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CHAPTER 1: Introduction

Suppose that A is an element of some algebra over the complex numbers. Then it

is natural to define p(A) for any complex polynomial p. Are there other classes of

functions defined on C for which f(A) makes sense? If so, can we define f(A) in a

way that is consistent with operations such as addition and multiplication? Even for

the case where A is a linear transformation on a vector space, the result is nontrivial,

particularly when the vector space is infinite dimensional. The Spectral Theorem

addresses this problem by extending the definition of f(A) from polynomials to a

broader class of functions. The Spectral Theorem is a fundamental result in operator

theory and more generally C∗-algebra theory, with applications to Fourier analysis

and abstract harmonic analysis in general. In this thesis, we fully develop the spectral

theorem for the special case when A is a self-adjoint operator on a Hilbert space. We

start with only the axioms of Hilbert spaces and develop the theory of operators on

these spaces. The development of the general case for elements of some commutative

C∗-algebra is outlined, and it is shown how our development may be obtained as a

corollary of this more general theory.

The spectral theorem originally arose in the context of operator theory where

the proof depended on well known results from measure theory, namely the Riesz

Representation Theorem, and direct calculation. Later a generalization of the spectral

theorem in the context of C∗-algebras arose using Gelfand Theory. In this thesis a

merging of the two approaches is presented in the special case of the algebra generated

by a single self-adjoint operator.

In Chapter 2 the necessary background knowledge concerning Hilbert spaces and

operators is developed. In section 2.1 the Spectral Theorem in finite dimensional

spaces is discussed as motivation for the infinite dimensional analogue. In section
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2.2 basic facts and definitions for Hilbert spaces are reviewed, and examples are

given, including l2(Z). In section 2.3 the properties of subspaces and orthogonality

in Hilbert spaces are reviewed. In particular, the direct sum of a subspace and

its orthogonal complement is introduced. Section 2.4 contains characterizations of

bounded (continuous) operators and their inverses.

In section 2.5 the adjoint of an operator is defined, and its existence is proved as a

consequence of the Riesz Representation Theorem. The example of l2(Z) is continued

with a proof that the left and right shift operators are mutual adjoints. In section

2.6 orthogonal projections are introduced and developed. The useful characterization

that an operator is orthogonal if and only if it is both idempotent and self-adjoint is

presented. In section 2.7 the basics of spectra are investigated. Characterizations of

the spectrum of special classes of operators, especially self-adjoint, are developed, and

fundamental results, such as the fact that the spectrum is compact and non-empty,

are proved. It is shown that the spectrum of the left and right shift operators on

l2(Z) is the unit circle. The spectral radius is defined and investigated as well as how

polynomials interact with the spectrum.

In Chapter 3 the Spectral Theorem for Self-Adjoint Operators is developed, culmi-

nating in an application computing the spectral measure for the right shift operator

on l2(Z). In section 3.1 the functional calculus for continuous functions on the spec-

trum is developed by extending the natural definition of applying a polynomial to an

operator. It is shown that this definition depends only on how the polynomial — and

hence the continuous function — behaves on the spectrum, naturally highlighting why

the spectrum is important. In section 3.2 the Riesz Representation Theorem is used

to express the functional calculus in terms of integration with respect to a measure

on the spectrum. This definition is then extended to include bounded measurable
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functions by relaxing the topologies in each space. It is proved that this association

is a ∗-homomorphism

In section 3.3 the Spectral Theorem for Self-Adjoint Operators is presented. It

is shown that the measures obtained in section 3.2 give rise to a projection valued

measure. Then the general theory of integration with respect to a projection valued

measure is developed, and the Spectral Theorem is proved for the case of self-adjoint

operators. In section 3.4 the Spectral Theorem for Normal Operators is presented.

In section 3.5 the development of the spectral theorem in the context of C∗-algebras

is outlined. Further, it is shown that our result may be obtained as a corollary of this

more general theory. In section 3.6 the Spectral Theorem is worked out in the case of

the right shift operator on l2(Z). The spectral measure is explicitly computed, and

the Spectral Theorem’s statement verified. It is shown that this example is a special

case of a general result in harmonic analysis on locally compact abelian groups.



CHAPTER 2: Hilbert Spaces

2.1 Motivation in Finite Dimensions

Consider a linear map A on an n-dimensional complex vector space V . Then we may

express A as an n × n complex matrix. From finite dimensional linear algebra we

know that if A is Hermitian it is diagonalizable with the diagonal entries being the

eigenvalues of A. For example, consider a 3 × 3 matrix A with distinct eigenvalues

λ1, λ2, λ3. Then using the appropriate choice of basis we have

A =

[
λ1 0 0
0 λ2 0
0 0 λ3

]
= λ1

[
1 0 0
0 0 0
0 0 0

]
+ λ2

[
0 0 0
0 1 0
0 0 0

]
+ λ3

[
0 0 0
0 0 0
0 0 1

]
.

This expression in terms of coordinates is equivalent to writing the linear map A as

a linear combination of the projections Pλi onto the eigenspace of λi for i = 1, 2, 3.

That is,

A = λ1Pλ1 + λ2Pλ2 + λ3Pλ3 .

Since the product of two diagonal matrices is a diagonal matrix, if we consider the

set of all functions f whose domain includes λ1, λ2, λ3, we see that we can define

f(A) =

[
f(λ1) 0 0

0 f(λ2) 0
0 0 f(λ3)

]

in a way that behaves well with respect to addition and multiplication of functions.

That is (f + g)(A) = f(A) + g(A) and (fg)(A) = f(A)g(A). Equivalently,

f(A) = f(λ1)Pλ1 + f(λ2)Pλ2 + f(λ3)Pλ3 .
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In general, if a self-adjoint operator A on an n-dimensional space has eigenvalues

λ1, . . . , λm, where m ≤ n and Pλ1 , . . . , Pλm are the projections onto the corresponding

eigenspaces, then we have

A =
m∑
i=1

λiPλi .

If a function f is defined for each λi then we may define

f(A) =
m∑
i=1

f(λi)Pλi .

The Spectral Theorem for Self-Adjoint Operators extends this result to infinite di-

mensional spaces.

2.2 Notation and Assumptions

The rest of this chapter is influenced by the treatments in [11] and [2].

Definition 2.1. Let V be a complex vector space. A Hermitian inner product on V

is a function that assigns, to every ordered pair of vectors x and y in V , a complex

number 〈x, y〉 so that for all x, y, z ∈ V and α, β ∈ C:

1. 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉;

2. 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉;

3. 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 if and only if x = 0;

4. 〈x, y〉 = 〈y, x〉.

By inner product, we mean a Hermitian inner product. If a space V has an inner

product, it is well known that the inner product gives a natural norm ‖x‖ =
√
〈x, x〉,

which further gives a metric d on V defined by d(x, y) = ‖x− y‖.
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Definition 2.2. A Hilbert space H is a complex vector space together with an inner

product 〈 , 〉 so that H is complete with respect to the metric induced by the inner

product.

When we write H we mean a separable Hilbert space, that is, a Hilbert space with

a countable dense subset. This is equivalent to H having a countable basis.

The following proposition may be found in [2].

Proposition 2.3. The Cauchy-Schwarz inequality holds for any Hilbert space H, that

is, |〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ H.

Notice that with respect to this topology the inner product 〈, 〉 on H is continuous

as a map from H×H to C for any Hilbert space H.

Example 2.4. We see that Cn is a Hilbert space under the usual product 〈x, y〉 =∑n
i=1 xiyi where x = (x1, . . . , xn), y = (y1, . . . , yn).

Example 2.5. Denote by l2(Z) the space of all square summable sequences α =

(αk)k∈Z where αk ∈ C for all k ∈ Z and

∑
k∈Z

|αk|2 <∞.

Then under the inner product

〈α, β〉 =
∑
k∈Z

αkβk,

l2(Z) is a Hilbert space.

Example 2.6. Let µ be Lebesgue measure on [0, 1] and let L2([0, 1]) be the set of all

complex valued functions on [0, 1] that are square-integrable with respect to Lebesgue
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measure. That is,

L2(R) = {f : [0, 1]→ C :

∫
|f(x)|2 dµ <∞}.

It is well known that L2([0, 1]) is a Hilbert space with respect to the usual inner

product

〈f, g〉 =

∫
fg dµ.

2.3 Subspaces and Orthogonality

Definition 2.7. A subset W ⊂ H is a subspace of H if W is a closed vector subspace

of H. That is, W ⊂ H is a subspace of H if W is a Hilbert space under the same

operations as H.

Given two subspaces W1,W2 it is natural to investigate the sum of those two

subspaces W1 +W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}.

Definition 2.8. If W1,W2 ⊂ H are subspaces satisfying

1. W1 ∩W2 = {0};

2. H = W1 +W2;

then we say that H is the direct sum of W1,W2 denoted

H = W1 ⊕W2.

If H is the direct sum of two subspaces W1,W2 we can think of H as being

decomposed into the two smaller Hilbert spaces W1,W2.

The inner product allows us to generalize the notion of orthogonality in Rn to

arbitrary Hilbert spaces.
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Definition 2.9. Let x, y ∈ H with x, y 6= 0, we say that x, y are orthogonal (or

perpendicular) if 〈x, y〉 = 0. In this case, we write x ⊥ y.

