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Abstract Dynamic pickup and delivery problems (PDPs) require online algo-
rithms for managing a fleet of vehicles. Generally, vehicles can be managed either
centrally or decentrally. A common way to coordinate agents decentrally is to
use the contract-net protocol (CNET) that uses auctions to allocate tasks among
agents. To participate in an auction, agents require a method that estimates the
value of a task. Typically this method is an optimization algorithm. Recently,
hyper-heuristics has been proposed for automated design of heuristics. Two prop-
erties of automatically designed heuristics are particularly promising: 1) a gen-
erated heuristic computes quickly, it is expected therefore that hyper-heuristics
heuristics perform especially well for urgent problems, and 2) by using simulation-
based evaluation, hyper-heuristics can learn from the past and can therefore create
a ‘rule of thumb’ that anticipates situations in the future. In the present paper we
empirically evaluate whether hyper-heuristics, more specifically genetic program-
ming (GP), can be used to improve agents decentrally coordinated via CNET.
We compare several GP settings and compare the resulting heuristic with existing
centralized and decentralized algorithms on a dynamic PDP dataset with vary-
ing levels of dynamism, urgency, and scale. The results indicate that the evolved
heuristic always outperforms the optimization algorithm in the decentralized MAS
and often outperforms the centralized optimization algorithm. Our paper shows
that designing MASs using genetic programming is an effective way to obtain
competitive performance compared to traditional operational research approaches.
These results strengthen the relevance of decentralized agent based approaches in
dynamic logistics.
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1 Introduction

The pickup and delivery problem (PDP) is a type of logistics problem where a
fleet of vehicles transports customers or goods from origin to destination [1]. The
dynamic pickup and delivery problem with time windows (PDPTW) is an online
variant where some or all customers’ orders arrive during the operating hours [2].
In a purely dynamic PDPTW, no order is known before the operating hours.
When a new order is announced, the available computation time for an algorithm
is limited by the order’s urgency, the amount of available time until the order
needs to be serviced [3]. Together, the dynamism, urgency, and scale of a problem,
directly affect the amount of computations that need to be done as well as how
much time is available for performing them [4].

Decentralized multi-agent systems (MASs) are commonly considered to be a
good fit for large scale and dynamic problems because of their ability to make
quick local decisions. Together, the local decisions made by all agents aim to
solve the global problem. There are two different approaches for making these
decisions: 1) explicitly searching through the space of possible schedules using
an (exact or heuristic) optimization procedure, or, 2) using a heuristic, a rule of
thumb, that guides the agent by assigning priorities to actions without explicitly
searching the space of schedules. The aim of the present paper is to investigate
whether automated design of an agent-based heuristic can outperform the use of
an optimization procedure.

1.1 Related work

A recent empirical study by van Lon and Holvoet [5] employs a MAS with an auc-
tion based contract-net protocol (CNET). The agents place bids to the customer
indicating the estimated additional cost to perform the transportation task. Each
agent computes this bid value by running an optimization procedure for a lim-
ited time. The experiments indicate that the MAS only outperforms a reference
centralized algorithm in case the problem is medium to large scale, very urgent,
and very dynamic. In this situation the computational demands are very high,
limiting the viability of searching the solution space. The CNET approach, how-
ever, uses implicit partitioning of the search space, apparently this helps in these
circumstances to find a good solution in a short amount of time. Since the paper
by van Lon and Holvoet [5] considers purely dynamic PDPTWs we know that
the problem is likely to change soon after a bid value is computed. A reasonable
assumption is therefore that a good bid value incorporates expected future events
that affect the transportation cost of an order. However, in the current setup,
the optimization algorithm, OptaPlanner [6], only considers all information that
is known up to the moment of computation. An alternative for the optimization
procedure is a heuristic that includes estimations of future events. Designing such
a heuristic is, however, a difficult task. A local decision made by an agent can have
far reaching global consequences, because a collection of agents acting according to
decentralized local rules constitute a complex system with emergent and difficult
to predict behavior.

Hyper-heuristics is a branch of optimization literature concerned with the auto-
matic design of heuristics [7]. Burke et al. [8] distinguishes two different categories
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of hyper-heuristics, heuristic selection and heuristic generation. Heuristic selec-
tion comprises of methodologies for choosing or selecting existing heuristics while
heuristic generation is concerned with generating new heuristics from components
of existing heuristics. Genetic programming (GP) is a subfield of evolutionary com-
puting [9], that works with variable size LISP-tree representations and thus is able
to evolve functions of arbitrary complexity, making it particularly suitable for the
design of heuristics. Hyper-heuristics and GP in particular, have been applied in
a wide range of contexts, including production scheduling [10], traveling salesman
problems [11], bin packing [12], etc.

The combination of hyper-heuristics and MAS for dynamic PDPTW has been
explored before. To the best of our knowledge, Beham et al. [13] were the first to
apply hyper-heuristics to an agent-based algorithm for the PDPTW. In their MAS,
vehicle agents are governed by two separate heuristics, one heuristic determines its
next location to travel to and another heuristic determines the order(s) to pick up
at a pickup site. Both heuristics are weighted sums of hand-crafted heuristics, the
weights are set by an evolution strategy (ES) algorithm. Determining the quality
of the heuristics during evolution is done with a simulation-based fitness function.
Beham et al. [13] did not compare their approach with alternative algorithms.

Similarly, van Lon et al. [14] used GP to evolve the guiding heuristic for a MAS
in a dynamic PDPTW context. Vehicles have a capacity of one order, implying that
a vehicle must immediately go to an order’s destination after pick up. The evolved
heuristic assigns priorities to all available orders. Each vehicle that is not currently
carrying an order executes its heuristic frequently, and travels to the order with the
highest priority. The agents do not communicate amongst each other, leading to
inefficiencies in case several vehicles have the same priority. Because the problem is
dynamic, priorities of vehicles change, causing vehicles to divert from their route.
In their paper, van Lon et al. show that their MAS approach with an evolved
heuristic outperforms a centralized meta-heuristic.

