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ANALYSIS OF BLENDED ATOMISTIC/CONTINUUM HYBRID
METHODS

XINGJIE HELEN LI, CHRISTOPH ORTNER,
ALEXANDER V. SHAPEEV, AND BRIAN VAN KOTEN

Abstract. We present a comprehensive error analysis of two prototypical atomistic-to-
continuum coupling methods of blending type: the energy-based and the force-based quasi-
continuum methods.

Our results are valid in two and three dimensions, for finite range many-body interactions
(e.g., EAM type), and in the presence of lattice defects (we consider point defects and
dislocations). The two key ingredients in the analysis are (i) new force and energy consistency
error estimates; and (ii) a new technique for proving energy norm stability of a/c couplings
that requires only the assumption that the exact atomistic solution is a stable equilibrium.

1. Introduction

Atomistic-to-continuum coupling methods (a/c methods) are a class of concurrent multi-
scale schemes coupling molecular mechanics models of atomistic processes with continuum
mechanics models of long-ranged elastic fields. A recent extensive overview and benchmark of
a/c schemes for material defect simulation is presented in [28]. These schemes can, broadly,
be categorised into sharp-interface couplings and blending methods. Each of these categories
can further be divided into energy-based (conservative) and force-based (non-conservative)
a/c couplings. In the present paper we develop a comprehensive error analysis of both energy-
based and force-based a/c couplings of blending type, which forms the theoretical background
for the optimised formulations in [26, 21].

Precisely, we will consider (i) the B-QCE scheme formulated in [38, 26], which is closely
related to methods proposed in [41, 2, 1]; and (ii) the B-QCF scheme formulated in [24, 20, 21],
which is closely related to methods proposed in [1, 2, 3, 14, 22, 35, 37, 41]. While our results
are not be immediately applicable to these related schemes [41, 2, 1, 3, 14, 22, 35, 37], we
expect that many of the techniques we develop can be employed to develop such extensions.

In recent years a comprehensive numerical analysis theory of a/c methods has begun to
emerge, which is summarized in the review article [25]. In one dimension, the foundations
of this theory are largely completed [25]. In two and three dimensions only partial results
exist to date: in [32] sharp error bounds for an energy-based coupling scheme are proven,
in the presence of point defects. However, the scheme itself is restricted to two dimensions
and pair interactions, and moreover, the analysis makes an assumptions on the magnitude
of the atomistic solution in order to establish stability of the a/c scheme. In [24] a sharp
error estimate is established, which is valid in two and three dimensions and for general
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interatomic potentials; however, to establish stability of the scheme it is assumed that the
atomistic solution is globally smooth, which therefore excludes the presence of lattice defects.

Our starting assumption is that the error analysis ought to be performed in the energy-
norm as this provides, to the best of our knowledge, the only route at present to include
crystal defects in the analysis following [32, 12, 25].

Thus, there are two key difficulties in extending the one-dimensional analysis in [25] (and
references therein) to two and three dimensions:

(1) Energy-norm consistency: While consistency error estimates in Lp-type norms are
readily obtained from elementary Taylor expansions, consistency error estimates in
the negative energy norm are more difficult to obtain, since they require an analyt-
ically convenient “weak form” of the forces. The different interaction ranges of the
continuum and atomistic models make this non-trivial as can, for example, be seen
from the analysis in [30], which develops such a “weak form” for energy-based sharp
interface a/c couplings. In the present paper we draw from ideas in [34] to establish
sharp consistency error estimates; see § 4.3 and § 4.4.

(2) Stability: A key observation in [24] was that force-based blending (the B-QCF
scheme) with a macroscopic blending width yields a “universally stable” a/c coupling
in the terminology of [33]. However, stability is proven under conditions which, to our
understanding, make it impossible to extend the analysis to situations with crystal
defects, and the required blending width makes the scheme prohibitively expensive. In
[20] it was then shown that the B-QCF scheme is also stable in a natural energy-norm,
and that only a moderate blending width is required. However, this result required
the assumption that a related B-QCE scheme is stable, which was still unknown.

In the present work, we develop a new technique that allows us to prove stability
of the B-QCE scheme; see § 4.5. After extending results from [20] and employing
regularity estimates for the elastic fields generated by crystal defects [12], we are able
to also conclude stability of the B-QCF scheme; see § 4.6. Aside from technical condi-
tions, our stability results only require the assumption that the atomistic equilibrium
we are aiming to approximate is itself stable, but no assumptions on the magnitude
or smoothness of the solution as in [32] or [24] are required.

The paper is structured as follows: In § 2 we introduce a number of concepts that we
require in order to formulate the B-QCE and B-QCF schemes (§ 3.1.2 and § 3.1.3), and to
state the main results in § 3.2. Our concluding remarks are also contained in that section,
in § 3.3. In § 4 we present the key ideas and intermediate results that are required to prove
the main results. Finally, in § 5–§ 7 we present the technical details of the proofs.

2. Prerequisites

2.1. Generic notation. Functions are normally maps from Rd → Rm or Zd → Rm for some
d,m ∈ {1, 2, 3}. Vectors in Rd,Rm or vectorial functions are normally denoted by the symbols
y, z, u, v, w, f . Lattice sites, i.e. elements of Zd are normally denoted by ξ, η, while points in
the continuous reference configuration are denoted by x ∈ Rd. We also identify x with the
identity map.

Matrices or matrix-valued functions are normally denoted by A,B, S,R and so forth. Ten-
sors of fourth or higher rank are normally denoted by A,B,C, and so forth.

If a function f : Rd → Rm is (weakly) differentiable, then we denote its jacobi matrix at x
by ∇f(x). If f is scalar-valued, then ∇2f(x) denotes the hessian matrix. In general, ∇jf(x)
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Figure 1. Subdivision of the cube [0, 1]3 into 6 tetrahedra T̂1, . . . , T̂6, so that
the resulting partition T is invariant under reflection about any lattice point
ξ ∈ Z3.

denotes a tensor of order m× d× · · · × d. Partial derivatives with respect to some variable
s are denoted by ∂

∂s
or ∂s. If α = (α1, . . . , αd) is a multi-index, then ∂α = ∂xα1

· · · ∂xαd .

Directional derivatives are denoted by ∇ρf := ∇fρ, ρ ∈ Rd. If R ⊂ Rd then we define a
collection of directional derivatives ∇Rf(x) := (∇ρf(x))ρ∈R.

Our use of tensor notation is intuitive and not crucial to follow the main ideas. Nev-
ertheless, for the sake of completeness we formally define our notation. The symbol ⊗
denotes the usual tensor product: if A = (Ai1,...,ir) ∈ Rn1×···×nr and B = (Bk1,...,ks) ∈
Rm1×···×ms , then A ⊗ B = (Ai1,...,irBk1,...ks) ∈ Rn1×···×nr×m1×···×ms . If A = (Ai1,...,is+r) ∈
Rm1×···×ms×n1×···×nr ,B = (Bj1,...,jr) ∈ Rn1×···×nr , then the contraction operator is denoted by
(A : C)j1,...,js =

∑n1

i1
· · ·∑nr

ir
Aj1,...,js,i1,...,irBi1,...,ir . In particular, if A,B have the same rank,

then A : B ∈ R denotes the euclidean inner product.
The symbol 〈·, ·〉 denotes an abstract duality pairing. If X, Y are normed linear spaces and

F : X → Y has well-defined directional derivatives at a point u ∈ X, then we denote the
first of second derivatives, respectively, by

〈δF (u), v〉 := lim
t→0

t−1
(
F (u+ tv)−F (u)

)
and

〈δ2F (u)v, w〉 := lim
t→0

t−1
〈
δF (u+ tw)− δF (u), v

〉
.

Higher variations are defined recursively, e.g., 〈δ3F (u)v1, v2, v3〉 = limt→0 t
−1〈(δ2F (u+tv3)−

δ2F (u))v1, v2〉, whenever the limit exists.
We use the standard definitions and notation Lp,W k,p, Hk for Lebesgue and Sobolev spaces,

and `p for sequence spaces on Zd or subsets thereof.
The closed ball with radius r and center x is denoted by Br(x). Further, we set Br := Br(0).

2.2. Lattice functions and function spaces. For d ∈ {2, 3},m ∈ {1, 2, 3}, we denote the
set of vector-valued lattice functions by

U := U (Zd)m :=
{
v : Zd → Rm

}
.

We interpret the lattice Zd as the vertex set of a simplicial grid T , as follows:

• in 2D, T = {ξ + T̂ , ξ − T̂ | ξ ∈ Z2} where T̂ = conv{0, e1, e2};
• in 3D, T = {ξ + T̂j | ξ ∈ Z3, j = 1, . . . , 6}, where T̂1, . . . , T̂6 subdivide the cube [0, 1]3

as displayed in Figure 1.

Let ζ̄ ∈ W 1,∞(Rd;R) be the P1 nodal basis function associated with the origin; that is ζ̄
is continuous and piecewise affine with respect to T , ζ̄(0) = 1 and ζ̄(ξ) = 0 otherwise. We
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can then write the nodal interpolant as

v̄(x) :=
∑
ξ∈Zd

v(ξ)ζ̄(x− ξ), for v ∈ U . (2.1)

Clearly, v̄ ∈ W 1,∞
loc (Rd) and v̄(ξ) = v(ξ) for all ξ ∈ Zd.

Using the previous definition, we introduce the discrete homogeneous Sobolev spaces

U 1,p :=
{
u ∈ U

∣∣∇ū ∈ Lp}, for p ∈ [1,∞],

and the associated semi-norms |u|U 1,p := ‖∇ū‖Lp . This semi-norm fails to be a norm since
it does not penalize translations, but this issue will not enter our analysis. For p ∈ [1,∞),
the space of compact displacements,

U c := {u ∈ U | supp(u) is compact}
is dense in U 1,p in the sense that, for each u ∈ U 1,p there exists un ∈ U c such that∇ūn → ∇ū
strongly in Lp. [31, Prop. 9].

2.2.1. Smooth interpolant. Since we will be primarily interested in approximation results,
we require some information about the regularity of lattice functions. Higher-order finite
differences, a natural measure of local smoothness of lattice functions, are cumbersome for our
analysis, hence we introduce a C2,1-conforming multi-quintic interpolant whose derivatives
will provide equivalent information. To construct it we define the second-order nearest-
neighbour finite differences

Dnn,0
i u(ξ) := u(ξ),

Dnn,1
i u(ξ) := 1

2

(
u(ξ + ei)− u(ξ − ei)

)
,

Dnn,2
i u(ξ) := u(ξ + ei)− 2u(ξ) + u(ξ − ei),

for ξ ∈ Zd, i ∈ {1, . . . , d}. For a multi-index α ∈ Zd, |α|∞ ≤ 2, αi ≥ 0, we define

Dnn
α u(ξ) := Dnn,α1

1 · · ·Dnn,αd
d u(ξ),

The smooth interpolants are now defined through the following lemma. Closely related
and in some respects stronger results can be found in [7, 36], but not of the specificity that
we require (in particular not for d = 3).

Lemma 2.1. (a) For each u ∈ U there exists a unique ũ ∈ C2,1(Rd;Rm) such that
ũ ∈ Q5(ξ + (0, 1)d) for all ξ ∈ Zd and ∂αũ(ξ) = Dnn

α u(ξ) for α ∈ Zd+, |α|∞ ≤ 2, ξ ∈ Zd.
(b) Moreover, there exists a universal constant C such that, for p ∈ [1,∞], 0 ≤ j ≤ 3,

‖∇jũ‖Lp(ξ+(0,1)d) ≤ C‖Dju‖`p(ξ+{−1,0,1,2}d). (2.2)

In particular, it follows that ‖∇ũ‖Lp . ‖∇ū‖Lp, where D is the collection of first-order finite
differences defined in (2.4).

Proof. The proof is given in § 5.2. �

2.3. The atomistic model. We review an atomistic model from [12] for a defect in a
homogeneous crystalline environment, which will form the “exact problem” that we will
subsequently aim to approximate using atomistic/continuum blending schemes.

We will consider atomistic models for two classes of crystallographic defects: point defects
and screw dislocations.
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2.3.1. Far-field boundary condition. We fix domain and range dimensions d ∈ {2, 3},m ∈
{1, 2, 3}. We call Zd the reference configuration and, with some abuse of terminology, a map
y ∈ U a deformed configuration or deformation. For example, if d = m = 3, then y(ξ) is the
position of atom ξ.

We shall impose a far-field boundary condition y(ξ) ∼ y0(ξ) as |ξ| → ∞, by specifying a
reference deformation y0 : Rd → Rm and admitting only deformations from the space

Y :=
{
y ∈ U

∣∣ y = y0 + u for some u ∈ U 1,2
}
.

We explain how to choose y0 to model various types of defects in § 2.3.3 and § 2.3.4 below.
It will later become important that y0 is defined on all of Rd.

For future reference, we extend the definition of the two lattice interpolants as follows:

ȳ := y0 + ū and ỹ := y0 + ũ. (2.3)

(Strictly speaking, this represents a clash of notation. However, henceforth we will always ap-
ply the smooth interpolant to elements of Y or U 1,2 and therefore adopt the latest definition
(2.3).)

Remark 1. To justify how we impose the far-field boundary condition we note that, in
all our model problems we will have that y0(ξ) scales linearly as |ξ| → ∞, while u ∈ U 1,2

implies that |u(ξ)| = o(|ξ|) [31, Prop. 12]. Thus, we have that y(ξ) ∼ y0(ξ) + o(|y0(ξ)|) as
|ξ| → ∞.

The choice of the U 1,2 space for the relative displacements u is due to the fact that these
are precisely the “finite-energy displacements”. �

2.3.2. Energy difference functional. We now define an energy (difference) functional on the
space of deformations. First, we choose a finite interaction range R ⊂ Brcut ∩Zd \ {0}, where
rcut > 0 is a cut-off radius, and we define the finite difference operator and finite difference
stencil

Dρv(ξ) := v(ξ + ρ)− v(ξ), for v ∈ U , ξ, ρ ∈ Zd, and

Dv(ξ) :=
(
Dρv(ξ)

)
ρ∈R, for ξ ∈ Zd.

(2.4)

We additionally make the technical assumption, without restriction of generality, that ei ∈ R
for i = 1, . . . , d. Then, for y ∈ Y , we define an atomistic energy difference functional of the
form

E a(y) :=
∑
ξ∈Zd

V (Dy(ξ))− V (Dy0(ξ)), (2.5)

where V ∈ C4((Rm)R) is a site potential. If y − y0 ∈ U c, then E a(y) is well-defined, and we
will show in Lemma 2.2 (see also §2.3.3 and §2.3.4) that, under natural conditions on y0, E
can be extended to y ∈ Y .

We denote the partial derivatives of V at a stencil g ∈ (Rm)R by

V,ρ(g) :=
∂V (g)

∂gρ
∈ Rm, V,ρς(g) :=

∂2V (g)

∂gρ∂gς
∈ Rm×m,
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and so forth. For ρ ∈ Rj we also write V,ρ1···ρj = V,ρ ∈ Rm×···×m. The first and second
variations of E , for test functions v, w ∈ U c, and writing Vξ,ρ ≡ V,ρ(Dy(ξ)), are given by

〈δE a(y), v〉 =
∑
ξ∈Zd
〈δV (Dy(ξ)), Dv(ξ)〉 =

∑
ξ∈Zd

∑
ρ∈R

Vξ,ρ ·Dρv(ξ), and

〈δ2E a(y)v, w〉 =
∑
ξ∈Zd

〈
δ2V (Dy(ξ))Dv(ξ), Dw(ξ)

〉
=
∑
ξ∈Zd

∑
ρ,ς∈R

Dρv(ξ) ·
(
Vξ,ρςDςw(ξ)

)
.

We require throughout that R and V are point-symmetric: −R = R, and if g ∈ (Rm)R

and h = (−g−ρ)ρ∈R, then V (g) = V (h). In particular, this requirement implies that

V,−ρ(FR) = (−1)jV,ρ(FR) for ρ ∈ Rj, j ≥ 1, F ∈ Rm×d. (2.6)

Lemma 2.2. Suppose that Dy0 ∈ `∞(Zd; (Rm)R) and δE a(y0) ∈ (U 1,2)∗, that is, 〈δE a(y0), v〉 ≤
c‖∇v̄‖L2 for all v ∈ U c, then there exists a unique continuous and translation invariant ex-
tension of u 7→ E a(y0 + u), u ∈ U c to u ∈ U 1,2. The extended functional is four times
continuously Fréchet differentiable in U 1,2.

Proof. This result is a simplified variant of [13, Thm. 2.3] or [34, Thm. 2.8]. �

We now specify further details of the atomistic model for two interesting situations: point
defects and screw dislocations.

2.3.3. Model for point defects. Strictly speaking, point defects occur only in 3D models, how-
ever we also admit 2D toy models. Moreover, some combinations of topological defects such
as infinite vacancy-type dislocation loops or dislocation dipoles with small separation distance
may occasionally also be treated as point defects, at least from an analytical perspective.

Thus, we admit d ∈ {2, 3},m ∈ {1, 2, 3}. We choose a macroscopic strain A ∈ Rm×d,
non-singular, and the far-field boundary condition y0(x) := Ax. (The matrix A encodes the
lattice structure, say BZd, as well as an applied macroscopic deformation x 7→ Fx; in this
case A = FB.)

Some point defects, such as Frenkel pairs, dislocation dipoles, can be modeled as local (but
not global) minimisers of E . Other types of point defects, such as vacancies, interstitials
and impurities, can be modeled (to some extent) by adding an external defect potential
P ∈ C4(Y ) to the total energy (see [13]). We shall assume throughout that

(A.P1) P is localised: there exists RP > 0 so that P depends only on (y(ξ); |ξ| ≤ RP).
(A.P2) P is translation invariant: P(y) = P(y + c), where c(ξ) = c ∈ R.

The total energy for point defects is then given by

y 7→ E a(y) + P(y).