Lemma 2.10. If x, y ∈ H with x ⊥ y then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof. Since x ⊥ y, we have

‖x+ y‖2 = 〈x+ y, x+ y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

= 〈x, x, 〉+ 〈y, y〉

= ‖x‖2 + ‖y‖2.

Notice the similarity between Lemma 2.10 and the Pythagorean Theorem in Rn.

Definition 2.11. If W ⊂ H is a subspace, we define the orthogonal complement W⊥

by

W⊥ = {v ∈ H : 〈w, v〉 = 0 for all w ∈ W}.

Lemma 2.12. If W is a subspace of H, then W⊥ is a subspace.

Proof. If x, y ∈ W⊥ and α ∈ C then for all w ∈ W we have

〈w, αx+ y〉 = α〈w, x〉+ α〈w, y〉 = 0.

Hence αx+ y ∈ W⊥ and W⊥ is a vector subspace. Let (xn) be a Cauchy sequence in

W⊥. Then there exists x ∈ H so that x = limxn. Therefore by the continuity of the
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inner product for all w ∈ W , we have

〈w, x〉 = 〈w, limxn〉 = lim〈w, xn〉 = 0

and so x ∈ W⊥. Therefore W⊥ is closed and thus is a subspace of H.

Proposition 2.13. If W is a subspace of H then

H = W ⊕W⊥ = W +W⊥.

Proof. If w ∈ W ∩W⊥ then we have 〈w,w〉 = 0, and hence w = 0.

It is clear that W +W⊥ is a vector subspace of H. We now verify that W +W⊥

is closed. Let zn = wn + xn be a Cauchy sequence, where wn ∈ W,xn ∈ W⊥ . Then

for n,m ∈ N we have

‖zn − zm‖2 = ‖(wn − wm) + (xn − xm)‖2

= ‖wn − wm‖2 + ‖xn − xm‖2

by Lemma 2.10. Thus (wn), (xn) are Cauchy sequences. Hence there exists w ∈ W ,

x ∈ W⊥ so that limwn = w, limxn = x. Therefore

lim zn = w + x ∈ W +W⊥,

hence W +W⊥ is closed.

To see that W + W⊥ = H consider x ∈ (W + W⊥)⊥. Then 〈w, x〉 = 0 for all

w ∈ W so x ∈ W⊥. On the other hand we have 〈y, x〉 = 0 for all y ∈ W⊥ so

x ∈ (W⊥)⊥. Hence x ∈ W⊥ ∩ (W⊥)⊥ = {0} so x = 0. Therefore W + W⊥ = H as

needed.
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2.4 Basics of Operators

Linear transformations are the natural functions to consider on a vector space. How-

ever to guarantee continuity on infinite dimensional Hilbert spaces we need a more

restrictive condition.

Definition 2.14. Let H1,H2 be Hilbert spaces with norms ‖ · ‖1, ‖ · ‖2. A linear

transformation A : H1 → H2 is bounded if and only if there exists C > 0 so that

‖Ax‖2 ≤ C‖x‖1

for all x ∈ H.

If a linear transformation A is bounded we may define the norm of A, ‖A‖ as

follows.

Definition 2.15. Given a bounded linear transformation A : H1 → H2 we define the

operator norm

‖A‖op = inf{C > 0 : ‖Ax‖2 ≤ C‖x‖1 for all x ∈ H}.

When the context is clear we write ‖A‖ for ‖A‖op.

Lemma 2.16. Let A be a linear transformation, then for all x, y ∈ H we have

4〈Ax, y〉 = 〈A(x+y), x+y〉−〈A(x−y), x−y〉+i〈A(x+iy), x+iy〉−i〈A(x−iy), x−iy〉.

Proof. Direct calculation of the right-hand side yields the desired result.
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Proposition 2.17. Let A : H1 → H2 be a bounded linear transformation. Then

‖A‖ = sup{‖Ax‖2 : ‖x‖1 = 1}.

Further if H1 = H2 = H then

‖A‖ = sup{|〈Ax, y〉| : ‖x‖ = ‖y‖ = 1}.

Proof. Let r = sup{‖Ax‖2 : ‖x‖1 = 1}. Then for all x ∈ H1 with ‖x‖1 = 1 we have

‖Ax‖2 ≤ ‖A‖‖x1‖ = ‖A‖

so r ≤ ‖A‖. On the other hand for any x ∈ H1 we have

‖Ax‖2 =

∥∥∥∥‖x‖1A

(
x

‖x‖1

)∥∥∥∥
2

≤ r‖x‖1,

hence ‖A‖ ≤ r and

‖A‖ = sup{‖Ax‖2 : ‖x‖1 = 1}.

If H1 = H2 = H then we claim that

‖Ax‖ = sup{|〈Ax, y〉 : ‖y‖ = 1}

for all x ∈ H. Indeed by the Cauchy-Schwarz inequality we have

|〈Ax, y〉| ≤ ‖Ax‖‖y‖ = ‖Ax‖



12

for ‖y‖ = 1. On the other hand for Ax 6= 0 we have

〈
Ax,

Ax

‖Ax‖

〉
= ‖Ax‖.

Therefore

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1} = sup{|〈Ax, y〉| : ‖x‖ = ‖y‖ = 1}.

The importance of studying bounded linear transformations is evident from the

following proposition.

Proposition 2.18. A linear function A : H1 → H2 is continuous if and only if it is

bounded.

Proof. Let A be continuous and assume that A is unbounded. Then for each n ∈ N

there exists a unit vector xn ∈ H1 so that ‖A(xn)‖2 ≥ n. Then 1
n
xn → 0 in H1 so

A
(

1
n
xn
)
→ A(0) = 0 in H2. But for each n

∥∥∥∥A( 1

n
xn

)∥∥∥∥
2

=
1

n
‖Axn‖2 ≥ 1

a contradiction. Therefore A must be bounded.

Conversely, suppose that A 6= 0 is bounded. Then given ε > 0 let δ = ε
‖A‖ . Then

for all x, y ∈ H1 such that ‖x− y‖1 ≤ δ we have

‖Ax− Ay‖2 = ‖A(x− y)‖ ≤ ‖A‖‖x− y‖1 ≤ ε.

Therefore A is continuous as needed.
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Definition 2.19. An operator A on a Hilbert space H is a bounded linear transfor-

mation A : H → H and the set of all operators on H is denoted by B(H).

Example 2.20. If H is finite dimensional then every linear transformation A : H →

H is an operator. Indeed let {e1, . . . , en} be an orthonormal basis for H. Then for all

x =
∑n

i=1 αiei ∈ H with ‖x‖ = 1 we have

‖Ax‖ =

∥∥∥∥∥
n∑
i=1

αiAei

∥∥∥∥∥ ≤
n∑
i=1

|αi|‖Aei‖ ≤
n∑
i=1

‖Aei‖ <∞

since each |αi| ≤ 1. Hence A is bounded with ‖A‖ ≤
∑n

i=1 ‖Aei‖.

Definition 2.21. Let ϕ : [0, 1]→ C be a function. Then we write

‖ϕ‖∞ = sup{|ϕ(x)| : x ∈ [0, 1]}

if the supremum exists.

Example 2.22. Example from [10]. Consider H = L2([0, 1]). Then let ϕ : [0, 1]→ C

be continuous and define Mϕ : L2([0, 1]) → L2([0, 1]) by Mϕ(f) = ϕf . Then Mϕ is

bounded with ‖Mϕ‖ = ‖ϕ‖∞. Indeed, we have |ϕ(x)| ≤ ‖ϕ‖∞ so

‖Mϕ(f)‖2 =

∫ 1

0

|ϕ(x)|2|f(x)|2 dµ ≤ ‖ϕ‖2
∞

∫ 1

0

|f(x)|2 dµ = ‖ϕ‖2
∞‖f‖2.

Hence we have that Mϕ is bounded with ‖Mϕ‖ ≤ ‖ϕ‖∞. Since ϕ continuous and [0, 1]

is compact there exists x0 ∈ [0, 1] so that ϕ(x0) = ‖ϕ‖∞. Suppose first that x0 6= 0, 1.

Thus given ε > 0 there exists δε > 0 so that |x− x0| < δε implies |ϕ(x)− ϕ(x0)| < ε,

that is ϕ(x0)− ε < ϕ(x). Let ∆ε = {x ∈ [0, 1] : |x− x0| < δε} and define

fε =
1√
2δε

χ∆ε ,
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where χ∆ε is the characteristic function for ∆ε. Then ‖fε‖ = 1 so we have

‖Mϕ‖2 ≥ ‖Mϕfε‖2 =
1

2δε

∫
∆ε

|ϕ|2 dµ ≥ (ϕ(x0)− ε)2.

Hence letting ε→ 0 we have

‖Mϕ‖ ≥ ϕ(x0) = ‖ϕ‖∞

as needed. If x0 = 0, 1 then the same process may be used but with

fε =
1√
δε
χ∆ε .

Example 2.23. Consider H = l2(Z) and define

R,L : H → H

by

(Rα)k = αk−1, (Lα)k = αk+1

for each α = (αk)k∈Z ∈ H. We say that R and L are the right and left shift operators

on l2(Z) respectively. Then both R and L are bounded linear operators of norm 1.

