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ABSTRACT

The homologous cellular coactivators p300 and CBP
contain intrinsic lysine acetyl transferase (termed
HAT) activity. This activity is responsible for acetyl-
ation of several sites on the histones as well as modi-
fication of transcription factors. In a previous study,
we found that HBZ, encoded by the Human T-cell
Leukemia Virus type 1 (HTLV-1), binds to multiple
domains of p300/CBP, including the HAT domain. In
this study, we found that HBZ inhibits the HAT activity
of p300/CBP through the bZIP domain of the viral
protein. This effect correlated with a reduction of
H3K18 acetylation, a specific target of p300/CBP, in
cells expressing HBZ. Interestingly, lower levels of
H3K18 acetylation were detected in HTLV-1 infected
cells compared to non-infected cells. The inhibitory
effect of HBZ was not limited to histones, as HBZ
also inhibited acetylation of the NF-iB subunit, p65,
and the tumor suppressor, p53. Recent studies
reported that mutations in the HAT domain of p300/
CBP that cause a defect in acetylation are found in
certain types of leukemia. These observations
suggest that inhibition of the HAT activity by HBZ is
important for the development of adult T-cell
leukemia associated with HTLV-1 infection.

INTRODUCTION

In mammalian cells, the coactivators p300 and CBP, also
called KAT3B and KAT3A, respectively, play an essential
role in transcription. These ubiquitously-expressed
proteins are highly homologous and frequently referred

to singularly as p300/CBP. They are recruited to pro-
moters or enhancers through interactions with numerous
transcription factors where they engage additional regula-
tors and bridge transcription factors to the general tran-
scription machinery (1). The widespread use of p300 and
CBP in transcription is due to the presence of multiple,
independent domains in these coactivators (2) that,
together, contact more than 400 transcriptional regulators
in the cell (3). p300/CBP also carries a lysine acetyl
transferase activity (classically designated histone acetyl
transferase or HAT activity) that acetylates both
histones (4,5) and transcription factors (6). Acetylation
of lysine residues within the N-terminal tails as well as
the globular domains of the histones is generally linked
to active transcription (7,8). In contrast, acetylation of
transcription factors produces both positive and negative
effects on activity by influencing such properties as cellular
localization, stability and molecular interactions (9). p300/
CBP is capable of acetylating several core histone lysine
residues (10), many of which are also targeted by other
proteins with acetyl transferase activity (10,11). However,
recent data indicate that lysines 18 and 27 of histone H3
(H3K18ac and H3K27ac) are distinctly acetylated by
p300/CBP, as depletion of both coactivators in mouse
embryonic fibroblasts leads to a reduction in these
modifications (12). In addition, p300/CBP also specifically
acetylates lysine 56 of H3 during the DNA damage
response (13).

Accumulating evidence indicates that CBP and, to a
lesser extent p300, function as tumor suppressors.
Mutations in p300 and CBP have been identified in many
types of cancer (14). Inmice, deletion of a single allele of the
CBP gene produces defects in hematopoietic differentiation
and an increased incidence of hematologic malignancies
(15), while homozygous deletion of the gene causes embry-
onic lethality (16), In humans, deletions or mutations
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within a single allele of the CREBBP or EP300 gene is
sufficient to cause Rubenstein–Taybi syndrome, which is
associated with a high frequency of tumor development
among other clinical manifestations (17). Therefore, in
mice and humans, p300 and CBP appear limiting in the
cell, and a reduction in their functional activities may lead
to transformation.

Recent studies show that disruption of p300/CBP HAT
activity, specifically, may play a primary role in certain
hematological transformation events. Indeed, mutations
in CBP and p300 that disrupt HAT activity were found
to be prevalent in cases of diffuse large B-cell lymphoma
(18,19) and follicular carcinoma (18–20). In relapsed acute
lymphoblastic leukemia, the CREBBP gene is also fre-
quently mutated or deleted such that HAT activity is
repressed (21). Interestingly, for some types of cancer, a
global reduction in the level of H3K18ac serves as a prog-
nostic indicator of a poor clinical outcome (22–28). These
observations indicate that p300/CBP HAT activity is
targeted during transformation.

Human T-cell Leukemia Virus type 1 (HTLV-1) is a
complex retrovirus that causes adult T-cell leukemia/
lymphoma (ATL), a malignancy characterized by the
abnormal proliferation of mature CD4+ cells (29,30).
ATL is a heterogeneous disease with different clinical
stages. The acute and lymphoma subtypes are the most
aggressive forms of ATL, and their prognosis is poor, with
less than 1 year survival for patients diagnosed with these
subtypes (31). HTLV-1 encodes several unique proteins
that participate in viral replication, viral infectivity,
persistence and transformation (32). Among these
proteins, HTLV-1 basic leucine zipper factor (HBZ) was
recently shown to induce T-cell lymphoma in transgenic
mice as well as skin inflammation similar to that observed
in HTLV-1 infected patients (33).

HBZ is localized to the nucleus where it functions as a
transcriptional regulator/deregulator. Through its
C-terminal leucine zipper (ZIP) domain, HBZ is able to
form heterodimers with cellular basic leucine zipper
(bZIP) transcription factors of the AP-1 (34–36) and
ATF/CREB families (37,38). Due to the abnormal basic
region of its bZIP domain, HBZ sequesters these factors
from their consensus DNA-binding sites, thereby repress-
ing transcription mediated through CRE and AP-1
promoter elements. JunD represents an exception to this
model, as its transcriptional activity is enhanced rather
than inhibited by HBZ (35). HBZ also contains two
LXXLL motifs in an N-terminal activation domain that
are responsible for formation of a high-affinity interaction
with the KIX domain of p300/CBP (39,40). The KIX
domain harbors two distinct binding surfaces that are
generally contacted by separate sets of transcription
factors (34,37,38). Through its interaction with a single
surface, HBZ is able to inhibit interactions involving
that surface and, alternatively, enhance the binding of
factors to the other surface (40). This dual effect on the
KIX domain correlates with specific examples of tran-
scriptional repression and activation by HBZ (39,41,42).

