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ABSTRACT Explaining the presence of conspicuous female ornaments that take the form of male-typical
traits has been a longstanding challenge in evolutionary biology. Such female ornaments have been
proposed to evolve via both adaptive and nonadaptive evolutionary processes. Determining the genetic
underpinnings of female ornaments is important for elucidating the mechanisms by which such female traits
arise and persist in natural populations, but detailed information about their genetic basis is still scarce. In
this study, we investigated the genetic architecture of two ornaments, the orange-red throat and pelvic
spine, in the threespine stickleback (Gasterosteus aculeatus). Throat coloration is male-specific in ancestral
marine populations but has evolved in females in some derived stream populations, whereas sexual dimor-
phism in pelvic spine coloration is variable among populations. We find that ornaments share a common
genetic architecture between the sexes. At least three independent genomic regions contribute to red throat
coloration, and harbor candidate genes related to pigment production and pigment cell differentiation.
One of these regions is also associated with spine coloration, indicating that both ornaments might be
mediated partly via pleiotropic genetic mechanisms.
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Sexual selection theory commonly predicts that males should be the
most ornamented sex; however, female ornaments are now known to
be widespread, and are the subject of increased research efforts
(Darwin 1871; Andersson 1994; Kraaijeveld et al. 2007; Kraaijeveld
2014). Interest in the causes and functions of female ornaments has
prompted studies that have often attributed their evolution to selec-
tive pressures similar to those responsible for male ornament evo-
lution, i.e., male choice and female–female competition (Andersson
1994; Kraaijeveld et al. 2007; Clutton-Brock 2009; Tobias et al.
2012). However, selection favoring female ornaments can also be
weak or absent in some taxa, pointing to the potential involvement

of nonadaptive processes (Muma and Weatherhead 1989; Cuervo
et al. 1996; Nordeide 2002; Wright et al. 2015; Yong et al. 2015).
Thus, no clear consensus has yet emerged on the evolutionary causes
of female ornaments.

While behavioral and comparative studies have been informative, a
thorough understanding of female ornament evolution also requires
knowledge of the underlying genetic architecture. The genetic basis of
female ornaments is particularly interestingbecause suchornaments are
notably labile, in that they can be frequently lost and regained on a
phylogeny (Omland 1997; Cardoso and Mota 2010; Kraaijeveld 2014).
The observation that some female ornaments can evolve and persist as
rudimentary versions of male-typical traits suggests that shared genetic
mechanisms between the sexes might contribute to ornament expres-
sion (Lande 1980; Amundsen 2000; Clutton-Brock 2009; Potti and
Canal 2011).

Although thegeneticbasis, andparticularly themoleculargenetics, of
female ornaments is still poorlyunderstood (ChenowethandMcGuigan
2010; Kraaijeveld 2014), some progress has been made. In the fowl
(Gallus gallus) and zebrafinch (Taeniopygia guttata), female comb or-
naments and beak redness seem to be under the control of a few loci of
moderate effect, pointing to a relatively simple genetic basis (Wright
et al. 2008; Schielzeth et al. 2012). The same loci are also detected in
males, suggesting that the presence of the female ornaments might in
part result from a shared genetic architecture.
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The threespine stickleback fish (Gasterosteus aculeatus) has offered
exceptional opportunities for detailed genetic investigation of evolu-
tionary diversification, including studies of secondary sexual characters
(Peichel et al. 2001; Albert et al. 2008; Kitano et al. 2009; Malek et al.
2012). Indeed, sticklebacks possess a well-studied secondary sexual
trait, carotenoid-based orange-red throat coloration (Figure 1A), which
was long thought to be exclusive to males, and is important in male–
male competition and female choice (Bakker and Milinski 1993).
Recent work has shown that females also exhibit the male-typical red
throat in some freshwater populations that are derived from ancestral
marine and anadromous forms (von Hippel 1999; McKinnon et al.
2000; Yong et al. 2013; Figure 1B).

Another interesting, and presumably carotenoid-based, color
trait in sticklebacks is red pelvic spine coloration (Nordeide 2002;
Hodgson et al. 2013; Yong et al. 2013; Amundsen et al. 2015; Figure
1C). Although often observed, spine coloration seems to vary across
stickleback populations, such that it is not present in all populations,
and its adaptive function remains unclear (Nordeide 2002; Amundsen
et al. 2015; L. Yong, unpublished data). Spine coloration is likely
an ancestral trait in the Gasterosteidae lineage (McLennan 1996),
and is generally more intense in Pacific marine/anadromous pop-
ulations, compared to freshwater populations (Yong et al. 2013).
The degree of sexual dichromatism in spine coloration varies, but
it is somewhat sexually dimorphic in some freshwater populations
(Yong et al. 2013; Amundsen et al. 2015). While little is known
about why spine coloration is less intense in freshwater populations,
several factors have been proposed, including potential trade-offs
between different color traits and carotenoid limitation (Nordeide
et al. 2006; Svensson andWong 2011). To date, no studies have been
conducted of the molecular genetics of variation in spine coloration,
although the genetic basis of pelvic spine presence or absence is well
understood (Cresko et al. 2004; Shapiro et al. 2004; Coyle et al. 2007;
Chan et al. 2010; Shikano et al. 2013).

We have previously shown that the red color intensity of the spine is
correlated with that of the throat in wild populations with red-throated
females (Yong et al. 2013). However, it seems that both traits in females
might have limited adaptive functions with regard to sexual selection
(Nordeide 2002; Wright et al. 2015; Yong et al. 2015). For instance,
female red throats provide no social advantage in the context of either
intra or intersexual interactions (Wright et al. 2015; Yong et al. 2015).
Contrary to the view that producing multiple ornaments is costly
(Svensson and Wong 2011), a correlation between the two colorful
ornaments may indicate limited internal tradeoffs, and instead suggests
that the same genetic variants might influence the development and
evolution of the two color patches.

In the present study, we investigated the genetic basis of orange-red
throat and spine color (hereafter red throat or spine chroma) in female,
as well as in male, threespine stickleback using quantitative trait loci
(QTL) mapping. First, we characterized the number and location of
genomic regionsunderlyingeachcolor trait, andaskedtowhatextent the
genetic architecture is shared betweenmales and females. The detection
ofQTL in the same genomic regions inmales and femaleswould suggest
that shared genetic mechanisms might underlie the expression of the
ornaments in both sexes. We then asked whether common QTL might
control both throat and spine color.

