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Abstract We assume that a symplectic real-analytic map has an invariant nor-
mally hyperbolic cylinder and an associated transverse homoclinic cylinder. We
prove that generically in the real-analytic category the boundaries of the invariant
cylinder are connected by trajectories of the map.

1 Introduction

A Hamiltonian dynamical system is defined with the help of a Hamilton function
H : M → R on a symplectic manifold M of dimension 2n. Let Mc be a connected
component of a level set {H = c}. Since H remains constant along the trajectories
of the Hamiltonian system, the set Mc is invariant. Depending on the Hamilton
function H and the energy c, the restriction of the dynamics onto Mc may vary
from uniformly hyperbolic (e.g., in the case of a geodesic flow on a surface of
negative curvature) to completely integrable.

Since Poincare’s works, it has been accepted that a typical Hamiltonian system
does not have any additional integral of motion independent of H (unless the
system possesses some symmetries and Noether theorem applies). On the other
hand a generic Hamiltonian system is nearly integrable in a neighbourhood of
a totally elliptic equilibrium (a generic minimum or maximum of H) or totally
elliptic periodic orbit. Then the Kolmogorov-Arnold-Moser (KAM) theory implies
that the Hamiltonian system is not ergodic (with respect to the Liouville measure)
on some energy levels [77]. Indeed, the KAM theory establishes that a nearly
integrable system possesses a set of invariant tori of positive measure.

Each of the KAM tori has dimension n. For n > 2 a KAM torus does not
divide Mc which has dimension (2n− 1), moreover, the complement to the union
of all KAM tori is connected and dense in Mc. Thus the KAM theory does not
contradict to the existence of a dense orbit inMc. It is unknown whether such orbits
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really exist in nearly integrable systems. The question goes back to Fermi [39]
who suggested the following notion: a Hamiltonian system is called quasi-ergodic

if in every Mc any two open sets are connected by a trajectory. This property is
equivalent to topological transitivity of the Hamiltonian flow on Mc. This property
can also be restated in slightly different terms: (a) in every Mc there is a dense
orbit or (b) in every Mc dense orbits form a residual subset.

Fermi conjectured [39] that quasi-ergodicity is a generic property of Hamilto-
nian systems, but proved a weaker statement only: if a Hamiltonian system with
n > 2 degrees of freedom has the form

H = H0(I) + εH1(I, ϕ, ε), (1)

where H0 is integrable and (I, ϕ) are action-angle variables, then generically Mc

does not contain an invariant (2n − 2)-dimensional hyper-surface which is ana-
lytic in ε. Obviously, such surface would prevent the quasi-ergodicity. However,
non-analytic invariant hyper-surfaces cannot be excluded from consideration as it
is not known whether they can exist generically or not. So Fermi’s quasi-ergodic
hypothesis remains unproved. The recent papers [79,66,22,67,76] make an impor-
tant step in understanding of the underlying dynamics by showing that for the
generic (in a certain smooth category) near-integrable case with 21

2 or more de-
grees of freedom, there are trajectories which visit an a-priory prescribed sequence
of balls. The paper [51] provides examples of systems having orbits whose closure
contains a Lebesgue positive measure set of KAM-tori.

This problem is closely related to the problem of stability of a totally elliptic
fixed point of a symplectic diffeomorphism, or stability of a totally elliptic periodic
orbit for a Hamiltonian flow. It was proved in [36,35] that stability can be broken
by an arbitrarily small smooth perturbation. It is believed that a totally elliptic
periodic orbit is generically unstable but the time scales for this instability to
manifest itself are extremely long, see e.g. [61,15].

For ε = 0, the unperturbed system (1) is described by the Hamiltonian H =
H0(I). Then the actions I are constant along trajectories, so the equation I = I0
defines an invariant torus, and the angles ϕ are quasi-periodic functions of time
with the frequency vector ω0(I) = H ′0(I). KAM theory implies that the majority
of invariant tori survive under perturbation. Tori with rationally dependent fre-
quencies are called resonant and are destroyed by a typical perturbation [2]. The
frequency of a resonant torus satisfies a condition of the form ω0(I) · k = 0 for
some k ∈ Zn \ {0}. The resonant tori form a “resonant web”, typically (e.g. if ω0

is a local diffeomorphism) a dense set of measure zero.
Arnold’s example [1] shows that a trajectory of the perturbed system (1) can

slowly drift along a resonance. Arnold’s paper inspired a large number of studies
in the long-time stability of actions, the problem which is known as “Arnold diffu-
sion”. It has been attracting significant attention recently and we refer the reader
to papers [11,31,33] for a more detailed discussion.

It should be noted that the motion along the resonant web is very slow:
Nekhoroshev theory [83] provides a lower bound on the instability times in the
analytic case. Let {·, ·} denote the Poisson brackets. Then İ = {H, I} = ε{H1, I}
is of the order of ε. On the other hand, if the system satisfies assumptions of the
KAM theory, |I(t) − I(0)| remains small for all times and the majority of initial
conditions, i.e., for the set of initial conditions of asymptotically full measure. If H
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satisfies assumptions of the Nekhoroshev theory, there are some exponents a, b > 0
such that |I(t)− I(0)| < εa for all |t| < exp ε−b and for all initial conditions. This
estimate establishes an exponentially large lower bound for the times of Arnold
Diffusion in analytic systems.

It is important to stress that the upper bound on the speed of Arnold diffusion
strongly depends on the smoothness of the system. Indeed, the stability times are
exponentially large in ε−1 for analytic systems, but only polynomial bounds can
be obtained in the Ck category. In particular, papers [79,66,22] study the Arnold
diffusion for non-analytic Hamiltonians and therefore the bounds established by
the analytical Nekhoroshev theory are likely to be violated, see e.g. [13]. The
problem of genericity of Arnold diffusion in analytic category remains fully open.
We believe the methods proposed in our paper will help to advance the theory in
the analytic case.

The normal form theory suggests that for small positive ε the system (1)
has a normally hyperbolic cylinder with a pendulum-like separatrix located in
a neighbourhood of a simple resonance. Indeed, Bernard proved the existence of
normally-hyperbolic cylinders in a priori stable Hamiltonian systems [6], the size
of such cylinder being bounded away from zero for arbitrarily small size of the
perturbation.

A model for this situation is often obtained by assuming that the integrable
part of the Hamiltonian already possesses a normally-hyperbolic cylinder and an
associated homoclinic loop (e.g. by considering H0 = P (p, q) + h0(I) where P is a
Hamiltonian of a pendulum). A system of this type is called a-priory unstable. The
drift of orbits along the cylinder has been actively studied in the last decade [4,5,
12,20,21,27,28,31,93,94], including the problem of genericity of this phenomenon
and instability times. It should be noted that the Arnold diffusion can be much
faster in this case.

In these studies, a drifting trajectory typically stays most of the time near the
normally-hyperbolic cylinder, occasionally making a trip near a homoclinic loop.
The process can be described using the notion of a scattering map introduced by
Delshams, de la Llave and Seara in [32]. Earlier Moeckel [80] suggested that Arnold
diffusion can be modelled by random application of two area-preserving maps on
a cylinder (this approach was recently continued in [18,52,68]). In this way the
deterministic Hamiltonian dynamics is modelled by an iterated function system,
and the obstacles to a drift along the cylinder appear in the form of essential
curves which are invariant with respect to both maps simultaneously [80,17,82].

This problem is closely related to the Mather problem on the existence of
trajectories with unbounded energy in a periodically forced geodesic flow [10,29].
The criteria for the existence of trajectories of the energy that grows up to infinity
are known for sufficiently large initial energies [10,29,71,30,85,44,45]. The results
of the present paper can be used to establish the generic existence of orbits of
unbounded energy for all possible values of initial energy.

In our paper we depart from the near-integrable setting and study the dynam-
ics of an exact symplectic map in a homoclinic channel, a neighbourhood of a
normally-hyperbolic two-dimensional cylinder A along with a sequence of homo-
clinic cylinders B at a transverse intersection of the stable and unstable manifolds
of A. We conduct a rigorous reduction of the problem to the study of an iterated
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function system and show that the existence of a drifting trajectory (i.e. the in-
stability of the Arnold diffusion type) is guaranteed when the exact symplectic
maps of the cylinder A that constitute the iterated function system do not have
a common invariant curve. The reduction scheme is in the same spirit as in [82,
50] while the setting and proofs are different. The completely novel result is that
the existence of drifting orbits is a generic phenomenon, i.e. it holds for an open
and dense subset of a neighbourhood, in the space of analytic symplectic maps, of
the given map with a homoclinic channel, provided the restriction of the map on
the cylinder A has a twist property. All the known similar genericity results for
the Arnold diffusion have been proven so far in the smooth category and use the
non-analiticity of the perturbations in an essential way.

In one respect, the situation we consider is more general than in the near-
integrable setting, as we do not assume the existence of a large set of KAM curves
on the invariant cylinder A. On the other side, as one can extract from the example
of [25], our assumption of the strong transversality of the homoclinic intersections
which we need in order to define the scattering maps that form the iteration
function system seems to fail for a generic analytic near-integrable system in a
neighbourhood of a resonance in the a priori stable case. Therefore, our results
do not admit an immediate translation to the a priori stable case. Rather, the
problem we consider here is related to the a-priory chaotic case, e.g. we assume
certain transversality of invariant manifolds associated with the normally hyper-
bolic cylinder.

The technical assumptions of our main theorem can be found in Section 2. As
an example, we can consider a 4-dimensional symplectic map which is a direct
product of a twist map and a standard map. Namely, Φ0 : (ϕ, I, x, y) 7→ (ϕ̄, Ī, x̄, ȳ)
where

ϕ̄ = ϕ+ ω(I), x̄ = x+ ȳ ,

Ī = I, ȳ = y + k sinx ,
(2)

where k > 0 is a positive parameter and ω is an analytic function. We assume ϕ and
x to be angular variables, so the map is a symplectic diffeomorphism of (T×R)2.
The map Φ0 has a normally hyperbolic invariant cylinder A given by x = y = 0.
The cylinder A is filled with invariant curves as the map Φ0 preserves the value of
the I variable. The (x, y) component of Φ0 coincides with the standard map, which
has transversal homoclinic points for all k > 0. Thus Φ0 verifies the assumptions
of the main theorem. Then a generic analytic perturbation of Φ0 produces orbits
which connects neighbourhoods of any two essential curves in A.

A more interesting example is obtained when the integrable twist map is
replaced by another standard map, so the new unperturbed map is given by
Φ0 : (ϕ, I, x, y) 7→ (ϕ̄, Ī, x̄, ȳ) where

ϕ̄ = ϕ+ Ī , x̄ = x+ ȳ ,

Ī = I + k1 sinϕ, ȳ = y + k2 sinx .
(3)

The cylinder A = {x = y = 0} is still invariant but it is no longer filled with
invariant curves. Instead the cylinder contains a Cantor set of invariant curves
provided k1 is not too large. These tori prevent trajectories of Φ0 from traveling
in the direction of the I axis.

The theory presented in this paper allows to treat both cases equally and
implies that an arbitrarily small generic analytic perturbation creates trajectories
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which travel between regions I < Ia and I > Ib for any Ia < Ib (provided ω′(I)
is separated from 0 for (2), and k2 > C(4|k1| + k2

1) for (3)). Indeed, in order
to apply Theorem 1 to these examples, we note first, that the invariant cylinder
A is normally hyperbolic. This cylinder has a stable and unstable separatrices
Wu(A) and W s(A) which coincide with the product of A and the stable (reps.,
unstable) separatrix of the standard map Wu,s

sm , so we can write (slightly abusing
notation) W s(A) = A×W s

sm and Wu(A) = A×Wu
sm. This product also describes

the structure of the foliation of Wu,s(A) into strong stable and strong unstable
manifolds of points in A. For a point v ∈ A, we let Euu(v) = {v} × Wu

sm and
Ess(v) = {v} × W s

sm. The assumption k2 > C(4|k1| + k2
1) for (3) ensures that

these strong stable and strong unstable foliations remain C1-smooth after the
perturbation.

It can be proved that the standard map has infinitely many transversal ho-
moclinic orbits for any k > 0. Let ph = (xh, yh) be one of these orbits. The
cylinder B = A × {ph } ⊂ Wu(A) ∩W s(A) is homoclinic to A. Since the strong
stable and strong unstable foliations of a point v ∈ A coincide with the prod-
uct of the base point and the separatrices of the standard map, we see that
(v, ph) ∈ Ess(v) ∩ Euu(v), and the cylinder B satisfies the strong tansversality
assumption described in the next section giving rise to a simple homoclinic in-
tersection (defined in the next section). Then Theorem 2 implies that generic
perturbation of Φ0 has orbits traveling in the direction of the cylinder A.

Similar maps were considered in Easton et al. [37] (motivated by the “stochastic
pump model” of Tennyson et al. [95]). In [37] the existence of drift orbits was
shown for all non-integrable Lagrangian perturbations provided k2 is large enough
(i.e. in the “anti-integrable” limit). Our methods allow to obtain the drifting orbits
without the large k2 assumption, i.e. without a detailed knowledge of the dynamics
of the system.

2 Set up, assumptions, and results

Consider a real-analytic diffeomorphism Φ : Σ → R2d, d ≥ 2, defined on an open
set Σ ⊆ R2d. We assume that Φ preserves the standard symplectic form Ω, and
that Φ is exact (e.g. the latter is always true if Σ is simply-connected). Let Φ have
an invariant smooth two-dimensional cylinder A diffeomorphic to S1× [0, 1] and ψ :
S1× [0, 1]→ Σ be the corresponding embedding. Then the boundary of A consists
of two invariant circles: ∂A = ψ

(
S1 × {0}

)
∪ψ

(
S1 × {1}

)
. Let int(A) = A \ ∂A and

F0 = Φ|A.
We assume that the cylinder A is normally-hyperbolic. More precisely, we as-

sume that at each point v ∈ A the tangent space is decomposed into a direct
sum of three non-zero subspaces: TvR2d = R2d = Nc

v ⊕Nu
v ⊕Ns

v , where Nc
v is the

two-dimensional plane tangent to A at the point v. The subspaces Ns,u depend
continuously on v and are invariant with respect to the derivative Φ′ of the map,
i.e. Φ′Ns

v = Ns
F0(v) and Φ′Nu

v = Nu
F0(v). We note that Φ′Nc

v = Nc
F0(v) as A is invari-

ant with respect to Φ. We assume that for some choice of norms in Ns,u,c there
exist α > 1 and λ ∈ (0, 1) such that at every point v ∈ A

‖F ′0(v)‖ < α, ‖(F ′0(v))−1‖ < α, (4)

‖Φ′(v)|Nsv ‖ < λ, ‖(Φ′(v)|Nuv )−1‖ < λ, (5)
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where
α2λ < 1. (6)

Note that these assumptions are more restrictive in comparison with the standard
definition of a normally hyperbolic manifold. In particular, the large spectral gap
condition (6) implies the C1-regularity of the strong stable and strong unstable
foliations while in the general case these foliations are Hölder continuous only (see
e.g. [88]).

We also note that in (4) and (5) the same pair of exponents α and λ bound
both Φ′ and (Φ′)−1, so we say that A is symmetrically normally-hyperbolic. The
symmetric form of the spectral gap assumption implies that the restriction of the
symplectic form on A is non-degenerate (see Proposition 4). Thus A is a symplectic
submanifold of R2d and the map F0 = Φ|A inherits the (exact) symplecticity of Φ.

We have no doubts that our results can be extended to cover the case when λ

and α of inequalities (4) and (5) depend on the point v ∈ A. However, for the sake
of simplicity, we conduct the proofs for the case of constant λ and α only.

The points in a small neighbourhood of the normally-hyperbolic cylinder A,
whose forward iterations do not leave the neighbourhood and tend to A exponen-
tially with the rate at least λ, form a smooth (at least C2 in our case) invariant
manifold, the local stable manifold W s

loc ⊃ A, which is tangent to Ns ⊕ Nc at
the points of A (see e.g. [57]). The points whose backward iterations tend to A

exponentially with the rate at least λ (and without leaving the neighbourhood)
form a C2-smooth invariant manifold Wu

loc ⊃ A (the local unstable manifold),
which is tangent to Nu ⊕ Nc at the points of A. The invariant cylinder A is the
intersection of Wu

loc and W s
loc. The global stable and unstable manifolds of A are

defined by iterating the local invariant manifolds: Wu(A) :=
⋃
m≥0 Φ

mWu
loc and

W s(A) :=
⋃
m≥0 Φ

−mW s
loc.

