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Abstract

This paper tackles the problem of efficiently collecting data to learn a clas-

sifier, or mapping, from each task to the best performing tool, where tasks

are described by continuous features and there is a portfolio of tools to

choose from. A typical example is selecting an optimization algorithm from

a portfolio of algorithms, based on some features of the problem instance

to be solved. Information is collected by testing a tool on a task and ob-

serving its (possibly stochastic) performance. The goal is to minimize the

opportunity cost of the constructed mapping, where opportunity cost is the

difference between the performance of the true best tool for each task, and

the performance of the tool chosen by the constructed mapping, summed

over all tasks. We propose several fully sequential information collection

policies based on Bayesian statistics and Gaussian Process models. In each

step, they myopically sample the (task, tool) pair that promises the high-

est value of the information collected. We prove optimality under certain

conditions and empirically demonstrate that our methods significantly out-

perform standard approaches on a set of synthetic benchmark problems.

Keywords: Global Optimization, Information Collection, Optimal

Learning, Gaussian Processes, Algorithm Selection
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1. Introduction

We consider the problem of sampling to efficiently identify a mapping

from a finite set of tasks to the best tool for each task from a portfolio of

tools. Given a budget of measurements to sample the performance of one

tool applied to one task, the goal is to identify a mapping that minimizes the

expected regret, or opportunity cost, the difference in expected performance

of the true best tool and the tool selected by the mapping, summed over

all tasks. We approach the problem as a variant of ranking and selection

problems, where an experimenter is typically required to find the single best

overall tool from a portfolio where best is defined as having the best expected

performance which can only be inferred via sampling. The main difference

of our problem compared to the typical ranking and selection problem is

that we aim to simultaneously identify the best tool for each task, where

tasks can be described by features in RD, and there is some correlation of

tool performance across tasks with similar features.

This problem has many practical applications, including the following

three examples.

1. Algorithm portfolios. For most hard optimization problems, different

algorithms have been developed. Although some algorithms may work

better than others overall, usually different algorithms work best for

different problem instances. Thus, there is the problem of deciding

which algorithm to use for which problem instance, based on features

of the problem instance. Smith-Miles (2008) provides a survey on this

algorithm selection problem. To learn about the mapping, we can

sample any particular algorithm on any particular problem instance,

and will observe a (possibly noisy) performance value as a result. Be-
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cause the potential set of problem instances is large and running an

algorithm on a problem instance is computationally expensive, it is

important to collect information efficiently, and make intelligent deci-

sions on which (problem instance, algorithm)-pairs to sample to obtain

the best possible mapping.

2. Personalized Medicine. The pharmaceutical industry is currently ex-

periencing a shift from the one-drug-fits-all paradigm towards person-

alization, where therapies are targeted towards particular groups of

patients. Clinical trials then not only have to determine whether a

drug is effective or not, but also which drug works best for which type

of patient, depending on patient characteristics. Our algorithm could

be used to reduce the number of clinical experiments needed to de-

rive this mapping from patient characteristics to drug, or find a better

mapping for a given number of experiments. A similar problem has

been considered in Xu et al. (2014).

3. Online marketing. In online advertisement, it is easy to deploy several

different advertisements and advertisement formats (banner, video,

etc.) simultaneously, and pick for each viewer the advertisement that

one believes results in the highest return (in terms of click-through

rate or money spent). Often, some information is available on the

viewers, such as search terms, websites visited or order history. If

we appropriately define the feature space to describe the viewers, our

algorithms could be used to efficiently learn which advertisement would

be most effective based on some viewer characteristics.

We tackle the problem of information collection on a portfolio by using

Gaussian Processes as a metamodel to predict a tool’s expected performance
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on all (measured and unmeasured) tasks, and myopic sampling policies that

try to maximize the value of information of the next sample taken. We

propose and empirically compare three such policies, REVI, NEVI and EVI.

For a given budget, our three policies sequentially create sample designs

producing mappings that perform significantly better than Latin Hypercube

designs reducing the necessary sampling budget to obtain a desired level of

performance by up to 67% in our experiments. Also, they significantly

outperform the single best tool for all tasks in our synthetic benchmarks.