Remark 2. For slightly more complex defect geometries, such as multiple interstitials,
it is convenient to augment the reference configuration, Zd, by a finite number of points.
Conceptually, our analysis is easy to extend to such cases, but we keep our simplifying
assumptions for the sake of a convenient notation. We refer to [13] for details of the ideas
required to carry out this extension. �
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2.3.4. Model for screw dislocations. Consider a straight screw dislocation in a Bravais lattice
BZ3, with Burgers vector b ∈ BZ3. By rotating and dilating BZ3, we may assume without
loss of generality that b = |b|e3 and that e3 is the shortest vector belonging to BZ3 which is
parallel to b. We assume, without loss of generality, that |b| = 1, i.e., b = e3. In [19, 13] it is
shown that a straight screw dislocation can be modeled by an energy of the form (2.5) with
m = 3 and d = 2 and a reference deformation y0 given by a linearised elasticity model. We
briefly summarize the construction:

We seek a reference deformation of the form y0(x) = Ax + ulin(x), where A ∈ R3×2, full
rank. The matrix A incorporates the underlying lattice structure and any applied macroscopic
in- and anti-plane deformation, while ulin is the displacement map according to linearised
Cauchy–Born elasticity: Let W : R3×2 → R∪{∞} be the Cauchy–Born strain energy density
defined by W (F) = V (FR) (see § 2.4 for more details), and let C := ∂2W (A) ∈ R3×2×3×2 be
the corresponding linearised elasticity tensor. Then we require that ulin ∈ C∞(R2 \ Γ;R3),
where Γ := {(x1, 0) |x1 ≥ 0} is the “glide plane”, and solves

3∑
j=1

2∑
α,β=1

Cjβ
iα∂xα∂xβu

lin
j (x) = 0 for all x ∈ R2 \ Γ. (2.7)

In addition ulin must have Burgers vector b; that is, we require

y0(x1, 0−)− y0(x1, 0+) = ulin(x1, 0−)− ulin(x1, 0+) = b for all x1 > 0, (2.8)

or in other words,
∫
C
∇ulin · dx = b for any closed path C winding once around 0 in R2.

In [17, Sec. 12-3] and in [13, Sec. 2.4] it is shown that, if the deformation Ax is strongly
stable, i.e., there exists c0 > 0 such that

〈δ2E a(Ax)v, v〉 ≥ c0‖∇v̄‖2
L2 ∀v ∈ U c, (2.9)

then a solution ulin ∈ C∞(R2 \ {0};R3) satisfying (2.7) and (2.8) exists, and moreover, that
∇ulin ∈ C∞(R2 \ {0};R3×2) with

|∇julin(x)| ≤ Cj|x|−j for j ≥ 1. (2.10)

In addition to the assumptions on V made in § 2.2 we require invariance under lattice slip
by a Burgers vector:

(A.Vper) V is periodic in the direction of b; that is, if g,h ∈ (R3)R and gρ− hρ ∈ bZ for all
ρ ∈ R, then V (g) = V (h).

Remark 3. 1. Our assumptions on y0 and V are compatible with projecting a full 3D
model; see [13, Sec. 2.4] for the details.

2. One may also formulate an anti-plane model. In this case, we set m = 1, W : Rd → R
and ulin now solves a scaler elliptic equation; again see [13] for the details. �

2.3.5. The atomistic variational problem. Throughout the remainder of the paper we assume
that all assumptions stated in § 2.2 hold. Moreover, we make one of the following two sets
of standing assumptions:

(pPt) Point defect problem: y0 = Ax for some A such that lattice stability (2.9) holds, and
assumptions (A.P1), (A.P2) are satisfied.

(pDs) Screw dislocation problem: y0 is given by (2.7), (2.8) where A is such that lattice
stability (2.9) holds, and in addition assumption (A.Vper) is satisfied. We set P ≡ 0.
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Unless an argument applies equally to both cases (usually this is the case), or it is clear from
the context which of the two problems we are considering, then we will always specify which
set of assumptions are are employing.

In either case, we seek to compute

ya ∈ arg min
{
E a(y) + P(y)

∣∣ y ∈ Y
}
, (2.11)

in the sense of local minimality with respect to the metric dist(y, z) = ‖∇ȳ −∇z̄‖L2 .
As usual, we shall require stronger assumptions on the solution than mere local minimality.

Namely, we assume that ya is a strongly stable equilibrium, by which we mean that there exists
γa > 0 such that 〈

δE a(ya) + δP(ya), v
〉

= 0 ∀v ∈ U c, and〈
[δ2E a(ya) + δ2P(ya)]v, v

〉
≥ γa‖∇v̄‖2

L2 ∀v ∈ U c.
(2.12)

The existence of a strongly stable equilibrium is a property of the lattice and the interatomic
potential (possibly even of the physical material). Except in some special circumstances (e.g.,
when the perturbation P is “small”) it is difficult to establish under the generic assumptions
we are making.

However, given the existence of a strongly stable equilibrium, we can estimate its regularity
away from the defect core.

Lemma 2.3. Let either (pPt) or (pDs) be satisfied and let ya = y0 + ua, ua ∈ U 1,2, be a
strongly stable equilibrium. Then, there exists c > 0 such that, for j = 1, 2, 3, and for a.e. x,
|x| ≥ 2, ∣∣∇jũa(x)

∣∣ ≤ { c|x|1−d−j, case (pPt),
c|x|−j−1 log |x|, case (pDs), d = 2.

(2.13)

Proof. The proof is a straightforward corollary of [13, Thm. 3.1]. �

2.4. The Cauchy–Born model. The final concept we need to introduce before formulating
a/c coupling schemes is the Cauchy–Born model. The idea, briefly, is that if y varies slowly
then Dρy(`) ≈ ∇ρỹ(`) and hence V (Dy(`)) ≈ W (∇ỹ(`)), where the map W : Rm×d →
R ∪ {+∞}, W (F) := V (FR), is called the Cauchy–Born strain energy function. In the
absence of defects, it is therefore reasonable to approximate the sum of site energies with an
integral over the energy density,

y 7→
∫
Rd

(
W (∇y)−W (∇y0)

)
dx. (2.14)

This model has been analyzed in considerable detail, e.g., in [4, 11, 27, 34]. Subject to suitable
technical conditions the results in these references demonstrate that, if ya is a “sufficiently
smooth” stable equilibrium of E a, then there exists a stable equilibrium yc of (2.14) such
that

‖∇yc −∇ȳa
∥∥
L2 . ‖∇3ỹa‖L2 + ‖∇2ỹa‖2

L4 .

That is, the Cauchy–Born model is second-order accurate.
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3. Main Results

3.1. Formulation of the B-QCE and B-QCF methods. We wish to approximate the
atomistic model using a hybrid atomistic/continuum description. The approximation is
achieved in three steps: 1. We replace the infinite domain with the finite computational
domain Ωh. 2. In those parts of Ωh where the Cauchy–Born approximation has sufficient
accuracy we replace the atomistic model with the Cauchy–Born model. 3. We restrict defor-
mations to a coarse-grained finite element space.

The key ingredient in this process is the coupling between the atomistic and continuum
models, which we achieve using a blending formulation.

3.1.1. Coarse-grained function spaces. Let Ωh be a polygonal (if d = 2) or polyhedral (if d =
3) domain in Rd. Let Ri > 0 be maximal and Ro > 0 be minimal such that BRi ⊂ Ωh ⊂ BRo .

Let Th be a regular partition of Ωh into closed triangles or tetrahedra. For T ∈ Th, let
hT := diam(T ) and rT the diameter of the largest ball contained in T . For x ∈ Ωh, let
h(x) := maxT∈Th,x∈T hT . The associated space of P1 finite element functions is denoted by
P1(Th). If Nh denotes the set of finite element nodes, then the nodal interpolant of a function
v : Nh → Rk is the unique function Ihv ∈ P1(Th) such that Ihv = v on Nh.

For a function v :
⋃
T∈Th

int(T ) → Rk, k ∈ N let Qhv ∈ P0(Th) denote the piecewise

constant mid-point interpolant, Qhv(x) := v(xT ) for x ∈ T ∈ Th, where xT := −
∫
T
x dx.

Exploiting the structure y = y0 + u, u ∈ U 1,2 of admissible deformations, we define the
coarse-grained displacement and deformation spaces, respectively, by

Uh :=
{
uh ∈ C(Rd;Rm)

∣∣uh|Ωh ∈ P1(Th), uh|Rd\Ωh = 0
}

and

Yh :=
{
yh = y0 + uh

∣∣uh ∈ Uh

}
.

3.1.2. The B-QCE method. Let β ∈ C2,1(Rd) be a blending function then the B-QCE energy
difference functional is defined by

E β
h (yh) :=

∑
ξ∈Zd

(
1− β(ξ)

)(
V
(
Dyh(ξ)

)
− V

(
Dy0(ξ)

))
+

∫
Ωh

Qh

[
β ·
(
W (∇yh)−W (∇y0)

)]
dx, for yh ∈ Yh.

(3.1)

We assume that 1−β has compact support, hence the lattice sum is finite, while the integral
is taken over a finite domain; thus E β

h is well-defined. The application of the mid-point
quadrature rule to evaluate the integral makes (3.1) fully computable.

In the B-QCE method we approximate the atomistic variational problem (2.11) with

ybqce
h ∈ arg min

{
E β
h (yh) + P(yh)

∣∣ yh ∈ Yh

}
. (3.2)

The B-QCE method, as we formulated it, was introduced for one-dimensional lattices
in [38], and was later extended to two and three-dimensions in [26] in a formulation which
differs only marginally from the one given in (3.1): in [26] the operator Qh defined a trape-
zoidal rule instead of a midpoint rule. As a matter of fact, all of our results can be adapted
to this case.

B-QCE shares many features with the bridging domain method [41], the Arlequin method [2],
and the AtC coupling [1]. The bridging domain method and the Arlequin method differ from
B-QCE primarily in that they couple the atomistic and continuum degrees of freedom weakly
using Lagrange multipliers. The AtC coupling is a very general formulation which includes
B-QCE and many other methods as special cases.
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Figure 2. Visualisation of the definitions and assumptions made in § 3.2.

3.1.3. The B-QCF method. While the B-QCE method blends atomistic and continuum ener-
gies the B-QCF method blends atomistic and continuum forces. We first define the Cauchy–
Born finite element functional

E c
h (yh) :=

∫
Ωh

Qh

[
W (∇yh)−W (∇y0)

]
dx, for yh ∈ Yh. (3.3)

Assume again that β ∈ C2,1(R2) is a blending function, then the B-QCF operator is the

nonlinear map F β
h : Yh → U ∗

h , defined by〈
F β
h (yh), vh

〉
:=
〈
δE a(yh), (1− β)vh

〉
+
〈
δE c

h (yh), Ih[βvh]
〉
, (3.4)

where (1− β)vh and βvh are defined in terms of pointwise multiplication. F β
h is well-defined

since yh and vh are defined as functions on all of Rd and vh has compact support.
In the B-QCF method we approximate the atomistic variational problem (2.11) with the

variational nonlinear system〈
F β
h

(
ybqcf
h

)
+ δP

(
ybqcf
h

)
, vh
〉

= 0 ∀vh ∈ Uh. (3.5)

Remark 4. Suppose we define a blended a/c force via

Fν(yh) := (1− β(ν))
∂E a(yh)

∂yh(ν)
+ β(ν)

∂E c
h (yh)

∂yh(ν)
for ν ∈ Nh \ ∂Ωh, yh ∈ Yh,

then −∑ν∈Nh\∂Ωh
Fν(yh)vh(ν) = 〈F β

h (yh), vh〉. Thus, the nonlinear system Fν(y
bqcf
h ) +

∂yh(ν)P(ybqcf
h ) = 0, ν ∈ Nh \ ∂Ωh, is equivalent to the variational form (3.5). �

The B-QCF method (3.5) is essentially the same method as those proposed in [24, 21]. It
also has many parallels with methods formulated in [1, 2, 3, 14, 22, 35, 37, 41].

Both in [24] and [21] the main motivation of force-blending was that stability of the scheme
can be proben, while the stability of sharp-interface force-based a/c couplings is entirely open
at this point [8, 9, 10, 23]

3.2. Approximation Error Estimates. To formulate our approximation results, and for
the subsequent analysis, we require additional assumptions on the computational domain
and the mesh. See Figure 2 for a visualisation of the following definitions.
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In addition to the radii RP , R
i, Ro defined in § 2.3.3 and in § 3.1.1, we define Ra to be the

largest and Rβ to be the smallest numbers satisfying

supp(β) ⊃ BRa+2rcut+
√
d and supp(1− β) ⊂ BRβ−2rcut−

√
d.

We specify atomistic, blending, continuum and exterior regions

Ωa := supp(1− β) +B2rcut+
√
d ⊂ BRβ ,

Ωβ := supp(∇β) +B2rcut+
√
d ⊂ BRβ \BRa ,

Ωc := supp(β) ∩ Ωh +B2rcut+
√
d ⊂ BRo \BRa , and

Ωext := R2 \BRi/2.

Further, we define discrete atomistic and blending regions

Λa := Zd ∩ (supp(1− β) +R) and Λβ := {ξ ∈ Zd : Dβ(ξ) 6= 0}.
The fact that the various regions overlap is simply for the sake of convenience of the analysis
and notation.

We assume throughout that there exist fixed constants CTh , Cβ
1 , C

β
2 such that the following

conditions are satisfied:

RP ≤ Ra ≤ Rβ and Rβ ≤ Cβ
1R

a; (3.6)

β ∈ C2,1, 0 ≤ β ≤ 1 and ‖∇jβ‖L∞ ≤ Cβ
2 (Ra)−j, j = 1, 2, 3; (3.7)

Th is fully refined in Ωa and max
T∈Th

hT/rT ≤ CTh . (3.8)

By (3.8) we mean that, if T ∈ Th with T ∩ Ωa 6= ∅, then T ∈ T ; as well as vice-versa.
In addition, only for d = 2 and only for the B-QCF method, we assume that there are

constants CΩ,mΩ ≥ 1 such that

Ro ≤ CΩ(Ra)mΩ . (3.9)

The two main approximation parameters to define both the B-QCE and B-QCF methods
are the blending function β and the finite element mesh Th (and through it, the computational
domain Ωh). The regions Ωa,Ωβ,Ωc,Ωext,Λa,Λβ and the radii, Ra, Rβ, Ri, Ro are derivative

parameters. The constants CTh , C
β
j , CΩ,mΩ in assumptions (3.6), (3.7), (3.9) and (3.8) are

understood to be uniform in all choices of (β, Th) that may occur in our analysis.
Throughout the remainder of the paper, we will write “A = O(B)” or “|A| . B” if there

exists a constant C such that |A| ≤ CB, where C is independent of the approximation

parameters (β,Th), but may depend on the constants CTh , C
β
j , CΩ,mΩ, or on any specified

functions involved in the estimate. (In particular, C may depend on a solution ya and on
derivatives V,ρ(g) for g in some specified range, cf. § 4.2.2, but never on a test function.)

3.2.1. Error estimates in terms of solution regularity. For y = y0 + u ∈ Y we define the

best-approximation error Eapx(y) := ‖∇ū‖L2(Ωext) + ‖h∇2ũ‖L2(Ωc) + ‖h2∇3ũ‖L2(Ωc)

+ ‖h2∇3y0‖L2(Ωc) + ‖h(∇y0 − A)⊗∇2y0‖L2(Ωc),

Cauchy–Born model error Ecb(y) := ‖∇3ỹ‖L2(Ωc) + ‖∇2ỹ‖2
L4(Ωc), (3.10)

and coupling error Eint(y) := ‖∇2β‖L2 + ‖∇β‖L∞‖∇2ỹ‖L2(Ωβ).

The first term in Eapx measures the finite element coarsening error (including the quad-
rature error), while the second term in Eapx measures the error induced by reducing the
problem to a bounded domain.
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Theorem 3.1. Let ya = y0 + ua ∈ Y be a strongly stable solution to (2.11). Then, there
exist constants ε, Ra

0, C > 0, which are independent of Th and β, such that, if Ra ≥ Ra
0, then

there exist strongly stable solutions ybqce
h to (3.2) and ybqcf

h to (3.5) satisfying

‖∇ȳa −∇ybqce
h ‖L2 ≤ C

(
Eapx(ya) + Ecb(ya) + Eint(ya)

)
, and (3.11)

‖∇ȳa −∇ybqcf
h ‖L2 ≤ Cγtr

(
Eapx(ya) + Ecb(ya)

)
, (3.12)

where γtr =
√

1 + log(Ra) if d = 2 and γtr = 1 if d = 3.

Proposition 3.2. Under the conditions of Theorem 3.1, we have∣∣E a(ya)− E β
h (ybqce

h )
∣∣ ≤ C

{
Eapx(ya)2 + Ecb(ya)2 + Eint(ya)

2
(3.13)

+ ‖∇2β‖L2‖∇ũa‖L2(Ωc) + ‖∇β‖L2‖∇2ũa‖L2(Ωc)

+ Eapx(ya)
(
‖∇ũa‖L2(Ωc) + ‖∇ulin‖2

L4(Ωc)

)
+Hots

}
,

where C is independent of Th and β and Hots are “higher order terms” (cf. § 3.2.2),

Hots := ‖∇3ũa‖L1(Ωc) + ‖∇2ũa‖2
L2(Ωc)

+
(
‖h2∇3y0‖L2(Ωc) + ‖h∇2y0‖2

L4(Ωc)

)(
Eapx(ya) + ‖∇ũa‖L2(Ωc)

)
+ ‖∇2ũa‖L2(Ωc)‖∇2y0‖L2(Ωc) + ‖∇β‖L∞‖∇ũa‖L2(Ωc)‖∇2y0‖L2(Ωc).

Remark 5. The B-QCF error estimate seemingly has no β-dependence, but this is only
due to the strong assumptions we made on β in (3.7). Only under these assumptions are
we able to state Theorem 3.1. However, it can be expected, that the result is also valid
under more specialized, but otherwise much milder assumptions on β. In such a case, our
intermediate results in § 4 and § 6.4 can be employed to understand the precise β-dependence
of the error. �

3.2.2. Error estimates in terms of computational cost. Following [32] we now convert the
error estimates (3.11), (3.12) and (3.13) into convergence rates in terms of the number of
degrees of freedom

DOF := #Th.

The quantity DOF is directly related (but not necessarily proportional) to the computational
cost of solving the associated problems (3.2) and (3.5). The estimates in terms of DOF form
the basis for the optimised implementations of the B-QCE and B-QCF methods presented,
respectively, in [26, 21].

We introduce additional restrictions on Th and Ωh,

|h(x)| . max
{

1, |x|
Rβ

}
, Ro . Ri, and DOF . (Rβ)d log

(
Ro

Rβ

)
(3.14)

. (Ra)d logRa.