In each of the manifolds there exists a uniquely defined C1-smooth invariant
foliation transverse to A, the strong-stable invariant foliation Ess in W s(A) and
the strong-unstable invariant foliation Euu in Wu(A), such that for every point
v ∈ A there is a unique leaf of Essv and a unique leaf of Euuv which pass through this
point and are tangent to Ns

v and, respectively, Nu
v (see [92]). The C1-regularity of

a foliation means that the leaves of the foliation are smooth and, importantly, the
field of tangents to the leaves is also smooth, which implies that for any two smooth
cross-sections transverse to the foliation the correspondence defined by the leaves
of the foliation between the points in the cross-sections is a local diffeomorphism.

Let us discuss the question of the persistence of A at small perturbations. It
is a standard fact from the theory of normal hyperbolicity [57] that any strictly-
invariant normally-hyperbolic compact smooth manifold with a boundary can be
extended to a locally-invariant normally-hyperbolic manifold without a bound-
ary. In our case this means that the smooth embedding ψ that defines the in-
variant cylinder A = ψ(S1 × [0, 1]) can be extended onto S1 × I where I is an
open interval containing [0, 1], and the image Ã = ψ(S1 × I) ⊃ A is normally-
hyperbolic and locally-invariant with respect to the map Φ. Here, by the local
invariance we mean that there exists a neighbourhood Z of Ã such that the iter-
ations of each point of Ã stay in Ã until they leave Z. An important property of
the locally-invariant normally-hyperbolic manifold without a boundary is that it
persists at C2-small perturbations, i.e. for all maps C2-close to Φ there exists a
locally-invariant normally-hyperbolic cylinder Ã ⊂ Z. It is not defined uniquely,
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but it can be chosen in such a way that it will depend on the map continuously as
a C2-manifold1. The continuous dependence on the map implies that the cylinder
Ã remains symplectic and symmetrically normaly-hyperbolic for all maps C2-close
to Φ.

Note that the normal hyperbolicity implies that Ã contains all the orbits that
never leave Z. In particular, any invariant curve that lies in Z must lie in Ã. We
call a smooth invariant essential2 simple curve γ ⊂ Ã a KAM-curve if the map
Φ restricted to γ is smoothly conjugate to the rigid rotation to a Diophantine
angle and the map F0 = Φ|Ã near γ satisfies the twist condition. As the Lyapunov
exponent at every point of γ is zero, the gap with the contraction/expansion in the
directions transverse to Ã is infinitely large. Therefore, the cylinder Ã is of class
Cr (for any given finite r) in a sufficiently small neighborhood of γ (see [57,38]).
This holds true for every map Cr-close to Φ, i.e. the map F0 stays Cr-smooth and
the twist condition also holds. Now, by applying KAM-theory to the map F0, we
conclude that the invariant curve γ persists for every symplectic map which is at
least C4-close to Φ. Namely, every such map has a uniquely defined, continuously
depending on the map, invariant KAM-curve with the same rotation number.

We further assume that the boundary of A is a pair of KAM-curves. These curves
persist for all C4-small symplectic perturbations hence they lie in Ã and bound a
compact invariant sub-cylinder A ⊂ Ã. Every orbit in A stays in Z, so the same
cylinder A is a sub-cylinder of Ã for every choice of the cylinder Ã. This means
that even though the cylinder Ã is not uniquely defined, the cylinder A is defined
uniquely for all symplectic maps C4-close to Φ, and it depends continuously on the
map. The stable and unstable manifolds and the strong-stable and strong-unstable
foliations of A also depend continuously, in the C1-topology, on the map.

We now assume that the symmetrically normally-hyperbolic cylinder A has a ho-

moclinic, i.e., the intersection of Wu(A) and W s(A) has a point x outside A. If
Wu(A) and W s(A) are transverse at x, the implicit function theorem implies that
x has an open neighbourhood Ux in Wu(A) ∩W s(A), which is diffeomorphic to a
two-dimensional disk.

For any x ∈ Wu(A) ∩W s(A) there is a unique leaf of Euux and a unique leaf
of Essx which pass through this point. We call the homoclinic intersection at x
strongly transverse if

TxEssx ⊕ TxEuux ⊕ Tx(Wu(A) ∩W s(A)) = R2d. (7)

This property is equivalent to the condition that the leaf Euux is transverse to
W s(A) and the leaf Essx is transverse to Wu(A) at the point x.

The holonomy maps πs : Ux → A and πu : Ux → A are projections along the
leaves of the foliations Ess and Euu, respectively. Since the foliations are smooth,
the strong transversality implies that the foliation Euu is transverse to the disc
Ux in Wu(A) and the foliation Ess is transverse to Ux in W s(A) provided Ux is
sufficiently small. Then πu : Ux → A and πs : Ux → A are local diffeomorphisms.

1 Throughout this paper we assume the large spectral gap assumption (6) in the notion
of normal hyperbolicity. This guarantees the C2-smoothness of the manifold, and the C1-
smoothness of the corresponding strong-stable and strong-unstable invariant foliations for every
map C2-close to Φ.

2 i.e. non-contractible to a point
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In this case, following [32], one can define the scattering map on πu(Ux):

Fx = πs ◦ (πu)−1.

It is a local diffeomorphism which does not always extends to the whole cylinder
A. However, in this paper we consider the case where the scattering map can be
globally defined on a large portion of A.

Let Ā ⊂ int(A) be a compact invariant sub-cylinder in A, i.e. it is a closed
region in int(A) bounded by two non-intersecting invariant essential simple curves
γ+ and γ−. Let the set of points homoclinic to A contain a smooth two-dimensional
manifold B ⊂Wu(int(A))∩W s(int(A))\A. We call B a homoclinic cylinder, simple

relative to the cylinders Ā and A, if the following assumptions hold:

[S1] The strong transversality condition (7) holds for all x ∈ B.
[S2] For every point x ∈ Ā, the corresponding leaf of the foliation Euu intersects

the homoclinic cylinder B at exactly one point each, and no two points in B

belong to the same leaf of the foliation Ess. In other words, the scattering map
FB = πsB ◦ (πuB)−1 : Ā→ int(A) is well-defined.

[S3] The image of Ā by the scattering map FB contains an essential curve.

Under these conditions the scattering map is a diffeomorphism Ā → FB(Ā) ⊂
int(A). Indeed, assumption [S1] implies that the projections πs,uB : B → int(A) are
local diffeomorphisms and assumption [S2] implies that the maps πuB : (πuB)−1(Ā)→
Ā and πsB : B → πsB(B) are bijective. Condition [S3] means that the scattering map
is homotopic to identity on Ā.

We conclude that FB(Ā) ⊂ A is a sub-cylinder bounded by two essential simple
curves FB(γ+) and FB(γ−). Obviously, FB(γ+)∩FB(γ−) = ∅. Proposition 7 implies
that FB is an exact symplectic map. In particular, the cylinder FB(Ā) has the
same area as Ā, and FB(Ā) ∩ Ā 6= ∅. Note also that the fulfillment of condition
[S2] depends on both invariant cylinders, Ā and A, as the cylinder A must be large
enough to incorporate FB(Ā).

If γ+ and γ− are KAM-curves, then the cylinder Ā bounded by these curves
persists for all C4-small symplectic perturbations. The transversality condition
[S1] implies that the C1-smooth homoclinic cylinder B also persists and remains
simple relative to Ā and A. Let VN be a set of real-analytic exact symplectic
diffeomorphisms Φ : Σ → R2d such that:

– each map Φ ∈ VN has two invariant, bounded by KAM-curves, symmetrically
normally-hyperbolic, two-dimensional closed cylinders A and Ā such that Ā ⊂
int(A),

– each map Φ ∈ VN has N different3 homoclinic cylinders B1, . . . , BN simple
relative to Ā and A,

– the cylinders A, Ā, B1, . . . , BN depend continuously (as C2-smooth manifolds)
on the map Φ,

– for each Φ ∈ VN the map F0 = Φ|A has a twist property in some symplectic
coordinates (y, ϕ). 4

3 i.e. none intersects any image of another by the iterations of the map Φ
4 In these coordinates, Birkhoff theorem [56] implies that the boundary curves γ± of the

invariant sub-cylinder Ā are graphs of Lipschitz functions, y = y±(ϕ).
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We define the topology in the space of real-analytic exact symplectic diffeomor-
phisms as follows. Take any compact K ⊂ R2d and let an analyticity domain Q be
a compact complex neighbourhood of K. We consider exact symplectomorphisms
K → R2d which admit a holomorphic extension onto some open neighbourhood
of Q. Two such maps are considered to be close if they are uniformly close on
Q. For any given r, two holomorphic maps which are sufficiently close on Q are
Cr-close on K. As we explained, the C4-closeness is enough for the persistence of
the cylinders A, Ā, B1, . . . , BN (if all of their orbits by Φ lie in int(K)), so the set
VN is open.

Theorem 1 (main theorem) Let N ≥ 8. Then, there is an open and dense subset

Ṽ of VN , such that for each map Φ ∈ Ṽ for every two open neighbourhoods U− of γ−

and U+ of γ+ the image of U− by some forward iteration of the map Φ intersects U+.

Remark 1 It is obvious that given any two open sets U+ and U− the set of maps

whose orbits connect U− and U+ is open. The theorem makes a stronger claim that

the intersection of all these sets (over all possible choices of the neighbourhoods U−

and U+ of the given curves γ− and γ+) is open and dense in VN . The theorem implies

that for any map Φ ∈ VN there is an open set of arbitrarily small perturbations of Φ

within VN such that each of these perturbations creates, for each pair of neighbourhoods

U− and U+ of the curves γ±, an orbit that connects U− and U+.

Note that the existence of at least 8 different homoclinic cylinders required
by Theorem 1 is not a restrictive condition. Namely, under an additional mild
assumption the existence of one homoclinic cylinder implies the existence of in-
finitely many different homoclinic cylinders (see section 3.3). Using this, we can
infer the following result from our main theorem.

Consider the set V of real-analytic exact symplectic diffeomorphisms Φ : Σ →
R2d such that:

– each map Φ ∈ V has an invariant, bounded by KAM-curves, symmetrically
normally-hyperbolic, two-dimensional closed cylinder A,

– in A there exist two invariant sub-cylinders Ā and Â such that Ā ⊂ int(Â) ⊂
int(A), each of them is bounded by KAM-curves,

– Φ has a homoclinic cylinder B simple relative to Â and A,
– the cylinder B is simple relative Ā and Â; i.e. FB(Ā) ⊂ intÂ,
– the map F0 = Φ|A has a twist property.

As all the invariant cylinders involved are bounded by KAM-curves, they persist at
C4-small symplectic perturbations. Thus the set V is an open subset of the space
of real-analytic symplectomorphisms. Let γ− and γ+ be the boundary curves of
Ā.

Theorem 2 In V there is an open and dense subset Ṽ such that for each map Φ̃ ∈ Ṽ
and for every two open neighbourhoods U− of γ− and U+ of γ+ the image of U− by

some forward iteration of Φ̃ intersects U+.

Remark 2 Statements similar to Theorems 1 and 2 are known for non-analytic (smooth)

case, see e.g. [20,21,82]. The main difference between the analytic and smooth case is

that the class of perturbations small in the real-analytic sense is narrower than the

class of perturbations that are small in the C∞-sense. In particular, for a typical real-

analytic map the normally-hyperbolic invariant cylinder A is not analytic (it has only
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finite smoothness), so no real-analytic perturbations can vanish on A. Consequently,

methods of [20,21,82] are not applicable in the analytic category (in the crucial part

that concerns removing the barriers to diffusion by a small perturbation). On the other

hand, the proofs of the present paper hold true for the case of Ck maps as well.

Remark 3 The symplectic diffeomorphism Φ can be a Poincare map of a certain cross-

section Σ for a Hamiltonian flow inside a level of constant energy. We do not need to

assume that the Poincare map Φ is defined outside a small neighbourhood of the invari-

ant cylinder A in this case: the global stable and unstable manifolds of A, as well as

the global strong-stable and strong-unstable foliations on these manifolds are defined by

continuation of the corresponding local objects by the orbits of the Hamiltonian system.

As above, one defines scattering maps by the orbits homoclinic to A. One can easily

adjust the proof of the two main theorems in order to show that if the Poincare map Φ

and the scattering map (maps) for some Hamiltonian system satisfy the assumptions

of theorem 1 or 2, then a generic small perturbation of the Hamiltonian function H in

the space of real-analytic Hamiltonians leads to creation of orbits that connect U− to

U+.

The strategy of the proof of our two main theorems is as follows. We show
in Proposition 2 that the existence of one homoclinic cylinder B which is sim-
ple relative to the invariant cylinders Â and A where Â is such that Ā ⊆ Â and
FB(Ā) ⊆ Â implies the existence of infinitely many different secondary homoclinic
cylinders which are simple relative to Ā and A. Thus, Theorem 2 is immediately
reduced to Theorem 1, and we will will further consider N ≥ 8 homoclinic cylinders
B1, . . . , BN , all of which are simple relative to the same pair of compact invariant
cylinders Ā and A, and all are different in the sense that Φm(Bi)∩Bj = ∅ for all m
and all i, j = 1, . . . , N such that i 6= j. Let Fn : Ā → int(A) denote the scattering
map defined by the homoclinic cylinder Bn. By condition [S1], Fn is a local dif-
feomorphism. By condition [S2] Fn is a bijection, hence Fn is a diffeomorphism of
Ā onto the set Fn(Ā). Obviously, condition [S1] implies that the scattering maps
are defined in an open neighbourhood A′ of Ā in A.

Take any map Φ ∈ V. Let (vs)
m
s=0 ⊂ A be a part of an orbit of the iterated

function system {F0, . . . , FN}, i.e. for each s = 0, . . . ,m − 1 there exists ns =
0, . . . , N such that vs+1 = Fns(vs). In order to ensure that Fns(vs) is well-defined
we assume that vs ∈ A′ for ns 6= 0. In Section 4 we show that for any such orbit
and any ε > 0, there is a point x0 and a positive integer ` such that

dist(x0, v0) < ε, and dist(Φ̃`(x0), vm) < ε

(see Lemma 4). Note that we do not use hyperbolicity or index arguments in this
lemma. We also do not use the symplecticity of the maps F1, . . . , FN , nor the
twist property of the map F0. However, the fact that the large cylinder A is an
invariant domain for the area-preserving map F0 is crucial, as we use the Poincare
Recurrence Theorem in an essential way (we first prove a certain weak shadowing
result, Lemma 2, that holds without this assumption on the map F0, then Lemma
4 is deduced from it in the case of area-preserving F0).

According to this shadowing lemma (Lemma 4), in order to show that two open
sets are connected by a forward orbit of the map Φ, it is sufficient to show that the
intersections of these sets with A are connected by orbits of the iterated function
system {F0, . . . , FN }. A generalisation (Theorem 3) of a classical Birkhoff theorem
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states that if Fn for n = 0, . . . , N are exact symplectomorphisms homotopic to
identity, and F0 is a twist map, then for any two essential curves γ± ⊂ A′ there is
a trajectory of the iterated function system with v0 ∈ γ− and vm ∈ γ+ unless the

functions Fn have a common invariant essential curve.

Thus, if the maps F0, . . . , FN have no common invariant essential curves be-
tween γ− and γ+, every pair of neighbourhoods, U− of γ− and U+ of γ+, is
connected by orbits of the map Φ. Theorem 3 also implies that the absence of a
common invariant essential curve is an open property.

Theorem 4, the most difficult part of the argument, establishes that this prop-
erty is also dense in V (provided N ≥ 8). Thus, for every map Φ from an open
and dense subset of V, the corresponding scattering maps F1, . . . , FN (N ≥ 8) and
F0 do not have any common essential invariant curve. As we just explained, this
implies that every two neighbourhoods U± of γ± are connected by forward orbits
of each such map Φ, and Theorem 1 follows.

