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Abstract  1 

Three-dimensional imaging techniques provide spatial insight to environmental and cellular 2 

interactions and are implemented in various fields, including tissue engineering, but have been 3 

restricted by limited quantification tools which misrepresent or underutilize the cellular phenomena 4 

captured. This study develops image post-processing algorithms pairing complex Euclidean metrics 5 

with Monte Carlo simulations in order to quantitatively assess cell and microenvironment spatial  6 

distributions while utilizing, for the first time, the entire 3D image captured. While current methods 7 

only analyze a central fraction of presented confocal microscopy images, the proposed algorithms 8 

can utilize 210% more cells to calculate 3D spatial distributions which can span a 23-fold longer 9 

distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by 10 

extracting maximal quantitative data throughout the captured image.   11 
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Introduction 1 

Native and engineered tissues maintain spatial architecture of cells, extracellular matrix 2 

proteins and humoral factors via interactive adhesive motifs, paracrine niche interaction, and 3 

soluble factor gradients. The interplay of these factors promotes de novo cell and tissue formation, 4 

pathogen response, cellular chemotaxis, and tissue homeostasis [1-5]. Developments for the in situ 5 

capture of these cell-environment processes are focused on designing instruments and probes to 6 

enhance imaging depth, spatial resolution, speed, and specificity [6-10]. However, the quantitative 7 

characterization of imaged tissue environments is often constrained by spatially selective or 8 

underutilized image analyses that discard data that are expensive to acquire, which inherently limits 9 

the applicability of these algorithms [11-16]. Therefore, image analysis tools that enable quantitating 10 

spatial heterogeneity by unbiasedly utilizing the complete tissue sample image thus maximizing 11 

information output are required. 12 

Quantitative image analysis has been applied in various systems to determine how spatial 13 

tissue organization influences cell activity and fate. Studies include in vivo animal models, centered 14 

around intravital imaging at continuous but short (<24 hours) durations limited to the few animals or 15 

tissues (zebrafish, murine calvarial marrow) able to be imaged while alive [17-21], or in vitro 2D cell 16 

cultures appropriate for studies of spatial organization and cell -cell association [22-24].  Most in vivo 17 

and in vitro 3D cultures are not able to implement intravital imaging throughout growth area of 18 

interest and require invasive techniques or culture termination to characterize the formation of cell -19 

environment tissue networks in situ [15-16, 25-29]. Maximizing extraction of data from these rare, 20 

expensive 3D analyses has been a major driver to develop new imaging instruments and techniques 21 

rather than the postimaging algorithms that quantitate their output [6-10].  22 

Herein, quantitative tools are developed to analyze 3D spatial heterogeneity throughout the 23 

entire captured image in order to maximize data output for expensive, destructive imaging analyses. 24 

They work by dividing the full image space into regions, counting the number of cells within each 25 

region, and calculating the volume of each region so that regional cell density can be determined.  26 
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The novel algorithms enable the assessment of complex volumes in regions towards the periphery of 1 

the image thus increasing analysis distance (range) as well information content (number of cells 2 

surveyed). Nonetheless, the proposed 3D analysis represents an estimation whose accuracy is 3 

dependent on user-defined inputs. Therefore, results must be validated against controls, such as 4 

regions of known volume and data of known density. 5 

Two algorithms to quantify full-image spatial heterogeneity are presented and applied to 6 

immunofluorescent (IF) images of a 3D culture system consisting of a synthetic scaffold impregnated 7 

with hollow fibres [30]. The first algorithm quantifies the distribution of cellular density from a 8 

region of interest and is applicable to recent in vivo studies, including the measurement of oxygen 9 

and cellular phenotype, stress, and depiction of regional niches of cell activity and migration [14-19]. 10 

The second algorithm quantifies cellular association by calculating the distribution of cellular density 11 

from each cell imaged. Cell association metrics have been useful to assess roles of cell -cell 12 

communication, cell attraction and repulsion, as well as cell co-localization [11-13, 23, 29]. While 13 

current cellular distribution algorithms only analyze a central fraction of imaged data, the method 14 

presented herein allows for the utilization of all cells and environmental space imaged [11-13]. 15 

Specifically, the presented algorithms utilize 3.6-fold more 2D area or 2.5·104-fold more 3D volume 16 

and survey 1116 cells instead of 235 cells using the 2D analysis or 524 cells using the 3D analysis to 17 

help leverage the high cost of tissue culture.  18 
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Materials and Methods 1 

3D Cultures 2 

Mononuclear cells (MNCs) from human umbilical cord blood were cultured in a hollow fiber 3 

bioreactor as previously described [30]. In brief, a polyurethane scaffold was formed around ceramic 4 

hollow fibers and coated with collagen. Cord blood MNCs were inoculated into the scaffold while 5 

hollow fibers were perfused with serum-free medium for 28 days, when a representative SEM to 6 

demonstrate bioreactor topology was taken (Figure 1A). 7 

Immunofluorescent Sample Preparation 8 

For analyses, the 3D cultures were snap-frozen in liquid nitrogen and preserved at -80oC 9 

until sectioning. Sectioning occurred at -20oC into thick histological sections of approximately 1mm. 10 

The frozen sections were directly fixed in ice cold 4% paraformaldehyde (BDH Laboratory Sciences, 11 

Poole, Dorset, UK) in PBS (Life Technologies, Paisley, UK) overnight followed by a 2-hour 12 

permeabilization with 0.1% Triton X-100 (Sigma-Aldrich, Poole, Dorset, UK) in staining buffer [1% 13 

BSA (Sigma-Aldrich), 0.5% Tween-20 (Promega, Southampton, Hampshire, UK), 0.01% NaN3 (Sigma-14 

Aldrich) in PBS]. This was followed by a 4-hour blocking step with 10% donkey serum (AbCam, 15 

Cambridge, UK) in staining buffer and overnight incubation with primary antibodies and isotype 16 

controls (Table 1; AbCam) in staining buffer at 4oC. Thereafter, 6-hour staining was undertaken with 17 

secondary antibodies: donkey anti-rat Alexa Fluor 488, donkey anti-sheep Alexa Fluor 488 (AF488), 18 

donkey anti-rabbit Alexa Fluor 555 (AF555), and donkey anti-mouse Alexa Fluor 647 (AF647) all at 19 

1:500 dilution in staining buffer at 4oC (Life Technologies). These steps were followed by a DAPI 20 

counterstain (Fisher Scientific, Loughborough, Leics, UK) overnight at 50 μM in PBS at 4oC, and 21 

samples were stored in 0.01% NaN3 in PBS at 4oC. Each step was separated by single or multiple 15 22 

minute washing steps in appropriate buffer.  23 
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Table 1: Confocal 3D immunofluorescent microscopy primary antibody staining protocol. All 1 
products were obtained from AbCam with product number stated. The two sampl es presented in 2 