MATERIALS AND METHODS

Fish collection, husbandry, and crosses
Sticklebacks used for crosses were obtained from two different fresh-
water sources. Females with red throats were collected from Matadero
creek (MAT) in California (37.393� N, 122.162� W) using seines and
dipnets (Yong et al. 2013). We specifically focus on the MAT popula-
tion because those females display red coloration readily and intensely
under laboratory conditions (L. Yong, unpublished data), making them
suitable for genetic linkage mapping. MAT female sticklebacks were
crossed with lab-raised Paxton (PX) limnetic male sticklebacks (49.703�N,
124.522�W), a population in which females have never been observed
to possess red throat coloration. While MAT sticklebacks express red
bright pelvic spines, PX limnetic males and females tend to have very
little color on theirs (J. Boughman, personal communication). Fish
were maintained in 102 liter tanks filled with aerated and purified
water (3 ppt with Instant Ocean salt), and under a summer photope-
riod (16-hr light: 8-hr dark) using natural spectrum-mimicking fluores-
cent light (Lumichrome Full Spectrum, Plus, Lumiram Electric, Co.
Larchmont, NY) at 17–20�. All fish were fed amixture of brine shrimp
(Artemia) and bloodworms (chironomidae) twice a day. All animal
work and experimental procedures conformed with ECU’s Institu-
tional Animal Care and Use Committee (AUP #224a).

The experimental population involved a backcross, a favorable
approach to overcome the somewhat weak expression of female throat
coloration previously observed in a preliminary intercross F2 design
(J. McKinnon, personal observation). A single adult MAT female was
first crossed in vitro to a PX male to generate an F1 family. At sexual
maturity (�1 year old), three adult F1 males were backcrossed to a
single MAT female to generate three half-sib families (n = 130–200
per family). All backcross offspring were reared in controlled condi-
tions comparable to those described above. Because stickleback throat
coloration can be influenced by carotenoids available in the food source
(Pike et al. 2011), all fry were fed a consistent diet. Hatchlings were fed

Figure 1 Digital photographs
of MAT male (top) and female
(bottom) sticklebacks. (A) full lat-
eral view; (B) ventral view of red
throat; (C) ventral view of red
spine; (D) throat image with land-
marks (green point) from which
spectrometric measures were
taken. White scale bar = 1 cm.
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fresh live brine shrimp nauplii for the first 3 months, and then grad-
ually transitioned to a slurry of minced frozen bloodworms and brine
shrimp as they matured into juveniles and adult fish. At 6 months of
age, fish were separated among 102 liter tanks (n = 25–30 fish per
tank) to ensure adequate growth rates. Tominimize the potential effects
of background on color, all sides except for the front of each tank were
covered with brown paper. Light and temperature cycles were carefully
controlled, emulating natural conditions, such that all experimental fish
experienced twowinter-like (8-hr light: 16-hr dark; 10�; 4 months) and
summer-like (16-hr light: 8-hr dark; 20�; 4 months) light cycles and
temperatures. Both temperature and light were incrementally adjusted
between the seasonal cycles. All backcross fish were reared in the lab-
oratory under these standardized conditions until 2 years of age, and
then phenotyped.

Male nesting stimulation
While the expression of the male throat coloration is generally height-
ened during the breeding season, it also varies with sexual context. For
instance,malecoloration isoftenmore intenseduring the courtingphase
of the mating cycle (Bakker and Mundwiler 1994). Thus, for standard-
ization and maximal expression of color, we measured the throat col-
oration of males after they had successfully nested and courted females.

Before introducingmales to a nesting tank, they were first measured
for red throat chroma (pre-nesting throat color) (see Phenotyping
below). They were then placed in a 30-liter tank and provided with a
plastic dish containing sand and sphagnum moss as nesting material.
After males acclimated to their tank, they were presented with a gravid
female enclosed in a UV transparent container for 10 min twice daily
for 3 d to promote nesting and courting behaviors. Males typically
began nesting behavior by digging in the sand, which occurred within
24 hr after introduction into their nesting tank. On the 4th day, males
were presented with a gravid female for a final time, and allowed to
court the female for 15 min. Thereafter, males were immediately net-
ted and measured for throat color (post-nesting throat color). Males

that had nested and courted females had significantly redder throat
coloration than males that had not (t-test: P , 0.0001). For consis-
tency, only backcross males that had nested and courted females were
included in the final genetic mapping analyses (n = 148 out of 193).
Unlike males, females exhibit no significant changes in throat colora-
tion according to the reproductive cycle (Yong et al. 2013); backcross
females were thus phenotyped without being subjected to similar treat-
ments (n = 281).

Phenotyping: throat and spine chroma
All fish, e.g., grandparents, F1, and backcross individuals (193 males,
281 females), were measured for standard length (nearest 1 mm) using
digital calipers and mass using a small balance. Fish were sexed based
on distinct breeding color (i.e., red nuptial throat associated with blue
eyes in males), proxies of reproductive status (i.e., gravid status for
females), and with the Idh genetic marker (Peichel et al. 2004). Wild
MAT fish, pure lab crosses of MAT fish, and F1 hybrids were also
phenotyped as detailed below, and included in the phenotypic (but
not genetic mapping) analyses for comparison.

Throats and left pelvic spineswere photographed as detailed inYong
et al. (2013, figure 1A–C) under a natural light source (MR16 Solux
Natural Daylight, Tailor Lightning Inc., Rochester NY). Using an
Ocean Optics Maya spectrometer (Ocean Optics Inc., Dunedine, FL)
and established protocols (Yong et al. 2013), the color reflectance of the
fish throat was consistently measured at six spots (Figure 1D). The
procedure for phenotyping took less than 3 min for each fish, and
did not involve anesthetizing the fish. Fish were then killed in a lethal
dose of MS-222 solution, and a caudal fin clip was collected for DNA
extraction and genotyping.

To obtain the red color score for both throat and spine, we imple-
mented the established protocol detailed in Yong et al. (2013). In brief,
red throat color was quantified using a physiological model of stickle-
back vision to approximate stickleback-visual perception (Rush et al.
2003; Endler and Mielke 2005; Pike et al. 2011). Because the color

Figure 2 Variation in throat
chroma in the backcross females
(A) and males (B) in comparison
to laboratory-raised MAT male
and female.
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intensity of the spine could not be measured using spectrometry due
to its small patch size, it was assessed from standardized images with
Adobe Photoshop CS3 (Adobe Systems, San Jose, CA). The pelvic
spine was divided into eight equal sections, and the red, green and
blue (RGB) values were obtained for each section. The red chroma
from each segment was then estimated by calculating red intensity
relative to the combined intensities of blue, red, and green (Yong
et al. 2013). We have previously shown that this approach correlates
significantly positively with spectrometric values (Yong et al. 2013).
For each ornament, we then obtained a red color score (hereafter red
throat chroma, and red spine chroma) by averaging across all sam-
pled spots from which measurements were obtained. We have used
the maximum intensity of chroma in our past studies (McKinnon
et al. 2000; Yong et al. 2013, 2015; Wright et al. 2015), largely owing
to limitations of our reflectance sampling; here, we used average
chroma because our modified reflectance protocol captured color
variation throughout the throat more systematically and compre-
hensively. We have found significant positive correlations between
maximum and mean measures of chroma (and also for different
methods, e.g., Yong et al. 2013), but it is worth noting that, while

they often produce similar results, this is not always the case as they
measure slightly different aspects of color.