The paper is structured as follows. Section 2 provides a brief overview

of related work. In Section 3 the problem and mathematical framework are

laid out, followed in Section 4 by the derivation of our methods. Empirical

results are reported in Section 5. We conclude in Section 6 with a summary

and some ideas for future work.

2. Related Work

The problem of identifying the best tool for one single task is a typi-

cal ranking and selection problem, and we adapt sequential sampling tech-

niques from ranking and selection to our problem of information collection

on a portfolio. Branke et al. (2007) provide a review and comparison of

several ranking and selection methods, a more recent survey focusing on al-

gorithms derived under the Bayesian framework has been written by Chen

et al. (2015). Myopic sampling policies sequentially sample from alternatives

in such a way that at each step, the sample has the highest expectation of

improving the objective, which typically is either probability of correct se-

lection or expected opportunity cost. The methods we propose are myopic,

and follow the framework of the Knowledge Gradient method investigated
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in Frazier et al. (2008) and Chick et al. (2010) but going back to Gupta

and Miescke (1996). Frazier et al. (2009) extend the method to the case of

correlated alternatives, i.e., when sampling from one alternative may teach

us something about the performance of similar alternatives.

In the case when the search space is continuous, Gaussian Processes are

often used as statistical model of the objective function given the data col-

lected. In a deterministic setting, the popular Efficient Global Optimization

(EGO) algorithm (Jones et al., 1998) uses a Gaussian Process model com-

bined with a simple expected improvement criterion to sequentially decide

which point in the search space to evaluate next to efficiently find the global

optimum. The Sequential Kriging Optimization algorithm (Huang et al.,

2006) extends the EGO algorithm to the case when function evaluations are

noisy. Scott et al. (2011) extend the discrete Knowledge Gradient policy to

the continuous case which is myopically optimal under certain conditions.

Finding contours or level sets of a function over an input domain can be

viewed as finding the best of two functions by finding the zero level set of

the difference between the two functions. Picheny et al. (2010) use a Gaus-

sian Prcoesses model to approximate a function and propose a sequential

sampling procedure to accurately approximate the function within a target

region defined by a level set. Bingham et al. (2014) provide an overview of

expected improvement methods with an example for contour estimation for

volcano data.

In our paper, we use Gaussian Processes to model the performance of

a tool on the set of tasks as described by their features, and we propose a

myopically optimal sampling policy to efficiently identify the best tool for

each task, or the highest function for each point in a finite domain. The

aim is to minimize the expected opportunity cost of the learned mapping,
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which is the difference in performance between the selected alternative and

the true best alternative, summed over all tasks.

The problem of learning which drug is most effective for which patient

has already been considered by Xu et al. (2014). In this work, patients

are characterized by biomarkers and treatment response is binary, and the

approach proposed is rather heuristic and does not have any optimality

guarantees.

In the algorithm selection literature (Rice, 1976; Smith-Miles, 2008),

quite a few researchers have tried to understand which algorithm works

best on which problem. However, they usually focus on the identification of

features suitable for classification, or the design of classification algorithms,

while assuming that the data on the performance of a variety of algorithms

on a large number of test problems is given. To the best of our knowledge,

no one so far has looked at efficiently collecting data in order to learn a

mapping from problem instance to algorithm that maximizes performance.

3. Problem Definition

We assume we are given a finite set of M tasks indexed by i ∈ {1, ...,M}

and a set of A alternative tools indexed by a ∈ {1, ..., A}. Each task i can

be characterized by D continuous features, xi ∈ RD, and the set of feature

vectors for all tasks is denoted X = {x1, ..., xM}. We can apply a tool a to a

task i to obtain a stochastic performance measurement that is a realization

of a random variable Yi,a = ζi,a+εa where ζa ∈ RM is the unknown vector of

M expected performance values for all tasks for tool a and εa ∼ N(0, σ2
ε,a)

is white noise distributed with known variance which in practice can be

estimated. The values of ζ1, ..., ζA are assumed to come from underlying
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deterministic latent functions of the task features ζ̃a(x) : RD → R and ζi,a =

ζ̃a(xi). Given a finite budget of N performance measurements, or samples,

to be allocated to the (task, tool)-design space {1, ...,M} × {1, ..., A}, the

goal is to find a classifier, or a mapping, S : X → {1, ..., A} from features

to the best tool such that S(xi) approximates argmax
a

ζi,a for each xi ∈ X

and therefore maximizes the expected portfolio performance summed over

all considered tasks:

Portfolio Performance =

M∑
i=1

wiζi,S(xi) (1)

where wi are known positive weights representing the relative importance of

each task. This objective is equivalent to minimizing the opportunity cost

(OC)

OC =

M∑
i=1

wi

(
max
a

ζi,a − ζi,S(xi)

)
, (2)

the weighted performance difference between the true best tool and the

chosen tool summed over all considered tasks. The objective of sampling is

the expected portfolio performance and not the classification error and so

we refer to S(x) as a mapping, as opposed to a classifier.

Performance measurements, or samples, may be allocated sequentially

so that after observing n samples the experimenter may choose which tool

and task to sample for the (n+1)th sample until the budget is exhausted. If

M = 1 then the problem reduces to an uncorrelated ranking and selection

problem.

4. Methodologies

We start this section by introducing a mathematical framework followed

by three purely myopic (stationary, Markovian, deterministic) sampling poli-
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cies in order of decreasing complexity but also decreasing efficiency in terms

of improving the mapping.

For each tool we treat the unknown true performance values, ζa, as

Bayesian random variables denoted by θa. Given a multivariate normal

prior θa ∼ N (µ0
a,Σ

0
a) and Gaussian observation noise, the likelihood is also

Gaussian and therefore the posterior after n samples is also multivariate

Gaussian θa ∼ N (µna ,Σ
n
a). We assume that the performance of a tool on

two tasks is correlated, and that the covariance can be modeled by a kernel

function of the task features (Σa)i,j = k(xi, xj). Thus, essentially this is a

Gaussian process regression model, but it is discretized by only evaluating

at points x ∈ X. Explicit formulae are given below and further details

about Gaussian Process Regression can be found in Rasmussen and Williams

(2004) and Sacks et al. (2012).

Consider a state during sampling after which n samples have been col-

lected. We denote the sequence of sampled tasks (i1, ..., in), tools (a1, ..., an)

and the sequence of pairs (i, a)1, ..., (i, a)n is written as {(i, a)}n1 . The vec-

tor of corresponding performance measurements is denoted (y1, ..., yn) =

Y n and the subset of performance measurements from tool a is Y n
a ⊆

Y n. We next define the filtration, Fn, to be the sigma algebra gener-

ated by the tasks, tools and performance measurements sampled so far

Fn = σ{(i1, a1, y1), ..., (in, an, yn)}. We next define the sequence of feature

values of sampled tasks (xi1 , xi2 , ..., xin) = Wn and denote the sub-sequences

Wn
a ⊆ Wn that contain only elements relating to samples from tool a. By

using the Matrix Inversion Lemma (Hager, 1989) to condition the prior on

the data points collected so far, the posterior mean and covariance for a

single tool a, P[θa|Fn] = N (µna ,Σ
n
a), are then given by the following matrix
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equations:

µna = µ0
a + (kna )ᵀ(Kn

a )−1Y n
a , (3)

Σn
a = Σ0

a − (kna )ᵀ(Kn
a )−1kna , (4)

where knij = k(xi, wj) is the kernel evaluated between the ith element in X

and the jth element in Wn
a . Kn

ij,a = k(wi, wj) + 1{i=j}σ
2
ε,a is the matrix

composed of the kernel evaluated between all possible pairs of tasks in Wn
a

with added variance on the diagonal entries that account for noise.

True exact vectors of ζ1, ..., ζA are unknown to the experimenter, there-

fore the mapping is constructed by selecting the tool for each task with the

highest predicted performance,

Sn(xi) = argmax
a

µni,a,

and the predicted portfolio performance at time n is given by

Pn =
M∑
i=1

wiµ
n
i,S(xi)

=
M∑
i=1

wimax
a

µni,a (5)

which we want to maximize.

