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Abstract

Software rarely works as intended when it is first written. Software engineering research 

has long been concerned with assessing why software fails and who is to blame, or why a 

piece of software is flawed and how to prevent such faults in the future.  Errors are 

examined in the context of bugs, elements of source code that produce undesirable, 

unexpected and unintended deviations in behaviour. Though error is a prevalent, mature 

topic within software engineering, error detection and recovery are less well understood.  

This research uses rich qualitative methods to study error detection and recovery in 

professional software development practice.

It has considered conceptual representations of error in software engineering research 

and trade literature. Using ethnographic principles, it has gathered accounts given by 

professional developers in interviews and in video-recorded paired interaction. Developers 

performing a range of tasks were observed, and findings were compared to theories of 

human error formed in psychology and safety science. 

Three empirical studies investigated error from the perspective of developers, recon-

structing the view they hold when errors arise, to build a catalogue of active encounters 

with error in conceptual design, at the desk and after the fact.  Analyses were structured to 

consider development holistically over time, rather than in terms of discrete tasks.  By 

placing emphasis on “local rationality”, analytical focus was redirected from outcomes 

toward factors that influence performance. The resultant observations are assembled in an 

account of error handling in software development as personal and situated (in time and 

the developer’s environment), with implications for the changing nature of expertise.
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1. Introduction

Determining what constitutes failure in software engineering is subjective and difficult to 

isolate.  Boundaries between systems are fluid and the artefacts used to represent them 

complex.  Perception and attitudes influence judgements about the causes of failure.  The 

mechanisms designed to prevent failure are themselves failure-prone.  The complexity of 

the topic has led different research communities to reinvent and rename related concepts.  

A tendency exists to overlook the ways in which various means of achieving dependability 

-and thus preventing failure- are relevant to one another (Randell, 1998). 

By contrast, the concept of error in software engineering is stable, described using terms 

like fault, defect or bug.  Bugs written into software produce undesirable deviations in 

specified behaviour (Avižienis, Laprie, & Randell, 2004).  They must be tracked down so 

that they can be removed.  It is not always possible to determine the circumstances under 

which a bug was written, or why.  Nonetheless, they are widely considered to be the result 

of human error, attributed to poor understanding, inexperience, lack of skill, or incompe-

tence.

This thesis considers a different sense of error.  An error is also actively experienced, 

and may manifest only as a misunderstanding, or something that goes wrong and then is 

put right before a file is released, committed, or saved.  Such errors are ephemeral, and as a 

result, there are often few material traces (Scott, 1990) left behind within code, descrip-

tions or project records. The meaning associated with an error is personal.  Its significance 

may diminish or develop over time as a developer takes on new projects, or faces new 

problems in different environments.

In the following pages of the thesis, the terms error as drawn from psychology and 

safety science refer to errors that are experienced. Other terms from these disciplines 

describe error handling, the process by which developers detect, identify and recover from 
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errors.  Particular instances of error handling are encounters or incidents.  The terms bug, 

fault, or defect signify error as conceived in software engineering.

The following section expands this conceptual foundation for human error. Next, a 

section presents the research question with working definitions and descriptions of 

influential factors.  A brief statement highlights the qualitative analytical approach used in 

the reported studies. The chapter concludes with a guide to the text and a brief overview of 

each chapter.

1.1 Error Defined

Errors in the workplace are situational, particular; they arise in the form of “misfits” or 

“mismatches” between a person and a task or a person and a machine (Rasmussen, 1985, 

p. 5-6).  Errors often unfold during normal, everyday actions (Norman, 2002). Things go 

wrong in the midst of “best attempts” to accomplish desired and reasonable goals (Lewis 

& Norman, 1986). They are encountered by workers at the “sharp end”  (Woods, Johan-

nesen, Cook, & Sarter, 1994)1. 

Errors arise, in part, because human performance is variable, marked by experimenta-

tion, by trial and error and “cutting corners” (Rasmussen, 1985). Variability is a natural 

and necessary part of learning and adaptation.  It allows workers to be more efficient, to 

develop skills and improve performance.  Erring is at times inevitable.  Things may go 

wrong, but workers often are not at fault, given the demands of tasks and the conditions 

under which they perform (Hollnagel, 1998, p. 30).

The term “human error” is contentious. In the piece summarised above, Rasmussen 

prefers the terms misfits, mismatches, and malfunctions, and argues that rather than 

human error, it may be more appropriate to identify features of “unkind” work environ-

1. The term “sharp end” is attributed here to Woods et al., but Woods attributes it to 
Reason, and other references suggest it originated with Rasmussen.
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ments that cannot support variations in performance (Rasmussen, 1985). Hollnagel argues 

that the term “error”  cannot be well defined and should instead be replaced with the terms 

action or activity (Hollnagel, 1983). In the context of medical safety, Woods writes that 

pursuing the question of what error is is a “dead end” (Woods & Cook, 2003, p. 2).

To declare that a human has committed errors that produce an accident or failure 

requires that judgements or causal attributions be made after the fact, based upon incom-

plete contextual knowledge about particular situations (Rasmussen, 1990). The boundaries 

of the error and its causes are determined in light of known negative outcomes. An analysis 

is thus blinkered by hindsight (Woods, Johannesen, Cook, & Sarter, 1994).  Analysts select 

causes that are “familiar” (Rasmussen, Nixon & Warner, 1990), that can be measured 

using externalised criteria (Hollnagel & Amalberti, 2001). 

In navigating a space of possibilities (Rasmussen et al., 1990),  workers must redefine 

the goals and tasks they are given to perform.  They transform them into individual plans 

and intentions for which actions can be undertaken (Frese and Zapf, 1994).   Erring in the 

workplace is inevitable, and should be interpreted in the context of personal actions that 

are perceived to have been in error.

Error occurrences are actively experienced, they arise when planned sequence of mental 

or physical activities fail to achieve intended outcomes. (Reason, 1990, p. 9). A person 

becomes aware that he has made an error through feelings or perceptions that arise in the 

act (Sellen, 1994), based on suspicion or checks made of recently completed work 

(Allwood, 1984).  He might also realise that an error has occurred by assessing “deleteri-

ous” outcomes (Norman, 1981).  Recognition is made by comparing internalised  aims, 

expectations and judgements (Rasmussen, 1985) to outcomes in the environment.

 Error detection is a part of error handling (Brodbeck, Zapf, Prümper, & Frese, 1993): 

a person realises that something is wrong, identifies what went wrong and what should 
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have been done, and removes effects (Sellen, 1994).   Handling an error may be more or 

less immediate (Norman, 1981) or may require drawn out, effortful problem solving 

(Reason, 1990).

1.2 Research Question

“[A]lmost everyone who has ever written a program that did not immediately 

function as intended - a normal occurrence as we all know - has developed his 

personal theory about what went wrong in this specific case and why. ”  (Endres, 

1975, p. 327) 

The research reported in this thesis explores the common knowledge expressed by Endres 

in the quote above.  It aims to understand more about the personal theories developers have 

about things that go wrong while making software, to catalogue specific instances, and to 

document the process employed to deal with them. To do this, it has addressed the 

following research question:

How do professional software developers detect, identify and recover from errors? 

Though broad and intended to be exploratory, this question carries within it several related 

concerns:

Error: In software engineering, faults are discovered after software is written and, 

possibly, released.  They are reported to developers as bugs.   As defined in the 

previous section, errors arise from a personal action or actions that are perceived to 

be wrong.  Individual experiences are the focus of inquiry.  The research does not 

aim to establish causes but to explore the environmental and situational factors of 

occurrence.   

Time: The meaning associated with errors is personal, and their significance may 

diminish or develop over time.  This research collates data for analysis that gives a 

more realistic view of how time functions in software development. This point has 

two implications: it permits examination of how an individual error occurrence 

may transcend tasks and span time over the course of a project and reveals how 

perceptions toward errors change in response to the passage of time.
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Professional Developers: Empirical studies in software engineering often study 

performance in the laboratory or educational settings (Brandt, Guo, Lewenstein, 

Dontcheva, & Klemmer, 2009; Ko & Myers, 2005).  Findings from cognitive task 

analysis suggest that the way people perform in the workplace is different (Cran-

dall, Klein, & Hoffman, 2006). The analysis used data that depict professional 

developers and aimed to isolate examples of naturalistic performance. 

Everyday Practice: The nature of the topic suggested that the examined practice 

would likely include challenging or even rare, "one-off" events.  However, studies 

were not designed to perform a retrospective analysis of a large operational failure 

or another disastrous outcome.  Instead, a commitment was made to examine 

routine, everyday practice, with some limitations. For example, no study reviewed 

the process of agreeing to specifications with stakeholders.  Likewise, reports of 

error were considered as developers utilise them, but not as users experienced and 

reported them.  

Incidents: One aim of the research was to develop an understanding of software 

development by identifying incidents in everyday practice, not by examining 

particular tasks, methodologies or environments. An incident may have occurred 

within a particular task such as bug fixing or writing unit tests, but also during a 

design meeting, or in writing a method. Data were selected that included fine-

grained detail about actions (Norman & Shallice, 1986) and performance (Ras-

mussen, 1985) that could be "tightly linked" to personal experience, to goals, to 

settings, and cues (Crandall et al., 2006, p. 21).

1.3 Approach

There is growing interest within the research community to find new ways to improve 

software quality by examining human error (Walia,  Carver,  &  Bradshaw,  2015). This 

interest joins other, related calls that the research community must identify and articulate 

theory ((Ekstedt, Johnson, & Jacobson, 2012), and recognise that software engineering is a 

human activity (Captretz, 2014).  Older examinations of human error in professional 

contexts performed retrospective analyses, using bug and modification reports, or retro-
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spectively administered interviews and questionnaires that probe for detail about these two 

activities.  A more general examination of errors that are made at other points is lacking. 

To fill these gaps, this research has applied and evaluated a methodological framework 

for examining human error in software development. In addition to selecting appropriate 

methods for data collection, this research established analytical focus, determining what 

constitutes an error handling incident.  This required identifying the boundaries of 

experience that relate to error encounters in software development. 

The studies reported in Chapters 5, 6 and 7 were ethnographically-informed 

(Robinson, Segal & Sharp, 2007).  The research collected data from interactions with and 

observation of developers in the field. A theoretical framework drawn from psychology 

and safety science was used to situate and interpret data.   

It is not always easy to analytically establish the origins of errors (Hollnagel, 1983), nor 

for researchers to perceive what informants do (Geertz, 2000). Instead, this research 

considers software engineering as a human activity (Endres, 1975; Capretz, 2014) by 

examining how human error manifests in a socio-technical context (Rasmussen, 1990).  

The aim has been to understand what developers perceive with, the means by which or 

“through” (Geertz, 2000, p. 58) they handle errors encountered in daily work.  Three 

dimensions were explored: 

• The particular configurations of circumstances that provide material for problem-

solving to developers (Reason, 1990). 

• The process undertaken to detect, identify and recover from an error (Sellen, 1994). 

• The feelings that influence process and resonate beyond problem occurrence 

(Reason, 1990). 
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1.4 Notes about the Text

This account has a kinship to the natural histories or framework studies described by 

Reason (1990).  It is intended to provide a richer set of concepts for discussing error in 

professional software development.  By extension, it stands to serve researchers in a 

number of fields that benefit from knowing what goes on during development practice.

To serve the broadest audience, the text is discursive, countering the skewed, inaccurate 

view of human error that can be conveyed by normalising human experience within 

typologies or models (Hollnagel & Amalberti, 2001).  The approach is, instead, naturalistic 

(Le Coze, 2015), though findings in individual study Chapters 5, 6 and 7 and within the 

discussion given in Chapter 8 abstract individual experience into more general categories 

or themes that relate to established topics drawn from error handling research. 

Errors are active, alive, teeming and writhing, like the insects depicted in Figure 1.2. 

One aim has been to counter the image of error as specimens of insects that can be fixed 

with a pin and neatly ordered, as they are in Figure 1.1.  This is a practice that has also 

been associated with older object-oriented or specimen focused cultural anthropology (Van 

Maanen, 2011).
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Figure 1.1: Errors are specimens. Detail of “Butterflies”, held by the Art and Picture 
Collection, The New York Public Library.  Public domain.

Figure 1.2: Error is alive, teeming. Reprint of “Schutzeinrichtungen II”, held by the Art 
and Picture Collection, The New York Public Library. Public domain. 
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1.4.1 Writing about People

The sense of error conveyed in this thesis was formed by studying the actions of a small 

number of people. Writing about people is hard, especially when it is necessary to write 

about their "less than perfect" aspects (Narayan, 2012, p. 46). The difficulties that arose in 

designing research on the topic of human error paled in significance to the subsequent 

difficulty of writing about observations. The goal in data collection was to minimise 

negative perceptions formed by colleagues and managers of developers who shared 

experiences. Reports had to be described respectfully while also acknowledging evidence 

of "clangers" or "dropped balls". 

1.4.2 Writing about Error

We learn from mistakes, and errors are most clearly explained and understood through 

examples. Examples allow readers to associate the terms given to analytic categories with 

instances that are recognisable. They may be like or different from another person’s 

experience, and compared with features of multiple researchers’ data (Norman, 1981).

The term slip, for example, is relatively connotative, perhaps conjuring in your mind an 

image of a hapless encounter with a puddle of water or a banana peel. It takes on a  

meaning that is at once more precise and more general when given a definition like: 

A slip is an action that was not intended or does not go according to plan.

A puddle of water or a banana peel may be involved, but may not be. Many plans and 

intentions are conceivable, after all, and many actions can be imagined to carry them out. 

“Slip” becomes a meaningful descriptive device when it is associated both with its 

definition and with examples that orient it to particular acts, such as speech: 

“I was using a copying machine, and I was counting the pages. I found myself 

counting ‘1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King.’ (I have been playing cards 

recently.)” (Norman, 1981, p. 12)
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or physical activity:

“I caught myself as I was about to pour the tea into the opened can of tomatoes 

that was just next to (left of) the teacup. (The can was empty.)”  (Norman, 1981, p. 

12)

In the following pages, the text depicts developers with pseudonyms and reports aspects of 

incidents using language that is realistic, "dispassionate" and in the third person (Van 

Maanen, 2011, p. 45).   However, the text also makes extensive use of examples given by 

the developers.  The aim is to represent their encounters in “experience-near” terms as they 

did: spontaneously, “un-selfconsciously”, colloquially (Geertz, 2000, p. 57).

1.4.3 The Structure of the Thesis

The following chapters in the thesis are structured as follows.  

• Chapter 2 provides background literature for this examination of error, describing 

perspectives on the topic of human error in software engineering, and fields in 

psychology.  

• Chapter 3 establishes the commitment made to examine error handling in the 

context of actions taken within socio-technical environments.  

• Chapter 4 discusses how ethnographically-informed methods were used to conduct 

three studies.  

• Chapters 5, 6 and 7 detail findings, which, taken together, identify features of error 

handling in software development.  

• Chapter 8 synthesises a view on error handling in software development.  

• Chapter 9 concludes the thesis with a review of contributions and implications for 

future research.  
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2. Background

The previous chapter established a refocused definition of error. Though an error may 

result in faults left behind within source-code (Avižienis, Laprie, & Randell, 2004), an 

error may also be actively detected, identified and recovered from in the course of practice. 

Error in this sense may leave no clear representation within software artefacts because 

effects are removed before software is released, or files are saved and committed to version 

control systems.

This chapter surveys perspectives on error in different disciplines, beginning with 

software engineering. The following section summarises literature from psychology and 

safety science that examines human action, error and aspects of performance in the 

workplace.

2.1  Error in Software Engineering

This section considers the topic of error in software engineering discourse.  It starts with a 

description of the concept of dependability, followed by a brief overview of fault analyses. 

The third section, 2.1.3, is a critical review of root-cause studies, taken as an exemplar of 

fault analyses in industrial contexts. 

This review was conducted by examining research and trade publications that treated 

concepts related to error and failure. Software engineers name things, giving operational 

definitions to concepts by specifying their attributes within typologies and models 

(Svenonius, 2000). Within the natural language used in the discourse, there are also 

conceptual definitions given, intentional and connotative statements that describe what is 

to be specified (Svenonius, 2000).

Both kinds of statements served as sources of evidence about how researchers and 

practitioners conceptualise error.  The software engineering discourse employs literary 

rhetoric to serve different aims.  Language is scientific; it enables “the audience to see the 
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world as it is” (Gusfield, 1976, p. 17).  However, articles and papers are also cultural 

products (Kling, 1994); they use language in less neutral terms to persuade and communi-

cate (Gusfield, 1976).

The topic of error was explored by performing detailed keyword searching of journals, 

by chasing citations within articles, surveys and roadmaps, state- of the art and -of the 

discipline pieces, and position papers.  Journalistic sources and software engineering 

course work and syllabi that specifically address software failure were examined. Materials 

related to dependability were selected from work dating back to the 1960’s with some 

representation from the ’80s and ’90s; the majority of materials examined are from the first 

decade of the 21st century.

2.1.1 Dependability

Since its identification during the 1960s as one of the key problems in computing (Buxton 

& Randell, 1970; Naur & Randell, 1969), the provision of reliable software and the 

prevention of large and small scale failure has been a core theme in software engineering 

research. These aims have been met, for example, by ensuring that software specifications 

are correct using mathematical proofs, or by designing and structuring systems to allow 

software to degrade gracefully in the presence of errors. 

These and related areas of software engineering research make software more depend-

able, a notion that is multivalent.  Dependability has developed over several decades 

within software engineering research as an overarching concept that subsumes reliability 

and other attributes like availability, safety, confidentiality, integrity and maintainability 

(Avižienis, Laprie, & Randell, 2004, p. 5).  

This overview takes the following form. The first section describes prior notions of 

reliability and correctness, drawn from the reports of the 1968 and 1969 NATO confer-
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ences. A second section explores a more recent concept, fitness, in the context of software 

and systems. 

2.1.1.1  Reliability

The topic of reliability figured prominently at the 1968 NATO conference (Naur & 

Randell, 1969).  Participants of the workshop noted a “conscious need” to consider 

reliability within the design process (Naur & Randell, 1969; p.44/26)2. They also linked 

reliability to the ability to achieve “freedom from mistakes” when software was in 

production (Naur & Randell, 1969; p.100/59).

Though the report stated a perceived need among software engineers to quantify notions 

of reliability, the problems associated with the issue were described in qualitative terms.   

User expectations were reported to be at once unrealistically high and low.  Users were 

found to expect software to reach a state of "total system reliability".  Even large systems 

were supposed to never, or rarely, fail over the course of decades. By contrast, other 

participants observed that user expectations were low, that customers were able to continue 

to work “even when everything is falling apart” (Naur & Randell, 1969, p.71/p.40).  

Rising expectations for software performance were found to be a consequence of 

improvements in hardware.  Expectations were said to be manageable through careful 

tolerance of errors in both software and hardware. Threats to meeting user expectations for 

reliability were associated with difficulties and costs associated with testing and integrating 

changes to software that was already in operation (Naur, 1969, p. 70/p. 40-41).  

2.1.1.2 Correctness

At the time of the second NATO conference in 1969, the topic of quality subsumed the 

notion of reliability.  Quality had two senses:  correctness in performing specified tasks 

2. The dual-page citations given for references to the NATO reports reflect changes in 
pagination in the accessed version of the reports.  The first number signifies the page 
number in the original report.  The second number reflects the location of the quote in the 
pdf report.  
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and efficient performance (Buxton & Randell, 1970). Correctness likewise was described 

in two contexts related to errors.  Formal correctness concerned preventing errors from 

entering software, while debugging techniques centred on how to remove errors “when 

you have got them” (p. 20/p. 15). 

At this conference, Dijkstra is reported to have made the famous comment that “[T]est-

ing shows the presence, not the absence of bugs” (p. 20/p. 16).  His position is of course 

well known (Dijkstra, 1972), but this review addresses this sentiment in the context of a 

paper he gave at the prior NATO conference, a year earlier.  

Entitled “Complexity Controlled by Hierarchical Ordering of Function and 

Variability” (Naur & Randell, 1969), that paper anchored a discussion about the design 

process, and drew out details about the relationship between design and production.  

Dijkstra argued that the conviction of quality or “goodness” of software could not be 

achieved through testing, but instead must be proven before software is written.  It would 

come out of the design process itself:

“If you have your production group, it must produce something, but the thing to be 

produced has to be correct, has to be good. However, I am convinced that the 

quality of the product can never be established afterwards. Whether the correctness 

of a piece of software can be guaranteed or not depends greatly on the structure of 

the thing made.” (p.20/p. 16).

The structure he references is the employment of a systematic method to produce software, 

a method which “gives proof” that the software is correct.   

Other participants challenged Dijkstra’s views.  Counterpoints made by Willem van der 

Poel are summarised below.  They are relevant to the research reported in this thesis 

because they address environmental and social aspects of development that influence 

notions of dependability, and by extension error handling.  van der Poel argued that:
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Errors can “cut right across” layers in systems and can have effects that are 

illogical, a phenomenon that has been described more recently as the “cause/effect 

chasm” (Eisenstadt, 1997).  

It is necessary at times to “believe” in the correctness of a piece of software that 

was written by someone else.  

Formulated precisely, the specification of a problem is equivalent to the 

solution.  van der Poel asked not what is the solution, but how do we solve the 

problem?  He questioned the “missing link” in Dijkstra’s method, the elements of 

creativity, invention, intuition and process that could not be “symbolised or 

mechanised.”  

Some errors are due to the handling of software before execution.  These 

comments regarded the material aspects of software of the time, of punch cards, 

transcriptions, of physical ordering and carrying to machines for execution (pp. 

51-52/p. 30).

As Dijkstra noted in his rebuttal, van der Poel was interested in how programmers solve 

problems and in how they deal with problems that cannot be fully specified.  These he 

addressed as matters of expertise: an unexplained process by which one comes to be gifted, 

to “know” how to manipulate formal specifications in practice.  Dijkstra classed the other 

comments made by van der Poel together as representative of mechanical or clerical error: 

potentially costly if not dealt with, but manageable using available methods of the day.  

2.1.1.3  Fitness

Recent writings draw dependability up out of the software toward its creators.  The 

impression given is of dependability as an adaptive property that emerges and develops 

over time to meet the requirements of the environment and culture that create it. Depend-

ability is formed amongst makers, who must confront a ”thousand points of doubt” as they 

write software (Ferguson, 1992, p. p.183) and in so doing exhibit the senses of "fitness and 

adequacy" that characterise engineering practice more generally (Ferguson, 1992). 
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In the paper “How did software get so reliable without proof?” (1996), Hoare rejected 

the need for formal proof in all but the most critical components, instead favouring the 

establishment of a ”culture of reliability” enforced through code inspections, reviews and 

walkthroughs. He moved the notion of correctness away from design to development, 

noting that at the stage of fault removal, reliability in large systems may be a product of a 

”natural symbiosis” achieved over many years of mutual adaptation between individual 

components maintained by humans.

A symbiotic, adaptive sense of dependability has also been used to explain the differ-

ence between the performance of systems and programs.  Shaw contrasted the realities of 

”real systems” with programs developed using methodologies of classical computer 

science (2002).  Programs result in deterministic solutions to clearly defined problems. 

Systems, on the other hand, must respond even when the problem space is not completely 

understood, or requirements for behaviour change. They must be fit for purpose while 

maintaining the quality or ”health” of the system, however imprecisely defined.

Similarly, Randell’s work highlights the complexity of socio-technical “systems-of-

systems”.  Such systems have boundaries between them that are ”unknown and unknow-

able”.  It is necessary to establish methodologies for achieving a more broadly conceived 

notion of dependability that can accommodate human values like trust (Randell, 1998).   

In the context of faults and failures, Randell invoked Christopher Alexander’s thoughts 

to describe the nature of software design as being one of “fit”: the need to ascertain 

appropriateness in the current moment for an unknown future. Often, suitability is 

determined by identifying what does not work, by detecting incongruities (Randell, 2003). 

Randell argued that in software engineering, such reasoning does not depend on specifica-

tions, but on personal, authoritative judgements taken during design and deployment. 
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Winograd and Flores characterise this sense of fitness as breakdowns (Winograd & 

Flores, 1987) and lend to it the factor of time. Breakdowns are detected by someone who 

has been broken out of readiness-to-hand, or “concernful” use of the tools and practices 

that underpin work. Errors are problems; they reveal inadequacies of commitment of 

“language in action”.  They are moments in which when someone's words have not had the 

intended effect on the computer. When a problem occurs, each person will bring a unique 

background, formed in the past, to understand how and why a problem occurred, whether 

the problem can be fixed or not, and the means required to fix it. (p.77).

2.1.2  Fault Analyses

The NATO conferences found that the problem in building quality software was “artisanal 

craft”, while the solution was projected to be techniques and theories developed in 

software engineering (Buxton & Randell, 1970; Naur & Randell, 1969).  One disciplinary 

branch of research that subsequently formed to address the problem of creating dependable 

software is fault analysis. 

Fault analyses address the problem of quality by avoiding operational failure and 

employ a range of analytic methods including statistical analysis, program analysis, case 

study, formal methods and system analysis. With some exceptions (Magalhães, von Staa, 

& de Lucena, 2009), a particular study will often examine a single part of the development 

process, such as requirements engineering.  The intention is to meet a single dependability 

aim, such as fault prevention.  As their name suggests, fault prevention studies intend to 

prevent the introduction of faults during design and development.  In addition to fault 

prevention, studies can be categorised in terms of other dependability aims: fault tolerance, 

fault removal, and fault forecasting (Pullum, 2001): 

Fault removal studies develop processes to remove faults written into software. As 

with prevention efforts, removal techniques cannot ensure that all faults are 

removed from a system because they can only determine whether or not software 
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matches the specified required behaviour.  These analyses cannot determine that 

something was left unspecified.  

Fault forecasting is likewise employed during software validation to indicate the 

presence of faults and to predict the risk of operational failures. It can be used to 

determine whether additional testing or other means should be applied to software 

before it is released.  

Fault tolerance techniques enable systems to tolerate faults that are not removed 

before release. They do this by allowing operations to degrade gracefully and to 

recover from errors to prevent complete operational failure. 

Studies across the categories, as summarised in Table 2.1 are empirical; they analyse 

existing bodies of software. However, they often employ quantitative, rather than qualita-

tive analytical techniques.   The intentional, connotative significance of concepts (Svenon-

ius, 2000) related to software dependability are reduced into operational terms that can be 

measured and thus used to demonstrate, verify and validate that software meets a quantifi-

able, pre-determined degree of dependability. The lens of analysis is retrospective; 

examinations are not commonly made of software development practice as it occurs. All 

studies, however, are forward-looking, with general aims to improve software development 

process and practice in the future.

2.1.3 Root-causes

This section strengthens the case for examining errors in software as outcomes of human 

activity. It considers root-cause analysis studies to be both an exemplar of fault analysis 

research and a phenomenological source for identifying gaps in understanding about error 

in software development.  The studies reviewed were selected by chasing footnotes and 

were published over the course of approximately twenty-seven years.
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Table 2.1: A summary of fault analysis research.  This is a  brief catalogue of analyses that 
treat smaller aspects of failure within systems. The catalogue is representative, not 
comprehensive.

Root-cause studies identify the kinds of faults that predominate in a system in order to 

determine how software engineering process can be altered to prevent fault occurrence. 

The studies draw data from bug and modification reports (Leszak, Perry & Stoll, 2002; 

Perry & Evangelist, 1985, 1987), but also make use of in-process questionnaires (Basili & 

Perricone, 1984) and retrospectively administered surveys (Perry & Stieg, 1993). 

Data are analysed and classified into taxonomies that identify the root-causes for faults. 

The classified set of data forms the basis for additional examination of particular code 

features such as complexity (Schneidewind & Hoffman, 1979), interface defects (Perry & 

Fault prevention 

Prevent the introduc-
tion of faults during de-
sign and development

Fault removal 

Remove faults during 
testing and verification

Fault forecasting 

Predict the occurrence 
of operational failures

Fault tolerance  

Enable systems to de-
grade gracefully

Disciplinary Areas

Requirements engineer-
ing 
Structured design
Structured program-
ming
Formal methods
Software reuse

Software testing
Formal inspection 
Formal design proofs

Software testing

Program analysis.

Error detection
Diagnosis
Containment and recov-
ery

Representative 

Studies

Shaw, 2002
Than et al., 2009 

Hanebutte & Oman, 2005
Butler et al., 2010
Zou, 2003 
Pugh, 2009
Briand et al., 2003
Cataldo et al., 2009

Bertolino & Strigini, 
1998

Sözer, Tekinerdoǧan, & 
Akşit, 2009
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Evangelist, 1985, 1987) or more generally, environmental factors that influence software 

dependability (Basili & Perricone, 1984).

2.1.3.1 Establishing a Model for Examining Root Causes

Albert Endres performed an early, influential root-cause analysis of software written for 

IBM in 1975 (Endres, 1975). The paper had two outcomes.  Its principal outcome was the 

establishment of a root-cause taxonomy designed to plot fault distribution and frequency in 

systems programming, software characterised by the author as beginning with ”high 

quality” requirements that structurally degrade over time (p. 327). The second outcome 

was a meditation on the nature of errors in software programming, and reflection about 

how they should be studied.

The study examined a single release at IBM of the operating system DOS/VS.  It drew 

data from failed test cases generated over a five-month period.  Two sets of test cases were 

run: the first a series of regression tests to ensure that old functionality had not been 

compromised by new development and the second to simulate user inputs to the system.  

The tests resulted in 740 faults. The original development team categorised the faults 

according to the protocol which should be followed to correct them. Four hundred thirty-

two were deemed to be program faults – and thus not duplicates, documentation errors, 

hardware failures, operator errors, or feature requests. These formed the data for analysis. 

An analysis was performed to determine where, when, and why the fault was made who 

made it, what was done wrong, what would have prevented the fault and what would 

support detection.  

The primary outcome of analysis was a taxonomy of distribution by type of error. This 

taxonomy included three main groups: 

• faults related to problem understanding 

• faults related to implementation 
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• mechanical errors such as spelling, or errors in integrating modules.

The study found that almost half of the 432 cases were could be attributed to programming 

technique, with suggestions given that better programming methodology would reduce the 

number.  Notably, the remaining errors were found to be due to problem understanding, a 

category that included communication, and knowledge of the broader ”possibilities and 

procedures for problem solving” (Endres, 1975, p.331). Endres attributed this finding to 

the complexity of the tasks, noting that the problems to be solved in systems programming 

are inherently ill-formed, dynamic, and require iterative changes. The functional demands 

of such systems, he argued, can only be properly understood when they are seen in use. To 

reduce faults in this class, Endres concluded that changes must be made to the develop-

ment process, including the use of design and code walkthrough sessions, prototypes of 

functionality and user tests.

The study noted two significant limitations.  It defined errors in the context of correc-

tions made to source code. The number of errors equaled the number of failed test cases 

and did not consider other problems that might be found and corrected along the way, or 

those of which the programmer may have ”secretly been aware of for some time” (Endres, 

1975, p. 330). The information provided in failed test case reports was sufficient to explain 

where and when an error was made, however, more information was required to determine 

who made the error. These data were gathered from conversations held with the develop-

ment team.

2.1.3.2 Following the Model

Six root-cause studies that follow a research model like the one used by Endres’ are 

profiled and reviewed in the text that follows.  See Table 2.2 for a summary of the studies.. 

As in Endres' case, the studies primarily examined data drawn from bug and modification 

reports filed by users and testers (Leszak et al., 2002; Perry & Evangelist, 1985, 1987). 



Ch. 2 Background

-22-

Other studies drew data from in-process questionnaires (Basili & Perricone, 1984) and 

retrospectively administered surveys (Perry & Stieg, 1993). The study design in one case 

was experimental and examined purpose-built software (Schneidewind & Hoffmann, 

1979). In the other studies, an empirical examination was made of software written for 

industrial environments, in a variety of languages and for different operating systems. 

Taxonomies that represent the root causes of errors were the primary tool used in the 

analysis. Some schemes were theoretical, designed a priori by the researchers (Basili & 

Perricone, 1984; Schneidewind & Hoffmann, 1979) or developed in collaboration with 

members of the development team (Perry & Stieg, 1993). The taxonomy used in one study 

developed out of an analysis of error data (Perry & Evangelist, 1985, 1987). A second 

study used a scheme created earlier, adapting and extending it to represent additional 

information (Leszak et al., 2002).  Developers  were  asked  to  classify  errors  using  tax-

onomies supplied by researchers in two cases. Basili and Perricone included their classifi-

cation  in  a  change  report  form completed  by  programmers.  Perry  and  Stieg  surveyed 

programmers responsible for closing modification reports asking them to classify the error 

into one of nine fault type categories and to indicate the phase of testing in which the fault 

emerged.

Classified collections of faults provided a lens for examining other features of software 

such as complexity, interface defects or environmental factors that influence software 

dependability. Complexity was found both to correlate to error frequency (Schneidewind & 

Hoffmann, 1979) and not to (Basili & Perricone, 1984). Application programming 

interfaces were found to have particularly high frequencies of errors associated with them 

(Perry and Evangelist, 1985, 1987). These and other root causes were interpreted according 

to the costs of finding and fixing (Basili & Perricone, 1984; Leszak et al., 2002, Schnei-

dewind & Hoffmann, 1979).
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Schneidewind 
& Hoffmann 
(1979)

Basili & 
Perricone 
(1984)

Perry & 
Evangelist 
(1985, 1987)

Hypotheses/Aims

Hypothesis: Program 
structure has a signifi-
cant effect on error 
making, detection, and 
correction. 

Aim: To find a com-
plexity measure that 
can be used to guide 
program de-sign and 
resource allocation in 
debugging and testing. 

Aim: To analyze the 
relationships between 
environmental factors 
and errors reported 
during software devel-
opment and mainte-
nance. 

Hypothesis: Interfaces 
are a source of prob-
lems in the develop-
ment and evolution of 
large system software. 

Characteristics 
of Data

173 errors

64 errors deemed to be 
potentially relevant to 
complexity of structure

231 change report 
forms, created by pro-
grammers over a peri-
od of 33 months. 

Reports were verified 
by team manager, vali-
dated by research 
team; 

New development, but 
existing code re-pur-
posed in some cases 

94 randomly selected 
modification reports 
submitted by testers 

85 contained sufficient 
data for the study

Software evolution. 

Characteristics 
of Software

Four projects un-
dertaken by the 
same programmer 

Algol W for exe-
cution on the IB-
M360/67

Purpose-built 
code. 

Approximately 
90,000 lines of 
code 

Primarily in For-
tran for execution 
on an IBM 360 

Aerospace (satel-
lite planning stud-
ies). 

350,000 non-com-
mentary source 
lines 

C programming 
language

Fault reports writ-
ten against global 
header files. 

Domain unreport-
ed, researchers af-
filiated with Bell 
Labs and MCC. 
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Table 2.2: A summary of root-cause analyses.  The research model established by Endres 
was also used in other root cause analyses. This table gives information for six such 
studies, highlighting study aims, characteristics of study design, and the environment under 
investigation. 

The studies, like Endres’ converge on one point: knowledge is one of the largest problems 

in software development (Perry and Stieg, 1993). However, the findings represent the 

notion of conceptual integrity in different ways.  Endres described it as  problems of 

understanding.  The other studies conflate reasoning with constructs taken from software 

engineering. For example, Basili and Perricone found that roughly half of all errors related 

to requirement and functional specifications. Perry and Evangilist noted that 25 percent of 

the interface errors they studied were due to issues in design (Perry and Evangilist, 1987, 

Section 2 Background for the study).

The aim to go beyond the source code and to “get at” the reasoning process of develop-

ers in some cases prompted a second phase of data collection.  Perry and Stieg designed a 

Perry & Stieg 
(1993)

Leszak, 
Perry & Stoll 
(2002) 

Aim: To determine 
general and application 
specific encountered 
during software evolu-
tion. 

Aim: To determine 
problems are found. 
Aim: To determine 
when problems are 
found. 

Aim: To analyze defect 
modification reports; 
establish root causes. 

Aim: To analyze cus-
tomer-reported modi- 
fication reports 

Aim: To propose im-
provement actions to 
reduce critical defects 
and to lower rework 
cost 

Total sample size unre-
ported.

68% of surveys were 
returned in each of two 
surveys

Software evolution. 

427 Modification Re-
ports representing 13 
domains (func- tional 
units of software)

New development 
(51%) and evolution. 

1,000,000 non-
commentary 
source code lines, 
distributed real-
time system writ-
ten in C on UNIX

Telecommunica- 
tions (AT&T). 

900,000 non-com-
mentary source 
code lines 

Language and en-
vironment unre-
ported

Telecommunica-
tions (Lucent) 
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survey for their case study that included a section for identifying the “underlying causes” 

of design and coding errors.  Examples of categories included "Ambiguous design" and 

"Knowledge incomplete".  All members of this category represented difficulties related to 

maintaining conceptual integrity (Perry & Stieg, 1993). Supporting Endres’ findings, their 

analysis indicated that lack of information dominated the underlying causes of the errors, 

while knowledge-intensive activities such as code inspections dominated the means of 

prevention.

Commentary about developer proficiency figures strongly, if indirectly in the studies. 

Schneidewind and Hoffman noted that their scheme was superior because it captured the 

flawed ”mental processes” of the programmer in representing ideas within source code 

(Schneidewind & Hoffman, 1979, p.282-283).  Perry and Evangilist gave several causes 

for their error categories related to human performance, including several mentions of 

inexperience (Perry & Evangelist, 1987). Leszak et al. reported that a mismatch between 

the technical skills required and those available among workers is often the root cause of 

faults (2002). Echoing Hoare and the recommendations of Endres, Perry and Stieg 

concluded that process should be altered to include ”non-technological, people-intensive 

means of prevention” (Perry & Stieg, 1993).

In conclusion, on close reading the papers reveal that to fully understand why errors are 

made, information must be gathered about human understanding – where it is lacking, how 

it is coordinated and maintained (Leszak et al., 2002).  The studies led by Perry and Leszak 

conclude with suggestions for follow-up work using methods to investigate the human 

element of errors, but only Endres’ discussed in any detail the generative qualities of error. 

As Endres argued, programming is a human activity shaped by an inner life of motivations 

and mental processes, of personal strategies developed to manage the work of program-

ming. The sources of errors must, therefore, be considered not with regard to correction of 
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faults, but instead to intended implementations and subsequent outcomes (Endres, 1974, p. 

329).

2.2  Human Error

Human error is an old and vast concern, far too immense to be comprehensively explored 

within doctoral research in computing.  James Reason’s Human Error has thus served both 

as an entry point to error concepts and literatures and as the foundation for understanding 

psychological concepts and theories. 

Analysis of the literature began with Chapter 6, which surveys error detection and 

recovery research. Related ideas are woven through many chapters of the text, expressed in 

varying degrees of detail. Problem-solving performed during error handling is detailed in 

Chapter 3, within a presentation of the Generic Error Modelling Framework. The notion of 

active errors and their relation to intention is best described within Chapter 7, “Latent 

errors and systems analysis”.

Perspective on performance in the workplace was developed using strands of research 

from safety science and organisational psychology.  Rasmussen is possibly best known 

within  software  engineering  for  the  skills-rule-knowledge  framework  of  performance 

(Rasmussen, 1985) discussed in Section 2.2.3.2. However, in two pieces written in 1990, 

he firmly challenged the view that retrospective, causal analysis yields understanding about 

accidents in complex work environments. This represented a powerful shift in thinking 

within safety science. Following the argument he made forward, one finds an evolution in 

thinking about accident analysis, termed the “New Look” by Woods (2003), and the “Third 

Age”  of  safety  by  Hollnagel  (2011),  recently  designated  within  resilience  engineering 

(Hollnagel, Woods, & Leveson, 2006).

Working  within  organisational  psychology,  Michael  Frese  and  Dieter  Zapf  situated 

examination of human error within office environments. Drawing upon the paper “Action 
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as  the  Core  of  Work  Psychology:  A German  Approach”  (Frese  and  Zapf,  1994)  they 

described  the  tenets  of  goal-based  action,  characteristics  of  tasks  that  bridge  personal 

intentions and work assignments, and developed a theoretic taxonomy of errors. In related 

work, they along with colleagues examined errors that arise in computer-based office work. 

This vein of research persists, utilised in a book published in 2011 that treated errors in 

organisations (Hofmann & Frese, 2011).

To assess the strength of the literature selected from these disciplines, citations patterns 

were compared and persistence of the ideas since 1990 was established. Human Error was 

published  that  year,  and  many  sources  and  threads  of  analysis  that  were  examined 

germinated  in  the  years  just  before  or  just  following  that  time.  The  three  disciplines 

develop theoretical arguments using similar classes of psychological literature and often 

cite  the  same studies,  such as  Norman’s  “Categorization  of  Action Slips,"  from 1981. 

Rasmussen’s work has been hugely influential  beyond science safety (Le Coze,  2015), 

informing the work examined for this thesis of Norman, of Reason, of Frese and Zapf, and 

of cognitive task analysis (Crandall, Klein, & Hoffman, 2006).

Human error is often defined in relation to actions taken, described in the following  in  

Section 2.2.1 alongside related concepts such as intention, attention, and information and 

knowledge.  Additional  sub-sections  situate  typologies  of  human  error  interpreted  in 

relation to action and to performance. 

2.2.1 Action Models

Actions are performed by identifying an intention, which is broken down into individual 

acts. The acts form a sequence that begins and ends as required to complete the action. 

While an action is underway, activity is monitored, and feedback is assessed to determine 

if intentions are being met. When an action deviates from an intention, an error has 

occurred (Norman, 1981).
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This description of action comes from Norman’s Action-Trigger-Sequence system 

(Norman, 1981), one of a cluster of models (Norman, 1981; Norman & Shallice, 1986; 

Reason, 1984) formulated to explain how “systematic” or “predictable” varieties of human 

error arise (Reason, 1990, p. 36). The models were developed by interpreting and compar-

ing accounts of everyday activity. 

For example, in categorising slips of action, Norman analysed a thousand incidents that 

included his own collection of accounts, and a compilation of similar incidents from other 

researchers. The incidents used by him in the analysis were recorded immediately after the 

occurrence, either by the person who made the error or by an observer.  Reason’s  work 

with slips of action resulted in a behavioural classification of error categories, a theoretical 

action model, and a set of hypotheses about the cognitive mechanisms that fail when action 

slips  occur  (Reason,  1984).  His  data  comprised  625  slips  of  action  compiled  out  of 

catalogues developed in two studies.  One study collected sixty-three diaries over seven 

days  that  included  information  about  what  happened  when  deviations  in  action  were 

discovered and the completion of a set of standard questions that contextualised individual 

occurrences. 

The Action-Trigger-Sequence system depicts action as a linear, horizontal sequence. It 

represents how people perform well-learned, habitual actions using pieces of stored 

knowledge stored that “direct the flow of control” of motor activity (Norman, 1981, p. 4). 

Norman is referring in this description to schema, a term made familiar in computer 

science through the work of Minsky (Brewer, n.d.). Reason situates schema within 

psychology as higher-order, generic cognitive structures underlying all aspects of human 

knowledge and skill. Their workings are not consciously experienced, but they “lend 

structure” to perceptual experience and to the information that is stored or retrieved from 

memory (Reason, 1990, p. 35).
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A person selects and activates an action schema when the current state matches the 

conditions  under  which  it  should  be  activated,  but  this  is  dependent  on  the  perceived 

quality, or “goodness” of the match (Norman, 1981, p. 14). Actions may be initiated by 

environmental  input,  previously  activated  sequences  or  by  thoughts,  memories,  and 

competing aims. Slips of action, or errors, occur because multiple sources of activation are 

possible and conditions are variable.

Intention

Intentions define actions. Without intention, there can be no selection of acts, no corre-

sponding activity, and no assessment of completeness or correctness. Intentions are the 

result of "many considerations", including personal goals, decision-making and problem-

solving (Norman, 1981, p. 5). Naturally, some errors arise in forming intentions. Norman's 

analysis of slips considered only errors, and by extension actions, for which an intention 

was stated. However, his scheme also represented errors of intent, such as performing a 

reasonable action in the wrong environment or forming the wrong intention because of 

incomplete information.

An intention has two components: the expression of the desired “end-state”, and 

indications of how it is to be achieved (Reason, 1990, p. 5). Different actions require 

differently specified intentions. Small everyday actions become routine over time and do 

not require explicit specification. By contrast, a novel or ill-learned action requires greater 

intentional specificity until it too is repeated enough to become routine. In assessing 

activity, actions that did not meet prior intentions or were not properly executed are 

erroneous.

Stated again, actions are at times so well understood and familiar that they can be 

performed automatically (Norman & Shallice, 1986). They are routine, habitual. They 

arise out of intentions that can be clearly stated and broken down into a series of physical 
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acts (Norman, 1981). Their familiarity “invokes” well-specified expectations (Sellen, 

1994, p. 486).

Attention

Attention is paid to ensure that intentions are being met. This is done by comparing 

original intent —what one meant to do— with information or feedback. Comparisons are  

made between information and expectations, that is what one expects to happen. (Norman, 

1981; Reason, 1990). Information thus may come from internal sources, as in statements of 

intent or expectation, or external sources, as in the effects or outcomes that are produced 

when activities are undertaken.

Attention is variously described as leading to error, as preventing error, as necessary for 

diagnosis and for forming intention. Paying attention too closely to simple tasks can lead to 

errors, as can paying too little attention at key moments (Reason, 1984).

Conscious Control

Periodic attention is used to monitor routine tasks, however, it is not always sufficient.  At 

other times attention is commanded, it must be “close and labored”, so that consequences 

of actions can be assessed (Reason, 1984, p. 516).  Activities that command attention are 

often novel. This may be because they are not as well understood by the performer 

(Norman & Shallice, 1986), or arise out of “new” circumstances or unfamiliar sequences 

that generate unpredictability (Sellen, 1994, p. 486).

There are other special conditions in which “heightened awareness” or conscious 

control is required: when plans must be made, decisions taken or errors must be corrected. 

As noted, it is needed for tasks that are not well-learned or have novel sequences, but also 

for those deemed to be difficult or dangerous, or for actions that counter strong habitual 

responses (Norman & Shallice, 1986, pp. 2, 8).
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Norman and Shallice accounted for conscious command within the Attention to Action 

model (1986).  In this model, the supervisory attention system manages activity by 

drawing on multiples sources and types of information, including past and present states of 

the environment, of intentions, and awareness of prior actions and outcomes. It depends 

upon will.  Will must be exerted to meet intentions, even if it means performing actions 

that one does not want to do.  The exertion of will requires attention, but also “conscious 

knowledge” of the particular end to be met. Norman and Shallice suggest that this 

knowledge must be formed before conscious control is exerted.

The model of human action given by Reason likewise gives emphasis to the force of 

needs in regulating action. Needs are the “motivational springs” of human action. In 

agreement with Norman and Shallice, Reason argued that attention or deliberate control 

must be exerted differently when intentions are in danger of not being met. For Reason, 

such moments are those in which intention assumes control as the “chief executive”, 

responsible for organising plans, monitoring and guiding activity (Reason, 1984, p. 533).

The following sub-sections present typologies developed using theories of performance 

that are action-based.  The first reiterates slips of action developed by Norman and 

Reason. The next sub-section describes Rasmussen’s skill-rules-knowledge performance 

framework. Two models developed by Reason that combine slips of action with Ras-

mussen’s levels of performance are described in Section 2.2.3.3. Finally, a model of action 

and error developed using Action Theory to describe organisational practice is 

summarised.

2.2.2 Slips of Action

Slips result from actions that do not go according to plan. An intention, aim or a plan might 

have been well-formed, but something goes wrong in performance. Slips may be overt or 
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covert, occurring during speech and motor action. They are shaped by intention, execution, 

and circumstance (Norman, 1981). 

Reason described these errors as “trifling and usually inconsequential blunders” (Rea-

son, 1984, p. 517). Slips of action can be caught in the act, just after the occurrence or after 

a long delay. Recovery might require several attempts, and some errors go completely 

undetected (Norman, 1981). However, once detected and identified, slips of action have a 

more or less obvious solution (Allwood, 1984).  They take three forms: slips, lapses and 

mistakes.

To review, a slip results from an action that does not go according to plan or which was 

not intended (Norman, 1981).  This kind of error is often observable as in slips of the 

tongue, of the pen, or in operation of a machine.  However a slip but may only be apparent 

to the person who has slipped, as in a spoken sentence that is grammatically correct, but of 

incorrect significance.

Lapses are failures of memory that lead to a failed action. A person may forget a plan 

entirely or lose intention in the midst of performance (Sellen, 1994). Going to bed without 

taking medicine or wondering why one has entered a room are two examples. Lapses are 

often covert (Reason, 1990) and can only be detected by the individual who experiences 

them.

When a discrepancy arises between what one intends to do and what one expects to 

have happen, a mistake has occurred (Reason, 1990, p. 8). The intentions may have been 

inappropriate (Norman, 1981) or ill-formed (Norman, 1981; Sellen, 1994).  The actions 

undertaken to meet an intention may have been correctly selected and correctly carried out, 

but the original intent was wrong.  Specifying intentions for complex actions requires 

problem-solving, a “blanket term” used by Reason to describe reasoning, judgement, 

diagnosis and decision making (1990, p. 158). 
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Reason associated mistakes with two kinds of problem-solving, tactical and strategic. 

Mistakes occur when people make failures in “judging available information, setting 

objectives and deciding on the means to achieve them” (Reason, 1990, p. 54).  Slips of 

action are usually detected by the person who slips using internal criteria. Correct perfor-

mance can be tactically determined because the actions are simple, the intentions are well-

formed, and solutions are clearly recognisable beforehand. By contrast, to meet the 

requirements of more complex intentions, correctness must be evaluated using external 

criteria. Success depends on two factors: correct goal definition and the ability to “recog-

nise and correct deviations” from the path toward the end.  Success or failure of strategic 

decisions can only be judged over time, in light of overarching or distant goals (Reason, 

1990, p. 158).

2.2.3 Skills, Rules and Knowledge

The skill-rule-knowledge (SRK) framework models cognitive control of human behaviour. 

The framework can be used in analysis to explain errors in performance that arise during 

an emergency or within hazardous environments (Reason, 1990). The model was devel-

oped based on studies performed by Rasmussen using the think-aloud protocol (Rasmussen 

& Jensen, 1974). The framework has been used to examine errors made in writing HTML 

and CSS (Park, Saxena, Jagannath, Wiedenbeck, & Forte, 2013).  Another notable study in 

software engineering by Huang,  Liu,  Song,  &  Keyal  used Rasmussen’s description of 

performance levels to interpret how differences in cognitive styles and personality types 

might influence the occurrence of coincident faults in software (2014).  