Theorem 4 is the crucial step in the proof of Theorem 1. An analogue of
Theorem 4 for generic non-analytic maps can be derived from [20,21,82]. However,
the methods of destroying common invariant curves that are used in those papers
cannot be used in the analytic case (as the real-analytic perturbations cannot, in
general, vanish on the finitely smooth normally-hyperbolic cylinder A; the same
concerns C∞ perturbations, for that matter). Therefore, we develop a completely
different perturbation technique in order to prove Theorem 4 for the analytic case.

3 Estimates in a neighbourhood of a symmetrically normally-hyperbolic

invariant cylinder

In this section we study dynamics in a small neighbourhood of a normally-hyperbolic
cylinder. This analysis does not require the map to be either symplectic or analytic.

3.1 Fenichel coordinates, cross form of the map, and estimates for the local
dynamics

Let A be a compact, symmetrically normally-hyperbolic, smooth, invariant cylin-
der of a Cr-smooth map Φ (r ≥ 2). As we already mentioned, A can be extended to
a larger, smooth normally-hyperbolic locally-invariant cylinder Ã. Let us introduce
coordinates in a small neighbourhood of A such that this larger invariant cylinder
is straightened. Moreover, the local stable and unstable manifolds W s,u

loc (A) are
straightened as well, along with the strong-stable and strong-unstable foliations
Ess and Euu on them. Note that the foliations are at least C1. The straightening of
the manifolds and foliations means that one can introduce C1-coordinates (u, v, z)
in a neighbourhood of A such that the manifold W s

loc will have equation z = 0,
the manifold Wu

loc will be given by u = 0, and the leaves of the foliations Ess and
Euu will all have the form {z = 0, v = const} and {u = 0, v = const} respectively
(cf. [59]). The cylinder A thus lies in {u = 0, z = 0}. Here v = (ϕ, y) with ϕ ∈ S1

being the angular variable and y taking values from an interval I of the real line.
Note that the manifolds Wu(A) and W s(A) can be non-orientable. In this case

we use the same coordinates (u, v, z) with v = (ϕ, y) assuming that the hyperplanes
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ϕ = 0 and ϕ = 2π are glued together by means of a linear involution in the space
of (v, z). This modification does not affect our estimates.

In these coordinates the map Φ near A takes the form Φ : (u, v, z) 7→ (ū, v̄, z̄),

ū = h1(u, v, z), z̄ = h2(u, v, z), v̄ = F0(v) + h3(u, v, z), (8)

where h1,2,3 and F0 are C1-functions such that

h1(0, v, z) ≡ 0, h2(u, v, 0) ≡ 0,

h3(0, v, z) ≡ 0, h3(u, v, 0) ≡ 0.
(9)

The identities Φ(0, v, z) = (0, v̄, z̄) and Φ(0, v, z) = (0, v̄, z̄) imply the first line of
(9). The second line follows from the observation that the v-component of Φ(0, v, z)
and Φ(u, v, 0) is independent of z and u respectively.

Differentiating equations (8) and taking into account that the local stable and
unstable manifolds are given by the equations z = 0 and, respectively, u = 0, we
find that

∂h1

∂u

∣∣∣∣
u=z=0

= Φ′(v)|Nsv ,
∂h2

∂z

∣∣∣∣
u=z=0

= Φ′(v)|Nuv .

Then the assumption (5) implies that in an appropriately chosen norm∥∥∥∥∂h1

∂u

∥∥∥∥ < λ,

∥∥∥∥∥
(
∂h2

∂z

)−1
∥∥∥∥∥ < λ.

The implicit function theorem implies that for small u and z the second equation
of (8) can be resolved with respect to z. Therefore there is a neighbourhood of the
closed invariant cylinder A, where the map Φ : (u, v, z) 7→ (ū, v̄, z̄) can be written
in the following “cross” form:

ū = p(u, v, z̄), z = q(u, v, z̄), (10)

v̄ = F0(v) + f(u, v, z̄), (11)

where

p(0, v, z̄) ≡ 0, q(u, v, 0) ≡ 0, (12)

f(0, v, z̄) ≡ 0, f(u, v, 0) ≡ 0, (13)

‖F ′0(v)‖ < α, ‖(F ′0(v))−1‖ < α, (14)∥∥∥∥ ∂p∂u
∥∥∥∥ < λ,

∥∥∥∥∂q∂z̄
∥∥∥∥ < λ, (15)

α2λ < 1, 0 < λ < 1 < α. (16)

These estimates follow from the upper bounds (4)–(6) and the equalities (8), (9)
provided the neighbourhood is sufficiently small.

Let Zδ denote a δ-neighbourhood of A.

Lemma 1 There is δ0 > 0 such that for any δ ∈ (0, δ0) and any k ≥ 0 the following

statements hold.
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1. Any trajectory of length k such that (ui, vi, zi) := Φi(u0, v0, z0) ∈ Zδ for i =
0, . . . , k satisfies the following estimates for i = 0, . . . , k:

‖ui‖ ≤ δλi, ‖zi‖ ≤ δλk−i, (17)

‖vi − F i0(v0)‖ ≤ δ(αλ)k/2, ‖vi − F i−k0 (vk)‖ ≤ δ(αλ)k/2. (18)

2. The orbit (ui, vi, zi) is determined in a unique way for any given u0, v0, zk such

that ‖u0‖, ‖zk‖ ≤ δ and v0 ∈ A, as well as for any given u0, vk, zk such that

‖u0‖, ‖zk‖ ≤ δ and vk ∈ A.

3. Moreover, as k → +∞,∥∥∥∥ ∂z0
∂(u0, v0)

∥∥∥∥+

∥∥∥∥∂(uk, vk)

∂zk

∥∥∥∥→ 0,

∥∥∥∥ ∂uk
∂(vk, zk)

∥∥∥∥+

∥∥∥∥∂(v0, z0)

∂u0

∥∥∥∥→ 0, (19)

uniformly for all ‖u0‖, ‖zk‖ ≤ δ and all vk ∈ A or v0 ∈ A.

4. We also have for all k large enough∥∥∥∥∂z0∂zk

∥∥∥∥ ≤ λk, ∥∥∥∥∂(uk, vk)

∂(u0, v0)

∥∥∥∥ ≤ αk (20)

(at any given (u0, v0) in the first inequality, and at any given zk in the second one),

and ∥∥∥∥∂uk∂u0

∥∥∥∥ ≤ λk, ∥∥∥∥ ∂(v0, z0)

∂(vk, zk)

∥∥∥∥ ≤ αk, (21)

(at any given (vk, zk) in the first inequality, and at any given u0 in the second one).

Proof. Using (10) and (11), we get

ui+1 = p(ui, vi, zi+1), zi = q(ui, vi, zi+1), vi+1 = F0(vi) + f(ui, vi, zi+1),
(22)

for all i = 0, . . . , k − 1. For a trajectory inside Zδ equations (12) and (15) imply

‖ui+1‖ = ‖p(ui, vi, zi+1)‖ ≤ λ‖ui‖, ‖zi‖ = ‖q(ui, vi, zi+1)‖ ≤ λ‖zi+1‖ . (23)

Since ‖u0‖, ‖zk‖ ≤ δ, it follows that the orbit {(ui, zi, vi)}ki=0 satisfies (17).

For the future convenience let us define

C0(δ) = sup
Zδ

{
‖p′v‖, ‖p′z̄‖, ‖q′u‖, ‖q′z̄‖, ‖f ′u‖, ‖f ′v‖, ‖f ′z̄‖

}
. (24)

Note that C0(δ) can be made as small as we need by decreasing δ because (12)
and (13) imply that p′v = 0, p′z̄ = 0, q′u = 0, q′v = 0, f ′u = 0, f ′v = 0, f ′z̄ = 0 at
(u = 0, z = 0), for all v ∈ A.

In order to prove inequalities (18), let Vi := vi − F i0(v0). In particular V0 = 0.
Equation (22) implies

‖Vi+1‖ ≤ sup
v∈A
‖F ′0(v)‖ · ‖Vi‖+ ‖f(ui, vi, zi+1)‖. (25)

Then equation (13) implies

‖f(ui, vi, zi+1)‖ ≤ sup
(u,v,z)∈Zδ

‖f ′u‖ · ‖ui‖ ≤ C0(δ)‖ui‖ ,

‖f(ui, vi, zi+1)‖ ≤ sup
(u,v,z)∈Zδ

‖f ′z‖ · ‖zi+1‖ ≤ C0(δ)‖zi+1‖ .
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Using equation (17) we get

‖f(ui, vi, zi+1)‖ ≤ δC0(δ) min{λi, λk−i−1} . (26)

Now using equations (14), (26) and (25) we conclude that

‖Vi+1‖ ≤ α‖Vi‖+ δC0(δ) min{λi, λk−i−1}.

Using V0 = 0 and inequalities (16) we find that for all 1 ≤ j ≤ k

‖Vj‖ ≤ δC0(δ)
∑

0≤i≤j−1

αj−i−1 min{λi, λk−i−1} ≤ δC0(δ)
∑

0≤i≤k−1

αk−i−1 min{λi, λk−i−1}

= δC0(δ)

 ∑
0≤i≤(k−1)/2

(αλ)k−i−1 + αk−1
∑

(k−1)/2<i≤k−1

(λ/α)i

 ≤ δ(αλ)k/2 ,

when δ0 is chosen small enough to ensure
C0(δ)√
αλ

[
1

1− αλ +
λ

α− λ

]
≤ 1. The first

of inequalities (18) is proved. The second inequality follows immediately by the
symmetry of the problem (if we replace the map Φ by its inverse, then F0 changes
to F−1

0 , i to (k − i), (u0, zk) to (zk, u0) and v0 to vk).

Given u0, v0, zk, the orbit {(ui, zi, vi)}ki=0 is a fixed point of the operator

Q : {(ui, vi, zi)}ki=0 7→ {(ûi, v̂i, ẑi)}
k
i=0,

which acts on a sequence {(ui, vi, zi)}ki=0 by
ûi+1 = p(ui, vi, zi+1), ẑi = q(ui, vi, zi+1),

v̂i+1 = F0(vi) + f(ui, vi, zi+1) for i = 0, . . . , k − 1,

û0 = u0, v̂0 = v0, ẑk = zk.

(27)

Recall that v = (y, ϕ), where ϕ ∈ S1, and y runs an interval I such that for all
sufficiently small δ the points in the δ-neighbourhood Zδ of the cylinder A have the
y-coordinates strictly inside I. It is convenient to extend the functions p, q, F0, f

in (10) and (11) to all y ∈ R1 in such a way that they remain smooth, have
uniformly continuous derivatives, moreover the identities (12) and (13) hold, and
the estimates (14) and (15) remain true with a margin of safety. We assume that
the functions p, q, F0, f are not changed for all points with y ∈ I. If a sequence
{(ui, vi, zi)}ki=0 is a fixed point of the extended operator Q and lies entirely in Zδ,
then this sequence is also an orbit for the original map Φ.

It is convenient to consider the lift of the original map so that ϕ runs the whole
real axis and the functions p, q and F0 +f −v are periodic in ϕ. So, in the analysis
of the operator Q given by (27), we assume v ∈ R2.

Denote by X = Xk,u0,v0,zk the set of all sequences {(ui, vi, zi)}ki=0 with the
given value of (u0, v0, zk), which also satisfy ‖ui, zi‖ ≤ δ for all i = 0, . . . , k. By
(23), if ‖ui, zi‖ ≤ δ for all i = 0, . . . , k, then ‖ûi, ẑi‖ ≤ δ for all i = 0, . . . , k as well,
thus QX ⊆ X. Let us show that the operator Q is contracting on X in the norm

‖{(ui, vi, zi)}ki=0‖α = max
i=0,...,k

α−i‖ui, vi, zi‖.
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Indeed, in this norm

‖Q′‖α ≤ max

{
α−1

∥∥∥∥ ∂p∂u
∥∥∥∥+ α−1

∥∥∥∥∂p∂v
∥∥∥∥+

∥∥∥∥∂p∂z̄
∥∥∥∥ , ∥∥∥∥ ∂q∂u

∥∥∥∥+

∥∥∥∥∂q∂v
∥∥∥∥+ α

∥∥∥∥∂q∂z̄
∥∥∥∥ ,

α−1
∥∥F ′0∥∥+ α−1

∥∥∥∥∂f∂u
∥∥∥∥+ α−1

∥∥∥∥∂f∂v
∥∥∥∥+

∥∥∥∥∂f∂z̄
∥∥∥∥
}

≤ max
{
α−1λ+ α−1C0(δ) + C0(δ), 2C0(δ) + αλ, α−1

∥∥F ′0∥∥+ α−1C0(δ) + 2C0(δ)
}
,

where, for the derivatives in the right-hand side, we use the supremum norm taken
over all (u, v, z̄) such that ‖u, z̄‖ ≤ δ, and C0(δ) is defined by (24). By (12)-(16),
if δ is sufficiently small, then ‖Q′‖α < 1 uniformly for every element from X,
independently of the value of k ≥ 0. Since the set X is convex, it follows that the
operator Q is indeed contracting.

Thus, by contraction mapping principle, given any (u0, v0, zk) such that ‖u0, zk‖ ≤
δ there exists indeed a unique length-k orbit with the given values of u0, v0 and zk.
We already proved that this orbit must satisfy (17) and (18). Since v0 ∈ A implies
F i0v0 ∈ A for all i = 0, . . . , k by the invariance of A with respect to F0, estimates
(17) and (18) imply that the orbit lies in Zδ as required.

By the symmetry of the problem, given any (u0, vk, zk) such that ‖u0, zk‖ ≤ δ

and vk ∈ A, there exists a unique length-k orbit with the given values of u0, vk
and zk, and this orbit lies in Zδ.

As a fixed point of a smooth contracting operator, the obtained orbit must de-
pend smoothly on all data on which the operator depends smoothly. So (ui, vi, zi)
depend smoothly on (u0, v0, zk) (and, by the symmetry of the problem, on (u0, vk, zk)
as well). To complete the proof of the lemma, it remains to prove estimates (19),
(20) and (21).

We prove only the first limit in (19), as the second one follows from the first
one due to the symmetry of the problem with respect to change of Φ to Φ−1.
It is enough to prove (20) only, as (21) also follows by the symmetry. Denote
βi = ‖∂(ui, vi)/∂(u0, v0)‖, γi = ‖∂zi/∂(u0, v0)‖, where the derivatives are taken at
zk fixed. By differentiating (22), we obtain

βi+1 ≤
∥∥∥∥∂(p, F0 + f)

∂(u, v)

∥∥∥∥ βi +

∥∥∥∥∂(p, f)

∂z̄

∥∥∥∥ γi+1, γi ≤
∥∥∥∥∂q∂z̄

∥∥∥∥ γi+1 +

∥∥∥∥ ∂q

∂(u, v)

∥∥∥∥ βi,

where the derivatives are taken at (u, v, z̄) = (ui, vi, zi+1). Since ui and zi satisfy
(17), we obtain from (12)–(15) that for sufficiently small δ (independent of i and
k)

βi+1 ≤ (α− ρ)βi + µiγi+1, γi ≤ (λ− ρ)γi+1 + µk−i−1βi, (28)

where ρ is a small positive constant, and

µj = sup
‖u‖≤δλj , (u,v,z)∈Zδ

∥∥∥∥∂(p, f)

∂z̄

∥∥∥∥+ sup
‖z‖≤δλj , (u,v,z)∈Zδ

∥∥∥∥ ∂q

∂(u, v)

∥∥∥∥ . (29)

It follows from (12) and (13) that

µj → 0 as j → +∞. (30)
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Recall also that, by definition,

β0 = 1, γk = 0. (31)

Define the sequence Mj by the rule

Mj+1 = αλMj + µj , (32)

for an arbitrarily chosen M0. As αλ < 1, it follows from (30) that

Mj → 0 as j → +∞. (33)

By (28)

γi−Mk−iβi ≤
λ− ρ

1− µiMk−i−1
(γi+1−Mk−i−1βi+1)+

[
µk−i−1 −Mk−i + α

λ− ρ
1− µiMk−i−1

Mk−i−1

]
βi.