At a given stage n during sampling, measuring the performance of tool

an+1 applied to task in+1 generates the next performance value yn+1. By

concatenating the appropriate values to form the updated matrices kn+1
an+1 ,K

n+1
an+1

and Y n+1
an+1 , one can use the Matrix Inversion Lemma again for the updated

inverse (Kn+1
an+1)−1 to find the following recursion (which is also found in Fra-

zier et al. (2009)) and does not contain the (Kn
a )−1 matrix inversion, in+1
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has temporarily been replaced by i for brevity:

µn+1
a =


µna +

yn+1−µni,a
Σnii,a+σ2

ε,a
Σn
i,a a = an+1

µna otherwise

(6)

Σn+1
a =


Σn
a −

Σni,aΣni,a
ᵀ

Σnii,a+σ2
ε,a

a = an+1

Σn
a otherwise

(7)

where Σn
i,a denotes the ith column of the symmetric matrix Σn

a . Note that

the Σn
a matrices only depend on the sampling decisions {(a, i)}n1 . At time

n, the scalar yn+1 and vector µn+1
an+1 are not Fn measurable. However given

the next (task, tool) pair to be sampled is (i, a)n+1, and the prior predictive

distribution of yn+1 conditioned on Fn, yn+1 ∼ N(θi,a, σ
2
ε,a) = N(µni ,Σ

n
ii,a+

σ2
a,ε), the distribution of µn+1

an+1 conditioned on Fn can be calculated using

the above recursion formula. For a given standard normal random variable

Z ∼ N(0, 1) we have the following (for clarity we have dropped the subscript

a for the following two formulae):

µn+1 = µn +
(µni +

√
Σn
ii + σ2

εZ)− µni
Σn
ii + σ2

ε

Σn
i

= µn +
Σn
i√

Σn
ii + σ2

ε

Z.

And so we define the vector valued function σ̃n : {1, ..,M}×{1, .., A} → RM

with entries

σ̃n(i, a) =
Σn
i,a√

Σn
ii,a + σ2

ε,a

(8)

and therefore when conditioned on Fn we have

µn+1
a ∼ N (µna , σ̃

n(i, a)σ̃n(i, a)ᵀ),

Σn+1
a = Σn

a − σ̃n(i, a)σ̃n(i, a)ᵀ,
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where the marginal distributions are given by µn+1
j,a ∼ N(µnj,a, (σ̃

n
j (i, a))2) for

all j given the next sample will be at task tool (i, a). With a prior predictive

distribution for the posterior mean after a new sample, we can calculate the

expectation of predicted portfolio performance after the next sample. We

now use this to define three sampling policies.

4.1. Regional Expected Value of Improvement Policy, REVI

We define the Regional Expected Value of Improvement of a new sample

at task i and tool a as the expectation of improvement in predicted portfolio

performance:

REVIn(i, a) = E
[
Pn+1

∣∣∣∣Fn, (i, a)n+1 = (i, a)

]
− Pn, (9)

and the formula may be computed analytically:

REVIn(i, a) = E

 M∑
j=1

wjmax
b
µn+1
j,b

∣∣∣∣Fn, (i, a)n+1 = (i, a)

− M∑
j=1

wjmax
b
µnj,b

(10)

=
∑
j

wjE
[
max{0,−|µnj,a −max

b 6=a
µnj,b|+ σ̃nj (i, a)Z}

]
(11)

=
∑
j

wjh(∆n
j,a, σ̃

n
j (i, a)), (12)

where the intermediate steps between Equations 10 and 11 are provided in

the online appendix, ∆n
j,a = |µnj,a −max

b 6=a
µnj,b| and the function h : R× R→

R is the well known expected improvement function of a normal random

variable found by integrating over the truncated normal distribution of Z:

h(∆, σ) = |σ|φ(∆/|σ|)−∆Φ(−∆/|σ|), (13)

where φ and Φ are standard normal density and distribution functions, re-

spectively. In this case |σ| is necessary because σ̃nj (i, a) may be negative and
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only the magnitude is necessary by the symmetry of the normal distribution.

