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A DIMER-TYPE SADDLE SEARCH ALGORITHM WITH
PRECONDITIONING AND LINESEARCH

N. GOULD, C. ORTNER, AND D. PACKWOOD

ABSTRACT. The dimer method is a Hessian-free algorithm for computing saddle
points. We augment the method with a linesearch mechanism for automatic step
size selection as well as preconditioning capabilities. We prove local linear conver-
gence. A series of numerical tests demonstrate significant performance gains.

1. INTRODUCTION

The problem of determining saddle points on high dimensional surfaces has re-
ceived a great deal of attention from the chemical physics community over the past
few decades. These surfaces arise, in particular, as potential energies of molecules
or materials. The local minima of such functions describe stable atomistic configu-
rations, while saddle points provide information about the transition rates between
minima in the harmonic approximation of transition state theory. Independently,
they are useful for mapping the energy landscape and are used to inform accelerated
MD type schemes such as hyperdynamics [25, 23] or kinetic Monte Carlo (KMC)
[26].

While the problem of determining the minima of such an energy function is well
known in the numerical analysis community, the problem of locating saddles point
has received little attention. Saddle search algorithms can be broadly categorised
into two groups.

The first group has been called ‘chain of states’ methods. A chain of ‘images’ are
placed on the energy surface, often the two end points of the chain are placed at two
different local minima, for which the connecting saddle is being sought. The chain
is then ‘relaxed’ by some dynamics for which the mininum energy path (MEP) is
(thought to be) an attractor. Two archetypical methods of this class are the nudged
elastic band (NEB) method [12] and the string method [27, 28].

The second group of methods for finding the saddle have been called ‘walker’
methods. Here a single ‘image’ moves from its initial point (sometimes, but not
obligatorily, a local minimum) until it becomes sufficiently close to a saddle point.
The first method to work in this framework was Rational Function Optimization
(RFO) and later its derivative, the Partitioned RFO (PRFO)[7, 22, 3]. Here, the full
eigenstructure of the Hessian is explicitly calculated and then one or more eigenval-
ues are manually shifted. In particular, if the minimum eigenvalue is shifted in the
correct manner, and a Newton step is applied using the resultant modified Hessian,
then the walker moves uphill in the direction corresponding to the lowest eigenvec-
tor and downhill in all other directions. If the Hessian is expensive to calculate,
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or even unavailable, it, or at least it’s action, can be approximated as the compu-
tation proceeds by any variety of techniques, for example the symmetric rank-one
approximation [19]. Of course any useful Hessian approximation should necessarily
have the flexibility to be indefinite. Other walker type techniques are satisfied with
computing the lowest eigenpair only. One such technique is the Activation Relax-
ation Technique (ART) nouveau [17, 16, 18, 6]. The original ART method used an
ascent step not along the minimum eigenvector, but along a line drawn between the
image and a known local minimum [4, 5]. In ART nouveau this is replaced by the
minimum eigenpair which is calculated by means of the Lanczos [14] method.

The technique which forms the basis of the present paper, is the dimer method
[10, 11]. In this method a pair of ‘walkers’ is placed on the energy surface and
aligned with the minimum eigenvector (irrespective of the sign of the corresponding
eigenvalue) by minimizing the sum of the energies at the two end points. This can
be thought of as the computation of the minimal eigenvalue using a finite difference
approximation to the action of the Hessian matrix. In practice this ‘rotation step’
is not converged to great precision. More advanced modifications can be used to
improve walker search directions, e.g., an L-BFGS [15] scaling, rather than a default
steepest descent type scheme [13].

In the only rigorous analysis of the dimer method that we are aware of Zhang and
Du [29] prove local convergence of a variant where the ‘dimer length’ (the separation
distance between the two walkers) shrinks to zero. In that work the dimer evolution
is treated as a dynamical system, and the stability of different types of equilibria is
investigated.

In the present paper we present three new results:

(1) We augment the dimer method with preconditioning capabilities to improve
its efficiency for ill-conditioned problems, in particular with an eye to high-
dimensional molecular energy landscapes. This modification is based on the
elementary observation, common in numerical optimization and linear alge-
bra, that the dimer method can be formulated with respect to an arbitrary
inner product. Previously the £%-inner product was used almost exclusively;
the only exception we are aware of being the use of the H~! inner product in
order to mimic the conserved dynamics of the Cahn-Hilliard equation [30].

(2) We introduce a linesearch procedure. To that end, the main difficulty is the
absence of a merit function for saddles. Instead, we propose a local merit
function, which we minimise at each dimer iteration using traditional line-
search strategies from optimisation, and which is updated between steps. We
remark that [6] introduces linesearch to the relaxation step of the ART nou-
veau method. By contrast, our linesearch procedure is applied to combined
ascent /descent directions.

(3) In the analysis of Zhang and Du [29] the dimer length, A, is shrunk to zero
to ensure that the dimer converges to a saddle. As already noted in [29], due
to round-off error this shrinking cannot be done to an arbitrary level and
may need to be adaptively controlled in practice. We present a variation of
the analysis in [29] showing that, if it is kept fixed, then the dimer walkers
converge to a point that lies within O(h?) of a saddle. We also extend this
analysis to incorporate preconditioning and linesearch.

Concerning (2), it would of course be preferable to construct a global merit func-
tion as this would provide a path towards constructing a globally convergent scheme.
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Indeed, our (non-trivial) generalisation of the convergence analysis to the linesearch
variant of the dimer method only yields local results, and we even present a (some-
what academic) counterexample to global convergence.

The paper is organised as follows: In §2, after introducing preliminary concepts,
we describe the basic dimer method, and establish its local convergence. In §3, a
linesearch enhancement is proposed, and its local convergence behaviour is analysed.
Numerical experiments illustrating the advantages of the linesearch are given in §4.
We conclude in §5. Full details of our analysis are given in Appendix A.

2. LocAL CONVERGENCE OF THE DIMER METHOD

2.1. Preliminaries. Let X be a Hilbert space with norm ||z|| and inner product
x-y. Wewritex Lyifz-y=0.1:X — X denotes the identity. For x,y € X,
r®y: X — X denotes the operator defined by (r ® y)z = (y - z)x. The unit sphere
is denoted by Sy := {v € X |||v|| = 1}.

Given two real functions f and g defined in some neighbourhood N of the origin,
we say that f(z) = O(g(x)) as ¢ — 0 if | f(z)| < C|g(z)| for some constant C' > 0
and all z € N.

For a bounded linear operator A € L(X) we denote its spectrum by o(A). We
say that (A\,v) € R x X is an eigenpair if Av = Av. If (A, v) is an eigenpair and
A = inf g(A), then we call it a minimal eigenpair. We say that A has indez-1 saddle
structure if there exists a unique minimal eigenpair (A, v) with A < 0 and A is
positive definite in {v}+.

If F: X — R is Fréchet differentiable at a point x then we denote its gradient by
VF(x),ie.,

VE() -y =it (Pl + ty) — F(2)).

(Note that VF(x) is the Riesz representation of the first variation dF(z) € X*.)
Similarly, if /' : X — X is Fréchet differentiable at x, then VF(z) € L(X) is
a bounded linear operator satisfying VF(z)u = limy ot~ (F(z + tu) — F(z)). In
particular, if F': X — R, then the Hessian V2F(x) € L(X) (rather than V2F(z) :
X — X*). Higher derivatives are defined analogously, but we shall avoid their

explicit use as much as possible.
Let E € C*(X). We say that x, is an index-1 saddle of E if

VE(z,) =0 and V?E(z,) has index-1 saddle structure. (1)

With slight abuse of notation, we shall also call (x,,v,, \.) an index-1 saddle if =,
is an index-1 saddle and (v,, A;) the associated minimal eigenpair.
Given a dimer length h and a vector v € Sy, we define

En(z,v) = 1(E(z + hv) + E(z — hv)).