As the sequences µj and Mj both tend to zero, it follows that

lim
k→+∞

max
i=0,...,k−1

µiMk−i−1 = 0. (34)

If k is large enough, then µiMk−i−1 < ρ/λ < 1 for all i = 0, . . . , k − 1. Thus,

γi −Mk−iβi ≤ λ(γi+1 −Mk−i−1βi+1) + [µk−i−1 −Mk−i + αλMk−i−1]βi,

which, by (32), implies

γi −Mk−iβi ≤ λ(γi+1 −Mk−i−1βi+1),

hence, for all k large enough, for every i = 0, . . . , k − 1

γi −Mk−iβi ≤ λk−i(γk −M0βk), (35)

in particular
γ0 −Mkβ0 ≤ λk(γk −M0βk). (36)

Now, by (31), we have γ0 ≤ Mk, so (33) implies ∂z0/∂(u0, v0) → 0 as k → +∞,
which agrees with (19). Note also that by (35) we have γi+1 ≤ Mk−i−1βi+1. By
(28),(34), this gives us that for all k large enough, for every i = 0, . . . , k − 1

βi+1 ≤ αβi,

which (see (31)) implies the second inequality in (20).
It remains to estimate ∂(uk, vk, z0)/∂zk as k → +∞. To this aim, let βi =

‖∂(ui, vi)/∂zk‖ and γi = ‖∂zi/∂zk‖, where the derivatives are taken at (u0, v0)
fixed. Then by differentiating (10),(11), we will obtain the inequalities (29), hence
the estimate (36) holds at all sufficiently large k for the newly defined γi, βi. How-
ever, instead of (31) we have now

β0 = 0, γk = 1.

Thus, we find from (36) that

γ0 ≤ λk, βk ≤ 1/M0

for all k sufficiently large. This immediately gives us the first inequality in (20),
and since M0 can be taken arbitrary, we also obtain that ∂(uk, vk)/∂zk → 0 as
k → +∞, which completes the proof of (19). �
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3.2 “Lambda-lemma”

The following analogue of the “lambda-lemma” [84,24] follows from Lemma 1.

Proposition 1 If L ⊂ Zδ is a surface of the form u = w(v, z), where w is a smooth

function defined for all v ∈ A and all small z, then the images Φm(L) ∩ Zδ converge

to Wu
loc(A) ∩ Zδ as m → +∞ in the C1-topology. If L ⊂ Zδ is a surface of the form

z = w(v, u), where w is a smooth function defined for all v ∈ A and all small u, then

the images Φ−m(L) ∩ Zδ converge to W s
loc(A) ∩ Zδ as m→ +∞ in the C1-topology.

Proof. By the symmetry of the problem, it is enough to consider only the case
where L is a surface of the form u = w(v, z). By Lemma 1, given any (u0, vk, zk)
the corresponding orbit (ui, vi, zi) is defined uniquely. Denote as ηk the operator
that sends (u0, vk, zk) to (v0, z0), and as ξk the operator that sends (u0, vk, zk) to
uk. The point (u, v, z) belongs to ΦkL if and only if u0 = w(v0, z0), i.e. the equation
of ΦkL is

uk = ξk(u0, vk, zk) (37)

where u0 is defined from

u0 = w(ηk(u0, vk, zk)). (38)

By (17) and (19),

‖ηk‖+ ‖∂ηk/∂u0‖ → 0 as k → +∞,

therefore at each k large enough equation (38) defines u0 uniquely as a smooth
function of (vk, zk). It follows from (21) that

‖∂u0/∂(vk, zk)‖ = O(αk).

Thus, equation (37) defines uk as a smooth function wk(vk, zk), for all ‖zk‖ ≤ δ

and vk ∈ A. By (17), ‖uk‖ → 0 as k → +∞. Moreover, since by (21) and (19) we
have ‖∂ξk/∂u0‖ = O(λk) and ‖∂ξk/∂(vk, zk)‖ → 0 as k → +∞, it follows that∥∥∥∥ dwk

d(vk, zk)

∥∥∥∥ ≤ ∥∥∥∥ ∂ξk∂u0

∥∥∥∥ · ∥∥∥∥ ∂u0

∂(vk, zk)

∥∥∥∥+

∥∥∥∥ ∂ξk
∂(vk, zk)

∥∥∥∥ = O((αλ)k) +

∥∥∥∥ ∂ξk
∂(vk, zk)

∥∥∥∥→ 0

as k → +∞ (recall that αλ < 1). We see that for all k large enough the surface ΦkL
is given by the equation u = wk(v, z) where wk tends to zero along with the first
derivative as k → +∞. Since equation of Wu

loc is u = 0, this proves the proposition.
ut

3.3 Secondary homoclinic cylinders

Using Proposition 1 we can establish a sufficient condition for the existence of in-
finitely many independent homoclinic cylinders. Let Ā and Â be compact invariant
cylinders such that Ā ⊂ Â ⊂ A. Let the intersection of Wu(A) and W s(A) contain
a homoclinic cylinder B which is simple relative to Â and A, and FB(Ā) ⊆ Â, i.e.

Wu(Ā) ∩B ⊆ W s(Â) ∩B. (39)
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Proposition 2 There are infinitely many homoclinic cylinders Bi, each corresponds

to a simple (relative to Ā and A) intersection of Wu(A) with W s(A), and none of the

cylinders belongs to the orbit of another cylinder: Bi ∩ Φm(Bj) = ∅ for every m and

every i 6= j.

Proof.

Since the manifolds Wu(A) and W s(A) are invariant with respect to Φ, the
cylinder Φm(B) lies in Wu(A)∩W s(A) for all m ∈ Z. This homoclinic sequence of
cylinders Φm(B) tends to A as m → ±∞. Therefore, there are positive numbers
m+ and m− such that the cylinders B− = Φ−m−(B) and B+ = Φm+(B) belong to
a small neighbourhood of A.

It is easy to show that if B is a simple homoclinic cylinder relative to Â and
A then the cylinder Φm(B) with any m also has this property. Indeed, conditions
[S1] and [S2] follow directly from the invariance of the foliations Ess and Euu and
the invariance of the cylinders Â and A. Moreover, the invariance of the foliations
implies Φ(πs(x)) = πs(Φ(x)) and Φ(πu(x)) = πu(Φ(x)) for every point x in W s(A)
and Wu(A) respectively. Then

πs,uΦ(B)
= Φ ◦ πs,uB ◦ Φ−1 (40)

and the scattering map takes the form

FΦ(B) = F0 ◦ FB ◦ F−1
0 (41)

where F0 = Φ|A. Consequently, the scattering maps, which correspond to any
two cylinders such that one is the image of the other by an m-th iteration of Φ,
are conjugate to each other by means of the m-th iteration of F0. Condition [S3]
follows immediately as F0 maps an essential curve to an essential curve. Thus the
fulfilment of the simplicity conditions for the cylinder B implies the fulfilment of
the simplicity conditions for all its iterations by Φ.

Thus, the cylinders B− and B+ satisfy B− ⊂ Wu
loc(A) and B+ ⊂ W s

loc(A),
and they are simple relative to Â and A. In the Fenichel coordinates, Wu

loc(A) has
the equation u = 0 and the leaves of the foliation Euu in Wu

loc(A) are given by
{u = 0, v = const}. By the simplicity conditions [S1] and [S2], each leave of Euu in
Wu
loc(Â) intersects the cylinder B− at a single point and is transverse to W s(A) at

this point. It follows that there is a piece W of the manifold W s(A) which contains
the homoclinic cylinder B− and has the form z = w(v, u) where w is a smooth
function defined for all v from some neighbourhood of Â and all small u.

Proposition 1 (where the invariant cylinder A is replaced by the invariant
cylinder Â) implies that the images Wi = Φ−i(W ) by the backward iterations
of Φ accumulate on W s

loc(Â) in C1. Equation (39) implies that each of Wi with
i sufficiently large has a non-empty and transverse intersection with Wu(Ā) near
B+. Since Wi are, by construction, pieces of Wu(A), this gives us the sought infinite
set of homoclinic cylinders Bi converging to the cylinder B+; obviously none of
them belongs to the orbit of another one. Since Wi are C1-close to W s

loc(Â) near
B+, it follows from the relative to Â simplicity of B+ that Wi intersect transversely
each leaf of the foliation Euu in Wu(Ā), the uniqueness of the intersections is also
inherited.

Thus, the scattering maps Fi : Ā→ int(A) are defined for each of the cylinders
Bi. In order to check the simplicity of the homoclinic intersection at Bi, we need
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to show that the projections πsBi : Bi → int(A) by the leaves of the strong-stable
foliation are injective for all i (condition [S2]), and that the scattering maps are
homotopic to identity (condition [S3]). To check the injectivity, notice that

πsΦi(Bi) = Φi ◦ πsBi ◦ Φ
−i (42)

by (40). So, it is enough to show the injectivity of πsΦi(Bi). To do this, note that the

cylinders Φi(Bi) are close to B− at large i, so the maps πsΦi(Bi) are close to πsB− ,
and the latter map is injective by the simplicity of the homoclinic intersection at
B−.

It remains to show that the scattering maps Fi are homotopic to identity. As
we just mentioned, the maps π̂si = πsΦi(Bi) ◦ (πsB−)−1 are close to identity at large

i. The same is true for the maps π̂ui = πuB+ ◦ (πuBi)
−1. Using (42), we find

FBi = πsBi ◦ (πuBi)
−1 = Φi ◦ π̂si ◦ FB− ◦ π

u
B− ◦ Φ

−i ◦ (πsB+)−1 ◦ FB+ ◦ π̂ui , (43)

where FB+ = πsB+ ◦ (πuB+)−1 and FB− = πsB− ◦ (πuB−)−1 are the scattering maps
corresponding to the cylinders B+ and B−. By the simplicity of the homoclinic
intersection at B, these maps are homotopic to identity diffeomorphisms. The
map Φi in formula (43) acts in a small neighbourhood Z of A and is homotopic
to identity in Z. The maps πsB+ and πuB− are projections along the foliations in
the local stable and unstable manifolds, so they are homotopic to identity in Z.
Thus, all the maps in the right-hand side of formula (43) are homotopic to identity,
which implies that the scattering maps FBi are homotopic to identity for all i large
enough. The proposition is proved. �

This proposition shows that the assumptions of Theorem 2 imply the existence
of an infinite series of different homoclinic cylinders which are simple relative to
Ā and A, i.e. Theorem 2 reduces to Theorem 1. For our purposes, the existence of
N ≥ 8 such cylinders is enough, so it will be our standing assumption for the rest
of the paper. We do not need the auxiliary invariant cylinder Â anymore.

4 Shadowing in the homoclinic channel

4.1 Homoclinic channel

Let B1, . . . , BN be homoclinic cylinders, each corresponds to a simple homoclinic
intersection relative to the compact invariant subcylinder Ā of A, and none of the
cylinders Bn belongs to the orbit of another cylinder. Let us repeat the definition
of the scattering maps Fn. Since the homoclinic intersections are simple, it follows
that two maps, πun and πsn, from Bn into int(A) are defined for every n by the
leaves of the foliations Euu and Ess, respectively. Namely, v = πun(x) if the points
x ∈ Bn and v ∈ A belong to the same leaf of the foliation Euu, and v = πsn(x) if
x ∈ Bn and v ∈ A belong to the same leaf of the foliation Ess. The smoothness
of the maps πsn and πun and their inverse maps follows from the transversality of
the intersections of the leaves with Bn. By assumption, Ā ⊂ πun(Bn). Thus, for
each homoclinic cylinder Bn we have a diffeomorphism Fn = πsn ◦ (πun)−1 which
acts from Ā into int(A). In fact, as the strong transversality condition [S1] is open,
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there is a neighbourhood A′ of Ā such that all the scattering maps F1, . . . , FN are
diffeomorphisms of A′ into int(A).

Take sufficiently large positive m+ and m− such that all the cylinders B+
n =

Φm+(Bn) and B−n = Φ−m−(Bn) (n = 1, . . . , N) lie in the δ-neighbourhood of
A, where δ is small enough. As B+

n ∈ W s
loc and B−n ∈ Wu

loc, it follows that in
the Fenichel coordinates z = 0 on B+

n , and u = 0 on B−n . Since the homoclinic
cylinders are simple, the cylinder B+

n intersects the leaves { v = const } of the
foliation Ess in W s

loc transversely, no more than at one point each, hence B+
n is

a graph of a function, B+
n = {u = u+

n (v), z = 0 }, where u+ is a smooth function
whose domain of definition contains Ā. Analogously, B−n := { z = z−n (v), u = 0 }
for a smooth function z−. Thus, points on B+

n and B−n are uniquely determined
by their v-coordinates. Since in the Fenichel coordinates the projections πu and
πs do not change the v-components of a point, we may formally treat the maps
Fn, n = 0, . . . , N , as acting from B−n to B+

n in the same way these maps act on A.

Since the foliations Ess and Euu are invariant with respect to the map Φ, it
follows that Φ(Euuv ) = EuuF0(v) and Φ(Essv ) = EssF0(v). Consequently, for any x ∈ Bn
the points F

−m−
0 ◦ πun(x) and Φ−m−(x) have the same v-coordinate. The same is

true for the points F
m+

0 ◦ πsn(x) and Φm+(x). Thus, in the v-coordinates, we have

Φm++m− |B−n = F
m+

0 ◦ Fn ◦ Fm−0 (44)

Denote by Tn : (u, v, z) 7→ (ū, v̄, z̄) the map Φm++m− from a sufficiently small
neighbourhood of B−n to a small neighbourhood of B+

n . The transversality condi-
tion implies that the image by the map Tn of any leaf of the foliation Euu in Wu

loc,
given by {u = 0, v = const}, is transverse to W s

loc = {z̄ = 0}. Consequently the
derivative ∂z̄/∂z is invertible. Therefore, given any small (u, z̄) and v ∈ Ā we have
a uniquely defined (ū, z, v̄) such that (ū, z̄, v̄) = Tn(u, z, v). So, we may write the
map Tn in the following form:

ū = pn(u, v, z̄), v̄ = Gn(u, v, z̄) = F̄n(v) + fn(u, v, z̄), z = qn(u, v, z̄), (45)

where pn, qn, fn are smooth functions defined for small (u, z̄) and for v from a
small neighbourhood A′′ of Ā in A. We define F̄n of (45) in such a way that

fn(0, v, 0) ≡ 0. (46)

As u = 0 corresponds to an initial point in Wu
loc, and z̄ = 0 corresponds to the

image of this point (by Tn) that lies in W s
loc, the equalities u = 0 and z̄ = 0

correspond to an initial point in B−n which has its image in B+
n . Thus, by (44), we

have

F̄n = Φm++m− |B−n = F
m+

0 ◦ Fn ◦ Fm−0 , (47)

where Fn is the scattering map. Since the cylinder Ā is invariant with respect to
F0, the maps F̄n are defined in a neighbourhood of Ā, as the scattering maps Fn
are. Thus, we will further assume that the open neighbourhood A′′ of Ā in A is
chosen such that the modified scattering maps F̄n are all defined there, and theay
are homotopic to identity diffeomorphisms of A′′ into A, moreover

F
−m−
0 (A′) ⊆ A′′ (48)
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where A′ is a small neighbourhood of Ā in A where the scattering maps Fn are
defined. 5

Let us denote by T0 the map Φ restricted to the δ-neighbourhood Zδ of A.
Let us call the union of the δ-neighbourhood of A with certain, sufficiently small
neighbourhoods of the cylinders Φ̃(B−), . . . , Φ̃m++m−−1(B−) a homoclinic channel.
For every finite orbit in the homoclinic channel with the initial point P0 ∈ Zδ there
is a uniquely defined sequence of points (Ps)

2J+1
s=0 of this orbit which lie in Zδ and

satisfy

P2j+1 = T
kj
0 P2j for j = 0, . . . , J,

P2j = TnjP2j−1 for j = 1, . . . , J,

where nj may take values from 1, . . . , N and kj ≥ 0. We call the sequence Pj a
channel orbit, and the sequence ω = (k0, n1, k1, . . . , nJ , kJ ) is called the code of the
orbit. Given a code ω, we say that a sequence (v∗s )2J

s=0 of points in A is a shadow

orbit, if v∗2j+1 = F
kj
0 (v∗2j) and v∗2j = F̄nj (v

∗
2j−1). In the last definition, we assume

that

v∗2j−1 ∈ A
′′ for j = 1, . . . , J, (49)

so these points belong to the domain of F̄nj and the sequence is well defined. We
note that it is possible that some codes do not correspond to any shadow orbit.
On the other hand, any channel orbit (Ps)

2J
s=0 has a code ω and defines a shadow

orbit with the code ω and v∗0 equal to the v-coordinate of P0.

