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Abstract: When planning a randomized clinical trial, careful consideration must be given 

to how participants are selected for various arms of a study. Selection and accidental bias 

may occur when participants are not assigned to study groups with equal probability. A 

simple random allocation scheme is a process by which each participant has equal 

likelihood of being assigned to treatment versus referent groups. However, by chance an 

unequal number of individuals may be assigned to each arm of the study and thus decrease 

the power to detect statistically significant differences between groups. Block 

randomization is a commonly used technique in clinical trial design to reduce bias and 

achieve balance in the allocation of participants to treatment arms, especially when the 

sample size is small. This method increases the probability that each arm will contain an 

equal number of individuals by sequencing participant assignments by block. Yet still, the 

allocation process may be predictable, for example, when the investigator is not blind and 

the block size is fixed. This paper provides an overview of blocked randomization and 

illustrates how to avoid selection bias by using random block sizes.  
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1. Introduction  

The purpose of randomization is to achieve balance with respect to known and unknown risk factors 

in the allocation of participants to treatment arms in a study [1,2]. A premise of basic statistical tests of 

significance is that underlying observations are independently and identically distributed. The 
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stochastic assignment of participants helps to satisfy this requirement. It also allows the investigator to 

determine whether observed differences between groups are due to the agent being studied or chance.  

By probability, a simple randomization scheme may allocate a different number of participants to 

each study group. This may reduce the power of a statistical procedure to reject the null hypothesis as 

statistical power is maximized for equal sample sizes [3]. Additionally, an imbalance of treatment 

groups within confounding factors may occur. This is especially true for small sample sizes. 

Confounding distorts the statistical validity of statistical inferences about cause and effect. The failure 

to control for confounding may inflate type 1 error and erroneously lead to the conclusion that a 

putative risk factor is causally associated with the outcome under study (i.e., false positive finding). A 

chance run of participants to a particular study group also may occur under a simple randomization 

scenario. This can lead to bias, for example, if the initial participants in the trial are healthier than the 

later ones [1]. Blocked randomization offers a simple means to achieve balance between study arms 

and to reduce the opportunity for bias and confounding.  

2. Methodology 

Block randomization works by randomizing participants within blocks such that an equal number 

are assigned to each treatment. For example, given a block size of 4, there are 6 possible ways to 

equally assign participants to a block. Allocation proceeds by randomly selecting one of the orderings 

and assigning the next block of participants to study groups according to the specified sequence. Note 

that repeat blocks may occur when the total sample size is greater than the block size times the number 

of possible orderings. Furthermore, the block size must be divisible by the number of study groups.  

A disadvantage of block randomization is that the allocation of participants may be predictable and 

result in selection bias when the study groups are unmasked. That is, the treatment assignment that has 

so far occurred least often in the block likely will be the next chosen [4]. Selection bias may be 

reduced by using random block sizes and keeping the investigator blind to the size of each block. 

2.1. Example 

An investigator wishes to compare a family-based educational intervention for childhood weight 

loss with a standard individual-base program. A planned enrollment of 250 participants, 50 per study 

site, is to be randomly assigned to the two intervention arms. Below, a computer algorithm written in 

SAS® (Cary, NC) is presented for performing a block randomization with randomly selected block 

sizes of 4, 8 and 12 (Figure 1). The macro generates 15 randomized block allocations each for 5 study 

sites. A greater number of blocks are created than is necessary in the event that the investigator 

continues enrollment beyond the initially planned sample size. For example, expanded enrollment 

might occur due to a greater than anticipated attrition rate. 
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Figure 1. SAS algorithm to perform blocked randomization with random block sizes. 

%macro lp1(x); 

   %do I = 1 %to 5; 

      %do j=1 %to 15; 

        data blk; 

           z=ranuni(0); 

           if      0<z<0.3333 then blk=4; 

             else if z>0.6666 then blk=12; 

             else                            blk=8; 

        do j=1 to blk; 

           x=ranuni(0); 

           output; 

        end; 

        proc sort; 

           by x; 

        data a1; 

           set blk; 

              if _n_<=blk/2 then order="Intervention"; 

                else                       order="Non-intervention"; 

        proc sort data=a1; 

           by j; 

        data a1 (rename=(blk=blk_size)); 

           set a1 (drop=j x z); 

        proc print data=a1; 

           title "Site=&i, Block=&j"; 

      %end; 

   %end; 

%mend lp1; 

%lp1(1); 

run;  

The macro works by invoking the ranuni function to equally partition the number of blocks 

according to a uniform distribution. When the number within the parenthesis of the ranuni function 

equals zero the seed is determined by the computer system clock. Thus, a different set of block 

allocations occur each time the macro is executed. Changing the number to a positive integer will 

assure that the same block allocation is generated during subsequent use of the macro. After the block 

size is randomly determined the macro efficiently allocates treatment assignment equally within blocks 

by sorting on the looping index variable. Although the macro only generates 3 randomly selected 

block sizes the code may be easily modified to increase this number by further partitioning the uniform 

assignment space. Similarly, the number of study sites and blocks may be increased or decreased by 

changing the upper range of the two program do-loops. The output of the SAS algorithm 
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corresponding to the first 3 blocks for Site 1 is shown in Figure 2. For example, Block = 1 randomizes 

4 participants, with the first two assigned to “Non-intervention” and the last two assigned  

to “Intervention”. 