Genotyping and linkage map
Both grandparents, the three F1male and oneMAT female parents, and
429 backcross offspring (148 nestedmales, 281 females) were genotyped
using a custom designed single nucleotide polymorphism (SNP) array
(Illumina, San Diego, CA) containing 768 SNP markers spanning
the stickleback genome (Greenwood et al. 2011, 2013, 2015; Jones
et al. 2012; Wark et al. 2012; Arnegard et al. 2014; Conte et al. 2015).
Genomic DNA was first extracted from fin clips using the Qiagen
DNAeasy Blood and Tissue kit (Qiagen Inc., Valencia, CA). DNA
samples were diluted to 50–100 ng/ml, and genotyped at the Fred
Hutchinson Cancer Research Center Genomics Shared Resource (Seattle,
WA). SNP data were analyzed using Illumina GenomeStudio software.
Among the SNP markers, we identified 229 informative markers (Sup-
porting Information, Table S1) displaying allelic differences between the
MAT and PX grandparents. Using a LOD threshold of 4.0 for all
markers, 22 linkage groups (LG), representing the 21 stickleback
chromosomes, were constructed using JoinMap 4.1 (Van Ooijen 2011).

Figure 3 Sex-specific differences in (A) red throat and (B) spine
chroma between cross types. Dots represent outliers. Numbers of
individuals in each category are indicated at the bottom. Backcross,
Backcross sticklebacks; F1, F1 hybrids; f, female; m, male; MatLab,
lab-raised Matadero; MatWild, wild-caught Matadero.

Figure 4 Relationship between throat and spine chroma in each half-
sib backcross family (1–3). Sample sizes for each sex within each back-
cross family are as follows: (1) m = 51, f = 86; (2) m = 24, f = 87;
(3) m = 73, f = 108.
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QTL mapping
We used standard interval mapping in R/qtl (Broman and Sen 2009) to
identify genomic regions contributing to variation in throat and spine
coloration in our backcross population. Red chroma scores of both
throat and spine were log-transformed to improve normality. First,
we mapped both throat and spine color by combining all females
and nested males, i.e., 429 backcross individuals, and including family
and sex as covariates. Body size was also included as a covariate in the
analyses, but later removed because its inclusion had little effect on the
results (Broman and Sen 2009). Then, to test whether the same QTL
persist and remained similar between the sexes, we mapped the same
traits for males and females separately. We used permutation tests
(n = 1000) to calculate the genome-wide significance thresholds (log-
arithm of odds or LOD score) for association between markers and red
throat and spine chroma (a = 0.05). We calculated the 95% Bayesian
credible intervals at each significant QTL position. Using the fitqtl and

refineqtl functions in R/qtl, we determined QTL direction and effect
size, as defined by the percentage of phenotypic variance explained
(PVE), and refined the locations of our QTL (Broman and Sen
2009). Epistasis and additivity among QTL pairs in the whole dataset
were determined using the scantwo function. As recommended
(Broman and Sen 2009), we used a conservative LOD threshold of
4.7 for significant epistatic and additive interactions. To test whether
all significant QTL acted additively, we also examined the relationship
between the sum of MAT alleles across significant QTL and red throat
chroma. The X-chromosome was omitted from the QTL analysis be-
cause all X chromosomes in this cross were from the MAT population
due to the lack of recombination between the X and the Y chromosomes
(Peichel et al. 2004) and our backcross experimental design. Thus, in
this cross we were unable to map X-linked genetic differences between
the MAT and PX populations. All genotype and phenotype data for the
backcrosses are provided in File S1.

Figure 5 QTL analysis of red throat chroma in the backcross with both sexes included (red), males only (blue), and females only (orange). (A)
Linkage groups (LG) 6, 9, and 12 contain QTL associated with throat chroma (log-transformed) in both males and females. Dotted lines represent
LOD significance threshold (genome-wide a = 0.05, 1000 permutations) for each analysis (i.e., both sexes, males, or females). Horizontal red lines
correspond to 95% Bayesian confidence intervals for both sexes. Genetic markers are shown as tick marks on the x-axes. (B) Two-dimensional
genome scan between significant QTL on LG 6, 9, and 12. The upper left hand triangle represents test for epistasis, whereas the lower right tests
for additivity among loci. The color scale on the right indicates separate LOD score scales (for both scales, significance threshold is 4.7) for
epistasis (left) and additivity (right). (C) Combined effects of MAT alleles (both sexes included) across significant QTL on red throat chroma, where
an increase in the number of MAT alleles enhance red throat coloration. (D) Genotype-phenotype association analysis at the genetic marker
closest to the QTL peak for each sex; the phenotypic values of red throat chroma (mean 6 SE) are indicated for each genotype. MM, Matadero/
Matadero; PM, Paxton/Matadero.
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Screening of candidate genes underlying
ornament coloration
To identify potential candidate genes within the QTL, we searched for
candidate genes located within the 95% Bayesian credible intervals of
the QTL using the Ensembl release 78 stickleback genome database
(BROADS1; ensembl.org/Gasterosteus_aculeatus/Info/Index).

Statistics
Statistical analyses were conducted in the R statistical environment
(version 3.1, R Development Group, http://www.r-project.org).
Linear mixed models (nlme package in R) were used to test for
differences in throat and spine chroma using sex and cross type
(i.e., pure MAT, F1 hybrids, and backcross individuals) as fixed
effects, and family as a random effect (Pinheiro et al. 2015). Because
males in both the pure crosses and F1 hybrids were non-nesting
males, all backcross males at the non-nesting stage (n = 193) were
included for comparing throat and spine coloration. Post hoc pair-
wise comparisons were subsequently conducted, and a false discov-
ery rate was used to control for multiple comparisons between
groups (Verhoeven et al. 2005). Corrected P-values from the com-
parisons within ANOVAs are reported.