Finally, we observe that

V.n(z,v) = L(VE(z + hv) + VE(z — w)) = VE(z) + O(h*), (2)
ViEn(z,v) = 1(VPE(x 4+ hw) + V?E(z — hw)) = V2E(z) + O(h?), (3)
Voli(z,v) = &(VE(z + hv) — VE(z — hv)) = K*V?E(z)v + O(h') and (4)
V2E,(x,v) = Y (V2E(x + hv) + V2E(z — hv)) = h*V2E(z) + O(h*), (5)
VoVi€i(w,v) = W*VE(z) - v+ O(h?), (6)
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where we note that these errors are uniform whenever x remains in a bounded set.
For future reference, we define the discrete Hessian action operator

Hy(x;0) = h™ V& (z,0). (7)

2.2. A simple dimer variant. We now formulate a simple variant of the dimer
method. This is a variation of the original dimer method [10, 21], alternating steps in
the position (xy) and direction (si) variables, but employing a modification proposed
by [29]. Indeed, the following algorithm can be thought of as [29] with A (A in our
case) taken to be constant instead of h — 0 as k — 0.

Simple Dimer Algorithm

(O) Input: x9€ X,v9€ Sx, h >0, (ak)kENa (5k)k€N-
1) Forn=0,1,2,... do

) Sk 1= —(] — UV X vk)h*2vv5h(xk,vk)
) Ukt 1= c0S([|sk | Br)vr + sin([| sk | Be) 7oy

) Tyl ‘= T — O_/k([ — 2Uk & vk)Vxé'h(:vk, ’Uk).

(

(2
(3
(4

Remark 1. Another natural variation of the Simple Dimer Algorithm is to replace
step (4) with

Tpy1 = o — ap(l — 2, @ vp) VE (),
i.e., to replace the averaged gradient with the centered gradient. This has the advan-
tage that the method would converge to an exact saddle rather than an approximate
saddle within an O(h?) neighbourhood (cf. § 2).

For the sake of simplicity, we do not consider these variants, but we note that (i)
all our results can be extended to these variants, and (ii) it seems to us that this
has minor effects on the accuracy and efficiency of the algorithm, with the exception
that it requires an additional gradient evaluation at each iteration. By employing
a one-sided finite difference instead of a centered finite difference, this additional
evaluation could again be removed, but at the cost of an O(h) accurate rotation
instead of O(h?). This trade-off is well known [29)].

However, it might be useful to “post-process” the dimer algorithms (including the
Linesearch Dimer Algorithm in § 3.2). O

2.3. The dimer saddle. Our first observation is that the Simple Dimer Method
approximates the action of the Hessian by a finite difference and the gradient by an
average. Therefore, the iterates (zy, vx) with fixed dimer length h cannot in general
converge to a saddle but only to a critical point (zp,vy) near a saddle, satisfying

VmEh(xh,vh) =0 and (I — Up & vh)Vvé’h(xh, Uh) =0. (8)
The existence (and local uniqueness) of such critical points is established in the
following result.
Proposition 2. Let (z.,v., ) be an index-1 saddle, then there exists hg > 0 such
that, for all h < hg, there exist xp, v, € X, A\, € R and a constant C, such that
Vzgh(l‘h, Uh) = %(VE(CEh + hvh) -+ VE(l‘h — h’l}h)) = O,
%vrugh(th Uh) = %(VE(LE}L + hvh) — VE(a:h — h’Uh)) = )\hvh, (9)

loall* = 1,
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and moreover
lon — 2.l + lon — vell + o — | < CR2 (10)

Idea of proof. The result is a consequence of the inverse function theorem. Compar-
ing (9) with the exact saddle (x,,v., \) the Taylor expansions (2)— (5) show that
the residual is of order O(h?) and that the linearisation is O(h?) close (in operator
norm) to the linearisation of the exact saddle system VE(z,) = 0, VZE(z,)v, =
AUy, ||vi|| = 1. The linearisation of the latter is an isomorphism by the assumption
that z, is an index-1 saddle. The complete proof is given in A.1. 0

We shall refer to a triple (zp,vn, An) € X x X x R that satisfies (9) as a dimer
saddle.

2.4. Local convergence. We now state a local convergence result for the Simple
Dimer Algorithm.

Theorem 3. Let (z.,v., A\s) be an index-1 saddle. Then there exists a radius r,
a mazimal dimer length ho and mazimal step sizes & and B (independent of one
another) as well as a dimer saddle (xp,vp, Ap) satisfying (9) such that the following
hold for all h < hy:

Let xg € By(x,),v9 € By.(vs),sup, ag < @,sup G < @, infy ag > 0,inf 8 > 0, and
let (xy,vy) be the iterates generated by the Simple Dimer Algorithm, then there exist
C > 0,n€(0,1) such that

lz — all + llow = wnll < Cn*(llzwo — @l + llvo — vall).- (11)

Idea of proof. The proof is a modification of the proofs of [29, Thm. 2.1 and Thm.
3.1]. Upon linearisation of the updates about the exact saddle (x.,v.), the updates
can be re-written as (see § A.2 for the proof)

Tl — Tp agA 0 Tp — Tp 2
=|I- O h 12
(Uk+1 - ?Jh,> [ <5kB ﬁkC)} (Uk — Uh) +O((ow + B (0 +ri)re), (12)
where 77 1= ||, — 24]]* + v — vll?,
A= (I —2v, ®v,)V*E(z,), C=I-v.2v)VE(z.) — \I,
and B is a bounded linear operator whose precise form is unimportant.
Clearly, A, C are both symmetric and positive definite, hence the spectrum of A =
(A, 0; BB, BC) is strictly positive. If we chose ay = a, B, = § constant, then (11)

follows from standard stability results for dynamical systems. The (straightforward)
generalisation to non-uniform step sizes is given in [9]. O

3. A DIMER ALGORITHM WITH LINESEARCH

In continuous optimisation, linesearch ensures both robustness and efficiency of
algorithms. Our aim is to incorporate such a mechanism into the dimer method.
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3.1. Motivation: a local merit function. A rotation step (Steps (2, 3) of the
Simple Dimer Algorithm) is a descent step on the unit sphere, for which it is straight-
forward to implement a linesearch. By contrast, it is not obvious how to do this for
the translation (Step (4) in the Simple Dimer Algorithm), which is an ascent step in
the vy, direction but a descent step in the {v;,}* space. A natural idea is to employ
a merit function.

Let z, € X be an index-1 saddle with minimal eigenpair (v, A,), and consider
the modified energy functional

Do =

(v* (x — m*))2

Then, VF(z,) = 0 and V?*F(z,) = (I + kv, @ v,)V*E(x,), which is positive definite
if and only if Kk > —\,. It follows that x, is a strict local minimizer of F'.

Analogously, if (xp,vs, Ap) is a dimer saddle point (cf. Proposition 2) and we
define a modified energy functional

K 2
Fp(z) .= &z, up) + §(vh (r— xh)) ,

then choosing k > —\, and h sufficiently small guarantees that z; is a local mini-

mizer of F}. We can think of this procedure as ‘stabilising’” the saddle.

Since the dimer saddle (xp,vy) is unknown, Fj cannot be employed as a merit
function. Instead, we construct a merit function that is updated at each dimer
iteration to employ the best possible information available about the saddle. Given
an iterate (zy,v;) we make the ansatz

Kk 2
Fi(x) =& (z,vp) + g5 - (v — 1) + ?(vk Sz — )
This merit function should have the property that the steepest descent direction at
x = xy, is the dimer search direction, i.e.,

VFk(QZk) = (I — 22U, ® vk)VISh(a:k,vk),
which is achieved for the choice
gk ‘= —2(Uk & vk)VmEh(xk, Uk).

