

have been undertaken as a part of a single or multiple projects.

Two of the tasks involved developing web-based user interfaces: Robert described a

task to perform validations on a web form; Thomas described building screens to render

form elements in specific ways depending on user actions. Dereck described a task related

to web services maintained by the team that provide data to other teams in the department.

Table 7.4: Tasks, Site D.

Working time is costly and is closely monitored. Agile practices are relatively new in the

department, but developers have adapted their thinking about time in terms of scrum

practice, referring to past events in terms of the number of “sprints ago” rather than in

weeks. Tasks cannot be undertaken unless they have been defined as belonging to the

sprint. This can affect decision making during development by constraining the options

available

“[N]ot for that sprint, because we'd only really tasked a story and estimated doing

that one, and we were told not to do this one, could not do that”.

Tasks

Client-side validation

Rendering Forms

From Maintenance to Live

Data

Description

Triggering client-side vali-

dation in dynamically

loaded pages.

Rendering form elements

based on actions taken in

different screens.

Altering reference to a data-

base so that it draws on live

rather than testing data.

Person

Robert

Thomas

Dereck

Ch. 7 After the Fact

-170-

Nevertheless, the team knows how to manipulate time within sprints in order to fit in work

that will further development rather than product aims, a point that is exemplified in the

consequences of Dereck’s slip, reported in Section 7.3.6 below.

7.2.3 Points in Common

The problems reported at the two sites shared technical commonalities. Both sites were

working with similar technologies and were building web-based software. At Site B,

developers were working on Linux systems with open source tools and standards. To

develop websites, the team used a popular open source web application framework and to

manage software, an open source versioning repository. At Site D, developers were

working on Windows systems and performing development using Microsoft’s web

framework. The department was also using Microsoft task management and release

management software. Both sites relied on open-source JavaScript libraries to manage

aspects of client-side behaviour.

7.2.4 Exclusions

Eleven interviews were collected, however, five have been excluded from detailed

reporting. One interview from each site was not transcribed. At Site B, the seventh

interview did not result in the identification of a clear incident, a view that was corroborat-

ed by the informant. This informant also indicated reluctance to be included in reports. At

Site D, one interview was conducted in a public area with significant background noise. As

a result, it was not possible to accurately transcribe the audio recording.

Three additional accounts from Site B have been used solely to inform contextual

understanding reported in Section 7.2.1. Each account suggested the presence of local

active, error handling processes. However, the detail provided during the interviews was

not sufficient to permit the “active” parts to be discerned. One informant described a

sudden, visionary breakthrough in thinking about how to re-architect a piece of software.

Error Detection and Recovery (Lopez)

-171-

Unfortunately, the blocks that preceded the breakthrough were not specifically described.

Another described his problem as “the worst thing ever”. His account emphasised the

research and design process he followed to meet complicated, ambitious requirements for a

user interface, but it was not possible to discern just what he had perceived the “worst

thing” to have been.

7.3 Findings

In this section, accounts are given for six of the developers who were interviewed. To

indicate that the occurrences belong to the more general category of software development

experience, the accounts are presented together, without subdivisions marking the site at

which the corresponding interview was collected. Stories are given in narrative form, and

are organised chronologically. Subsections are used to draw out particular features of

accounts relevant to error handling or circumstance.

The views of individual developers are presented using pseudonyms that were intro-

duced in Sections 7.2.1 and 7.2.2 above.

7.3.1 Settling

Joachim described fixing a recently reported bug. His account was collected in the midst of

ongoing work for a project. He seemed to have difficulty in establishing a sequence of

linked events. A timeline did emerge, but it was established during analysis. Joachim

meets at least once a week with researchers from the project team to discuss issues and

requirements for new features. The aim is to get the tool working well enough so that

editors can begin using it to analyse texts. The tool is being developed using an open

source JavaScript library designed to support mapping applications.

In a recent meeting, Joachim’s editors asked to have keyboard shortcuts mapped to a

toolbar of functions that are used to annotate images. The way keypress events are handled

in the mapping library would allow editors to delete annotations with a single click.

Ch. 7 After the Fact

-172-

Joachim was concerned that this would be too error prone for editors. To implement the

feature, he "looked around" on lists on the internet for an alternative and picked one he saw

discussed that seemed to be the "best one". He implemented the feature in around an hour.

7.3.1.1 When they told me we had this problem I thought what could it

be?

A couple of weeks later, a problem with the keyboard shortcuts was mentioned in a

meeting. The researchers said it only happened in a single browser. Later they sent him an

email with a list of issues and feature requests:

2) The icon toolbar disappears when using keyboard shortcuts. e. g. Ctrl-W or Ctrl-

R in Chrome. Or Ctrl-C in Firefox.

Joachim began to debug by trying things out in the browser and stepping through the code

in a browser-based debugger. Replicating the behaviour described in the report was not

straightforward. The shortcuts given in the report were key combinations that had been

mapped to icons in the tool bar. When Joachim tried these, “nothing weird” was

happening. By “accident”, he decided to try shortcuts that had not been mapped to icons in

the toolbar and he realised that the error occurred when the user typed a key combination

that did not exist. He could see in the debugger that a variable populated with a method

call contained a value he did not expect. At a certain point, he realised that it was only

when an unmapped shortcut was keyed two times that the toolbar disappeared.

The fix took less than an hour. It required making changes to a single function. Key-

board shortcuts were being managed using a switch statement, but Joachim hadn't added a

default case to manage unmapped key combinations. He also wasn't performing sufficient

checks on the state of the objects in the toolbar before activating or deactivating

operations.

Error Detection and Recovery (Lopez)

-173-

Joachim names the source of the latter problem as one of understanding. He "wasn't

sure what the right behaviour was" when he was first writing the function. He believed that

a particular function call in the library would return nothing if the user had not selected a

tool for use. This condition was met when an unmapped key combination was entered. In

this case, however, the library actually returned the parent object, the toolbar, which his

code deactivated.

7.3.1.2 I'm still not very happy with it

Now Joachim has produced a solution that is meeting requirements. Echoing comments

made by Bill in Chapter 5, Joachim is not satisfied, explaining that he is “still not very

happy with it yet,” and that he is not sure how well the solution is working. In the course of

our conversation, several concerns were mentioned related to his satisfaction with the

recovery. All of them could be classed as problems of understanding.

He brought to the task a degree of expectation that he would have trouble handling

keypress events, linked to requirements given by the researchers. As a user, he has noticed

that keyboard shortcuts are not common in web applications and the ones that do use them,

like Google Mail, tend to use single key shortcuts, not combinations of keys. By contrast,

his researchers have specifically requested that shortcuts be key combinations, so that it

more closely replicates behaviour they have observed in desktop applications they use. In

addition, some of the shortcuts that have been requested are the same as shortcuts that have

been mapped within the browsers. He comments that this overlap can make it "a bit of a

disaster" to manage behaviour if the application doesn't have focus when the keypress

event occurs.

Though it didn't figure directly into fixing the bug, Joachim is also suspicious about the

method within JavaScript he is using to catch keypress events. He mentions several times a

lack of confidence in the way he did this, wondering "maybe I'm not doing it the right

Ch. 7 After the Fact

-174-

way". He based his selection on an assessment of internet sources, but notes that the

decision was softly assessed. His strategy was to determine what "seemed to be the best

one", by identifying the one that "most people seemed to be using".

Joachim is also cautious in his commitment to the mapping library, describing it as not

the right way, but “a better way” to manage annotations than those that have been used on

other projects in the department. The library was selected at the start of his involvement in

the project, some four months earlier. In that time, he has become familiar with the

documentation for the library, which he uses regularly. He feels pretty comfortable

working with it, but notes that this is the first project on which he has used the library to do

"proper work". On previous projects he had used it only to display images and in those

cases, the code had been written by someone else and given to him to incorporate.

7.3.1.3 I thought there ought to be a way to reuse this code

Joachim’s story began as an account of a bug fix, but in relating his dissatisfaction with the

outcomes, it became clear that the handling was one small knot in a larger thread of

practice.

He is developing a class built around the mapping library to more generally support

annotation. The error handling process he described provided feedback to him about

requirements for annotation in his domain, web-based interaction models, strengths and

weaknesses in the mapping library, and more general information about the languages used

to support this "Web 2.0".

Joachim exchanged correspondence with the researcher after the interview. In the

following months, he finished the class, and released it to the public under an open source

license. As it turns out, he continued to use the mapping library, but reported that he found

a better way to manage keypress events.

Error Detection and Recovery (Lopez)

-175-

7.3.2 Tolerating

Valentin described an issue that surfaced as a bug several times over the course of nearly

two years in tools used by the developer and in different areas of the software being

developed, as depicted in figure 7.2. The issue was related to the use of Unicode, which

presented particular complexities in this domain.

He considers himself to be well-versed in using Unicode, however, this is a problem he

has never encountered before. His prior experience with Unicode related to databases, or

conversion and rendering of texts written in modern languages. He is aware of how to use

Unicode to render characters from different alphabets, but has never had to consider

whether or not a font would be available that could render the necessary characters.

Figure 7.2: Tolerating. Valentin’s issue became critical in successive manifestations over
a period of a year and a half. Four factors influenced this: the frequency and spread of
manifestations, the forms the error took, communication with domain specialists, and a
decrease in time to project completion.]

7.3.2.1 This prepared me for that

The issue first occurred in the organisation’s documentation wiki early on in the project. A

project partner was trying to paste text into the wiki and reported that special characters

were not displaying properly. Valentin spent a couple of days investigating, but was not

able to resolve the issue. At this stage, the issue was not critical, and a fix was not

Ch. 7 After the Fact

-176-

required. This occurrence was formative. Within this environment, the text that was added

was never intended to be more than a sample “to play with, to experiment with”.

As a result of this occurrence Valentin formed the expectation that he would have

subsequent rendering issues. He now knew that the project had a requirement to display a

small number of characters from older alphabets that are not readily supported by comput-

ers. The investigation also helped him isolate the source of the error as being related to the

fonts that are commonly installed on users’ systems. Discussion with a researcher on the

team alerted him to the fact that a font exists that supports the display of old English

characters.

7.3.2.2 The decision was very quick, and the implementation was very

simple

The second time the issue arose, it was more serious. This time, the occurrence was in an

editing tool that was being created for the project. The tool was intended to allow re-

searchers from the project to enter and edit text that included special characters. The text

needed to be a “faithful reproduction” of the historical material.

With this manifestation, the public dimension of the issue developed. As Valentin noted,

for general users on the web it is “not acceptable” to make users go to a different website

and download a font. This presents a barrier to access that is considered to be too great. For

editors, by contrast, it is acceptable. This is a smaller user base, with whom Valentin has

direct contact. He can support them in installing the font.

These factors helped Valentin take a pragmatic decision about how to manage the issue.

To do this, he set “aside the complexity” of the problem and implemented a quick,

temporary solution. He instructed the webpages to use the old English font, and provided a

message directing editors to the page for downloading the font. This tactic allowed him to

Error Detection and Recovery (Lopez)

-177-

focus effort on more important requirements for the project, while analysing the problem

“in the background”.

7.3.2.3 I had to say something

The third occurrence of the issue was unexpected and marked the point at which it became

critical. As Valentin reports, researchers brought up the issue in the context of the search

tools that had been created for the site. He was surprised, noting during the interview that

he “supposed he had forgotten” what happened when users needed to type special

characters.

This occurrence provided two new pieces of information. First, he realised that the

problem was more widespread than he had previously thought, as it appeared in a new area

of software that he had not considered. It also represented a new form. In this case, the

issue was not only one of rendering special characters, but also in supporting readers of the

edition who needed to input special characters.

The meeting also clarified how important the issue was to the domain experts. Valentin

he found himself during the meeting in a situation in which he was asked a question that he

could not answer. He felt pressure at this point to identify a strategy for addressing the

issue:

“I had to say something, to tell them that I have a strategy, not necessarily a

solution, but a strategy.”

7.3.2.4 I wanted to postpone it

The fourth manifestation occurred when Valentin began to develop the site that would

display the public edition of the texts. As in the second occurrence, Valentin expected it to

happen, and took the decision to instruct the software to assume that the font was installed.

As he described it he did this to postpone taking a decision, a tactic he described in two

Ch. 7 After the Fact

-178-

contexts. First, he described it in in relation to its relative importance within the larger

project:

“I didn’t want to be in the situation where I’m approaching deadline, a phase

where we have to do a demonstration or release this on the live website and I have

to find a solution in just a very limited time for a problem I’ve never encountered

before. So I’d rather prepare the thinking and explore things in different directions

to be sure that I will be ready for that.”

And next in terms of personal knowledge:

“I wanted to postpone it so I could work on things I know how to develop and this

lets me think about it in the background so I can still analyse things”

“Analysing things” began with a turn to a colleague with more experience in user interface

development. She in turn put Valentin in touch with a second colleague who had still more

experience with fonts. The discussion indicated a possible scripting technology that he

could use to embed the font in webpages. Valentin had heard of the technology, but had

not realised it was robust enough to meet the project requirements.

7.3.2.5 It is never as simple as you explain

The project was nearing completion, and Valentin began to seriously investigate options.

One “very ugly” option he considered had been used on another project. It involved

splicing images in to spaces between text in order to replace special characters. The

solution suggested by his colleague seemed more promising, but Valentin kept the earlier

one in mind as a “last resort”.

He also began to research the newer option, to ensure that it would be compatible with

all of the browsers and operating systems he needed to support. He did this first by

performing searches on the internet for information and by “trying things out”. This

process took several days, and involved him choosing a font, converting it using the

Error Detection and Recovery (Lopez)

-179-

suggested technology and then testing it across different browsers and operating systems.

As he described it, the recovery was one of working through “nested problems”:

“First a problem of Unicode, and special characters, then becomes a problem of

browser compatibility, using a technology that you haven't used before.”

He was ultimately confident and adopted the solution. Valentin is pleased, describing it as

“very clean” and “well established”. He describes himself as “lucky” to have had the help

of his colleagues, who helped him avoid accepting an inferior alternative. He is also keenly

aware that limits in his knowledge contributed to the issue. As he put it just before our time

together ended:

“So there is a part of luck and there is also may be related to that the fact that

there is a lack of knowledge on my part, and this lack of knowledge could have

been different if I had to keep up with what is going on in terms of new develop-

ment on the client side, the web world. “

7.3.3 Thrashing

Evan described a day in which things went wrong while setting up a local copy of an open

source web application framework. Though relatively new to the framework and to the

language in which it is implemented, he did the same task for a different project a couple

of months before. That time the process had not been smooth. He had not written anything

down, and his goal now was to cement the process of installing the software. He also

needed to get the framework installed so that his “real work” for the project could begin.

The task began well. Evan installed a virtual machine running a Linux variant, and

checked the framework out of Subversion. He ran the install scripts, then set about getting

the framework to run without any error messages, as shown in steps one through three in

Figure 7.3.

Ch. 7 After the Fact

-180-

Figure 7.3: Thrashing. The timeline for Evan’s incident was compressed, comprising the

events of a single day that had taken place the week before. This diagram depicts the initial

account he gave.

Once the framework was up and running, he opened the administration interface to create

some test pages. He noticed right away that the administration interface looked “a bit odd”

because some images were missing. He thought that it might not be a problem, because the

page was still functioning, and moved forward to create several test pages. After they were

saved, no error messages were displayed. The page indicated with a “graphic or text” that a

list should be displayed, however, it was blank. He checked the JavaScript console in his

browser, and could see errors related to function calls that were failing because the page

hadn't been able to load libraries. He checked that the files were on the system and

concluded that “clearly” there was something wrong in a particular configuration file.

It is at this point that the process of “attrition” began. Evan spent a long time looking

through the file he thought was wrong, starting and stopping the server, running processes

on the database, checking to see that everything was “up to date” and Googling for advice.

Eventually he “tracked down” that he was looking in the wrong configuration file altogeth-

er. The problem was actually in a second configuration file; in which he had missed or

wrongly entered information.

Error Detection and Recovery (Lopez)

-181-

7.3.3.1 What's going on here, why can't you work this out?

Evan resumed testing the framework, relieved that he could finally “get on” with his work.

“I added some pages and I had a list of pages, that was good and then I added

another page and that was good and then I added a child page and that was bad

and it all started to go wrong again.”

Evan quipped in our conversation that at that point he stepped away from the computer and

had a cup of tea. This time he had more information to use. The system returned a stack

trace and to solve this problem, and he used Google to search for the message that was

being returned. He was frustrated with himself, because he knew he had used the module

for the previous project. After some time, he found a website that mentioned the problem,

which “rang a bell”. He remembered that he had had a different problem with the module

the first time he installed the framework. He also remembered seeing a page on the

department’s wiki that described issues a colleague had encountered with the module.

Neither issue was exactly the same, but they were close enough to help him identify the

module as the source of the problem. To solve it, he downgraded the module to a previous

version.

7.3.3.2 Thrashing

Evan shared several practices and preferred ways of working, but he is aware that in this

case the approaches often failed. He described the process of locating the configuration

error as unsystematic, flawed and risky, and noted at one point an awareness that “if I

plugged the dam somewhere it was going to burst somewhere else”. The tactic taken to

install the latest version of auxiliary software led to the second problem, which left him

frustrated and confused.

Though he prefers to ask colleagues for help, on the day of the incident, Evan was

working at home, tunnelling into a virtual machine hosted on his machine in the office.

The need to switch between environments on a small laptop screen confused him and he

Ch. 7 After the Fact

-182-

became turned around about what he had done, “what I’d changed and what hadn’t

changed.”. In the end it was information from the internet that helped him identify what

the problem was.

The way Evan describes the day suggests that the issue was not necessarily critical, but

it was severe. It is likely that he was thrashing, that is, that he got lost during problem

solving and that the experience was stressful. Evan considers his experience to have been a

“personal failure”, but also useful. It forced him to take a closer look at the software he

was using and building. As he put it:

“You know this is quite informative ’cause obviously you would get something and

it would work out of the box and you don’t really think about [it] again, so even

though this was an annoyance, it was quite useful to actually have to look into

those relationships.”

He reflected that his knowledge of the application framework had grown as a result of

using it on two projects:

“I’m comfortable with creating that environment, I’m comfortable with getting up

and running and also I’m much more aware of creating something that’s got a bit

of longevity.”

At the time of the interview, Evan believed that everything was working, “touch wood”.

His confidence was not high; he expected that more issues would come up when he

promoted the code to the next environment.

7.3.4 Piecing

Robert described taking over a task for a colleague that had gone on holiday. The task

involved performing client-side validation on portions of a form that were dynamically

loaded by the server based on actions taken by the user. The form validation worked in

when the entire form was loaded into a page at one time. During testing, it became clear

Error Detection and Recovery (Lopez)

-183-

that the validation was not working properly when the interaction was more complex and

parts of the form were loaded at different times.

7.3.4.1 The answers steered me in the right direction

This was a standard issue, and so Robert duly turned to the internet for guidance. He was

quickly able to determine that the issue involved a JavaScript library that was being called

into the webpage. He discovered that there were multiple questions that had been posted

that were related to the issue he was having and “lots of advice” about how others had

solved similar problems. He took what he found, tried a few things in the code, read “more

and more” on the internet, and tried to implement a couple of solutions he found posted.

One post suggested that if he unloaded all of the elements on the page from a compo-

nent in a library, and then reloaded all of them, the client-side validation would bind to the

newly revealed fields in the form. This made sense to Robert, who felt that what he was

trying to do with the library was not “too far out of the ordinary”. When he tried doing this,

however, the validation still did not work.

Figure 7.4: Piecing Together. Robert took responsibility during a sprint for a task when a

team member left for holiday. The problem was detected while testing edge cases in user

behaviour.

Ch. 7 After the Fact

-184-

7.3.4.2 It wasn't something they'd done before; it wasn't an issue they'd

come across

At an impasse, Robert found a team member who was willing to talk through the problem

with him, but time constraints meant they did not get very far, so he turned to other team

members and then to other colleagues in the department. He expected that by speaking

with people who had more knowledge in the area he might find someone who could look

at it, “know enough and provide an answer straight away”. At a certain point, he realised

that he would not find help in-house, so he turned back to the internet.

7.3.4.3 So it is kind of like a double check

The model for validating the form is static. First, the client-side validation is supposed to

check entries to the form before it is sent to the server. The checks are for “simple stuff”,

to make sure that mandatory fields have been filled in, and that data is in the correct

format. On the server, the data from the form will be validated again. First, the same

checks that were done on the client will be repeated “just in case” and then cross-field

validations will be performed.

The interaction model that produces the form to be validated is dynamic. Some form

fields are hidden and only revealed based on actions taken by the user. As more parts of

the form are loaded, the client-side validation needs to bind to the new fields.

Robert discovered that there was an error in validating the form when it had been

loaded dynamically. Simple interactions worked as expected: when the entire page was

edited and saved, the client-side validation triggered properly. However, when the form

was saved after entering no data, the client-side validation did not occur. Instead, the form

was sent to the server and the server-side validation fired.

Error Detection and Recovery (Lopez)

-185-

7.3.4.4 Piecing Together

Robert achieved a fix only once he was able understand the solutions that he found on the

internet “enough”, a process he describes as “piecing together”, and which is depicted in

Figure 7.4. He turned back to internet sources, which he studied “quite a lot”, and found

one highly rated post that explained in detail a method for extending the JavaScript library

he was trying to use. He found the fact that the poster could extend the library useful, and

he was able to see some sense in how the extension they described would help the poster

meet the described goals.

As in Evan’s case, the details of the information found on the internet did not exactly

match Robert’s situation. He did not think he would ever have the same use for the

extension. It was how the poster had explained what they’d done and the timeliness of the

information that helped him understand what he needed to do. This marked the end of the

“initial hard part”. Then began the hard part: implementing the solution and “really

working all the way through it and moulding it to what we were doing”.

The heart of the issue for Robert was that it was “new to me”. Recovery depended on

his ability to find a solution by determining the “right” thing to look for on the internet and

then learning enough to recognise the right answer when he saw it. As demonstrated in

Chapter 6, the recovery was not accompanied with full understanding of why it worked.

Robert was comfortable with this, noting:

“If I was going to go back and approach the issue again, it would be a case of

trying to make sure that I did understand what was going on in the framework

upfront, but there is so much to know that you just need to make sure that you

understand enough to make it work at this point in time.”

7.3.5 Naming

Thomas described a task he took on to implement a series of forms on a website. He has

worked with web technologies in the past, but is less experienced at user interface

Ch. 7 After the Fact

-186-

development. Because of this, he began the task by arranging a meeting with a more

experienced colleague. That person explained how they had approached writing and

organising a set of pages with similar behaviour. When Thomas came back to the task the

following week, he met with a different team member who would share some of the work

and started to explain the task that had to be done.

7.3.5.1 You’ve got to remember where you are

The interaction model Thomas needed to support is complex: users can expand and

contract different areas of screens, and elect to edit the finer detail of individual elements.

When a user decides to edit information, they are directed to a new page. After saving

edits, they are returned to the starting screen. In this case, the layout of the original screen

must visually indicate their last point of focus by expanding the area of the form that they

were looking at when they navigated away.

Thomas thinks that some of the challenges of supporting interaction are related to

changes that “came in” with web development. As he described it, managing interaction in

desktop applications was comparatively simple. On a single computer, information about

where a user is in an application and the actions they take is “nice and easy to store”. On

the web, by contrast, each page is individual and information has to be held within it:

"And then cause there's other pages that go off and how far you have to pass that

over and how many times, but then also when you come back, what needs to be

displayed when you come back?”

7.3.5.2 It was making it clear about what the names were being used for

Explaining the task to his co-worker did not go well. The problem was in the naming.

Thomas knew he had a variable that had been defined in the class structure on the server

that related to differently named parameters on two web pages. The colleague asked why

there should be different names in different places. Thomas struggled to answer and began

Error Detection and Recovery (Lopez)

-187-

to wonder if he was putting values in the right places in the structure he was describing.

The only answer he could find to give his co-worker was that it had been done that way

before. He realised “I haven't quite got this right.”

He explained that moving between screens is not hard to manage technically. The team

is using a piece of mapping software on the server that can map differently named

variables to one another. It takes some setting up, but then it glues components in different

areas of the stack to one another. The difficulty is in managing the concepts that relate to

one another on different screens. The interaction path can involve visits to several different

pages. An ID on one page is used for display, but if the user navigates to edit a portion of

the page, it becomes a parent ID. The related parameters could be given the same name on

each page, but this isn't desirable because it doesn't indicate what the parameter is being

used for on the current page.

