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Abstract

Modelling repeated ordinal score data is a common statistical problem, across many
application areas. The proportional-odds model is widely applied to such repeated ordinal
scores and can be fitted in the repolr package (repeated measures proportional odds
logistic regression) in R using the method of generalized estimating equations (GEE).
The GEE approach specifies a model for the mean of the correlated observations within
clusters of repeated scores for each individual without fully specifying the joint distribution
of the observations. This paper describes the core features of package repolr, which has
undergone extensive changes since the first release in 2008, for the first time. A number
of example datasets and extensive R code are used to illustrate a range of data analysis
tasks that users of repolr may typically wish to undertake.

Keywords: repeated ordinal scores, generalized estimating equations, repolr, R.

1. Introduction

Modelling repeated ordinal scores (i.e., a sequence of assessments made on an an ordered
categorical scale by or on the same individual or experimental unit at a fixed number of
time-points) is a common statistical problem that has been studied by many researchers;
Liu and Agresti (2005) and Agresti and Natarajan (2001) provide comprehensive reviews of
available models and methods. Without doubt, the most widely used approach to modelling
repeated ordinal scores, for example see Lipsitz, Kim, and Zhao (1994) and Kenward, Lesaffre,
and Molenberghs (1994), is the generalized estimating equation (GEE) method originally
proposed by Liang and Zeger (1986) for the proportional-odds model (McCullagh 1980).
Briefly, the proportional-odds model follows from considering ordinal scores to be realizations
of continuous unobservable measures that are difficult or impossible to assess directly. For
instance in medical applications this might be a patient’s experience of pain after surgery or
in behavioural sciences an individual’s quality of life. In the absence of objective methods
to quantify characteristics of this type directly, we typically make assessments using a small
number of ordered categories, often identified with common descriptive words such as severe,
moderate, good or poor, in an attempt to provide an objective evaluation. The proportional-
odds model is characterized by cut-point parameters that define the divisions between such
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2 repolr: Modelling Repeated Ordinal Scores

ordered score categories, and regression parameters that characterize the relationship between
model covariates and the ordinal scores that are the same for each category defined by the
cut-points (i.e., the regression parameters do not depend on the ordinal score category).
A number of variations of the basic GEE methodology have been suggested for modelling
repeated ordinal scores, some specifically in order to overcome problems in estimation of the
correlation parameters that can occasionally occur during model fitting. Prominent amongst
these methods, for the proportional-odds model, is that proposed by Parsons, Edmondson,
and Gilmour (2006). This method is discussed in detail here, together with a description of
implementation in package repolr (repeated measures proportional odds logistic regression)
(Parsons 2016) in R (R Core Team 2015).

Prior to describing the features of repolr, it is informative to review GEE software for re-
peated ordinal responses available elsewhere. GEE methods for fitting the proportional-odds
model to repeated ordinal data are available in widely used commercial packages such as SAS
(SAS Institute Inc. 2015) and SPSS (IBM Corp. 2013). For instance, the GENLIN command
in the latter software provides five options for the working correlation model (independence,
exchangeability, AR1, M-independence and unstructured), and uses some (unspecified) func-
tions of the residuals of the regression model for the cumulative probabilities to estimate
the association parameters. However, the most informative comparison for repolr is with
functions within the R packages geepack (Halekoh, Høsjsgaard, and Yan 2006) and multgee
(Touloumis 2015), as these are equally general and the implementations of the methods used
to estimate the association parameters, which is where all the methods described here differ
from one another, are much more explicit. The function ordgee in R package geepack (Højs-
gaard, Halekoh, and Yan 2016) implements the GEE approach of Heagerty and Zeger (1996)
who model pairwise associations between binary scores, determined from the ordinal scores,
using global odds ratios; independence, exchangeability, unstructured and user-defined work-
ing correlation models are available for logit, probit and complementary log-log link functions
for the regression model for the mean. The package multgee (Touloumis 2016) allows models
to be fitted to repeated ordinal scores using function ordLORgee that implements a local odds
ratio approach to estimating the association parameters, or rather nuisance parameters using
the preferred terminology of Touloumis, Agresti, and Kateri (2013). A number of options are
available for the local odds ratio structure, with the recommended option for ordinal scores
being the uniform structure which assumes all ratios are identical. Package multgee offers the
cauchit link function, in addition to those available in geepack, and also adjacent category
logit models.