Indeed for all α = (αk)k∈Z, β = (βk)k∈Z ∈ H and λ ∈ C we have

(R(λα + β))k = (λα + β)k−1

= λαk−1 + βk−1

= λ(Rα)k + (Rβ)k

for each k ∈ Z. Hence R is linear.
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Now for all α = (αk)k∈Z ∈ H we have

‖Rα‖2 =
∑
k∈Z

|(Rα)k|2

=
∑
k∈Z

|αk−1|2

=
∑
k∈Z

|αk|2

= ‖α‖2

and so R is a bounded with ‖R‖ ≤ 1. Further if ‖α‖ = 1 then from the above

calculation we see that

‖Rα‖ = ‖α‖ = 1

so

‖R‖ = sup{‖Rα‖ : ‖α‖ = 1} = 1

as claimed. We similarly see that L is an operator with ‖L‖ = 1.

Definition 2.24. An operator A ∈ B(H) is invertible if A−1 exists and is in B(H).

Remark 2.25. Notice that if A is continuous and invertible then A−1 is continuous

by the open mapping theorem. Therefore by Proposition 2.18 it is enough for and

operator A to be invertible in the usual sense.

Proposition 2.26. If A ∈ B(H) then A is invertible if and only if the range of A is

dense and there exists α > 0− so that

‖Ax‖ ≥ α‖x‖

for all x ∈ H.
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Proof. If A is invertible, then A is onto so the range of A is certainly dense. Given

x ∈ H we have

‖x‖ = ‖A−1Ax‖ ≤ ‖A−1‖‖Ax‖

so taking α = 1
‖A−1‖ > 0 we have

α‖x‖ ≤ ‖Ax‖

for all x ∈ H.

Conversely, suppose that the range of A is dense and there exists α > 0 so that

‖Ax‖ ≥ α‖x‖ for all x ∈ H. We first show that the range of A is closed. Let {Axn}

be a Cauchy sequence in the range of A. Then there exists some y ∈ H so that

limAxn = y. Now for all n,m ∈ N we have

‖Axn − Axm‖ = ‖A(xn − xm)‖ ≥ α‖xn − xm‖

so

‖xn − xm‖ → 0

as n,m → ∞ and {xn} is a Cauchy sequence. Therefore there exists x ∈ H with

limxn = x. But since A is continuous we have y = limAxn = Ax and so the range of

A is closed, that is A is onto.

Now let x1, x2 ∈ H with Ax1 = Ax2. Then

0 = ‖Ax1 − Ax2‖ ≥ α‖x1 − x2‖

so ‖x1 − x2‖ = 0 and x1 = x2. Hence we have that A is one-to-one, and the inverse

function A−1 exists. We now verify that A−1 ∈ B(H). The linearity of A−1 follows
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from that of A. For all x ∈ H, we have

‖x‖ = ‖AA−1x‖ ≥ α‖A−1x‖

so

‖A−1x‖ ≤ 1

α
‖x‖

and A−1 ∈ B(H) as desired.

Corollary 2.27. Suppose that

inf

{
‖Ax‖
‖x‖

: ‖x‖ 6= 0

}
= 0

then A is not invertible.

Proposition 2.28. If A,B ∈ B(H), α ∈ C and αA,A + B and AB = A ◦ B are all

defined in the usual way then

1. αA ∈ B(H) with ‖αA‖ = |α|‖A‖;

2. A+B ∈ B(H) with ‖A+B‖ ≤ ‖A‖+ ‖B‖;

3. AB ∈ B(H) with ‖AB‖ ≤ ‖A‖‖B‖.

Proof. Clearly αA,A+B,AB are all linear.

1. For all x ∈ H, we have

‖αAx‖ = ‖A(αx)‖ ≤ ‖A‖‖αx‖ = |α|‖A‖‖x‖

and hence ‖αA‖ ≤ |α|‖A‖. If α = 0 then we have |α|‖A‖ = 0 ≤ 0 = ‖αA‖.
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Now for α 6= 0 and v ∈ H

‖Ax‖ =
∥∥∥α
α
Ax
∥∥∥ =

1

|α|
‖αAx‖ ≤ 1

|α|
‖αA‖‖x‖

so as x is arbitrary ‖A‖ ≤ 1
|α|‖αA‖ or equivalently |α‖A‖ ≤ ‖αA‖.

2. For all x ∈ H, we have

‖(A+B)x‖ = ‖Ax+Bx‖ ≤ ‖Ax‖+‖Bx‖ ≤ ‖A‖‖x‖+‖B‖‖x‖ = (‖A‖+‖B‖)‖x‖

and so ‖A+B‖ ≤ ‖A‖+ ‖B‖.

3. For all x ∈ H, we have

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖

giving ‖AB‖ ≤ ‖A‖‖B‖ as needed.

It is clear that under these operations B(H) is a complex vector space. Further

we see that B(H) is an algebra with unity, namely the identity map I : H → H.

2.5 Adjoint of an Operator

Definition 2.29. A linear functional on H is a bounded (that is continuous) linear

map from H to C.

It is clear that the set of all linear functionals on a Hilbert space is itself a vector

space. The following fundamental result shows that there is a one-to-one correspon-

dence between H and the set of all bounded linear functionals on H.
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Theorem 2.30 (The Riesz Representation Theorem for Bounded Linear Function-

als). A linear map f from H to C is bounded if and only if there exists y ∈ H so

that

f(x) = 〈x, y〉

for all x ∈ H. Further if such a y exists then it is unique and ‖f‖op = ‖y‖.

Proof. If f is identically zero then we may take y = 0 and the results are trivial.

Hence we now assume that f is nonzero.

First assume that f is bounded. Observe that Ker(f) has co-dimension 1 in

H. Now choose w ∈ (Ker(f))⊥ with ‖w‖ = 1 and let λ = f(w). Note that since

w /∈ Ker(f) we have λ 6= 0. Then for each x ∈ H, since Ker(f) is a subspace, we have

x = αw + x′

where x′ ∈ Ker(f) by Proposition 2.13. Further we see that α = 〈x,w〉. Hence

f(x) = αf(x) + f(x′)

= αf(x)

= 〈x,w〉λ

= 〈x, λw〉.

Thus we may take y = λw.

Conversely, if for some y ∈ H we have the function f : H → C given by f(x) =

〈x, y〉 for all x ∈ H then we see that

|f(x)| = ||〈x, y〉| ≤ ‖x‖‖y‖
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and so f is bounded as needed.

Now suppose that there exist y1, y2 ∈ H so that

f(x) = 〈x, y1〉 = 〈x, y2〉

for all x ∈ H. Then 〈x, y1− y2〉 = 0 for all x ∈ H and so y1− y2 = 0. That is y1 = y2

as desired.

Finally, for all x ∈ H we have

|f(x)| = |〈x, y〉| ≤ ‖x‖‖y‖

so ‖f‖op ≤ ‖y‖. On the other hand, we have

‖y‖2 = 〈y, y〉 = |〈y, y〉| = f(y) ≤ ‖f‖op‖y‖

so

‖y‖ ≤ ‖f‖op.

Therefore ‖f‖op = ‖y‖ as claimed.

The following lemma may be found in [11].

Lemma 2.31. Let A,B ∈ B(H). Then A = B if and only if 〈Ax, y〉 = 〈Bx, y〉 for

all x, y ∈ H.

Definition 2.32. A map ϕ : H × H → C that is linear in the first coordinate and

conjugate linear in the second coordinate is called a sesquilinear form on H.

Notice that an inner product is a sesquilinear form.
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Theorem 2.33. Let ϕ be a continuous sesquilinear form on H so that there exists

C > 0 with

|ϕ(x, y)| ≤ C‖x‖‖y‖

for all x, y ∈ H. Then there exists a unique operator A ∈ B(H) so that

ϕ(x, y) = 〈Ax, y〉

for all x, y ∈ H. In addition, ‖A‖ ≤ C.

Proof. Fix x ∈ H and consider the bounded linear function

H → C

given by

y 7→ ϕ(x, y).

Then by the Riesz Representation Theorem 2.30 there exists z ∈ H with

ϕ(x, y) = 〈y, z〉.

Define A : H → H by Ax = z. Then

〈Ax, y〉 = 〈y, Ax〉 = ϕ(x, y)

for all x, y ∈ H.

Now given x1, x2, y ∈ H and α ∈ C we have

〈A(αx1 + x2), y〉 = ϕ(αx1 + x2, y)
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= αϕ(x1, y) + ϕ(x2, y)

= α〈Ax1, y〉+ 〈Ax2, y〉

= 〈αAx1 + Ax2, y〉.

Hence by Lemma 2.31 we have that

A(αx1 + x2) = αAx1 + Ax2

so A is linear.

Now for all x ∈ H we have

‖Ax‖2 = |〈Ax,Ax〉|

= |ϕ(x,Ax)|

≤ C‖x‖‖Ax‖

and so

‖Ax‖ ≤ C‖x‖.

Hence A ∈ B(H) with ‖A‖ ≤ C, as desired.