The work by Vonolfen et al. [15] extends [14]. Instead of using just three vari-
ables in GP as was done in [14], Vonolfen et al. use 18 different variables. This
includes several variables that include information about other agent’s distances
and destinations. The authors compare their approach with two algorithms, a
(centralized) tabu search algorithm and the evolution strategy presented in [13].
Vonolfen et al. report that the tabu search algorithm outperforms both the GP as
well as the ES approach, while GP outperforms ES.

Continuing in this line of research, Merlevede et al. [16] use neuroevolution of
augmenting topologies (NEAT) to evolve a neural network as a priority heuristic.
The authors use the same MAS approach as in [14] but they evaluate their perfor-
mance on an existing dynamic PDPTW benchmark. They are the first to report
negative results, the reference centralized algorithm always outperforms the NEAT
approach. These results are likely caused by the lack of a coordinating mechanism
for their MAS.

The papers described above that apply hyper-heuristics to MAS for dynamic
PDPTW have several drawbacks which we aim to overcome in present paper. First,
the discussed hyper-heuristics have not been evaluated in real-time. In a dynamic
logistics problem, algorithm computation time directly affects the performance of
the fleet of vehicles. Therefore, when comparing hyper-heuristics to traditional
optimization algorithms in dynamic PDPTW, a real-time simulator is required.
Second, for a fair comparison of two different algorithms, it is important that both
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algorithms are subject to exactly the same constraints. When comparing hyper-
heuristics in a MAS setting, a fair comparison is to have a reference algorithm that
is also used in a MAS setting. Unfortunately, none of the above described works
evaluate their agent-based hyper-heuristic in this way. Third, to understand the
exact circumstances in which one algorithm outperforms another, it is imperative
to vary the problem properties on which they are evaluated. Fourth, to allow
reproducibility and extensibility, the algorithms, datasets, and software that are
used should be open source.

1.2 Contributions and overview

The aim of present paper is to determine whether using hyper-heuristics can
improve the performance of an existing MAS for a real-time logistics problem.
More specifically, we are investigating two hypotheses comparing a hyper-heuristic
setup with the centralized OptaPlanner algorithm and the decentralized MAS both
from [5]:

– GP designed heuristic in a MAS can outperform OptaPlanner in a MAS.
– GP designed heuristic in a MAS can outperform centralized OptaPlanner.

Since a heuristic typically requires only a fraction of the computation time that a
solver requires, we also investigate the following hypothesis:

– GP designed heuristic works especially good for more urgent problems because
of its minimal computational cost.

Using the dataset and dataset generator from [4] we can train and test the heuris-
tics on instances with different values of dynamism, urgency, and scale. We define
a specialized heuristic as a heuristic that is trained on one specific scenario setting
with specific properties, as opposed to a generalized heuristic that is trained on a
wide range of scenario settings. We expect that:

– Specialized heuristics outperform general heuristics on scenarios for which they
are specialized.

– Generalized heuristics outperform specialized heuristics on scenarios for which
they are not specialized.

The paper is organized as follows. A formal problem definition, including dy-
namism, urgency, and scale, and the real-time simulation platform are presented
(Section 2). The MAS that we start from is presented (Section 3). Present paper
contributes the following:

– a new application of hyper-heuristics to decentralized MAS using GP is pre-
sented (Section 4);

– the performance of GP and the resulting heuristics are thoroughly evaluated us-
ing real-time simulation and compared to existing results obtained by a central-
ized and a decentralized OptaPlanner algorithm under varying circumstances
(Section 5);

– following the tradition of [5], all code, data, and results needed to reproduce
this work are made available online.

The paper is concluded in Section 6.
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2 Dynamic pickup-and-delivery problems

This section is adapted from [4, 5]. In PDPs there is a fleet of vehicles responsible
for the pickup-and-delivery of items. Dynamic PDP is an online problem. Customer
transportation requests are revealed over time, during the fleet’s operating hours.
It is further assumed that the fleet of vehicles has no prior knowledge about the
total number of requests nor about their locations or time windows. In this section,
we provide an overview of the existing work about dynamic PDP and the dataset
as it serves as a foundation of the evaluation in present paper.

2.1 Formal definition

In [4] a scenario, which describes the unfolding of a dynamic PDP, is defined as a
tuple:

〈T , E ,V〉 := scenario,

where

[0, T ) := time frame of the scenario, T > 0

E := list of events, |E| ≥ 2

V := set of vehicles, |V| ≥ 1

[0, T ) is the period in which the fleet of vehicles V has to respond to customer
requests. The events, E , represent customer transportation requests. Since we con-
sider the purely dynamic PDPTW, all events are revealed between time 0 and
time T . Each event ei ∈ E is defined by the following variables:

ai := announce time

pi := [pLi , p
R
i ) = pickup time window, pLi < pRi

di := [dLi , d
R
i ) = delivery time window, dLi < dRi

pst i := pickup service time span

dst i := delivery service time span

ploci := pickup location

dloci := delivery location

tt i := travel time from pickup location to delivery location

Reaction time is defined as:

ri := pRi − ai = reaction time (1)

The time window related variables of a transportation request are visualized in
Figure 1.

Furthermore it is assumed that:

– vehicles start at a depot and have to return after all orders are handled;
– the fleet of vehicles V is homogeneous;
– the cargo capacity of vehicles is infinite (e.g. courier service);
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time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Fig. 1: Visualization of the time related variables of a single order event ei ∈ E .

– the vehicle is either stationary or driving at a constant speed;
– vehicle diversion is allowed, this means that a vehicle is allowed to divert from

its destination at any time;
– vehicle fuel is infinite and driver fatigue is not an issue;
– the scenario is completed when all pickup and deliveries have been made and

all vehicles have returned to the depot; and,
– each location can be reached from any other location.