At a given stage during sampling, under the REVI policy, the next sample

is allocated to the (task, tool) pair that satisfy:

(i, a)n+1 = argmax REVIn(i, a). (14)

The REVI sampling policy allocates each sample to maximize the ex-

pected improvement in the predicted portfolio performance and thus is my-

opically optimal by construction. It is also asymptomatically optimal, mean-

ing that given an infinite sampling budget, the policy will always find the

true best tool for each task and find the mapping that maximizes the true

portfolio performance. This is because the expected improvement of sam-

pling a (task, tool) pair decreases, on average, towards zero as more samples

are allocated and thus any unsampled (task, tool) pair eventually becomes

the (task, tool) pair that maximizes expected improvement and is chosen

for sampling. Therefore as the budget approaches infinity, all (task,tool)

pairs are sampled infinitely often and posterior distributions θ1, ..., θA be-

come point masses at the true values ζ1, ..., ζA:

Theorem 4.1. When sampling according to the REVI policy limN→∞ S
N (xi) =

argmax
a

ζi,a for all i.

A more formal proof of Theorem 4.1 can be found in the online appendix.

We also provide a Dynamic Programming formulation for this problem and

give a bound on the sub optimality gap between the value of an optimal

policy and the REVI policy for finite budgets.

REVI allocates samples based on a trade off between three consider-

ations. Ceteris paribus, priority is given to (task, tool) pairs which have

large posterior variance, low difference in posterior means between the se-

lected tool and best of the other tools, and tasks whose performance is highly
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correlated to many other tasks. When using the squared exponential ker-

nel for the Gaussian process, highly correlated tasks have similar features

hence the REVI policy gives sampling priority to tasks in task-dense regions

of feature space whose results may greatly influence the mapping and de-

prioritizes sampling of tasks with outlying features. It is for this reason we

give this policy the name of Regional Expected Value of Improvement. Fig-

ure 1 provides an example comprising two tools and 50 tasks with features

in R and Gaussian Processes with the squared exponential kernel. One can

see that the REVI function is larger where tasks are dense and where there

is large uncertainty about which tool is the best, i.e., where posterior means

are close and variance is large.

Complete computation of REVIn(i, a) for all (i, a) requires M2A func-

tion calls to h(∆, σ) and also requires the entire matrices Σn
1 , ...,Σ

n
A and all

evaluations of σ̃n(i, a) which each have an M2A memory requirement. This

can be prohibitively expensive in scenarios with many tasks where M is

large. The following two policies make simplifying assumptions that reduce

this computational complexity.

4.2. Noisy Expected Value of Improvement Policy, NEVI

The NEVI policy assumes that the (task, tool) pair that maximizes the

expected improvement in a tool’s predicted performance on the selected task

also maximizes the expected improvement in the portfolio predicted perfor-

mance. It is therefore possible to approximate the sum in Equation 10 by

taking only the ith term reducing the computational complexity to O(MA).

Intuitively, the NEVI policy neglects the impact the sample would have on

the posterior performance distribution of other correlated tasks.

We define the Noisy Expected Value of Improvement of a new sample at
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task i and tool a as the expected improvement in tool performance for the

sampled task alone:

NEVIn(i, a) = wiE
[
max
b
µn+1
i,b

∣∣∣∣Fn, an+1 = a

]
−max

b
wiµ

n
i,b (15)

= wih(∆n
i,a, σ̃

n
i (i, a)), (16)

and the next sample is determined by maximizing the above improvement:

(i, a)n+1 = argmax NEVIn(i, a). (17)

The NEVI policy allocates samples to (task, tool) pairs based on a trade off

between only two considerations, where the posterior means of the sampled

tool and the best of the other tools is close, and where the posterior variance

is large for the sampled (task, tool) pair. This policy does not account for

the effect a new measurement will have on covarying predictions but it does

account for noisy measurements which is why it is called the Noisy Expected

Value of Improvement policy.

The NEVI policy is not myopically optimal but like the REVI policy,

it is asymptotically optimal. We show in Section 3 that the NEVI and

REVI policies perform comparably in our synthetic benchmarks when task

features are uniformly distributed, whereas REVI outperforms NEVI when

task features are clustered. Figure 1 shows how NEVI and REVI differ,

for example the NEVI function gives more weight than REVI to outlying

tasks. In the special case where there is no covariance between tasks, the

NEVI and REVI policies allocate samples equally and therefore NEVI is also

myopically optimal. In the special case where there is only one task, the

REVI and NEVI policies become identical and both are equivalent to the

Knowledge Gradient policy for sampling from A uncorrelated alternatives.
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Each iteration of the NEVI policy only requires MA function calls to

h(∆, σ) and only the diagonal elements of the Σn
1 , ...,Σ

n
A and single values

σ̃i(i, a) which in total have a memory requirement that scales as MA. Thus

the NEVI policy is much more efficient to compute than REVI for large

M . However, one cannot use the recursion formula given in Equations 6

and 7. Instead the typically smaller (Kn
a )−1 matrix inversion is required

in Equations 3 and 4 and the computational complexity can be reduced by

using formula for inverse of partitioned matrices given in Press et al. (1996)

p. 77.

