
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 

Original citation: 
Chen, Huajie and Ortner, Christoph. (2016) QM/MM methods for crystalline defects. Part 1 : 
Locality of the tight binding model. Multiscale Modeling & Simulation, 14 (1). pp. 232-264. 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/86336  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
First Published Multiscale Modeling & Simulation, 14 (1). pp. 232-264. 2016 published by the 
Society for Industrial and Applied Mathematics (SIAM). Copyright © by SIAM. Unauthorized 
reproduction of this article is prohibited. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may be 
cited as it appears here. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/78941919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/86336
mailto:wrap@warwick.ac.uk


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE MODEL. SIMUL. c© 2016 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 232–264

QM/MM METHODS FOR CRYSTALLINE DEFECTS. PART 1:
LOCALITY OF THE TIGHT BINDING MODEL∗

HUAJIE CHEN† AND CHRISTOPH ORTNER†

Abstract. The tight binding model is a minimal electronic structure model for molecular
modeling and simulation. We show that for a finite temperature model, the total energy in this
model can be decomposed into site energies, that is, into contributions from each atomic site whose
influence on their environment decays exponentially. This result lays the foundation for a rigorous
analysis of QM/MM coupling schemes.
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1. Introduction. QM/MM coupling methods are a class of multiscale schemes
in which a quantum mechanical (QM) simulation is “embedded” in a larger molecular
mechanics (MM) simulation. Due to the high computational cost of QM models,
schemes of this type have become an indispensable tool in many scientific disciplines
[3, 22, 31, 38, 50, 58]. The present work is the first part in a series establishing the
mathematical foundation of QM/MM schemes in the context of materials modeling.

It is pointed out in [21] that a minimal requirement for a QM model to be suitable
for QM/MM coupling is the strong locality of forces,

(1)

∣∣∣∣ ∂fn∂ym

∣∣∣∣ → 0 “sufficiently rapidly” as rnm → 0,

where rnm = |yn − ym| and fn denotes the force acting on an atom at position yn
within a collection of nuclei at positions {y�} ⊂ Rd. The condition (1) is called strong
locality to set it apart from the weaker condition of locality of the density matrix,
which is already well understood (see, e.g., [2, 33] and section 1.2).

To study (1) we take a tight binding model at a finite electronic temperature (with
an implicit screening assumption) as a model problem. We prove an even stronger
condition than (1), strong energy locality: Given a finite collection of nuclei y = {y�},
we decompose the total energy E = E(y) into

(2) E(y) =
∑
�

E�(y),

where the site energies E�(y) are local in the sense that

(3)

∣∣∣∣∂E�(y)

∂yn

∣∣∣∣ � e−γr�n ,

∣∣∣∣∂2E�(y)

∂yn∂ym

∣∣∣∣ � e−γ(r�n+r�m)
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QM/MM METHODS FOR CRYSTALLINE DEFECTS 233

for some γ > 0, and analogous results for higher-order derivatives. While the specific
form of the decomposition we employ (cf. section 2.3) is well known [28, 29], the
locality result (3) is, to the best of our knowledge, new. We are aware of only one
analogous result—for the Thomas–Fermi–von Weizsäcker (TFW) model [48].

This locality result has a range of consequences: (1) It provides a strong theo-
retical justification for the concept of an interatomic potential. (2) From a purely
analytical point of view, there is little (if any) distinction between the tight binding
model and interatomic potential models. This means that we can apply many of the
analytical tools developed for interatomic potential models. For example, (3) we can
rigorously formulate and analyze models of defects in infinite crystalline solids [27].
(4) We can extend the construction and analysis of atomistic/continuum multiscale
schemes. In particular, the Cauchy–Born continuum limit analysis [51] can be directly
applied without additional work.

(5) Our main motivation, however, is to formulate and analyze new QM/MM
coupling schemes for crystal defects. In this endeavor we build on the successful
theory of atomistic/continuum coupling [46], employing the tools and language of
numerical analysis. The key idea is that, due to equations (2) and (3), the total
energy can be approximated by

E(y) ≈
∑

�∈QM

E�(y) +
∑

�∈MM

Ẽ�(y),

where Ẽ� is not an off-the-shelf site potential (Lennard-Jones, EAM, etc.) as in previ-
ous works on QM/MM coupling, but instead is a controlled approximation to E�. We
show in the companion paper [18] that this approach yields new QM/MM schemes
(both energy-based and force-based) with rigorous rates of convergence in terms of
the QM core region size.

1.1. Outline. In section 2 we focus on finite systems. We first present a thorough
discussion of real-space tight binding models and then establish the results (2) and
(3) in this context. In section 3 we then extend the definition of the site energy as
well as the locality results to infinite systems (with an eye to crystal lattices) via a
limiting procedure. In section 4 we briefly present two applications of the locality
results in preparation for parts 2 and 3 of this series: We extend the crystal defect
model and the convergence analysis for a truncation scheme from [27] to the tight
binding model. Finally, in section 5, we present some preliminary numerical tests
illustrating our analytical results.

1.2. Further remarks. Tight binding model. Tight binding models are
minimalistic quantum mechanics type molecular models used to investigate and pre-
dict properties of molecules and materials in condensed phases. In terms of both
accuracy and computational cost they are situated between accurate but computa-
tionally expensive ab initio methods and fast but limited empirical methods. While
tight binding models are interesting in their own right, they also serve as a convenient
toy model for more accurate electronic structure models such as (Kohn–Sham) density
functional theory.

The study of defects in crystals is a field to which tight binding is well suited,
as it is frequently the case that the deviations from ideal bonding are large enough
that empirical potentials are not sufficiently accurate, but the system size required to
isolate the defect (e.g., for dislocations or cracks) makes the use of ab initio calculations
challenging. A number of studies have been carried out in which tight binding is
applied to simulations of crystal defects; see, e.g., [40, 43, 49, 56].
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234 HUAJIE CHEN AND CHRISTOPH ORTNER

Weak versus strong locality. By weak locality we mean that the electron den-
sity matrix has exponentially fast off-diagonal decay. In the context of tight binding,
this means

[
Γ(y)

]
mn

� e−γrmn(4)

(see (27) for the definition of the tight binding density matrix Γ(y)). In physics, this is
often described by the term “nearsightedness” [39, 53], which states that the electron
properties of insulators and metals at finite temperature do not depend on pertur-
bations at distant regions. This property has, e.g., been exploited to create linear
scaling electronic structure algorithms [1, 7, 33, 37]. Mathematical understanding of
weak locality can be found in [2, 19].

However, the weak locality is not enough to validate a hybrid QM/MM approach
[21]. We need the stronger locality condition (1) to guarantee that the QM region is
not affected by the classical particles and moreover that the forces in the QM region
can be computed to high accuracy by only considering a small QM neighborhood.
The decay rate in (3) then gives a guide to how large the QM region needs to be (see
also Theorem 17 and [18]).

Thermodynamic limit. Thermodynamic limit problems (infinite body limit),
related to our analysis in section 3, have been studied at great length in the analysis
literature. The monograph [15] gives an extensive account of the major contribu-
tions and also presents the thermodynamic limit problem for the Thomas–Fermi–von
Weizsäcker (TFW) model for perfect crystals. The thermodynamic limit of the re-
duced Hartree–Fock (rHF) model is studied in [16] for perfect crystals. This literature
also contains many results on the modeling of local defects in crystals in the framework
of the TFW and rHF models; see, e.g., [6, 8, 9, 10, 11, 12, 42, 44].

These discussions are restricted to the case where the nuclei are fixed on a periodic
lattice (or with a given local defect). Leaving the positions of the nuclei free is also a
case of great physical and mathematical interest. Motivated by [27], we present such
a model in section 4.1 but postpone a complete analysis to [17].

A related problem is the continuum limit of quantum models. The TFW and
rHF models are studied in [5, 13], where it is shown that, in the continuum limit,
the difference between the energies of the atomistic and continuum models obtained
using the Cauchy–Born rule tends to zero. The tight binding and Kohn–Sham models
are studied in a series of papers [23, 24, 25, 26] which establish the extension of
the Cauchy–Born rule for smoothly deformed crystals. Our locality result yields an
immediate extension of the analysis of the Cauchy–Born model in the MM case [51].

1.3. Notation. The symbol 〈·, ·〉 denotes an abstract duality pairing between
a Banach space and its dual. The symbol | · | normally denotes the Euclidean or
Frobenius norm, while ‖ · ‖ denotes an operator norm. The constant C is a generic
positive constant that may change from one line of an estimate to the next. When
estimating rates of decay or convergence, C will always remain independent of system
size, lattice position, or test functions. The dependencies of C will normally be clear
from the context or stated explicitly.

1.4. List of assumptions. Our analysis requires a number of assumptions on
the tight binding model or the underlying atomistic geometry. For the reader’s con-
venience we list these with page references and brief summaries:
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QM/MM METHODS FOR CRYSTALLINE DEFECTS 235

L p. 235 Uniform noninterpenetration
H.tb p. 235 Locality of Hamiltonian
H.loc p. 236 Locality of Hamiltonian derivatives

H.sym p. 236 Symmetries of Hamiltonian
F p. 238 Configuration independent distribution
U p. 239 Locality of the repulsive potential

H.emb p. 244 Connection between the Hamiltonians of two embedded systems
D p. 249 Homogeneity of the reference configuration outside a defect core

2. Tight binding model for finite systems. We begin by formulating a gen-
eral non–self-consistent tight binding model for a finite system with N atoms. Let
ΛN be an index set with #ΛN = N . An atomic configuration is described by a map
y : ΛN → Rd with d ∈ N denoting the space dimension. (We admit d 	= 3 mostly
for the sake of mathematical generality; e.g., this allows us to formulate simplified
in-plane or anti-plane models.)

We say that the map y is a proper configuration if the atoms do not accumulate:
L. ∃ m > 0 such that |y(�)− y(k)| ≥ m ∀ �, k ∈ ΛN and � 	= k.

Let VN
m ⊂ (

Rd
)ΛN

denote the subset of all y ∈ (Rd)ΛN satisfying L.

2.1. The Hamiltonian matrix. In the tight binding formalism one constructs
a Hamiltonian matrix H in an “atomic-like basis set” {φ�α(r− y(�))}�∈ΛN ,α∈Ξ,(

H(y)
)αβ

�k
=

∫
Rd

φ�α(r− y(�))Ĥ(y)φkβ(r− y(k)) dr,(5)

where Ξ is a small collection of the atomic orbitals per atom (with maximum size
nΞ), and the integration on the right-hand side is usually replaced by an empirical
function. The entries of the Hamiltonian matrix H depend on the atomic species, the
atomic orbitals, and the configuration of nuclei. In practice, they are often described
by empirical functions (empirical tight binding) which have been calibrated using
experimental results or results from first principle calculations.