Figures 1-5 were prepared alongside appropriate isotype and unstained controls. 3 

 Fig. 1B Fig. 1B Isotype Fig. 1C Fig. 1C Isotype Unstained 

1.7 μg/mL rat anti-
human glycophorin-
A (ab33386) 

1.7 μg/mL rat  
IgG2b (ab18437) 

6.7 μg/mL sheep 
anti-human Stro-1 
(ab192766) 

6.7 μg/mL sheep 
IgG (ab37385) 

None 

8.3 μg/mL rabbit 
anti-human C-Kit 
(ab111033) 

8.3 μg/mL rabbit 
IgG (ab172730) 

8.3 μg/mL rabbit 
anti-human osterix 
(ab94744) 

8.3 μg/mL  rabbit  
IgG (ab172730) 

None 

33.3 μg/mL mouse 
anti-human 
erythropoietin-
receptor (ab56310) 

33.3 μg/mL 
mouse IgG2a 
(ab91361) 

3.33 μg/mL mouse  
anti-human 
osteopontin 
(ab69498) 

33.3 μg/mL 
mouse IgG2a 
(ab91361) 

none 

 4 

 5 

 6 

Figure 1: Imaging regions of the 3D culture device. (A) The topology of the hollow fiber bioreactor as 7 

a representative SEM cross-section, and (B, C) surveyed 5-color confocal images. Scale bar in (A) is 1 8 

mm and in (B) and (C) are 100 μm, and bioreactor material reflection is represented in greyscale. 9 

Markers analyzed were DAPI for cell nuclei, and cell phenotypes: glycophorin-A (GYPA), 10 

erythropoietin receptor (EPO-R) and stem cell growth receptor (c-kit) in Fig. 1B, and Stro-1 (Stro1), 11 

osterix (OSx), and osteopontin (OPN) in Fig. 1C.  12 
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Confocal Microscopy Image Acquisition   1 

The fixed, stained microscope sections were imaged on a Leica SP5 inverted confocal 2 

microscope with Leica LAS AF software (Leica, Milton Keynes, UK) using 405, 453, 488, 543, and 633 3 

nm lasers and filters for DAPI, reflectance, AF488, AF555, and AF647 stains in 2 sequences of 4 

excitation for 2- then 3-color collection without any detectable spill -over. Images were taken at 5 

512x512 pixel resolution using a 10x dry microscope lens for a resolution of approximately 3.03 μm 6 

per pixel with Z-stacks acquired in 5 μm slices, selected as the minimum lens magnification to ensure 7 

single-cell stain recognition [19].  All laser voltage, filter wavelength, and capture settings were 8 

identical for corresponding samples and controls. Each sample was captured as three adjacent 3D 9 

images with 7% overlap to allow collation of three individual 1551 x 1551 μm2 square images into a 10 

4437 x 1551 μm2 rectangular image with a depth of 350 μm for Figure 1B, and 230 μm for Figure 1C. 11 

Unstained and isotype controls were captured under identical conditions. Images were not 12 

manipulated. 13 

Cell Localization 14 

Once captured, images were analyzed using the Fiji image processing package of ImageJ: (1) 15 

the grid/collection package collated together adjacent 3D images, (2) the subtract background 16 

package decreased auto-fluorescence and self-absorbance, and, finally (3) the 3D object counter 17 

package located the center of each individual fluorescence stain, (X,Y,Z)c , which was exported into 18 

MATLAB for further analysis (The MathWorks, Inc., Natick, USA) [31-33]. Representative confocal 19 

images are shown in Figure 1B and 1C in Table 2, with stain localization for Figure 1B in Figure 2A 20 

and 2B. The presence of each fluorescent antibody stain, (X,Y,Z)c, was biologically validated in 21 

comparison to isotype controls, which contained less than 1% of detected sample stains. All 22 

computational post processing was run on a 3.4 GHz machine with 8 GB RAM and an Intel® Core™ i7-23 

4770 CPU. Processing times are provided and correspond as 1 second to 1.2·108 random points 24 

sampled from a uniform distribution in MATLAB on this machine. 25 

2D Distance Distribution 26 
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 Assessing cell density as a function of distance from an environmental region of interest is 1 

useful in examining cellular gradients across tissue sections [14-19]. In order to determine cellular 2 

distribution in 2D, 3D confocal image z-stacks (Figure 1B) were compressed into 2D so that a given 3 

line of interest running perpendicular to the image plane becomes a point (X,Y)a. Cellular 4 

heterogeneity was studied as a function of XY distance from this point of interest (Figure 2C and 2D), 5 

where individual cell position (X,Y)c and its distance from the point of interest  (X,Y)a  was defined as 6 

2D Euclidean distance: 7 

𝑅𝑐 = √(𝑋𝑐 − 𝑋𝑎)2 + (𝑌𝑐 − 𝑌𝑎)2    [1] 8 

The full image field distance was defined as the distance from the point of interest to the furthest 9 

image pixel, Rmax, and was then discretized into bins of radii which form concentric circles of area 10 

𝜋(Ri
2-Ri-1

2). Whenever the circle of radius Ri centered at (X,Y)a  encompassed space outside of  11 

the rectangular image limits, the extraneous area, 𝐴𝑒, was subtracted off for each breached side. In 12 

addition, if two of these breached sides overlapped to form a vertex of the rectangular limits, this 13 

overlapping extraneous area, 𝐴𝑒𝑒, must be added back. The resulting equation becomes: 14 

𝐴𝑖 = 𝜋(𝑅𝑖
2 − 𝑅𝑖−1

2 ) − 𝐴𝑒 + 𝐴𝑒𝑒    [2] 15 

Areas 𝐴𝑒 and 𝐴𝑒𝑒 were arc angles of off-center circle area segments that were analytically calculated 16 

through a series of trigonometric identities (refer to Supplementary Information) and all terms 17 

correspond to Figure 3A and are summarized in Table 2. An illustration comparing concentric circle 18 

areas against concentric circle areas bounded to image limits (Ai) used in Figure 2 is demonstrated in 19 

Figure 3B.  20 

 In order to assess complex 3D geometries that can also be validated against analytical 2D 21 

solutions, Monte Carlo methods have been employed to estimate complex geometrical spaces by 22 

generating points from a uniform distribution within a measureable region, such as the complete 23 

image volume [34]. However, this method may be inaccurate when insufficient points are generated. 24 

Therefore, in the 2D case, estimation error was defined as the percent difference of the Monte Carlo 25 

estimation from the analytical solution. As there was no analytical solution for many 3D cases,  26 
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 1 

Figure 2: A visualization of the 2D distance cell density analysis. (A) Immunofluorescent images were 2 

captured and (B) fluorescent markers were identified by object-based co-localization. The fiber 3 

center was defined and (C) volumes of concentric spaces confined to image limits were calculated 4 

explicitly or estimated probabilistically in order to determine (D) cell and phenotype density at all 5 

distances captured by confocal microscopy. Scale bar in (A) is 100 μm.  6 
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 1 