The second bound in (3.14) is a mild assumption on the shape regularity of Ωh, while the last
bound in (3.14) is a corollary of the first one, upon additionally requiring that (3.9) holds for
both B-QCE and B-QCF.
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Then, using the regularity estimates (2.13) and (2.10) it is straightforward to prove that

Case (pPt): Ecb(ya) . (Ra)−d/2−2,

Eint(ya) . (Ra)d/2−2,

Eapx(ya) . (Ra)−d/2−1 + (Ri)−d/2,

Case (pDis): Ecb(ya) . (Ra)−2,

Eint(ya) . (Ra)−1,

Eapx(ya) . (Ra)−2 log(Ra) + (Ri)−1.

(Here we used the estimate
∫∞
R
rt logs r dr ≤ Rt+1 logs(R) for t < −1, s ∈ N, R ≥ 2.) We note

that the dominant term, Eint(ya) . (Ra)d/2−2 originates entirely from the “blended ghost
force error” term ‖∇2β‖L2 .

Next, we note that in the B-QCE case any choice Ri � Ra balances the far-field contribu-
tion, ‖∇ūa‖L2(Ωext) . (Ri)−d/2 with the “blended ghost force error” ‖∇2β‖L2 . (Ra)d/2−2.

For the B-QCF case we balance the far-field error ‖∇ūa‖L2(Ωext) . (Ri)−d/2 with the finite
element coarsening error. Ignoring log-factors, we observe that the radius Ri ought to be
balanced against the interpolation error component ‖h∇2ũa‖L2(Ωc) . (Ra)−d/2−1, which yields

Ri ≈ (Ra)d/2+1 both in the (pPt) and (pDis) cases. Hence, we obtain

Case (pPt): Eapx(ya) . (Ra)−d/2−1,

Case (pDis): Eapx(ya) . (Ra)−2 log(Ra).

We summarise the foregoing computations in the following theorem, using also the fact
that, under the conditions of the theorem, Ra . (DOF)1/d, (Ra)−1 . (DOF)−1/d(log DOF)1/d

and γtr . (log DOF)1/2. The estimate for the energy error can be immediately obtained from
analogous computations.

Theorem 3.3. In addition to the assumptions of Theorem 3.1 suppose that (3.14) holds
and that Ri ≥ cΩ(Ra)s for a constant cΩ > 0 independent of (β,Th), where s > 1 for the
B-QCE method and s ≥ d/2 + 1 for the B-QCF method. Then, there exists a constant C,
independent of (β,Th), such that

for the B-QCE method, for both Cases (pPt) and (pDis),

‖∇ȳa −∇ybqce
h ‖L2 ≤ C(DOF)d/4−1(log DOF)−d/4+1,∣∣E a(ya)− E β

h (ybqce
h )

∣∣ ≤ C(DOF)d/2−2(log DOF)−d/2+2;

and for the B-QCF method,

‖∇ȳa −∇ybqcf
h ‖L2 ≤ C

{
(DOF)−d/4−1(log DOF)2, case (pPt),

(DOF)−1(log DOF)5/2, case (pDis).

Remark 6. 1. The construction of Th satisfying (3.14) is standard and can be found, e.g.,
in [32].

2. To construct β, we could, for example, choose Rβ = Cβ
1R

a for a given Ra and then
choose β in the form of a radial spline satisfying the conditions (3.7). For complicated a/c
interface geometries one could solve a bi-Laplace equation in a precomputation step (see
[26]).
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3. Finally, we could allow for a stronger mesh coarseing, h(x) ≈ (|x|/Rβ)α and thereby
drop the log factor in DOF for a suitable choice of α > 1, which would slightly improve
the estimates. In order to preserve mesh regularity (3.8), one would need to impose that
h(x) . |x|. Note that this does not violate any of our foregoing assumptions for suitable
choices of α; see [29] for further discussion. �

3.3. Conclusion. We have established the first error analysis of a/c coupling schemes that is
“complete” in the sense that it covers general interatomic potentials, accomodates atomistic
solutions containing defects, and requires no assumption on the atomistic solution beyond its
stability.

While our results are restricted to two specific a/c coupling schemes, we anticipate that the
techniques we have developed allow extensions to a much wider range of blending type a/c
couplings. We emphasize, however, that most of our techniques are specialised for blending
type schemes. In particular, the technique of Lemma 4.10, which is the main new technical
ingredient to prove stability of B-QCE and B-QCF, is unlikely to generalise to sharp-interface
couplings. To that end the ideas present in [23] and [33] are more promising starting points.

We remark on a seemingly immediate extension which, surprisingly, seems not straight-
forward: The main assumption among those formulated in § 3.2 is that the finite element
mesh is fully refined in the blending region. This is highly convenient from the perspective
of both analysis and implementation, but it is likely that, in practice, a coarse mesh in the
blending region would yield a more efficient scheme; see, e.g., [41], where this is in fact a
crucial ingredient. Most of our results do not require this restriction, but there are several
steps (in particular in § 6.1) which appear to be more difficult without it.

4. Key Intermediate Results

The purpose of this section is to give a detailed overview of the main steps and ideas
employed in the proof of the main results, and to state some key intermediate results that
are of independent interest.

4.1. Framework. We adopt the analytical framework of [25], which is analogous to that
of finite element methods for (regular) nonlinear PDE, employing quasi-best approximation,
consistency and stability.

Briefly, let Gh = δE β
h + δP for the B-QCE scheme or Gh = F β

h + δP for the B-QCF
scheme. Let Πh : U → Uh be a suitable “quasi-best approximation operator” (we define it
in § 4.2.4), then we shall require that Gh is consistent,〈

Gh(Πhy
a), vh

〉
≤ η‖∇vh‖L2 ∀vh ∈ Uh, (4.1)

for some “small” consistency error η that depends on ya,Th and β; and stable,〈
δGh(Πhy

a)vh, vh
〉
≥ c0‖∇vh‖2

L2 ∀vh ∈ Uh. (4.2)

We then empoy the Inverse Function Theorem to prove that, if η/c0 is sufficiently small
(adding some technical assumptions), then there exists wh ∈ Uh such that ‖∇wh‖L2 ≤ 2η/c0

and Gh(Πhy
a + wh) = 0.

The condition that η/c0 is sufficiently small corresponds to the assumption that Ra is
sufficiently large in Theorem 3.1.

Thus, we have constructed a B-QC solution ybqc
h := Πhy

a + wh satisfying

‖∇ȳa −∇ybqc
h ‖L2 ≤ 2

η

c0

+ ‖∇ȳa −∇Πhy
a‖L2 . (4.3)

The second term on the right-hand side is the quasi-best approximation error.
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In the present section we shall make this generic outline concrete. We shall present the
key ideas in our analysis but postpone the technical aspects of the proofs to later sections.

4.2. Further Preliminaries. Here we introduce additional ingredients that we require to
motivate and state the key intermediate results.

4.2.1. Expansion of discrete strain. Let y ∈ Y be a deformation. Much of our analysis
depends on Taylor expansions of finite differences within the a neighbourhood

νx := B2rcut+
√
d(x) (4.4)

of some x ∈ Rd, containing all those lattice points ξ for which Sa(y;x) depends on Dρy(ξ), ρ ∈
R (Sa is the atomistic stress defined in § 4.2.3) and an additional

√
d buffer, which we require

in view of the “convolution trick” (4.14).

Lemma 4.1. Let z ∈ C2,1(νx) and |x− ξ| ≤ rcut +
√
d, ρ ∈ R, then∣∣Dρz(ξ)−∇ρz(x)

∣∣ ≤ C‖∇2z‖L∞(νx), (4.5)∣∣Dρz(ξ)−
[
∇ρz(x) +∇ρ∇ξ−xz(x) + 1

2
∇2
ρz(x)

]∣∣ ≤ C‖∇3z‖L∞(νx), (4.6)

where C is a generic constant.

Proof. The results are obtained by straightforward Taylor expansions about x. �

Normally, we would like to perform the expansions (4.5), (4.6) with z = ỹ, but this is only
possible if ỹ is smooth in νx, which fails in the dislocation case when νx intersects the branch-
cut. To still use these Taylor expansions, we therefore construct equivalent local deformations
that are smooth in νx: for x ∈ Rd, and |x′ − x| < |x|, let

yx(x′) :=

∫ 1

t=0

∇ỹ
(
(1− t)x+ tx′

)
(x′ − x) dt, (4.7)

then yx ∈ C2,1 in its domain of definition, with ∇jyx = ∇j ỹ, j ≥ 1, and yx − ỹ ∈ bZ. The
latter property, together with (A.Vper) ensures that, for |x| > 2rcut +

√
d,

V,ρ(Dy(ξ)) = V,ρ(Dyx(ξ)) for all ξ ∈ Zd, |x− ξ| ≤ rcut +
√
d. (4.8)

We will employ (4.8) in the consistency proofs in an ad-hoc fashion whenever we need to
replace a finite difference stencil Dy(ξ) with a stencil Dyx(ξ) in order to then perform a
Taylor expansion.

4.2.2. Expansion of the potential. Since our analysis is based on local arguments, we require
bounds on the interatomic potential in the neighbourhood of some given discrete deformation.
Let y ∈ Y be such a deformation, and let ε > 0, then we define

M (ρ)
ε (y) := sup

ξ∈Zd
sup

g∈(Rm)R

maxρ∈R
|Dρy(ξ)−gρ|

|ρ| ≤ε

sup
h=(hi)

j
i=1∈(Rm)j

|h1|=···=|hj |=1

V,ρ(g) : ⊗ji=1hi for ρ ∈ Rj. (4.9)

Our assumptions on V and y0 ensure that M
(ρ)
ε (y) is finite for all ε > 0 and y ∈ Y .
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Lemma 4.2. Let y ∈ Y , Dy ∈ `∞, and ε > 0 then, for z ∈ Y , ‖∇z̄ − ∇ȳ‖L∞ ≤ ε,

|x| > 2rcut +
√
d and |x− ξ| ≤ rcut +

√
d,∣∣V,ρ(Dz(ξ))− V,ρ(∇Rz̃(x))
∣∣ ≤ C2‖∇2z̃‖L∞(νx), and (4.10)∣∣V,ρ(Dz(ξ))−

[
V,ρ(∇Rz̃(x)) +

∑
ς∈R

V,ρς(∇Rz̃(x))
(
∇ς z̃(x)−Dςz

x(ξ)
)]∣∣ (4.11)

≤ C3‖∇2z̃‖2
L∞(νx),

where the constants Cj depend on M
(ρ)
ε (y), ρ ∈ Rj.

Proof. Using the definition of zx according to (4.7) and (4.9) the estimates follow from Taylor
expansions of V,ρ. �

4.2.3. Atomistic stress. To prove consistency we will employ “weak forms” of the atomistic
and the B-QC formulations that are local in the test function gradient. The first step is to
derive first Piola–Kirchhoff stresses for the three models and estimate their discrepancy in
terms of the local regularity of the underlying deformation. This analysis is based on the
atomistic stress function analyzed in [34], which is closely related to Hardy stress [16].

A canonical representation of δE a is〈
δE a(y), v

〉
=
∑
ξ∈Zd

∑
ρ∈R

Vξ,ρ ·Dρv(ξ), where Vξ,ρ := V,ρ(Dy(ξ)). (4.12)

To convert δE a into a “weak form” that is local in ∇v we replace v with

v∗ := ζ̄ ∗ v̄ (4.13)

and rewrite the finite differences Dρv
∗(ξ) as follows:

Dρv
∗(ξ) =

∫ 1

s=0

∇ρv
∗(ξ + sρ) ds =

∫
Rd

∫ 1

s=0

ζ̄(ξ + sρ− x)∇ρv̄(x) ds dx

=

∫
Rd
ωρ(ξ − x)∇ρv̄ dx where ωρ(x) :=

∫ 1

s=0

ζ̄(x+ sρ) ds, (4.14)

to obtain 〈
δE a(y), v∗

〉
=
∑
ξ∈Zd

∑
ρ∈R

Vξ,ρ ·
∫
Rd
ωρ(ξ − x)∇ρv̄(x) dx

=

∫
Rd

{∑
ξ∈Zd

∑
ρ∈R

[
Vξ,ρ ⊗ ρ

]
ωρ(ξ − x)

}
: ∇v̄ dx.

Thus, we have shown that, for y ∈ Y and v ∈ U c,〈
δE a(y), v∗〉 =

∫
Rd

Sa(y;x) : ∇v̄(x) dx, where (4.15)

Sa(y;x) :=
∑
ξ∈Zd

∑
ρ∈R

[
Vξ,ρ ⊗ ρ

]
ωρ(ξ − x).

(The representation (4.15) is of course equivalent to (4.12) since neither require any regularity
on y. We use the term “weak form” only in analogy with the continuum theory.)

Note that (4.15) is in close analogy to the first Piola–Kirchhoff stress of the Cauchy–Born
model, 〈

δE c(y), v
〉

=

∫
Rd

Sc(y) : ∇v dx, where Sc(y;x) = ∂W (∇y). (4.16)
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To see the connection between the atomistic and Cauchy–Born stress we replace Dy(ξ)
with Dyx(ξ) and expand analogously to (4.6) and V,ρ analogously to (4.11), to obtain

Sa(y;x)− Sc(y;x) ∼ C2(x) : ∇3y(x) + C3(x) :
(
∇2y(x)⊗∇2y(x)

)
+ HOTs, (4.17)

where C2(x) is a sixth order tensor depending on V,ρ(∇Ry(x)), ρ ∈ R2, C3(x) is an eighth
order tensor depending on V,ρ(∇Ry(x)),ρ ∈ R3, and HOTs are formally higher-order terms,
such as O(|∇2y|3) or O(|∇4y|).

The calculation (4.17) exploits the fact that we can write Vξ,ρ = V,ρ(Dy(ξ)) = V,ρ(Dyx(ξ))

for |x − ξ| ≤ rcut +
√
d, which removes discontinuities from y, as well as the following two

identities: [34, Lemma 4.4] ∑
ξ∈Zd

ωρ(ξ − x) = 1, and (4.18)

∑
ξ∈Zd

ωρ(ξ − x) (ξ − x) = − 1
2
ρ. (4.19)

The following lemma provides a rigorous estimate along the lines of (4.17).

Lemma 4.3. Suppose that y ∈ Y and ε > 0, then for z ∈ Y , ‖∇z̄ −∇ȳ‖L∞ ≤ ε,∣∣Sa(z;x)− Sc(z̃;x)
∣∣ ≤ C

(
‖∇3z̃‖L∞(νx) + ‖∇2z̃‖2

L∞(νx)

)
,

where νx is defined in (4.4) and C depends on M
(ρ)
ε (y),ρ ∈ Rj, j = 2, 3.

Proof. This result is essentially contained in [34, Thm. 4.3]. The only modification required
is to replace the expansion of Dρz̃(ξ) with that of Dρz

x(ξ) as detailed in § 4.2.1. It is also a
simplified case of Lemma 6.4. �

4.2.4. Best approximation operator. We construct a quasi-best approximation operator Πh :
Y → Yh. With slight abuse of notation, we write Πhy = y0 + Πhu, where y = y0 + u,
u ∈ U 1,2, and Πh is also understood as an operator from U → Uh.

Given u ∈ U 1,2 we define Πhu := IhTRu, where Ih is the nodal interpolation operator
defined in § 3.1.1 and TR is a truncation operator defined as follows: we fix some arbitrary
η ∈ C3(0,∞) (e.g. a quintic spline) with η(t) = 1 in [0, 1/2) and η = 0 in [1,∞), and define

TRu(ξ) := η
( |ξ|
Ri

)(
u(ξ)− −

∫
B
Ri\BRi/2

ū dx
)
. (4.20)

Clearly, TRu ∈ U c with supp(TRu) ⊂ Ωh and hence Πhu ∈ Uh.

Lemma 4.4. There exists a constant C such that,

‖∇Πhy −∇ȳ‖L2 ≤ CEapx(y) for y ∈ Y ,

where Eapx is defined in (3.10).

Proof. The result follows immediately upon combining [12, Lemma 4.3], Lemma 2.1, and
standard interpolation error estimates. �



18 X. LI, C. ORTNER, A. V. SHAPEEV, AND B. VAN KOTEN

4.3. B-QCE consistency error. We have now assembled the prerequisites to define and
estimate the B-QCE consistency error. The first variation of E β

h is given by〈
δE β

h (yh), vh
〉

=
∑
ξ∈Zd

(1− β(ξ))
〈
δV (Dyh(ξ)), Dvh(ξ)

〉
+

∫
Rd
Qh

[
β∂W (∇yh) : ∇vh

]
dx,

for yh ∈ Yh, vh ∈ Uh. Since vh cannot be immediately replaced with a function v∗ (to apply
the convolution trick (4.14)) we shall not convert this directly to a “weak formulation”.
Instead, suppose that y ∈ Y , v ∈ U c such that yh(ξ) = y(ξ) and v∗(ξ) = vh(ξ) for all ξ ∈ Λa.
Then, arguing analogously as in § 4.2.3 we can compute〈

δE a(y), v∗
〉

=
∑
ξ∈Zd

(1− β(ξ))
〈
δV (Dy(ξ)), Dv∗(ξ)

〉
+
∑
ξ∈Zd

β(ξ)
〈
δV (Dy(ξ)), Dv∗(ξ)

〉
=
∑
ξ∈Zd

(1− β(ξ))
〈
δV (Dyh(ξ)), Dvh(ξ)

〉
+

∫
Rd

{∑
ξ∈Zd

β(ξ)
∑
ρ∈R

[
Vξ,ρ ⊗ ρ

]
ωρ(ξ − x)

}
: ∇v̄ dx,

where Vξ,ρ = V,ρ(Dy(ξ)). Thus, we obtain〈
δE β

h (yh), vh
〉
−
〈
δE a(y), v∗

〉
(4.21)

=

∫
Rd
Qh

[
β∂W (∇yh) : ∇vh

]
dx−

∫
Rd

{∑
ξ∈Zd

β(ξ)
∑
ρ∈R

[
Vξ,ρ ⊗ ρ

]
ωρ(ξ − x)

}
: ∇v̄ dx,

with obvious analogies between the two groups on the right-hand side. To complete the
definition of the atomistic test function, we take v = Π′hvh, where Π′h : Uh → U c is a dual
approximation operator given by the conditions

(Π′hvh)
∗(ξ) = vh(ξ), for ξ ∈ Λa, and

Π′hvh(ξ) = (ζ̄ ∗ vh)(ξ), for ξ ∈ Zd \ Λa.
(4.22)

We prove in Lemma 5.5 that Π′h is well-defined.
In order to estimate the consistency error we must estimate (1) the quadrature error, which

is standard; (2) the conformity error encoded in the usage of two different test functions, which
requires a specific non-standard choice of v, cf. § 6.1; and (3) the modelling error encoded in
the difference between the two “stresses”.