The SRK was described by Rasmussen in multiple reports and articles, and is used and 

described by many of the authors surveyed for this research (Hofmann & Frese, 2011; 

Reason, 1990; Rizzo, Bagnara, & Visciola, 1987). One criticism of the model is that it 

presents a normalised view of human behaviour (Le Coze, 2015).  In so doing, many 
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contextual details performance that should be represented by an analysis are omitted 

(Rasmussen 1985). 

The explanation of the model used to guide research in this thesis was drawn from an 

invited talk given in 1984 titled Human Error Data. Facts or Fiction? (Rasmussen, 1985). 

This description of the model emphasises that performance on the job develops over time. 

This emphasis is particularly relevant in the context of rule-based performance, which in 

later treatments (Reason, 1990) is described as the application by a worker of if-then logic.

Performance, as modelled in the framework, is controlled at three levels: skill, rule and 

knowledge. Each level represents the cognitive demand required to complete different 

tasks. Cognitive demand correlates to the degree of familiarity a worker has with an 

environment and the source and character of information that is used to adjust behaviour.  

Each level is briefly summarised in the following paragraphs, as well as in Table 2.3. 

Skill-based or motor tasks require low-levels of control.  The tasks are highly familiar, 

routine, and an individual adjusts behaviour in response to signals in the environment. 

Rule-based or procedural activities are familiar, they are performed and controlled by 

past experience. In this case, know-how gained through individual or collective experience 

is applied within a situation as a “recipe”. Rules form over time, as similar situations are 

encountered to which a recipe applies. Signs that indicate the state of the environment or 

internal goals initiate or modify behaviour. 

Knowledge-based tasks involve reasoning in unfamiliar situations or conditions. Goals 

are developed through analysis of a situation, and plans are physically and conceptually 

developed and tested. Information takes the form of symbols, meanings that an individual 

develops internally to explain the functional properties of the environment he is in.
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Table 2.3: Rasmussen’s skill-rules-knowledge framework (Rasmussen, 1985).

2.2.4 Generic Error Modelling Framework

Reason associated slips of action with Rasmussen’s skill-rule-knowledge (SRK) perfor-

mance behaviour framework within the Generic Error Modelling Framework (GEMS). 

GEMS has a history of use in software engineering research. Huang,  Liu,  and  Huang 

mapped Reason’s error modes to a taxonomy of common activities in requirement analysis 

and software  development  (Huang,  Liu,  & Huang,  2012). Ko and Myers likewise drew 

from the error typology developed for GEMS and respective modes of failure to define 

cognitive breakdowns in using programming environments.   Breakdowns were associated 

with the concept of latent errors from the Swiss Cheese Model (described in the following 

Level of Control

Skill-based

Rule-based

Knowledge-
based

Description

Sensi-motor ac-
tivities, per-
formed without 
conscious con-
trol. They are 
“smooth”, auto-
mated and high-
ly integrated

Procedural ac-
tivities, devel-
oped through 
previous experi-
ence and others’ 
“know-how”

Plan develop-
ment and selec-
tion and testing, 
through trial and 
error or concep-
tually

Goal

Explicit

Explicit or im-
plicit, the situa-
tion suggests a 
particular con-
vention

Explicit, de-
rived from 
analysis of a sit-
uation and guid-
ing personal 
aims

Situation

Familiar

Familiar

Unfamiliar

Information 
Source

Signals are in-
dicators of the 
environment. 
They are tem-
poral and spa-
tial, with no in-
herent meaning

Signs Activate 
or modify pre-
determined 
recipes. They 
refer to analo-
gous situations 
or proper be-
haviour
Symbols de-
fined by and in 
reference to in-
ternal under-
standing of the 
environment
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section, 2.2.5) and situated within a framework used to perform retrospective, causal 

analyses of human error in programming activity (Reason, Hollnagel, & Paries, 2006). 

The Generic Modelling System is a context-independent framework for considering 

varieties of human error.  It models the ways in which different kinds of performance error 

relate to one another, and the cognitive origins and sources of failure associated with each.  

At the heart of the GEMS model is a typology matching slips of action to the levels of 

performance in Rasmussen’s SRK model (see Table 2.4 for a summary). Slips and lapses 

were related to skill-based performance. Mistakes were delineated into two types, one 

associated with rule-based and one with knowledge-based performance.

This delineation accounts for evidence suggesting that some kinds of mistakes fall 

between the categories of slips and mistakes. At times, when people slip or make a 

mistake, they select a behaviour from experience rather than assessing and responding to 

the situation at hand, a phenomenon Reason describes as strong-but-wrong. At other times, 

people exhibit failures in judgement, in forming and in determining how to meet 

intentions, all behaviours that have been associated with mistakes. Within the same 

incidents, these people also exhibit behaviour associated with slips, in that they favour 

strong-but-wrong practices.

Reason identified eight dimensions that distinguish error types, summarised in Table 

2.3 below, and in the paragraphs that follow.

Skill-based activities are routine, non-problematic and carried out within familiar 

environments. As established in the models of action, slips and lapses occur due to failures 

of monitoring linked attention to activity. Rule- and knowledge-based activities are 

undertaken under less familiar circumstances, spurred by unexpected events. They are 

unplanned for, and call for deviation from the current plan (Reason, 1990, p. 56). 
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Rule- and knowledge-based performance centres around problem-solving that fluctuates 

between searches for rule-orientated solutions and conscious, effortful knowledge-based 

reasoning toward a solution. Mistakes are made in the course of activities due to a 

bounded, “keyhole” ability to view possible solutions or because of incomplete or 

inaccurate knowledge of the problem space (Reason, 1990, p. 167).

Table 2.4: Relating error types to performance. Adapted from (Reason, 1990) and 
(Hollnagel, 1998).

Performance of skill- and rule-based activities requires feedforward control, that is the 

selection and application of stored procedural and situational knowledge. By contrast, 

knowledge-based activities are controlled using feedback. Reasoning is functional in that a 

problem solver forms an internal mental model of the problem, and then sets local goals, 

for which actions can be selected and understood, observed and assessed for completeness 

Type

Slips and 

Lapses

Rule-based 

Mistakes

Knowledge-

based 

Mistakes

Activity

Routine actions, 
changes in con-
ditions assessed 
at the wrong 
time. 

Problem 
solving, changes 
anticipated but 
when and how 
unknown. 

Problem solv-
ing, changes are 
unanticipated

Attention/
Control

Attention 
misdirected, 
feedforward 
control

Conscious at-
tention to task, 
feed-forward 
control

Conscious at-
tention to task, 
feedback con-
trol

Detection, 
situational 
influences

Easy, rapid, 
effective re-
covery; focus 
of attention, 
strength of as-
soc. 

Difficult to de-
tect, may re-
quire support; 
attention, 
strength of as-
soc., nature of 
task, training. 

Difficult, may 
require 
support; task 
and circum-
stance

Rate, 
Predictability, 
Expertise

Abundant; pre-
dictable; novices 
lack routines, 
ability to 
abstract. 

Abundant; pre-
dictable; novices 
lack routines, 
ability to 
abstract. 

Few; harder to 
predict; mistakes 
by experts “look” 
like novice mis-
takes.
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and success. This is an “error-driven,” conscious process that is “slow, sequential, 

laborious” and constrained (Reason, 1990, p. 57).

Novices commit slips and rule-based mistakes due to a lack, or inappropriate selection 

of stored knowledge. Skilled, expert performance is distinguished by the presence and 

application of routines and rules for action that are formulated in more abstract ways than 

novices. However, in knowledge-based activities, even highly skilled workers will behave 

like novices when presented with a novel situation for which stored rules and routines do 

not apply.

2.2.5 Swiss Cheese Model

Reason’s “Swiss Cheese” model represents how concealed, hidden failures and local 

triggering events combine during catastrophic events. It was designed to be a heuristic 

explanatory device, conveying that catastrophic accidents in organisations are generally 

caused not by a single error, but instead by the conjunction at a point in time of multiple, 

unlikely and unforeseen factors. It has subsequently been used as framework for retrospec-

tive accident investigation and as a measurement tool to assess the health or vitality of a 

system (Reason,  Hollnagel,  &  Paries,  2006). Although the model has undergone several 

revisions, the description given here is drawn from the version presented in Chapter 7 of 

Human Error.

The model includes several components, depicted in related diagrams within Human 

Error.  This summary highlights four: a general typology of production that can be taken 

to represent any industry working with complex technology, a typology of human 

weaknesses that contribute to accidents, a typology of kinds of human error, and a model 

depicting the dynamic process of accident occurrence.  The production model and human 

weakness typologies are composed of five interrelated elements, summarised in Table 2.5.
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Table 2.5: Interrelations between production and human activities. Adapted from Reason, 
1990, Figures 7.4, 7.5 & pp. 99-209.  The productive activities element (highlighted) is the 
focus of analysis in this thesis.

As Table 2.5 above shows, weakness at one level of production is dependent on actions 

taken at a higher level and have consequences for production elements that follow. Within 

a system, the consequences may be latent or active. Latent errors may remain concealed in 

a system, with adverse consequences that become evident over time in combination with 

other factors. They are generally produced at levels of production that are removed in 

space and time from work at the “front line” (Reason, 1990, p. 173). Active errors occur 

on the front-line and have effects that are felt “almost immediately” (Reason, 1990, p. 

p.173).

Elements of Production

Decision Makers
Set goals, strategies, al-
locate resources

e.g. Designers, architects, 
executive managers

Line Management
Implement strategies

e.g. Operations, training, 
sales, maintenanc 

Preconditions
Infrastructural

e.g. Equipment, Personnel, 
schedules, codes of 
practice, environment

Productive Activities
Synchronised Perfor-
mance of humans and 
machines. 

Defences
Safeguards against nat-
ural or intrinsic hazards

Contributory Human Weaknesses

Fallible resource allocations for safety. 
Due to:

• Uncertain outcomes
• Feedback often negative, intermit-

tent
• Poor safety is easy to blame on 

careless or incompetent operators

Consequent (in part) to fallible decisions.
• Poor training 
• Scheduling
• Poor procedures

Consequent (in part) to mgmt. deficien-
cies.

• Stress, Negative life events, 
• Imperfect awareness of a system, 
• Lack of motivation

Extrinsically defined in relation to partic-
ular hazards and situations.

• Slips, Lapses
• Mistakes
• Violations

Personal safety equipment, physical barri-
ers to hazardous material.

• Redundancy, 
• Diversity,
• Human and machine

State

Latent

Latent

Latent

Active

Active &
Latent
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The error typology used in this model groups human error into a typology of unsafe 

acts. These are active errors committed by workers and include unintended actions such as 

slips or lapses, and also intended actions that are mistaken. Violations comprise a fourth 

category in this typology. Like mistakes, violations are committed with intent.  They are 

deliberate deviations taken against regulated safety procedures (Reason,  Manstead, 

Stradling, Baxter, & Campbell, 1990). Violations arise in the context of the social context 

of work, a context bounded by mores, rules, and procedures (Reason, 1990).

Accidents are unpredictable, they arise when an unsafe act is committed that correspond 

to at a point in time to breaches in safety defenses. This “unlikely” combination of events 

aligns along a “trajectory of opportunity” (Reason, 1990, p. 208), famously depicted within 

the diagram depicted in Figure 2.1 as multiple slices that correspond to different elements 

of production. In the version printed in Human Error on pp. 208, the slice representing 

“unsafe acts”, was depicted with numerous holes placed between a layer of psychological 

conditions and layers of defence mechanisms.  In later versions of the diagram, depicted 

below in Figure 2.1, slices with numerous holes were used to depict defences, barriers and 

safeguards in organisational settings.

THE NATURE OF ORGANISATIONAL ACCIDENTS
Organisational accidents arise from the concatenation of
several contributing factors originating at many levels of the
system. These, in combination with local triggers, open a
window of opportunity in which the hazards are allowed to
pass unchecked through successive weaknesses in what the
military and the nuclear industry have termed defences in
depth (that is, a defensive system that involves successive
barriers, each designed to support the others). Because of the
many layers of protection, such accidents are rare events.
They require the simultaneous alignment of gaps or absences
within what are usually diverse and redundant defences.
These aspects are encapsulated in the Swiss cheese model of
organisational accidents2 shown in fig 1.
In an ideal world, the defensive layers would be intact. In

reality, they are more like Swiss cheese: full of holes. These
gaps, weaknesses, and failures (or the complete absence of
necessary safeguards) occur for two reasons:

N Active failures—these are unsafe acts (errors or proce-
dural violations) on the part of those in direct contact with
the system that create weaknesses or absences in or
among the protective layers.

N Latent conditions—these are defensive gaps, weak-
nesses, or absences that are unwittingly created as the
result of earlier decisions made by the designers, builders,
regulators, and managers of the system. Such holes exist
in all complex hazardous systems because the decision
makers cannot foresee all the possible accident scenarios.
However, latent conditions (also termed resident patho-
gens) possess two important properties: firstly, their
effects are usually longer lasting than those created by
active failures; and secondly, they are present within the
system prior to an adverse event and can be detected and
repaired before they cause harm. As such, they represent
the primary targets of any safety management system.

Following an organisational accident, the model requires
the asking of two related questions. Firstly, how did each
defence or barrier fail? Secondly, why did it fail? Answers to
the second question frequently, but not always, begin with
unsafe human actions; that is, errors or procedural violations
committed by those at the sharp end, people in direct contact
with the patient or the system. But such active failures rarely
arise solely from wayward psychological processes or
negligence. They are more often the direct consequence of
error provoking circumstances within the local workplace.
And these, in turn, are the product of higher level latent
conditions: prior decisions by equipment designers, senior
managers, the writers of protocols, and the like. They can also
occur through the gradual erosion of safeguards by subtle
and often well intentioned workarounds or changes in
operating practices, as revealed in the case study presented.

CASE STUDY: A WELL DOCUMENTED VINCRISTINE
TRAGEDY
A close examination of this adverse event is possible because
its organisational precursors were investigated by an external
expert in accident causation, and the very detailed findings
made available to the public domain.3 A summary is shown
in box 1.
The hazards of injecting vincristine intrathecally (rather

than intravenously) were well known within the prestigious
teaching hospital where this tragedy happened. This parti-
cular adverse event has occurred several times before. An
influential report commissioned by the UK’s Chief Medical
Officer featured such an accident as a full page case study.4 It
was noted that there had been 14 similar events in the UK
since 1985. Other surveys indicate that a large number of
such occurrences have occurred worldwide (ISP Barker,
personal communication, January 2003).
The precise numbers are not important here. What matters

is that the same procedure has been directly associated with
iatrogenic fatalities in a large number of healthcare institu-
tions in a variety of countries. The fact that these adverse
events have involved different healthcare professionals
performing the same procedure clearly indicates that the
administration of vincristine is a powerful error trap. When a
similar set of conditions repeatedly provokes the same kind of
error in different people it is clear that we are dealing with an
error prone situation rather than with error prone, careless, or
incompetent individuals.1

The hospital in question had a wide variety of controls,
barriers, and safeguards in place to prevent the intrathecal
injection of vincristine. But these multiple defences failed in
many ways and at many levels. The upstream defensive
breakdowns and absences are summarised in boxes 2–6.

THE SITUATION JUST PRIOR TO THE INJECTIONS
At 5 pm, 20 min before the drugs were administered, the
large majority of the ingredients for the subsequent tragedy
were in place. The many gaps and absences in the system’s
multiple upstream defences had been unwittingly created
and were lining up to permit the disaster in waiting to occur.
Two inadequately prepared junior doctors, each with inflated
assumptions about the other’s knowledge and experience,
were preparing to give the patient his chemotherapy.
It was a Thursday afternoon, normally a quiet time on the

ward. Their clinical supervisor, a locum consultant haema-
tologist (in post for only four months prior to this event), was

Figure 1 The Swiss cheese model of accident causation. The slices of
cheese represent successive layers of defences, barriers, and
safeguards.

Box 1 Outline of the vincristine tragedy

An 18 year old male patient, largely recovered from acute
lymphoblastic leukaemia, mistakenly received an intrathecal
injection of the cytotoxic drug vincristine. The treatment was
given by a senior house officer (SHO) who was supervised by
a specialist registrar (SpR). The former (with only two month’s
postgraduate experience in haematology) was unfamiliar
with the usually irreversible neurological damage caused by
the intrathecal administration of vincristine, and while the
latter had 18 month’s experience as an SHO in haematology
(although with fairly limited involvement in chemotherapy),
he had only been in post for three days. It was a requirement
that the spinal administration of drugs by SHO’s should be
supervised by a SpR. This supervisory task fell outside the
scope of the SpR’s duties at that time (see box 5), but no one
else seemed to be available and he wanted to be helpful. The
error was discovered very soon after the treatment and
remedial efforts were begun almost immediately, but the
patient died just over three weeks later.

Beyond the organisational accident ii29

www.qshc.com

Figure 2.1: Reason’s “Swiss Cheese” model. Reprinted from “Beyond the organisational 
accident: the need for “error wisdom” on the frontline.” by J. Reason, Quality and Safety in 
Health Care, 13(suppl 2), ii28–ii33. Copyright 2004 BMJ Publishing Group Ltd.  Reprint-
ed with permission.
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2.2.6 An Action-Oriented Taxonomy of Errors

In situating examination of errors within organisational psychology, a cluster of studies 

authored by researchers in Germany likewise adopted a conceptualisation of action that 

situates the concept of intention in terms of goals (Zapf,  Maier,  Rappensperger,  & Irmer, 

1994). Like Reason, Frese and Zapf acknowledge that in general, goals are preceded by 

needs, by “wishes” and “wants” (1994, p. 274), that translate into intentions that can guide 

action when an urgency or importance arises. However, Zapf and Frese mark a difference 

between personal actions and those taken at work. 

Actions at work are linked to tasks, actions that must be performed according to rules in 

order to help meet organisational goals. In order to perform an organisational or external 

task, a worker must redefine it into internal tasks, and then to goals that can be met through 

action. The process of redefinition is described as one of interpretation, conducted based 

on professional and organisational knowledge, and prior experience.

The interplay between work tasks and personal goals influences aspects of the models 

of regulation and error. Hofmann and Frese present a recent synthesis of the German 

studies (2011), describing a four-level taxonomy of performance. Three of the levels 

correspond to those of the SRK, and by extension to slips of action.

Skill-level or sensori-motor activities, as in the descriptions given by Norman and 

by Rasmussen, are those which are performed automatically, and which are 

monitored and adjusted based on feedback from the environment.

Flexible action patterns are likened by Hofmann and Frese to schemata within 

Norman’s action theory and rules in Rasmussen’s SRK framework. The interpreta-

tion given to flexible action patterns in the German sense signifies a “ready-made” 

action sequence, that can be flexibly applied to meet organisational rules. It applies 

to situations in which a work task may require a set of established tasks that are 

routine, but not automatic. In this case, the rules are organisationally conceived and 
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followed, as in a set of documented procedures or checklists for performing 

maintenance tasks.

Conscious or intellectually regulated performance involves active reasoning. 

Goals must be considered, actions and sub-actions defined. It is undertaken in 

novel, unfamiliar situations. Action is conscious and effortful.

The fourth level is described as meta-cognitive, describing how individuals 

formulate and undertake tasks to meet goals. This is a heuristic level of control that 

overarches action at all levels of conscious regulation. Heuristics guide how 

reasoning is performed: what kinds of plans are developed, which information 

search strategies are used, and how feedback from the environment is used. 

Heuristics are individual, and the Germans write that an individual may show a 

particular preference for a reasoning style, for example, always relying on their 

“gut” or by conducting a detailed search for information before taking action.

The interpretation of flexible action patterns is based on a narrow reading of both concepts. 

Schemata as used by Norman is only intended to represent how well-learned sensory or 

motor actions are stored in memory. He does not use this cognitive structure to explain 

how patterns of higher-level reasoning are cognitively managed. 

Rasmussen’s description from 1985 suggests that an individual may apply a “recipe” or 

a procedure to a situation, but the recipe has been developed through personal experience. 

The suggestion is given that the rule may be cultural, know-how that is provided to a 

person by a colleague, but it is not something that has been codified into a set of mandated 

procedures. It is not a rule that is followed, but rather one that is applied as in a “rule of 

thumb”. The process of selecting the rule is described in terms of matching information 

from the state of the environment to memories of analogous situations.

The German researchers include several variations of an error taxonomy in their studies. 

The kinds of errors are correlated to the levels of regulation. In the most developed version 

of the taxonomy, movement errors accompany sensori-motor actions, while errors of habit, 

omission and recognition accompany flexible action patterns. They identify six error 
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variants at the conscious or intellectually regulated level of performance (Frese & Zapf, 

1994; Hofmann & Frese, 2011).

Goal setting errors and thought errors relate to goal formation and execution. 

Goals may not be adequately developed or improperly decomposed into smaller 

goals. As noted by others (Sellen, 1994), the criteria for setting or assessing 

achievement may be vaguely specified. Thought errors occur when actions are 

“blinkered” and side effects and effects of time are not considered when plans are 

carried out.

Mapping errors relate to the collection, synthesis and actions taken upon informa-

tion that is used in the course of action, while prognosis errors relate to the 

inability to adequately predict future system states.

Memory errors occur when a plan or part of a plan is forgotten in the midst of 

action.

Errors of judgement occur when a person does not understand or interpret informa-

tion that is presented in the course of action.

2.3 Summary

Dependability is an old, multivalent concern in software engineering.  A dependable 

service can be trusted, but the trust must be justifiable. It must avoid failures that are more 

frequent and more severe than are acceptable to the user.   Dependability is also assessed in 

terms of correctness, an attribute that is gauged in relation to service and specification  

(Avižienis, Laprie, Randell & Jacquart, 2004).  Correctness may be proven, but a system 

does not need to be correct to be dependable.  It may also exhibit fitness, an emergent, 

dynamic quality that develops in response to the needs of the environment and culture in 

which it is created.  

Root-cause analysis studies improve software dependability by looking for the sources 

of faults in software.  These studies use a simplified definition of error in order to produce 

measurable improvement. The simplification has limitations; it is difficult to adequately 
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explain why some errors occur, or to account for qualitative factors such as the effects of 

time and of human judgement. 

At their simplest, actions can be performed automatically, with little or no attention paid 

to them. Actions that are well-learned or frequently performed form patterns that are stored 

in memory and can be re-used in the future. Actions that are simple or become routine may 

be performed with only periodic attentional checks. These checks ensure that intentions are 

being met by the actions that are being performed.

More complex intentions require that several actions unfold simultaneously and may 

require planning, analysis or decision making. By their nature, they require that conscious 

attention be paid to the tasks at hand. Such actions may also be novel, ill-learned, and the 

nature of the intention may preclude full understanding beforehand of outcomes. The acts 

taken to meet complex intentions are performed consciously, by paying “close and 

labored” attention (Reason, 1984, p. 516).

Error is a “generic term” encompassing occasions when planned sequences of mental or 

physical activities fail to achieve intended outcomes. Errors do not arise by chance, people 

commit them (Reason, 1990, p. 9). They may manifest at low levels, as in physical actions, 

or at higher levels, as in mistakes made in problem-solving (Norman, 1981; Reason, 1990). 

Error detection and recovery are more difficult in high-level problem-solving than in motor 

or skill-based activities because the process is subjective, it relies on goals that have been 

set for an undetermined future (Reason, 1990).

Error occurrences are often ephemeral, they are imperfectly represented in the world 

after recovery. This type of error is experienced, and must be managed using intrinsic and 

extrinsic sources of information. Conditions are likely novel, new or new again. As a 

consequence, the experience of managing an error is immediate and immersive, pulling 

one away from routine performance and directing attention to the particular action at hand. 
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Errors are sometimes “caught” in the act, but they may also be recognised after a delay in 

time.

In everyday error, the human is engaged in an action when something goes wrong, 

spurring an error handling process.  In software development research, error handling is 

often described as being part of a managed process, triggered by a separate outcome-based 

detection and reporting process. Empirical studies of software engineering that examine 

aspects of bug fixing or maintenance, for example, generally describe the process as one of 

developers beginning from a reported outcome of faulty behaviour, working to establish a 

root cause for the error, and then determining how best to fix it (Ko & Myers, 2005).

The next chapter argues that human errors are a natural consequence of performance on 

the job (Rasmussen, 1990).  They should be examined in terms of actions rather than of 

causes.
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3. From Establishing Causes to Examining Actions

Front-line operators, managers and designers commit errors. Sometimes these errors result 

in critical failure. Moving from forming these conclusions to making suggestions for 

improvement is difficult (Rasmussen, Nixon, & Warner, 1990). The analysis, performed 

retrospectively, depends upon causal explanation and a correspondingly narrow definition 

of human error.

Causal analyses must establish a chain of significant events “upstream” from a negative 

outcome. The establishment of events depends on a subjective determination of stop-rules, 

pragmatically defined by analysts to determine how far back in time analysis must go. 

Conditions will therefore be explained by "abnormal, but familiar" events and acts, and 

causes will tend to reflect concerns relevant to a discipline at the time the analysis is made. 

Causal analysis assumes that the sequence in which an error is analysed can be “taken for 

granted” (Rasmussen, 1990, p. 1186).

3.1 Operational Failure in Software Engineering

Operational failure in software engineering is often examined in terms of systems-of-

systems, complex environments with boundaries that are difficult to distinguish. (Randell, 

1998).  The aim of analysis is to identify weak elements within organisations, operations 

and software. As in other branches of engineering (Levy, Salvadori, & Woest, 2002), these 

studies are retrospective, performed after a service outage as a way to understand what 

went wrong, and who was responsible. 

In general, operational analyses examine sudden and progressive failures of software, 

though this should be treated as a soft categorisation. Systems which primarily exhibit 

characteristics of progressive failure could suddenly fail, and sudden failures may show 

evidence of progressive issues when analysed.
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Sudden failure is service outage on a large scale, often involving a critical piece of 

software. Individual or multiple faults become active at a moment in time or within a 

clearly bounded interval of time, and result in a large, catastrophic or spectacular system 

failure.  Sudden failures have been examined in the context of medical devices (Leveson & 

Turner,  1993),  aero-space  engineering  (Nuseibeh,  1997),  and  energy  services  (Than, 

Jackson, Laney, Nuseibeh, & Yu, 2009)

Progressive Failure arises in software systems that are deemed “good enough” to be 

released into production but which include significant problems that require maintenance, 

redesign and redevelopment, or that result in overextended resource allocation. Often this 

software is conceived and implemented within an already failing or flawed organisational 

or system initiative.  Recent studies include examinations of medical transport scheduling 

(Dalcher & Tully, 2002) clinical records (Randell, 2007), and social services case manage-

ment (Ince, 2010).

The case studies produced by these analyses often do not conclude with specific, precise 

reasons for failure, instead offering identifications of the system or sub-system that failed, 

and general recommendations for improvement going forward. Even when studies do 

isolate weaknesses in the processes of software creation or in particular software compo-

nents, they do not tend to produce general frameworks or models that can be extended to 

improve software engineering practice.

Commentary about operational failure within grey literature is influential in shaping 

discussion about computing, and the directions that computing research takes (Kling, 

1994).  It is found in unpublished workshop and conference presentations (Easterbrook, 

2005), within course work materials (Dix, 2003), and in journalism (Barker, 2007; 

Bogdanich, 2010; Charette, 2005; Garfinkel, 2005). In many aspects, these sources 

conform to the genre identified by Kling: they universalise technological experience, can 
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take extreme value positions, and describe technology as a dominant force in social 

interactions (1994).  Popular treatments are often strongly anti-utopian, while workshop 

and conference presentations make claims that are more moderate. However, both present  

cases simply and draw on spectacular examples of failure.   

Retrospective analyses are powerful, they use stark imagery that is compelling and easy 

to understand. However, a retrospective lens cannot provide insight to the internal, 

subjective criteria that may direct action (Hollnagel, 1998). It is distorted by the same 

weaknesses in human cognition that have been found to contribute to error, including 

perceptual biases and strong-but-wrong belief. We as arbiters know how things turned out. 

The people working at the sharp end did not, could not (Reason, 1990).  

3.2 A Space of Possibilities

A “naturalistic” view on human error (Le Coze, 2015) better represents how error arises in 

modern work environments. Modern working conditions are socio-technical, and therefore 

different from earlier work environments.  Workers operate within a dynamic space of 

possibilities (shown in Figure 3.1) and they must employ different skills to operate 

technology that is not stable and to meet ill-defined goals.  Successful completion of tasks 

requires constant exploration of and an interaction between personal resources, accepted 

ways of doing things and resources for accomplishing them (Rasmussen, 1990).

Rasmussen describes the navigation process as one of adaptation and learning. Task 

completion depends upon continuous exploration, the development of strategies for 

decision making, and active control over selecting the path toward goals (Rasmussen, 

1990). Errors in such environments are often not critical, they are every day, likely to arise 

during routine activity (Reason, 1984). They are an inevitable side effect of the process of 

exploration, acceptable and expected to be a natural consequence of of testing and crossing 



Ch. 3 From Establishing Causes to Examining Actions 

-50-

the boundaries of knowledge, of resources and values within an organisational environ-

ment (depicted in Figure 3.2).

Figure 3.1: Rasmussen’s space of possibilities.  Reprinted from “The role of error in 
organizing behaviour.” by J. Rasmussen, Ergonomics, 33(10-11), p. 1191. Copyright 1990 
by Taylor & Francis. Reprinted with permission.

Figure 3.2: Rasmussen’s boundaries of acceptable performance.  Reprinted from “Risk 
management in a dynamic society: a modelling problem.” by J. Rasmussen, Safety Science, 
27(2), p. 190.  Copyright 1997 Elsevier. Reprinted with permission.
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Taking a socio-technical view, it is not possible to establish a causal trace that has been 

“deflected from its intended course toward one goal” (Rasmussen, 1990, p. 1186). Instead, 

events are fluid: several goals and side effects unfold at once, resources are not stable, 

performance depends upon workers who have been granted and are exercising freedom of 

choice.

3.2.1 Actions

The notion of the space of possibilities is at the heart of the “third wave” (Hollnagel, 2011) 

of safety science, a framework for error that models natural or “ecological” safety 

(Amalberti, 2001, p. 117).  Naturalistic examination of error need not establish blame for 

accidents, but strive instead to understand how contributory factors of individual and 

organisational activity produce safety. The framework assumes that mistakes are “cogni-

tively useful” flags in the process of learning and impossible to eliminate. In terms of 

assessing performance, understanding how errors are detected and recovered from is more 

important than examining failures in production. 

Ecological safety is achieved by the ways in which individual workers maintain 

awareness of the situation in which they are performing. Awareness is informed in relation 

to action: assessment and knowledge of possible actions, knowledge of difficulty,  

application of attention, choices made about how and whether to avoid error, error 

handling mechanisms, and the tolerance and recognition that some errors will still occur.
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Figure 3.3: Actions and intention. Adapted from “The emperor’s new clothes: Or whatever 
happened to “human error”” by E. Hollnagel and R. Amalberti. (2001). Proceedings of the 
4th international workshop on human error, safety and systems development (pp. 1-18).  
Adapted with permission (Vector design: Vecteezy.com). 

This view challenges the notion of a binary distinction between right and wrong actions, or 

between correct and incorrect (Hollnagel & Amalberti, 2001). Instead, actions as they 

relate to intention can be considered, as depicted in Figure 3.3, above.

This model demonstrates that operational failure is only one possible outcome of an 

error.  Errors may also be handled: recovered from, tolerated, identified or missed.  

Analysis of incidents can be used to examine circumstances surrounding error occurrence, 

the perceptions of the worker in relation to that occurrence, and the significance of the 

error to a worker’s broader working life.

3.3 Error Detection and Recovery

To handle an error, a person must know that an error has occurred, identify both what was 

“done wrong” and “what should have been done” and then understand how to “undo” the 
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effects of the error (Sellen, 1994, p. 476).  Studies that have specifically examined aspects 

of error detection and recovery in psychology are surveyed below.  The following section 

highlights the methods used in four groups of studies to collect and analyse data, followed 

by a synthesis of findings that relate to detection, identification and recovery.

3.3.1 Related Research

Surveys of error detection research already exist. James Reason surveyed the literature in 

Chapter 6 of Human Error, providing a general description of the error detection process 

that remains relevant, along with a description and analysis of key studies. Erik Hollnagel 

treated error detection studies in Chapters two and three of Cognitive Reliability and Error 

Analysis Method (Hollnagel, 1998). His purpose was to draw together psychology and 

safety science to articulate an updated model of human error, and to highlight existing 

approaches to the topic relevant to safety science. Most recently, David Hofmann and 

Michael Frese surveyed the literature in the introduction to Errors in Organizations 

(2011).  An overview of representative papers is given in Table 3.1.

As described in the previous chapter, the studies of Reason and Norman examined 

collections of slips of action that were self-reported using a form of diary collection. 

Utilising Norman’s slip classification, Sellen examined a collection of 600 self-reported 

errors collected using diaries for modes of detection (1994).  Allwood used think-aloud 

protocol to examine how students detected and recovered from errors while solving set 

statistical problems (Allwood, 1984).

Studies conducted by Rizzo, Bagnara and Visciola examined the process of error 

detection in the use of computer software in office and steelwork settings. The studies used 

think-aloud technique and drew upon the evaluation process identified by Allwood, and the 

GEMS framework developed by Reason. Their participants performed set tasks using 

computer software, or simulated tasks in the steelworks.
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In a series of studies, Brodbeck, Zapf, Frese et al. developed an error taxonomy 

developed out of action theory that they validated through observation of office workers 

using computer software (Dieter Zapf, Brodbeck, Frese, Peters, & Prümper, 1992). Their 

field study relied on constrained access to office workers in several German companies 

who performed a range of tasks in computerised environments.

3.3.1.1  British/North American

In the studies reported by Sellen, Norman and Reason, errors are represented in association 

with particular actions. Self-reports were recorded as soon as possible after occurrence, 

either by the person who erred or by an observer. Norman’s reports included information 

about what the person was thinking and how the slip was discovered (Norman, 1981). 

Sellen and Reason used diaries kept by participants that recorded details of the error. 

Reason asked participants specifically to record information about intention, while Sellen 

asked respondents to describe circumstances surrounding how the error was detected and 

identified. 

Findings are descriptive, intended to provide a framework for discussing error (Reason, 

1990), presented within typologies (Norman, 1981) or more loose categorisations (Sellen, 

1994). Norman developed a typology of action slips that describes the behaviours exhibit-

ed when the error occurred, that is whether a person made omissions, insertions, substitu-

tions or reversals (Reason, 1984, p. 530). Sellen used a modified version of Norman’s 

taxonomy as an analytic. Her own findings about detection were categorised in terms of 

details of monitoring and feedback that accompany erroneous acts. When error data is used 

to describe behaviour more generally, studies may include models such as the models of 

action developed by Norman and Reason (Norman, 1981; Norman & Shallice, 1986; 

Reason, 1984).
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3.3.1.2  Swedish

Errors can also be defined in terms of the problem-solving process that is undertaken after 

detection. Allwood’s research identified activities related to error based on data collected 

through think-aloud protocol. In his study, students enrolled in statistics classes were asked 

to perform set tasks with pre-determined correct solutions that related to their coursework. 

3.3.1.3  Italian

Error handling has also been examined in terms of tasks performed in work settings.  

These studies examined the relationship between the three action-based error types defined 

by Reason in the GEMS model, and the three self-monitoring detection processes identi-

fied by Allwood.  Sixteen subjects undertook three training sessions, followed by four 

experimental sessions in which the subjects had to perform increasingly complex tasks 

with a database system.  924 errors were made, 780 were detected.  The study found that 

most skill-based slips were detected during error-hypothesis episodes. Most knowledge-

based mistakes were detected based on suspicion.

Studies

British 

North 

American

Swedish

Italian

Method

Diary Study

self-reports

Think-aloud

set problems

Think-aloud

Computer set tasks 

Industrial simulation

Error Taxonomy

Slips

Lapses

Mistakes

Solution method

High level math

Other types

Skip errors

Skill-based

• slips or lapses

Rule-based

• mistakes

Knowledge-based

• mistakes

Error Handling

Action-based,

Outcome-based, 

Cued by the environment

Direct-error hypothesis; 

Standard Check; 

Error Suspicion

Direct-error hypothesis

Standard Check

Suspicion
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Table 3.1: An Overview of Error Detection and Recovery Research.  Several of the studies 
had different combinations of collaborators. To ease reporting, and following Reason’s 
convention of grouping the studies by nation (Reason, 1990), the papers are grouped by 
linguistic or geographic contexts: British-North American studies, Swedish, Italians and 
Germans.

Findings in the first Italian study were supported in a second study in which steel workers 

were asked to carry out a simulated production planning exercise.  The exercise was 

recorded and analysed.  95 errors were made, 74 were detected.  Taken together, the 

studies demonstrated a consistent association between error type and detection mode.   

Slips are detected most often by error hypothesis, while rule-based errors are detected 

using a combination of hypothesis and suspicion.  Knowledge errors are largely discovered 

through standard checks employed in the course of work.

3.3.1.4  German

The German researchers interviewed, observed and administered questionnaires to office 

workers at eighteen organisations. Observation of work at computers were made that lasted 

in the range of 90 minutes. During this time, observers sat at the desk with the worker, and 

identified errors that occurred. These were classified according to the error taxonomy 

outlined in Section 2.2.3.4. Typing errors were not recorded. The error handling process 

German

Time-slice observation 

Interview

Questionnaire

Skill-based

• movement

Flexible-Action Pattern

• habit

• omission

• recognition  

Conscious

• goal formation

• mapping 

• prognosis 

• thought, 

memory, 

judgement 

Internal 

• goal comparison 

• planning barrier 

External 

• evident information

• system message

• limiting function)
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was considered to have begun at the point of detection, handling time was estimated from 

this point to the point of recovery. The observers also noted that external support materials 

(including consultation with colleagues) were used, distractions and emotional responses to 

the process (Brodbeck, Zapf, Prümper, & Frese, 1993).

3.3.2 Detection

Errors can be detected in the midst of action, on the basis of outcomes, or environmental 

cues (Reason, 1990). Detection occurs during “evaluative” problem-solving, at breaks  

during which previous actions following a standard practice or a spontaneous  check that 

arises out of “perceived discrepancies” between actions and expectations for results 

(Allwood, 1984, p. 414).

Detection is independent from understanding the nature and source of the error (Zapf & 

Reason, 1994). An error detection process may be undertaken by a person regardless of 

whether or not an error is actually present. Likewise, error handling may not result in a 

clear identification and elimination of an error (Allwood, 1984, p. 414).

3.3.2.1 Action-based detection

In action-based detection, it is the act itself that provides information that an error has 

occurred, not the effects of the act. Errors are detected through perception of the act, not on 

perception of effects that the action has on the world. Reason describes actions not-as-

planned as resulting from the failure of high-level attention. The tasks are usually 

automatically performed, but require occasional checks to make sure that intentions are 

honoured, particularly when they involve “deviation from routine practice” (Reason, 1990, 

p. p.157). Sellen found that this mechanism presents in two cases, summarised below.

A mismatch may arise between the stated action plan and executed actions. In these 

cases, the guiding intention might be sound, but the execution is “misordered or inaccu-

rately articulated” (Sellen, 1994).  Errors of ordering, blending or wrong insertions may be 
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given. These kinds of errors might be evident to others, such as when someone makes a 

spoonerism or blends words together (Norman, 1981), however Sellen postulates that it is 

internal perception that triggers detection.

3.3.2.2 Outcome-based detection

Error detection can occur after an action is completed. In this case, detection is related to 

expectations for outcomes, to the effects of outcomes or to anticipation that an error will 

occur.  Intentions, and the corresponding expectations may be well or vaguely specified. 

Sometimes this is due to familiarity. If a situation is new, it may be unpredictable, while if 

it is familiar it will have well-specified expectations. Sometimes it is due to complexity.  

Tasks that require problem solving, such as mathematics, often don’t have well-specified 

intentions.  

Detection may occur as a result of mismatches between conscious intentions and 

executed actions. In this case, detection involves an evaluation process that begins with 

identifying the action (I did this), and examining the intentions (I meant to do this).  It is 

outcome-based.  Following Norman, Sellen describes the monitoring process in terms of 

information, asking in her analysis what information served as the basis for detection of an 

error, and with what was the information compared (1994). 

Information could come from properties of the action itself, outcomes of the action or, 

properties of the environment in which the action was undertaken that prohibit or in some 

way alter completion of the act. She writes less explicitly about what that information is 

compared to, but in reading her categorisations, it is clear that the information is compared 

with expectations for outcomes, or with an evaluation of intention.

Detection arises when mismatches are perceived between the information upon which 

an error is detected and the comparisons made between that information and the “criterion 

or reference against which that information is compared” (Sellen, 1994, p. p.480).
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Outcome-based detection may also occur as a part of standard checks (Allwood, 1984) 

undertaken to “look out” for familiar error patterns. Sellen described this in the context of 

writing dates after the turn of a new year. In these cases, people become sensitive to the 

possibility that an error might occur, and adapt their behaviour to check for it. Allwood 

described this as occurring independently, not out of a sense or perception that the solution 

was strange.

3.3.2.3 Environmental Conditions

Environmental information influences error handling. Physical constraints and cues spur 

error detection.  System responses and feedback from colleagues is used to assess and set 

goals to support identification and recovery. 

The environment may constrain action, thereby triggering an error detection. Norman 

defined these as forcing functions, Sellen as “limiting functions”. In this case, the action is 

physically barred, and cannot be completed. Forcing functions are unambiguous, and error 

detection is guaranteed (Reason, 1990). Reason somewhat ambiguously states that forcing 

functions may be a natural part of a task as in locks and bolts or deliberately designed into 

the environment as in computer software. 

Sellen provides a better example of these two states, describing them as barring or 

subtle. In her example, trying to into the system Sellen also suggests that the environment 

might also provide a more “subtle” constraint, as when a person tries to unzip a button-fly. 

The second category is like Norman’s mode errors, in which the action is not appropriate 

for the environment.

In the case of cued discovery, failures arise in considering the larger problem space in 

which an action takes place. Reason describes cues not as constraints but rather as 

moments in which the environment provides opportunities "for rejoining the correct 
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path" (p.163).  Here Reason describes following a "blinkered line of thought from one 

difficulty to the next" while attempting to change a tire on a car.

Information in the environment is commonly evident (Frese & Zapf, 1994), it arises, for 

example, from interactions with computer software. The environment provides information 

to users in the form of system responses (Lewis & Norman, 1986) and receives informa-

tion from users based on actions taken.  By contrast, actions that must be internally 

assessed will result in system responses that are not evidently wrong.  Lewis and Norman 

identified ways in which systems “should” respond to erroneous actions: by gagging, 

providing warnings, doing nothing, self-correcting, engaging in dialogue, and by asking 

the user to “teach” the system what was intended. 

An error may be brought to attention by someone else and reported (Reason, 1990), 

cases that are not covered in great detail in the error detection literature.  Slips of the 

tongue are reported as being noted by an observer (Norman, 1981).  Reason reported that 

Woods’ examination of nuclear power plant operators found that “fresh eyes” were 

necessary to detect errors in diagnosis in complex situations, while operators were able to 

self-detect most slips (Reason, 1990).   In office work, errors detected by colleague or 

clients, were reported as occurring infrequently in the midst of work (Frese & Zapf, 1994). 

3.3.3 Identification and Recovery

Determining what should have been done may be clear from the circumstances or by the 

nature of the task, but may require more investigation, particularly if a situation or task are 

complex or unfamiliar (Sellen, 1994).  

The action models of Norman and Reason are concerned with simple actions that can 

often be performed more or less automatically. Intentions and expectations are generally 

well-formed in these cases and the assessment of information is likewise swift.  These 

models do not directly address handling for complex actions, how error identification is 
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achieved, or how a recovery is made.  To establish a basis for error identification and 

recovery as it may unfold while performing more complex actions, it is necessary to draw 

on a broader discussion of problem solving.

3.3.3.1 Progressive and Evaluative Problem Solving

Allwood found that problem solving proceeds in two phases: progressive problem solving, 

in which subject tries to achieve a goal, and evaluative, in which the subject reviews 

completed work (1984).  During an evaluation, a person might be satisfied with previous 

activities. Error handling is assumed to happen during negative evaluation episodes, when 

a person is not satisfied with previous activities.  Allwood identified three types of 

negative evaluations: standard checks, direct-error hypothesis formation and suspicion of 

error. Allwood’s analysis also represents other activities within error suspicion episodes. 

For example, diagnoses were identified, as were hypotheses and detection. Qualitative 

aspects of suspicion were also represented, including expressions of discontent and giving 

up.

3.3.3.2 Tactics and Strategies

Problem solving is both tactical and strategic (Reason, 1990).  It requires defining goals, 

and then using tactics to forge an “adequate path” to achieving them. The process hinges 

on discovery, it may involve “inspired guesses” but also “trial and error”. The criteria for 

success or failure is often only revealed with the benefit of hindsight. Intentions carry with 

them expectations, and are thus prone to confirmation bias - there is less objective 

information on which to base strategic decisions, while subjective influences restrict the 

search for cues that indicate that a choice was wrong or “inadequate” (Reason, 1990).

Reason situates identification and recovery in terms of problem configuration. The 

configuration is made of a set of cues, indicators, signs, symptoms and calling conditions. 

The set is immediately available, and are used in the handling process (Reason, 1990, p. 
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87). They demand different approaches and tactics. He identifies three kinds of configura-

tions:

Static: In this case, the problem is fixed and independent of activities undertaken 

by a problem solver. They may be represented as abstract or concrete. (Examples: 

syllogism; Watson card test; cannibals-and-missionaries)

Reactive-dynamic: Changes in the problem space are a result of actions taken by 

the problem solver. Problems in this configuration may be direct, in which effects 

are immediately apparent, or indirect, in which the solver relies on augmented 

sensory aids for feedback. (Examples: jigsaw puzzles; assembly tasks; the Tower 

of Hanoi problem)

Multiple-dynamic: The configuration may change in response to actions taken by 

the problem solver, and also due to independent factors in the system or situation. 

Problems may be bounded, in which the independent variability is constrained and 

known, or complex, in which variability has multiple sources which are uncon-

strained and unpredictable. (Examples: bounded-chess; complex-nuclear power 

plant or medical emergencies)

3.3.3.3 Problem Solving and Performance

Skilled performance requires constant switching between skill, rule and knowledge based 

activity. When activities are routine and familiar, they proceed in a largely automatic 

fashion, with periodic checks to ensure that intentions are being met. Within the GEMS 

model, if a check identifies a threat to meeting intentions, rule-based problem solving will 

take place. If a rule is found that matches conditions, it will be enacted and activity will 

return to skilled performance. If no rule-based solutions are found, the model suggests that 

an effortful, conscious, knowledge-based problem solving process will be undertaken.

The initiation of knowledge-based reasoning does not preclude ongoing searches for 

patterns out of the rule repertoire. Rapid switching can occur between knowledge- and 

rule- based activities in order to form and execute a recovery plan in local problem 
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solving, a process of establishing local goals that can be carried out and assessed. In this 

case, routines or rules will be borrowed from other established activities.

3.3.3.4  Awareness

The switch to knowledge-based problem solving can be influenced by feelings of uncer-

tainty or worry (Reason, 1990) factors that are described by other researchers in terms of 

awareness.  Allwood examined this in the context of evaluations of completed work that 

are undertaken based on the suspicion that something is wrong, while the Italian re-

searchers describe it as mismatch emergence, which is coupled with the understanding that 

one is responsible for the erroneous action (Rizzo, Ferrante, & Bagnara, 1995).

Stable Frames: Expectations and 
assumptions about intended ac-
tions are not changed during per-
formance.  The frame of reference 
remains the same.

Shifting Frames: Knowledge is 
updated after executing actions.  
The frame of reference changes 
after completing an action, and 
original expectations are adjusted 
in terms of outcomes.

Distant Frames: The active 
knowledge relates to a context 
distant either conceptually or in 
time or both from the erroneous 
action. 

I did some computations with a calculator. I manip-
ulated the data by following a formula kept in my 
mind. The final result did not seem correct to me. I 
remade the computation two more times and both 
results were the same, but different from the first. 
These latter results sounded right to me. Actually, I 
did not discover what the error was but only that I 
had made an error. (E11)
 I had to make many Xeroxes in the shortest time. I 
prepared the sequence of articles. I put the sheets 
over the machine and collected the copies in order 
to rearrange them in "papers". I was Xeroxing a 
long paper when I noted that I had to reorder all the 
copies, because I was feeding from the first page on. 
Then, I realised that starting from the end of the 
paper would have spared time and work. (E12)
I decided to clean the luggage rack of my car. To 
ease the access to the hollow I removed the rear 
panel bus. Since in the panel there were the speakers 
of my stereo, I disconnected cables. The day after I 
turned on my stereo car: the left speakers did not 
work. I thought it was a fault in the system. One 
week later, I was in the car talking with a friend the 
possible causes of the left speaker’s breakdown. I 
recalled that some days before I had my car in a 
garage to fix minor faults. The guys in the station 
could have forgotten to re-connect some electric 
cables. Then, suddenly, I remembered that I had put 
my hand on electric cables too… (E13)
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Table 3.2 Frames of reference during action. Adapted  from (Rizzo et al., 1995).

The Italian researchers also describe awareness during error handling in the context of 

active expectations, the frame of reference held by a person performing an action.  

Though it shares features with Reason’s description of local problem solving or Norman’s 

description of the activation of schema based on the “goodness” of matches (1981), the 

notion of frame of reference was developed to counter the prevalent view in error detection 

studies that knowledge is static, or that all knowledge necessary to complete a task is 

“always available and ready to be used” (Rizzo et al., 1995, p. 8). 

Instead, they argue that knowledge, and by extension the active frame of reference, is 

updated during interactions with an environment.  Internally, this is done through the 

selection of alternative knowledge that is “more appropriate” and externally through new 

knowledge generated by assessments made of the changing state of the environment.  

Drawing on related research in psychology, the authors identified four frames of reference, 

for which they provided examples from their data, given in Table 3.2.

3.4 Summary

The causes of accidents are present in a system long before catastrophe occurs, or a clear 

sequence of events leading to the accident can be established (Reason, 1990). The notion 

of latent problems is familiar within software engineering, perhaps made prominent most 

famously by Brooks.  In his description of of software development projects, disastrous 

schedule slippage is gradual, due to “termites, not tornadoes” (Brooks, 1995, p. 154).  

Disaster should be preventable.  Often there are warnings of an impending disaster, and 

Lack of meaning. There is no 
goal governing the ongoing activi-

ty. 