Figure 3: 2D tissue distance cell density analysis. (A) Mathematical notations used for 2D concentric 2 

neighborhoods surrounding the point of interest. (B) A visualization of concentric circle area (blue) 3 

and the area confined to discontinuous image limits (red) with iterative radii of 50 μm. (C) Monte 4 

Carlo estimation error from explicit solutions for successively tighter iterative Monte Carlo 5 

convergences (10-1,…,10-6) averaged over 4 image geometries and 40 distance intervals per image 6 

inside (green) the full image cuboid or (orange) the smallest subset cuboid where trend lines were 7 

fitted to 𝐸 =  𝑘1𝑒−𝑘2ln 𝑡  for the mean, 𝑚𝐸, and the 95% confidence interval, 𝑚𝐸 ± 1.96
𝜎𝐸

√𝑛
 for n=4, 8 

shaded in grey. 9 

 10 

Monte Carlo convergence was defined as the percent difference between estimated Monte Carlo 11 

solutions when 104 additional uniformly generated points were appended [35]. 12 

The Monte Carlo method was validated for the typical 2D distance distribution (Figure 3C) by 13 

calculating the average estimation error and Monte Carlo convergence across 4 image geometries, 14 

each broken into 40 equidistant intervals from a point of interest. An estimation error of 2.75% from 15 

the explicit calculation was reached for 10-6 % Monte Carlo convergence in iterations of 104 points, 16 

but required 8.6 minutes. A 10-2 % Monte Carlo convergence, which corresponded to an average of 17 

2.4 x 106 generated points or 0.02 seconds per distance interval with estimation error below 5% in 18 

the 2D distance distribution, was utilized for all subsequent distance distribution analyses.  19 

3D Distance Distribution 20 
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 The analysis of 3D cell distributions away from a specific point of interest is often utilized for 1 

cell co-localization studies, but is currently limited to cells either near the center of the image or only 2 

for very close cell proximities, creating regional bias in analysis [11-12, 23, 29]. To analyze 3D cell 3 

distribution from a point of interest (𝑋, 𝑌, 𝑍)𝑎  throughout the entire image, the distance from 4 

(𝑋, 𝑌, 𝑍)𝑎  to the furthest pixel imaged was divided into intervals, Ri. Cell (𝑋, 𝑌, 𝑍)𝑐 exists within the 5 

interval (𝑅𝑖−1,𝑅𝑖) if: 6 

           𝑅𝑖−1 < 𝑅𝑐 = √(𝑋𝑐 − 𝑋𝑎)2 + (𝑌𝑐 − 𝑌𝑎)2 + (𝑍𝑐 − 𝑍𝑎)2 ≤ 𝑅𝑖                 [3] 7 

8 
Figure 4: A visualization of the 3D cell clustering density analysis in confocal images. (A, B) A cell of 9 

interest was defined and volumes of concentric spheres confined to image limits were estimated 10 

through point sampling in order to determine (C) cell density at any imaged neighborhoods away 11 

from a given cell (red arrow, green bars), which can then be iterated for all 1,116 (+/ - SEM) cells 12 

throughout the image (blue bars). Scale bars in (A, B) are 100 μm.  13 
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Therefore, cell density within neighborhood (𝑅𝑖−1,𝑅𝑖) can be calculated as the quantity of all cells 1 

within (𝑅𝑖−1,𝑅𝑖) divided by the neighborhood’s volume, Vi. If this neighborhood exists entirely 2 

within image boundaries then the neighborhood volume is Vi = 
4

3
𝜋(Ri

3-Ri-1
3). However, if a portion of 3 

this neighborhood exists outside of the image boundaries, then calculation of Vi may not hold an 4 

explicit solution. In this case, Monte Carlo point sampling methods were implemented to estimate 5 

volume Vi: random 3D points 𝑃𝑁 = (𝑋, 𝑌, 𝑍)𝑁 were generated from a uniform distribution (known as 6 

Monte Carlo-sampling) across the entire imaged space, such that 𝑃𝑁 ∈ [(0,0,0), (𝑋, 𝑌, 𝑍)𝐿]. Then, 𝑃𝑛 7 

is defined as the fraction of 𝑃𝑁 within the sphere volume of interest, such that 𝑃𝑛 ∈ ((𝑋, 𝑌, 𝑍)𝑎 ±8 

𝑅𝑖), and an estimate of concentric neighborhood volume is provided as: 9 

   𝑉𝑖 = 𝑉𝐿
∑𝑃𝑛

∑𝑃𝑁
− 𝑉𝑖−1        [4] 10 

Where, VL is the full image volume and the concentric neighborhood volume of the prior 11 

radial interval Ri-1 is given by Vi-1. This process of uniform point generation and volume calculation 12 

was repeated and appended until iterations of calculated Vi vary less than a chosen Monte Carlo 13 

convergence limit, as discussed above. The estimation of a 100 μm cell neighborhood (100 μm, 4.2 x 14 

10-3 mm3) inside a large image volume,  VL (2.4 mm3), required sampling 5.8 x 107 uniformly 15 

distributed random points and 0.49 seconds, or 9.1 minutes if repeated for the 1,116 cells within 16 

Figure 1B.  17 

Computational time decreased by 96% from 9.1 minutes to 22 seconds when Monte Carlo 18 

point sampling methods were applied within small regions around each cell rather than across the 19 

entire image space. A smaller cuboid of known volume, VLS, was constructed to exactly encase the 20 

cell neighborhood (volume (2Ri)
3 centered on cell (𝑋, 𝑌, 𝑍)𝑐) that was then confined within the 21 

image limits (VLS ≤ 8 x 10-3 mm3 for Ri = 100 μm cell neighborhood). Points,  𝑃𝑁𝑆, were sampled 22 

within the cuboid sub-volume such that  𝑃𝑁𝑆 ∈ 𝑉𝐿𝑆 ⊂ 𝑉𝐿 , and the fraction of 𝑃𝑁𝑆 within the sphere 23 
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volume of interest, 𝑃𝑛𝑆 ∈ ((𝑋, 𝑌, 𝑍)𝑎 ± 𝑅𝑖), provided a more efficient estimate of concentric 1 

neighborhood volume than sampling points within the entire image limits as: 2 

𝑉𝑖 = 𝑉𝐿𝑆
∑𝑃𝑛𝑆

∑ 𝑃𝑁𝑆
− 𝑉𝑖−1       [5] 3 

Fewer sampled points were required within VLS compared to VL to reach the same Monte 4 

Carlo convergence: 2.4 x 106 uniformly distributed random points required 0.02 seconds per cell 5 

neighborhood, or 22 seconds for all 1,116 cells in Figure 1B. Using the proposed method, 3D cell 6 

density distributions can be quickly analyzed at distances up to half the diagonal image distance, or 7 