To indicate how we estimate the latter, we consider the simplified “stress error”

Rβ(y;x) := β(x)∂W (∇y(x))−
∑
ξ∈Zd

β(ξ)
∑
ρ∈R

[
Vξ,ρ ⊗ ρ

]
ωρ(ξ − x), (4.23)

where y is now a smooth function and Vξ,ρ = V,ρ(Dy(ξ)). A formal Taylor expansion, similar
as the one leading to (4.17), but also expanding β(ξ) in terms of ∇jβ(x), yields

Rβ(y;x) ∼ D1(x) : ∇2β(x) + D2(x) :
(
∇β(x)⊗∇2y(x)

)
(4.24)

+ β(x)
(
C2(x) : ∇3y(x) + C3(x) :

(
∇2y(x)⊗∇2y(x)

))
+ HOTs,

where D1(x) is a fourth order tensor that depends on V,ρ(∇Ry(x)), ρ ∈ R, D2(x) is a sixth
order tensor that depends on V,ρ(∇Ry(x)),ρ ∈ R2, C2,C3 are the same tensors as in (4.17)
and HOTs are formally higher order terms.
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Theorem 4.5 (Consistency of B-QCE). Suppose that y ∈ Y , then there exist ε =
ε(Eapx(y)) such that, for all vh ∈ Uh,〈

δE β
h (Πhy), vh

〉
−
〈
δE a(y),Π′hvh

〉
≤ C

(
Eapx(y) + Ecb(y) + Eint(y)

)
‖∇vh‖L2 ,

where C depends on M
(ε)
ρ (y), ρ ∈ Rj, 1 ≤ j ≤ 4.

4.4. B-QCF consistency error. The consistency analysis of the B-QCF scheme faces dif-
ferent challenges than that of the B-QCE scheme. Consider again y ∈ Y , yh ∈ Yh, vh ∈ Uh

and a microscopic test function v ∈ U c, then we need to estimate

〈F β
h (yh), vh〉 − 〈δE a(y), v〉 = 〈δE a(yh), (1− β)vh〉+ 〈δE c

h (yh), Ih[βvh]〉 − 〈δE a(y), v〉.

Choosing v := Π′′hvh, where Π′′h : Uh → U c is another dual approximation operator defined
through

Π′′hvh := (1− β)vh|Zd + w∗, where w(ξ) = (ζ̄ ∗ Ih[βvh])(ξ), (4.25)

we obtain

〈F β
h (yh), vh〉 − 〈δE a(y), v〉 = 〈δE c

h (yh), Ih[βvh]〉 − 〈δE a(y), w∗〉,

from which we can estimate (see § 6.4.1 for the details)

〈F β
h (Πhy), vh〉 − 〈δE a(y), v〉 ≤ C

(
Eapx(y) + Ecb(y)

)
‖∇Ih[βvh]‖L2 . (4.26)

Thus, we need to estimate ‖∇Ih[βvh]‖L2 in terms of ‖∇vh‖L2 , which is provided in the
following lemma. The key technical ingredient in its proof is a sharp trace inequality.

Lemma 4.6. Suppose that the blending function β satisfies (3.6), then there exists a generic
constant C, such that

‖∇Ih[βvh]‖L2 ≤ C γtr‖∇vh‖L2 ∀vh ∈ Uh, (4.27)

where γtr =

{ √
1 + log(Ro/Ra), d = 2,

1, d = 3.
(4.28)

Proof. The proof is given in § 6.4.2. �

Based on the previous lemma we can establish the following B-QCF consistency estimate.

Theorem 4.7 (Consistency of B-QCF). Suppose that y ∈ Y , then there exists ε =
ε(Eapx(y)) > 0 such that, for all vh ∈ Uh,〈

F β
h (Πhy), vh

〉
−
〈
δE a(y),Π′′hvh

〉
≤ C γtr

(
Eapx(y) + Ecb(y)

)
‖∇vh‖L2

where C depends on M
(ε)
ρ (y), ρ ∈ Rj, j = 2, 3.

Proof. The result immediately follows from (4.26), which is proven in § 6.4.1, and from
Lemma 4.6. �
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4.5. Stability of B-QCE. The aim of our stability result is to show that, if y is a stable
equilibrium of the atomistic model, then choosing sufficiently large atomistic and blending
regions, we ensure that Πhy is stable in the B-QCE model.

Theorem 4.8. Suppose y ∈ Y is a stable atomistic configuration, i.e.,

0 < γa(y) := inf
v∈U c\{0}

〈δ2E a(y)v + δ2P(y)v, v〉
‖∇v̄‖2

L2

, (4.29)

and denote

γβh (yh) := inf
vh∈Uh\{0}

〈δ2E β
h (yh)vh + δ2P(yh)vh, vh〉

‖∇vh‖2
L2

.

Then there exists ∆γ(Ra)→ 0 as Ra →∞ such that γβh (Πhy) ≥ γa(y)−∆γ(Ra).

Positivity of γa is a property of the interatomic potential and of the defect that we are
aiming to compute, hence we postulated this as an assumption.

The idea of the stability proof is to take a sequence of approximation parameters (βj,Th,j)
with Ra

j ↑ ∞ and of minimising test functions vj ∈ Uh,j (the space is now indexed by j)

such that ‖∇vj‖L2 = 1 and
〈(
δ2E β

h (Πh,jy) + δ2P(Πh,jy)
)
vj, vj

〉
= γβh . Due to the bound

‖∇vj‖L2 = 1, we can extract a weakly convergent subsequence (still denoted by vj). This
sequence is then decomposed into three components (scales): vj = va

j + vb
j + vc

j , for each of
which we use a different stability argument:

• ∇va
j converges strongly at the atomic scale. It is concentrated near the defect core,

hence for a sufficiently large atomistic region stability of the defect implies stability
for this test function.
• ∇vb

j converges weakly to zero at the atomic scale but strongly at the “interfacial

scale”; i.e., after a rescaling wb
j (x) = δvb

j (x/ε), where ε ≈ (Ra)−1 and δ is chosen

so that ‖∇wb
j ‖L2 = ‖∇vb

j ‖L2 . This scaling keeps the interface (i.e., supp(∇β)) near
|x| = 1 as ε→ 0. Consistency of B-QCE implies that the action of the B-QCE hessian
on this test function is approximately the same as that of the Cauchy–Born hessian,
hence stability of the continuum model implies stability for this component of the
test function.
• ∇vc

j converges weakly to zero both at the atomic and “interfacial scale” (which means
that it is not concentrated near a defect or interface). We can then exploit that, for a
subsequence, vc

j → 0 strongly in L2(BRβ) to reduce the action of the B-QCE hessian on
this test function to the independent actions of the linearized atomistic and continuum
operators which are both stable.
• All cross-terms can be neglected in the limit as j → ∞ due to an approximate

orthogonality between the three components.

In practice, the idea outlined above is carried out in two steps. First, we reduce the
question to stability of a homogeneous deformation, by only splitting vj = va

j + (vb
j + vc

j).

Lemma 4.9. Under assumptions and notation of Theorem 4.8, there exists ∆γ(Ra) → 0

as Ra →∞ such that γβh (Πhy) ≥ min
{
γa(y), γβh (Ax)

}
−∆γ(Ra).

Thus, we are left to establish positivity of γβh (Ax). We will use the fact that positivity of
γa(Ax) follows from the positivity of γa(y).

Lemma 4.10. Under assumptions and notation of Theorem 4.8, there exists ∆γ(Ra)→ 0

as Ra →∞ such that γβh (Ax) ≥ γa(Ax)−∆γ(Ra).
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Both Lemma 4.9 and Lemma 4.10 are proven in § 7.1.

Proof of Theorem 4.8. In view of Lemmas 4.9 and 4.10 we only need to note that γa(Ax) ≥
γa(y) which is proved in [12]. �

We remark that our arguments to obtain convergence of the stability constants employ
compactness principles and do not yield convergence rates as in 1D [25].

4.6. Stability of B-QCF. The B-QCF stability result is analogous to the B-QCE stability
result. Unlike in the B-QCE case we state the result only for stable equilibria (rather than
general deformations) since we require some regularity of the underlying deformation in the
proof.

Theorem 4.11. Suppose ya ∈ Y is a strongly stable solution of (2.11), i.e., (4.29) holds,
and let

µβh := inf
vh∈Uh\{0}

〈δF β
h (Πhy

a)vh + δ2P(Πhy
a)vh, vh〉

‖∇vh‖2
L2

.

Then there exists ∆γ(Ra)→ 0 as Ra →∞ such that µβh(Πhy) ≥ γa(y)−∆γ(Ra).

It is possible to adapt the proof of Theorem 4.8 to prove this result, however, we obtain
it via an alternative route using an auxiliary result that it interesting in its own right: We
modify a result from [20], which shows in a simplified case that the B-QCE hessian and
B-QCF jacobian are “close”. Here, we only establish that their stability constants converge
to the same limit as Ra →∞.

Lemma 4.12. Under the assumptions and notation of Theorem 4.11, there exists a constant
C such that ∣∣µβh − γβh (Πhy

a)
∣∣ ≤ C

{
(Ra)−1(logRa)1/2, if d = 2,

(Ra)−1, if d = 3.

The proof of Lemma 4.12 is given in § 7.2.

Proof of Theorem 4.11. The result is an immediate corollary of Theorem 4.8 and Lemma 4.12.
�

4.7. Proofs of the error estimates. We have now assembled all required auxiliary results
to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let ya be a fixed strongly stable atomistic equilibrium. Using the
notation established in § 4.1, we define Rh : Uh → U ∗

h ,

〈Rh(wh), vh〉 := 〈Gh(Πhy
a + wh), vh〉 ∀vh ∈ Uh.

1. Stability: Theorems 4.8 and 4.11 show that there exists Ra
1 such that, for Ra ≥ Ra

1, we
have (4.2) for a constant c0 > 0 that depends on Ra

1, but is independent of Ra. This implies
that ‖δRh(0)−1‖L(U ∗h ,Uh) ≤ c−1

0 .
2. Consistency: Theorems 4.5 and 4.7 imply that

‖Rh(0)‖U ∗h = ‖Gh(Πhy
a)‖U ∗h → 0, as Ra → 0,

uniformly in all choices of (β,Th). In particular, for any ε > 0 we can choose a constant
Ra

0 ≥ Ra
1 such that ‖Rh(0)‖U ∗h ≤ ε whenever Ra ≥ Ra

0.
(In the B-QCF case, due to the logarithmic prefactor γtr in the consistency error estimates,

this requires the regularity estimates (2.13).)
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3. Inverse function theorem: Our assumptions on V and the fact that Eapx(ya) ≤ ε for
Ra ≥ Ra

0 implies that ‖δGh(yh)− δGh(zh)‖L(Uh,U
∗
h ) ≤ L‖∇yh −∇zh‖L2 for all yh, zh ∈ Uh, or,

equivalently,

‖δRh(wh)− δRh(zh)‖L(Uh,U
∗
h ) ≤ L‖∇wh −∇zh‖L2 ∀wh, zh ∈ Uh.

The inverse function (see, e.g., [25]) states that, if ‖Rh(0)‖U ∗h Lc
−2
0 < 1, then there exists

wh ∈ Uh such that Rh(wh) = 0 and ‖∇wh‖L2 ≤ 2c−1
0 ‖Rh(0)‖U ∗h . This can clearly achieved

by setting ε sufficiently small. Setting ybqc
h := Πhy

a + wh we therefore obtain that

‖∇Πa
hy

a −∇ybqc
h ‖L2 ≤ 2c−1

0 ‖Rh(0)‖U ∗h .
Inserting the estimates for ‖Rh(0)‖U ∗h from Theorems 4.5 and 4.7, and the fact that ‖∇Πa

h−
∇ȳa‖L2 . Eapx(ya), we obtain the two error estimates (3.11) and (3.12). �

5. Proofs of Interpolation and Approximation Results

5.1. Analysis of the quasi-interpolant. Recall the definitions of v̄ from (2.1) and of
v∗ := ζ̄ ∗ v̄ from (4.13). To summarize results concerning v∗ we first need the following
lemma.

Lemma 5.1. The partition T is invariant under reflections about all lattice points ξ ∈ Zd.
In particular, we have ζ̄(ξ − x) = ζ̄(ξ + x) for all ξ ∈ Zd, x ∈ Rd.

Proof. In 2D the result is geometrically evident.
In 3D, one first observes that the partition {T̂1, . . . , T̂6} of the unit cube [0, 1]3, shown

in Figure 1, is invariant under the map x 7→ (1, 1, 1) − x (which is the reflection about
(1/2, 1/2, 1/2)). Moreover, since T is translation invariant by construction, we obtain for
ξ ∈ Zd,

ξ − T =
[
ξ − (1, 1, 1)

]
+
[
(1, 1, 1)− T

]
∈ T . �

Based on Lemma 5.1 the analysis in [31] allows us to deduce the following statements: Let
v ∈ U , then v̄ ∈ W 1,∞

loc (Rd;Rm) and v∗ ∈ W 3,∞
loc (Rd;Rm) [31, Lemma 1]. Further, there exists

a constant c, independent of p, such that, for all u ∈ U and p ∈ [1,∞], [31, Theorem 2]

c‖∇ū‖Lp ≤ ‖∇u∗‖Lp ≤ ‖∇ū‖Lp . (5.1)

5.2. Analysis of the smooth nodal interpolant. Let n ∈ Z+. For each multi-index
α ∈ Zd+, |α|∞ ≤ n, denote by ∂α the respective partial derivative and let Dα be a finite
difference approximation to ∂α. We assume that each Dα is exact on polynomials of degree
n and is supported on

Nn = {ξ ∈ Zd : |ξ| ≤
⌈
n
2

⌉
}.

Next, for a lattice function u, introduce a d-dimensional Hermite interpolation based on
derivatives ∂α, |α|∞ ≤ n. Namely, in each cell ξ +Bd, where

Bd = {x : 0 ≤ xi < 1, i = 1, 2, . . . , d}
is the d-dimensional unit cube, define a Q2n+1(Rd) polynomial, i.e., a polynomial in x1, x2,
. . . , xd, of degree at most 2n + 1 in each variable (and thus of degree at most d(2n + 1))
Pu,ξ(x) such that

∂αPu,ξ(x) = Dαu(x) for all 2d verticies x of the cell ξ +Bd (5.2)

and define
ũ(x) := Pu,ξ(x) if x ∈ ξ +Bd. (5.3)
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Lemma 5.2. The relation (5.3) uniquely defines ũ for any lattice function u : Zd → R.

Proof. For µ ∈ Zd+, |µ|∞ ≤ 2n+1, let B2n+1,µ(x) :=
∏d

i=1 x
2n+1−µi
i (1−xi)µi be the multivariate

Bernstein polynomial. These polynomials form a basis of Q2n+1(Rd) and on the other hand
upper-triangularize the linear system (5.2). Hence the solution Pu,ξ to (5.2) exists and is
unique. �

Lemma 5.3 (Regularity). For any lattice function u : Zd → R, ũ ∈ Cn,1
loc (Rd).

Proof. It is enough to prove that across any face shared by two cells, the function and normal
derivatives up to order n are continuous.

Indeed, without loss of generality, consider two adjacent cells, Bd and Bd − ed, where
ed = (0, . . . , 0, 1) ∈ Rd. For y ∈ Rd−1 denote ȳ = (y1, . . . , yd−1, 0) ∈ Rd. Let m ∈ {0, 1, . . . , n}
be the order of the normal derivative and consider the polynomial p(y) =

(
∂
∂xd

)m
(Pu,0(ȳ) −

Pu,−ed(ȳ)). By construction of Pu,0 and Pu,−ed , we have that p ∈ Q2n+1(Rd−1) and satisfies

∂βp(y) = 0 for all β ∈ Zd−1
+ such that |β|∞ ≤ n and all vertices y of Bd−1.

Due to Lemma 5.2 such a polynomial is unique, hence we obtain p(y) ≡ 0, which implies
continuity of ũ and its derivatives. �

Lemma 5.4 (Stability). For any u : Zd → R and β ∈ Zd+ : |β|1 ≤ n+ 1,

‖∂βũ‖Lp(Bd) ≤ C‖Dcn,|β|1u‖`p (5.4)

for some constant C independent of u, where Dcn,m is the collection of all finite differences
of order m whose stencil lies within

¯Nn = {ξ ∈ Zd : |ξ + 1
2
| ≤

⌈
n
2

⌉
+ 1

2
}.

Proof. Since both ‖∂βũ‖Lp(Bd) and ‖D|β|1
N̄n
u‖`p are seminorms on the finite dimensional space

{u : ¯Nn → R}, (5.4) may fail to hold only if there exists u† : ¯Nn → R such that ∂βũ
† 6≡ 0

on Bd, but D
|β|1
N̄n
u† = 0. The latter may happen only if u† is a polynomial of degree |β|1 − 1.

Then, since Dα are exact on such polynomials (note that |β|1−1 ≤ n), Dαu
†(ξ) = ∂αu

†(ξ) for
any vertex ξ of Bd, therefore Pu†,0(x) = u†(x) for all x ∈ Rd, and hence ∂βũ

† = ∂βPu†,0 = 0
on Bd. �

Proof of Lemma 2.1. Applying Lemmas 5.2 and 5.3 with n = 2 proves part (a). To show
part (b), we apply Lemma 5.4 and note that any finite difference entering (5.4) also enters
(2.2). �

5.3. Dual interpolant for B-QCE. Recall the definition of Π′h from (4.22).

Lemma 5.5. The operator Π′h : Uh → U c is well-defined. Moreover, it satisfies the
estimates

‖∇(Π′hvh)
∗‖L2 ≤ ‖∇Π′hvh‖L2 ≤ C‖∇vh‖L2 , and (5.5)

‖vh − Π′hvh‖L2 ≤ C‖∇vh‖L2 , (5.6)

where C is a generic constant.
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Proof. To see that v := Π′hvh is well-defined by (4.22), we first define w ∈ U c, w(ξ) :=
(ζ̄ ∗ vh)(ξ). From standard quasi-interpolation arguments (see, e.g., [39, 40]) we can deduce
that

‖w̄ − vh‖L2 ≤ C‖∇vh‖L2 .