Data availability

RESULTS

Red throat and spine coloration are correlated with
each other in the backcross
To identify the genetic contributions to ornaments, we quantified throat
and pelvic spine red chroma in both wild and laboratory-reared MAT
sticklebacks, aswell as inF1andbackcrosshybrids. The recapitulationof
the red throat and spine coloration in the laboratory-rearedpure crosses
suggests that both ornaments have a genetic component (Figure 2).
Laboratory-raised MAT (MatLab) sticklebacks showed similar red
throat and spine chroma to wild MAT sticklebacks (MatWild) (throat:
cross type: F1,2 = 0.127, P = 0.755; sex: F1,164 = 43.70, P , 0.0001;
cross type · sex: F1,164 = 3.621, P = 0.06; spine: cross type:
F1,2 = 0.878, P = 0.448; sex: F1,119 = 29.01, P , 0.0001, cross type ·
sex: F1,119 = 0.251, P = 0.617; Figure 3). Over all cross types, males
consistently displayed more intense red throat and spine colora-
tion than females (throat: F1,712 = 144.62, P , 0.0001; spine:
F1,631 = 56.41, P , 0.0001), and a significant interaction revealed
differences in color variation between the sexes across cross type (cross
type · sex: throat: F3,713 = 4.77, P = 0.027; spine: F1,631 = 12.691,
P , 0.0001). Using mixed models and post hoc comparisons, we
tested each sex for differences in throat and spine coloration between
MatLab, F1 hybrids, and backcross. Among females, backcross females
had more intense red color than F1 hybrids, but were not significantly
different fromMatLab (F2,4 = 8.35, P = 0.037; pairwise comparisons:
backcross and F1, PFDR = 0.031; MatLab and backcross, PFDR = 0.263).

There were no significant differences for males (P = 0.195). Although
backcross females display substantial variation in spine coloration, they
did not differ relative to F1 or MatLab females (P = 0.212), even
after controlling for family effect. The backcross and F1 males did not
differ significantly for spine coloration (P = 0.06).

In the backcross, spine chroma was significantly associated with
throat chroma, with no differences between the sexes (throat chroma:
F1, 419 = 35.96, P , 0.0001; sex: F1,419 = 1.032, P = 0.310; throat
chroma · sex: F1, 419 = 0.165, P = 0.685). Individual analyses of each
half-sib backcross revealed that red throat chroma was correlated with
spine chroma (r = 0.21–0.32, P # 0.012 for all families; Figure 4) in
bothmales and females (pooled since there were no differences between
the sexes), suggesting a shared mechanism influences color variation in
the two ornaments.

Three QTL contribute to red throat color, and one QTL
is shared between spine and throat chroma
To characterize the genomic locations and their effect size for both
ornaments, we first performed QTL mapping on all individuals, i.e.,
including both nesting males and females. We found three unlinked
QTL on autosomes (LG6, LG9, LG12), which together explained ap-
proximately 8% of variation in throat chroma (Figure 5A and Table 1).
The direction of the phenotypic effects at each of the QTL was consis-
tent with our expectation, such that fish with Matadero alleles (MAT/
MAT) had elevated throat chroma relative to those with a heterozygous
genotype (MAT/PAX) (Table 1). While there were no epistatic inter-
actions between QTL, we found evidence for significant additive effects
across the three QTL on throat coloration such that substitution of a
MAT allele at any of the QTL caused an increase in throat chroma
(Figure 5, B and C).

To test whether the three identified QTL contribute to sex-specific
throat coloration, we conducted separate QTL analyses for each sex. In
females, QTL on LG6 and LG12 remained statistically significant at a
genome-wide threshold level, whereas only the QTL on LG6 was
significant in males (Figure 5A). The QTL for throat coloration on
LG9 and LG12 did not consistently reach the genome-wide threshold
significance in the sex-specific QTL analyses, likely due to the lower
sample size in each group. Thus, we also conducted QTL-specific tests
for associations between red throat chroma and individual markers on
LG9 and LG12 (i.e., specific significance tests for those QTL, not
genome-wide tests), and found that males and females with MAT alleles
at both loci had more intense red throat chroma (LG9:chrIX.1273244:
males: F1,143 = 10.48, P = 0.0015; females: F1,276 = 3.92, P = 0.048;
LG12:chrXII.548804: males: F1,143 = 7.26, P = 0.008; females:
F1,276 = 15.19, P = 0.0001, Figure 5D), suggesting that QTL on
LG9 and LG12 do contribute to red throat coloration both in males
and females. While the main analyses were conducted on post-nesting
coloration, it is worth noting that single marker tests revealed that the
QTL on LG 6 and LG9, but not LG12, also affected pre-nesting throat
coloration in all males (LG6:chrVI.6312798: F1,189 = 5.02, P = 0.03;

n Table 1 Genome wide significant QTL for red throat and spine chroma using both sexes in the analysis

Trait LG
Map Position

(cM)
Nearest Marker

(Chromosome: Position in bp) LOD PVE PM MM

Red throat chroma 6 15 chrVI.6312798 8.68 4.62 0.2603 (6 0.003) 0.2752 (6 0.003)
9 7 chrIX.1273244 3.29 1.33 0.2616 (6 0.003) 0.2737 (6 0.003)

12 19 chrXII.548804 5.06 2.95 0.2611 (6 0.003) 0.2744 (6 0.003)
Red spine chroma 6 7 chrVI.657036 5.76 6.31 0.5088 (6 0.003) 0.5289 (6 0.003)

For each QTL, the linkage group (LG), genetic map position (cM), nearest marker next to the highest LOD score (likelihood of odds), and percentage variance explained
(PVE) are provided. The phenotypic values of each trait (mean 6 SE) for each genotype (PM = Paxton/Matadero; MM=Matadero/Matadero) at the nearest genetic marker.
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LG9:chrIX.1273244: F1,189 = 9.62, P = 0.002; LG12:chrXII.548804:
F1,189 = 2.50, P = 0.11).

For pelvic spine coloration, we found one significant QTL, which
overlapped the QTL for throat coloration on LG6 (Figure 6A). Spine
coloration mapped to LG6 both in males and females (Figure 6B).
Single marker analysis revealed that the QTL on LG9 (F1,421 = 5.29,
P = 0.02), but not on LG12 (F1,421 = 0.001, P = 0.976), also had
an effect on spine chroma, although this result was not significant at
the genome wide level. Altogether, our results suggest that males and
females share a similar genetic architecture for both red spine and
throat chroma.

Candidate genes related to pigment production and
chromatophore cell type development are found within
the QTL regions
We scanned for putative candidate genes that might be related to red
chroma within the QTL regions. Reasonable candidate genes were
determined based on whether they were related to processes in pigment
production and pigment cell differentiation, and are listed in Table 2.

DISCUSSION
Thepresent studydemonstrates that variation in red throat coloration in
both females andmalesmaps to three commonautosomal regions (LG6,
LG9, and LG12) in our threespine stickleback population. Consistent
with the observation that red coloration is not sex-limited or restricted to
males, autosomal loci are facilitating the expression of the male-typical
trait in female sticklebacks,whichmight explainhow this trait can evolve
in females (Lande 1980; Lindholm and Breden 2002; Mank 2009). An
overlapping QTL region on LG6 that underlies throat color contributes
to red spine coloration in both sexes, suggesting that common genetic
mechanisms may control both throat and spine coloration. Our find-
ings are consistent with previous empirical studies that have shown a

common genetic architecture between the sexes provides the raw ma-
terial for the expression of male-typical colorful traits in females, and
the evolution of mutually shared ornaments (Lande 1980; Wright et al.
2008; Schielzeth et al. 2012; Kraaijeveld 2014).