0.5√𝑋𝐿
2 + 𝑌𝐿

2 + 𝑍𝐿
2 , for every cell present in the image.. 8 

 Alternatively, an equally spaced 3D grid of k points across the image volume, VL, or a similar 9 

image subvolume, VLS, can be used to estimate cell neighborhoods. However, iterative grid 10 

generations must be performed with (2𝑘) 3 additional points, which greatly increases computational 11 

time, and is discussed as a different method to random point generation from a uniform distribution 12 

(refer to Supplementary Information, Figure S2). 13 

Statistics 14 

Quantitative results are represented as mean ± standard error of 4 replicate experimental samples 15 

prepared and assessed identically (Figure 1B), or 4 replicate computationally generated samples as 16 

stated.  17 

Table 2: Mathematical parameters.  18 

Parameter Description Ref 
(X,Y)c ; (X,Y,Z)c   2D/3D cell position [1], [3] 

(X,Y)a ; (X,Y,Z)a Line or point of interest [1], [3] 
Rf Cell to region of interest distance [1], [3] 

Rmax Maximum surveyable distance - 

Ai Examined region area [2] 
Ri; Ri-1 Bin of examinable region [2] 

Ae; Aee Extraneous binned region area [2] 
VL; (X,Y,Z)L Total image volume; limits [4], [5] 

Vi; Vi-1 Examined region volume [4], [5] 
VLS; (X,Y,Z)LS Subset volume; limits [5] 

  19 
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Results 1 

Enhanced Utilization of Imaged Data 2 

 The presented algorithms completely assess 2D and 3D cell density distributions of imaged 3 

histological data whereas current methods disregard data near image boundaries [11-13]. Therefore, 4 

the algorithms herein enhance utilization of image data in two ways: a) by surveying more points of 5 

interest, and b) by probing further distances from each point of interest. With current approaches, 6 

an ideally centered point of interest within Figure 1B could only be inspected up to a maximum 2D 7 

distance of 775 μm (the closest image boundary); in contrast, using the presented algorithms, a 2D 8 

distribution of at minimum 2300 μm (the furthest imaged pixel) can now be calculated from any 9 

point within the image.  10 

Cell density distribution algorithms are typically repeated for multiple points, or cells, of 11 

interest. A conservative comparison with current methods was performed by analysing 3D cell 12 

density distributions within a 100 μm neighborhood around every cell to demonstrate cell to cell 13 

association in Figure 1B (similar to Bjornsson et al [11]).  Current methods utilize only cells further 14 

than 100 μm from an image boundary as points of interest (N=524) while with the presented 15 

approach all imaged cells were utilised (N=1116) at a 23-fold greater distance. The inclusion of these 16 

cells improved cell density estimations by 26% and 23% within 15-50 and 50-100 μm intervals, 17 

respectively. 18 

Accurate manual scoring allows for the exact measurement of cell positions and cell -to-cell 19 

distances, but would be infeasible to manually pinpoint thousands of cells in a large image and 20 

infeasible to measure the hundreds of thousands of intracellular distances and the volumetric 21 

neighborhoods to calculate cellular density distributions within. The proposed algorithm was 22 

compared to manual scoring of random fractions of the entire image in Figure 1B, which revealed 23 

that partial manual scoring reduced accuracy due to the non-uniform distribution of cells and was 24 
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unable to analyze cell distributions at long distances as described in the Supplementary Information, 1 

while still reducing analysis time from 30 min down to 1 min.   2 

Random Sampling Accuracy 3 

The point sampling algorithm was validated by assessing uniformly generated random cell 4 

distributions, as shown in Figure 5A. These data sets were comprised of 4 types of 500 5 

computationally generated cells which were uniformly distributed within a 4437 x 1551 x 230 μm 3 6 

space in order to produce a known cell density while replicating the number of cells and image 7 

geometry of experimental samples, as performed in current studies [14-15]. The sampling method 8 

accurately analyzed the uniform distribution of cells, where 2,000 uniformly generated cell positions 9 

were found to have an average of 1257.6 ± 44.8, 1244.8 ± 22.4, and 1297.2 ± 2.0 cells per mm3 in 10 

15-50, 50-100, and 100-600 μm neighborhoods of all other cells, and 1297.0 ± 0.2 cell per mm3 11 

throughout the remaining 2300 μm of the image space (n = 2,000 cells). Small 50 μm and 100 μm 12 

neighborhoods contained significantly smaller numbers of cells, and may have accounted for thei r 13 

higher variability, but even so, the density of cells was found to closely approximate a uniform 14 

distribution of 2000 cells in the image volume of 1.54 mm3. 15 

3D Distribution with Regional Asymmetries 16 

Many histological images contain gaps or spaces without cells, such as vessels, areas of 17 

decalcified bone, or the edge of the sectioned sample. These voids may underestimate cell density 18 

during computational analysis if they are averaged into dense cellular neighborhoods. However, if 19 

significantly larger numbers of cells could be assessed with full image field analysis, regional 20 

asymmetries might be more accurately determined. Cell clustering density analyses were run on an 21 

identical image including or excluding regions with engineered void space ( Figure 5B and 5C), and 22 

showed the region containing the voidage played a relatively minor role in influencing paracrine cell-23 

cell niche communication, but a much greater regional effect correlating to its inclusion or exclusion 24 

from the 2D distance cell density analysis. There was a 7.8%, 11.1%, 44.6% difference in cell density 25 

in 15-50, 50-100, and 100-600 μm neighborhoods between the image with and without the fiber,  26 
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and a 46.2% difference in cell density throughout the rest of the image, demonstrating that this 1 

regional phenomena altered cell localization at large 2D tissue scales, but cell association at close 2 

intercellular distances remained consistent throughout the image. 3 

 4 

Figure 5: Assessment of methods and applications for calculating 3D cell clustering density.  5 

(A) Cell clustering density estimation for 4 iterations (+/- SEM, red) of 4 types of 500 computationally 6 

generated cells, or, for (B) cells imaged from a hollow fiber bioreactor with and (C) without the 7 

hollow fiber region, representing a spatial asymmetry. Scale bars in (A, B, C) are  100 μm. Objects 8 

analyzed include randomized control cells (RC1-RC4), as well as fluorescent markers.  9 
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Discussion 1 

3D image analyses enable the acquisition of information on spatial cell and tissue 2 

heterogeneity due to their quantitative algorithms [6-7]. However, current calculations of cell 3 

distributions are often constrained to a central subset of the image provided, and are further limited 4 

when phenomena of interest are off-center or replicate events per image are assessed. When the 5 

entire tissue volume of interest is infeasible to image, recent studies have compensated by 6 

quantitating images of incomplete tissue subsections either through normalization against uniformly 7 

generated random data within a similar tissue topology [13-15], or by only analysing phenomena 8 

that exist within the most central subsection of the image [11-12, 16]. The former method only 9 

provides relative quantitation of images while the later discards nearly half of 3D imaged data [11-10 