A recent review of available software and performance for implementation of GEE methodol-
ogy for longitudinal ordinal data (Nooraee, Molenberghs, and van den Heuvel 2014) reviewed,
described in detail and compared all of the most widely used options for model fitting in
this setting; the authors concluded that multgee and repolr provided very similar results over
the settings tested, and that these were consistent with results from SAS and SPSS. Nooraee
et al. (2014) did not include geepack in their simulation study as it gave results that were
significantly different from the other packages. The software implementations described here
use a variety of methods for model fitting, but the main distinction is in the formulation
of the association parameter model, and the importance given to parameter estimates from
such models. repolr is much more specific than the other R packages described here in that
it is restricted to marginal logistic models for ordinal responses and formulates the working
correlation model for the GEE methodology, that expresses and separates the correlations
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between derived binary variables, in a natural manner. It provides consistent estimates of the
correlation parameter between time-points (Parsons et al. 2006), and as such this parameter
is regarded as having some inferential value and is reported routinely, rather than being re-
garded simply as a nuisance parameter. Package repolr also allows for flexible modelling of
the so-called cut-point parameters, that define the divisions between ordinal score categories,
using polynomial contrasts, that is often of particular interest for long or composite ordinal
scores (Parsons 2013).

The first version of repolr, which was available in late 2008, required package gee for re-
gression parameter estimation, with association parameter estimation and updating imple-
mented within repolr. The latest versions of repolr use code written in C++, with the aid of
R packages Rcpp (Eddelbuettel and Francois 2011; Eddelbuettel 2013) and RcppArmadillo
(Eddelbuettel and Sanderson 2014) with the latter providing access to the widely used Ar-
madillo templated C++ linear algebra library (Sanderson 2010). A brief description of the
underlying model fitting algorithm for repolr was published in 2009 (Parsons, Costa, Achten,
and Stallard 2009), but this contained no advice on practical application or implementation
in R as it was written prior to the publication of repolr, despite the publication date of the
article being being after the repolr was available. The syntax and available options in repolr
have changed considerably from earlier versions, however, basic model fitting implementation
is unlikely to change in any updates (≥ v3.2) of repolr, so given the stability of the current
release, now is an opportune occasion to provide a comprehensive description of the package
and usage for analysis of repeated ordinal score data.

The paper illustrates the usage of the repolr package by application to three example datasets.
Section 2 describes the GEE methodology of Parsons et al. (2006) and implementation in R,
Section 3 presents three distinct datasets, available within the package, and describes typical
analysis issues for repeated ordinal scores with code for implementation in repolr and Section
4 closes the paper with some concluding remarks.

2. Model

2.1. Proportional-odds

Let N experimental units be scored on an ordinal scale with K categories, which can take
integer values from 1 to K (the optimum score), at each of T time points. The ordinal score for
experimental unit i at time-point t is Oit and the vector of scores for the this experimental unit
over the set of T time points is Oi = (Oi1, Oi2, . . . , OiT ). The probability µitk = P (Oit ≤ k)
for ordinal score Oit, and inverse logit function f(y) = exp(y)/(1 + exp(y)), can be related to
a vector of S explanatory variables xit by the proportional-odds model based on cumulative
logits (McCullagh and Nelder 1989).

µitk = f (β0k + βxit) . (1)

The cut-points β0 = (β01, β02, . . . , β0(K−1)), where −∞ < β01 < β02 < · · · < β0K−1 < ∞
, define the divisions between the ordinal score categories on the cumulative logit scale and
effectively transform the ordinal scale to a continuous scale based on the linear predictor βxit.
Regression parameters β0 and β = (β1, β2, . . . , βS) can be estimated using the method of
generalized estimating equations (GEE), originally proposed by Liang and Zeger (1986).
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2.2. Parameter estimation

Regression parameters

At each time-point the ordinal score for each experimental unit Oit can be transformed into a
set of K−1 binary variables such that Zitk = 1 if Oit ≤ k or Zitk = 0 if Oit > k, to give a data
vector Zit = (Zit1, Zit2, . . . , Zit(K−1)) and a complete data vector Zi = (Zi1,Zi2, . . . ,ZiT )> for
each experimental unit. The T×S data matrix of explanatory variables for each experimental
unit is X0i = [xi1, xi2, . . . , xiT ]>, and the complete ((K − 1) + S) × T (K − 1) data matrix
including the cut-points is Xi = [1T ⊗ IK−1,X0i ⊗ 1K−1]

>, where 1T and 1K−1 are T and
(K−1)-dimensional vectors of unit elements, and IK−1 is a (K− 1)-dimensional unit matrix.
If E(Zi) = µi, where µi is defined in an analogous manner to the complete binary data vector
Zi, and the complete (K − 1) + S vector of regression coefficients is βc = (β0, β)> then the
proportional-odds model for each experimental unit can be expressed as

µi = f (XT
i βc) . (2)

The GEE for this model can be expressed in matrix form by first writing the T (K − 1) diag-
onal matrix of partial derivatives Fi = diag{f ′(βT

cXi)}, where f ′(y) = exp(y)/(1 + exp(y))2,
Di = XiFi and and the ((K−1)+S)×TN(K−1) matrix D = [D1,D2 . . . ,DN ]. The variances
of the probabilities µitk are given by µitk(1−µitk), with the full model TN(K−1)×TN(K−1)
diagonal matrix U−1/2 containing the square roots of the reciprocals of the variances on the
leading diagonal. The TN(K−1)×TN(K−1) block diagonal matrix, of correlations between
derived binary variables Zitk at the same time and between different times, is denoted by R. In
repolr the between time correlation is characterized by a single (ancillary) association param-
eter α that, when estimating the regression coefficients, is assumed to be known. Expressing
the GEE in matrix form as DW−1(Z− µ) where W = U−1/2R−1U−1/2, Z = (Z>1 , . . . ,Z