Writing v := w + z, (4.22) becomes

(ζ̄ ∗ z)(ξ) = g(ξ), ξ ∈ Λa,

z(ξ) = 0, ξ ∈ Zd \ Λa,

where g(ξ) = vh(ξ) − ζ̄ ∗ w(ξ) = vh(ξ) − (ζ̄ ∗ ζ̄ ∗ vh)(ξ). Testing the first line with a test
function ϕ ∈ U c, ϕ = 0 in Zd \ Λa, and using the fact that∑

ξ∈Zd
(ζ̄ ∗ z)(ξ)ϕ(ξ) =

∫
Rd

∑
ξ∈Zd

ζ̄(x− ξ)z̄(x)ϕ(ξ) dx =

∫
Rd
z̄(x) · ϕ̄(x) dx,

we obtain the variational form∫
Rd
z̄(x) · ϕ̄(x) dx =

∑
ξ∈Λa

g(ξ) · ϕ(ξ) for all ϕ ∈ U c, ϕ|Zd\Λa = 0,

from which it is now obvious that a unique solution exists.
Testing with ϕ = z, we obtain that

‖z̄‖L2 ≤ C‖g‖`2 .
Exploiting the assumption that Nh and Λa coincide in Ωa it is straightforward to show that

‖g‖`2 ≤ C‖∇vh‖L2 ,

and we further obtain that

‖∇(v̄ − vh)‖L2 ≤ C1‖v̄ − vh‖L2 ≤ C1

(
‖z̄‖L2 + ‖w̄ − vh‖L2

)
≤ C2‖∇vh‖.

In particular, ‖∇v̄‖L2 ≤ C‖∇vh‖L2 . This completes the proof of Lemma 5.5. �

5.4. Inverse estimates. Before we embark on the proof of the consistency estimates, we
another technical tool that allows us to convert local L∞ bounds into Lp bounds. This is
motivated by the form of the estimate in Lemma 4.3.

Performing such conversions are standard norm-equivalence arguments if the functions
involved are piecewise polynomial:

‖∇j ṽ‖L∞(T ) . ‖∇j ṽ‖Lp(T ) ∀v ∈ U , T ∈ T , j = 0, . . . , 3, p ∈ [1,∞]. (5.7)

In the point defect case, this also extends to y = y0 + u, where y0 = Ax.
However, we will also need to perform such estimates for y0 = Ax + ulin. To that end, we

now construct a piecewise polynomial interpolant of y0 that takes into account the structure
of ulin. For y ∈ Y , x ∈ Rd, |x| > 2rcut + 2

√
d, we define

ŷx(x′) := ỹx(x′) for x′ ∈ νx, (5.8)

where ỹx is the C2,1-conforming piecewise polynomial interpolant defined through Lemma 2.1.
(Since ŷx is piecewise polynomial, it is not of the form y0 + ũ for any u ∈ U 1,2.)
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The interpolant is clearly well-defined and we obtain the following bounds from standard
interpolation error estimate arguments (e.g., see [6]): for Q = ξ+ (0, 1)d ⊂ B2rcut+2

√
d(x) and

ωQ = ξ + (−1, 2)d, q ∈ [1,∞], we have

‖∇ỹ −∇ŷx‖L∞(Q) ≤ C1‖∇3ỹ‖Lq(ωQ), (5.9)

‖∇j ŷx‖L∞(Q) ≤ C2‖∇j ŷx‖Lq(Q) for j = 1, 2, 3, and (5.10)

‖∇j ŷx‖Lq(Q) ≤ C3‖∇j ỹ‖Lq(ωQ) for j = 2, 3, (5.11)

where the constants C1, C2, C3 are generic. While (5.10) is obvious, the two other estimates
require some comments.

Proof of (5.9). Since, for d = 2, W 3,1 is embedded in C, standard interpolation error argu-
ments yield

‖∇ỹ −∇ŷx‖L∞(Q) = ‖∇yx −∇ỹx‖L∞(Q) . ‖∇3yx‖L1(ωQ) = ‖∇3ỹ‖L1(ωQ).

For d = 3 the embedding fails, however, in this case ỹ is piecewise polynomial; that is,
ỹ = ŷx, hence the result is true in this case as well. �

Proof of (5.11). Let p be an arbitrary polynomial of degree j − 1, then

‖∇j ŷx‖Lq(Q) = ‖∇j(ŷx − p)‖Lq(Q) . ‖∇(ŷx − p)‖Lq(Q)

. ‖∇(ŷx − yx)‖Lq(Q) + C‖∇(yx − p)‖Lq(Q).

From (5.9) and the Bramble-Hilbert Lemma, we obtain (5.11). �

6. Consistency Proofs

6.1. B-QCE coarsening error. Throughout this section and the next we assume the con-
ditions of Theorem 4.5. Thus, let y = y0 + u ∈ Y be fixed, let yh = y0 + uh := Πhy

a

be its quasi-best approximation and let vh ∈ U c be an arbitrary test function. We choose
v := Π′hvh ∈ U c, where Π′h is defined in (4.22) and analysed in § 5.3, and estimate the B-QCE
consistency error

〈δE β
h (yh), vh〉 − 〈δE a(ya), v∗〉.

Using the fact that v∗(ξ) = vh(ξ) for all ξ ∈ Λa, and employing (4.23) we split the error as
follows,

〈δE β
h (yh), vh〉 − 〈δE a(y), v∗〉

=

∫
Rd
Qh

[
β
(
∂W (∇yh)− ∂W (∇ỹ)

)
: ∇vh

]
dx+

∫
Rd

(Qh − Id)
[
β∂W (∇ỹ) : ∇vh

]
dx

+

∫
Rd
β∂W (∇ỹ) : (∇vh −∇v̄) dx+

∫
Rd

Rβ(ỹ;x) : ∇v̄ dx

:= T1 + T2 + T3 + T4,

where Rβ is defined in (4.23). In the consistency error analysis of the B-QCF method in § 6.4
we use an analogous splitting, hence the following estimates for the terms T1,T2,T3 will be
used there as well.

Lemma 6.1. Under the conditions of Theorem 4.5, the terms T1 and T2 are bounded by

T1 .
(
‖∇uh −∇ũ‖L2(Ωc) + ‖h2∇3ũ‖L2(Ωc)

)
‖∇vh‖L2 and

T2 .
(∥∥h2∇2

[
β∂W (∇ỹ)

]∥∥
L2

)
‖∇vh‖L2 .
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Proof. 1. Estimate of T1: Let T ∈ Th such that β 6= 0 on T , then∫
T

Qh

[
β
(
∂W (∇yh)− ∂W (∇ỹ)

)
: ∇vh

]
dx

≤ |T |1/2‖∂W (∇yh)− ∂W (∇ỹ)‖L∞(T )‖∇vh‖L2(T )

. |T |1/2‖∇uh −∇ũ‖L∞(T )‖∇vh‖L2(T ),

where C depends on ∂2W in a neighbourhood of ∇ỹ and hence on M
(ρ)
ε (y),ρ ∈ R2. Em-

ploying the embedding H2 ⊂ C,

|T |1/2‖∇uh −∇ũ‖L∞(T ) .
(
‖∇uh −∇ũ‖L2(T ) + ‖h2∇3ũ‖L2(T )

)
,

where C depends only on the shape regularity of the mesh. Summing over all T , we obtain
the stated result.

2. Estimate of T2: For any piecewise linear (not necessarily continuous) ψh we have

T2 =

∫
Rd

(Qh − Id)
[
β∂W (∇ỹ)− ψh

]
: ∇vh dx

≤
∥∥(Qh − Id)

[
β∂W (∇ỹ)− ψh

]∥∥
L2‖∇vh‖L2 .

Therefore, by the Bramble-Hilbert Lemma,

T2 .
∥∥h2∇2

[
β∂W (∇ỹ)

]∥∥
L2‖∇vh‖L2 ,

where the constant depends again on the shape regularity of Th. �

Lemma 6.2. Under the conditions of Theorem 4.5, the term T3 is bounded above by

T3 .
(∥∥∇2

[
β∂W (∇ỹ)

]∥∥
L2 + ‖h∇2ũ‖L2(Ωc) + ‖h∇2y0 ⊗ (∇y0 − A)‖L2(Ωc)

)
‖∇vh‖L2 .

Proof. Let ζν be the nodal basis function associated with a node ν ∈ Nh, with support ων ,
and let f := − div

[
β∂W (∇ỹ)

]
. We integrate the term T3 by parts, and then use the fact

that ζν form a partition of unity, to obtain

T3 = −
∫
Rd

div
[
β∂W (∇ỹ)

]
· (vh − v̄) dx

=
∑
ν∈Nh

∫
Rd
f(x) · (vh(ν)− v̄(x))ζν(x) dx.

Case 1: If ν ∈ Λa ∩Nh, then ζν(x) = ζ̄(x− ν) and hence∫
Rd

(vh(ν)− v̄(x))ζν(x) dx = vh(ν)− v∗(ν) = 0, (6.1)

by definition of v∗ and v. Therefore,∫
Rd
f(x) · (vh(ν)− v̄(x))ζν(x) dx . ‖∇f‖L2(ων)‖ζ1/2

ν (vh(ν)− v̄(x))‖L2(ων)
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where ων = supp ζν . Exploiting again (6.1) we can estimate

‖ζ1/2
ν (vh(ν)− v̄)‖2

L2(ων) =

∫
ων

(vh(ν)− v̄) ·
[
(vh(ν)− v̄)ζν

]
dx

=

∫
ων

(
(v̄)ων − v̄

)
·
[
(vh(ν)− v̄)ζν

]
dx

≤ ‖(v̄)ων − v̄‖L2(ων)‖ζν(vh(ν)− v̄)‖L2(ων)

. ‖∇v̄‖L2(ων)‖ζ1/2
ν (vh(ν)− v̄)‖L2(ων),

and hence we arrive at∫
Rd
f(x) · (vh(ν)− v̄(x))ζν(x) dx . ‖∇f‖L2(ων)‖∇vh‖L2(ων) for ν ∈ Nh ∩ Λa. (6.2)

Case 2: Because of the way v is defined, we do not have (6.1) for ν ∈ Nh \ Λa, but on the
other hand β ≡ 1 in this case, which means that the second-order estimate is not crucial. In
this case, using elementary interpolation error estimates, we obtain only∫
Rd
f(x) · (vh(ν)− v̄(x))ζν(x) dx ≤ ‖hf‖L2(ων)

(
‖h−1(vh(ν)− vh)‖L2(ων) + ‖h−1(vh − v̄)‖L2(ων)

)
≤ ‖hf‖L2(ων)

(
‖∇vh‖L2(ων) + ‖vh − v̄‖L2(ων)

)
.

Summing the estimates over all ν and estimating the overlaps of the patches (the shape
regularity of the mesh enters again here; this is a standard argument from a posteriori error
analysis), we deduce that

T3 .
(∥∥∇ div(β∂W (∇ỹ))

∥∥
L2 +

∥∥βh div ∂W (∇ỹ)
∥∥
L2

) (
‖∇vh‖L2 + ‖vh − v̄‖L2

)
.

and, finally, employing Lemma 5.5,

T3 .
(∥∥∇ div(β∂W (∇ỹ))

∥∥
L2 +

∥∥βh div ∂W (∇ỹ)
∥∥
L2

)
‖∇vh‖L2 . (6.3)

Note that we have inserted β in
∥∥βh div ∂W (∇ỹ)

∥∥
L2 merely to indicate that it is restricted

to the continuum region. Inserting the estimate

| div ∂W (∇ỹ)| ≤
∣∣ div ∂W (∇ỹ)− div ∂W (∇y0)

∣∣
+
∣∣ div ∂W (∇y0)− div ∂2W (A) : (∇y0 − A)

∣∣
. |∇2ũ|+ |∇2y0| |∇y0 − A|.

into (6.3) yields the stated result. �

We can now combine the foregoing results to arrive at the complete coarsening error esti-
mate.

Lemma 6.3 (B-QCE coarsening error). Under the conditions of Theorem 4.5,

〈δE β
h (Πhyh), vh〉 − 〈δE a(y), (Π′hvh)

∗〉 .
(
Eapx(y) + Ecb(y) + Eint(y) + ‖Rβ(ỹ)‖L2

)
‖∇vh‖L2

for all vh ∈ Uh. (6.4)

Proof. Using Lemma 6.1 and Lemma 6.2, the bound

|∇2(β∂W (∇ỹ))| . |β∇3ỹ|+ |∇β∇2ỹ|+ |∇2β|,
and the estimate

T4 ≤ ‖Rβ‖L2‖∇v̄‖L2 . ‖Rβ‖L2‖∇vh‖L2 ,
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where we employed Lemma 5.5, we obtain the result. �

6.2. B-QCE modelling error estimate. To complete the B-QCE consistency error anal-
ysis it remains to provide a sharp bound on the B-QCE stress error Rβ, which is defined in
(4.23).

Lemma 6.4. Let ε > 0 and z ∈ C2,1(νx) with ‖∇z −∇ỹ‖L∞ ≤ ε, then∣∣Rβ(z;x)
∣∣ ≤ C

(
‖∇2β‖L∞(νx) + |∇β(x)| |∇2z(x)|+ ‖∇3z‖L∞(νx) + ‖∇2z‖2

L∞(νx)

)
, (6.5)

where C depends on M
(ρ)
ε (y),ρ ∈ Rj, j = 1, . . . , 3.

Proof. Throughout the proof we define Vξ,ρ := V,ρ(Dz(ξ)) and V̄,ρ := V,ρ(∇Rz(x)). Further,
we define β ≡ β(x) and ∇β ≡ ∇β(x). Finally, we denote

εj := ‖∇jz‖L∞(νx), and δj := ‖∇jβ‖L∞(νx).

We begin by noting that, since R and the support of ωρ are both bounded, the sum over
ξ in the definition of Rβ

Rβ(z;x) := β(x)∂W (∇z(x))−
∑
ξ∈Zd

β(ξ)
∑
ρ∈R

[
Vξ,ρ ⊗ ρ

]
ωρ(ξ − x)

is only over a bounded set. Therefore, we can insert the expansion (4.11) to obtain

Rβ(z;x) := β(x)∂W (∇z(x))

−
∑
ξ∈Zd

β(ξ)
∑
ρ∈R

[(
V̄,ρ +

∑
ς∈R

V̄,ρς(Dςz −∇ςz) +O(ε22)
)
⊗ ρ
]
ωρ(ξ − x)

= β(x)∂W (∇z(x))−
∑
ξ∈Zd

β(ξ)
∑
ρ∈R

[
V̄,ρ ⊗ ρ

]
ωρ(ξ − x)

−
∑
ξ∈Zd

β(ξ)
∑
ρ,ς∈R

[
V̄,ρς(Dςz −∇ςz)

]
⊗ ρωρ(ξ − x) +O(ε22)

=: T1 − T2 +O(ε22). (6.6)

We expand β(ξ) = β +∇β · (ξ − x) +O(δ2), and employ (4.18) to estimate

T1 = β∂W (∇z(x))−
∑
ξ∈Zd

(
β +∇β · (ξ − x)

)∑
ρ∈R

[
V̄,ρ ⊗ ρ

]
ωρ(ξ − x) +O(δ2)

= β∂W (∇z(x))− β
∑
ρ∈R

[
V̄,ρ ⊗ ρ

]
−∇β ·

∑
ρ∈R

[
V̄,ρ ⊗ ρ

]∑
ξ∈Zd

(ξ − x)ωρ(ξ − x) +O(δ2).

Since
∑

ρ∈R
[
V̄,ρ⊗ ρ

]
= ∂W (∇z(x)) and

∑
ξ∈Zd(ξ − x)ωρ(ξ − x) = −1

2
ρ by (4.19), we further

obtain

T1 = −1

2

∑
ρ∈R

[
V̄,ρ ⊗ ρ

]
(∇β · ρ) +O(δ2) = O(δ2),

where the sum over R cancels due to the point symmetry assumption (2.6).
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To estimate T2 we expand β and use expansion (4.6), (4.18), and (4.19) to obtain

T2 =
∑
ξ∈Zd

(
β +∇β · (ξ − x)

) ∑
ρ,ς∈R

[
V̄,ρς(∇ς∇ξ−xz + 1

2
∇2
ς z)
]
⊗ ρωρ(ξ − x) +O(δ2 + ε3)

= β
∑
ρ,ς∈R

[
V̄,ρς(−1

2
∇ς∇ρz + 1

2
∇2
ς z)
]
⊗ ρ+O

(
|∇β| |∇2z|

)
+O(δ2 + ε3)

Using again (2.6) we observe that the sum over ρ, ς ∈ R cancels, and hence we obtain that
|T2| . |∇β| |∇2z|+ δ2 + ε3.

Combining this with the estimate for T1, we obtain the stated result. �

We now convert the pointwise estimate (6.5) into a global estimate.

Lemma 6.5. Under the conditions of Theorem 4.5, we have∥∥Rβ(ỹ;x)
∥∥
L2 ≤ C

(
‖∇2β‖L2 + ‖∇β‖L∞‖∇2ỹ‖L2(Ωβ) + ‖∇3ỹ‖L2(Ωc) + ‖∇2ỹ‖2

L4(Ωc)

)
, (6.7)

where C depends on M
(ρ)
ε (y),ρ ∈ Rj, j = 1, . . . , 3.

Proof. The main point of this proof is to use the inverse estimates from § 5.4 to obtain
Lq-type bounds from the L∞ bounds provided by Lemma 6.4.