Corollary 2.34. Given an operator A ∈ B(H), there is a unique operator A∗ ∈ B(H)

so that

〈Ax, y〉 = 〈x,A∗y〉

for all x, y ∈ H. We call A∗ the adjoint of A and further note that (A∗)∗ = A and

‖A∗‖ = ‖A‖.

Proof. Observe that the map

(y, x) 7→ 〈y, Ax〉
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is a sesquilinear form, so there exists a unique operator A∗ ∈ B(H) such that

〈y, Ax〉 = 〈A∗y, x〉,

that is,

〈Ax, y〉 = 〈x,A∗y〉.

Further, we see that

|〈y, Ax〉| ≤ ‖y‖‖A‖‖x‖

and so by Theorem 2.33,

‖A∗‖ ≤ ‖A‖.

It is clear that (A∗)∗ = A and so the same argument shows that

‖A‖ ≤ ‖A∗‖,

as needed.

Example 2.35. The adjoint of the left shift operator L on H = l2(Z) is the right

shift operator R.

Proof. For α = (αk)k∈Z, β = (βk)k∈Z ∈ H, we have

〈Lα, β〉 =
∑
k∈Z

(Lα)kβk

=
∑
k∈Z

αk+1βk

=
∑
k∈Z

αkβk−1

=
∑
k∈Z

αk(Rβ)k



24

= 〈α,Rβ〉

thus L∗ = R. Notice that this also gives R∗ = L.

Proposition 2.36. Let A,B ∈ B(H) and let α ∈ C. Then the following hold:

1. (αA)∗ = αA∗

2. (A+B)∗ = A∗ +B∗

3. (AB)∗ = B∗A∗

4. If A is invertible then (A−1)∗ = (A∗)−1.

Proof. We prove (2) and (3), the others are similar.

2. For all x, y ∈ H we have

〈(A+B)x, y〉 = 〈Ax, y〉+ 〈Bx, y〉 = 〈x,A∗y〉+ 〈x,B∗y〉 = 〈x, (A∗ +B∗)y〉.

Therefore (A+B)∗ = A∗ +B∗ as claimed.

3. For all x, y ∈ H we have

〈ABx, y〉 = 〈Bx,A∗y〉 = 〈x,B∗A∗y〉.

Therefore (AB)∗ = B∗A∗.

The following proposition may be found in [12].

Proposition 2.37. If A ∈ B(H) then ‖A∗A‖ = ‖A‖2.
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Proof. We have that ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2 since ‖A∗‖ = ‖A‖ (Corollary 2.34).

Conversely, we have

‖A‖2 = sup
‖x‖=1

‖Ax‖2

= sup
‖x‖=1

〈Ax,Ax〉

= sup
‖x‖=1

〈A∗Ax, x〉

≤ ‖A∗A‖

since |〈A∗Ax, x〉| ≤ ‖A∗A‖‖x‖2 = ‖A∗A‖ for ‖x‖ = 1.

Definition 2.38. We say that an operator A is Hermitian or self-adjoint if A = A∗

and that A is unitary if U∗ = U−1, further we say that A is normal if A∗A = AA∗.

Definition 2.39. An operator A is positive, denoted A ≥ 0, if 〈Ax, x〉 ≥ 0 for all

x ∈ H.

Notice that the identity operator I is Hermitian. We need a few elementary

properties of adjoints.

2.6 Projections

We now consider a very special type of operator, the orthogonal projection.

Definition 2.40. Given a subspace W ⊂ H, we define the orthogonal projection PW

onto W as follows. For each x ∈ H, write

x = w + y
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for the unique elements w ∈ W, y ∈ W⊥. This is possible by Proposition 2.13. Then

define

PWx = w.

Proposition 2.41. For any subspace W ⊂ H, PW ∈ B(H). If W 6= {0} then

‖PW‖ = 1.

Proof. Consider any x = w+ y ∈ W +W⊥ = H. Since ‖x‖2 = ‖w‖2 + ‖y‖2, we have

‖PWx‖ = ‖w‖ ≤ ‖x‖

so PW ∈ B(H) with ‖PW‖ ≤ 1. However, for any w ∈ W

‖PWw‖ = ‖w‖

and so ‖PW‖ ≥ 1.

Definition 2.42. An operator A is idempotent if A2 = A.

Proposition 2.43. For every subspace W , PW is idempotent and Hermitian.

Proof. Given x ∈ H, write x = w + y with w ∈ W, y ∈ W⊥. Then we have

P 2
W (x) = PW (PW (x)) = PW (w) = w = PW (x).

Hence PW is idempotent. Now given x1, x2 ∈ H, write x1 = w1 + y1, x2 = w2 + y2

with w1, w2 ∈ W and y1, y2 ∈ W⊥. Then we have

〈PWx1, x2〉 = 〈w1, x2〉

= 〈w1, w2〉
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= 〈x1, w2〉

= 〈x1, PWx2〉.

Hence P ∗W = PW and PW is Hermitian, as claimed.

Notice that if P is the orthogonal projection onto a subspace W then we have

W = Im(P ) = {x ∈ H : P (x) = x}.

Thus we see that for each subspace W ⊂ H there is an associated idempotent, Her-

mitian operator, namely PW .

Proposition 2.44. If P ∈ B(H) is idempotent and Hermitian then P is the orthog-

onal projection onto the subspace Im(P ) and

Im(P )⊥ = Ker(P ).

Proof. First, we show that Im(P )⊥ = Ker(P ). Given y ∈ Ker(P ), for all w ∈ Im(P )

we have

〈w, y〉 = 〈Pw, y〉 = 〈w,Py〉 = 0

since Py = 0. Hence y ∈ Im(P )⊥ and Ker(P ) ⊂ Im(P )⊥. Conversely, given y ∈

Im(P )⊥ for all x ∈ H we have

0 = 〈Px, y〉 = 〈x, Py〉.

Since x is arbitrary we have Py = 0 and y ∈ Ker(P ), hence Im(P )⊥ = Ker(P ).

To see that P is an orthogonal projection onto Im(P ), let w ∈ Im(P ) and x ∈ H.
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We have

〈w, x− Px〉 = 〈w, x〉 − 〈w,Px〉

= 〈w, x〉 − 〈Pw, x〉

= 0.

Thus x− Px ∈ Im(P )⊥ for all x ∈ H. Hence for all x ∈ H we have

x = Px+ (x− Px) ∈ Im(P)⊕ (Im(P))⊥

and we see that P is indeed the orthogonal projection onto the image of P .

That is there is a one-to-one correspondence between idempotent Hermitian op-

erators and subspaces.

2.7 The Spectrum of an Operator

Definition 2.45. Given A ∈ B(H) we define the spectrum of A to be

σ(A) = {λ ∈ C : A− λ is not invertible}

and the resolvent set of A as

ρ(A) = C\σ(A).

Notice that in finite dimensions the spectrum of an operator A is precisely the set

of eigenvalues of A. Most of the proofs and examples in this section are from [10].

Example 2.46. Consider the Hilbert space H = L2([0, 1]) and let ϕ be a continuous

function on [0, 1] with Mϕ the multiplication operator on H introduced in Example
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2.22. Then σ(Mϕ) = ϕ([0, 1]).

Proof. First, suppose that λ = ϕ(x0) for some x0 ∈ [0, 1]. Then, since ϕ is continuous,

for each ε > 0 there exists a δε > 0 so that x ∈ [0, 1] and |x − x0| < δε implies

|ϕ(x)−λ| < ε. Let a = min{(x0− δε), 0} and b = max{(x0 + δε), 1}. Now there exists

a non-zero function fε ∈ H so that fε is supported on [a, b]. Hence we have

‖(Mϕ − λ)fε‖2 =

∫
|(ϕ(x)− λ)fε(x)|2 dx

=

∫
|ϕ(x)− λ|2|fε(x)|2 dx

≤ ε2‖fε‖2.

Since ε is arbitrary we have that Mϕ − λ is not invertible by Corollary 2.27 and

therefore λ ∈ σ(Mϕ).

Conversely, suppose that λ /∈ ϕ([0, 1]). Thus 1
ϕ(x)−λ is defined for all x ∈ [0, 1].

Given f ∈ H, we have (Mϕ − λ)((ϕ− λ)−1f) = f and Mϕ − λ is onto. Further since

[0, 1] is compact — and hence closed — there must exist α > 0 so that |ϕ(x)−λ| > α

for all x ∈ [0, 1]. Hence for any f ∈ H we have

‖(Mϕ − λ)f‖2 =

∫
|ϕ(x)− λ|2|f(x)|2 dx ≥ α‖f‖2

so by Proposition 2.26 Mϕ − λ is invertible and λ /∈ σ(Mϕ). Therefore σ(Mϕ) =

ϕ([0, 1]) as needed.

Proposition 2.47. Let A ∈ B(H), then

σ(A∗) = σ(A).
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Proof. We have

A∗ − λ = (A− λ)∗.

Hence A∗ − λ is invertible if and only if A− λ is invertible. Therefore

σ(A∗) = σ(A).

Corollary 2.48. If A ∈ B(H) is self-adjoint then

σ(A) ⊂ R.

Proof. Indeed

σ(A) = σ(A∗) = σ(A)

hence

σ(A) ⊂ R.