In either case, we can write the Hamiltonian matrix elements as(
H(y)

)αβ

�k
= hαβ�k (y),(6)

where hαβ�k : VN
m → R are functions depending on �, k, α, and β.

The orbital indices α, β do not bring any additional insight into the problem we
are studying, and they complicate the notation. Therefore, we ignore the indices α,
β, which is equivalent to assuming that there is one atomic orbital for each atomic
site (nΞ=1). The Hamiltonian matrix elements then simply become(

H(y)
)
�k

= h�k(y).(7)

All our results can be generalized to cases with nΞ > 1 without difficulty. The only
required modification is outlined in Appendix A.

We make the following standing assumptions on the functions h�k(y), which we
justify below in Remark 1 and Examples 2, 3. Briefly, these assumptions are consistent
with most tight binding models, with the only exception being that we assume that
Coulomb interactions are screened.
H.tb. There exist positive constants h̄0 and γ0 such that, for any y ∈ VN

m ,

|h�k(y)| ≤ h̄0e
−γ0|y(�)−y(k)| ∀ �, k ∈ ΛN .(8)
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236 HUAJIE CHEN AND CHRISTOPH ORTNER

H.loc. There exists n ≥ 4 such that h�k ∈ Cn(VN
m ). Moreover, there exist positive

constants h̄j and γj for 1 ≤ j ≤ n such that

(9)

∣∣∣∣ ∂jh�k(y)

∂[y(m1)]i1 · · ·∂[y(mj)]ij

∣∣∣∣ ≤ h̄je
−γj

∑j
l=1(|y(�)−y(ml)|+|y(k)−y(ml)|)

∀ �, k ∈ ΛN

with m1, . . . ,mj ∈ ΛN and 1 ≤ i1, . . . , ij ≤ d.
H.sym. (i) (Isometry invariance) If y ∈ VN

m and g : Rd → Rd is an isometry, then

h�k(y) = h�k(g(y)) ∀ �, k ∈ ΛN .(10)

(ii) (Permutation invariance) If y ∈ VN
m and G : ΛN → ΛN is a permutation

(relabeling) of ΛN , then

h�k(y) = hG−1(�)G−1(k)(y ◦ G) ∀ �, k ∈ ΛN .(11)

Remark 1. (i) Condition (8) indicates that all the matrix elements are bounded by
h̄0, which is independent of the system size. This is reasonable under the assumption
L and that the number of atomic orbitals per atom in Ξ remains bounded as the
number of atoms N increases.

(ii) The condition H.tb postulates exponential decay of the matrix elements with
respect to the nuclei distance |y(�) − y(k)|. This is true in all tight binding models;
as a matter of fact, most formulations employ a finite cut-off (zero matrix elements
beyond a finite range of internuclear distance).

(iii) When j = 1 in H.loc, the condition (9) becomes∣∣∣∣ ∂h�k(y)∂[y(m)]i

∣∣∣∣ ≤ h̄1e
−γ1(|y(�)−y(m)|+|y(k)−y(m)|) ∀ �, k ∈ ΛN(12)

with 1 ≤ i ≤ d. This states that there are no long-range interactions in the models,
so that the dependence of the Hamiltonian matrix elements h�k(y) on site m decays
exponentially fast to zero. This assumption is reasonable if one assumes that Coulomb
interactions are screened.

(iv) In most tight binding models, the atomic orbitals are not orthogonal, which
gives rise to an overlap matrix(

M(y)
)
�αkβ

=

∫
Rd

φ�α(r− y(�))φkβ(r− y(k))dr.(13)

(In empirical tight binding models, M may again be given in functional form.)
On transforming the Hamiltonian matrix from a nonorthogonal to an orthogonal

basis by taking the transformed Hamiltonian

H̃ = M−1/2HM−1/2,

we obtain again the identity as an overlap matrix. Moreover, following the arguments
in [2], it is easy to see that if M has an exponential decay property analogous to
(8), then so does M−1/2. Thus, we see that the decay properties in H.tb and H.loc
are not lost by this transformation, and we can, without loss of generality, ignore the
overlap matrix.

D
ow

nl
oa

de
d 

03
/0

3/
17

 to
 2

17
.1

12
.1

57
.1

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QM/MM METHODS FOR CRYSTALLINE DEFECTS 237

(v) We have opted to work with an isolated system; however, it would be equally
possible to employ periodic boundary conditions. In this case, tight binding models
employ Bloch sums to take into account the periodic images; see, e.g., the Slater–
Koster formalism [54]. Our entire analysis can be easily adapted to this case as well,
and the resulting thermodynamic limit model would be identical to the one we obtain.

(vi)H.sym (i), invariance of the Hamiltonian under isometries of deformed space,
is true in the absence of an external (electric or magnetic) field; e.g., with g(x) = x+c,
with some c ∈ Rd, (i) implies translation invariance of the Hamiltonian. H.sym
(ii) indicates that all atoms of the system belong to the same species so that the
relabeling of the indices only gives rise to permutations of the rows and columns of
the Hamiltonian.

The symmetry assumptions H.sym are natural and represent no restriction of
generality. We require them to establish analogous symmetries in the site energies
that we define in section 2.3. We remark, however, that H.sym must be modified for
multiple atomic orbitals per site; see Appendix A.

Example 2. Many tight binding models use the “two-center approximation” [35],
assuming that h�k(y) depends only on the vector between two atoms y(�) and y(k).
If we only take into account the nearest neighbor interactions, then the Hamiltonian
matrix elements of such models are given by

(
H(y)

)
�k

=

⎧⎪⎨⎪⎩
a� if � = k;

b�k(y(�)− y(k)) if y(�) is the nearest neighbor of y(k);

0 otherwise,

(14)

where a� are constants and b�k are smooth functions. We observe that all our assump-
tions in H.tb and H.loc are trivially satisfied for this simple but common model.

Example 3. The Hamiltonian of an rHF model with the Yukawa potential [59] is

Ĥ(y) = −1

2
Δ−

∑
�∈ΛN

Ym(· − y(�)) +

∫
Rd

ρ(x)Ym(· − x)dx,(15)

where ρ is assumed to be a fixed electron density, and Ym is the Yukawa kernel with
parameter m > 0:

Ym(x) =

⎧⎪⎨⎪⎩
m−1e−m|x| if d = 1;∫∞
0 e−m|x| cosh tdt if d = 2;

|x|−1e−m|x| if d = 3.

(16)

Note that both Ym and its derivatives decay to 0 exponentially fast. If the basis
functions {φ�α}�∈ΛN ,α∈Ξ are localized, i.e., the atomic orbitals for the �th atom have
compact support around y(�), or decay exponentially, then we have that the matrix
elements generated by (5) satisfy the assumptions in H.tb and H.loc.

As a consequence of our assumptions, the following lemma states that the spec-
trum of the Hamiltonian is uniformly bounded with respect to the system size N .

Lemma 4. For any ΛN satisfying L and H.tb, there exist constants σ and σ
depending only on m, h̄0, γ0, and d such that, for all y ∈ VN

m ,

σ(H(y)) ⊂ [σ, σ].(17)
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Proof. Let {λi}1≤i≤N be eigenvalues of H(y). Using (8) and the Geršgorin theo-
rem [36], we have

|λi| ≤ max
�∈ΛN

⎛⎝|h��(y)|+
∑

k∈ΛN , k �=�

|h�k(y)|
⎞⎠ ≤ h̄0 max

�∈ΛN

( ∑
k∈ΛN

e−γ0|y(�)−y(k)|
)

(18)

for any i. This together with the assumption L implies that

|λi| ≤ Ch̄0

∫
Rd

e−γ0m|r| dr ≤ Cdh̄0
(mγ0)d

(19)

for any i, where Cd is a constant depending only on the dimension d.

2.2. Band energy. The total energy of a configuration y ∈ YN
m is written as

the sum of band energy and repulsive energy,

Etot(y) = Eband(y) + Erep(y),(20)

which we define as follows. For simplicity of notation, we will write E = Eband

throughout this paper.
Given a deformation y ∈ Vm, the associated Hamiltonian matrix H(y), and its

eigenvalues εs and eigenvectors ψs, s = 1, . . . , N (allowing for multiplicity, the depen-
dence of εs and ψs on y is omitted for simplicity of notation),

H(y)ψs = εsψs, s = 1, 2, . . . , N,(21)

the band energy of the system is defined by

(22) E(y) =

N∑
s=1

f(εs)εs =

N∑
s=1

f(εs),

where f depends on the physical context. For example, at finite electronic tempera-
ture, f is the is Fermi–Dirac function

f(ε) =

(
1 + e(ε−μ)/(kBT )

)−1

,(23)

μ is a fixed chemical potential (more on that below), kB is Boltzmann constant, and
T is the temperature. In the zero-temperature limit, f becomes a step function. In
practical simulation of conductors, f is often a smearing function (i.e., a numerical
parameter) to ensure numerical stability (see, e.g., [30, 41, 47]).

In the present work, we shall not be too concerned about the origin of f but
simply accept it as a model parameter. Our analysis can be carried out whenever f is
analytic (e.g., the Fermi–Dirac distribution) or, in insulators (systems with band gap
at μ), also when f is a step function. For the sake of a unified presentation we shall
present only the first case, but it will be immediately apparent how to treat insulators
as well. Thus we shall assume the following for the remainder of the paper:
F. f is a configuration independent analytic function in an open neighborhood
Df ⊂ C of [σ, σ]; cf. Lemma 4.

Remark 5. (i) The qualifier “configuration independent” inF essentially rephrases
the assumption that the chemical potential μ is independent of the configuration y.
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This is false in general but a reasonable assumption in our context since, in the next
section, we shall consider limits of finite bodies in the form of lattices that are only
locally distorted by defects. It is well known (though we are unaware of a rigorous
proof) that the limiting potential μ is indeed configuration independent but is only a
function of the far-field homogeneous lattice state.

(ii) We note, though, that there is a simple model in which the chemical potential
is indeed independent of the configuration. Consider a single-species two-center ap-
proximation where h�k(y) = h(|y(�)− y(k)|) and h��(y) ≡ a0. We define the chemical

potential μ of this system such that 2
∑N

s=1 f(εs) = N . Then it is easy to see that the
spectrum is symmetric about a0 and hence the chemical potential is always μ = a0.

(iii) In principle, one could perform a similar analysis for an insulating material.
Here, an additional technical challenge arises in that one needs to ensure a uniform
bound on the band gap with increasing system size. Thus, for the sake of simplicity,
we focus on a finite temperature model instead.