I intended to pick up the keys of the car. They are 
usually in a box at the entrance. Instead, I entered 
another room and searched in a drawer where I did 
not find any keys (but there were the documents 
about which I was talking before, but I did not pay 
attention to them). Then I found myself wondering 
what I was looking for and why I was there. I had to 
go back to my office before to recall that I was 
leaving and so I needed the keys of my car. (E14)
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some latent conditions should be able to be spotted and fixed (Reason, 1990). However, 

within software development projects, “day-to-day slippage is harder to recognise, harder 

to prevent, harder to make up.” (Brooks, 1995, p. 154).

Disastrous events are likely never to occur again and so it is necessary to look beyond 

failed outcomes and to examine the particular details of situations (Rasmussen, 1990). 

Researchers need to understand how informants select and view events (Crandall et al., 

2006).  The key is to understand error from an informant’s perspective, to reconstruct the 

view they have when encountering things that go wrong by “standing” in the same 

situation. The emphasis placed on “local rationality” retrains analytical focus from 

judgement to dynamic factors that influence performance, including knowledge, mind set 

and goals (Woods & Cook, 1999). 

Software development has been shown to include kinds of work associated both with 

active and latent error categories (Curtis, Krasner, & Iscoe, 1988; Pennington & Grabows-

ki, 1990). Work is required that cuts across different kinds of tasks, and must be performed 

in response to higher level organisational concerns. If error is studied in the context of the 

space of possibilities within which developers perform and not in terms of the overt effects 

their actions have on software performance, the lens is shifted, from ends that might 

include critical failure or costly redevelopment to the means that make up everyday 

practice.

This view affords at once a narrower and a broader perspective. It is narrow in that 

focus is taken from software in operation, from the organisational or methodological 

environment in which it is produced, and from the artefacts of which it is comprised. Focus 

is given to the actions performed by individual developers to create software. It is broader 

in that analysis of individual actions permit a more general examination of error in the 
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context of work at the desk, but also in other contexts that depend on different kinds of 

tools, and that produce different outcomes.
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4. Method

For as long as there has been software engineering, there has been error. It is a defining 

marker, transcending nations, regions and organisations. Research and methodology have 

been devoted for decades to eradicating, to minimising, to preventing it. Tools are built to 

manage error; records are kept to track it. Circles of people form in teams, in departments, 

in companies and governments to look for error, to talk about it, to plan for it, to fume and 

worry. Individual developers spend hours and hours hunting errors down and getting rid of 

them.

The problem of error in software development lies with the people who make it. 

Developers tinker, they are incompetent, un- or improperly skilled, they do not adhere to 

process. If only developers would build correct software, error would go away. If only they 

could design and build the right defences, error could be tolerated and the problem of error 

would go away. If only designs were better, requirements more clearly defined, if develop-

ment tools were better and easier to use…If methodology and practice were more social, if 

only developers were better trained, they could get a handle on it, and the cost of error 

would go down.

This reduction of decades of software engineering research and commentary into two 

sensational paragraphs was written to provoke a sense of unease (Hammersley & Atkinson, 

2007), of strangeness about the relationship between developers and error. Everyone 

“knows” that the problem of error in software is people, however little is understood about 

what developers on the job make of it. An ethnographic stance has been taken to explore 

their perspective. The following pages of this chapter explain what this means.

4.1 Research Focus

Research began with a survey of software engineering research and trade publications that 

treated concepts related to error and failure. The outcomes of this exercise, selections of 
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which are reported in Chapter 2 had three immediate, significant methodological implica-

tions for the research design.

First, the methodological approach that was initially, naively, proposed was to be 

ethnographic in that it would examine the topic of error after immersive fieldwork within a 

single company. The survey of empirical research quickly revealed that with some 

exceptions (Prior, 2011), long-term, open, immersive access to developers is rare (Easter-

brook, Singer, Storey, & Damian, 2008).

Second, at the outset, the starting point for analysis was assumed to be source code and 

records related to bugs because this is what developers produce and this is where errors are 

reified (Avižienis,  Laprie,  &  Randell,  2004). It seemed reasonable to assume software 

could and should be read for evidence of the “tinkering” that goes on during development, 

to get at an understanding not only of how, but of why it works as it does (Mahoney, 

2008). 

This is an approach that has been used to good effect, demonstrating among other things 

how developers navigate within source code (Lawrance  et  al.,  2013), how they engage 

with APIs in companies (de Souza, Redmiles, Cheng, Millen, & Patterson, 2004) or how 

programmers use comments to organise and communicate aspects of ongoing work 

(Storey, Ryall, Bull, Myers, & Singer, 2008). 

However other studies demonstrated clear failings in the software records that are kept 

about error (Aranda & Venolia,  2009), that matched calls for future research consistently 

made in root-cause analyses. Root-cause analyses studies largely draw upon bug and 

maintenance reports. Errors that appear in early stages of a project, with less experienced 

programmers, or after a “hectic period of changes” (Endres, 1975, p.328) are not well 

represented.  Studies have recommended that data about errors should be collected from 

the entire development cycle, not just at points of testing and integration (Perry, 2010), and 
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should not be collected too long an interval of time after events have passed (Perry & 

Stieg, 1993). 

Third, the root-cause studies consistently suggested that future research should examine 

“human erring”, including factors such as problems of understanding (Endres, 1975, 

p.331), inexperience (Perry & Evangelist, 1987), lack of information (Perry & Stieg, 

1993), and skill mismatch (Leszak, Perry, & Stoll, 2002).  This call matches recent interest 

to counter technically “saturated” curricula in software engineering with examinations of 

of engineering process as a “human activity”.  (Capretz, 2014).     

This review led to three decisions:  

• Fieldwork would have to be undertaken opportunistically, in multiple 

environments. 

• Examination should establish a fuller chronology for error by examining activities 

throughout the development cycle. 

• In order to respond to the call to examine “human erring”, individual experience 

should be the focus of analysis.

4.1.1 The Ethical Impetus

Other concerns shaped the research design. Data is never “pure” (Hammersley & 

Atkinson, 2007), but contamination seemed to be of particular concern in the context of 

error. Developers might change their behaviour if they were watched (Hammersley & 

Atkinson, 2007). Spoken to after a period of observation, they might swagger or boast in 

their responses (Hammersley, 2003) and not be credible. Organisations might not grant 

access or treat developers who agreed to partake poorly after the fact.

To address these worries, the responsibility of beneficence as described by Vinson and 

Singer (Vinson  & Singer,  2008) and vulnerable stirrings (Behar, 1997) provided the best 

guidance. Researchers need to consider potential harm toward companies, ensuring, for 
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example, that important trade secrets are not disclosed. This can generally be managed in 

the way findings are reported. Beneficence toward informants is not always so straightfor-

ward.

Social research can change the environments in which it is conducted and it can have 

effects on the people and cultures that are examined (Hammersley & Atkinson, 2007). 

Outcomes can be put to uses after research is completed that researchers cannot control 

(Spradley, 1979). These factors were of particular concern during the early stages of this 

research. Depictions of “incompetent” developers in the software engineering research 

invoked the spectre of Reason, finger extended:

“For those who pick over the bones of other people’s disasters, it often seems 

incredible that these warnings and human failures, seemingly so obvious in 

retrospect, should have gone unnoticed at the time. Being blessed with both 

uninvolvement and hindsight, it is a great temptation for retrospective observers to 

slip into a censorious frame of mind and to wonder at how these people could have 

been so blind, stupid, arrogant, ignorant or reckless.” [Emphasis added] (Reason, 

1990, p. 214).

Thus chastened, the aim was formed to find a way to perform an analysis of error that 

would keep ethical concern for developers at the fore. Credible sources of data were sought 

that would allow observations of practice and interviewing but in which in the research 

presence would not be considered a threat. Methods were sought to encourage developers 

to be open and straightforward in their behaviour, and also to ensure that they would not be 

censured by colleagues for doing so. 

The next sections describe how these aims were met, first by establishing epistemologi-

cal commitments to using ethnographic principles. Next a description is given of gathering 

material from multiple sites. The process of organising data into sets for analysis is 

described, and an overview is given of the methods used in individual studies to build up a 

view on error.
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4.2 An Ethnographic Stance

Software development, is, by its nature, socio-technical (Winograd & Flores, 1987), and 

well suited to an analysis that takes a relational look at human error. Software engineering 

researchers have long argued for looking more closely at the human aspects of erring 

related to "knowing", safety science for a naturalistic examination of error using data 

collected from fieldwork (Le Coze, 2015). To address these calls, this research has taken 

an ethnographic stance. In this section, a brief overview of what ethnography is and how it 

is done is given. The section also includes a brief description of uses of ethnography that 

have been developed in computing research.

Ethnographers study people’s actions and accounts of actions in everyday contexts 

(Hammersley & Atkinson, 2007). The aims of research are often exploratory, beginning 

with only the sense of a “foreshadowed problem” (Hammersley & Atkinson, 2007, of 

Malinowski) that will focus over time. Doing ethnography is described as examining 

"shared order" (Van Maanen, 2011, p. 18), by getting at the means and methods by which 

people conduct themselves in a social situation. Examination may focus on routine, on 

ritual, on problems, on the rules or decisions that guide and punctuate action (Hammersley 

& Atkinson, 2007). 

Order is sometimes described as a "mundane feature of everyday life" that serves as the 

basis for social interaction (Crabtree,  Tolmie,  &  Rouncefield,  2012, p. 162), but this 

research more closely aligns with the notion that features of order can be identified by 

examining moments of change:

“In picking their way through the minutiae of routine action, prominence is 

(endlessly) given to the innovative, the ad hoc, and the unpredictable…” (Ander-

son, 1997, p. 20)

Ethnography can be identified in terms of how it is done, but also in terms of the stance 

from which it is performed. The ethnographic mentality entails interpreting meaning 
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through interaction with and observation of social settings. It is both a commitment to 

using field work to gather data and the creation of a post hoc account of what was seen 

(Anderson, 1997). Analysis is relational, not causal, by which it is meant that the re-

searcher comes to conclusions without “jumping”, examines appearances in detail, while 

not accepting those appearances at face value. Likewise, people’s views are considered 

without making assumptions that they are true or false. The ethnographic stance “pays 

heed” to things that people may not notice themselves, and may not agree with (Hammers-

ley & Atkinson, 2007).

The romantic view of ethnography holds that fieldwork entails the collection of data 

through long-term immersion within an environment, such as in a year spent in a village of 

people who live on a distant, sun-drenched island. But fieldwork has come to be viewed in 

different terms.  Often it is or needs to be conducted in a site or sites (Van Maanen, 2011) 

that are closer to home, to examine cultures that are familiar (Spradley, 1980), in a process 

that is contingent (Crabtree et al., 2012) and opportunistic (Hammersley & Atkinson, 

2007). 

Research is generally not conducted to a fixed and detailed design.  The advice given to 

researchers, while not quite "seat-of-the-pants" (Van Maanen, 2011, p. 74), is expansive:

"[Y]ou should not worry about where to start: you should start anywhere you 

can." (Crabtree et al., 2012, p. 95)

It is generally accepted, then, even within social or cultural anthropology (Horst, 2009) 

that data may be gathered from fieldwork in "any form" (Anderson, 1997), and may be 

drawn from a range of sources and sites (Van Maanen, 2011). Two conventional views 

persist: most data will be gathered by participant observation and “relatively” informal 

conversation, and the time spent in the field with informants must attain "depth" (Hammer-

sley & Atkinson, 2007).
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Analysis in ethnographic research begins at the point of collection as researchers 

formulate ideas about what else might be needed to answer a research question. Interpreta-

tions are made by “creating a path” through the data, while reflecting upon different 

possible meanings (Hammersley & Atkinson, 2007). The interpretative process is 

reflexive, shaped by the researcher’s own experiences and orientations. It is also 

pragmatic, in that aspects of the field of study or research process may invite or demand 

the use of different or multiple analytic techniques, uses of theory, and kinds of data 

(Hammersley and Atkinson, 2007).

Ethnography is both the fieldwork and also the account that is made of the field work 

(Anderson, 1997). The meanings formed in analysis must be forged through writing: field 

notes, transcriptions, descriptions and ultimately the reports. The account may be realistic, 

confessional, or impressionistic (Van Maanen, 2011), drawing together descriptions of 

people, of settings and processes, elucidating concepts, themes, and typologies that 

exemplify the social world that has been examined. The account must be authentic, it must 

inform and illuminate, but must also be authoritative.  It must convince the reader of the 

legitimacy of what was seen:

"[T]o be taken seriously, you have to have been there, seen them, and if not done it 

and brought back the T-shirt, at least captured and recorded their lives…"(Ander-

son, 1997, p. 6-7)

The next section includes a brief description of three uses of ethnography prevalent in 

computing research. Following this, one use of ethnography to which this research most 

closely aligns is described in more detail.

4.2.1 Ethnography of, for and within

In two articles written in 1997, ethnographic methods were found to support research and 

practice in computing in three ways. Beynon-Davies coined the terms Ethnography within, 
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for and of in a survey examining information systems research (Beynon-Davies, 1997). 

Anderson similarly described three uses of "technography" to support system design and 

human computer interaction research (1997) as Integration, Complementarity and 

Independence. Though Beynon-Davies' survey considered a broader number of sub 

disciplines of computing, the categories of within, for and of are sufficiently descriptive to 

represent the taxonomy given in both.

Ethnography within development employs an ethnographic approach to systems 

development tasks like design, requirements elicitation (Martin & Sommerville, 2004) or 

training. The ethnographer in this case is a member of the team (Anderson, 1997).  He may 

perform duties concurrently with development tasks, employing "quick and dirty" 

techniques or using ethnography to assess designs or specifications with users (Beynon-

Davies, 1997, of Hughes).

Ethnography for development produces accounts of how work is done within domains 

as a way to inform and influence how systems are developed. Anderson makes the point 

that the specific aim of these studies is to raise awareness or “sensibilities" about the 

environment in which the technology under development will be used (Anderson, 1997).

Ethnography of research aims to remain independent of design, studying developers 

and development workplaces. It provides detailed information about the "problems and 

practicalities" (Beynon-Davies, 1997, p. 537) that arise in creating software. It might 

illuminate, for example, how developers adapt methodology to the demands of practice, 

the values given to different kinds of development tasks and the broader cooperative 

aspects of development.

4.2.1.1 Knowledge is Cultural

That knowledge is cultural and socially produced is a central theoretical assumption made 

by the uses of ethnography described in both surveys. Studies may elucidate how tacit 
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knowledge is employed in work, or describe details of practical or “articulated” work in 

particular settings (Suchman, 1987). These theories underpin interpretations of how 

workers perform their duties, how they use, or fail to use and adapt technology to fit the 

requirements of their tasks.

Humans routinely perform skilled activity, but cannot always articulate how they do it. 

The skills they use are tacit, implicit (Smith, 2003). Beynon-Davies suggests that the 

concept has been interpreted within ethnographies for as the knowledge that is required for 

individual workers to adapt their practices to those of others in a work environment. He 

links the interpretation to the concepts of explicit and activity perspectives on work, 

developed by Sachs (1995). The explicit view relates to organisational tasks, as represent-

ed by defined tasks and procedures. The activity view is socially mediated by workers, 

through relationships and communication and coordination practices that often involve 

interaction with artefacts and tools, such as paper-based forms, drawing tools, and 

spreadsheets.

Beynon-Davies finds three thematic strands of relevance to information systems 

developers. First, there is the notion the existence and character of tacit knowledge should 

be considered in participatory design exercises. Second, tacit work practices may have an 

impact the integration of new technology into "everyday" work settings. The last suggests 

more generally that tacit work practices underlying cooperative work are situated (Beynon-

Davies, 1997).

Anderson's survey explores in detail situated work, analysing the development of 

ethnographies for design in terms of Lucy Suchman’s study of photocopier failure 

(Anderson, 1997; Suchman, 1987). He identifies two innovative aspects of her research 

methodology: First, she re-orientated conversation analysis from its standard use for 

examining how two people interact, to examining how humans interact with machines. 
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Second, she used the notion of “communities of practice”, or an interpretation of learning 

drawn from research by Lave as being cultural rather than cognitive (Lave, 1988). 

By combining structured, ethno-methodological analytic technique with the notion of 

socially-based learning, her study was pre-disposed to see the structure and order in these 

working lives as “situated”, “occasioned” and “co-produced” (Anderson, 1997).  Though 

ethnographic studies of technology preceded her work, Anderson argues it was the impact 

of her methodological stance that galvanised researchers to apply ethnographic methods in 

the service of design.

4.2.1.2 Technology in Use

The theme of technology as it is used is a second core assumption within ethnographies for 

and within technology. Many of the studies examine work practices that depend on 

computing technology to perform other, “real world” tasks.

This perspective has been widely explored in Computer Supported Cooperative Work 

(CSCW) research, with studies that examine how employees are affected by new technolo-

gies in the workplace (Orlikowski, 1992; Orlikowski & Gash, 1994), the ways in which 

communities of users engage with collaborative software (Kling & Courtright, 2003), how 

electronic media support scientific communication Kling, McKim & King, 2003), and how 

employees use technology to engage with one another (Markus, 1994). The common 

theme in this research is to study adoption of technologies at the organisational level that 

have already been developed. While the social environment receives a detailed analysis in 

this research, the artefacts themselves are often overlooked (Orlikowski & Iacono, 2001).

This view has been interpreted within software development in studies like Randell's 

description of problems in the development of software for the NHS in England (Randell, 

2007), or Ince's analyses of software for supporting social work (Ince, 2010). Their view, 

like that in CSCW studies, is that domains of work should be considered as socio-technical 
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in nature.  Domains must be studied in these terms to determine how best to make software 

in their service.

4.2.2 Ethnographically-Informed Research

The case for writing ethnographies of making software has been made most clearly by 

authors advocating for ethnographically-informed research (Robinson,  Segal,  &  Sharp, 

2007;  Sharp,  Robinson,  &  Woodman,  2000). According to this view, following ethno-

graphic principles is necessary because the essential nature of work practice cannot be 

known a priori, and cannot be taken as “official”. 

In contrast to other approaches in software engineering, following an ethnographically-

informed approach allows research to be performed that is exploratory and which consid-

ers open ended research questions. The intent is to understand something more about the 

work practices of software engineering itself.  It is argued that software engineering forms 

a culture that transcends national, regional and organisational cultures. Markers of this 

culture that have been observed using this approach include community and constituency, 

a lack of importance given to evidence-based practice and argument, and the importance of 

the role of the local guru (Sharp et al., 2000).

Ethnographically-informed research of software development is performed by re-

searchers who are members of the software engineering discipline. However, the aim is to 

understand practice in its own terms and not in terms of prior understandings formed 

through membership in the discipline. The researcher must be "more observant" and "more 

critical" of the field to which they belong, of "what we do and how we do it" (Sharp, 

Robinson, & Woodman, 2000, p. 42). Rigour is achieved through triangulation of different 

data sources and feedback gathered from informants.

Ethnographically-informed research entails making two adaptations to classical 

ethnography. Both correspond to problems that were also noted by Beynon-Davies in 
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regards to ethnography that is applied within system design. First, in order to meet the 

constraints of performing fieldwork in software development environments, ethnographi-

cally-informed research abandons the notion that long-term, immersive access is necessary 

(Robinson et  al.,  2007). Instead, the studies often rely on informal and opportunistic data 

collection rather than gaining access to participants in a more formal, structured way.

Second, empirical investigations conducted using ethnographic principles are combined 

with other analytic methods.  This strategy allows researchers to explore broad questions 

of how work is done while responding to the scientific demands of engineering. Rigour is 

achieved in analysis through the use of methods such as documentary research, discourse 

analysis and grounded theory. For example, analysing talk provides a method for examin-

ing what language is used for, it permits researchers to: "listen to what is being done with 

the words." (Sharp et al., 2000, p. 42).

Combining analytic techniques is also a concern of the other two uses of ethnography. 

For example, Ball and Ormerod describe cognitive ethnography as an approach for design 

that is specific, purposive and verifiable. The approach entails gathering small-scale data 

from "representational" time slices, research questions are designed to intervene or 

otherwise affect work practice and the validation of results with observers and using 

experimental methods to "methodologically" triangulate.  They argue that ethnographies 

conducted to assist design differ and must differ from features of prototypical ethnogra-

phies because they are “purposive”, they have applied aims for improving teams or design 

process (2000, p. 408)  

4.2.2.1 Weaknesses

Weaknesses associated with ethnographically-informed studies regard concerns about 

achieving depth and overcoming membership.  Criticism is made that adaptations of 

ethnography often make use of fieldwork "blitzkrieg" (Van Maanen, 2011, p. 164), that 
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disciplines are guilty of "do-it-yourself" ethnography. Van Maanen is particularly critical 

of member-performed ethnographies because of their approach to gathering data, and on 

the basis that they have not sufficiently attended to the "invisible work" of ethnography 

(Forsythe, 1999) 3.

However, the need to combine methods and to adapt principles of classical ethnography 

is pragmatic, and in fact may be necessary to answer particular research questions 

(Hammersley & Atkinson, 2007).  Field work performed without immersive access often 

must depend on data captured on video or audio recordings.  Mixed methods are used in 

these cases to address demands of the media formats (Heath, Hindmarsh, & Luff, 2010), or 

to achieve depth in analyses by performing detailed, fine-grained or "micro" analyses 

(Knoblauch, 2005). Ethnographically-informed studies of development are necessarily 

focused, and produced by members, in order to examine specialised and fragmented 

activities (Knoblauch, 2005).

The mixed analytic approach also has a history within ethnography that predates use in 

computing research. As noted, Suchman’s method of examining interaction was drawn 

from earlier developments in ethnomethodology (Anderson, 1997). The use of techniques 

like card sorting (Ball & Ormerod, 2000) was also advocated by earlier ethnographers who 

used the technique to develop and test the strength of informant created taxonomies 

(Spradley, 1979).

The substrate underlying ethnographies for, within and of is common: work is done 

between people and between people and machines, knowledge is social and culturally 

produced.  What is different in ethnographies of, and in particularly in ethnographically-

3.The criteria of “sufficient attendance” seem particularly difficult to address.  It is not 
clear how one proves, for example, that one has engaged deeply enough with anthropologi-
cal writings on ethnography (Van Maanen, 2011) Similar points have been argued in the 
context of adaptations to ethnography employed by Computer Supported Cooperative 
Work researchers (Bannon, Schmidt, & Wagner, 2011).  Bannon et al. argue that it is 
difficult to determine studies that employ “scenic” ethnography, but agrees with critics that 
it is necessary to determine that data have been sufficiently “analytically worked”. 
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informed studies is that developers are the workers to be examined, and making informa-

tion computing technology is the work that is being done.  The emphasis in ethnographi-

cally-informed studies is not to further social science agendas, but to return to classical 

ethnographic aims, examining the actions and interactions of people. 

In the next section a description is given of the field sites and sources that were used to 

inform studies.

4.3 Field Sites and Sources

A pragmatic decision was taken early in the research process to temper collection with 

gleaning, to look for data within sources that had been created by other people.  Gaining 

access to software development sites is difficult (Easterbrook, 2008), particularly when 

access is sought to examine mistakes (Perry, 2010). In this research, the vagaries of access 

were not overcome, they were worked around. Sources were identified opportunistically. 

Relatively unstructured, open access was gained to sites for interviewing through contacts 

within standing professional and academic networks.

Data were gathered in a step-wise fashion (Horst, 2009). Step-wise collection has been 

described in the context of ethnographies that examine trans-national cultural concerns, for 

example of migrant populations. In these cases, research must, of necessity, be undertaken 

by a single researcher who travels to multiple sites. In the case of this research, it simply 

means that data were sourced, gathered and examined from different sites at different 

times.

Implicit in the decision to glean was the assumption that these secondary sources 

(McGinn, 2008) would likely take the form of video recordings of practice that could be 

indirectly examined for evidence of error. With the help of the supervisory team, contact 

was made with other researchers who had already been able to gain access to professionals 

and industrial environments. Participant-created video (Hammersley & Atkinson, 2007) 
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was sought on the internet that depicted professional developers at a sufficient standard of 

production to permit rigorous analysis.

4.3.1 Sites

Four field sites were used. One set of data was gathered in the Spring, 2010. The rest of the 

corpus was collected between January 2012 and April, 2013 (see Table 4.1 for a 

summary).  Two departments performing work for universities were represented (Sites B 

and D). At site A, the pair of designers observed worked professionally as colleagues for 

the same company. The structure of teams at this company is unknown, but was considered 

to be inconsequential to analysis.

Table 4.1: Field Sites. The Site column indicates a descriptive name along with a letter that 

reflects the order of access.  Sets of data were later grouped for reporting, as depicted in 

Figure 4.1.  Date of access indicates when the data were accessed to support research in 

this thesis.  The date in parentheses in this column indicates the date when sources were 

originally created. 

Site

The AmberPoint 
Design Session 
(Site A)

Digital Humani-
ties 
(Site B)

Acceptance Test 
Framework 
(Site C)

Course Planning 
(Site D)

Context

Design, set task 
(organisational 
simulation); labo-
ratory

Project work, or-
ganisational tasks; 
university

Desk work, per-
sonal tasks; indus-
try

Project work, or-
ganisational tasks; 
university

Method of Collection

Video recording, gleaned 
for secondary analysis

Interview, observation

Video recording, gleaned 
for secondary analysis

Interview, observation

Date of Access (Cre-
ation)

2010 (2009)

2012

2012 (2009)

2013
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4.3.1.1 Access

Though one aim for research was to perform indirect observation, access to environments 

and materials was overtly sought. Four managers working in two organisations (Site B and 

D, reported in Chapter 7) gave permission to observe and speak with employees. Each 

interviewed person was given an information sheet about the project, and signed an 

informed consent form.  These materials were reviewed and approved for use by the Open 

University Ethics Committee.  

Researchers working in the Software Design and Collaboration Laboratory in the 

Department of Informatics at the University of California in Irvine and their industrial 

partner, granted permission to observe video that had been collected for separate research 

projects (Site A, reported in Chapter 5). 

Two professional developers granted access to examine video that they had created and 

released to the internet (Site B, reported in Chapter 6).  The videos used in analysis were 

uploaded to a public video site by two professional developers, the terms of which permit 

free personal use. The creators of the videos gave permission to use the videos for research 

in a series of email exchanges. The videos feature audio input from other people collocated 

in the office at the time of recording. These participants could not be contacted; it is 

assumed that the creators of the videos obtained permission before recording and upload-

ing the videos to the hosting site.

4.3.2 Corpus

The full corpus includes proprietary and participant-created video, audio recordings, 

transcriptions of video and interview, and field notes taken during and after site visits.  

Table 4.2 lists the sources of data collected from each site. Ephemera were collected that 

include photographs, drawings, diagrams, historic and interview related email messages, 

screen grabs of social media pages and blog posts, and source code.  In the course of 
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sharing research at workshops and in meetings, a number of anecdotes and observations 

about personal encounters with error were collected. These were used to identify points of 

resonance and dissonance, and to hone areas for investigation.

Table 4.2. Sources of Data, by field site. Data were later organised into sets for analysis 
and reporting (see also Figure 4.1) that relate to their source and media format.

4.3.3 Informants

Fifteen developers informed this research, three females and twelve males. Their shared 

experiences represent a range of different software development tasks, including high-level 

design, data modelling, interface design and development, and application development. 

They also represent diverse working practices including domain-driven development, 

open-source development, industry sponsored open-source development. 

Site

The AmberPoint 
Design Session
(Site A)

Digital Humani-
ties
(Site B)

Acceptance Test 
Framework 
(Site C)

Course Planning
(Site D)

Sources of Data
- 1 video recording, 2.5 
hours long
- 1 preliminary transcription
- 1 enhanced transcription

- 7 audio recordings
- 6 transcriptions
- Field notes taken after in-
terview.
- Photographs of work spa-
ces, design diagrams, email 
exchanges, snippets of code

- 60 video recordings
- 20 transcriptions
Blog posts and website in-
formation, social media 
alerts and photographs, and 
open-source code archive

- 4 audio recordings
- 3 transcriptions
- Field notes taken after in-
terview.
- Field notes recorded in 
half-day observation.
- Drawings, diagrams, 
email exchanges. 

Description
Set design task, followed by a brief 
interview in which the designers re-
flect on the session. 

Semi-structured interviews collected 
using an adaptation of the critical de-
cision method.

Depictions of several months of inter-
mittent development on an open-
source development project. Analysis 
performed on one-month subset. 

Semi-structured interviews collected 
using an adaptation of the critical de-
cision method. 
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Sampling was opportunistic.  No effort was made beforehand to identify people who 

were considered to be experts or novices, and collection was not restricted to developers 

who were performing specific tasks.  The informants worked for organisations or compa-

nies; one pair of developers are professional freelance consultants.  Additional details 

about developers can be read within individual study chapters, in Sections 5.2, 6.2 and 7.2.  

Each section has the title Setting the Scene. 

Figure 4.1.  Overview of Method and Studies.  Sets of data were identified to support three 
studies.  The groupings that were made reflect different periods of practice and also 
particularities of the data, i.e. whether they were gathered by video recording or interview 
and by whom.  The video of design activity analysed for Chapter 5 was recorded by one 
researcher, the videos depicting work at the desk in Chapter 6 were created by a pair of 
developers, and the interviews used in Chapter 7 were collected by the author of the thesis.

4.4 Studies

Research began with the broad question ‘How do developers find and fix errors that arise 

in the course of work’? This question corresponds to principles of error handling that have 

been examined in psychology and safety science, and in methods and theories associated 



Error Detection and Recovery (Lopez)

-85-

with cognitive task analysis, itself a field with links to both disciplines (Crandall et al, 

2006). 

The corpus was formed into sets for analysis using principles of thematic analysis.  The 

groupings that were made are depicted in Figure 4.1, above.  This method was selected 

because it is not overly structured. It is also “theoretically free”, belonging to a group of 

methods that can be used independently of theory and epistemology (Braun & Clarke, 

2006).  The flexibility of the method made it possible to support opportunistic access to 

sites, a broader look at tasks and time, and to examine personal experience.  It was also 

possible to interweave examinations of related literatures with identification of themes 

within individual sets and by comparing instances across sets.  

Though the research question preceded knowledge of these related literatures, the 

interpretation of diverse sources was increasingly focused over time (Hammersley & 

Atkinson, 2007) by drawing on concepts and models found in them.  Iterative assessments 

were made of software engineering literature, analyses were performed on data, and 

literatures associated with human error were consulted.

The following sections given an overview of the research process for each study. In 

each case, details are given about the research interest that let to collection, as are a 

description of the sources that were accessed, analysis techniques, timeframes.  Notes are 

given about how examination of each set impacted analyses for other studies.
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4.4.1  At the Drawing Board (Site A)

Figure 4.2: Overview of At the Drawing Board (Site A).

At the Drawing Board (Chapter 5) explores how designers develop their awareness of 

problems. It assumes that software development is primarily a design activity (Pennington 

& Grabowski, 1990) and that difficulties can remain active even after local recovery.  The 

data used in this study was drawn from materials created for for the National Science 

Foundation funded International workshop "Studying Professional Software 

Design" (SPSD).  

The activities that are depicted in the videos (see also figure 4.2) reflect the kinds of work 

that are performed before code is written or modified, in settings in which developers do 

not have immediate access to source code.  The study had two aims:

• First, to identify indicators of awareness of issues in design that might be com-

pared materials that depict problem solving in different development contexts.

• Second, to compare problem solving as conceived in studies of design with 

descriptions of problem solving drawn from psychology and safety science. 

Analysis began by annotating the transcript of one design session from the SPSD work-

shop.  The AmberPoint session transcript was amended to include information about 

gesture and whiteboard work, as well as additional linguistic content.  

The Amberpoint Design Session

• Two developers 

• Activity at a white-
board

• Set-task, video  



Error Detection and Recovery (Lopez)

-87-

This was followed by segmentation of the transcript to isolate particular incidents for 

study; each incident was additionally broken down into distinct periods within the session 

in which the incident was discussed.  Incidents were identified selected by isolating topics 

discussed more than once over the course of the design session. These repeated discussions 

included elements of the following:

• Re-examination of tentative decisions (Guindon, 1990)

• Attachment to concepts (Cross, 2001). 

• Disagreement (e.g. “I don't think so”) or  (“I don’t think it needs to be…”)

• Lack of understanding (e.g. "I don't know") 

• Lack of confidence, for example signalled by repeated turns away from the 

whiteboard and the corresponding provision of assent in the form of paralinguistic 

utterances (e.g. "mm hmm", "yeah"). 

• Representation difficulties, as indicated through repeated use of problem framing, 

reference to the design prompt, use of gesture, or extensive re-working of diagrams.

After incidents were selected, individual incidents were transcribed within a columnar 

catalogue following the conventions given in appendix B.1.  The catalogue cross-refer-

enced dialogue with information about:

• Gestures 

• Whiteboard work, specifically sketching or amending existing sketches, and; 

• Focusing, by making references to the design prompt, or noting longer periods of 

examination or re-examination of the design prompt. 

Within the broader framework of Cross' principles of design cognition, individual ex-

changes were examined for evidence of the particular kinds of knowledge exploited by 

designers as identified by Guindon.  A catalogue of Guindon’s work has been extracted and 

can be consulted in appendix B. 3.
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4.4.1.1 Timeframe

A preliminary analysis was performed in 2010 to establish parameters for examining 

problem solving in development activities that don’t involve writing code. This analysis 

also helped establish methods for analysing video and for examining paired interaction. 

The interpretation of the data was subsequently developed in 2013, and completed in 2015 

after comparison with data from the other studies, and through examination of a second set 

of videos.

4.4.1.2 Relation to other studies

Analysis of the design session revealed gaps in depiction and scope. The experimental 

session examined was hypothetical, and analysis of conversation revealed features of 

discussion about problems that were suspected to be representative more generally of 

software development, rather than of design activity. 

The study formed a baseline for examining problem solving prospectively, providing 

evidence for visual and verbal signals that were also used during analysis of materials for 

Chapters 6 and 7.  Signals are described in more detail in appendix A.2
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4.4.2 At the Desk (Site C)

Figure 4.3: Overview of At the Desk (Site C).

At the Desk (Chapter 6) examines how developers interpret the software that they use and 

write. Focus is placed on moments in which things go wrong in desk work.  The data used 

in this study was drawn from paired interactions between two developers who filmed 

themselves over the course of a month as they modified an open source tool (for a 

summary of filming dates, see Figure 4.4)

The aim of the study that was to gather evidence for errors as they occur at the desk, 

while software is being written.  Three goals were set for the study: 

• First, incidents were to be identified in work prospectively, rather than using bug 

reports or repository snapshots as a starting point for retrospective analysis. 

• Second, filmed sessions of paired work that spanned a calendar month were 

examined. 

• Third, emphasis was given to illuminating situational and circumstantial factors 

in decision making.

Acceptance Test Framework

• Two developers 

• Development in an 
IDE, web browser

• Self directed tasks, 
video 
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Figure 4.4: Filming dates at the desk in 2009.  () indicates the source used to establish the 
filming date; episodes listed on the right are those for which a date could not be 
established.  A single programming session can span multiple recorded episodes. For 
example, episodes one and two correlated to two programming sessions, which occurred 
on different days. By contrast, episodes 3 and 4 comprised a single programming session.
 

  
Figure 4.5. Breakdown of incidents at the desk by episode.  Forty-three incidents in 
episodes 1-18 were examined in detail.  An additional twenty-five incidents were consid-
ered.  Eleven were used to develop contextual understanding for practice, while fourteen 
depicted issues related to conceptual design or to global aims for the project. A catalogue 
of common attributes for the forty-three primary incidents has been extracted into 
appendix C.2.
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The developers produced sixty videos.  Figure 4.4 above, gives an overview of filming 

dates for the corpus.  Transcripts were created of twenty films.  Episodes 1-18 were 

iteratively segmented to isolate incidents for analysis.  Episodes 19 and 20 were tran-

scribed and have been used to inform analysis but were not segmented to isolate specific 

incidents (see also Appendix C for more detailed information about the video corpus, 

processing and incidents).  

Initial thematic analysis of ten transcripts showed that affective factors noted in early 

analysis of high-level design and in accounts of past work were useful in broadly identify-

ing “curious incidents” (Crabtree, Tolmie, & Rouncefield, 2012) in the videos. The videos 

contained evidence of surprise, suspicion and of doubt, taken to be indicators of shifts 

between progressive and evaluative problem solving (Allwood, 1984) They also included 

examples of local problem solving (Reason, 1990).  

However, in many cases, the activities undertaken when errors arose were simple. The 

developers appeared at times to make mistakes that were related to mechanical or routine 

skill rather than grappling with conceptual or design problems.

Analysis was subsequently undertaken in three stages, using affective features to draw 

out material from videos, but also delineating and marking other features to deepen 

analysis of problem solving.  Forty-three incidents were selected for detailed analysis, a 

figure indicating coverage of the incidents across episodes is given in Figure 4.5.

First: The aim of this analysis was to capture high level details of incidents.  A 

catalogue was created that noted:

◦  Chronology: duration, start- and end points 

◦ Artefacts: files that were accessed in the screencast over the course of 

the incident

◦ Roles: determination of which programmer was working at the key-

board

◦ End state: resolution at incident completion, relation to other incidents, 
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◦ Recovery: the actions taken to recover were noted (e.g. changing wiki 

syntax or altering a tool configuration) 

◦ Detection: mode (e.g. outcome- or action-based), What was said, 

source of information (e.g. system response), corroborative verbal and 

visual indications

Second: In this analysis, the circumstances surrounding error detection for a subset 

of the incidents were examined. To do this, the dialogue and screen activity 

associated with detection were catalogued in more detail. The sequence of a subset 

of incidents was also diagrammed by hand to explore the handling process.   The 

catalogue included the following information: 

◦ Insight: the source of information that provided information (e.g. some-

thing seen on the screen, prior experience, what was said)

◦ Handling:  notes of strategies, tactics, evidence of guessing, trying things, 

and manipulations made to the environment

◦ Recovery mechanism: how the recovery was achieved (e.g. changing 

syntax, flushing a cache, altering method calls or class signatures) 

◦ Number of attempts: a rough assessment of the number of attempts that 

were made before recovery was achieved

◦ Rate of understanding: indications that one developer figured out the 

problem before the other

Third: Exchanges within twenty-five incidents were segmented and coded line-by-

line to develop understanding about local cycles of problem solving. The aim of 

this analysis was not to develop a fixed model, but to gain a better sense for how 

stages of detection, identification and recovery are interleaved by tactical ap-

proaches, manipulations of the environment, and emotions that modulate the 

process.  A portion of one incident that was coded this way can be seen in Ap-

pendix C, Section C.3.3.
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4.4.2.1 Timeframe

Near-verbatim transcripts were created of twenty videos in 2012 and early 2013; these 

were iteratively segmented and catalogued to isolate incidents for analysis. Sixty-eight 

incidents were analysed, initially in 2013, with subsequent interpretation in 2015.  

Preliminary findings were presented at the PPIG 2015 work-in-progress meeting (Lopez, 

Petre, & Nuseibeh, 2015).

4.4.2.2 Relation to other studies

Analysis of high-level design activity and accounts of recent work revealed gaps in 

depiction and scope, which led to the analyses of work at the desk.  The second analysis 

revealed that error handling in software development is often cyclical, involving more than 

one round of problem solving.  These observations were used to undertake a more detailed 

review of the psychology literature related to human performance and error detection, the 

outcomes of which were reported in Chapters 1, 2 and 3.

4.4.3 After the Fact (Sites B and D)

Figure 4.6: Overview of After the Fact (Sites B and D).

After the Fact (Chapter 7) examines accounts given by programmers about problems 

encountered in recent work (see the overview in Figure 4.6). Software takes time to write 

Digital Humanities and Course Planning

• Six developers 

• Solicited reflection 
about recent work

• Organisational  tasks, 
audio  
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and experiences with errors are personal.  The significance of errors will reflect passing 

time and social and organisational influences.  The data in this study was drawn from 

semi-structured interviews conducted at two field sites.  The aims for this study were two-

fold:

• First, to gather evidence about error from the full development cycle in professional 

contexts

• Second, to give developers an opportunity to identify and describe incidents of 

error handling in their own terms

Eleven individuals were interviewed in computing departments at two universities in the 

United Kingdom. Each informant was asked to recount an incident from recent work in 

which they played a discrete role.  Interviews were gathered following an adapted protocol 

of the critical decision method, a technique used in cognitive task analysis to study how 

decisions are made in real world settings (Crandall, Klein, & Hoffman, 2006).  An 

overview of the method is given in Section 4.5.4.1.  A detailed summary and commentary 

on the protocol that was applied can be read in Appendix D.2 

Informants were sought opportunistically at site B and D; acknowledged experts were 

not identified beforehand.  Meetings were arranged in person or by email, and each person 

was sent an information sheet before the appointment (see Appendix D.4). The information 

sheet was reviewed with the informant before the conversation, and each person signed an 

informed consent form.  Interviews were audio-recorded, and notes were taken, in sessions 

that lasted from between forty-five and seventy-five minutes. Interviews concluded with 

questions about training and experience.

Nine interviews were selected for analysis and transcribed.  Six interviews were 

analysed for evidence of error handling.  Each was selected because it included sufficient 

detail about what the informant did to detect, identify and recover from their problem. It 
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also provided information about how the informant developed awareness of the problem 

through these stages.  Three additional interviews taken at Site B were used to inform 

contextual understanding; additional explanation is given for exclusions in Chapter 7, 

Section 7.2.4.   

Transcripts were first coded into segments. Segments were identified by questions and 

responses that moved discussion in a distinct direction; this determination was made by 

assessing how an area of the transcript broadly corresponded to areas of questioning.  The 

critical decision method entails examining a single incident in four semi-structured 

“sweeps” (for a fuller description of the protocol, see Appendix D.2) Each sweep is used to 

elicit details about decision making from different perspectives:  

Identification and Accounts -In this sweep, the informant and the researcher 

identify a critical incident, and the participant gives a brief account of what 

happened.  The participant provides the structure of the interview, through the 

content of the story and the details they provide about sequence, beginning and end 

points.  The person must recount a story in which they were a “doer” or decision 

maker, and the interviewer must help establish what kind of story is representative 

within a domain and relevant to the research problem. 

Juncture in Time or Decision Point -a timeline is established to note critical 

decision points. A critical point is one in which the informant experiences a major 

shift in thinking or understanding about a situation, or takes decisive action. They 

are critical in the sense that they are “turning points” at which different decisions or 

actions may have been taken (Crandall et al, p. 76). 

Deepening -The process of establishing a timeline interleaves with a more detailed 

recounting of the incident itself. In the process, deepening probes are used to elicit 

information about cues and patterns the participant perceived, the rules-of-thumb 

they devised, the kinds of decisions they had to make, and details about particular 

cases. 
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Hypothetical Alternatives - each participant is asked to consider hypothetical 

alternatives to decisions that were taken, or to consider how someone else might 

have handled the incident.

Each segment was coded to reflect themes in the data.  Individual segments often included 

more than one question and response and almost certainly included information relating to 

more than one category. Multiple categories were often assigned to reflect evidence of 

more than one area of deepening, such as a response that described information that was 

sought, and how that information related to goals or priorities. A fuller description of the 

coding process can be read in appendix D.3.

4.4.3.1 Timeframe

Interviews at Site B took place in the Winter of 2012.   Interviews at Site D were conduct-

ed in Spring 2013. The lapse in time was largely due to opportunity. It simply took longer 

to locate and negotiate access to a second organisation. Transcription, segmentation and 

initial coding for interviews at Site B were performed in 2012.  Interviews from Site D 

were transcribed and segmented in the Spring of 2015.  The codebook was developed and 

applied through subsequent thematic analysis undertaken in Spring and Summer 2015.   

 Preliminary findings of thematic analysis for interviews collected at one site were 

presented at the CHASE 2012 Workshop (Lopez, Petre & Nuseibeh, 2012-a) and at the 

PPIG 2012 (Lopez, Petre & Nuseibeh, 2012-b) yearly meeting.

4.4.3.2 Relation to other studies

As in qualitative examinations of other fields (Allwood, 1984; Orr, 1986), the first analysis 

of accounts of error suggested that problem solving during error occurrence may be 

lengthy. The amount of time required for identification and recovery may have effects that 

are felt more or less immediately but which take longer to resolve. 
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Initial analysis of interviews revealed that the degree of precision and depth of the 

information in the accounts was different, particularly in relation to what was reported 

about what had been done at the computer, and what had been done in the past. This was 

interpreted to mean that accounts must be paired with other forms of data, and in particular 

data that could show development of code in real-time, and over time.  It led to the 

identification of the data used in Chapter 6, At the desk.

The lapse in time between site visits was an effect of gaining access, but also served 

broader aims. Interviews taken at the second site allowed the critical decision method to be 

applied a second time and to differentiate findings related to particular domains or 

environments from those that might more broadly characterise general aspects of software 

development.

4.5 A Prospective Analysis

The methods used to guide analysis were selected because they are prospective, allowing 

actions to be followed forward in time.  The approach taken toward interpretation has been 

“semantic” (Braun and Clarke, 2006, p.81).  Analysis has not looked “beyond” what is said 

by the developers themselves. Rather than using accounts to understand values, assump-

tions or social relationships (Sharp, 2000), they have been considered in the narrative sense 

(Orr, 1986), as sources from which to identify points in time, including chronology and 

sequence, and to define components of problem solving in relation to interactions with 

machines and between people.  

In the following sections, more detail is given about general principles and methods that 

were used to support analysis, beginning with a review of analytics used in relevant 

psychology and safety science studies, followed by approaches taken to qualitative 

analysis in software engineering research.
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4.5.1 Related Approaches

Data for the sense of error described in these pages relies on evidence gathered from 

observation or that is perceived and reported, at or soon after occurrences.  Ideally, the data 

should be gathered under naturalistic conditions.  Studies of human error in psychology 

have used think-aloud protocols (Allwood, 1984), but have primarily relied on reports 

collected from diaries (Norman, 1981(Reason, 1984; Sellen, 1994). Studies in safety 

science, which more commonly examine error in the workplace, have used think-aloud 

(Rasmussen & Jensen, 1974), time-slice observation and interview (Zapf, Brodbeck, Frese, 

Peters, & Prümper, 1992), and simulations performed by computer users (Rizzo, Bagnara, 

& Visciola, 1987) steel plant (Rizzo, Ferrante, & Bagnara, 1995)4 and nuclear plant 

operators (Woods et al., 1994).

The limitations of these methods are evident. Self-reports may be inaccurate, incom-

plete or biased (Reason, 1984, p. 520) while protocols captured using think-aloud, often in 

experimental settings, may be forced or artificial (Miyake, 1986). Interviews are difficult 

to conduct, and depend upon willing, articulate informants.   Observation is costly and hard 

to arrange in professional settings, and it may be difficult to focus in the moment on the 

significant aspects of the work that is being performed (Crandall et al., 2006).

It is generally recommended that methods be used in combination as resources allow 

(Crandall et al., 2006) and as research questions demand (Hammersley & Atkinson, 2007). 

Interviews, for example, commonly provide a practical complement to observational data 

(Hammersley, 2003), as the data collected in each can be used to “illuminate” the other 

(Hammersley & Atkinson, 2007, p. 102).   In safety science, interviews taken after a period 

of observation have been used to enhance or refute understandings about human error 

formed through observation alone (Hollnagel & Amalberti, 2001). This is good practice, 

4. The study of steel workers that is commonly cited for these researchers could not be 
accessed.  Information about it has been drawn from this later analysis, from (Rizzo, 
Parlangeli, Marchigiani, & Bagnara, 1996) and by a summary made in Reason, 1990.
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because all of the information relevant to research is often not available “first hand” (Ham-

mersley & Atkinson, 2007, p. 98) in observation. 

4.5.1.1 Software Engineering

Interviews and observation are often used in software engineering research to fill in gaps 

of understanding of practice gathered by examining other evidence, such as source code, 

records stored in tools, in bug reports or maintenance requests.  It is increasingly accepted 

that the “human aspects” of software development cannot be understood solely through 

analysis of outcomes (LaToza & Myers, 2011).  At the same time, the challenges of 

working with unstructured, qualitative data have also been observed (Kitchenham  et  al., 

2002).  Aranda and Venolia describe mixing methods to balance the need to collect large 

amounts of rich, contextual data with that of conducting focused analyses (Aranda and 

Venolia, 2009). 

Studies that examine practice commonly use data drawn from tasks undertaken at the 

desk.  For example, Bowdidge & Griswold (1997), Ko and Myers (2005), Lawrance et al. 

(2013) and (Park et al., 2013) examined video recordings of developers working on set 

tasks. They based their analysis on verbal utterances and other information drawn from the 

recordings, and either traced actions backward in a process described as “basically 

debugging” (Ko & Myers, 2005, p. 62) or forward in time to identify behavioural cues 

such as verbalisations, reactions and strategies (Park et al., 2013) or evidence of “foraging” 

for information (Lawrance et al., 2013).  Errors that people make while writing HTML 

code have been examined by examining In these and other similar studies (Huang, Liu, & 

Huang, 2012), interpretations of actions were made in relation to items from classifications 

adopted beforehand, and used a definition of error as material, “fragments of code” that are 

left behind (Ko & Myer, 2005). Likewise, the emphasis in both was to model in general 

terms how developers reason during tasks associated with bugs with aims to suggest 
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improvements to support use of tools or to make suggestions for helping programmers 

write code that is better suited to bug fixing tasks.Though it has different aims, the research 

reported here has used similar sources and methods to examine error as it is encountered. 

However, rather than working backward from outcomes to examine past actions (Ko & 

Myers, 2005), analysis has more similarities with the prospective analytic technique 

described by Bowdidge and Griswold.  

4.5.2 Transcription and Cataloguing

Transcription is part of the interpretative process, but it was also central in this project as a 

way to draw materials together for analysis. The opportunistic approach taken toward 

collection resulted in a large corpus of unstructured data in various media formats. The 

videos used in analysis were filmed by other people in diverse settings.  Limitations in the 

data brought by having had only “mediate” access to the events they depicted (Scott, 1990) 

were overcome by creating a set of familiar texts from which to perform analyses.

Though direct, contemporaneous access was not possible, it was possible to treat the 

videos as a sort of “borderline” document between a record and aesthetic material, and to 

witness many of the audible, visible and tactile aspects of the action that were depicted 

(Scott, 1990). The videos also might be interpreted as including inscriptions of other texts: 

of the software that is being written, and diagrams and text that is written on whiteboards. 

These other texts were considered to be peripheral, in that emphasis in transcribing all 

sources has been to identify speech-based text.