Vehicle schedules are subject to both hard and soft constraints. The opening
of time windows is a hard constraint, hence vehicles need to adhere to these:

spij ≥ pLi (2)

sdij ≥ dLi (3)

spij is the start of the pickup operation of order event ei by vehicle vj ; similarly,
sdij is the start of the delivery operation of order event ei by vehicle vj . The time
window closing (pRi and dRi ) is a soft constraint incorporated into the objective
function, it needs to be minimized:

min :=
∑
j∈V

(vttj + td {bdj , T }) +
∑
i∈E

(
td
{
spij , p

R
i

}
+ td

{
sdij , d

R
i

})
(4)

where

td {α, β} := max {0, α− β} = tardiness (5)

vttj is the total travel time of vehicle vj ; bdj is the time at which vehicle vj is
back at the depot. In summary, the objective function computes the total vehicle
travel time, the tardiness of vehicles returning to the depot and the total pickup
and delivery tardiness.

2.2 Dataset

Earlier work has argued for, and presented, a dataset characterized by three dif-
ferent properties of dynamic PDPs: dynamism, urgency, and scale [4].

2.2.1 Dynamism

Dynamism is defined in van Lon et al. [3]. Informally, a scenario that changes
continuously is said to be dynamic while a scenario that changes occasionally
is said to be less dynamic. In the context of PDPTWs a change is an event that
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introduces additional information to the problem, such as the events in E . Formally,
the degree of dynamism, or the continuity of change, is defined as:

dynamism := 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

(6)

∆ is the list of event interarrival times:

∆ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i+ 1 ∧ ∀ai, aj ∈ E} (7)

The interarrival time for a scenario with 100% dynamism is called the perfect
interarrival time:

θ := perfect interarrival time =
T
|E| (8)

Based on this definition, the deviation and maximum possible deviation to the
perfect interarrival time can be computed:

σi :=


θ − δi if i = 0 and δi < θ

θ − δi +
θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(9)

σ̄i := θ +


θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(10)

eq. 6 uses the proportion of the actual deviation and the maximum possible devia-
tion. Using this definition the degree of dynamism of any scenario can be computed.

2.2.2 Urgency

In [3] urgency is defined as the maximum reaction time available to the fleet of
vehicles in order to respond to an incoming order. Or more formally:

urgency (ei) := pRi − ai = ri (11)

To obtain the urgency of an entire scenario the mean and standard deviation of
the urgency of all orders can be computed.

2.2.3 Scale

Scale is defined by van Lon and Holvoet [4] as maintaining a fixed objective value
per order while scaling the number of orders up in proportion to the number of
vehicles in the fleet. Scaling up a scenario 〈T , E ,V〉 with a factor α will create a
new scenario 〈T , E ′,V ′〉 where |V ′| = |V| · α and |E ′| = |E| · α.
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2.3 Realistic simulation platform

The experiments performed in van Lon and Holvoet [5] use the RinSim real-time
logistics simulator [17]. For fair comparison we use the same simulator. RinSim
is a discrete-time logistics simulator that supports running both centralized algo-
rithms and decentralized multi-agent systems. RinSim is written in Java and has
a modular design (Figure 2), a Model encapsulates a part of a problem domain
or algorithm. The simulator can be customized by selecting the models that are

TimeModel RoadModel

ScenarioController StatsTracker CommModel PDPModel

RinSim

MAS

Solver

GUI

Fig. 2: UML component diagram of RinSim. The simulator subsystem can be
configured with a variety of models that all provide some interface. MASs, solvers,
and the graphical user interface use these interfaces to interact with RinSim.

used, this allows simulating a wide variety of logistics problems while maximally
reusing existing code.

RinSim supports simulations using simulated time as well as real-time. The
standard Java virtual machine (JVM) has no built-in support for real-time exe-
cution. However, RinSim is designed such that it provides soft real-time behavior
using the standard JVM. Soft real-time, as opposed to hard real-time, allows oc-
casional deviations from the desired execution timing.

RinSim discretizes time into intervals called ‘ticks’. The simulator is initialized
with a fixed tick length, for example a tick length of 250 milliseconds. When
simulating without real-time constraints, the simulator computes all ticks as fast
as possible. In a real-time simulator the interval between the start of two ticks
should be the tick length (e.g. 250 ms). Since the JVM doesn’t allow precise
control over the timings of threads it is generally impossible to guarantee hard real-
time constraints. In real-time mode, RinSim uses a dedicated thread for executing
the ticks. If computations need to be done that are expected to last longer than
a tick, they must be done in a different thread. This minimizes interference of
computations with the advancing of time in the simulated world. Additionally,
the processor affinity of the threads are set at the operating system level. Setting
the processor affinity to a Java thread instructs the operating system to use one
processor exclusively for executing that thread. In practice, the actual scheduling
of threads on processors depends on the number of available processors and the
operating system.

Running a complete logistics simulation in real-time is time consuming, as it
will simulate every tick synchronized with real time. However, depending on the
specific simulation that is being run, there may be long intervals where no com-
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putations are being done other than that of the simulator advancing time in the
simulated world. For this reason, RinSim employs a mechanism to dynamically
switch between real-time and simulated time. When the simulator is in simulated
time, ticks will be executed as fast as possible speeding up the simulation signifi-
cantly. As soon as a computation needs to be done, the simulator must first switch
back to real-time mode before this computation can be started.