The repulsive component of the energy is empirical and in most of the cases is
simply described by a pair of potential interactions

Erep(y) =
1

2

∑
�,k∈ΛN , � �=k

U�k

(
y(�)− y(k)

)
,(24)

where U�k is an empirical repulsive energy acting between atoms on y(�) and y(k).
For future reference, we rewrite this in site energy form,

Erep(y) =
∑
�∈ΛN

Erep
� (y), Erep

� (y) =
1

2

∑
k∈ΛN , k �=�

U�k

(
y(�)− y(k)

)
,(25)

and we shall assume the following throughout:
U. U�k ∈ Cn(Rd \Bm), and there exist cU , γU > 0 such that

|∇jU�k(r)| ≤ cU exp(−γU |r|) ∀ �, k ∈ ΛN ,(26)

for 0 ≤ j ≤ n.
In most of our analysis we shall only be concerned with the band energy E and

have added Erep mostly for the sake of completeness. The pair interaction in Erep

may be replaced with an arbitrary short-range interatomic potential.

2.2.1. Representation via contour integrals. Our analysis of the locality of
interaction generated by the tight binding model builds on a representation of E in
terms of contour integrals. The main issue is to represent the electronic density matrix
as an operator-valued function of the Hamiltonian. This technique has been used in
quantum chemistry in, for example, [24, 34] for tight binding and [14, 19, 25, 32, 45, 57]
for density functional theory.

We begin by defining, for any proper configuration y ∈ VN
m , the electronic density

matrix (or, simply, density matrix) of the system,

Γ(y) =
∑
s

f(εs)|ψs〉〈ψs| = f(H(y)).(27)

The band energy can then equivalently be written as

E(y) = Tr
(H(y)Γ(y)

)
= Tr

(H(y)f(H(y))
)
= Tr

(
f(H(y))

)
.(28)
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240 HUAJIE CHEN AND CHRISTOPH ORTNER

Lemma 4 and F imply that we can find a bounded contour C ⊂ Df , circling all the
eigenvalues εs on the real axis (see Figure 1), and satisfying

min
{
dist

(
C , σ(H(y))

)
, dist

(
C , s(f)

)} ≥ d,(29)

with nonanalytic region s(f) and a constant d > 0 that is independent of y or of N .
Let

Rz(y) :=
(H(y)− zI

)−1

denote the resolvent of H(y); then

f(H(y)) = − 1

2πi

∮
C

f(z)Rz(y) dz,(30)

which implies that

E(y) = − 1

2πi

∮
C

f(z)Tr
(
Rz(y)

)
dz.(31)

C nonanalytic

spectrum

Fig. 1. A schematic plot of the dumbbell-shaped Cauchy contour C .

It is already clear from (31) that the locality of the resolvents will play an impor-
tant role in our analysis. Hence, we prove a decay estimate in the next lemma.

Lemma 6. Let H(y), y ∈ VN
m , be a tight binding Hamiltonian of the form (7) and

C a contour satisfying (29). If L and H.tb are satisfied, then there exist constants
γr > 0 and cr, independent of y or N , such that(

Rz(y)
)
�k

≤ cre
−γr|y(�)−y(k)| ∀ z ∈ C .(32)

Proof. This proof relies on the arguments provided by [24] and a Combes–Thomas
type estimate [20]. For simplicity of notation, we will denote H(y) by H throughout
this proof.

For k0 and γr > 0, let B ∈ RΛN×ΛN ,

B�k =

{
eγr|y(�)−y(k0)| if � = k;

0 otherwise.
(33)
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From this definition, we have[
BHB−1 −H]

�k
= eγr|y(�)−y(k0)|H�ke

−γr|y(k)−y(k0)| −H�k

= H�k

(
eγr(|y(�)−y(k0)|−|y(k)−y(k0)|) − 1

)
.

Assumptions L and H.tb yield∥∥BHB−1 −H∥∥∞ ≤ sup
�∈ΛN

∑
k∈ΛN

|H�k|
(
eγr|y(�)−y(k)| − 1

)

≤ h̄0 sup
�∈ΛN

(( ∑
k∈ΛN ,

|y(�)−y(k)|>R

e−(γ0−γr)|y(�)−y(k)|
)
+

( ∑
k∈ΛN ,

|y(�)−y(k)|≤R

e−γ0|y(�)−y(k)|
)(

eγrR − 1
))

≤ C
(
e−

1
2
(γ0−γr)R + eγrR − 1

)(34)

for any γr < γ0/2 and R > 0, where C is a constant depending only on h̄0, d, γ0, γr,
and m. For any ε > 0, we can choose R sufficiently large and then γr sufficiently small
(depending on R) such that ‖BHB−1 −H‖∞ < ε. We note that the choice of R and
γr does not depend on the system size N but only on ε and the constants h̄0, γ0, m.
Similarly, we have the same bound for ‖BHB−1 −H‖1. Using interpolation, we get
the same bound for ‖BHB−1 −H‖2.

Note that

B(z −H)−1B−1 = (z −BHB−1)−1(35)

= (z −H)−1(I − (BHB−1 −H)(z −H)−1)−1.

Since (29) implies ‖(z − H)−1‖L (l2) ≤ 1/d for any z ∈ C , we can choose R and γr
such that z −BHB−1 is invertible and

‖B(z −H)−1B−1‖L (l2) ≤ 2

d
.

Using
∣∣[B(z −H)−1B−1]�k

∣∣ ≤ ‖B(z −H)−1B−1‖L (l2) ≤ 2/d and∣∣∣[(z −H)−1
]
�k
eγr(|y(�)−y(k0)|−|y(k)−y(k0)|)

∣∣∣ = ∣∣∣[B(z −H)−1B−1
]
�k

∣∣∣ ≤ 2

d
,

consequently, ∣∣[(z −H)−1
]
�k

∣∣ ≤ 2

d
e−γr(|y(�)−y(k0)|−|y(k)−y(k0)|).(36)

Taking k0 = k, we obtain the stated exponential decay estimate.

2.3. Site energy. Since the tight binding Hamiltonian (5) is given in terms of
an atomic-like basis set, we can distribute the energy among atomic sites. This is a
well-known idea which has been used for constructing interatomic potentials based on
the bond-order concept (see, e.g., [28, 29, 55]).

Noting that ‖ψs‖�2 = 1 for all s, we have

E(y) =

N∑
s=1

f(εs)εs =

N∑
s=1

f(εs)εs
∑
�∈ΛN

[ψs]
2
� =

∑
�∈ΛN

N∑
s=1

f(εs)εs[ψs]
2
� .
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242 HUAJIE CHEN AND CHRISTOPH ORTNER

That is, we have obtained the decomposition of the band energy

E(y) =
∑
�∈ΛN

E�(y), where(37)

E�(y) =
∑
s

f(εs)εs[ψs]
2
� =

∑
s

f(εs)[ψs]
2
� ,(38)

and we call E�(y) the site energy.
When the atomic orbitals are not orthogonal we slightly modify the definition of

site energy for computational efficiency; see Appendix B for detailed discussions.
Such a decomposition is useful since, for example, classical interatomic potentials

almost always decompose the total energy in such a way; hence the relation (37) can
be used to establish a bridge between ab initio models and empirical interaction laws
[28]. For our own purpose, the decomposition will (1) yield a relatively straightfor-
ward thermodynamic limit argument to define and analyze variational problems on
the infinite lattice along the lines of [27], and (2) provide a starting point for the
construction and analysis of concurrent multiscale scheme hybrid models, which we
will pursue in the companion paper [18].

Our next aim is to establish locality of E�. We shall denote the partial derivatives
of Hamiltonians by(

[H,m(y)]i

)
�k

=
∂h�k(y)

∂[y(m)]i
and

(
[H,mn(y)]ij

)
�k

=
∂2h�k(y)

∂[y(m)]i∂[y(n)]j

with 1 ≤ i, j ≤ d. From now on, for the sake of readability, we drop the argument
(y) in Rz(y), H(y), H,m(y), and H,mn(y) whenever convenient and possible without
confusion and in addition write rmn = |y(m) − y(n)|. Let e� be the N dimensional
canonical basis vector; then we obtain from (21) that

E�(y) =
∑
s

f(εs) |[ψs]�|2 =
∑
s

f(εs)(ψs, e�)(ψs, e�) =
∑
s

(
f
(H)

ψs, e�

)
(ψs, e�)

=
∑
s

(ψs, e�)
(
ψs, f

(H)
e�

)
=

(
e�, f

(H)
e�

)
,

and employing (30) we arrive at

E�(y) = − 1

2πi

∮
C

f(z)
[
Rz

]
��

dz.(39)

We can now calculate the first and second derivatives of E�(y) based on (39) and the
regularity assumption in H.loc:

∂E�(y)

∂[y(m)]i
=

1

2πi

∮
C

f(z)
[
Rz [H,m]i Rz

]
��

dz, and(40)

∂2E�(y)

∂[y(m)]i∂[y(n)]j
=

1

2πi

∮
C

f(z)

[
Rz

[H,mn

]
ij

Rz − Rz [H,m]i Rz

[H,n

]
j
Rz

− Rz [H,n]j Rz

[H,m

]
i
Rz

]
��

dz.(41)

D
ow

nl
oa

de
d 

03
/0

3/
17

 to
 2

17
.1

12
.1

57
.1

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QM/MM METHODS FOR CRYSTALLINE DEFECTS 243

We also have higher-order derivatives of the site energy for n ≤ n:

(42)
∂nE�(y)

∂[y(m1)]i1 · · ·∂[y(mn)]in
= − 1

2πi

∮
C

f(z)

[
n∑

l=1

∑
j1+···+jl=n

∑
Pj1,··· ,jl

m1,··· ,mn

(−1)l

Q(l)
z [y]

(
[H,Pm1···Pmj1

(y)]Pi1···Pij1
, · · · , [H,Pmn−jl+1···Pmn(y)]Pin−jl+1···Pin

)]
��

dz,

where Q
(n)
z :

(
RN×N

)n �→ RN×N :

Q(n)
z [y](Θ1, · · · ,Θn) = Rz(y)

n∏
j=1

(
ΘjRz(y)

)
(43)

is a well-defined linear map for any z satisfying (29) and Pj1,··· ,jl
m1,··· ,mn is the multiset

permutation of m1, . . . ,mn.

2.4. Properties of the site energy. In order for E� to be a “true” site en-
ergy it must satisfy certain properties: locality, permutation invariance, and isometry
invariance. We establish these next.

First, we establish the locality of the site energy and its derivatives. We remark
that in this result it is important that we are keeping μ fixed. Admitting y-dependent μ
would introduce a small amount of nonlocality in the site energies, but it is reasonable
to expect that this vanishes in the thermodynamic limit.

Lemma 7 (locality). If L, H.tb, H.loc, and F are satisfied, then, for 1 ≤ j ≤ n,
there exist positive constants Cj and ηj such that for any � ∈ ΛN ,∣∣∣∣ ∂jE�(y)

∂[y(m1)]i1 · · · ∂[y(mj)]ij

∣∣∣∣ ≤ Cje
−ηj

∑j
l=1 |y(�)−y(ml)|, 1 ≤ i1, . . . , ij ≤ d.(44)

Proof. We will only give the explicit proofs for j = 1, 2, the cases j > 2 being
analogous (but tedious).