Let r(x) := Rβ̃(ŷx;x) and F(x) := ∇ŷx(x), then we begin by estimating

‖Rβ(ỹ)− r‖L2 ≤ ‖β∂W (∇ỹ)− β̃∂W (F)‖L2

.
(
‖β − β̃‖L2

)
+
∥∥β(∂W (∇ỹ)− ∂W (F)

∥∥
L2

.
(
‖∇2β‖L2 + ‖β(∇ỹ − F)‖L2

)
, (6.8)

where we used ‖β − β̃‖L2 ≤ C‖∇2β‖L2 . Let x ∈ supp(β) ∩ Qx where Qx = ξ + [0, 1)d, and
let ξ ∈ Zd. Then

|∇ỹ − F(x)| ≤ ‖∇ỹ −∇ŷx‖L2(Q) . ‖∇3ỹ‖L2(Q).

Integrating over x yields∫
β(x)2|∇ỹ − F(x)|2 dx ≤

∫
β(x)‖∇3ỹ‖2

L2(Qx) dx . ‖∇3ỹ‖2
L2(Ωc), (6.9)

using an argument analogous to the one in [34, App.A]. Together with (6.8) we obtain

‖Rβ(ỹ)− r‖L2 .
(
‖∇2β‖L2 + ‖∇3ỹ‖L2(Ωc)

)
. (6.10)

Using Lemma 6.4 with β replaced with β̃ and z = ŷx, defining νβx := νx ∩ supp(∇β̃), and
recalling (5.10), we obtain

|r(x)|2 .
(
‖∇2β̃‖2

L∞(νx) + ‖∇β̃‖2
L∞‖∇2ŷx‖2

L∞(νβx )
+ ‖∇3ŷx‖2

L∞(νx) + ‖∇2ŷx‖4
L∞(νx)

)
.
(
‖∇2β̃‖2

L2(νx) + ‖∇β̃‖2
L∞‖∇2ŷx‖2

L2(νβx )
+ ‖∇3ŷx‖2

L2(νx) + ‖∇2ŷx‖4
L4(νx)

)
.

Using Lemma 2.1, the results of § 5.4, and techniques similar to those used to prove (6.9),
we deduce that

‖r‖L2 . ‖∇2β‖L2 + ‖∇β‖L∞‖∇2ỹ‖L2(Ωβ) + ‖∇3ỹ‖L2(Ωc) + ‖∇2ỹ‖2
L4(Ωc).

Together with (6.10), this yields the desired result. �

Proof of Theorem 4.5. The result follows upon combining Lemma 6.3 and Lemma 6.5. �
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6.3. B-QCE energy error estimate. We assume that all conditions of Theorem 3.1 hold.
Let ya be a solution to (2.11) and let ybqce

h be the solution to (3.2) guaranteed by Theorem 3.1.

For ease of notation, we write y := ya and yh := ybqce
h . Further, we define

V ′(Dy) := V (Dy)− V (Dy0) and W ′(∇y) := W (∇y)−W (∇y0).

Let

Ẽ :=
∑
`∈Zd

(1− β(`))V ′(Dy(`)) +

∫
Rd

[Qhβ]W ′(∇ỹ) dx,

then we split the energy error into

E a(y)− E β
h (yh) =

[
E a(y)− Ẽ

]
+
[
Ẽ − E β

h (Πhy)
]

+
[
E β
h (Πhy)− E β

h (yh)
]

=: T1 + T2 + T3.

Since yh is a minimiser we obtain

|T3| . ‖∇Πhu−∇uh‖2
L2 , (6.11)

which we already estimated in Theorem 3.1.

6.3.1. Estimate for T1. The term T1 contains the main “modelling error” contribution. For
f : Rd → R let I1f := f̄ denote the P1 nodal interpolant with respect to the atomistic mesh
T . Then, using the fact that∑

ξ∈Zd
β(ξ)W ′(∇ỹ(ξ)) =

∫
Rd
I1[βW ′(∇ỹ)] dx,

we rewrite T1 as

T1 =
∑
ξ∈Zd

β(ξ)V ′
(
Dy(ξ)

)
−
∫

[Qhβ]W ′(∇ỹ) dx

=
∑
ξ∈Zd

β(ξ)
(
V ′
(
Dy(ξ)

)
−W ′(∇ỹ(ξ)

))
+

∫ (
[Qhβ]W ′(∇ỹ)− I1[βW ′(∇ỹ)]

)
dx

=: T1,1 + T1,2.

T1,2 is essentially a quadrature error estimate, since both the integrals
∫
Qh[βW

′(∇ỹ)] dx
and

∫
I1[βW ′(∇ỹ)] dx are second-order quadrature approximations to

∫
βW ′(∇ỹ) dx:

|T1,2| . ‖∇2β‖L2‖∇ũ‖L2(Ωc) + ‖∇β‖L∞‖∇ũ‖L2(Ωc)‖∇2y0‖L2(Ωc) + ‖∇β‖L2‖∇2ũ‖L2(Ωc)

+ ‖∇ũ‖L2(Ωc)

(
‖∇3y0‖L2(Ωc) + ‖∇2y0‖2

L4(Ωc)

)
+ ‖∇2ũ‖2

L2(Ωc) (6.12)

+ ‖∇2ũ‖L2‖∇2y0‖L2(Ωc) + ‖∇3ũ‖L1(Ωc).

We will later see that most of these terms are dominated by other terms occuring in the
energy error estimate.

Proof of (6.12). Fix an atomistic element T ∈ T . If β 6≡ 1 in T , then T ∈ Th as well,
so Qhβ = Q1β, where Q1 denotes the P0 midpoint nodal interpolant with respect to the
atomistic mesh T . In the other case, where β ≡ 1 in T , we also have Qhβ = Q1β = 1.

We estimate the integral defining T1,2 restricted to T ; call it

TT
1,2 :=

∫
T

(
[Q1β]W ′(∇ỹ)− I1[βW ′(∇ỹ)]

)
dx.
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First, we replace ỹ with ŷT := ŷxT , y0 with ŷT0 := ŷxT0 where xT is the barycentre of T , and β

with β̃. Also, let yT0 := yxT0 and W ′(∇ŷT ) = W (∇ŷT )−W (∇ŷT0 ). Then, a brief computation
shows that∥∥W ′(∇yT )−W ′(∇ŷT )

∥∥
L∞
.
∥∥|∇yT0 −∇ŷT0 | |∇ũ|∥∥L∞(T )

. ‖∇ũ‖L2(T )‖∇3y0‖L2(T ),

‖(β − β̃)W ′(∇ỹ)‖L∞(T ) ≤ ‖∇2β‖L2(T )‖∇ũ‖L2(T ),

and hence, ∣∣TT
1,2

∣∣ . ∣∣∣∣ ∫
T

(
[Q1β̃]W ′(∇ŷT )− I1[β̃W ′(∇ŷT )]

)
dx

∣∣∣∣
+ ‖∇ũ‖L2(T )(‖∇3y0‖L2(T ) + ‖∇2β‖L2(T ))

=:
∣∣T̂T

1,2

∣∣+ ‖∇ũ‖L2(T )(‖∇3y0‖L2(T ) + ‖∇2β‖L2(T )),

We estimate the term T̂T
1,2 as follows:∣∣T̂T

1,2

∣∣ ≤ ∣∣∣∣ ∫
T

[Q1β̃]
(
W ′(∇yT )−Q1[W ′(∇yT )]

)
dx

∣∣∣∣+

∣∣∣∣ ∫
T

(Q1 − I1)[β̃W ′(∇ỹ)] dx

∣∣∣∣
. ‖∇2[β̃W ′(∇ŷT )]‖L∞(T )

. ‖(∇2β̃)W ′(∇ŷT )‖L∞(T ) + ‖∇β̃ ⊗∇W ′(∇ŷT )‖L∞(T ) + ‖β̃∇2W ′(∇ŷT )‖L∞(T )

. ‖∇2β̃‖L∞‖∇ũ‖L∞(T ) + ‖∇β̃‖L∞
(
‖∇ũ∇2ŷ0‖L∞(T ) + ‖∇2ũ‖L∞(T )

)
+
(∥∥|∇ũ| |∇2ŷ0|2

∥∥
L∞(T )

+
∥∥|∇2ũ| |∇2ŷ0|

∥∥
L∞(T )

+
∥∥|∇2ũ|2

∥∥
L∞(T )

+ ‖∇3ũ‖L∞(T ) +
∥∥|∇ũ| |∇3ŷ0|

∥∥
L∞(T )

)
,

where we used the fact that ∇ŷT −∇ŷT0 = ∇ũ and identities along the lines of

∇W ′(∇ŷT ) = ∇
(
W (∇ŷT )−W (∇ŷT0 )

)
= ∂W (∇ŷT ) : ∇2ŷT − ∂W (∇ŷT0 ) : ∇2ŷT0

=
(
∂W (∇ŷT )− ∂W (∇ŷT0 )

)
: ∇2ŷT0 + ∂W (∇ŷT ) :

(
∇2ŷT −∇2ŷT0

)
,

and its lower and higher order analogues.
Applying suitable inverse inequalities (cf. § 5.4), summing over T ∈ T , and being careful

to only collect those terms for that actually occur in a given element yields (6.12). �

To estimate T1,1 we perform a basic Taylor expansion, using the tools developed in § 4.2.1
and § 4.2.2.

Lemma 6.6. Let ξ ∈ Zd \BRa, and y ∈ Y , then∣∣V ′(Dy(ξ))−W ′(∇ỹ(ξ))
∣∣ . (‖∇3ũ‖L1(νξ) + ‖∇2ũ‖2

L2(νξ)
+ ‖∇2ũ‖L2(νξ)‖∇2y0‖L2(νξ)

+ ‖∇ũ‖L2(νξ)

(
‖∇3y0‖L2(νξ) + ‖∇2y0‖2

L4(νξ)

))
.

(6.13)

Proof. All derivatives and finite differences below are evaluated at ξ, so we omit the argument,
writing Du for Du(ξ), for example. Let z := ŷξ and zθ := ŷξ0 + θũ, so that z = z1, V ′(Dz) =
V (Dz)− V (Dz0) and W ′(∇z) = W (∇z)−W (∇z0). Then

V ′(Dz)−W ′(∇z) =

∫ 1

θ=0

(
〈δV (Dzθ), Du〉 − 〈∂W (∇zθ),∇ũ〉

)
dθ.
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Expanding 〈δV (Dzθ), Du〉 analogously to the proof of Lemma 6.4, with εj := ‖∇jzθ‖L∞(νξ)

and ε̃j := ‖∇jũ‖L∞(νξ), we obtain

〈δV (Dzθ), Du〉 =
∑
ρ∈R

V,ρ(Dzθ)Dρu

=
∑
ρ∈R

(
V,ρ +

∑
ς∈R

V,ρς
1
2
∇2
ς zθ +O(ε3 + ε2

2)

)
Dρu

=
∑
ρ∈R

V,ρ
(
∇ρũ+ 1

2
∇2
ρũ
)

+
∑
ρ,ς∈R

〈V,ρς∇ρũ,
1
2
∇2
ς zθ〉

+O(ε̃3) +O(ε2ε̃2) +O
(
ε̃1(ε3 + ε2

2)
)
.

We now observe that
∑

ρ∈R V,ρ∇ρũ = ∂W (∇zθ) : ∇ũ, and that, due to the point symmetry

(2.6), both ∑
ρ∈R

V,ρ
1
2
∇2
ρũ = 0 and

∑
ρ,ς∈R

〈V,ρς∇ρũ,∇2
ς zθ〉 = 0.

We combine the foregoing calculations to obtain∣∣V ′(Dz)−W ′(∇z)
∣∣ ≤ C

(
‖∇3ũ‖L∞(νξ) + ‖∇2ũ‖L∞(νξ)‖∇2z0‖L∞(νξ) + ‖∇2ũ‖2

L∞(νξ)

+ ‖∇ũ‖L∞(νξ)

(
‖∇3z0‖L∞(νξ) + ‖∇2z0‖2

L∞(νξ)

))
.

Using appropriate inverse estimates, and incorporating the error ∇zθ−∇ỹ, similarly (e.g.)
as in the proof of (6.12) (this yields additional ‖∇ũ‖L2‖∇3ỹ0‖L2 terms), we obtain the stated
result. �

Summing (6.13) over all ξ ∈ Zd with β(ξ) > 0 it is straightforward now to prove that

|T1,1| ≤ C
(
‖∇3ũ‖L1(Ωc) + ‖∇2ũ‖2

L2(Ωc) + ‖∇2ỹ‖L2(Ωc)‖∇2ỹ‖L2(Ωc)

+ ‖∇ũ‖L2(Ωc)

(
‖∇3y0‖L2(Ωc) + ‖∇2y0‖2

L4(Ωc)

))
.

(6.14)

This completes the estimate for T1

6.3.2. Estimate for T2. We begin by recalling that Th and Πh are defined in such a way that
Πhy(ξ) = y(ξ) in a sufficiently large neighbourhood so that

T2 =

∫ (
[Qhβ]W ′(∇ỹ)−Qh

[
βW ′(∇Πhy)

])
dx

=

∫
[Qhβ]

(
W ′(∇ỹ)−QhW

′(∇Πhy)
)

dx

=

∫
[Qhβ]

(
W ′(∇ỹ)−W ′(∇Πhy)

)
dx

+

∫
[Qhβ]

(
W ′(∇Πhy)−QhW

′(∇Πhy)
)

dx

=: T2,1 + T2,2.

The term T2,1 is an approximation error, while T2,2 is a quadrature error.
First, we prove that

|T2,1| .
∥∥(|∇ũ|+ |∇ulin|2

)
(∇ũ−∇Πhu)

∥∥
L1(Ωc)

+ ‖∇3ũ‖L1(Ωc) + ‖∇ũ−∇Πhu‖L2(Ωc), (6.15)
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where we set ulin ≡ 0 in the case (pPt).

Proof of (6.15). We first note that, with eh := ∇ũ−∇Πhu we have

|T2,1| =
∣∣∣∣ ∫ [Qhβ]

(
W (∇ỹ)−W (∇ỹ −∇eh)

)
dx

∣∣∣∣
≤
∣∣∣∣ ∫ [Qhβ]

(
∂W (∇ỹ)∇eh

)
dx

∣∣∣∣+ C‖∇eh‖2
L2

=: |T ′2,1|+ C‖∇eh‖2
L2 .

Let eh = [∇ũ − ∇ū] + [∇ū − ∇Πhu] =: e′h + e′′h, then ‖[Qhβ]∇e′h‖L1 . ‖∇3ũ‖L1(Ωc) and
e′′h = 0 in Ωβ, hence

|T ′2,1| ≤
∣∣∣∣ ∫ [Qhβ]

(
∂W (∇ỹ)∇e′′h

)
dx

∣∣∣∣+ C‖∇3ũ‖L1(Ωc)

=

∣∣∣∣ ∫ [∂W (∇ỹ)− Slin
]
∇e′′h dx

∣∣∣∣+ C‖∇3ũ‖L1(Ωc),

where, setting ulin ≡ 0 in the case (pPt),

Slin = ∂W (A) + C : ∇ulin,

We can now estimate ∣∣∂W (∇ỹ)− Slin
∣∣ . |∇ũ|+ |∇ulin|2,

which yields

|T ′2,1| .
(∥∥(|∇ũ|+ |∇ulin|2

)
∇e′′h

∥∥2

L1(Ωc)
+ ‖∇3ũ‖L1(Ωc)

.
∥∥(|∇ũ|+ |∇ulin|2

)
∇eh

∥∥2

L1(Ωc)
+ ‖∇3ũ‖L1(Ωc),

estimating again that ‖∇e′h‖L1(Ωc) ≤ ‖∇3ũ‖L1(Ωc).
This completes the proof of (6.15). �

The final term to complete the estimate for the B-QCE energy error is T2,2, which we can
bound by

|T2,2| .
(
‖h2∇3y0‖L2(Ωc) + ‖h∇2y0‖2

L4(Ωc)

)
‖∇Πhu‖L2(Ωc) (6.16)

.
(
‖h2∇3y0‖L2(Ωc) + ‖h∇2y0‖2

L4(Ωc)

)(
Eapx(y) + ‖∇ũ‖L2(Ωc)

)
(6.17)

The proof of this estimate follows much along the same lines as that of (6.12), exploiting the
fact that

W ′(∇Πhy)−QhW
′(∇Πhy)

=

∫ 1

θ=0

(
∂W (∇y0 + θ∇Πhu)− ∂W

(
Qh[∇y0] + θ∇Πhu

))
dθ : ∇Πhu.
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6.3.3. Completing the energy error estimate. Combining the estimates (6.12), (6.14), (6.15)
and (6.17), ignoring any terms that are dominated by others, we arrive at∣∣E a(y)− E β

h (yh)
∣∣ ≤ C

{
Eapx(y)2 + Ecb(y)2 + Eint(y)

2
(6.18)

+ ‖∇2β‖L2‖∇ũ‖L2(Ωc) + ‖∇β‖L2‖∇2ũ‖L2(Ωc)

+ Eapx(y)
(
‖∇ũ‖L2(Ωc) + ‖∇ulin‖2

L4(Ωc)

)
+ ‖∇3ũ‖L1(Ωc) + ‖∇2ũ‖2

L2(Ωc)

+
(
‖h2∇3y0‖L2(Ωc) + ‖h∇2y0‖2

L4(Ωc)

)(
Eapx(y) + ‖∇ũ‖L2(Ωc)

)
+ ‖∇2ũ‖L2(Ωc)‖∇2y0‖L2(Ωc) + ‖∇β‖L∞‖∇ũ‖L2(Ωc)‖∇2y0‖L2(Ωc)

}
.

A slight rearrangement yields the statement of Proposition 3.2.
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6.4. B-QCF Consistency analysis.

6.4.1. Consistency error estimate, part 1. Recall the definition of the B-QCF operator (3.4)
and assume that yh(ξ) = y(ξ) for ξ ∈ Λa, then we have

〈F β
h (yh), vh〉 − 〈δE a(y), v〉 = 〈δE a(y), (1− β)vh − v〉+ 〈δE c

h (yh), Ih[βvh]〉.

