

warwick.ac.uk/lib-publications

Original citation:
Aulí-Llinàs, Francesc, Enfedaque , Pablo , Moure , Juan , Blanes, C. Ian and Sanchez Silva,
Victor (2015) Strategy of microscopic parallelism for Bitplane Image Coding. In: 2015 Data
Compression Conference (DCC), Snowbird, UT, 7-9 Apr 2015. Published in: Proceedings of
2015 Data Compression Conference pp. 163-172.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/86205

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/78941833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/86205
mailto:wrap@warwick.ac.uk

1

Strategy of Microscopic Parallelism

for Bitplane Image Coding

Francesc Aulı́-Llinàs†, Pablo Enfedaque†, Juan C. Moure‡,

Ian Blanes†, and Victor Sanchez§

†Dep. of Information and Communications Engineering, Universitat Autònoma de Barcelona, Spain
‡Dep. of Computer Architecture and Operating Systems, Universitat Autònoma de Barcelona, Spain

§Dep. of Computer Science, The University of Warwick, United Kingdom

Abstract

Recent years have seen the upraising of a new type of processors strongly relying on the

Single Instruction, Multiple Data (SIMD) architectural principle. The main idea behind SIMD

computing is to apply a flow of instructions to multiple pieces of data in parallel and syn-

chronously. This permits the execution of thousands of operations in parallel, achieving higher

computational performance than with traditional Multiple Instruction, Multiple Data (MIMD)

architectures. The level of parallelism required in SIMD computing can only be achieved in

image coding systems via microscopic parallel strategies that code multiple coefficients in

parallel. Until now, the only way to achieve microscopic parallelism in bitplane coding engines

was by executing multiple coding passes in parallel. Such a strategy does not suit well SIMD

computing because each thread executes different instructions. This paper introduces the first

bitplane coding engine devised for the fine grain of parallelism required in SIMD computing.

Its main insight is to allow parallel coefficient processing in a coding pass. Experimental tests

show coding performance results similar to those of JPEG2000.

I. INTRODUCTION

In general, image compression systems deal with the computational complexity of

coding large sets of data by fragmenting the image(s) in pieces that can be processed

independently. JPEG2000, for instance, partitions the image in small sets of wavelet

coefficients called codeblocks. The coding of small data pieces, called codeblocks from

now on, is efficiently handled in processors whose architecture is mainly based on the

Multiple Instruction, Multiple Data (MIMD) principle like common Central Process-

ing Units (CPUs). Each executing core in the CPU can execute a flow of instructions

independently and asynchronously from the others. The tasks of the coding system are

straightforwardly mapped to a multi-core CPU: each codeblock is assigned to a processing

core that codes its data. Such a strategy of fragmentation and parallel processing is

referred to as macroscopic parallelism [1].

In the field of image compression, the most popular techniques to code the codeblock’s

data are bitplane coding and context-adaptive arithmetic coding [2]. These techniques

scan the coefficients within the codeblock sequentially, so that the probability model can

adjust the probability estimates of the emitted symbols as more data are coded. Such

techniques are computationally simple, achieve high compression efficiency, and avoid

a pre-processing step to collect statistics of the data. Their only drawback is that they

2

complicate microscopic parallelism, i.e., strategies to code in parallel multiple coefficients

within the codeblock.

So far, microscopic parallel strategies have not been very attractive due to imple-

mentation difficulties and because most image coding systems are tailored to use the

MIMD capabilities of conventional processors. This trend is starting to change due to the

arrival of a new generation of processors that extensively employ the Single Instruction,

Multiple Data (SIMD) principle [3]. SIMD computing applies a flow of instructions

to multiple pieces of data in parallel and synchronously. Nowadays, SIMD computing

achieves higher computational performance than MIMD while consuming less power.

The Graphics Processing Units (GPUs) are the most representative processors of such

architecture.

The fine level of parallelism required in SIMD computing can only be fully achieved

via microscopic parallel strategies. Even so, the current approach is to implement already

developed coding systems for their execution in SIMD-based processors. Without aiming

to be exhaustive, GPU implementations of JPEG2000 are found in [4], [5] and there exist

commercial products like [6] as well. The JPEG XR standard is implemented in [7], and

video coding standards are studied in [3], [8]. Such implementations reduce the execution

time of CPU-based implementations. Nevertheless, none of them can fully exploit the

resources of the GPU due to the aforementioned sequential coefficient processing.