4.2 Shadowing orbits of proper codes

Our next goal is to estimate the deviation of the channel orbit Ps from its shadow.
In this section we restrict our attention to orbits which correspond to a special
class of codes. Namely, a finite code is called proper if for all s

ks ≥ k̄ and ks ≥ γks+1 +D, (50)

for some k̄ ≥ 0, D ≥ 0 and γ > 1. In other words, ks is a sufficiently fast decreasing
sequence of sufficiently large numbers.

Lemma 2 Given any sufficiently large k̄, γ and D, for any shadow orbit v∗0 , . . . , v
∗
2J+1

with a proper code k0, {ns, ks}1≤s≤J , given any uin and zout such that ‖uin‖ ≤ δ,

‖zout‖ ≤ δ, in the δ-neighbourhood of A′ there exists a uniquely defined channel orbit

(Ps)
2J+1
s=0 with Ps = (us, vs, zs) such that u0 = uin, v0 = v∗0 , z2J+1 = zout, and

P2j+1 = T
kj
0 P2j , P2j = TnjP2j−1. Moreover,

‖vs − v∗s‖ ≤ 2δ(αλ)kJ /2 ≤ 2δ(αλ)k̄/2, (51)

and

‖u2J+1‖ ≤ δλ
k̄, ‖z0‖ ≤ δλk̄. (52)

5 As F0(Ā) = Ā ⊂ A′′, the inclusion (48) can always be achieved by choosing A′ to be close
enough to Ā.
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Remark 4 Usual shadowing results would require hyperbolicity (or its topological ana-

logues) from the maps F0 and F1, . . . , FN , see e.g. [26]. We, however, do not make any

assumption on the dynamics of these maps in this lemma (e.g. we have not assumed the

symplecticity so far). Therefore we need to restrict here the class of shadow orbits to

those with proper codes only; we believe any significantly stronger shadowing statement

can not hold in this situation without further assumptions.

Proof of the lemma. For J = 0 the statement of the lemma is contained in Lemma 1,
so we will proceed by induction in J . Suppose that for any z̃ with ‖z̃‖ ≤ δ there
is a unique sequence (us, vs, zs), s = 0, . . . , 2J − 1 with the code k0, n1, . . . , kJ−1,
which satisfies the condition u0 = uin, v0 = v∗0 and z2J−1 = z̃ and such that the
inequalities

‖vs − v∗s‖ ≤ 2δ(αλ)kJ−1
/2 (53)

hold for all s ≤ 2J − 1. In order to shorten our notation we suppress dependence
on uin and v∗0 which are assumed to be fixed. Then u2J−1 = τ(z̃) and v2J−1 = φ(z̃)
for some functions τ and φ resectively. Equations (49) and (53) imply that

φ(z̃) ∈ A′′ρ for any ρ > 2δ(αλ)k̄/2, (54)

where A′′ρ is the closed ρ-neighbourhood of A′′.

Since (u2J−1 , v2J−1 , z̃) = T
k
J−1

0 (u2J−2 , v2J−2 , z2J−2), equation (17) of Lemma 1
implies that

‖τ‖ ≤ δλkJ−1 ≤ δλk̄. (55)

We will also include in our induction assumption a bound for the derivatives:

‖τ ′, φ′‖ ≤ ν (56)

for some sufficiently small constant ν. Thus, in order to carry out the induction,
when we prove that the sought sequence (uj , vj , zj) is uniquely defined for all
j = 0, . . . , 2J + 1 we must also show that

‖∂(u2J+1 , v2J+1)/∂zout‖ ≤ ν (57)

with the same ν.

Since (u2J+1 , v2J+1 , z
out) = T

k
J

0 (u2J , v2J , z2J ), Lemma 1 implies that z2J is a
uniquely defined smooth function of (u2J , v2J ) and zout. We denote it by σ :
(u2J , v2J , z

out) 7→ z2J . Equations (17) and (19) imply

‖σ‖ ≤ δλkJ ≤ δλk̄, (58)

and

‖σ′‖ ≤ ν, (59)

for any ν > 0 chosen in advance (if k̄ is large enough), and

‖∂σ/∂zout‖ ≤ λkJ . (60)
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Taking into account that (u2J , v2J , z2J ) = TnJ (u2J−1, v2J−1, z2J−1) where the map
Tnj has the form (45) with n = nJ , we obtain the following system of equations

u2J = pn
J

(τ(z2J−1), φ(z2J−1), σ(u2J , v2J , z
out)),

v2J = Gn
J

(τ(z2J−1), φ(z2J−1), σ(u2J , v2J , z
out)),

z2J−1 = qn
J

(τ(z2J−1), φ(z2J−1), σ(u2J , v2J , z
out)).

(61)

In order to show that this system has a unique solution (u2J , v2J , z2J−1) for every
zout we use the contraction mapping theorem. Indeed, take any zout with ‖zout‖ ≤ δ
and consider the map

ū = pn(τ(z), φ(z), σ(u, v, zout)),

v̄ = Gn(τ(z), φ(z), σ(u, v, zout)),

z̄ = qn(τ(z), φ(z), σ(u, v, zout)),

(62)

where ‖z‖ ≤ δ, ‖u‖ ≤ δ and v ∈ A′′ρ (for some ρ small enough).
The functions pn, qn, Gn are defined by equation (45). By (54), (55), and (58),

if k̄ is sufficiently large, then the values of τ and σ can be made arbitrarily small,
and the range of values of φ can be confined to an arbitrarily small neighbourhood
of A′′, i.e. (τ, φ, σ) belong to the domain of definition of (pn.qn, Gn), and the map
(62) is well-defined.

As the functions pn, qn, Gn are smooth, their derivatives are bounded:

‖p′n, q′n, G′n‖ ≤ C.

We chose ν in (56) and (59) such that Cν < 1. Then ‖z̄‖ ≤ δ, ‖ū‖ ≤ δ and v̄ ∈ A′′ρ .
The first two inequalities hold as pn and qn are components of the map Tn which
acts from a small neighbourhood of the cylinder B−n to a small neighbourhood
of the cylinder B+

n , and both cylinders belong to the δ-neighbourhood of A. In
order to show that v̄ ∈ A′′ρ we note that the induction assumption (53) implies

‖φ(z) − v∗
2J−1
‖ ≤ 2δ(αλ)kJ−1

/2. Since Gn := F̄n + fn, and v∗
2J

= F̄n(v∗
2J−1

), it
follows that

‖Gn(τ, φ, σ)− v∗
2J
‖ ≤ C‖φ− v∗

2J−1
‖+ ‖fn(τ, φ, σ)‖.

Taking into account that fn vanishes at τ = 0, σ = 0 (see (46)), we obtain

‖fn‖ ≤ C‖τ, σ‖ ≤ CλkJ

due to (55) and (58). Combining these inequalities, we find that

‖v̄ − v∗
2J
‖ ≤ Cδ

(
2(αλ)kJ−1

/2 + λkJ
)
. (63)

Since kJ > k̄ and k̄ is large, we obtain that

‖v̄ − v∗2J‖ ≤ ρ.

Since v∗2J ∈ A
′′, we have v̄ = Gn(τ, φ, σ) ∈ A′′ρ .

Thus the map (62) maps the set ‖z̄‖ ≤ δ, ‖ū‖ ≤ δ and v̄ ∈ A′′ρ into itself.
The chain rule together with the bounds (56) and (59) imply that this map is a
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contraction. Consequently, system (61) has a unique solution (u2J , v2J , z2J−1) as
required.

Moreover, after differentiating equation (61) and using (60) we obtain

‖∂(u2J , v2J )/∂zout‖ ≤ C

1− Cν λ
k
J = o(α−kJ ) (64)

where the last bound follows from αλ < 1 (see (16)). Recalling that (u2J+1 , v2J+1 , z
out) =

T
k
J

0 (u2J , v2J , z2J ) and using (19), (20) and (64), we find that ‖∂(u2J+1 , v2J+1)/∂zout‖
can be made as small as we need by taking kJ large enough. Thus (57) holds true
indeed for k̄ large enough.

So we have proved the existence and uniqueness of the sequence (us, vs, zs)
with s = 0, . . . , 2J + 1. It remains to demonstrate inequalities (51) and (52).

For s ≤ 2J − 1, inequality (51) follows from the induction assumption (53) as
kJ−1 > kJ . For j = 2J inequality (51) follows from (63) applied to the fixed point of
the map. In order to check (51) for s = 2J+1, we recall that (u2J+1 , v2J+1 , z2J+1) =

T
k
J

0 (u2J , v2J , z2J ) and v∗
2J+1

= F
k
J

0 (v∗
2J

). Then equations (14), (18) and (63) with
v̄ = v2J imply∥∥v2J+1 − v∗2J+1

∥∥ ≤ ‖F kJ0 (v2J )− F kJ0 (v∗2J )‖+ δ(αλ)kJ/2

≤ ‖v2J − v∗2J‖α
kJ + δ(αλ)kJ/2

≤ Cδ
(

2(αλ)kJ−1
/2 + λkJ

)
αkJ + δ(αλ)kJ/2.

This inequality implies (51) for s = 2J + 1 provided the first term in the last line
is not larger than the second one, i.e.,

2C(αλ)kJ/2
(

(αλ)(k
J−1
−kJ )/2(α/λ)kJ/2 +

1

2

)
≤ 1.

Taking into account (50) we see that this inequality can be achieved if 2C(αλ)k̄/2 ≤
1 and (αλ)(γ−1)kJ+D(α/λ)kJ ≤ 1

4 . The first inequality holds if k̄ is sufficiently large
and the second one follows from

γ > 2 ln
1

λ

/
ln

1

αλ
, (αλ)D ≤ 1

4
.

Finally, inequality (52) is an immediate corollary of (17). �

4.3 Replacing a code with a proper code

Since the diffeomorphism F0 is area-preserving, the Poincare Recurrence Theorem
implies that recurrent (Poisson stable) orbits of F0 are dense in the invariant
cylinder A. This fact, as the following lemma shows, allows an arbitrary orbit of
the iterated function system {F0, F1, . . . , FN} to be approximated by a shadow
with a proper code. We recall that F0 : A→ A is the restriction of the map Φ onto
A, and Fn : A′ → int(A) with n ≥ 1 are scattering maps.
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Lemma 3 Let v0, . . . , v2J+1 be a sequence of points, ij ≥ 0 and nj ∈ {1, . . . , N}, such

that
v2j+1 = F

ij
0 (v2j) j = 0, . . . , J,

v2j = Fnj (v2j−1) j = 1, . . . , J,
(65)

v2j−1 ∈ A′ and v2j ∈ int(A). Let U0, U2J+1 be open subsets of A such that v0 ∈ U0

and v2J+1 ∈ U2J+1 . Then for any positive k̄, γ and D, there exists a sequence of points

v∗s ∈ int(A) such that v∗0 ∈ U0, v
∗
2J+1

∈ U2J+1 and

v∗2j+1 = F
kj
0 (v∗2j) j = 0, . . . , J,

v∗2j = F̄nj (v
∗
2j−1) j = 1, . . . , J,

with the same nj as in (65), v∗2j−1 ∈ A
′′ (the domain of the maps F̄n) for j = 1, . . . , J ,

and the numbers kj form a proper sequence in the sense of (50).

Proof. The definition of the modified scattering maps F̄n (see (47)) implies that
it is enough to show that there exists a sequence of points v̂s such that v̂0 ∈ U0,
v̂2J+1 ∈ U2J+1 , and

v̂2j+1 = F
k̂j
0 (v̂2j) (j = 0, . . . , J),

v̂2j = Fnj (v̂2j−1) (j = 1, . . . , J)
(66)

where nj are taken from (65), v̂2j−1 ∈ A′ for j = 1, . . . , J , and the numbers k̂j are

such that numbers kj = k̂j − (m+ +m−) for 0 ≤ j ≤ J − 1 and kJ = k̂J −m+ form
a proper sequence. Then the sequence v∗s is defined by the following equations

v∗0 = v̂0, v∗
2J+1

= v̂2J+1 , v∗2j−1 = F
−m−
0 v̂2j−1, v∗2j = F

m+

0 v̂2j (j = 1, . . . , J).

Note that (48) implies v∗2j−1 ∈ A
′′.

We construct the sequence v̂j by induction in J . Let J = 0. Since v0 ∈ U0 and

v1 = F i00 (v0) ∈ U1, there is Û ⊂ U1, a small open neighbourhood of v1 in A′ such
that F−i00 Û ⊂ U0. The Poincaré recurrence theorem implies that for any K there
is k > K such that F−k0 Û ∩ Û 6= ∅. Let K = k̄ − i0 + m+ + m− and k̂0 = k + i0.
Then

k0 = k̂0 −m− −m+ ≥ k̄. (67)

Moreover, for any v̂0 ∈ F−k−i00 Û∩F−i0 Û 6= ∅, we have v̂0 ∈ U0 and v̂1 := F k̂00 (v̂0) ∈
U1.

Now let J ≥ 1. The induction assumption implies that for any open subset
U2 ⊂ A′ such that v2 ∈ U2 there is a point v′ ∈ U2 such that F(v′) ∈ U2J+1 , where

F =

 ∏
2≤j≤J

F
k̂j
0 ◦ Fnj

 ◦ F k̂10 and the numbers k̂j are such that the sequence kj

defined by

kJ = k̂J −m+ and kj = k̂j −m− −m+, 2 ≤ j ≤ J − 1, (68)

is proper.
There is a small open neighbourhood U1 of v1 in A′ such that F ◦ Fn1(U1) ⊆

U2J+1 . Since v0 ∈ U0 and v1 = F i00 (v0) ∈ U1, there is Û ⊂ U1, a small open

neighbourhood of v1 in A′ such that F−i00 Û ⊂ U0. The Poincaré recurrence theorem
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implies that for any K there is k > K such that F−k0 Û ∩ Û 6= ∅. Let K = γk1 +
D − i0 +m+ +m− and k̂0 = k + i0. Then

k̂0 −m− −m+ ≥ γk1 +D, (69)

where k1 given by (68). Let k0 = k̂0 −m+ −m−. Then the sequence k0, . . . , kJ is
proper (see (50)), and equations (66) define a sequence v̂s such that v̂2J+1 ∈ U2J+1 ,
as v̂2J+1 = F ◦ Fn1(v̂1) ∈ F ◦ Fn1(U ′) ⊆ U2J+1 . �

We say that two points v0 and vm are connected by an orbit of the iterated
function system {F0, . . . , FN} if v2J+1 is an image of v0 by a certain sequence of
maps Fn. Obviously, this means that v0 and vm are the first and the last points
in a sequence of points vs constructed by the rule (65) with m = 2J + 1. Since the
corresponding sequence v∗s constructed in Lemma 3 is a shadow of proper code,
we may use Lemma 2. Thus, combining Lemmas 3 and 2, we obtain the following
statement.

Lemma 4 Let the map F0 be area-preserving. Let two points v0 ∈ A and vm ∈ A

be connected by an orbit of the iterated function system {F0, . . . , FN}. Then, for any

ε > 0 the ε-neighbourhoods of v0 and vm in R2d are connected by an orbit of the map

Φ.

5 Symplectic properties of scattering maps

Let N ⊂ M be an open subset of a smooth symplectic manifold M endowed
with a closed non-degenerate symplectic form Ω. We consider a diffeomorphism
Φ : N → Φ̃(N) ⊂M which preserves Ω. We assume that A ⊂ N is a symmetrically
normally hyperbolic invariant manifold. An important example is M = R2d and A

is a two-dimensional compact cylinder bounded by two invariant curves of Φ. We
review some properties of the manifold A, its stable and unstable manifolds, and
homoclinic to A. Similar results can be found e.g. in [32].

We start with establishing some useful geometric properties of the stable and
unstable manifolds and the scattering maps. These properties are based on a sym-
plectic orthogonality property of the next proposition.