For j = 1, we have from Lemma 6 and the assumptions L and H.loc that[
Rz [H,m]i Rz

]
��
=

∑
�1,�2∈ΛN

[
Rz

]
��1

(
[H,m]i

)
�1�2

[
Rz

]
�2�

≤ c2r h̄1
∑

�1,�2∈ΛN

e−min{γr,γ1}
(
r��1+r�1m+rm�2

+r�2�

)

= c2r h̄1

( ∑
�1∈ΛN

e−min{γr,γ1}
(
r��1+r�1m

))2

≤ Ce−min{γr,γ1}|y(�)−y(m)|,(45)

where C depends only on h̄1, cr, γr, γ1,m, and d. Together with (40) and F, this leads
to

∂E�(y)

∂[y(m)]i
≤ C1e

−η1|y(�)−y(m)| for 1 ≤ i ≤ d.(46)
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For j = 2, we employ Lemma 6, L, and H.loc to estimate the three terms arising
in the expression (41) of the site Hessian, using computations similar to those in (45):[

Rz [H,m]i Rz [H,n]j Rz

]
��

≤ c3r h̄
2
1

∑
�1,�2,�3,�4∈ΛN

e−min{γr,γ1}
(
r��1+r�1m+r�2m+r�2�3

+r�3n+r�4n+r�4�

)
≤ Ce−

1
2 min{γr,γ1}(|y(�)−y(m)|+|y(�)−y(n)|);[

Rz [H,n]j Rz [H,m]i Rz

]
��

≤ Ce−
1
2 min{γr,γ1}(|y(�)−y(m)|+|y(�)−y(n)|); and[

Rz [H,mn]ij Rz

]
��

≤ c2r h̄2
∑

�1,�2∈ΛN

e−min{γr,γ2}(r��1+r�1m+r�1n+r�2m+r�2n+r�2�)

≤ Ce−
1
2 min{γr,γ2}(|y(�)−y(m)|+|y(�)−y(n)|).

Inserting these three estimates into (41) together with F yields the desired result,

∂2E�(y)

∂[y(m)]i∂[y(n)]j
≤ C2e

−η2

(
|y(�)−y(m)|+|y(�)−y(n)|

)
for 1 ≤ i, j ≤ d.

The next lemma summarizes the consequences of H.sym.

Lemma 8 (symmetries). Let y ∈ VN
m . Assume that H.sym is satisfied.

(i) (Isometry invariance) If g : Rd → Rd is an isometry, then E�(y) = E�(g(y)).
(ii) (Permutation invariance) If G : Λ → Λ is a permutation (relabeling) of Λ,

then E�(y) = EG−1(�)(y ◦ G).
Proof. (i) Let y′ = g(y). Since g is an isometry, we have that y′ ∈ VN

m . The
assumption H.sym (i) implies hmn(y) = hmn(y

′), which together with (39) yields

E�(y) = − 1

2πi

∮
C

f(z) [Rz(y)]�� dz = − 1

2πi

∮
C

f(z) [Rz(y
′)]�� dz = E�(y

′).(47)

(ii) Let y′ = y◦G. The assumptionH.sym (ii) implies hmn(y) = hG−1(m)G−1(n)(y
′),

which together with (39) leads to E�(y) = EG−1(�)(y
′).

3. Pointwise thermodynamic limit. Our aim in this section is to give a mean-
ing to energy in the infinite body limit (“thermodynamic limit”). The notion of site
energy makes this relatively straightforward: we will prove that fixing a site � and
“growing” the material around it to an infinite body yields a well-defined site energy
functional E� for an infinite body. Total energy in an infinite body is of course ill
defined, but using the site energies it then becomes straightforward to consider energy
differences; cf. section 4.

We need the following additional assumption, connecting the Hamiltonians for
growing index sets, in our analysis.
H.emb. Let yN : ΛN → Rd, y : ΛN ∪ {x′} → Rd be two configurations satisfying L,
and let hN�k(y

N ), h�k(y) be the corresponding Hamiltonian matrix elements of these
two configurations satisfying H.loc. If yN (�) = y(�) for any � ∈ ΛN , then for
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0 ≤ j ≤ n− 1,

∂jhN�k(y
N )

∂[y(m1)]i1 · · · ∂[y(mj)]ij
= lim

|y(x′)|→∞
∂jh�k(y)

∂[y(m1)]i1 · · · ∂[y(mj)]ij
∀ �, k ∈ ΛN(48)

with m1, . . . ,mj ∈ ΛN and 1 ≤ i1, . . . , ij ≤ d.

Remark 9. Intuitively, H.emb states that if one atom y(x′) in the system is
moved to infinity, then the Hamiltonian matrix elements for the remaining subsystem
{y(�) | � ∈ ΛN} no longer depend on y(x′).

At first glance, this appears to be a consequence of H.tb and H.loc. The reason
we have to formulate it as a separate assumption is to make a connection between
the Hamiltonians for ΛN and ΛN ∪ {x′}. More generally, in Lemma 11, we obtain
an analogous connection between the Hamiltonians for any two systems ΛN ,ΛM with
ΛN ⊂ ΛM .

Let Λ be a countable index set (or reference configuration); then we consider
deformed configurations belonging to the class

Vm(Λ) :=
{
y : Λ → Rd, y|ΛN ⊂ VN

m for any finite ΛN ⊂ Λ
}

=
{
y : Λ → Rd, |y(�)− y(k)| ≥ m ∀ �, k ∈ Λ

}
.(49)

If y ∈ Vm(Λ), then L is satisfied for any finite subsystem ΛN ⊂ Λ. In the following,
whenever we assume H.tb, H.loc, and H.emb for infinite Λ, we mean that they are
satisfied for the Hamiltonian matrices of any finite subsystem ΛN ⊂ Λ.

For a bounded domain Ω ⊂ Rd, we shall denote the Hamiltonian, resolvent, and
energy of the finite subsystem contained in Ω, respectively, by HΩ(y), RΩ

z (y), and
EΩ(y). For simplicity of notation, we drop the argument (y) whenever convenient.

Theorem 10. Let Λ be countable and y ∈ Vm(Λ) be a deformation. Suppose
the assumptions F, H.tb, H.loc, H.emb, and H.sym are satisfied for all finite
subsystems (with simultaneous choice of constants); then

(i) (existence of the thermodynamic limits) for any � ∈ Λ and for any sequence
of convex and bounded sets ΩR ⊃ BR(y(�)), R > 0, the limit

E�(y) := lim
R→∞

EΩR

� (y)(50)

exists and is independent of the choice of sets ΩR;
(ii) (regularity and locality of the limits) the limits E�(y) possess jth order partial

derivatives with 1 ≤ j ≤ n− 1, and it holds that

(51)

∣∣∣∣ ∂jE�(y)

∂[y(m1)]i1 · · · ∂[y(mj)]ij

∣∣∣∣ ≤ Cje
−ηj

∑j
l=1 |y(�)−y(ml)|,

1 ≤ i1, . . . , ij ≤ d,

where the constants Cj and ηj are the same as those in Lemma 7;
(iii) (isometry invariance) if g : Rd → Rd is an isometry, then E�(y) = E�(g(y));
(iv) (permutation invariance) if G : Λ → Λ is a permutation (relabeling) of Λ,

then E�(y) = EG−1(�)(y ◦ G).
Before we prove Theorem 10 we establish an extension of H.emb which states

that for two embedded systems, the difference between the two Hamiltonian matrix
elements decays exponentially fast with respect to the distance to the interface.
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Lemma 11. Let ΛM � ΛN , yM : ΛM → Rd, and yN : ΛN → Rd be two configu-
rations satisfying L. Assume that there exists a convex set Ω ⊂ Rd such that

yM (�) = yN(�) ∈ Ω ∀ � ∈ ΛN and yM (�) ∈ Ωc ∀ � ∈ ΛM\ΛN ,

where Ωc is the complement of Ω in Rd. If F, H.loc, H.ext are satisfied, then, for
0 ≤ j ≤ n − 1, there exist positive constants cj , κj, which do not depend on M , N ,
and Ω, such that

|hM�k (yM )− hN�k(y
N )| ≤ c0 exp

(
− κ0

(
dist

(
yN (�),Ωc

)
+ dist

(
yN (k),Ωc

) ))
,(52)

and ∣∣∣∣ ∂jhM�k (y
M )

∂[y(m1)]i1 · · · ∂[y(mj)]ij
− ∂jhN�k(y

N )

∂[y(m1)]i1 · · · ∂[y(mj)]ij

∣∣∣∣
≤ cj exp

(
− κj

(
dist

(
yN(�),Ωc

)
+ dist

(
yN(k),Ωc

)
+

j∑
s=1

(|yN (�)− yN(ms)|+ |yN (k)− yN (ms)|)
))

(53)

for any �, k,ms ∈ ΛN and 1 ≤ i1, . . . , ij ≤ d.

Proof. We first prove the case j = 0, i.e., (52). For each � ∈ ΛM\ΛN , there exists
a unique normalized vector ν� such that yM (�)−ν� ·dist

(
yM (�),Ω

) ∈ Ω. Let {Rμ
� }μ∈N

be a sequence for each � ∈ ΛM\ΛN , such that Rμ
� → ∞ as μ→ ∞; then we define

ỹμ(�) :=

{
yN (�) if � ∈ ΛN ;

yM (�) + ν� · Rμ
� if � ∈ ΛM\ΛN .

Using H.emb with j = 0 and an elementary argument we can inductively choose Rμ
� ,

such that Rμ := min�∈ΛM\ΛN
Rμ

� → ∞ as μ→ ∞ and

hN�k(y
N ) = lim

μ→∞hM�k (ỹ
μ).(54)

Let n ∈ ΛM \ΛN , � ∈ ΛN , and c > 0. Since Ω is convex, (yM (n)−yM (�)) ·νn ≥ 0,
and therefore

|yM (n)− yM (�) + cνn| ≥
(
|yM (n)− yM (�)|2 + c2

)1/2

≥ 1√
2

(|yM (n)− yM (�)|+ c
)
.