Figure 2. Example output from the SAS algorithm. 

 
                     Site=1, Block=1                                 
                Obs  blk_size     order                    
                                                  
                1     4    Non-intervention                 
                2     4    Non-intervention                 
                3     4    Intervention                   
                4     4    Intervention   
                 
                     Site=1, Block=2                              
                Obs  blk_size     order                    
                                                  
                1     4    Non-intervention                 
                2     4    Intervention                   
                3     4    Non-intervention                 
                4     4    Intervention   
                  
                     Site=1, Block=3                                        
                Obs  blk_size     order                    
                                                  
                1     8    Non-intervention                 
                2     8    Intervention                   
                3     8    Non-intervention                 
                4     8    Intervention                   
                5     8    Intervention                   
                6     8    Intervention                   
                7     8    Non-intervention 
                8     8    Non-intervention   
                                          

3. Discussion  

A key advantage of blocked randomization is that treatment groups will be equal in size and will 

tend to be uniformly distributed by key outcome-related characteristics. Typically, smaller block sizes 

will lead to more balanced groups by time than larger block sizes. However, a small block size 

increases the risk that the allocation process may be predictable, especially if the assignment is open or 

there is a chance for unmasking of the treatment assignment. For example, certain immunosuppressive 

agents change color when exposed to light. This may inadvertently expose the identity of the 

compound in a clinical trial if the comparator compound is not light sensitive. Unmasking also may be 

intentional in the case of a physician chemically analyzing a patient’s blood to determine the identity 

of the randomized drug.  

Using a large block size will help protect against the investigator predicting the treatment sequence. 

However, if one treatment occurs with greater frequency at the beginning of a block, a mid-block 

inequality can occur if there is an interim analysis or the study is terminated midway through a block. 
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Alternatively, keeping block sizes small and using random sequences of block sizes can ameliorate  

this problem. Another option is to use larger random block sizes but offset the chance of initial 

treatment runs within a block by allocating participants using a biased coin approach [4]. In a simple 

trial consisting of a single treatment and referent group, this method probabilistically assigns 

participants within a block to the treatment arm depending on the assignment balance of participants 

thus far randomized to the treatment arm. For example, if a participant to be randomized is in a 

category which has K more treatments (t) than referents (r) already assigned, then assignment to the 

treatment and referent group will be made with probability t = q, (r = p), t = ½ (r = ½), and t = p,  

(r = q) contingent on whether K is greater than, equal to, or less than zero (where p ≥ q, p + q = 1). 

Although the latter strategy may distort the randomization process by decreasing the probability of 

long runs, the resulting bias may be acceptable if it prevents mid-block inequality and controls the 

predictability of treatment assignment. Under certain minimax conditions, the random coin approach 

has been shown to be superior to complete randomization for minimizing accidental bias (e.g., a type 

of bias that occurs when the randomization scheme does not achieve balance on outcome-related 

covariates) [4]. A key advantage of the open source algorithm provided in this paper, and comparable 

algorithms available in programming languages such as R [5], is that the underlying code may be 

modified to accommodate the random coin technique and other balancing strategies yet to be 

implemented in standard statistical packages. 

The number of participants assigned to each treatment group will be equal when all the blocks are 

the same size and the overall study sample size is a multiple of the block size. Furthermore, in the case 

of unequal block sizes, balance is guaranteed if all treatment assignments are made within the final 

block [1]. However, when random block sizes are used in a multi-site study, the sample size may vary 

by site but on average will be similar. 

The advantage of using random block sizes to reduce selection bias is only observed when 

assignments can be determined with certainty [1]. That is, when the assignment is not known with 

certainty but rather is just more probable, then there is no advantage to using random block sizes. The 

best protection against selection bias is to blind both the ordering of blocks and their respective size. 

Furthermore, the use of random block sizes is not necessary in an unmasked trial if participants have 

been randomized as a block rather than individually according to their entry into the study, as the 

former will completely eliminate selection bias. 

The necessity to take into account blocking in the statistical analysis of the data, including when the 

block sizes are randomly chosen, depends on whether an intrablock correlation exists [1]. A non-zero 

intrablock correlation may occur, for example, when the characteristics and responses for a participant 

change according to their entry time into the study. If the process is homogeneous the intrablock 

correlation will equal zero and blocking may be ignored in the analysis. However, variance estimates 

must be appropriately adjusted when intrablock correlation is present [6]. The presence of missing data 

within blocks also can potentially complicate the validity of statistical analysis. For example, special 

analytic techniques may be needed when the missing data is related to treatment effects or occurs in 

some other non random manner [1,3]. However, datasets with missing-at-random observations may be 

analyzed by simply excluding the affected blocks. When possible, measures should be implemented to 

minimize missing values as their presence will reduce the power of statistical procedures. 
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Significant treatment imbalances and accidental bias typically do not occur in large blinded trials, 

especially if randomization can be performed at the onset of the study. However, when treatment 

assignment is open and sample size is small than a block randomization procedure with randomly 

chosen block sizes may help maintain balance of treatment assignment and reduce the potential for 

selection bias. 
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