The following proposition may be found in [1].

Proposition 2.49. If A is a positive operator then σ(A) ⊂ {x ∈ R : x ≥ 0}.

Proof. First, notice that since A is positive, that is 〈Ax, x〉 ≥ 0 for all x ∈ H, we have

〈Ax, x〉 = 〈Ax, x〉 = 〈x,Ax〉
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for all x ∈ H. Then using Lemma 2.16, for all x, y ∈ H we have

4〈Ax, y〉 = 〈A(x+ y), x+ y〉 − 〈A(x− y), x− y〉+ i〈A(x+ iy), x+ iy〉 − i〈A(x− iy), x− iy〉

= 〈x+ y, A(x+ y)〉 − 〈x− y, A(x− y)〉+ i〈x+ iy, A(x+ iy)〉 − i〈x− iy, A(x− iy)〉

= 4〈x,Ay〉.

Thus

〈Ax, y〉 = 〈x,Ay〉

and A is self-adjoint. Hence by Corollary 2.48 we have σ(A) ⊂ R.

For all x ∈ H, we have

−λ‖x‖2 = 〈−λx, x〉

≤ 〈−λx, x〉+ 〈Ax, x〉

= 〈(A− λ)x, x〉

≤ ‖(A− λ)x‖‖x‖.

Hence for ‖x‖ 6= 0 we have

‖(A− λ)x‖ ≥ −λ‖x‖

and so the relation holds for all x ∈ H. From the proof of Proposition 2.26 we see

that A − λ is one-to-one for all λ < 0. Let y ∈ H be perpendicular to the range of

A− λ. Then for all x ∈ H, we have

0 = 〈(A− λ)x, y〉

= 〈x, (A− λ)∗y〉

= 〈x, (A− λ)y〉,
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that is (A − λ)y = 0. Thus since A − λ is one-to-one we have y = 0 and the range

of A − λ is dense. Hence by Proposition 2.26 we have that A − λ is invertible so

λ /∈ σ(A). Therefore σ(A) ⊂ {x ∈ R : x ≥ 0} as claimed.

Lemma 2.50. If A ∈ B(H) then σ(A) is bounded by ‖A‖.

Proof. Suppose λ > ‖A‖. Then
∥∥ 1
λ
A
∥∥ < 1, so

(
1− 1

λ
A

)−1

=
∞∑
i=0

1

λn
An

with convergence in norm. Thus since A−λ = −λ
(
1− 1

λ
A
)
, we have A−λ invertible,

that is, λ /∈ σ(A). Therefore if λ ∈ σ(A) then |λ| ≤ ‖A‖, as claimed.

Definition 2.51. Given A ∈ B(H) we define the spectral radius r(A) = sup{|λ| :

λ ∈ σ(A)}.

Lemma 2.52. Given λ0 ∈ ρ(A), there exists an open set U containing λ0 so that if

λ ∈ U then A − λ is invertible. Further (A − λ)−1 is given by a convergent power

series about λ0.

Proof. For λ0 ∈ ρ(A) we have that (A− λ0) is invertible. Now let

U = {λ ∈ C : |λ− λ0| <
1

‖(A− λ0)−1‖
}.

Then for λ ∈ U ,

A− λ = (A− λ0)(1− (λ− λ0)(A− λ0)−1)

with

(1− (λ− λ0)(A− λ0)−1)−1 =
∞∑
n=0

(λ− λ0)n
(
(A− λ0)−1)n
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which converges since ‖(λ−λ0)(A−λ0)−1‖ < 1. Thus A−λ is invertible and (A−λ)−1

is given by a convergent powers series about λ0.

Corollary 2.53. For each A ∈ B(H), σ(A) is a compact subset of C.

Proof. Putting together the preceding two lemmas we have that σ(A) is bounded and

closed, therefore by the Heine-Borel Theorem it is compact.

Proposition 2.54. If A is unitary then σ(A) and σ(A−1) = σ(A∗) are subsets of the

unit circle in C.

Proof. First, since ‖A‖ = 1 and ‖A∗‖ = ‖A−1‖ = 1 we have that the spectra of A

and A∗ are contained in the unit disk. Now for all λ 6= 0, we have

A− λ = −A(A−1 − λ−1)λ

and so

(A− λ)−1 = −λ−1(A−1 − λ−1)−1A−1.

Thus we see that λ ∈ σ(A) if and only if λ−1 ∈ σ(A−1). Since both σ(A), σ(A−1) are

contained in the unit disk this is only possible if both σ(A) and σ(A−1) are contained

in the unit circle.

Example 2.55. Consider H = l2(Z) with L,R the left and right shift operators

introduced in Example 2.23. Then

σ(L) = σ(R) = {λ ∈ C : |λ| = 1}.

Proof. Indeed, since LL∗ = LR = I we have that L,R are unitary and so σ(L), σ(R)

are contained in the unit circle. We now show that the unit circle is contained in
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σ(R); the case for L is similar. Let λ ∈ C with |λ| = 1. Then for each k ∈ N, consider

the vector vk ∈ H given by

vk =
k∑

n=0

λ−nen.

Then

Rvk =
k∑

n=0

λ−nen−1 =
k+1∑
n=1

λ−n+1en

and

λvk =
k∑

n=0

λ−n+1en.

Hence we see that

(R− λ)vk = λ−kek+1 − λe0

and so

‖(R− λ)vk‖ =
√

2.

However

‖vk‖ =
√
k + 1.

Thus

‖(R− λ)vk‖
‖vk‖

=

√
2√

k + 1
→ 0

as k →∞. By Corollary 2.27 we see that R−λ is not invertible, that is λ ∈ σ(R).

Definition 2.56. Let A ∈ B(H), then we define the resolvent function

R : ρ(A)→ B(H)

by

λ 7→ Rλ = (A− λ)−1.
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Notice that by the computation in the proof of Lemma 2.52 we see that

λ 7→ Rλ

is analytic on ρ(A).

Proposition 2.57. Let A ∈ B(H) with H 6= {0}. Then σ(A) 6= ∅.

Proof. Assume by way of contradiction that σ(A) = ∅. Then Rλ is defined for all

λ ∈ C. For all x, y ∈ H consider the function

fx,y : C→ C

defined by

fx,y(λ) = 〈Rλx, y〉.

Since for each λ0 ∈ ρ(A) = C there exists an open set U with R|U given by a

convergent power series around λ0 it follows that fx,y is analytic on U . That is, fx,y

is entire for each x, y ∈ H. Let λ > ‖A‖. Then since ‖λ−1A‖ < 1, we have

‖Rλ‖ = |λ|−1‖(1− λ−1A)−1‖

= |λ|−1

∥∥∥∥∥
∞∑
n=0

(λ−1A)n

∥∥∥∥∥
≤ |λ|−1

∞∑
n=0

‖λ−1A‖n

= |λ|−1 1

1− ‖λ−1A‖

=
1

|λ| − ‖A‖

→ 0
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as λ→∞. We claim that fx,y is bounded for each x, y. Indeed for all λ ∈ C we have

|fx,y(λ)| = |〈Rλx, y〉| ≤ ‖Rλ‖‖x‖‖y‖ → 0

as λ→∞. Thus fx,y is bounded and entire and so by Liouville’s Theorem is constant.

Since fx,y → 0 as |λ| → ∞ we must have

0 = fx,y(λ) = 〈Rλx, y〉

for all λ ∈ C and x, y ∈ H. However this implies that Rλx = 0 for all x ∈ H, a

contradiction since Rλ is invertible. Therefore σ(A) 6= ∅.

Proposition 2.58. For all A ∈ B(H) we have

r(A) = lim
n→∞

‖An‖
1
n .

Proof. Let A ∈ B(H) and consider f(z) = −Rz−1 , defined for all z ∈ C\{0} with

z−1 ∈ ρ(A). In particular, for |z| < ‖A‖−1 we have |z|−1 > ‖A‖ so f(z) satisfies

f(z) = (z−1 − A)−1 = z(1− zA)−1 = z

∞∑
n=0

(zA)n.

Notice that we may extend f analytically to include z = 0 by defining f(0) = 0, so

f is given by a power series centered at 0. Then from complex analysis, we recall

that the radius of convergence R for this series is the distance from 0 to the nearest

singularity, that is, the distance to σ(A). Then we have

R = inf{|λ| : λ−1 ∈ σ(A)}
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= inf{|λ|−1 : λ ∈ σ(A)}

=
1

r(A)
.

Further by Hadamard’s Theorem we have

R−1 = lim sup
n→∞

‖An‖
1
n .

Thus r(A) = lim sup ‖An‖ 1
n .

Now for each n ∈ N, we have

An − λn = (A− λ)
n−1∑
i=0

Aiλn−1−i.

Hence if An − λn is invertible then A − λ is invertible, or equivalently if λ ∈ σ(A)

then λn ∈ σ(An). Therefore by Lemma 2.50 we have

|λ|n = |λn| ≤ ‖An‖

for all λ ∈ σ(A) so |λ| ≤ ‖An‖ 1
n . Thus r(A) ≤ ‖An‖ 1

n for all n ∈ N. Therefore

r(A) ≤ lim infn→∞ ‖An‖
1
n . Hence we have

lim sup
n→∞

‖An‖
1
n = r(A) ≤ lim inf

n→∞
‖An‖

1
n

so limn→∞ ‖An‖
1
n exists and is equal to r(A).