Proposition 3 If A is a symmetrically normally-hyperbolic invariant manifold and

x ∈ A, then TyW
s(A) ⊥Ω TyE

ss(x) for any y ∈ Ess(x) and TyE
uu(x) ⊥Ω TyW

u(A)
for any y ∈ Euu(x).

Proof. Let y ∈W s(A). Take any w ∈ TyEss(x) and u ∈ TyW s(A). Since the map Φ

preserves the form Ω, we have for any m ∈ N:

Ω(w, u) = Ω((Φ′)mw, (Φ′)mu) = (αλ)mΩ(α−m(Φ′)mw, λ−m(Φ′)mu) = O((αλ)m) .

Taking the limit m → +∞, we find that Ω(w, u) = 0, i.e. u ⊥Ω v. Thus, we have
proved TyE

ss(x) ⊥Ω TyW
s(A). In a similar way we conclude that TyE

uu(x) ⊥Ω
TyW

u(A) for any y ∈Wu(A). �

Proposition 4 The restriction of the symplectic form Ω to the symmetrically normally-

hyperbolic invariant manifold A is non-degenerate.
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Proof. If the proposition is not true and the restriction of the symplectic form
is degenerate, then there are x ∈ A and a non-zero vector w ∈ Tx(A) such that
w ⊥Ω Tx(A). On the over hand w ∈ TxA = TxW

s(A) ∩ TxWu(A) implies that
w ⊥Ω TxE

ss
x and w ⊥Ω TxE

uu
x . The normal hyperbolicity assumptions imply that

TM = TxE
ss
x ⊕ TxE

uu
x ⊕ TxA for any x ∈ A. Consequently, w ⊥Ω TxM , which

contradicts to the non-degeneracy of Ω, and the proposition follows immediately.
�

We remind that a homoclinic intersection of Wu(A) and W s(A) at a point y is
strongly transverse if Euuy is transverse to W s(A) and Essy is transverse to Wu(A)
at the point y.

Proposition 5 If y ∈ Euu(x1)∩Ess(x2) for some x1, x2 ∈ A and TyM = TyE
uu(x1)⊕

TyW
s(A) then TyM = TyE

ss(x2) ⊕ TyWu(A) and, consequently, the homoclinic in-

tersection at y is strongly transverse.

The proof of this proposition is completely straightforward: it is sufficient to
note that under the assumptions of the proposition any vector from TyE

ss(x2) ∩
TyW

u(A) is Ω-orthogonal to all vectors due to Proposition 3. The proposition im-
plies that the strong transversality is equivalent to the transversality of the strong
stable leaves to the unstable manifold (or the transversality of the strong unsta-
ble leaves to the stable manifold). This property reduces the number of conditions
which are necessary to verify the strong transversality of a homoclinic intersection.

For every y ∈ W s(A) there is a unique x ∈ A such that y ∈ Ess(x). We
define the projection πs : W s(A) → A by setting πs(y) = x. Let v = (v1, v2, . . .)
be some coordinates on A defined in a small neighbourhood U of the point x.
Define coordinates (u, v) in (πs)−1(U) such that u = 0 corresponds to a point in
A and v = const corresponds to a strong-stable leave of Ess. In these coordinates
πs : (u, v) 7→ (u, 0).

Since TyE
ss(x) ⊥Ω TyW

s(A), we see that in these coordinates Ω|W s(A) =∑
i,j aij(u, v)dvi ∧ dvj . On the other hand, the symplectic form is closed, i.e.,

dΩ = 0. So we have dΩ|W s(A) =
∑
i,j,k

∂aij
∂uk

duk ∧ dvi ∧ dvj = 0. Consequently
the coefficients aij do not depend on u and Ω|W s(A) =

∑
i,j aij(v)dvi ∧ dvj .

Let B be any section of W s(A) transverse to the strongly stable leaves. Then the
restriction πs|B : B → A is a local diffeomorphism. Moreover, since the projection
is the identity in the coordinates u, we find that πs|B is a symplectomorphism,
i.e. it transforms Ω|B into Ω|A. In particular, Ω|B is non-degenerate, i.e. B is a
symplectic manifold.

Obviously, a similar statement is true for the stable manifolds replaced by the
unstable ones: for any section B of Wu(A) transverse to the strongly unstable
leaves, the projection πu : B → A by the strongly unstable leaves is locally a
symplectomorphism. Thus, we obtain the following

Proposition 6 If y ∈W s(A)∩Wu(A) is a strongly transverse homoclinic point and B

is a sufficiently small neighbourhood of y inside W s(A) ∩Wu(A), then the scattering

map FB = πs|B ◦ (πu|B)−1 : Bu → Bs is a symplectomorphism, where Bu,s =
πu,s(B) ⊂ A.

We can define the scattering map FB relative to any connected subset B of
W s(A)∩Wu(A) that consists of strongly transverse homoclinic points. When B is



28 V.Gelfreich, D.Turaev

not a small neighbourhood of a single point, the scattering map FB does not need
to be single-valued nor injective (eventhough every branch of it is a local diffeomor-
phism). In this paper we assume B to be a simple homoclinic cylinder. Then the
scattering map is single-valued and injective, so it is a symplectic diffeomorphism
defined on a large open subset A′ of A.

Assume the symplectic form is exact, i.e., Ω = dϑ, where ϑ is a differential 1-
form. For example, in the case of our interest, M = R2d, Ω = dp∧dq, and ϑ = pdq.
The symplectic map Φ is exact if ∫

γ

ϑ =

∫
Φ(γ)

ϑ

for every smooth closed curve γ. Obviously, the exactness of Φ implies the exactness
of the map F0 = Φ|A.

Proposition 7 Let A′ ⊆ A be a region such that the scattering map FB is a diffeo-

morphism A′ → FB(A′) ⊆ A. If for each point x ∈ A′ the corresponding leaves Euu(x)
and Ess(FB(x)) intersect B exactly at one point, then the restriction of FB on A′ is

exact.

Proof. Let us prove that the map (πu|B)−1 is exact on A′. The proof of the exactness
of the map (πs|B)−1 on FB(A′) is exactly the same, so the exactness of FB will
follow immediately. Take any smooth closed curve γ ⊂ A′. By assumption, for any
x ∈ γ there is a unique point y(x) ∈ B such that y ∈ Euu(x), the union of the
points y(x) over all x ∈ γ gives the curve (πu|B)−1γ = γ̃ ⊂ B. As the strongly
unstable leaves are simply-connected (each is a diffeomorphic copy of Rk where
2k = dim(M)−dim(A)) and depend smoothly on the base point x, one can connect
each point x ∈ γ with the corresponding point y(x) ∈ γ̃ by a smooth arc `(x) that
lies in Euu(x) so that the union of these arcs forms a smooth two-dimensional
surface S ⊂Wu(A), an annulus bounded by γ and γ̃. By Stokes theorem,∫

γ

ϑ−
∫
γ̃

ϑ =

∫
S

Ω.

At every point y ∈ S the tangent plane contains a vector tangent to one of the
curves `(x) which lies in the Euu(x), so Ω vanishes on TyS by Proposition 3. Thus,∫
S
Ω = 0, which gives us the required identity

∫
γ
ϑ =

∫
γ̃
ϑ for every smooth closed

curve γ in A′. �

Note that, surprisingly, the exactness of the scattering map in the statement
above does not require the exactness of the map Φ itself.

6 Transport in an iterated functions system and obstruction curves

The symplecticity of the map F0 = Φ|A established in Proposition 4 means that
this map is area-preserving (with the area of a domain obtained by integrating
Ω|A over this domain). Therefore, as shown in Section 4.3, for two open sets to
be connected by an orbit from the homoclinic channel it is enough for these sets
to be connected by the orbits of the iterated function system {F0, F1, . . . , FN}.
As we showed in Section 5 all these maps are exact symplectomorphisms. The
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diffeomorphism F0 is defined everywhere on the cylinder A which is invariant with
respect to F0, i.e. F0(A) = A. The scattering maps Fn, n = 1, . . . , N , are defined
on a subset A′ of the cylinder A and, as follows from the simplicity assumptions
[S1]–[S3], they are homotopic to identity diffeomorphisms A′ → A. The exact
symplecticity of the maps Fn implies that the area between any curve γ and its
image Fn(γ) is zero. Hence, Fn(γ) ∩ γ 6= ∅ for any simple essential curve γ ⊂ A′.

We assume that there exist coordinates v = (y, ϕ) in A such that the map
F0 : (y, ϕ) 7→ (ϕ̄, ȳ) in these coordinates satisfies the twist condition, i.e.

∂ϕ̄

∂y
6= 0

everywhere in this cylinder (we assume that ϕ ∈ S1 is the angular variable).
Let Ā be a compact cylinder in A′ bounded by two simple essential curves γ+

and γ− such that γ− ∩ γ+ = ∅ (we no longer need to assume that Ā is invari-
ant). Let γ+ corresponds to larger values of y than γ− does. The set A \ int(Ā)
consists of two connected components, the upper component A+ contains γ+ and
the lower component A− contains γ−. If Ā contains an essential curve γ∗ which
is invariant for all of the maps Fn, n = 0, . . . , N , then the curve γ∗ divides the
cylinder Ā into two invariant parts, so no trajectory of the iterated function sys-
tem {F0, F1, . . . , FN} which starts within A− can get to A+. In other words, the
absence of essential common invariant curves in Ā is a necessary condition for the
orbits of iterated function system to connect A− with A+. The following theorem
shows that this condition is also sufficient. This theorem generalises a result by
R.Moeckel [80].

Theorem 3 Let F1, . . . , FN be exact symplectomorphisms A′ → A, homotopic to iden-

tity. Let A be invariant with respect to a symplectic diffeomorphism F0 which satisfies

the twist condition on A. Suppose no essential curve in Ā is a common invariant curve

for the maps Fn with n = 0, 1, . . . , N . Then there is a finite trajectory (vi)
m
i=0 ⊂ Ā of

the iterated function system {F0, F1, . . . , FN} that starts on γ− and ends on γ+ (i.e.

v0 ∈ γ−, vm ∈ γ+, and vi+1 = Fki(vi) for some sequence of ki ∈ { 0, . . . , N }).

Remark 5 As the common invariant curve is, in particular, an invariant curve of the

twist map F0, the Birkhoff theory implies that it is necessarily a graph of a Lipschitz

function y = y∗(ϕ), so it is sufficient to verify the absence of common invariant Lips-

chitz curves.

Remark 6 Our statement makes an important change in the setup of the problem com-

pared to e.g. [80,17] as we do not ask the boundaries γ− and γ+ to be invariant with

respect to any of the maps Fn, n = 0, . . . , N . Indeed, it is not natural to assume that the

scattering maps preserve the boundaries as this would require certain non-transversality

of stable and unstable manifolds associated with the Φ-invariant curves on the boundary.

Proof of Theorem 3.

We say that a map F : A′ → A has a strong intersection property if F (γ)∩ γ 6= ∅
for any simple essential curve γ ⊂ A′ and, moreover, if F (γ) 6= γ, then F (γ) has
points in both components of A \ γ. The symplectomorphisms Fn : A′ → A, which
are exact and homotopic to identity, have the intersection property.

The boundary of the F0-invariant cylinder A consists of two non-intersecting
essential curves. We refer to the boundary curve with larger values of the coordi-
nate y as the upper boundary of A. Let γ ⊂ A′ be a simple essential curve and let
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γn be the boundary of the connected component of A \ (γ ∪Fn(γ)) adjacent to the
upper boundary of A. This is also a simple essential curve. Denote by Fn the oper-
ator that replaces the curve γ by γn. By construction, Fn(γ) has no points below γ

and the intersection property of Fn implies that γ ∩Fn(γ) 6= ∅. If Fn(γ−)∩γ+ 6= ∅
for some n, we have found a connecting orbit. Indeed, take v1 ∈ Fn(γ−) ∩ γ+ and
let v0 = F−1

n (v1).

We continue by induction. Let m = 0, γ0 = γ−. Let us construct, inductively,
a sequence of simple essential curves γm ⊂ Ā, such that each point of γm can be
reached by a trajectory which starts on γ− and has the length not larger than m.
Suppose we have constructed such γm for some m ≥ 0. If Fn(γm) ∩ γ+ 6= ∅ for
some n, the inductive process is terminated as the intersection point belongs to
a trajectory which starts on γ− and finishes on γ+ as required. Otherwise define
γm+1 as the boundary of that connected component of A \ (∪nFn(γm)) which is
adjacent to the upper boundary of A. Obviously, γm+1 is a simple essential curve.
The intersection property implies Fn(γm)∩γm 6= ∅. Then taking into account that
for every n the curve Fn(γm) has no points below γm and does not intersects γ+,
we conclude that the curve γm+1 belongs to a cylinder bounded by γm and γ+.
So γm+1 ⊂ Ā.

We claim that this process terminates after a finite number of steps because
otherwise the maps Fn would have a common invariant essential curve in Ā.

Indeed, suppose that the process does not terminate. Then the curves γm ⊂ Ā
form a “bounded and monotone” sequence. Namely, if we denote as γ+

0 the upper
boundary of A, then the closed cylinders [γm, γ

+
0 ] bounded by the curves γm and

γ+
0 form a monotone sequence of closed sets (as γm+1 has no points below γm).

Then Ũ∗ = ∩m≥0[γm, γ
+
0 ] is closed and has non-empty interior since [γ+, γ+

0 ] ⊂ Ũ∗.
Let U∗ be the connected component of int(Ũ∗) adjacent to the upper boundary
γ+

0 . Let γ∗ = ∂U∗ \ γ+
0 (i.e. ∂U∗ is the disjoint union of γ∗ and γ+

0 ).

Let us show that γ∗ is an essential curve, invariant with respect to F0. First,
we note that for any point p∗ ∈ γ∗ there is a sequence of points pm ∈ γm such
that limm→∞ pm = p∗. Indeed, otherwise there is an open neighbourhood Q of p∗

and an unbounded subsequence mk such that γmk ∩Q = ∅. Then Q ⊂ int[γmk , γ
+
0 ]

(recall that Q intersects γ∗ and γ∗ ⊂ [γmk , γ
+
0 ] for each mk). Since the sequence of

cylinders is monotone, it follows that Q ⊂ int[γm, γ
+
0 ] for all m. Thus Q ⊂ int(Ũ∗),

which contradicts to p∗ ∈ γ∗.
We can approximate the sequence pm by a sequence of points p′m → p∗ such

that p′m lies outside [γm, γ
+
0 ] (below γm) for each m, i.e. p′m 6∈ Ũ∗. Thus, each point

of γ∗ is a limit of a sequence of points which do not lie in U∗, i.e. γ∗ forms the
boundary of the closure of U∗ (a priori, some points of the boundary of an opens
set may not lie in the boundary of the closure of the set).

It also follows that Fn(γ∗) ∩ U∗ = ∅ for all n. Indeed, suppose Fn(p∗) ∈ U∗ for
some p∗ ∈ γ∗. Then, since p∗ is a limit of points lying in the curves γm and U∗

is open, there is pm ∈ γm such that Fn(pm) ∈ U∗, which is impossible as, by the
construction, Fn(γm) lies below γm+1 and, hence, has no points inside U∗.

In particular, we have F0(γ∗) ∩ U∗ = ∅, which means that U∗ ⊆ F0(U∗) and

cl(U∗) ⊆ F0(cl(U∗)). (70)

Would the image of any point q ∈ cl(U∗) by the map F0 lies outside cl(U∗),
then the images of all points from U∗ which are close enough to q would also
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lie outside cl(U∗), i.e. the set F0(cl(U∗)) would have an open subset outside of
cl(U∗) (recall that U∗ is open). Thus, the Lebesgue measure of F0(cl(U∗)) would
be strictly greater than the measure of cl(U∗), which is a contradiction with the
area-preservation property of F0. Therefore, it follows from (70) that, in fact,
F0(cl(U∗)) = cl(U∗), i.e. U∗ is an invariant domain for the twist map F0. Now,
Birkhoff theorem implies that the boundary γ∗ of U∗ is a simple essential curve,
invariant with respect to F0.