In addition to its interaction with the KIX domain, HBZ
was found to bind two partially overlapping regions en-
compassing the HAT and C/H3 domains of p300/CBP

(39). However, the significance of these latter interactions
has been unclear. In the this study, we further dissected the
binding of HBZ to the HAT and C/H3 domains and found
that HBZ contacts separate sites within each domain: one
located at the C-terminus of the HAT domain and the
other encompassing a transcription factor docking site
within the C/H3 domain termed TAZ2 (43). By binding
to the HAT domain, HBZ inhibited p300/CBP HAT
activity. This effect was mediated by the bZIP domain of
HBZ, supporting previous data that the N-terminal
LXXLL motifs are not involved in this interaction (39).
Cells expressing HBZ exhibited a deficiency in p300/
CBP-targeted H3K18ac. Importantly, this mark was
reduced in HTLV-1-infected T-cells compared to unin-
fected T-cells. In addition to the core histones, HBZ also
inhibited p300/CBP-mediated acetylation of the NF-kB
factor, p65, and the tumor suppressor, p53. Together,
these observations link certain molecular effects of HBZ
to an emerging prognostic indicator for many cancers,
that of disrupted p300/CBP HAT activity.

MATERIALS AND METHODS

Plasmids and antibodies

All GST fusions proteins were derived from CBP.
Escherichia coli expression plasmids for GST, GST-HAT
(1096–1757 amino acids) and GST-C/H3 (1514–1894
amino acids) have been described (39). GST-N-HAT
(1096–1514 amino acids), GST-C-HAT (1514–1679
amino acids), GST-�C-HAT (1514–1723 amino acids)
and GST-TAZ2 (1758–1894 amino acids) were constructed
by PCR-amplification of pRc/RSV-CBP (44) and cloning
products into pGEX-2T (GE Healthcare) at the BamHI/
EcoRI sites. GST-HBZ and GST-HBZ-Mut(LXXAA)2
(39), HBZ-�bZIP (1–122 amino acids) and HBZ-
bZIP(120–206 amino acids) (38), pRSETA-p53 (45) have
been described. c-Jun bZIP (257–334 amino acids) was
PCR-amplified from pBiFC-bJunVN173 (46) and cloned
into pRSETA at the BamHI/EcoRI sites. Mammalian ex-
pression plasmids for p300-Flag and p300-�HAT-Flag
(deletion of amino acids 1472–1522) and pcDNA-
HBZ-His-Myc have been described (38,47). Flag-p65 was
a gift from Dr Baldwin (University of North Carolina at
Chapel Hill). pNF-kB-Luc was purchased from Stratagene.
Pan acetyl lysine (#9441), acetyl K382 p53 (#2525), acetyl
K320 p65 (#3045), p65 (#3034), acetyl H3 K18 (#9675),
trimethyl H3K27 (C36B11, #9733) and NUP98 (C39A3,
#2598) antibodies were from Cell Signaling. Acetyl
K9K14 H3 (06-599) and Myc (clone 4A6, 05-724)
antibodies were from Millipore. p53 (DO-1, sc-126), CBP
(A-22, sc-369) and p300 (C-20, sc 585) antibodies were from
Santa-Cruz. Histone H3 (Ab 1791) and 6� histidine (Ab
9108) antibodies were from Abcam. The actin
(MAB1501R) and histone H4 (39270) antibodies were
fromChemicon and ActiveMotif, respectively. The 6� his-
tidine (R930) antibody used for immunofluorescence was
from Invitrogen. FITC-conjugated Flag (M2, F4049) and
Flag (F-1804) antibodies were from Sigma.
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Expression and purification of recombinant
proteins and in vitro translation

GST-HBZ and GST- HBZ-Mut(LXXAA)2 E. coli expres-
sion plasmids were transformed into BL21-codon plus
(DE3) cells (Agilent Technologies); other plasmids were
transformed into BL21(DE3) pLysS cells (Agilent
Technologies). Proteins were expressed and purified by
glutathione–agarose affinity chromatography or Ni–NTA
agarose (Qiagen) as described previously (40). Flag-CBP
and 6� His-p300 were expressed from recombinant
baculoviruses in Sf9 cells and purified as described (39).
Purified proteins were dialyzed against HM 0.1M
[100mM KCl, 50mM HEPES (pH 7.9), 12.5mM MgCl2,
1mMEDTA, 1mMDTT, 0.025% (v/v) Tween 20 and 20%
(v/v) glycerol], aliquoted, and stored at �80�C.
Recombinant p65 was purchased from Active Motif.

GST pull-down assay

Glutathione–agarose beads (20 ml of a 50% slurry) were
equilibrated in 0.5� Superdex buffer [12.5mM HEPES
(pH 7.9), 6.25mM MgCl2, 5 mM ZnSO4, 75mM KCl,
20% [vol/vol] glycerol, 0.05% Nonidet P-40, 0.5mM
EDTA, 1mM DTT and 1mM PMSF] and combined
with GST fusion proteins for 1 h at 4�C. Bead–protein
complexes were washed twice with 0.5� Superdex
buffer. HBZ was prepared by in vitro transcription/trans-
lation using the TNT translation system (Promega) in the
presence of [35S] methionine according to the manufac-
turer’s protocol. Radiolabeled HBZ was combined with
bead-protein complexes, and reactions were incubated
overnight at 4�C. Beads were washed four times with
0.5� Superdex buffer, and bound proteins were eluted
with SDS sample dye and resolved by SDS–PAGE.
HBZ was detected using a Typhoon 9410 Imager and
ImageQuant TL software (GE Healthcare).