>
N )>

and µ = (µ>1 , . . . , µ
>
N )>, and equating to zero leads to the following updating equation for βc,

β(k)c = β(k−1)c + (DW−1D)−1DW−1(Z− µ). (3)

The robust covariance matrix of the regression parameters is given by

Vβc = (DW−1D)−1(DW−1cov(Z)W−1D)(DW−1D)−1, (4)

where the TN(K−1)×TN(K−1) covariance matrix cov(Z) is constructed from the residual
products (Zi − µi)(Zi − µi)

> to estimate the between time covariances and model based
estimates of covariances between binary variables at the same time-points, using current
estimates of βc. Equations 3 and 4 are consistent estimators, as N →∞ , even if the model
covariance matrix W is misspecified. In order to improve efficiency for typical N , we attempt
to choose the working correlation matrix R to be as close as possible to the true correlation
matrix of Z.

Association parameter

The specification of the working correlation matrix R in repolr is described in detail by
Parsons et al. (2006) and Parsons et al. (2009). In short the correlation structure is assumed
to be the same for all N experimental units, so suppressing indexing on i the correlation
between binary variables rtk,sj can be considered to be the product of two components; (i) the
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correlation ρkj between binary variables at each time point and (ii) the correlation between
binary variables at differing time points α(t, s). The former correlation is given by ρk,j =
ρj,k = exp(β0j − βok)

1/2 (Kenward et al. 1994) and the latter can be modelled in repolr
using either the first order autoregressive correlation model (AR1) described by Parsons et al.
(2006) where α(t, s) = α|t−s| or the uniform correlation model of Parsons et al. (2009) where
α(t, s) = α for all t 6= s. Given estimates of βc, the working correlation matrix is a function
of a single association parameter α. In repolr α is estimated by minimizing log |Vβc |. Given
a current estimate of Vβc , an updated estimate of α is given after k iterations of Newton’s
method by the following expression,

α(k) = α(k−1) − ∂log |Vβc |
∂α

{
∂2log |Vβc |

∂α2

}−1
. (5)

Analytic expressions for ∂log |Vβc |/∂α and ∂2log |Vβc |/∂α2 are available for the AR1 (Par-
sons et al. 2006) and uniform correlation (Parsons et al. 2009) models. Although ana-
lytic expressions are available, for more complex models where either K or S or both are
large, it is often quicker to use finite differencing to estimate the partial derivatives; i.e.,
∂log |Vβc(α)|/∂α = 1

2h
−1{log |Vβc(α + h)| − log |Vβc(α − h)|} and ∂2log |Vβc(α)|/∂2α =

h−2{log |Vβc(α+ h)| − 2 log |Vβc(α)|+ log |Vβc(α− h)|}. In practice, a transformation of α
is used, φ = log(α)− log(1−α), in order to ensure that α is constrained to lie in the interval
(0, 1) during model fitting.

Implementation

Model fitting initiates from starting estimates for βc and α, to give reasonably stable up-
dated estimates for βc after a number of iterations of equation (3). The derivatives of the
current estimates of Vβc are then used to provide updated estimates of α after a number
of iterations of equation (5) . Optimization proceeds by alternating between updating esti-
mates using equations (3) and (5) until convergence is achieved. Convergence in repolr can
be controlled using the argument fit.opt (see Section 3.1 for more details), with defaults
c(cmaxit = 10, omaxit = 5, ctol = 0.001, otol = 0.00001, h = 0.01), that control
the maximum number of iterations for updating α, the maximum number of iterations for
updating βc within each of the updating steps for α, the convergence tolerances for α and βc,
and the interval h for finite differencing, if this option is selected. Convergence is generally
achieved, for default settings of fit.opt, within 5 to 10 iterations. However, if issues do
arise, and convergence cannot be achieve before cmaxit is reached, then this is usually due
to either an inappropriate working correlation structure (i) or regression model (ii), leading
to problematic estimates of α in the former or βc in the latter case. It is often not possible
to determine whether lack of convergence is due to (i) or (ii) or both, so we would advise
changing each in turn to see if this solves the problem, if not then consider increasing cmaxit.