Using the assumptions L and H.loc with j = 1, we have that for �, k ∈ ΛN

∣∣hM
�k(ỹ

μ)− hM
�k (y

M)
∣∣ =

∣∣∣∣∣∣
∫ 1

0

∑
n∈ΛM\ΛN

∂hM
�k

∂y(n)

(
(1− t)yM + tỹμ

)
· (ỹμ(n)− yM (n)

)
dt

∣∣∣∣∣∣
≤ Ch̄1

∫ 1

0

∑
n∈ΛM\ΛN

e−γ1

(
|yM (�)−yM (n)+tRμνn|+|yM(k)−yM (n)+tRμνn|

)
·Rμ dt

≤ Ch̄1

∑
n∈ΛM\ΛN

e−
γ1
2

(
|yM (�)−yM (n)|+|yM (k)−yM (n)|

)
·
∫ 1

0

e−γ1tR
μ

Rμ dt

≤ c0e
−κ0

(
dist(yN (�),Ωc)+dist(yN (k),Ωc)

)
· (1− e−γ1R

μ)
,
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where κ0 = γ1/2 − ε with any ε ∈ (0, γ1/2), and c0 is a constant depending only on
ε, h̄1, γ1, m, and d. Note that neither κ0 nor c0 depends on the system sizes M , N ,
and Ω. Note that

∣∣hM
�k (y

M)− hN
�k(y

N)
∣∣ = lim

μ→∞

∣∣hM
�k(y

M )− hM
�k(ỹ

μ)
∣∣ ≤ c0e

−κ0

(
dist(yN (�),Ωc)+dist(yN (k),Ωc)

)
,

which completes the proof of the case j = 0.
With the same arguments, we can prove (53) for 1 ≤ j ≤ n − 1 by using the

assumptions H.loc with index j + 1 and H.emb with index j.

Remark 12. The assumption that Ω is convex in Theorem 10 and Lemma 11 is
only made for the sake of convenience. We use it to ensure that the integrand in the
above proof satisfies assumption L on the paths along which we are integrating. One
could generalize to a wider class of Ω by choosing the integral path more carefully.

Proof of Theorem 10. (i) Without loss of generality, we can assume that the upper
bound of the spectrum σ < 0 (one can always shift the eigenvalues if this is not
satisfied) and the contour C is chosen such that it includes 0 and

min
{
dist

(
C , σ(H(y))

)
, dist

(
C , s(f)

)
, dist

(
C , {0})} ≥ d.(55)

Let � ∈ Λ and BR(y(�)) ⊂ ΩR � Ω′; then we define

[
H̃ΩR(y)

]
km

:=

{ [HΩR(y)
]
km

if y(k), y(m) ∈ ΩR;

0 otherwise for y(k), y(m) ∈ Ω′.
(56)

Note that (55) implies that the condition (29) is satisfied for the Hamiltonian H̃ΩR

with the contour C . Moreover, the resolvent R̃ΩR
z (y) = (H̃ΩR(y) − zI)−1 is well

defined for any z ∈ C and satisfies the estimate in (32). Under the assumption F, we
can observe that the band energy and site energies of the Hamiltonian HΩR(y) and

H̃ΩR(y) are the same.
We have from (39), (56), L, H.tb, and Lemmas 11 and 6 that

EΩ′
� (y)− EΩR

� (y) = − 1

2πi

∮
C

f(z)
[
RΩ′

z − R̃ΩR
z

]
��

dz

≤ C
∑

y(�1),y(�2)∈Ω′

[
RΩ′

z

]
��1

[HΩ′ − H̃ΩR
]
�1�2

[R̃ΩR
z ]�2�

≤ C
∑

y(�1),y(�2)∈Ω′
e−γrr��1 e−κ0

(
dist(y(�1),Ω′\ΩR)+dist(y(�2),Ω′\ΩR)

)
e−γrr��2

≤ C

⎛⎝ ∑
y(�1)∈Ω′

e−γrr��1−κ0dist(y(�1),Ω′\ΩR)

⎞⎠2

≤ Ce−min{γr,κ0}R,(57)

where the last constant C depends only on h̄0, cr, c0, γr, κ0, m, and d but is indepen-
dent of y or R. Since (57) holds for any Ω′ � BR(y(�)), it follows that {EΩR

� (y)}R∈N

is a Cauchy sequence. The uniqueness of the limit is also an immediate consequence
of the fact that Ω′ was arbitrary. This completes the proof of (i).

(ii) Case j = 1. For �,m ∈ Λ, we take R > 2|y(m) − y(�)| and then adopt
the notation in the proof of (i). With the expression of (40), we obtain by a direct
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calculation that

(58)
∂EΩ′

� (y)

∂[y(m)]i
− ∂EΩR

� (y)

∂[y(m)]i
=

1

2πi

∮
C

f(z)

[
R̃ΩR

z

(
H̃ΩR −HΩ′)

RΩ′
z

[H̃ΩR
,m

]
i
RΩ′

z

+ R̃ΩR
z

[HΩ′
,m

]
i
RΩ′

z

(
H̃ΩR −HΩ′)

R̃ΩR
z + R̃ΩR

z

([HΩ′
,m

]
i
− [H̃ΩR

,m

]
i

)
R̃ΩR

z

]
��

dz.

Using L, H.tb, and Lemmas 11 and 6, we can obtain from an argument similar to
that in (57) that∣∣∣∣∣ ∂EΩ′

� (y)

∂[y(m)]i
− ∂EΩR

� (y)

∂[y(m)]i

∣∣∣∣∣ ≤ Ce−min{γr,κ0,κ1}
(
R+|y(�)−y(m)|

)
/2,(59)

where the constant C depends only on h̄0, cr, c0, c1, γr, κ0, κ1, m, and d. Note that
the estimate in (59) can be bounded by Ce−min{γr,κ0,κ1}R/2, which does not depend
on y. Therefore, we have that

{
∂ER

� (y)/∂[y(m)]i
}
R∈N

converge uniformly to some

limit, which together with (i) implies that E�(y) is differentiable with respect to y(m)
and the derivative is given by

∂E�(y)

∂[y(m)]i
= lim

R→∞
∂E

BR(y(�))
� (y)

∂[y(m)]i
for 1 ≤ i ≤ d.(60)

Case j > 1. For the second order derivatives, we can obtain from the expression
(41) and a tedious calculation that

∂2EΩ′
� (y)

∂[y(m)]i∂[y(n)]j
− ∂2EΩR

� (y)

∂[y(m)]i∂[y(n)]j

=
1

2πi

∮
C

f(z)

[
R̃ΩR

z

(
HΩ′ − H̃ΩR

)
RΩ′

z

[H̃ΩR
,m

]
i
R̃ΩR

z

[HΩ′
,n

]
j
R̃ΩR

z

+ RΩ′
z

([H̃ΩR
,m

]
i
− [HΩ′

,m

]
i

)
R̃ΩR

z

[H̃ΩR
,n

]
j
RΩ′

z

+ R̃ΩR
z

(
H̃ΩR −HΩ′)

RΩ′
z

[H̃ΩR
,mn

]
ij

RΩ′
z

+ R̃ΩR
z

([HΩ′
,mn

]
ij
− [H̃ΩR

,mn

]
ij

)
R̃ΩR

z + · · ·
]
��

dz.

For readability, we have omitted eight other terms in the square brackets, which have
the same structure as the listed four terms. By estimating each term using the same
arguments in (57), we can obtain∣∣∣∣∣ ∂2EΩ′

� (y)

∂[y(m)]i∂[y(n)]j
− ∂2EΩR

� (y)

∂[y(m)]i∂[y(n)]j

∣∣∣∣∣ ≤ Ce−min{γr,κ0,κ1,κ2}
(
R+r�m+r�n

)
/4,(61)

which leads to the existence of ∂2E�(y)/∂[y(m)]i∂[y(n)]j and

∂2E�(y)

∂[y(m)]i∂[y(n)]j
= lim

R→∞
∂2EΩR

� (y)

∂[y(m)]i∂[y(n)]j
for 1 ≤ i, j ≤ d.(62)
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For 2 < j ≤ n− 1, we can obtain by similar arguments that

(63)
∂jE�(y)

∂[y(m1)]i1 · · ·∂[y(mj)]ij
= lim

R→∞
∂jEΩR

� (y)

∂[y(m1)]i1 · · · ∂[y(mj)]ij
,

1 ≤ i1, . . . , ij ≤ d,

for any sequence ΩR satisfying the conditions of (i).
The locality of E� in (ii) is now an immediate consequence of Lemma 7 and (60),

(62), and (63).
(iii) Let y′ = g(y). Since g is an isometry, we have that g

(
BR(y(�))

)
= BR(y

′(�))
for any R > 0. We can obtain from H.sym (i) and Lemma 8(i) that

E
BR(y(�))
� (y) = E

BR(y′(�))
� (y′).(64)

Taking the limit R → ∞ of (64) and (i) yield E�(y) = Ek(y
′).

(iv) This part of the proof is similar to the proof of (iii) and is a consequence of
part (i) of the present result and Lemma 8(ii).

Theorem 10 states the existence of the thermodynamic limits of the site energies,
as well as the regularity, locality, and isometry/permutation invariance of the limits.
In the following we shall always denote this limiting site energy by E�.

Remark 13. We have only considered the band energy of the system so far. The
repulsive energy Erep can be incorporated into our analysis without difficulty.

Using the expression (25) and the assumption U, it is easy to justify the thermo-
dynamic limit of the repulsive site energy Erep

� , as well as its regularity and locality as
those in Theorem 10. Moreover, the symmetry results in Theorem 10 are also clearly
satisfied with the expression (25) for Erep

� . Therefore, all we have to do is to take the
total site energy

Etot
� = E� + Erep

�

and then use the existing results for E�. For convenience and readability, we still work
with the site band energy E� and continue to ignore the repulsive component.

4. Applications.

4.1. Tight-binding model for point defects. As alluded to in the introduc-
tion, our primary aim in understanding the locality of the tight binding model is the
construction and rigorous analysis of QM/MM hybrid schemes for crystalline defects,
along the lines of [27]. The next step toward this end is a rigorous definition of a
variational problem that is to be solved. Since we have shown in Theorem 10 that the
total tight binding energy can be split into exponentially localized site energies, this
is a relatively straightforward generalization of the analysis in [27], which considers
MM site energies with bounded interaction radius.

Here, we only summarize the results, with an eye to the application we present
in section 4.2. For simplicity we restrict ourselves to point defects only. Complete
proofs and generalizations to general dislocation structures are given in [17].

We call an index set Λ a point defect reference configuration if
D. ∃ Rdef > 0, A ∈ SL(d) such that Λ\BRdef

= (AZd)\BRdef
and Λ ∩BRdef

is finite.
While in previous sections we have worked with deformations y where y(�) denotes

the deformed position of an atom indexed by �, it is now more convenient to work
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with displacements u : Λ → Rd, u(�) = y(�) − �. For displacements u we define the
energy-difference functional

(65) E(u) :=
∑
�∈Λ

[
E�(x+ u)− E�(x)

]
,

where x denotes the identity map x : Λ → Rd, x(�) = �. Due to the exponential
localization of E�, this series converges absolutely if u has compact support, i.e., for
u ∈ Ẇ c with

Ẇ c :=
{
u : Λ → Rd, ∃R > 0 s.t. u = const in Λ \BR

}
;

cf. Theorem 14(i).
Next, still following [27], we extend the definition of E to a natural energy space.