Secondly, minimising F}, should yield an update y; that is a substantial improve-
ment over xj. For (xy,vy) sufficiently close to (xy,v,) the inverse function theorem
readily yields existence of a point 7 = x5, + O(h?) such that V,&,(r, vx) = 0. We
now estimate the residual

VFu(Or) = Van(Uk, vi) + gk + Kr(vk © ve) (G — )
= g + rr(vk @ ) VaEn(k, i) ™ (V& (G, vi) — Valn(an, vi)) + O(|| Tk — z1]?)
= g — 5= (vn @ ) Vil (ar, vi) + O (|G — ll” + h?[|gx — 21
where A\, = Hp(xg;vg) - v, and we assumed, for simplicity, that V,&(zx, vg) = 0
which implies that V2&,(zx, vi)ve = Axvp + O(h?). Recalling that g, = —2(vp ®

Vk) V€ (xk, vg), the choice kK = —2)\; guarantees that minimising Fy is comparable
to performing a Newton step towards ¢, and hence towards zy,.
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3.2. Dimer algorithm with linesearch. Given an iterate xj, vy and Ay = vy -
Hy,(zg;vx), we define the auxiliary functional Fy, € C*(X),

Fk(l‘) = gh($, Uk) — 2[(Uk & vk)Vxﬁh(a:k,vk)] . (ZE — $k) — )\kH(Uk & Uk)([E — l"k)H2
= &En(z,vg) — 2((vk - V& (xg, vk)) (vk Az — xk)) — i (vk (r— xk))Q, (13)

motivated by the discussion in §3.1. Instead of locally minimising F} we only perform
a minimisation step in the steepest descent direction, using a standard linesearch
procedure augmented with the following sanity check: For a trial 2* = 2y, —a'V Fy(zy)
we require that vy is still a reasonable dimer orientation for z* by checking the
residual ||(I — vx ® vg)Hy (2% vy)||. If this residual falls above a certain tolerance
then we reject the step and reduce the step size.

Linesearch Dimer Algorithm:

(1) Input: zg,v_1,h
Parameters: [_1,ag, pax > 0,0 € (0,1),¥ > 1

(2) For £k=0,1,2,... do

%% Rotation %%
(3) [k, O] :== Rotation[zy, vi_1, Bx_1]

%% Translation %%
(4) P = —VFk(ZL’k)
(5) a 1= min(max, 2 —1)
(6) While (Fy(z + ap) > Fy(zx) — Oa||p||?)
or (H([ — UV Uk)Hh(QZk + ap; Uk)” > \IIHVth(xk,vk,l)H) do
(7) a = a2
(8) Tpi1 1= Tp + ap; o = «

It remains to specify step (3) of the Linesearch Dimer Algorithm. Any method
computing an update vy satisfying ||(I —vx @ vy ) Hp(zg; vi)|| < TOL, for given TOL,
is suitable. A basic choice is the following projected steepest descent algorithm.

Rotation:

(1) Input: z,v,5
Parameters: TOL = ||V,E(x, v)], Smax > 0, © € (0,1)

) While [|(I — v ® v)Hy(z;0)|| > TOL do

) s:=—I —v®v)Hy(z;v)

) re=|sl; B :=max(fmax, 26)

) vg := cos(fr)v + sin(fr)2

) While &,(z,v3) > En(x,v) — OB]|s]|* do
) B =p5/2

)

)

2
3
4
5
6
7
8 V=g

(
(
(
(
(
(
(
(

9) Output: v,[

Proposition 4. The Linesearch Dimer Algorithm is well-defined in that the
rotation step (3) as well as the linesearch loop (6, 7) both terminate after a finite
number of iterations, the latter provided that ¥V Ep(xk, vg) # 0.
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FIGURE 1. (a) Double-well energy defined in (14). (b) The auxiliary
functional Fy(z) with 2 = t;; ¢f. §3.3. The second turning point
t, = —t; is an admissible descent step for Fy, hence the dimer method
can potentially cycle.

Proof. The Rotation Algorithm employed in step (3) of Linesearch Dimer Algo-
rithm terminates for any starting guess due to the fact that it is a steepest de-
scent algorithm on a Stiefel manifold (the unit sphere) with a backtracking line-
search employing the Armijo condition [24]. Convergence of this iteration to a
critical point is well known [1, Chap.4]. The loop (6,7) terminates after a fi-
nite number of iterations [20] since p is a descent direction for Fy, € C*, that is,
Fy(zp + ap) = Fp(ar) — af[pl|? + O(a?). O

Remark 5. The two basic backtracking linesearch loops (5)—(8) and (11)—(12)
can (and should) be replaced with more effective linesearch routines in practise, in
particular choosing more effective initial guesses for the steps and using polynomial
interpolation to compute linesearch steps. However, the discussion in §3.3 indicates
that a Wolfe-type termination criterion might be inappropriate. U

3.3. Failure of global convergence. The modifications of the original dimer al-
gorithms that we have in the Linesearch Dimer Algorithm would, in the case of
optimisation, yield a globally convergent scheme. Unfortunately, this is not the case
in saddle search. To see this, consider a one-dimensional double-well example,

E(x)=1(1-2")?=12" — L2 + & (14)

cf. Figure 1(a). There are only two possible (equivalent) dimer orientation v = +1,
and therefore the rotation steps in Linesearch Dimer Algorithm are ignored. We
always take v = 1 without loss of generality. The translation search direction at
step k is always given by p = —(1 — 2)V,E(zk, 1) = V,Eh(zk, 1), ie., an ascent
direction.

It is easy to see that x, = 0 is an index-1 saddle (i.e., a maximum), and that
there are two turning points t* = £37/2. Thus, there exist “discrete turning
points” tif = £37Y2 + O(h?) such that () = 0, where \(v) = Hy(z;1) - 1 =
55 (E'(x 4+ h) — E'(x — h)).

Suppose that we have an iterate z; = ¢, then the translation search direction is
pt = V.E (], 1) <0. Since Eu(t;,,1) = Eu(t), 1) it follows that

Fi(ty) = &Enlty,, 1) =207 (t, —ty) < &ty 1) = Fi(ty).
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Thus, for © sufficiently small, the update x4, = t, satisfies all the conditions for
termination of the loop (11)—(12) in Linesearch Dimer Algorithm. See also Figure 1
(b), where F}, is visualised.

We therefore conclude that our newly proposed variant of the dimer algorithm
does not exclude cycling behaviour. We also remark that the example is not ex-
clusively one-dimensional, but that analogous constructions can be readily made in
any dimension.

3.4. Local convergence. We now establish a local convergence result.

Theorem 6. Let (x,,v., \y) be an index-1 saddle, let (xp,vp, Ap) denote the dimer
saddle associated with (x.,v., ) (c¢f. Theorem 2) and let xy, vy, be the iterates
generated by the Linesearch Dimer Algorithm. Then there exist r,hy,C > 0 and
v € (0,1) such that, for xq € B.(z.), v_1 € B,.(vi) N Sx and h < hg, one of the
following alternatives are true:

(i) If V.En(zr,v5_1) = 0 for some k € N, then ||z}, — || < Ch?.
(i) If Vi &n(zk, vp—1) # 0 for all k € N, then

ek — @all + ok — vnll < C7* (1o — 2all + B2 -1 — val)). (15)

Sketch of proof. Case (i) merely serves to exclude an unlikely situation, in which the
Rotation algorithm is ill-defined. We do not discuss this case here, but treat it in
§A.4.4. In the following assume Case (ii).

0. Let ry = ||zx — x| and sg := ||vx — vp||. We recall basic contraction results
for Armijo-based linesearch methods both in a general Hilbert space and for iterates
constrained to lie on the unit sphere in §A.3.

1. As a first proper step we establish that, under the termination criterion ||(1 —
vk @ vg) Hp(zr; 0p) || < || Viln (g, vi—1)|| for the rotation step, it follows that s <
7% + h%sp_1. This is proven in Lemma 15 and Lemma 16.

2. Next, we use this result to establish that there exists a local minimizer ¥, of
Fy, satisfying |lyr, — znl| < r2 + h2ry, + h's;,_;1. This is established in Lemma 17.