This paper introduces a bitplane coding strategy tailored for the type of microscopic

parallelism required in SIMD computing. Its main features are: 1) a new scanning order

that permits the processing of multiple coefficients in parallel, 2) a computationally-

simple context formation approach, 3) a stationary model of probabilities that does not

require adaptive mechanisms and, 4) the use of multiple arithmetic coders producing

fixed-length codewords that are optimally sorted in the bitstream. To the best of our

knowledge, this is the first bitplane coder that suits well SIMD computing. This paper

describes the techniques employed from an image coding point of view. Future work will

detail its implementation in a Nvidia GPU.

The paper is organized as follows. Section II briefly reviews preliminary concepts.

Section III describes the proposed bitplane coding strategy. Its coding performance is

assessed in Section IV. The last section concludes with a summary.

II. BACKGROUND

The framework of JPEG2000 is adopted to test the proposed bitplane coding engine.

A conventional JPEG2000 implementation is structured in three main coding stages [1]:

data transformation, data coding, and codestream re-organization. The first stage applies

the wavelet transform and quantizes wavelet coefficients. After data transformation, the

image is partitioned in small sets of wavelet coefficients, the so-called codeblocks. Data

coding is carried out in each codeblock independently. It takes approximately 70∼75% of

the total coding time. As stated before, the routines employed in this stage are based on

bitplane coding and context-adaptive arithmetic coding. Herein, the original JPEG2000

engine is replaced by that proposed in this work. The last stage of the coding system

re-organizes the final codestream constructing layers of quality.

3

Bitplane coding works as follows. Let [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1} be the binary

representation of an integer υ which represents the magnitude of the index obtained by

quantizing wavelet coefficient ω, with M being a sufficient number of bits to represent

all coefficients. The collection of bits bj from all coefficients is called a bitplane. Bits

are coded from the most significant bitplane j = M − 1 to the least significant bitplane

j = 0. The first non-zero bit of the binary representation of υ is denoted by bs and is

referred to as the significant bit. The sign of the coefficient is denoted by d ∈ {+,−}

and is coded immediately after bs, so that the decoder can begin approximating ω as

soon as possible. The bits br, r < s are referred to as refinement bits. In general, each

bitplane is coded employing various coding passes that scan a subset of the coefficients.

JPEG2000 employs three coding passes. Two of them are devoted to significance coding

and one to refinement coding.

With regard to SIMD architectures, particularly those concerning GPUs, it is worth

knowing that threads are executed as lanes of a vector instruction. Sets of T threads

advance their execution in a lockstep synchronous way. Commonly, T = 32. All T

threads execute the same instruction at the same time. When flow divergence occurs

(due to conditionals, for instance), the divergent paths are executed sequentially one after

another. In general, divergent paths are to be minimized. The vector instruction, that

includes the T threads, represents the smallest scheduling unit in a GPU. This is called

a warp in the Compute Unified Device Architecture (CUDA) employed in Nvidia GPUs.

III. PROPOSED METHOD

A. Scanning order

The proposed method achieves microscopic parallelism by means of synchronously

coding T coefficients in parallel during the execution of a coding pass. All threads perform

the same operation to different coefficients, so CUDA implementations can assign a warp

of threads to each codeblock. Fig. 1 depicts the scanning order employed. The light- and

dark-blue dots in the figure represent the coefficients within a codeblock. The coefficients

are organized in pairs of columns. Each pair is assigned to a thread, which scans all

coefficients from the top to the bottom row, and from the left to the right coefficient.

The threads are tightly synchronized, all scanning the same coefficient of their columns

at the same time.

As seen below, the context of a coefficient is determined via its eight adjacent neigh-

bors. The scanning order of Fig. 1 is highly efficient for context formation purposes. We

recall that all information coded in previous passes is available when forming the context.

Also, information coded in the current coding pass belonging to those neighbors that

are visited before the current coefficient can also be employed. The higher the average

number of already visited neighbors in the current coding pass (AVNP), the better to

achieve competitive coding performance. The AVNP is computed without considering

those coefficients in the border of the codeblock. Fig. 1 depicts in gray areas the eight

adjacent neighbors of a coefficient in the left and in the right column assigned to a

thread. The coefficient for which the context is formed is depicted with a red circle. The

4

Fig. 1: Illustration of the scanning order and context formation for two coefficients.

neighbors that are already visited in the current coding pass are depicted with a white

cross. The coefficients of the left column within the gray areas (depicted in light blue)

have 3 already visited neighbors, whereas the coefficients in the right column have 5. So

the AVNP achieved by the proposed scanning order is 4. We note that JPEG2000 and

other coding systems employing sequential scanning orders also achieve an AVNP of 4.