In vitro HAT assays

Recombinant proteins were combined in HAT buffer
[50mM Tris (pH 8), 10% glycerol, 15 mM valproate,
1mM DTT, 1mM PMSF and 5 mM acetyl-CoA] and
incubated at 30�C for 60min. Proteins were resolved by
SDS–PAGE (14% gels or 4–20% gradient gels), and
acetylation was detected by western blot using ECL Plus
(GE Healthcare). Nitrocellulose filters were scanned with
a Typhoon 9410 Imager (GE Healthcare) and analyzed
using ImageQuant TL software. Curcumin (D3420) was
purchased from LKT Laboratories Inc. and reconstituted
with DMSO prior to each use. Protein concentrations are
indicated in the figure legends.

Cell culture, transfections and luciferase assays

HeLa-HBZ (41), HeLa-pcDNA (41) and HeLa A57
(plasmid 3Enh-kB-conA-Luc integrated, 48) cell lines
were cultured in Dulbecco’s modified Eagle’s medium sup-
plementedwith 10% fetal bovine serum, 2mML-glutamine,
100U/ml penicillin, 50 mg/ml streptomycin and 0.5mg/ml
G418. T-cell lines and HTLV-1 infected cells were cultured
in Iscove’s modified Dulbecco medium supplemented with
10% fetal bovine serum, 2mM L-glutamine and penicillin–

streptomycin. Jurkat stable cell lines were established by
electroporation of pMACS Kk.II (Miltenyi Biotec) and
pcDNA-HBZ-SP1-Myc (36) or pcDNA3.1 (Invitrogen),
followed by pMACS purification of transfected cells (41)
and selection with 1.5mg/ml G418. Jurkat-HBZ clonal
cell lines were obtained by initiating cultures of <1 cell/
well in a 96-well plate. For transient expression of E1A or
HBZ, HeLa cells were electroporated and transfected cells
were pMACS-purified as described (49). For immunofluor-
escence analysis, 1.2� 105 HeLa cells were seeded onto
coverslips one day prior to transfection. Cells were trans-
fected with 4 mg of expression plasmid using Turbofect
(Fermentas) according to the manufacturer’s instructions.
Cells were fixed 24 h after transfection. Luciferase assays
were performed using Jurkat cells as described (40).
Firefly luciferase activity was normalized to Renilla
luciferase activity from pRL-TK-Luc (Promega).

Cell extracts

Core histones were extracted from the indicated cell lines
using the EpiQuik Total Histone Extraction Kit
(Epigentek) with buffers containing 400 nM of trichostatin
A (TSA; Cayman Chemical). For the experiment shown in
Figure 3E, equal quantities of cells were directly resus-
pended in SDS-loading dye. To prepare nuclear extracts,
cells were resuspended in hypotonic buffer [20mM HEPES
(pH 7.6), 20% glycerol, 10mM NaCl, 1.5mM MgCl2,
0.2mM EDTA, 1mM DTT, 0.1% Igepal, 400 nM TSA,
2mg/ml leupeptin, 5mg/ml aprotinin and 1mM PMSF],
ice-chilled for 10min, and centrifuged at 800 g and 4�C
for 5min. Pelleted nuclei were lysed in RIPA buffer
(50mM Tris [pH 8], 1% Triton X-100, 100mM NaCl,
1mM MgCl2, 400 nM TSA, 2mg/ml leupeptin, 5mg/ml
aprotinin, 1mM PMSF and 1mM benzamidine) for
15min on ice. Lysates were centrifuged at 15 000 g and
4�C for 15min. Supernatants were aliquoted and stored
at �80�C. Whole-cell extracts were prepared with RIPA
buffer as described above. Immunoprecipitations were
performed as published (39). Etoposide was purchased
from Sigma and MG132 from EMD.

Indirect immunofluorescence analysis

HeLa cells were seeded onto coverslips one day prior to
staining. Jurkat cells were allowed to adhere to Poly-D-
Lysine (Sigma) coated coverslips for 45min prior
staining. Transfected HeLa cells were stained 24 h after
transfection. Cells were washed twice with PBS (137mM
NaCl, 2.7mM KCl, 3mM Na2HPO4 and 1.5mM
KH2PO4), fixed with 4% paraformaldehyde at room tem-
perature for 15min, washed three times with PBS, and
permeabilized with PBS/0.1% Triton X-100/0.3% BSA
for 10min. Antibodies were diluted in PBS/0.1% Triton
X-100/0.3% BSA and incubated with coverslips overnight
at 4�C. Coverslips were washed three times with PBS then
incubated with secondary goat anti-rabbit Alexa Fluor 488
or 633, or goat anti-mouse Texas Red conjugated
antibodies (Invitrogen) at 37�C for 1 h. Coverslips were
then washed three times with PBS and DNA was counter-
stained with TOPRO3 (Molecular Probes/Invitrogen) at
37�C for 30min. Excess TOPRO3 was removed with two
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PBSwashes, and coverslips were mounted ontomicroscope
slides using Prolong Antifade Gold (Invitrogen) according
to the manufacturer’s instructions. Flag-p300 was detected
by additional incubation of coverslips at 37�C for 1 h with
the FITC-conjugated Flag antibody diluted in PBS/0.1%
Triton X-100 followed by three washes with PBS.
Fluorescence images were acquired by confocal microscopy
as indicated either at amagnification of 40�or 100�using a
LSM 510 confocal microscope (Zeiss), and images were
acquired using Zen software (Zeiss). In Figure 3B,
Image-Pro Plus (version 4.5) software (Media
Cybernetics) was used to calculate the mean density of the
fluorescence signal for individual cells. The mean densities
for more than 100 cells for each antibody/cell line were
averaged and analyzed using a two-tailed Student t-test.