The set U∗ is one of the two connected components of A\γ∗. Since Fn(γ∗)∩U∗ =
∅ for all n, the strong intersection property implies that Fn(γ∗) = γ∗ for all n. We
have proved that the non-existence of a connecting trajectory is equivalent to the
existence of a common invariant curve. �

Theorem 3 is valid for any two non-intersecting essential curves in A′: either
they are connected by an orbit of the iterated function system, or there is an
essential curve γ∗ between them which is invariant with respect to all maps Fn.
It follows that the absence of a common invariant essential curve in Ā is equiva-
lent to the existence of an orbit of the iterated function systems which connects
int(A+) with int(A−) (move the curves γ+ and γ− inside int(A+) and, respectively,
int(A−), and apply Theorem 3 to these curves). Since the existence of such orbit
is an open property, Theorem 3 implies that the cylinder Ā contains no essential
curve invariant with respect to all maps F0, . . . , FN for an open set of maps from
VN . In the next Section we show that this set of maps is also dense in VN . This will
finish the proof of the Main Theorem: it follows immediately from Theorem 3 and
Lemma 4 that for any map Φ from this open and dense set any two neighbourhoods
of γ− and γ+ are connected by Φ.

7 Simultaneous destruction of all obstruction curves

We finish the proof of the Main Theorem by showing that for a map Φ from a
dense subset of the set VN the corresponding maps F0, F1, . . . , FN do not have a
common essential invariant curve, provided N ≥ 8. As F0 is a twist map, we can
restrict the problem to Lipshitz invariant curves only. Recall that for any map
Φ from VN there exists a compact normally-hyperbolic invariant cylinder A. We
introduce coordinates (y, ϕ) on A such that the restriction F0 of Φ on A has a twist
property. In these coordinates F0 : (y, ϕ) 7→ (ȳ, ϕ̄) and

∂ȳ

∂ϕ
6= 0

for all (y, ϕ) ∈ A. By the Birkhoff theorem, every essential invariant curve of F0 is
Lipschitz:

y = y(ϕ), |y(ϕ1)− y(ϕ2)| ≤ L|ϕ1 − ϕ2|,

where the Lipschitz constant L satisfies

L ≤ sup
v∈Ā

max

{∣∣∣∣∂ϕ̄∂ϕ
∣∣∣∣ / ∣∣∣∣∂ϕ̄∂y

∣∣∣∣ , ∣∣∣∣∂ȳ∂y
∣∣∣∣ / ∣∣∣∣∂ϕ̄∂y

∣∣∣∣} .

Given map Φ ∈ VN , we can choose the constant L the same for all maps from a
neighbourhood of Φ in VN (since the maps which are close in VN are also C1-close,
and the corresponding cylinders A are C1-close as well).
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By the assumptions of the Main Theorem, we have a compact subcylinder Ā
in A such that N ≥ 8 scattering maps are defined on a neighbourhood A′ of Ā.
The cylinder Ā depends continuously on the map Φ, so we can choose A′ to be the
same (in appropriately chosen coordinates (y, ϕ)) for all maps close to Φ. We can
also assume that the maps F1, . . . , FN are defined in some neighbourhood of the
closure of A′. Note that the scattering maps depend continuously on the map Φ in
the following sense: if two maps Φ are C2-close, then the corresponding scattering
maps are C1-close.

Theorem 4 Arbitrarily close to any map Φ, in VN there exists a map for which the

corresponding scattering maps F1, . . . , F8 have no common L-Lipschitz invariant curves

in A′.

Proof. Consider the space of all L-Lipshitz (periodic) functions y = y(ϕ) endowed
with the C0-metric. Let L be the subset of this space which consists of all functions
whose graphs lie in the closure of A′ and are invariant, simultaneously, for all the
scattering maps F1, . . . , F8 generated by the map Φ. If L = ∅, there is nothing
to prove. If L 6= ∅, we note that L is compact, so given any δ > 0 there is a
finite set of L-Lipshitz curves C1, . . . , Cq such that each of them is invariant with
respect to all the maps F1, . . . , F8 and every other common invariant L-Lipshitz
curve lies in the δ-neighbourhood of one of the curves Cs, i.e. it belongs to the
cylinder As := {|y − ys(ϕ)| ≤ δ} where y = ys(ϕ) is the equation of the curve Cs.
Moreover, the set of the L-Lipshitz common invariant curves of the scattering maps
depends upper-semicontinuously on the map Φ (if we have a sequence of maps Φ(k)

that converges to Φ in C2, then the corresponding scattering maps F
(k)
j converge

to the scattering maps Fj in C1; and if the maps F
(k)
j each have an L-Lipshitz

invariant curve, then the set of the limit points of these curves as k → +∞ is the
union of a set of L-Lipshitz curves each of which is invariant with respect to the
scattering maps Fj). Thus, for all maps from VN which are sufficiently close to Φ,
every common invariant L-Lipshitz curve of the scattering maps that lies in A′ lies
entirely in one of the cylinders A1, . . . , Aq.

Below (see (73)) we will fix, once and for all, a certain value of δ > 0 which will
give us a finite set of these cylinders As. We will show for each such cylinder As
that arbitrarily close to Φ in VN there exists a map for which the corresponding
scattering maps F1, . . . , F8 have no common L-Lipschitz invariant curves in As.
This will prove the theorem. Indeed, the absence of the common invariant L-
Lipshitz curves in any given (open) cylinder is an open property. So, we first
perturb the map Φ to get rid of all common invariant L-Lipshitz curves in the
cylinder A1, then we add another small perturbation to kill all common invariant
L-Lipshitz curves in A2 — by choosing the perturbation small enough we guarantee
that no new common invariant L-Lipshitz curves emerge in A1, etc.. Then, after
finitely many steps of the procedure, we will have all the cylinders A1, . . . , Aq
cleaned of common invariant L-Lipshitz curves.

Let R > 1 be a constant that bounds the derivatives of the scattering maps:∥∥∥∥ ∂Fj
∂(y, ϕ)

∥∥∥∥ < R (71)

for all (y, ϕ) ∈ A′, j = 1, . . . , 8, and all maps that are close enough to Φ in VN . Recall
that ϕ is an angular variable that runs a circle S1; we assume that the length of the
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circle is 2π. Choose 4 arcs Ji ( S1, i ∈ {1, 2, 3, 4}, such that J1 ∪J2 = J3 ∪J4 = S1.
Moreover, denote Jik = Ji \ Jk and let us assume that J12, J34, J21 and J43 are
disjoint and located in the circle in the same order as they are listed here (following
the orientation of the circle). Neither of the arcs Ji constitutes the whole circle,
so their lengths are smaller than 2π. Choose any L-Lipshitz curve C : y = yC (ϕ)
which is invariant with respect to all maps F1, . . . , F8. Each arc Ji corresponds to
an arc Ĵi : {y = yC (ϕ), ϕ ∈ Ji} of the curve C. Since C is invariant with respect
to each of the maps Fj , the image Fj(Ĵi) also lies in C. Hence it is given by

Fj(Ĵi) := {y = yC (ϕ), ϕ ∈ J̄ji } where J̄ji is an arc in S1 which does not cover the
whole of S1, so its length is strictly less than 2π. Since the set L of all common
invariant L-Lipshitz curves is compact, we have

K = max
C∈L

max
i,j

length(J̄ji ) < 2π. (72)

Now, we choose

δ =
2π −K
R

> 0. (73)

As it was explained above, the compactness of L implies that every possible
common invariant L-Lipshitz curve lies in one of a finitely many cylinders As; each
of these cylinders is the δ-neighbourhood of some invariant L-Lipshitz curve Cs :
{y = ys(ϕ)}. Take any of these cylinders. Note that, by virtue of (71), the image
Fj(As∩{ϕ ∈ Ji}) lies inside the (Rδ)-neighbourhood of the curve Fj(Cs∩{ϕ ∈ Ji}).
This curve is a subset of the invariant curve Cs, and it corresponds to an interval
of ϕ values such that the length of this interval does not exceed the constant K
defined by (72). Thus, by (73),

Fj(As ∩ {ϕ ∈ Ji}) ⊂ {|y − ys(ϕ)| < Rδ, ϕ ∈ Ĵsij} (74)

where Ĵsij is a certain arc whose length is strictly less than 2π, i.e. it does not
cover the entire S1. As Fj depends continuously on the map Φ, inclusion (74) holds
for all maps from VN which are close enough to Φ.

Now, let us imbed the map Φ into a two-parameter analytic family of maps
Φµ1,µ2 from VN such that Φ0 = Φ. We will show (Lemmas 5 and 6) that this
family can be chosen such that there exist arbitrarily small values of µ = (µ1, µ2)
for which the scattering maps F1, . . . , F8 defined by the map Φµ have no common
L-Lipschitz invariant curves in the cylinder As. The map Φµ that corresponds to a
small value of µ is a small perturbation of Φ, so this gives us the required arbitrarily
small perturbations that clear the cylinder As of the common L-Lipshitz invariant
curves of the scattering maps. By performing this perturbations consecutively for
each of the cylinders A1, . . . , Aq we will obtain the result of the theorem.

Note that the invariant cylinder A, its stable and unstable manifolds, as well as
the strong stable and strong unstable foliations depend smoothly on µ, therefore
the scattering maps also depend smoothly on µ. This means that for all small µ
we can introduce coordinates (y, ϕ) on the µ-dependent cylinder A such that the
maps Fj , j = 0, . . . , N , will be given each by a pair of smooth functions Yj , Ψj of
(y, ϕ, µ):

Fj : (y, ϕ) 7→ (Yj(y, ϕ, µ), Ψj(y, ϕ, µ)).

Let our family Φµ be chosen such that for all (ϕ, y) ∈ As∥∥∥∥ ∂Ψj
∂(µ1, µ2)

∥∥∥∥ < 1 for all j = 1, . . . , 8, (75)
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∂µ2

∣∣∣∣ < 1,

∣∣∣∣∂Y5,6,7,8

∂µ1

∣∣∣∣ < 1, (76)

j = 1, 2 :
∂Yj
∂µ1

> 2(L+ 1) and
∂Yj+4

∂µ2
> 2(L+ 1) when Φj(ϕ, y, µ) ∈ Jj ,

(77)

j = 3, 4 :
∂Yj
∂µ1

< −2(L+ 1) and
∂Yj+4

∂µ2
< −2(L+ 1) when Φj(ϕ, y, µ) ∈ Jj ,

(78)
where L is the Lipschitz constant in the condition of the theorem, and Jj are
the four arcs defined above. Lemma 6 establishes the existence of a family Φµ
which satisfies these properties. Then the main theorem follows from the following
statement.

Lemma 5 For every family of maps Φµ, µ = (µ1, µ2), such that the derivatives of the

scattering maps F1, . . . , F8 satisfy estimates(75)–(78) for all (ϕ, y) ∈ As, the set of

parameter values for which the scattering maps F1, . . . , F8 have an L-Lipshitz common

invariant essential curve in As has measure zero. In particular, there exist arbitrarily

small values of µ for which the maps F1, . . . , F8 have no L-Lipshitz common invariant

essential curves in the cylinder As.

Proof. Take any two, may be equal, values of µ: µ = µ∗ and µ = µ∗∗, such
that at µ = µ∗ the maps F1, . . . , F8 have a common L-Lipschitz invariant curve
L∗ : {y = y∗(ϕ), ϕ ∈ S1} ⊂ As and at µ = µ∗∗ they have a common L-Lipschitz
invariant curve L∗∗ : {y = y∗∗(ϕ), ϕ ∈ S1} ⊂ As. Let us show that the following
condition holds:

‖µ∗ − µ∗∗‖ ≤ R|y∗(0)− y∗∗(0)|, (79)

where R is defined in (71) and ‖µ‖ = max{|µ1|, |µ2|}.
We note that without losing in generality we may assume that

y∗(0) ≥ y∗∗(0), (80)

|µ∗2 − µ∗∗2 | ≤ |µ∗1 − µ∗∗1 | and µ∗1 ≥ µ∗∗1 . (81)

If necessary, these inequalities can be achieved by swapping y and (−y), µ and (−µ),
F1 ↔ F3, F2 ↔ F4, F5 ↔ F7, F6 ↔ F8, as well as µ1 ↔ µ2 and F1,2,3,4 ↔ F5,6,7,8.
Conditions (75)–(78) are symmetric with respect to these changes.

Now suppose (79) is not true, i.e.

0 ≤ y∗(0)− y∗∗(0) <
∆µ

R
, (82)

where

∆µ = µ∗1 − µ∗∗1 > 0.

Since J3 ∪ J4 = S1, we have that ϕ = 0 lies at least in one of the arcs J3 or J4.
For definiteness, we assume 0 ∈ J3. Let (ϕ∗, ȳ∗) = F3(0, y∗(0), µ∗) and (ϕ∗∗, ȳ∗∗) =
F3(0, y∗∗(0), µ∗∗), i.e.

ϕ∗ = Ψ3(0, y∗(0), µ∗), ȳ∗ = Y3(0, y∗(0), µ∗),
ϕ∗∗ = Ψ3(0, y∗∗(0), µ∗∗), ȳ∗∗ = Y3(0, y∗∗(0), µ∗∗).
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Standard estimates based on the mean value theorem and formulas (71),(75),(76),(78),(81),(82)
imply that

|ϕ∗∗ − ϕ∗| < 2∆µ, ȳ∗ − ȳ∗∗ < −2L∆µ.

Since the curves y = y∗(ϕ) and y = y∗∗(ϕ) are invariant with respect to F3 (at
µ = µ∗ and µ = µ∗∗ respectively), it follows that ȳ∗ = y∗(ϕ∗), ȳ∗∗ = y∗∗(ϕ∗∗).
Because of the L-Lipschitz property, we find that

y∗(ϕ∗)− y∗∗(ϕ∗) = ȳ∗ − ȳ∗∗ + y∗∗(ϕ∗∗)− y∗∗(ϕ∗) < −2L∆µ+ 2L∆µ < 0.

Then taking into account (80) we conclude that

L∗ ∩ L∗∗ 6= ∅.

Recall that the cylinder A depends on µ, so the two curves L∗ and L∗∗ lie, strictly
speaking on different cylinders. Therefore, in order to stay completely rigorous,
when we say that these two curves intersect, we mean that there is a value of ϕ
such that y∗(ϕ) = y∗∗(ϕ).

Now, let us call an arc I ⊂ S1 positive if y∗(ϕ) > y∗∗(ϕ) for all ϕ ∈ int(I) and
y∗(ϕ) = y∗∗(ϕ) at the end points of I. We call an arc negative, if y∗(ϕ) = y∗∗(ϕ)
at its end points and y∗(ϕ) < y∗∗(ϕ) on its interior. It is convenient to allow arcs
to have empty interiors, i.e. any point from L∗ ∩ L∗∗ is considered to be both a
positive and a negative arc at the same time.

We have just proved that there is at least one negative and at least one positive
arc. For a positive arc I, let L∗I = { y = y∗(ϕ), ϕ ∈ I } and L∗∗I = { y = y∗∗(ϕ), ϕ ∈
I } be the corresponding pieces of the curves L∗ and L∗∗, and let DI = { y∗(ϕ) ≥
y ≥ y∗∗(ϕ), ϕ ∈ I } be the region bounded by L∗I and L∗∗I . Let us show that if
I ⊆ Jj for j = 1 or j = 2, then, with this j, the image of L∗I by the map Fj at
µ = µ∗ lies strictly inside L∗I′ which corresponds to a positive arc I ′ and

length(I ′) > ∆µ > 0, (83)

area(DI′) > area(DI). (84)

Indeed, denote as F ∗j the map Fj at µ = µ∗ and F ∗∗j the map Fj at µ = µ∗∗. Take
any point M = (ϕ, y∗(ϕ)) ∈ L∗I , so ϕ ∈ I. Let M∗ = (ϕ∗, y∗(ϕ∗)) ∈ L∗ be the image
of M by the map F ∗j , and M ′ = (ϕ′, y′) ∈ F ∗∗j (L∗I) be the image of M by the map
F ∗∗j . Since I is a positive arc, we have that for any ϕ ∈ I the point M is either on
the curve L∗∗ or above it. Since L∗∗ is invariant with respect to F ∗∗j , the point M ′

also does not lie below L∗∗, i.e.

y′ ≥ y∗∗(ϕ′). (85)

We have

ϕ′ = Ψj(ϕ, y
∗(ϕ), µ∗∗), y′ = Yj(ϕ, y

∗(ϕ), µ∗∗),

ϕ∗ = Ψj(ϕ, y
∗(ϕ), µ∗), y∗(ϕ∗) = Yj(ϕ, y

∗(ϕ), µ∗).