3 Multi-agent systems for dynamic PDP

This section is adapted from [5]. The multi-agent system that is extended is an
implementation of the dynamic contract-net protocol (DynCNET) presented by
Weyns et al. [18]. DynCNET is a dynamic extension of the CNET first proposed
by Smith [19]. Inspired by how companies use subcontracting to collaboratively
solve problems, CNET uses contracting to approach the task assignment problem.
In CNET, the agent that tenders a task is called the manager and it sends a task
announcement to potential contractors. Each potential contractor can either ignore
the announcement or send a bid to the manager. The manager then selects its best
bid and awards the task to the contractor. Figure 3 shows the UML interaction
diagram for the CNET auction process. Although an auction can be, and usually

Manager

New task

Task announcement

Potential contractor

Compute bid
Propose bid

Award task

Fig. 3: UML interaction diagram of a CNET auction.

is, used in a competitive setting, we use auctions in a purely cooperative setting.
We assume that both the contractors and the manager are working for the same
company. The dynamic extension of CNET provides flexibility to the assignment
until a contractor has to commit to the execution of the task. The same task can be
announced several times before its execution, its assignment changing after every
announcement.

In our MAS implementation for the dynamic PDPTW, both the vehicle as
well as the transportation requests are modeled as agents. In the remainder of
this text we will call the agent controlling a vehicle a VehicleAgent and the agent
responsible for a transportation request an OrderAgent. OrderAgents are playing
the role of the manager in DynCNET, VehicleAgents are the potential contrac-
tors. Figure 4 shows an interaction diagram of an auction using our DynCNET
implementation. At the end of an auction, each VehicleAgent is either awarded
the order or notified of the end of the auction. At this moment the VehicleAgents
have the possibility of starting a new auction by offering one of their previously
awarded orders. The VehicleAgent will inform the OrderAgent responsible for the
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New task

:OrderAgent

Announce

v2:VehicleAgent

Compute

:RinSim

Announce

v1:VehicleAgent

Compute

Several ticks Done
Propose bid

Several ticks Done
Propose bid

opt [Stop criterion]

Finalize auction

Award

End of auction

Fig. 4: UML interaction diagram of an auction of an order with two vehicles. Upon
receiving the auction announcement, both VehicleAgents start computing a bid.
The computations take several ticks. As soon as the OrderAgent has met the stop
criterion, in this case receiving two bids is enough, the auction is finalized and the
order is awarded to v1. Vehicle v2 is notified of the end of the auction. The RinSim

lifeline is a simplified view of the multi-threaded computation facilities provided
by RinSim. Note that the filled arrows indicate synchronous calls and the stick
arrows indicate asynchronous calls.

order that is to be offered to start a new auction, the OrderAgent will then perform
a new auction process similar to Figure 4. A possible outcome of this auction is
that the order is not awarded to another vehicle but stays assigned to the original
vehicle. Allowing the vehicles to start a new auction process enables the dynamic
(re)allocation of orders and makes the CNET implementation dynamic.

3.1 Order agent

The OrderAgent (the manager in CNET terminology) is responsible for the auction
process. It announces the start of the auction to all vehicles and waits until it
receives enough bids to make a decision. The stop criterion for the bidding process
is:

|bids| ≥ 2 ∧ (|bids| = |vehicles| ∨ auction duration ≥ 5000)

where, |bids| is the number of received bids, |vehicles| is the total number of
vehicles which equals the potential maximum number of bids and auction duration
is the duration of the auction in milliseconds.

When the stop criterion evaluates to true, the OrderAgent finalizes the auction
by selecting the best bid as the winner. The best bid is defined as the bid with the
lowest price (cost). The order is assigned to the winner, the winner must therefore
service that order, unless, it decides to auction it and somebody else wins that
auction at a later time. All VehicleAgents are informed of the end of the auction.
This allows agents that are still computing their bids for this auction to cancel
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their computations. Bids that are received after the finalization of the auction are
ignored.

3.2 Vehicle agent

A VehicleAgent needs to compute a bid value in order to propose a bid. In [5]
the bid value is computed using a solver. The cost of an order is defined as the
additional cost that including that order incurs to a vehicle’s current schedule:

cost(order) = cost(new schedule)− cost(current schedule) (12)

where, current schedule is the schedule of the vehicle including all previous order
assignments, and new schedule is the current schedule of the vehicle including the
proposed order. The task of the solver is finding the best new schedule in a relative
short amount of time to get a reliable estimate of the cost of the auctioned order.
The time for computing the new schedule is limited because the auction process
has a limited duration, the bid needs to be proposed before the end of this duration
in order to ensure that the OrderAgent will take the bid into account.

As soon as the assignment of orders to a vehicle has changed, the VehicleAgent
needs to update its schedule. The vehicle’s schedule is optimized by a solver (the
schedule solver), although it is imperative to generate a complete schedule quickly,
it is not necessary to limit the duration of the solver as the solver can continu-
ously notify the VehicleAgent of improved schedules. This allows the optimization
process to continue for an extended period.

The VehicleAgent considers starting a new auction in the following two situ-
ations:

– when a vehicle hasn’t won an auction for at least five minutes; or,
– when the vehicle’s current schedule has changed.

When starting a new auction the vehicle has to decide which of its previously as-
signed orders it should auction. The order that when removed yields the greatest
schedule cost reduction is selected. The cost reduction of removing an order does
not require an optimization step and can therefore be computed quickly for all
orders assigned to a vehicle (similar to eq. 12). Orders for which the pickup opera-
tion is in process or is already done are not considered for auctioning as they can’t
be reassigned. If the order with the greatest cost reduction is the last received
order, no auction is performed to avoid excessive auctioning. The VehicleAgent

itself has to propose a bid to its own auction, only when another agent proposes
a better bid will the order be reassigned.

4 Genetic programming for enhancing agents

To enhance the MAS discussed in Section 3 using GP we replaced OptaPlanner
in the VehicleAgent with an evolved heuristic.
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4.1 Heuristics in agents

As described in Section 3, the VehicleAgent has three different decisions to make:

1. Assigning a bid value to an auctioned parcel, currently being done using cheap-
est insertion cost with the insertion computed by OptaPlanner.

2. Deciding what parcel to reauction, currently taking the most expensive parcel.
3. Finding the cheapest route to all destinations, currently computed using Opta-

Planner.