12]. The presented analyses in this study quantitate 2D and 3D distributions of phenomena 11 

throughout any full image, providing a minimum 50-fold increase in analytical range (increased 12 

distance times increased cells analyzed) throughout coupling complex Euclidean metrics with Monte 13 

Carlo point sampling estimations.  14 

The analysis of cell distributions can be parametrically tuned for computational speed and 15 

analytical resolution to avoid miscalculation. Analytical resolution is dependent on the quan tity of 16 

regions the image is partitioned into and, for 3D distributions, the Monte Carlo simulation is also 17 

dependent on the quantity of uniformly generated random points. The partitioning of image regions 18 

is a balance of precision where larger, coarser partitions may average local spatial phenomena into a 19 

larger population of cells, while smaller, finer partitions could provide misleading cell densities due 20 

to the sharp geometrical discontinuities that exist at image boundaries and the small number of cells 21 

that exist within small partitions. The partition balance is observed as the measurement of small cell-22 

proximal 3D regions held larger error (4% standard error at 0.0042 mm3) when compared to larger, 23 

cell-distal 3D regions (0.015% standard error at 2.4 mm3). The generation of sufficient quantities of 24 

uniformly generated random points to estimate complex 3D volumes is dependent on system and 25 
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user-specific error tolerance; in the presented case an average of 2.4 x 106 points were generated, 1 

which yielded a 5% error when compared against known controls, as discussed above.  2 

Many studies of cell recognition and cell-cell or cell-tissue co-localization have avoided the 3 

need for efficient image analysis algorithms by capturing multiple or larger images at lower 4 

magnification, increasing the cost and time of these already demanding techniques. Morales -5 

Navarrete et al [36] proposed imaging at a moderate resolution (25x, 1 μm3 voxel), then re-tiling 6 

parts of this low-resolution image with high resolution (63x, 0.03 μm3 voxel) to capture both 7 

vasculature of approximately 100-300 μm diameters for murine liver reconstruction followed by 8 

cellular and subcellular reconstruction of hepatocytes. Studies by Khorshed et al [19] and 9 

Sundaramurthy et al [37] enumerated intravital murine hematopoietic cells at moderate resolutions 10 

(20-40x, 0.2-7.3 μm3 voxel) in order to inspect intra- and inter-cellular activity for small populations 11 

of approximately 25 cells. The presented study depicts cells at significantly lower resolution (10x, 46 12 

μm3 voxel), as an optimal balance between image volume analyzed at a tissue scale while still 13 

capturing many hematopoietic cells (1000’s of 500-33,500 μm3 cells) at high enough resolution to 14 

pinpoint cell nuclei and associated fluorescent markers amongst their environment. This lower 15 

magnification and resolution has also been employed in semiautomatic cell and fluorescent marker 16 

identification in 3D tissue cultures [38], to assess megakaryocyte distance from vascularization in 17 

murine bone marrow [39], and used as standard images to compare cell motion tracking algorithms 18 

across 14 laboratories [40].  19 

The quantitative evaluation of cellular density and heterogeneity is frequently studied and 20 

used in vitro and in vivo 3D applications inspecting roles of cellular and environmental interactions. 21 

Many 3D culture systems employ surfaces, scaffolds, carriers, or fibers as an aim to impart spatial 22 

heterogeneity to mimic and, upon implantation, integrate with many tissue asymmetries present 23 

physiologically [1-4, 25-28]. Pinpointing cell niche placement and cell association as a tool towards 24 

developmental understanding, tracking disease progression, and mammalian cell culture bioprocess 25 

design has become increasingly studied in ex vivo analogues, however, few intravital analyses have 26 
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been performed until recently, and none in the adult human [14-29, 36-40]. Cell co-localization 1 

algorithms frequently inspect small distances from cells or tissues of interest such as the effect of 2 

high oxygen tension on cells within 150 μm of a vascular sinus and the migration of cells within 100 3 

μm of bone surfaces [16, 19]. The assessment of spatial heterogeneity away from more complex 4 

regions of interest, such as uneven bone surfaces or noncircular vessel walls, could utilize these 5 

proposed algorithms to capture the full image-field in one of two ways: in an identical method if 6 

these phenomena can be described as a function, or through an iterative process once the complex 7 

phenomena of interest have been meshed or mapped similar to the  detection of the murine marrow 8 

bone surface by Khorshed et al [19]. 9 

These algorithms are capable of being applied to any quantitative 3D imaging platform, 10 

including magnetic resonance imaging (MRI), computed tomography (CT), and optical imaging (UV, 11 

Visible, IR) due to their use of spatially “tagged” contrast agents or probes (e.g. nanomaterials, 12 

labelled small and large molecules, fluorescent proteins), where discrete cells, phenomena, or 13 

regions of interest can be spatially identified [6-7]. MRI and CT imaging allow for full specimen 14 

penetration but lack multiplexed probe detection, have poorer sensitivity, and lower resolution; only 15 

recent advancements have allowed imaging at single-cell resolution [6]. Optical imaging allows for 16 

the quantitative analysis of a wide variety of cell-environment interactions and can characterize 17 

multiple phenotypes, organelle, and matrix proteins simultaneously by implementing light 18 

microscopy (LM) with immunohistochemistry (IHC) or immunofluorescence (IF) imaging of probes 19 

and chemicals delineating cell or tissue type, status, and their interactions to quantify the effects of 20 

the tissue environment on cell differentiation, proliferation, and stimulation spatially at multiple 21 

aspect sizes [8-9]. The versatility of optical imaging is frequently implemented to determine 22 

quantitative co-localization from the subcellular protein scale up to multicellular and tissue scales 23 

[10-28].  24 

The complete quantitative utilization of 3D imaged space is required to leverage the high 25 

cost of native or engineered tissue histology. The study of spatial heterogeneity in tissue constructs 26 
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has become increasingly popular both due to advancements in 3D culture systems to mimic 1 

physiological structures and functions, as well as advancements in imaging technologies able to 2 

better define the performance of natural and engineered cellular environments. The presented 3 

image analyses, for the first time, pair Euclidean metrics with Monte Carlo estimations to determine 4 

co-localization across the entire imaged data set, assessing 2.2-fold more area per frame in 2D 5 

distance metrics to depict cell populations in more distant, peripheral imaged areas from 6 

phenomena of interest. In 3D distance metrics, all cell neighborhoods can be analyzed to half the 7 

maximum image length, whereas basic algorithms may only assess one, perfectly central cell per 8 

image; hence, these tools provide 102 to 104 more replicate cell measurements per image at a 9 

similar, if not greater, scope. The fabrication, culture, and analysis of tissue engineered and clinical 10 

samples for image analysis represents a time-, labor-, and cost-intensive process, and efficient post-11 

analysis tools to quantitatively assess the full image field, as presented here, are needed to detail 12 

cellular interactions amongst their environment.  13 



Page 22 of 30 
 

Acknowledgements 1 

This work is supported by ERC-BioBlood (No. 340719); the Richard Thomas Leukaemia Research 2 