The global aim related to naming parameters is to support future developers. It was

important to make clear by the names what the parameters were being used for and how

they related to names given on other pages. A second aim was to choose names that were

consistent with choices that had been made in the past.

7.3.5.3 I need to make sure I've got this right.

Thomas spent between fifteen and thirty minutes trying to “explain on” the naming of the

parameters based on what he'd been told but his colleague did not understand. Thomas

recovered by bringing the original person back into the meeting, and the three began to

draw on a whiteboard. They blocked out the screens and intended interactions, and

sketched the pattern the previous developer had used.

At a certain point, Thomas thought that his other team members might benefit from

hearing the discussion, so the entire team was brought in. His thinking was that if he was

Ch. 7 After the Fact

-188-

struggling to explain the concepts to someone else after having learned them, it would be

even harder to explain it again in the future.

With everyone in the room, discussion expanded to consider different ways to manage

state for individual elements on the pages. Someone brought up what should be placed

within the parameters. Reference was made to work performed several sprints ago to

change the way page navigation was tracked through a user's session. Some problems were

noted for “future development”. The time at the whiteboard was not recorded. The

understanding given was that the discussion would be sufficient to provide foundational

information to the team.

7.3.5.4 Even if you don't pick it up in six months, you are aware

Thomas believes that a “mixture of things” aided recovery. Working with diagrams made a

“big difference” as did talking it out, discussing it as a team. Having to explain the

problem was key, because it revealed the gaps in his understanding. When asked, Thomas

noted that the naming issue turned out to be the simpler problem to solve. That one was

easy because it was possible to get the original person in, and they knew what had to be

done and why. They could explain it a second time.

The hard part emerged during the broader discussion with the team. This issue was

different from others he has encountered while working on this team. Usually he has found

that problems are “quite small” or centre around differences in opinion about how things

should be done, or about how best to accommodate decisions that have been taken “higher

up the tree”. This time, Thomas had to “stop and think”. It was a problem he “didn't have

an out and out answer for straight off. It had to be discussed.”

7.3.6 Slipping

Dereck described the impact and consequences of a slip made while building and deploy-

ing software. It demonstrates an issue for which recovery was achieved by abandoning a

Error Detection and Recovery (Lopez)

-189-

fix. Dereck’s team maintains two curriculum services for the department. One provides a

list of course names, the other a list of IDs. One day Dereck made a change to the ID

service so that it would reference the production database rather than the maintenance

database. It was a simple change to make. The code was built and deployed to the server,

and Dereck left for lunch.

When he came back, he saw a lead from another team talking with his colleagues. The

team lead was reporting that the course name service was not working. It had just stopped,

but no error messages were being given. Dereck was surprised, because he had not made

changes to the service that was being reported as down. He checked to see if anyone else

had changed that service in the version control system or if it had been deployed but it had

not. He wondered if the other team had done something wrong on their side because when

he tried calling the service locally, everything worked. Then he logged on to the web

server to check the files, and realised what was wrong.

The deployment of the ID service requires a manual operation to copy files into the

proper directory on the server. The manual step had been performed but the files had

mistakenly been copied into the naming service directory. The naming service was not

working because it had been overwritten. It should have been straightforward to restore the

overwritten code, but he could not find it in the recycle bin on the server. It had not been

deployed for several months, and so backups had been cleared out by a date-based

automatic process.

7.3.6.1 It was probably me

“[W]e all do deployments. In all fairness, it was probably me that made the error.” When

Dereck saw that the files had been overwritten, he knew that “human error” was the source

of the problem and he knew that he was responsible.

Ch. 7 After the Fact

-190-

Dereck’s slip was critical. It caused his team to break their contract to other teams in the

department. The software in the department is all under development, and individual

components are in varying degrees of stability. Teams have dependencies on one another,

and there is the risk that if one team makes changes it will break something for another

team. This has been a problem in recent months, and a policy has been set that teams

responsible for services have to put something in place when maintenance occurs to make

sure that services never go offline.

7.3.6.2 On a headhunt, trying to work it out

Dereck discussed several alternatives for recovery. First, as noted, he might have restored

the service from a back-up on the server, an option that was not possible because the

service had been dormant for a while, and backups had been erased.

Second, the code for both services could have been redeployed, and the manual step

could have been properly performed. This was not possible because changes had been

made while refactoring the ID service that impacted the naming service. Deploying the

naming service would have resulted in a different failure.

Ultimately Dereck determined that the best thing to do would be to alter the build to

deploy the older version of the broken service. The diagnosis and identification process

finished at about four o’clock. Afterward, Dereck spent several hours “on a headhunt”

trying to work out how to alter the build. To do this, he searched the web and within videos

and documents provided by an on-line training service that the department subscribes to.

He could not find anything that would help him. The situation Dereck worked through is

diagrammed in Figure 7.5.

7.3.6.3 We end up having to develop workarounds

The challenge he faced in recovery had to do with decisions that had been taken about how

the software had been structured, and how that structure was related to the code repository

Error Detection and Recovery (Lopez)

-191-

and to build and release management. The two services were implemented within a single

file, and so making changes to one stands to impact the other service. When the code is

checked in, the file is given a new revision, which is applied to both services. By contrast,

the service architecture is configured so that the services are independently represented,

and the build is configured so that each service is independently deployed. Normally this

means that one service can be deployed out to the web server just by running the build.

The other service, however, has to be manually copied up.

Figure 7.5: Dereck’s Slip. Four options were considered, but Dereck was not able to

recover from his slip. In the end, the task was abandoned, and all of the changes were

rolled back. Diagram adapted from (Rasmussen, Pejtersen, & Schmidt, 1990).

Dereck lamented that the architectural choices mean that the team has to “work around

something else and something else”, but this configuration has also given the team

Ch. 7 After the Fact

-192-

freedom in how they organise work. The two services share code, and so the task might

have been set to refactor both services to point to the live database. The email Dereck sent

to his lead suggests that he explored this option, but it was not taken in the end. Dereck

indicated in the interview that this option was not desirable, because the team had only

“tasked a story and estimated doing the ID service”. He explained that the naming service

was likely going to be dropped in the future, and so the team had specifically been told not

to spend time on it, to leave it alone.

7.3.6.4 None of us knew at that point in time

In the end, Dereck had to give up. He felt “quite down” on himself for leaving things

broken, but the roll back seemed to be impossible. He sent an email to his team lead

explaining the situation. As he was not due to be into the office the next day, his team-

mates would have to solve the problem, when people in the department who had permis-

sions to alter the build would be in the office.

He thought he would come into the office on Monday and “it would just all be sorted”

but no one on the team had been able to work out how to roll back just one of the two

services. The task for the sprint was abandoned, all the changes that had been made were

rolled back and both services were redeployed. This restored the contract, and though both

services were again using the maintenance database, the other teams were “none the

wiser”.

7.3.6.5 We just think this is good design

The team knew that their domain model was stable, and so the issue has had farther

reaching consequences. As it turns out, access to databases is managed in multiple

libraries. Now that the team feels more confident with the domain model, they are going to

consolidate access, meaning that configuring switches between live and maintenance

Error Detection and Recovery (Lopez)

-193-

databases will only happen in one place, and will not need to be done within the code for

the ID and naming services.

This change will not remove the possibility that Dereck’s slip will happen again. Going

forward, the services will still be independently deployed, and the manual copy to the web

server will still need to be done. Dereck had this to say about that point:

“If you want the truth, we could have worked around this a long time ago…

[M]aybe we've kept it this way, to highlight that there is an issue and so that when

situations occur like what we've gotten into we can say well, in all fairness…”

7.4 Discussion

The lapse of time that passes in software development between actions and outcomes is a

known challenge in bug fixing (Eisenstadt, 1997). Likewise, developers are responsible

for their own actions and must “believe” in those taken by others (Naur & Randell, 1969).

Software developers rely on an ever expanding array of software written by other folks,

and belief is a factor that has subsequently grown to have greater force in professional

contexts. Belief also has a second dimension. Errors in professional software develop-

ment are frequently detected and reported by other people: by testers, by users, by clients

or colleagues.

This section discusses how developers respond to outside influences in practice. The

first section describes in general terms the nature of tasks that require conscious problem

solving. The next section expands the concept of suspicion discussed in Chapter 5 to

include responsibility. The last section considers how developers describe and use rules of

thumb.

Ch. 7 After the Fact

-194-

7.4.1 The Nature of Tasks

In the course of conversation, Robert shared a taxonomy he has heard developers used to

identify tasks. Robert explained that problems in software development could be cate-

gorised as:

• Things that we’ve done before

• Things that we can Google an answer for

• Things that no one else has done before

Though given in the context of his own experience, the taxonomy is notable for three

reasons. First, the points are representative of the kinds of problems reported at both field

sites. Second, the levels of the taxonomy can be associated with the levels of conscious

handling required for different actions described within psychology by Norman and

Reason, and of the levels of performance regulation observed by safety science

researchers. Drawing comparisons between Robert’s categories and the typologies

summarised in Chapter 2, Section 2.2:

• Things that we’ve done before are tasks that are routinely performed, or well-

learned.

• Things that we can Google an answer for are problems that are recognisable

and can be solved using prior experience or through shared “know-how”.

• Things that no one else has done before are unfamiliar, or novel tasks that will

require local goals to be explicitly set, undertaken and evaluated.

Finally, the full account given by Robert demonstrates that it is not straightforward to

assign details of professional performance and experience to fixed categories. When asked

to categorise his own incident using the taxonomy, Robert immediately placed it into the

second category. The task was “pretty standard” and was something that could be Googled.

However, it involved doing something “slightly different to normal”. When asked, Robert

explained that the slight differences in the combination of client and server side frame-

Error Detection and Recovery (Lopez)

-195-

works caused the issue to “touch into” the third category of the taxonomy. Robert didn't

understand the frameworks, he had never done a task like this before, and neither had

anyone else in his group. So it was Google-able, but it was not the sort of issue for which

an immediate transferable answer could be found.

Robert, like the other developers who were interviewed, is experienced, but the account

he gave was of an issue that was “new to me”. Newness is one of the “special conditions”

that triggers the need for conscious handling (Norman & Shallice, 1986). The notions of

novelty and of the timely need for knowledge marked all of the interviews. Dereck

explained that blame could have been placed on tools or knowledge but that he thought the

main issue was one of timeliness. No one on the team knew what to do at that point, and

so the path to recovery taken was of necessity “tactical”.

Knowledge is required at particular points, but software developers are aware that the

passage of time is key to its development. Dereck’s team took a provisional approach to

recovery with an awareness that the problem remained active. The factor of time also

influences individual behaviour as demonstrated by Valentin who allowed more than one

bug to surface over the course of months, while he explored alternative solutions and

solicited feedback about priorities and requirements. Joachim described that his knowledge

of the library he was using was still forming, and the larger chronology of his issue

revealed that the bug he wrote was of little importance, one knot in a longer thread of

practice.

7.4.2 The Need to Witness

Errors that are reported by others are described in the error detection literature as not

happening very frequently (Zapf & Frese, 1994), but the importance of other sets of eyes is

also described as being necessary for diagnoses of higher-level “knowledge-based” errors

in critical, dynamic work environments (Woods et al., 1994). Reports of error are, in one

Ch. 7 After the Fact

-196-

sense, the bread and butter of software development on the job. Software developers must,

as Marcus and Joe did in Chapter 6, regularly assess reports given by system responses, but

they also must assess reports given by colleagues or within bug reports.

Taking responsibility for an error is a big deal professional software development

(Guo et al., 2011). There is the possibility that a report is untrue, or that something was

done wrong by someone else. It may be the case that the report is incomplete or represents

a misunderstanding on the part of the reporter. Recreating reported behaviour is a standard

tactic to employ in debugging tasks (Lawrance et al., 2013).

Recreating reported behaviour develops awareness and predicates error handling.

Awareness is a two-fold notion. A person must realise both that something is wrong and

that one is responsible for the error (Rizzo et al., 1995). Awareness is at times instanta-

neous (“I poured the coffee into the sugar pot!”), but can also emerge after time has passed.

The presence of an error is sometimes established independently of the notion that one is

personally responsible for it (Rizzo & Bagnara, 1995). A person may observe outcomes of

an erroneous action before they associate the effects with something they did.

A developer may begin investigation of reports by assuming (or hoping) that the error

has nothing to do with actions he has taken, that he is not responsible for an outcome. He

may deflect responsibility by making the problem space big (“It must be a memory

handling issue in the browser!”) or by setting a boundary (“I’ve checked everything on my

side…Maybe they’ve broken it on their end”). This is a variation on setting constraints

observed in the design session with Kasia and Bill who used the tactic to focus activity on

the present moment. Deferring responsibility can be used to identify missing and incorrect

information in reports as Joachim did, to buy time to think as Valentin did, or to direct

investigation as Dereck described, by looking at factors in the local environment before

expanding investigation to the server.

Error Detection and Recovery (Lopez)

-197-

7.4.3 Rules of practice

Rules are declared and observable. They are described by developers in terms of things

they like or do not like to do, or as “instructions” they follow. They were often also

relayed within descriptions of technical knowledge, for example “basically you have to…”.

Sometimes these kinds of statements were used by informants to demonstrate technical

prowess or to prove vitality on a team or within a department. However, they just as often

revealed personal rules-of-thumb (Rasmussen, 1985) a developer used to manage practice.

Evan’s story included several accounts of preferred or learned practice, summarised in

the table given in Table 7.5, below.

Table 7.5: Evan’s preferred practices.

Conventions guide and direct practice, they can make work easier. For example, Evan

described using See What Gets Spat Out in this way:

“[T]here were modules that the application referred to in the settings that I didn't

have installed, so. (pause) Go off, get them, install them, and try again, move on to

the next error, work through that. “

First Principles

To Learn and Experiment

I Prefer to Go to Someone I
Know

See What Gets Spat Out

Always Pick the Latest

Working from the assumption that I
know nothing by throwing myself into a
task, and figuring things out.
Specific tools like visualisation tools are
used to provide a space to learn and to
mess up.
Seeking help from colleagues is preferred
over internet-based sources which can be
“deliberately obtuse”
An error-driven practice to manage soft-
ware installation. The steps to follow are
taken from system responses.
When installing dependent modules, use
the practice of installing the latest ver-
sion first.

Ch. 7 After the Fact

-198-

Rules reveal learned behaviour, but also aspects of how developers reason in particular

situations. In a moment of reflection, Evan noted that at a certain point in the

investigation, he had reached the limits of his knowledge and experience. The description

he gives to “get it back to how it was” sounds in the telling like a practice, but the evidence

suggests that the actions were tactical, firmly embedded in the situation:

“I’d spent long enough messing with the configuration files. I realised either it

wasn’t there or I’d broken it completely. Let’s get it back to how it was - you know I

think you take a step back and you think okay it should be working the way it is so

let’s move on to the next thing and try and understand.”

It is important to note that conventions of practice are fluid. They are not fixed or

uniformly helpful. Always Pick the Latest is a practice that has worked for Evan in the

past, but results this time in an unexpected error that must be handled. Rules may not

serve in a current situation, and may even result in bigger problems. It is also important to

note that just as they form and reform in new situations, they are not always followed.

Robert described that he sends an email explaining progress with particularly tricky issues

to team members, but found when asked to forward the email to the researcher for analysis

that he had not followed the practice this time.

7.4.4 Limitations

The stories given in this chapter situate error within time and organisational context.

Stories were collected from two organisations, and may not represent software develop-

ment in different sectors, or in organisations with different work practices. Accounts were

gathered retrospectively and it is possible that details were forgotten or distorted. As might

be expected, finer detail was collected about activities that occurred close to the point of

interview. Finer detail was also collected about activities at the computer when the

developer was able to recreate and demonstrate actions during their account.

Error Detection and Recovery (Lopez)

-199-

In general, the interviews collected at Site B provided much more detail about how

local problem solving was performed than those taken at Site D. This is likely due to the

fact that developers at Site B were interviewed at their desks, while developers at Site D

were interviewed in public spaces and had to contextualise their discussion in relation to

hastily created diagrams.

Researchers must be careful when making inferences about accounts of process.

Informants may present a view that does not reflect what was actually done (Hammersley,

2003). There were clues given that sometimes the informant recounted a desired practice

rather than what he actually did. It was also the case that developers sometimes "hid"

accounts within more general explanations of technical or organisation process.

In general, however, and as Eisenstadt noted (1993), informants were forthcoming and

generous in sharing experiences, and gave no reason to "distrust". Detailed analysis of the

accounts revealed self-consistency: it became apparent what the account was and where

and how informants postured or obscured detail.

7.4.4.1 Bugs and War Stories

Bugs featured in some of the accounts given at Site B. This may have been due to the way

in which the research was described in the information sheet given to informants (see also

appendix D.4). The starting point for discussion with Joachim was a bug that had been

reported to him by a project partner. Valentin, despite describing his issue as “not neces-

sarily a bug, it’s an improvement” recounted that his issue nevertheless manifested as a

bug four times in the course of a year and a half, in different pieces of software that were

being used and built. Evan casually referred at one point to one of the issues he encoun-

tered as a “bug” that was like one he had encountered in the past.

Bugs did not feature in discussion at Site D. Instead the stories were recounted in terms

of tasks that had been set for a sprint. All of the informants spoke of testing in relation to

Ch. 7 After the Fact

-200-

their work, making reference to performing unit testing, detecting a problem while testing

“edge cases” and in using the testing framework to see of code was running locally.

Two war stories were reported (Orr, 1986), one from Site B, and one from Site D.

James described having a terrible time making use of an API supplied by the Eclipse

development environment. His difficulties arose after the Eclipse developers had changed

behaviour in APIs used by the public. Dereck related a story from a previous job in which

a colleague had “dropped a clanger” when installing an update to server software.

These stories were not included in the error handling analysis because they did not meet

criteria for incidents: they were presented as anecdotes, and did not give sufficient

evidence of narrating or “summing” up in the midst of the experience. However, both did

yield information that contextualised error handling during software development.

Dereck’s account helped define issues that are critical because they are visible to people

outside of individual experience, while James’ account gave insight into the ways develop-

ers seek guidance from internet sources.

7.5 Conclusion

This chapter reported a qualitative study undertaken to examine how developers recount

problems they have solved in recent work. It reported the activities of six developers

working in two organisations.

Errors can illuminate aspects of individual cultures of development, software engineer-

ing practices, or model of design in which they arise (Curtis et al., 1988). Occurrences

provide feedback about the nature of problems in specific domains. Errors come to

developers in one of two ways. They may come down as a result of a task that is taken

from someone else or problems reported by clients and co-workers. Issues may also come

out of actions taken by developers. In both cases, responsibility for the error may only be

taken once the error can be witnessed and linked to prior activity.

Error Detection and Recovery (Lopez)

-201-

Several of the accounts capture the complexity of the relationship between local and

global problem solving in software development. Problem solving in software engineering

is often described in terms of large, global aims: commercial strategies, project require-

ments or of design decisions. By contrast, findings in this study support the view of error

handling in psychology and safety science findings that problem solving is often local and

small, it can require cycles of practice that blend skill, experience and reasoning.

The knowledge required in software development is timely. Robert described how

recovery depends on learning enough right now to piece together a solution . Joachim’s

experiences showed that errors sometimes form knots within longer threads of develop-

ment practice, threads that relate both to individual and global aims. Valentin likewise

tolerated the error he encountered, allowing it to reoccur more than once, in order to gather

feedback from technologies and users.

Workers must translate work goals into personal tasks that can be undertaken (Frese &

Zapf, 1994), and software developers must consider global aims while managing local

problems. In the context of error handling, this translation process has a large influence on

personal development. Evan’s story provided rich perspective about how developers gain

experience by thrashing toward solutions. Thomas caught his error in the act of explain-

ing how elements on different web pages relate to one another. He recovered by giving the

error back to the person who had originally explained a practice to him. Though the

consequences of errors are generally depicted in terms of the ill effects a bad choice in

programming has on software, Dereck’s slip starkly demonstrates the effects that organisa-

tional policies can have on individual experience.

-203-

8. Discussion

The previous chapters explored error in the context of design, at the desk, and after work

had been completed. Findings illustrated different features of error handling within these

contexts, exploring how developers undertake problem solving when things go wrong. A

sense has been given of how developers perceive problems, the sources of information

they draw upon during handling, and how handling unfolds in-time and over time.

The problems developers face generally aren’t new, they are “new to me”. In other

hands or at other points in time, tasks may have been or become routine or mechanical, but

at the point that handling is required they are novel. This is the “special condition” that

most often commanded attention (Norman & Shallice, 1986, pp. 2, 8). Likewise, error

handling may include elements of understanding or of use but was largely required in these

accounts to manage errors in making. This distinction broadly characterises incidents

across the sets. All of the developers were tasked with making software, and encountered

problems in the effort.

This chapter draws out subtler distinctions of error handling in software development

practice. Data drawn from the studies reported in Chapters 5, 6 and 7 is situated within the

theoretical framework presented in Chapter 3.

8.1 Characteristics of Handling

It is, by now, a familiar refrain. Error handling unfolds in three stages. It begins with

detection, with knowing that something is wrong. Once an error has been detected, a

developer must identify what was done wrong and what should have been done. He must

take steps to remove the effects of the error. This process was given a theoretical overview

in Chapter 3, Section 3.3 and was described in the context of desk work in Chapter 6,

Section 6.4.

Ch. 8 Discussion

-204-

Figure 8.1 below depicts the three stages of error handling that have been identified by

studies in psychology. Detection indicates that someone realises that something is wrong,

identification is the process of knowing what should have been done. Effects are removed

in recovery. The examples given in studies of error detection suggest that handling for

simple errors is straightforward and brief. Insight is unambiguous; identification and

recovery are more or less instantaneous once a detection has been made. Findings support

this; some errors, like the one depicted in Figure 8.1 below could be described as slips of

action and are relatively easy to handle.

However, the accounts analysed in this research suggest that error handling in software

development is influenced to a great deal by environment and circumstance. The process

often involves more than one kind of performance and may include multiple errors of

different kinds. A diagram including the factor of time and the notion of local problem

solving is given in Figure 8.2, below. This is consistent with broader descriptions of

workplace performance, in which skill- or action-based errors tend to precede the detection

that something has gone wrong, while rule- and knowledge-based mistakes arise in the

subsequent efforts made to solve a problem (Reason, 1990, p. 56).

In the following three sections, characteristics of handling that relate to the three stages

of detection, identification and recovery are described. Discussion is grouped into the

descriptive categories coined by Sellen in 1994, first described in this thesis within Chapter

3, Section 3.3, and discussed in Chapter 6, Section 6.4.

Error Detection and Recovery (Lopez)

-205-

Figure 8.1: Error handling - Slip of action, software development. This is a brief handling
incident for an action-based error, like the ones depicted in related studies reviewed in
Chapter 3, Section 3.3. This particular incident is described in more detail in Chapter 6,
Section 6.3.1, and in Appendix C.3.1.

Figure 8.2. Error Handling Process - Software Development. This diagram situates the
basic phases of handling that were introduced in figure 3.4 within a time frame, indicated
with a blue bi-directional arrow, and two coloured bars in red and green that indicate
points at which error handling replaces progressive problem solving. The grey hatched
box behind the coloured handling bubbles indicates that error handling instances can
involve the need for conscious, local problem solving

8.1.1 Detection: Knowing that something is wrong

Actions sometimes do not go as planned, or were not intended (Norman, 1981). They are

often simple, routine or skill-based, and are commonly detected based on perceptions that

Ch. 8 Discussion

-206-

arise while doing something (Sellen, 1994). Copying files from one place to another is

one example of a simple action that is routinely performed in software development.

Copying files into the wrong directory, as Dereck did (see Ch.7, Section 7.3.6) is an action-

based error. It could be classified as a slip of action within Norman’s typology.

Determining what constitutes “in the act” is not always straightforward. A developer

may be able to swiftly assess what he meant to do, compare it to what he did, and take

subsequent actions to correct their input. Thus, though an error may seem to have been

detected in the act, developers likely are often also assessing small outcomes along the way

(Sellen, 1994).