Audio recorded interviews, design video and programming videos were transcribed 

using the same basic transcription conventions, defined to capture details of speech and 

interaction. Conventions were adjusted to meet requirements of different media.  A fuller 

description of the methods used to transcribe and process materials can be read in appendix 

A, while details particular to individual studies are located in appendices B, C, and D.
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4.5.2.1 Interaction Analysis and Focused Ethnography

To learn how to identify and manage sequences of audio and video recorded activity, 

principles of interaction design (Jordan & Henderson, 1995), videography (Knoblauch & 

Tuma, 2011; Knoblauch & Schnettler, 2012) and more general descriptions of qualitative 

analysis using video (Heath, Hindmarsh & Luff, 2010) were studied.   Capturing data for 

observation on video recordings produces data that is by some accounts more objective 

(Knoblauch, 2005). Recordings can be gathered less intrusively (Jordan & Henderson, 

1995), allowing researchers the opportunity to “look again”, and also to perform detailed 

“micro” analyses. 

In a recent survey, Knoblauch describes focused ethnography (Knoblauch, 2005) or 

videography (Knoblauch & Tuma, 2011; Knoblauch & Schnettler, 2012) as a “distinct” 

form of ethnography adopted in applied research.  An earlier description of performing 

focused, micro analyses of video recorded material was described Jordan and Henderson as 

interaction analysis (1995). 

Interaction analysis holds that cognition is socially oriented and distributed, “situated in 

the interactions among members of a particular community engaged with the material 

world” (p. 41). In practice, it combines the use of ethnographically-informed methods to 

establish contextual understanding of an environment with micro-analytic techniques to 

examine the details of interactions captured on video. It is necessarily interdisciplinary, 

drawing on fields such as sociolinguistics, ethnomethodology, conversation analysis, 

kinesics, proxemics, and ethology. The complete method presented by Jordan and Austin is 

intensive, involving iterative detailed study of video content by individual researchers, 

groups of researchers and with study participants.
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4.5.3 Accounts

Errors are experienced by people and they become meaningful to others in terms of how 

they are talked about. Analysis of error requires an examination of the accounts people 

make of actions (Hammersley & Atkinson, 2007).  

Examining accounts of practice has been used to characterise problems in other 

software engineering research. (Eisenstadt, 1993).  High-level software design has been 

examined for characteristics of breakdown (Guindon, 1987). Ko and Chilana described 

applying an algorithm for ascertaining contention in open source bug report exchanges 

(2011).  Other ethnographic studies have looked at “code talk” (Higgins, 2007) or design at 

the desk (Kristoffersen, 2006)

Accounts are often examined in relation to material objects.  For Orr, narration was 

examined in relation to a malfunctioning machine (1986).  In the community he observed, 

narrative was a tool used to fix broken photocopier machines. Keeping track of the state of 

machines during diagnosis was difficult, and the way technicians handled it was by 

verbally assessing situations as they developed and by providing an historic context for 

changes that had been made during the process. Technicians described for each other 

what had been done, what these changes meant, they questioned and developed under-

standing, and determined the actions required to fix a machine. 

Other researchers in software engineering have used narration in laboratory settings to 

examine conceptual design (Guindon,  Krasner,  &  Curtis,  1987), code restructuring 

(Bowdidge & Griswold, 1997) or to understand how people learn to use software with 

tutorials (Koenemann-Belliveau, Carroll, Rosson, & Singley, 1994).

For the studies reported in Chapters 5, 6, and 7, evidence was sought of developers 

verbally “summing up” work (Orr, 1986).  The data were drawn out of solicited and 

unsolicited oral accounts (Hammersley & Atkinson, 2007). 
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• The video recordings examined in Chapters 5 and 6 contain unsolicited accounts 

(Hammersley & Atkinson, 2007) generated by developers working in pairs. The 

videos were created for different purposes, but their relatively unstructured form 

permitted them to be examined for evidence of error.

• Chapter 7 drew on accounts that were solicited using semi-structured interview 

techniques adapted from the critical decision method (Crandall et al., 2006). To 

develop contextual knowledge about working environments at these sites, a day 

was spent observing a team at one and drew on prior-formed knowledge of the 

second. 

4.5.3.1 Interviews and the Critical Decision Method

Interviews may be loosely or firmly structured and can be taken in different environments. 

They complement observation because they are social interactions (Hammersley, 2003). 

They can reflect an informant’s desire to preserve their own reputation or to persuade the 

researcher to a particular point of view. Because informants are asked to reflect on their 

own behaviours, attitudes, character, and personality, they become reflexive collaborators 

in the research process (Hammersley, 2003). Eisenstadt described this well, noting that he 

believed his informants’ accounts on the basis that he had no reason not to, and because 

details in the accounts were internally consistent. He concluded that accounts are suffi-

ciently reliable if informants are given the freedom to recount experiences in their own 

words (Eisenstadt, 1997).

Interviewing techniques developed out of the critical incident method (Flanagan, 1954) 

were used to gather rich accounts of practice that would include evidence of error encoun-

ters. Flanagan’s method described a set of principles to study human behaviour in relation 

to specific activities, or as a means to uncover the causal antecedents and critical actions 

taken in relation to specific events (Weatherbee, 2009). The technique has been associated 
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with accident analyses such as Perrow’s description of “normal” accidents (Perrow, 1984) 

and Weick’s analysis of the Tenerife air disaster (Weick, 1993). 

In subsequent adaptations, the technique has been adapted for use in knowledge 

elicitation.  For example, the critical decision method was designed to understand how 

people think in natural settings, developed to address the fact that the way people think in 

the workplace is not well explained by the findings of experimental studies of cognition.   

In addition to illuminating how people think on the job, the method is said to aid re-

searchers in understanding expertise in individual domains, by revealing the differences 

between how experts and novices approach and manage their work.  The critical decision 

method has itself been adapted to examine group work, and every day and critical incidents 

in the distant past and in the “here-and-now” (Crandall et al., 2006). The method was used 

in Chapter 7 to elicit focused accounts from developers about recent work, which were 

explored in analysis by developing timelines and narrative descriptions.

4.5.4 Incidents

Errors are encountered, they are situational.  Unlike war stories (Orr, 1986) or “hairiest” 

bug fixes (Eisenstadt, 1997) they are often not the stuff of anecdote.  They are everyday 

experiences, pouring-tea-into-the-tomatoes (Norman, 1981) rather than critical events that 

might arise in hospital emergency rooms (Crandall et al., 2006). 

Error handling should be tracked in time and over time.  Root-cause researchers have 

suggested that data should not be collected too long an interval of time after events have 

passed, and should reflect all kinds of development activity, while researchers in psycholo-

gy describe a fluctuating sense of immediacy with which the effects of error are perceived. 

Variations in practice have a temporal dimension: tasks performed during the day on a 

hospital ward may differ if observed at night (Hammersley and Atkinson, 2007, of 

Zerubavel). To account for these differences, fieldwork is often undertaken by identifying 
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and observing “salient” periods of work and junctures, such as in periods when personnel 

changes occur.

In empirical studies of software development, salient periods are often defined in 

relation to particular tasks. Studies have examined how programmers learn to use program-

ming environments (Ko and Myers, 2005), how they use tools to restructure code (Bow-

didge and Griswold, 1997), or how they work in professional environments on set tasks 

such as removing a bug (Lawrance et al., 2013) or performing specified maintenance 

(Sillito, Murphy, & De Volder, 2008). 

To meet the need of examining error within broader timeframes, incidents representing 

error encounters were constructed by examining accounts for verbal and visual evidence 

that informants perceived that something was wrong, and that they subsequently followed 

a process to remove effects of the error.  Analytics used to identify incidents included 

evidence of chronological sequences (Crandall et al., 2006), shifts between progressive and 

evaluative problem solving (Allwood, 1984), of environmental constraints that halted work 

(Norman, 1981), and indicators that informants understood what was wrong and could take 

action to remove the effects (Reason, 1990).

• In Chapters 5 and 6, interactions were examined on video for indications given by 

developers that work had stopped, that an error was suspected or by topics that 

were repeatedly discussed. 

• In Chapter 7, informants were asked to identify a problem from recent work and a 

chronological incident was constructed out of the detailed account they provided.  

4.5.4.1 Think-Aloud and Constructive Interaction

All of the videos used in studies depicted pairs of developers working together, and so 

understanding about how to refine representation of narrative dialogue drew on descrip-
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tions and examples of protocols developed for think-aloud and constructive interaction 

(Miyake, 1986).

Think-aloud protocols are attractive to researchers because they provide an unbiased 

view of what a person is thinking while they perform a task. Verbalised thoughts give 

insights into how software developers reason about problems, how they shift between 

considering problems and solutions, and of the tactics they use to meet small goals for a 

larger problem (Hughes & Parkes, 2003). 

The technique involves designing a task of sufficient familiarity (Crandall et al., 2006) 

complexity, detail and variability (Ko & Myers, 2005) to support the research question, 

and then collecting and recording verbalisations for analysis. In the context of software 

development, the technique has been used to examine problem solving in a range of 

different contexts. High-level design “breakdowns” that arise during set tasks have been 

examined for evidence of knowledge and cognitive limitations (Guindon, Krasner, & 

Curtis, 1987), as have the kinds of “cognitive breakdowns” made by novice users of 

programming systems (Ko & Myers, 2005), and studies have looked at the processes 

followed for recognised development tasks like debugging (Lawrance et al., 2013). 

Criticisms of the technique regard the difficulties some people have in verbalising their 

thought processes (Hughes & Parkes, 2003), the fact that verbalising may interfere with 

reasoning or performance, or may be better suited for gathering information about how 

experts reason rather than novices (Crandall et al., 2006).

Allaying these factors, think aloud techniques may be a part of work practice in some 

domains (Crandall et al., 2006). Constructive interaction is a naturalistic counter-tech-

nique to think-aloud.  Developing protocols out of dialogue exchanged by people working 

in pairs provides a view on problem-solving that is unsolicited, more naturalistic (Miyake, 

1986).   Unlike participants who are asked to articulate their reasoning process, pairs 
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undertaking problem solving tasks naturally explain to each other what they are thinking 

and give reasons for their ideas. Because two people are working together, a natural 

process of proposing, testing and defending ideas is made available for analysis (Miyake,

1986).

The method shares common points with think-aloud protocol.  Studies give participants 

a set task which they are to solve together.  In Miyake’s study, participants were asked to 

"figure out how a sewing machine makes its stitches." (Miyake, 1986, p. p.159). Six 

participants with varying degrees of prior experience with the machine were assigned to 

one of three pairs and worked together in sessions that were video and audio recorded. 

Each pair undertook three sessions during which they solved the problem using different 

tools: pen and paper, the machine, and a machine with thread.  Miyake analysed the 

statements made by participants during each session, which she mapped to one possible 

explanation of how the sewing machine creates a stitch. 

Constructive interaction has been used in software engineering for human computer 

interaction research (Wildman, 1995) and to study collaboration and team work (Flor, 

1998; Flor & Hutchins, 1991) Bowdidge and Griswold used the technique to study how 

programmers restructure code using different tools (1997). They noted that one of the 

strengths of the technique is that it can be moved out of the laboratory and to the desk, and 

thus into a familiar environment that may yield dialogue and actions on the computer that 

“reflect habits and patterns typical of the programming culture” (1997, p. 230). 

Though they do not specifically cite constructive interaction as a methodological 

orientation, studies that examine pair programming benefit from access to naturalistic 

exchanges of dialogue. Dialog-based verbalisation is necessary during pair programming 

(Xu & Rajlich, 2005) and the activity has been studied for attributes like attention (Sillitti, 

Succi, & Vlasenko, 2012), and engagement (Plonka, Sharp, & van der Linden. 2012).
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4.6 Summary

This chapter described the methods used to perform this research. First, the commitment to 

using ethnographic principles was described. The aims of the research were given and an 

overview of specific methods used for gathering and analysing source material was 

provided. Finally, an introduction was given to the field sites and the people who informed 

this work.

In the next three chapters, reports are given for studies introduced in Section 4.4 that 

examine practice from different perspectives. The studies draw on data gathered using 

different methods and have been examined using media and format specific analytic 

techniques.  Interpretation has grown out of employing principles of thematic analysis, but 

the texts and analyses are also structured temporally (Hammersley & Atkinson, 2007, p. 

195), according to the broad sequence of activities that have been identified in psychology 

research as being a part of the error handling process.  Two aims for reporting emerged 

from analysis:

• First, to establish a representative catalogue of error handling features detailing 

encounters reported by developers working in different settings and on different 

tasks.

• Second, to develop the descriptive framework for error used in software engineer-

ing by representing individual encounters within technical, social, and organisation-

al contexts.



-109-

5. At the Drawing Board

Design is a prevalent, central concern in software engineering, comprising both the goals 

to be achieved and the means: the particular tools, materials and mechanisms employed to 

meet them (Taylor & van der Hoek, 2007).  As in other disciplines such as architecture, the 

need to continuously comprehend and compose permeate all of the tasks undertaken in 

software development: domain problem understanding and representation, the develop-

ment of corresponding technical specifications or plans, writing the code and maintaining 

it.  Performance of these subtasks alternates over the course of an initiative, interleaved 

and interwoven by the basic processes of understanding and construction (Pennington & 

Grabowski, 1990). 

Taking this perspective, it is possible to consider that features of comprehension and 

composition from any one area of software development may resonate or have relevance 

when examining other tasks.  Findings about design practice can be used to frame and lend 

context to examinations of development at the desk, or to stories of recent work gathered 

from organisational settings.  

Design practice is commonly examined as it is performed (Cross, 2001).  One aim of 

the study reported in this chapter is to orient descriptions of error encounters and error 

handling to prospective analytic techniques that are established in software engineering 

research.  A second aim is to distinguish aspects of problem solving in software develop-

ment activity that are performed in-the-moment, that are local, tactical (Reason, 1990) or 

reactive (Eraut, 1994) from other activities that are strategic (Reason, 1990) or deliberative 

(Eraut, 1994).  

The following pages examine the ways in which developers manage difficulties that 

arise in a paired design session. The chapter begins with a review of concepts from related 
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design studies, followed by a review of concepts and theories related to problem solving 

from human error research. The scene is set, followed by findings and a brief discussion.

5.1 Related Work

Prior findings have described the kinds of breakdowns that designers encounter (Guindon, 

Krasner & Curtis, 1987).  Software design activities are hampered by three kinds of 

breakdown.  Designers may lack specialized computing knowledge or domain knowledge.  

They may also experience failures of memory or possess inadequate tools to support 

reasoning.  Some breakdowns are blends of the first two: characterised by aspects of 

knowledge and aspects of cognition.   

Software designers use specialized knowledge when performing early design tasks 

(Guindon, 1990).  They retrieve or simulate scenarios about the problem, elaborate 

requirements, identify inferred constraints and discover new requirements.  Solutions are  

developed and represented using external representations.  Designers use heuristics to 

assist solution generation, finding ways to simplify tasks, by delaying commitment and 

otherwise reducing the complexity in order to avoid making serious mistakes. 

 These attributes have also been described in the more general context of design 

cognition.  Cross identified three characteristics of design work that provide simple 

framing principles for analysis of design activity.  Problems are ill-formed, identified in 

tandem with solution generation.  Solutions are opportunistic, following a realistic 

strategy of finding a "satisfactory" rather than "optimal" solution.  Process is ad-hoc and 

unsystematic; designers are wary of process that has not proven itself (Cross, 2001).

These points also resonate with descriptions of problem solving in the context of error 

handling.  Strategic problem solving, like much of design work, is future facing, linked to 

goals that are ill-formed, dynamic, and which can only be assessed after time has passed 

(Reason, 1990).  Solutions must, of necessity, therefore be opportunistic, satisfactory rather 
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than optimal or correct.  Design practice is also tactical, particularly at moments of 

difficulty.  Local problem solving will be used in these cases to work through difficulties.  

Designers will draw on tools such as generation of alternatives, and sketching as they 

identify local problems that can be solved and assessed in order to return the focus of work 

to the larger, strategic task.  

Other papers have analysed the same data as the study reported in this chapter.  The 

studies are notable because they attend to aspects of awareness that arise during design. 

Designers must be comfortable with a degree of uncertainty and ambiguity in order to 

create (Cross, 2001). Phenomena of uncertainty such as vagueness, hesitation and delay 

serve design process by making collaboration possible (McDonnell, 2012). 

Within the framework of error handling, these phenomena would be taken as indicators 

of suspicion, the sense that something is wrong in work that was previously completed 

(Allwood, 1984).  They might also be taken as indicators of turbulence, that the designers 

have lost or are in danger of losing control of the process (Amalberti, 2001).  If evidence of 

either factor remains at the close of a session, such as in comments indicating ongoing 

dissatisfaction or aborted problem solving, one might also surmise that the issue remains, 

in some sense, active.

In Software Design as Subject- Oriented Design Cycles, Baker and Hoek examined the 

development of ideas in software design, looking at evidence of strategies and patterns 

used by designers in idea generation, evaluation and acceptance. Their method identified 

cycles within design, periods of time delimited by moments of focus-setting. As in the 

findings presented here, a high incidence of question asking was observed within design 

sessions. The study took such activity to be evidence of uncertainty and a lack of creative 

forward movement (Baker & van der Hoek, n.d.)
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Nickerson and Yu examined the nature of the collaboration at moments of conflict, and 

included in their analyses examination of speech as well as of other conversational 

activities such as gesture and diagram (2010). Their findings suggested that conflicts arise 

because designers attach themselves to divergent perspectives that meet the requirements 

of individually selected evaluation criteria.

McDonnell examined how designers in the SPSD situations use verbal interaction to 

explore the mechanisms designers use to keep a design process moving in spite of 

disagreements. One tactic designers use is tentativeness, employed to simplify a task, or to 

set aside issues that will be considered elsewhere. Disagreement is accommodated through 

the use of indicators, including the use of hypotheticals, by accommodating conflicting 

ideas in the design process, either by relating both possibilities to the larger design, or by 

using distinct terms to set the solutions apart.

5.2 Setting the Scene

The design session analysed within the former studies and in the study reported here was 

collected as a part of the NSF funded International workshop "Studying Professional 

Software Design" (SPSD), held February 8th-10th, 2010, at the University of California, 

Irvine. The goal of this workshop was to collect observations and insights into software 

design, that could be related to theories and methods from a variety of research disciplines 

including software engineering, design studies, human-computer interaction, cognitive 

science and psychology.

Workshop participants analyzed a common set of data comprised of videos and 

transcripts of three paired interactions of professional software designers. Each recorded 

session lasted for approximately two hours. The analysis given in this chapter examined 

one of the three sessions, commonly referred to in other studies as the AmberPoint 
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Session.  More information about the workshop may be found at: http://www.ics.uci.edu/

design-workshop/ (http://www.ics.uci.edu/design-workshop/).

The next section introduces Kasia and Bill, and describes the setting for their design 

session.  This chapter does not include a full account of the methods that were used for 

collection and analysis.  For this information, see Chapter 4, Section 4.3.3.  It may also be 

helpful to consult Appendices A and B.

5.2.1 The Amberpoint Session (Site A)

The Amberpoint Session depicts design activity performed by Kasia and Bill, identified in 

Table 5.1, below. The pair are experienced designers, and are colleagues at an industrial 

firm.  Kasia and Bill were given a design prompt specifying high level requirements for a 

traffic flow simulation program (see Appendix B.2), and were asked to produce a concep-

tual design for the system. The pair were asked to record design decisions on a whiteboard. 

Table 5.1: Informant demographics, Site A.

The session lasted for one hour and fifty-three minutes.  It was filmed using two fixed 

cameras placed at different angles and proximity to a whiteboard.  The session began with 

Kasia and Bill sitting at a table, reviewing the design prompt.  Following this, the pair 

move between sitting at the desk and standing at the whiteboard.  Bill does most of the 

diagramming and note-taking at the whiteboard, though Kasia stands at the board during 

discussion to reference and consult diagrams. The final six minutes of the film depict 

reflection and review of the session.  

Site

Site A

Name

Bill

Kasia

Gender and Age

Male, thirties

Female, thirties

Experience

Professional De-
signer

Professional De-
signer



Ch. 5 At the Drawing Board

-114-

5.3 Findings

In this section, three incidents are analysed.  Findings are characterised in terms of 

concepts drawn from Guindon’s kinds of knowledge (1990).  

5.3.1 I don't know if I like the pop-up window anymore.

Kasia and Bill work through the design of traffic signal timing by diagramming how it will 

be represented in a user interface. The difficulty unfolds over three segments, with two 

additional minor mentions made to it: one roughly three quarters of the way through the 

session and one within the reflection period. The second segment is the longest of the 

three, lasting approximately fourteen minutes.

In the course of specifying behaviour, the interface component undergoes several 

iterations, depicted in Figure 5.1, below.  Bill works predominantly in the solution space, 

as indicated by what he draws: how he extends, alters or removes bits of screens on the 

whiteboard. Kasia works within the problem space. She verbally explores aspects of the 

problem, and uses design heuristics (Guindon, 1990) to simplify the problem.

In the second segment, Bill does not accept Kasia's suggestion, that the problem be 

simplified ("Kasia: So, so you don't have to specify all four, because you only need to 

specify one or two and the other ones are implied because, you know--"). He pursues 

instead an attachment to developing the timing solution visually (#00:35:50.0# "Bill: --I 

understand what you mean, I understand what you mean but I think part of the traffic light 

problem is figuring out how long we should have the overlapping red lights").

The resolution is opportunistic: the third partial solution that is generated is accepted as 

sufficient. The resolution is signalled by the invocation of an external constraint, and 

mention is made that more detailed design work will be required. However, no additional 

work is done during the session, particularly within the period during which the primary 

representation, entity relationship diagram is developed.
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Figure 5.1: User interface representations of traffic signal timings.

In the traffic signal timing issue, the resolution is incrementally represented in sketches, 

perhaps firmly enough to indicate that the problem is resolved.  However, the representa-

tion is uneven. Bill's attachment to a user interface solution and the subsequent lack of 

development of the underlying object model could signal that the issue is still active. This 

possibility is hinted at by Bill's ongoing suspicion, indicated at the end of the session that 

he is not satisfied with the solution produced (#00:40:43.0# M: "I'm still--the input I'm still 

unhappy with the light timing").

Figure 5.2: Traffic signals.  The entity diagram includes elements for cars and for intersec-
tions, as well as for managing traffic.  The diagram on the right is an element of the user 
interface, indicating how traffic patterns might be configured within a simulation.
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5.3.2 So you think there should be a car out there?

Kasia thinks that cars have a distinct identity within the system and must be modelled 

while Bill believes that cars are handled more generally as a part of how traffic passes 

through intersections. This difficulty has four segments; the second marks the point at 

which the difficulty is named, while the resolution comes in the third.

McDonnell noted that the adoption of different terms by designers accommodates 

disagreement, but it may also signal more fundamental ill-formed understanding, a 

planning barrier (Frese & Zapf, 1994). It may be that the next action to take is unclear 

because the intention cannot (yet) be named. 

Conceptual consensus is achieved through discussion.  The pair make extensive use of 

scenario solutions. Two domains figure heavily in this process: that of the way traffic 

works, and of how simulations should behave for users. Gesture is used by both designers 

in the course of these scenarios to convey level of agreement and to express ideas. At 

times, consideration of the problem is constrained by references made to external con-

straints (#00:13:20.5# "Bill:... Professor E must have statistics").

The solution is partial.  It takes two representations on the whiteboard, depicted in 

Figure 5.2.  One is in a low-fidelity representation of a user interface component.  The 

representation is of a lower fidelity than the one developed for the traffic signal interface: 

no colour is used, a second part of the diagram is tacked on to the first, and numerous 

abbreviations are given to indicate fields on the screen.  The solution is also represented 

within the entity relationship diagram showing how major objects within the system relate 

to one another.

Both designers seem to be in agreement at the end of the session that traffic patterns 

needed to be configured and managed independently of intersections and of cars, and this 

is represented in the diagrams. This may mean that the design difficulty has been suffi-
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ciently resolved to permit unambiguous action going forward. However, even in the last 

moments of discussion surrounding the issue Bill asserts that the intersections should have 

some control or knowledge over the way traffic patterns are managed, suggesting that he 

remains unsatisfied ("#00:33:15.8# M: But, it might ask the approach what the traffic 

configuration is.").

The desire to draw on the support of problem solving at the desk is a marker of contin-

gent recovery.  Kasia and Bill mention that a number of the requirements for timing might 

be worked out through implementation, a known strategy in development (LaToza & 

Myers, 2010).

5.3.3 Ultimately, you want to know whether it worked.

Kasia wonders how the success in performing a simulation using the software is to be 

determined. She argues that success relates to how factors such as speed, distance, and car 

density on roads should optimally be combined by students to produce simulations. The 

difficulty is discussed in three different segments, the first occurring early in the session, 

and the last forming a substantial part of the reflection period at the end of active design.

Unlike the previous difficulties, the "working" issue is primarily discussed in relation to 

other parts of the system, such as in relation to the creation of a summary area or dash-

board for showing how the simulation is configured (segment 1), or the effects of running 

a simulation (segment 2). This means that over the course of the session, very little is 

captured about the problem except as it might relate to partial solutions of these related 

issues. 

Turbulence during design work is indicated with questions, gesture and in terminology 

that is fluid, changing.  It may also be indicated by repeated discussion about a specific 

topic.  In these cases, representation may take the form of little information captured in the 
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representation, or of unbalanced capture wherein part of the design is highly detailed, 

while other parts are not.   

In fact, at the end of the session, the entire discussion is only represented on the 

whiteboard via additions to the listing of requirements maintained by the designers: one 

question, and three unlabelled references to attributes for intersection approaches as shown 

in Figure 5.3. 

Figure 5.3: You want to know it worked.  The discussion related to this issue is not 
represented in diagrams, but in a list of requirements and one question indicated in black. 
"How to save different simulations?" is noted on the left as are the notes “Avg/Max Wait 
Time", "Avg/Max # of Cars", and "Avg Thru" to indicate the average throughput to be 
expected for each intersection per minute.

This is the only difficulty examined that is discussed at length by the designers in the 

reflection section, during which they indicate that they didn't feel satisfied with what they 

were able to achieve. The issue is left unresolved, though the designers suggest that the 

next steps would be to go back to the Professor, and to explore the problem by virtue of 

implementing parts of the system that were more firmly captured in the design representa-

tions.

5.4 Discussion

The Amberpoint session has been characterised as an example of expert design.  Kasia and 

Bill move between contexts: those of design and use, depth and breadth, and between the 

requirements and the design (McDonnell, 2012).  The session reflects the general features 

of design cognition. Evidence is given by the designers that they are engaged in problem 

formulation, solution development, and process strategy (Cross, 2001).  The session 
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demonstrates instances of problem framing, co-evolution of problem and solution, 

attachment to concepts and modal shifts. 

There is also evidence for the more detailed kinds of knowledge observed by Guindon 

in the context of software design. For example, there are many examples of requirement 

inference, the clear emergence of preferred evaluation criteria, and a number of design 

heuristics are used, such as considering a simpler problem first, and delaying commitment.

The incidents that were selected were distinctive for several reasons. Topics were 

repeatedly discussed.  The designers re-examined tentative decisions (Guindon, 1990), or 

exhibited attachment to concepts (Cross, 2001).   Exchanges include language that 

indicates disagreement (e. g. "I don't think so") or lack of understanding (e. g "I don't 

know").  The designers indicated they were doubtful, or that they were not confident in the 

ideas being expressed.  These moments were signalled by repeated turns away from the 

whiteboard and corresponding provisions of assent in the form of paralinguistic utterances 

(e. g. "mm hmm", "yeah").  Episodes also exhibited evidence that the concepts under 

discussion were difficult to represent, as indicated through repeated use of problem 

framing in exchanges, references to the design prompt, or extensive re-working of 

diagrams.

5.4.1 Scenarios

Guindon found that designers rely on mental simulations of the solution space to evaluate 

the in-progress solution: to determine how complete it is, and to tease out any "bugs" or 

inconsistencies it contains.  She states that "solution simulations were done in terms of test 

cases based on problem domain knowledge” in her case of possible scenarios for how lifts 

should behave (1990, p. 291)  

 Kasia and Bill appear to use the scenarios to explore two problem domains: that of how 

traffic works in the real world, and of how users interact in general terms with simulation 
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software.  Simulations in this session often explicitly refer to the use of the system, 

particularly in regard to how other simulation user interfaces are known to work, and the 

bearing that this knowledge may have on the current design effort. This may simply reflect 

the emergence of user experience as a preferred evaluation criterion for this session.  It 

may also reveal lack of experience in solving this kind of design problem.  

Software development must solve problems both within a problem domain and within 

software engineering (Pennington & Grabowski, 1990).   Within safety science, this has 

been described in the context of “object worlds”: the different domains to which an object 

of design belongs.  Part of the task in these cases is to determine what constitutes accept-

able conditions in each domain for the effects of decisions that are taken (Rasmussen, 

Pejtersen, & Schmidt, 1990).    Because of this, it is reasonable to assume that analogous 

scenarios may. of necessity, draw from both sources.

5.4.2 Constraints

The design prompt was heavily used by designers in the Amberpoint session to select 

terminology, to check requirements, and as a means to evaluate the completeness of partial 

solutions.  These uses may indicate evidence of requirements elaboration, defined by 

Guindon as being performed to reduce ambiguity in the design prompt and to decrease the 

field of possible solutions (Guindon, 1990, p. 290)

There is some evidence that the prompt is used during exchanges to express uncertainty 

(“Did it say that?”, “...or did I read something there that said it has some”), or to signal 

disagreement (“Potentially, I don't know if it needs to be that complicated but I could 

see”).  The purpose of the prompt does not always appear to serve as a direct source of 

information, but rather as a marker of something outside the design exchange.  It is in 

picking up the prompt that a message is conveyed, that conversation is diverted or paused.  
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More explicit boundaries are set around problem solving by making reference to the 

past and to the future.  These references locate the problem solving activity in the present, 

in the now.  They set the current moment apart from decisions that were taken before (e.g. 

"[W]e have to talk to Professor E again") and those that will have to be taken later ("That's 

version 2.0").

Boundaries set by lack of understanding may signal a difficulty that will occur in later 

activities. Indications may take the form of explicit reflections that something is not 

understood, naming the difficulty, use of the requirements specification for problem 

framing, or by constraining responsibility by making references to the client ("We need to 

go back to Professor E").  

5.4.3 Representations

Sketching has been named by Cross to be the “primary” tool that supports design 

cognition, facilitating the “the uncertain, ambiguous and exploratory” aspects of design.  It 

assists designers in generating tentative solutions, identifying what is still not known and 

revealing emergent properties and features (Cross, 2001, p. 17). 

In addition to sketching, Kasia and Bill employ gesture and use questions to structure 

and frame problems.  These devices do not stand alone, but are used in reference to an 

immediate aim, such as in uses of the design prompt to elaborate requirements, or as a part 

of solution simulation.

5.4.3.1 Sketching

Kasia and Bill were given the requirement that they use the whiteboard to record decisions, 

and so the session includes extensive sketching and listing.   Different kinds of information 

are depicted using different colours.  The main simulation interface is depicted in blue, 

while lists of requirements are always recorded in black, bulleted points.  The object model 
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is sketched in brown.  As one would expect, the user interface elements that correspond to 

traffic signal lights make use of red, green and yellow.  

Colour selection is purposeful within the representations, but may also indicate a 

preferred working practice.  Most of the sketching at the board is done by Bill, an arrange-

ment that appears to be comfortable to both members of the pair.  At one point, Bill uses 

humour-infused blame to suggest that someone has “taken” a colour away from him, as 

depicted in the exchange below.  This comment is made in jest.  Kasia laughs in response, 

and the sense is given that this is how they normally work together.

(00:39:43.5)

Bill:--If you wanted to.  And then we could have something, we could have another 

color, we could have another color that represents green arrow if we need to. Left, 

left-turn is orange, I don't know.

Kasia: Purple.

Bill: Purple?

Kasia: (Do you have a purple?)

Bill: Who took purple away from me (inaudible)?

Kasia: (Laughs.)

Bill: Brown, how 'bout brown?

Kasia: Okay.

5.4.3.2 Gesture

Bill and Kasia perform gestures over diagrams, in the air, or over a physical object, such as 

a table.   Guindon does not mention the use of gesture in her analysis of software design, 

but it reasonable to group this device with other uses of external representation.
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Figure 5.4: Gesture invoked to model traffic signal timing (Section 5.5.1).  In this example, 
Kasia uses her hands to indicate a road being placed into the grid space.  Her hands are 
roads, the diagram on the whiteboard represents the simulation.  The gesture is low-
commitment: Kasia can use the gesture without altering the diagram that is represented on 
the board.    

Gestures provide reference points to discussion (e.g. "if you click on here and double click 

on here") (Nickerson & Yu, 2010).  They do this by providing common objects that serve 

discussion. They are unambiguous and commitment free: it is easy for individual designers 

to make or to replicate a simple gesture over a diagram.  Nothing needs to be committed to 

the design in this way, nothing needs to be altered or removed.  An example of this is 

shown in Figure 5.4, above.    

00:20:02.7
Kasia: --So we assume they have some sort of a pallet here where they grab a road and 
they start dragging [F makes motions with both over the diagram]
Bill: Yeah, that's true.
Kasia: and then they drag that, so there is some sort of drawing pallet right, that says okay 
I have this thing I drag something, I'm drawing a road and I call it something and I draw 
and I call it B and I draw my roads and then--
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Figure 5.5: Gesture invoked to model the problem domain.  In this example, Bill uses the 
table to represent streets, and his hands are cars.  The gesture is communicative, but also 
knowledge bearing, representing how cars are known operate in the world.  

The same gesture can be used to serve discussion about the problem and solution space.  

Gestures are often knowledge bearing, conveying how something behaves in the world or 

how it is intended to operate within software that is being built.  An example of this is 

given in Figure 5.5, above.  Gestures may be used to inform but also to persuade, invoked 

to punctuate the idea that is being conveyed with a visual example.  An example of this is 

given in Figure 5.6, below.  

#00:56:32.2#
Bill: ...and usually stay the speed limit then they usually stay and go green throughout and 
so then, then on a given street, [Bill makes motions on table with hands] all the lights have 
to be timed in such a way that if you follow that, if you follow that speed limit then you 
will get to the next green light and you'll never have to stop as long as you stay at the 
speed limit.
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Figure 5.6: Gesture used to align understanding in the cars incident.  In this case, Bill 
illustrates the principle of turning with his hands to support an argument for managing 
timing.  Kasia responds by discussing directions.  

5.4.3.3 Questions

A high incidence of questions was observed to be asked by designers in two contexts.  As a 

part of problem framing, Kasia and Bill use questions to introduce different (but ultimately 

a defined set of) terms to articulate concern about the problem they are trying to solve.  As 

a part of solution framing, questions are asked to clarify understanding in situations in 

which one designer has put forth an idea.  Guindon does not cite question asking as a 

00:46:25.6
Bill:--No, no, then I think you would say um between these hours, 50 cars start at B and 
then
Kasia: mm hm
Bill: given the percentages, they're going to turn at--
[Bill holds hands together and then moves them apart.]
Kasia: --mm hmm
Bill: 9am.
Kasia: So that's what I was getting at, so you need direction, south.
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significant feature of either activity.  The sense given is that this activity may relate more 

to the attributes of discussion than to the use of particular kinds of knowledge.   

Questions may also indicate that the designers are becoming aware of an error, or mark 

shifts from prospective to evaluative problem solving (Allwood, 1984).  Suspicion 

indicated through questions, as do tentativeness or hesitation, signal that something is not 

right.  They are part of the emergent, contingent process of assessing what works through 

the detection of things that don’t work (Alexander, 1964), but also can serve as markers of 

reasoning, shifting frames of reference that accompany error handling (Rizzo, Ferrante & 

Bagnara, 1995).  

Other modulators that are often framed as questions such as doubt or worry could also 

be grouped as a representative tool that supports design work.  In all three of the incidents, 

there is a moment when the designers articulate what they perceive to be the crux of the 

design difficulty.  In the context of the "So what does 'It worked' mean" episodes, it is the 

high frequency of questions that indicates a problem. In the other episodes, declarations 

and banter are used (“Gosh, who knew this was so complex?”, “I know, it’s amazing”) , 

through an admission that a miss-communication has occurred (“You see, I thought-”), or 

that something has gone wrong (“I feel”). 

5.4.4 Limitations

The data were examined in recognition of several limitations. Though the film depicts 

naturalistic exchange between professional colleagues, the session was laboratory-based 

and the informants were given a set design task.  The sources were secondary (McGinn, 

2008), it was not possible to develop a full understanding of the professional context for 

the session: the environment in which the designers normally work, their individual 

backgrounds or preferred working styles, or of the kinds of design problems they normally 

solve.
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Partial understanding of industrial design was developed by comparing findings in this 

data with a second set of films that depict “real world” design activity in an industrial 

setting.  Those films depicted design of a “real world” problem in an organisational 

context.  Though informative, the second set of films was not rigorously analysed, and 

findings have not been used in reporting.   

5.5 Conclusion

This chapter reported a qualitative study undertaken to examine how designers work 

through difficulties encountered in high-level design.  It examined the activities of two 

designers working at a whiteboard on a set design task.  The analysis demonstrates the 

applicability of principles from design cognition to collaborative laboratory sessions. It 

provided evidence of active qualities of problem solving in deliberative activities like 

design that align with factors of problem solving characterised as being used during error 

handling. 

Agreement and shared understanding are not necessarily indicators of resolution. They 

may be indicators, however, of undoing effects within a local recovery.  As McDonnell 

noted, strategies like vagueness, hesitation and tentativeness support collaboration and 

allow work to move along.  Indicators of suspicion may also signal that recovery is 

provisional. 

One way that designers resolve issues is to set boundaries (Guindon, 1990).  Kasia and 

Bill state at points that that the next step to take would be to return to the client for 

clarification of the requirements.  By admitting a lack of knowledge, designers set a 

boundary on their responsibility, but they also indicate an awareness that the issue remains 

active, that it may require additional handling. Likewise, designers can recover from 

difficulties by banking on future work: through additional discussion with stakeholders, 
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but also work at the desk.  The best indicator in this case is how designers discuss future 

activities like prototyping in the context of current activity.

Recovery can be roughly assessed by how steady the process is, and how by how 

satisfied designers are with results.  A process that leaves the designers satisfied is marked 

by the adoption of unambiguous terminology, and by the degree of capture within and 

balance between individual design representations.  Within a turbulent process, developers 

may not be able to represent a solution, but only to frame the problem; discussion of the 

solution space may primarily reveal inconsistencies and gaps within the requirements. 
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6. At the Desk

Problem solving in software development is often strategic: success will be determined 

only after time has passed and the outcomes of decision making can be assessed. The 

strategic element is particularly strong in software design, in which plans and preparations 

are made for other software development tasks.  Decisions taken at the whiteboard that 

result in clear representations in diagrams or verbal agreements suggest resolution of 

immediate concerns.  However, setting constraints on problem solving and other indicators 

such as feelings of unease or dissatisfaction may signal that problems remain active.  

Resolution may be achieved only on the promise of work that will performed at a later 

time. 

At the desk, developers must continually interpret what has been recorded within 

software that they use and write.  Distinctions that were previously made must be exam-

ined, and new commitments must be made within a process that is never-ending and never-

complete (Winograd & Flores, 1987, p. 73).  Software is social and historic, a medium that 

reflects the intentions of other developers and of individual developers at particular 

moments in time.  

The aim of this chapter is to examine how such distinctions are made by developers, 

how comprehension and composition is undertaken at the desk (Pennington & Grabowski, 

1990). The focus is on moments when “misfits” between developers and machines 

(Rasmussen, 1985) or “break-downs” (Winograd & Flores, 1987) in action arise.  

The chapter first reviews studies that have examined problem solving in software 

development, and concepts and theories related to problem solving from human error 

research. The project depicted in video recordings made by two open-source developers is 

introduced.  Following this, an analysis is made features that were observed in different 
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incidents, culminating in a discussion of activity at the desk in the context of error 

handling.

6.1 Related Work

Traces of decision making undertaken at the desk have long been kept and reported in tools 

and mechanisms designed for other purposes. Bug trackers are used to keep track of 

information about “almost bugs” (Bertram, Voida, Greenberg, & Walker, 2010). Com-

ments are used to track information about work that is yet to be completed (Storey, Ryall, 

Bull, Myers, & Singer, 2008), bugs are reassigned so that those known to have active 

experience with issues can see them through (Guo, Zimmermann, Nagappan, & Murphy, 

2011). Reports of error often drive and organise practice, but have also been shown to be 

incomplete and inaccurate, with gaps of information that must be filled through interac-

tions between developers (Aranda & Venolia, 2009). 

Social interaction is considered to be a cornerstone of writing good software.  Hoare 

argued that a culture of reliability would result over time in the “natural” emergence of 

dependable software (1996).  Weinburg famously described this as “ego-less 

programming”, environments in which shared, open access to software replaced older 

cultural values of programming as a secretive, solitary practice.  Ego-less groups increase 

awareness of what is in code, and in so doing facilitate error detection during writing 

(1998). 

  Study of interactions in formal meetings and in work at the desk support these ideas.  

Study of code inspections has shown that the length of meeting times and the physical 

proximity between developers can influence the number of defects that are reported 

(Seaman & Basili, 1997)   Examinations of work at the desk argue that software is social 

“to the core”, that meanings within software arise out of the interactions developers 

(Higgins, 2007).
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Interaction has long been argued to make programmers “better” (Weinberg, 1998), 

however, less is known about how individual developers make decisions.  Studies have 

examined the information needs of developers (Ko,  DeLine,  & Venolia,  2007), how they 

“forage” for information during bug-fixing (Lawrance et al., 2013) and the personal 

strategies they utilise more generally during development (LaToza & Myers, 2010).

The argument has been made that decision making at the desk is like problem solving 

associated with design.  Design work cannot  be  moved "upstream" from programming, 

because it is a constitutive element of programming.  (Kristofersson, 2006). The names 

given to elements of software become the design and the design depends on what things 

are called.  Some errors at the desk are handled by designing them away, making them 

acceptable by accounting for them.  Likewise,  renaming pieces  of  code can make them 

"right", so that they fit new, emerging requirements (Kristofersson, 2006). 

Collaboration and coordination studies examine the environment in which software is 

created and the ways that tools and process support the coordination of activities.  They 

also explore how work is mediated by talk and by the records associated with software 

development: bug databases, code repositories, and in some cases, source code. As in the 

root-cause analyses, the studies primarily consider error in terms of outcomes, and 

examine most closely activities like bugfixing that have long been associated with error 

detection and removal.  

6.2 Setting the Scene

This section sets the scene for the findings reported in Section 6.3.  The videos used in 

analysis were created by Marcus and Joe, two active members of the professional agile 

community. The following sections introduces the project, developers, and provides an 

overview to how practice is organised.
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The section does not include a full account of the methods that were used for data 

collection and analysis.  For this information, consult Chapter 4, Section 4.3.3 and  

appendices A and C.

6.2.1 Acceptance Test Framework (Site C)

This project is extending an open-source acceptance test framework to allow users to 

specificy "literate" acceptance tests. Wiki-based and written in JAVA, the framework was 

designed to allow non-technical users to specify and run acceptance tests for software. The 

altered project will permit tests to be written that follow the Given-Then-When pattern 

(North, n. d.). Classes and packages will be named so that they can be parsed and present-

ed to readers on webpages in a form that approximates natural language. Likewise, users of 

the framework will be able to create tests with names that are readable and easy to 

understand.

Development draws upon a JAVA interface written by Marcus some months prior to 

filming. That project had two aims: to test out ideas about writing human object oriented 

application programming interfaces (API), and to support the separation of roles and tasks 

in behaviour driven development frameworks. It included examples which demonstrated 

the use of the API in conjunction with the open source acceptance test framework that is 

being altered by the pair. The API is used directly at points, and examples included in its 

documentation are referred to and borrowed from.

6.2.1.1 Informants: Marcus and Joe 

Marcus and Joe, identified in Table 6.1 below, perform all programming tasks together. 

The two are more or less evenly paired, each has been programming professionally for 

over ten years. Both programmers are familiar with the acceptance test framework, 

however Marcus appears to have more recent experience in developing within it. 
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Table 6.1: Informant demographics, Site C.

By contrast, Joe exhibits greater familiarity with the tools that are being used, in particular 

with the IDE and a continuous unit testing plugin for the IDE. Evidence is given that he 

takes the lead on performing upgrades on these tools between filming. There is also 

evidence to suggest that he is an advocate for using Linux or Unix variant operating 

systems, and that his most recent development work has been done in Cocoa.

 Watchers

The episodes that were analysed were filmed in office environments, as depicted in Figure 

6.1, and there are frequently people co-located in the room where development is happen-

ing. Watchers predominantly follow along with the programming action, but also comment 

from time to time. At times, their input affects the work. Watchers differ between episodes; 

no single Watcher is consistently present.

Episodes were webcast using web meeting software and Watchers also participate via 

the internet. People drop in and out of the sessions, at times commenting or asking 

questions in real-time via chat. When this happens, a co-located Watcher brings the 

question to the attention of Marcus and Joe, or one of the developers notices that a question 

has been asked in real-time chat. In both cases, the question is addressed in the course of 

ongoing work.

6.2.1.2 How Practice is Organised

Marcus and Joe use the Eclipse integrated development environment (IDE), and create 

extensions to the wiki-based acceptance test framework. They also use the wiki to direct 

Site

Site C

Name

Joe 

Marcus

Gender and Age

Male, thirties

Male, thirties

Experience

Professional Con-
sultant, 10 years

Professional con-
sultant, 10 years
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their work, writing stories within it that define the functionality they intend to add to the 

framework. The wiki environment is viewed in Firefox.

Figure 6.1: Development sessions were held in offices.

Figure 6.2: Filming depicted a screencast.  After episode 20, the screencast included video 
of the developers at work, prior to that, only the IDE or web browser output was visible.  
This figure also depicts a screen explaining test-driven development principles followed by 
the developers, and displays the “pomodoro” timer Marcus and Joe used to keep track of 
episodes. 
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The developers take turns driving and navigating. One writes a unit test, defining proposed 

behaviour for a class, and the other implements the behaviour by adding necessary 

methods to the class. The driver often informally “thinks aloud” to indicate the actions he 

is taking. Likewise, the navigator often acts as narrator for the audience, explaining in 

broader terms what is being done, and how it is oriented within the larger goals for the 

project. In addition, the two interact with each other, discussing the work that is being 

performed.

Development is undertaken on a Windows laptop owned by Marcus (see Figure 6.2 for 

a representative image of the screencast depicted in video recordings). In the first and 

subsequent episodes that were analysed, the performance of this laptop distracts the 

developers and slows progress.

6.3 Findings

As described in Chapter 3, Section 3.3, error handling is generally described as a three-

stage process (Brodbeck, Zapf, Prümper, & Frese, 1993). A person must know that an error 

has occurred, identify both what was “done wrong” and “what should have been done” and 

then understand how to “undo” the effects of the error (Sellen, 1994, p. 476). Handling 

unfolds in the course of “progressive” problem solving. An error is suspected or detected, 

and an evaluation is made to identify the source of the problem (Allwood, 1984). Environ-

mental cues supply feedback to the problem solver by blocking forward progress (Norman, 

1981), communicating about problems in system state (Lewis & Norman, 1986) or by 

circumstantially guiding a problem solver to recovery (Reason, 1990). 

Following this rubric, features of error are illustrated in the findings that follow using 

statements and exchanges of dialogue drawn from error handling incidents.  Forty-three 

incidents were examined in detail; a diagram depicting the spread of incidents across 

episodes can be seen in Figure 4.4.  Taken as a group, incidents are notable for the time 
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they span: many are fewer than five minutes in length with clearly defined points of 

detection and resolution. Other handling processes took much longer, with the longest 

taking approximately fifty minutes and spanning two videos. In most cases, incidents are 

resolved on camera within a single video episode, though some span multiple films and 

several incidents are resolved off camera. For a fuller description of the methods used in 

analysis, see Chapter 4, Section 4.4.2 

Incidents were selected for reporting because they represent a cross section of the 

various kinds of development tasks that characterise encounters with error. They also 

illustrate different aspects of handling. Finally, they are incidents that are brief enough to 

be presented in total or near total entirety, allowing the reader to form a sense of how error 

handling unfolds from start to finish.

Excerpts of dialogue from videos are presented to illustrate aspects of handling. 

Dialogue that does not pertain to the immediate topic has been removed for brevity and 

clarity.  Exchanges are presented in italics, with the name of the speaker in a strong font.  

A catalogue of incidents is given in Appendix C.2.  Full exchanges are given in Appendix 

C.3. For fuller transcription conventions, see Appendix A.

6.3.1 Slips of Action

Actions sometimes do not go as planned, or were not intended. They are often simple, 

routine, and are commonly detected in the act based on perceptions that arise while doing 

something (Sellen, 1994). Often described in software engineering in terms of backtrack-

ing (Bowdidge & Griswold, 1997), they could also be described as slips of action 

(Norman, 1981). Selecting the wrong item from a drop down menu or improperly referenc-

ing a variable are two examples: 

Marcus: Oops, that's not what I want to do. (Ep. 12, 00:04:45) 
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Joe: No can't do that cause it's. Oh we can move it outside the [try block ]... (Ep. 7, 

00:06:51) 

In these cases, the full exchanges for which can be viewed in Appendix 6.3.1, each 

developer gives a clear indication that something is wrong. What should have been done is 

evident, and recovery is simple. It is likely that Marcus caught his error in the act. 

Detection is also commonly made by assessing outcomes, and Joe’s statement suggests 

that he may have responded to effects his actions had on the development environment. 

6.3.2 Error Handling Illustrated

The exchange given below illustrates an error in software development that requires 

handling.  In the incident, catalogued as 11-B in Appendix C.2, Marcus is writing a test. 

He passes a piece of text to as an argument to a method. A red bar appears under the text. 

Several features of the exchange are notable.  As in the examples given in the previous 

section, Marcus indicates that the red bar was unexpected (“Oooh.”).  Joe immediately 

identifies that the problem is with syntax. The text contains an apostrophe, (e. g. “Do 

something you don’t know”) which is causing a parsing error.  The action was small, and 

might have been interpreted as a slip, however, Marcus indicates that he is uncertain about 

how to proceed.  Marcus uses questions to engage Joe in higher-level discussion. Joe 

signals that he is engaged by questioning in turn. He offers a solution that will allow work 

to continue. He indicates that the proposed fix is tactical (“for the time being”).

00:02:55

Marcus (Driver): Oooh.

Joe (Navigator): You've (just) got an apostrophe in there. (Chuckle)

Marcus: What do you want to do about that?

Joe: What? The apostrophe?