3. The linesearch procedure and the upper bound on the step length ensure that
the step of xp to xpy1 contracts towards yg, that is, ||zri1 — Ukl < Vellze — Yk«
for some v, € (0,1) and || - ||« the energy norm induced by (I — 2v, ® v,)V?*E(z,) ~
V2F}.(yx). This is obtained in Lemma 18.

4. The three preceding steps can then be combined to establish that, for ro,s_1,h
sufficiently small, there exists a constant v3 € (74, 1) such that

rre1 + s < vs(rp + h2sp1), (16)
where 7} := ||zx — xp|[«. This contraction result readily implies the result of the
theorem.

The complete proof is given in §A.4. 0

4. NUMERICAL TESTS

4.1. Remarks on the implementation. Throughout our analysis and in the de-
scriptions of the Simple Dimer Algorithm (§2.2) and the Linesearch Dimer Algorithm
(§3.2) the notion of gradient V and tensor product ® take into account the choice of
inner product (preconditioning). Therefore, we next describe how preconditioning
is implemented in practise and give details how our actual implementation (slightly)
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deviates from the theoretical formulations of the Simple Dimer Algorithm and the
Linesearch Dimer Algorithm.

In all cases the underlying space is X = R” for some N € N. The main deviation
from the algorithms stated in §2.2 and §3.2 is that we admit inner products that
may change from one step to another,

|lu|| = vV uT Myu, and u-v=u’ My,

where M, is symmetric and positive definite. That is, our implementation is a
variable metric variant; see also Remark 8 below.

Let E € CY(X) = CYRY), and let V' denote the standard gradient and @' the
standard tensor product (i.e., the gradient and tensor products with respect to the
¢>-norm), then the gradient and tensor products in step k become

VE(r) = M_'V'E(z), and (v®v)VE(z)= (v® v)V'E(z).

The variable metric variant of the Simple Dimer Algorithm, augmented with a ter-
mination criterion, is given below. Note that here the rotation step is performed
by a tangential descent step followed by a projection, rather than a step on the
manifold.
Simple Dimer Algorithm (VM):
(1) Input: z9,v9 € X, h > 0,, 5 > 0, TOL*, TOL" > 0; k := 0;
(2) While |M,"*V.&,(zx,vi)|le > TOL®
or H(]\/[,;l/2 - M,i/ka @ vp)h 2V Ep (g, vi) |2 > TOL” do
%% Metric %%

(3) Compute a spd matrix M; € RV*V;

@ o=/ 1M Pl

(5) Vg1 i= v — B(My " — vp @ )R 2V Ep (g, v)
(6) Ti1 = g — (M — 20, @ ) V4 ER (i, vk).
(7) ki=k+1

Remark 7. In our experiments we observe that the rotation residual decreases
more quickly than the translation residual, hence the convergence criteria could be
based on the translation residual only, without affecting the results. 0

Remark 8. Our analysis of both the Simple Dimer Algorithm and of the
Linesearch Dimer Algorithm is readily extended to their variable metric variants,
provided that the metric M, at iterate k is a smooth function of the state, i.e.,
M, = M(z, v;), where M € C?(B,(z.) X Sx; L(X)), for some r > 0. This is the
case in all examples that we consider below. A more general convergence theory,
e.g., employing quasi-Newton type Hessian updates requires additional work. ([l

Analogous modifications are made to the Linesearch Dimer Algorithm. The aux-
iliary functional Fj, now reads

Fy(z) = E(z;vp) — 2(vf Vin(@n, vi)) (vi Mi(z — z3)) + A (v My (2 — .Tk))2,
)\k = h_2UgV:}(€h(l‘k, Uk),
Vin(z,v) = L1 (V'E(z + hv) + V'E(z — hwv)),

ViEn(z,v) = L(V'E(z + hv) — V'E(z — hv)),

2
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where we recall that V' denotes the standard gradient (i.e., the gradient with respect
to the ¢2-norm). See Remark 9 on additional improvements.

Linesearch Dimer Algorithm (VM):
(1) Input: z9,v9 € X, h > 0,TOL*, TOL" > 0; k:=0
(2) While |M,"*V.&,(zx,vi)|le > TOL
%% Metric %%
(3) Compute a spd matrix Mj, €
(@) = /1M P

%% Rotation %%
(5) [Vk+1, 5] := Rotation (VM) |xy, v}, B3, My]

%% Translation %%
(6) oy = — (M = 20511 @ v1) VEEL (Th; Vkt1)
(7) a 1= min(pax, 20)
(8) While (Fk(l‘k + OépM) > Fk(xk) - @Ozp:,]\;[MkpM)
or (||M*(M7" = vt @ vee))h 2V En (g + apar; vper) || >
)| M2 (M = o1 @ v )bV En (a5 vk [12) do
9) a=a/2
(10) Tpy1 = Tp + apy
(11) k=k+1

RNXN

Rotation (VM):
(1) Input: z,v, 5, My
Parameters: TOL = max(||Mk_1/2V;8h(x,v)||(gz,TOL“), © € (0,1), Bmax;

2) While HM,i/Z(Mk_l —v®v)h 2V, Ey(x;v)|| > TOL do
3) s =—(M; ' —v®v)h 2V, E,(z;v)

) t:= ||M]i/28||g2; B := min(SBuax, 25)

) vg := cos(tf)v + sin(tf)t s

) While &,(z,v5) > En(x,v) — OFt* do

) 5= )2

) v =g

) Output: v,p

(
(
(4
(5
(6
(7
(8
(9

Remark 9. A modification that can give significant performance gains is to
employ a different heuristic for the initial guess of « in Step (7) of Linesearch Dimer
Algorithm (VM): With pyss i= —(M, ' — 204 ® )V EL(z1;vx) and pry = —(I —
2u, ® V) ViEn(xr, vy) let, for k > 2, v = (Park—1 ' Pre—1)/(Park - Prx), then for
k > 2 we replace Step (7) with

o := min (avg(vmax(gk_@, Ce V), 200 Qipax)-
An analogous modification can be made for the rotation algorithm. 0J

In all numerical tests we use the following parameters: h = 1073, © = /0.1,
TOL® = 107°, TOL" = 107!, amax = 1 and ¥ = 100. We briefly discuss these
choices:
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e h should be small enough such that the dimer saddle is sufficiently close to
the true saddle (with respect to the length scales of the given problem), while
large enough that numerical robustness does not become a problem for the
rotation. In all our tests, h = 1073 was a good compromise.

e O should be sufficiently large (though, < 1/2) to ensure that the linesearch
method finds steps which give a large decrease in dimer energy. It is often
chosen much smaller than our choice of © = /0.1 to immediately accept
steps that make some progress. Our experience is that, with preconditioned
search direction, our more stringent choice gives better performance as it
leads to an improved initial steplength guess for the next iteration.

e The choice of TOL® simply controls the desired level of convergence to the
dimer saddle.

e The parameter TOL" should be chosen as weakly as possible such that either
algorithm converges to the saddle. In the Linesearch Dimer Algorithm (VM)
rotations are performed such that the rotation residual is at least as good as
the translation residual until it moves below this value. Subsequent trans-
lations may increase the rotation residual such that further applications of
the rotation algorithm are needed. In practise this means that the rotation
algorithm is performed at every iteration of the Linesearch Dimer Algorithm
(VM) for the first few steps, then only sporadically or not at all once the
rotation residual reaches TOL". The use of this parameter then decreases
the overall number of gradient evaluations needed to find the dimer saddle,
by only performing the rotation as necessary.

e The maximum step apax should principally be chosen such that the dimer
cannot translate into non-physical regimes for the given problem.

e The parameter W should be chosen > 1 and restricts the translation step from
moving the dimer to a point where it becomes too badly orientated. In our
numerical tests this parameter is set sufficiently large that this termination
criteria for the translation never occurs (the translation always terminates
by finding a sufficient decrease in the auxiliary functional Fj).