As demonstrated in examples of error at the desk given in Chapter 6, an error may be

swiftly handled because it is familiar, having been seen and managed before. These are

quibbles. Some errors are quickly detected, quickly enough to have been caught in the act,

as depicted in Figure 8.1, above.

Even in the case of slips, detection of errors does not always occur immediately.

Sometimes, as in Dereck’s case, detection is delayed, made after an action is taken and

outcomes can be assessed (Sellen, 1994). Outcome-based detections may be reported or

self-detected, arising as a part of a standard check or out of a sense or suspicion that an

error has occurred in recently completed work (Allwood, 1984).

Errors may also be detected due to a failure to identify what is to be done. Lost

intentions are typically termed lapses, and described in terms of memory (Reason, 1990).

Forgetting why one has opened a file in the middle of a development task could be

interpreted as a lapse. However, at times, people detect an error because they realise that

they do not know what to do (Zapf & Frese, 1994).

Error Detection and Recovery (Lopez)

-207-

Handling often unfolds in terms of whether a detection is made using extrinsic or

intrinsic information. Characteristics of both sources of information are discussed in the

next two sections.

8.1.1.1 Extrinsic information

Errors are often signalled through “evident” information that would be apparent to any

observer (Zapf, Maier, Rappensperger, & Irmer, 1994): through system responses in the

form of red bars, stack traces or other messages that either gag the system or provide

warnings about an error condition (Lewis & Norman, 1987). In this case, detection is

more or less guaranteed (Reason, 1990), spurred by something designed into the objects of

use that force (Norman, 1981) or limit (Sellen, 1994) forward action.

It was argued in Chapter 6 that software development at the desk is error-driven.

Methods like test-driven development are designed around failure (Ambler, 2012).

Developers adapt their practice in response to messages given in development environ-

ments and come to depend on information from system responses to direct and manage

activity at the desk.

Error-driven practices are observable and reported across the data sets. Evan expected

to see errors that “gag” the software during his software installation. He relied on them to

direct his installation process. In so doing, system responses replaced other intrinsic or

extrinsic sources of information he might have used such as memory, notes or documenta-

tion. Marcus and Joe provided other examples of using errors to direct practice. Their

aims were methodological, as when they wrote tests to fail, but also personal, such as when

they left errors behind within the IDE to serve as placeholders for picking up work at a

later time. Findings in the studies support all of these points. Robert detected his error

while performing standard checks on system response.

Ch. 8 Discussion

-208-

Developers respond to system responses, but are also responsible for writing and

designing them (Lawrance et al., 2013). System responses are thus also leveraged,

elicited in completed work as a checking mechanism (See Robert’s account in Chapter 7,

Section 7.3.4). Robert described looking for an intended system response to evaluate

changes that had been made to code. He was using errors to confirm that the model for

providing validation sufficiently corresponded to the possibilities for interaction. His error

was detected on the basis of an untimely system response that indicated an aberration in the

expected sequence of validation checks.

Errors are sometimes detected when things do not “look right”. Developers use visual

sense to gauge whether things are working or not. Messages that the developers have

written into system responses may lack or misinterpret information, cueing detection. It is

the way that an error message is formatted that signals to the developers that something has

gone wrong. A character may be interpreted as syntax when parsed by the browser, or

messages may not contain information that developers have designed to be included.

Similarly, systems provide responses to developers that have not been directly designed

to support error handling, but which are understood by developers to be indicators of

problems. Error detection in these cases depends on the developer understanding how

software is meant to “look”. In such cases, a user interface may display all of the intended

textual information, but lack visual elements such as images, spacing and fonts. Evan

expected the software to work correctly once the software ran without any errors, when it

was no longer gagging. However, he noticed that things did not “look right”, cueing a

suspicion in him that an error had occurred. In fact, the web page he loaded was not

rendering correctly. Images were missing, and pages that he created through the interface

were not being displayed in lists.

Error Detection and Recovery (Lopez)

-209-

 In a similar incident, Marcus recognised that something did not “look right” in the web-

output. The page loaded with all of the expected information, however the visual style of

the page was incorrect. The top figure below, 8.3 displays what the screen looked like

when something was “wrong”, the bottom displays the “right” look. (Figure 8.4).

Figure 8.3: Something doesn’t look right.

Figure 8.4: Now it is “hunky dory” fine.

8.1.1.2 Intrinsic information

Erroneous outcomes are not always evident: an action or words may seem reasonable to

observers (Norman, 1981). These errors must instead be detected through assessment of

intrinsic information. In the context of interactions with computers, actions may be taken

in a software system that are correct, but which were not intended. The system has no

information about the goals of the user in this case, and so cannot provide a response that

Ch. 8 Discussion

-210-

will trigger error detection. These errors must be assessed in terms of the underlying goals

that directed action (Zapf et al., 1994)).

Conceptual integrity is believed to be at the root of many errors in software develop-

ment. Because ideas are faulty, the logic goes, there are bugs (Brooks, 1995, p. 14).

Imprecise requirements and poor design are often reported after the fact as a cause for

faults (Basili & Perricone, 1984; Perry & Stieg, 1993). Across the sets of data examined

here, developers frequently came up against barriers in their work related to intent. These

encounters were often detected through explanation and identified in analysis by indica-

tors of satisfaction and suspicion.

This point is made strongly in Chapter 5, in Kasia and Bill’s discussion of rather cars or

intersections should manage traffic. We, as analysts, know that an error has been encoun-

tered by the use of questioning, fluid terminology, and also by the lingering suspicion

conveyed by Bill at the end of the session that it is intersections and not cars that should

have control over managing traffic. In this case, the error is one in forming intention, in

determining how the software that the designers have been tasked with designing should

behave.

Marcus provided another example of detection through explanation. In his case, the

problem was recognised when he explained an implementation to a person who was not

directly involved in the project:

Marcus: … So we want to make sure that [ClassName] was interacted with in a

particular way, and in this case, umm, this is why it just doesn't feel right that this

is, it's just too specific for it to be a [ClassType], dude.

The utility of explanation in error handling has been observed before within software

engineering (Knuth, 1989). It is a recognised problem solving tactic in software engineer-

ing trade discourse and commentary, variously described as the cardboard cut-out dog

Error Detection and Recovery (Lopez)

-211-

(Baker, n.d.), rubber duck debugging (‘Rubber duck debugging’, n.d.)5 and the teddy bear

principle (Pascal, n.d.). Robert described the teddy bear principle like this:

“[You] put a teddy bear on top of your monitor and talk through your problem to

that, and it is kind of that talking through the problem will kind of, kind of usually

trigger in your own mind what actually you've forgotten to do or haven't done or

something like that.”

The phenomenon has also been recognised beyond software engineering. Within safety

science, it is the provision of “fresh eyes” on a situation that can allow “higher-level”,

knowledge-based errors to be detected (Woods, Johannesen, Cook, & Sarter, 1994).

Explanation is a valuable tactic, but it does not always work. Robert related that he tried

first to solve his problem by talking things out with another developer. He expected it to

help, but in the end, he did not have enough time to achieve insight using the technique.

The account given by Thomas provides evidence of explanation that spurs detection. In

Thomas’s case an error was detected because he needed to explain the task to a colleague.

When asked why parameters on pages should be named in the way Thomas was

describing, the explanation he could give felt unsatisfactory. All he was able to say was

“that's the way the other screens have been done”.

The full account suggests that it was in explaining the task that he lost intention.

Thomas indicated in his interview that he perceived the issue not to be with his memory,

but rather to be one of knowledge. He did not understand the naming strategy. He

described the issue as one of “just getting the concept clear in the head”. Frese and Zapf

(1994) describe such errors as thought errors, which may be due to forgotten intentions,

but may also arise when a person lacks knowledge.

5. This wikipedia article (at date of access) gave the best overview to the concept, with
links to related pages and printed sources. A copy can be supplied if it has substantially
changed since access.

Ch. 8 Discussion

-212-

Figure 8.5: Errors aren’t always evident. The wiki syntax entered to link to “User Stories”
resulted in a to-be-created marker when rendered on the HTML page. This is indicated in
the figure with a question mark.

Figure 8.6: It looks okay to me.

Intrinsic information is often required to detect errors that have a conceptual basis,

however such errors can be sneaky. They can manifest after simple actions that seem to

have reasonable outcomes when assessed by one person, but be obviously wrong to

another. Marcus and Joe provided an example of this in an incident in which Marcus tried

to make a link to a different web page using wiki syntax. After saving the edits, the

information on the web page suggested that a new page still needed to be created (see

Error Detection and Recovery (Lopez)

-213-

Figure 8.5). . The syntax “looked okay” to Joe. His observation was sound, the syntax

was correct (see Figure 8.6), however Marcus remembered that the data was wrong,

because it did not reflect the information architecture of the wiki.

Errors of intent thread through practice. They arise during design activities, and come

up again and again in the midst of development. They have been described in other studies

of software development at the desk as being “like design”. In order to do programming,

developers rely on "under-determined" matter: opinions, discoveries and alternatives that

emerge "when-and-through" the practice of programming (Kristofferson, 2006, p. 10).

An example of this can be seen in one incident at the desk (issue 13-B in the catalogue

located in Appendix C.2). In this incident, Marcus and Joe run into problems refactoring a

method that manipulates two classes in the domain model they have created. The two

classes are conceptually similar, and problems with them have come up before (see related

entries 4-F, 6-A and 8-C in Appendix C.2). The error cuts across layers: Marcus and Joe

are not sure anymore about how they defined the classes, or how to distinguish the classes

from one another in this circumstance. Furthermore, they do not understand an implemen-

tation they made earlier that references the classes. The implementation uses a JAVA

language feature with which they have limited experience.

Thought errors stick around, as the resolution of this issue demonstrates. Rather than

push through to a fix, Marcus and Joe decided at a certain point to abandon the refactoring

altogether, and to revert to the previous, working state of the code. The accounts of

tolerating and settling demonstrate that such errors can remain active for long periods of

time, managed by making incremental progress through verbal consensus or temporary

solutions that satisfy the developers and permit the issue to be set aside. This does not

mean the issue is resolved. In most cases, subsequent instances will occur in which

handling must continue.

Ch. 8 Discussion

-214-

8.1.2 Identification: Knowing what should have been done

Once an error has been detected, a person must identify what was done wrong, and

determine what should have been done The examples given action-based studies of error

suggest that insight is unambiguous, that identification and recovery are more or less

instantaneous once a detection has been made. Across these sets of data, error handling is

often simple and compressed, but other patterns were also observed.

When an error is detected, developers do not always know how big the problem will be,

or what kind of problem solving will be required. This understanding comes through

identification. At the desk, programmers must proceed in all tasks by first establishing the

"fact" of what they are looking at (Kristofferson, 2006). This is also true in the case of

errors. Identification is not stepwise or linear. Developers do not consistently recognise

that a problem exists, then diagnose why the problem happened, then implement a

mechanism to fix it. Evidence is given that they search for commonalities between prior

experience and the current situation (Rasmussen, 1985) within a cyclical process.

Identification often requires multiple rounds of local problem solving. This concept is

depicted in Figure 8.7 below. Guided by system responses, information gathering

(Eisenstadt, 1997) is interspersed by manipulations of the environment.

If one cycle of problem solving fails, developers must deal with newly created changes

in behaviour, as well as considering the previous conditions. This requires them to keep

track of what they have done, what they have tried, what they have changed. The risk is

obvious: if they do not work forward slowly and systematically, they will forget what they

have tried and the order in which they have tried things. The need to manage and remem-

ber state is vital. Robert described it like this in the context of web development:

“Sometimes you're making changes and then you'll try to reproduce the issue and

go ‘Oh well that had no effect’ but you have to be sure that the change you've made

has actually been picked up, because sometimes when you are dealing with web

Error Detection and Recovery (Lopez)

-215-

things, something might have been cached … even though you've changed some-

thing, maybe you forgot to save the file, maybe your change hasn't been picked

up…”

Figure 8.7 Error Handling Process - Local Problem Solving. This diagram presents a
normalised depiction of local problem solving. The example on the top left replicates the
basic process depicted in figure 8.2. The other two examples use grey hatches to indicate
individual instances in which local, immediate goals and actions are undertaken, observed
and assessed. This diagram doesn’t represent scale, only that some errors can be solved in
a single instance of handling, while other problems require multiple tries at different points
in time, indicated with the blue arrow. Each of the hatched instances is depicted with an
accompanying small error handling process; these should be associated as belonging to the
overarching process represented by the large set of bubbles, and by the delineation within
red and green halt and resume progress bars.

Assessing state is a tactile and immersive experience. Evan provided a clear example of

what this feels like in his working environment:

“I work on a small desktop Mac, so I have a Mac connection to the computer at

work that is running the virtual machine and so I was getting rather annoyed trying

to navigate between three different screens on one 13-inch monitor, and getting

rather confused in the process about what I had done and what I hadn't done and

what I’d changed and what hadn't changed.”

The time it takes to identify sources of errors varies enormously. Sometimes identification

takes only minutes, but it can take hours, days or even months. The length of time

Ch. 8 Discussion

-216-

required relates to the information that is needed, and what the developers do with it.

Developers develop understanding over time, as their frame of reference shifts in response

to new information (Rizzo, Ferrante, & Bagnara, 1995). At the desk, Kasia and Joe were

able to control identification by setting constraints on responsibility. Marcus and Joe

needed to identify factors in the immediate environment to return software to a working

state. Developers reported after the fact that identification sometimes is drawn out to

develop technical understanding about domain requirements and client priorities.

Extended timeframes are useful, they can give developers time to think and to explore

possible solutions. Valentin described how he tolerated multiple manifestations of an error

for over a year and used partial, temporary solutions along the way to gain time to consider

a proper solution. He reported the decision to postpone as strategic, a behaviour that is

consistent with descriptions of expert debuggers in other studies (Freeman & Black, 1992).

On the other hand, individual cycles of local problem solving are described using terms

that confront notions of expertise as strategic or principled. Developers explain what they

do as “hacking around”, “trying things” “trial-and-error”, “attrition”, or “nested problems”

Valentin described the experience in this way:

“You find something, and then you find something else related, you find something

related and you are deep in a tree where you [are] never at the end and you must

come back.”

Insight about what was done wrong and what should have been done often must be pieced

together. Robert described finding his solution using a painstaking approach of analysing

information taken from the internet to identify things to try in his source code. He reported

that the technique was not a strategic “working down”, but rather was driven by trial and

error, by trying things out. He assessed it this way:

“[I]t was obviously a case that there was a solution to this problem, it was a case

of working out what I was doing that was different or what other people had done

Error Detection and Recovery (Lopez)

-217-

that was different to what I was doing...it was kind of understanding the solutions

that they had posted because they would only post the parts that they felt were

relevant.”

Developers come up against boundaries to action set by the tools they use, the code they

call on, and the social environments in which they work. These are commonly described

in safety science as constraints on the space of opportunity in which they work

(Rasmussen, 1990). Within psychology, errors at these points are often described as latent,

cases in which decisions taken at a different point by other people have disastrous effects

(Reason, 1990). Within software engineering, boundaries are commonly conceived of as

interfaces, points at which developers must utilise software defined by others.

Boundaries of all kinds, including interfaces, test belief. Interfaces are known as

features of software architecture but they have also been found to be social: bridges

between teams, departments, and the world “out there” (de Souza, Redmiles, Cheng,

Millen, & Patterson, 2004). Development practice depends on programmers’ belief that

code written by someone else is correct (Naur & Randell, 1969). However, interfaces have

been shown to have a high incidence of faults (Basili and Perricone, 1984; Perry and

Evangelist, 1985, 1987). They are hard to learn (Robillard, 2009) and they both facilitate

collaboration and isolate developers (de Souza et al., 2004).

Interfaces lie at the boundaries of responsibility, in decisions taken elsewhere. They can

have effects that are perceived as errors by developers: something is not right, and must be

handled, but symptoms and factors are opaque. In these cases, it is often impossible for a

developer to determine what was done wrong. And it is likely also unimportant for a

developer to understand why something is wrong. The developer is not responsible for

erroneous behaviour they encounter in these cases; they just have to deal with it.

Ch. 8 Discussion

-218-

8.1.3 Recovery: Removing effects

Recovery does not follow heroic bursts of creative, intuitive performance (Cross, 2001).

Insight is often described by developers as being sudden or serendipitous, but this is not

supported in the evidence. Instead, insight, and by extension recovery, is more often

achieved through outcomes of problem solving that are perceived to be timely: the

combination at some point of accrued knowledge, memory, recognition, and evaluation.

Recovery should not be equated with resolution. Issues may remain active because

recovery is impossible, as in Dereck’s case, or because details of a local occurrence

actually belong to a longer thread of practice, as in Joachim’s case. Sometimes a recovery

will have consequences that contribute to or shape other priorities. These might be

individual (“I can see know I need to write cleaner code”), team-based (“We are just going

to re-architect into a single solution”) or with an eye toward the collective needs of a

development community (“I thought there ought to be a way for others to use this code”).

The first and foremost priority of software development is to keep work moving.

Keeping work moving does not require that a developer understand all of the details about

why an error occurred or what removed effects. Things are often left unknown after

recovery. Developers may achieve a working solution, but may not be completely sure

which of the steps or the order of the steps that fixed the problem.

Upon reflection, both Joachim and Robert are able to name errors in understanding

about how the libraries they were working with behaved. Both left their experiences with

gaps in understanding. Robert described more than once his expectations for how a library

behaved versus how it actually did behave, and commented that he still didn’t understand

why it behaved as it does. In Joachim’s case, lack of understanding was expressed in terms

of doubt in an API that led to a change in technology after we spoke.

Error Detection and Recovery (Lopez)

-219-

Barriers to recovery can come out of policy decisions taken long ago. In Dereck’s case,

the policy to delete old backups after a certain time limited options for recovery. Other

decisions to limit administrative access to the release tool blocked recovery. Dereck had

only a vague understanding of the history of these policies and the effects they had on the

software he was trying to use. They produced barriers to his recovery, but they were not

exactly errors.

Knowledge gained in the course of fixing is often situated and circumstantial. A fix

might arise, for example, through an assessment of syntax (“Ah, it needs to be on the other

side.”), without evidence that the developer has gathered a profound understanding of the

language feature itself. A developer can learn during handling about the requirements and

expectations of particular software frameworks, but the general knowledge, for example

that some packages will require files to be located in specific places may be of limited

utility going forward. This event, however minor or severe, will likely never occur again.

Circumstances next time will be different, the locations will be different, the cues that give

rise to the issue will be different. Developers give the impression that insights drawn from

one experience are not sharp, crystalline pieces of knowledge that can be plugged into new

problems.

That said, developers do appear to make something of handling experiences. With only

a few days separation from the event, developers are able to articulate an awareness of

severity during handling incidents. They are able to identify when problem solving was

ineffective and are aware when they got lost. They are also able to identify when limits in

their own understanding contributed to the problem, and display awareness of problems

that could occur again.

 Interestingly, even severe incidents were reported as having positive outcomes, but this

may be the result of human impulses to make the best of “personal failures”. Developers

Ch. 8 Discussion

-220-

reported that they had achieved a greater level of comfort and understanding of the

software frameworks they were using. Getting stuck forced them to examine aspects of the

software that they had previously taken for granted. They had to learn more about the

software, quickly, in order to solve the problem and resume forward progress.

8.2 The Shape of Experience

Errors are sometimes reported, and error handling will likely begin with replication and

witnessing, themes that were discussed in more detail in Chapter 7, Section 7.4.2. In cases

in which an error comes up in the midst of work, it is experienced first-hand, and informa-

tion is given by the system or by internal perceptions that something is not right. Handling

is often impulsive at first, marked by doubt, claims of innocence and blame but settles into

investigation of behaviour that has been observed or reported.

Experience shapes error handling processes and handling, in turn, forges experience.

The process takes an individual shape formed by expectation and other feelings, by getting

things wrong, thinking of similar experiences, and seeking support, as depicted in Figure

8.8 below. As the paired work analysed in Chapters 5 and 6 demonstrate, errors that arise

in the midst of work are often conveyed with surprise, and handling is punctuated by

feeling: with questions, expressions of doubt, and by placing blame. After the fact,

developers take the blame for decisions they deem to have been badly made through

indications of dissatisfaction, by naming what the problem was, or by expressing lingering

doubts.

8.2.1 Expectation and Surprise

Errors surprise developers, the conditions in which they arise, and the behaviours they

produce are unexpected. In many cases, developers are at least momentarily stumped

while they try to identify the source of a problem. Expectation and surprise are known to

Error Detection and Recovery (Lopez)

-221-

be components of error occurrence. Ko and Myers noted that their programmers asked

questions when something failed in relation to prior formed expectations (2005).

Figure 8.8: The Shape of Error Handling Experience. The error handling process is
represented by the triad of coloured bubbles established in figure 8.1. In this instance, the
triad could represent an entire incident, or one instance of local problem solving. Feelers
in different colours depict modulators that focus attention, redirect activity or develop
perspective.

Expectations are closely linked with suspicion. Suspicion is a feeling, a sense that

something is wrong or has been done wrong. Suspicion does not guarantee that an error

exists, and error handling is sometimes undertaken in the absence of errors (Allwood,

1984). Developers often think something in the code is wrong that turns out to be correct, a

process that has been described within software engineering research in terms of hypothe-

sis formation and modification (Lawrance et al., 2013). Errors are thus sometimes expected

(“I expected it to happen.”), but expectations can be defied:

Joe: And we expect this to fail. It is going to say, I can't find a dummy role with a

small 'D'. Oh- and it has, look, it has got a little red thingy saying NoClassDef-

FoundError. That's funny, I thought it was supposed to say, uh shouldn't that come

back as a casting? (Episode 7, 11:13)

Ch. 8 Discussion

-222-

During identification and recovery, developers try things that they believe should work

based on their understanding of the environment, knowledge of languages or past experi-

ence. Sometimes, they are not rewarded with an outcome that matches their expectations.

They are surprised again, confronted with new behaviours that must be assessed. Getting

back to the original error state can be difficult, and in some cases is impossible. They can

get lost.

Recovery brings with it fresh expectations, and so it can be said that surprise and

expectation permeate all stages of handling. Evan expects that he will have similar kinds

of problems when he promotes his software to a different environment. Valentin reported

that he expected to see occurrences of the rendering error based on past occurrences. As he

described it, “this [the first occurrence] prepared me for that”.

8.2.2 Feelings

Findings suggest that dark feelings are used by developers much like bad ideas (Dix et al.,

2006). Dark feelings can be used to expand and constrain the problem space, allow

developers to consider unlikely sources of error and to direct investigative activity. If

developers suspect a problem, they commonly doubt or question an outcome (“Why is this

happening?”) or place blame (“What have you done?”). When they cannot form

intentions, they might indicate that they feel stuck, that they are at “an impasse”, that they

have “no ideas”, or that they are “poking around in the dark”. Error handling can make

developers feel bad, they can get “down on themselves”, or become frustrated. They

wonder why they can’t figure something out or aren’t performing well.

 During particularly effortful problem solving, handling has been shown to be stressful

and uncomfortable (Brodbeck, Zapf, Prümper, & Frese, 1993). Keeping emotions under

control has been shown to have an effect on learning new tasks (Keith & Frese, 2005).

Findings indicate that stress is marked in developers by verbal expressions, and by what

Error Detection and Recovery (Lopez)

-223-

they do. Troubleshooting efforts move from examining inputs to an unexpected condition,

to the way concepts are represented within source code, and even to elements of the

conceptual design itself. They are prone to doubt early ideas about the sources of errors,

and the means to fix them.

It is clear from the accounts that were examined that feelings also inform decision

making in broader terms. Developers describe rejecting alternative solutions on the basis

that that they are “very ugly,” something to be used only as a “last resort”. Ugly feelings

linger even after recovery. Evan got his application framework to run, but is aware that it

is “pretty dirty”.

Developers leave encounters with a sense of how well solutions are functioning that at

times contradicts cues given by the software or other artefacts. Their sense in these cases

is often one of suspicion, of caution. Joachim achieved a working solution in his design,

but was dissatisfied, he felt something was not right. Evan had no information after

recovery that things were not working, but was still wary. As he put it, everything is

working now “touch wood”.