Marcus: Yeah.
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Joe: Umm. Don't, uh, don't use it for the time being. That's a, we'll come back to 

that later if it becomes a problem. /Okay. / It shouldn't be difficult to remove non 

characters.

00:04:44

The error is unexpected and the source of the red bar must be identified.  Though the 

interruption is brief, forward progress stops while a solution is identified and implemented.  

This issue is not exclusively skill-based.  Marcus indicates that he doesn’t know what to 

do, but it is likely that he also recognises that the error is technically simple to resolve. 

Recovery requires decision making that is both tactical and strategic.  The pair need to 

come to a decision about what to do now, but they also have to consider larger goals for 

the project.  

Joe’s admission that the pair can “come back to it” if necessary demonstrates that the 

issue has a strategic dimension.  Joe provides the rationale he is using for accepting the 

risk. It should not be difficult, he reasons, to handle non-characters. This statement links 

the issue to one of the global aims that have been given for the project, to allow users of 

the acceptance test wiki to write tests in natural language. Though this particular problem 

does not reoccur, the global aim factors into several other incidents that come up over the 

course of different sessions. 

6.3.3 Error-Driven Practice

In keeping with test driven development principles (Ambler, 2012), Marcus and Joe write 

tests for intended behaviour that initially fail, and are then proven within the implementa-

tion. They rely on the environment to “catch” errors (“It needs to go into the right 

package... If we’re wrong, it will tell us.”). Similarly, errors thrown within the testing 

framework are taken to indicate what to do next.. The developers use error-driven tactics to 

guide work along the way and also to provide placeholders or bookmarks between 

sessions. Unit tests are left at the close of a programming session that fail, as are accep-
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tance tests that fail with stack trace output in the wiki. As Marcus comments in the first 

minutes of one episode: 

“That’s what I love about ending the last thing I was doing with a failed test cause 

then I come back and I know exactly what I need to do next.” 

There is also evidence that errors are sometimes spurred. An example of this tactic is given 

in the exchange presented in Appendix C.3.5.  In this case, one of the developers might 

write something in the code that he knows will result in an error. He does this because he 

has an idea of what needs to be done, but does not know how to achieve it. He is counting 

on the feedback from the system to circumstantially guide his practice.

Marcus and Joe expect problems to be signalled by system responses (Lewis & 

Norman, 1987): red bars under method calls or arguments, error messages in the problems 

pane, or stack traces in the web browser. In spite of this, and as seen in the exchange given 

in Section 6.3.2, errors frequently come up that catch the developers by surprise.  Error 

handling across the incidents is most often triggered by cues in the environment (Reason, 

1990), summarised in Table 6.9, below.  

Lewis and Norman described six kinds of system responses that can be designed into 

software to facilitate error handling during use.  As noted in the findings, gags and 

warnings provide clear indications that something is wrong, either by limiting or caution-

ing against future action.  However, a system might also do nothing, it may self-correct, 

suggest that the system and user “talk about it”, or that the user teach the system what 

should be done, features that have been explored by researchers investigating new ways to 

support tool-based development (Ko & Myers, 2008). 

In this catalogue, the system responses to which Marcus and Joe respond are often 

subtle.  The display of a screen may not “look right”, prompting suspicion that something 

is wrong.  As has been noted in other studies (Lawrance et al., 2013), the developers are 

also designing and populating messages for system responses.  They notice when a 
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message does not contain information they expect to see, or when it has been improperly 

interpreted (for a fuller discussion of subtle environmental cues, see Chapter 8, Section 

8.1.1).  At times, detection is made as a result of interaction between the developers and 

one of the Watchers. In one case, Marcus notes while explaining designed behaviour to a 

Watcher that it does not “feel right”. In a second, a Watcher points out a weakness in the 

use of a feature of JAVA.

Table 6.9: Sources of system responses. In this dataset, the following system responses 
signal to the developers that something has gone wrong. These broadly correspond to the 
system responses outlined by Lewis and Norman (1987)

Marcus and Joe always indicate that something has gone wrong, usually with verbal 

comments. In a small number of cases, visual confirmation of the error accompanies verbal 

comments. The screencast may show a cursor moving along a message or hovering over a 

red bar to reveal additional information. Often the pair verbally indicate that something has 

System

Response

Red bar

Problem pane

Stack trace

output

Wiki 

“Output captured”

Wiki Error Mes-

sage

Description

A red bar appears under a variable or statement. 

Most commonly, this pane is used to access errors reported 
by the unit test framework. The unit test framework places a 
visual icon at the point in the code where the error is made, 
however developers tend to indicate that an error has oc-
curred using the textual output in the problems pane of the 
IDE, and not by making reference to the icon. 

In the wiki that fronts the acceptance testing framework. 
These appear when the acceptance test requires a piece of 
functionality that has not yet been written. In general, these 
errors are used to identify what to do next, but in the case of 
things that have gone wrong, the error that appears is not 
what the developers expected to see. 

Other error messages that come up while executing tests.

Code can fail in the course of acceptance test that does not 
result in a stack trace. In these cases, error messages are 
captured from the failing component and displayed on a 
separate webpage.  The output that has been captured is 
indicated to the developers with a graphic.

In the web-based acceptance test framework, system re-
sponses returned by the wiki.  
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gone wrong with simple utterances including “Oooh”, or “Oops” or exclamations like 

“Ugh. That’s interesting.” Questions are asked that refer to the appearance of the system 

response (Why is that red at the moment?), that personify the code (Why is that complain-

ing?) or more generally question functionality (Why is that not working then?).

6.3.4 Handling in Context

The handling process is managed by how Marcus and Joe assess situations, the information 

they draw upon, and the mechanisms they try.  Attention is often commanded because 

conditions are unexpected or new, but a situation can turn out to be familiar.   Subsequent 

handling may draw upon knowledge gained through previous experience.  The following 

exchange drawn from Episode 2, and provided in full in Appendix C.3.2, demonstrates 

both perspectives: 

Marcus: Now this is something to do, I had to solve this recently and I can't 

remember how I did it. 

Joe: It's an import, you need to import it, don't you? Or it needs to be umm, oh 

wait, its trying to execute that as a-- 

Marcus: --It’s the, the look. There's a, I did this before. It's to do with the way it 

does the test running stuff.  Let's just have a quick look [Driver opens Eclipse] in 

examples that we were messing about with hums. (Ep. 2, 00:20:43) 

Guessing is a prominent feature of the incidents in this dataset.  Guesses are informal and 

pervasive.  They are both right and wrong, often made solely in response to perceived 

effects.  Joe responded to the error message by making three swift guesses about what was 

wrong.  Later in the exchange, he takes a fourth stab about which configuration file will 

contain the information. All of the guesses Joe makes in this incident turn out to be 

incorrect. They are an indicator of novelty, and suggest that Joe has encountered a problem 

that will require conscious problem solving. 
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Sometimes guessing is used to propose tactics or mechanisms that have an information-

al basis.  In the exchange given above, Marcus takes an informed guess to look at configu-

ration files within the IDE.  The handling process he follows demonstrates that knowledge 

drawn from prior experience is often of limited utility.  The environment does not always 

effectively guide problem solving.  In this incident, configuration files are located in 

different parts of the JAVA project filesystem and they all have the same name.  Marcus 

knows he needs to look in one of the files, but he does not know which file will contain the 

information.  He takes guesses about which files to open and examine.  The identification 

of a solution, as in this case, is often also perceptual.  Marcus had to open and look at 

several files before recognising information in one that he perceived was correct (“That's 

the one I wanted”).  

Errors may be encountered together, but they are handled individually.  One member of 

the pair may indicate that a problem is new, while the other may indicate that it is familiar.  

In this incident, Marcus was able to identify behaviour in the software that the configura-

tion manages, but he didn’t explain exactly what the configuration does.  Joe’s experience 

was new.  His understanding formed by watching how Marcus handled the problem: the 

actions he took in the development environment and the connection he mades between 

information stored in the development environment and the wiki. 

Likewise, the two do not always notice that something has gone wrong at the same 

moment, or attribute the same significance to system responses or behaviour in the 

software. Information is often freely given, but not received: the developer at the desk may 

not respond to suggestions given about actions to take or warnings about problems.  At 

times, each developer appears to privilege behaviour in the environment over what he is 

told, only making a detection once he can assess effects. Thus the same error may be 

caught in the act by one developer, but be detected based on outcomes by the other. 



Error Detection and Recovery (Lopez)

-143-

Differences in rates of understanding are not necessarily evidence of differences in 

reasoning skill or expertise.  They serve informational purposes in paired work.  Dialogue 

and commentary are important sources of feedback. Comments can focus a partner’s 

attention, correct an assessment, or trigger an evaluation. The act of explaining a choice 

triggered detection in one case. Evidence was also given that pairs guide each other on 

occasion, dictating changes to be made in the code. The steps in these cases are not 

intended to produce a recovery for the error. Instead, they are given to stabilize the 

process, restoring immediate behavior so that problem solving can continue. 

6.3.5 Modulators

Questioning is prominent in the incidents, found in the context of guessing, but also of 

other modulators like doubt and blame.  Marcus and Joe ask questions when they are not 

able to make sense of a situation.  They question the behaviour of the software (“What is 

going on?”), the stability of the environment (“What has changed?”), and the location of 

resources (“Where is it?”).  They are doubtful about actions they have taken (“Oh that was 

the wrong page, wasn't it?”) and about where the source of the problem might be (“I 

wonder if it’s like, no?”). 

Blame is used to deflect responsibility (“That's nothing to do with us.”), and to probe 

for information about a potential source of the error (“What have you done?”).  Blame 

often targets limitations of the environment. In this sense, it functions as an invocation of 

an external constraint (Guindon et al., 1987), allowing the developers to set boundaries on 

responsibility. As noted by Eisenstadt (1997), blame is sometimes misdirected, but in this 

dataset, it appears more often to be a feature of setting boundaries for investigative 

activities.  In these videos, the laptop on which work is being performed is commonly used 

in this way.
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Blame may be associated with knowledge transfer between developers. Throughout the 

episodes, the pair is working on Marcus’ machine, and there is some evidence to suggest 

that in between episodes, development software is installed and updated by Joe. Given this 

context, blame may be placed in order to draw out information about the work that was 

performed, particularly when there is evidence to suggest that it may have a role to play in 

something that has gone wrong.

Emotive statements like doubt, blame and questioning are sometimes indicators that the 

developers have entered a “turbulent area” (Amalberti, 2001, p. 119).  Within exchanges 

that are not stable, such statements are recognisable because they are often partially 

articulated and do not indicate directed reasoning.  An example of a severe incident with 

evidence of blame can be read in Appendix C.3.3. Severe incidents begin like other error 

handling processes.  Marcus and Joe use established tactics and mechanisms, for example 

by gathering information, or verifying that they are looking at the right page in the web 

browser. They also manipulate the environment, doing things like flushing caches, 

stopping and starting a web server or reloading web pages.  However in severe handling 

instances, these techniques do not work.  

The severity of issues is linked not to the amount of time an issue takes or the number 

of tries, but to how “in control” the developers perceive themselves to be.  In the most 

severe incident in the catalogue, Marcus and Joe encountered an incident two thirds of the 

way through a filmed episode. The issue took over the remainder of the episode, and was 

not resolved in the whole of the next film, captured on the same day. In total, some 50 

minutes of filmed time were spent in problem solving to identify what was wrong.  

In this incident, problem solving efforts progressed from very simple examination of 

files, to discussion about design commitments, and consideration of prior work that used 

similar principles. At one point, the developers were so flummoxed by the error, and by 
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incremental unexpected outcomes produced during local problem solving, that they 

resorted to adding a println() statements to code that would appear in output.  Their level of 

stress and doubt were high, one of them remarking that such tactics were needed to allow 

them to “prove” that the basic “laws of programming” were intact.

In fact, the very first guess that the developers made about the source of the error 

brushed up against what went wrong: the framework has a dependency on a jar file that is 

placed at runtime into the filesystem. The developers were aware of this, and checked to 

see that it was in place. They failed to notice, however, that they checked for the existence 

of the file in the wrong place.

6.3.6 Rules-of-Thumb

Some error handling incidents, like those reported in Section 6.3.1 are handled almost 

instantaneously.  Evidence suggests that tasks were simple and the error truly was just a 

slip of the hand, or a momentary misapplication of attention.  However, in other cases, the 

evidence suggests that the task is not so simple and that the error requires procedural 

knowledge.  There are examples in the catalogue of incidents handled in this way that draw 

upon well-formed prior knowledge. In some cases, the prior knowledge may match the 

current situation so closely, it can be applied as a “recipe” or rule (Rasmussen, 1985): 

Marcus: So we have a problem there...that I've noticed happens sometimes. If you 

actually stop it, now go back to Eclipse and stop it. And then start it again... (Ep. 1, 

00:08:18) 

Recovery using the rule is straightforward. Marcus has seen the issue and is able to provide 

Joe with a mechanism for recovery. The solution is clear, but the circumstances surround-

ing the issue’s earlier occurrence are unknown: Marcus does not indicate how difficult it 

was to solve, what was tried or how long it took.  
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To understand how such knowledge forms, it is necessary to compare data from 

different incidents.  The catalogue includes instances of the same error occurring in three 

different films that were made on different days.  The full exchanges for each of the three 

instances and the prior example can be read in Appendix C.3.4.  In each case, Marcus and 

Joe do not extend an exception class when it is created to satisfy conditions in a test. Here 

is what handling looks like the first time the error is signaled by a red bar: 

Joe:...why is that complaining? Oh that's because we haven't got the constructors. 

Marcus: That's right.

Joe: Oh, no, that's not, it says it’s not a subtype of Exception. Oh [The class giving 

the error is opened]-- 

Marcus: --‘Cause it doesn't extend RuntimeException (Ep. 7, 00:02:57) 

Detection in this case is delayed, spurred some time later when Joe tries to throw the 

exception. This kind of error could be interpreted as latent and analyzed deductively to 

determine the cognitive failure that led to its introduction in the code (Ko & Myers, 2005). 

However, it is also possible to follow problem solving forward. Joe makes a guess about 

the source of the problem, signaling a shift from detection to identification and the pair 

undertake a brief cycle of local problem solving (Reason, 1990) to identify what is wrong. 

The value of prospective analysis is made clearer by examining the subsequent occur-

rences. The second time a detection is made, the issue is familiar. Circumstances are 

slightly different; this time Marcus is adding a constructor to the exception class when a 

red bar appears. Joe is able to swiftly identify the source of the problem, and he takes 

responsibility for the error. He indicates that it might have been avoided: 

Joe: Oh, that's 'cause it doesn't extend runtime. I was lazy and I didn't (inaudible). 

Marcus: But do you know what? Actually, ...I think now is the right time to actually 

put that in there. (Ep. 11, 00:16:53) 
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Joe explains that the error was one of omission and that the class had not been created with 

strategic oversight (Reason, 1990). However, Marcus counters that the omission is 

acceptable, because it upholds a preferred practice. This instance represents an example of 

the development of know-how or the formation of a rule-of-thumb. Rules in this sense are 

cultural (Rasmussen, 1985), a point that is emphasized in these exchanges. The pair may 

be following principles of test-driven development and object-oriented programming, but 

reserve the right to determine how classes are managed in relation to one another, even if 

this results in an error that reoccurs. 

Joe’s handling the third time enforces the practice and demonstrates the prior knowl-

edge he has gained. There is no additional dialogue about how the error should be handled. 

It is still unexpected, but familiar, and handling has become routine. It is an error that can 

be caught more or less in the act and one that can be quickly recovered from using a rule. 

Joe: Ahh [a red bar appears in the IDE]. So we didn't include the, when we created 

it we haven't made it extend exception. So now to make it... runtime exception. And 

we need a constructor with a message... (Ep. 18, 00:15:26) 

Taken together, the occurrences reveal three things. First, they demonstrate that responses 

to error are modified over time. They also demonstrate how preferred practices are 

formed. Rasmussen described this as the formation of a rule or rule-of-thumb. He indicated 

that these rules are cultural (Rasmussen, 1985), a point that is emphasised here. Finally, 

these occurrences also demonstrate that error occurrences are not always avoided 

(Brodbeck,  et  al.,  1993). The fact that the incidents repeat and are so similar suggest that 

the developers see little of value in this kind of error; it provides them no impetus to 

change behaviour to prevent subsequent occurrence. Instead, they place greater value in 

consistently following the practice they have adopted.
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6.4 Discussion

This section builds upon the rubric given at the start of Section 6.3.  It gives a fuller 

characterisation of error handling in software development at the desk, drawing evidence 

from the points discussed in the findings, and from other instances in the broader 

catalogue.  For reference, it may be helpful to consult Appendix C.3, which gives full 

exchanges for incidents.  

Error handling begins with detection, with knowing that something is wrong.  Errors are 

detected in terms of perceived discrepancies between intentions (What I mean to do), 

expectations (What I expect will happen) and outcomes (What actually happened) 

(Reason, 1990).  Marcus and Joe use and rely upon system responses to organise practice 

and detection is thus usually based on an assessment of outcomes (Sellen, 1994).  There is 

evidence in the catalogue of self-detection within acts, and of errors that are detected by 

the other member of the pair or by a Watcher.

Marcus and Joe invariably indicate that they recognise that something has gone wrong, 

responding to system responses with verbal comments.  Sometimes the significance of an 

outcome may relate to visual or communicative elements in the interface that are signifi-

cant to the developers, but which might not be evident to an observer.  Corroboration given 

by the developers indicates that development activity has shifted from problem solving 

undertaken to do something, to looking over what was done previously (Allwood, 1984). 

In terms of error handling, corroboration indicates that developers are aware that a problem 

exists and that the handling process has shifted from detection to identification.

Once they realise an error has occurred, Marcus and Joe must identify what was done 

wrong, determine what should have been done, and take steps to remove the effects of the 

error.  As the examples show, error handling is often simple and compressed.  However, 

sometimes recovery requires several rounds of local problem solving (Reason, 1990). 
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Guided by system responses (Lewis &Norman, 1986), information gathering (Eisenstadt, 

1997) is interspersed by manipulations of the environment. The process is action-based 

(Norman, 1981), the developers set local, immediate goals, and identify actions that can be 

undertaken, observed and assessed (Reason, 1990; see also Chapter 2, Section 2.2.4 for a 

summary of Reason’s GEM framework).  Evidence is given that Marcus and Joe search for 

commonalities between prior experience and the current situation (Rasmussen, 1985),  but 

also that they express uncertainty about how to proceed and communicate that they do not 

understand what is wrong.  An example demonstrating local problem solving can be read 

in Appendix C.3.5.  

Within software engineering, a similar process has been described as being “bottom 

up”. In the stories Eisenstadt gathered, the developers may have had a rough idea of what 

they were looking for, but they were not systematically testing hypotheses.  Instead, they 

were gathering data (1993).  More recently, this has been described as information 

seeking (Ko et al., 2007) or scent-following during bug-fixing, with sources of information 

reported as being source code, run-time information, and the internet, among others 

(Lawrance et al., 2013).  These authors, unlike Eisenstadt, differentiated the process of 

finding what was wrong from identifying what should have been done, a process they 

describe as fix-the-fault and which they note took longer than any other bug fixing 

activity.

Error handling is often required when conditions and situations are novel (Norman & 

Shallice, 1986), when something comes up that has not been seen or done before. This is 

true even in the context of error-directed practice.  Handling is guided by the techniques 

Marcus and Joe use to develop their frame of reference toward the problem (Rizzo, 

Ferrante,  &  Bagnara,  1995). Information is gathered by looking at files, by examining 

system responses, and by reflecting on prior work. Using these sources, the developers 
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confirm understanding of how related components work, identify areas of code to alter and 

generate ideas for possible sources of problems.

Information gathering is interspersed by manipulations of the environment. The pair 

change algorithms, class declarations, tinker with syntax, stop and start tools, alter 

configurations, flush caches. These mechanisms generate changes in the environment that 

must in turn be assessed for their effects. Handling is punctuated by things that do not 

work: making changes to code that do not remove the problem, looking in a file for an 

error and not finding it, stopping and starting a server to no effect.

Mechanisms that may fix the problem are proposed by developers at different points in 

the handling process. Sometimes the correct mechanism is suggested in response to the 

detection, but may not immediately be employed. At other times, the same fix is proposed 

more than once, punctuating other investigative activities that turn out not to work.  

Though the successful removal of a system response is often noted, the fix itself often is 

not remarked upon at recovery.

The process is also modulated by emotion. Marcus and Joe ask questions, express 

doubt, they are suspicious and lay blame, they take guesses and make declarations. 

However, the pair are rarely critical of each other. It is much more common for them to be 

critical of the environment in which they are working, or to use blame to elicit information 

about changes made to the environment by tools or by the other member of the pair.

Error handling can be prolonged. A single sequence of activity may represent the entire 

process, however some occurrences thread through the completion of other tasks. These 

issues invariably relate to “higher-order” concerns such as how to define conceptual 

boundaries for classes or how an object in a model should be expressed using features of a 

language. Incremental progress is made through verbal consensus that satisfies the 
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developers and permits the issue to be set aside. In all cases, a subsequent instance occurs 

in which changes are made to the software. 

Recovery is not always permanent or complete. Evidence of compromise in solution 

selection is given, of deferring solutions by addressing symptoms, and of backing out 

significant changes. In the case of particularly severe issues, problem solving may be 

aborted. In these cases, the interruption to development is significant; the handling process 

may take longer.  Filming on the day may cease, with the developers providing a short 

explanation in the following episode about what was found to be wrong and how it was 

fixed.  

The aim of error handling is to return the software to a running state so that work can 

progress.  Marcus and Joe do not always indicate that they understand what was wrong or 

why a particular mechanism yields a recovery.  Gaps in understanding are also revealed in 

instances in which a recovery mechanism is drawn from prior experience.  This was 

demonstrated in the findings by juxtaposing how prior experience for one developer 

accompanies a novel experience for the other. Joe did not need to understand why the 

mechanisms given to him by Marcus fixed the problem; he only needed to employ them. 

Prior experience is useful if can be used to direct similar processes that occur later. 

The suggestion is given that gaps in understanding are acceptable and that fragments of 

knowledge are sufficient. Beyond acknowledging that something is “strange” or “weird”, 

the developers do not always exhibit curiosity to learn more.  In most cases error handling 

is successful.  The pair are able to continue working, suggesting that an identification has 

been made, and a change can be made in the code, in a configuration, or within a tool that 

will remove effects.
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6.4.1 Limitations

This study depended upon secondary sources that were gleaned for data. As with other 

studies that leverage paired work to gather naturalistic data (Bowdridge & Griswold, 

1997), it was not always possible to establish motivation and meaning for the actions 

depicted in the films. Explanations and justifications for activity were provided when the 

interaction between the developers demanded it, not in order to meet research protocol 

requirements.

The limitations observed in the videos used in Chapter 5 were augmented in this study 

by elements of the production. The camera depicts a screencast of the machine on which 

the developers are working. As a result, it was difficult at times to discern who is driving 

or how work performed in different episodes relates. There were gaps between tapings, 

during which conversation and programming occur that are only obliquely referred to on 

film. 

Intermittent, various technical difficulties made comprehensive analysis difficult 

beyond episode 20 (for a fuller description of the corpus and processing, see appendices 

C.2 and C.4). Sampling of the later episodes suggests that the quality of the discussion 

changes, with fewer brief incidents and distractions from third party software and 

hardware. Changes in quality of discussion might have a bearing on how errors would be 

characterised in analysis.

6.5 Conclusion

This chapter reported a qualitative study undertaken to examine how developers deal with 

error in day-to-day work.  It examined the activities of two developers performing tasks 

over the course of a month on an open-source programming project.  

Error handling suffuses development practice.  It is required for all kinds of activities at 

the desk.   Errors occur when developers specify behaviours in tests, while they implement 
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classes, in periods when they first implement functionality and when they refactor. They 

occur in relation to software that is being used and written.  The aim of error handling at 

the desk is to move forward in development, and is predominantly cued and directed by 

system responses (Lewis & Norman, 1986). 

Though in some cases developers indicate awareness of what they are trying to achieve 

for a project, what comes through most strongly during error handling are efforts to 

understand minute, material details of the environment in which they are working.  

When the developers in this study encounter an unexpected system response, they behave 

in ways that are consistent with other findings of problem solving at the desk (Kristof-

fersen, 2006).  They solve their problem by assessing what is before them. They try to 

understand what they are seeing at this point, and only gradually, as necessary, expand 

their investigations to higher-order concerns about features of programming languages, 

architectural concerns or design.  

Instances were identified and interpreted in relation to stages of detection, identification 

and recovery.  Data in the catalog reflect the broad characteristics of error handling as 

conceived in research from psychology and illuminate how developers consider and 

manage local and global aims during problem solving.  Error handling is influenced by 

prior experience, and modulators that include guessing, doubt and blame.  The severity of 

issues, as in Chapter 5, is revealed by evidence of turbulence: problem solving that 

includes many of the same factors as normal handling but which gets out of hand.  Rules of 

practice develop between developers over time.  However, even in collaborative work, 

errors are experienced individually.
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7. After the Fact

When errors come up at the desk, developers must assess what is before them to ascertain 

what is wrong and how to remove the effects of what they are seeing.  Very often, the 

errors that are encountered relate to the behaviour of tools and software that is being used, 

though they may also relate to lingering conceptual errors.  Errors arise in the context of 

actions taken to implement behaviour using features of programming languages and those 

taken within libraries and frameworks that are being used.  While global project aims 

figure into handling, error detection and recovery are more often concerned with managing 

immediate, material conditions that arise in the working environment.

  Software development is managed through process but is continuous, “embedded in 

everyday work practice” (Dittrich, 2009, p. 394). The experience of individual developers 

is likewise continuous. Software takes time to write, developers often work on multiple 

projects serially and concurrently.  They bring to each day understanding (Winograd & 

Flores, 1987) formed out of prior experiences that can stretch back in time for many years. 

A developer’s state of mind at any moment is inherently ephemeral (Eisenstadt, 1997), 

and the errors they encounter are likewise experienced, they are active and fleeting 

(Reason, 1990). They leave few material traces (Scott, 1990) within code, descriptions or 

project records. The meaning associated with them is personal, shaped by passing time and 

the social and organisational boundaries that form the space in which workers perform 

(Rasmussen, Pejtersen & Schmidt, 1990). 

The following pages of this chapter report a study that examines how developers 

recount problems in recent work. The aim is to explore individual experiences with error 

handling within the broader timeframes and situations that characterise software develop-

ment in professional contexts.  The chapter begins with a brief review of related work. The 
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scene is set for two sites at which interviews were collected.  An analysis is given of six 

accounts, followed by a discussion of the nature of errors in organisational work.

7.1 Related Work

Software engineering research generally reports the experience of developing code 

sparingly.  A small number of sources provide descriptions of what it is like to write code. 

Though written for different purposes, these sources include reflection about strategies, 

successes and failures. Turkle’s The Second Self includes profiles of hackers and of 

maintainers of early personal computers, who are “intensely” involved with computers 

(Turkle, 2005).   Oral accounts have been taken to provide a glimpse into professional life 

(Lammers, 1986).  Other first-hand accounts describe the experience of language develop-

ment (Krasner, 1983) or of developing a piece of software over time (Knuth, 1989).

There is growing awareness within software engineering of the power of rich accounts 

to illuminate aspects of practice (Sim  &  Alspaugh,  2011). They have been used, for 

example, to gather stories about “hairiest” bug fixes (Eisenstadt, 1993, 1997) and to learn 

how developers  “really”  use  documentation  (Lutters  & Seaman,  2007).   Accounts are 

useful because they are “phenomenological” (Eisenstadt, 1993, 1997), they can be used to 

develop understanding of how developers think, and what they experience.  

Reflecting on the experience of writing the first version of TeX, Knuth described how 

he encountered “loose ends” in the design, an outcome that ran counter to his understand-

ing heading into the process. Though he had imagined that the specification was “quite 

complete”, the process of writing the code involved twists and turns, requiring that “policy 

decisions” be made (Knuth, 1989, pp. 612-613).  He concluded from this that designers of 

“new systems” must participate in implementation.  

Following Knuth, Eisenstadt collected anecdotal accounts via email of professional 

developers’ “thorniest” experiences with bugs (1993, 1997). After performing an inductive 
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analysis of the anecdotes, he pursued a more detailed analysis to examine why the problem 

was perceived to be difficult, how the error was found, and what the developer perceived 

the root cause to be.  Eisenstadt found that most bugs were found either through “bottom 

up” data gathering, or by “thinking about” the code. Other categories included those that 

were found with the help of fresh eyes or through controlled experiments. 

Accounts of debugging practice have also been gathered using interviewing techniques.  

One notable study that collected accounts from developers was conducted at Bell Labs to 

produce a training course to promote expert debugging skill (Freeman, Riedl, Weitzenfeld, 

Klein, & Musa, 1991; Riedl, Weitzenfeld, Freeman, Klein, & Musa, 1991; Weitzenfeld, 

Riedl,  Freeman,  Klein,  &  Musa,  1991). Like the report given in this chapter, data were 

drawn from critical decision method interviews.  Interviews were taken with experts who 

were selected after consultation with managers.  Findings were corroborated and enlarged 

through a focus group and surveys distributed to developers throughout the company.

The study found that expert debuggers think before taking action, wait longer to employ 

debugging tools, and seek information about what to try next rather than jumping into 

“poorly directed” but hopeful activities. Less experienced developers, by contrast, were 

perceived to thrash around, to follow an ineffective process of going over and over a 

problem. Thrashing, not to be confused with the term used to describe memory manage-

ment on hardware, was described as a negative novice behaviour of no perceived value. 

Novices were reported to fail to recognise when they thrash, and to be unable to break out 

of it. Experts, on the other hand, might thrash, but are able to attend more quickly to 

emotional cues that they are doing it, and to seek help sooner from colleagues with greater 

expertise.  

Experts and novices were found to employ "close reading" to establish what code does, 

but they responded to information in different ways. Novices were less critical of what 
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they read, while experts treated the comments as evidence of the number of hands present 

in a piece of software, and to signal the conditions under which developers were working 

when code was written. Experts read code as a last resort, preferring instead to seek help 

first from other developers with detailed knowledge of the software.

The study collected detailed information about technical aspects of bug fixing, however 

the aims of the study were to develop a training course. Because of this, feedback given by 

participants led the analysts to focus their efforts on explicating the social aspects of 

debugging. Likewise, the researchers did not examine expertise in the context of other 

kinds of development activity. Findings were reported based on the views of a small 

number of developers from a single organisation. Data were collected primarily from 

experts, which may have affected findings related to differences between novice and expert 

behaviour.

7.2 Setting the Scene

This section sets the scene for the analyses given in the findings.  It presents an overview 

of how work is organised at the two sites that were visited.  In this section, quotes  from 

informants are given anonymously.

This section does not include a full account of the methods that were used for collection 

and analysis.  For this information, see Chapter 4, Section 4.3 and Section 4.4.  It may also 

be helpful to consult Appendices A and D.

7.2.1 Digital Humanities (Site B)

The developers at Site B work in an established digital humanities centre at a university in 

the United Kingdom.  Digital humanities departments use new media and technology to 

support humanities-based research, teaching, and to promote “intellectual engagement and 

experimentation” (Zorich, 2008, p. 4). 
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Seven people were interviewed: six men, and one woman.  Each developer was asked to 

recount an incident from recent work, in audio-recorded sessions that lasted from between 

forty-five and seventy-five minutes.  Interviews were conducted at the desk; five of the  

people interviewed were located in a large, open plan office.  For an example of one of the 

offices, see Figure 7.1. Desks were clustered together and informants were within hearing 

and sight of one another. Not everyone in the office was interviewed; all of the people 

located in the office were aware that interviews were being conducted. The sixth developer 

was located in a different open plan office, and the final interview was held in the infor-

mant’s private office.

Developers old and new to the organisation were interviewed, with one having less than 

a year at the organisation, and one more than ten years (see also Table 7.1, below). Two 

informants had computing degrees, one had a computing postgraduate degree, one had a 

computing applications postgraduate degree, and one had a postgraduate computing 

diploma. Three had industry computing experience in the web media, financial, education 

and GIS sectors. Two had post-graduate or research degrees in the social sciences and 

humanities.

There were also humanities computing specialists, with one informant having at least 

two twenty years of experience in digital humanities work, and a second having a decade 

and a half. These informants had worked in multiple organisations on digital humanities 

projects. For the other informants, the current position was their first in a digital humani-

ties centre. 

The choice to conduct these interviews in situ was deliberate. It was felt that conducting 

them in the developer’s own environment would allow for better access to physical and 

digital artefacts mentioned in conversation. Given the topical focus, it was also hoped that 

holding discussions in the open would signal to informants that the purpose was not to 
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establish or assign blame. Informants gave no indication that the choice of venue made 

them uncomfortable, though in several cases individuals displayed discretion in referring 

to colleagues who were located in the same office, either by lowering their voices or by 

referring to them simply as “my colleague”.

Table 7.1: Informant Demographics, Site B.  Detailed accounts are given in Section 7.3 for 
Joachim, Evan and Valentin, the informants highlighted in grey.  The accounts from the 
other three informants were used to characterise how work is organised at the site.

Information on computer screens, paper diagrams and a poster on the wall were used to 

initiate discussion in three cases. In addition, informants shared source code with the 

interviewer, explained the output of stack traces and demonstrated debugging tools, 

prototypes and software under development. Several developers appeared to remember 

with their fingers, verbally recounting details while at the same time accessing files and 

Site

Digital Humanities

(Site B)

Name

Joachim

Evan

Valentin

James

Marisa

Richard

Gender and Age

Male, thirties, 5.5 

years

Male, thirties, <1 

year

Male, thirties, 3 

years

Male, sixties, +10 

years

Female, twenties, 

2.5 years

Male, Forties, 1.5 

years

Experience

Computing, Edu-
cational Software, 
10yrs. 

Computing post-
graduate, GIS, 
5yrs. 

Computing post-
graduate, Web 
Media, Financial 
Industries, 11 yrs. 

Humanities Com-
puting, 20 yrs. +

Humanities + 
Postgraduate com-
puting diploma, 
3.5yrs. 

Humanities Com-
puting, 15 years
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websites and conducting internet searches similar to those they had used while solving 

problems.

Figure 7.1: An open plan office in the Digital Humanities Department (Site B).

7.2.1.1 How Developers Work

Developers in this centre tend to work alone, even when assigned to tasks for the same 

project. A single person may be assigned to work on all deliverables, or different people 

may be assigned to different areas of the software. It is common for developers to perform 

tasks periodically for the same project over time. Developers know the others who are 

working on their projects, and report that they attend meetings at which other developers 

are present, however each works in reference to the overarching project team which is led 

by domain specialists. 

Informants identified particular technical expertise such as in application or interface 

development or in data modelling. Despite this, several recounted the need to learn new 

skills to meet requirements for projects that emerged after the project had begun. For 

example, one application programmer described learning and implementing client-side 
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technologies, while another developer who was proficient in XML data modelling 

described a need to learn relational data modelling.

Developers also take the initiative for prioritising and organising their work. This can 

involve adopting new working practices, as in the case of one who described introducing a 

new working style on his project as “agile-like,” with rapid iterations and frequent 

meetings with project partners. Another explained that his responsibilities at the organisa-

tion are growing, and how he extended a recent task he had been given on his own 

initiative, more or less as “the accepted order of things”. 

Though developers work independently, there is the sense given that they possess 

historical and cultural knowledge.  References were made to technologies used on projects 

in the past by different developers., and ad-hoc technical teams are formed to solve 

particular problems.  One informant described “finding” his way on a project with the help 

of an “amazing” colleague who offered technical advice and guidance about how to 

manage relationships with partners. Another  felt the luck he had in finding a solution was 

due to the technical expertise of a colleague who had not been formally assigned to the 

project. A third described looking to a trusted colleague for help before relying on internet 

fora and other technical documentation.

7.2.1.2 Projects

Projects at the centre take a similar form: tools are created for use by humanities scholars  

who need to manage and create data related to physical, often historical materials. These 

data are in turn presented to the public using other pieces of software that are also 

developed by the centre. Public facing outputs take the form of web editions of texts and 

web reference tools. In some cases, monographs are also published.

Developers assigned to project teams produce software for both of these user groups.  

Scholars that are performing research within projects are prepared to work with tools that 
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require complicated installation procedures or which have a less than finished feel. Their 

priority is to have a piece of software finished enough so that they can advance their 

research. By contrast, readers of public-facing web editions and reference tools, them-

selves also typically domain specialists, have an expectation that the tools they use will be 

finished to a very high standard.

Developing research tools for the public, and doing so in new and innovative ways, is a 

central priority for the centre, but the requirements for these tools emerge slowly, some-

times over a period of years as the specialists work with original materials and interpret 

their meaning and significance.

Joachim, Valentin and Evan (detailed accounts for whom are given in the Section 7.3 

Findings, below)described incidents related to work performed for two projects. Valentin 

described a project for which he was the sole application developer, tasked with creating 

both an editorial tool and a web edition for displaying a critical edition of texts (sum-

marised under Legal Texts in table 7.2). Joachim, and Evan described performing different 

tasks for a single project to support detailed annotation and display of medieval handwrit-

ing (summarised under Medieval Handwriting in Table 7.2 below).

Table 7.2: Projects, Site B.

The data produced and managed to support humanities research are different from 

commercial data: they are less structured, orientated around natural language and approxi-

mate. One developer characterised them in this way:

Person

Valentin

Joachim, 

Evan

Project

Legal Texts

Medieval Handwriting

Description

Research Project, Editorial 

tool, and web-based critical 

edition of Legal Texts

Research Project, Editorial 

tools, Web-based annota-

tion tool. 
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“So a good example are dates. If you say the date of this manuscript is around 

1113 well it could be this date or it could be that date. Or even worse somebody is 

saying it is that date, somebody is saying it is that date, somebody is saying it is 

that date. In the commercial world it is just a single precise date to the millisecond. 

Here you want many dates by different people and you want all the opinions shown 

on your website and preserved. So the interpretation is very important.”

Every informant at Site B reported a working pattern of “fits and starts”, the need to pick 

up a task and set it down as required to meet the demands of multiple projects. The issues 

described by informants included relevant details that were at times temporally distant 

from one another. Projects have relatively long time frames, some lasting three or more 

years.  This means that developers have more freedom to take time with issues, but they 

are not free from time-based constraints. One developer indicated that he felt pressures on 

his time, the need to “get something working” for this project, while still meeting the 

demands of other projects. 

7.2.2 Course Planning (Site D)

Developers at Site D are employed in the information and communication technology 

(ICT) department at a public university in the United Kingdom. The department is 

developing a new set of web-based software tools for student administration and curricu-

lum management. The team develops a subset of the services related to course manage-

ment. At the time the interviews were taken, the department had recently re-organised, 

adopting Agile development practices centred around Scrum. The products under develop-

ment were not yet in production, though some were nearing completion. In the month 

during which interviews were taken, a test release of a small component was made to the 

wider university.

Access was granted by an internal manager responsible for multiple development teams. 

This manager circulated an email to developers that introduced the study and invited 



Error Detection and Recovery (Lopez)

-165-

participation. The email communicated that developers who took part would be allowed to 

“cost” an hour of working time to the interview. Four application programmers responded 

to the invitation and were interviewed in sessions that lasted between forty-eight and fifty-

eight minutes. All of the developers belong to a single team within the department. 

As in the visit to Site B, all informants were asked to recount a story about a recent 

problem. Each informants met at their desk, but interviews were conducted in other places. 

Three interviews were conducted in public areas within the university. One was conducted 

in a small meeting room adjacent to the desks.

Each developer created a diagram in the course of discussion, one voluntarily and two 

upon request. These diagrams depicted aspects of screens and component models. A rough 

timeline was drafted during the interview that captured points related to time and decision 

making. Both kinds of artefacts guided conversation; the developers used the diagrams to 

explain how screens looked and behaved, and to relate aspects of how underlying features 

of software architecture related to the behaviour of information on screens. They also used 

the diagrams to explain how elements of the software related to one another.

Upon completion of the interviews, access was negotiated with the team leader to 

observe the developers in practice. Aims for the observation were to gain a sense for 

circumstances that led developers to come together. Clear decision points and sequences 

were not as easy to identify through questioning at this site; informants made extensive use 

of the term “we” to describe actions taken or decisions that were made. 

In addition, though each developer was asked to recount a piece of personal work they 

had found challenging, two developers interviewed a week apart elected to discuss what 

appeared to be the same issue. Both indicated that they had solved the issue, both indicated 

that they had used similar resources to support the resolution. The second person inter-

viewed explained that some of the work had been performed with another team member, 
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and that he had taken responsibility for the issue when the colleague left for holiday.   

Observation was made to clarify how team members share responsibility.

Table 7.3: Informant demographics, Site D.  Detailed accounts for Robert, Dereck and 
Thomas are given in Section 7.3 below.

As shown in Table 7.3, developers have a range of professional experience. Dereck has 

around six years of experience at work after having taken a degree in information systems 

analysis. He reported having worked for two small companies prior to joining the depart-

ment. Robert has a degree in computer science, and has been working professionally for 

twelve years. For five of those years, he has worked as an independent consultant. He is a 

certified scrum master, and one of his responsibilities on the team is to help increase 

knowledge within the team, to “make sure that things are kept moving or progressed a bit 

quicker than they have been”. Thomas reported having worked professionally for twenty 

years at “software houses” and in other companies. All three have worked on the current 

team and within the university for less than a year.

7.2.2.1 How the Team Works

The developers sit together in a compact space; the floor on which they work is filled with 

several similar “pods” of desks. This team uses a storyboard to track tasks for individual 

Site

Course Planning

(Site D)

Name

Robert

Dereck

Thomas

Gender, Age
Time (in team)

Male, thirties, 3 

months

Male, thirties, 6 

months

Male, forties, 10 

months

Experience

Computer Science/
Software Engi-
neering, E-com-
merce, Airline 12 
yrs. 

Computing & Ac-
counting, Media 
6yrs. 

Degree Unknown, 
Commercial devel-
opment 20yrs. 
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sprints, and also a physical board to manage bug fixing tasks, two techniques that have 

been introduced by a member of the team who is also a scrum master. 

The “bug board” has magnets with photos of developers’ faces. The faces are queued on 

the board, and the first person in the queue is the next to take on a new bug. This physical 

system was developed in part to work around the task management software in use by the 

organisation. One informant explained that the system groups tasks of different kinds 

together and it is not always easy to differentiate tasks related to maintenance or feature 

requests from bug reports. In addition, application developers have not been granted access 

to all parts of the system that contain information about bugs.

The team was recently formed and members give the impression that they are still 

getting to know one another and the department.  References to past development deci-

sions are criticised, but there are indications given that knowledge of what actually 

happened is vague.  Observation was made of the team members informally discussing 

preferred practices for committing software to the version control system. Commits must 

happen frequently; the conversation indicated that the team members were not yet familiar 

with each other’s preferred habits. 

The sense was also given that the team are still forming their practices; one informant 

described that the team had recently set a plan to use the whiteboard for discussion, but 

that the idea had not been regularly taken up.

“(T) he idea was in the sprint plan we'd come up with the tasks and then when we 

got back to the desks as you'd picked a task up then we'd head round the white-

board but at the moment that hasn't happened”.

Another reported having used a standard practice to send an email to the team to give 

background to the problem he described. However, when he reviewed his records, he 

realised that he had not actually followed the practice in this case. When asked for detail 

on this point, he noted that he tended to be brought into issues that required problem 
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solving, and that his personal practice was to share what he had learned verbally, through 

email, or within a documentation tool like a wiki

The team is newly formed, but is situated within a mature department. This is perceived 

to impact how decisions are made and policies are set. One informant described data 

modelling practices that differed from those he had been taught, but which reflected how 

things had been done in the past in the department using older generation technologies. 

This is the largest, most mature company one informant has ever worked in and he has 

noticed differences in how decisions are made that he links to the stability of the 

workforce:

“… it takes a very long time for a decision to get made… [Given the nature of] this 

company people just don't leave…I mean it is brilliant because it means in terms of 

industrial knowledge it is great, you know the people there they know things, not 

because they've read things, or because they've been taught things, but because 

they were there when it happened. So background knowledge in this place is 

brilliant… there will be somebody within these walls that will tell you everything 

that's happened in the last twenty years.”

7.2.2.2 Sprints and Tasks

The course planning team is organised using principles of scrum. Work is conducted in 

two-week sprints, during which a set of tasks to be addressed are agreed to and undertaken. 

The sprint begins with a task setting meeting and finishes with a review meeting, during 

which information is shared about particular problems that came up. This meeting is also 

used to reflect on work practice.

Incidents were described in terms of tasks that had been set for work sprints, sum-

marised in Table 7.4. The relation of the tasks to one another was not made clear in the 

interviews, nor was any clear sense given of projects to which the tasks belonged. That is, 
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the incidents may have occurred during the same sprint or in different sprints; they may all 

have been undertaken as a part of a single or multiple projects. 

Two of the tasks involved developing web-based user interfaces: Robert described a 

task to perform validations on a web form; Thomas described building screens to render 

form elements in specific ways depending on user actions. Dereck described a task related 

to web services maintained by the team that provide data to other teams in the department.

Table 7.4: Tasks, Site D.

Working time is costly and is closely monitored. Agile practices are relatively new in the 

department, but developers have adapted their thinking about time in terms of scrum 

practice, referring to past events in terms of the number of “sprints ago” rather than in 

weeks. Tasks cannot be undertaken unless they have been defined as belonging to the 

sprint. This can affect decision making during development by constraining the options 

available 

“[N]ot for that sprint, because we'd only really tasked a story and estimated doing 

that one, and we were told not to do this one, could not do that”. 

Tasks

Client-side validation

Rendering Forms

From Maintenance to Live 

Data

Description

Triggering client-side vali-

dation in dynamically 

loaded pages. 

Rendering form elements 

based on actions taken in 

different screens. 

Altering reference to a data-

base so that it draws on live 

rather than testing data.

Person

Robert

Thomas

Dereck
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Nevertheless, the team knows how to manipulate time within sprints in order to fit in work 

that will further development rather than product aims, a point that is exemplified in the 

consequences of Dereck’s slip, reported in Section 7.3.6 below. 

7.2.3 Points in Common

The problems reported at the two sites shared technical commonalities. Both sites were 

working with similar technologies and were building web-based software. At Site B, 

developers were working on Linux systems with open source tools and standards. To 

develop websites, the team used a popular open source web application framework and to 

manage software, an open source versioning repository. At Site D, developers were 

working on Windows systems and performing development using Microsoft’s web 

framework. The department was also using Microsoft task management and release 

management software. Both sites relied on open-source JavaScript libraries to manage 

aspects of client-side behaviour.

7.2.4 Exclusions

Eleven interviews were collected, however, five have been excluded from detailed 

reporting.  One interview from each site was not transcribed. At Site B, the seventh 

interview did not result in the identification of a clear incident, a view that was corroborat-

ed by the informant. This informant also indicated reluctance to be included in reports. At 

Site D, one interview was conducted in a public area with significant background noise. As 

a result, it was not possible to accurately transcribe the audio recording.

Three additional accounts from Site B have been used solely to inform contextual 

understanding reported in Section 7.2.1. Each account suggested the presence of local 

active, error handling processes. However, the detail provided during the interviews was 

not sufficient to permit the “active” parts to be discerned. One informant described a 

sudden, visionary breakthrough in thinking about how to re-architect a piece of software. 
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Unfortunately, the blocks that preceded the breakthrough were not specifically described. 

Another described his problem as “the worst thing ever”. His account emphasised the 

research and design process he followed to meet complicated, ambitious requirements for a 

user interface, but it was not possible to discern just what he had perceived the “worst 

thing” to have been.

7.3 Findings

In this section, accounts are given for six of the developers who were interviewed. To 

indicate that the occurrences belong to the more general category of software development 

experience, the accounts are presented together, without subdivisions marking the site at 

which the corresponding interview was collected. Stories are given in narrative form, and 

are organised chronologically. Subsections are used to draw out particular features of 

accounts relevant to error handling or circumstance.

The views of individual developers are presented using pseudonyms that were intro-

duced in Sections 7.2.1 and 7.2.2 above.

7.3.1 Settling

Joachim described fixing a recently reported bug. His account was collected in the midst of 

ongoing work for a project. He seemed to have difficulty in establishing a sequence of 

linked events. A timeline did emerge, but it was established during analysis.  Joachim 

meets at least once a week with researchers from the project team to discuss issues and 

requirements for new features. The aim is to get the tool working well enough so that 

editors can begin using it to analyse texts. The tool is being developed using an open 

source JavaScript library designed to support mapping applications.

In a recent meeting, Joachim’s editors asked to have keyboard shortcuts mapped to a 

toolbar of functions that are used to annotate images. The way keypress events are handled 

in the mapping library would allow editors to delete annotations with a single click. 
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Joachim was concerned that this would be too error prone for editors. To implement the 

feature, he "looked around" on lists on the internet for an alternative and picked one he saw 

discussed that seemed to be the "best one". He implemented the feature in around an hour.

7.3.1.1 When they told me we had this problem I thought what could it 

be?

A couple of weeks later, a problem with the keyboard shortcuts was mentioned in a 

meeting. The researchers said it only happened in a single browser. Later they sent him an 

email with a list of issues and feature requests:

2) The icon toolbar disappears when using keyboard shortcuts. e. g. Ctrl-W or Ctrl-

R in Chrome. Or Ctrl-C in Firefox.

Joachim began to debug by trying things out in the browser and stepping through the code 

in a browser-based debugger. Replicating the behaviour described in the report was not 

straightforward. The shortcuts given in the report were key combinations that had been 

mapped to icons in the tool bar. When Joachim tried these, “nothing weird” was 

happening. By “accident”, he decided to try shortcuts that had not been mapped to icons in 

the toolbar and he realised that the error occurred when the user typed a key combination 

that did not exist. He could see in the debugger that a variable populated with a method 

call contained a value he did not expect. At a certain point, he realised that it was only 

when an unmapped shortcut was keyed two times that the toolbar disappeared.

The fix took less than an hour. It required making changes to a single function. Key-

board shortcuts were being managed using a switch statement, but Joachim hadn't added a 

default case to manage unmapped key combinations. He also wasn't performing sufficient 

checks on the state of the objects in the toolbar before activating or deactivating 

operations.
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Joachim names the source of the latter problem as one of understanding. He "wasn't 

sure what the right behaviour was" when he was first writing the function. He believed that 

a particular function call in the library would return nothing if the user had not selected a 

tool for use.  This condition was met when an unmapped key combination was entered. In 

this case, however, the library actually returned the parent object, the toolbar, which his 

code deactivated.