Remark 10. We observe during numerical testing that the rotation component
of the linesearch dimer is somewhat vulnerable to rounding error in the objective
function E. As the dimer becomes increasingly well orientated, VE becomes almost
orthogonal to the dimer orientation and any small rotation may result in a zero
change (to numerical precision) in the dimer energy. In the numerical examples
presented in this section, this never occurs since we use a relatively high value
for TOL", that is the rotation is only ever weakly converged. In our examples
this is sufficient for the the dimer to converge to the saddle. If a stronger level of
convergence were required, another technique should be used to improve the rotation
residual further, such as changing to a gradient based method or simply making fixed
steps. This could, for example, be performed in a post-processing step (cf. Remark
1 on post-processing z). 0]

4.2. Test 1: Vacancy Diffusion. Our first test case is a standard example from
molecular physics. A single atom is removed from a 2D lattice and a neighbouring
atom is moved partway into the gap. Atoms within a certain radius of the vacancy
are allowed to move, while those beyond that radius are fixed. This configuration is
illustrated in Figure 2(A). The final computed configuration is given in Figure 3.
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FIGURE 2. [Initial configuration of the atoms in the vacancy dif-
fusion problem (Test 1) . Black squares are fixed atoms while blue
circles are atoms which move freely. (A) The initial dimer orientation
is selected so that the translated atom has an orientation along the
y = 0 direction, and is zero for all other atoms. (B) The Delaunay 7
triangulation used for the connectivity norm.
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FIGURE 3. Final configuration of the atoms in the vacancy diffusion
problem (Test 1). Black squares are fixed atoms while blue circles are
atoms which move freely. (A) In the final configuration an atom moves
to the midpoint between two ‘basins’. (B) The Delaunay triangulation
T used for the connectivity norm.

The energy function is given by the simple Morse potential,

E(e}) = S V(s = ajll), Vi) =00 —2et b, )

with stiffness parameter a = 4.
The experiment is run both using the generic /3 norm (no preconditioner), as
well as a ‘connectivity’ norm. Such a norm can be defined based on the Delaunay
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FiGUurRE 4. Convergence of the linesearch dimer to the saddle in
the vacancy diffusion problem (Test 1) with (A),(B) the ¢ norm and
(C),(D) connectivity norm versus the number of force evaluations and
dimer iterations for increasing numbers of free atoms.

triangulation of the atomistic positions (Figure 2(B))

(M, u) = / VIl

where 7 is the triangulation depicted in the figure and Iy, the associated nodal
interpolant.

Figure 4 demonstrates the convergence to the saddle with different numbers of
free atoms nA (giving different dimensionality of the system) in the two norms for
the linesearch dimer. We can also observe the benefit of the linesearch vs a simple
dimer scheme when using the connectivity norm (Figure 5). The linesearch dimer
selects very efficient stepsizes with no a-priori information, while the simple dimer
method might exhibit either slow convergence, or no convergence, if the fixed steps
are poorly chosen.

4.3. Test 2: A Phase Field Example. Our second example is based on a simple
phase field model where the global energy is given by,

E(u) = /Q g |Vu\2 + 2i€(u2 —1)% (18)
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F1GURE 5. Convergence of the linesearch dimer vs the simple dimer
method for Test 1 (vacancy), for several choices of the simple dimer
step sizes, with nA = 69, using the connectivity norm as a precondi-
tioner.

(A) (B) ©)

0‘

0 1

FIGURE 6. Minima (A,B) and saddle point (C) of the phase field
problem (Test 2) with e = 1/10. The shading is linearly interpolated
between white(-1) and black(1).

where Q = (0,1)?, and the boundary conditions are,

—]_7 T 0,]_
“@_{ 1, x;}o,&.

There are 2 minima of such an energy, these are given in Figure 6(A),(B). The
saddle between these two minima is given in Figure 6(C).
A possible choice for a preconditioner for this system is a stabilized Laplacian,

(19)

1
P=eA+-1. (20)
€

In order to compute either a minimum or a saddle point for such a system we
triangulate the domain into a variable number of elements, thereby creating a dis-
crete system of variable dimensionality. In our tests we take the initial dimer point
as a small random perturbation of one of the local minima, and the initial dimer
orientation is the metric inverted against a vector of ones.
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Ficure 7. Convergence of the simple dimer to the saddle in the
phase field problem (Test 2) with (A) the /5 metric and (B) the sta-
bilized Laplacian metric where € = 1/10 for a triangulation with 3485
degrees of freedom.

In Figure 7 we demonstrate the necessity of using a preconditioner to solve this
problem using the simple dimer method. When using the preconditioner (20), the
algorithm performs well when the step size is chosen appropriately. We observe
the expected behaviour, that there exists an optimal step size where convergence
is fastest, and beyond that step size the dimer diverges. In fact we observe that
the stabilized Laplacian metric is so effective, that the optimal step size seems very
close to the unit step. If the ¢5 norm (identity preconditioner) is used then for all
step sizes tested the dimer diverges, indicating that at best a very small step would
need to be chosen for convergence.

In Figure 8 we demonstrate that the used of the scaled Laplacian metric for
different system sizes. We observe that the use of this metric gives almost perfect
scale invariance.

0 (A) , (B)
10 5 #DOF = 845 10 5 #DOF = 845
o #DOF — 3485 o #DOF — 3485
- ADOF = 14165 o ADOF = 14165
et 2 _— 2
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%) %)
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P 10 > 10
6 -6
10 0 10 20 30 10 0 5 10 15 20
4VE, Niter

F1GURE 8. Convergence of the linesearch dimer to the saddle in the
phase field problem (Test 2) with the stabilized Laplacian metric and
triangulations of varying coarseness.
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FiGure 9. Convergence to the saddle in the phase field problem
(Test 2) using the stabilized Laplacian metric with (A),(B) the simple
dimer with unit step length and (C),(D) the linesearch dimer for a tri-
angulation with 2405,9805,22205 degrees of freedom for the respective
choices of e.

In Figure 9 we give the results of applying the simple and linesearch dimers with
varying €; the coarseness of the discretization in each experiment is chosen such
that Az =~ €/5. In some of these cases the linesearch dimer fails due to rounding
error. Specifically, due to rounding error in the naive implementation of the energy
function (simple summation over the elements), the translation step fails to find
a sufficient decrease in the dimer energy, the step size selected shrinks to zero (to
rounding error) and the method stagnates. In order to correct this a more robust
method of evaluating the energy or a more advanced optimization algorithm should
be implemented which can either choose better linesearch directions or more robustly
deal with numerically zero energy changes.

We also observe, in the case e = 1/30 that the rate of convergence of even the
simple dimer changes once the residual moves below a certain value. We are unable
to give a satisfactory explanation for this effect, but speculate that the singularity
in the boundary condition (which excludes admissible H'-states) might be the case.
(In particular, we observed that this behaviour is independent of the mesh coarseness
and of the dimer length.)
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5. CONCLUSIONS

We have described a dimer method for finding a saddle point in which the dimer
length h is not required to shrink to zero, but which converges to a point that lies
within O(h?) of a saddle. We have enhanced this algorithm with a lineasearch to
improve its robustness and efficiency, and use the observation that the dimer method
may be formulated and applied in a general Hilbert space to allow preconditioning
that improves the method’s efficiency. The linesearch uses a local merit function.
Unfortunately our particular merit function may not lead to global convergence of
the iterates, and it is an open question as to whether there is another merit function
that ensures global convergence. We have illustrated the positive effects of our
algorithms on two realistic examples.

APPENDIX A. PROOFS

We remark that all proofs in this section are independent of the choice of norm
| - |l (not necessarily the £>norm) and are hence valid for the preconditioned version
of the algorithm.