Notice that in Example 2.46, we have σ(Mϕ) = ϕ([0, 1]), so certainly σ(Mϕ) is

bounded by ‖Mϕ‖ = ‖ϕ‖∞. However, even more holds: we have ‖Mϕ‖ = sup{|λ| :

λ ∈ σ(Mϕ)}. This useful property generalizes to any normal operator.

The following proof may be found in [1].
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Proposition 2.59. If A ∈ B(H) is normal then

r(A) = ‖A‖.

Proof. First assume that A is self-adjoint. Then we have

‖A‖2 = ‖AA∗‖ = ‖A2‖

and

‖A‖4 =
(
‖A‖2

)2
= ‖A2‖2 = ‖A2(A2)∗‖ = ‖A4‖.

Continuing this we see that for each n ∈ N we have

‖A‖2n = ‖A2n‖

and hence that

r(A) = lim
n→∞

‖An‖
1
n = lim

n→∞
‖A2n‖

1
2n = ‖A‖.

Now using the normality of A we have

‖(AA∗)2n‖ = ‖A2n(A∗)2n‖

= ‖A2n(A2n)∗‖

= ‖A2n‖2.

If A is normal then AA∗ is self-adjoint so

‖A‖2 = ‖AA∗‖

= r(AA∗)
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= lim
n→∞

‖(AA∗)2n‖
1
2n

= lim
n→∞

(
‖A2n‖2

) 1
2n

= lim
n→∞

(
‖A2n‖

1
2n

)2

= r(A)2.

Therefore ‖A‖ = r(A) as claimed.

Definition 2.60. Let P(C) be the set of all polynomials with complex coefficients

viewed as functions on C.

Notice that given an operator A ∈ B(H) and a polynomial p(x) =
∑n

i=0 aix
i ∈

P(C), we may define p(A) ∈ B(H) in the obvious way, namely

p(A) =
n∑
i=0

aiA
i,

with the usual understanding that A0 = I.

Proposition 2.61. Let A ∈ B(H) and p(x) ∈ P(C). Then σ(p(A)) = p(σ(A)).

Proof. Suppose that p(x) has degree n, λ ∈ C and consider the polynomial p(x)− λ.

Then we may factor p(x)− λ as

p(x)− λ = a
n∏
j=1

(x− λj)

where a, λj ∈ C for j = 1, . . . , n. Then we have

p(A)− λ = a
n∏
j=1

(A− λj).

Hence we see that p(A) − λ is invertible if and only if A − λj is invertible for each
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j. In particular, we have λ ∈ σ(p(A)) if and only if A− λj is not invertible for some

j = 1, . . . , n, that is, if and only if λj ∈ σ(A) for some j. But in this case we have

p(λj)− λ = 0

so

λ = p(λj) ∈ p(σ(A)).

Therefore σ(p(A)) = p(σ(A)) as claimed.

Proposition 2.62. Let A ∈ B(H) be a self adjoint operator and let p(x) ∈ C[x].

Then p(A) ∈ B(H) is normal and

‖p(A)‖op = sup{|p(λ)| : λ ∈ σ(A)}.

Proof. Let p(x) =
∑n

i=0 aix
i with ai ∈ C for i = 0, . . . , n. Then using the properties

of an adjoint, we see that

(p(A))∗p(A) =

(
n∑
i=0

aiA
i

)(
n∑
j=0

ajA
j

)

=
n∑
i=0

n∑
j=0

aiajA
iAj

=
n∑
j=0

n∑
i=0

ajA
jaiA

i

=

(
n∑
j=0

ajA
j

)(
n∑
i=0

aiA
i

)

= p(A)(p(A))∗.
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Thus p(A) is normal and

‖p(A)‖ = r(p(A)).

However from Proposition 2.61

r(p(A)) = sup{|λ| : λ ∈ σ(p(A))} = sup{|p(λ)| : λ ∈ σ(A)}

so

‖p(A)‖ = sup{|p(λ)| : λ ∈ σ(A)}

as claimed.



CHAPTER 3: Spectral Theorem for Self-Adjoint Operators

Throughout this chapter we take A ∈ B(H) to be self-adjoint unless otherwise noted

and we write σ(A) = Σ.

Definition 3.1. A ∗-homomorphism (respectively, ∗-isomorphism) is a map ϕ :

B(C) → B(H) so that ϕ is an algebra homomorphism (respectively, isomorphism)

and

ϕ
(
f
)

= ϕ(f)∗.

3.1 Functional Calculus for Continuous Functions

We have seen that given an operator A and a polynomial p we can naturally define

the operator p(A) in a way that behaves well with respect to the spectrum. In this

section, we generalize this result to arbitrary continuous functions on the spectrum

in the case that A is a self-adjoint operator.

Definition 3.2. Let P(Σ) denote the set of all polynomials in P(C) restricted to Σ.

We define the norm ‖ · ‖∞ on P(Σ) in the usual way and write

‖p‖Σ = ‖p|Σ‖∞ = sup
λ∈Σ
|p(λ)|.

We show that our definition of p(A) depends only on p|Σ so that our map from

P(C) to B(H) restricts to a well defined map from P(Σ) to B(H).

Proposition 3.3. Let p ∈ P(C). Then p(A) = 0 if and only if p|Σ ≡ 0.

Proof. Note that p(A) = 0 if and only if ‖p(A)‖ = 0. But

‖p(A)‖ = sup{|p(λ)| : λ ∈ Σ},
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so ‖p(A)‖ = 0 if and only if p(λ) = 0 for all λ ∈ Σ, giving the desired result.

Corollary 3.4. If p, q ∈ P(C) then p|Σ = q|Σ if and only if p(A) = q(A) ∈ B(H).

Proof. Indeed p − q is a polynomial defined on C. By the previous proposition we

have

(p− q)|Σ = 0

if and only if

p(A)− q(A) = 0

giving the desired result.

Hence we now have an injection

ϕ : P(Σ) ↪→ B(H)

given by

ϕ(p) = p(A).

Viewing P(Σ) as a normed algebra under the norm ‖·‖Σ, we also have that ϕ preserves

norms. We summarize:

Proposition 3.5. The map ϕ : P(Σ) → B(H) is an isometry and a ∗-isomorphism

onto its image in B(H).

Definition 3.6. Let A ∈ B(H) be self-adjoint. We define 〈A〉 to be the closed sub-

algebra generated by A and I. In particular, 〈A〉 contains p(A) for every polynomial

p ∈ P(Σ).

Proposition 3.7. The map ϕ extends uniquely to an isometric ∗-isomorphism ϕ :

C(Σ)→ 〈A〉. For f ∈ C(Σ), we denote ϕ(f) = f(A).
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Proof. Since Σ is compact and the polynomials separate points, it follows from the

Stone-Weierstrass theorem that P(Σ) is dense in the set C(Σ) of continuous functions

on Σ. Since ϕ : P(Σ)→ B(H) is an isometry we may extend ϕ uniquely by continuity

to

ϕ : C(Σ)→ 〈A〉.

That is, given f ∈ C(Σ) there exists a sequence of polynomials {pn} ⊂ P(Σ) so that

pn → f in the ‖·‖∞ norm. Then we define f(A) = lim pn(A) ∈ 〈A〉 where convergence

here is in the operator norm. That ϕ is still an isomorphism preserving norms follows

directly since convergence is uniform in C(Σ).

This association of continuous maps on Σ with operators in 〈A〉 ⊂ B(H) is known

as the functional calculus of the operator.

3.2 Extending the Functional Calculus

The development in this section is inspired by [8] and [4].

We have the injection

C(Σ)→ B(H)

given by

f 7→ f(A).

We wish to extend this to define f(A) whenever f ∈ B(Σ) is bounded and mea-

surable. Notice that C(Σ) is dense in B(Σ) under the topology of pointwise bounded

convergence. That is, for every f ∈ B(Σ), there exists a sequence (fn) with each

fn ∈ C(Σ) with a uniform bound and f(x) = limn→∞ fn(x) for all x ∈ Σ.

Definition 3.8. Let X be a compact Hausdorff space. Then Radon(X) is the normed

space of signed Radon measures on X under the total variation norm, and C(X) is
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the linear space of continuous real valued functions on X under the maximum norm.

The following result may be found in [6] page 464.

Theorem 3.9 (Riesz Representation Theorem for the Dual of C(X)). Define the

operator T : Radon(X)→ [C(X)]∗ by setting, for ν ∈ Radon(X), and f ∈ C(X),

Tν(f) =

∫
X

f dν

Then T is a linear isometric isomorphism of Radon(X) onto [C(X)]∗.

Corollary 3.10. Let x, y ∈ H. Then there exists a unique regular finite Borel measure

µx,y on Σ so that

〈f(A)x, y〉 =

∫
f dµx,y

for all f ∈ C(Σ). Further we have

µx,y(M) ≤ ‖x‖‖y‖

for all Borel sets M ⊂ Σ.

Proof. For each f ∈ C(Σ), we have

|〈f(A)x, y〉| ≤ ‖f(A)‖‖x‖‖y‖ = ‖f‖Σ‖x‖‖y‖ <∞.