Chromatin immunoprecipitation assay

HeLa A57 cells were electroporated as described (50).
Twenty four hours after electroporation cells were
treated with 5 mM MG132 (EMD) and harvested 5 h
later. Chromatin immunoprecipitation (ChIP) assays
were performed as described (51) using 5 mg of Flag
antibody for immunoprecipitation. Coimmunopreci
pitated DNA was purified using Chelex-100 (BioRad) as
described (52). Real-time PCR was performed and data
were analyzed as described (50). The following primers
were used: 3kB-CONA-F, ATCGGTGATGTCGGCGA
TATAGG; 3kB-CONA-R, CCTGGCTGTGTTTGCAG
AAGCAAT; VCAM1kB-F, TGGAACTTGGCTGGGT
GTCTGTTA; VCAM1kB-R, TATTTGTGTCCCACCT
GTGTGTGC; VCAM1+2644F, GCAATGGCCACGTG
AAGTAGTGTA; VCAM1+2644R, TGCCTCTGACAG
GAATTCATCCAC.

RESULTS

HBZ interacts with the p300/CBP HAT domain in vitro

We previously showed that HBZ directly interacts with
three domains in p300/CBP: the KIX domain, the HAT
domain, and the C/H3 domain (39). The HAT and C/H3
domains are adjacent, partially overlapping domains that
share a common zinc-binding sub-domain defined as the
ZZ domain (43) (Figure 1A). The C/H3 region also
contains a unique sub-domain known as TAZ2 that
folds independently (53) of, and does not interact with
the ZZ domain (54). While the functional significance of
the ZZ domain is unclear, TAZ2 serves as docking site for
a number of transcription factors (55–59). To identify the
precise HBZ-binding sites within the HAT and C/H3
domains, we performed GST pull-down assays with
HBZ and various truncations of the HAT and C/H3
domains. We used the splice 1 isoform of HBZ in all
experiments, which is the major isoform expressed in
HTLV-1-infected cells (60–62). In these binding assays,
GST was fused to the p300/CBP polypeptides, including
the HAT domain with a C-terminal truncation that also
lacked ZZ (GST-N-HAT), the HAT domain with an
N-terminal truncation (GST-C-HAT), and a polypeptide
encompassing only the TAZ2 domain (GST-TAZ2)
(Figure 1A). We confirmed specific binding of HBZ to
the HAT domain (Figure 1B, lane 3); however, this inter-
action was dramatically reduced using N-HAT (lane 4).
The interaction was similarly reduced with �C-HAT,
which lacks the ZZ domain (Figure 1C, lane 5). In
contrast, HBZ bound specifically to C-HAT, suggesting
that HBZ targets the C-terminal region of the HAT
domain (Figure 1C, lane 4). Surprisingly, HBZ also
bound independently to the TAZ2 domain (lane 6).

B

C/H3C/H1 KIX C/H2

HAT

Br

1 302 451 1514 1894 2441

A

1 2 3 4

35S-HBZ
C/H3C/H1 KIX C/H2Br

588 683

HATGST-
1097

C/H3GST-
ZZ TAZ2

1514 1894

1757

C

1 2 3 4 5 6
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1514 1723
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1514 1679
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Figure 1. HBZ binds the HAT domain of p300/CBP. (A) Schematic representation of CBP and the CBP fragments used in GST pull-down assays.
(B) C-terminal truncation of the HAT domain disrupts HBZ-binding. HBZ was incubated with 10 pmol of GST, GST-HAT or GST-N-HAT.
Proteins retained on glutathione beads were analyzed by SDS–PAGE and autoradiography. (C) HBZ interacts with a region of p300/CBP
encompassing the C-terminal portion of the HAT domain and the ZZ domain, and separately with the TAZ-2 domain. HBZ was incubated with
10 pmol of the indicated GST fusion proteins. Proteins retained on the glutathione beads were analyzed by SDS–PAGE and autoradiography.
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HBZ inhibits histone acetylation by p300/CBP in vitro

The observation that HBZ binds to the HAT domain of
p300/CBP prompted us to test whether HBZ affects this
enzymatic activity of the coactivator, first using in vitro
HAT assays. For these assays recombinant, purified
proteins were combined with acetyl–CoA, and protein
acetylation was evaluated by western blot with an
antibody against acetylated lysine. Recombinant proteins
used in these assays are shown in Supplementary
Figure S1. Using the core histones as substrates for
acetylation, we found that GST-HBZ caused a dramatic
reduction in p300 HAT activity, while GST alone did not
produce such an effect (Figure 2A). In this experiment, the
histones were detected as a single band due to the
gel-migration conditions. To determine whether HBZ
inhibits acetylation of both histones H3 and H4, western
blots were also probed for total H4 (Figure 2B). As
expected, HBZ inhibited histone H4 acetylation. In these
assays detection of histone H4 by western blot was
reduced by acetylation; however, SYPRO Ruby-staining
confirmed the presence of equivalent histone quantities in
each reaction. In agreement with the fact that the HAT
domains of p300 and CBP are highly conserved (>90%

identity) (63), HBZ also inhibited CBP-mediated acetyl-
ation of histones (Figure 2C, lane 5). In addition to the
histones, p300 and CBP were autoacetylated; however,
autoacetylation was not significantly inhibited by HBZ.
This trend is similar for other proteins known to inhibit
HAT activity such as E1A (64).

A small group of proteins have been shown to repress
p300/CBP HAT activity though their interactions with the
C/H3-TAZ2 domain (65,66). To test whether this property
applies to HBZ, we substituted the full-length coactivators
with GST-HAT, which lacks TAZ2. Interestingly, HBZ
retained the ability to repress histone acetylation
mediated by the HAT domain alone (Figure 2D), suggest-
ing that the interaction between HBZ and C-HAT is
sufficient to inhibit p300/CBP HAT activity. In these
assays the ZZ domain appeared to be important for
HAT activity, as deletion of this domain (GST-�HAT)
severely impaired acetylation (4).