The findings clearly suggest that handling processes are modulated by emotion but it is

not clear if emotions serve or hinder the process. Negative emotions have been found to

produce negative effects on task performance during software development (Graziotin,

Wang, & Abrahamsson, 2015), a view in line with the evidence given in this thesis of

thrashing, turbulence and severity. Questions on these point remain, however, and should

be addressed in future research. Does it matter if developers feel bad during or after an

error handling experience. Do dark feelings change how they behave in the future?

8.2.3 Similar Things

Developers draw on similar experiences to assist error handling. Analogies are drawn from

past work experience, projects that may have had similar requirements, or from prior

Ch. 8 Discussion

-224-

experience adapting or administering software. Like experiences or knowledge may be

shared with a developer by a colleague in conversation, email or other shared written

sources. They equally might be formed through more general experience in the world or

with software as a user of environments that are similar to those being built (McDonnell,

2012), for example of simulation software or web browsers.

Analogies may provide information to support an error handling process, but are also

used more generally as a part of decision making for tasks. In the former case analogies

are accessed during brief moments of reflection in the midst of problem solving. In the

latter case, they are a part of deliberative activity (Eraut, 1994), such as the time Kasia and

Bill spend considering how traffic works in the world, or in reports by Valentin about

alternative solutions he considered for rendering special characters.

Analogies are called to mind, they are remembered. As might be expected, memory is

faulty, and recollections may be partial, serving as impressions that cue detection or delay

resolution. Developers may remember having done something or having seen something,

but may not be able to remember what they did exactly or where they saw the information

of interest.

Though it would be difficult to claim that analogy leads developers astray, there is some

evidence that analogy can increase stress during handling, particularly if an analogy drawn

from prior experience is perceived to be similar to the current situation, but outcomes are

somehow different this time. Turning to existing code, for example, is a useful tactic

during handling. It may offer a template for a fix that does not need to be proven.

However, depending on code to provide information for fixes may also hinder develop-

ment of understanding. Marcus and Joe relied on a prior implementation of JAVA generics

to piece together a solution (see also Appendix C.3.5), but understanding of what they did

was limited to material aspects of the syntax that would get the software to run.

Error Detection and Recovery (Lopez)

-225-

Fixes are not made by accessing or relying on similar experience. Analogies must

always be compared with other information, they must be assessed and shaped to match

the requirements of current circumstances.

8.2.4 Seeking Help

Errors are individually experienced. Error encounters can demand or encourage social

support, but this does not always come in the forms we have come to expect by studies that

advocate for “soft skills” to improve dependability. Information is drawn out of tips or

stories passed along by co-workers in conversation. Developers also make use of open-

source documentation, and have access to subscription-based sources that provide

industry-tailored trade films and texts. Ad hoc (Ko et al., 2007) and formal teamwork

(Seaman and Basili, 1997) are helpful in some cases, but social support increasingly comes

from other sources found on the internet.

Wiki-posts, internet fora and websites are widely used to identify technologies, to assess

reliability of open-source products and for more detailed information about how to solve

particular problems. Robert explained that depending where you are “on the cutting edge

of things” it is normally possible to Google an answer for something. Usually questions

have been asked in places like Stack Overflow and there are answers that can be studied.

Several other developers provided information about other on-line trade publications that

they used, and explained how they hone search terms to find solutions for similar

problems.

Help is not always easy to find. Developers may dutifully seek out colleagues and even

prefer this practice over the use of documentation or internet sources. However, they may

not always be able to get time with or find colleagues with skills or experience that are

useful for the problem at hand. Fora are described as being intimidating, or high-minded.

Formal documentation does not always yield information, and documentation provided by

Ch. 8 Discussion

-226-

open-source software sometimes hasn’t been written or is incomplete. In spite of this,

social support in all forms is valued: developers seek each other out when they can and

report that information from the internet, however partial and scattered, makes work easier

and smoother.

Social support for handling is sought from a collective formed of colleagues, from in-

house documentation produced by development teams, and from commercial and social

sites on the internet. Information gathered must be transformed into guidance. This is done

by searching for corroborative testimony, by writing toy implementations and making tests.

Only then will it be deemed by the developer to be both useful and trustworthy. Often,

within a handling process, this is when the hard part begins. As in the case of analogies,

the information must still be fitted and matched to the problem, the developer must figure

out the “special part” that will make the guidance work.

8.2.5 Weirdness

Just as detection can be made through developers’ sense of things that “look wrong”,

handling can be hindered by weird behaviour in tools. Developers are accustomed to

bumping up against constraints in the tools they use, it happens all the time. They may not

understand how a tool works, or how to access features. One tactic often taken in these

cases is to try another way. The developers do not question the behaviour of the tool, but

instead take swift decision to accept the constraints. They also may not understand

afterward why “the other way” worked.

Developers accommodate weirdness in tools when they can. This is practical, because

weirdnesses related to state can mysteriously resolve and it is not always wise to divert

practice to address responses given by tools. Errant behaviour in tools can be more severe,

however, distracting from or hampering progress. In extreme cases, it can overtake

development, and require developers to give over problem solving to evaluation of

Error Detection and Recovery (Lopez)

-227-

unrelated problems. These experiences can lead to distrust, triggering suspicion in future

circumstances that errors exist even where they don’t. Even in smaller cases, weirdnesses

can persist, and at a certain point developers may have to accept that they do not under-

stand what has gone wrong, and recover by removing or downgrading installations.

Spurious errors that come up at boundaries are leveraged by developers to learn about

parts of a system that are infrequently visited or aspects of a technology that are not well

understood. They encourage or demand that developers engage at a deeper level with

third-party software libraries or code written by someone else. This was particularly true in

cases in which the thing that went wrong resulted in problem solving was turbulent.

Though the “other” software formed a boundary that prohibited work in the short term, in

most cases developers recognised the boundary as an invitation to learn.

8.2.6 Being Wrong and Getting Lost

Developers get things wrong all the time. They make mistakes during conscious, laboured

reasoning that characterises higher-order problem solving, but also while undertaking

small material actions within a language or environments. Being wrong is an effect of

guessing and of trying things. It may come out of a half-hearted proposal that is made and

followed (“It might have to go after the dot. No.”), but may also arise out of identifications

made with confidence (“Ah ha ha! I know what it is!”).

Developers don’t always understand problems, technologies or have the necessary skills

when errors occur. They recognise this as a central factor of many handling processes they

engage in. Specific training or knowledge gained beforehand might prevent problems

from occurring, but developers dismiss this possibility when asked what they might have

done differently. They explain instead that it is more important to be able to gain under-

standing when it is needed. As Robert explained:

Ch. 8 Discussion

-228-

“If I was going to go back and approach the issue again, I would try to make sure

that I did understand what was going on in the framework upfront, but there is so

much to know that you just need to make sure that you understand enough to make

it work at this point in time.”

Developers are comfortable with being wrong. In a period of reflection, Marcus remarked,

half in jest, that being wrong is the “whole point” of development, noting:

“[Y]ou spend most of your time when you're developing stuff being a little bit less

wrong than you were a few minutes ago so. So we're always wrong, technically

speaking.” (Ep. 19)

Comfort with being wrong and accepting limits to understanding may be outcomes of the

demands of practice. Decisions are sometimes hastily taken, code slapped down, perhaps

due to pressures on time, but also because it is pragmatic to work this way. Sometimes

being wrong is strategic, it is employed. Bugs are allowed to reoccur, giving developers

time to do other work, but also to learn. By observing behaviour in software and the

effects of behaviour on clients, developers develop understanding about priorities and

technologies, and identify what they still need to work out.

In paired interactions, developers do not appear to penalise each other for getting it

wrong, even when a mistaken idea results in code that takes a significant time to imple-

ment or which has to be reverted. Likewise, developers do not always express shame at

having done something wrong, even if the error results in a bug that is public-facing. They

will make the same mistake again and again if it supports their preferred practice. Some

errors don’t matter, particularly when considered in terms of the priorities that a developer

has.

Being wrong may be a matter of course in developers’ lives, but sometimes, the

simplest errors can turn out to be the most severe. In this case handling takes a large

amount of (relative) time, demands multiple, intense rounds of local problem solving or

causes stress or anxiety.

Error Detection and Recovery (Lopez)

-229-

Severe incidents begin in much the same way that other error occurrences do: an error

condition arises that is unexpected. A developer begins a process of investigation, making

guesses about which of his previous actions and decisions resulted in the problem. He

gathers information, perhaps by examining areas of the code that may be related, and

trying things out. The difference between severe instances and other incidents is that

efforts do not yield information or changes in program state that remove the error.

Furthermore, the incremental outcomes do not “make sense”. Things can take a turn for

the worse and go horribly wrong.

Simple issues that turn out to be severe are surprising: one might not expect experienced

developers to get stumped by a configuration problem or by a class path issue, but self-

proclaimed novices and experienced developers engage in similar handling processes

while solving these kinds of issues. The suggestion given in this data supports findings in

problem solving research more generally (Reason, 1990) that novices and experts get lost,

and when they do, they exhibit the same ineffective behaviours.

Within the catalogue, two other incidents that might be characterised as the most severe

occurred during simple, routine activities like the one that tripped Dereck up. Evan had

formed a sense in prior work of the tasks involved in getting a software package up and

running, but spent a considerable amount of time fiddling with configurations in the wrong

file trying to get things to work. Marcus and Joe likewise had an issue with configuration

and knew they needed to check to see if a file was in a directory. What they failed to

notice, however, was that they checked in the wrong place.

Severe incidents may be critical if they have effects beyond the developer’s individual

experience. Dereck knew that he needed to manually copy files to the server, but commit-

ted a slip in execution. His issue was critical, because the error resulted in his team

breaking a contract of service in the department. The handling was also severe because his

Ch. 8 Discussion

-230-

ability to act was constrained by circumstances in the environment. The issues had several

simple resolutions, but handling developed into a stressful and uncomfortable experience.

Dereck knew what he needed to do, but was not able to perform necessary steps for

recovery.

8.3 Limitations

It is difficult when using naturalistic observation to determine what should “count” as an

error (Norman, 1981, p.13). Analysts are not usually able to establish causes based on

observation alone (Hollnagel, 1998, p. 78). It is not always practical to determine whether

or not an informant had a wrong intention, the criterion by which errors are generally

categorised as having been mistakes (Reason, 1990). Likewise, the information available

in research data may not allow an analyst to determine how well or by what means an

informant “understood” a situation they were in.

The research in this thesis has not established causes, but has noted behavioural aspects

of error occurrences, that is, what was done when the error occurred, such as omissions,

insertions, substitutions and reversals (Reason, 1984, p. 530). Naturalistic data about error

is by its nature selective, and so the studies reported here may have descriptive power, but

cannot be put to predictive uses (Norman, 1981).

8.3.1 The Vagaries of Access

With few exceptions (Prior, 2011), empirical studies in software engineering must make

use of opportunistic, short-term access to field sites. Access is often constrained, and

management can place severe restrictions on research design and reporting (Perry & Stieg,

1993). It may only be possible to observe developers at the desk for short periods of time,

researchers may have to rely on mixed collections method including “serendipitous

observation” (Robinson et al., 2007, p. 541). More commonly, in-depth knowledge of

developer practices is reported by industrial researchers with longstanding experience in a

Error Detection and Recovery (Lopez)

-231-

company (Endres, 1975), or emerges from a series of studies undertaken by the same

group of researchers over time (Aranda & Venolia, 2009; Guo, Zimmermann, Nagappan,

& Murphy, 2011; Ko, DeLine & Venolia, 2007).

Limitations to access were not overcome for this research, they were worked around.

Relatively unstructured, open access was gained to sites at which to conduct interviews

through contacts within standing professional and academic networks. Collection was

tempered with gleaning, by seeking data from within sources that had been collected by

other researchers and professionals.

8.3.2 Credibility and Reliability

One way to improve credibility in qualitative research is to have more than one researcher

collect and interpret data, a solution that was not possible for these studies. Instead,

concurrent triangulation (Easterbrook et al., 2008), was undertaken by gathering and

comparing data from multiple sources that represent different aspects of development

work. Data was compared for points of similarity and difference. One source of data was

used that is publicly available, and the methodology used in analysis has been documented

so that other researchers can assess its credibility (Robinson et al., 2007).

To supplement information lacking in one set of data, evidence drawn from different

studies has been used not only to triangulate, but to build up contextual understanding, a

technique that has been described as colligation (Anderson, 1997). This was necessary

because the nature of the data sources reflected different kinds of problems and different

tasks and were recounted in varying degrees of precision.

Fieldwork is said to be less reliable than other data collection methods, because

collection is so personal, a weakness that can be exacerbated when the researcher is close

to the environment studied (Robinson et al., 2007). Ethnographers ultimately must

overcome limitations of closeness through the development of their reflexive sense, the

Ch. 8 Discussion

-232-

way they come to consider both the insider and outsider perspectives (Hammersley &

Atkinson, 2007). Straddling these positions permits researchers to “‘know’ in ways that

others don’t and can’t.” (Anderson, 1997), however the limitations associated with

closeness will always remain. Researchers are a part of the world they study, and data can

never be “pure” (Hammersley & Atkinson, 2007).

8.3.3 Fixed Records

Chapter 3 argued that retrospective analysis cannot provide a full explanation for error in

software development, yet the corpus was formed largely from secondary sources

(McGinn, 2008), or concern work that was performed in the past. There are clear limits

and risks associated with this approach.

When given indirect access to materials, researchers must infer behaviour and action

that was undertaken in the past, to study both in terms of “material traces” that are

“fixed” (Scott, 1990, p. 4). In fact, analysis was undertaken without any direct access to the

situations described in accounts, and in some cases with limited access to the informants or

creators of the materials.

To counter these limitations, a considerable amount of time was spent assessing the

gathered material for quality, completeness and representativeness. The video recordings

are records of work that were created with an eye toward the public (Scott, 1990), and

analysis has accounted for ways in which the material is more reactive (Laurier & Philo,

2006), and in some cases not as complete as might have been hoped. It has been necessary

to tease out the ways in which the accounts and exchanges were “geared” both toward the

immediate, practical needs of the people depicted in them, but also toward the needs of the

collectors (Scott, 1990).

The perceived and documented weaknesses associated with reactivity (Laurier & Philo,

2006) aside, the videos used depict a fair amount of unstructured, naturalistic exchange.

Error Detection and Recovery (Lopez)

-233-

Participants who create video provide their own record of how they “view their

world” (Hammersley & Atkinson, 2007, p. 149) and this has been leveraged in this

research by examining speech for reminders that sources may be naturalistic, but are not

natural.

8.4 A Partial View

Human error has long been understood and explained with examples that illustrate the

characteristics of error (Norman, 1981). In a similar manner, the analysis in this chapter

was intended to give prominence to developers’ own voices in highlighting issues related

to error. The aim in this and the prior three chapters was to convey how error is handled

during software development by establishing a set of accounts that describe what happens,

and what developers make of it.

By using this perspective to examine sets of data that depict development in different

contexts, an understanding of error has emerged that better reflects programming as a

human activity (Capretz, 2014). While it is hoped that the effort has been progressive, that

the heights are higher and the skies clearer than they were before, it is recognised that the

view remains partial (Horst, 2009). This is only a start.

-235-

9. Conclusion

The developers who informed this research would probably agree that most errors in

software development are due to problems of understanding, or of mismatched skill. They

would question the corresponding views on expertise that are conveyed by these terms.

Expertise in software development is not something once achieved that never changes.

Development practice is marked by time (Winograd & Flores, 1987) and influenced by the

larger environment in which it takes place (Curtis, Krasner & Iscoe, 1988). The knowledge

required to develop software cannot help but change.

The tasks performed by developers are likewise active, continuous and dynamic.

Performance is underpinned by skill and ability that develop over time. The problems

encountered by developers are often novel, they require new knowledge or skills to be

employed, or represent activities that the developers do not routinely perform. The

problems are “new to me”.

Though determination of “fit” in software engineering is commonly recognised to be

dependent on an agreement from a requestor that conditions have been satisfied, findings

better support Rasmussen’s view that assessment of what is appropriate is personal (1985).

Requestors will state that a condition has been satisfied, will determine strategic success,

but this can only be done after-the-fact, with the value of hindsight and once the perceived

goals have been established and achieved (Reason, 1990).

 At the desk, at the drawing board, it is the developer who must assess and reassess “fit”

according to their understanding of what is needed right now to keep work moving. When

errors occur, developers need to understand what they are seeing, they need to be able to

do things at this point in time with their tools, within their capabilities, and in light of their

personal, project and organisational goals. They do this, in part, through error handling.

Ch. 9 Conclusion

-236-

Errors usually aren’t left behind, they are put right before a file is released, committed,

or saved. Developers use error occurrences to form or test expectations for how software

should behave, to direct tasks and to verify higher-order task completion. Analysis of error

provides one way to examine software developers that reflects their work as makers of

“grand conceptual structures” (Brooks, 1995, p.7) but also as operators of tools and users

of systems.

9.1 Implications

Identification and recovery hinge on the ways in which developers assess the current

moment, but also on how they come to modify practice over time. Endres suggested that

developers form their own theories about why things go wrong, and that as a result, they

modify programming style. He described this as a learning process (1975), and it is here

that the greatest implications for this research lie. Understanding more about error

detection and recovery stand to illuminate how developers develop competence, how they

learn and grow.

The importance of information gathering to problem solving is established (Lawrance et

al., 2013), but what is done with the information, just how it is transferred from book to

practice or from one experience to another (Eraut, 1994) to form understanding should be

explored in more detail.

Greater attention needs to be given to the nuances of error-driven practice. Reason

notes that there are often more forcing functions presented to operators while taking

something apart, in which each step in taking something apart is "is cued by the physical

characteristics of the item." (Reason, 1990). In software development, by contrast,

inabilities to compile, to run, continually stop the putting together.

Developers are complicit in this, adopting methodologies like test driven development

that require them to continually fail forward. It is clear that the errors presented by

Error Detection and Recovery (Lopez)

-237-

systems are leveraged and relied upon, but more investigation can be made do discover

how this is done and the purposes it serves.

Likewise, findings suggest that feelings inform and modulate decision making in the

midst of error handling, but it is not entirely clear how or to what purpose. Emotion may

serve or hinder developers, or it may be that feelings are of principal use to researchers,

providing verbal signals or hooks into experiences that are under examination. More

investigation should be made before drawing either conclusion.

9.2 A Framework for Examining Practice

To understand the active qualities of error in software development, relations rather than

causes have been examined. Incidents were constructed out of fine-grained information

provided by informants. Public-facing critical and personally severe incidents were

examined, but so were everyday issues. Local problem solving was examined in develop-

ment practice that is primarily strategic (Reason, 1990), forward looking or deliberative

(Eraut, 1994) but also as it unfolded at the desk.

Analysis drew out decision points that relate to the error handling stages, and examined

modulators of handling processes including blame, suspicion and doubt. Developers’

temporal orientation toward software was examined: how they postulate about the future,

describe things in the present moment, and reflect on recent experiences.

This approach advances empirical studies of software development in two ways.

Theoretically, it expands the conceptual space for error in software engineering by

providing insight into errors that occur between commits and releases. In so doing, error is

permitted to be a normal aspect of development practice. By enlarging our understanding

of the role errors play in software development, we are positioned to enrich our under-

standing of how competence, knowledge and skill develop in the circumstances and

situations that comprise daily practice. If not grand or universal in its achievements

Ch. 9 Conclusion

-238-

(Ekstedt, Johnson, & Jacobson, 2012), this research has described how errors are encoun-

tered and handled by professional developers. It joins other recent efforts (Päivärinta &

Smolander, 2015), in establishing a framework to situate findings related to professional

practice that are not tied to specific software engineering tasks, tools or methodologies.

9.3 The Changing Nature of Expertise

The timeframe in which incidents are examined and the perspective developers hold

toward them are significant. Gathered early in a development process, accounts may lend

themselves to categorisation as skill-based errors of action. It is easy to conclude that they

were committed by novices or due to incompetence.

When accounts are gathered in the midst of work or are constructed out of evidence

representing a longer arc of time, murky areas of practice emerge that require closer

examination of contextual and circumstantial details. These details may need to be

carefully tracked or elicited after the fact, because the practice with which they are

intertwined may be so fresh or unformed that the developer (and analysts) may not have

the benefit (or weakness) of hindsight.

When practice is examined over time and out of the bounds of tasks and software

engineering methodology, we are given a sense of how expertise changes, of how it

develops and grows. This sense is formed by observing practice, but also by listening to

what developers say. Developers use future facing statements to create boundaries around

the problem solving space, to constrain and restrict problems and to limit responsibility.

When developers narrate the present moment, they are more affective, the actions they take

are often tactical. When asked to reflect, developers are at once astute and unguarded.

Looking back, developers tell us how technologies work or about how the wheels of

organisations grind. They may give indications that the knowledge they share was learned

as a consequence of the issue they are discussing, but usually such a connection can only

Error Detection and Recovery (Lopez)

-239-

be surmised. If we listen closely, developers reveal what they needed, what they did not

know, what they did not realise in the midst of an issue, or what they still don’t under-

stand. They also tell us what they believe they should have done, they indicate practices

they would like to routinely follow If we continue to listen, they will tell us even more.

-241-

References

Allwood, C. M. (1984). Error detection processes in statistical problem solving. Cognitive
Science, 8(4), 413–437.

Amalberti, R. (2001). The paradoxes of almost totally safe transportation systems. Safety
Science, 37, 109 – 126.

Ambler, S. (2012). Introduction to test driven development. Retrieved from http://www.ag-
iledata.org/essays/tdd.html

Anderson, B. (1997). Work , ethnography and system design work, ethnography and
design. In A. Kent & J. G. Williams (Eds.), (Vol. 20, pp. 159–183). Marcel Dekker.

Aranda, J., & Venolia, G. (2009). The secret life of bugs: going past the errors and
omissions in software repositories. In Proceedings of the 2009 IEEE 31st In-
ternational Conference on Software Engineering (pp. 298–308). IEEE Computer
Society.

Art and Picture Collection, The New York Public Library. Butterflies (detail). Retrieved
from http://digitalcollections.nypl.org/items/510d47e1-26eb-a3d9-e040-
e00a18064a99.

Art and Picture Collection-b, The New York Public Library. (1897). Schutzeinrichtungen
Ii. Retrieved from http://digitalcollections.nypl.org/items/510d47e1-2a6f-a3d9-
e040-e00a18064a99

Avižienis, A., Laprie, J. C., & Randell, B. (2004). Dependability and its threats: a taxono-
my. In R. Jacquart (Ed.), Building the Information Society (Vol. 156, pp. 91–120).
Springer Boston.

Baker, S. J. (n.d.). The Contribution of the Cardboard Cutout Dog to Software Reliability
and Maintainability. Retrieved 23 July 2015, from http://www.sjbaker.org/humor/
cardboard_dog.html

Ball, L. J., & Ormerod, T. C. (2000). Putting ethnography to work: the case for a cognitive
ethnography of design. Int. J. Hum.-Comput. Stud., 53(1), 147–168.

Bannon, L., Schmidt, K., & Wagner, I. (2011). Lest we forget. In ECSCW 2011: Proceed-
ings of the 12th European Conference on Computer Supported Cooperative Work,
24-28 September 2011, Aarhus Denmark (pp. 213–232). Springer.

Barker, C. (2007, November 22). The top 10 IT disasters. ZDnet. Retrieved from http://
www.zdnet.co.uk/news/it-at-work/2007/11/22/the-top-10-it-disasters-of-all-
time-39290976/

Basili, V. R., & Perricone, B. T. (1984). Software errors and complexity: an empirical
investigation. Communications of the ACM, 27(1), 42–52. http://doi.org/http://
doi.acm.org/10.1145/69605.2085

Behar, R. (1997). The vulnerable observer: Anthropology that breaks your heart. Beacon
Press.

References

-242-

Bertolino, A., & Strigini, L. (1998). Assessing the risk due to software faults: Estimates of
failure rate versus evidence of perfection. Software Testing, Verification and
Reliability, 8(3), 155–166.

Beynon-Davies, P. (1997). Ethnography and information systems development: Ethnogra-
phy of, for and within is development. Information and Software Technology,
39(8), 531 – 540.

Bogdanich, W. (2010). Radiation Offers New Cures, and Ways to Do Harm. The New York
Times, n.a. Retrieved from http://www.nytimes.com/2010/01/24/health/24radia-
tion.html?pagewanted=8

Bowdidge, R. W., & Griswold, W. G. (1997). How software engineering tools organize
programmer behavior during the task of data encapsulation. Empirical Software
Engineering, 2(3), 221–267.