Fund, and a Royal Academy of Engineering Fellowship to R.M. M.A. is grateful for the Imperial 3 

College Chemical Engineering Scholarship. The authors are grateful to Deborah Keller and Stephen 4 

Rothery of Imperial College’s Core FILM Facilities for the useful discussions.  5 

Disclosure Statement 6 

No competing financial interests exist.   7 



Page 23 of 30 
 

References 1 

[1] Cha, C., Liechty, W.B., Khademhosseini, A., Peppas, N.A. Designing biomaterials to direct stem cell 2 

fate. ACS Nano 6, 11, 9353, 2012. 3 

[2] Pampaloni, F., Reynaud, E.G., Stelzer, E.H.K., The third dimension bridges the gap between cell 4 

culture and live tissue. Nat Rev Mol Cell Biol 8, 11, 839, 2007.  5 

[3] Baker B.M., Chen, C.S., Deconstructing the third dimension: how 3D culture microenvironments 6 

alter cellular cues. J Cell Sci 125, 13, 3015, 2012. 7 

[4] Khademhosseini, A., Langer, R., Borenstein, J., Vacanti, J.P., Microscale technologies for t issue 8 

engineering and biology. Proc Natl Acad Sci U S A 103, 8, 2480, 2006. 9 

[5] Niklason, L.E., Yeh, A.T., Calle, E.A., Bai, Y., Valentín, A. and Humphrey, J.D., Enabling tools for 10 

engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical 11 

modeling. Proc Natl Acad Sci U S A 107, 8, 3335, 2010. 12 

[6] Appel, A.A., Anastasio, M.A., Larson, J.C. and Brey, E.M., Imaging challenges in biomaterials and 13 

tissue engineering. Biomaterials, 34, 28, 6615, 2013. 14 

[7] Weissleder, R., Nahrendorf, M., Advancing biomedical Imaging. Proc Natl Acad Sci U S A 112, 47, 15 

14424, 2015.  16 

[8] Ntziachristos, V., Going deeper than microscopy: the optical imaging frontier in biology. Nat 17 

Methods 7, 8, 603, 2010. 18 

[9] Flower, Maggie A., ed. Webb’s physics of  medical imaging. Boca Raton: CRC Press, 2012.  19 

[10] Ntziachristos, V., Floresence molecular imaging. Annu Rev Biomed Eng, 8, 1, 2006.  20 

[11] Bjornsson, C.S., Lin, G., Al-Kofahi, Y., Narayanaswamy, A., Smith, K.L., Shain, W. and Roysam, B., 21 

Associative image analysis: a method for automated quantification of 3D multi -parameter images of 22 

brain tissue. J Neurosci Methods, 170, 1, 165, 2008. 23 

[12] Delarue, M., Joanny, J. F., Jülicher, F., & Prost, J., Stress distributions and cell flows in a growing 24 

cell aggregate. Interface focus, 4, 6, 20140033, 2014. 25 

[13] Meddens, M. B., Rieger, B., Figdor, C. G., Cambi, A., & Van Den Dries, K. , Automated podosome 26 

identification and characterization in fluorescence microscopy images. Microscopy and 27 

microanalysis, 19, 1, 180, 2013. 28 

[14] Acar, M., Kocherlakota, K.S., Murphy, M.M., Peyer, J.G., Oguro, H., Inra, C.N., Jaiyeola, C., Zhao, 29 

Z., Luby-Phelps, K. and Morrison, S.J., Deep imaging of bone marrow shows non-dividing stem cells 30 

are mainly perisinusoidal. Nature, 526, 7571, 126, 2015.  31 

[15] Takaku, T., Malide, D., Chen, J., Calado, R.T., Kajigaya, S. and Young, N.S., Hematopoiesis in 3 32 

dimensions: human and murine bone marrow architecture visualized by confocal 33 

microscopy. Blood, 116, 15, e41, 2010. 34 

[16] Nombela-Arrieta, C., Pivarnik, G., Winkel, B., Canty, K.J., Harley, B., Mahoney, J.E., Park, S.Y., Lu, 35 
J., Protopopov, A. and Silberstein, L.E., Quantitative imaging of haematopoietic stem and progenitor 36 



Page 24 of 30 
 

cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol, 15, 5, 533, 1 
2013.  2 

[17] Celso, C.L., Fleming, H.E., Wu, J.W., Zhao, C.X., Miake-Lye, S., Fujisaki, J., Côté, D., Rowe, D.W., 3 

Lin, C.P. and Scadden, D.T., Live-animal tracking of individual haematopoietic stem/progenitor cells 4 

in their niche. Nature 457, 7225, 92, 2009.  5 

[18] Spencer, J.A., Ferraro, F., Roussakis, E., Klein, A., Wu, J., Runnels, J.M., Zaher, W., Mortensen, 6 
L.J., Alt, C., Turcotte, R. and Yusuf, R., Direct measurement of local oxygen concentration in the bone 7 
marrow of live animals. Nature, 508, 7495, 269, 2014 8 

[19] Khorshed, R.A., Hawkins, E.D., Duarte, D., Scott, M.K., Akinduro, O.A., Rashidi, N.M., Spitaler, M. 9 
and Celso, C.L., Automated identification and localization of hematopoietic stem cells in 3D intravital 10 
microscopy data. Stem cell reports, 5, 1, 139, 2015. 11 

[20] Bertrand, J.Y., Kim, A.D., Violette, E.P., Stachura, D.L., Cisson, J.L. and Traver, D., Definitive 12 

hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish 13 

embryo. Development 134, 23, 4147, 2007. 14 

[21] Vera, B., Zon, L.I., High throughput in vivo phenotyping: the zebrafish as a tool for drug 15 

discovery for hematopoietic stem cells and cancer. Drug Discov Today Dis Models 10, 1, e17, 2013.  16 

[22] Thon, J.N., Mazutis, L., Wu, S., Sylman, J.L., Ehrlicher, A., Machlus, K.R., Feng, Q., Lu, S., Lanza, R., 17 
Neeves, K.B. and Weitz, D.A., Platelet bioreactor-on-a-chip. Blood, 124, 12, 1857, 2014. 18 

[23] Ma, Z., Wang, J., Loskill, P., Huebsch, N., Koo, S., Svedlund, F.L., Marks, N.C., Hua, E.W., 19 
Grigoropoulos, C.P., Conklin, B.R. and Healy, K.E. Self-organizing human cardiac microchambers 20 
mediated by geometric confinement. Nat Commun, 6, 7413, 2015.  21 

[24] Toh, Y.C., Xing, J., Yu, H., Modulation of integrin and E-cadherin-mediated adhesions to spatially 22 

control heterogeneity in human pluripotent stem cell differentiation. Biomaterials 50, 87, 2015.  23 