While a genetic correlation between the sexes is in some respects the
default explanation for the evolution of characters such as red throats in
females (Lande 1980), the mechanisms and selective pressures driving
variation in sexual dimorphism in such traits are still unclear. To date,
there is little evidence that direct selection contributes to the evolution
of throat coloration in females. In our laboratory experiments, we have
found that the female red throat does not necessarily offer a competitive
or courtship advantage relative to duller throat color (Wright et al.
2015; Yong et al. 2015). At the same time, we have found little evidence
that females with red throats incur fitness costs (Yong et al. 2013),
suggesting that female throat coloration could be a neutral trait, or
nearly so. One possible and unexplored explanation for the appearance
of red throats in female sticklebacks is relaxed selection in the stream
population (Lahti et al. 2009). For example, relaxed selection, in the
form of reduced fish predation, is thought to have influenced lateral
plate loss or reduction in lacustrine stickleback populations (Reimchen
1992, 1995). A similar lack of selective pressure might have allowed the
female trait to evolve in streams. This could have been mediated via
changes in genetic loci that normally repress ornament expression
specifically in females. A somewhat analogous example is found in
Drosophila melanogaster, in which inhibition of the pigment-repressing
gene, bric-a-brac (bab), facilitates the expression of dark male-typical
pigmentation in females (Kopp et al. 2000). We hypothesize that key
genes residing within identified QTL regions might provide a similar
mechanism for throat color expression in both males and females.
Alternatively, different mechanisms that are not sex-specific might also
be involved. It is possible that more efficient uptake, or differences in
allocation, of red-based carotenoids might be occurring in stream stick-
lebacks, thereby facilitating the red color expression, as found in some
salmonid species (Craig and Foote 2001). Because carotenoids can be
physiologically beneficial in females, selection for mechanisms related
to increased carotenoid uptake might also be possible in our stream
population. Collecting more information about selection on female
coloration in nature will be essential to elucidate how selection has
shaped male-typical throat color expression in some populations but
not others.

Some aspects of our experimental design and results call for cautious
interpretation. Due to the nature of our backcross experimental design,
we did not attempt to ascertain the potential contribution of the
X chromosome to female red throat color, mainly because the
X-chromosome did not undergo recombination with the Y-chromosome
in our F1male, except within the pseudoautosomal region (Peichel et al.
2004; Ross and Peichel 2008; Broman and Sen 2009; Roesti et al. 2013).
Since all of the alleles on the X-chromosome originated from the MAT
population in our backcross, we were unable to associate any segregat-
ing variants between MAT and PX with differences in red coloration.
Thus, unstudied loci on the X could contribute to throat coloration.
Also, while we detected three significant QTL using the whole dataset
(429 backcross individuals), those on LG9 and LG12 were no longer
significant at a genome-wide threshold level when each sex was ana-
lyzed separately. This is probably due to the modest size of the two
samples, which could have affected our ability to detect other contrib-
uting loci with even smaller effects.

In addition to investigating female red throats, our study is thefirst to
dissect the genomic basis of pelvic spine coloration. This is novel for
several reasons. First, while many studies have focused on the genetic
basis for the structural evolution of the pelvic spine in sticklebacks

Figure 6 QTL analysis of spine chroma in the backcross. (A) Linkage
group (LG) 6 contains QTL associated with spine chroma (green line)
and throat chroma (red line). (B) Sex specific QTL analysis of spine
chroma with both sexes included (green), males only (blue), and
females only (orange). Dotted lines represent LOD significance
threshold (genome-wide a = 0.05, 1000 permutations) for each anal-
ysis (i.e., both sexes, males, or females). Horizontal green and red lines
correspond to 95% Bayesian confidence intervals for spine and throat
chroma, respectively. Genetic markers are shown as tick marks on
the x-axes.
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(Cresko et al. 2004; Shapiro et al. 2004; Coyle et al. 2007; Chan et al.
2010; Shikano et al. 2013), only one other study has examined the
genetic contribution to variation in spine coloration, despite substantial
differences in coloration between populations (Nordeide 2002; Yong
et al. 2013; Amundsen et al. 2015). Here, we find a QTL for spine
coloration, suggesting that spine coloration in our systemhas a stronger
heritable component than indicated by the results of Amundsen et al.
(2015), which revealed low and nonsignificant heritability usingwithin-
population rearing experiments in Norwegian sticklebacks. Second, a
shared genetic basis for both red throat and spine is consistent with
pleiotropy among characters, and between the sexes (McKinnon and
Pierotti 2010). Considering that both throat and spine color patches
must possess some form of red-based pigments, the same genes related
to pigment allocation and production may be involved (Nordeide et al.
2006; Pike et al. 2011).

Fish body coloration results from gene networks that include both
the type of pigment being produced and the development of pigment
cells, i.e., chromatophores (Kelsh 2004). We have identified several
candidate genes related to both processes within our identified QTL
regions (Table 2). For example, the largest QTL on LG6 harbors the
gene pcbd1, which codes for a protein involved in the synthesis of
pteridine pigments (Braasch et al. 2007). Pteridines share many of
the spectral and chemical properties of carotenoids, and are responsible
for the observed yellow-orange coloration in the xanthophores offishes,
such as guppies and killifish (Grether et al. 2004; Johnson and Fuller
2015). Carotenoids are suggested to be the main pigments for the red
throats of stickleback (Wedekind et al. 1998; Pike et al. 2011). Thus, the
suggestion, even if indirect, that another pigment class such as pteri-
dines might also be responsible for the red coloration is surprising,
especially considering that a previous study suggests no evidence for
pteridines in the skin of a landlocked freshwater stickleback population
(Nordeide 2002). However, only small regions around the pelvic spine
were sampled in that study, and no chromatographic analyses were
conducted. Unlike carotenoids, pteridine pigments can be synthesized
de novo from carbohydrates and proteins, and thus might be less costly
to produce (Grether et al. 2004). Further comparative biochemical
assays would be essential to validate whether pteridines are involved
in pigmentation in the MAT population.