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R. (2009). Two
studies of opportunistic programming: interleaving web foraging, learning, and
writing code. In Proceedings of the 27th international conference on Human
factors in computing systems (pp. 1589–1598). ACM.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Psychology, 3(2), 77–101.

Briand, L. C., Labiche, Y., & Sun, H. (2003). Investigating the use of analysis contracts to
improve the testability of object-oriented code. Software: Practice and Experience,
33(7), 637–672.

Brodbeck, F. C., Zapf, D., Prümper, J., & Frese, M. (1993). Error handling in office work
with computers: A field study. Journal of Occupational and Organizational
Psychology, 66(4), 303–317.

Brewer, W. (n.d.). Schemata. In Encylopedia of Cognitive Science. MIT. Retrieved from
http://ai.ato.ms/MITECS/Entry/brewer1.html

Brooks, F. P. (1995). The mythical man-month (anniversary ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2010). Exploring the influence of
identifier names on code quality: an empirical study. Retrieved from http://
oro.open.ac.uk/19224/

Buxton, J. N., & Randell, B. (1970). Software Engineering Techniques: Report on a
conference sponsored by the NATO Science Committee Rome, Italy, 27th to 31st
October 1969. Scientific Affairs Division NATO Brussels 39 Belgium: NATO
Science Committee. Retrieved from http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/

Capretz, L. F. (2014). Bringing the Human Factor to Software Engineering. IEEE
Software, 31(2), 104–104. https://doi.org/10.1109/MS.2014.30

Error Detection and Recovery (Lopez)

-243-

Cataldo, M., Mockus, A., Roberts, J. A., & Herbsleb, J. D. (2009). Software dependencies,
work dependencies, and their impact on failures. Software Engineering, IEEE
Transactions on, 35(6), 864 –878.

Charette, R. N. (2005). Why software fails. IEEE Spectrum, 42(9), 42–49.

Crabtree, A., Tolmie, P., & Rouncefield, M. (2012). Doing design ethnography. Springer.

Crandall, B., Klein, G. A., & Hoffman, R. R. (2006). Working minds: A practitioner’s
guide to cognitive task analysis. The MIT Press.

Cross, N. (2001). Design cognition: Results from protocol and other empirical studies of
design activity. Design Knowing and Learning: Cognition in Design Education,
79–103.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process for
large systems. Communications of the ACM, 31(11), 1268–1287.

Dalcher, D., & Tully, C. (2002). Learning from failures. Software Process: Improvement
and Practice, 7(2), 71–89.

de Souza, C., Redmiles, D., Cheng, L., Millen, D., & Patterson, J. (2004). Sometimes you
need to see through walls: A field study of application programming interfaces. In
CSCW ’04: Proceedings of the 2004 ACM conference on Computer supported
cooperative work (pp. 63–71). Chicago, Illinois, USA: ACM.

Dijkstra, E. W. (1972). ‘The Humble Programmer—1972 Turing Award Lecture. Commu-
nications of the ACM, 15(10), 859–866.

Dittrich, Y., Randall, D. W., & Singer, J. (2009). Software engineering as cooperative
work. Computer Supported Cooperative Work, 18(5-6), 393–399.

Dix, A. (2003). CSC221 - Introduction to Software Engineering. Retrieved from http://
www.comp.lancs.ac.uk/ dixa/teaching/CSC221/

Dix, A., Sas, C., Gomes da Silva, P., McKnight, L., Ormerod, T., & Twidale, M. (2006).
Why bad ideas are a good idea. HCIEd’06.

Easterbrook, S. (2005). Bugs in the space program: the role of software in systems failure.
In INCOSE International Symposium on Systems Engineering. Retrieved from
http://www.cs.toronto.edu/ sme/presentations/BugsInTheSpaceProgram.pdf

Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical
methods for software engineering research. Guide to Advanced Empirical Software
Engineering, 285–311.

Eisenstadt, M. (1993). Tales of debugging from the front lines. In Empirical Studies of
Programmers: Fifth Workshop (pp. 86–112). Palo Alto, CA: Ablex Publishing
Corporation.

Eisenstadt, M. (1997). My hairiest bug war stories. Communications of the ACM, 40(4),
30–37.

Ekstedt, M., Johnson, P., & Jacobson, I. (2012). Where’s the Theory for Software Engi-
neering? IEEE Software, 29(5), 96.

References

-244-

Endres, A. (1975). An analysis of errors and their causes in system programs. In Proceed-
ings of the International Conference on Reliable Software (pp. 327–336). ACM.

Eraut, M. (1994). Developing professional knowledge and competence. Psychology Press.

Falzon, M. A. (2009). Multi-sited ethnography: theory, praxis and locality in contempo-
rary research. Ashgate Publishing, Ltd.

Ferguson, E. S. (1992). Engineering and the mind’s eye. MIT Press.

Flanagan, J. C. (1954). The critical incident technique. Psychological Bulletin, 51(4), 327.

Flor, N. V. (1998). Side-by-side collaboration: A case study. International Journal of
Human-Computer Studies, 49(3), 201–222.

Flor, N. V., & Hutchins, E. L. (1991). A case study of team programming during perfective
software maintenance. In Empirical studies of programmers: Fourth workshop (p.
36). Intellect Books.

Forsythe, D. E. (1999). ‘It’s just a matter of common sense’: Ethnography as invisible
work. Computer Supported Cooperative Work (CSCW), 8(1-2), 127–145.

Freeman, J. T., Riedl, T. R., Weitzenfeld, J. S., Klein, G. A., & Musa, J. D. (1991).
Instruction for software engineering expertise. In Proceedings of the SEI Confer-
ence on Software Engineering Education (pp. 271–282). London, UK, UK:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=648325.754778

Frese, M., & Zapf, D. (1994). Action as the core of work psychology: A German approach.
Handbook of Industrial and Organizational Psychology, 4, 271–340.

Garfinkel, S. (2005). History’s Worst Software Bugs. Retrieved from http://www.wired.-
com/software/coolapps/news/2005/11/69355

Geertz, C. (2000). ‘From the native’s point of view’: on the nature of anthropological
understanding. In Local Knowledge: Further Essays in Interpretive Anthropology
(pp. 55–72).

Graziotin, D., Wang, X., & Abrahamsson, P. (2015). How do you feel, developer? An
explanatory theory of the impact of affects on programming performance. PeerJ
Computer Science, 1, e18. https://doi.org/10.7717/peerj-cs.18.

Guindon, R. (1990). Knowledge exploited by experts during software system design.
International Journal of Man-Machine Studies, 33(3), 279–304.

Guindon, R., Krasner, H., & Curtis, B. (1987). Breakdowns and processes during the early
activities of software design by professionals. In Empirical Studies of
Programmers: Second Workshop. Norwood, NJ: Ablex Publishing Corporation,
Lawrence Erlbaum Associates (pp. 65–82).

Guo, P. J., Zimmermann, T., Nagappan, N., & Murphy, B. (2011). Not my bug! and other
reasons for software bug report reassignments. In Proceedings of the ACM 2011
conference on Computer supported cooperative work (pp. 395–404). ACM.

Gusfield, J. (1976). The literary rhetoric of science: comedy and pathos in drinking driver
research. American Sociological Review, 41(1), 16–34.

Error Detection and Recovery (Lopez)

-245-

Hammersley, M. (2003). Recent radical criticism of interview studies: any implications for
the sociology of education? British Journal of Sociology of Education, 24(1), pp.
119–126.

Hammersley, M., & Atkinson, P. (2007). Ethnography: Principles in practice. Routledge.

Hanebutte, N., & Oman, P. W. (2005). Software vulnerability mitigation as a proper subset
of software maintenance. Journal of Software Maintenance and Evolution: Re-
search and Practice, 17(6), 379–400.

Heath, C., Hindmarsh, J., & Luff, P. (2010). Video in qualitative research: Analysing
social interaction in everyday life. Sage Publications Ltd.

Higgins, A. (2007). Code talk’in soft work. Ethnography, 8(4), 467–484.

Hoare, C. A. R. (1996). How did software get so reliable without proof? In Proceedings of
the Third International Symposium of Formal Methods Europe on Industrial
Benefit and Advances in Formal Methods (p. 17). Springer-Verlag.

Hofmann, D., & Frese, M. (2011). Errors in organizations. Routledge.

Hollnagel, E. (1983). Human error. In Position paper for NATO conference on human
error. Bellagio, Italy.

Hollnagel, E. (1998). Cognitive reliability and error analysis method (CREAM). Elsevier.

Hollnagel, E. (2011). When things go wrong: failures as the flip side of successes. In D. A.
Hofmann & M. Frese (Eds.), Errors in organizations (pp. 225–244). Routledge.

Hollnagel, E., & Amalberti, R. (2001). The emperor’s new clothes: Or whatever happened
to ‘human error’. In Proceedings of the 4th international workshop on human
error, safety and systems development (pp. 1–18).

Hollnagel, E., Woods, D. D., & Leveson, N. (Eds.). (2006). Resilience engineering:
concepts and precepts. Aldershot, England  ; Burlington, VT: Ashgate.

Holmes, J. (2007). Making humour work: Creativity on the job. Applied Linguistics, 28(4),
518.

Horst, C. (2009). Expanding sites: the question of ‘depth’ explored. In M. A. Falzon (Ed.),
Multi-sited ethnography: theory, praxis and locality in contemporary research (pp.
119–134). Ashgate Publishing, Ltd.

Huang, F., Liu, B., & Huang, B. (2012). A taxonomy system to identify human error causes
for software defects. In The 18th international conference on reliability and quality
in design. Retrieved from https://www.researchgate.net/profile/Fuqun_Huang/
publication/270160662_A_Taxonomy_System_to_Identify_Human_Error_Caus-
es_for_Software_Defects/links/54a198dd0cf256bf8baf75d1.pdf

Huang, F., Liu, B., Song, Y., & Keyal, S. (2014). The links between human error diversity
and software diversity: Implications for fault diversity seeking. Science of Comput-
er Programming, 89, 350–373.

Hughes, J., & Parkes, S. (2003). Trends in the use of verbal protocol analysis in software
engineering research. Behaviour & Information Technology, 22(2), 127–140.

References

-246-

Ince, D. (2010). Victoria climbie, baby p and the technological shackling of british
childrens’ social work (No. 2010/01). Open University.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice.
Journal of the Learning Sciences, 4(1), 39–103.

Keith, N., & Frese, M. (2005). Self-regulation in error management training: emotion
control and metacognition as mediators of performance effects. Journal of Applied
Psychology, 90(4), 677.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam,
K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in
software engineering. Software Engineering, IEEE Transactions on, 28(8), 721–
734.

Kling, R. (1994). Reading ‘All about’ computerization: How genre conventions shape
nonfiction social analysis. The Information Society, 10, 147–172.

Kling, R., & Courtright, C. (2003). Group behavior and learning in electronic forums: A
sociotechnical approach. The Information Society, 19(3), 221–235.

Kling, R., McKim, G., & King, A. (2003). A bit more to it: scholarly communication
forums as socio-technical interaction networks. Journal of the American Society for
Information Science and Technology, 54(1), 47–67.

Knoblauch, H. (2005). Focused ethnography. In Forum Qualitative Sozialforschung/
Forum: Qualitative Social Research (Vol. 6).

Knoblauch, H., & Schnettler, B. (2012). Videography: analysing video data as a ‘fo-
cused’ethnographic and hermeneutical exercise. Qualitative Research, 12(3), 334–
356.

Knoblauch, H., & Tuma, R. (2011). Videography. An interpretative approach to video-
recorded micro-social interaction. The SAGE Handbook of Visual Research
Methods, 414–430.

Knuth, D. E. (1989). The errors of TEX. Software: Practice and Experience, 19(7), 607–
685.

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated software
development teams. In Proceedings of the 29th international conference on
Software Engineering (pp. 344–353). IEEE Computer Society.

Ko, A. J., & Myers, B. (2008). Debugging reinvented. In Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference on (pp. 301–310). IEEE.

Ko, A. J., & Myers, B. A. (2005). A framework and methodology for studying the causes
of software errors in programming systems. Journal of Visual Languages &
Computing, 16(1), 41–84.

Koenemann-Belliveau, J., Carroll, J. M., Rosson, M. B., & Singley, M. K. (1994).
Comparative usability evaluation: Critical incidents and critical threads. Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems: Cele-
brating Interdependence, 245–251.

Error Detection and Recovery (Lopez)

-247-

Krasner, G. (1983). Smalltalk-80: bits of history, words of advice. Addison-Wesley
Longman Publishing Co., Inc.

Kristoffersen, S. (2006). Designing a program. programming the design. TeamEthno-
Online Issue, 2, 34–51.

Lammers, S. (1986). Programmers at work. Harper & Row Publishers, Inc. New York,
NY, USA.

LaToza, T. D., & Myers, B. A. (2010). On the importance of understanding the strategies
that developers use. In Proceedings of the 2010 ICSE Workshop on Cooperative
and Human Aspects of Software Engineering (pp. 72–75). ACM.

LaToza, T. D., & Myers, B. A. (2011). Designing useful tools for developers. In Proceed-
ings of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of Program-
ming Languages and Tools (pp. 45–50). ACM.

Laurier, E., & Philo, C. (2006). Natural Problems of Naturalistic Video Data. In H.
Knoblauch, B. Schnettler, J. Raab, & H.-G. Soeffner (Eds.), Video Analysis.
Methodology and Methods. Frankfurt am Main: Peter Lang.

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life.
Cambridge University Press.

Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., & Fleming, S. D. (2013).
How programmers debug, revisited: An information foraging theory perspective.
Software Engineering, IEEE Transactions on, 39(2), 197–215.

Le Coze, J. C. (2015). Reflecting on Jens Rasmussen’s legacy. A strong program for a hard
problem. Safety Science, 71, Part B(0), 123 – 141.

Leszak, M., Perry, D. E., & Stoll, D. (2002). Classification and evaluation of defects in a
project retrospective. The Journal of Systems & Software, 61(3), 173–187.

Leveson, N. G., & Turner, C. S. (1993). Investigation of the Therac-25 accidents. IEEE
Computer, 26(7), 18–41.

Levy, M., Salvadori, M., & Woest, K. (2002). Why buildings fall down: how structures
fail. WW Norton & Company.

Lewis, C., & Norman, D. A. (1986). Designing for Error. In User Centered System Design.
Erlbaum Associates, Inc.

Lopez, T., Petre, M., & Nuseibeh, B. (2012a). Getting at ephemeral flaws. In Cooperative
and Human Aspects of Software Engineering (CHASE), 2012 5th International
Workshop (pp. 90–92). IEEE.

Lopez, T., Petre, M., & Nuseibeh, B. (2012b). Thrashing, tolerating and compromising in
software development. In Psychology of Programming Interest Group Annual
Conference (PPIG-2012), London Metropolitan University, UK. London Met-
ropolitan University, UK: London Metropolitan University, UK, London Met-
ropolitan University.

Lopez, T., Petre, M., & Nuseibeh, B. (2015). Active Error: Examining Error Detection and
Recovery in Software Development. Presented at the Psychology of Programming

References

-248-

Interest Group, Work-in-Progress Meeting, 2015., School of Science and Technolo-
gy, Middlesex University. London, UK.

Lutters, W. G., & Seaman, C. B. (2007). Revealing actual documentation usage in software
maintenance through war stories. Information and Software Technology, 49(6), 576
– 587.

Magalhães, J., von Staa, A., & de Lucena, C. J. . (2009). Evaluating the recovery-oriented
approach through the systematic development of real complex applications.
Software: Practice and Experience, 39(3), 315–330.

Mahoney, M. S. (2008). What makes the history of software hard. IEEE Annals of the
History of Computing, 1(3), 8–18.

Markus, M. L. (1994). Finding a happy medium: Explaining the negative effects of
electronic communication on social life at work. ACM Transactions on Information
Systems (TOIS), 12(2), 119–149.

Martin, M. D., & Sommerville, I. (2004). Patterns of cooperative interaction: Linking
ethnomethodology and design. ACM Transactions on Computer-Human Interac-
tion (TOCHI), 11(1), 59–89.

McDonnell, J. (2012). Accommodating disagreement: A study of effective design
collaboration. Design Studies, 33(1), 44–63.

McGinn, M. K. (2008). Secondary data. In L. M. Given (Ed.), The Sage encyclopedia of
qualitative research methods. Sage Publications.

Miyake, N. (1986). Constructive interaction and the iterative process of understanding.
Cognitive Science, 10(2), 151–177.

Narayan, K. (2012). Alive in the writing: Crafting ethnography in the company of
Chekhov. University of Chicago Press.

Naur, P., & Randell, B. (1969). Software Engineering: Report on a conference sponsored
by the NATO Science Committee Garmisch, Germany, 7th to 11th October 1968.
Scientific Affairs Division NATO Brussels 39 Belgium: NATO Science
Committee. Retrieved from http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

Nickerson, J. V., & Yu, L. (2010). ‘There’s Actually a Car’ Perspective taking and
evaluation in software-intensive systems design conversations.

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88(1), 1–15.

Norman, D. A. (1983). Design rules based on analyses of human error. Communications of
the ACM, 26(4), 258.

Norman, D. A. (2002). The design of everyday things. Basic Books.

Norman, D. A., & Shallice, T. (1986). Attention to action. In R. J. Davidson, G. E.
Schwartz, & D. Shapiro (Eds.), Consciousness and Self-Regulation (pp. 1–18).
Springer US.

North, D. (n.d.). Introducing BDD. Retrieved from http://dannorth.net/introducing-bdd/

Error Detection and Recovery (Lopez)

-249-

Nuseibeh, B. (1997). Ariane 5: Who dunnit? IEEE Software, 14, 15–16. https://doi.org/
10.1109/MS.1997.589224

Orlikowski, W. J. (1992). Learning from notes: Organizational issues in groupware
implementation. In Proceedings of the 1992 ACM conference on Computer-
supported cooperative work (pp. 362–369). ACM.

Orlikowski, W. J., & Gash, D. C. (1994). Technological frames: making sense of informa-
tion technology in organizations. ACM Transactions on Information Systems
(TOIS), 12(2), 174–207.

Orlikowski, W. J., & Iacono, C. S. (2001). Research commentary: Desperately seeking the
‘IT’ in IT research—A call to theorizing the IT artifact. Information Systems
Research, 12(2), 121–134.

Orr, J. E. (1986). Narratives at work: Story telling as cooperative diagnostic activity. In
Proceedings of the 1986 ACM conference on Computer-supported cooperative
work (pp. 62–72). ACM.

Pascal, C. (n.d.). The teddy bear principle in programming. Retrieved from http://compas-
pascal.blogspot.de/2007/12/teddy-bear-principle

Päivärinta, T., & Smolander, K. (2015). Theorizing about software development practices.
Science of Computer Programming, 101, 124–135. https://doi.org/10.1016/
j.scico.2014.11.012

Pennington, N., & Grabowski, B. (1990). The tasks of programming. Hoc et Al, 307, 45–
62.

Perry, D. E. (2010). Where do most software flaws come from? In A. Oram & G. Wilson
(Eds.), Making Software: What Really Works, and Why We Believe It (pp. 453–
494). O’Reilly Media, Inc.

Perry, D. E., & Evangelist, W. M. (1985). An empirical study of software interface faults.
Proceedings of the International Symposium on New Directions in Computing, 32–
38.

Perry, D. E., & Evangelist, W. M. (1987). An empirical study of software interface faults
— an update. In Proceedings of the Twentieth Annual Hawaii International
Conference on Systems Sciences (Vol. II, pp. 113–126).

Perry, D. E., & Stieg, C. (1993). Software faults in evolving a large, real-time system: a
case study. In Proceedings of the 4th European Software Engineering Conference
on Software Engineering (pp. 48–67). Springer-Verlag.

Perrow, C. (1984). Normal accidents: living with high-risk technologies. New York: Basic
Books.

Plonka, L., Sharp, H., & Van der Linden, J. (2012). Disengagement in pair programming:
does it matter? In Software Engineering (ICSE), 2012 34th International Confer-
ence on (pp. 496–506). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6227166

References

-250-

Prior, J. (2011). Everyday practices of agile software developers. University of Technolo-
gy Sydney.

Pugh, W. (2009). Mistakes that matter. In JavaOne Conference. University of Maryland.
Retrieved from http://www.cs.umd.edu/ pugh/MistakesThatMatter.pdf

Pullum, L. L. (2001). Software fault tolerance techniques and implementation. Norwood,
MA, USA: Artech House, Inc.

Randell, B. (1998). Dependability-a unifying concept. In Proceedings of the Conference on
Computer Security, Dependability, and Assurance: From Needs to Solutions. IEEE
Computer Society Washington, DC, USA.

Randell, B. (2003). On failures and faults. In K. Araki, S. Gnesi, & D. Mandrioli (Eds.),
FME 2003: Formal Methods (Vol. 2805, pp. 18–39). Springer Berlin / Heidelberg.

Randell, B. (2007). A computer scientist’s reactions to NPfIT. Journal of Information
Technology, 22(3), 222–234.

Rasmussen, J. (1985). Human error data. Facts or fiction? Roskilde, Denmark: Riso
National Laboratory.

Rasmussen, J. (1990). The role of error in organizing behaviour. Ergonomics, 33(10-11),
1185–1199.

Rasmussen, J. (1997). Risk management in a dynamic society: a modelling problem. Safety
Science, 27(2), 183–213.

Rasmussen, J., & Jensen, A. (1974). Mental procedures in real-life tasks: a case study of
electronic trouble shooting. Ergonomics, 17(3), 293–307.

Rasmussen, J., Nixon, P., & Warner, F. (1990). Human error and the problem of causality
in analysis of accidents [and discussion]. Philosophical Transactions of the Royal
Society of London. B, Biological Sciences, 327(1241), 449–462.

Rasmussen, J., Pejtersen, A. M., & Schmidt, K. (1990). Taxonomy for cognitive work
analysis. Riso National Laboratory.

Reason, J. (1984). Lapses of attention in everyday life. Varieties of Attention, 515–549.

Reason, J. (1990). Human Error. New York: Cambridge University Press.

Reason, J. (2004). Beyond the organisational accident: the need for “error wisdom” on the
frontline. Quality and Safety in Health Care, 13(suppl 2), ii28–ii33.

Reason, J., Hollnagel, E., & Paries, J. (2006). Revisiting the «Swiss cheese» model of
accidents. EEC Note No. 13/06. Retrieved from: http://publish.eurocontrol.int/eec/
gallery/content/public/document/eec/report/2006/017_Swiss_Cheese_Model.pdf

Reason, J., Manstead, A., Stradling, S., Baxter, J., & Campbell, K. (1990). Errors and
violations on the roads: a real distinction? Ergonomics, 33(10-11), 1315–1332.

Riedl, T. R., Weitzenfeld, J. S., Freeman, J. T., Klein, G. A., & Musa, J. D. (1991). What
we have learned about software engineering expertise. In Proceedings of the SEI
Conference on Software Engineering Education (pp. 261–270). London, UK, UK:
Springer-Verlag.

Error Detection and Recovery (Lopez)

-251-

Rizzo, A., Bagnara, S., & Visciola, M. (1987). Human error detection processes. In-
ternational Journal of Man-Machine Studies, 27(5), 555–570.

Rizzo, A., Ferrante, D., & Bagnara, S. (1995). Handling human error. In Expertise and
technology: Cognition & human-computer cooperation (pp. 195–212).

Rizzo, A., Parlangeli, O., Marchigiani, E., & Bagnara, S. (1996). The management of
human errors in user-centered design. ACM SIGCHI Bulletin, 28(3), 114–118.

Robillard, M. P. (2009). What makes APIs hard to learn? Answers from developers. IEEE
Software, 26(6), 24–34.

Robinson, H., Segal, J., & Sharp, H. (2007). Ethnographically-informed empirical studies
of software practice. Information and Software Technology, 49(6), 540 – 551.

Rubber duck debugging. (n.d.). In Wikipedia. Addison Wesley. Retrieved from https://
en.wikipedia.org/wiki/Rubber_duck_debugging

Sachs, P. (1995). Transforming work: collaboration, learning, and design. Commun. ACM,
38(9), 36–44.