4.3. Expected Value of Improvement Policy, EVI

In addition to the simplifying assumption of NEVI, the Expected Value

of Improvement (EVI) policy also assumes that the noise in performance

measurements is negligible for the (task, tool) pair that maximizes the NEVI

function. Therefore σ̃ni (i, a) = Σn
ii,a/

√
Σn
ii,a + σε,a ≈

√
Σn
ii,a and µn+1

i,a is

equal in distribution to θi,a. We define the EVI of a new sample at task i

and tool a as the following:

EVIn(i, a) = wiE
[
max{θi,a,max

b 6=a
µni,b}

∣∣∣∣Fn]−max
b
µni,b (18)

= wih
(

∆n
i,a,
√

Σn
ii,a

)
, (19)

and the next sample is given by maximising the above expected improve-

ment:

(i, a)n+1 = argmax EVIn(i, a). (20)

We include this policy for it’s simplicity and we demonstrate numerically

that it performs similarly to the REVI and NEVI policies when tasks are

uniformly distributed and sampling budgets are small. However, like the
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NEVI policy it loses some efficiency when tasks are clustered. When the

variance of the white noises for each tool σ2
ε,1, ..., σ

2
ε,A are comparable to the

posterior variances for each tool, the simplifying assumption of EVI become

less applicable and EVI is less efficient. As sampling budget N increases,

posterior variances for all the task and tools tends to zero therefore the

EVI policy will always perform worse than the REVI and NEVI policies as

budget increases.

In the example in Figure 1, NEVI and EVI are relatively similar and

both have peaks for the same (task, tool) pair.

When performance measurements are deterministic, σε,a = 0 for all a,

the EVI and NEVI policies allocate samples identically. The EVI policy is

asymptotically optimal. This policy requires MA function calls to h(∆, σ)

and the diagonal elements of the posterior covariance matrices. It does not

require computation or storage of σ̃n(i, a).
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Figure 1: In all plots the x-axis is the single feature of the 50 tasks, xi ∈ R. Top:

the Gaussian Processes for two tools after 4 performance measurements (large points)

(xi1 , y
1), ..., (xi4 , y

4) coloured according to tool, and posterior mean performance for 50

tasks (small points) (xi, µ
4
i,a) with confidence intervals. The aim of sampling is to maximise

the highest means. Below: REVI4(i, a), NEVI4(i, a) and EVI4(i, a) plotted against xi for

both tools where all tasks have equal weight. REVI is high where task density is high,

posterior means are close and posterior variance is large. NEVI and EVI don’t account

for task density therefore give relatively larger value to the outlying tasks.
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5. Numerical Experiments

5.1. Experimental Setup

We create two artificial data sets of M = 500 tasks with all equal weights,

wi = 1 for all i ∈ {1, ..., 500}. The first set, the uniform case XU , has fea-

ture values in the unit square xi ∈ (0, 1)2 that are randomly uniformly

distributed. The second set of tasks, the bimodal case XB, is composed of

points in R2 where 250 of the xi values are distributed according to a bivari-

ate normal distribution N ((0, 0), I0.1252) and the remaining 250 points are

distributed according to N ((0.5, 0), I0.1252). The points form two circular

clusters whose centers are 4 standard deviations apart, Figures 2 (a) and

(d) show a visualization. We use these two distributions to emphasize the

differences between the REVI policy that accounts for the task correlation

and the NEVI and EVI policies that do not. We use 500 points so that the

underlying task distribution is truly represented and differences in opportu-

nity cost of policies are not simply due to this single realization of the task

distribution.