B. Context formation and probability model

The contexts employed for significance coding use the significance state of the eight

adjacent neighbors of coefficient ω. The neighbors of ω are denoted by ωk, with k ∈ {↑

,ր,→,ց, ↓,ւ,←,տ} referring to the neighbor in the top, top-right, right,. . . position,

respectively. The magnitude of the quantization index of these neighbors is denoted by

υk. The significance state of υk in bitplane j is denoted by Φ(υk, j). It is 1 when

its significance bit has already been coded. This definition includes all neighbors that

became significant in bitplanes higher than the current, i.e., Φ(υk, j) = 1 if s > j. It also

includes the neighbors that become significant in the current bitplane –and that are already

visited in the current coding pass–, i.e., Φ(υk, j) = 1 if s = j and υk is already visited.

Otherwise, Φ(υk, j) = 0.

The contexts employed for significance coding are denoted by φsig(·). They are com-

puted as the sum of the significance state of the eight adjacent neighbors of ω, more

precisely, the significance state of υ at bitplane j is computed as φsig(υ, j) =
∑

k

Φ(υk, j).

Evidently, φsig(·) ∈ {0, ..., 8}. It is shown in [9] that simple context formation approaches

like this achieve competitive coding performance, so this approach is employed herein

due to its computational simplicity.

The contexts employed for sign coding are similar to those of JPEG2000 since they

obtain high efficiency. Sign contexts employ the sign of the neighbors in the vertical

and horizontal positions. Let χ(ωk, j) represent the sign of ωk when coding bitplane j.

5

χ(ωk, j) is 0 if the coefficient is not significant, otherwise is 1 and −1 for positive and

negative coefficients, respectively. Then, χV = χ(ω↑, j)+χ(ω↓, j) and χH = χ(ω←, j)+

χ(ω→, j). Context φsign(ω, j) is computed according to

φsign(ω, j) =





0 if (χV > 0 and χH > 0) or

(χV < 0 and χH < 0)

1 if χV = 0 and χH 6= 0

2 if χV 6= 0 and χH = 0

3 otherwise

. (1)

As suggested in [9], contexts for refinement coding should be based on techniques

such as the local average, which are computationally intensive, or otherwise use only

one context for all refinement bits. Herein, the latter approach is used for simplicity, so

φref (υ, j) = 0.

The contexts are employed together with the probability model to determine the proba-

bility estimate that is fed to the arithmetic coder. Conventional context-adaptive probabil-

ity models cannot be employed herein since they adjust the probabilities in a sequential

fashion. Therefore, the proposed bitplane coder employs a stationary probability model.

The main idea is to use a fixed probability for each context and bitplane. As shown

in [10], this model is based on the empirical evidence that the probabilities employed to

code all symbols with a context are mostly regular in the same bitplane. The probability

estimates are precomputed off-line and stored in a lookup table (LUT) that is known

by the encoder and the decoder. The LUT contains one probability estimate per context

and bitplane for each wavelet subband. They are denoted by Pu[j][φsig|ref |sign(·)], with

u referring to the wavelet subband.

The probability estimates needed to populate the LUTs are determined as follows. Let

Fu(v | φsig(υ, j)) denote the probability mass function (pmf) of the quantization indices

at bitplane j given their significance context. This pmf is computed for each wavelet

subband using the data from all images in a training set. Its support is [0, ..., 2j+1 − 1]

since it contains quantization indices that were not significant in bitplanes greater than

j. The probability estimates used to populate the LUTs are generated by integrating the

pmfs to obtain the probabilities of emitting 0 or 1 in the corresponding contexts. Denote

the probability that bit bj is 0 during significance coding by Psig(bj = 0 | φsig(υ, j)).

This probability is determined from the corresponding pmf according to

Psig(bj = 0 | φsig(υ, j)) =

2j−1∑

υ=0

Fu(υ | φsig(υ, j))

2j+1−1∑

υ=0

Fu(υ | φsig(υ, j))

=
2j−1∑

υ=0

Fu(υ | φsig(υ, j)) . (2)

The probability estimates for refinement and sign coding are derived similarly. A more

in-depth study of this stationary probability model can be found in [10].