Schneidewind, N. F., & Hoffmann, H. M. (1979). An experiment in software error data
collection and analysis. Software Engineering, IEEE Transactions on, SE-5(3), 276
– 286.

Scott, J. (1990). A matter of record: documentary sources in social research (Vol. 12).
Polity Press Cambridge.

Seaman, C. B., & Basili, V. R. (1997). An empirical study of communication in code
inspections. In Proceedings of the 19th international conference on Software
engineering (p. 106). ACM.

Sellen, A. J. (1994). Detection of everyday errors. Applied Psychology, 43(4), 475–498.

Sharp, H., Robinson, H., & Woodman, M. (2000). Software engineering: community and
culture. Software, IEEE, 17(1), 40 –47.

Shaw, M. (2002). ‘Self-healing’: softening precision to avoid brittleness: position paper for
WOSS ’02: workshop on self-healing systems. WOSS ’02: Proceedings of the First
Workshop on Self-Healing Systems, 111–114.

Sillito, J., Murphy, G. C., & De Volder, K. (2008). Asking and answering questions during
a programming change task. Software Engineering, IEEE Transactions on, 34(4),
434–451.

Sillitti, A., Succi, G., & Vlasenko, J. (2012). Understanding the impact of pair program-
ming on developers attention: a case study on a large industrial experimentation. In
Proceedings of the 2012 International Conference on Software Engineering (pp.
1094–1101). IEEE Press.

Smith, M. K. (2003). Michael Polanyi and tacit knowledge. Retrieved from http://
infed.org/mobi/michael-polanyi-and-tacit-knowledge/

Sözer, H., Tekinerdoǧan, B., & Akşit, M. (2009). FLORA: A framework for decomposing
software architecture to introduce local recovery. Software: Practice and Experi-
ence, 39(10), 869–889. http://doi.org/10.1002/spe.916

References

-252-

Spradley, J. P. (1979). The Ethnographic Interview. Wadsworth Publishing Company.

Spradley, J. P. (1980). Participant Observation. Harcourt Brace College Publishers.

Storey, M. A., Ryall, J., Bull, R. I., Myers, D., & Singer, J. (2008). TODO or to bug. In
Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference
on (pp. 251–260). IEEE.

Suchman, L. A. (1987). Plans and situated actions: the problem of human-machine
communication. Cambridge university press.

Svenonius, E. (2000). The intellectual foundation of information organization. MIT press.

Taylor, R. N., & van der Hoek, A. (2007). Software design and architecture the once and
future focus of software engineering. In International Conference on Software
Engineering (pp. 226–243). IEEE Computer Society Washington, DC, USA.

Than, T. T., Jackson, M., Laney, R., Nuseibeh, B., & Yu, Y. (2009). Are your lights off?
Using problem frames to diagnose system failures. Requirements Engineering,
IEEE International Conference on, 0, v–ix.

Turkle, S. (2005). The second self: Computers and the human spirit.

Van Maanen, J. (2011). Tales of the Field: On Writing Ethnography (Second Edition).
University of Chicago Press.

Vinson, N. G., & Singer, J. (2008). A practical guide to ethical research involving humans.
In Guide to Advanced Empirical Software Engineering (pp. 229–256). Springer.

Walia, G. S., Carver, J. C., & Bradshaw, G. (2015). Workshop on applications of human
error research to improve software engineering (WAHESE 2015). In Proceedings
of the 37th International Conference on Software Engineering-Volume 2 (pp. 1019–
1020). IEEE Press. Retrieved from http://dl.acm.org/citation.cfm?id=2819259

Weatherbee, T. G. (2009). Critical incident case study. In A. J. Mills, G. Durepos, & E.
Wiebe (Eds.), Encyclopedia of case study research (Vol. 1, pp. 257–248). Sage
Publications.

Weick, K. E. (1990). The vulnerable system: An analysis of the Tenerife air disaster.
Journal of Management, 16(3), 571–593.

Weinberg, G. M. (1998). The psychology of computer programming (silver anniversary
ed.). New York, NY, USA: Dorset House Publishing Co., Inc.

Weitzenfeld, J. S., Riedl, T. R., Freeman, J. T., Klein, G. A., & Musa, J. D. (1991).
Knowledge elicitation for software engineering expertise. In Proceedings of the SEI
Conference on Software Engineering Education (pp. 283–296). London, UK, UK:
Springer-Verlag.

Wildman, D. (1995). Getting the most from paired-user testing. Interactions, 2(3), 21–27.
http://doi.org/10.1145/208666.208675

Winograd, T., & Flores, F. (1987). Understanding Computers and Cognition. Addison-
Wesley.

Error Detection and Recovery (Lopez)

-253-

Woods, D. D., & Cook, R. I. (1999). Perspectives on human error: Hindsight biases and
local rationality. 1999), Handbook of Applied Cognition.

Woods, D. D., & Cook, R. I. (2003). Mistaking error. Patient Safety Handbook, 95–108.

Woods, D. D., Johannesen, L. J., Cook, R. I., & Sarter, N. B. (1994). Behind human error:
Cognitive systems, computers and hindsight. DTIC Document.

Xu, S., & Rajlich, V. (2005). Dialog-based protocol: an empirical research method for
cognitive activities in software engineering. In Empirical Software Engineering,
2005. 2005 International Symposium on (p. 10–pp). IEEE.

Zapf, D., Brodbeck, F. C., Frese, M., Peters, H., & Prümper, J. (1992). Errors in working
with office computers: A first validation of a taxonomy for observed errors in a
field setting. International Journal of Human-Computer Interaction, 4(4), 311–339.

Zapf, D., Maier, G. W., Rappensperger, G., & Irmer, C. (1994). Error detection, task
characteristics, and some consequences for software design. Applied Psychology,
43(4), 499–520.

Zorich, D. (2008). A survey of digital humanities centers in the united states. Council on
Library and Information Resources.

Zou, F. (2003). A change-point perspective on the software failure process. Software
Testing, Verification and Reliability, 13(2), 85–93.

-255-

Appendices

A. Conventions and Tools

A.1 Transcription

Audio recorded interviews, design video and programming videos were transcribed

using the same basic transcription conventions, defined to capture details of speech and

interaction. Conventions were adjusted to meet requirements of different media. For

example, audio interviews taken for Chapter 7 do not permit the transcription of behaviour

or action that took place while work was in progress, while the design videos (Chapter 5.

At the Drawing Board) do. The programming videos (Chapter 6) included a fair amount of

reading of content on the screen which was indicated where possible using quotes in the

transcription and a note indicating that the developer was Reading or Narrating.

Conventions were adapted from two sources. In “Making Humour Work: Creativity on

the Job”, Holmes analysed everyday workplace interaction to examine claims that humour

is associated with creativity in the work place (Holmes, 2007). Transcription conventions

given in the IASRDR 2009 tutorial on analysing design meetings also made use of

Holmes’ conventions and were used to develop notation.

Transcriptions were made using the software Transcriptions (https: //code.google. com/

p/transcriptions/) (R.I.P.) and its commercial counterpart f5, available at: http: //www.

audiotranskription. de. Timestamps were entered into the texts following the conventions

of these programs. Timestamps were noted at four or five minute increments, but have

also been entered during analysis to indicate the start and end of incidents and to mark

other points of interest.

Transcription Conventions

wow

“ ”

+

Underlining indicate emphatic stress

Quotes indicate when the words a speaker
makes mirror text being written on a screen
or read from a specification.

+ Symbols indicate pauses. Pauses were not
timed, however longer pauses are repre-
sented with multiple + symbols (generated
using a “one one thousand, two one thou-
sand count”).

https://code.google.com/p/transcriptions/
https://code.google.com/p/transcriptions/

Appendices

-256-

Table A.1: Transcription conventions.

A.2 Signalling Devices

The critical decision method protocol for collecting retrospective accounts of work

suggests that verbal signals may be given during interviews that will indicate decision

points or developments in a problem solving sequence (Crandall et al., 2006). This was

also found during analysis to be true of accounts given by pairs.

In the data analysed for the studies reported in Chapters 5, 6 and 7, verbal signals

indicated how an insight was perceived at the time of the incident or interview, or indicated

a way in which the experience unfolded that ran counter to the informant’s former or

desired experience. Verbal signals were also found to highlight the detection of a problem,

or indicate a resolution. They indicated options that an informant considered, or revealed

constraints on action brought about by policies or practices in the broader work environ-

.../... /...

[Reads from prompt]

[Gest: moves hand]

[WB: draws a box]

[Voce: Character|

Falsetto]

(Laughs)

(inaudible)

(so then we)

--

Interjection (e. g. of assent) or simultaneous
speech, placed at approximate point of oc-
currence.

Transcriber's comments regarding action on
the screen. Comments may include refer-
ence to the name of a corresponding image
file that depicts a scene from the video at
that point.

Comment describing a gesture that is made
on-screen.

Comment about activity at the whiteboard.

Comment indicating that the speaker is
using a voice. Start and end points are indi-
cated with:.

Paralinguistic activity is described within
parentheses, may also occur within com-
ments

Inaudible text

Best guess about inaudible text

Cut-off utterance. Also used to indicate
where speaker 'jumps in'

Trailing off

Underscores are used to anonymize data.

Error Detection and Recovery (Lopez)

-257-

ment. Broad characteristics of signals are given below, while a sample of verbal signals

collected from the data can be read in Table A.2.

Repetition often indicates the presence of an incident to the analyst, particularly in

regards to conceptual or design issues that do not have clearly demarcated, corresponding

material actions. Sometimes repetition of a single phrase or detail may “name” the problem

for the analyst. Verbal signals related to repetition include language that indicated

disagreement (e. g. "I don't think so") or lack of understanding (e. g "I don't know"), and

may have been accompanied by expressions of lack of confidence in the ideas being

expressed.

Signals may also be gestural. Lack of confidence might be signalled by repeated turns

away from a whiteboard as if to seek assent from the partner and the corresponding

provision of assent in the form of paralinguistic utterances (e. g. "mm hmm", "yeah").

Signals may be reactive. Informants on the videos do not always indicate what they are

thinking or why they perform some actions. The interview data I collected was likewise at

times a bit too "artful" (Hammersley, 2003). It was sometimes evident that informants said

what they thought was wanted for the research, or relayed a desired behaviour that did not

match other evidence. The developers were at also times reactive to the experience of

being filmed (Laurier & Philo, 2006). In the quote that follows, Marcus displays a clear

awareness of the recording.

"As soon as I know I'm recorded, I start talking a lot. I should have been a DJ." -

(Marcus, Ep. 1, 10:30).

It is not possible to say that Marcus’ behaviour was different than it would have been if he

hadn’t been recorded, but it, along with other indicators served as signalling devices during

analysis, reminders that the videos, while naturalistic, were not entirely natural

Verbal Signals (Selected)

Reasoning

Naming Prob-
lems:

Worry/
Concern:

it took me a moment to realise
poking around in the dark”
Sticking point
That’s a funniness
I’m quite wary of screwing things up
It doesn’t feel right”

Appendices

-258-

Table A.2. Verbal signals used to develop sequences of error handling. This list is
representative, not comprehensive.

Serendipity

Preferred ways
of working:

Interestingness

Prior experi-
ence

Suddenly it worked
That rang a bell straight away
I have been lucky
Touch wood
I don't like to
The way I usually do that is
Around here
That’s interesting
Strange, very strange
That’s funny
The problem was much simpler before
The last time
I’ve seen it before

B. Notes on At the Drawing Board

The study At the Drawing Board is reported in Chapter 5. It drew upon data collected at

Site A. For an overview of sites, see Chapter 4, Section 4.3. Other detail about data

collection and analysis are reported in Chapter 4, Section 4.4.1, and in Chapter 5, Section

5.2.

B.1 Columnar Analysis

Columnar transcription conventions were adapted from Interaction analysis: Foundations

and practice (Jordan & Henderson, 1995). Data included in the columnar transcription

was taken from the full transcription of dialogue, but segmented and organised to facilitate

analysis. Multiple time-stamped entries from the rich transcription were at times grouped

into a single exchange, represented within a table row. Guindon's 'Kinds of

Knowledge' (1990) (see also Section B.3 for a summary) were used to annotate the

'analysis' column for individual exchanges. The schema for the columnar transcription is

Error Detection and Recovery (Lopez)

-259-

given in Table B.1.1, while an excerpt from a transcription is provided in Table B.2.2,

below.

Table B.1.1: Columnar transcription.

In Table B.1.2 that follows, an excerpt is given of the columnar analysis made for the
incident reported in Chapter 5, Section 5.3.3.

Episode Number (~length of the episode in minutes)

Summary: A brief two or three sentence explanation of the episode; comparable to the

information supplied in the Content Log described by Jordan and Austin (1995)

Verbal

#00:41:23.0#

Verbal data of the exchange
is included here, underneath
a timestamp and with cross
references [n] to gestures,
actions, whiteboard activity,
or references by designers
to the design prompt.

Gesture/Ac-
tion

[n] note on
gesture

Whiteboard

[n] note on
whiteboard
activity

Reference to
prompt

[n] note on
use of prompt

Analysis

Commentary
on design ac-
tivity given
here

Episode 1 (< 1 min.)
F wonders how the results of the simulation are quantified. Two issues are intertwined: one, how
simulations are configured, reported, and saved by the user in the user interface, and; two, what represents
a simulation, what constitutes success or failure. The first issue prompts the designers to consider
immediate implications of managing simulations. The second relates to how factors such as speed,
distance, and car density on roads should optimally be combined by students to produce simulations.

Verbal Gesture/Action
White-
board Prompt Analysis

Appendices

-260-

Table B.1.2 Excerpt of columnar analysis. This is an excerpt from the incident analysed in
Chapter 5, Section 5.3.3

#00:08:22.1#

F: Well, so one is you want to
change the layout of the map,

M: um hmm

F: two is you want to change the
parameters you gave it in terms of
speeds and timings, right? And
three, you want to run it, meaning
little dots are moving, showing
you how the traffic is flowing.
And what does that mean? [1]

F: How do you? What kind of
metric do you get back to tell you
this is working, you know? How
do you assess the success

M: Yeah it kind of feels like (in-
audible)/of the timing?

#00:08:58.0#

M: It's nice in the simulation to be
able to watch what's going on
here, and you need kind of a sum-
mary area to kind of tell you[1]
[2]

F: Yes, mm hmm. [3]

M: to kind of tell you what your
settings--

F: A dashboard.

M:-- are for the individual inter-
sections, and what kind of effect,
like how much is the traffic back-
up at this light

F: Exactly.

M: or what's the average wait-
time at this light [4] . So in terms
of objects that they need to deal
with, there's, are we going to call
them streets or roads [5] ?

[1] M draws a
pattern of lines
on the Drawing
Area

[1] M waves
hand over an
area to the right
of the grid he
has been draw-
ing.

[3] F, with hand
toward the area
to the right he
has added

[4] M shoulder
shrugs

[2] M
adds a
rec-
tangular
block to
the right-
hand side
of the
board

[5]
Refers
to de-
sign
prompt

F enumerates functions the
program should support.
 problem framing ("you
want..."), with reference to
the solution space ("meaning
little dots are moving, show-
ing you...").

It marks the introduction of
the "what does it's working
mean" difficulty.

Asking questions: "what does
that mean? How do you?
What kind of metric do you
get back to tell you this is
working, you know? How do
you assess the success?"

M moves into the solution
space with a UI feature: the
addition of the Summary
Area (Sect. 3.3). The external
representation is low-fi, just a
box, but he verbally notes the
kinds of behaviours this sec-
tion will support. His refer-
ence to "what kind of effect"
is the only reference to the
problem raised by F.

Note that M makes clear the
transition to solution with a
hand gesture over the right
hand portion of the screen
that she mirrors.

F introduces the concept
'dashboard' as a way to de-
scribe the purpose of the sum-
mary area, but this is not
picked up by M.

M introduces a design strate-
gy (Sect 3.4) here with dis-
cussion about "objects that
they need to deal with".
These are documented as a
list using a blue marker.

Error Detection and Recovery (Lopez)

-261-

B.2 Design Prompt

Following is the design prompt used by Kasia and Bill in the Amberpoint design session.

The prompt was written by the organisers of the "Studying Professional Software

Design" (SPSD) workshop; it was issued to designers at the time of participation.

Design Prompt: Traffic Signal Simulator

Problem Description
For the next two hours, you will be tasked with designing a traffic flow simulation pro- gram.

Your client for this project is Professor E, who teaches civil engineering at UCI. One of the courses
she teaches has a section on traffic signal timing, and according to her, this is a particularly
challenging subject for her students. In short, traffic signal timing involves determining the amount
of time that each of an intersection’s traffic lights spend being green, yellow, and red, in order to
allow cars in to flow through the intersection from each direction in a fluid manner. In the ideal
case, the amount of time that people spend waiting is minimized by the chosen settings for a given
intersection’s traffic lights. This can be a very subtle matter: changing the timing at a single
intersection by a couple of seconds can have far-reaching effects on the traffic in the surrounding
areas.

There is a great deal of theory on this subject, but Professor E. has found that her students find the
topic quite abstract. She wants to provide them with some software that they can use to “play” with
different traffic signal timing schemes, in different scenarios. She anticipates that this will allow
her students to learn from practice, by seeing first-hand some of the patterns that govern the
subject.

Requirements
The following broad requirements should be followed when designing this system:

1. Students must be able to create a visual map of an area, laying out roads in a pattern of their
choosing. The resulting map need not be complex, but should allow for roads of varying
length to be placed, and different arrangements of intersections to be created. Your
approach should readily accommodate at least six intersections, if not more.

2. Students must be able to describe the behavior of the traffic lights at each of the intersections. It
is up to you to determine what the exact interaction will be, but a variety of sequences and
timing schemes should be allowed. Your approach should also be able to accommodate
left-hand turns protected by left-hand green arrow lights. In addition:

1. Combinations of individual signals that would result in crashes should not be allowed.

2. Every intersection on the map must have traffic lights (there are not any stop signs,
overpasses, or other variations). All intersections will be 4-way: there are no “T” intersec-
tions, nor one-way roads.

3. Students must be able to design each intersection with or without the option to have
sensors that detect whether any cars are present in a given lane. The intersection’s lights’
behavior should be able to change based on the input from these sensors, though the exact
behavior of this feature is up to you.

Appendices

-262-

3. Based on the map created, and the intersection timing schemes, the students must be able to
simulate traffic flows on the map. The traffic levels should be conveyed visually to the user
in a real-time manner, as they emerge in the simulation. The current state of the intersec-
tions’ traffic lights should also be depicted visually, and updated when they change. It is up
to you how to present this information to the students using your program. For example,
you may choose to depict individual cars, or to use a more abstract representation.

4. Students should be able to change the traffic density that enters the map on a given road. For
example, it should be possible to create a busy road, or a seldom- used one, and any variation in
between. How exactly this is declared by the user and depicted by the system is up to you.

Broadly, the tool should be easy to use, and should encourage students to explore multiple
alternative approaches. Students should be able to observe any problems with their map’s timing
scheme, alter it, and see the results of their changes on the traffic patterns.

This program is not meant to be an exact, scientific simulation, but aims to simply illustrate the
basic effect that traffic signal timing has on traffic. If you wish, you may assume that you will be
able to reuse an existing software package that provides relevant mathematical functionality such
as statistical distributions, random number generators, and queuing theory.

You may add additional features and details to the simulation, if you think that they would support
these goals.

Your design will primarily be evaluated based on its elegance and clarity – both in its overall
solution and envisioned implementation structure.

Desired Outcomes
Your work on this design should focus on two main issues:

1. You must design the interaction that the students will have with the system. You should design
the basic appearance of the program, as well as the means by which the user creates a map, sets
traffic timing schemes, and views traffic simulations.

2. You must design the basic structure of the code that will be used to implement this system. You
should focus on the important design decisions that form the foundation of the implementation, and
work those out to the depth you believe is needed.

The result of this session should be: the ability to present your design to a team of soft- ware
developers who will be tasked with actually implementing it. The level of competency you can
expect is that of students who just completed a basic computer science or software engineering
undergraduate degree. You do not need to create a complete, final diagram to be handed off to an
implementation team. But you should have an under- standing that is sufficient to explain how to
implement the system to competent developers, without requiring them to make many high-level
design decisions on their own.

To simulate this hand-off, you will be asked to briefly explain the above two aspects of your design
after the design session is over.

Timeline
• 1hourand50minutes:Designsession

• 10 minutes: Break / collect thoughts
• 10 minutes: Explanation of your design

• 10 minutes: Exit questionnaire

Error Detection and Recovery (Lopez)

-263-

B.3 Kinds of Expert Knowledge

In the 1990 paper Knowledge exploited by experts during software system design, Ray-

monde Guindon analysed the specialized knowledge used by software designers when

performing early design tasks. Her analysis included information about the kinds of new

knowledge generated, the ways in which designers leverage existing knowledge, and a set

of heuristics used to seek and select design solutions. Guindon's findings from this paper

are extracted and consolidated here into a catalogue that was used as an aid to analysis of

early design activities in the SPSD session. They are enumerated according to the section

of that paper in which they appear.

Sect. 3.1 Retrieval or simulation of scenarios in

the problem domain (the real world). Interwoven

with solution development, spoken scenarios are

often accompanied by external representations in

the form of diagrams with annotations.

Scenarios serve five purposes:

1. Understand given requirements - before problem

solving, as a way of confirming understanding of

requirements.

2. Understand inferred requirements - upon infer-

ring requirements, as a way of confirming the rele-

vance of the discovery.

3. Solution development - to generate new ideas, to

jumpstart progress. When used in this way, the

scenarios are used to frame and structure the prob-

lem.

4. Discovery (unplanned) of new requirements -

used to simulate and evaluate the solution.

5. Discovery (unplanned) of partial solutions - the

scenario triggers the recognition of a partial

solution.

Sect. 3.2 Requirements elaboration, used to re-

duce ambiguity inherent in the design prompt and to

decrease the range of possible solutions by acting as

"simplifying assumptions" (p. 290). Run through-

out the design session, structure and frames the

problem, and suggests evaluation criteria for solu-

tion selection. External representations in the form

of lists of notes are used to "keep track" of require-

ments.

Inferred constraint - unstated in the given require-

ments, but are inferred as logically necessary based

on what is stated, and the designer's own knowledge

of the problem domain. They reduce incomplete-

ness and ambiguity in the stated requirements, with

direct consequences for the solution. In design

sessions, they often result in changes in immediate

design goals. That is, the designers shift the focus

of their thinking to handle the newly inferred re-

quirement.

Added requirement - a desirable but not necessary

requirement for the production of a logically sound

design. They reflect preferred evaluation criteria, or

rules by which designers signify stopping points.

Sect. 3.3 Design Solutions, the designer's under-

standing of the solution, and the way this under-

standing is externally represented The way a solu-

tion is decomposed into sub-problems may vary

between designers, as may the selection of notation-

al systems for representation. In general, she ob-

served the following uses of external

representations:

1. to express the design solution

2. to support mental simulations of the solution in

the form of "test cases" based on knowledge of the

problem domain.

3. reveal missing information

Appendices

-264-

4. ensure completeness of the solution

Mental simulations uncover various kinds of "bugs"

in the solution:

1. inconsistencies within given or inferred require-

ments

2. inconsistencies between parts of the solution

3. incompleteness of partial solutions in respect to

the whole

N. B. Guindon states a fourth, but it seems to be a

duplication of an earlier point

Notational systems serve two purposes:

• express the design solution

• tools for developing the solution

Sect. 3.4 Design strategies, methods and nota-

tions, that is, the sequence of activities to be per-

formed, as structured by a recognized design

method. Examples of design strategies given are:

top-down, data structure-oriented and object-orient-

ed structure. Designers can use more than one strat-

egy in a single session, and may also use multiple

notational systems.

Sect 3.5 Problem solving and software design

schema, or higher order knowledge structures such

as divide-and-conquer and generate-and-test. Guin-

don found that in her data, specialized schema used

by designers varied in complexity and granularity.

She suggested that the schema is a "complex rule

composed of a pattern which specifies the similari-

ties in requirements between different instances of a

class of systems (e. g. resource allocation

systems)." (p. 296). Schema are selected based on

similarities between the current problem and known

patterns.