7.3.1.2 I'm still not very happy with it

Now Joachim has produced a solution that is meeting requirements. Echoing comments 

made by Bill in Chapter 5, Joachim is not satisfied, explaining that he is “still not very 

happy with it yet,” and that he is not sure how well the solution is working. In the course of 

our conversation, several concerns were mentioned related to his satisfaction with the 

recovery. All of them could be classed as problems of understanding.

He brought to the task a degree of expectation that he would have trouble handling 

keypress events, linked to requirements given by the researchers.  As a user, he has noticed 

that keyboard shortcuts are not common in web applications and the ones that do use them, 

like Google Mail, tend to use single key shortcuts, not combinations of keys. By contrast, 

his researchers have specifically requested that shortcuts be key combinations, so that it 

more closely replicates behaviour they have observed in desktop applications they use. In 

addition, some of the shortcuts that have been requested are the same as shortcuts that have 

been mapped within the browsers. He comments that this overlap can make it "a bit of a 

disaster" to manage behaviour if the application doesn't have focus when the keypress 

event occurs.

Though it didn't figure directly into fixing the bug, Joachim is also suspicious about the 

method within JavaScript he is using to catch keypress events. He mentions several times a 

lack of confidence in the way he did this, wondering "maybe I'm not doing it the right 
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way". He based his selection on an assessment of internet sources, but notes that the 

decision was softly assessed.  His strategy was to determine what "seemed to be the best 

one", by identifying the one that "most people seemed to be using".

Joachim is also cautious in his commitment to the mapping library, describing it as not 

the right way, but “a better way” to manage annotations than those that have been used on 

other projects in the department. The library was selected at the start of his involvement in 

the project, some four months earlier. In that time, he has become familiar with the 

documentation for the library, which he uses regularly. He feels pretty comfortable 

working with it, but notes that this is the first project on which he has used the library to do 

"proper work". On previous projects he had used it only to display images and in those 

cases, the code had been written by someone else and given to him to incorporate.

7.3.1.3 I thought there ought to be a way to reuse this code

Joachim’s story began as an account of a bug fix, but in relating his dissatisfaction with the 

outcomes, it became clear that the handling was one small knot in a larger thread of 

practice.

He is developing a class built around the mapping library to more generally support 

annotation.  The error handling process he described provided feedback to him about 

requirements for annotation in his domain, web-based interaction models, strengths and 

weaknesses in the mapping library, and more general information about the languages used 

to support this "Web 2.0". 

Joachim exchanged correspondence with the researcher after the interview. In the 

following months, he finished the class, and released it to the public under an open source 

license. As it turns out, he continued to use the mapping library, but reported that he found 

a better way to manage keypress events. 
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7.3.2 Tolerating

Valentin described an issue that surfaced as a bug several times over the course of nearly 

two years in tools used by the developer and in different areas of the software being 

developed, as depicted in figure 7.2. The issue was related to the use of Unicode, which 

presented particular complexities in this domain.

He considers himself to be well-versed in using Unicode, however, this is a problem he 

has never encountered before. His prior experience with Unicode related to databases, or 

conversion and rendering of texts written in modern languages. He is aware of how to use 

Unicode to render characters from different alphabets, but has never had to consider 

whether or not a font would be available that could render the necessary characters.

Figure 7.2: Tolerating.  Valentin’s issue became critical in successive manifestations over 
a period of a year and a half. Four factors influenced this: the frequency and spread of 
manifestations, the forms the error took, communication with domain specialists, and a 
decrease in time to project completion.]

7.3.2.1 This prepared me for that

The issue first occurred in the organisation’s documentation wiki early on in the project. A 

project partner was trying to paste text into the wiki and reported that special characters 

were not displaying properly. Valentin spent a couple of days investigating, but was not 

able to resolve the issue.  At this stage, the issue was not critical, and a fix was not 
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required. This occurrence was formative. Within this environment, the text that was added 

was never intended to be more than a sample “to play with, to experiment with”.

As a result of this occurrence Valentin formed the expectation that he would have 

subsequent rendering issues. He now knew that the project had a requirement to display a 

small number of characters from older alphabets that are not readily supported by comput-

ers. The investigation also helped him isolate the source of the error as being related to the 

fonts that are commonly installed on users’ systems. Discussion with a researcher on the 

team alerted him to the fact that a font exists that supports the display of old English 

characters.

7.3.2.2 The decision was very quick, and the implementation was very 

simple

The second time the issue arose, it was more serious. This time, the occurrence was in an 

editing tool that was being created for the project. The tool was intended to allow re-

searchers from the project to enter and edit text that included special characters. The text 

needed to be a “faithful reproduction” of the historical material.

With this manifestation, the public dimension of the issue developed. As Valentin noted, 

for general users on the web it is “not acceptable” to make users go to a different website 

and download a font. This presents a barrier to access that is considered to be too great. For 

editors, by contrast, it is acceptable. This is a smaller user base, with whom Valentin has 

direct contact. He can support them in installing the font.

These factors helped Valentin take a pragmatic decision about how to manage the issue. 

To do this, he set “aside the complexity” of the problem and implemented a quick, 

temporary solution. He instructed the webpages to use the old English font, and provided a 

message directing editors to the page for downloading the font. This tactic allowed him to 
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focus effort on more important requirements for the project, while analysing the problem 

“in the background”.

7.3.2.3 I had to say something

The third occurrence of the issue was unexpected and marked the point at which it became 

critical. As Valentin reports, researchers brought up the issue in the context of the search 

tools that had been created for the site. He was surprised, noting during the interview that 

he “supposed he had forgotten” what happened when users needed to type special 

characters.

This occurrence provided two new pieces of information. First, he realised that the 

problem was more widespread than he had previously thought, as it appeared in a new area 

of software that he had not considered. It also represented a new form. In this case, the 

issue was not only one of rendering special characters, but also in supporting readers of the 

edition who needed to input special characters.

The meeting also clarified how important the issue was to the domain experts. Valentin 

he found himself during the meeting in a situation in which he was asked a question that he 

could not answer. He felt pressure at this point to identify a strategy for addressing the 

issue:

“I had to say something, to tell them that I have a strategy, not necessarily a 

solution, but a strategy.”

7.3.2.4 I wanted to postpone it

The fourth manifestation occurred when Valentin began to develop the site that would 

display the public edition of the texts. As in the second occurrence, Valentin expected it to 

happen, and took the decision to instruct the software to assume that the font was installed. 

As he described it he did this to postpone taking a decision, a tactic he described in two 
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contexts. First, he described it in in relation to its relative importance within the larger 

project:

“I didn’t want to be in the situation where I’m approaching deadline, a phase 

where we have to do a demonstration or release this on the live website and I have 

to find a solution in just a very limited time for a problem I’ve never encountered 

before. So I’d rather prepare the thinking and explore things in different directions 

to be sure that I will be ready for that.”

And next in terms of personal knowledge:

“I wanted to postpone it so I could work on things I know how to develop and this 

lets me think about it in the background so I can still analyse things”

“Analysing things” began with a turn to a colleague with more experience in user interface 

development. She in turn put Valentin in touch with a second colleague who had still more 

experience with fonts. The discussion indicated a possible scripting technology that he 

could use to embed the font in webpages. Valentin had heard of the technology, but had 

not realised it was robust enough to meet the project requirements.

7.3.2.5 It is never as simple as you explain

The project was nearing completion, and Valentin began to seriously investigate options. 

One “very ugly” option he considered had been used on another project. It involved 

splicing images in to spaces between text in order to replace special characters. The 

solution suggested by his colleague seemed more promising, but Valentin kept the earlier 

one in mind as a “last resort”.

He also began to research the newer option, to ensure that it would be compatible with 

all of the browsers and operating systems he needed to support. He did this first by 

performing searches on the internet for information and by “trying things out”. This 

process took several days, and involved him choosing a font, converting it using the 
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suggested technology and then testing it across different browsers and operating systems. 

As he described it, the recovery was one of working through “nested problems”:

“First a problem of Unicode, and special characters, then becomes a problem of 

browser compatibility, using a technology that you haven't used before.”

He was ultimately confident and adopted the solution. Valentin is pleased, describing it as 

“very clean” and “well established”. He describes himself as “lucky” to have had the help 

of his colleagues, who helped him avoid accepting an inferior alternative. He is also keenly 

aware that limits in his knowledge contributed to the issue. As he put it just before our time 

together ended:

“So there is a part of luck and there is also may be related to that the fact that 

there is a lack of knowledge on my part, and this lack of knowledge could have 

been different if I had to keep up with what is going on in terms of new develop-

ment on the client side, the web world. “

7.3.3 Thrashing

Evan described a day in which things went wrong while setting up a local copy of an open 

source web application framework. Though relatively new to the framework and to the 

language in which it is implemented, he did the same task for a different project a couple 

of months before. That time the process had not been smooth. He had not written anything 

down, and his goal now was to cement the process of installing the software. He also 

needed to get the framework installed so that his “real work” for the project could begin.

The task began well. Evan installed a virtual machine running a Linux variant, and 

checked the framework out of Subversion. He ran the install scripts, then set about getting 

the framework to run without any error messages, as shown in steps one through three in 

Figure 7.3.
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Figure 7.3: Thrashing.  The timeline for Evan’s incident was compressed, comprising the 

events of a single day that had taken place the week before. This diagram depicts the initial 

account he gave.

Once the framework was up and running, he opened the administration interface to create 

some test pages. He noticed right away that the administration interface looked “a bit odd” 

because some images were missing. He thought that it might not be a problem, because the 

page was still functioning, and moved forward to create several test pages. After they were 

saved, no error messages were displayed. The page indicated with a “graphic or text” that a 

list should be displayed, however, it was blank. He checked the JavaScript console in his 

browser, and could see errors related to function calls that were failing because the page 

hadn't been able to load libraries. He checked that the files were on the system and 

concluded that “clearly” there was something wrong in a particular configuration file.

It is at this point that the process of “attrition” began. Evan spent a long time looking 

through the file he thought was wrong, starting and stopping the server, running processes 

on the database, checking to see that everything was “up to date” and Googling for advice. 

Eventually he “tracked down” that he was looking in the wrong configuration file altogeth-

er. The problem was actually in a second configuration file; in which he had missed or 

wrongly entered information.
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7.3.3.1 What's going on here, why can't you work this out?

Evan resumed testing the framework, relieved that he could finally “get on” with his work.

“I added some pages and I had a list of pages, that was good and then I added 

another page and that was good and then I added a child page and that was bad 

and it all started to go wrong again.”

Evan quipped in our conversation that at that point he stepped away from the computer and 

had a cup of tea. This time he had more information to use.  The system returned a stack 

trace and to solve this problem, and he used Google to search for the message that was 

being returned. He was frustrated with himself, because he knew he had used the module 

for the previous project. After some time, he found a website that mentioned the problem, 

which “rang a bell”. He remembered that he had had a different problem with the module 

the first time he installed the framework. He also remembered seeing a page on the 

department’s wiki that described issues a colleague had encountered with the module.  

Neither issue was exactly the same, but they were close enough to help him identify the 

module as the source of the problem.  To solve it, he downgraded the module to a previous 

version.

7.3.3.2 Thrashing

Evan shared several practices and preferred ways of working, but he is aware that in this 

case the approaches often failed. He described the process of locating the configuration 

error as unsystematic, flawed and risky, and noted at one point an awareness that “if I 

plugged the dam somewhere it was going to burst somewhere else”. The tactic taken to 

install the latest version of auxiliary software led to the second problem, which left him 

frustrated and confused. 

Though he prefers to ask colleagues for help, on the day of the incident, Evan was 

working at home, tunnelling into a virtual machine hosted on his machine in the office. 

The need to switch between environments on a small laptop screen confused him and he 
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became turned around about what he had done, “what I’d changed and what hadn’t 

changed.”.  In the end it was information from the internet that helped him identify what 

the problem was.

The way Evan describes the day suggests that the issue was not necessarily critical, but 

it was severe. It is likely that he was thrashing, that is, that he got lost during problem 

solving and that the experience was stressful. Evan considers his experience to have been a 

“personal failure”, but also useful. It forced him to take a closer look at the software he 

was using and building. As he put it:

“You know this is quite informative ’cause obviously you would get something and 

it would work out of the box and you don’t really think about [it] again, so even 

though this was an annoyance, it was quite useful to actually have to look into 

those relationships.”

He reflected that his knowledge of the application framework had grown as a result of 

using it on two projects:

“I’m comfortable with creating that environment, I’m comfortable with getting up 

and running and also I’m much more aware of creating something that’s got a bit 

of longevity.”

At the time of the interview, Evan believed that everything was working, “touch wood”. 

His confidence was not high; he expected that more issues would come up when he 

promoted the code to the next environment.

7.3.4 Piecing

Robert described taking over a task for a colleague that had gone on holiday. The task 

involved performing client-side validation on portions of a form that were dynamically 

loaded by the server based on actions taken by the user. The form validation worked in 

when the entire form was loaded into a page at one time. During testing, it became clear 
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that the validation was not working properly when the interaction was more complex and 

parts of the form were loaded at different times.

7.3.4.1 The answers steered me in the right direction

This was a standard issue, and so Robert duly turned to the internet for guidance. He was 

quickly able to determine that the issue involved a JavaScript library that was being called 

into the webpage. He discovered that there were multiple questions that had been posted 

that were related to the issue he was having and “lots of advice” about how others had 

solved similar problems. He took what he found, tried a few things in the code, read “more 

and more” on the internet, and tried to implement a couple of solutions he found posted.

One post suggested that if he unloaded all of the elements on the page from a compo-

nent in a library, and then reloaded all of them, the client-side validation would bind to the 

newly revealed fields in the form. This made sense to Robert, who felt that what he was 

trying to do with the library was not “too far out of the ordinary”. When he tried doing this, 

however, the validation still did not work.

Figure 7.4: Piecing Together.  Robert took responsibility during a sprint for a task when a 

team member left for holiday.  The problem was detected while testing edge cases in user 

behaviour. 
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7.3.4.2 It wasn't something they'd done before; it wasn't an issue they'd 

come across

At an impasse, Robert found a team member who was willing to talk through the problem 

with him, but time constraints meant they did not get very far, so he turned to other team 

members and then to other colleagues in the department. He expected that by speaking 

with people who had more knowledge in the area he might find someone who could look 

at it, “know enough and provide an answer straight away”. At a certain point, he realised 

that he would not find help in-house, so he turned back to the internet.

7.3.4.3 So it is kind of like a double check

The model for validating the form is static. First, the client-side validation is supposed to 

check entries to the form before it is sent to the server. The checks are for “simple stuff”, 

to make sure that mandatory fields have been filled in, and that data is in the correct 

format. On the server, the data from the form will be validated again. First, the same 

checks that were done on the client will be repeated “just in case” and then cross-field 

validations will be performed.

The interaction model that produces the form to be validated is dynamic. Some form 

fields are hidden and only revealed based on actions taken by the user. As more parts of 

the form are loaded, the client-side validation needs to bind to the new fields.

Robert discovered that there was an error in validating the form when it had been 

loaded dynamically. Simple interactions worked as expected: when the entire page was 

edited and saved, the client-side validation triggered properly. However, when the form 

was saved after entering no data, the client-side validation did not occur. Instead, the form 

was sent to the server and the server-side validation fired.
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7.3.4.4 Piecing Together

Robert achieved a fix only once he was able understand the solutions that he found on the 

internet “enough”, a process he describes as “piecing together”, and which is depicted in 

Figure 7.4. He turned back to internet sources, which he studied “quite a lot”, and found 

one highly rated post that explained in detail a method for extending the JavaScript library 

he was trying to use. He found the fact that the poster could extend the library useful, and 

he was able to see some sense in how the extension they described would help the poster 

meet the described goals. 

As in Evan’s case, the details of the information found on the internet did not exactly 

match Robert’s situation.  He did not think he would ever have the same use for the 

extension. It was how the poster had explained what they’d done and the timeliness of the 

information that helped him understand what he needed to do.  This marked the end of the 

“initial hard part”. Then began the hard part: implementing the solution and “really 

working all the way through it and moulding it to what we were doing”.

The heart of the issue for Robert was that it was “new to me”. Recovery depended on 

his ability to find a solution by determining the “right” thing to look for on the internet and 

then learning enough to recognise the right answer when he saw it. As demonstrated in 

Chapter 6, the recovery was not accompanied with full understanding of why it worked.  

Robert was comfortable with this, noting:

“If I was going to go back and approach the issue again, it would be a case of 

trying to make sure that I did understand what was going on in the framework 

upfront, but there is so much to know that you just need to make sure that you 

understand enough to make it work at this point in time.”

7.3.5 Naming

Thomas described a task he took on to implement a series of forms on a website. He has 

worked with web technologies in the past, but is less experienced at user interface 
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development. Because of this, he began the task by arranging a meeting with a more 

experienced colleague. That person explained how they had approached writing and 

organising a set of pages with similar behaviour.  When Thomas came back to the task the 

following week, he met with a different team member who would share some of the work 

and started to explain the task that had to be done.

7.3.5.1 You’ve got to remember where you are

The interaction model Thomas needed to support is complex: users can expand and 

contract different areas of screens, and elect to edit the finer detail of individual elements. 

When a user decides to edit information, they are directed to a new page. After saving 

edits, they are returned to the starting screen. In this case, the layout of the original screen 

must visually indicate their last point of focus by expanding the area of the form that they 

were looking at when they navigated away.

Thomas thinks that some of the challenges of supporting interaction are related to 

changes that “came in” with web development. As he described it, managing interaction in 

desktop applications was comparatively simple. On a single computer, information about 

where a user is in an application and the actions they take is “nice and easy to store”. On 

the web, by contrast, each page is individual and information has to be held within it:

"And then cause there's other pages that go off and how far you have to pass that 

over and how many times, but then also when you come back, what needs to be 

displayed when you come back?”

7.3.5.2 It was making it clear about what the names were being used for

Explaining the task to his co-worker did not go well. The problem was in the naming. 

Thomas knew he had a variable that had been defined in the class structure on the server 

that related to differently named parameters on two web pages. The colleague asked why 

there should be different names in different places. Thomas struggled to answer and began 
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to wonder if he was putting values in the right places in the structure he was describing. 

The only answer he could find to give his co-worker was that it had been done that way 

before. He realised “I haven't quite got this right.”

He explained that moving between screens is not hard to manage technically. The team 

is using a piece of mapping software on the server that can map differently named 

variables to one another.  It takes some setting up, but then it glues components in different 

areas of the stack to one another. The difficulty is in managing the concepts that relate to 

one another on different screens. The interaction path can involve visits to several different 

pages. An ID on one page is used for display, but if the user navigates to edit a portion of 

the page, it becomes a parent ID. The related parameters could be given the same name on 

each page, but this isn't desirable because it doesn't indicate what the parameter is being 

used for on the current page.

The global aim related to naming parameters is to support future developers. It was 

important to make clear by the names what the parameters were being used for and how 

they related to names given on other pages. A second aim was to choose names that were 

consistent with choices that had been made in the past.

7.3.5.3 I need to make sure I've got this right.

Thomas spent between fifteen and thirty minutes trying to “explain on” the naming of the 

parameters based on what he'd been told but his colleague did not understand. Thomas 

recovered by bringing the original person back into the meeting, and the three began to 

draw on a whiteboard. They blocked out the screens and intended interactions, and 

sketched the pattern the previous developer had used.

At a certain point, Thomas thought that his other team members might benefit from 

hearing the discussion, so the entire team was brought in. His thinking was that if he was 



Ch. 7 After the Fact

-188-

struggling to explain the concepts to someone else after having learned them, it would be 

even harder to explain it again in the future.

With everyone in the room, discussion expanded to consider different ways to manage 

state for individual elements on the pages. Someone brought up what should be placed 

within the parameters. Reference was made to work performed several sprints ago to 

change the way page navigation was tracked through a user's session. Some problems were 

noted for “future development”. The time at the whiteboard was not recorded. The 

understanding given was that the discussion would be sufficient to provide foundational 

information to the team.

7.3.5.4 Even if you don't pick it up in six months, you are aware

Thomas believes that a “mixture of things” aided recovery. Working with diagrams made a 

“big difference” as did talking it out, discussing it as a team. Having to explain the 

problem was key, because it revealed the gaps in his understanding.  When asked, Thomas 

noted that the naming issue turned out to be the simpler problem to solve. That one was 

easy because it was possible to get the original person in, and they knew what had to be 

done and why. They could explain it a second time.

The hard part emerged during the broader discussion with the team. This issue was 

different from others he has encountered while working on this team. Usually he has found 

that problems are “quite small” or centre around differences in opinion about how things 

should be done, or about how best to accommodate decisions that have been taken “higher 

up the tree”. This time, Thomas had to “stop and think”. It was a problem he “didn't have 

an out and out answer for straight off. It had to be discussed.”

7.3.6 Slipping

Dereck described the impact and consequences of a slip made while building and deploy-

ing software. It demonstrates an issue for which recovery was achieved by abandoning a 
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fix. Dereck’s team maintains two curriculum services for the department. One provides a 

list of course names, the other a list of IDs. One day Dereck made a change to the ID 

service so that it would reference the production database rather than the maintenance 

database. It was a simple change to make. The code was built and deployed to the server, 

and Dereck left for lunch.

When he came back, he saw a lead from another team talking with his colleagues. The 

team lead was reporting that the course name service was not working. It had just stopped, 

but no error messages were being given. Dereck was surprised, because he had not made 

changes to the service that was being reported as down. He checked to see if anyone else 

had changed that service in the version control system or if it had been deployed but it had 

not. He wondered if the other team had done something wrong on their side because when 

he tried calling the service locally, everything worked. Then he logged on to the web 

server to check the files, and realised what was wrong.

The deployment of the ID service requires a manual operation to copy files into the 

proper directory on the server. The manual step had been performed but the files had 

mistakenly been copied into the naming service directory. The naming service was not 

working because it had been overwritten. It should have been straightforward to restore the 

overwritten code, but he could not find it in the recycle bin on the server. It had not been 

deployed for several months, and so backups had been cleared out by a date-based 

automatic process.

7.3.6.1 It was probably me

“[W]e all do deployments. In all fairness, it was probably me that made the error.” When 

Dereck saw that the files had been overwritten, he knew that “human error” was the source 

of the problem and he knew that he was responsible.
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Dereck’s slip was critical. It caused his team to break their contract to other teams in the 

department. The software in the department is all under development, and individual 

components are in varying degrees of stability. Teams have dependencies on one another, 

and there is the risk that if one team makes changes it will break something for another 

team. This has been a problem in recent months, and a policy has been set that teams 

responsible for services have to put something in place when maintenance occurs to make 

sure that services never go offline.

7.3.6.2 On a headhunt, trying to work it out

Dereck discussed several alternatives for recovery. First, as noted, he might have restored 

the service from a back-up on the server, an option that was not possible because the 

service had been dormant for a while, and backups had been erased.

Second, the code for both services could have been redeployed, and the manual step 

could have been properly performed. This was not possible because changes had been 

made while refactoring the ID service that impacted the naming service. Deploying the 

naming service would have resulted in a different failure.

Ultimately Dereck determined that the best thing to do would be to alter the build to 

deploy the older version of the broken service.  The diagnosis and identification process 

finished at about four o’clock. Afterward, Dereck spent several hours “on a headhunt” 

trying to work out how to alter the build. To do this, he searched the web and within videos 

and documents provided by an on-line training service that the department subscribes to. 

He could not find anything that would help him.  The situation Dereck worked through is 

diagrammed in Figure 7.5.

7.3.6.3 We end up having to develop workarounds

The challenge he faced in recovery had to do with decisions that had been taken about how 

the software had been structured, and how that structure was related to the code repository 
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and to build and release management. The two services were implemented within a single 

file, and so making changes to one stands to impact the other service. When the code is 

checked in, the file is given a new revision, which is applied to both services. By contrast, 

the service architecture is configured so that the services are independently represented, 

and the build is configured so that each service is independently deployed. Normally this 

means that one service can be deployed out to the web server just by running the build. 

The other service, however, has to be manually copied up.

Figure 7.5: Dereck’s Slip. Four options were considered, but Dereck was not able to 

recover from his slip.  In the end, the task was abandoned, and all of the changes were 

rolled back.  Diagram adapted from (Rasmussen, Pejtersen, & Schmidt, 1990).

Dereck lamented that the architectural choices mean that the team has to “work around 

something else and something else”, but this configuration has also given the team 
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freedom in how they organise work. The two services share code, and so the task might 

have been set to refactor both services to point to the live database. The email Dereck sent 

to his lead suggests that he explored this option, but it was not taken in the end. Dereck 

indicated in the interview that this option was not desirable, because the team had only 

“tasked a story and estimated doing the ID service”. He explained that the naming service 

was likely going to be dropped in the future, and so the team had specifically been told not 

to spend time on it, to leave it alone.

7.3.6.4 None of us knew at that point in time

In the end, Dereck had to give up. He felt “quite down” on himself for leaving things 

broken, but the roll back seemed to be impossible. He sent an email to his team lead 

explaining the situation. As he was not due to be into the office the next day, his team-

mates would have to solve the problem, when people in the department who had permis-

sions to alter the build would be in the office.

He thought he would come into the office on Monday and “it would just all be sorted” 

but no one on the team had been able to work out how to roll back just one of the two 

services.  The task for the sprint was abandoned, all the changes that had been made were 

rolled back and both services were redeployed. This restored the contract, and though both 

services were again using the maintenance database, the other teams were “none the 

wiser”.

7.3.6.5 We just think this is good design

The team knew that their domain model was stable, and so the issue has had farther 

reaching consequences. As it turns out, access to databases is managed in multiple 

libraries. Now that the team feels more confident with the domain model, they are going to 

consolidate access, meaning that configuring switches between live and maintenance 
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databases will only happen in one place, and will not need to be done within the code for 

the ID and naming services.

This change will not remove the possibility that Dereck’s slip will happen again. Going 

forward, the services will still be independently deployed, and the manual copy to the web 

server will still need to be done. Dereck had this to say about that point:

“If you want the truth, we could have worked around this a long time ago…

[M]aybe we've kept it this way, to highlight that there is an issue and so that when 

situations occur like what we've gotten into we can say well, in all fairness…”

7.4 Discussion

The lapse of time that passes in software development between actions and outcomes is a 

known challenge in bug fixing (Eisenstadt, 1997).  Likewise, developers are responsible 

for their own actions and must “believe” in those taken by others (Naur & Randell, 1969).  

Software developers rely on an ever expanding array of software written by other folks, 

and belief is a factor that has subsequently grown to have greater force in professional 

contexts.  Belief also has a second dimension.  Errors in professional software develop-

ment are frequently detected and reported by other people: by testers, by users, by clients 

or colleagues.

This section discusses how developers respond to outside influences in practice.  The 

first section describes in general terms the nature of tasks that require conscious problem 

solving.  The next section expands the concept of suspicion discussed in Chapter 5 to 

include responsibility.  The last section considers how developers describe and use rules of 

thumb.
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7.4.1 The Nature of Tasks

In the course of conversation, Robert shared a taxonomy he has heard developers used to 

identify tasks.  Robert explained that problems in software development could be cate-

gorised as: 

• Things that we’ve done before

• Things that we can Google an answer for

• Things that no one else has done before

Though given in the context of his own experience, the taxonomy is notable for three 

reasons.  First, the points are representative of the kinds of problems reported at both field 

sites.  Second, the levels of the taxonomy can be associated with the levels of conscious 

handling required for different actions described within psychology by Norman and 

Reason, and of the levels of performance regulation observed by safety science 

researchers.  Drawing comparisons between Robert’s categories and the typologies 

summarised in Chapter 2, Section 2.2:

• Things that we’ve done before are tasks that are routinely performed, or well-

learned. 

• Things that we can Google an answer for are problems that are recognisable 

and can be solved using prior experience or through shared “know-how”.

• Things that no one else has done before are unfamiliar, or novel tasks that will 

require local goals to be explicitly set, undertaken and evaluated.

Finally, the full account given by Robert demonstrates that it is not straightforward to 

assign details of professional performance and experience to fixed categories.  When asked 

to categorise his own incident using the taxonomy, Robert immediately placed it into the 

second category. The task was “pretty standard” and was something that could be Googled.  

However, it involved doing something “slightly different to normal”.  When asked, Robert 

explained that the slight differences in the combination of client and server side frame-
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works caused the issue to “touch into” the third category of the taxonomy.  Robert didn't 

understand the frameworks, he had never done a task like this before, and neither had 

anyone else in his group. So it was Google-able, but it was not the sort of issue for which 

an immediate transferable answer could be found.  

Robert, like the other developers who were interviewed, is experienced, but the account 

he gave was of an issue that was “new to me”.  Newness is one of the “special conditions” 

that triggers the need for conscious handling (Norman & Shallice, 1986).  The notions of 

novelty and of the timely need for knowledge marked all of the interviews.  Dereck 

explained that blame could have been placed on tools or knowledge but that he thought the 

main issue was one of timeliness.  No one on the team knew what to do at that point, and 

so the path to recovery taken was of necessity “tactical”.  

Knowledge is required at particular points, but software developers are aware that the 

passage of time is key to its development.  Dereck’s team took a provisional approach to 

recovery with an awareness that the problem remained active. The factor of time also 

influences individual behaviour as demonstrated by Valentin who allowed more than one 

bug to surface over the course of months, while he explored alternative solutions and 

solicited feedback about priorities and requirements. Joachim described that his knowledge 

of the library he was using was still forming, and the larger chronology of his issue 

revealed that the bug he wrote was of little importance, one knot in a longer thread of 

practice.  

7.4.2 The Need to Witness

Errors that are reported by others are described in the error detection literature as not 

happening very frequently (Zapf & Frese, 1994), but the importance of other sets of eyes is  

also described as being necessary for diagnoses of higher-level “knowledge-based” errors 

in critical, dynamic work environments (Woods et al., 1994).  Reports of error are, in one 
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sense, the bread and butter of software development on the job.  Software developers must, 

as Marcus and Joe did in Chapter 6, regularly assess reports given by system responses, but 

they also must assess reports given by colleagues or within bug reports. 

Taking responsibility for an error is a big deal professional software development 

(Guo et al., 2011). There is the possibility that a report is untrue, or that something was 

done wrong by someone else.  It may be the case that the report is incomplete or represents 

a misunderstanding on the part of the reporter. Recreating reported behaviour is a standard 

tactic to employ in debugging tasks (Lawrance et al., 2013).

Recreating reported behaviour develops awareness and predicates error handling.  

Awareness is a two-fold notion. A person must realise both that something is wrong and 

that one is responsible for the error (Rizzo et al., 1995).  Awareness is at times instanta-

neous (“I poured the coffee into the sugar pot!”), but can also emerge after time has passed.    

The presence of an error is sometimes established independently of the notion that one is 

personally responsible for it (Rizzo & Bagnara, 1995).  A person may observe outcomes of 

an erroneous action before they associate the effects with something they did.

A developer may begin investigation of reports by assuming (or hoping) that the error 

has nothing to do with actions he has taken, that he is not responsible for an outcome.  He 

may deflect responsibility by making the problem space big (“It must be a memory 

handling issue in the browser!”) or by setting a boundary (“I’ve checked everything on my 

side…Maybe they’ve broken it on their end”).  This is a variation on setting constraints 

observed in the design session with Kasia and Bill who used the tactic to focus activity on 

the present moment.  Deferring responsibility can be used to identify missing and incorrect 

information in reports as Joachim did, to buy time to think as Valentin did, or to direct 

investigation as Dereck described, by looking at factors in the local environment before 

expanding investigation to the server.
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7.4.3 Rules of practice

Rules are declared and observable. They are described by developers in terms of things 

they like or do not like to do, or as “instructions” they follow.  They were often also 

relayed within descriptions of technical knowledge, for example “basically you have to…”.  

Sometimes these kinds of statements were used by informants to demonstrate technical 

prowess or to prove vitality on a team or within a department.  However, they just as often 

revealed personal rules-of-thumb (Rasmussen, 1985) a developer used to manage practice.  

Evan’s story included several accounts of preferred or learned practice, summarised in 

the table given in Table 7.5, below. 

Table 7.5: Evan’s preferred practices.

Conventions guide and direct practice, they can make work easier.  For example, Evan 

described using See What Gets Spat Out in this way:

“[T]here were modules that the application referred to in the settings that I didn't 

have installed, so. (pause) Go off, get them, install them, and try again, move on to 

the next error, work through that. “

First Principles 

To Learn and Experiment

I Prefer to Go to Someone I 
Know 

See What Gets Spat Out

Always Pick the Latest

Working from the assumption that I 
know nothing by throwing myself into a 
task, and figuring things out.
Specific tools like visualisation tools are 
used to provide a space to learn and to 
mess up.
Seeking help from colleagues is preferred 
over internet-based sources which can be 
“deliberately obtuse”
An error-driven practice to manage soft-
ware installation.  The steps to follow are 
taken from system responses.
When installing dependent modules, use 
the practice of installing the latest ver-
sion first.
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Rules reveal learned behaviour, but also aspects of how developers reason in particular 

situations.  In a moment of reflection, Evan noted that at a certain point in the 

investigation, he had reached the limits of his knowledge and experience. The description 

he gives to “get it back to how it was” sounds in the telling like a practice, but the evidence 

suggests that the actions were tactical, firmly embedded in the situation:

“I’d spent long enough messing with the configuration files. I realised either it 

wasn’t there or I’d broken it completely. Let’s get it back to how it was - you know I 

think you take a step back and you think okay it should be working the way it is so 

let’s move on to the next thing and try and understand.”

It is important to note that conventions of practice are fluid.  They are not fixed or 

uniformly helpful. Always Pick the Latest is a practice that has worked for Evan in the 

past, but results this time in an unexpected error that must be handled.  Rules may not 

serve in a current situation, and may even result in bigger problems.  It is also important to 

note that just as they form and reform in new situations, they are not always followed.  

Robert described that he sends an email explaining progress with particularly tricky issues 

to team members, but found when asked to forward the email to the researcher for analysis 

that he had not followed the practice this time. 

7.4.4 Limitations

The stories given in this chapter situate error within time and organisational context.   

Stories were collected from two organisations, and may not represent software develop-

ment in different sectors, or in organisations with different work practices. Accounts were 

gathered retrospectively and it is possible that details were forgotten or distorted. As might 

be expected, finer detail was collected about activities that occurred close to the point of 

interview. Finer detail was also collected about activities at the computer when the 

developer was able to recreate and demonstrate actions during their account. 
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In general, the interviews collected at Site B provided much more detail about how 

local problem solving was performed than those taken at Site D. This is likely due to the 

fact that developers at Site B were interviewed at their desks, while developers at Site D 

were interviewed in public spaces and had to contextualise their discussion in relation to 

hastily created diagrams.

Researchers must be careful when making inferences about accounts of process. 

Informants may present a view that does not reflect what was actually done (Hammersley, 

2003). There were clues given that sometimes the informant recounted a desired practice 

rather than what he actually did. It was also the case that developers sometimes "hid" 

accounts within more general explanations of technical or organisation process. 

In general, however, and as Eisenstadt noted (1993), informants were forthcoming and 

generous in sharing experiences, and gave no reason to "distrust". Detailed analysis of the 

accounts revealed self-consistency: it became apparent what the account was and where 

and how informants postured or obscured detail.

7.4.4.1 Bugs and War Stories

Bugs featured in some of the accounts given at Site B. This may have been due to the way 

in which the research was described in the information sheet given to informants (see also 

appendix D.4). The starting point for discussion with Joachim was a bug that had been 

reported to him by a project partner. Valentin, despite describing his issue as “not neces-

sarily a bug, it’s an improvement” recounted that his issue nevertheless manifested as a 

bug four times in the course of a year and a half, in different pieces of software that were 

being used and built. Evan casually referred at one point to one of the issues he encoun-

tered as a “bug” that was like one he had encountered in the past. 

Bugs did not feature in discussion at Site D. Instead the stories were recounted in terms 

of tasks that had been set for a sprint. All of the informants spoke of testing in relation to 
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their work, making reference to performing unit testing, detecting a problem while testing 

“edge cases” and in using the testing framework to see of code was running locally.

Two war stories were reported (Orr, 1986), one from Site B, and one from Site D. 

James described having a terrible time making use of an API supplied by the Eclipse 

development environment. His difficulties arose after the Eclipse developers had changed  

behaviour in APIs used by the public. Dereck related a story from a previous job in which 

a colleague had “dropped a clanger” when installing an update to server software. 

These stories were not included in the error handling analysis because they did not meet 

criteria for incidents: they were presented as anecdotes, and did not give sufficient 

evidence of narrating or “summing” up in the midst of the experience. However, both did 

yield information that contextualised error handling during software development. 

Dereck’s account helped define issues that are critical because they are visible to people 

outside of individual experience, while James’ account gave insight into the ways develop-

ers seek guidance from internet sources.

7.5 Conclusion

This chapter reported a qualitative study undertaken to examine how developers recount 

problems they have solved in recent work.  It reported the activities of six developers 

working in two organisations.

Errors can illuminate aspects of individual cultures of development, software engineer-

ing practices, or model of design in which they arise (Curtis et al., 1988). Occurrences 

provide feedback about the nature of problems in specific domains. Errors come to 

developers in one of two ways.  They may come down as a result of a task that is taken 

from someone else or problems reported by clients and co-workers.  Issues may also come 

out of actions taken by developers.  In both cases, responsibility for the error may only be 

taken once the error can be witnessed and linked to prior activity. 
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Several of the accounts capture the complexity of the relationship between local and 

global problem solving in software development.  Problem solving in software engineering 

is often described in terms of large, global aims: commercial strategies, project require-

ments or of design decisions. By contrast, findings in this study support the view of error 

handling in psychology and safety science findings that problem solving is often local and 

small, it can require cycles of practice that blend skill, experience and reasoning. 

The knowledge required in software development is timely.  Robert described how 

recovery depends on learning enough right now to piece together a solution .  Joachim’s 

experiences showed that errors sometimes form knots within longer threads of develop-

ment practice, threads that relate both to individual and global aims.  Valentin likewise 

tolerated the error he encountered, allowing it to reoccur more than once, in order to gather 

feedback from technologies and users.

Workers must translate work goals into personal tasks that can be undertaken (Frese & 

Zapf, 1994), and software developers must consider global aims while managing local 

problems.  In the context of error handling, this translation process has a large influence on 

personal development.  Evan’s story provided rich perspective about how developers gain 

experience by thrashing toward solutions.  Thomas caught his error in the act of explain-

ing how elements on different web pages relate to one another. He recovered by giving the 

error back to the person who had originally explained a practice to him.  Though the 

consequences of errors are generally depicted in terms of the ill effects a bad choice in 

programming has on software, Dereck’s slip starkly demonstrates the effects that organisa-

tional policies can have on individual experience. 
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8. Discussion

The previous chapters explored error in the context of design, at the desk, and after work 

had been completed.  Findings illustrated different features of error handling within these 

contexts, exploring how developers undertake problem solving when things go wrong.  A 

sense has been given of how developers perceive problems, the sources of information 

they draw upon during handling, and how handling unfolds in-time and over time.  

The problems developers face generally aren’t new, they are “new to me”.  In other 

hands or at other points in time, tasks may have been or become routine or mechanical, but 

at the point that handling is required they are novel.  This is the “special condition” that 

most often commanded attention (Norman & Shallice, 1986, pp. 2, 8).  Likewise, error 

handling may include elements of understanding or of use but was largely required in these 

accounts to manage errors in making.  This distinction broadly characterises incidents 

across the sets.  All of the developers were tasked with making software, and encountered 

problems in the effort. 

This chapter draws out subtler distinctions of error handling in software development 

practice.  Data drawn from the studies reported in Chapters 5, 6 and 7 is situated within the 

theoretical framework presented in Chapter 3.

8.1 Characteristics of Handling

It is, by now, a familiar refrain.  Error handling unfolds in three stages.  It begins with 

detection, with knowing that something is wrong.  Once an error has been detected, a 

developer must identify what was done wrong and what should have been done.  He must 

take steps to remove the effects of the error.  This process was given a theoretical overview 

in Chapter 3, Section 3.3 and was described in the context of desk work in Chapter 6, 

Section 6.4. 
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Figure 8.1 below depicts the three stages of error handling that have been identified by 

studies in psychology.  Detection indicates that someone realises that something is wrong, 

identification is the process of knowing what should have been done.  Effects are removed 

in recovery.  The examples given in studies of error detection suggest that handling for 

simple errors is straightforward and brief.  Insight is unambiguous;  identification and 

recovery are more or less instantaneous once a detection has been made.  Findings support 

this; some errors, like the one depicted in Figure 8.1 below could be described as slips of 

action and are relatively easy to handle.

However, the accounts analysed in this research suggest that error handling in software 

development is influenced to a great deal by environment and circumstance.  The process 

often involves more than one kind of performance and may include multiple errors of 

different kinds.  A diagram including the factor of time and the notion of local problem 

solving is given in Figure 8.2, below.  This is consistent with broader descriptions of 

workplace performance, in which skill- or action-based errors tend to precede the detection 

that something has gone wrong, while rule- and knowledge-based mistakes arise in the 

subsequent efforts made to solve a problem (Reason, 1990, p. 56).

In the following three sections, characteristics of handling that relate to the three stages 

of detection, identification and recovery are described.  Discussion is grouped into the 

descriptive categories coined by Sellen in 1994, first described in this thesis within Chapter 

3, Section 3.3, and discussed in Chapter 6, Section 6.4.   
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Figure 8.1: Error handling - Slip of action, software development.  This is a brief handling 
incident for an action-based error, like the ones depicted in related studies reviewed in 
Chapter 3, Section 3.3.  This particular incident is described in more detail in Chapter 6, 
Section 6.3.1, and in Appendix C.3.1.

Figure 8.2.  Error Handling Process - Software Development.  This diagram situates the 
basic phases of handling that were introduced in figure 3.4 within a time frame, indicated 
with a blue bi-directional arrow, and two coloured bars in red and green that indicate 
points at which error handling replaces progressive problem solving.  The grey hatched 
box behind the coloured handling bubbles indicates that error handling instances can 
involve the need for conscious, local problem solving 

8.1.1 Detection: Knowing that something is wrong

Actions sometimes do not go as planned, or were not intended (Norman, 1981).  They are 

often simple, routine or skill-based, and are commonly detected based on perceptions that 
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arise while doing something (Sellen, 1994).  Copying files from one place to another is 

one example of a simple action that is routinely performed in software development.  

Copying files into the wrong directory, as Dereck did (see Ch.7, Section 7.3.6) is an action-

based error.  It could be classified as a slip of action within Norman’s typology.  

Determining what constitutes “in the act” is not always straightforward.  A developer 

may be able to swiftly assess what he meant to do, compare it to what he did, and take 

subsequent actions to correct their input.  Thus, though an error may seem to have been 

detected in the act, developers likely are often also assessing small outcomes along the way 

(Sellen, 1994).  

As demonstrated in examples of error at the desk given in Chapter 6, an error may be 

swiftly handled because it is familiar, having been seen and managed before.  These are 

quibbles.  Some errors are quickly detected, quickly enough to have been caught in the act, 

as depicted in Figure 8.1, above. 

Even in the case of slips, detection of errors does not always occur immediately.  

Sometimes, as in Dereck’s case, detection is delayed, made after an action is taken and 

outcomes can be assessed (Sellen, 1994).  Outcome-based detections may be reported or 

self-detected, arising as a part of a standard check or out of a sense or suspicion that an 

error has occurred in recently completed work (Allwood, 1984).  

Errors may also be detected due to a failure to identify what is to be done.  Lost 

intentions are typically termed lapses, and described in terms of memory (Reason, 1990).    

Forgetting why one has opened a file in the middle of a development task could be 

interpreted as a lapse.  However, at times, people detect an error because they realise that 

they do not know what to do (Zapf & Frese, 1994). 
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Handling often unfolds in terms of whether a detection is made using extrinsic or 

intrinsic information.  Characteristics of both sources of information are discussed in the 

next two sections.

8.1.1.1 Extrinsic information 

Errors are often signalled through “evident” information that would be apparent to any 

observer (Zapf, Maier, Rappensperger, & Irmer, 1994): through system responses in the 

form of red bars, stack traces or other messages that either gag the system or provide 

warnings about an error condition (Lewis & Norman, 1987).  In this case, detection is 

more or less guaranteed (Reason, 1990), spurred by something designed into the objects of 

use that force (Norman, 1981) or limit (Sellen, 1994) forward action.

It was argued in Chapter 6 that software development at the desk is error-driven. 

Methods like test-driven development are designed around failure (Ambler, 2012).  

Developers adapt their practice in response to messages given in development environ-

ments and come to depend on information from system responses to direct and manage 

activity at the desk.  

Error-driven practices are observable and reported across the data sets.  Evan expected 

to see errors that “gag” the software during his software installation. He relied on them to 

direct his installation process. In so doing, system responses replaced other intrinsic or 

extrinsic sources of information he might have used such as memory, notes or documenta-

tion.   Marcus and Joe provided other examples of using errors to direct practice.  Their 

aims were methodological, as when they wrote tests to fail, but also personal, such as when 

they left errors behind within the IDE to serve as placeholders for picking up work at a 

later time. Findings in the studies support all of these points.  Robert detected his error 

while performing standard checks on system response. 
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Developers respond to system responses, but are also responsible for writing and 

designing them (Lawrance et al., 2013).   System responses are thus also leveraged, 

elicited in completed work as a checking mechanism (See Robert’s account in Chapter 7, 

Section 7.3.4).  Robert described looking for an intended system response to evaluate 

changes that had been made to code.   He was using errors to confirm that the model for 

providing validation sufficiently corresponded to the possibilities for interaction. His error 

was detected on the basis of an untimely system response that indicated an aberration in the 

expected sequence of validation checks.

Errors are sometimes detected when things do not “look right”.  Developers use visual 

sense to gauge whether things are working or not.  Messages that the developers have 

written into system responses may lack or misinterpret information, cueing detection.  It is 

the way that an error message is formatted that signals to the developers that something has 

gone wrong.  A character may be interpreted as syntax when parsed by the browser, or 

messages may not contain information that developers have designed to be included.

Similarly, systems provide responses to developers that have not been directly designed 

to support error handling, but which are understood by developers to be indicators of 

problems.  Error detection in these cases depends on the developer understanding how 

software is meant to “look”.  In such cases, a user interface may display all of the intended 

textual information, but lack visual elements such as images, spacing and fonts.  Evan 

expected the software to work correctly once the software ran without any errors, when it 

was no longer gagging. However, he noticed that things did not “look right”, cueing a 

suspicion in him that an error had occurred.  In fact, the web page he loaded was not 

rendering correctly.  Images were missing, and pages that he created through the interface 

were not being displayed in lists. 
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 In a similar incident, Marcus recognised that something did not “look right” in the web-

output. The page loaded with all of the expected information, however the visual style of 

the page was incorrect.  The top figure below, 8.3 displays what the screen looked like 

when something was “wrong”, the bottom displays the “right” look. (Figure 8.4). 

Figure 8.3: Something doesn’t look right.

Figure 8.4: Now it is “hunky dory” fine.  

8.1.1.2 Intrinsic information

Erroneous outcomes are not always evident: an action or words may seem reasonable to 

observers (Norman, 1981).  These errors must instead be detected through assessment of 

intrinsic information.  In the context of interactions with computers, actions may be taken 

in a software system that are correct, but which were not intended.  The system has no 

information about the goals of the user in this case, and so cannot provide a response that 



Ch. 8 Discussion

-210-

will trigger error detection.  These errors must be assessed in terms of the underlying goals 

that directed action (Zapf et al., 1994)).  

Conceptual integrity is believed to be at the root of many errors in software develop-

ment.  Because ideas are faulty, the logic goes, there are bugs (Brooks, 1995, p. 14). 

Imprecise requirements and poor design are often reported after the fact as a cause for 

faults (Basili & Perricone, 1984; Perry & Stieg, 1993).  Across the sets of data examined 

here, developers frequently came up against barriers in their work related to intent.  These 

encounters were often detected through explanation and identified in analysis by indica-

tors of satisfaction and suspicion.  

This point is made strongly in Chapter 5, in Kasia and Bill’s discussion of rather cars or 

intersections should manage traffic.  We, as analysts, know that an error has been encoun-

tered by the use of questioning, fluid terminology, and also by the lingering suspicion 

conveyed by Bill at the end of the session that it is intersections and not cars that should 

have control over managing traffic.  In this case, the error is one in forming intention, in 

determining how the software that the designers have been tasked with designing should 

behave.

Marcus provided another example of detection through explanation.  In his case, the 

problem was recognised when he explained an implementation to a person who was not 

directly involved in the project:

Marcus: … So we want to make sure that [ClassName] was interacted with in a 

particular way, and in this case, umm, this is why it just doesn't feel right that this 

is, it's just too specific for it to be a [ClassType], dude.

The utility of explanation in error handling has been observed before within software 

engineering (Knuth, 1989). It is a recognised problem solving tactic in software engineer-

ing trade discourse and commentary, variously described as the cardboard cut-out dog 
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(Baker, n.d.), rubber duck debugging (‘Rubber duck debugging’, n.d.)5 and the teddy bear 

principle (Pascal, n.d.).   Robert described the teddy bear principle like this:  

“[You] put a teddy bear on top of your monitor and talk through your problem to 

that, and it is kind of that talking through the problem will kind of, kind of  usually 

trigger in your own mind what actually you've forgotten to do or haven't done or 

something like that.” 

The phenomenon has also been recognised beyond software engineering.  Within safety 

science, it is the provision of “fresh eyes” on a situation that can allow “higher-level”, 

knowledge-based errors to be detected (Woods, Johannesen, Cook, & Sarter, 1994). 

Explanation is a valuable tactic, but it does not always work.  Robert related that he tried 

first to solve his problem by talking things out with another developer.  He expected it to 

help, but in the end, he did not have enough time to achieve insight using the technique.

The account given by Thomas provides evidence of explanation that spurs detection. In 

Thomas’s case an error was detected because he needed to explain the task to a colleague. 

When asked why parameters on pages should be named in the way Thomas was 

describing, the explanation he could give felt unsatisfactory.  All he was able to say was 

“that's the way the other screens have been done”.  

The full account suggests that it was in explaining the task that he lost intention. 

Thomas indicated in his interview that he perceived the issue not to be with his memory, 

but rather to be one of knowledge.  He did not understand the naming strategy. He 

described the issue as one of “just getting the concept clear in the head”. Frese and Zapf 

(1994) describe such errors as thought errors, which may be due to forgotten intentions, 

but may also arise when a person lacks knowledge.

5. This wikipedia article (at date of access) gave the best overview to the concept, with 
links to related pages and printed sources.  A copy can be supplied if it has substantially 
changed since access.
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Figure 8.5: Errors aren’t always evident.  The wiki syntax entered to link to “User Stories” 
resulted in a to-be-created marker when rendered on the HTML page.  This is indicated in 
the figure with a question mark.