Assigning a bid value to a parcel (1) and deciding which parcel to reauction (2)
can easily be done by a heuristic:

(vehicle,parcel) -> cost

The heuristic is executed by a vehicle, the output is an estimation of the cost of
adding the specified parcel into the route of the vehicle.

4.2 Genetic programming setup

Since the quality of a heuristic can not analytically be deduced, we are using
simulation-based fitness evaluation. Since real-time simulation is very time con-
suming, we are using RinSim (Section 2.3) with simulated time during evolution.
Additionally, to also save computation time, we use the cheapest insertion cost
heuristic instead of OptaPlanner for computing the cheapest route to all destina-
tions. To avoid spending too much time on simulating inferior individuals we use
RinSim with a custom stop condition:

stop(t) :=

{
∃vi ∈ V route length(vi) > max (40, |Et| − |Dt|) if t ≤ 8 hours

true otherwise

where t is the current time, |Et| is the number of parcel announce events at time
t, and |Dt| is the number of delivered parcels at time t. The stop condition is
designed to stop the simulation if it takes too long to deliver all parcels or if there
is a single vehicle that is hoarding parcels. Hoarding is defined as a vehicle that
has more than about 50% of parcels in its route. A vehicle route may contain
each parcel at maximum twice, if the route length is larger than the number of
undelivered parcels this means that about 50% of the parcels are in that route.
The stop condition only applies when the total route length is more than 40. The
stop condition halts simulations of bad quality individuals, saving computation
time for individuals of higher quality.

The fitness function, that needs to be minimized, is:

fitness :=

{
fitnessmax − t if simulation terminated early

cost (eq. 4) otherwise

The fitness of individuals that are stopped by the stop condition is the maximum
fitness value subtracted with the time of the simulator at which it was stopped.
This adds some differentiation to low quality individuals.

The GP settings that we use are listed in Table 1. The choice of number of
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Table 1: Genetic programming settings

Parameter Value
Population size 500
Generations 100
Number of evaluations per individual 50
Num evals in last generation 250
Crossover proportion 90%
Mutation proportion 10%
Elitism 1
Selection method Tournament selection (size 7)
Maximum tree depth 17

evaluations per individual needs to be high enough to avoid over specialization
within a single generation while it needs to be low enough to keep the experiments
computationally feasible. Table 2 lists the functions and terminals that are used.
One of the variables is based on the concept of flexibility in a route. Flexibility

Table 2: Functions and terminals used in GP. The terminals have a context of a
vehicle (the vehicle that executes the heuristic) and a parcel of interest.

Function name Arity Description
if4 4 if arg0 < arg1 then arg2 else arg3
+, -, /, x 2 Mathematical operators
pow 2 arg0arg1, raises arg0 to the power of arg1
neg 1 Negates arg0
min, max 2 Takes the minimum or maximum, respectively, of the pro-

vided arguments.
0,1,2,10 0 Constants
insertion cost

0

The cost of inserting the parcel of interest into the
vehicle’s current route using the cheapest insertion
heuristic. Cost is the sum of travel time, tardiness, and
over time (as in eq. 4). Flexibility is defined in eq. 13.

insertion travel time
insertion tardiness
insertion over time
insertion flexibility
time left 0 The time left in minutes until the end of the day.
slack 0 The amount of idle time, in minutes, that the current ve-

hicle has.
ado

0
Average, minimum, or maximum travel time, respectively,
from the pickup and delivery location of the parcel of
interest to all locations in the vehicle’s route. These
heuristics are inspired by the heuristics of the same name
by Beham et al. [13].

mido
mado

route length 0 The current size of the vehicle’s route.
pickup urgency

0
The time left until the end of the pickup/delivery time
window of the parcel of interest (in minutes).delivery urgency

is the degree to which arrival times in a vehicle’s route can be changed without
introducing time window violations. This is calculated as follows:

flexibility(route) :=

|route|∑
ri∈route

lpa(ri)− epa(ri) (13)

Where, lpa(ri) is the last possible arrival time without time window violations and
epa(ri) is the earliest possible arrival time without time window violations.
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Even though we simulate each individual on 50 different scenarios, the difficulty
of scenarios varies. Within a generation this is not a problem because fitness is
relative. However, a convergence graph that shows absolute values will show a lot
of noise. Therefore, we normalize the fitness values to the cost of the cheapest
insertion cost heuristic.

4.3 Tuning

For investigating the performance of GP we ran some experiments with a smaller
number of generations. Figure 5 shows a breakdown of the convergence graph
of such a run. The figure shows that most of the improvement during evolution
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Fig. 5: Breakdown of cost per generation of a single evolutionary run on a scenarios
with 50% dynamism, 20 minutes urgency and scale 1.

is caused by a reduction of tardiness and over time while travel time remains
relatively constant. This suggests that it may be worthwhile to emphasize the
tardiness in the objective function during evolution. Figure 6 shows the relative
performance of two weighted versions of the cheapest insertion heuristic. From
Figure 6 it can be concluded that DIC-1:2 performs better than the 1:1 objective
function while DIC-1:4 performs worse than 1:1. However, replacing the insertion
based GP variables with weighted versions does not benefit evolution, DGP-1:1
outperforms DGP-1:2. This is presumably because evolution already favors heuris-
tics that emphasize reducing tardiness and over time as this yields the greatest
performance increase.

5 Evaluation

To compare the agent-based hyper-heuristic approach (DGP, Section 4) with the
MAS using OptaPlanner (DOP, Section 3) and the centralized OptaPlanner (COP,
[5]) we first need to generate (train) the heuristics that can be used in real-time.
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Fig. 6: Comparison of two evolutionary settings (average of three repetitions each),
DGP-1:1 with standard objective function weights of its variables defined in Ta-
ble 2 and DGP-1:2 with objective functions weights in favor of tardiness and over
time. DIC-1:2 and DIC-1:4 are using weighted insertion cost (without evolution)
on the same set of scenarios as are used in every generation of the GP.