6

C. Arithmetic coding

The symbols and their probability estimates are fed to an arithmetic coder. Most

arithmetic coders employed for image compression produce variable-to-variable length

codes. This is, a variable number of input symbols are coded with a codeword of a priori

unknown length. In JPEG2000, for instance, all data of a codeblock is coded with a

single –and commonly very long– codeword. Practical realizations of arithmetic coders

operate with hardware registers of 16 or 32 bits, so the generation of the codeword is

carried out progressively.

Two aspects of conventional arithmetic coding prevent its use in the proposed bitplane

coding strategy. The first is the generation of a single codeword. The scanning order

described above utilizes T threads that code data in parallel. Forcing them to produce

a single codeword would require to code their output in a sequential order, ruining the

parallelism. The second aspect is the computational complexity of current arithmetic

coders. Even the simplest executes five or more conditional instructions to code every

symbol [11]. Part of this complexity is due to the conditionals and repositioning operations

needed to control the generation of a long codeword.

These aspects are addressed herein by means of a new technique that employs multiple

arithmetic coders that generate fixed-length codewords that are optimally placed in the

bitstream. As previously described, each thread codes all data of two columns of coeffi-

cients. The coefficients coded by a thread are visited in a sequential order, so an arithmetic

coder can be individually employed to code all symbols emitted by a thread. Instead

of using conventional arithmetic coding, we employ an arithmetic coder that generates

codewords of fixed length [11]. Variable-to-fixed length arithmetic coding avoids the

operations needed to progressively process a long codeword, reducing the complexity of

the coder. It uses an integer interval with a pre-defined range, say [0, 2W − 1] with W

being the length of the codeword (in bits). The division of the interval is carried out in

a similar way as with conventional arithmetic coding until its size is less than 2. Then,

the number within the last interval is dispatched to the bitstream and a new interval is

set (see below). In our implementation W = 16.

The codewords produced by the T threads of a codeblock generate a quality-embedded

bitstream that can be truncated at any point so that the quality of the recovered image

is maximized. In the encoder, the bitstream is constructed as follows. Each time that

a thread initializes its interval (because is the beginning of the coding or the interval

is exhausted), W bits are reserved in the bitstream. This space is hold until the thread

exhausts its interval. Then, the codeword of that thread is put in the reserved space.

Fig. 2 illustrates an example of this technique. All threads in the figure have its own

space reserved in the bitstream. The coefficients depicted with a red circle are those

currently visited by the threads. When thread 5 emits the symbol to code the coding pass

of the coefficient, it exhausts its interval (depicted with the white codeword in the figure),

so the codeword is put in the space reserved in the bitstream. Note that thread 5 does not

reserve a new space in the bitstream at this instant but it will do it when coding a new

symbol. This ordering strategy can be implemented via thread-collaborative operations in

7

Fig. 2: Illustration of the technique employed to sort the codewords in the bitstream.

SIMD architectures. The order in which the codewords are sorted facilitates the decoding

procedure. Any thread of the decoder only needs to read the next W bits of the bitstream

when its interval is exhausted and a new symbol is decoded.

D. Algorithm

The encoding procedures of the proposed BitPlane Coding strategy with Parallel Coef-

ficient processing (BPC-PaCo) are embodied in Algorithm 1. The same coding passes as

those defined in JPEG2000 are employed since they achieve high coding performance [2].

One procedure per coding pass is specified. These procedures detail the operations carried

out by one thread. The “ACencode” procedure describes the operations of the arithmetic

coder. The scanning order is specified in the first two lines of the “SPP”, “MRP”, and

“CP” procedures. The (quantized) coefficient visited is denoted by (υy,x) ωy,x, with y, x

indicating the row and column of the codeblock, respectively. The SPP and CP check

whether the visited coefficient is significant in previous bitplanes or not. If not, they code

bit bj of the quantized coefficient. The SPP only visits coefficients that have at least one

significant neighbor (i.e., those that have φsig(υy,x, j) 6= 0), whereas the CP visits all

non-significant coefficients that were not coded by the SPP. The MRP codes the bit bj
of all coefficients that became significant in previous bitplanes.

The “ACencode” procedure codes all symbols emitted. The interval arithmetic of thread

t is stored in registers L[t] and S[t], which are the lower boundary and the size minus

one of the interval, respectively. Since the length of the codewords is W , both L[t] and

S[t] are integers in the range [0, 2W − 1]. The codeword is dispatched to the bitstream in

lines 13-15 of this procedure when the interval is exhausted. If a new symbol is coded

and S[t] = 0, W bits are reserved and the interval is reset (see lines 1-9).