Sect. 3.6 Design heuristics are used by designers in

problem structuring and solution generation

1. consider a simpler problem first, then later ex-

pand the solution

2. simulate scenarios in the problem domain to

acquire more information about the problem struc-

ture

3. identify system functions that can be performed

nearly independently and divide the system into

corresponding subsystems

4. avoid serious mistakes or catastrophes

5. satisfy the most important constraints or require-

ments first

6. keep the design solution as simple as possible

7. make simplifying assumptions about the require-

ments

8. keep the solution parts as consistent

9. delay commitment to decision when there is in-

sufficient information; re-examine tentative deci-

sions as new information is acquired.

Sect. 3.7 Preferred evaluation criteria are adopted

in order to manage the ill-defined nature of design

problems. Designers adopt a "small set of personal-

ized criteria" (p. 298) to guide solution generation

and selection. For example, one of her developers

adopted high reliability as a criterion. Unstated in

the requirements, this criterion was used in schema

selection, and thus to reduce the set of possible

designs to consider. Other observed criteria includ-

ed simplicity of solution and simplicity of design

process.

C. Notes on At the Desk

The study At the Desk is reported in Chapter 6. It drew upon data collected at Site C. For

an overview of sites, see Chapter 4, Section 4.3. Other detail about data collection and

analysis are reported in Chapter 4, Section 4.4.2, and in Chapter 6, Section 6.2.

Error Detection and Recovery (Lopez)

-265-

C.1. Transcription and Cataloguing

Analysis began with the selection of a data set. A master catalogue was made to track the

sixty videos uploaded to a web hosting site. The catalogue documented metadata from the

video hosting website, the code repository, and information required for research. It also

included information on video quality, notes about the content, and approximate recording

date. Twenty episodes were selected for deeper examination, and were transcribed using

the conventions noted in appendix A. Notes on Cataloguing follow.

Episodes 1−10: A near-verbatim transcription was created of each episode. A

content log was developed to note what happened at regular intervals. The content

logs were coded to capture impressions about themes running through the data. The

codes were analysed and compared to evidence of themes that emerged in analysis

of the design videos reported in Chapter 5 and the first set of interviews taken at

Site B. This analysis gave a sense for incident kinds, concentration, and of

curiosities in the way the developers talked about them. It also familiarised the

researcher with environmental context and working style of the developers.

A catalogue of observable features of incidents was created to include information

about the start time, end time and duration of the incident, a brief description with

more detailed impressions about the significance of the incidence, the driver, the

end result, files involved, a rough identification of the source of the error, and a

snippet of dialogue that stood out as capturing the essence of the incident.

Episode 11-20: A near verbatim transcription of episodes was created, that

included additional detail about the files worked on, relationship to other films, and

related screenshots. Screenshots were taken to clarify what was said at points in a

handling sequence and also to track shifts in activity in the software environment.

Transcripts were annotated to reference screen grabs and relevant action.

Content logs were not maintained for episodes 11-20; however potential incidents

were highlighted in-line immediately upon finishing the transcription. The cata-

logue developed for the first ten episodes was refined and extended to include

information for all twenty episodes; this information included file names and notes

to related content.

Appendices

-266-

Exclusions: The audio track for episode 19 was not recorded at the same time as

the screen-cast, making it impossible to analyse activity at a sufficient level of

detail. Episode 20 was recorded after a several week-long break, and took a

different format to those previously recorded, adding a superimposed video of the

developers over the screen cast. These episodes also mark the introduction of a new

development environment; work is performed on a new laptop running a different

operating system.

Beyond Episode 20: Video for episodes 21-50 was sampled to determine visual

and audio quality, to gain a sense for the content of the episode, and to roughly

catalogue files that were touched. Notes were added to the master catalog about

content when striking evidence of a potential incident was observed, or when

issues relating to work prior to episode 20 was mentioned. Episodes 26 and 27

have been fully transcribed for future analysis.

C.2. Incident Catalogue

The table below details features of forty-three incidents around which analysis centred. An

additional twenty-five incidents that were considered are not reported here. Eleven were

used to develop contextual understanding, while fourteen were related to conceptual design

or to global aims for the project. Though they have been used to inform analysis, their data

does not cohere with the incidents catalogued below. For example, in the case of contex-

tual issues, the issue may have involved problem-solving, but not clear stages of handling.

In particular, recovery may not have resulted in changes that were made or identified

within a particular tool or file; the resolution may instead have come in the form of

satisfaction or consensus about an idea.

Entire rows have been shaded to indicate issues that were deferred (light yellow) and

issues for which problem solving was aborted on film (light orange) . Cells in the Cue

column have been coloured (light green) to indicate action based detection. The duration of

handling has been marked in red and made bold to indicate incidents longer than five

minutes in length.

• Episode number (Ep.) The number corresponds to numbering on internet hosting

site, the letter is the identifier assigned to an incident during analysis.

Error Detection and Recovery (Lopez)

-267-

• Time indicates the start and end points of incidents. The start time for incidents

were marked at the point at which a task related to the initial detection was ascer-

tained to have begun. The duration of incidents that took longer than five minutes

to handle are marked in a red, bold font.

• Description (Driver), a brief characterisation of the task. The developer at the

keyboard is marked in parenthesis.

• Detection, the verbal response given by one or both developers at or near the point

of detection. Corresponding indicators of identification or recovery have not been

given because those moments are not so clearly defined or relatable to one another.

• Cue, what is believed to have spurred detection. In most cases these are outcome-

based. Action-based detections are highlighted in green.

• Location, the source of the problem based on the outcomes of the identification

and recovery.

 Ep.

 1-A

1-B

1-C

1-D

2-A

2-B

 Time

08:18-
08:52

11:00
-12:00

15:00-
17:40

20:00-
20:41

09:02-
11:29

12:49-
14:18

Description
(Driver)

Marcus shows Joe how
to remove strange be-
haviour in the develop-
ment web server. (Joe)
Joe borrows from an old
CSS file to improve lay-
out. (Joe)

Marcus uses incorrect
wiki editing syntax to
define a variable. (Mar-
cus)
Marcus uses incorrect
wiki editing syntax, re-
sulting in a rendering
error.
Joe questions the addi-
tion of whitespace char-
acters. (Marcus)

Marcus can't remember
a package name. (Mar-
cus)

Detection

M: So we have a prob-
lem there, and that's a
funniness...

J: Oh, I have to remem-
ber how to do this.

J: Do you need a
space? Before the first
curly.
M: What have I done
wrong?

J: Oh it's not the first
character.
M: How did I do that?

J: Okay. Do we need
the r n r n r?

M: I think its, isn't it?
J: I don't know is it, for
the...?

Cue

Visual. The web-
page; does not
properly
render.
Action-based,
memory
related.
Joe:Textual, pre-
emptive while a
variable is typed.
 Marcus: Textual,
system response in
the wiki “undefined
variable”.
Visual. Text added
to a page doesn't
render properly
when saved.
Visual. Upon see-
ing how the web
page renders.
Action-based, while
adding a package
name to a wiki
page.

Location

Tool
Behaviour

Syntax
(CSS)

Syntax
(Wiki)

Syntax
(Wiki)

Syntax
(Wiki)
Info. Arch.
(Package
Structure)

Appendices

-268-

2-C

3-A

4-A

4-B

4-C

4-D

4-E

4-F

6-A

7-A

20:43-
23:03

5:39-
7:39

04:50-
06:00

06:00-
07:05

09:04-
09:49

09:49-
11:00

18:00-
19:13

19:52-
22:11

01:57-
02:47

02:57-
03:59

An acceptance test isn't
running in the wiki.
(Marcus)

An acceptance test isn't
running in the wiki.
(Marcus)
Marcus can't remember
wiki link syntax.
(Marcus)

Marcus can't remember
how he has organised
wiki pages. (Marcus)
Joe and Marcus don't
like the rendering of a
wiki page. (Marcus)

Adding a hardrule to a
wiki page. (Marcus)

Test fails, class not
found. (Joe)

Defining behaviour in a
test, selecting between
Concept1 and Concept2
(Joe)

Distinguishing between
instances of Concept 1
and Concept 2 in a test
(Marcus)

Incorrect class declara-
tion. (Joe)

M: Cool, right. + Now.
J: Ugh

J: --Ooh.
M: Why did that work?
J: No it didn't work,
you've got that excep-
tion.
M: Ah the--
M: Ugh, I can never re-
member which way
around--
J: Ugh, what's that
complaining about? …
that looks all right to
me.
M: No it's not.

J: Why is child pages
centred like that?

M: No.
J: No, other way.

J: Oh that's interesting.
++
J: [Narrating] Should
ask [Concept1] to es-
tablish context--

M: --No ! '[Concept2]'.

J: It should find an
[Concept1] for a differ-
ent [Concept2]

J: Why is that complain-
ing?

Textual. Upon see-
ing message in ac-
ceptance test.
Cursor moves along
a message on the
output of running a
test.
Joe: Visual, notices
“Output Captured'
warning graphic in
browser.
Marcus:Aural, when
Joe points the mes-
sage out.

Action-based.

Visual, A link creat-
ed in a wiki page
appears as a yet to
be created.

Visual. Web page
rendering.
Action-based, while
adding the
hardrule.

Textual, error mes-
sage in problems
pane.

Action-based,
caught by Marcus
as Joe narrates the
words he is typing.
Action-based,
caught by Joe as
Marcus narrates the
name he is giving
to a test.
Visual, red bar in
the IDE. Cursor
hovers over the red
bar, revealing mes-
sage. This action is
performed twice.

Config.
Test
runner

Tool
Behavior
(Wiki
Server)

Syntax
(Wiki)

Info. Arch.
(Wiki)

Design
(UI)

Design
(UI)
Config.
(IDE build
path)

Design
(Object
Model)

Design
(Object
Model)I

Implemen-
tation

Error Detection and Recovery (Lopez)

-269-

7-B

8-A

8-B

8-C

9-A

9-B

10-A

10-B

10-C

10-D

11:13-
22:49

05:30-
08:25

10:54-
14:41

19:26-
24:03

02:26-
04:22

15:33-
19:20

08:22-
11:51

20:12-
22:50

11:51-
19:03

24:29-
27:05

Unexpected error mes-
sages in tests related to
capitalisation of class
names. (Not Clear)

Null pointer exceptions -
classpath issues - IDE
memory caching (Mar-
cus)
ClassNotFound Excep-
tion reported in the wiki.
(Marcus)

Concept confusion, diffi-
culty using JAVA Gener-
ics. (Joe)

Repurposing a method
with IDE command re-
sults in a duplicate
method. (Marcus)

Refactoring ->Extract
Class command within
the IDE fails (Marcus)

A broken test is report-
ed as passing. (Marcus)

Watcher points out flaw
in algorithm. (Joe)

Implementing the
CamelCase (Joe)
A message thrown to an
exception does not in-
clude all of the expected
information. (Marcus)

J: And we expect this to
fail. It is going to say, I
can't find a dummy
[Concept2] with a small
'D'. Oh- and it has,
look, its got a little red
thingy saying NoClass-
DefFoundError. That's
funny, I thought it was
supposed to say, uh
shouldn't that come
back as...
J: Nooo. [Clicks 'Output
Capture' link, a stack
trace appears]
M: Excellent, what did
we do wrong?

M: It wasn't able to find
a role.

M: With an import?
J: No it's done that. Ah,
it's saying dummy isn't
performable as a. Uh.

J: Why is that red at the
moment?

M: Oh, why has it not
worked?

M: Oh, that's
interesting. It's passed!
J: It can't have.
M: It can't have.

M: Oooh!
J: Ugh, that's
interesting.

J: Oh no, it didn't. Ugh,
got "say something".

M: Where's the “caused
by?”

Textual, error mes-
sage in the prob-
lems pane.

J: Visual, “Output
Captured' warning
graphic in browser.

Textual, stack trace
displayed in failing
test.
Visual, red bar in
the IDE after a re-
turn statement is
written in a
method.
Visual, red bar in
the IDE.
Driver moves cursor
to red bar, revealing
message.
Visual, the IDE
does nothing when
the command is en-
tered.
Textual, output
from the test run-
ner in the problems
pane.
Report: What hap-
pens if there are
multiple spaces?

Followed by…

Textual, output
from the test run-
ner in the problems
pane.

Textual, a unit test
is expected to pass,
but fails.
Textual, error mes-
sage doesn't con-
tain information
that Marcus expects
to see.

Design
(Global
Aim)

Tool
Behaviour
(IDE)
Config.
(Wiki CP)

Implement
/
Language(
JAVA)

Implement

Tool
Behaviour
(IDE)
Tool
Behavior
(Test Run-
ner)

Language
(Java)

Implement
Language
(JAVA)

Implemen-
tation

Appendices

-270-

11-A

11-B

11-C

11-D

11-E

11-F

11-G

12-A

13-A

13-B

14-A

14-B

00:41-
02:38

02:55-
4:44

04:44-
05:24

16:53-
20:21

20:21-
22:24

 22:22-
23:03

23:03-
25:00

14:54-
17:05

04:55-
11:59

21:26-
39:28

13:04-
16:14

18:04-
20:37

Decision to create a
class is immediately re-
taken (Marcus)

An apostrophe in an ar-
gument causes a red
bar (Marcus)
Using Right-click -> Try/
Catch block in the IDE
fails (Marcus)

Incorrect class declara-
tion. (Joe)

The pair can't remember
if they created a class
required for a test.
(Marcus)

Marcus called the wrong
method.(Marcus)

Client-side HTML ren-
dering issue with brack-
ets (<) (Marcus)
Marcus suggests that a
class be extended. The
method call Marcus sug-
gests to use is private,
Joe sorts it out. (Joe)

Refactoring surfaces the
generics issue (Marcus)
Refactoring a method
surfaces the generics is-
sue. (Joe)

Marcus realizes that a
class is too specific.
(Joe)

Null Pointer Exception in
a test points out prob-
lems in an implementa-
tion. (Marcus)

M: Actually, no!…
J: Class Cast
Exception.
M: I think that was the
wrong thing to do.

M: Oooh.

M: What the? Why?
Joe: Uggoh.
J: Oh, that's 'cause it
doesn't extend runtime.
I was lazy and I didn't
(inaudible)
J: Cool, but we're still
getting a NotAnAction-
Exception, we're still not
getting the, oh we still
can't find it! So we've
implemented all this
stuff - oh okay. Why is
that not working then?
J: We shouldn't get that
classCast – [Reading
the message given in
the stack trace]
M: Oops
J: That's interesting.

J: Something, some
role.

M: Ooh, is this test bro-
ken? (a latent detection,
comes at the end of
Joe's problem solving
process.
M:Ummm. Now that
isn't necessarily a
mock. Umm, playing.

M: Why doesn't it like
this?
M: ...and in this case,
umm, this is why it just
doesn't feel right that
this is, it's just too spe-
cific….

M: Oooh
J: Oooh
M: That's because, we
haven't given our--

M: Action-based,
as Marcus is shift-
ing windows from
the IDE to the Wiki.
J: Outcome, pre-
sumably textual.
Visual, a red bar
under a statement
passed to an argu-
ment.

Visual, the IDE
does nothing.

Visual, red bar in
the IDE.

Textual, reading
message returned
by test runner in
problems pane,
memory related.

Textual, stack trace
displayed in failing
test on the wiki.
Textual, stack trace
displayed in failing
test on the wiki.
Cursor highlights a
portion of the stack
trace

Textual, checking
the method imple-
mentation in the
class.

Visual, red bar, but
also possibly aural,
while narrating.

Visual, a red bar.

Verbal, action-
based, caught
when Marcus ex-
plains behaviour to
a Watcher.

Textual, error mes-
sage in the prob-
lems pane.

Change of
Plan

Syntax
(JAVA)
Tool
Behaviour
(IDE)

Implement

Implement

Language
(JAVA)

Syntax
(JAVA/
HTML)

Implement
(API)
Language
Design
Implement
Language
Design
Implement

Design/
Implement

Implement
/ API

Error Detection and Recovery (Lopez)

-271-

Table C.1: Incidents analysed at the desk.

14-C

15-A

17-A

18-A

18-B

21:35-
32:14
00:00-
39:52

03:32-
26:33

05:08-
07:41

15:26-
27:06

An acceptance test is
unable to launch a wiki
web server.
(Marcus)

Continuation of 14-C

A new installation of
test runner hijacks
episode. (Marcus)

Spurious error reported
by the test runner.(Joe)

Sequencing error causes
multiple null pointer ex-
ceptions (Marcus).

M: Oooh.

--
J: Oh, what's happened
there.
M:...It's a bit hard to do
that while this is
running. (Sigh)

J: That's interesting.
Element not found ex-
ception. That's umm
something new. Why is
that not working?
Ummm.

J: Now that's
interesting, that we got
a whole bunch of null
pointer exceptions.

Textual. A Firefox
window reports a
page load error.

--

Visual,tests that are
running on an other
section of code
launch web browser
windows.

Textual, message
returned by test
runner in the prob-
lems pane.

Textual message in
problems pane re-
turned by test run-
ner.

Config
(Wiki)

--

Tool
Behaviour
(Test run-
ner)

Tool
Behaviour
(Test run-
ner)

Tool
Behaviour
(Test run-
ner)

C.3. Incident Exchanges

This appendix includes the full exchanges for incidents presented in Chapter 6, Section

7.3. The headings are topical. Metadata is also provided indicates the episode and

timestamp or that corresponds to entries in the catalogue given in Appendix C2, above.

Cross references are also given to sections of Chapters 6 and 8 that discuss the incidents.

C.3.1.Slips of Action

This section gives two examples of slips of action, described in Chapter 6, Section 6.3.1
and within Chapter 8, Section 8.1

An example of a slip of action, drawn from Episode 7, 00:06:51.

[Joe creates a local variable within a try block, which he tries to reference in

another block. This results in a red bar.]

Joe (D): No can't do that cause it's there, oh we can move it outside the...

Appendices

-272-

[He moves the variable outside of the try-catch block, which fixes the error.]

A second example of a slip of action, drawn from Episode 12, 00:04:45.

[Marcus selects a method that has been suggested by the IDE]

Marcus (D): Oops, that's not what I want to do.

[He backtracks and selects a second method]

C.3.2.Prior Experience

In the exchange given below, discussed in Chapter 6, Section 6.3.2, and catalogued as

incident 2-C, Marcus recognises having seen and solved a problem that is causing an

acceptance test to fail to run in the wiki. He examines prior work to find the solution. The

recovery is made by copying and pasting information found in a configuration file into the

failing acceptance test wiki page.

00:20:43

Marcus (D): Cool, right. +

Joe (N): Ugh

Marcus: Now this is something to do, I had to solve this recently and I can't

remember how I did it.

Joe: It's an import, you need to import it, don't you? Or it needs to be umm, oh

wait, it’s trying to execute that as a--

Marcus: --It’s the, the look. There's a, I did this before. It's to do with the way it

does the test running stuff. Let's just have a quick look [Driver opens Eclipse] in

examples that we were messing about with hums.

Joe: It would be in the content here, wouldn't it? No (inaudible) ++++ Hmm.

Marcus: That's the one I wanted.

00:23:03

Error Detection and Recovery (Lopez)

-273-

C.3.3.Blame and Severity

In this exchange, discussed in Chapter 6, Section 6.3.5 and catalogued as incident 3-A, in

spite of their stated desire to depict development “warts and all”, the developers abort

filming in this case, and complete the problem solving between recordings.

00:05:39

Joe (N): It's probably because Fitnesse isn't running. No. What’s going on there?

Marcus (D): That's nothing to do with us. It worked a minute ago.

Joe: Yeah, it worked on my machine. (Laughs)/(Laughs)/

Marcus: Oh that was the wrong page, wasn't it? I wonder if it’s like, no? This is

actual- what's changed? What have you done?

Joe: I haven't changed anything [Voce: falsetto]!

Marcus: Look I'm just going to stop...Where is it? Here it is. Okay, let's just stop

that. [Stops the web server from within the IDE] Good [Upon verifying in the

browser that pages are no longer being served]. Right stopped and we should be

able to just kick it off again.

Joe: I wonder if that install story did something dodgy.

Marcus: [Driver restarts server] It is feasible, but I don't think so.

[Page reloaded; exception still being thrown]

Joe: Ugh.

Marcus: Okay, so. ++ This is annoying

Joe: Well you know, warts and all.

00:07:39

C.3.4.Forming Rules-of-Thumb

This section provides the full exchanges for incidents described in Chapter 6, Section

6.3.6.

Appendices

-274-

A Rule-of-Thumb

In the first exchange, catalogued as Incident 1-A, Marcus has seen the issue before, and

provides Joe with the steps to work around the problem. The steps are sufficient to advance

work, but Marcus does not explain what the changes do. The reflective language used by

both developers suggest they do not completely understand why the mechanisms work.

[Joe (D) loads a web page]

00:08:18

Marcus: So we have a problem there, and that's a funniness with FitNesse, that

I've noticed happens sometimes. If you actually stop it, now go back to Eclipse and

stop it [Only one stop action is performed]. And then start it again ++ Yeah some

weird thing it will install all of the files properly and then refresh that page and it

will be hunky dory fine--

Joe:--Oh (right)! That is /(Laughs)/ very strange.

Marcus: Very strange behaviour indeed. /Okay/

00:08:52

The following three examples are of a different error. They demonstrate how rules-of-

thumb form over time.

The First Occurrence

 The first occurrence is catalogued as incident 7-A.

00:02:57

Joe (D): ...why is that complaining?

[Joe highlights a red bar in the IDE, revealing a message in a tooltip]

Joe: Oh that's because we haven't got the constructors.

Marcus (N): That's right.

Joe: Oh, no, that's not, it says it’s not a subtype of Exception [He opens the class

giving the error]. Oh--

Error Detection and Recovery (Lopez)

-275-

Marcus: --‘Cause it doesn't extend RuntimeException /Okay/

[Joe alters the declaration]

00:03:59

The Second Occurrence

The second occurrence, is catalogued as incident 11-D.

00:16:53

Joe (N): Oh, that's 'cause it doesn't extend runtime. I was lazy and I didn't (inaudi-

ble).

Marcus (D): But do you know what? /That's fine/ Actually, I think this is the right

t--

Joe: Extend-zzz [Suggesting a correction to spelling: “extends”, not “extend”]

Marcus: Duh. /Cool/ I think now is the right time to actually put that in there /Yeah/

To be honest.

Joe: So has he got any warnings other than that? No.

Marcus: No.

00:20:21

The Third Occurrence

This is the final occurrence of the issue. Note that it is embedded within incident 18-B at

approximately 00:15:26

00:15:26

Joe: Ahh [A red bar has appeared underneath the entire throw statement] So we

didn't include the, when we created it we haven't made it extend exception. So now

to make it... runtime exception. And we need a constructor with a message…

00:17:13

Appendices

-276-

C.3.5.Error-Directed Practice, Local Problem Solving

The following exchange illustrates local problem solving undertaken in the course of error

handling. Error-directed practice is described in more detail in Chapter 6, Section 6.3.3,

local problem solving within Sections 6.3.4, 6. 3.5 and 6.5 and within Chapter 8, Section

8.1.

The exchange given below, catalogued as Incident 8-C, marks the beginning of a four-

and-a-half-minute incident in which Joe is implementing a method that makes use of

JAVA generics. Joe admits at the outset of his task to implement a method that he does

not know exactly what needs to be done, and that he is taking an approach he calls fake it

till you make it. He appears to spur the error handling process by typing a return statement

in a method, which immediately throws up a red bar in the IDE. Marcus’ comment “With

an import?” marks the beginning of the identification process. He has taken a guess about

what might be wrong in the file.

The references Marcus makes to prior implementations (line 18) mark a shift in this

incident from information gathering directed by trying things to the tactical examination of

a prior implementation that is known to work. The pair examine the class WebUser and

two other files that were previously written by Marcus that use JAVA generics to reference

classes. Using information in these files, they are able to piece together the syntax to use.

01

02

03

04

05

06

07

08

09

Action

Joe opens the
class that is throw-
ing the error.

Joe extends the
class

Code
guess

disprove

blame

mechanism

absolve

mechanism

system re-
sponse

identify

Dialogue
Marcus: With an import?

Joe: No it's done that. Ah, it's saying
dummy isn't performable as a. /Uuh./
Uh.
Marcus: So you, why is it? Oh,
cause I (sigh)--

Joe: What? No that's okay.