For � ∈ Λ, ρ ∈ Λ− � := {m− �,m ∈ Λ \ {�}} we define Dρu(�) := u(�+ ρ)− u(�), and
moreover,

Du(�) :=
(
Dρu(�)

)
ρ∈Λ−�

.

We think of Du(�) ∈ (Rd)Λ−� as an (infinite) finite-difference stencil. For any such
stencil Du(�) and γ > 0 we define the norm

∣∣Du(�)∣∣
γ
:=

( ∑
ρ∈Λ−�

e−2γ|ρ|∣∣Dρu(�)
∣∣2)1/2

,

which gives rise to an associated seminorm on displacements,

‖Du‖�2γ :=

(∑
�∈Λ

|Du(�)|2γ
)1/2

.

All (semi)norms ‖ · ‖�2γ , γ > 0, are equivalent [17]. With these definitions we can
now define the function space, which encodes the far-field boundary condition for
displacements,

Ẇ 1,2 :=
{
u : Λ → Rd, ‖Du‖�2γ <∞}

.

We remark that Ẇ c is dense in Ẇ 1,2 [17].
In addition to the far-field behavior imposed by the condition u ∈ Ẇ 1,2, we also

require a variant of L, stating that atoms do not collide. Thus, our set of admissible
displacements becomes

Admm :=
{
u ∈ Ẇ 1,2, |�+ u(�)−m− u(m)| > m|�−m| ∀ �,m ∈ Λ

}
,

where m is an arbitrary positive number. Again, we can observe that Ẇ c ∩ Admm is
dense in Admm [17]. We remark also that, due to the decay imposed by the condition
u ∈ Ẇ 1,2, if u ∈ Adm0, then u ∈ Admm for some m > 0.

We can now state the main result concerning the energy-difference functional E .
The proof is an extension of [27, Lemma 2.1] and will be detailed in [17]. The main
new ingredient in this extension, as well as in Theorem 15 below, is quantifying how
rapidly the site energies approach those of a homogeneous crystal (without defect).

Theorem 14. Suppose that D is satisfied, as well as F, H.tb, H.loc, H.emb,
and H.sym for all finite subsystems with simultaneous choice of constants.
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(i) E : Ẇ c ∩ Adm0 → R is well defined by (65) in the sense that the series
converges absolutely.

(ii) E : Ẇ c∩Adm0 → R is continuous with respect to the ‖ ·‖�2γ seminorm; hence,
there exists a unique continuous extension to Adm0, which we still denote by E.

(iii) E ∈ Cn−1(Adm0) in the sense of Fréchet.

In view of Theorem 14 the following variational problem is well defined:

(66) ū ∈ argmin
{E(u), u ∈ Adm0

}
,

where “argmin” is understood in the sense of local minimality. We are not concerned
with existence or uniqueness of minimizers but only their structure. This is discussed
in the next result, which is an extension of [27, Theorem 2.3] (see [17] for the complete
proof).

Theorem 15. Let Υ > 0. Suppose that D is satisfied, as well as F, H.tb, H.loc,
H.emb, and H.sym for all finite subsystems with simultaneous choice of constants.
If ū ∈ Adm0 is a strongly stable solution to (66), that is,

(67) ∃ c̄ > 0 s.t.
〈
δ2E(ū)v, v〉 ≥ c̄‖Dv‖2�2Υ ∀v ∈ Ẇ c,

then there exists a constant C > 0 such that ū satisfies the decay

(68) |Dū(�)|Υ ≤ C(1 + |�|)−d ∀� ∈ Λ.

Remark 16. (i) The constants c̄ and C in Theorem 15 actually depend on the
parameter Υ in the norm. Nevertheless, since all norms ‖ · ‖�2γ are equivalent, we
hereafter ignore this dependence.

(ii) The condition (67) is stronger than actually required. Indeed, it suffices that
ū is a critical point and that strong stability is satisfied only in the far field; cf. [27,
eq. (2.7)].

(iii) Higher-order decay estimates can be proven for higher-order gradients. For
example, when n ≥ 5, then |Dρ1Dρ2 ū(�)| ≤ C|�|−d−1 for |�| sufficiently large; see
[27, 17] for more details. These estimates will be useful in our companion paper [18]
for the construction of highly accurate MM potentials but are not required in the
present work.

(iv) We emphasize that the rate of decay of the elastic field in (68) is generic and
in particular independent of the decay of the interaction (in our case exponential).

4.2. Convergence of a numerical scheme. As a reference scheme to com-
pare our QM/MM schemes against, and also as an elementary demonstration of the
usefulness of the locality results and of the framework of section 4.1, we present an
approximation error analysis for a basic truncation scheme.

To construct the scheme we first prescribe a radius R > 0 and restrict the set of
admissible displacements to

Adm0(R) :=
{
u ∈ Adm0, u = 0 in Λ \BR

}
.

The pure Galerkin scheme ūR ∈ argmin{E(u), u ∈ Adm0(R)} is analyzed in [27], and
the convergence rate ‖Dū−DūR‖�2γ � R−d/2 is proven.

In our case, the energy-difference E(u) is not computable for u ∈ Adm0(R) due
to the infinite interaction radius of the tight binding model. However, we can exploit
the exponential localization to truncate it. To that end, we let Rbuf be a buffer region
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width (cf. Theorem 17 and Remark 18), ΛR := Λ ∩BR+Rbuf , and for any v : Λ → Rd

we define vR : ΛR → Rd satisfying vR = v on ΛR. Then, for u ∈ Adm0, we define the
truncated energy-difference functional

ER(u) := EΛR
(
[x+ u]R

)− EΛR
(
xR

)
.

Clearly, ER is well defined and ER ∈ Cn−1(Adm0) in the sense of Fréchet. To formulate
the computational scheme, ER need only be defined for u ∈ Adm0(R), but for the
analysis it will be convenient to define it for all u ∈ Adm0.

The computational scheme is now given by

(69) ūR ∈ argmin
{ER(u), u ∈ Adm0(R)

}
.

Theorem 17. Let Υ be given in Theorem 15. Suppose that D is satisfied, as well
as F, H.tb, H.loc, H.emb, and H.sym for all finite subsystems with simultaneous
choice of constants.

If ū is a strongly stable solution to (66), then there are constants C,R0, cbuf such
that, for R ≥ R0 and Rbuf ≥ cbuf log(R), there exists a strongly stable solution ūR to
(69) satisfying ∥∥Dū−DūR

∥∥
�2Υ

≤ CR−d/2 and(70) ∣∣E(ū)− ER(ūR)
∣∣ ≤ CR−d.(71)

Proof. We closely follow the classical strategy of the analysis of finite element
methods, which is detailed for a setting very close to ours in [27] in various approxi-
mation proofs.

1. Quasi-best approximation. Following [27, Lemma 7.3], we can construct TRū ∈
Adm0(R) such that, for R sufficiently large,

‖DTRū−Dū‖�2Υ ≤ C‖Dū‖�2Υ(Λ\BR/2) ≤ CR−d/2,

where Theorem 15 is used for the last inequality. We now fix some r > 0 such
that Br(ū) ⊂ Admm for some m > 0. Then, for R sufficiently large, we have that
TRū ∈ Br/2(ū) and hence Br/2(TRū) ⊂ Admm.

Since E ∈ C3(Adm0(R)), δE and δ2E are Lipschitz continuous in Br(ū)∩Adm0(R)
with Lipschitz constants L1 and L2; that is,

‖δE(ū)− δE(TRū)‖ ≤ L1‖Dū−DTR(ū)‖�2Υ ≤ CR−d/2 and(72)

‖δ2E(ū)− δ2E(TRū)‖ ≤ L2‖Dū−DTR(ū)‖�2Υ ≤ CR−d/2.(73)

2. Stability. Using (61) and the facts that v = 0 and TRū = 0 outside BR, we
have that there exists a constant γs such that

(74)
∣∣〈(δ2ER(TRū)− δ2E(TRū)

)
v, v

〉∣∣ ≤ Ce−γsR
buf

Rd‖Dv‖2�2Υ .
The proof of this identity is relatively straightforward but does require some details,
which we present following the completion of the proof of the theorem. Together with
(67) and (73) this leads to〈

δ2ER(TRū)v, v
〉

=
〈
δ2E(ū)v, v〉+ 〈(

δ2E(TRū)− δ2E(ū))v, v〉+ 〈(
δ2ER(TRū)− δ2E(TRū)

)
v, v

〉
≥ (

c̄− C(R−d/2 + e−γsR
buf

Rd)
)‖Dv‖2�2Υ ≥ c̄

2
‖Dv‖2�2Υ ∀ v ∈ Adm0(R),(75)
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for sufficiently large R and sufficiently large cbuf .
3. Consistency. Similarly to (74), we can derive that there exists a constant γc

such that

(76)
∣∣〈δER(TRū)− δE(TRū), v

〉∣∣ ≤ Ce−γcR
buf

Rd−1/2‖Dv‖�2Υ .

We also present the detailed proof of (76) after the proof of this theorem.
In order to ensure the truncation of the electronic structure (the variational crime

committed upon replacing E with ER) we must chooseRbuf such that e−γcR
buf

Rd−1/2 ≤
CR−d/2, or equivalently, e−γcR

buf ≤ CR−(3d+1)/2. On taking logarithms, we observe
that this is true provided that Rbuf ≥ cbuf logR for cbuf sufficiently large.

Next, employing (72), we obtain that

(77)
〈
δER(TRū), v

〉
=

〈
δER(TRū)− δE(TRū), v

〉
+

〈
δE(TRū)− δE(ū), v〉

≤ C
(
e−γcR

buf

Rd−1 +R−d/2
)‖Dv‖�2Υ ≤ CR−d/2‖Dv‖�2Υ ∀ v ∈ Adm0(R),

for sufficiently large R and appropriate cbuf .
4. Application of inverse function theorem. With the stability (75) and consis-

tency (77), the inverse function theorem [46, Lemma B.1] implies the existence of ūR
and the estimate (70).

5. Error in the energy. For the estimate of the energy-difference functional, we
have from E ∈ C2(Adm0) that

(78)
∣∣E(ūR)− E(ū)∣∣ = ∣∣∣ ∫ 1

0

〈
δE((1 − s)ū+ sūR

)
, ūR − ū

〉
ds

∣∣∣
=

∣∣∣ ∫ 1

0

〈
δE((1− s)ū + sūR

)− δE(ū), ūR − ū
〉
ds

∣∣∣ ≤ C‖DūR −Dū‖2�2Υ ≤ CR−d.