The interval division is carried out in lines 6-12. When the symbol is 0 or −, the lower

subinterval is kept, so S[t] ← (S[t] · p) ≫ P̂ and L[t] is left unmodified. ≫ denotes a

bit shift to the right. p is the probability of the symbol to be 0 or + expressed in the

range [0, 2P̂ − 1], so p = ⌊Psig(bj = 0 | φsig(υ, j)) · 2
P̂⌋ for significance coding, and

equivalently for refinement and sign coding. ⌊·⌋ denotes the floor operation. As seen in

Algorithm 1, p is the value that is stored in the LUTs. P̂ is the number of bits employed

to express the symbol’s probability. In our implementation P̂ = 7. The coding of 1 or +

keeps the upper subinterval, as described in lines 9-11 of the “ACencode” procedure.

8

Algorithm 1 BPC-PaCo encoding procedures

Initialization: S[t]← 0 ∀ 0 ≤ t < T

SPP (u subband, j bitplane, t thread)

1: for y ∈ [0, numRows− 1] do

2: for x ∈ [t · 2, t · 2 + 1] do

3: if υy,x is not significant AND φsig(υy,x, j) 6= 0 then

4: ACencode(bj , Pu[j][φsig(υy,x, j)], t)
5: if bj = 1 then

6: ACencode(d, Pu[j][φsign(ωy,x, j)], t)
7: end if

8: end if

9: end for

10: end for

MRP (u subband, j bitplane, t thread)

1: for y ∈ [0, numRows− 1] do

2: for x ∈ [t · 2, t · 2 + 1] do

3: if υy,x significant in j′ > j then

4: ACencode(bj , Pu[j][φref (υy,x, j)], t)
5: end if

6: end for

7: end for

CP (u subband, j bitplane, t thread)

1: for y ∈ [0, numRows− 1] do

2: for x ∈ [t · 2, t · 2 + 1] do

3: if υy,x not significant AND not coded in SPP then

4: ACencode(bj , Pu[j][φsig(υy,x, j)], t)
5: if bj = 1 then

6: ACencode(d, Pu[j][φsign(ωy,x)], t)
7: end if

8: end if

9: end for

10: end for

ACencode (c symbol, p probability, t thread)

1: if S[t] = 0 then

2: Reserve the next W bits of the bitstream

3: L[t]← 0
4: S[t]← 2W − 1
5: end if

6: if c = 0 OR c = − then

7: S[t]← (S[t] · p)≫ P̂
8: else

9: f ← ((S[t] · p)≫ P̂) + 1
10: L[t]← L[t] + f

11: S[t]← S[t]− f

12: end if

13: if S[t] = 0 then

14: Put L[t] in reserved space of the bitstream

15: end if

The interval division is carried out via integer multiplications and bit shifts because

these are the fastest operations in hardware architectures. Other alternatives tested such

as the use of LUTs reduce the computational performance. We note that the arithmetic

coder embodied in Algorithm 1 performs several arithmetic operations and only three

conditionals, which suits well SIMD computing.

9

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 1 2 3 4 5

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
Portrait

Cafeteria
Fruit

Musicians

(a)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
forest1
forest2
urban1
urban2

(b)

Fig. 3: Coding performance evaluation of BPC-PaCo vs. that of JPEG2000.

IV. EXPERIMENTAL RESULTS

Two corpora of images are employed to assess the performance of the proposed

method. The first corpus consists of the eight natural images of the ISO 12640-1 corpus

(2048×2560, gray scale, 8 bits per sample (bps)), whereas the second is composed of four

aerial images provided by the Cartographic Institute of Catalonia, covering vegetation and

urban areas (7200×5000, gray scale, 8 bps). Our JPEG2000 implementation BOI [12] is

employed to compare the performance of the proposed method to JPEG2000. The coding

parameters for all tests are: 5 levels of wavelet transform, lossy mode, codeblocks of

64×64, single quality layer, and no precincts.

Fig. 3 evaluates the coding performance achieved by BPC-PaCo as compared to that of

JPEG2000. The results are reported as the peak signal to noise ratio (PSNR) difference

achieved between BPC-PaCo and JPEG2000. The performance of JPEG2000 is depicted

as the horizontal straight line in the figures. Results below this line indicate that the

proposed method achieves lower PSNR than that of JPEG2000. To avoid cluttering the

figure, results for only four of the eight natural images are reported in Fig. 3(a), though

similar plots are achieved for the remaining images. The results of Fig. 3 indicate that, for

natural images, the proposed method achieves PSNR values between 0.2 to 1 dB below

those of JPEG2000. The results achieved by BPC-PaCo for aerial images are between

0.2 to 0.4 dB below those of JPEG2000 at low and medium bitrates, and from 0 to 0.6

dB above those of JPEG2000 at high bitrates.