5.1 Training

For training we have generated a separate dataset using the same settings (but
different random seeds) as used in [5]. During training we only use small scale
scenarios to save computation time.

5.1.1 Experiment setup

We have opted for four different GP setups (Table 3). Three setups are meant

Table 3: The four different GP setups, DGP-50-20-1, DGP-50-20-1, and DGP-80-
5-1 are specialized setups that train on one specific class of scenarios. DGP-mixed
is a setup that trains on all small scale scenario classes simultaneously.

Dynamism Urgency Scale Num evals Num last evals Name
20% 35 1

50 250
DGP-20-35-1

50% 20 1 DGP-50-20-1
80% 5 1 DGP-80-5-1

20%/50%/80% 35/20/5 1 54 270 DGP-mixed

to specialize on one specific scenario class, while the DGP-mixed setup aims to
generate generalized heuristics that are equally adapted to all scenarios. Because
there are nine small scale scenario classes, we use 54, a multiple of nine, evaluations
every generation. This ensures that each generation each individual is evaluated
on exactly six scenarios of every scenario class.

For the specialized GP runs we need to do 500 · (99 · 50 + 250) = 2,600,000
simulations and for the generalized GP run 500 · (99 · 54 + 270) = 2,808,000.
Since we repeat each setting ten times, the grand total of required simulations
is 106,080,000. A single simulation may take from about half a second to several
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seconds each on a modern PC. If the average simulation time would be exactly
1 second, the expected total computation time is about 1227 days (3.3 years).
Clearly, it is not feasible to run such an experiment on a single computer, there-
fore we have pooled the resources of about 80 modern quad-core computers to run
our simulations. Theoretically, these 80 machines allows us to perform about 320
simulations in parallel. In practice, however, these are shared university machines
that may have other processes running or may simply be turned off during an
experiment. To utilize these machines we use a feature of RinSim that allows to
spread simulations over multiple machines (internally using JPPF [20]) and that
is resistant to single node failures.

5.1.2 Results and analysis

A total of 103,374,996 simulations were computed during the course of the 40
evolutionary runs. The cumulative computation time is 1295 days, using the dis-
tributed computing setup, it took slightly more than 10 days. The actual number
of simulations that were performed is slightly lower because when identical indi-
viduals are found within a generation they are evaluated only once.

Figure 7 shows the average convergence graphs of each GP variant. For all GP
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Fig. 7: Average convergence graphs based on ten repetitions for each of the four
GP settings.

variants, the majority of the improvement occurs in the first 25 generations. It is
striking that 80-5-1 shows much less improvement compared to the other variants.
This may be explained by the fact that this is probably one of the hardest problems
for any algorithm. With 80% dynamism, the problem is changing nearly continuous
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and with an urgency of 5 minutes, each new order needs to be dealt with swiftly.
Based on this graph, it appears that the insertion cost heuristic is performing
relatively well in these circumstances. For the 20-35-1 and 50-20-1 settings, GP
seems to be able to find the largest improvement relative to the insertion cost
heuristic. GP-mixed uses all scenario classes and lies, as expected, somewhere
between the others.

5.2 Testing

In order to evaluate the effectiveness of our GP approach, we test the evolved
heuristics using real-time RinSim [17] on the same dataset as was used in [5].

5.2.1 Experiment setup

The test dataset has three levels of dynamism, urgency, and scale, resulting in
27 different scenarios classes. For each class, the dataset contains ten scenario
instances. The evolutionary runs (Section 5.1) produced 40 heuristics, additionally
we are also testing the insertion cost heuristic. This means we have 41 algorithms,
each of whom we need to test in real-time on the 270 different scenarios in the
dataset, resulting in a total of 11,070 real-time simulations. Unlike [5], we do not
repeat the execution of simulations with exactly the same settings. Instead, we
combine the results of the ten heuristics evolved with the same GP settings and
compare those with the results of [5].

To allow direct comparison of the results, we use the same hard- and software
as in [5]. The test computer has 24 logical cores (two six core Intel Xeon 2.6GHz
E5-2630 v2 processors with hyper threading). A single simulation requires two
logical cores, one for the simulator and one for the solver computations. At least
one core needs to be available for the operating system, resulting in a maximum
of 11 simulations that can be run in parallel. As in [5], we warm up the JVM for
30 seconds before starting the real-time experiment.

5.2.2 Results

The following section reports on the 60% of the results that have been completed
so far1. Table 4 lists the algorithms that we compare. Similar to [5], we apply
Welch’s t-test for testing the significance of the differences between the algorithms.
In the following analysis we refer to this test by mentioning the p-values (when
relevant) that were observed. The significance threshold was set at p = .01. For
pairs of algorithms that have the same number of simulations we perform a paired
t-test instead of an unpaired t-test. The experiment computation time of the 6750
simulations was about 341.5 hours (14.2 days). Table 5 shows all simulation results.

1 Due to the significant computational demands of real-time simulations, only six of the ten
GP heuristics have been evaluated so far. The remaining four are currently being computed
(estimated computation time: 9 days) and the results of these runs will be included in the final
version of this paper.
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Table 4: Algorithm names with their meaning and number of simulations per class
that were performed. For COP and DOP, three repetitions were done for each of
the ten scenarios in a class. For the rest of the algorithms, no repetitions were
done. For the DGP variants, each of the six evolved heuristics were simulated on
each scenario.

Algorithm Description Simulations per class
COP Centralized OptaPlanner (from [5]) 30
DOP Decentralized OptaPlanner (from [5]) 30
DIC Decentralized insertion cost 10
DGP-20-35-1 Decentralized GP trained on 20-35-1 class 60
DGP-50-20-1 Decentralized GP trained on 50-20-1 class 60
DGP-80-5-1 Decentralized GP trained on 80-5-1 class 60
DGP-mixed Decentralized GP trained on all small scale classes 60
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Table 5: Average results for each setting. The ‘Best’ column indicates which algorithms has the best performance, the rank of each
value is indicated by the number in superscript, a † appended to a value with rank n indicates that the difference between the value of
rank n and rank n+ 1 is not statistically significant (p < 0.01). The results of the four evolved algorithms also report their standard
deviation as the numbers are the average of the different heuristics produced by GP.