We perform experiments with A = 3, 5, 8 tools. For each experiment

in each set of tasks, we generate 8 vectors of true performance values,

ζ1, . . . , ζ8 ∈ R500, and use only the first 3 or first 5 when A = 3, 5. Each

performance vector, ζa, was randomly generated by sampling from a dis-

cretized Gaussian Process with a squared exponential kernel, ζ ∼ N (0,Σ)

where Σij = σ0exp(−D(xi − xj , l1, l2)/2) and D(xi − xj , l1, l2) = (xi,1 −

xj,1)2/l21 + (xi,2 − xj,2)2/l22. The parameters for the Gaussian Process gen-

erating the data were σ0 = 1, and l1 = l2 = 0.1, the same hyperparameters

were used for all generated data and both task sets. The variance of the

added noise was set to σ2
ε,a = 1/102 for all tools, and noise is independently
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and identically distributed for each sample. Figures 2 (b),(e) show surface

plots of the one of the sets of generated latent functions when A = 3.

We initialize each sampling procedure with 20 measurements per tool, 10

per dimension as recommended by Jones et al. (1998), allocated to tasks by a

Latin Hypercube Design described in Section 5.2. After the initialization, a

Gaussian Process is fitted and µ20
1 , ..., µ

20
A and Σ20

1 , ...,Σ
20
A are calculated. We

separately apply REVI, NEVI and EVI sequential policies until the budget

of N = 300, 500, 800 has been consumed for experiments with 3, 5 and 8

tools respectively. For comparison we also construct mappings using samples

allocated by Latin Hypercube Designs with equivalent budgets N = 20A to

N = 100A.

All reported results are averaged over 400 replications, with 400 different

sets of performance vectors. For each set of vectors, every sampling policy

was initialized with the same Latin Hypercube Design and the same random

number stream for noise values. At each stage during sampling, the mapping

is constructed by choosing the highest predicted tool for each task, S(xi) =

argmax
a

µni,a, and the true opportunity cost of the mapping is measured,

OC =
∑
i

max
a

ζi,a − ζi,S(xi).

Figure 3 shows how the average opportunity cost reduces with the number

of samples taken, averaged over the 400 runs. Table 1 gives the final average

Opportunity Cost with standard errors.
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Figure 2: The left column is for uniform problem instances and the right is for bimodal.

Figures (a),(d) show the sets of task features with randomly distributed values XU (a) and

XB (d). (b),(e) show one example of the perforamnce surfaces (generated by a bicubic

spline interpolation) for three tools ζ1, ζ2, ζ3. (c),(f) show the true optimal mapping from

features to best of the three tools S(x) = argmax
a

ζa,i.
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5.2. Mapping based on Latin Hypercube Design

Given a sampling budget that is a multiple of A, we allocate NLHD =

N/A samples to each tool. NLHD tasks are chosen from the set of 500 by a

Latin Hypercube applied to the ranks of the sorted feature values X ⊂ R2.

This makes no difference for XU as the ranks and feature values are both

uniformly distributed. However for XB, an LHD applied to the feature val-

ues would undersample task dense regions and oversample sparse regions.

Applying the LHD to the ranks results in hypercube divisions that are nar-

rower/wider in dense/sparse regions. The tasks with a rank nearest to the

Latin Hypercube points are selected to be included in the design. As with

the sequential methods, a Gaussian Process with the squared exponential

kernel is used to predict the expected performance at all tasks. The best

predicted tool is chosen for each task in the mapping and the true opportu-

nity cost is then measured. A new random design is chosen for every new

budget and the performance predictions are re-calculated therefore this is

not a sequential method.
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5.3. Results
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Figure 3: Opportunity cost of different sampling policies for various budget sizes averaged

over 400 runs. In all plots: pink (dot-dash) is Latin Hypercube, black (dotted) is EVI,

blue (dashed) is NEVI, and red (solid) is REVI. For all budgets, number of tools and

feature distributions, the REVI policy produced the designs with the lowest opportunity

cost on average.
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Table 1: Final Average Opportunity Cost ± std. err. for different sampling policies.

Random is the performance of a mapping that picks a random tool for each task. Single

Best is the performance of the single truly best tool.