HBZ inhibits histone H3K18 acetylation, a p300/CBP
HAT target, in cells

To test whether HBZ represses p300/CBP HAT activity
in vivo, we first compared levels of H3K18ac in HeLa
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Figure 2. HBZ inhibits acetylation of histones by p300/CBP. (A) HBZ inhibits p300 HAT activity. HAT assays were performed using recombinant
histones (2 mM), p300 (4 nM), GST (0.4 mM) and GST-HBZ (0.24 mM) as indicated. Reactions were analyzed by western blot using antibodies against
acetylated lysine and histone H3 as indicated. (B) HBZ inhibits acetylation of histone H3 and H4. HAT assays were performed using recombinant
histones (2mM), p300 (4 nM) and GST-HBZ (0.3 mM) as indicated. Reactions were analyzed by western blot using antibodies against acetylated
lysine, histone H3 and histone H4 as indicated. Proteins from a portion of each reaction were also stained with SYPRO Ruby (bottom panel).
(C) HBZ inhibits CBP HAT activity. HAT assays were performed with histones (2 mM), p300 (4 nM) or CBP (4 nM), and GST-HBZ (0.24 mM) as
indicated. (D) HBZ inhibits histone acetylation by the HAT domain alone. HAT assays were performed with histones (2 mM), p300 or GST-HAT
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clonal cell lines that express HBZ or carry the empty
pcDNA expression vector (41). H3K18 is known to be a
specific target of p300/CBP HAT activity in vivo
(12,67,68). Relative levels of H3K18ac were determined
by indirect immunofluorescence microscopy, using an
antibody against the modification for staining (green). In
addition, cellular DNA was stained with TOPRO3 (blue)
and HBZ was stained with an antibody against its
C-terminal 6� histidine tag (red). In experiments
H3K18ac was monitored with the same laser intensity
between cells lines in order to directly compare levels of
the modification. Figure 3A shows that H3K18ac is
attenuated in the cells expressing HBZ. Quantification of
the data shows that the level of H3K18ac is 3-fold lower in
these cells compared to the cells with the empty vector
(Figure 3B).

Because T-cells represent a major target of HTLV-1
infection, we established Jurkat cell lines that stably
express HBZ or carry the empty vector (Figure 3C). As
in other cells, HBZ was distributed throughout the nucleus
as evident by staining within the perimeter of the nucleus,
which was marked by staining of NUP98, a component of
the nuclear pore complex (69) (Figure 3D). Similar to
HeLa cells, the Jurkat cells expressing HBZ exhibited
less H3K18ac than the cells without the viral protein
(Figure 3E). Interestingly, the pattern of H3K18ac
staining diverged between HeLa and Jurkat cells, with a
diffuse signal detected throughout the nucleus of HeLa
cells and a signal that was more pronounced at the
nuclear periphery in Jurkat cells. The latter pattern of
H3K18ac staining was observed using another T-cell
line, HUT78 (Supplementary Figure S2), suggesting that
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this phenomenon occurs specifically in T-cell lines. The
same laser intensity was used to compare HBZ negative
and positive cells, producing an appearance of almost
complete loss of H3K18ac in HBZ-expressing Jurkat
cells. However, with higher laser intensity, a more sub-
stantial signal was detected (data not shown), suggesting
HBZ reduces but does not completely eliminate H3K18ac
in these cells.
Microscopy results were confirmed by western blot

analysis of H3K18ac levels following cellular extraction of
histones. Using this approach we again detected less
H3K18ac from the clonal HeLa and Jurkat cells stably
expressing HBZ than from the cells with the empty vector
(Figure 3F, top panels). Quantification of the western-blots
showed 1.5- and 2-fold reductions inH3K18ac inHeLa and
Jurkat cells, respectively. We also noted that the level of
H3K56ac, another p300/CBPmodification,was also dimin-
ished in HBZ-expressing Jurkat cells (Supplementary
Figure S3). In contrast, dual acetylation of lysines 9 and
14 on histone H3 (H3K9,14ac) remained constant
between cells lacking or expressing HBZ (Figure 3F,
middle panels). This histone mark arises from the redun-
dant functions ofmultiple proteins that carryHATactivity,
and therefore, does not explicitly involve p300/CBP (12,70).
Interestingly, H3K18ac was reduced to a similar extent

in HeLa and Jurkat cells expressing HBZ even though the
Jurkat cell line expressed less HBZ (Supplementary
Figure S4A). Our data indicate that this observation is
partly due to lower levels of p300 and CBP in Jurkat cells
compared to HeLa cells (Supplementary Figure S4A).
Furthermore, Jurkat cells are known to carry a frame-
shift mutation in the sequence encoding the HAT domain
of one CREBBP allele (21), which is expected to reduce the
enzymatic activity of CBP. The activity of p300 may be
similarly reduced, as we observed less acetylation using
p300 immunoprecipitated from Jurkat than from HeLa
cells in in vitro HAT assays (Supplementary Figure S4B).
In these experiments we used saturating quantities of
extract to ensure equal immunoprecipitation of p300.
Similar to results using recombinant proteins, immunopre-
cipitates fromHBZ-expressing cell lines exhibited less HAT

activity than their control-cell counterparts. Finally, it is
important to note that HeLa cells are infected with
human papillomavirus, which expresses the viral protein
E6. Because E6 has been reported to bind the C/H3
domain of p300/CBP and inhibit HAT activity, it may
limit the accessibility and the effect of HBZ on the
coactivator (71–73). Therefore, although the cellular level
of HBZ is important, it is likely that repression of HAT
activity by HBZ is also dictated by the ratio between the
viral protein and active and/or accessible p300/CBP.