Similar to the B-QCE case in § 6.2, we choose a specially adapted test function v := Π′′hvh,
as defined in (4.25), for the “weak form” of the atomistic force 〈δE a(y), v〉. That is,

v = (1− β)vh|Zd + w∗, where w(ξ) :=
(
ζ̄ ∗ wh

)
(ξ) and wh := Ih[βvh]. (6.19)

Standard quasi-interpolation error estimates (see e.g. [5] for an analogous result) yield

‖∇w̄ −∇wh‖L2 + ‖w̄ − wh‖L2 . ‖∇wh‖L2 . (6.20)

Applying the stress form of δE a(y) in (4.15), with Sa = Sa(y;x), we can now compute

〈F β
h (yh), vh〉 − 〈δE a(y), v〉
= 〈δE a(y), (1− β)vh − v〉+ 〈δE c

h (yh), Ih[βvh]〉
= −〈δE a(y), w∗〉+ 〈δE c

h (yh), wh〉 = 〈δE c
h (yh), wh〉 − 〈δE a(y), w∗〉

=

∫ [
Qh

[
∂W (∇yh) : ∇wh

]
− Sa : ∇w̄

]
dx

=

∫
Qh

[
∂W (∇yh)− ∂W (∇ỹ)

]
: ∇wh dx+

∫ (
Qh − Id

)[
∂W (∇ỹ) : ∇wh

]
dx

+

∫
∂W (∇ỹ) :

(
∇wh −∇w̄

)
dx+

∫ (
∂W (∇ỹ)− Sa

)
: ∇w̄ dx

=: T1 + T2 + T3 + T4.

Applying Lemma 6.1 and Lemma 6.2 with β ≡ 1, and exploiting the fact that supp(wh), supp(w̄) ⊂
Ωc we obtain

|T1| . ‖∇uh −∇ũ‖L2(Ωc)‖∇wh‖L2 ,

|T2| . ‖h2∇2∂W (ỹ)‖L2(Ωc)‖∇wh‖L2 , and

|T3| . ‖∇ div ∂W (ỹ)‖L2(Ωc)‖∇wh‖L2 .

Finally, the fourth term is the Cauchy–Born modelling error estimated in Lemma 4.3
combined with the quasi-interpolation error estimates in (6.20). Applying Lemma 6.5 with
β ≡ 1 and exploiting again that supp(w̄) ⊂ Ωc, we obtain

|T4| .
(
‖∇3ỹ‖L2(Ωc) + ‖∇2ỹ‖2

L4(Ωc)

)
‖∇wh‖L2 .

Combining the estimates for the terms T1, . . . ,T4 and then arguing as in Lemma 6.3 we
arrive at ∣∣〈F β

h (yh), vh〉 − 〈δE a(y), v〉
∣∣ . (Eapx(y) + Ecb(y)

)
‖∇wh‖L2 . (6.21)

In particular, we have proven (4.26).
It now remains to estimate ‖∇wh‖L2 , where wh = Ih[βvh] in terms of ‖∇vh‖L2 .
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6.4.2. The trace inequality. Our aim is to prove (4.27). For the sake of argument, suppose
wh ∼ βvh (we dropped the interpolant), so that ∇wh ∼ β∇vh + vh ⊗∇β. Thus, we need to
estimate vh in the support of ∇β (i.e., in the blending region) in terms of ∇vh in Ωh. The
key ingredient to obtain such an estimate is the following trace inequality.

Lemma 6.7. Let d ≥ 2 and 0 < r0 < r1, then

‖u‖2
L2(∂Br0 ) ≤ C1‖∇u‖2

L2(Br1\Br0 ) for all u ∈ H1(Br1 \Br0), u|∂Br1 = 0, (6.22)

where C1 =

{
2r0

∣∣ log r1
r0

∣∣, d = 2,

2r0/(d− 2), d ≥ 3.
(6.23)

Proof. The result follows from minor modifications to remove the constraint r1 < 1 of the
proof of [20, Lemma 5.1]; up to [20, Eq. (5.4)] and choosing s = r1 from the beginning. �

Corollary 6.8. Under the conditions of Lemma 6.7, we have

‖vh‖2
L2(Ωβ) ≤

(
(Rβ)2 − (Ra)2

)
C ′1‖∇vh‖2

L2(Ωh) ∀vh ∈ Uh,

where C ′1 =

{
log
∣∣Ro

Ra

∣∣, d = 2,
1, d = 3.

Proof. Recalling that Ωβ ⊂ BRβ \BRa we write

‖vh‖2
L2(Ωβ) ≤

∫ Rβ

r=Ra

‖vh‖2
L2(∂Br)

dr.

Applying (6.22) yields the stated result. �

Proof of Lemma 4.6. If T ∈ Th with β|T ≡ 1, then Ih[βvh] = vh, and hence ‖∇Ih[βvh]‖L2(T ) ≤
‖∇vh‖L2(T ).

Conversely, if β|T 6≡ 1, then hT . 1 and hence standard nodal interpolation error esti-
mates [6] imply

‖∇Ih[βvh]‖L2(T ) ≤ ‖∇Ih[βvh]−∇ (βvh) ‖L2(T ) + ‖∇ (βvh) ‖L2(T )

. ‖∇2 (βvh) ‖L2(T ) + ‖∇ (βvh) ‖L2(T ).

Since vh|T ∈ P1(T), so ∇2vh = 0, for each such element T we have

‖∇Ih[βvh]‖L2(T ) . ‖∇2β‖L∞(T )‖vh‖L2(T ) + 2‖∇β‖L∞(T )‖∇vh‖L2(T )

+ ‖β∇vh‖L2(T ) + ‖vh ⊗∇β‖L2(T )

. ‖∇β‖W 1,∞(T )‖vh‖L2(T ) + (1 + ‖∇β‖L∞(T ))‖∇vh‖L2(T ).

Recall that Ωβ is constructed in such a way that supp∇β∩T 6= ∅ implies that T ⊂ Ωβ. Thus,
summing over all T ⊂ Ωβ, and also recalling that ‖∇β‖L∞ . 1 and then applying Corollary
6.8, we obtain

‖∇Ih[βvh]‖L2 . ‖∇β‖W 1,∞‖vh‖L2(Ωβ) + ‖∇vh‖L2

.
(
C ′1
[
(Rβ)2 − (Ra)2

]1/2‖∇β‖W 1,∞ + 1
)
‖∇vh‖L2 , (6.24)

where C ′1 is the constant from Lemma 6.8.
Recall now that in (3.6) we assumed that the blending function β satisfies ‖∇jβ‖L∞ .

(Rβ)−j for j = 1, 2. Inserting this assumption into (6.24) finally completes the proof of
Lemma 4.6. �
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7. Stability Proofs

7.1. BQCE stability.

Proof of Lemma 4.9. Assume, for contradiction, that there exists a sequence of B-QCE ap-
proximations, characterized by βn, Th,n, vh,n ∈ Uh,n, etc., with Ra

n → ∞, as well as test
functions vh,n satisfying ‖∇vh,n‖2

L2 = 1 and

lim
n→∞
〈δ2[E β

h,n(Πh,ny) + P(Πh,ny)]vh,n, vh,n〉 =: γ̃βh < min
{
γa(y), γβh (Ax)

}
.

In what follows, we will drop the index h in Uh,n, Th,n, Πh,n, E β
h,n, and so forth.

Upon extracting a subsequence (which is still denoted by vn), we have ∇vn ⇀ ∇v̄0 in L2

for some lattice function v0 : Zd → Rm. Further, similarly to [13, Lemma 4.9], there exists
a sequence řn →∞, řn <

1
2
Ra
n, such that, defining wn := ηnvn, where ηn is a smooth cut-off

function satisfying

ηn(ξ) = 1 (|ξ| ≤ řn + 2rcut) and ηn(ξ) = 0 (|ξ| ≥ 2řn − 2rcut),

(cf. the definition of the truncation operator TR in (4.20)) and zn := vn − wn, then

Dwn → Dv0 in `2, ∇wn → ∇v̄0 in L2,

Dzn ⇀ 0 in `2, ∇zn ⇀ 0 in L2,

Dwn(ξ) =

{
Dvn(ξ), |ξ| ≤ řn,

0, |ξ| ≥ 2řn,
and ∇wn(x) =

{
∇vn(x), |x| ≤ řn,

0, |x| ≥ 2řn.

We note that wn = 0 on Ωc and hence wn is an admissible displacement, wn ∈ Un, which
also ensures that zn ∈ Un. The statement that Dzn ⇀ 0 follows from the fact that, for any
fixed ϕ ∈ U c, 〈Dzn, Dϕ〉 → 0 as Λa will eventually enclose the support of ϕ for sufficiently
large n.

Hence we have

〈δ2[E β
n + P](Πny)vn, vn〉 = 〈δ2E β

n (Πny)wn + δ2P(y)wn, wn〉
+ 2〈δ2E β

n (Πny)wn, zn〉+ 〈δ2E β
n (Πny)zn, zn〉

=: an + 2bn + cn.

Here we used the fact that, for n large enough, P(Πny) = P(y) and is supported outside
supp(Dzn) or supp(∇zn).

Due to řn <
1
2
Ra
n and the stability assumption (4.29) we have that

an = 〈δ2[E a + P](Πny)wn, wn〉 = 〈δ2[E a + P](y)wn, wn〉 ≥ γa(y)‖∇wn‖2
L2 .

Similarly, since Dwn(ξ) can be nonzero only for ξ such that β(ξ) = 1, we have that

bn = 〈δ2E β
n (Πny)wn, zn〉 = 〈δ2E a(y)wn, zn〉

=
∑
ξ∈Zd
〈δ2V (Dy(ξ))Dwn(ξ), Dzn(ξ)〉.

Since δ2V (Dy)Dwn → δ2V (Dy)Dv0 in `2 and Dzn ⇀ 0 in `2 it follows that bn → 0.
Finally, the fact that ‖∇Πny − A‖L∞(Rd\Břn ) → 0 as řn →∞ and the Lipschitz regularity

of δ2V and ∂2W imply that

‖δ2V (DΠny)− δ2V (AR)‖`∞(supp(Dzn)) ≤ ‖δ2V (DΠny)− δ2V (AR)‖`∞(Zd\Břn ) → 0, and

‖∂2W (∇Πny)− ∂2W (A)‖L∞(supp(∇zn)) ≤ ‖∂2W (∇Πny)− ∂2W (A)‖L∞(Rd\Břn ) → 0
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which, upon writing out δ2E β
n (Πny) − δ2E β

n (Ax) and estimating ‖Dzn‖`2 by ‖∇zn‖L2 , allow
us to conclude that

cn = 〈δ2E β
n (Ax)zn, zn〉+ o(1)‖∇zn‖2

L2 ≥ (γβh (Ax) + o(1))‖∇zn‖2
L2 ,

where o(1) denotes a sequence that converges to 0 as n→∞.
It remains only to observe that

γa(y)‖∇wn‖2
L2 + (γβh (Ax) + o(1))‖∇zn‖2

L2

≥ min{γa(y), γβh (Ax) + o(1)} (‖∇wn‖2
L2 + ‖∇zn‖2

L2)

= min{γa(y), γβh (Ax) + o(1)} (‖∇vn‖2
L2 − 2(∇wn,∇zn)L2)

= min{γa(y), γβh (Ax)}+ o(1),

where we used again that fact that ∇wn converges strongly while ∇zn ⇀ 0.
Thus, we have arrived at a contradiction to our original assumption, and have therefore

established the result. �

In the proof of Lemma 4.10 we will use the following auxiliary result.

Lemma 7.1. If β : Rd → R satisfies (3.7) then
√
β,
√

1− β ∈ W 1,∞ and

max
{
‖∇
√
β‖L∞ , ‖∇

√
1− β‖L∞

}
≤
√
‖∇2β‖L∞/2.

Proof. It is proved in [15] that
√
β is continuously differentiable on Ω = {x | β(x) 6= 0 or ∇2β(x) =

0} and ‖∇√β‖L∞(Ω) ≤
√
‖∇2β‖L∞/2. It remains to notice that Ω is everywhere dense, hence√

β is Lipschitz everywhere, i.e.,
√
β ∈ W 1,∞. The result for

√
1− β follows similarly. �

Proof of Lemma 4.10. As in the proof of Lemma 4.9 we assume, for contradiction, that there
exists a sequence βn, Tn, vn ∈ Un, ‖∇vn‖L2 = 1 etc. (again, we omit the subscript h) such
that

lim
n→∞

〈
δ2E β

n (Ax)vn, vn
〉
< γa = γa(Ax). (7.1)

We introduce the parameter εn = 1/Ra
n → 0, rescale variables,

x 7→ εnx, ξ 7→ εnξ, vn 7→ ε1−d/2
n vn, Ωn 7→ εnΩn,

and define ‖wn‖2
`2(εnZd)

:= εdn
∑

ξ∈εnZd |wn(ξ)|2. We observe that ‖∇vn‖L2 = 1 is preserved

under this rescaling, while (7.1) now reads limn→∞〈Hnvn, vn〉 < γa, where

〈Hnvn, vn〉 := εdn
∑
ξ∈εnZd

(1− βn(ξ))〈ADnvn(ξ), Dnvn(ξ)〉+

∫
Ωn

(Qnβn)(C :∇vn) :∇vn dx,

A := δ2V (AR), C := ∂2W (A), and Dnw(ξ) =

(
w(ξ + εnρ)− w(ξ)

εn

)
ρ∈R

. (7.2)

Upon extracting a subsequence we have that ∇vn ⇀ ∇v0 in L2 for some v0 ∈ H1
loc(Rd).

Hence we define wn := Πh(ηrn ∗ v0) ∈ Un and split vn = wn + zn, where ηr ∈ C∞(Rd) is a
family of mollifiers, and the sequence rn → 0 will be chosen later. Since ∇wn → ∇v0 in L2,
we have that ∇zn ⇀ 0 in L2.

Step 1: estimating 〈Hnzn, zn〉.
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Step 1.1: continuum contribution. We start by bounding the continuum contribution
from 〈Hnzn, zn〉, ∫

Ωn

(Qnβn)(C :∇zn) :∇zn dx.

Due to rescaling βn(x) 7→ βn(ε−1
n x) and εn = 1/Ra

n, we now have a uniform bound |∇2βn| ≤
Cβ

2 . Hence, the error of interpolation of βn tends to zero due to the assumption (3.8), i.e.,
‖Qnβn − βn‖L∞ → 0, which enables us to replace Qnβn by βn while making at most o(1)
error as n→∞.

For ease of notation, let R̂ := Cβ
1 , so that εnR

β
n = Rβ

n/R
a
n ≤ R̂, and B̂ := BR̂; cf. (3.6).

Upon shifting the test function we may assume that −
∫
B̂
vn dx = 0. (Note that the shifted

test function does not satisfy the homogeneous Dirichlet boundary condition, but this is ir-
relevant for the following estimates.) Therefore, due to (i) norm equivalence ‖vn‖H1(B̂) .

‖∇vn‖L2(B̂) and (ii) the compactness of the embedding L2(B̂) ⊂ H1(B̂), we have that

‖zn‖L2(B̂) → 0. Further, (3.7) implies that
√
βn =: ϕn ∈ W 1,∞ and that it satisfies the

bound ‖∇ϕn‖L∞ ≤
√
‖∇2βn‖L∞/2 ≤

√
Cβ

2 /2, as we have proved in Lemma 7.1.

Noting that supp(ϕn) ⊂ B̂, we have that∣∣∣∣ ∫
Ωn

βn(C :∇zn) :∇zn −
∫

Ωn

(C :∇(ϕnzn)) :∇(ϕnzn)

∣∣∣∣
=

∣∣∣∣2∫
Ωn

(C : (∇ϕn ⊗ zn)) :∇(ϕnzn) +

∫
Ωn

(C : (∇ϕn ⊗ zn)) : (∇ϕn ⊗ zn)

∣∣∣∣
. 2‖zn‖L2(B̂)‖∇zn‖L2(B̂) + ‖zn‖2

L2(B̂)
→ 0 as n→∞.

Thus, ∫
Ωn

(Qnβn)(C :∇zn) :∇zn =

∫
Ωn

βn(C :∇zn) :∇zn + o(1)

=

∫
Ωn

(C :∇(ϕnzn)) :∇(ϕnzn) + o(1)

≥ γc‖∇(ϕnzn)‖2
L2 + o(1)

= γc

∥∥∇(√βnzn
)∥∥2

L2 + o(1). (7.3)

In the last estimate we used two facts: (i) the stability (2.12) of the exact solution implies
the stability of the far-field [12], that is,

εdn
∑

ξ∈εnZd

〈
δ2V (AR)Dnwn(ξ), Dnwn(ξ)

〉
≥ γa‖∇wn‖2

L2 ;

and (ii) that atomistic stability implies continuum stability [18], that is,∫
(C :∇wn) :∇wn ≥ γc‖∇wn‖2

L2 where γc = γc(A) ≥ γa(Ax).

Step 1.2. A similar argument can be applied to the atomistic contribution to 〈Hnzn, zn〉.
We introduce the translation operator Tnwn(ξ) := (w(ξ+εnρ))ρ∈R and the productDnϕnTnzn :=
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((Dnϕn)ρ(Tnzn)ρ)ρ∈R. Then, redefining ϕn :=
√

1− βn ∈ W 1,∞, ‖∇ϕn‖ ≤
√
Cβ

2 /2, we obtain∣∣∣∣εdn ∑
ξ∈εnZd

(1− βn(ξ))
〈
ADnzn(ξ), Dnzn(ξ)

〉
− εdn

∑
ξ∈εnZd

〈
ADn(ϕnzn)(ξ), Dn(ϕnzn)(ξ)

〉∣∣∣∣
=

∣∣∣∣εdn ∑
ξ∈εnZd

〈
A
(
DnϕnTnzn

)
(ξ), 2Dn(ϕnzn)(ξ) +

(
DnϕnTnzn

)
(ξ)
〉∣∣∣∣

.
(
2‖∇z̄n‖L2(supp(ϕn)) + ‖z̄n‖L2(supp(ϕn))

)
‖z̄n‖L2(supp(ϕn)), (7.4)

where we used rescaled versions of the local norm-equivalence and inverse estimates (5.7).
Next, we notice that the mesh Tn is fully refined on supp(ϕn) (cf. the assumption (3.8)),

hence z̄n = zn on supp(ϕn), and therefore (7.4) tends to zero as n→∞. Thus,

εdn
∑
ξ∈εnZd

(1− βn(ξ))
〈
ADnzn(ξ), Dnzn(ξ)

〉
= εdn

∑
ξ∈εnZd

〈
ADn

(
ϕn(ξ)zn(ξ)

)
, Dn

(
ϕn(ξ)zn(ξ)

)〉
+ o(1)

≥ γa

∥∥∇(ϕnzn)∥∥2

L2 + o(1).