Marcus: Yeah that's right, so get it to
compile.
red bar under the name of the class
that is extended.
Marcus: I think, no go on. I think it's
an interface, dude.

Error Detection and Recovery (Lopez)

-277-

C.4. Sources of Data

Data for the project was collected from sources created in 2009 that were published and

accessed on the internet.

 Video Recordings

Sixty videos were uploaded to a video hosting site between March and August 2009. The

first was recorded on 14 March, 2009; it was not uploaded until 24 March, 2009. The last

video was uploaded on 4 August, 2009. Forty-nine videos were assigned an episode

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

Joe alters the
class signature to
implement an in-
terface that makes
use of JAVA
Generics to refer-
ence Concept1

[Replaces a refer-
ence to Concept1
with <?>]

Replaces Concep-
t1 with WebUser

Reverts to <?>

mechanism

system re-
sponse

detect

identify

guess

mechanism

system re-
sponse

disprove

tactic

mechanism

system re-
sponse

detect

identify

affirm

tactic

red bar under the reference to Con-
cept 1
Joe: Ah. And then it's a--

Marcus: --that's [Concept1] that's
fine. /Okay/ Oh no, we have to say
what [Concept1]. So we can just
make it uh. ++

Joe: Can we do a question mark
there?

A class not found message returned,
the question mark is reverted to ref-
erence Concept1
Joe:No.
Marcus: Make it um, well we've got a
Web User in the [prior implementa-
tion] examples, we could just use
that.

red bar under the reference to Web-
User

Joe: Hmm.
Watcher: I think you just need to im-
plement performableAsA .

Joe: Really, okay. Didn't we do that?
Yeah, it's there. Uh.

Marcus: Would you like to look at
another action?

Appendices

-278-

number by the creators, given a title, and a description highlighting aspects of the content.

The final ten (Ep. 50-60) were assigned episode numbers, but were not given a title or

description. These were uploaded on two dates, 13 July, 2009 and 4 August, 2009. Commit

information from the corresponding hosted code repository suggest that the work per-

formed in the latter episodes is maintenance to existing functionality.

The videos comprise thirty-one hours, fifty minutes. Videos range in length from 07:42

(Ep. 3) to 53:17 (Ep. 60). The average length is 32:22. Some episodes are recorded on the

same day, on other days, only one episode is filmed. The metadata on the video hosting

site indicates that videos were uploaded in batches, and the developers do not consistently

indicate the date on which they are recording. In latter recordings (Ep. 20 and beyond)

work performed in the same coding session can be established by examining the clothes

that the programmers are wearing, which are visible in a video of the programmers that is

super-imposed over the screen-cast in the lower right-hand corner of the film. In earlier

videos, this information was reconstructed using commit information in the source code

repository, and by examining posts made to Twitter and Facebook.

Damage: Episodes 21 through 34 suffer from technical problems. In four (Ep.21-24),

an audio echo is present that obscures the dialogue, while in episodes 25 through 30 there

is a latency between the audio, screen-cast and video of programmers, sometimes as great

as fifty seconds. In another four episodes (Ep. 31-34) either audio, video or both are lost

during the recording. This damage prohibits detailed analysis of the relationship between

what the developers say and what they do.

Gaps in time: Filmed episodes are separated by breaks in time. Sometimes the interval

is as short as a few minutes, at other times days or weeks. There are several mentions of

work done without recording, or of promises to return after a short break when in fact

filming ceases for that date. One episode (Ep. 19) has audio commentary recorded over the

video after a 3-4 week break.

Format, Episodes 1-18: The developers introduce themselves and usually announce the

episode number. Occasionally, they give the date on which the recording was made. The

developers also introduce others who are watching the taping. There are several instances

in which the developers use the first couple of minutes to explain what happened in a

previous episode, or to provide background for a particular choice. In general, the pair aim

to program for one 25-minute session. The pair are working on a Windows laptop, using

Firefox and the Eclipse IDE, and the background noises suggest that the work is being

done in an office.

Error Detection and Recovery (Lopez)

-279-

Episode 19: The audio for this episode was recorded over the screen-cast, several

weeks after creation. The developers reflect on what happened in this episode, as well as

on their overall work practice for the project. One of the things that comes out of this is a

solidification of commit strategy in the version control system, both in terms of the

information that should be included in messages, and in frequency. This strategy is

apparent after Ep. 19, when the overall number of commits increases, and is performed on-

screen, rather than during breaks. In addition, the information given in commit messages is

better structured and includes references to the episode number in which it was performed.

This episode is the first in which the pair are working on a Mac laptop.

Episode 20 and beyond: This episode marks several shifts in the recording and

working environment. From this point onward, the videos include a small video of the

developers superimposed over the lower right-hand screen of the screen-cast. In addition,

work appears to be performed in a home environment. Though the developers announce in

Ep. 19 that they will no longer web-cast the episodes, there is some evidence that they

continue to use web meeting software.

 Social Media

The developers used Twitter and Facebook to inform followers of project activity; both

sources were used to corroborate dates for early programming sessions. The Facebook

page also included photos of recording equipment, and of one office in which work in

early sessions was performed. The photos corroborate the understanding that early sessions

were office-based, as do posts in which the developers ask followers for office space to use

for filming.

 Blogs and Websites

The project has a website, with links to videos and source code. It also contains general

information about the project. At one point the site also included notices of upcoming

events. The site went offline in March 2012, but was brought back online in a slightly

altered format at the end of 2012. Both developers have personal blogs. These were

referred to for background information.

 Source Code Repository

The software created in the project is hosted on a publicly hosted code repository. The

metadata in this repository was used to corroborate dates for programming sessions.

Appendices

-280-

D. Notes on After the Fact

The study After the Fact is reported in Chapter 7. It drew upon data collected at Site B and

Site D. For an overview of sites, see Chapter 4, Section 4.3. Other detail about data

collection and analysis are reported in Chapter 4, Section 4.4.3, and in Chapter 7, Section

7.2.

D.1. Transcription and Field notes

A near-verbatim transcription was created of six interviews gathered at Site B, and three

interviews gathered at Site D following the conventions given in appendix A.1. At both

sites, analysis began at the point of collection. Terms used were checked and information

previously given was stated back at multiple points for clarification and correction. In

several instances, restating information to informants resulted in the addition of omitted

details.

Immediately following each interview, notes taken during the interview were annotated

and expanded. In addition, reflection was made to describe impressions and details of the

major topics raised in the interview, and to evaluate application of the method. Informants

were sent follow-up email messages seeking additional materials mentioned during

conversation, and they were invited to provide additional comment. Informants from Site

B have also been sent draft copies of reports featuring their account.

D.2. Critical Decision Method Protocol

This section summarises protocol suggested for conducting a CDM interview as described

in Working minds: A practitioner’s guide to cognitive task analysis (Crandall, Klein, &

Hoffman, 2006). Additional notes explain how the protocol was adapted and applied in

interviews collected at Site B and Site D.

Critical decision method interviews are typically conducted by two researchers working

together. One interviewer asks questions of informants, while the second researcher takes

notes about responses. Impressions of the interview are shared between researchers

immediately afterward. Interviews are generally also audio-recorded, and transcribed for

analysis.

Error Detection and Recovery (Lopez)

-281-

The CDM interview protocol is semi-structured and flexible. The aim is to collect a rich

story using questions to probe for more detailed information about events and cognitive

phenomena. The emphasis in incident identification is to examine novel or unusual

problems that a participant has encountered on the basis that this will reveal more detail

about how problem solving or decision making is performed on the job. The protocol

entails examining a single incident in four semi-structured ”sweeps” that establish features

of critical decision making from different perspectives.

In the study reported in Chapter 7 interviews were conducted by a single person, as it

was difficult to arrange paired interviewing. The interviewing process can take several

hours, which was also deemed to be impractical. The managers who granted access at Site

B offered free access to approach and arrange meetings with developers and were informed

that sessions might span two hours speaking. Managers at Site D granted access for an

hour, and permitted developers to “cost” an hour of working time to the interview.

Interviews were arranged in person or by email, and each person was sent an informa-

tion sheet before the appointment (see also appendix D.4). The information sheet was

reviewed with the informant before the conversation, and each person signed an informed

consent form. Interviews were audio-recorded, and notes were taken. Interviews concluded

with questions about background: time spent in the organisation or on a team, time spent

professionally making software, and details of education and training.

The aims of the study were not to establish error in relation to education or experience,

so a soft touch was taken in collecting these details. This proved to be a useful tactic at Site

B, in which all of the informants were very well educated and/or experienced, but had not

necessarily taken qualifications related to computing. At both sites, the approach was noted

to have the effect of communicating to informants that judgements were not being made

about the story they had given and their level of expertise.

 Sweep One: Incident Identification

In the first sweep, the participant and the researcher identify a critical incident, and the

participant gives a brief account of what happened. Crandall, Klein and Hoffman identify

four elements of selecting a useful incident (2006, adapted from pp. 7-76):

1. Relevance: The person must recount a story in which they were a “doer” or decision

maker. Witnessing an event is not the same as actively participating. Did a person’s

actions have a direct impact on the outcome of the event? Given an outline of the

Appendices

-282-

event, it should be apparent to the interviewer if it meets criteria for the area of

analysis.

2. Character: Asking a participant for a strange or “weird” incident may result in

interesting stories, but may not result in stories that can be analysed for evidence of

decision making or other cognitive activity. What constitutes “critical” in a domain

may not be initially apparent.

3. Listening and Prompting: Telling participants before meeting them that you are

seeking a story may cause them to select, omit, refine and rehearse details of the story

that will suppress information relevant to the research. At the point of interview, it is

important to allow participants to identify a story of interest, and to listen and wait as

they recount details. It may also be necessary to prompt them to carry on if focus is

lost, or if they are not sure about the kind of information the interviewer is seeking.

4. Structure: The participant provides the structure of the interview, through the content

of the story and the details they provide about sequence, beginning and end points.

Incidents may begin earlier than the point established by the participant, and they may

have alternative endings.

In this sweep, each informant was asked to think of an incident from recent work that was

challenging or that had been particularly difficult. Table D.2 provides examples of

suggested prompts followed by questions that were asked during this phase. In some cases,

more than one possible incident was reviewed. In one case the researcher suggested an

incident; in another case, the informant selected to recount an incident he felt was more

relevant. In order to improve precision of recall, and to hear stories that were “fresh”,

informants were asked to recount an issue encountered in recent work, defined as work that

had been done in the past week or two. This adaptation is in-line with other documented

adaptations to CDM that seek incidents in the ”here and now”.

Error Detection and Recovery (Lopez)

-283-

Suggested Prompts:

Questions Asked (edited for clarity)

Among the projects you have described,

can you identify something you’ve worked

on in the last two weeks that was challeng-

ing for you?

You mentioned the other day that you

have been doing data modeling for the ___

project /Yes. / and I'd like to talk about

that I think… I'd like to see if the incident

you described to me the other day might

be worth pursuing in this conversation. So

you mentioned that you started thinking

about using an XML model on that

project /mm hmm/ but you decided to stay

with a database, a relational database. Do I

remember that correctly? /Yes. /

- Can you think of a time when

you and your skills were really

challenged?

- Tell me about the last time

you…

- Can you think of a time when

your skills really made a differ-

ence?

- Maybe things would have

gone differently if you were not

there?

Notes

This example demonstrates us-

ing a warm up to identify possi-

ble projects.

In this project, the developer

mentioned a possible incident

when the in t e rv i ew was

arranged.

Appendices

-284-

Table D.2: Prompts for incident selection After the Fact.

Sweep Two: Timeline and Decision Point

In the second sweep, a timeline is established to note critical decision points. A critical

point is one in which the participant experiences a major shift in thinking or understanding

about a situation, or takes decisive action. They are critical in the sense that they are

“turning points” at which different decisions or actions may have been taken (Crandall et

al, p. 76).

Establishing a timeline requires determining a scale that is appropriate to the incident.

Some incidents involve specific timings and durations that are important to understanding

what went on. Other incidents may involve elements that are temporally distant from one

another. In the case of the latter, it may be sufficient to note the sequence of events and

their relation to one another over time.

The sweeps are described in the guidelines as unfolding more or less sequentially, with

specific time devoted to plotting the timeline on a whiteboard or paper that can then be

used in subsequent sweeps. It emerged in practice that it was more natural to allow the

conversation about particular details of the incident to unfold and to periodically establish

the relation of events to one another in time. Rough timelines were sketched in the field

book, and details were checked with informants. Probes were used to establish how one

decision or action related temporally to others.

Okay, so this can be a big problem, it can

be a small problem it can be something

that you were tearing your hair out about

or that just took a few minutes but that you

remember and sort of made you stop for

some amount of time in your work.

[W]hat we need to do is find some recent

problem that you've been working on. And

it can be from this project, it is always nice

to start from something that is fresh in

your mind or it can be another project.

This was the last interview,

possibly the most useful

prompt.

Recent work is indicated as pre-

ferred.

Error Detection and Recovery (Lopez)

-285-

Sweep Three: Deepening Probes

The process of establishing a timeline interleaves with a more detailed recounting of the

incident itself. In the process, deepening probes are used to elicit information about cues

and patterns the participant perceived, the rules-of-thumb they devised, the kinds of

decisions they had to make, and details about particular cases. The critical decision method

is often used with a small set of deepening probes to examine one or two cognitive

phenomena, such as the information or guidance that is sought and used.

Probes fall into four broad categories (Crandall, Klein, & Hoffman, 2006, p 80). If the

critical point in the process involved:

• Observation, then probe for information and cues. Seeking guidance from others

also falls into this rubric.

• Making sense of a situation, then probe for assessment and mental models.

Analogues might also serve.

• Decision making, probe for decisions, goals and objectives.

• Knowledge, use probes about experience, and options. Establishing whether or not

the case was standard would also be helpful.

In the interviews collected at Site B and Site D, opportunistic use was made of probes from

all categories, on the basis that all of them might yield useful information about an error.

Deepening information also emerged from subtle probing about time, such as by asking an

informant to recount what happened next, or asking how they understood what to do next.

Sweep Four: Hypothetical Alternatives

Finally, each participant is asked to consider hypothetical alternatives to decisions that

were taken, or to consider how someone else might have handled an incident.

In the study reported in Chapter 7, hypothetical alternatives were volunteered in several

interviews. One account included constraints on problem-solving imposed by organisa-

tional practice. In this case, a set of alternative circumstances that would have avoided the

error or would have eased recovery were clear. However, in general responses to this line

of questioning were sceptical, or dismissive. Informants indicated that there were not other

things that could have been done, or noted that alternatives (such as greater knowledge)

might have helped, but were impractical.

Appendices

-286-

D.3. Coding

Nine transcribed interviews were read and annotated to identify themes in the data. The

designation of sweeps to gather different kinds of information in Critical Decision Method

interviews provided a structure for grouping data during analysis (for a fuller description of

the protocol, see the prior section). Information related to selection of incidents was

identifiable, as was information given in response to deepening questions. Transcripts were

first coded into segments. Segments were identified by questions and responses that moved

discussion in a distinct direction; this determination was made by assessing how an area of

the transcript broadly corresponded to targets for the different sweeps of the interview:

Identification and Accounts - this was used to segment the initial identification of

incidents, but was also used to encapsulate later complete accountings of the

incident by the respondent.

Juncture in Time or Decision Point - used to segment interviewer recapitulations

of previously given information, and also to note questions and responses to “what

happened next” or “what did you do then” prompts.

Deepening - the suggested prompts for deepening probes did not always corre-

spond directly to questions that were asked or to given responses. Recommended

prompts were not always used and responses often voluntarily included detail that

could be broadly identified with one of the deepening categories.

Hypothetical Alternatives - though Crandall et al. describe this sweep as roughly

following the deepening sweep, this kind of questioning was used at different

points in the interview to probe for greater detail as required. It was also used by

the interviewer to demonstrate technical knowledge if the sense was given that the

informant might be withholding information or tailoring based on their understand-

ing of my expertise.

Each interview was coded into between 30 and 45 segments; segments often included more

than one question and response and almost certainly included information relating to more

than one category. Multiple categories were often assigned to reflect evidence of more than

one area of deepening, such as a response that described information that was sought, and

how that information related to goals or priorities.

Error Detection and Recovery (Lopez)

-287-

D.3.1.Codebook

This is the codebook that was developed out of analysis of the interviews collected at sites

B and D. The four main numbers correspond to the sweep of the interview. Section 3,

Deepening Probes was initially populated using categories of suggested prompts, but were

iteratively developed during analysis into a set of terms that reflected the content in the

interviews.

1. Identification
2. Juncture in Time or Decision Point
3. Deepening Probes

3.1.Cues
3.1.1.Talking through
3.1.2.Seeing
3.1.3.Chance
3.1.4.Error
3.1.5.No change
3.1.6.Timeliness
3.1.7.Votes

3.2.Information
3.2.1.Colleague
3.2.2.Environment
3.2.3.Client
3.2.4.Documentation
3.2.5.Collective
3.2.6.Code

3.3.Analogs
3.4.Standard Operating Procedures

3.4.1.Individual
3.4.2.Team
3.4.3.Organisational

3.5.Goals and Priorities
3.5.1.Individual
3.5.2.Team
3.5.3.Organisational
3.5.4.Commercial

3.6.Options
3.7.Experience

3.8.Assessment
3.8.1.Foresight
3.8.2.Hindsight
3.8.3.of Performance
3.8.4.of Solution
3.8.5.Naming

3.9.Mental Phenomena
3.9.1.Feeling
3.9.2.Thinking/Imagining
3.9.3.Insight
3.9.4.Memory
3.9.5.Giving Up
3.9.6. Expectation

3.10.Problem Solving
3.10.1.Decision Making
3.10.2.Explaining
3.10.3. Tactic
3.10.4. Strategy
3.10.5. Diagnosis
3.10.6. Understanding
3.10.7. Learning
3.10.8. Communicating
3.10.9. Reading
3.10.10. Comparing
3.10.11. Drawing
3.10.12. Reasoning
3.10.13. Questioning
3.10.14. Fitting
3.10.15. Delaying
3.10.16. Implementing

Appendices

-288-

3.10.17. Checking
3.11. Guidance
3.12.Side turns
3.13.General Knowledge

3.13.1. Technical

3.13.2.Organisational
3.13.3.Cultural

4. Hypothetical Alternatives
5. Personal Information

D.4. Information Sheets

Two information sheets were used. Each contained the same information about

researchers, contact information and a slightly modified version of the expectations for the

interview. Modifications were made to the timeframe for the interview to reflect tighter

constraints at the second site, and the language used to frame the research was refined.

Participants at both sites were informed that was sought about “things that go wrong” in

development, though the terms used to describe those things varied slightly.

In the first information sheet (see Figure D.4.1), the research problem was framed in

terms of bugs, and the focus of analysis was to explore how developers deal with “small

mistakes”. The second information sheet does not use the term bugs, and removes the

emphasis on personal responsibility conveyed by the term “mistake”. The aim for analysis

given was to understand how developers manage “problems encountered” in everyday

work. The second information sheet (Figure D.4.2) also included a graphic, which was

intended to catch the eye of potential participants who were solicited through an invitation

sent by email.

Error Detection and Recovery (Lopez)

-289-

Figure D.4.1: Information sheet for Digital Humanities (Site B).

Appendices

-290-

Figure D.4.2: Information sheet for Course Planning (Site D).

	1.	Introduction
	1.1	Error Defined
	1.2	Research Question
	1.3	Approach
	1.4	Notes about the Text
	1.4.1	Writing about People
	1.4.2	Writing about Error
	1.4.3	The Structure of the Thesis

	2.	Background
	2.1	 Error in Software Engineering
	2.1.1	Dependability
	2.1.2	 Fault Analyses
	2.1.3	Root-causes

	2.2	 Human Error
	2.2.1	Action Models
	2.2.2	Slips of Action
	2.2.3	Skills, Rules and Knowledge
	2.2.4	Generic Error Modelling Framework
	2.2.5	Swiss Cheese Model
	2.2.6	An Action-Oriented Taxonomy of Errors

	2.3	Summary

	3.	From Establishing Causes to Examining Actions
	3.1	Operational Failure in Software Engineering
	3.2	A Space of Possibilities
	3.2.1	Actions

	3.3	Error Detection and Recovery
	3.3.1	Related Research
		3.3.1.2	 Swedish
		3.3.1.3	 Italian
	3.3.2	Detection
	3.3.3	Identification and Recovery

	3.4	Summary

	4.	Method
	4.1	Research Focus
	4.1.1	The Ethical Impetus

	4.2	An Ethnographic Stance
	4.2.1	Ethnography of, for and within
	4.2.2	Ethnographically-Informed Research

	4.3	Field Sites and Sources
	4.3.1	Sites
	4.3.2	Corpus
	4.3.3	Informants

	4.4	Studies
	4.4.1	 At the Drawing Board (Site A)
	4.4.2	At the Desk (Site C)
	4.4.3	After the Fact (Sites B and D)

	4.5	A Prospective Analysis
	4.5.1	Related Approaches
	4.5.2	Transcription and Cataloguing
	4.5.3	Accounts
	4.5.4	Incidents

	4.6	Summary

	5.	At the Drawing Board
	5.1	Related Work
	5.2	Setting the Scene
	5.2.1	The Amberpoint Session (Site A)

	5.3	Findings
	5.3.1	I don't know if I like the pop‐up window anymore.
	5.3.2	So you think there should be a car out there?
	5.3.3	Ultimately, you want to know whether it worked.

	5.4	Discussion
	5.4.1	Scenarios
	5.4.2	Constraints
	5.4.3	Representations
	5.4.4	Limitations

	5.5	Conclusion

	6.	At the Desk
	6.1	Related Work
	6.2	Setting the Scene
	6.2.1	Acceptance Test Framework (Site C)
		6.2.1.2	How Practice is Organised

	6.3	Findings
	6.3.1	Slips of Action
	6.3.2	Error Handling Illustrated
	6.3.3	Error-Driven Practice
	6.3.4	Handling in Context
	6.3.5	Modulators
	6.3.6	Rules-of-Thumb

	6.4	Discussion
	6.4.1	Limitations

	6.5	Conclusion

	7.	After the Fact
	7.1	Related Work
	7.2	Setting the Scene
	7.2.1	Digital Humanities (Site B)
	7.2.2	Course Planning (Site D)
	7.2.3	Points in Common
	7.2.4	Exclusions

	7.3	Findings
	7.3.1	Settling
	7.3.2	Tolerating
	7.3.3	Thrashing
	7.3.4	Piecing
	7.3.5	Naming
	7.3.6	Slipping

	7.4	Discussion
	7.4.1	The Nature of Tasks
	7.4.2	The Need to Witness
	7.4.3	Rules of practice
	7.4.4	Limitations

	7.5	Conclusion

	8.	Discussion
	8.1	Characteristics of Handling
	8.1.1	Detection: Knowing that something is wrong
	8.1.2	Identification: Knowing what should have been done
	8.1.3	Recovery: Removing effects

	8.2	The Shape of Experience
	8.2.1	Expectation and Surprise
	8.2.2	Feelings
	8.2.3	Similar Things
	8.2.4	Seeking Help
	8.2.5	Weirdness
	8.2.6	Being Wrong and Getting Lost

	8.3	Limitations
	8.3.1	The Vagaries of Access
	8.3.2	Credibility and Reliability
	8.3.3	Fixed Records

	8.4	A Partial View

	9.	Conclusion
	9.1	Implications
	9.2	A Framework for Examining Practice
	9.3	The Changing Nature of Expertise

	References
	A.	Conventions and Tools
	A.1	Transcription
	A.2	Signalling Devices

	B.	Notes on At the Drawing Board
	B.1	Columnar Analysis
	B.2	Design Prompt
	B.3	Kinds of Expert Knowledge

	C.	Notes on At the Desk
	C.1.	Transcription and Cataloguing
	C.2.	Incident Catalogue
	C.3.	Incident Exchanges
	C.3.1.	Slips of Action
	C.3.2.	Prior Experience
	C.3.3.	Blame and Severity
	C.3.4.	Forming Rules-of-Thumb
	C.3.5.	Error-Directed Practice, Local Problem Solving

	C.4.	Sources of Data

	D.	 Notes on After the Fact
	D.1.	Transcription and Field notes
	D.2.	Critical Decision Method Protocol
	D.3.	Coding
	D.4.	Information Sheets