We also transiently transfected HeLa cells with the HBZ
expression vector to show that the reduction in H3K18ac
was due to HBZ and not a non-specific event arising
during the creation of the clonal cell lines (the typical
level of HBZ after transfection is shown in Supplementary
Figure S5). As a positive control for the H3K18ac
decrease, cells were separately transfected with an expres-
sion vector for the adenovirus protein, E1A, which is
known to directly inhibit p300 HAT activity (64,74,75).
As with constitutive expression of HBZ in the clonal cell
lines, transient expression of HBZ also led to a decrease in
H3K18ac, while no apparent change in the level of
H3K9,14ac was observed (Figure3G). However, HBZ
did not reduce H3K18ac to the same extent as E1A.

To correlate the reduction in H3K18ac with inhibition
of p300 HAT activity by HBZ, we tested whether
overexpression of p300 would restore H3K18ac in cells
expressing HBZ. An expression vector for p300 carrying
a C-terminal Flag epitope tag (p300-Flag) was transiently
transfected into HeLa cells stably expressing HBZ.
Indirect immunofluorescence was then used to identify
cells expressing p300-Flag (green) and to assess relative
levels of H3K18ac (blue). Figure 4 shows that
overexpression of p300 augmented H3K18ac in both
cells expressing HBZ and cells carrying the empty
vector. Similar levels of H3K18ac were observed in
HBZ-expressing cells with p300-Flag and in untransfected
cells lacking HBZ. This result indicates that the increased
abundance of p300 overwhelmed the ability of HBZ to
inhibit HAT activity and reestablished H3K18ac. In
contrast to wild-type p300, overexpression of p300
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H
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Figure 4. Overexpression of p300 restores H3K18ac in HeLa cells stably expressing HBZ. Immunofluoresence confocal microscopy (magnification
�100/zoom � 1) was used to detect ectopic expression of p300 (denoted by arrows) and to compare levels of H3K18ac in the indicated HeLa cell
lines.
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carrying a deletion in the HAT domain did not restore
H3K18ac in the presence of HBZ (data not shown).

HTLV-1-infected T-cell lines exhibit low levels
of H3K18ac

Based on the cellular reduction in H3K18ac by HBZ, we
were interested in evaluating levels of this modification in
HTLV-1-infected cells. We therefore extracted histones
from five infected T-cell lines and two uninfected T-cell
lines, and performed a western blot analysis of H3K18ac.
Interestingly, levels of H3K18ac appeared lower in all of
the HTLV-1-infected cells compared to the uninfected
T-cells (Figure 5A, upper panel). In contrast, levels of
H3K9,14ac and H3 lysine 27 methylation (H3K27me3)
remained relatively constant (Figure 5A). Quantification
of the H3K18ac relative to total H3 revealed that ATL-2,
MT-2 and TL-OmI contained the lowest levels of
H3K18ac (Figure 5B). Importantly, the combined abun-
dance of p300 and CBP in infected cell lines was equal to
or greater than the combined abundance of these proteins
in the uninfected cell lines (Figure 5C), indicating that the
reduction in H3K18ac was not due to lower levels of p300/
CBP. Our previous data show that, among the cell lines
tested, HBZ expression is highest in ATL-2 and MT-2
cells (41). These results suggest that HBZ inhibits p300/
CBP HAT activity in the context of HTLV-1 infection.

The bZIP domain of HBZ is sufficient for inhibition of
p300/CBP HAT activity

We were next interested in determining which region of
HBZ mediates the inhibition of p300/CBP HAT activity.
Our previous data showed that two LXXLL motifs in the
activation domain of HBZ form a strong interaction with
the coactivator KIX domain, but are not necessary for
binding to the HAT domain (39,40). Based on those ob-
servations, we tested whether an HBZ mutant with LL to
AA substitutions in both LXXLL motifs (GST-HBZ-
MutAD) retained the ability to inhibit p300/CBP HAT
activity. This mutant is known to exhibit a defect in
binding to the KIX domain (39,40). Figure 6A shows
that GST-HBZ-MutAD inhibited p300 HAT activity to
a similar extent as the wild-type viral protein in vitro
(compare lanes 4 and 5), suggesting that the LXXLL
motifs in HBZ are not involved in inhibition.
We then compared the inhibitory effects of two trunca-

tion mutants of HBZ. The first mutant consists of the
activation domain and the two central basic regions of
HBZ, BR1 and BR2 (1–122 amino acids), and the
second encompasses only the bZIP domain (amino acids
120–206) (Figure 6B). In an in vitro HAT assay, the bZIP
domain blocked histone acetylation, while HBZ1–122 did
not (Figure 6B, compare lanes 4 and 5). These results
indicate that the bZIP domain of HBZ is responsible for
inhibition of p300/CBP HAT activity.
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Figure 5. The level of H3K18ac is reduced in HTLV-1-infected cells. (A) Infected cell lines contain lower levels of H3K18ac than uninfected T-cell
lines. Histones (400 ng) extracted from five HTLV-1-infected cell lines and two uninfected T-cell lines were analyzed by western blot with the
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from the other cell lines. (C) The combined levels of p300 and CBP in the HTLV-1-infected T-cell lines are equal to or greater than those in the
uninfected cell lines. Levels of p300 and CBP in 50 mg of whole-cell extracts were analyzed by western blot.
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To corroborate this finding, we tested three separ-
ate protein preparations of the bZIP domain.
HBZ-bZIP#1 and HBZ-bZIP#3 were prepared by
distinct heat treatments of the cellular lysate followed
by heparin-agarose chromatography. HBZ-bZIP#2 was
purified using Ni2+-affinity chromatography. Like
full-length HBZ, each preparation of the bZIP domain
inhibited histones acetylation (Figure 6C, lanes 3–5).
However, inhibition was blocked by fusion of GST to
the N-terminus of the bZIP domain (Figure 6C, Lane
2). Interestingly, loss of inhibition also occurred
through the formation of a heterodimer between the
bZIP domain the HBZ and that of c-Jun (Figure 6D).
These latter experiments imply that the GST fusion and

the bZIP domain of c-Jun obstruct binding site on HBZ
that is required for the interaction with the HAT domain
of p300/CBP.