A.1. Proof of Proposition 2. We prove the result using the inverse function the-
orem. We write (9) as F'(zp, v, \p) = 0 and show that [|F(z., v, A\)|| < Ch? and
that VF(z,,v., As) is an isomorphism with bounds independent of h. The inverse
function theorem then yields the stated result.
Residual estimate. Let the residual components be

Ty = Fw(x*a Uy, )\*> = vxgh(x*a U*))

Ty = Fv(x*y Uk, )\*) = hiQvah(x*y U*) - )\*U*7

= Fy(z, v M) = 2([Ju]? = 1).

Then (2) and (4) imply that r,,7,, 7\ = O(h?) and hence ||F(z., v, \)|| < Ch2.
Stability. VF(x,, v, \s) can be written in the form, using

V2E (s, v4) Vo Vi&n(za,vy) 0
VF (2,00, \) = | W2V, Viln(mi,v.) hW2V2E (x4, v.) — NI —,
0 —of 0
V2E(,) 0 0
= |V3E(z.) - v. V2E(z,) — Ml —v.| +O(h*) =1 A+ O(Rh?),
0 vl 0

where we used (3), (4) and (6). By assumption, V2E(z,) is an isomorphism on X.
Since, also by assumption, A, is a simple eigenvalue, the block

V2E(z,) — M\ —w,
vl 0

*

(21)

is an isomorphism on X x R as well. Thus, A is an isomorphism on X x X x R
and consequently, for all i sufficiently small, VF(x,,v,, A\.) = A + O(h?) is also an
isomorphism, with a uniform bound on its inverse.

Thus, the inverse function theorem shows that there exist a radius o > 0 and a
dimer length ho > 0, such that, for h < hg, there exists a unique solution (zp, v, Ap)
to (9) in a ball of radius r¢ about (x,v., \.), satisfying the estimate (10).
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A.2. Proof of Theorem 3. Fix r and hg sufficiently small so that Theorem 2
applies. Let ey := x — xp, fi, := vp — v, and 75 := +/|lex||? + || fx||?, so that trivially

ler]| < 7 and [ fill < 7.

Lemma 11. Letp := —(I—20,Qug) V& (xk, vx) and s := — (1 —vp@uy) Hp (r; vk ),
then, under the assumptions of Theorem 3,

p = —Aey + O(ri + h’ry), and (22)
s = —Bey, — Cfy + O(ri + hry), (23)

where the operators A and C are defined in (12) and B is a bounded linear operator.

Proof. We begin by noting the elementary identities which are easy to establish:

Valn(Tr, vi) = Va&n(zn, vp) = O(ry),
vk®vk—vh®vh:O(rk), (24)
Vigh(l’h, Uh> = VQE(SL’}L) + O<h2) = V2E(l‘*) + O(hz)

Using the identities (24), as well as (2), (6), we can expand

—(I -2y ® *Uk)(V En(zg,vp) —V Eh(:vh,vh))
—(I =2, ® vh)(V En(xp,vp)er + VoV Eh(xh,vh)fk) +0(1})
—(I —2v, @ v,)V2E(z)er + O(ry + h2ry)

= —(I —2v, ®v,)V2E(z,)e, + O(r2 4+ h*ry)

= —Aey, + O(ry + h*ry).

To prove (23), we first note that, with ||v|| = 1,

1

Hy(z;v) :][ V2E(z + thv) dtv = V2E(z)v + O(h?),
-1

Hy(xp; o) = VZE(z3)vn + O(h?) = V2E(x,) v, + O(h?),

1
Hh(l’k; Uk) — Hh(a:h; Uh) :][ (V2E($k + thvk) - VQE(SL’}L + thvh)> dt Vi

1

1
—i-][ V2E(xy, + thuy) dt(vy — vp)

1

:][ (V?’E(xh + thuy) [(a:k —xp) + thv, — Uh)] dtvy,

1
+ V2E(z,) (v, — vp) + O(ry + h*ry,)
= (V3E(z.)v,)er, + V2E(x.) fi + O(h2ry, +12),
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where we interpret V2 FE(x)-v € L(X) via the action w-((V*E(x)-v)z) = lim;_,o t~w-
((V2E(x + tv) — V?E(x))z). Finally, we also have
(vk @ v, — v, @ V) Hp(z;0n) = (v @ v — v, @ v) V2E (24 )v. + O(h?1y.)
= (v ® v — vy @ vp)vs + O(R1y)
= Mk @ v — vp @ vp)vp, + O(R?ry)
= M (vp — vp) + Nvr((vg — ) - vn) + O(R*ry,)
= A\ fr + O(r} + hPry).

In the very last line we also used the fact that vy, - v, — 1 = —1||v, — vp||*.
Using these identities, we can compute

s =—(I — v ®@v) Hp(zg; vk
= (I — vn @ vn) Hp(xn; 0n) — (I — vp @ vp) Hp (k3 01
= —(I — v @ vg) (Hp(wx; vk) — Hp (x5 0n)) + (0k © v — 0 @ 0n) Hp (255 0n)
= —(I — v @ ) (VP E(w.)v.)ex + V2E(@.) fi) + O(h%r, +12)
+ Mfe + O(ri + BPry)
=: —Bey + [Ad — (I — v, @ v)V?E(2,)] fi, + O(rj; + hPry,)
= —Bey — Cfi. + O(r} + hry). L

From Lemma 11 it follows in particular that s = O(ry). Hence, Taylor expansions
of sine and cosine in the identity

Vg4l = COS (HsHﬁk)vk + Sin(Hs”ﬂk)@’

yield
Jr+1 = fi + Brs + 0(51352)

Using Lemma 11, the identity ex.1 = ex + agp, and the fact that i is bounded, we
therefore obtain identity (12) in the proof outline in §2.4.
Since A, C' are positive definite, it follows that, for a4, §; sufficiently small, the

spectrum of the operator
I — OékA 0
BB BxC

lies in some interval [0, u] for p < 1. Thus, for fixed steps o = v and fy, = 3, (11)
follows from standard linearised stability arguments for discrete dynamical systems.
The straighforward generalisation to non-uniform steps is presented in [9].

A.3. Contraction of steepest descent with linesearch. In the section following
this one, we will use statements about the steepest descent method with backtracking
that we suspect are well known. Since we have been unable to find precisely the
statement that we require, we state both below, and give complete proofs in [9].

and x, € X with VF(z,) =0

Lemma 12. Let X be a Hilbert space, F € C3(X),
u) > plfull? for o> 0. Let ||ull? :=

and V*F(x,) positive definite, i.e., u - (V2F(z,)
u- (V2F(z,)u). Further, let a > a >0, © € (0,1).
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Then, there exists r > 0 and v € (0,1), depending only on o, &, u, |[V? F(z)|| for
x € Bi(x.), such that, for all o € [a, @] and for all x € B,(x.) satisfying the Armijo
condition
F(z —aVF(z)) < F(x) — 0a|VF(2)|?
we have

H [t — aVF(x)] — .

. <l — 2.

We now generalize the foregoing result to steepest descent on the unit sphere.
Convergence results for many methods on manifolds are given by [1, Chap.4]. See
specifically [1, Thm.4.5.6] and [2].

Lemma 13. Let X be a Hilbert space, P, :=v®v and P, =1 — P, forv € Sx.
Let F € C3*(X),
g(v) :== P/VF(v) and ~ H(v):= P,V’F(v)P, — (VF(v)-v)I.
We assume that there exists v, € Sx and p > 0 such that
g(ve) =0 and  w- (H(vo)u) > pllul® Vue X. (25)

Let ||u]|« := v/u - (H(vi)u).

Let a >0, © € (0,1), and for v € Sx and a € R, denote

Vo = cos (a||g(v)]|)v — sin («a||g(v o)
o (allg()ll) (Hﬂﬂmmww

Then, there ezists r > 0 such that, for all v € B,(v,) N Sx and o € (0,a] satisfying
the Armijo condition

F(ve) < F(v) = Oallg(v)|*,
there ezists a constant y(«) € [0,1) such that

[va = vel|, < A(a)llv = i

The contraction factor y(a) depends on a, pu and on ||V F(x)||,z € By(v.). More-
over, for any a € (0,a], Sup,ejqa V() < 1.