Genes related topigment cell development are also found in the three
QTL regions. The Sox10 gene is found on LG9 and encodes a tran-
scription factor implicated in cell differentiation during neural crest
specification (Braasch et al. 2007). In Sox10 null mutants in zebrafish,
there is a lack of xanthophore development (Dutton et al. 2001).
Similarly, a colony stimulating factor (csf1) gene important for xantho-
phore development is located on LG12; overexpression of this gene
results in increased xanthophore density in zebrafish (Patterson and
Parichy 2013). Other candidate genes found in our QTL regions in-
clude solute transporter carrier genes (Scl), which have been implicated
in many biological functions in fishes (reviewed in Verri et al. 2012),
including pigmentation (Lamason et al. 2005). In our study, we find the

Slc2a15a gene in the QTL on LG6, which is involved in xanthophore
cell differentiation in Oryzias latipes (Kimura et al. 2014). The Slc24a3
gene on LG9 is involved in the transport of cations and anions across
membranes (Verri et al. 2012).While little is known about Slc24a3, it is
possible that its function is similar to that of Slc24a5, whose functions
broadly include the regulation of variation in melanin levels in both
mammals and fish (Lamason et al. 2005; Verri et al. 2012). Because
developmental trade-offs between melanophores and xanthophores
can occur (O’Quin et al. 2012), it is possible that such genes might
mediate cell-lineage determination early in development. Clearly, body
pigmentation arises from a complex genetic network involved in both
cell-type development and pigment production, and identifying the
responsible genes and mutations will be a challenge. Still, our results
should serve as an important guide for testing candidate or novel genes
within the mapped intervals. Approaching those genes within an evo-
lutionary developmental framework, as has been done in other fishes
(Parichy and Spiewak 2015), should be an important complementary
step for fully appreciating how genes and gene networks interact to
produce body color variation in vertebrates.

Conclusions
Recent years have seen advances in the genomic studies of secondary
sexual characters (Kraaijeveld 2014; Johnsson 2015), and our investi-
gation of the genetic basis of variation in throat and spine color con-
tributes to the growing field. Our work provides a foundation for future
genetic studies, and complements quantitative genetic and theoretical
approaches to studying secondary sexual characters (Wilkinson et al.
2015). While there has been considerable investigation of male sexual
characteristics in threespine sticklebacks, ours is one of the first to delve
further into the genetics of sexual characteristics in females.We provide
evidence that a male-typical sexually selected trait in females results in
part from genomic regions sharing a similar function in males, and that
pleiotropy might mediate the coloration of both throat and spine color
patches. Due to the limited function for the female red throat in the
context of social interaction and selection, and the shared architecture
with males, the female ornament may be a correlated byproduct in the
derived stream population, perhaps with little cost to females. This
unusual stickleback population should offer excellent opportunities
for dissecting the detailed geneticmechanisms underlying the evolution
of sexual color ornaments and elucidating their sex-specific regulation.
With rapid technological advances in genomics, sticklebacksmay prove
to be amodel not only for the study of ecological speciation, but also the
genomic study of sexual selection and transitions in vertebrate sexual
dimorphism.

ACKNOWLEDGMENTS
The authors thank B. Lee, B. Newsome, J. Rudd, B. Woodall, and S.D.
Wright for stickleback husbandry and maintenance; Y. Zhu for bench
space during lab work; C. Sather for SNP genotyping; A. Greenwood,
M. White, and K. Broman for assistance during the QTL analysis;

n Table 2 List of candidate genes located in the 95% Bayesian credible intervals

LG Nearest Marker Gene Name Gene Location Inferred Gene Function Reference

6 chrVI.657036 Pcbd1 2860444 Pteridine Synthesis Verri et al. (2012)
6 chrVI.6312798 Slc2a15a 3828235 Pigment cell development Kimura et al. (2014)
9 chrIX.2089567 Slc24a3 2277784 Pigment cell development Verri et al. (2012)
9 chrIX.803523 Sox10 839980 Pigment cell development Dutton et al. (2001)
12 chrXII.548804 Csf1 720731 Pigment cell development Patterson and Parichy (2013)

The nearest marker represents the SNP marker on the genetic linkage map closest to the candidate gene. The gene location is the position in base pairs of the
candidate gene on the associated chromosome.

586 | L. Yong, C. L. Peichel, and J. S. McKinnon



C. Balakrishnan, A. Chippindale, and K. Summers for valuable
comments on earlier versions of the manuscript; and the California
Department of Fish and Wildlife for collection permit SC-10543. The
research was funded by an NSF DDIG (DEB 1311369) to J.S.M. and
L.Y., and an NIH grant (1R15GM109291-01) to J.S.M., C.L.P. and
C. Balakrishnan.

LITERATURE CITED
Albert, A. Y. K., S. Sawaya, T. H. Vines, A. K. Knecht, C. T. Miller et al.,

2008 The genetics of adaptive shape shift in stickleback: pleiotropy and
effect size. Evolution 62: 76–85.

Amundsen, C. R., J. T. Nordeide, H. M. Gjøen, B. Larsen, and E. S. Egeland,
2015 Conspicuous carotenoid-based pelvic spine ornament in three-
spined stickleback populations-occurrence and inheritance. PeerJ 3: e872.

Amundsen, T., 2000 Why are female birds ornamented? Trends Ecol. Evol.
15: 149–155.

Andersson, M., 1994 Sexual Selection, Princeton University Press, Princeton,
New Jersey.

Arnegard, M. E., M. D. McGee, B. Matthews, K. B. Marchinko, G. L. Conte
et al., 2014 Genetics of ecological divergence during speciation. Nature
511: 307–311.

Bakker, T. C. M., and M. Milinski, 1993 The advantages of being red:
Sexual selection in the stickleback. Mar. Behav. Physiol. 23: 287–300.

Bakker, T. C. M., and B. Mundwiler, 1994 Female mate choice and male red
coloration in a natural three-spined stickleback (Gasterosteus aculeatus)
population. Behav. Ecol. 5: 74–80.

Braasch, I., M. Schartl, and J. Volff, 2007 Evolution of pigment synthesis
pathways by gene and genome duplication in fish. BMC Evol. Biol. 7: 74.

Broman, K. W., and S. Sen, 2009 A Guide to QTL Mapping with R/qtl,
Springer, New York.

Cardoso, G. C., and P. G. Mota, 2010 Evolution of female carotenoid col-
oration by sexual constraint in Carduelis finches. BMC Evol. Biol. 10: 82.

Chan, Y. F., M. E. Marks, F. C. Jones, G. Villarreal, M. D. Shapiro et al.,
2010 Adaptive evolution of pelvic reduction in sticklebacks by recurrent
deletion of a Pitx1 enhancer. Science 327: 302–305.

Chenoweth, S. F., and K. McGuigan, 2010 The genetic basis of sexually
selected variation. Annu. Rev. Ecol. Evol. Syst. 41: 81–101.

Clutton-Brock, T. H., 2009 Sexual selection in females. Anim. Behav. 77:
3–11.

Conte, G. L., M. E. Arnegard, J. Best, Y. F. Chan, F. C. Jones et al.,
2015 Extent of QTL reuse during repeated phenotypic divergence of
sympatric threespine stickleback. Genetics 201: 1189–1200.