It was also necessary to evaluate the bZIP domain
of HBZ for histone deacetylase activity. Accordingly,
we performed a HAT assay in which the core histones
were acetylated by p300 prior to the addition of the
HBZ bZIP domain to the reaction (Figure 6E, lane 5).
As expected, this approach did not lead to the reduc-
tion in histone acetylation that was observed when the
bZIP domain was added at the initial stage of the
reaction (Figure 6E, lane 4). This result confirms
that the bZIP domain does not carry deacetylase
activity.
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HBZ is more potent than curcumin for inhibition
of p300/CBP HAT activity in vitro

To gauge the efficiency with which HBZ inhibits
histone acetylation, we compared its inhibitory effect
to that of curcumin, which is known to specifically
target p300/CBP HAT activity (76). We performed a
parallel set of in vitro HAT assays, in which reactions
were supplemented with increasing concentrations of
full-length HBZ, HBZ-bZIP, or curcumin. Results
from these experiments show a reduction in histone
acetylation at lower concentrations of full-length HBZ
or HBZ-bZIP than curcumin (compare Figure 7A and
B to C). Quantification of the data revealed an IC50 of
0.1 mM for full-length HBZ and the bZIP domain and
an IC50 of 25 mM for curcumin (Figure 7D).
Importantly, the curcumin value is similar to that
reported previously (76). These results demonstrate
that HBZ is a more potent inhibitor of p300/CBP
HAT activity than curcumin. Figure 7A shows
acetylation of HBZ by p300. This modification was
consistently detected with the full-length viral protein
in in vitro HAT assays (Figure 8 and data not
shown); however, its significance remains undefined.
Importantly, acetylation of HBZ is not inconsistent
with its effect on HAT activity, as E1A is similarly
acetylated by p300, while functioning to inhibit the
HAT activity of the coactivator (64,74,75).

HBZ inhibits the acetylation of transcription
factors by p300/CBP

Certain proteins known as INHATs (inhibitors of histone
acetyltransferase activity) inhibit histone acetylation by
binding to histone tails and preventing p300/CBP from
accessing these substrates (77–79). Our in vitro results
indicated that HBZ did not function in this manner, as
concentrations of HBZ lower than that of the histones
were capable of inhibiting acetylation. To provide
further evidence that HBZ targets the HAT domain and
not the histone tails, we used HAT assays to analyze
acetylation of the NF-kB transcription factor, p65, and
the tumor-suppressor transcription factor, p53. These
proteins are known substrates of p300/CBP HAT
activity: p65 is acetylated specifically by p300/CBP at
K320 (80), and p53 is acetylated at K382 (81,82). The
overall effect of these modifications is to increase the tran-
scriptional activity of the factors (80–82). We found that
both full-length HBZ and HBZ-bZIP efficiently inhibited
p300-mediated acetylation of p65 in vitro (Figure 8A).
A similar effect was observed with p53 (Figure 8B), con-
firming that HBZ inhibits the HAT activity of p300/CBP
through its interaction with the HAT domain. In our
experiments, HBZ consistently induced only a modest re-
duction in p53 acetylation, with the full-length viral
protein serving as a more potent inhibitor than the bZIP
domain. These observations may stem from the ability of
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p53 to contact several domains of p300/CBP, including
the KIX and TAZ2 domains that are targeted by HBZ
(57,83). Because the bZIP domain of HBZ does not
form a high-affinity interaction with the KIX domain, it
may be less effective in competing with p53 for binding to
p300/CBP than full-length HBZ. As shown in Figure 7
above, p300 also acetylated HBZ in these assays.
We also evaluated levels of p65 and p53 acetylation in

HeLa cells stably expressing HBZ or carrying the empty
pcDNA expression vector. Cells were treated with
etoposide to induce acetylation of p65 or p53, as etoposide
causes genotoxic stress, thereby activating p53 and NF-kB
signaling (84,85). The modified factors were detected in
nuclear extracts by western blot using antibodies against
the p65 K320 and p53 K382 acetylation marks. Following
treatment with etoposide, we observed lower levels of p65
acetylation in the cells expressing HBZ compared to the
cells carrying the empty vector (Figure 8C). Similarly, in
etoposide-treated cells, p53 acetylation was diminished in
the presence of HBZ (Figure 8D). These data further
support a role for HBZ in the inhibition of p300/CBP
HAT activity in vivo.
We further explored the effect of HBZ on p65

acetylation. HBZ was recently reported to inhibit the tran-
scriptional activity of p65 by stimulating the degradation

of this factor (86). To determine whether the reduction in
acetylation of p65 by HBZ also participates in this repres-
sion, we performed luciferase assays using Jurkat cells
transiently transfected with the pNF-kB-Luc reporter
plasmid. Cotransfection of an expression vector for p65
significantly increased luciferase activity (Figure 9A, lane
2), and as reported, additional cotransfection of HBZ
abrogated this effect (Figure 9A, lane 3) as well as
reduced the level of p65 (Figure 9B, lane 3).
Interestingly, HBZ retained the ability to repress luciferase
activity in cells treated with the proteosome inhibitor,
MG132 (Figure 9A), despite stabilization of p65
(Figure 9B, lane 7). Furthermore, cotransfection of p300
partially restored luciferase activity. To directly assess
DNA binding by p65, we performed ChIP assays using
HeLa cells carrying integrated copies of a reporter con-
struct regulated by a promoter with three kB sequences
(48). We found that HBZ reduced enrichment of p65 at
this site in the presence of MG132 (Figure 9C). Because
cells were treated with MG132, levels of p65 were similar
in the presence and absence of HBZ (Figure 9D). Similar
results were observed at the endogenous VCAM-1
promoter that is activated by NF-kB and was previously
found to be repressed by HBZ (86). Enrichment of p65
was significantly lower at a site downstream of the
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VCAM-1 promoter. Overall, these results suggest that in-
hibition of p65 acetylation by HBZ contributes to repres-
sion of the classic NF-kB pathway.