Figure 8.6: It looks okay to me. 

Intrinsic information is often required to detect errors that have a conceptual basis, 

however such errors can be sneaky.  They can manifest after simple actions that seem to 

have reasonable outcomes when assessed by one person, but be obviously wrong to 

another.  Marcus and Joe provided an example of this in an incident in which Marcus tried 

to make a link to a different web page using wiki syntax. After saving the edits, the 

information on the web page suggested that a new page still needed to be created (see 
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Figure 8.5).  . The syntax “looked okay” to Joe.   His observation was sound, the syntax 

was correct  (see Figure 8.6), however Marcus remembered that the data was wrong, 

because it did not reflect the information architecture of the wiki.

Errors of intent thread through practice.  They arise during design activities, and come 

up again and again in the midst of development.  They have been described in other studies 

of software development at the desk as being “like design”.  In order to do programming, 

developers rely on "under-determined" matter: opinions, discoveries and alternatives that 

emerge "when-and-through" the practice of programming (Kristofferson, 2006, p. 10). 

An example of this can be seen in one incident at the desk (issue 13-B in the catalogue 

located in Appendix C.2).  In this incident, Marcus and Joe run into problems refactoring a 

method that manipulates two classes in the domain model they have created.  The two 

classes are conceptually similar, and problems with them have come up before (see related 

entries 4-F, 6-A and 8-C in  Appendix C.2). The error cuts across layers: Marcus and Joe 

are not sure anymore about how they defined the classes, or how to distinguish the classes 

from one another in this circumstance.  Furthermore, they do not understand an implemen-

tation they made earlier that references the classes.  The implementation uses a JAVA 

language feature with which they have limited experience.  

Thought errors stick around, as the resolution of this issue demonstrates.  Rather than 

push through to a fix, Marcus and Joe decided at a certain point to abandon the refactoring 

altogether, and to revert to the previous, working state of the code.  The accounts of 

tolerating and settling demonstrate that such errors can remain active for long periods of 

time, managed by making incremental progress through verbal consensus or temporary 

solutions that satisfy the developers and permit the issue to be set aside. This does not 

mean the issue is resolved.  In most cases, subsequent instances will occur in which  

handling must continue. 
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8.1.2 Identification: Knowing what should have been done

Once an error has been detected, a person must identify what was done wrong, and 

determine what should have been done  The examples given action-based studies of error 

suggest that insight is unambiguous, that identification and recovery are more or less 

instantaneous once a detection has been made.  Across these sets of data, error handling is 

often simple and compressed, but other patterns were also observed.  

When an error is detected, developers do not always know how big the problem will be, 

or what kind of problem solving will be required.  This understanding comes through 

identification. At the desk, programmers must proceed in all tasks by first establishing the 

"fact" of what they are looking at (Kristofferson, 2006).  This is also true in the case of 

errors.  Identification is not stepwise or linear. Developers do not consistently recognise 

that a problem exists, then diagnose why the problem happened, then implement a 

mechanism to fix it.   Evidence is given that they search for commonalities between prior 

experience and the current situation (Rasmussen, 1985) within a cyclical process.   

Identification often requires multiple rounds of local problem solving.  This concept is 

depicted in Figure 8.7 below.  Guided by system responses, information gathering 

(Eisenstadt, 1997) is interspersed by manipulations of the environment.

If one cycle of problem solving fails, developers must deal with newly created changes 

in behaviour, as well as considering the previous conditions. This requires them to keep 

track of what they have done, what they have tried, what they have changed. The risk is 

obvious: if they do not work forward slowly and systematically, they will forget what they 

have tried and the order in which they have tried things.  The need to manage and remem-

ber state is vital.  Robert described it like this in the context of web development: 

“Sometimes you're making changes and then you'll try to reproduce the issue and 

go ‘Oh well that had no effect’ but you have to be sure that the change you've made 

has actually been picked up, because sometimes when you are dealing with web 
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things, something might have been cached … even though you've changed some-

thing, maybe you forgot to save the file, maybe your change hasn't been picked 

up…”

Figure 8.7 Error Handling Process - Local Problem Solving.  This diagram presents a 
normalised depiction of local problem solving.  The example on the top left replicates the 
basic process depicted in figure 8.2.  The other two examples use grey hatches to indicate 
individual instances in which local, immediate goals and actions are undertaken, observed 
and assessed.  This diagram doesn’t represent scale, only that some errors can be solved in 
a single instance of handling, while other problems require multiple tries at different points 
in time, indicated with the blue arrow.  Each of the hatched instances is depicted with an 
accompanying small error handling process; these should be associated as belonging to the 
overarching process represented by the large set of bubbles, and by the delineation within 
red and green halt and resume progress bars. 

Assessing state is a tactile and immersive experience.  Evan provided a clear example of 

what this feels like in his working environment:

“I work on a small desktop Mac, so I have a Mac connection to the computer at 

work that is running the virtual machine and so I was getting rather annoyed trying 

to navigate between three different screens on one 13-inch monitor, and getting 

rather confused in the process about what I had done and what I hadn't done and 

what I’d changed and what hadn't changed.” 

The time it takes to identify sources of errors varies enormously.  Sometimes identification 

takes only minutes, but it can take hours, days or even months.  The length of time 
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required relates to the information that is needed, and what the developers do with it.   

Developers develop understanding over time, as their frame of reference shifts in response 

to new information (Rizzo, Ferrante, & Bagnara, 1995).  At the desk, Kasia and Joe were 

able to control identification by setting constraints on responsibility.  Marcus and Joe 

needed to identify factors in the immediate environment to return software to a working 

state.  Developers reported after the fact that identification sometimes is drawn out to 

develop technical understanding about domain requirements and client priorities.

Extended timeframes are useful, they can give developers time to think and to explore 

possible solutions. Valentin described how he tolerated multiple manifestations of an error 

for over a year and used partial, temporary solutions along the way to gain time to consider 

a proper solution. He reported the decision to postpone as strategic, a behaviour that is 

consistent with descriptions of expert debuggers in other studies (Freeman & Black, 1992). 

On the other hand, individual cycles of local problem solving are described using terms 

that confront notions of expertise as strategic or principled.  Developers explain what they 

do as “hacking around”, “trying things” “trial-and-error”, “attrition”, or “nested problems” 

Valentin described the experience in this way:

“You find something, and then you find something else related, you find something 

related and you are deep in a tree where you [are] never at the end and you must 

come back.” 

Insight about what was done wrong and what should have been done often must be pieced 

together.  Robert described finding his solution using a painstaking approach of analysing 

information taken from the internet to identify things to try in his source code. He reported 

that the technique was not a strategic “working down”, but rather was driven by trial and 

error, by trying things out.  He assessed it this way:

“[I]t was obviously a case that there was a solution to this problem, it was a case 

of working out what I was doing that was different or what other people had done 



Error Detection and Recovery (Lopez)

-217-

that was different to what I was doing...it was kind of understanding the solutions 

that they had posted because they would only post the parts that they felt were 

relevant.”

Developers come up against boundaries to action set by the tools they use, the code they 

call on, and the social environments in which they work.  These are commonly described 

in safety science as constraints on the space of opportunity in which they work 

(Rasmussen, 1990).  Within psychology, errors at these points are often described as latent, 

cases in which decisions taken at a different point by other people have disastrous effects 

(Reason, 1990).  Within software engineering, boundaries are commonly conceived of as 

interfaces, points at which developers must utilise software defined by others.  

Boundaries of all kinds, including interfaces, test belief.  Interfaces are known as 

features of software architecture but they have also been found to be social: bridges 

between teams, departments, and the world “out there” (de  Souza,  Redmiles,  Cheng, 

Millen,  &  Patterson,  2004).  Development practice depends on programmers’ belief that 

code written by someone else is correct (Naur & Randell, 1969).  However, interfaces have 

been shown to have a high incidence of faults (Basili and Perricone, 1984; Perry and  

Evangelist, 1985, 1987).  They are hard to learn (Robillard, 2009) and they both facilitate 

collaboration and isolate developers (de Souza et al., 2004).

Interfaces lie at the boundaries of responsibility, in decisions taken elsewhere.  They can 

have effects that are perceived as errors by developers: something is not right, and must be 

handled, but symptoms and factors are opaque. In these cases, it is often impossible for a 

developer to determine what was done wrong.  And it is likely also unimportant for a 

developer to understand why something is wrong.  The developer is not responsible for 

erroneous behaviour they encounter in these cases; they just have to deal with it.
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8.1.3 Recovery: Removing effects

Recovery does not follow heroic bursts of creative, intuitive performance (Cross, 2001).  

Insight is often described by developers as being sudden or serendipitous, but this is not 

supported in the evidence.  Instead, insight, and by extension recovery, is more often 

achieved through outcomes of problem solving that are perceived to be timely: the 

combination at some point of accrued knowledge, memory, recognition, and evaluation. 

Recovery should not be equated with resolution.  Issues may remain active because 

recovery is impossible, as in Dereck’s case, or because details of a local occurrence 

actually belong to a longer thread of practice, as in Joachim’s case.  Sometimes a recovery 

will have consequences that contribute to or shape other priorities. These might be 

individual (“I can see know I need to write cleaner code”), team-based (“We are just going 

to re-architect into a single solution”) or with an eye toward the collective needs of a 

development community (“I thought there ought to be a way for others to use this code”).  

The first and foremost priority of software development is to keep work moving.  

Keeping work moving does not require that a developer understand all of the details about 

why an error occurred or what removed effects.  Things are often left unknown after 

recovery.  Developers may achieve a working solution, but may not be completely sure 

which of the steps or the order of the steps that fixed the problem.   

Upon reflection, both Joachim and Robert are able to name errors in understanding 

about how the libraries they were working with behaved. Both left their experiences with 

gaps in understanding. Robert described more than once his expectations for how a library 

behaved versus how it actually did behave, and commented that he still didn’t understand 

why it behaved as it does. In Joachim’s case, lack of understanding was expressed in terms 

of doubt in an API that led to a change in technology after we spoke. 
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Barriers to recovery can come out of policy decisions taken long ago.  In Dereck’s case, 

the policy to delete old backups after a certain time limited options for recovery.  Other 

decisions to limit administrative access to the release tool blocked recovery.  Dereck had 

only a vague understanding of the history of these policies and the effects they had on the 

software he was trying to use.  They produced barriers to his recovery, but they were not  

exactly errors. 

Knowledge gained in the course of fixing is often situated and circumstantial.  A fix 

might arise, for example, through an assessment of syntax (“Ah, it needs to be on the other 

side.”), without evidence that the developer has gathered a profound understanding of the 

language feature itself.  A developer can learn during handling about the requirements and 

expectations of particular software frameworks, but the general knowledge, for example 

that some packages will require files to be located in specific places may be of limited 

utility going forward. This event, however minor or severe, will likely never occur again.  

Circumstances next time will be different, the locations will be different, the cues that give 

rise to the issue will be different.  Developers give the impression that insights drawn from 

one experience are not sharp, crystalline pieces of knowledge that can be plugged into new 

problems. 

That said, developers do appear to make something of handling experiences.  With only 

a few days separation from the event, developers are able to articulate an awareness of 

severity during handling incidents. They are able to identify when problem solving was 

ineffective and are aware when they got lost. They are also able to identify when limits in 

their own understanding contributed to the problem, and display awareness of problems 

that could occur again.  

 Interestingly, even severe incidents were reported as having positive outcomes, but this 

may be the result of human impulses to make the best of “personal failures”.  Developers 
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reported that they had achieved a greater level of comfort and understanding of the 

software frameworks they were using. Getting stuck forced them to examine aspects of the 

software that they had previously taken for granted. They had to learn more about the 

software, quickly, in order to solve the problem and resume forward progress. 

8.2 The Shape of Experience 

Errors are sometimes reported, and error handling will likely begin with replication and 

witnessing, themes that were discussed in more detail in Chapter 7, Section 7.4.2.  In cases 

in which an error comes up in the midst of work, it is experienced first-hand, and informa-

tion is given by the system or by internal perceptions that something is not right.  Handling 

is often impulsive at first, marked by doubt, claims of innocence and blame but settles into 

investigation of behaviour that has been observed or reported.

Experience shapes error handling processes and handling, in turn, forges experience.  

The process takes an individual shape formed by expectation and other feelings, by getting 

things wrong, thinking of similar experiences, and seeking support, as depicted in Figure 

8.8 below.  As the paired work analysed in Chapters 5 and 6 demonstrate, errors that arise 

in the midst of work are often conveyed with surprise, and handling is punctuated by 

feeling: with questions, expressions of doubt, and by placing blame. After the fact, 

developers take the blame for decisions they deem to have been badly made through 

indications of dissatisfaction, by naming what the problem was, or by expressing lingering 

doubts. 

8.2.1 Expectation and Surprise

Errors surprise developers, the conditions in which they arise, and the behaviours they 

produce are unexpected.  In many cases, developers are at least momentarily stumped 

while they try to identify the source of a problem.  Expectation and surprise are known to 
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be components of error occurrence. Ko and Myers noted that their programmers asked 

questions when something failed in relation to prior formed expectations (2005). 

Figure 8.8: The Shape of Error Handling Experience. The error handling process is 
represented by the triad of coloured bubbles established in figure 8.1.  In this instance, the 
triad could represent an entire incident, or one instance of local problem solving. Feelers 
in different colours depict modulators that focus attention, redirect activity or develop 
perspective.

Expectations are closely linked with suspicion.  Suspicion is a feeling, a sense that 

something is wrong or has been done wrong.  Suspicion does not guarantee that an error 

exists, and error handling is sometimes undertaken in the absence of errors (Allwood, 

1984). Developers often think something in the code is wrong that turns out to be correct, a 

process that has been described within software engineering research in terms of hypothe-

sis formation and modification (Lawrance et al., 2013). Errors are thus sometimes expected 

(“I expected it to happen.”), but expectations can be defied: 

Joe:  And we expect this to fail. It is going to say, I can't find a dummy role with a 

small 'D'. Oh- and it has, look, it has got a little red thingy saying NoClassDef-

FoundError. That's funny, I thought it was supposed to say, uh shouldn't that come 

back as a casting? (Episode 7, 11:13)
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During identification and recovery, developers try things that they believe should work 

based on their understanding of the environment, knowledge of languages or past experi-

ence.  Sometimes, they are not rewarded with an outcome that matches their expectations. 

They are surprised again, confronted with new behaviours that must be assessed. Getting 

back to the original error state can be difficult, and in some cases is impossible. They can 

get lost.

Recovery brings with it fresh expectations, and so it can be said that surprise and 

expectation permeate all stages of handling.   Evan expects that he will have similar kinds 

of problems when he promotes his software to a different environment. Valentin reported 

that he expected to see occurrences of the rendering error based on past occurrences. As he 

described it, “this [the first occurrence] prepared me for that”.

8.2.2 Feelings

Findings suggest that dark feelings are used by developers much like bad ideas (Dix et al., 

2006).  Dark feelings can be used to expand and constrain the problem space, allow 

developers to consider unlikely sources of error and to direct investigative activity.  If 

developers suspect a problem, they commonly doubt or question an outcome (“Why is this 

happening?”) or place blame (“What have you done?”).  When they cannot form 

intentions, they might indicate that they feel stuck, that they are at “an impasse”, that they 

have “no ideas”, or that they are “poking around in the dark”.  Error handling can make 

developers feel bad, they can get “down on themselves”, or become frustrated.  They 

wonder why they can’t figure something out or aren’t performing well.  

 During particularly effortful problem solving, handling has been shown to be stressful 

and uncomfortable (Brodbeck, Zapf, Prümper, & Frese, 1993). Keeping emotions under 

control has been shown to have an effect on learning new tasks (Keith & Frese, 2005).   

Findings indicate that stress is marked in developers by verbal expressions, and by what 
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they do. Troubleshooting efforts move from examining inputs to an unexpected condition, 

to the way concepts are represented within source code, and even to elements of the 

conceptual design itself.  They are prone to doubt early ideas about the sources of errors, 

and the means to fix them. 

It is clear from the accounts that were examined that feelings also inform decision 

making in broader terms. Developers describe rejecting alternative solutions on the basis 

that that they are “very ugly,” something to be used only as a “last resort”.  Ugly feelings 

linger even after recovery.  Evan got his application framework to run, but is aware that it 

is “pretty dirty”. 

Developers leave encounters with a sense of how well solutions are functioning that at 

times contradicts cues given by the software or other artefacts.  Their sense in these cases 

is often one of suspicion, of caution.  Joachim achieved a working solution in his design, 

but was dissatisfied, he felt something was not right. Evan had no information after 

recovery that things were not working, but was still wary. As he put it, everything is 

working now “touch wood”.  

The findings clearly suggest that handling processes are modulated by emotion but it is 

not clear if emotions serve or hinder the process.  Negative emotions have been found to 

produce negative effects on task performance during software development (Graziotin, 

Wang,  &  Abrahamsson,  2015), a view in line with the evidence given in this thesis of 

thrashing, turbulence and severity. Questions on these point remain, however, and should 

be addressed in future research.  Does it matter if developers feel bad during or after an 

error handling experience.  Do dark feelings change how they behave in the future? 

8.2.3 Similar Things

Developers draw on similar experiences to assist error handling. Analogies are drawn from 

past work experience, projects that may have had similar requirements, or from prior 
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experience adapting or administering software. Like experiences or knowledge may be 

shared with a developer by a colleague in conversation, email or other shared written 

sources. They equally might be formed through more general experience in the world or 

with software as a user of environments that are similar to those being built (McDonnell, 

2012), for example of simulation software or web browsers.  

Analogies may provide information to support an error handling process, but are also 

used more generally as a part of decision making for tasks.  In the former case analogies 

are accessed during brief moments of reflection in the midst of problem solving.  In the 

latter case, they are a part of deliberative activity (Eraut, 1994), such as the time Kasia and 

Bill spend considering how traffic works in the world, or in reports by Valentin about 

alternative solutions he considered for rendering special characters.

Analogies are called to mind, they are remembered.  As might be expected, memory is 

faulty, and recollections may be partial, serving as impressions that cue detection or delay 

resolution.  Developers may remember having done something or having seen something, 

but may not be able to remember what they did exactly or where they saw the information 

of interest.  

Though it would be difficult to claim that analogy leads developers astray, there is some 

evidence that analogy can increase stress during handling, particularly if an analogy drawn 

from prior experience is perceived to be similar to the current situation, but outcomes are 

somehow different this time.  Turning to existing code, for example, is a useful tactic 

during handling.  It may offer a template for a fix that does not need to be proven.  

However, depending on code to provide information for fixes may also hinder develop-

ment of understanding.  Marcus and Joe relied on a prior implementation of JAVA generics 

to piece together a solution (see also Appendix C.3.5), but understanding of what they did 

was limited to material aspects of the syntax that would get the software to run.  
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Fixes are not made by accessing or relying on similar experience.  Analogies must 

always be compared with other information, they must be assessed and shaped to match 

the requirements of current circumstances.

8.2.4 Seeking Help

Errors are individually experienced.  Error encounters can demand or encourage social 

support, but this does not always come in the forms we have come to expect by studies that 

advocate for “soft skills” to improve dependability.  Information is drawn out of tips or 

stories passed along by co-workers in conversation.  Developers also make use of open-

source documentation, and have access to subscription-based sources that provide 

industry-tailored trade films and texts.  Ad hoc (Ko et al., 2007) and formal teamwork 

(Seaman and Basili, 1997) are helpful in some cases, but social support increasingly comes 

from other sources found on the internet.

Wiki-posts, internet fora and websites are widely used to identify technologies, to assess 

reliability of open-source products and for more detailed information about how to solve 

particular problems. Robert explained that depending where you are “on the cutting edge 

of things” it is normally possible to Google an answer for something.  Usually questions 

have been asked in places like Stack Overflow and there are answers that can be studied.  

Several other developers provided information about other on-line trade publications that 

they used, and explained how they hone search terms to find solutions for similar 

problems.  

Help is not always easy to find.  Developers may dutifully seek out colleagues and even 

prefer this practice over the use of documentation or internet sources.  However, they may 

not always be able to get time with or find colleagues with skills or experience that are 

useful for the problem at hand.  Fora are described as being intimidating, or high-minded.  

Formal documentation does not always yield information, and documentation provided by 
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open-source software sometimes hasn’t been written or is incomplete.   In spite of this, 

social support in all forms is valued: developers seek each other out when they can and 

report that information from the internet, however partial and scattered, makes work easier 

and smoother.

Social support for handling is sought from a collective formed of colleagues, from in-

house documentation produced by development teams, and from commercial and social 

sites on the internet. Information gathered must be transformed into guidance.  This is done 

by searching for corroborative testimony, by writing toy implementations and making tests.  

Only then will it be deemed by the developer to be both useful and trustworthy.  Often, 

within a handling process, this is when the hard part begins.  As in the case of analogies, 

the information must still be fitted and matched to the problem, the developer must figure 

out the “special part” that will make the guidance work.    

8.2.5 Weirdness

Just as detection can be made through developers’ sense of things that “look wrong”, 

handling can be hindered by weird behaviour in tools.  Developers are accustomed to 

bumping up against constraints in the tools they use, it happens all the time.  They may not 

understand how a tool works, or how to access features.  One tactic often taken in these 

cases is to try another way.  The developers do not question the behaviour of the tool, but 

instead take swift decision to accept the constraints.  They also may not understand 

afterward why “the other way” worked.

Developers accommodate weirdness in tools when they can.  This is practical, because 

weirdnesses related to state can mysteriously resolve and it is not always wise to divert 

practice to address responses given by tools.  Errant behaviour in tools can be more severe, 

however, distracting from or hampering progress. In extreme cases, it can overtake 

development, and require developers to give over problem solving to evaluation of 
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unrelated problems. These experiences can lead to distrust, triggering suspicion in future 

circumstances that errors exist even where they don’t. Even in smaller cases, weirdnesses 

can persist, and at a certain point developers may have to accept that they do not under-

stand what has gone wrong, and recover by removing or downgrading installations.

Spurious errors that come up at boundaries are leveraged by developers to learn about 

parts of a system that are infrequently visited or aspects of a technology that are not well 

understood.   They encourage or demand that developers engage at a deeper level with 

third-party software libraries or code written by someone else. This was particularly true in 

cases in which the thing that went wrong resulted in problem solving was turbulent. 

Though the “other” software formed a boundary that prohibited work in the short term, in 

most cases developers recognised the boundary as an invitation to learn.

8.2.6 Being Wrong and Getting Lost

Developers get things wrong all the time.  They make mistakes during conscious, laboured 

reasoning that characterises higher-order problem solving, but also while undertaking 

small material actions within a language or environments.  Being wrong is an effect of 

guessing and of trying things.  It may come out of a half-hearted proposal that is made and 

followed (“It might have to go after the dot. No.”), but may also arise out of identifications 

made with confidence (“Ah ha ha! I know what it is!”).  

Developers don’t always understand problems, technologies or have the necessary skills 

when errors occur.  They recognise this as a central factor of many handling processes they 

engage in.  Specific training or knowledge gained beforehand might prevent problems 

from occurring, but developers dismiss this possibility when asked what they might have 

done differently.  They explain instead that it is more important to be able to gain under-

standing when it is needed.   As Robert explained:
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“If I was going to go back and approach the issue again, I would try to make sure 

that I did understand what was going on in the framework upfront, but there is so 

much to know that you just need to make sure that you understand enough to make 

it work at this point in time.”

Developers are comfortable with being wrong.  In a period of reflection, Marcus remarked, 

half in jest, that being wrong is the “whole point” of development, noting:

“[Y]ou spend most of your time when you're developing stuff being a little bit less 

wrong than you were a few minutes ago so.  So we're always wrong, technically 

speaking.” (Ep. 19)

Comfort with being wrong and accepting limits to understanding may be outcomes of the 

demands of practice.  Decisions are sometimes hastily taken, code slapped down, perhaps 

due to pressures on time, but also because it is pragmatic to work this way.  Sometimes 

being wrong is strategic, it is employed.  Bugs are allowed to reoccur, giving developers 

time to do other work, but also to learn.  By observing behaviour in software and the 

effects of behaviour on clients, developers develop understanding about priorities and 

technologies, and identify what they still need to work out.   

In paired interactions, developers do not appear to penalise each other for getting it 

wrong, even when a mistaken idea results in code that takes a significant time to imple-

ment or which has to be reverted.   Likewise, developers do not always express shame at 

having done something wrong, even if the error results in a bug that is public-facing.  They 

will make the same mistake again and again if it supports their preferred practice.  Some 

errors don’t matter, particularly when considered in terms of the priorities that a developer 

has. 

Being wrong may be a matter of course in developers’ lives, but sometimes, the 

simplest errors can turn out to be the most severe.  In this case handling takes a large 

amount of (relative) time, demands multiple, intense rounds of local problem solving or 

causes stress or anxiety.
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Severe incidents begin in much the same way that other error occurrences do: an error 

condition arises that is unexpected. A developer begins a process of investigation, making 

guesses about which of his previous actions and decisions resulted in the problem.  He 

gathers information, perhaps by examining areas of the code that may be related, and 

trying things out. The difference between severe instances and other incidents is that 

efforts do not yield information or changes in program state that remove the error. 

Furthermore, the incremental outcomes do not “make sense”.  Things can take a turn for 

the worse and go horribly wrong. 

Simple issues that turn out to be severe are surprising: one might not expect experienced 

developers to get stumped by a configuration problem or by a class path issue, but self-

proclaimed novices and experienced developers engage in similar handling processes 

while solving these kinds of issues.  The suggestion given in this data supports findings in 

problem solving research more generally (Reason, 1990) that novices and experts get lost, 

and when they do, they exhibit the same ineffective behaviours.    

Within the catalogue, two other incidents that might be characterised as the most severe 

occurred during simple, routine activities like the one that tripped Dereck up. Evan had 

formed a sense in prior work of the tasks involved in getting a software package up and 

running, but spent a considerable amount of time fiddling with configurations in the wrong 

file trying to get things to work.  Marcus and Joe likewise had an issue with configuration 

and knew they needed to check to see if a file was in a directory.  What they failed to 

notice, however, was that they checked in the wrong place.

Severe incidents may be critical if they have effects beyond the developer’s individual 

experience.  Dereck knew that he needed to manually copy files to the server, but commit-

ted a slip in execution.  His issue was critical, because the error resulted in his team 

breaking a contract of service in the department.  The handling was also severe because his 
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ability to act was constrained by circumstances in the environment.  The issues had several 

simple resolutions, but handling developed into a stressful and uncomfortable experience.  

Dereck knew what he needed to do, but was not able to perform necessary steps for 

recovery. 

8.3 Limitations

It is difficult when using naturalistic observation to determine what should “count” as an 

error (Norman, 1981, p.13).  Analysts are not usually able to establish causes based on 

observation alone (Hollnagel, 1998, p. 78). It is not always practical to determine whether 

or not an informant had a wrong intention, the criterion by which errors are generally 

categorised as having been mistakes (Reason, 1990). Likewise, the information available 

in research data may not allow an analyst to determine how well or by what means an 

informant “understood” a situation they were in.  

The research in this thesis has not established causes, but has noted behavioural aspects 

of error occurrences, that is, what was done when the error occurred, such as omissions, 

insertions, substitutions and reversals (Reason, 1984, p. 530). Naturalistic data about error 

is by its nature selective, and so the studies reported here may have descriptive power, but 

cannot be put to predictive uses (Norman, 1981).

8.3.1 The Vagaries of Access

With few exceptions (Prior, 2011), empirical studies in software engineering must make 

use of opportunistic, short-term access to field sites.  Access is often constrained, and 

management can place severe restrictions on research design and reporting (Perry & Stieg, 

1993).  It may only be possible to observe developers at the desk for short periods of time, 

researchers may have to rely on mixed collections method including “serendipitous 

observation” (Robinson et al., 2007, p. 541).  More commonly, in-depth knowledge of 

developer practices is reported by industrial researchers with longstanding experience in a 
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company (Endres, 1975), or emerges from a series of studies undertaken by the same 

group of researchers over time (Aranda & Venolia, 2009; Guo, Zimmermann, Nagappan, 

& Murphy, 2011; Ko, DeLine & Venolia, 2007). 

Limitations to access were not overcome for this research, they were worked around. 

Relatively unstructured, open access was gained to sites at which to conduct interviews 

through contacts within standing professional and academic networks. Collection was 

tempered with gleaning, by seeking data from within sources that had been collected by 

other researchers and professionals.

8.3.2 Credibility and Reliability

One way to improve credibility in qualitative research is to have more than one researcher 

collect and interpret data, a solution that was not possible for these studies. Instead, 

concurrent triangulation (Easterbrook et al., 2008), was undertaken by gathering and 

comparing data from multiple sources that represent different aspects of development 

work. Data was compared for points of similarity and difference. One source of data was 

used that is publicly available, and the methodology used in analysis has been documented  

so that other researchers can assess its credibility (Robinson et al., 2007).

To supplement information lacking in one set of data, evidence drawn from different 

studies has been used not only to triangulate, but to build up contextual understanding, a 

technique that has been described as colligation (Anderson, 1997). This was necessary 

because the nature of the data sources reflected different kinds of problems and different 

tasks and were recounted in varying degrees of precision.

Fieldwork is said to be less reliable than other data collection methods, because 

collection is so personal, a weakness that can be exacerbated when the researcher is close 

to the environment studied (Robinson et al., 2007). Ethnographers ultimately must 

overcome limitations of closeness through the development of their reflexive sense, the 
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way they come to consider both the insider and outsider perspectives (Hammersley & 

Atkinson, 2007).   Straddling these positions permits researchers to “‘know’ in ways that 

others don’t and can’t.” (Anderson, 1997), however the limitations associated with 

closeness will always remain.  Researchers are a part of the world they study, and data can 

never be “pure” (Hammersley & Atkinson, 2007).

8.3.3 Fixed Records

Chapter 3 argued that retrospective analysis cannot provide a full explanation for error in 

software development, yet the corpus was formed largely from secondary sources 

(McGinn, 2008), or concern work that was performed in the past. There are clear limits 

and risks associated with this approach. 

When given indirect access to materials, researchers must infer behaviour and action 

that was undertaken in the past, to study both in terms of “material traces” that are 

“fixed” (Scott, 1990, p. 4). In fact, analysis was undertaken without any direct access to the 

situations described in accounts, and in some cases with limited access to the informants or 

creators of the materials.

To counter these limitations, a considerable amount of time was spent assessing the 

gathered material for quality, completeness and representativeness. The video recordings 

are records of work that were created with an eye toward the public (Scott, 1990), and 

analysis has accounted for ways in which the material is more reactive (Laurier & Philo, 

2006), and in some cases not as complete as might have been hoped. It has been necessary 

to tease out the ways in which the accounts and exchanges were “geared” both toward the 

immediate, practical needs of the people depicted in them, but also toward the needs of the 

collectors (Scott, 1990).

The perceived and documented weaknesses associated with reactivity (Laurier & Philo, 

2006) aside, the videos used depict a fair amount of unstructured, naturalistic exchange.  
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Participants who create video provide their own record of how they “view their 

world” (Hammersley & Atkinson, 2007, p. 149) and this has been leveraged in this 

research by examining speech for reminders that sources may be naturalistic, but are not 

natural.  

8.4 A Partial View

Human error has long been understood and explained with examples that illustrate the 

characteristics of error (Norman, 1981). In a similar manner, the analysis in this chapter 

was intended to give prominence to developers’ own voices in highlighting issues related 

to error.  The aim in this and the prior three chapters was to convey how error is handled 

during software development by establishing a set of accounts that describe what happens, 

and what developers make of it.

By using this perspective to examine sets of data that depict development in different 

contexts, an understanding of error has emerged that better reflects programming as a 

human activity (Capretz, 2014).  While it is hoped that the effort has been progressive, that 

the heights are higher and the skies clearer than they were before, it is recognised that the 

view remains partial (Horst, 2009).  This is only a start.
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9. Conclusion

The developers who informed this research would probably agree that most errors in 

software development are due to problems of understanding, or of mismatched skill.  They 

would question the corresponding views on expertise that are conveyed by these terms.  

Expertise in software development is not something once achieved that never changes.  

Development practice is marked by time (Winograd & Flores, 1987) and influenced by the 

larger environment in which it takes place (Curtis, Krasner & Iscoe, 1988). The knowledge 

required to develop software cannot help but change. 

The tasks performed by developers are likewise active, continuous and dynamic. 

Performance is underpinned by skill and ability that develop over time.  The problems 

encountered by developers are often novel, they require new knowledge or skills to be 

employed, or represent activities that the developers do not routinely perform. The 

problems are “new to me”.  

Though determination of “fit” in software engineering is commonly recognised to be 

dependent on an agreement from a requestor that conditions have been satisfied, findings 

better support Rasmussen’s view that assessment of what is appropriate is personal (1985).  

Requestors will state that a condition has been satisfied, will determine strategic success, 

but this can only be done after-the-fact, with the value of hindsight and once the perceived 

goals have been established and achieved (Reason, 1990). 

 At the desk, at the drawing board, it is the developer who must assess and reassess “fit” 

according to their understanding of what is needed right now to keep work moving.  When 

errors occur, developers need to understand what they are seeing, they need to be able to 

do things at this point in time with their tools, within their capabilities, and in light of their 

personal, project and organisational goals.  They do this, in part, through error handling.  
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Errors usually aren’t left behind, they are put right before a file is released, committed, 

or saved.  Developers use error occurrences to form or test expectations for how software 

should behave, to direct tasks and to verify higher-order task completion. Analysis of error 

provides one way to examine software developers that reflects their work as makers of 

“grand conceptual structures” (Brooks, 1995, p.7) but also as operators of tools and users 

of systems.  

9.1 Implications

Identification and recovery hinge on the ways in which developers assess the current 

moment, but also on how they come to modify practice over time.  Endres suggested that 

developers form their own theories about why things go wrong, and that as a result, they 

modify programming style.    He described this as a learning process (1975), and it is here 

that the greatest implications for this research lie.  Understanding more about error 

detection and recovery stand to illuminate how developers develop competence, how they 

learn and grow.

The importance of information gathering to problem solving is established (Lawrance et 

al., 2013), but what is done with the information, just how it is transferred from book to 

practice or from one experience to another (Eraut, 1994) to form understanding should be 

explored in more detail.

Greater attention needs to be given to the nuances of error-driven practice.  Reason 

notes that there are often more forcing functions presented to operators while taking 

something apart, in which each step in taking something apart is "is cued by the physical 

characteristics of the item." (Reason, 1990).  In software development, by contrast, 

inabilities to compile, to run, continually stop the putting together. 

Developers are complicit in this, adopting methodologies like test driven development 

that require them to continually fail forward.  It is clear that the errors presented by 
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systems are leveraged and relied upon, but more investigation can be made do discover 

how this is done and the purposes it serves. 

Likewise, findings suggest that feelings inform and modulate decision making in the 

midst of error handling, but it is not entirely clear how or to what purpose.  Emotion may 

serve  or hinder developers, or it may be that feelings are of principal use to researchers, 

providing verbal signals or hooks into experiences that are under examination.  More 

investigation should be made before drawing either conclusion. 

9.2 A Framework for Examining Practice

To understand the active qualities of error in software development, relations rather than 

causes have been examined. Incidents were constructed out of fine-grained information 

provided by informants. Public-facing critical and personally severe incidents were 

examined, but so were everyday issues.  Local problem solving was examined in develop-

ment practice that is primarily strategic (Reason, 1990), forward looking or deliberative 

(Eraut, 1994) but also as it unfolded at the desk. 

Analysis drew out decision points that relate to the error handling stages, and examined 

modulators of handling processes including blame, suspicion and doubt. Developers’ 

temporal orientation toward software was examined: how they postulate about the future, 

describe things in the present moment, and reflect on recent experiences.

This approach advances empirical studies of software development in two ways. 

Theoretically, it expands the conceptual space for error in software engineering by 

providing insight into errors that occur between commits and releases. In so doing, error  is 

permitted to be a normal aspect of development practice. By enlarging our understanding 

of the role errors play in software development, we are positioned to enrich our under-

standing of how competence, knowledge and skill develop in the circumstances and 

situations that comprise daily practice.  If not grand or universal in its achievements 
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(Ekstedt, Johnson, & Jacobson, 2012), this research has described how errors are encoun-

tered and handled by professional developers.  It joins other recent efforts (Päivärinta  & 

Smolander,  2015), in establishing a framework to situate findings related to professional 

practice that are not tied to specific software engineering tasks, tools or methodologies.

9.3 The Changing Nature of Expertise

The timeframe in which incidents are examined and the perspective developers hold 

toward them are significant.  Gathered early in a development process, accounts may lend 

themselves to categorisation as skill-based errors of action.  It is easy to conclude that they 

were committed by novices or due to incompetence.  

When accounts are gathered in the midst of work or are constructed out of evidence 

representing a longer arc of time, murky areas of practice emerge that require closer 

examination of contextual and circumstantial details. These details may need to be 

carefully tracked or elicited after the fact, because the practice with which they are 

intertwined may be so fresh or unformed that the developer (and analysts) may not have 

the benefit (or weakness) of hindsight.

When practice is examined over time and out of the bounds of tasks and software 

engineering methodology, we are given a sense of how expertise changes, of how it 

develops and grows.  This sense is formed by observing practice, but also by listening to 

what developers say.  Developers use future facing statements to create boundaries around 

the problem solving space, to constrain and restrict problems and to limit responsibility. 

When developers narrate the present moment, they are more affective, the actions they take 

are often tactical. When asked to reflect, developers are at once astute and unguarded. 

Looking back, developers tell us how technologies work or about how the wheels of 

organisations grind.  They may give indications that the knowledge they share was learned 

as a consequence of the issue they are discussing, but usually such a connection can only 
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be surmised. If we listen closely, developers reveal what they needed, what they did not 

know, what they did not realise in the midst of an issue, or what they still don’t under-

stand. They also tell us what they believe they should have done, they indicate practices 

they would like to routinely follow  If we continue to listen, they will tell us even more.
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Appendices

A. Conventions and Tools

A.1 Transcription

Audio recorded interviews, design video and programming videos were transcribed 

using the same basic transcription conventions, defined to capture details of speech and 

interaction. Conventions were adjusted to meet requirements of different media. For 

example, audio interviews taken for Chapter 7 do not permit the transcription of behaviour 

or action that took place while work was in progress, while the design videos (Chapter 5. 

At the Drawing Board) do. The programming videos (Chapter 6) included a fair amount of 

reading of content on the screen which was indicated where possible using quotes in the 

transcription and a note indicating that the developer was Reading or Narrating.

Conventions were adapted from two sources. In “Making Humour Work: Creativity on 

the Job”, Holmes analysed everyday workplace interaction to examine claims that humour 

is associated with creativity in the work place (Holmes, 2007). Transcription conventions 

given in the IASRDR 2009 tutorial on analysing design meetings also made use of 

Holmes’ conventions and were used to develop notation.

Transcriptions were made using the software Transcriptions (https: //code.google. com/

p/transcriptions/) (R.I.P.) and its commercial counterpart f5, available at: http: //www. 

audiotranskription. de.  Timestamps were entered into the texts following the conventions 

of these programs.  Timestamps were noted at four or five minute increments, but have 

also been entered during analysis to indicate the start and end of incidents and to mark 

other points of interest. 

Transcription Conventions

wow

“ ”

+

Underlining indicate emphatic stress

Quotes indicate when the words a speaker 
makes mirror text being written on a screen 
or read from a specification. 

+ Symbols indicate pauses. Pauses were not 
timed, however longer pauses are repre-
sented with multiple + symbols (generated 
using a “one one thousand, two one thou-
sand count”). 

https://code.google.com/p/transcriptions/
https://code.google.com/p/transcriptions/
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Table A.1: Transcription conventions.

A.2 Signalling Devices

The critical decision method protocol for collecting retrospective accounts of work 

suggests that verbal signals may be given during interviews that will indicate decision 

points or developments in a problem solving sequence (Crandall et al., 2006). This was 

also found during analysis to be true of accounts given by pairs. 

In the data analysed for the studies reported in Chapters 5, 6 and 7, verbal signals 

indicated how an insight was perceived at the time of the incident or interview, or indicated 

a way in which the experience unfolded that ran counter to the informant’s former or 

desired experience. Verbal signals were also found to highlight the detection of a problem, 

or indicate a resolution. They indicated options that an informant considered, or revealed 

constraints on action brought about by policies or practices in the broader work environ-

.../... /... 

[Reads from prompt]

[Gest: moves hand]

[WB: draws a box]

[Voce: Character| 

Falsetto]

(Laughs)

(inaudible)

(so then we)

--

___

Interjection (e. g. of assent) or simultaneous 
speech, placed at approximate point of oc-
currence. 

Transcriber's comments regarding action on 
the screen. Comments may include refer-
ence to the name of a corresponding image 
file that depicts a scene from the video at 
that point. 

Comment describing a gesture that is made 
on-screen. 

Comment about activity at the whiteboard. 

Comment indicating that the speaker is 
using a voice. Start and end points are indi-
cated with:. 

Paralinguistic activity is described within 
parentheses, may also occur within com-
ments

Inaudible text

Best guess about inaudible text

Cut-off utterance. Also used to indicate 
where speaker 'jumps in'

Trailing off

Underscores are used to anonymize data. 
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ment. Broad characteristics of signals are given below, while a sample of verbal signals 

collected from the data can be read in Table A.2. 

Repetition often indicates the presence of an incident to the analyst, particularly in 

regards to conceptual or design issues that do not have clearly demarcated, corresponding 

material actions. Sometimes repetition of a single phrase or detail may “name” the problem 

for the analyst. Verbal signals related to repetition include language that indicated 

disagreement (e. g. "I don't think so") or lack of understanding (e. g "I don't know"), and 

may have been accompanied by expressions of lack of confidence in the ideas being 

expressed. 

Signals may also be gestural.  Lack of confidence might be signalled by repeated turns 

away from a whiteboard as if to seek assent from the partner and the corresponding 

provision of assent in the form of paralinguistic utterances (e. g. "mm hmm", "yeah").

Signals may be reactive.  Informants on the videos do not always indicate what they are 

thinking or why they perform some actions. The interview data I collected was likewise at 

times a bit too "artful" (Hammersley, 2003). It was sometimes evident that informants said 

what they thought was wanted for the research, or relayed a desired behaviour that did not 

match other evidence.  The developers were at also times reactive to the experience of 

being filmed (Laurier & Philo, 2006). In the quote that follows, Marcus displays a clear 

awareness of the recording.

"As soon as I know I'm recorded, I start talking a lot. I should have been a DJ." - 

(Marcus, Ep. 1, 10:30). 

It is not possible to say that Marcus’ behaviour was different than it would have been if he 

hadn’t been recorded, but it, along with other indicators served as signalling devices during 

analysis, reminders that the videos, while naturalistic, were not entirely natural

Verbal Signals (Selected)

Reasoning

Naming Prob-
lems:

Worry/
Concern:

it took me a moment to realise
poking around in the dark”
Sticking point
That’s a funniness
I’m quite wary of screwing things up
It doesn’t feel right”
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Table A.2. Verbal signals used to develop sequences of error handling. This list is 
representative, not comprehensive. 

Serendipity

Preferred ways 
of working:

Interestingness

Prior experi-
ence

Suddenly it worked 
That rang a bell straight away 
I have been lucky 
Touch wood
I don't like to
The way I usually do that is
Around here
That’s interesting
Strange, very strange
That’s funny
The problem was much simpler before
The last time
I’ve seen it before

B. Notes on At the Drawing Board

The study At the Drawing Board is reported in Chapter 5.  It drew upon data collected at 

Site A.  For an overview of sites, see Chapter 4, Section 4.3.  Other detail about data  

collection and analysis are reported in Chapter 4, Section 4.4.1, and in Chapter 5, Section 

5.2.

B.1 Columnar Analysis

Columnar transcription conventions were adapted from Interaction analysis: Foundations 

and practice (Jordan & Henderson, 1995).  Data included in the columnar transcription 

was taken from the full transcription of dialogue, but segmented and organised to facilitate 

analysis.  Multiple time-stamped entries from the rich transcription were at times grouped 

into a single exchange, represented within a table row.  Guindon's 'Kinds of 

Knowledge' (1990) (see also Section B.3 for a summary) were used to annotate the 

'analysis' column for individual exchanges.  The schema for the columnar transcription is 
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given in Table B.1.1, while an excerpt from a transcription is provided in Table B.2.2, 

below.  

Table B.1.1: Columnar transcription.

In Table B.1.2 that follows, an excerpt is given of the columnar analysis made for the 
incident reported in Chapter 5, Section 5.3.3.

Episode Number (~length of the episode in minutes)

Summary:  A brief two or three sentence explanation of the episode; comparable to the 

information supplied in the Content Log described by Jordan and Austin (1995)

Verbal

#00:41:23.0#

Verbal data of the exchange 
is included here, underneath 
a timestamp and with cross 
references [n] to gestures, 
actions, whiteboard activity, 
or references by designers 
to the design prompt.

Gesture/Ac-
tion

[n] note on 
gesture

Whiteboard

[n] note on 
whiteboard 
activity

Reference to 
prompt

[n] note on 
use of prompt 

Analysis

Commentary 
on design ac-
tivity given 
here

Episode 1 ( < 1 min.)
F wonders how the results of the simulation are quantified.  Two issues are intertwined: one, how 
simulations are configured, reported, and saved by the user in the user interface, and; two, what represents 
a simulation, what constitutes success or failure. The first issue prompts the designers to consider 
immediate implications of managing simulations.  The second relates to how factors such as speed, 
distance, and car density on roads should optimally be combined by students to produce simulations.

Verbal Gesture/Action
White-
board Prompt Analysis
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Table B.1.2 Excerpt of columnar analysis. This is an excerpt from the incident analysed in 
Chapter 5, Section 5.3.3

#00:08:22.1#
 
F: Well, so one is you want to 
change the layout of the map,
 
M: um hmm
 
F: two is you want to change the 
parameters you gave it in terms of 
speeds and timings, right? And 
three, you want to run it, meaning 
little dots are moving, showing 
you how the traffic is flowing. 
And what does that mean? [1]
 
F: How do you? What kind of 
metric do you get back to tell you 
this is working, you know? How 
do you assess the success
 
M: Yeah it kind of feels like (in-
audible)/of the timing?

#00:08:58.0#

M: It's nice in the simulation to be 
able to watch what's going on 
here, and you need kind of a sum-
mary area to kind of tell you[1] 
[2]
 
F: Yes, mm hmm. [3]  
 
M: to kind of tell you what your 
settings--
 
F: A dashboard.
 
M:-- are for the individual inter-
sections, and what kind of effect, 
like how much is the traffic back-
up at this light
 
F: Exactly.
 
M: or what's the average wait-
time at this light [4] . So in terms 
of objects that they need to deal 
with, there's, are we going to call 
them streets or roads [5] ?

[1] M draws a 
pattern of lines 
on the Drawing 
Area 

[1] M waves 
hand over an 
area to the right 
of the grid he 
has been draw-
ing.
 
[3] F, with hand 
toward the area 
to the right he 
has added
 
[4] M shoulder 
shrugs

[2] M 
adds a 
rec-
tangular 
block to 
the right-
hand side 
of the 
board

[5] 
Refers 
to de-
sign 
prompt

F enumerates functions the 
program should support. 
 problem framing   ("you 
want..."), with reference to 
the solution space ("meaning 
little dots are moving, show-
ing you...").
 
It marks the introduction of 
the "what does it's working 
mean" difficulty. 
 
 
Asking questions: "what does 
that mean?  How do you? 
What kind of metric do you 
get back to tell you this is 
working, you know?  How do 
you assess the success?"

M moves into the solution 
space with a UI feature: the 
addition of the  Summary 
Area (Sect. 3.3).  The external 
representation is low-fi, just a 
box, but he verbally notes the 
kinds of behaviours this sec-
tion will support.  His refer-
ence to  "what kind of effect" 
is the only reference to the 
problem raised by F. 
 
Note that M makes clear the 
transition to solution with a 
hand gesture over the right 
hand portion of the screen 
that she mirrors.
 
F introduces the concept 
'dashboard' as a way to de-
scribe the purpose of the sum-
mary area, but this is not 
picked up by M.
 
M introduces a design strate-
gy (Sect 3.4) here with dis-
cussion about "objects that 
they need to deal with".  
These are documented as a 
list using a blue marker.
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B.2 Design Prompt

Following is the design prompt used by Kasia and Bill in the Amberpoint design session.  

The prompt was written by the organisers of the "Studying Professional Software 

Design" (SPSD) workshop; it was issued to designers at the time of participation. 

Design Prompt: Traffic Signal Simulator 

Problem Description
For the next two hours, you will be tasked with designing a traffic flow simulation pro- gram. 

Your client for this project is Professor E, who teaches civil engineering at UCI. One of the courses 
she teaches has a section on traffic signal timing, and according to her, this is a particularly 
challenging subject for her students. In short, traffic signal timing involves determining the amount 
of time that each of an intersection’s traffic lights spend being green, yellow, and red, in order to 
allow cars in to flow through the intersection from each direction in a fluid manner. In the ideal 
case, the amount of time that people spend waiting is minimized by the chosen settings for a given 
intersection’s traffic lights. This can be a very subtle matter: changing the timing at a single 
intersection by a couple of seconds can have far-reaching effects on the traffic in the surrounding 
areas. 

There is a great deal of theory on this subject, but Professor E. has found that her students find the 
topic quite abstract. She wants to provide them with some software that they can use to “play” with 
different traffic signal timing schemes, in different scenarios. She anticipates that this will allow 
her students to learn from practice, by seeing first-hand some of the patterns that govern the 
subject. 

Requirements
The following broad requirements should be followed when designing this system: 

1. Students must be able to create a visual map of an area, laying out roads in a pattern of their 
choosing. The resulting map need not be complex, but should allow for roads of varying 
length to be placed, and different arrangements of intersections to be created. Your 
approach should readily accommodate at least six intersections, if not more. 

2. Students must be able to describe the behavior of the traffic lights at each of the intersections. It 
is up to you to determine what the exact interaction will be, but a variety of sequences and 
timing schemes should be allowed. Your approach should also be able to accommodate 
left-hand turns protected by left-hand green arrow lights. In addition: 

1. Combinations of individual signals that would result in crashes should not be allowed. 

2. Every intersection on the map must have traffic lights (there are not any stop signs, 
overpasses, or other variations). All intersections will be 4-way: there are no “T” intersec-
tions, nor one-way roads. 