3. Examples

3.1. Specifying and fitting the model

Table 1 shows hip pain scores for the first five individual patients from the HHSpain dataset,
available in in package repolr, at one, two and five years post-operatively (full population is
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58 patients) after hip resurfacing surgery. Pain in the hip joint is assessed by the patient as
either none (1), slight (2), mild (3) or moderate or marked (4). The primary interest in this
study is to understand the effects of time and patient gender on post-operative pain scores.
Using the conventional R syntax for linear modelling, for ordinal response variable of pain
scores (variable HHSpain in dataset HHSpain) and explanatory variables (Time and Sex) this
is expressed as HHSpain ~ Time * Sex with model fitting in repolr proceeding as follows:

R> library("repolr")

R> data("HHSpain", package = "repolr")

R> mod.0 <- repolr(HHSpain ~ Time * Sex, data = HHSpain, categories = 4,

+ subjects = "Patient", times = c(1, 2, 5),

+ corr.mod = "uniform", alpha = 0.5)

It is important that data are structured in an analogous manner to that shown in Table 1
for model fitting to be implemented correctly. Data should be ordered by a subjects variable,
which takes integer values from 1 to N with no missing entries allowed, indicating the data
clusters (e.g., patients or experimental units). This must be specified in the call to function
repolr with the name of the subjects field in the index dataset (e.g., data = HHSpain) given
explicitly (e.g., subjects = "patient"). These subject clusters must all be of the same
size, that is they should contain the same number of repeated ordinal scores, if necessary
by inserting missing values in other data fields. Ordinal scores, observed within each of
the subject clusters, should be ordered temporally; i.e., from first to last observation time.
Strictly speaking it is not necessary to include a variable indicating the temporal spacing of
observations (Table 1; Time) in the dataset if this term is not included in the model formula,
as this information must always be provided explicitly by the times argument. Times should
be ordered integers starting from one and spaced to indicate the relative distance between
the successive times at which all observations were made. For instance, four observations at
equally spaced times would be entered as 1, 2, 3 and 4, whereas for the HHSpain data the
observations were at one, two and five years, so this is provided as a vector as follows c(1,

2, 5). In addition to the model formula, the only other required argument for repolr is the
number of ordinal score categories (e.g., categories = 4). The default setting for the working
correlation model (corr.mod) is taken to be "independence" and the initial (starting) value
for the correlation parameter (alpha), if required, is set to 0.5. For our example, we have
selected the "uniform" working correlation model with starting value for iteration of 0.5, for
exemplary purposes. The model is summarised, in conventional R syntax, as follows:

R> summary(mod.0)

repolr: 2016-02-26 version 3.4

Call:

repolr(formula = HHSpain ~ Time * Sex, subjects = "Patient",

data = HHSpain, times = c(1, 2, 5), categories = 4, corr.mod = "uniform",

alpha = 0.5)

Coefficients:

coeff se.robust z.robust p.value
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Patient Sex Time HHSpain

1 M 1 3
1 M 2 1
1 M 5 4
2 F 1 1
2 F 2 1
2 F 5 1
3 M 1 1
3 M 2 3
3 M 5 3
4 F 1 1
4 F 2 2
4 F 5 1
5 M 1 1
5 M 2 1
5 M 5 1

Table 1: Hip pain scores for first five patients from HHSpain dataset.

cuts1|2 0.6284 0.4334 1.4499 0.1471

cuts2|3 1.7038 0.4538 3.7545 0.0002

cuts3|4 3.0118 0.5039 5.9770 0.0000

Time -0.2140 0.1039 -2.0597 0.0394

SexM 0.5230 0.5292 0.9883 0.3230

Time:SexM 0.0332 0.1152 0.2882 0.7732

Correlation Structure: uniform

Estimated Correlation: 0.1043

The model coefficients, where cuts1|2, cuts2|3 and 3|4 are estimates of β0, are accessed
using conventional R model syntax for linear modelling as coef(mod.0) and the variance
covariance matrix of the regression parameters as vcov(mod.0). By default this reports the
robust or so-called sandwich estimator Vβc ; the naive or model based estimator (DW−1D)−1

is available as vcov(mod.0, robust.var = FALSE). Confidence intervals for regression pa-
rameters are also available at the desired level as confint(mod.0, robust.var = TRUE,

level = 0.95). In general, the robust variance estimator is the preferred option, and default
setting, in repolr. However summaries based on the naive estimator can be obtained, for
model mod.0 as follows summary(mod.0, robust.var = FALSE). Regression parameter βs
describes the effect of explanatory variable s on the ordinal score such that βs is the increase
in log-odds of falling into or below each score category associated with a unit increase in
s. Therefore, a negative regression coefficient indicates a tendency for the ordinal score to
increase as the variable increases; i.e., for the HHSpain dataset, the negative Time coefficient
and p-value ≤ 0.05 suggests that there is evidence for a statistically significant increase in
pain scores as time proceeds from years one to five. Similarly, a positive regression coefficient
indicates a tendency for the ordinal score to decrease as the variable increases; i.e., in this
example, scores were overall lower for males (M) than for females, but there was no evidence
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that this difference was statistically significant (p-value > 0.05). It should be noted that this
parametrization is different from that sometimes used elsewhere, where a negative sign in
Equation 1 is used to ensure that a positive value for βs leads to an increase in the probabil-
ity of the higher numbered ordinal score categories. Methods to extract model residuals and
fitted values are also available for fitted models; methods(class = "repolr"). Predicted
values can also be obtained for new data, provided this is formatted in the same manner as
for model fitting. For example, predicted values and standard errors, on the scale of the linear
predictor, for a new male subject who is given an arbitrary subject number (in this case 100)
can be obtained as follows:

R> predict(mod.0, newdata = data.frame(Patient = rep(100, 3),

+ Time = c(1, 2, 5), Sex = factor(rep(1, 3), levels=1:2,

+ labels=c("F", "M"))), type = "link", se.fit = TRUE)

$fit

100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8 100.9

0.414 1.490 2.798 0.200 1.276 2.584 -0.442 0.634 1.942

$se.fit

100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8 100.9

0.378 0.395 0.451 0.345 0.357 0.418 0.422 0.414 0.468

The naming conventions in reporting such output in repolr are to show the subject number
and derived binary variable number; i.e., in this particular example, 100.1 is the predicted
value for the first of the derived binary variables for subject 100, where we have (K − 1)× T
derived binary variables for each subject and in this example K = 4 and T = 3.

The correlation parameter estimate can be accessed as mod.0$alpha and the full working
correlation matrix R can also be examined:

R> work.corr(mod.0)

1 2 3 4 5 6 7 8 9

1 1.000 0.584 0.304 0.104 0.061 0.032 0.104 0.061 0.032

2 0.584 1.000 0.520 0.061 0.104 0.054 0.061 0.104 0.054

3 0.304 0.520 1.000 0.032 0.054 0.104 0.032 0.054 0.104

4 0.104 0.061 0.032 1.000 0.584 0.304 0.104 0.061 0.032

5 0.061 0.104 0.054 0.584 1.000 0.520 0.061 0.104 0.054

6 0.032 0.054 0.104 0.304 0.520 1.000 0.032 0.054 0.104

7 0.104 0.061 0.032 0.104 0.061 0.032 1.000 0.584 0.304

8 0.061 0.104 0.054 0.061 0.104 0.054 0.584 1.000 0.520

9 0.032 0.054 0.104 0.032 0.054 0.104 0.304 0.520 1.000

The 3 × 3 diagonal blocks are the correlations between the binary scores at the same time-
points and the 3 × 3 off-diagonal blocks are, for the uniform correlation model used here,
given by α times the diagonal blocks. For the first order autoregressive working correlation
model, the off-diagonal blocks would differ depending on the separation between time points,
as described in Section 2. Updating model mod.0 by selecting a first autoregressive working
correlation model, rather than the uniform model gives the following outcome:
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R> mod.1 <- update(mod.0, corr.mod = "ar1")

Warning message:

In repolr(formula = HHSpain ~ Time * Sex, subjects = "Patient", :

Model did not converge: iter 11 and crit 0.00599302442179872

R> mod.1$convergence

[1] FALSE

The R model updating function update has been used here for brevity of presentation. Al-
ternatively, the above model could, of course, have been obtained more explicitly, by simply
changing the option for argument corr.mod to "ar1", leaving all other arguments unchanged
and using the same syntax as for model mod.0, but assigning to object mod.1. In general,
parameter estimation is not sensitive to the choice of working correlation model, however
occasionally a pathologically bad choice will cause non-convergence of the algorithm. This is
the case here. After eleven iterations the fit criterion, ctol, is still above the default thresh-
old setting of 0.001 at iteration cmaxit+1. Experience suggests that convergence is rarely
achieved in such settings simply by increasing cmaxit, but one may be willing to accept a
larger, but still relatively small, value for ctol. For instance the following model does achieve
convergence after eight iterations:

R> mod.1 <- update(mod.0, corr.mod = "ar1",

+ fit.opt = c(NA, NA, ctol=0.01, NA, NA))

R> mod.1$convergence

[1] TRUE

R> mod.1$iter

[1] 8

It can occasionally be useful to fix the correlation parameter (alpha), rather than estimate
it, during model fitting. For instance, if analysis from a previous large study had provided
strong evidence in favour of a particular correlation structure and value for α, one might wish
to fix this in a subsequent analyses of any smaller subsidiary studies. This can be achieved
by setting the fixed argument to TRUE and alpha explicitly. For example we could update
the hip pain score model (mod.0), by fixing alpha to be 0.3 as follows.

R> mod.2 <- update(mod.0, fixed = TRUE, alpha = 0.3)

R> mod.2$alpha

[1] 0.3
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The method of finite differencing to estimate the partial derivatives, ∂log |Vβc |/∂α and
∂2log |Vβc |/∂α2, can be implemented by setting the argument diffmeth = "numeric", in
contrast to the default setting of "analytic". The former method is generally always faster
than the latter, with little loss in precision of parameter estimates provided h is small enough.
Formatting of outputs and summaries will look identical for both methods, the only differ-
ences are likely to be small changes to parameter estimates and standard errors, dependent
on the setting used for h.