DISCUSSION

In this study we found that HBZ inhibits p300/CBP HAT
activity by binding directly to the coactivator HAT
domain. This is one of three conserved domains within
p300/CBP that is contacted directly by HBZ. The others
are the TAZ2 domain, shown in this study, and the KIX
domain (39). Interestingly, like HBZ, the viral
transactivator Tax, also targets multiple p300/CBP
domains, including the KIX, C/H1 and CR2 domains
(87–89). Therefore, modulation of p300/CBP activity by
HTLV-1 appears to play a prominent role in viral infec-
tion. Although HBZ is capable of inhibiting p300/CBP
HAT activity in vivo, our previous data suggest that
HBZ has a lower affinity for the HAT domain than it
does for the KIX domain (39). Such properties are not
unique, as E1A utilizes one domain to bind stably to the
TRAM motif within the C/H3 domain and inhibits HAT
activity though a separate, weaker interaction (74,90).

In vitro, the bZIP domain of HBZ was necessary and
sufficient for inhibition of HAT activity. Results from
previous studies demonstrate that this domain allows
HBZ to form heterodimers with certain cellular bZIP
transcription factors within the ATF/CREB and AP1
families and modulate their activity (34,35,37,38). It is
likely that repression of p300/CBP HAT activity and
interaction with bZIP factors are mutually exclusive
functions of HBZ, as we found that c-Jun-bZIP blocks
inhibition of acetylation by HBZ. Similar non-
overlapping functions are associated with the
DNA-binding domain of early B-cell factor, which
directly represses acetylation by p300/CBP in solution,
but not when the factor is bound to DNA (66).
Repression of HAT activity by the bZIP domain of
HBZ may be dependent on the N-terminal activation
domain of the viral protein in vivo. This premise is
based on a model in which the LXXLL motifs in the
activation domain of HBZ form a high-affinity inter-
action with the coactivator KIX domain, potentially
placing the C-terminal bZIP domain in a favorable
position to repress HAT activity. Future experiments
will clarify such aspects of the HBZ-p300/CBP complex.
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Within cells, we found that direct repression of p300/
CBP HAT activity by HBZ leads to a global reduction of
H3K18ac. Strikingly, low H3K18ac was also observed in
T-cells chronically infected with HTLV-1. H3K18 is
known to be specifically targeted for acetylation by
p300/CBP (12,67). Interestingly, reductions of this and a
subset of other histone modifications have been docu-
mented in a variety of cancers and are frequently
correlated with poorer clinical outcomes (22). Therefore,
such epigenetic changes may play a role in transformation.
With respect to H3K18ac, the HAT activity of CBP and,
to a lesser extent p300, were recently found to be impaired
in a significant number of diffuse large B-cell lymphoma
and follicular lymphoma cases through mutations and/or
monoallelic deletions in their genes (18). CBP was simi-
larly affected in a number of relapsed acute lymphoblastic
leukemia cases (21).
The immediate effects of disrupted p300/CBP HAT

activity relating to transformation are not fully defined.
One important substrate of p300/CBP is the tumor sup-
pressor p53 (81), which is inactive in HTLV-1-transformed
cells through mechanisms reported to involve the viral
protein Tax (91–95). Acetylation of p53 is essential for
its ability to block cell proliferation and induce apoptosis
in response to genotoxic stress that would otherwise lead
to the accumulation of mutations and potentially trans-
formation (96). We found that HBZ reduces p53 acetyl-
ation in vitro and following genotoxic stress, suggesting
that HBZ may contribute to the inactivation of this
factor in HTLV-1-infected cells. In addition to p53,
HBZ inhibited p65 acetylation by p300/CBP, also an
activating modification (80). Recently, HBZ was shown
to repress the classical NF-kB pathway by targeting p65
(86). Although attributed to protein turnover, we found
that reduced acetylation of p65 also contributes to this
effect.
The transforming viral proteins e1A (splice variant of

E1A) and SV 40 large T antigen are also capable of
reducing the global level of H3K18ac (67). For E1A,
this effect is correlated with direct inhibition of HAT
(64,74,75). Interestingly, transformation of mouse embry-
onic fibroblasts by E1A requires its interaction with p300/
CBP (97). HBZ has not been reported to exhibit the same
in vitro transforming properties as E1A, and we found
HBZ is less potent than E1A in reducing global
H3K18ac. Based on these observations, it is possible
that transformation occurs when p300/CBP HAT
activity is decreased below a certain threshold, and inhib-
ition of HAT activity by HBZ does not surpass this
threshold under normal circumstances. However, during
the course of persistent HTLV-1 infection, rare cellular
events may cooperate with HBZ to augment inhibition
of HAT activity, in turn contributing to the development
of ATL.
Although histone acetylation is associated with tran-

scriptionally active regions of chromatin, a global reduc-
tion in H3K18ac may not be sufficient to cause an overall
decrease in gene expression. Indeed, several proteins have
been identified with HAT activity (11), and acetylation at
other lysine residues of histone H3 and the other core
histones may provide a redundant role for the H3K18ac

mark (98). Furthermore, there are multiple examples of
p300/CBP participating in transcriptional activation
through a HAT-independent mechanism (68,99,100).
These observations support gene-expression microarray
data for HBZ that show an even distribution of up and
downregulated genes (62). Therefore, similar to e1A, the
global reduction in H3K18ac caused by HBZ appears to
diverge from its role in deregulating gene expression
(22,101). It is possible that a decrease in H3K18ac by
HBZ may hinder repair of DNA double-strand breaks.
Acetylation of histones at DNA damage sites by p300/
CBP is an important step in the repair process, and
H3K18ac represents one of the marks that accumulate
at sites of damage (13,102). Whether HBZ affects repair
of double-strand breaks is under investigation.
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