So the map F : C(Σ)→ C, given by f 7→ 〈f(A)x, y〉 is a continuous linear functional.

Since Σ is compact and Hausdorff, the Riesz Representation Theorem (Theorem 3.9)

implies that there exists a unique regular finite Borel measure µx,y on Σ so that

〈f(A)x, y〉 =

∫
f dµx,y
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for all f ∈ C(Σ). Further this measure satisfies µx,y(Σ) = ‖F‖ ≤ ‖x‖‖y‖. Therefore

for every Borel set M ⊂ Σ we have

µx,y(M) ≤ µx,y(Σ) ≤ ‖x‖‖y‖

as needed.

Proposition 3.11. For each Borel set M ⊂ Σ, the map H × H → C given by

(x, y) 7→ µx,y(M) is linear in the first coordinate and conjugate linear in the second

coordinate. Further we have

µx,y(M) = µy,x(M).

Proof. Let x1, x2, y ∈ H and λ ∈ C. Then for all f ∈ C(Σ) we have

∫
f dµλx1+x2,y = 〈f(A)(λx1 + x2), y〉

= λ〈f(A)x1, y〉+ 〈f(A)x2, y〉

= λ

∫
f dµx1,y +

∫
f dµx2,y

=

∫
f d(λµx1,y + µx2,y).

Therefore, since f is arbitrary, we have

µλx1+x2,y(M) = λµx1,y(M) + µx2,y(M)

as needed. Similarly we see that the map is conjugate linear in the second coordinate.
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Let f ∈ C(Σ). Then since f 7→ f(A) is a ∗-homomorphism we have

(f(A))∗ = f(A).

Thus

∫
f dµx,y = 〈f(A)x, y〉

= 〈x, (f(A))∗y〉

= 〈(f(A))∗y, x〉

=

∫
f dµy,x

=

∫
f dµy,x.

As f is arbitrary, we then have

µx,y(M) = µy,x(M)

as needed.

Given a function f ∈ B(Σ), for all x, y ∈ H we see

∣∣∣∣∫ f dµx,y

∣∣∣∣ ≤ ‖f‖Σµx,y(Σ) ≤ ‖f‖Σ‖x‖‖y‖.

Hence we see that the map

(x, y) 7→
∫
f dµx,y

is a bounded sesquilinear form. By the Riesz Representation Theorem (Theorem
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2.30) there exists an operator f(A) ∈ B(H) so that

〈f(A)x, y〉 =

∫
f dµx,y.

Proposition 3.12. If (fn) is a sequence of functions in B(Σ) that have a uniform

bound and fn → f pointwise then fn(A)→ f(A) in the weak operator topology.

Proof. Since (fn) is uniformly bounded it follows from the Dominated Convergence

Theorem that

〈fn(A)x, y〉 =

∫
fn dµx,y →

∫
f dµx,y

for all x, y ∈ H. Therefore

〈fn(A)x, y〉 → 〈f(A)x, y〉

for all x, y ∈ H as needed.

Proposition 3.13. The map

B(Σ)→ B(H)

given by

f 7→ f(A)

as above is as ∗-homomorphism that extends the functional calculus.

Proof. It is clear that the definition of f(A) agrees with the functional calculus when

f is continuous, we now verify that this association is a homomorphism.

By linearity of integration we have that f 7→ f(A) is linear. We need to show that

(f(A))∗ = f(A) and that (fg)(A) = f(A)g(A) for all f, g ∈ B(Σ).
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Let f ∈ B(Σ) and x, y ∈ H. Then we have

〈f(A)x, y〉 =

∫
f dµx,y

=

∫
f dµy,x

=

∫
f dµy,x

= 〈f(A)y, x〉

= 〈(f(A))∗x, y〉.

since this holds for all x, y we have f(A) = (f(A))∗ as needed.

For the second claim,

(fg)(A) = f(A)g(A)

for all f, g ∈ C(Σ). Thus given f, g ∈ B(Σ) there exists uniformly bounded sequences

(fn), (gm) with fn, gm ∈ C(Σ) for all n,m so that fn → f, gm → g pointwise as n,m→

∞. Therefore by Proposition 3.12, by taking limits in m and then n respectively we

have

〈(fngm)(A)x, y〉 = 〈fn(A)gm(A)x, y〉

→ 〈fn(A)g(A)x, y〉

→ 〈f(A)g(A)x, y〉

for all x, y ∈ H. But fngm → fg so

〈(fngm)(A)x, y〉 → 〈(fg)(A)x, y〉.
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Hence

〈(fg)(A)x, y〉 = 〈f(A)g(A)x, y〉

for all x, y ∈ H and (fg)(A) = f(A)g(A).

3.3 The Spectral Theorem

Recall that C(Σ) is dense in B(Σ) under pointwise bounded convergence. However,

simple functions supported on Borel sets are dense in B(Σ) under uniform conver-

gence. That is for each f ∈ B(Σ) there exists a sequence of simple functions (fn) on

Σ that converges uniformly to f .

Definition 3.14. An H-projection valued measure on a Σ is a map P from Borel

subsets of Σ to B(H) so that the following hold for all Borel sets M,N ⊂ Σ.

1. Each P (M) is an orthogonal projection.

2. P (∅) = 0 and P(Σ) = I.

3. P (M ∩N) = P (M)P (N)

4. If {Mi}i∈N are disjoint Borel subsets of Σ then

P

(⋃
i

Mi

)
=
∑
i

P (Mi)

where the sum converges in the strong operator topology.

Recall from the last section, we have the homomorphism from B(Σ) to B(H) given

by f 7→ f(A), where

〈f(A)x, y〉 =

∫
Σ

f dµx,y.
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Definition 3.15. Define the map P from the set of all Borel subsets of Σ to B(H)

by

P (M) = χM(A)

for each Borel set M ⊂ Σ, where χM is the characteristic function of M .

Proposition 3.16. The map P defined in Definition 3.15 is a projection valued

measure.

Proof. 1. Let x, y ∈ H, then we have

〈(P (M))2x, y〉 =

∫
χ2
M dµx,y =

∫
χM dµx,y = 〈P (M)x, y〉

so (P (M))2 = P (M) and P (M) is idempotent. Further we have (P (M))∗ =

χM(A) = χM(A) = P (M) so P (M) is Hermitian. Therefore, by Proposition

2.44, P (M) is the orthogonal projection onto its range.

2. For all x, y ∈ H we have

〈P (∅)x, y〉 =

∫
χ∅ dµx,y = 0

and

〈P (Σ)x, y〉 =

∫
χΣ dµx,y =

∫
1 dµx,y = 〈Ix, y〉

. Thus P (∅) = 0 and P (Σ) = I as desired.

3. We have that

χM∩N = χMχN
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for every pair M,N ⊂ Σ of Borel sets. Therefore for all x, y ∈ H we have

〈P (M ∩N)x, y〉 =

∫
χM∩N dµx,y

=

∫
χMχN dµx,y

= 〈P (M)P (N)x, y〉

since this holds for all x, y ∈ H we have P (M) = P (N) as needed.

4. For each n ∈ N let Fn =
⋃n
i=1Mi and let F =

⋃∞
i=1Mi. Then since χFn =∑n

i=1 χMi
we have

P (Fn) = χFn(A) =
n∑
i=1

χMi
(A) =

n∑
i=1

P (Mi).

Since χFn → χF pointwise and bounded we have that

χFn(A) =
n∑
i=1

P (Mi)→ χF (A) = P (F )

weakly by Theorem 3.12.

Also for each n ∈ N we see that F = Fn∪(F\Fn) where Fn, (F\Fn) are disjoint.

Thus

P (F ) = P (Fn) + P (F\Fn)

and for all x ∈ H,

‖P (F )x− P (Fn)x‖2 = ‖P (F\Fn)x‖2

= 〈P (F\Fn)x, P (F\Fn)x〉

= 〈P (F\Fn)x, x〉
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= 〈(P (F )− P (Fn))x, x〉

→ 0

as n→∞. Therefore P (Fn)→ P (F ) strongly.

Proposition 3.17. For any projection valued measure P and each pair x, y ∈ H, the

map given by

Px,y(M) = 〈P (M)x, y〉

is a standard complex measure on Σ.

Now let P be any projection valued measure on Σ defined on the σ-algebra of

Borel subsets of Σ.

Definition 3.18. Let f be a simple function on Σ. Then we may write

f =
n∑
i=1

αiχMi
,

where αi ∈ C and Mi ⊂ Σ is measurable for each i = 0, . . . , n and the family (Mi) is

pairwise disjoint. Then we define the integral of f with respect to P as

∫
f dP =

n∑
i=1

αiP (Mi).

Using this definition we can develop integration of a bounded measurable function

in the usual way. To begin, we need a technical result.

Lemma 3.19. If f ∈ B(Σ) is a simple function then

∥∥∥∥∫ f dP

∥∥∥∥
op

≤ ‖f‖∞.
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Proof. Write f =
∑n

i=1 αiχMi
where (Mi) is a disjoint family of Borel subsets of Σ.

Then we see that

‖f‖∞ = sup
x∈Σ
|f(x)| = max

i
|α|i.