Then inequalities (75)–(77) imply that

|ϕ∗ − ϕ′| < ∆µ, y∗(ϕ∗)− y′ > (2L+ 1)∆µ
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(recall that we assume I ⊆ Jj , hence ϕ ∈ Jj). By (85) and the L-Lipschitz property
of L∗∗ we obtain

y∗(ϕ∗)− y∗∗(ϕ∗) > (L+ 1)∆µ > 0, (86)

and
y∗(ϕ′)− y′ > (L+ 1)∆µ > 0. (87)

Denote F̃j(ϕ) = Ψj(ϕ, y
∗(ϕ), µ∗), i.e., F̃j is the restriction of the map F ∗j on the

invariant curve L∗. We have just showed that if ϕ ∈ I, where I ⊆ Jj is a positive
arc, then ϕ∗ = F̃j(ϕ) satisfies (86), i.e. it is inside some positive arc I ′. Moreover,
at the end points of I ′ we must have y∗− y∗∗ = 0 while at the points of F̃j(I) b I ′

we have y∗ − y∗∗ > L∆µ by (86), hence the length of I ′ is bounded from below as
in (83), by virtue of the 2L-Lipschitz property of the function y∗(ϕ)− y∗∗(ϕ).

We have shown that F ∗j (L∗I) ⊂ L
∗
I′ and F ∗∗j (L∗∗I ) ⊂ L∗∗I′ where I ′ is a positive

arc. As the point M runs L∗I , the point M ′ runs the curve L′ = F ∗∗(L∗I), and it
follows from (85),(87) that the curve L′ lies between L∗ and L∗∗, strictly below
L∗. Since the end points of L′ coincide with the end points of F ∗∗j (L∗∗I ) and the
latter lie inside L∗∗I′ , it follows that L′ lies between L∗I′ and L∗∗I′ , strictly below L∗I′ .
Therefore the area of the region F ∗∗j (DI) bounded by the curves L′ and F ∗∗j (L∗∗I )
is strictly smaller than the area of the region DI′ bounded by the curves L∗I′ and
L∗∗I′ . As the map Fj is area-preserving, area(F ∗∗j DI) = area(DI), and (84) follows.

Thus, we start with any positive arc I which is contained entirely inside J1 or
J2 and obtain a sequence Is of positive arcs such that I0 = I and F̃js(Is) ⊂ Is+1,
where we chose js = 1 if Is ⊆ J1, and js = 2 if Is ⊆ J2 and Is 6⊆ J1. If for some s the
arc Is is not entirely contained neither in J1 nor in J2, the sequence is terminated.
By (84), the area of the region DIs is a strictly increasing function of s, so the
arcs with different s can never coincide. The definition of a positive arc implies
that the intersection of interiors for two different positive arcs is always empty.
Thus, the arcs int(Is) are mutually disjoint. By (83), no more than 2π

∆µ of such

arcs can coexist in S1. We conclude that the sequence Is must terminate. This
means the last arc in the sequence is not contained entirely neither in J1 nor in
J2, i.e. we have proved that there is a positive arc I+ such that both I+ ∩ J12 6= ∅
and I+ ∩ J21 6= ∅.

Similarly, one proves that there exists a negative arc I− such that I−∩J34 6= ∅
and I−∩J43 6= ∅. Since J12, J34, J21 and J43 are placed on S1 in this order, we find
that the interiors of I+ and I− intersect, which is impossible by the definition of
positive and negative arcs. Thus, by contradiction, we have established estimate
(79).

LetM⊂ R2 be the set of all µ such that the maps F1, . . . , F8 have at least one
common L-Lipschitz invariant curve in the cylinder As. Let Y be the set which
consists of all intersection points of these curves with the axis ϕ = 0. By (79),
for each y0 ∈ Y there is exactly one µ ∈ M such that the corresponding system
of scattering maps has a common L-Lipshitz invariant curve that lies in As and
intersects the line ϕ = 0 at y = y0. Estimate (79) also implies that y0 7→ µ is an
R-Lipschitz function Y →M. For any Lipschitz function from a subset of R to R2,
the Lebesgue measure of the image vanishes. Thus, as Y is a subset of an interval,
it follows that mes(M) = 0. The lemma is proved. �

We stress that Lemma 5 holds for any family of symplectic maps Φµ which
satisfy the conditions (75)–(78). In order to finish the prove of the main theorem,
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it remains to show that such family can be constructed inside the space VN of
analytic exact-symplectic maps. This is given by the lemma below.

Lemma 6 Any map Φ ∈ VN can be imbedded into an analytic family of analytic

exact-symplectic maps Φµ that satisfies conditions (75)–(78).

Proof. We define Φµ = Xµ◦Φ, where Xµ is an analytic family of exact-symplectic

maps such that X0 = id. We set Xµ = X
(1)
µ1
◦X(2)

µ2
where X

(i)
µi is the time-µi shift

along the orbits of the vector field defined by an analytic Hamiltonian function Hi
(i = 1, 2). Since we are interested in small µ, it is enough to check the conditions
(75)–(78) at µ = 0 only. Therefore the family Φµ = Xµ ◦ Φ satisfies (75)–(78) for
all small µ, provided the conditions∣∣∣∣∂Ψj∂µi

∣∣∣∣
µi=0

< 1 (j = 1, . . . , 8),

for all ϕ ∈ S1 : ∣∣∣∣∂Yj∂µi

∣∣∣∣
µi=0

< 1 (j = 9− 4i, . . . , 12− 4i),

(88)

for all ϕ ∈ Jj with j = 1, 2:
∂Yj+4(i−1)

∂µi

∣∣∣∣
µi=0

> 2(L+ 1),

for all ϕ ∈ Jj with j = 3, 4:
∂Yj+4(i−1)

∂µi

∣∣∣∣
µi=0

< −2(L+ 1),

(89)

are satisfied by the scattering maps for the families Φ
(i)
µi = X

(i)
µi ◦Φ, i = 1, 2, for all

(ϕ, y) ∈ As.
Let us construct a family of maps X

(1)
µ1

for which these conditions are satisfied
(the construction for i = 2 is essentially the same). Inequalities (88) and (89)
are strict and involve only the first derivatives of the scattering maps. A C2-

small change of the family Φ
(1)
µ1

leads to a C1-small change of the strong-stable

and strong-unstable foliations and, therefore, a C1-small change of the scattering

maps. Thus, it is enough to build a C2-smooth family of maps X
(1)
µ1

(generated

by a C3-smooth Hamiltonian H(1)) such that the corresponding scattering maps
satisfy (88) and (89). Then for any sufficiently C3-close approximation of H(1) by
an analytic Hamiltonian (the analiticity of H(1) and H(2) is needed for the family
Φµ to be analytic, i.e. lie in VN ) conditions (75) and (78) will still be satisfied.

We construct the C3-smooth Hamiltonian H(1) localised in a small neighbour-

hood of the cylinders Φ(B1), Φ(B2), Φ(B3), Φ(B4). Thus, the maps X
(1)
µ1

differ from

identity only in a small neighbourhood of these cylinders, so the maps Φ
(1)
µ1

differ
from Φ in a small neighbourhood of the cylinders B1, . . . , B4 only. The perturba-
tion we build near one of these cylinders does not affect the scattering maps near
the other cylinders, so we restrict our attention to the cylinder B1 only. We further
omit the subscript “1” whenever possible and let τ = µ1. Thus we consider a homo-
clinic cylinder B and continue with building a C3-smooth Hamiltonian H localised
in a small neighbourhood of the cylinder Φ(B) such that for the corresponding flow
map Xτ the derivative with respect to τ of the scattering map F defined by the
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map Φτ = Xτ ◦ Φ satisfies, for all (ϕ, y) ∈ As, the following inequalities:∣∣∣∣∂Ψ∂τ
∣∣∣∣
τ=0

< 1 for all ϕ ∈ S1,

∂Y

∂τ

∣∣∣∣
τ=0

> 2(L+ 1) for all ϕ ∈ J,

(90)

where J is a certain arc that does not contain the whole S1, and

F (As ∩ {ϕ ∈ J}) ⊂ {ϕ ∈ Ĵ} (91)

where Ĵ is an arc that does not contain the whole of S1 (see (74)).
Let wu denote a piece of the unstable manifold Wu(A) that contains the cylin-

der B (i.e. wu is a small neighbourhood of the cylinder B in Wu(A)) and ws be
a small neighbourhood of Φ(B) in W s(A), so B = Φ(wu) ∩ ws. Since the map Φτ
differs from Φ in a small neighbourhood of the cylinder B only, the pieces wu and
ws do not depend on τ , nor the strong unstable foliation of the piece of Wu(A)
between A and wu depends on τ , neither the strong stable foliation of the piece of
W s(A) between ws and A does. Thus, given any C1-family of cylinders Bτ close to
B the projection map πuBτ : Bτ → A by the leaves of the strong unstable foliation

is of class C1; moreover, if two such families of cylinders are C1-close, then the
corresponding projection maps πuBτ are also C1-close. The same holds true for the
projection map πsB′τ : B′τ → A by the leaves of the strong stable foliation, where

we denote as B′τ any C1-family of cylinders close to Φ(B). As the perturbation
Xτ is localised in a small neighbourhood of the cylinder Φ(B), we find that the
scattering map F satisfies

F = F−1
0 ◦ πsB′τ ◦Xτ ◦ Φ ◦ (πuBτ )−1, (92)

where Bτ = wu ∩Φ−1
τ (ws) is a homocinic cylinder close to B, and B′τ = Φτ (Bτ ). If

we add to the family Xτ any C1-small perturbation localised in a small neighbour-
hood of Φ(B), this will result in C1-small perturbations of the family of cylinders
B′τ and Bτ . Thus, the perturbation to the corresponding family of scattering maps
defined by (92) will be also C1-small. It follows that it is enough to build a C1-
family of maps Xτ (generated by a C2-smooth Hamiltonian H) localised in a small
neighbourhood of the cylinder Φ(B) such that the corresponding family of scatter-
ing maps satisfies (90). Then any C3-Hamiltonian which is C2-close to H and is
localised in a small neighbourhood of Φ(B) produces a family of scattering maps
that still satisfies (90).

This reduction of smoothness requirement (from H ∈ C3 to H ∈ C2) is im-
portant since it allows to construct the Hamiltonian H such that the vector field
it generates is tangent to the given homoclinic cylinder B (for which only C2-
smoothness can be guaranteed by our spectral gap assumptions). Once this is done,
the cylinder Φ(B) will be invariant with respect to the map Xτ , i.e. Φτ (B) = Φ(B)
for all τ . This means the trajectory of B remains the same for all τ , i.e. it remains
a homoclinic cylinder. Thus, formula (92) for the scattering map will recast as

F = F−1
0 ◦ πsΦ(B) ◦Xτ ◦ Φ ◦ (πuB)−1, (93)

and the only τ -dependent term in the right-hand side is Xτ .



Arnold Diffusion 39

In order to build the required Hamiltonian, we introduce C2-coordinates (x, v)
near Φ(B) such that the cylinder Φ(B) is given by x = 0 (so v gives the coordinates
on the cylinder and x runs a neighbourhood of zero in R2d−2. The cylinder is
transverse to the strong-stable and strong-unstable foliations, so if we denote as
N(v) the direct sum of the tangents to the leaves of the strong-stable and unstable
foliations that pass through the point (x = 0, v) ∈ Φ(B), then the field N(v) will
have a form dv = P (v)dx. Note that N depends smoothly on v (as the fields of
tangents to the strong stable and strong unstable leaves are smooth when the large
spectral gap assumption (6) is fulfilled), i.e. the function P (v) is at least C1. As
the homoclinic cylinder Φ(B) belongs both to the stable and unstable manifolds
of A, it follows from Proposition 3 that a vector is tangent to Φ(B) if an only
if it is Ω-orthogonal to N . Thus, the vector field X̃ = Ω−1∇H generated by the
Hamiltonian H will be tangent to Φ(B) if the gradient of H is orthogonal to N at
the points of Φ(B), i.e.

∂H

∂x
(0, v) +

∂H

∂v
(0, v)P (v) = 0. (94)

This condition is satisfied e.g. by any function of the form

H(x, v) = h(v)−
2d−2∑
i=1

xi

∫
pi(v1 + s1xi, v2 + s2xi)ξ(s1, s2)d2s

where h is any C2-function on Φ(B), the vector-function p(v) = (p1(v), . . . , p2d−2(v))
is given by p(v) = h′(v)P (v), the xi’s are the coordinates of the vector x, and
(v1, v2) = v, and ξ is a C2-smooth function on a plane, localised in a small neigh-
bourhood of zero, such that

∫
ξ(s)d2s = 1. Integrating by parts, we find

∂H

∂xi
=

∫
pi(v+sxi)[sξ

′(s)+ξ(s)]d2s,
∂H

∂vj
=

∂h

∂vj
(v)+

2d−2∑
i=1

∫
pi(v+sxi)

∂xi
∂sj

d2s.

After substituting x = 0 into these formulas, we see that (94) is satisfied indeed.
Since q ∈ C1 and ξ ∈ C2, it follows that H ∈ C2, so given any C2-function h on the
cylinder Φ(B) we can extend it to a C2-function H defined in a neighbourhood of
this cylinder, such that the vector field generated by the Hamiltonian H is tangent
to the cylinder.

As we explained above, under this condition the scattering map is given by
(93), so the vector field

F̃ =

(
Ψ̃ =

∂Ψ

∂τ

∣∣∣∣
τ=0

, Ỹ =
∂Y

∂τ

∣∣∣∣
τ=0

)
of the τ -derivatives of the scattering map F on the cylinder A is given by

F̃ =
∂

∂v

(
F−1

0 ◦ πsΦ(B)

)
◦ X̃ ◦ Φ ◦ (πuB)−1, (95)

where X̃ = Ω−1(v)h′(v) is the vector field of the flow on the cylinder Φ(B), which
is generated by the Hamiltonian h. Let Ω(v) denote the antisymmetric (2 × 2)-
matrix that defines the restriction of the symplectic form on the cylinder at the
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point v. In order to satisfy (90), we need to have

|Ψ̃ | < 1 for all ϕ ∈ S1,

Ỹ > 2(L+ 1) for all ϕ ∈ J.
(96)

It is seen from (95) that if conditions (96) are satisfied by F̃ for some choice of the
vector field X̃, they are satisfied by F̃ for any C0-small perturbation of X̃. Thus,
it is enough to find any C1-smooth Hamiltonian function h(v) such that the field
F̃ defined by (95) satisfies (96), then for any C2-smooth function which is C1-close
to h the derivative of the scattering map F with respect to τ will satisfy (90), and
the lemma will be proven.

In order to build the sought C1-function h(v), we introduce C1-coordinates v =
(ϕ, y) on the cylinder Φ(B) such that the diffeomorphism F−1

0 ◦ πsΦ(B) : Φ(B)→ A

is identity. Then (95) recasts as

F̃ = X̃ ◦ F |τ=0

(see (93)). As X̃ is a Hamiltonian vector field, its ϕ-component is given by −ω−1 ∂h

∂y

and the y-component is ω−1 ∂h

∂ϕ
, where the C0-function ω(ϕ, y) > 0 is such that

ω(ϕ, y) dy ∧ dϕ is the symplectic form on the cylinder Φ(B). Thus, conditions (96)
take the form ∣∣∣∣∂h∂y

∣∣∣∣ < ω(ϕ, y) for all (ϕ, y) ∈ F (As),

∂h

∂ϕ
> 2(L+ 1)ω(ϕ, y) for all (ϕ, y) ∈ F (As ∩ {ϕ ∈ J}).

We finish the proof of the lemma by noticing that these conditions are satisfied by
a y-independent function h such that

h(ϕ) = Mϕ at ϕ ∈ Ĵ

where the constant M is given by M = 1+2(L+1) sup
F (As)

ω, and the arc Ĵ is defined

by (91). Since h must be periodic in ϕ, it is important that Ĵ does not cover the
whole of S1. �
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