Coyle, S. M., F. A. Huntingford, and C. L. Peichel, 2007 Parallel evolution of
Pitx1 underlies pelvic reduction in Scottish threespine stickleback
(Gasterosteus aculeatus). J. Hered. 98: 581–586.

Craig, J. K., and C. J. Foote, 2001 Countergradient variation and secondary
sexual color: phenotypic convergence promotes genetic divergence in
carotenoid use between sympatric anadromous and anonadromous
morphs of sockeye salmon (Oncorhynchus nerka). Evolution 55: 380–391.

Cresko, W. A., A. Amores, C. Wilson, J. Murphy, M. Currey et al.,
2004 Parallel genetic basis for repeated evolution of armor loss in
Alaskan threespine stickleback populations. Proc. Natl. Acad. Sci. USA
101: 6050–6055.

Cuervo, J. J., F. de Lope, and A. P. Moller, 1996 The function of long tails in
female barn swallows (Hirundo rustica): An experimental study. Behav.
Ecol. 7: 132–136.

Darwin, C., 1871 The Descent of Man, and Selection in Relation to Sex,
John Murray, London.

Dutton, K. A., A. Pauliny, S. S. Lopes, S. Elworthy, T. J. Carney et al.,
2001 Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal
neural crest fates. Development 128: 4113–4125.

Endler, J. A., and P. W. J. Mielke, 2005 Comparing entire colour patterns as
birds see them. Biol. J. Linn. Soc. Lond. 86: 405–431.

Greenwood, A. K., F. C. Jones, Y. F. Chan, S. D. Brady, D. M. Absher et al.,
2011 The genetic basis of divergent pigment patterns in juvenile
threespine sticklebacks. Heredity 107: 155–166.

Greenwood, A. K., A. R. Wark, K. Yoshida, and C. L. Peichel, 2013 Genetic
and neural modularity underlie the evolution of schooling behavior in
threespine sticklebacks. Curr. Biol. 23: 1884–1888.

Greenwood, A. K., R. Ardekani, S. R. McCann, M. E. Dubin, A. Sullivan et al.,
2015 Genetic mapping of natural variation in schooling tendency in
stickleback. G3 (Bethesda) 5: 761–769.

Grether, G. F., G. R. Kolluru, and K. Nersissian, 2004 Individual colour
patches as multicomponent signals. Biol. Rev. Biol. P. Camb. 79: 583–610.

Hodgson, A., A. R. Black, and R. Hull, 2013 Sensory exploitation and
indicator models may explain red pelvic spines in the brook stickleback,
Culaea inconstans. Evol. Ecol. Res. 15: 199–211.

Johnson, A. M., and R. C. Fuller, 2015 The meaning of melanin, carotenoid,
and pterin pigments in the bluefin killifish, Lucania goodei. Behav. Ecol.
26: 158–167.

Johnsson, M., 2015 The genomics of sexual ornaments, gene identification
and pleiotropy, pp. 19–34 in Evolutionary Biology: Biodiversification
from Genotype to Phenotype, edited by Pontarotti, P.. Springer, New York.

Jones, F. C., Y. F. Chan, J. Schmutz, J. Grimwood, S. D. Brady et al., 2012 A
genome-wide SNP genotyping array reveals patterns of global and
repeated species-pair divergence in sticklebacks. Curr. Biol. 22: 83–90.

Kelsh, R. N., 2004 Genetics and evolution of pigment patterns in fish.
Pigment Cell Res. 17: 326–336.

Kimura, T., Y. Nagao, H. Hashimoto, Y. Yamamoto-Shiraishi, S. Yamamoto
et al., 2014 Leucophores are similar to xanthophores in their specifi-
cation and differentiation processes in medaka. Proc. Natl. Acad. Sci.
USA 111: 7343–7348.

Kitano, J., J. A. Ross, S. Mori, M. Kume, F. C. Jones et al., 2009 A role for a
neo-sex chromosome in stickleback speciation. Nature 461: 1079–1083.

Kopp, A., I. Duncan, and S. B. Carroll, 2000 Genetic control and evolution
of sexually dimorphic characters in Drosophila. Nature 408: 553–559.

Kraaijeveld, K., 2014 Reversible trait loss: The genetic architecture of female
ornaments. Annu. Rev. Ecol. Evol. Syst. 45: 159–177.

Kraaijeveld, K., F. J. L. Kraaijeveld-Smit, and J. Komdeur, 2007 The
evolution of mutual ornamentation. Anim. Behav. 74: 657–677.

Lahti, D. C., N. A. Johnson, B. C. Ajie, S. P. Otto, A. P. Hendry et al.,
2009 Relaxed selection in the wild. Trends Ecol. Evol. 24: 487–496.

Lamason, R. L., M. P. K. Mohideen, J. R. Mest, A. C. Wong, H. L. Norton
et al., 2005 SLC24A5, a putative cation exchanger, affects pigmentation
in zebrafish and humans. Science 310: 1782–1786.

Lande, R., 1980 Sexual dimorphism, sexual selection, and adaptation in
polygenic characters. Evolution 34: 292–305.

Lindholm, A., and F. Breden, 2002 Sex chromosomes and sexual selection
in poeciliid fishes. Am. Nat. 160: S214–S224.

Malek, T. B., J. W. Boughman, I. Dworkin, and C. L. Peichel, 2012 Admixture
mapping of male nuptial colour and body shape in a recently formed
hybrid population of threespine stickleback. Mol. Ecol. 21: 5265–5279.

Mank, J. E., 2009 Sex chromosomes and the evolution of sexual dimor-
phism: lessons from the genome. Am. Nat. 173: 141–150.

McKinnon, J. S., R. F. Demayo, R. Granquist, and L. Weggel, 2000 Female
red throat coloration in two populations of threespine stickleback.
Behaviour 137: 947–963.

McKinnon, J. S., and M. E. R. Pierotti, 2010 Colour polymorphism and
correlated characters: genetic mechanisms and evolution. Mol. Ecol. 19:
5101–5125.

McLennan, D., 1996 Integrating phylogenetic and experimental analyses:
The evolution of male nuptial coloration in the stickleback fishes
(Gasterosteidae). Syst. Biol. 45: 261–277.

Muma, K. E., and P. J. Weatherhead, 1989 Male traits expressed in females:
direct or indirect sexual selection. Behav. Ecol. Sociobiol. 25: 23–32.

Nordeide, J. T., 2002 Do male sticklebacks prefer females with red
ornamentation? Can. J. Zool. 80: 1344–1349.

Nordeide, J. T., G. Rudolfsen, and E. S. Egeland, 2006 Ornaments or
offspring? Female sticklebacks (Gasterosteus aculeatus L.) trade off
carotenoids between spines and eggs. J. Evol. Biol. 19: 431–439.