3.2. Measures of fit

Two of the most common tasks during model fitting in repolr are (i) the selection of the most
appropriate working correlation model and (ii) the selection of the best subset of variables.
Both of these tasks can be informed by the QIC (Quasilikelihood model Information Criterion)
function that allows variable selection to be undertaken in an analogous manner to the Akaike
information criterion, with the model likelihood replaced by the model quasilikelihood under
the independence model and the penalty term given by 2×((K−1)+S) (Pan 2001). Using the
notation of Pan (2001), this model fit criterion is called QICu, where when choosing between
two or more models the one with the smallest QICu measure is preferred. Function QIC also
allows correlation structures to be compared between competing models, that are otherwise
identical, using a penalty term given by 2 × trace(H−1βc Vβc), where Hβc = (DW−1D)−1

is the naive (model-based) covariance matrix for an independence model (Pan 2001). This
latter criterion is labelled simply as QIC in output to calls to function QIC, and is discussed in
relation to the data described here. Whereas use of QICu is described in Section 3.3. Dataset
mobility provides ordinal scores (using a scale with three categories) to assess movement and
function for patients after surgery, in a clinical trial comparing two methods of bone fixation
(A and B), at four equally spaced time points. After adjusting for age and gender, it is of
interest to asses the size of the treatment effect and its interaction with time, and also to use
QIC to choose among the competing correlation structures.

R> data("mobility", package = "repolr")

R> mod.ar1 <- repolr(mobility ~ age + gender + time * treat, data = mobility,

+ categories = 3, subjects = "subject", times=c(1, 2, 3, 4),

+ corr.mod = "ar1", po.test = TRUE)

R> mod.unif <- update(mod.ar1, corr.mod = "uniform")

R> mod.ind <- update(mod.ar1, corr.mod = "independence")

As a preliminary assessment of the appropriateness of the overall model it is often useful
to test the assumption of proportionality implicit in Equation 1, which can be done by se-
lecting po.test = TRUE which implements the procedure described by Stiger, Barnhart, and
Williamson (1999). Results for the independence model, which are output routinely in a
call to summary if po.test = TRUE, suggest that the assumption of proportional-odds cannot
be sustained for this working correlation model. The test-statistic, degrees of freedom and
p-value are extracted from the fitted model as follows:

R> mod.ind$po.test

$po.stat

[1] 13.42185
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$po.df

[1] 5

$po.chi

[1] 0.01973056

Similar outputs for mod.ar1 and mod.unif suggest that proportionality cannot be rejected;
mod.ar1$po.test$po.chi = 0.5496093 and mod.unif$po.test$po.chi = 0.2603108. Al-
though, the usefulness of such tests have been questioned by Nooraee et al. (2014) who
reported, based on a small simulation study, that the type I error rate is likely to be inflated.
Comparison of QIC values indicates a preference for the uniform working correlation model.

R> QIC(mod.ar1)$QIC

[1] 1336.297

R> QIC(mod.unif)$QIC

[1] 1335.669

Values for the partial derivatives ∂log |Vβc |/∂φ and ∂2log |Vβc |/∂φ2 at model convergence
are given by mod.unif$grad1 = 0.001001424 and mod.unif$grad2 = 0.4310958, indicat-
ing that a minimum has been obtained; that is ∂log |Vβc |/∂φ ≈ 0 and ∂2log |Vβc |/∂φ2 > 0.
Parsons et al. (2006) suggested that mod.unif$grad2 could be used to construct a standard
error for α, and illustrated this graphically by plotting estimates of log |Vβc | across a range
of values for α (or φ), including the model estimate mod.unif$alpha, for a fixed correla-
tion model. Resultant plots can be informative in showing that a true minimum has indeed
been achieved and assessing the sensitivity of the model fit to parametrization of the selected
working correlation model. Although we would not recommend routinely undertaking such
an analysis, it can occasionally be informative in assessing the evidence available in support
of the association parameter α. Code to implement this for the uniform correlation model
mod.unif is as follows, and the result is shown in Figure 1.