[25] Di Buduo, C.A., Wray, L.S., Tozzi, L., Malara, A., Chen, Y., Ghezzi, C.E., Smoot, D., Sfara, C., 24 

Antonelli, A., Spedden, E. and Bruni, G., Programmable 3D silk bone marrow niche for platelet 25 

generation ex vivo and modeling of megakaryopoiesis pathologies.  Blood, 125, 14, 2254, 2015. 26 

[26] Frezza C., Wouters, B.G. McGuigan, A.P., A three-dimensional engineered tumour for spatial 27 

snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat Mater, 15, 2, 227, 28 

2016.  29 

[27] Eng, G., Lee, B.W., Parsa, H., Chin, C.D., Schneider, J., Linkov, G., Sia, S.K. and Vunjak-Novakovic, 30 

G., Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proc 31 

Natl Acad Sci U S A, 110, 12, 4551, 2013.  32 

[28] Rnjak‐Kovacina, J., Wray, L.S., Golinski, J.M. and Kaplan, D.L., Arrayed Hollow Channels in Silk‐33 

Based Scaffolds Provide Functional Outcomes for Engineering Critically Sized Tissue Constructs.  Adv 34 

Funct Mater, 24, 15, 2188, 2014.  35 

[29] Liu, Z., Gerner, M.Y., Van Panhuys, N., Levine, A.G., Rudensky, A.Y. and Germain, R.N., Immune 36 
homeostasis enforced by co-localized effector and regulatory T cells. Nature, 528, 7581, 225, 2015 37 

[30] Panoskaltsis, N., Macedo, H.M.M., Blanco, M.T.M., Mantalaris, A., Livingston, A.G., 3d hollow 38 
fibre bioreactor systems for the maintenance, expansion, differentiation, and harvesting of human 39 
stem cells and their progeny [Patent], WO 2012/069841 A1, 2012.  40 



Page 25 of 30 
 

[31] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., 1 
Rueden, C., Saalfeld, S., Schmid, B. and Tinevez, J.Y., Fiji: an open-source platform for biological-2 
image analysis. Nat Methods, 9, 7, 676, 2012.  3 

[32] Preibisch, S., Saalfeld, S. and Tomancak, P., Globally optimal stitching of tiled 3D microscopic 4 
image acquisitions. Bioinformatics, 25, 11, 1463, 2009 5 

[33] Bolte, S. and Cordelieres, F.P., A guided tour into subcellular colocalization analysis in light 6 
microscopy. J Microsc, 224, 3, 213, 2006 7 

[34] Smith, R.L., Efficient Monte Carlo procedures for generating points uniformly distributed over 8 
bounded regions. Oper. Res., 32, 6, 1296, 1984 9 

 [35] Cowles, M.K. and Carlin, B.P., Markov chain Monte Carlo convergence diagnostics: a 10 
comparative review. Amer. Statist. Assoc., 91, 434, 883, 1994. 11 

 [36] Morales-Navarrete, H., Segovia-Miranda, F., Klukowski, P., Meyer, K., Nonaka, H., Marsico, G., 12 
Chernykh, M., Kalaidzidis, A., Zerial, M. and Kalaidzidis, Y., A versatile pipeline for the multi -scale 13 
digital reconstruction and quantitative analysis of 3D tissue architecture. eLife, 4, e11214, 2015 14 

[37] Sundaramurthy, V., Barsacchi, R., Chernykh, M., Stöter, M., Tomschke, N., Bickle, M., Kalaidzidis, 15 
Y. and Zerial, M., Deducing the mechanism of action of compounds identified in phenotypic s creens 16 
by integrating their multiparametric profiles with a reference genetic screen. Nat Protoc, 9, 2, 474, 17 
2014. 18 

[38] De Boodt, S., Poursaberi, A., Schrooten, J., Berckmans, D. and Aerts, J.M., A semiautomatic cell 19 
counting tool for quantitative imaging of tissue engineering scaffolds. Tissue Eng Part C Methods, 19, 20 
9, 697, 2013.  21 

[39] Malara, A., Currao, M., Gruppi, C., Celesti, G., Viarengo, G., Buracchi, C., Laghi, L., Kaplan, D.L. 22 
and Balduini, A., Megakaryocytes Contribute to the Bone Marrow‐Matrix Environment by Expressing 23 
Fibronectin, Type IV Collagen, and Laminin. Stem Cells, 32, 4, pp.926-937, 2014. 24 

[40] Chenouard, N., Smal, I., De Chaumont, F., Maška, M., Sbalzarini, I.F., Gong, Y., Cardinale, J., 25 
Carthel, C., Coraluppi, S., Winter, M. and Cohen, A.R., Objective comparison of particle tracking 26 
methods. Nat Methods, 11, 3, 281, 2014.   27 



Page 26 of 30 
 

Supplementary Information 1 

Method: 2D Tissue Distance Explicit Derivation 2 

Cell distance from hollow fiber centers, (𝑋, 𝑌)𝑎, was defined as 2D Euclidean distance: 3 

𝑅𝑐 = √(𝑋𝑐 − 𝑋𝑎)2 + (𝑌𝑐 − 𝑌𝑎)2    [1] 4 

The full image field distance was defined as the distance from the fiber to the furthest pixel of the 5 

image, 𝑅𝑚𝑎𝑥. The full distance was then discretized into bins of equally spaced radii, 𝑅𝑖, which form 6 

concentric circles of area 𝜋(𝑅𝑖
2 − 𝑅𝑖−1

2 ). However, if the circle of radius 𝑅𝑖 centered at (𝑋, 𝑌)𝑎  7 

encompassed space outside of the cubic image limits, the extraneous volume, 𝐴𝑒, must be 8 

subtracted off: 9 

𝐴𝑒 =
𝑅𝑖

2

2
(

𝜋𝑆𝑖

180
− sin(𝑆𝑖))                [S.1] 10 

The arc angle of the circle area segment protruding out of the image, 𝑆𝑖, is calculated through 11 

trigonometric identities: 12 

𝑆𝑖 = cos−1 (
𝐷𝑎→𝑘1

2 +𝐷𝑎→𝑘2
2 −(𝑌𝑘1−𝑌𝑘2)

2𝐷𝑎→𝑘1
2 𝐷𝑎→𝑘2

2
)               [S.2] 13 

Where 𝐷𝑎→𝑘1 represents the 2D Euclidean distance between point (𝑋, 𝑌)𝑎  and (𝑋, 𝑌)𝑘1, see Figure 14 