Omland, K. E., 1997 Examining two standard assumptions of ancestral
reconstructions: repeated loss of dichromatism in dabbling ducks
(Anatini). Evolution 51: 1636–1646.

Volume 6 March 2016 | Genetics of Female Ornamental Traits | 587



O’Quin, C. T., A. C. Drilea, R. B. Roberts, and T. D. Kocher, 2012 A small
number of genes underlie male pigmentation traits in Lake Malawi cichlid
fishes. J. Exp. Zool. 318B: 199–208.

Parichy, D. M., and J. E. Spiewak, 2015 Origins of adult pigmentation:
diversity in pigment stem cell lineages and implications for pattern
evolution. Pigment Cell Melanoma Res. 28: 31–50.

Patterson, L. B., and D. M. Parichy, 2013 Interactions with iridophores and
the tissue environment required for patterning melanophores and
xanthophores during zebrafish adult pigment stripe formation. PLoS
Genet. 9: e1003561.

Peichel, C. L., K. S. Nereng, K. A. Ohgi, B. L. E. Cole, P. F. Colosimo et al.,
2001 The genetic architecture of divergence between threespine stick-
leback species. Nature 414: 901–905.

Peichel, C. L., J. A. Ross, C. K. Matson, M. Dickson, J. Grimwood et al.,
2004 The master sex-determination locus in threespine sticklebacks is
on a nascent Y chromosome. Curr. Biol. 14: 1416–1424.

Pike, T. W., B. Bjerkeng, J. D. Blount, J. Lindström, and N. B. Metcalfe,
2011 How integument colour reflects its carotenoid content: a stickle-
back’s perspective. Funct. Ecol. 25: 297–304.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team, 2015 nlme:
Linear and nonlinear mixed effects models. R package version 3.1–122.
Available at: http://CRAN.R-project.org/package=nlme. Accessed
December 23, 2015.

Potti, J., and D. Canal, 2011 Heritability and genetic correlation between
the sexes in a songbird sexual ornament. Heredity 106: 945–954.

Reimchen, T. E., 1992 Injuries on stickleback from attacks by a toothed
predator (Oncorhynchus) and implications for the evolution of lateral
plates. Evolution 46: 1224–1230.

Reimchen, T. E., 1995 Predator-induced cyclical changes in lateral plate
frequencies of Gasterosteus. Behaviour 132: 1079–1094.

Roesti, M., D. Moser, and D. Berner, 2013 Recombination in the threespine
stickleback genome—patterns and consequences. Mol. Ecol. 22: 3014–3027.

Ross, J. A., and C. L. Peichel, 2008 Molecular cytogenetic evidence of
rearrangements on the Y chromosome of the threespine stickleback fish.
Genetics 179: 2173–2182.

Rush, V. N., J. S. McKinnon, M. A. Abney, and R. C. Sargent,
2003 Reflectance spectra from free-swimming sticklebacks (Gasterosteus):
social context and eye-jaw contrast. Behaviour 140: 1003–1019.

Schielzeth, H., B. Kempenaers, H. Ellegren, and W. Forstmeier, 2012 QTL
linkage mapping of zebra finch beak color shows an oligogenic control of
a sexually selected trait. Evolution 66: 18–30.

Shapiro, M. D., M. E. Marks, C. L. Peichel, B. K. Blackman, K. S. Nereng
et al., 2004 Genetic and developmental basis of evolutionary pelvic
reduction in threespine sticklebacks. Nature 428: 717–723.

Shikano, T., V. N. Laine, G. Herczeg, J. Vilkki, and J. Merila, 2013 Genetic
architecture of parallel pelvic reduction in ninespine sticklebacks. G3
(Bethesda) 3: 1833–1842.

Svensson, P. A., and B. B. M. Wong, 2011 Carotenoid-based signals in
behavioural ecology: a review. Behaviour 148: 131–189.

Tobias, J. A., R. Montgomerie, and B. E. Lyon, 2012 The evolution of female
ornaments and weaponry: social selection, sexual selection and ecological
competition. Philos. T. Roy. Soc. B. 367: 2274–2293.

Van Ooijen, J. W., 2011 Multipoint maximum likelihood mapping in a
full-sib family of an outbreeding species. Genet. Res. 93: 343–349.

Verhoeven, K. J. F., K. L. Simonsen, and L. M. McIntyre,
2005 Implementing false discovery rate control: increasing your power.
Oikos 108: 643–647.

Verri, T., G. Terova, A. Romano, A. Barca, P. Pisani et al., 2012 The solute
carrier (SLC) family series in teleost fish, pp. 219–230 in Functional
Genomics in Aquaculture, edited by Sargolia, M., and Z. Liu. Wiley,
Oxford.

von Hippel, F. A., 1999 Black male bellies and red female throats: color
changes with breeding status in a threespine stickleback. Environ. Biol.
Fishes 55: 237–244.

Wark, A. R., M. G. Mills, L. Dang, Y. F. Chan, F. C. Jones et al.,
2012 Genetic architecture of variation in the lateral line sensory system
of threespine sticklebacks. G3 (Bethesda) 2: 1047–1056.

Wedekind, C., P. Meyer, M. Frischknecht, U. A. Niggli, and H. Pfander,
1998 Different carotenoids and potential information content of red
coloration of male three-spined stickleback. J. Chem. Ecol. 24: 787–801.

Wilkinson, G. S., F. Breden, J. E. Mank, M. G. Ritchie, A. D. Higginson et al.,
2015 The locus of sexual selection: moving sexual selection studies in
the post-genomics era. J. Evol. Biol. 28: 739–755.

Wright, D., S. Kerje, H. Brandstrom, K. Schutz, A. Kindmark et al.,
2008 The genetic architecture of a female sexual ornament. Evolution
6: 86–98.

Wright, D. S., M. E. R. Pierotti, H. D. Rundle, and J. S. McKinnon,
2015 Conspicuous female ornamentation and tests of male mate
preference in threespine sticklebacks (Gasterosteus aculeatus). PLoS One
10: e0120723.

Yong, L., R. Guo, D. S. Wright, S. A. Mears, M. E. R. Pierotti et al.,
2013 Correlates of red throat coloration in female stickleback and their
potential evolutionary significance. Evol. Ecol. Res. 15: 453–472.

Yong, L., B. E. Woodall, M. E. Pierotti, and J. S. McKinnon,
2015 Intrasexual competition and throat color evolution in female
threespine sticklebacks. Behav. Ecol. 26: 1030–1038.

Communicating editor: W. S. Davidson

588 | L. Yong, C. L. Peichel, and J. S. McKinnon

http://CRAN.R-project.org/package=nlme