Using (57) and ūR = 0 in Λ\BR, there exists some constant γe such that

|E(ūR)− ER(ūR)|

=
∑

�∈Λ∩B
R+Rbuf/2

(
E�(x+ ūR)− EΛR

� (x+ ūR) + EΛR
� (x)− E�(x)

)

+
∑

�∈Λ\B
R+Rbuf/2

(
E�(x+ ūR)−E�(x)

)
+

∑
�∈ΛR\B

R+Rbuf/2

(
EΛR

� (x+ ūR)−EΛR
� (x)

)

≤ C

⎛
⎜⎝ ∑

�∈Λ∩B
R+Rbuf/2

e−γe(R+Rbuf−|�|) +
∑

�∈Λ\B
R+Rbuf/2

e−γe(|�|−R)

⎞
⎟⎠

≤ CRd−1e−γeR
buf/2.

(79)

Using (78) and (79) and possibly choosing a larger constant cbuf , we obtain (71) for
sufficiently large R.

Proof of (74). Let u := TRū, V
Ω
� := V Ω

� (Du(�)) := EΩ
� (x + u) − EΩ

� (x), and
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254 HUAJIE CHEN AND CHRISTOPH ORTNER

V� := V Λ
� . Using u = 0 in Λ \BR, we have〈(

δ2ER(u)− δ2E(u))v, v〉 =
∑

�∈Λ∩BR

〈(
δ2V ΛR

� − δ2V�
)
Dv(�), Dv(�)

〉
+

∑
�∈ΛR\BR

〈(
δ2V ΛR

� − δ2V�
)
Dv(�), Dv(�)

〉 − ∑
�∈Λ\ΛR

〈
(δ2V�)Dv(�), Dv(�)

〉
=: T1 +T2 +T3.

It is obvious from (61) that, with γ = min{γr, κ0, κ1, κ2}/4,
T1 ≤ C

∑
�∈Λ∩BR

∑
ρ∈Λ−�

∑
σ∈Λ−�

e−γ(R+Rbuf−|�|+|ρ|+|σ|)|Dρv(�)||Dσv(�)|

≤ Ce−γRbuf‖Dv‖2�2
γ/2

(Λ∩BR) ≤ C1e
−γRbuf‖Dv‖2�2Υ(Λ∩BR),

where C1 depends on C, γ, and Υ. Using v = 0 in Λ \BR, we have from (61) that

T2 ≤ C
∑

�∈ΛR\BR

∑
ρ∈Λ−�

�+ρ∈BR

∑
σ∈Λ−�

�+σ∈BR

e−γ(R+Rbuf−|�|+|ρ|+|σ|)|Dρv(�)||Dσv(�)|

≤ Ce−γ(R+Rbuf )
∑

�∈ΛR\BR

( ∑
m∈Λ∩BR

∑
n∈Λ∩BR

eγ(2|�|−|�−m|−|�−n|)
)1/2

|Dv(�)|2γ/2

≤ Ce−γ(R+Rbuf )

( ∑
m∈Λ∩BR

∑
n∈Λ∩BR

eγ(|m|+|n|)
)1/2

‖Dv‖2�2
γ/2

(�∈ΛR\BR)

≤ Ce−γRbuf

Rd−1‖Dv‖2�2
γ/2

(ΛR\BR) ≤ C1e
−γRbuf

Rd−1‖Dv‖2�2Υ(ΛR\BR)

and from (51) that

T3 ≤ C
∑

�∈Λ\ΛR

∑
ρ∈Λ−�

�+ρ∈BR

∑
σ∈Λ−�

�+σ∈BR

e−η2(|ρ|+|σ|)|Dρv(�)||Dσv(�)|

≤ C
∑

�∈Λ\ΛR

( ∑
m∈Λ∩BR

∑
n∈Λ∩BR

e−η2(|�−m|+|�−n|)
)1/2

|Dv(�)|2η2/2

≤ C

( ∑
m∈Λ∩BR

∑
n∈Λ∩BR

e−2η2R
buf

)1/2

‖Dv‖2�2
η2/2

(Λ\ΛR)

≤ Ce−η2R
buf

Rd‖Dv‖2�2
η2/2

(Λ\ΛR) ≤ C3e
−η2R

buf

Rd‖Dv‖2�2Υ(Λ\BR).

The estimates for T1, T2, and T3 yield (74) with γs = min{γ, η2}.
Proof of (76). We continue to adopt the notation from the proof of (74). Using

u, v = 0 in Λ \BR, we have〈
δER(u)− δE(u), v〉 =

∑
�∈Λ∩BR

〈
δV ΛR

� − δV�, Dv(�)
〉
+

∑
�∈ΛR\BR

〈
δV ΛR

� − δV�, Dv(�)
〉

−
∑

�∈Λ\ΛR

〈
δV�, Dv(�)

〉
=: T1 +T2 +T3.
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From (59) it follows that, for � ∈ Λ ∩ BR, |V ΛR

�,ρ − V�,ρ| ≤ Ce−γ(R+Rbuf−|�|+|ρ|) with
γ = min{γr, κ0, κ1}/2, and hence,

T1 ≤ C
∑

�∈ΛR\BR

∑
ρ∈Λ−�

e−γ(R+Rbuf−|�|+|ρ|)|Dρv(�)|

≤ C
∑

�∈Λ∩BR

e−γ(R+Rbuf−|�|)|Dv(�)|γ/2

≤ C

( ∑
Λ∩BR

e−2γ(R+Rbuf−|�|)
)1/2

‖Dv‖�2
γ/2

(�∈Λ∩BR)

≤ Ce−γRbuf

R(d−1)/2‖Dv‖�2
γ/2

(Λ∩BR).

Similarly, using v = 0 in Λ \BR, we have from (59) that

T2 ≤ C
∑

�∈ΛR\BR

∑
ρ∈Λ−�

�+ρ∈BR

e−γ(R+Rbuf−|�|+|ρ|)|Dρv(�)|

≤ Ce−
γ
2
(R+Rbuf )

( ∑
�∈ΛR\BR

∑
k∈BR

eγ(|�|−|�−k|)
)1/2( ∑

�∈ΛR\BR

∑
ρ∈Λ−�

�+ρ∈BR

e−γ|ρ||Dρv(�)|2
)1/2

≤ Ce−
γ
2
(R+Rbuf )

( ∑
�∈ΛR\BR

∑
k∈BR

eγ|k|
)1/2

‖Dv‖�2
γ/2

(ΛR\BR)

≤ Ce−
γ
2
Rbuf

Rd−1(Rbuf)1/2‖Dv‖�2
γ/2

(ΛR\BR).

Finally, from (51) we obtain

T3 ≤ C
∑

�∈Λ\ΛR

∑
ρ∈Λ−�

�+ρ∈BR

e−η1|ρ||Dρv(�)|

≤ C

( ∑
�∈Λ\ΛR

∑
k∈BR

e−η1|�−k|
)1/2( ∑

�∈Λ\ΛR

∑
ρ∈Λ−�

�+ρ∈BR

e−η1|ρ||Dρv(�)|2
)1/2

≤ C

( ∑
k∈BR

∑
�∈Λ\ΛR

e−η1(|�|−R)

)1/2

‖Dv‖�2
η1/2

(Λ\ΛR)

≤ Ce−
η1
2 Rbuf

Rd−1/2‖Dv‖�2
η1/2

(Λ\ΛR).

The estimates for T1, T2, and T3 together yields (76) with γc = min{γ, η1}/2.
Remark 18. The choice of buffer width Rbuf is the most interesting aspect of

Theorem 17. As expected from the exponential localization results, we obtain that
Rbuf should be proportional to log(R). The fact that the constant of proportionality
is important makes an implementation difficult. At least according to our proof, if
we were to choose Rbuf = c log(R) with a small c, then we would obtain a reduced
convergence rate.

Our numerical results in section 5.3 show no such dependence, which may indicate
that our proof is in fact suboptimal; however, it is equally possible that this effect can
only be observed for much larger system sizes than we are able to simulate.
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Fig. 2. Two test configurations for the locality test in section 5.2. Left: Configuration (1).
Right: Configuration (2).

5. Numerical results. We present numerical experiments to illustrate the re-
sults of the paper: (1) the locality of the site energies and (2) the convergence of the
truncation scheme described in section 4.2. Given that the present paper is primarily
concerned with the analytical foundations, we will show only a limited set of results,
employing a highly simplified toy model. We will present more comprehensive numer-
ical results in the companion papers [18]. All numerical experiments were carried out
in Julia [4].

5.1. Toy model. The Hamiltonian matrix is given by

H�m(y) = h(|y� − ym|) where h(r) =
(
e−2α(r−r0) − 2e−α(r−r0)

)
fcut(r),

and fcut(r) =

{(
1 + e1/(r−rcut)

)−1
, r < rcut,

0, r ≥ rcut,

with model parameters α = 2.0, r0 = 1.0, rcut = 2.8 and kBT = 1.0, μ = 0.0. The
pair potential term is set to be zero.

Numerical tests suggest that a triangular lattice AtriZ
d with

Atri = s

(
1 1/2

0
√
3/2

)
and s a scaling factor (close to 1.0) is a stable equilibrium in the sense of section 4.1.

We emphasize that this Hamiltonian does not describe any particular material.
The two-dimensional setting and the single orbital per site simply make this a conve-
nient setting for preliminary numerical tests.

5.2. Locality of the site energy. We construct two test configurations: (1)
We “carve” a finite lattice domain ΛR = BR ∩AtriZ

d from the triangular lattice and
perturb each position y ∈ ΛR by a vector with entries equidistributed in [0, 0.1] to
obtain y. (2) We obtain a second test configuration by removing some random lattice
sites from ΛR (vacancies) and perturb the remaining positions as in (1) to obtain y.
We then compute the first and second site energy derivatives E0,m(y) and E0,mn(y)
and plot them against, respectively, r0m and r0m + r0n.

In the test shown in Figures 2 and 3, we chose s = 1.0 and R = 10.0, and the
sites removed in (2) are Atri(1, 0), Atri(0,−3), Atri(−2, 2), and Atri(2, 5). We clearly
observe the exponential decay predicted in Lemma 7.
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Fig. 3. Locality of the site energy for the tight binding toy model described in section 5.1. Red
dots denote configuration (1), while blue crosses denote configuration (2).

5.3. Convergence rate. In our second numerical experiment we confirm the
prediction of Theorem 17. We adopt again the model from section 5.1. As reference
configuration we choose a di-vacancy configuration,

Λ = AtriZ
2 \ {

(0, 0), (1, 0)
}
.

Then, for increasing radii R with associated buffer radii Rbuf ,

(80)

R 3 4 6 8 11

Set 1 Rbuf 2.1 2.4 2.8 3.0 3.4
Set 2 Rbuf 1.0 1.7 1.7 2.0 2.0
Set 3 Rbuf 1.0 1.0 1.7 1.7 2.0

we solve the problem (69). In Set 1 we have chosen Rbuf = 1 + log(R), while in Sets
2 and 3 we have chosen smaller buffer radii to investigate the effect of these choices
on the error in the numerical solution.