For comparison purposes, Fig. 3 also reports the results when the RESET, RESTART,

and CAUSAL coding variations of JPEG2000 are in use when coding the first image of

each corpus. The results are reported with the plot with dots. These coding variations

allow coding pass parallelism. We note that coding pass parallelism requires elaborate

implementations [1] and it does not suit well SIMD computing since different threads

perform different instructions, causing divergence. Even so, it is the only form of micro-

scopic parallelism allowed in the standard. The results of Fig. 3 indicate that when these

coding variations are in use, the coding performance difference between BPC-PaCo and

10

JPEG2000 is reduced between 0.2 to 0.5 dB, being almost negligible at most bitrates.

V. CONCLUSIONS

This paper introduces a microscopic parallel strategy for bitplane image coding. Con-

trarily to current approaches that only parallelize coding passes, the proposed method

processes multiple coefficients in the same coding pass in parallel and synchronously.

This fine level of parallelism is achieved rethinking the bitplane coding engine with new

techniques for the scanning of coefficients, the formation of contexts and their model of

probabilities, and for arithmetic coding. The resulting engine provides more opportunities

for parallelism, especially for processors whose architecture strongly relies on the SIMD

principle, such as GPUs. Experimental results indicate a slight penalization in coding

performance when coding natural images as compared to JPEG2000. For aerial images,

the coding performance achieved by the proposed method is almost equivalent to that of

JPEG2000. Like all parallel algorithms, the proposed method can also be implemented

to process sequentially the coefficients, employing a single thread of execution. The

proposed bitplane coding strategy can be efficiently implemented for both MIMD and

SIMD computing. Future work will describe the implementation of the proposed method

in a GPU.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish Government (MINECO), by

FEDER, and by the Catalan Government, under Grants RYC-2010-05671, UAB-472-02-

2/2012, TIN2012-38102-C03-03, TIN2011-28689-C02-1, and 2014SGR-691.

REFERENCES

[1] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression fundamentals, standards and practice.

Norwell, Massachusetts 02061 USA: Kluwer Academic Publishers, 2002.

[2] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for bitplane image coding,” IEEE Trans. Image

Process., vol. 21, no. 4, pp. 1920–1933, Apr. 2012.

[3] N.-M. Cheung, X. Fan, O. C. Au, and M.-C. Kung, “Video coding on multicore graphics processors,” IEEE

Signal Process. Mag., vol. 27, no. 2, pp. 79–89, Mar. 2010.

[4] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000 EBCOT context modeling for massively parallel

architectures,” in Proc. IEEE Data Compression Conference, Mar. 2011, pp. 423–432.

[5] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit implementation of JPEG2000 for hyperspectral

image compression,” SPIE Journal of Applied Remote Sensing, vol. 6, pp. 1–14, Jan. 2012.

[6] Comprimato. (2014, Apr.) Comprimato JPEG2000@GPU. [Online]. Available: http://www.comprimato.com

[7] B. Pieters, J. D. Cock, C. Hollemeersch, J. Wielandt, P. Lambert, and R. V. de Walle, “Ultra high definition video

decoding with motion JPEG XR using the GPU,” in Proc. IEEE International Conference on Image Processing,

Sep. 2011, pp. 377–380.

[8] N.-M. Cheung, O. C. Au, M.-C. Kung, P. H. Wong, and C. H. Liu, “Highly parallel rate-distortion optimized

intra-mode decision on multicore graphics processors,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 11,

pp. 1692–1703, Nov. 2009.

[9] F. Auli-Llinas, “Stationary probability model for bitplane image coding through local average of wavelet

coefficients,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[10] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for microscopic parallelism in JPEG2000,”

IEEE Trans. Multimedia, vol. 16, no. 4, pp. 960–970, Jun. 2014.

[11] F. Auli-Llinas, “Highly efficient, low complexity arithmetic coder for JPEG2000,” in Proc. IEEE International

Conference on Image Processing, Oct. 2014, pp. 5601–5605.

[12] ——. (2014, Nov.) BOI codec. [Online]. Available: http://www.deic.uab.cat/∼francesc/software/boi