R> update.ldetVb <- function(x){log(det(vcov(update(mod.unif,

+ fixed = TRUE, alpha = x))))}

R> phi <- function(x){log(x) - log(1 - x)}

R> range.alpha <- seq(0.25, 0.5, 0.01)

R> data <- lapply(range.alpha, update.ldetVb)

R> plot(x = phi(range.alpha), y = data, type = "b", las = 1, xaxt = "n",

+ xlab = expression(alpha), cex.lab = 1.3, pch = 19,

+ ylab = expression(paste("log|", V[beta][c], "|")))

R> axis(1, at = phi(range.alpha[seq(1, 26, 5)]),

+ labels = range.alpha[seq(1, 26, 5)])

R> opt.approx <- log(det(vcov(mod.unif))) +

+ 0.5 * ((phi(mod.unif$alpha) - phi(range.alpha))^2)*mod.unif$grad2

R> lines(x = phi(range.alpha), y = opt.approx)



12 repolr: Modelling Repeated Ordinal Scores

Figure 1: log |Vβc | for model mod.unif based on (i) fitting a range of models with fixed values
for α between 0.25 and 0.5 (�) and (ii) a second order approximation to α around the estimate
of 0.365 at convergence (-).
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3.3. Polynomial models for cut-point parameters

One of the key features of repolr that distinguishes it from other available software tools for
model fitting in this setting is the option to model the cut-point parameters using orthogonal
polynomial contrasts in the manner originally proposed by Parsons (2013). This option is fully
integrated into the main model fitting functions for versions 3.0 and newer of repolr. The
begonia dataset in repolr provides an ideal setting in which to explore some of the available
options. It is composed of quality scores, for two varieties of begonia potted house plants
transported from the growers using three contrasting methods (transport chains), collected
weekly during 5 weeks in simulated shelf-life conditions. Plants were subjected to a range of
conditions in controlled environment rooms, in order to assess how long they would retain
key quality attributes. Quality scores were originally made on an ordinal scale from 1 to 10
(highest quality). However, only categories 2 to 9 were used, so these have been re-coded
to scale from 1 to 8. In addition to overall quality scores, a range of plant physiological
characteristics were also observed. Assuming a working independence correlation model, and
modelling the expected strong interactions between temperature, lighting levels and irrigation
(Temp, Light and Irrig) and the main effects of weeks in shelf-life (Week), transportation
(Chain) and plant variety (Variety) gives the following model for quality score (Qual) made
at five equally spaced time-points:

R> data("begonia", package = "repolr")

R> mod.design <- repolr(Qual ~ Week + Temp * Light * Irrig + Chain + Variety,

+ data = begonia, categories = 8, subjects = "Pot", times = 1:5)

Here we are using the conventional default (full) parametrization for the cut-points; i.e., fitting
K−1 unstructured (but ordered) parameters. It is usually the case that a more parsimonious
model than this may be found. Parsons (2013) showed that orthogonal polynomials, of degree
K−2 or less, provide a simple and easily implemented alternative parametrization for the cut-
points. In addition to the argument poly that specifies the degree of polynomial required,
the only additional argument required for repolr is the cut-point spacing (space). The
spacing vector defines the hypothesised distances between the ordinal score categories, which
for the begonia data we assume to be equally spaced; i.e., space = 1:8 . The spacing is the
important thing, so the following argument space = seq(1, 15, 2) would work equally well
and give identical results. Typical circumstances where one might want to deviate from the
default settings for the spacing is where certain score categories were not reported in the data.
For instance for the begonia plant quality scores, imagine that rather than observing ordinal
score categories 2 to 9, on original 1 to 10 scale, we had actually observed score categories 1,
3, 5, 6, 7, 8, 9 and 10, then we might want to reflect our expectations of the likely spacings
to space = c(1, 3, 5:10). Fitting a third order polynomial model to the begonia data is
implemented as follows:

R> mod.poly3 <- update(mod.design, poly = 3)

Models of other orders can be fitted simply by changing the argument poly to the appropriate
integer value, and overall model fits compared for these models, using QICu, to those from
other models. Table 2 shows these and parameter estimates for polynomials of orders 1 to
6. The polynomial model of order 6 is exactly equivalent to model mod.design; that is the
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Polynomial order
1 2 3 4 5 6

QICu 1633.88 1575.69 1567.11 1568.88 1569.07 1571.11
Intercept -13.19 -14.10 -14.23 -14.27 -14.26 -14.28
poly(cuts, 7)1 365.23 372.96 375.35 376.06 375.89 376.25
poly(cuts, 7)2 - 43.76 45.50 46.03 46.00 46.08
poly(cuts, 7)3 - - -9.04 -8.95 -9.04 -9.14
poly(cuts, 7)4 - - - -3.91 -3.88 -4.00
poly(cuts, 7)5 - - - - 3.50 3.68
poly(cuts, 7)6 - - - - - 2.22

Table 2: Estimated polynomial cut-points and QICu values for begonia dataset.

regression parameters and standard errors will be equal. The only difference between them
being the parametrization of the cut-points.