Class COP DOP DIC DGP-20-35-1 DGP-50-20-1 DGP-80-5-1 DGP-mixed Best

20-5-1 25.0131† 26.9135† 27.0426† 27.3887 ± 1.166 26.2914† ± 1.087 25.6222† ± 0.558 25.7293† ± 0.425 COP†

50-5-1 22.1123 22.8894† 23.2186† 23.9347 ± 1.762 23.1345† ± 1.242 21.4901† ± 0.335 21.8982† ± 0.422 DGP-80-5-1†

80-5-1 21.3932† 21.8224† 22.7826† 23.9007 ± 1.897 22.7715† ± 1.050 21.3321† ± 0.358 21.7013† ± 0.240 DGP-80-5-1†

20-20-1 17.3271† 20.0496† 20.7487 18.8453† ± 0.333 18.7972† ± 0.315 19.1975† ± 0.378 18.8704† ± 0.362 COP†

50-20-1 14.9681† 15.8256† 16.8787 15.2503† ± 0.440 15.2132† ± 0.260 15.5855† ± 0.647 15.2784† ± 0.308 COP†

80-20-1 14.5341† 15.5996 17.7507 14.9664† ± 0.393 14.8303† ± 0.114 15.3795† ± 0.453 14.8232† ± 0.188 COP†

20-35-1 14.6661† 17.3926† 18.7487 16.4793† ± 0.487 16.2612† ± 0.245 16.9845† ± 0.919 16.5324† ± 0.269 COP†

50-35-1 13.0161 15.6896† 17.6367 14.7034† ± 0.278 14.6323† ± 0.368 14.9435† ± 0.448 14.6142† ± 0.302 COP
80-35-1 12.5081 14.2536 16.3037 13.8804† ± 0.226 13.5952† ± 0.193 14.2055† ± 0.612 13.8123† ± 0.321 COP
20-5-5 18.8133† 20.1635† 20.2296† 20.6577 ± 3.448 19.5224† ± 3.087 17.8171† ± 0.253 17.9772† ± 0.334 DGP-80-5-1†

50-5-5 17.0295 15.6033† 18.5906† 18.8047 ± 4.652 16.2804† ± 2.056 14.7551 ± 0.115 15.0022† ± 0.319 DGP-80-5-1
80-5-5 17.1645† 15.4413 18.5497 18.4506† ± 3.937 16.1274 ± 1.912 14.7001† ± 0.169 14.8602 ± 0.252 DGP-80-5-1†

20-20-5 14.0824† 17.8757 17.6566† 13.9342† ± 0.414 13.8561† ± 0.133 14.7485† ± 0.724 14.0433† ± 0.307 DGP-50-20-1†

50-20-5 10.1294† 10.8826 14.1767 9.8363† ± 0.134 9.5101 ± 0.119 10.2575† ± 0.702 9.7642† ± 0.139 DGP-50-20-1
80-20-5 10.3504† 10.7876 14.8517 10.2183† ± 0.182 9.8601 ± 0.190 10.4855† ± 0.721 10.0942† ± 0.216 DGP-50-20-1
20-35-5 11.0151† 15.2726† 15.5557 11.0912† ± 0.250 11.2353† ± 0.161 12.0655 ± 0.645 11.2964 ± 0.277 COP†

50-35-5 8.6511† 10.7316 14.4437 8.9192† ± 0.273 8.9683† ± 0.274 9.8215 ± 0.707 9.0684 ± 0.223 COP†

80-35-5 8.7841 10.1436 14.8177 9.1672† ± 0.294 9.2834 ± 0.224 9.9535† ± 0.657 9.2633† ± 0.242 COP
20-5-10 17.4883† 27.4307 18.9265† 20.0736 ± 6.252 17.5894† ± 3.317 15.9041† ± 0.137 16.0082 ± 0.379 DGP-80-5-1†

50-5-10 15.5584 15.9585 17.5176† 18.0417 ± 7.223 14.1153 ± 2.010 12.8081 ± 0.168 12.9652 ± 0.370 DGP-80-5-1
80-5-10 15.7625† 13.7653† 17.7837 17.4546† ± 5.618 14.3154 ± 2.007 12.8871 ± 0.162 13.0872 ± 0.424 DGP-80-5-1
20-20-10 11.4474† 23.8257 15.0436 10.7862† ± 0.286 10.7691† ± 0.144 11.6365 ± 0.733 10.9663† ± 0.238 DGP-50-20-1†

50-20-10 9.3184† 13.2626 14.2607 8.9283 ± 0.221 8.6131 ± 0.066 9.4285 ± 0.779 8.8382† ± 0.183 DGP-50-20-1
80-20-10 9.1924† 10.5146 14.1497 8.8433 ± 0.214 8.5071 ± 0.140 9.2595 ± 0.701 8.7412† ± 0.153 DGP-50-20-1
20-35-10 9.7724† 23.4417 13.9836 9.1381† ± 0.259 9.4062† ± 0.279 10.1715 ± 0.623 9.4193† ± 0.300 DGP-20-35-1†

50-35-10 7.9182† 15.5607 14.0046 7.9021† ± 0.229 8.0603† ± 0.451 8.8185 ± 0.749 8.0824 ± 0.260 DGP-20-35-1†

80-35-10 7.8011† 12.5486 14.0787 7.8022† ± 0.212 7.9984 ± 0.407 8.6605 ± 0.724 7.9183† ± 0.247 COP†

Average rank 2.63 5.59 6.56 3.96 2.81 3.7 2.74
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5.3 Analysis

The first hypothesis (Section 1) states that hyper-heuristics (DGP) can outper-
form DOP. We can accept this hypothesis as the results indicate that there is
always at least one of the DGP variants that outperform DOP (Table 6). In fact,

Table 6: Summary of relative performance of DGP variants to DOP. Each number
indicates the number of classes on which the algorithm is (sign.) better or worse
compared to DOP.