A.4. Proof of Theorem 6. Throughout this proof, we fix an index-1 saddle (z,, v., i),
and assume that hg is small enough so that Proposition 2 ensures the existence of a
dimer saddle (xp, v, \p) in an O(h?) neighbourhood of (., v, As).

Until we state otherwise (namely, in §A.4.4) we assume that V, &, (g, vp_1) # 0
for all k. In particular, the Linesearch Dimer Algorithm is then well-defined and
produces a sequence of iterates (zy, vi)ren. That is, we are in Case (ii) of Theorem
6. The alternative, Case (i), is treated in §A.4.4.

A.4.1. Analysis of the rotation. We begin by establishing an auxiliary result con-
cerning existence of minimisers of v — &, (z,v). Let

V(z) := arg min &,(z,v),
vESY
whenever this minimiser exists and is unique. While, in general this minimium need

not exist (or be unique), we show in the following lemma that it is unique and a
smooth function of x in the neighbourhood of an index-1 saddle.
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Lemma 14. Let (x,,v., Ay) be an index-1 saddle, then there exist r > 0,hg > 0
(chosen independently of one another) such that, for all x € B,(x.) and h € (0, ho|,
V(x) is well-defined and moreover x — V(x) € CY(B,(x.)).

Proof. For r sufficiently small, if x € B,(z,) then V2E(z) also has index-1 saddle
structure and, if (\,v) is the smallest eigenpair of V?E(z), then A < \./2 and
(V2E(z)w)-w > . /2[|w||? for w L v, where p1, := inf =1, 10, (VZE(z)w) -w > 0.
(This statement is a straightforward consequence of the local Lipschitz continuity
of V2E, which follows since F € C*4(X).)

The statement of the Lemma is then proven similarly as Proposition 2, provided hg
is chosen sufficiently small (depending on A, i, and on derivatives of E in By, (x.)).

The C'-dependence of V' (x) on x is a consequence of the implicit function theorem.
O

Next, we obtain a bound on v, — v, in terms of x, — ), and the residual of vy.

Lemma 15. There exist r,ho,Cy > 0 such that, for h € (0, ho|, © € B.(z.) and
v € B,.(vi) with ||v]| =1, we have

o= wnll < 3G (llz = wll + | (T — v ® 0) Halzs0)]).

Proof. Let \ := Hp(x;v) - v, then

Hy(zp;v) = Av + s,
= 20

sllvll? =3,

where
s = (Hp(zp;v) — Hy(2;0)) + (I — v @ v) Hy(z;0).
Since vy, solves (26) with s = 0, and since
Isll < Co(llz = @nll + (I — v @ v)Hyu(;0)]]),
the stated result follows from the Lipschitz continuity of Hy(-;v) and an application

of the inverse function theorem, in a similar spirit as the proof in §A.1. OJ

Next, we present a result ensuring that the rotation step of Algorithm 3 not only
terminates but also produces a new dimer orientation vy which remains in a small
neighbourhood of the “exact” orientation vy,.

Lemma 16. There exist r,hg, Cy > 0,C3 > 1 such that, if h € (0, hol, . € B.(z.),
V-1 € Beyr(vi), ||vg—1|| = 1, then Step (3) of the Linesearch Dimer Algorithm
terminates with outputs vy € Begr(vs), ||vk|| = 1, Bk > 0, satisfing

lvk = vall < Co(llzx — @l + P2 |lve—1 — val])- (27)

Proof. Let G(v) := h™2(&Ep(wp;v) — En(zr; V(21))), then each step of the Rotation
Algorithm is a steepest descent step of G on the manifold Sx. We need to ensure
that these iterations do not “escape” from the minimiser V' (zy) (cf. Lemma 14).
Lemma 13 (with F'(v) = G(v) and v, = V(z)) implies that each such step is a
contraction towards V' (zy) with respect to the norm | - || g induced by the operator
H=I-VV)V*GV)I-VaV)—(VG(V)-V)I,

where V' = V' (xy); provided that r is sufficiently small and H is positive definite.
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To see that the latter is indeed true, we recall from (4) and (5) that
VG(V) = V2E(z)V + O(h?*) and VG(V) = V?E(x;) + O(h?)

and from Proposition 2 and Lemma 14 that
V(zy) = v, + O(R* + 1), (28)

from which we can deduce that

H=(I-v.®v)VE(@)I —v.®v)— (VE(z.)v) - v)I +Oh* +7)
= (I — v, @v)V?E(z,) — A I + O(R* + 7).
Since (x4, v, A,) is an index-1 saddle, (I — v, ® v,)V2E(x,) is positive definite in
{v,.}+, and A\, < 0. Thus, for h, r sufficiently small H is positive definite as required.

From Lemma 13, it follows that all iterates v ) of the Rotation Algorithm sat-

isfy Hv,(f) — V(g < |Jvk—1 — V(xk)||m. Since the eigenvalues of H are uniformly
bounded below and above, the norms || - ||z, || - || are equivalent, and hence in par-
ticular

lve = V@)l < Crllver = V@)l < Cr([Joe-1 — vl + V(@) — vil)) = O(R* +7)

for some constant C7; > 0, since vx_1 € By (v.) and using (28). Combining this
with (28) and choosing hZ < r, we deduce that the Rotation Algorithm terminates
with an iterate vy such that

[ve = o]l < Jlow = V(@) + loe = V(@) || < Car

for some constant that depends only on r but is independent of v;_; and remains
bounded as r — 0.
At termination the Rotation Algorithm guarantees the estimate

(I = ve ® v) H (i o) || < IV (ke v |-
We set 2 = (1 — t)xy, + tag, v' = vj, + tvg_1 and expand

| Valn(@e, ve-1)|| =

1
‘ / (Vié’h(act, V) (xp — x1) + Vo V& (2!, 0" (v — vh)) dtH
0

< C(||wk — znll + B |lvk—1 — val]).

Combined with Lemma 15 this yields the estimate (27).

The statement that vy € Beyr(vs) (instead of only Be,,(v.)) is an immediate
consequence of (27) by ensuring that Cs > Cy+C3h?+C'h*, where ||v, —v.|| < C'h?
for all A < hg from Proposition 2. While there is an interdependence between Cj
and Cy, for r and hy sufficiently small, this is clearly achievable. O

A.4.2. Analysis of the translation. We first establish the existence of a minimiser of
the auxiliary functional F), under the conditions ensured by the rotation step of the
Linesearch Dimer Algorithm.

Lemma 17. Under the conditions of Lemma 16, possibly after choosing a smaller
r, ho, there exists a constant Cy > 0, such that the functional Fy defined in (13) has
a unique minimiser yx € B,.(x.) satisfying

lyr — zall < Ca(ry + hPry, + hispq). (29)
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Proof. We begin by estimating the residual
VFk(mh) = v$€h(xh’ Uk) — Q(VIEh(fk, Uk) . vk)vk + 2/\k(({L‘k — {L‘h) . vk)vk,

where A\ = Hp,(zg; vg) - . We consider each constituent term in this expression in
turn; we expand about (xp,vy), and use the identities (7), (9) and (24) This gives

v = vp + O(sg)
Viln(n, vi) = Vo VoEn(zn, vp) (v — vp) + O(s3)
Vailn(p, vr) = V2E(zn, vi) (r — 1) + Vo Voln(zh, vn) (v — vp)
+O(r}) + O(s3)
= V2E,(xn, vn)(w — x1) + O(R%sy,) + O(13) + O(s3),
V& (@, vp) - vrve = (V2E4 (T, vp) Tk — 1) + Vo Vo En(zh, vi) (Vr — v3)) - vhon
+O(r}) + O(s2) + O(rgs)
= V2&,(xn, vp) 2k — 14) - VRV
+ O(R*sy) + O(r7) + O(s3) + O(rysy)
Hy(zy;v8) = Hp(zp;vn) + O(rx) + O(sk)
M = A+ o - Hy(zg; o) — o - Hy(xp;0n) = A+ O(rg) + O(sg)
Me((xp — zp) - vk)vg = (A + O(rg) + O(sk)) ((z — xp) - vg) Vg
= M ((w — z1) - vp)vn + O(r3) + O(rpse).