Uniform

Tools 3 5 8

Random 427.6 ± 0.06 583.8 ± 0.06 712.3 ± 0.07

Single Best 325.8 ± 0.31 448.4 ± 0.4 542.6 ± 0.46

LHD 15.06 ± 0.31 21.95 ± 0.4 26.44 ± 0.46

EVI 1.87 ± 0.06 2.12 ± 0.06 1.92 ± 0.07

NEVI 1.69 ± 0.05 1.78 ± 0.04 1.54 ± 0.04

REVI 1.61 ± 0.04 1.71 ± 0.04 1.46 ± 0.03

Bimodal

3 5 8

Random 430.3 ± 0.03 583.4 ± 0.03 710.6 ± 0.04

Single Best 272.7 ± 0.23 377 ± 0.24 455 ± 0.25

LHD 10.13 ± 0.23 14.11 ± 0.24 17.1 ± 0.25

EVI 0.8 ± 0.03 0.83 ± 0.03 0.9 ± 0.04

NEVI 0.69 ± 0.02 0.7 ± 0.02 0.68 ± 0.02

REVI 0.63 ± 0.02 0.69 ± 0.02 0.64 ± 0.02

Figure 3 compares the opportunity cost for various budget sizes for dif-

ferent sampling policies and both task feature distributions. On average,

the REVI policy provides the best mapping for both task distributions and

all budget sizes. The NEVI and EVI policies make the assumption that

maximizing the single task marginal expected improvement also maximizes

the marginal expected mapping improvement. This may be approximately

true in the uniform case where the effects of correlation are similar for most

tasks. However this assumption is less true in the bimodal case where there

is greater variation in task density and therefore the expected improvement
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due to covariance varies more between tasks. In the bimodal case, after

the initial design, we see a divergence in average opportunity cost between

the REVI policy and the NEVI or EVI policies. At the initial stages NEVI

and EVI are more likely to allocate samples to unsampled outlying tasks

providing smaller gains to portfolio performance, whereas samples allocated

by REVI or the Latin Hypercube do account for task density. After the

outliers have been sampled, the efficiency of NEVI and EVI improves.

EVI assumes that the noise variance is negligible compared to the poste-

rior variance for the (task, tool) pair that maximizes the expected improve-

ment. This assumption becomes less true as the budget size increases and

posterior variance for even the maximizing (task, tool) pair reduces and noise

becomes non-negligible. Therefore in all cases we see a slight divergence in

the Average OC between EVI and NEVI for large budget sizes.

The final opportunity cost and standard errors are reported in Table 1.

As the number of tools increases, the opportunity cost for LHD increases

whereas the sequential policies do not increase suggesting that the poli-

cies given here scale with the number of tools and budget size much more

favourably than the non-sequential design. In all cases the REVI policy

produced the best performing mappings, and all policies were significantly

better than the Latin Hypercube Designs with equivalent budget.

Given the final opportunity cost of the Latin Hypercube Design with

budget sizes of 300, 500 and 800 when using 3, 5 and 8 tools respectively,

the percentage budget reduction of the REVI policy to achieve the same

level of opportunity cost was 49%, 53% and 58% in the XU case and in the

XB case was 62%, 65% and 67% respectively.
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6. Conclusion and Future Work

In this article, we extended the typical ranking and selection problem

such that the performance of an alternative/tool may be described as a

function over some input feature space, and the goal is to efficiently learn

which tool performs best for each of a given set of tasks characterized by

points in feature space. This has many applications, including algorithm

selection, where we are given a set of problem instances and would like to

learn which algorithm is best for each problem instance. Or in personal-

ized medicine where one must efficiently identify a mapping from patient

characteristics to most effective treatment.

We proposed the Regional Expected Value of Improvement (REVI) pol-

icy which samples in a way that maximizes the expected increase in predicted

performance over all the tasks. This method is myopically optimal by con-

struction and asymptotically optimal. We also proposed the NEVI and EVI

sampling strategies that make some simplifying assumptions and no longer

have the myopic optimality property, however they reduce the computati-

noal complexity and memory requirement and significantly performed better

than Latin Hypercube Design in our experiments.

Future work is to adapt the REVI policy to the case where samples do

not consume the same amount of budget, for example if one has a limited

time budget and the time taken to collect a sample varies depending on the

task and tool. Another further possible development is the case when the

set of tasks is not finite, but there is a continuous distribution of tasks.
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