Algorithm sign. better better (not sign.) worse (not sign.) sign. worse
DIC 4 1 9 13
DGP-20-35-1 13 6 0 8
DGP-50-20-1 15 7 4 1
DGP-80-5-1 16 11 0 0
DGP-mixed 18 9 0 0

DGP-mixed and DGP-80-5-1 are better than DOP for all scenario classes. How-
ever, for small scale scenarios the differences between DGP-mixed and DOP and
between DGP-80-5-1 and DOP are often not significant. This indicates that the
evolved heuristics perform relatively better on larger scale scenarios. This is in-
teresting because the heuristics were never trained on large scale scenarios. It
appears that the evolved heuristic is more scalable than the OptaPlanner algo-
rithm used in DOP. The scalability of the evolved heuristic can likely be explained
by its computational efficiency relative to that of OptaPlanner. Table 6 showsinvestigate

further:
compare
runtimes
of Opta-
Planner
and
heuristic
inside
agent

investigate
further:
compare
runtimes
of Opta-
Planner
and
heuristic
inside
agent

that DGP-20-35-1 and DGP-50-20-1 often outperform DOP but not as often as
DGP-80-5-1 and DGP-mixed. DGP-20-35-1 and DGP-50-20-1 have the tendency
to perform relatively better on larger scale scenarios. It’s also noteworthy that DIC
outperforms DOP in several classes, indicating that in some cases even a simple
heuristic can be better than OptaPlanner.

The second hypothesis states that DGP can outperform COP. This hypothesis
can be accepted since the evolved heuristics regularly outperform COP (Table 7).
However, COP still performs best in 12 of the 27 classes. The scale and urgency

Table 7: Summary of relative performance of DGP variants to COP. Each number
indicates the number of classes on which the algorithm is (significantly) better or
worse compared to COP.

Algorithm sign. better better (not sign.) worse (not sign.) sign. worse
DIC 0 0 8 19
DGP-20-35-1 2 5 8 12
DGP-50-20-1 7 4 12 4
DGP-80-5-1 5 3 11 8
DGP-mixed 7 7 10 3

of a problem seem to be good indicators of the relative performance of the DGP
approaches and COP. The more urgent and large scale a problem is, the better
the DGP approaches perform.
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The third hypothesis states that the evolved heuristics perform especially well
in more urgent circumstances. Based on Table 5 it is clear that evolved heuristics
outperform COP in eight of the nine very urgent classes (urgency of five minutes),
we can therefore accept this hypothesis. The class where COP is better than the
evolved heuristics is 20-5-1. In this class, COP is not significantly different from
DGP-80-5-1 (p ≈ .43), DGP-mixed (p ≈ .35), and DGP-50-20-1 (p ≈ .10).

Hypothesis four states that specialized heuristics outperform general heuristics
on scenarios for which they are specialized. DGP-20-35-1 outperforms DGP-mixed
on class 20-35-1, however, DGP-50-20-1 performs best of the evolved heuristics
on this class. DGP-50-20-1 performs best on its training class, 50-20-1, as does
DGP-80-5-1 on 80-5-1. So, for all three classes on which was trained explicitly
the specialized heuristic outperforms the general heuristic, we therefore accept the
hypothesis. The urgency on which a heuristic was trained is a strong indicator of
how well it will perform on a scenario class, therefore, we created a summary of
the relative performance of the DGP variants, grouped by urgency (Table 8).

Table 8: Summary of relative performance of DGP variants per urgency level. Each
number indicates the number of classes on which the algorithm is the best DGP
approach for that urgency level.

Urgency DGP-20-35-1 DGP-50-20-1 DGP-80-5-1 DGP-mixed
5 0 0 9 0

20 0 8 0 1
35 6 2 0 1

The fifth hypothesis states that generalized heuristics outperform specialized
heuristics on scenarios for which they are not specialized. Based on Table 8 we
can reject this hypothesis. There are only two classes, 80-20-1 and 50-35-1, where
DGP-mixed outperforms the other evolved heuristics. Nevertheless, the DGP-mixed
method produces heuristics of a good quality as is demonstrated by its average
rank of 2.67 which is second best, only COP has a better average rank.

As expected, DIC is on average the worst performing algorithm. There are,
however, several cases where DGP-20-35-1 performs worse compared to DIC. The
data in Table 5 shows that DGP-20-35-1 performs among the worst in the most
urgent scenarios. This is expected considering that it was trained on the least
urgent scenarios. The results of this heuristic are made even worse by one heuristic
that performs especially bad (as can be seen by the larger than usual standard
deviations). When removing this badly performing heuristic from the analysis, the
ranks for the DGP-20-35-1 are still among the worst for the very urgent classes.
This indicates that the bad performance is not just explained by this one outlier.

6 Conclusion

Agents in a multi-agent system typically compute decisions using traditional op-
timization algorithms. We have investigated an alternative approach based on
hyper-heuristics. Present paper is the first to evaluate the performance of an
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agent-based hyper-heuristic approach on a real-time logistics problem that sys-
tematically varies the dynamism, urgency, and scale of the problem. The results
show that our hyper-heuristic outperforms a reference algorithm in all scenar-
ios. Additionally, the decentralized hyper-heuristic approach even outperforms the
centralized reference algorithm in most situations. The hyper-heuristic approach
performs relatively better on more urgent and larger scale problems. The hyper-
heuristic approach has the additional advantage that it can specialize on certain
problem characteristics, increasing its performance even further.
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