Thus since (10) and our assumption that vy_1 € Be,,(v.) ensure that s, = O(1 +
h?), while (27) implies that s; = O(ry,) +O(h?sj_1), we combine the above to obtain

VFk(LL'h) = -2 [(Vigh(ﬂfh, Uh)<£L‘k — .Z'h)) . Uh:| Up, + 2>\h<<xk — .’L'h) . Uh)Uh
+ O(T,% + h2ry + h4sk_1),

Next, we note that, by definition of &,, V&, (zh, vp)vn = V2E(z)v, + O(h?), and
thus from (4) that V2&,(zp, vp)vn, = Hp(zp;v,) + O(h?). Hence applying (9),

VFk(JZh) = [— QHh(ZL‘h; Uh) . ({L‘k — £L‘h) —|— 2/\h($k — ZEh) . ?)h] Up, (30)
+ O(ri + h2ry, + h4sk,1)
= O(r; + B’ri + h'sj_1). (31)

Finally, we observe that V2 Fy(z},) is positive definite, since
V2E(2y) = V2EL(zh, vk) — 2Xe0 @ Uk
= V2&,(zn, v) — 2Mun @ vy + O(14)
= V2E(x,) — 2\, @ v, + O(R* + 1), (32)
which immediately implies that, for r, hy sufficiently small, V?Fy(x,) is an isomor-
phism with uniformly bounded inverse.

Thus an application of the inverse function theorem to V Fy at y, using (31) yields
the stated result. O

We now turn towards analysing the linesearch for x. Recall the definition of the
energy norm ||ull, := /u - (I — 2v, ® v.)V2E(x,)u), which is equivalent to || -||. In
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particular,

Pl < flulls < IV2E(z)|lull - where g = min(=A., p) > 0. (33)

Lemma 18. There exists r, ho, a € (0, ] and v, € (0,1), such that, if h € (0, hl,
z € By(xy),vx € Begr(ve) and ag_1 > a, then

ag >« and ekt — el < Yellze — vkl

where y, is the minimiser of Fy established in Lemma 17.

Proof. We begin by noting that, for any r > 0, the norms ||V?F},(z)|| are uniformly
bounded among all choices of xy, € B,(x,), x € B,11(x,). This is straightforward to
establish.

Therefore, there exists a > 0 such that, for x; € B,(z,) and for any a € (0, 2a],
the conditions in Step (6) of the Linesearch Dimer Algorithm are met (this includes
an Armijo condition for F}) since VFj is Lipschitz in a neighbourhood of xj [8,
Thm.2.1]. It is no restriction of generality to require a < oyy. In particular, oy > a.

For r, ho sufficiently small, we have y, € B,(x,) as well. Upon choosing r suffi-
ciently small, u - (V2E,(y)u) > p/2||ul|? for all w € X, y € B,(x,). Thus, we can
apply Lemma 12 (with z, = yx) to deduce that, for r sufficiently small, the step
Tpy1 = Tx — o VE(xy) is a contraction with a constant 7, that is independent of
Tk, V. That is,

(zhs1 — Uk) * [V2Fu(yn) @ — yi) | < 5@ — wi) - [V2Fk(yi) (@ — wi)]

Recalling from (29) and (32) that V2F,(yx) = (I — 2v. ® v,)V2E(z,) + O(r + h?)
we find that, for r, hy sufficiently small,

k1 = ynlle < vllwe — il (34)
where 7, € [y1, 1), again independent of zy, vg, but depending on r, hy. O

A.4.3. Proof of Case (ii). We have assembled all prerequisites to complete the proof
of Theorem 6, Case (ii).

Inspired by Lemma 18, our aim is to prove that, for r sufficiently small, there
exists v € (0, 1) such that, for all j > 0,

Py h2si < o7 (rg + hPs_1) = Yt (35)

where v := (v, + 1), 7} = ||z — 3]« and sp, == [Jvp — va]|.

A consequence of (35) would be that there exists a constant ¢ such that ||z;—xz.|| <
cr =: 7. Thus, under the assumptions of the Theorem, let r, hy be chosen sufficiently
small so that Proposition 2, and Lemmas 15, 16, 17 and 18 apply with r replaced
by 7.

We now begin the induction argument adding to (35) the conditions that
(36)
where C3 > 1 is the constant from Lemma 16 and « the constant from Lemma 18.
Clearly (35) and (36) hold for j = 0. Suppose that they hold for j =0, ..., k, where
k > 0.

The choice of r implies that x; € B,.(z.) again, and Lemma 16 implies that
vk € Beyr(vi). Thus, the first condition in (36) is established for j = k + 1.

vj_1 € Bey,(v) and o >«

S
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Applying Lemma 18 we obtain the second condition in (36) for j = k+ 1, and in
addition that
k1 = yille < vellze — yills

where y; is the minimiser of F) established in Lemma 17. Using (34), the fact that
v« < 1 and Lemma 17 we therefore deduce that there exists a constant Cs which
depends on Cy4 and on the norm-equivalence between || - || and || - ||+, such that

[Tkt — znlle < e — Yalle + lyn — 2l
< Yallzk = yells + llye — 2nlls
< Yellzk — @alls + 2l|yx — zall
< (3 + Csh? + Csry)||wp — 2|« + Csh*|lug—1 — wal.

Adding h?||vx, — vy ]| to both sides of the inequality and applying (27) and (33) we
thus obtain
i+ B8k < (% + Csh? + Csri)ry + By, + Csh'sgy
< (’}/* + C5h2 + ,uil/zcghQ + C5(C + 1)7’)7“; + (05 + Cg)hzlsk,l.

Recalling that v = %(fy* + 1), choosing hyg, r sufficiently small, we obtain that
i+ s < y(rp + BPsp-1).

This establishes (35) for j = k + 1 and thus completes the induction argument.

In summary, we have proven that (35) and (36) hold for all j > 0. As a first
consequence, we obtain that 7, := ||z — 2| < V2| V2E(2,)||v*(ro + h?s_1) using
(33), which in particular establishes the first part of (15).

To obtain a convergence rate for v, we combine (27) and (35), to obtain

[or — onll < Co(rf + h2sp1) < Cen*to < Col|V2E (2. 1v*(ro + h*s 1),

for a constant Cg. Choosing C' = 2max(Cs, 1~ /?)||V2E(x,)|| completes the proof
of Theorem 6, Case (ii).

A.4.4. Proof of Case (i). The proof of Case (ii) establishes that, for as long as
Ve€n(xg,vr_1) # 0, the iterates are well-defined and ||zy — || + ||ox — vp|| < Cr
for some suitable constant C'. We now drop this assumption and instead suppose
that, at the (th iterate, V&, (z¢, ve—1) = 0. In this case, we can apply the following
lemma.

Lemma 19. Let (z,,v., ) be an indez-1 saddle, then there exist r, hy, C > 0 such
that, for all h € (0, ho] and for all v € Sx, there exists a unique x,, € B,(x.) such
that V& (xh ., v) = 0. Moreover, ||zh., — x| < Ch?.

Proof. This is an immediate corollary of (2) and the inverse function theorem. [
Since ||z, — z3]] < Cr, Lemma 19 implies that, in fact ||z, — 2| < C'h? for some

other constants C’, provided that r, h are chosen sufficiently small.
This concludes the proof of Theorem 6, Case (i).
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