3. Students must be able to design each intersection with or without the option to have 
sensors that detect whether any cars are present in a given lane. The intersection’s lights’ 
behavior should be able to change based on the input from these sensors, though the exact 
behavior of this feature is up to you. 
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3. Based on the map created, and the intersection timing schemes, the students must be able to 
simulate traffic flows on the map. The traffic levels should be conveyed visually to the user 
in a real-time manner, as they emerge in the simulation. The current state of the intersec-
tions’ traffic lights should also be depicted visually, and updated when they change. It is up 
to you how to present this information to the students using your program. For example, 
you may choose to depict individual cars, or to use a more abstract representation. 

4. Students should be able to change the traffic density that enters the map on a given road. For 
example, it should be possible to create a busy road, or a seldom- used one, and any variation in 
between. How exactly this is declared by the user and depicted by the system is up to you. 

Broadly, the tool should be easy to use, and should encourage students to explore multiple 
alternative approaches. Students should be able to observe any problems with their map’s timing 
scheme, alter it, and see the results of their changes on the traffic patterns. 

This program is not meant to be an exact, scientific simulation, but aims to simply illustrate the 
basic effect that traffic signal timing has on traffic. If you wish, you may assume that you will be 
able to reuse an existing software package that provides relevant mathematical functionality such 
as statistical distributions, random number generators, and queuing theory. 

You may add additional features and details to the simulation, if you think that they would support 
these goals. 

Your design will primarily be evaluated based on its elegance and clarity – both in its overall 
solution and envisioned implementation structure. 

Desired Outcomes
Your work on this design should focus on two main issues: 

1. You must design the interaction that the students will have with the system. You should design 
the basic appearance of the program, as well as the means by which the user creates a map, sets 
traffic timing schemes, and views traffic simulations. 

2. You must design the basic structure of the code that will be used to implement this system. You 
should focus on the important design decisions that form the foundation of the implementation, and 
work those out to the depth you believe is needed. 

The result of this session should be: the ability to present your design to a team of soft- ware 
developers who will be tasked with actually implementing it. The level of competency you can 
expect is that of students who just completed a basic computer science or software engineering 
undergraduate degree. You do not need to create a complete, final diagram to be handed off to an 
implementation team. But you should have an under- standing that is sufficient to explain how to 
implement the system to competent developers, without requiring them to make many high-level 
design decisions on their own. 

To simulate this hand-off, you will be asked to briefly explain the above two aspects of your design 
after the design session is over. 

Timeline
• 1hourand50minutes:Designsession 

• 10 minutes: Break / collect thoughts
• 10 minutes: Explanation of your design 

• 10 minutes: Exit questionnaire 
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B.3 Kinds of Expert Knowledge

In the 1990 paper Knowledge exploited by experts during software system design, Ray-

monde Guindon analysed the specialized knowledge used by software designers when 

performing early design tasks.  Her analysis included information about the kinds of new 

knowledge generated, the ways in which designers leverage existing knowledge, and a set 

of heuristics used to seek and select design solutions.  Guindon's findings from this paper 

are extracted and consolidated here into a catalogue that was used as an aid to analysis of 

early design activities in the SPSD session.  They are enumerated according to the section 

of that paper in which they appear.

Sect. 3.1 Retrieval or simulation of scenarios in 

the problem domain (the real world).  Interwoven 

with solution development, spoken scenarios are 

often accompanied by external representations in 

the form of diagrams with annotations.

Scenarios serve five purposes:

1. Understand given requirements - before problem 

solving, as a way of confirming understanding of 

requirements.

2. Understand inferred requirements - upon infer-

ring requirements, as a way of confirming the rele-

vance of the discovery.

3. Solution development - to generate new ideas, to 

jumpstart progress.  When used in this way, the 

scenarios are used to frame and structure the prob-

lem. 

4. Discovery (unplanned) of new requirements - 

used to simulate and evaluate the solution.

5. Discovery (unplanned) of partial solutions -  the 

scenario triggers the recognition of a partial 

solution.

Sect. 3.2 Requirements elaboration, used to re-

duce ambiguity inherent in the design prompt and to 

decrease the range of possible solutions by acting as 

"simplifying assumptions" (p. 290).  Run through-

out the design session, structure and frames the 

problem, and suggests evaluation criteria for solu-

tion selection.  External representations in the form 

of lists of notes are used to "keep track" of require-

ments.

Inferred constraint - unstated in the given require-

ments, but are inferred as logically necessary based 

on what is stated, and the designer's own knowledge 

of the problem domain.  They reduce incomplete-

ness and ambiguity in the stated requirements, with 

direct consequences for the solution.  In design 

sessions, they often result in changes in immediate 

design goals.  That is, the designers shift the focus 

of their thinking to handle the newly inferred re-

quirement.

Added requirement - a desirable but not necessary  

requirement for the production of a logically sound 

design.  They reflect preferred evaluation criteria, or 

rules by which designers signify stopping points.

Sect. 3.3 Design Solutions, the designer's under-

standing of the solution, and the way this under-

standing is externally represented The way a solu-

tion is decomposed into sub-problems may vary 

between designers, as may the selection of notation-

al systems for representation.  In general, she ob-

served the following uses of external 

representations:

1. to express the design solution

2. to support mental simulations of the solution in 

the form of "test cases" based on knowledge of the 

problem domain. 

3.  reveal missing information 
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4. ensure completeness of the solution

Mental simulations uncover various kinds of "bugs" 

in the solution:

1. inconsistencies within given or inferred require-

ments

2. inconsistencies between parts of the solution

3. incompleteness of partial solutions in respect to 

the whole 

N. B. Guindon states a fourth, but it seems to be a 

duplication of an earlier point

Notational systems serve two purposes:

• express the design solution

• tools for developing the solution

Sect. 3.4 Design strategies, methods and nota-

tions, that is, the sequence of activities to be per-

formed, as structured by a recognized design 

method.  Examples of design strategies given are: 

top-down, data structure-oriented and object-orient-

ed structure.  Designers can use more than one strat-

egy in a single session, and may also use multiple 

notational systems.

Sect 3.5 Problem solving and software design 

schema, or higher order knowledge structures such 

as divide-and-conquer and generate-and-test.  Guin-

don found that in her data, specialized schema used 

by designers varied in complexity and granularity.  

She suggested that the schema is a "complex rule 

composed of a pattern which specifies the similari-

ties in requirements between different instances of a 

class of systems (e. g. resource allocation 

systems)." (p.  296).  Schema are selected based on 

similarities between the current problem and known 

patterns.

Sect. 3.6 Design heuristics are used by designers in 

problem structuring and solution generation

1. consider a simpler problem first, then later ex-

pand the solution

2. simulate scenarios in the problem domain to 

acquire more information about the problem struc-

ture

3. identify system functions that can be performed 

nearly independently and divide the system into 

corresponding subsystems

4. avoid serious mistakes or catastrophes

5. satisfy the most important constraints or require-

ments first

6. keep the design solution as simple as possible

7. make simplifying assumptions about the require-

ments

8. keep the solution parts as consistent

9. delay commitment to decision when there is in-

sufficient information; re-examine tentative deci-

sions as new information is acquired.

Sect. 3.7 Preferred evaluation criteria are adopted 

in order to manage the ill-defined nature of design 

problems.  Designers adopt a "small set of personal-

ized criteria" (p. 298) to guide solution generation 

and selection.  For example, one of her developers 

adopted high reliability as a criterion.  Unstated in 

the requirements, this criterion was used in schema 

selection, and thus to reduce the set of possible 

designs to consider.  Other observed criteria includ-

ed simplicity of solution and simplicity of design 

process.

C. Notes on At the Desk

The study At the Desk is reported in Chapter 6.  It drew upon data collected at Site C.  For 

an overview of sites, see Chapter 4, Section 4.3.  Other detail about data collection and 

analysis are reported in Chapter 4, Section 4.4.2, and in Chapter 6, Section 6.2.
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C.1. Transcription and Cataloguing

Analysis began with the selection of a data set. A master catalogue was made to track the 

sixty videos uploaded to a web hosting site. The catalogue documented metadata from the 

video hosting website, the code repository, and information required for research. It also 

included information on video quality, notes about the content, and approximate recording 

date.  Twenty episodes were selected for deeper examination, and were transcribed using 

the conventions noted in appendix A.   Notes on Cataloguing follow.

Episodes 1−10: A near-verbatim transcription was created of each episode. A 

content log was developed to note what happened at regular intervals. The content 

logs were coded to capture impressions about themes running through the data. The 

codes were analysed and compared to evidence of themes that emerged in analysis 

of the design videos reported in Chapter 5 and the first set of interviews taken at 

Site B.  This analysis gave a sense for incident kinds, concentration, and of 

curiosities in the way the developers talked about them. It also familiarised the 

researcher with environmental context and working style of the developers.

A catalogue of observable features of incidents was created to include information 

about the start time, end time and duration of the incident, a brief description with 

more detailed impressions about the significance of the incidence, the driver, the 

end result, files involved, a rough identification of the source of the error, and a 

snippet of dialogue that stood out as capturing the essence of the incident.

Episode 11-20: A near verbatim transcription of episodes was created, that 

included additional detail about the files worked on, relationship to other films, and 

related screenshots. Screenshots were taken to clarify what was said at points in a 

handling sequence and also to track shifts in activity in the software environment. 

Transcripts were annotated to reference screen grabs and relevant action.  

Content logs were not maintained for episodes 11-20; however potential incidents 

were highlighted in-line immediately upon finishing the transcription. The cata-

logue developed for the first ten episodes was refined and extended to include 

information for all twenty episodes; this information included file names and notes 

to related content.  
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Exclusions: The audio track for episode 19 was not recorded at the same time as 

the screen-cast, making it impossible to analyse activity at a sufficient level of 

detail.  Episode 20 was recorded after a several week-long break, and took a 

different format to those previously recorded, adding a superimposed video of the 

developers over the screen cast. These episodes also mark the introduction of a new 

development environment; work is performed on a new laptop running a different 

operating system.

Beyond Episode 20: Video for episodes 21-50 was sampled to determine visual 

and audio quality, to gain a sense for the content of the episode, and to roughly 

catalogue files that were touched. Notes were added to the master catalog about 

content when striking evidence of a potential incident was observed, or when 

issues relating to work prior to episode 20 was mentioned. Episodes 26 and 27 

have been fully transcribed for future analysis.

C.2. Incident Catalogue

The table below details features of forty-three incidents around which analysis centred.  An 

additional twenty-five incidents that were considered are not reported here.  Eleven were 

used to develop contextual understanding, while fourteen were related to conceptual design 

or to global aims for the project.  Though they have been used to inform analysis, their data 

does not cohere with the incidents catalogued  below.  For example, in the case of contex-

tual issues, the issue may have involved problem-solving, but not clear stages of handling.  

In particular, recovery may not have resulted in changes that were made or identified 

within a particular tool or file; the resolution may instead have come in the form of 

satisfaction or consensus about an idea. 

Entire rows have been shaded to indicate issues that were deferred (light yellow) and 

issues for which problem solving was aborted on film (light orange) .  Cells in the Cue 

column have been coloured (light green) to indicate action based detection. The duration of 

handling has been marked in red and made bold to indicate incidents longer than five 

minutes in length.  

• Episode number (Ep.) The number corresponds to numbering on internet hosting 

site, the letter is the identifier assigned to an incident during analysis.
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• Time  indicates the start and end points of incidents.  The start time for incidents 

were marked at the point at which a task related to the initial detection was ascer-

tained to have begun.  The duration of incidents that took longer than five minutes 

to handle are marked in a red, bold font.

• Description (Driver), a brief characterisation of the task.  The developer at the 

keyboard is marked in parenthesis.

• Detection,  the verbal response given by one or both developers at or near the point 

of detection.  Corresponding indicators of identification or recovery have not been 

given because those moments are not so clearly defined or relatable to one another.

• Cue,  what  is believed to have spurred detection.  In most cases these are outcome-

based.  Action-based detections are highlighted in green.

• Location, the source of the problem based on the outcomes of the identification 

and recovery.  

 Ep.

 1-A

1-B

1-C

1-D

2-A

2-B

 Time

08:18- 
08:52

11:00
-12:00

15:00-
17:40

20:00-
20:41

09:02-
11:29

12:49-
14:18

Description
(Driver)

Marcus shows Joe how 
to remove strange be-
haviour in the develop-
ment web server. (Joe)
Joe borrows from an old 
CSS file to improve lay-
out. (Joe)

Marcus uses incorrect 
wiki editing syntax to 
define a variable. (Mar-
cus)
Marcus uses incorrect 
wiki editing syntax, re-
sulting in a rendering 
error.
Joe questions the addi-
tion of whitespace char-
acters. (Marcus)

Marcus can't remember 
a package name. (Mar-
cus)

Detection

M: So we have a prob-
lem there, and that's a 
funniness...

J: Oh, I have to remem-
ber how to do this.

J: Do you need a 
space? Before the first 
curly.
M: What have I done 
wrong?

J:  Oh it's not the first 
character.
M: How did I do that?

J: Okay.  Do we need 
the r n r n r?

M: I think its, isn't it?
J: I don't know is it, for 
the...?

Cue

Visual. The web-
page; does not 
properly 
render.
Action-based, 
memory 
related.
Joe:Textual, pre-
emptive while a 
variable is typed. 
 Marcus: Textual, 
system response in 
the wiki “undefined 
variable”.
Visual. Text added 
to a page doesn't 
render properly 
when saved.
Visual.  Upon see-
ing how the web 
page renders.  
Action-based, while 
adding a package 
name to a wiki 
page.

Location

Tool 
Behaviour

Syntax
(CSS)

Syntax
(Wiki)

Syntax 
(Wiki)

Syntax
(Wiki)
Info. Arch. 
(Package 
Structure)
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2-C

3-A

4-A

4-B

4-C

4-D

4-E

4-F

6-A

7-A

20:43-
23:03

5:39-
7:39

04:50-
06:00

06:00-
07:05

09:04-
09:49

09:49-
11:00

18:00-
19:13

19:52-
22:11

01:57-
02:47

02:57-
03:59

An acceptance test isn't 
running in the wiki. 
(Marcus)

An acceptance test isn't 
running in the wiki. 
(Marcus)
Marcus can't remember 
wiki link syntax. 
(Marcus)

Marcus can't remember 
how he has organised 
wiki pages. (Marcus)
Joe and Marcus don't 
like the rendering of a 
wiki page. (Marcus)

Adding a hardrule to a 
wiki page. (Marcus)

Test fails, class not 
found. (Joe)

Defining behaviour in a 
test, selecting between 
Concept1 and Concept2 
(Joe)

Distinguishing between 
instances of Concept 1 
and Concept 2 in a test 
(Marcus)

Incorrect class declara-
tion. (Joe)

M: Cool, right. + Now.
J: Ugh

J: --Ooh.
M: Why did that work?
J: No it didn't work, 
you've got that excep-
tion.
M: Ah the--
M: Ugh, I can never re-
member which way 
around--
J: Ugh, what's that 
complaining about?  … 
that looks all right to 
me. 
M: No it's not.

J: Why is child pages 
centred like that?

M: No.
J: No, other way.

J: Oh that's interesting.
++ 
J: [Narrating] Should 
ask [Concept1] to es-
tablish context--

M: --No ! '[Concept2]'. 

J: It should find an 
[Concept1] for a differ-
ent [Concept2]

J: Why is that complain-
ing?

Textual. Upon see-
ing message in ac-
ceptance test.
Cursor moves along 
a message on the 
output of running a 
test. 
Joe: Visual, notices 
“Output Captured' 
warning graphic in 
browser. 
Marcus:Aural, when 
Joe points the mes-
sage out.

Action-based.

Visual, A link creat-
ed in a wiki page 
appears as a yet to 
be created. 

Visual.  Web page 
rendering.  
Action-based, while 
adding the 
hardrule. 

Textual, error mes-
sage in problems 
pane.

Action-based, 
caught by Marcus 
as Joe narrates the 
words he is typing.
Action-based, 
caught by Joe as 
Marcus narrates the 
name he is giving 
to a test.
Visual, red bar in 
the IDE.  Cursor 
hovers over the red 
bar, revealing mes-
sage. This action is 
performed twice.

Config.
Test 
runner

Tool 
Behavior 
(Wiki 
Server)

Syntax
(Wiki)

Info. Arch.
(Wiki)

Design
(UI)

Design 
(UI)
Config.
(IDE build 
path)

Design 
(Object 
Model)

Design 
(Object 
Model)I

Implemen-
tation
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7-B

8-A

8-B

8-C

9-A

9-B

10-A

10-B

10-C

10-D

11:13-
22:49

05:30-
08:25

10:54-
14:41

19:26-
24:03

02:26-
04:22

15:33-
19:20

08:22-
11:51

20:12-
22:50

11:51-
19:03

24:29-
27:05

Unexpected error mes-
sages in tests related to 
capitalisation of class 
names. (Not Clear)

Null pointer exceptions - 
classpath issues - IDE 
memory caching (Mar-
cus)
ClassNotFound Excep-
tion reported in the wiki.
(Marcus)

Concept confusion, diffi-
culty using JAVA Gener-
ics. (Joe)

Repurposing a method 
with IDE command re-
sults in a duplicate 
method. (Marcus)

Refactoring ->Extract 
Class command within 
the IDE fails (Marcus)

A broken test is report-
ed as passing. (Marcus)

Watcher points out flaw 
in algorithm. (Joe)

Implementing the 
CamelCase (Joe)
A message thrown to an 
exception does not in-
clude all of the expected 
information. (Marcus)

J: And we expect this to 
fail.  It is going to say, I 
can't find a dummy  
[Concept2] with a small 
'D'.  Oh- and it has, 
look, its got a little red 
thingy saying NoClass-
DefFoundError.  That's 
funny, I thought it was 
supposed to say, uh 
shouldn't that come 
back as... 
J: Nooo.  [Clicks 'Output 
Capture' link, a stack 
trace appears]
M: Excellent, what did 
we do wrong?

M: It wasn't able to find 
a role.

M: With  an import? 
J: No it's done that. Ah, 
it's saying dummy isn't 
performable as a. Uh.

J: Why is that red at the 
moment?

M: Oh, why has it not 
worked?

M: Oh, that's 
interesting.  It's passed! 
J: It can't have.  
M: It can't have.

M: Oooh!
J: Ugh, that's 
interesting.

J: Oh no, it didn't. Ugh, 
got "say something".

M: Where's the “caused 
by?”

Textual, error mes-
sage in the prob-
lems pane.  

J: Visual, “Output 
Captured' warning 
graphic in browser. 

Textual, stack trace 
displayed in failing 
test.
Visual, red bar in 
the IDE after a re-
turn statement is 
written in a 
method.
Visual, red bar in 
the IDE.
Driver moves cursor 
to red bar, revealing 
message.
Visual, the IDE 
does nothing when 
the command is en-
tered.
Textual, output 
from the test run-
ner in the problems 
pane.
Report: What hap-
pens if there are 
multiple spaces?  

Followed by…

Textual, output 
from the test run-
ner in the problems 
pane.

Textual, a unit test 
is expected to pass, 
but fails.
Textual, error mes-
sage doesn't con-
tain information 
that Marcus expects 
to see.

Design 
(Global 
Aim)

Tool 
Behaviour
(IDE)
Config. 
(Wiki CP)

Implement 
/
Language(
JAVA)

Implement

Tool 
Behaviour 
(IDE) 
Tool 
Behavior 
(Test Run-
ner)

Language 
(Java)

Implement
Language
(JAVA)

Implemen-
tation
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11-A

11-B

11-C

11-D

11-E

11-F

11-G

12-A

13-A

13-B

14-A

14-B

00:41-
02:38

02:55-
4:44

04:44-
05:24

16:53-
20:21

20:21-
22:24

 22:22-
23:03

23:03-
25:00

14:54-
17:05

04:55-
11:59

21:26-
39:28

13:04-
16:14

18:04-
20:37

Decision to create a 
class is immediately re-
taken (Marcus)

An apostrophe in an ar-
gument causes a red 
bar (Marcus)
Using Right-click -> Try/
Catch block in the IDE 
fails (Marcus)

Incorrect class declara-
tion. (Joe)

The pair can't remember 
if they created a class 
required for a test. 
(Marcus)

Marcus called the wrong 
method.(Marcus)

Client-side HTML ren-
dering issue with brack-
ets (<) (Marcus)
Marcus suggests that a 
class be extended. The 
method call Marcus sug-
gests to use is private, 
Joe sorts it out. (Joe)

Refactoring surfaces the 
generics issue (Marcus)
Refactoring a method 
surfaces the generics is-
sue. (Joe)

Marcus realizes that a 
class is too specific. 
(Joe)

Null Pointer Exception in 
a test points out prob-
lems in an implementa-
tion. (Marcus)

M: Actually, no!…
J: Class Cast 
Exception.
M:  I think that was the 
wrong thing to do.

M: Oooh.

M: What the?  Why?
Joe: Uggoh.
J: Oh, that's 'cause it 
doesn't extend runtime.  
I was lazy and I didn't 
(inaudible)
J: Cool, but we're still 
getting a NotAnAction-
Exception, we're still not 
getting the, oh we still 
can't find it!  So we've 
implemented all this 
stuff - oh okay.  Why is 
that not working then?  
J: We shouldn't get that 
classCast – [Reading 
the message given in 
the stack trace ]  
M: Oops
J: That's interesting.

J: Something, some 
role.

M: Ooh, is this test bro-
ken? (a latent detection, 
comes at the end of 
Joe's problem solving 
process.
M:Ummm.  Now that 
isn't necessarily a 
mock.  Umm, playing.

M: Why doesn't it like 
this?
M: ...and in this case, 
umm, this is why it just 
doesn't feel right that 
this is, it's just too spe-
cific….

M: Oooh 
J: Oooh
M: That's because, we 
haven't given our--

M: Action-based,  
as Marcus is shift-
ing windows from 
the IDE to the Wiki.
J: Outcome, pre-
sumably textual.
Visual, a red bar 
under a statement 
passed to an argu-
ment.

Visual, the IDE 
does nothing.

Visual, red bar in 
the IDE.

Textual, reading 
message returned 
by test runner in 
problems pane, 
memory related.

Textual, stack trace 
displayed in failing 
test on the wiki.
Textual, stack trace 
displayed in failing 
test on the wiki.
Cursor highlights a 
portion of the stack 
trace

Textual, checking 
the method imple-
mentation in the 
class.

Visual, red bar, but 
also possibly aural, 
while narrating.

Visual, a red bar.

Verbal, action-
based, caught 
when Marcus ex-
plains behaviour to 
a Watcher.

Textual, error mes-
sage in the prob-
lems pane.

Change of 
Plan

Syntax 
(JAVA)
Tool 
Behaviour
(IDE)

Implement

Implement

Language 
(JAVA)

Syntax 
(JAVA/
HTML)

Implement
(API)
Language 
Design
Implement
Language
Design
Implement

Design/
Implement

Implement
/ API
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Table C.1: Incidents analysed at the desk.

14-C

15-A

17-A

18-A

18-B

21:35-
32:14
00:00-
39:52

03:32-
26:33

05:08-
07:41

15:26-
27:06

An acceptance test is 
unable to launch a wiki 
web server.
(Marcus)

Continuation of 14-C

A new installation of 
test runner hijacks 
episode. (Marcus)

Spurious error reported 
by the test runner.(Joe)

Sequencing error causes 
multiple null pointer ex-
ceptions (Marcus).

M: Oooh.  

--
J: Oh, what's happened 
there.
M:...It's a bit hard to do 
that while this is 
running. (Sigh)

J: That's interesting.  
Element not found ex-
ception.  That's umm 
something new.  Why is 
that not working? 
Ummm.

J: Now that's 
interesting, that we got 
a whole bunch of null 
pointer exceptions. 

Textual.  A Firefox 
window reports a 
page load error.

--

Visual,tests that are 
running on an other 
section of code 
launch web browser 
windows.  

Textual, message 
returned by test 
runner in the prob-
lems pane.

Textual message in 
problems pane re-
turned by test run-
ner.

Config
(Wiki)

--

Tool 
Behaviour 
(Test run-
ner)

Tool
Behaviour
(Test run-
ner)

Tool
Behaviour
(Test run-
ner)

C.3. Incident Exchanges

This appendix includes the full exchanges for incidents presented in Chapter 6, Section 

7.3.  The headings are topical.  Metadata is also provided indicates the episode and 

timestamp or that corresponds to entries in the catalogue given in Appendix C2, above.  

Cross references are also given to sections of Chapters 6 and 8 that discuss the incidents.  

C.3.1.Slips of Action

This section gives two examples of slips of action, described in Chapter 6, Section 6.3.1 
and within Chapter 8, Section 8.1

An example of a slip of action, drawn from Episode 7, 00:06:51.   

[Joe creates a local variable within a try block, which he tries to reference in 

another block. This results in a red bar. ]

Joe (D): No can't do that cause it's there, oh we can move it outside the...
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[He moves the variable outside of the try-catch block, which fixes the error.]

A second example of a slip of action, drawn from Episode 12, 00:04:45.

[Marcus selects a method that has been suggested by the IDE]

Marcus (D): Oops, that's not what I want to do.

[He backtracks and selects a second method]

C.3.2.Prior Experience

In the exchange given below, discussed in Chapter 6, Section 6.3.2, and catalogued as 

incident 2-C, Marcus recognises having seen and solved a problem that is causing an 

acceptance test to fail to run in the wiki.  He examines prior work to find the solution.  The 

recovery is made by copying and pasting information found in a configuration file into the 

failing acceptance test wiki page. 

00:20:43

Marcus (D): Cool, right. +

Joe (N): Ugh

Marcus: Now this is something to do, I had to solve this recently and I can't 

remember how I did it.

Joe: It's an import, you need to import it, don't you? Or it needs to be umm, oh 

wait,  it’s trying to execute that as a--

Marcus: --It’s the, the look. There's a, I did this before. It's to do with the way it 

does the test running stuff. Let's just have a quick look [Driver opens Eclipse] in 

examples that we were messing about with hums.

Joe: It would be in the content here, wouldn't it? No (inaudible) ++++ Hmm.

Marcus: That's the one I wanted.

00:23:03
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C.3.3.Blame and Severity 

In this exchange, discussed in Chapter 6, Section 6.3.5 and catalogued as incident 3-A, in 

spite of their stated desire to depict development “warts and all”, the developers abort 

filming in this case, and complete the problem solving between recordings. 

00:05:39

Joe (N): It's probably because Fitnesse isn't running. No. What’s going on there?

Marcus (D): That's nothing to do with us. It worked a minute ago.

Joe: Yeah, it worked on my machine. (Laughs)/(Laughs)/

Marcus: Oh that was the wrong page, wasn't it? I wonder if it’s like, no? This is 

actual- what's changed?  What have you done?

Joe: I haven't changed anything [Voce: falsetto]!

Marcus: Look I'm just going to stop...Where is it? Here it is. Okay, let's just stop 

that. [Stops the web server from within the IDE] Good [Upon verifying in the 

browser that pages are no longer being served]. Right stopped and we should be 

able to just kick it off again.

Joe: I wonder if that install story did something dodgy. 

Marcus: [Driver restarts server] It is feasible, but I don't think so. 

[Page reloaded; exception still being thrown]

Joe: Ugh.

Marcus: Okay, so. ++ This is annoying

Joe: Well you know, warts and all.

00:07:39

C.3.4.Forming Rules-of-Thumb

This section provides the full exchanges for incidents described in Chapter 6, Section 

6.3.6. 
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A Rule-of-Thumb

In the first exchange, catalogued as Incident 1-A, Marcus has seen the issue before, and 

provides Joe with the steps to work around the problem. The steps are sufficient to advance 

work, but Marcus does not explain what the changes do. The reflective language used by 

both developers suggest they do not completely understand why the mechanisms work.

[Joe (D) loads a web page] 

00:08:18

Marcus:  So we have a problem there, and that's a funniness with FitNesse, that 

I've noticed happens sometimes. If you actually stop it, now go back to Eclipse and 

stop it [Only one stop action is performed].  And then start it again ++ Yeah some 

weird thing it will install all of the files properly and then refresh that page and it 

will be hunky dory fine-- 

Joe:--Oh (right)! That is /(Laughs)/ very strange.

Marcus: Very strange behaviour indeed. /Okay/

00:08:52 

The following three examples are of a different error.  They demonstrate how rules-of-

thumb form over time. 

The First Occurrence

 The first occurrence is catalogued as incident 7-A.

00:02:57

Joe (D): ...why is that complaining? 

[Joe highlights a red bar in the IDE, revealing a message in a tooltip] 

Joe: Oh that's because we haven't got the constructors.

Marcus (N): That's right.

Joe: Oh, no, that's not, it says it’s not a subtype of Exception [He opens the class 

giving the error]. Oh--
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Marcus: --‘Cause it doesn't extend RuntimeException /Okay/ 

[Joe alters the declaration]

00:03:59

The  Second Occurrence

The second occurrence, is catalogued as incident 11-D.  

00:16:53

Joe (N): Oh, that's 'cause it doesn't extend runtime. I was lazy and I didn't (inaudi-

ble).

Marcus (D): But do you know what? /That's fine/ Actually, I think this is the right 

t--

Joe: Extend-zzz [Suggesting a correction to spelling: “extends”, not “extend”]

Marcus: Duh. /Cool/ I think now is the right time to actually put that in there /Yeah/ 

To be honest.

Joe: So has he got any warnings other than that? No.

Marcus: No.

00:20:21

The Third Occurrence

This is the final occurrence of the issue.  Note that it is embedded within incident 18-B at 

approximately 00:15:26 

00:15:26

Joe: Ahh [A red bar has appeared underneath the entire throw statement] So we 

didn't include the, when we created it we haven't made it extend exception. So now 

to make it... runtime exception. And we need a constructor with a message…

00:17:13
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C.3.5.Error-Directed Practice, Local Problem Solving 

The following exchange illustrates local problem solving undertaken in the course of error 

handling.  Error-directed practice is described in more detail in Chapter 6, Section 6.3.3, 

local problem solving within Sections 6.3.4, 6. 3.5 and 6.5 and within Chapter 8, Section 

8.1.

The exchange given below, catalogued as Incident 8-C, marks the beginning of a four-

and-a-half-minute incident in which Joe is implementing a method that makes use of 

JAVA generics.  Joe admits at the outset of his task to implement a method that he does 

not know exactly what needs to be done, and that he is taking an approach he calls fake it 

till you make it.  He appears to spur the error handling process by typing a return statement 

in a method, which immediately throws up a red bar in the IDE.   Marcus’ comment “With 

an import?” marks the beginning of the identification process.  He has taken a guess about 

what might be wrong in the file.

The references Marcus makes to prior implementations (line 18) mark a shift in this 

incident from information gathering directed by trying things to the tactical examination of 

a prior implementation that is known to work.  The pair examine the class WebUser and 

two other files that were previously written by Marcus that use JAVA generics to reference 

classes.  Using information in these files, they are able to piece together the syntax to use.  

01

02

03

04

05

06

07

08

09

Action

Joe opens the 
class that is throw-
ing the error.

Joe extends the 
class

Code
guess

disprove

blame

mechanism

absolve

mechanism

system re-
sponse

identify

Dialogue
Marcus: With  an import? 

Joe: No it's done that. Ah, it's saying 
dummy isn't performable as a. /Uuh./ 
Uh.
Marcus: So you, why is it?  Oh, 
cause I (sigh)--

Joe: What? No that's okay.

Marcus: Yeah that's right, so get it to 
compile.
red bar under the name of the class 
that is extended.
Marcus: I think, no go on.  I think it's 
an interface, dude.   
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C.4. Sources of Data

Data for the project was collected from sources created in 2009 that were published and 

accessed on the internet.

 Video Recordings

Sixty videos were uploaded to a video hosting site between March and August 2009. The 

first was recorded on 14 March, 2009; it was not uploaded until 24 March, 2009. The last 

video was uploaded on 4 August, 2009. Forty-nine videos were assigned an episode 

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

Joe alters the 
class signature to 
implement an in-
terface that makes 
use of JAVA 
Generics to refer-
ence Concept1

[Replaces a refer-
ence to Concept1 
with <?>]

Replaces Concep-
t1 with WebUser

Reverts to <?>

mechanism

system re-
sponse

detect

identify

guess

mechanism

system re-
sponse

disprove

tactic

mechanism

system re-
sponse

detect

identify

affirm

tactic

red bar under the reference to Con-
cept 1
Joe: Ah.  And then it's a--

Marcus: --that's [Concept1] that's 
fine. /Okay/ Oh no, we have to say 
what [Concept1].  So we can just 
make it uh.  ++

Joe: Can we do a question mark 
there?

A class not found message returned, 
the question mark is reverted to ref-
erence Concept1
Joe:No.
Marcus: Make it um, well we've got a 
Web User in the [prior implementa-
tion] examples, we could just use 
that.

red bar under the reference to Web-
User

Joe: Hmm.
Watcher: I think you just need to im-
plement performableAsA . 

Joe: Really, okay.  Didn't we do that?  
Yeah, it's there. Uh.

Marcus: Would you like to look at 
another action?
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number by the creators, given a title, and a description highlighting aspects of the content. 

The final ten (Ep. 50-60) were assigned episode numbers, but were not given a title or 

description. These were uploaded on two dates, 13 July, 2009 and 4 August, 2009. Commit 

information from the corresponding hosted code repository suggest that the work per-

formed in the latter episodes is maintenance to existing functionality.

The videos comprise thirty-one hours, fifty minutes. Videos range in length from 07:42 

(Ep. 3) to 53:17 (Ep. 60). The average length is 32:22. Some episodes are recorded on the 

same day, on other days, only one episode is filmed. The metadata on the video hosting 

site indicates that videos were uploaded in batches, and the developers do not consistently 

indicate the date on which they are recording. In latter recordings (Ep. 20 and beyond) 

work performed in the same coding session can be established by examining the clothes 

that the programmers are wearing, which are visible in a video of the programmers that is 

super-imposed over the screen-cast in the lower right-hand corner of the film. In earlier 

videos, this information was reconstructed using commit information in the source code 

repository, and by examining posts made to Twitter and Facebook.

Damage: Episodes 21 through 34 suffer from technical problems. In four (Ep.21-24), 

an audio echo is present that obscures the dialogue, while in episodes 25 through 30 there 

is a latency between the audio, screen-cast and video of programmers, sometimes as great 

as fifty seconds. In another four episodes (Ep. 31-34) either audio, video or both are lost 

during the recording. This damage prohibits detailed analysis of the relationship between 

what the developers say and what they do.

Gaps in time: Filmed episodes are separated by breaks in time. Sometimes the interval 

is as short as a few minutes, at other times days or weeks. There are several mentions of 

work done without recording, or of promises to return after a short break when in fact 

filming ceases for that date. One episode (Ep. 19) has audio commentary recorded over the 

video after a 3-4 week break.

Format, Episodes 1-18: The developers introduce themselves and usually announce the 

episode number. Occasionally, they give the date on which the recording was made. The 

developers also introduce others who are watching the taping. There are several instances 

in which the developers use the first couple of minutes to explain what happened in a 

previous episode, or to provide background for a particular choice. In general, the pair aim 

to program for one 25-minute session. The pair are working on a Windows laptop, using 

Firefox and the Eclipse IDE, and the background noises suggest that the work is being 

done in an office.
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Episode 19: The audio for this episode was recorded over the screen-cast, several 

weeks after creation. The developers reflect on what happened in this episode, as well as 

on their overall work practice for the project. One of the things that comes out of this is a 

solidification of commit strategy in the version control system, both in terms of the 

information that should be included in messages, and in frequency. This strategy is 

apparent after Ep. 19, when the overall number of commits increases, and is performed on-

screen, rather than during breaks. In addition, the information given in commit messages is 

better structured and includes references to the episode number in which it was performed. 

This episode is the first in which the pair are working on a Mac laptop.

Episode 20 and beyond: This episode marks several shifts in the recording and 

working environment. From this point onward, the videos include a small video of the 

developers superimposed over the lower right-hand screen of the screen-cast. In addition, 

work appears to be performed in a home environment. Though the developers announce in 

Ep. 19 that they will no longer web-cast the episodes, there is some evidence that they 

continue to use web meeting software.

 Social Media 

The developers used Twitter and Facebook to inform followers of project activity; both 

sources were used to corroborate dates for early programming sessions. The Facebook 

page also included photos of recording equipment, and of one office in which work in 

early sessions was performed. The photos corroborate the understanding that early sessions 

were office-based, as do posts in which the developers ask followers for office space to use 

for filming.

 Blogs and Websites

The project has a website, with links to videos and source code. It also contains general 

information about the project. At one point the site also included notices of upcoming 

events. The site went offline in March 2012, but was brought back online in a slightly 

altered format at the end of 2012. Both developers have personal blogs. These were 

referred to for background information.

 Source Code Repository 

The software created in the project is hosted on a publicly hosted code repository. The 

metadata in this repository was used to corroborate dates for programming sessions.
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D.  Notes on After the Fact

The study After the Fact is reported in Chapter 7.  It drew upon data collected at Site B and 

Site D.  For an overview of sites, see Chapter 4, Section 4.3.  Other detail about data 

collection and analysis are reported in Chapter 4, Section 4.4.3, and in Chapter 7, Section 

7.2.

D.1. Transcription and Field notes

A near-verbatim transcription was created of six interviews gathered at Site B, and three 

interviews gathered at Site D following the conventions given in appendix A.1.  At both 

sites, analysis began at the point of collection. Terms used were checked and information 

previously given was stated back at multiple points for clarification and correction. In 

several instances, restating information to informants resulted in the addition of omitted 

details. 

Immediately following each interview, notes taken during the interview were annotated 

and expanded. In addition, reflection was made to describe impressions and details of the 

major topics raised in the interview, and to evaluate application of the method. Informants 

were sent follow-up email messages seeking additional materials mentioned during 

conversation, and they were invited to provide additional comment. Informants from Site 

B have also been sent draft copies of reports featuring their account.

D.2. Critical Decision Method Protocol

This section summarises protocol suggested for conducting a CDM interview as described 

in Working minds: A practitioner’s guide to cognitive task analysis (Crandall,  Klein,  & 

Hoffman,  2006).  Additional notes explain how the protocol was adapted and applied in 

interviews collected at Site B and Site D.

Critical decision method interviews are typically conducted by two researchers working 

together. One interviewer asks questions of informants, while the second researcher takes 

notes about responses. Impressions of the interview are shared between researchers 

immediately afterward. Interviews are generally also audio-recorded, and transcribed for 

analysis. 
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The CDM interview protocol is semi-structured and flexible. The aim is to collect a rich 

story using questions to probe for more detailed information about events and cognitive 

phenomena. The emphasis in incident identification is to examine novel or unusual 

problems that a participant has encountered on the basis that this will reveal more detail 

about how problem solving or decision making is performed on the job.  The protocol 

entails examining a single incident in four semi-structured ”sweeps” that establish features 

of critical decision making from different perspectives. 

In the study reported in Chapter 7 interviews were conducted by a single person, as it 

was difficult to arrange paired interviewing.  The interviewing process can take several 

hours, which was also deemed to be impractical. The managers who granted access at Site 

B offered free access to approach and arrange meetings with developers and were informed 

that sessions might span two hours speaking.  Managers at Site D granted access for an 

hour, and permitted developers to “cost” an hour of working time to the interview.

Interviews were arranged in person or by email, and each person was sent an informa-

tion sheet before the appointment (see also appendix D.4). The information sheet was 

reviewed with the informant before the conversation, and each person signed an informed 

consent form. Interviews were audio-recorded, and notes were taken. Interviews concluded 

with questions about background: time spent in the organisation or on a team, time spent 

professionally making software, and details of education and training. 

The aims of the study were not to establish error in relation to education or experience, 

so a soft touch was taken in collecting these details. This proved to be a useful tactic at Site 

B, in which all of the informants were very well educated and/or experienced, but had not 

necessarily taken qualifications related to computing. At both sites, the approach was noted 

to have the effect of communicating to informants that judgements were not being made 

about the story they had given and their level of expertise.

 Sweep One: Incident Identification

In the first sweep, the participant and the researcher identify a critical incident, and the 

participant gives a brief account of what happened. Crandall, Klein and Hoffman identify 

four elements of selecting a useful incident (2006, adapted from pp. 7-76):

1. Relevance: The person must recount a story in which they were a “doer” or decision 

maker. Witnessing an event is not the same as actively participating. Did a person’s 

actions have a direct impact on the outcome of the event? Given an outline of the 
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event, it should be apparent to the interviewer if it meets criteria for the area of 

analysis.

2. Character: Asking a participant for a strange or “weird” incident may result in 

interesting stories, but may not result in stories that can be analysed for evidence of 

decision making or other cognitive activity. What constitutes “critical” in a domain 

may not be initially apparent.

3. Listening and Prompting: Telling participants before meeting them that you are 

seeking a story may cause them to select, omit, refine and rehearse details of the story 

that will suppress information relevant to the research. At the point of interview, it is 

important to allow participants to identify a story of interest, and to listen and wait as 

they recount details. It may also be necessary to prompt them to carry on if focus is 

lost, or if they are not sure about the kind of information the interviewer is seeking.

4. Structure: The participant provides the structure of the interview, through the content 

of the story and the details they provide about sequence, beginning and end points. 

Incidents may begin earlier than the point established by the participant, and they may 

have alternative endings.

In this sweep, each informant was asked to think of an incident from recent work that was 

challenging or that had been particularly difficult.  Table D.2 provides examples of 

suggested prompts followed by questions that were asked during this phase. In some cases, 

more than one possible incident was reviewed. In one case the researcher suggested an 

incident; in another case, the informant selected to recount an incident he felt was more 

relevant.  In order to improve precision of recall, and to hear stories that were “fresh”, 

informants were asked to recount an issue encountered in recent work, defined as work that 

had been done in the past week or two.  This adaptation is in-line with other documented 

adaptations to CDM that seek incidents in the ”here and now”.
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Suggested Prompts: 

Questions Asked (edited for clarity)

Among the projects you have described, 

can you identify something you’ve worked 

on in the last two weeks that was challeng-

ing for you?

You mentioned the other day that you 

have been doing data modeling for the ___ 

project /Yes. / and I'd like to talk about 

that I think… I'd like to see if the incident 

you described to me the other day might 

be worth pursuing in this conversation. So 

you mentioned that you started thinking 

about using an XML model on that 

project /mm hmm/ but you decided to stay 

with a database, a relational database. Do I 

remember that correctly? /Yes. /

- Can you think of a time when 

you and your skills were really 

challenged?

- Tell me about the last time 

you…

- Can you think of a time when 

your skills really made a differ-

ence?

- Maybe things would have 

gone differently if you were not 

there?

Notes

This example demonstrates us-

ing a warm up to identify possi-

ble projects. 

In this project, the developer 

mentioned a possible incident 

when the in t e rv i ew was 

arranged. 
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Table D.2: Prompts for incident selection After the Fact.

Sweep Two: Timeline and Decision Point

In the second sweep, a timeline is established to note critical decision points. A critical 

point is one in which the participant experiences a major shift in thinking or understanding 

about a situation, or takes decisive action. They are critical in the sense that they are 

“turning points” at which different decisions or actions may have been taken (Crandall et 

al, p. 76).

Establishing a timeline requires determining a scale that is appropriate to the incident. 

Some incidents involve specific timings and durations that are important to understanding 

what went on. Other incidents may involve elements that are temporally distant from one 

another. In the case of the latter, it may be sufficient to note the sequence of events and 

their relation to one another over time.

The sweeps are described in the guidelines as unfolding more or less sequentially, with 

specific time devoted to plotting the timeline on a whiteboard or paper that can then be 

used in subsequent sweeps. It emerged in practice that it was more natural to allow the 

conversation about particular details of the incident to unfold and to periodically establish 

the relation of events to one another in time. Rough timelines were sketched in the field 

book, and details were checked with informants. Probes were used to establish how one 

decision or action related temporally to others.

Okay, so this can be a big problem, it can 

be a small problem it can be something 

that you were tearing your hair out about 

or that just took a few minutes but that you 

remember and sort of made you stop for 

some amount of time in your work. 

[W]hat we need to do is find some recent 

problem that you've been working on. And 

it can be from this project, it is always nice 

to start from something that is fresh in 

your mind or it can be another project. 

This was the last interview, 

possibly the most useful 

prompt. 

Recent work is indicated as pre-

ferred. 
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Sweep Three: Deepening Probes

The process of establishing a timeline interleaves with a more detailed recounting of the 

incident itself. In the process, deepening probes are used to elicit information about cues 

and patterns the participant perceived, the rules-of-thumb they devised, the kinds of 

decisions they had to make, and details about particular cases. The critical decision method 

is often used with a small set of deepening probes to examine one or two cognitive 

phenomena, such as the information or guidance that is sought and used.

Probes fall into four broad categories (Crandall, Klein, & Hoffman, 2006, p 80). If the 

critical point in the process involved:

• Observation, then probe for information and cues. Seeking guidance from others 

also falls into this rubric.

• Making sense of a situation, then probe for assessment and mental models. 

Analogues might also serve.

• Decision making, probe for decisions, goals and objectives.

• Knowledge, use probes about experience, and options. Establishing whether or not 

the case was standard would also be helpful.

In the interviews collected at Site B and Site D, opportunistic use was made of probes from 

all categories, on the basis that all of them might yield useful information about an error. 

Deepening information also emerged from subtle probing about time, such as by asking an 

informant to recount what happened next, or asking how they understood what to do next.

Sweep Four: Hypothetical Alternatives

Finally, each participant is asked to consider hypothetical alternatives to decisions that 

were taken, or to consider how someone else might have handled an incident. 

In the study reported in Chapter 7, hypothetical alternatives were volunteered in several 

interviews.  One account included constraints on problem-solving imposed by organisa-

tional practice.  In this case,  a set of alternative circumstances that would have avoided the 

error or would have eased recovery were clear. However, in general responses to this line 

of questioning were sceptical, or dismissive.  Informants indicated that there were not other 

things that could have been done, or noted that alternatives (such as greater knowledge) 

might have helped, but were impractical.   
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D.3. Coding 

Nine transcribed interviews were read and annotated to identify themes in the data. The 

designation of sweeps to gather different kinds of information in Critical Decision Method 

interviews provided a structure for grouping data during analysis (for a fuller description of 

the protocol, see the prior section). Information related to selection of incidents was 

identifiable, as was information given in response to deepening questions. Transcripts were 

first coded into segments. Segments were identified by questions and responses that moved 

discussion in a distinct direction; this determination was made by assessing how an area of 

the transcript broadly corresponded to targets for the different sweeps of the interview:

Identification and Accounts - this was used to segment the initial identification of 

incidents, but was also used to encapsulate later complete accountings of the 

incident by the respondent.

Juncture in Time or Decision Point - used to segment interviewer recapitulations 

of previously given information, and also to note questions and responses to “what 

happened next” or “what did you do then” prompts.

Deepening - the suggested prompts for deepening probes did not always corre-

spond directly to questions that were asked or to given responses. Recommended  

prompts were not always used and responses often voluntarily included detail that 

could be broadly identified with one of the deepening categories.

Hypothetical Alternatives - though Crandall et al. describe this sweep as roughly 

following the deepening sweep, this kind of questioning was used at different 

points in the interview to probe for greater detail as required. It was also used by 

the interviewer to demonstrate technical knowledge if the sense was given that the 

informant might be withholding information or tailoring based on their understand-

ing of my expertise.

Each interview was coded into between 30 and 45 segments; segments often included more 

than one question and response and almost certainly included information relating to more 

than one category. Multiple categories were often assigned to reflect evidence of more than 

one area of deepening, such as a response that described information that was sought, and 

how that information related to goals or priorities.
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D.3.1.Codebook

This is the codebook that was developed out of analysis of the interviews collected at sites 

B and D.  The four main numbers correspond to the sweep of the interview.  Section 3, 

Deepening Probes was initially populated using categories of suggested prompts, but were 

iteratively developed during analysis into a set of terms that reflected the content in the 

interviews.   

1. Identification
2. Juncture in Time or Decision Point
3. Deepening Probes

3.1.Cues
3.1.1.Talking through
3.1.2.Seeing
3.1.3.Chance
3.1.4.Error
3.1.5.No change
3.1.6.Timeliness
3.1.7.Votes

3.2.Information
3.2.1.Colleague
3.2.2.Environment
3.2.3.Client
3.2.4.Documentation
3.2.5.Collective
3.2.6.Code

3.3.Analogs
3.4.Standard Operating Procedures

3.4.1.Individual
3.4.2.Team
3.4.3.Organisational

3.5.Goals and Priorities
3.5.1.Individual
3.5.2.Team
3.5.3.Organisational
3.5.4.Commercial

3.6.Options
3.7.Experience

3.8.Assessment
3.8.1.Foresight
3.8.2.Hindsight
3.8.3.of Performance
3.8.4.of Solution
3.8.5.Naming

3.9.Mental Phenomena
3.9.1.Feeling
3.9.2.Thinking/Imagining
3.9.3.Insight
3.9.4.Memory
3.9.5.Giving Up
3.9.6. Expectation

3.10.Problem Solving
3.10.1.Decision Making
3.10.2.Explaining
3.10.3. Tactic
3.10.4. Strategy
3.10.5. Diagnosis
3.10.6. Understanding
3.10.7. Learning
3.10.8. Communicating
3.10.9. Reading
3.10.10. Comparing
3.10.11. Drawing
3.10.12. Reasoning
3.10.13. Questioning
3.10.14. Fitting
3.10.15. Delaying
3.10.16. Implementing
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3.10.17. Checking
3.11. Guidance
3.12.Side turns
3.13.General Knowledge

3.13.1. Technical

3.13.2.Organisational
3.13.3.Cultural

4. Hypothetical Alternatives
5. Personal Information

D.4. Information Sheets

Two information sheets were used. Each contained the same information about 

researchers, contact information and a slightly modified version of the expectations for the 

interview. Modifications were made to the timeframe for the interview to reflect tighter 

constraints at the second site, and the language used to frame the research was refined. 

Participants at both sites were informed that was sought about “things that go wrong” in 

development, though the terms used to describe those things varied slightly.

In the first information sheet (see Figure D.4.1), the research problem was framed in 

terms of bugs, and the focus of analysis was to explore how developers deal with “small 

mistakes”. The second information sheet does not use the term bugs, and removes the 

emphasis on personal responsibility conveyed by the term “mistake”. The aim for analysis 

given was to understand how developers manage “problems encountered” in everyday 

work. The second information sheet (Figure D.4.2) also included a graphic, which was 

intended to catch the eye of potential participants who were solicited through an invitation 

sent by email.
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Figure D.4.1: Information sheet for Digital Humanities (Site B).
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Figure D.4.2: Information sheet for Course Planning (Site D).
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