The computed solutions ūR are compared against a high-accuracy solution with
R = 20, Rbuf = 11, which yields the convergence graphs displayed in Figure 4, fully
confirming the analytical prediction in Theorem 17. To measure errors, instead of
‖D · ‖�2γ , we employ the equivalent norm ‖Dnn · ‖�2 with Dnnu = (Dρu)ρ∈±Atriei,i=1,2.

We do not observe a pronounced buffer size effect. This could have a number
of reasons, such as the fact that we are not far enough in the asymptotic regime or
simply that the model we are employing is “too local” to observe this. We will present
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258 HUAJIE CHEN AND CHRISTOPH ORTNER

Fig. 4. Convergence of (69) with increasing domain size R, as described in section 5.3. Set 1:
Full lines. Set 2: Dashed lines. Set 3: Dotted lines.

more extensive numerical results with a wider variety of tight binding models in Part
3 of this series.

6. Concluding remarks. The main purpose of this paper was to set the scene
for a rigorous numerical analysis approach to QM/MM coupling. We have achieved
this by developing a new class of locality results for the finite temperature tight binding
model. Precisely, we have shown that the total band energy can be decomposed into
contributions from individual sites in a meaningful, i.e., local, way.

This strong locality result is the basis for extending the theory of crystalline
defects of [27], which we have hinted at in section 4.1, and carried out in detail in [17].
In a further forthcoming paper [18] we employ it to develop new QM/MM coupling
schemes for crystalline defects as well as their rigorous analysis.

A key question that remains to be investigated is whether our locality results
extend to more accurate electronic structure models such as Kohn–Sham density
functional theory. Understanding this extension is critical to take the theory we
are developing in the present paper and in [18] toward materials science applications.
However, there are many technical issues arising from the nonlinearity, the continuous
nature, and in particular the long-range Coulomb interaction.

Appendix A. Multiple orbitals per atom. We have assumed in sec-
tion 2.1, and throughout this paper, that there is only one atomic orbital for each
atom (nΞ = 1). In this case, the symmetry assumption H.sym (i) is natural. How-
ever, in practical calculations, there are multiple atomic-like orbitals φ�α associated
with each atomic site �. Here, α denotes both the orbital and angular quantum num-
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bers of the atomic state. Many tight binding models employ one s-orbital |s〉, three
p-orbitals {|x〉, |y〉, |z〉}, and five d-orbitals {|xy〉, |yz〉, |zx〉, |x2 − y2〉, |3z2 − r2〉}
per atom [29, 54]. Except for the s-orbital, all other orbitals have a spacial orien-
tation, which means that the Hamiltonian matrix elements are not invariant under
rotation/reflection. Therefore, H.sym (i) is invalid and must be reformulated.

We assume in the following that nΞ > 1 and {φ�α}1≤α≤nΞ is the set of atomic-like
orbitals for the site �. The Hamiltonian can be expressed by (5),(

H(y)
)αβ

�k
=

∫
Rd

φ�α(r− y(�))Ĥ(y)φkβ(r− y(k)) dr.(81)

Applying an isometry g to y, we obtain(
H(

g(y)
))αβ

�k
=

∫
Rd

φ�α
(
r− g(y(�))

)Ĥ(
g(y)

)
φkβ

(
r− g(y(k))

)
dr.(82)

For simplicity of notation, we define

ψ�α(r) = φ�α

(
g−1(r)− y(�)

)
and ϕ�α(r) = φ�α

(
r− g

(
y(�)

))
.

We assume that the two sets of atomic orbitals {ψ�α}1≤α≤nΞ and {ϕ�α}1≤α≤nΞ span
the same subspace. This is true for almost all tight binding models (see, e.g., [29,
section 7.3.1]) since the set of the atomic orbitals always include all three p-orbitals
(if the p-orbital is involved) and all five d-orbitals (if the d-orbital is involved). Then,
there exists an orthogonal matrix Q� ∈ RnΞ×nΞ such that ϕ�α =

∑
1≤β≤nΞ

Q�
αβψ�β .

We have from (82) that(
H(

g(y)
))αβ

�k
=

∫
Rd

ϕ�α(r)Ĥ
(
g(y)

)
ϕkβ(r) dr

=
∑

1≤α′,β′≤nΞ

Q�
αα′Qk

ββ′

∫
Rd

ψ�α′(r)Ĥ(
g(y)

)
ψkβ′(r) dr.(83)

Since g is an isometry, it is natural to assume that(
H(y)

)αβ

�k
=

∫
Rd

ψ�α(r)Ĥ
(
g(y)

)
ψkβ(r) dr.(84)

Let (H(y))�k := [(H(y))αβ�k ]1≤α,β≤nΞ ∈ RnΞ×nΞ denote the local Hamiltonian;
then we have from (83) and (84) that(

H(
g(y)

))
�k

= Q� ·
(
H(y)

)
�k

· (Qk
)T
,(85)

which yields

H(
g(y)

)
= Q · H(y) ·QT with Q = diag

{
Q1, . . . , QN

}
,(86)

where diag{Q1, . . . , QN} denotes a block-diagonal matrix. Note that Q� are orthog-
onal matrices; hence Q is orthogonal as well. Therefore, the spectra of H(y) and
H(

g(y)
)
are equivalent:

εs = εgs for 1 ≤ s ≤ N · nΞ.(87)
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Let

Ψs =

⎛⎜⎝ Ψ1
s
...

ΨN
s

⎞⎟⎠ with Ψ�
s =

⎛⎜⎝ Ψ�1
s
...

Ψ�nΞ
s

⎞⎟⎠ for 1 ≤ s ≤ N · nΞ

be the eigenfunction of H(y) corresponding to the eigenvalue εs. Then the corre-
sponding eigenfunction of H(

g(y)
)
is

Ψg
s = QΨs =

⎛⎜⎝ Q1Ψ1
s

...
QNΨN

s

⎞⎟⎠ .(88)

Next we note that, with multiple orbitals per atom, the expression (38) should
be rewritten as

E�(y) =
∑
s

f(εs)εs
∑
α

(
Ψ�α

s

)2
=

∑
s

f(εs)
∑
α

(
Ψ�α

s

)2
.(89)

Taking into account (87), (88), and (89), we obtain invariance of the site energy under
isometries,

E�(y) = E�(g(y)).(90)

To summarize, in the case of multiple orbitals, the assumption H.sym (i) should
become
H.sym’ (i). If y ∈ VN

m and g : Rd → Rd is an isometry on Rd, then there exist
orthogonal matrices Q� ∈ RnΞ×nΞ for � = 1, . . . , N such that (86) is satisfied.
(This is equivalent to H.sym (i) when nΞ = 1.)

Remark 19. Slater and Koster worked out expressions such as (85) and (86) for
all integrals between s-, p-, and d-orbitals and presented them in Table 1 of their
paper [54]. This has been invaluable for practical calculations; see, e.g., [29, 52].

Remark 20. We stress again that all our assumptions and analysis in the present
paper can be extended to the multiorbital case without any difficulty by taking the
Hamiltonian as a block matrix with

h�k(y) =
(
H(y)

)
�k

∈ RnΞ×nΞ(91)

and |h�k(y)| as the Frobenius norm of the submatrix.

Appendix B. Site energy with non-orthogonal orbitals. We consider the
tight binding model with nonorthogonal atomic orbitals in this appendix. It has been
shown in Remark 1 (iv) that the transformed Hamiltonian is

H̃ = M−1/2HM−1/2

when the overlap matrix is not an identity matrix. Then the transformed eigenvectors
of Hψs = εsψs become ψ̃s = M1/2ψs, and following (37), the site energy is given by

E�(y) =
∑
s

f(εs)εs[ψ̃s]
2
� =

∑
s

f(εs)[M1/2ψs]
2
� .(92)
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Since the square root of a matrix in (92) introduces additional computational cost for
the site energy computations, we modify the definition of site energy in practice by

Ẽ�(y) =
∑
s

f(εs)[Mψs]�[ψs]�.(93)

The following result states that the modified site energy (93) preserves the locality
property.

Lemma 21. Assume that L, H.tb, H.loc, and F are satisfied, and moreover, the
overlap matrix M satisfies the same conditions as those in H.tb, H.loc.

Then, for 1 ≤ j ≤ n, there exist positive constants C̃j and η̃j such that for any
� ∈ ΛN ,∣∣∣∣∣ ∂jẼ�(y)

∂[y(m1)]i1 · · · ∂[y(mj)]ij

∣∣∣∣∣ ≤ C̃je
−η̃j

∑j
l=1 |y(�)−y(ml)|, 1 ≤ i1, . . . , ij ≤ d.(94)

Proof. Let Ξ = f(H̃) (with Ξjk =
∑

s f(εs)[ψ̃s]j [ψ̃s]k). The assumptions on H
and M imply that the transformed Hamiltonian H̃ also satisfies the conditions in
H.tb and H.loc. Using Lemma 6 and arguments similar to those in the proof of
Lemma 7, we have

|Ξjk| ≤ Ce−γ|y(j)−y(k)| and

∣∣∣∣ ∂Ξjk

∂[y(n)]i

∣∣∣∣ ≤ Ce−γ(|y(n)−y(j)|+|y(n)−y(k)|)(95)

with some constants C and γ. Similarly, the assumptions on M also imply

∣∣M±1/2
jk

∣∣ ≤ Ce−γ|y(j)−y(k)| and

∣∣∣∣∣∂M
±1/2
jk

∂[y(n)]i

∣∣∣∣∣ ≤ Ce−γ(|y(n)−y(j)|+|y(n)−y(k)|).(96)

We have from (92) and (93) that

E� =
∑
s

f(εs)
∑
jk

M1/2
�j M1/2

�k [ψs]j [ψs]k = Ξ��,

Ẽ� =
∑
s

f(εs)
∑
j

M�j[ψs]j [ψs]� = [M1/2ΞM−1/2]��.

Therefore,

∂Ẽ�

∂[y(n)]i
=

∑
jk

(
∂M1/2

�j

∂[y(n)]i
ΞjkM−1/2

k� +M1/2
�j

∂Ξjk

∂[y(n)]i
M−1/2

k� +M1/2
�j Ξjk

∂M−1/2
k�

∂[y(n)]i

)
,

which together with (95), (96), and an argument similar to that in (45) completes the
proof of (94) for j = 1.

The proofs for 2 ≤ j ≤ n are similar.

Acknowledgments. We thank Noam Bernstein, Gabor Csányi, and James Ker-
mode for their helpful discussions. The work presented here is related to ongoing joint
work.
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