3A for terminology.  15 

In cases where the extraneous circle area included a vertex of the rectangular image limits, 16 

two overlapping extra-image volumes have been subtracted from the circular area which must be 17 

corrected by adding back the overlapping extraneous area 𝐴𝑒𝑒: 18 

𝐴𝑒𝑒 = 𝑆𝑖 − √𝑃𝐴(𝑃𝐴 − 𝐷𝑎→𝑘2)(𝑃𝐴 − 𝐷𝑎→𝑖)(𝑃𝐴 − 𝐷𝑖→𝑘2) − 

√𝑃𝐵(𝑃𝐵 − 𝐷𝑎→𝑗2)(𝑃𝐵 − 𝐷𝑎→𝑖)(𝑃𝐵 − 𝐷𝑖→𝑗2)               [S.3] 19 

Where 𝑆𝑖, from Equation S.2, here describes the arc angle of the circle slice inscribing 𝐴𝑒𝑒, while 𝑃𝐴 20 

and 𝑃𝐵 are triangle perimeters which exclude the overlapped circle section 𝐴𝑒𝑒, described as: 21 

𝑃𝐴 = 0.5𝐷𝑎→𝑘2 + 𝐷𝑎→𝑖 + 𝐷𝑖→𝑘2             [S.4] 22 

𝑃𝐵 = 0.5𝐷𝑎→𝑗2 + 𝐷𝑎→𝑖 + 𝐷𝑖→𝑗2             [S.5] 23 

So that the final volume of the concentric circles constrained to rectangular image limits is:  24 
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𝐴𝑖 = 𝜋(𝑅𝑖
2 − 𝑅𝑖−1

2 ) − 𝐴𝑒 + 𝐴𝑒𝑒     [2] 1 

With all terms corresponding to the diagram in Figure 3a.  2 

Results: Comparison of 3D Distance Analysis against Manual Scoring 3 

 The calculation of 3D cell density distribution using the proposed algorithm greatly saved 4 

time in comparison to a manual scoring method. For instance, the algorithm was able to calculate 5 

the distribution of cells in 4 concentric regional neighborhoods (0-15 µm, 15-50 µm, 50-100 µm, 6 

>100 µm) around each of the 1116 cells in Figure 1B within 62 seconds. This analysis was compared  7 

against the manual scoring of 3D cell density within random fractions of the image, another method 8 

to hasten analysis.  To do this, Figure 1B was divided into 100 equal parts, and 5 image parts of this 9 

100 were randomly selected (using MATLAB’s random number generator). The image parts were 10 

then manually scored for cell position, then cell to cell distances were measured and sorted into 2  11 

 12 

Figure S1: Comparison of algorithm efficiency in comparison with manual scoring. Figure 1B was 13 

partitioned into 100 equal regions, and 5 parts were selected by random number generation 14 

(MATLAB), highlighted in blue as partitions B4, B6, B9, D10 and D22 which represented 5% of the full 15 

image area. Cells were manually identified within each partition, 3D cell to cell distances were 16 

identified if within 15-50 or 50-100 µm, and the average 3D volume of concentric spheres 15-50 or 17 

50-100 µm away from cells of interest were manually estimated to calculate cell densities, and 18 

reported in Table S1. 19 
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Table S1: Comparison of calculating 3D cell density distributions by manually scoring 5 random 1 
image parts against utilising the proposed algorithm across the entire image.  2 
 Manual Scoring of 5x 

1% image parts  
Automated estimation 
of the entire image  

Time of Analysis 30 minutes 1 minute 

Cells Utilized 67 1116 
15-50 µm neighborhood 
density (cells/mm3) 

25600 +/- 11300  3400 +/- 131  

50-100 µm neighborhood 
density (cells/mm3) 

2220 +/- 832  1776 +/- 46  

 3 

partitions (15-50 µm, 50-100 µm), and the average volume of these partitions within the partial, 1%, 4 

image boundaries was approximated (437,500 µm3, 2,700,000 µm3) in order to calculate density. 5 

Surveying 5x 1% image parts required 30 minutes for manual scoring (N=1), or 10.2 seconds for the 6 

algorithm (N=20), illustrated in Figure S1. 7 

 Surveying 5 image parts comprising 5% of the entire image was an imprecise method to 8 

calculate 3D cell density distribution. Manual scoring provided inconsistent results, with standard 9 

errors of 44% and 38% about a mean which was 750% and 25% different than when using the 10 

proposed algorithm across the complete image (Table S1). These differences were likely due to both 11 

a large variability between image parts, and the lower number of cells utilized. When manually 12 

scoring, there existed between 2 and 28 cells per image (average of 13.4), and when applying the 13 

algorithm to 20 replicates of this 5 image parts method, there existed between 0 and 24 cells per 14 

image (average of 13.3 +/- 3.2), demonstrating the 5 parts only had 5.9% of the total 1116 cells in 15 

the complete image. The lack of cells and inconsistency of regions surveyed increased standard error 16 

significantly, from 2.9% to 29% and from 1.3% to 20.3% for the 15-50 µm and 50-100 µm regions 17 

when limiting the algorithm to 5x 1% image parts.  18 

 Analysing segmented image fractions reduces time while greatly reducing precision and also 19 

limiting features of the presented algorithm. This algorithm is unique in its ability to determine cell 20 

density at the furthest distance possible, and when Figure 1B is segmented i nto 100 parts of 388 x 21 

177 x 350 μm3, the furthest distance between two points that the algorithm could analyze cell 22 
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density would be 550 μm, instead of 4700 μm when implementing the full image. Furthermore, 1 

implementing a manual scoring method to measure complex image partition volumes is tedious and 2 

difficult to approximate. Therefore, the proposed algorithm reduces calculation time while 3 

maintaining a higher precision and functionality in comparison to methods of random image scoring.  4 

Discussion: Grid Sampling Comparison to Random Sampling 5 

Volume estimation by sampling random points from a uniform distribution within a known 6 

area converged much more quickly than dividing the image space or subset space into a grid of 7 

evenly-spaced points. Uniform random point generation required 1.3 ± 0.2 milliseconds per cell to 8 

reach 1% estimated volume convergence (n = 1,000 cells) while grid point generation required 7.9 ± 9 

10.8 minutes per cell to reach the same convergence (n = 10 cells). The large time and variabili ty for 10 

grid point generation may be attributed to the (2𝑘) 3 additional points that must be generated for 11 

each subsequent iteration of k points so that an evenly-spaced grid would be generated at identical 12 

limits for unbiased point generation. A visual comparison of volume estimations by their convex hulls 13 

can be found in Figure S2.  14 
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 1 

Figure S2: Convex hulls illustrating the cell clustering 50 μm neighborhood estimation for (A) a full 2 

sphere by 17 generations of 10,000 uniform random points, (B) a sphere’s intersection with the 3 

image limits with 10,000 uniform and (C) 100,000 uniform points or (D) 10,000 evenly-spaced points 4 

and (E) 100,000 evenly-spaced points. Larger, 600 μm cell neighborhoods tend to intersect 2 or 3 5 

planes of image limits, defined by (F) 17 and (G) 13 generations of 10,000 uniform points. 6 