Next, we need to prove that ‖∇(ϕnzn − ϕnzn)‖L2 → 0. Indeed, ∇(ϕnzn − ϕnzn) can be
nonzero only in those T ∈ Tn where ϕn is not constant, and all such triangles are contained
in B̂, which implies

‖∇(ϕnzn − ϕnzn)‖L2(Rd) = ‖∇(ϕnzn − ϕnzn)‖L2(B̂).

Upon defining the oscillation operator oscT (f) := supx,y∈T |f(x)− f(y)| we can estimate the
right-hand side, for any T ∈ Tn, by

‖∇(ϕnzn − ϕnzn)‖L∞(T ) ≤ osc
T

(∇(ϕnzn))

≤ osc
T

(∇ϕn zn) + osc
T

(ϕn∇zn)

≤ 2‖∇ϕn‖L∞(T )‖zn‖L∞(T ) + osc
T

(ϕn)
∣∣∇zn|T ∣∣

. 2‖∇ϕn‖L∞(T )‖zn‖L2(T ) + εn‖∇ϕn‖L∞(T )

∣∣∇zn|T ∣∣,
where in the last step we used the fact that diam(T ) . εn and that ‖zn‖L∞(T ) . ‖zn‖L2(T )

since zn is a linear function on T .
Then summing the contributions over all T ⊂ B̂, we obtain

‖∇(ϕnzn − ϕnzn)‖L2(B̂) . 2‖∇ϕn‖L∞‖zn‖L2(B̂) + εn‖ϕn‖L∞‖∇zn‖L2(B̂) → 0,

since ‖zn‖L2(B̂) → 0 and εn → 0 as n→∞.
Thus,

εdn
∑

ξ∈εnZd
(1− βn(ξ))

〈
ADnzn(ξ), Dnzn(ξ)

〉
≥ γa‖∇(ϕnzn)‖2

L2 + o(1)

= γa

∥∥∇(√1− βnzn
)∥∥2

L2 + o(1). (7.5)

Step 1.3. Combining (7.3) and (7.5),and using γc ≥ γa, we obtain

〈Hnzn, zn〉 ≥ γa

∫
Ωh

(∣∣∇(√1− βn zn
)∣∣2 +

∣∣∇(√βn zn
)∣∣2) dx+ o(1).
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Then arguing similarly to the above (expanding the gradient of a product and exploiting the
fact that ‖zn‖L2(B̂) → 0) we conclude that∫

Ωh

(∣∣∇(√1− βn zn
)∣∣2 +

∣∣∇(√βn zn
)∣∣2) dx =

∫
Ωh

(
(1− βn)|∇zn|2 + βn|∇zn|2

)
dx+ o(1)

=

∫
Ωh

|∇zn|2 dx+ o(1).

Summarizing, in Step 1 we proved that

〈Hnzn, zn〉 ≥ γa‖∇zn‖2
L2 + o(1). (7.6)

Step 2: estimating 〈Hnwn, wn〉.
Since supp(βn) is contained in B̂ and ∇2βn is uniformly bounded, we have that, up to

extracting a subsequence, βn → β0 in C1 for some β0 ∈ C1(Rd). Due to the strong convergence
Qnβn → β0 in L∞ and wn → v0 in L2, it is straightforward to evaluate the limit of the
continuum contribution to 〈Hnwn, wn〉:∫

Ωn

(Qnβn)(C :∇wn) :∇wn dx =

∫
Ωn

β0(C :∇v0) :∇v0 dx+ o(1). (7.7)

To evaluate the limit of the atomistic contribution to 〈Hnwn, wn〉, recall the definition (7.2)
of Dn and notice that for a fixed r > 0, ‖Dn(ηr ∗v0)−∇R(ηr ∗v0)‖`2(εnZd) → 0 as Dn(ηr ∗v0) is
a finite difference approximation to the derivative of a smooth function, ∇R(ηr ∗ v0). Hence,
since ‖βn − β0‖`∞(εnZd) ≤ ‖βn − β0‖L∞(Rd) → 0, we obtain

lim
n→∞

εdn
∑

ξ∈εnZd
(1− βn(ξ))

〈
ADn(ηr ∗ v0)(ξ), Dn(ηr ∗ v0)(ξ)

〉
= lim

n→∞
εdn
∑

ξ∈εnZd
(1− β0(ξ))

〈
A∇R(ηr ∗ v0)(ξ),∇R(ηr ∗ v0)(ξ)

〉
=

∫
Rd

(1− β0)
〈
A∇R(ηr ∗ v0),∇R(ηr ∗ v0)

〉
dx.

In the last step we used the fact that a summation rule applied to a smooth function converges
to its integral.

Next, we notice that ∇(ηr ∗ v0)→ ∇v0 in L2, as r → 0, hence

lim
r→0

lim
n→∞

εdn
∑

ξ∈εnZd
(1− βn(ξ))

〈
ADn(ηr ∗ v0)(ξ), Dn(ηr ∗ v0)(ξ)

〉
=

∫
Rd

(1− β0)
〈
A∇Rv0,∇Rv0

〉
dx.

Therefore there exists a sequence rn ↓ 0 (sufficiently slowly) such that

lim
n→∞

εdn
∑

ξ∈εnZd
(1− βn(ξ))

〈
ADn(ηrn ∗ v0)(ξ), Dn(ηrn ∗ v0)(ξ)

〉
=

∫
Rd

(1− β0)
〈
A∇Rv0,∇Rv0

〉
dx

=

∫
Ωn

(1− β0)(C :∇v0) :∇v0 dx.
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Finally it remains to notice that due to the full refinement of Tn on supp(1 − βn), wn :=
Πn(ηrn ∗ v0) = ηrn ∗ v0, hence

εdn
∑

ξ∈εnZd
(1− βn(ξ))

〈
ADnwn(ξ), Dnwn(ξ)

〉
→
∫

Ωn

(1− β0) (C :∇v0) :∇v0 dx. (7.8)

Combining the estimates for the atomistic contribution (7.8) with that for the continuum
contribution (7.7) we finally deduce that

〈Hnwn, wn〉 =

∫
(C :∇v0) :∇v0 + o(1)

≥ γc‖∇v0‖2
L2 + o(1) = γc‖∇wn‖2

L2 + o(1). (7.9)

Step 3: estimating the cross terms 〈Hnwn, zn〉.
Since ∇zn ⇀ 0 and ∇wn → ∇v0 in L2, and Qnβn → β0 in L∞, we trivially have that∫

Ωn

(Qnβn)(C :∇wn) :∇zn dx→
∫

Ωn

β0(C :∇v0) :0 dx = 0.

To prove that

εdn
∑

ξ∈εnZd
(1− βn)〈ADnwn, Dnzn〉 = o(1) (7.10)

we convert the sum to stress-strain form as in § 4.2.3. Let ζ̄n(ξ) = ε−dn ζ̄(ξ/εn) be the rescaled
hat function and ψn : εZd → Rm such that ψ∗n := (ζ̄n ∗ ψ̄n) = zn on εnZd, then

εdn
∑

ξ∈εnZd
(1− βn)〈ADnwn, Dnzn〉 =

∫
Sn : ∇ψ̄n, where

Sn(x) = εdn
∑
ξ∈εZd

(1− βn(ξ))
∑
ρ,ς∈R

[
(AρςDn,ςwn(ξ))⊗ ς

]
−
∫ εn

t=0

ζ̄n(ξ + tρ) dt.

We can now argue analogously as in Step 2 to prove that

Sn(x)→ (1− β0)C : ∇v0 strongly in L2,

again requiring that rn → 0 sufficiently slowly (possibly at a slower rate than in Step 2).

Thus, if we can prove that ∇ψ̄n ⇀ 0 in B̂, then (7.10) follows.

To that end, let µ ∈ C∞c (B̂;Rm) be a test function with compact support, then ‖ζ̄n ∗∇µ−
∇µ‖L∞ → 0 as n→∞ and hence,∫

∇ψ̄n : ∇µ dx =

∫
∇ψ̄n : (ζ̄n ∗ ∇µ) dx+ o(1) =

∫
∇
(
ζ̄n ∗ ψ̄n

)
: ∇µ dx+ o(1)

=

∫
∇ψ∗n : ∇µ dx+ o(1) =

∫
ψ∗n ·∆µ dx+ o(1).

Due to local norm-equivalence in each element, we have that

‖ψ∗n‖L2(B̂) . ‖ψ∗n‖`2(εZd∩B̂) = ‖zn‖`2(εZd∩B̂) . ‖zn‖L2(B̂) → 0 as n→∞.

Hence, it follows that
∫
ψ̃n ·∆µ dx→ 0, which completes the proof that ∇ψ̄n ⇀ 0, and hence

also the proof of (7.10). Thus, we have established that

〈Hnwn, zn〉 → 0 as n→∞. (7.11)
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Step 4: conclusion of the proof. Combining (7.6), (7.9) and (7.11) we obtain

〈Hnvn, vn〉 ≥ γa‖∇zn‖2
L2 + γa‖∇wn‖2

L2 + o(1)

= γa‖∇vn‖2
L2 − 2γa(∇zn,∇wn)2

L2 + o(1)

= γa‖∇vn‖2
L2 + o(1) = γa + o(1).

Thus, we have a contradiction to our initial assumption that limn→∞〈Hnvn, vn〉 < γa. �

7.2. BQCF stability. The main step towards the proof of Lemma 4.12 is the following
estimate.

Lemma 7.2. There exists C, independent of (β, Th) such that

|〈δ2E β
h (yh)vh − δF β

h (yh)vh, vh〉| ≤ CE ∀vh ∈ Uh,

where E := ‖∇yh − A‖L∞(Ωβ)

(
‖∇vh‖2

L2 + ‖vh‖L2(Ωβ)‖∇vh‖L2‖∇β‖L∞
)

+ ‖∇β‖W 1,∞‖∇vh‖2
L2 + ‖∇2β‖L∞‖vh‖L2(Ωβ)‖∇vh‖L2 . (7.12)

Proof. Step 1: reduction to the homogeneous case. Let δ2Vξ := δ2V (Dyh(ξ)) and ∂2W :=
∂2W (∇yh(x)), A := δ2V (AR) and C := ∂2W (A).

Then, the difference in the linearised operators is given by

〈δ2E β
h (yh)vh − δF β

h (yh)vh, vh〉

=
∑
ξ∈Zd

(1− β(ξ))
〈
δ2VξDvh(ξ), Dvh(ξ)

〉
+

∫
Ωh

(Qhβ)
(
∂2W :∇vh

)
:∇vh dx,

−
∑
ξ∈Zd

〈
δ2VξDvh(ξ), D((1− β)vh)(ξ)

〉
−
∫

Ωh

(∂2W :∇vh) :∇Ih(βvh) dx

=
∑
ξ∈Zd

〈
δ2VξDvh(ξ),

(
− βDvh +D(βvh)

)
(ξ)
〉

+

∫
Ωh

(∂2W :∇vh) :
(
(Qhβ)∇vh −∇Ih(βvh)

)
dx

=
∑
ξ∈Λβ

〈
δ2VξDvh(ξ),

(
− βDvh +D(βvh)

)
(ξ)
〉

+

∫
Ωβ

(∂2W :∇vh) :
(
(Qhβ)∇vh −∇Ih(βvh)

)
dx.

In the last step we used the fact that the summand is nonzero only if ξ ∈ Λβ and the integrand
is nonzero only if x ∈ Ωβ, where Λβ and Ωβ are defined in § 3.2.

For such ξ and x we can estimate |δ2V (Dyh(ξ))−A| . ‖Dyh−AR‖`∞(Λβ) . ‖∇yh−A‖L∞(Ωβ)

and |∂2W (∇yh(ξ))− ∂2W (A)| . ‖∇yh − A‖L∞(Ωβ). Hence, we can estimate∣∣〈δ2E β
h (yh)vh − δF β

h (yh)vh, vh〉 − 〈δ2E β
h (Ax)vh − δF β

h (Ax)vh, vh〉
∣∣

. ‖Dyh − AR‖`∞(Λβ)‖Dvh‖`2(Λβ)

(
‖β‖`∞‖Dvh‖`2 + ‖Dβ‖`∞‖vh‖`2(Λβ)

)
+ ‖∇yh − A‖L∞(Ωβ)‖∇vh‖L2

(
‖∇β‖L∞‖vh‖L2(Ωβ) + ‖∇vh‖L2‖β‖L∞

)
. ‖∇yh − A‖L∞(Ωβ)‖∇vh‖L2

(
‖∇β‖L∞‖vh‖L2(Ωβ) + ‖∇vh‖L2

)
. E. (7.13)
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Step 2: estimate for the case yh = Ax. It remains to bound δ2E β
h (Ax)− δF β

h (Ax). To that
end denote

Eξ := ‖∇β‖W 1,∞(νξ)‖∇vh‖2
L2(νξ)

+ ‖∇2β‖L∞(νξ)‖vh‖L2(νξ)‖∇vh‖L2(νξ),

where νξ = B2rcut+
√
d(ξ) is defined in (4.4), so that

∑
ξ∈Λβ

Eξ . E.

Further, let Aρσ = V,ρσ(AR), then we have

〈δ2E β
h (Ax)vh − δF β

h (Ax)vh, vh〉
=
∑
ξ∈Λβ

〈
ADvh(ξ),

(
− βDvh +D(βvh)

)
(ξ)
〉

+

∫
Ωβ

(C :∇vh) :
(
(Qhβ)∇vh −∇Ih(βvh)

)
dx

=
∑
ξ∈Λβ

(〈
ADvh(ξ), (vh∇β)(ξ)

〉
+O(Eξ)

)
−
∫

Ωβ
(C :∇vh) :

(
vh ⊗∇β

)
dx

=
∑
ρ,σ∈R

Aρς :

{∑
ξ∈Zd

Dρvh(ξ)⊗ vh(ξ)∇σβ(ξ)−
∫
∇ρvh ⊗ vh∇σβ dx

}
+O(E). (7.14)

Let v(ξ) := vh(ξ) for all ξ ∈ Zd and recall the definition of v∗ from (4.13). We observe that
the sum and integral are only taken over a region where vh = v̄ (recall that T = Th in the
blending region), hence we can write∑

ξ∈Zd
Dρv(ξ)⊗ vh(ξ)∇σβ(ξ) =

∑
ξ∈Zd

Dρv
∗(ξ)⊗ v(ξ)∇σβ(ξ)

+
∑
ξ∈Zd

Dρ(v − v∗)(ξ)⊗ v(ξ)∇σβ(ξ)

=: Sρσ + Tρσ. (7.15)

Step 2.1: Rewriting Sρσ. Employing (4.14) and (4.18) we can write

Sρσ =
∑
ξ∈Zd

∫
Rd
∇ρv̄(x)ωρ(ξ − x) dx⊗ v(ξ)∇σβ(ξ)

=

∫
Rd
∇ρv̄ ⊗

{∑
ξ∈Zd

ωρ(ξ − x)v(ξ)∇σβ(ξ)

}

=

∫
Rd
∇ρv̄ ⊗

{∑
ξ∈Zd

ωρ(x− ξ)
(
v̄(x)∇σβ(x) +O

(
‖∇(v̄∇σβ)‖L∞(νξ)

))}
dx

=

∫
Rd
∇ρv̄ ⊗ v̄(x)∇σβ(x) dx+O(E).

Thus, we observe from (7.14) and (7.15) that

〈δ2E β
h (Ax)vh − δF β

h (Ax)vh, vh〉 =
∑
ρ,σ∈R

Aρσ : Tρσ +O(E). (7.16)
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Step 2.2: Estimating Tρσ. Summation by parts yields∣∣Tρσ

∣∣ =

∣∣∣∣−∑
ξ∈Zd

(v − v∗)(ξ)⊗D−ρ
(
v∇σβ

)
(ξ)

∣∣∣∣
. ‖v − v∗‖`2(Λβ)‖D−ρ(v∇σβ)‖`2(Λβ)

. ‖∇v‖L2(Ωβ)

(
‖v̄‖L2(Ωβ)‖∇2β‖L∞ + ‖D−ρv‖`2(Λβ)‖∇β‖L∞

)
. E.

Recalling (7.16) and (7.13), this completes to proof of the lemma. �

Proof of Lemma 4.12. In view of Lemma 7.2 we only need to verify that E → 0 as Ra →∞,
where E is defined by (7.12). Using Corollary 6.8 we estimate

E ≤ ‖∇yh − A‖L∞(Ωβ)

(
‖∇vh‖2

L2 +
√
C2‖∇vh‖2

L2‖∇β‖L∞
)

+ ‖∇β‖W 1,∞‖∇vh‖2
L2 + ‖∇2β‖L∞

√
C2‖∇vh‖2

L2 ,

where C2 =
(
(Rβ)2 − (Ra)2

)
C ′1 and C ′1 is the constant from Lemma 6.8. Then, using

‖∇jβ‖L∞ . (Rβ)−j, we have

E . ‖∇yh − A‖L∞(Ωβ)

(
‖∇vh‖2

L2 +
√
C2‖∇vh‖2

L2(Rβ)−1
)

+
(
(Rβ)−2 + (Rβ)−1

)
‖∇vh‖2

L2 + (Rβ)−2
√
C2‖∇vh‖2

L2 , (7.17)

= I1 + I2 + I3.

To complete the estimates we note that
√
C2(Rβ)−1 . γtr where γtr is defined in (4.27).

Further, the regularity estimates from Lemma 2.3 and (2.10) yield

‖∇yh − A‖L∞(Ωβ) .

{
(Ra)−1, case (pDis),
(Ra)−d, case (pPt).

These estimates are combined to yield

I1 .

 (Ra)−1(logRa)1/2, case (pDis),
(Ra)−2(logRa)1/2, case (pPt), d = 2,

(Ra)−3, case (pPt), d = 3,

I2 . (Ra)−1, and

I3 .

{
(Ra)−1(logRa)1/2, case d = 2,

(Ra)−1, case d = 3.

This completes the proof of Lemma 4.12. �

Remark 7. The auxiliary results, Lemmas 4.9 and 4.12, hold under much weaker assump-
tions. For instance, with extra work, Lemma 4.12 can be proved for the blending width (i.e.,
the width of supp(∇β)) scaling slower than Ra [20]. However, this would not be important
for the practical implementation of the method or for our error estimates. �
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