From the values of QICu in Table 2, the third order polynomial appears to provide the best
model; i.e., QICu is smallest for this model. It is difficult to compare how the changing
parametrization affects the cut-point model, by simply inspecting the parameter estimates in
Table 2. The polycuts function converts polynomial coefficients to more conventional, and
directly comparable, cut-point estimates. For the third order polynomial model, this is given
as follows:

R> polycuts(mod.poly3)

repolr: 2016-02-26 version 3.4

Call:

repolr(formula = Qual ~ Week + Temp * Light * Irrig + Chain +

Variety, subjects = "Pot", data = begonia, times = 1:5, categories = 8,

poly = 3)

Coefficients:

coeff se.robust

Intercept -14.227 0.651

poly(cuts, 7)1 375.350 15.633

poly(cuts, 7)2 45.505 5.223

poly(cuts, 7)3 -9.041 4.285

Cut-point Estimates:

coeff se.robust

cuts1|2 -21.095 0.903

cuts2|3 -19.652 0.854

cuts3|4 -17.563 0.783

cuts4|5 -14.967 0.689

cuts5|6 -12.001 0.589
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cuts6|7 -8.802 0.486

cuts7|8 -5.508 0.392

Polynomial Order: 3

Model cut-points and standard errors can be extracted directly from fitted models; e.g., for
the third order polynomial model these are given by the following:

R> cuts.poly <- mod.poly3$poly$polycuts$coeff

R> secuts.poly <- mod.poly3$poly$polycuts$robust.se

Figure 2 shows cut-points for polynomial models of order 1 through to 6, together with
estimated cut-points and standard errors from model mod.design as a comparator. Each
of the individual plots in Figure 2 can be constructed using the following code, which for
illustration purposes uses the fit from the cubic polynomial model mod.poly3.

R> plot(x=1:7 + 0.5, y = coef(mod.design)[1:7], type = "p", pch = 19,

+ ylim = c(-23, -5), xlim = c(1, 8), las = 1, ylab = "Cut-points",

+ xlab = "Quality score", xaxt = "n", cex.lab = 1.3, cex.axis = 1.3)

R> axis(1, at = 1:8, labels = 1:8)

R> arrows(x0 = 1:7 + 0.5, x1 = 1:7 + 0.5, y0 = confint(mod.design)[1:7, 1],

+ y1 = confint(mod.design)[1:7, 2], length = 0, angle = 0)

R> lines(x = 1:7 + 0.5, y = cuts.poly, type = "l" , lwd = 1, lty = 1)

R> polygon(y = c(cuts.poly + qnorm(0.975) * secuts.poly,

+ rev(cuts.poly - qnorm(0.975) * secuts.poly)), border = NA,

+ x = c(1:7 + 0.5, 7:1 + 0.5), col = grey(0.7, alpha = 0.5))

The other plots in Figure 2 can be obtained simply by replacing cuts.poly and secuts.poly

with output from the appropriate polynomial model. Plots of this type are a useful way to
explore the various polynomial models, and for the example begonia data show that the third
order polynomial provides the most parsimonious model. It is clear from Figure 2 and Table
2 that there is no appreciable improvement in fit for polynomial models with order greater
than three, and that the increasing values of QICu for the more complex models are due to
the penalty term only. The focus here has been the selection of the best model for the cut-
point parameters, however, the procedure for finding the best subset of covariates would be
undertaken in an analogous manner by comparing QICu for competing models and choosing
the one with the lowest value. For instance, the effects of plant variety on model fit can be
assessed by fitting the model

R> mod.newdesign <- update(mod.design,

+ formula = Qual ~ Week + Temp * Light * Irrig + Chain)

and comparing QIC(mod.newdesign)$QICu to QIC(mod.design)$QICu, with the design with
the lower value being preferred. As with all such regression fitting tasks, this criterion should
be used as a guide when no other scientific knowledge is available for selection.
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Figure 2: Cut-point models for polynomials of orders [a] 1, [b] 2, [c] 3, [d] 4, [e] 5 and [f]
6. Each plot shows cut-point estimates from the fully parametrized model mod.design (�),
with bars showing 95% confidence intervals, and the polynomial model (-) with shaded region
showing 95% confidence intervals.
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4. Conclusions

This paper describes the R package repolr that implements a flexible set of functions that
allow proportional-odds models to be fitted to repeated ordinal score data using the methods
original proposed by Parsons et al. (2006) and subsequently extended by Parsons et al. (2009)
and Parsons (2013). It also provides a detailed description of the syntax required to undertake
a range of typical data analysis tasks within repolr. Although limited to fitting repeated
measures proportional odds logistic regression models, repolr has proved to be an efficient
and widely used package (Nooraee et al. 2014). The current version of repolr (v3.4; February
2016) provides the most comprehensive range of model fitting options and due to the fact that
core functions are now written in C++, using the packages Rcpp and RcppArmadillo, it is
considerably faster than previous versions for the range of typical models (e.g., T ≤ 5, K ≤ 7
and N ≤ 1000) for which it is currently used. One of the primary appeals of repolr, not
offered by any other software, is the ability to seamlessly include polynomial models for the
cut-point parameters into the conventional modelling framework; see Section 3.3. This feature
is particularly useful for long ordinal score scales (K ≥ 10) which often occur in medical and
social sciences, where attempting to estimate many cut-point parameters can be problematic,
or where one does not simply wish to dismiss cut-points as nuisance parameters.
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