Notice that P (Mj)P (Mi) = P (Mi)P (Mj) = P (Mi ∩Mj) = 0 by Proposition 3.16, so

the range of P (Mi) is orthogonal to the range of P (Mj) for each i 6= j. Now for all

x ∈ H we have

∥∥∥∥(∫ f dP

)
x

∥∥∥∥2

= ‖
n∑
i=1

αiP (Mi)x‖2

≤ ‖f‖∞
n∑
i=1

‖P (Mi)x‖2

= ‖f‖∞‖
n∑
i=1

P (Mi)x‖2

= ‖f‖∞

∥∥∥∥∥P
(

n⋃
i=1

Mi

)∥∥∥∥∥
op

≤ ‖f‖∞‖x‖.

since ‖P (
⋃n
i=1Mi)‖op = 1. Hence we have

∥∥∥∥∫ f dP

∥∥∥∥
op

≤ ‖f‖∞

, as claimed.

Proposition 3.20. Let f ∈ B(Σ) and (fn) be a sequence of simple functions (fn)

converging uniformly to f . There exists an operator, denoted
∫
f dP , so that

∫
fn dP

converges to
∫
f dP in norm.



55

Proof. For each n,m ∈ N, we have

∥∥∥∥∫ fn dP −
∫
fm dP

∥∥∥∥ ≤ ‖fn − fm‖.
Thus since ‖fn − fm‖ → 0 as n,m→∞, we have

(∫
fn dP

)

is a Cauchy sequence in B(H) and so there exists an operator
∫
f dP so that∫

fn dP →
∫
f dP in norm.

Remark 3.21. Notice that the definition of
∫
f dP does not depend on the choice

of sequence (fn).

Theorem 3.22. The map from B(Σ) to B(H) given by

f 7→
∫
f dP

is a ∗-homomorphism. Further for all x, y ∈ H we have

〈(∫
f dP

)
x, y

〉
=

∫
f dPx,y.

Proof. Let f ∈ B(Σ) and (fn) be a sequence of simple functions so that fn → f

uniformly. Since ∥∥∥∥∫ fn dP

∥∥∥∥ ≤ ‖fn‖
for all n, by taking limits we obtain

∥∥∥∥∫ f dP

∥∥∥∥ ≤ ‖f‖ <∞,
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so ∫
f dP ∈ B(H).

We readily see that the map is linear just as for integration with respect to ordinary

measures. Now if

f =
n∑
i=1

αiχMi
, g =

m∑
j=1

βjχNj

are two simple functions we have

fg =
n∑
i=1

m∑
j=1

αiβjχMi
χNj

=
n∑
i=1

m∑
j=1

αiβjχMi∩Nj
.

Hence fg is a simple function and

∫
fg dP =

n∑
i=1

m∑
j=1

αiβiP (Mi ∩Nj)

=
n∑
i=1

n∑
j=1

αiβiP (Mi)P (Nj)

=

(
n∑
i=1

αiP (Mi)

)(
m∑
j=1

βjP (Nj)

)

=

(∫
f dP

)(∫
g dP

)
.

Now for each simple function f =
∑n

i=1 αiχMi
, we have

(∫
f dP

)∗
=

(
n∑
i=1

αiP (Mi)

)∗

=
n∑
i=1

αiP (Mi)

=

∫
f dP
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and the map is a ∗-homomorphism as desired.

Finally for a simple function f =
∑n

i=1 αiχMi
and x, y ∈ H, we have

〈(∫
f dP

)
x, y

〉
=

〈(
n∑
i=1

αiP (Mi)

)
x, y

〉

=
n∑
i=1

αi〈P (Mi)x, y〉

=
n∑
i=1

αiPx,y(Mi)

=

∫
f dPx,y.

We now come to the fundamental result of this chapter.

Theorem 3.23 (The Spectral Theorem for Self-Adjoint Operators). Let A ∈ B(H)

be a self-adjoint operator with Σ = σ(A). Then there exists a unique spectral measure

P so that

A =

∫
Σ

λ dP.

Further, for any bounded measurable function f defined on the spectrum, we obtain

f(A) ∈ B(H) defined by

f(A) =

∫
Σ

f(λ) dP.

Proof. The projection valued measure defined in Definition 3.15 is a spectral measure

so that

f(A) =

∫
Σ

f dP
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for all f ∈ B(Σ). In particular, for f(λ) = λ we have

A =

∫
Σ

λ dP,

establishing existence.

Now suppose that Q is any spectral measure on Σ such that

A =

∫
Σ

λ dQ.

Then since ∫
Σ

dQ = P (Σ) = I

and the map f 7→
∫
f dP is multiplicative, we see that for any polynomial p ∈ P(Σ)

we have ∫
Σ

p(λ) dQ = p(A).

Hence for all x, y ∈ H, we have

∫
Σ

p(λ) dQx,y = 〈p(A)x, y〉 =

∫
Σ

p(λ) dPx,y.

Thus since polynomials are dense in C(X) we see that

∫
Σ

f(λ) dQx,y =

∫
Σ

f(λ) dPx,y

for all continuous functions f on Σ. Hence

Qx,y = Px,y
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for all x, y ∈ H. Thus for each Borel set M ⊂ Σ we have

〈Q(M)x, y〉 =

∫
Σ

χM dQx,y =

∫
Σ

χM dPx,y = 〈P (M)x, y〉

and hence Q(M) = P (M). Therefore P = Q and the spectral measure is unique, as

claimed.

Given a measurable bounded function f on the spectrum Σ of A, the Spectral

Theorem allows us to define

f(A) =

∫
Σ

f(λ) dP.

Notice however that some care must be taken here since the function must be defined

on the spectrum. For example in order to define the logarithm or square root of an

operator using the standard branch cut from complex analysis the spectrum must not

contain any negative real numbers.

Example 3.24. Let A be a positive operator. Then the spectrum of A does not

contain any negative real numbers by Proposition 2.49. Hence we may define

√
A =

∫
Σ

√
λ dP.

If further A is invertible, that is 0 /∈ Σ, then

log(A) =

∫
Σ

log(λ) dP

where
√
λ, log(λ) are the usual definitions for real numbers.
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3.4 The Spectral Theorem for Normal Operators

The spectral theorem for self-adjoint operators can be extended to a spectral theorem

for normal operators. The idea is illustrated in the following lemma.

Lemma 3.25. Let A ∈ B(H) be a normal operator. Then there exists two unique

commuting self-adjoint operators A1, A2 so that

A = A1 + iA2.

Proof. Indeed, let

A1 =
1

2
(A+ A∗)

and

A2 =
1

2i
(A− A∗).

Then both A1, A2 are self adjoint and

A1 + iA2 =
1

2
(A+ A∗ + A− A∗) = A

as needed. Uniqueness is verified by direct calculation.

The following result may be found in [11].

Theorem 3.26 (The Spectral Theorem for Normal Operators). Let A ∈ B(H) be

a normal operator and let Σ = σ(A). Then there exists a unique projection valued

measure P on Σ so that

A =

∫
Σ

λ dP.

Further for any bounded measurable function f defined on the spectrum we obtain
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f(A) ∈ B(H) defined by

f(A) =

∫
f(λ) dP.

3.5 C∗-algebra Approach

Ultimately this development is taking place in the broader context of Gelfand theory

on C∗-algebras. We outline this development as performed in [8].

Definition 3.27. Let A be a C∗-algebra with identity I. Then for each x ∈ A we

define the spectrum of x

σ(x) = {λ ∈ C : λI − x is not invertible in A}.

This definition is a natural extension of the spectrum of an operator. However,

an alternative way of looking at the spectrum is necessary.

Definition 3.28. Let A be a commutative C∗-algebra with identity I. The spectrum

of A, Σ(A), is the set of all non-zero multiplicative functionals on A.

It follows from Tychonoff’s Theorem that Σ(A) is a compact Hausdorff space

under the weak topology. The key is to relate these two different concepts of spectrum.

In order to do this we need the following proposition.

Proposition 3.29. The map h 7→ ker(h) is a bijection between Σ(A) and the set of

maximal ideals in A.

We are now in a position to consider the map that relates these concepts, the

Gelfand transform.

Definition 3.30. The Gelfand transform is the map ΓA from A to C(Σ(A)) defined

by

ΓA(x)(h) = x̂(h) = h(x)
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for each h ∈ Σ(A).

We write Σ = Σ(A).

Theorem 3.31. Let A be a commutative C∗ algebra, then the following hold.

1. The Gelfand transform is a homomorphism with Î = 1.

2. For all x ∈ A, x is invertible if and only if x̂ is never zero.

3. For all x ∈ A, x̂(Σ) = σ(x).

4. For all x ∈ A,

‖x̂‖∞ ≤ ‖x‖.

Proof. We outline the proof of statements 2 and 3 since these directly relate Σ(A)

and σ(x).

For statement 2, suppose that x is not invertible. Then the ideal generated by x

is a proper ideal and so is contained in some maximal ideal J . By Proposition 3.29

there exists h ∈ Σ(A) with ker(h) = J 3 x. Therefore h(x) = 0, that is x̂(h) = 0.

This line of reasoning may be reversed, hence we have that x is not invertible if and

only if x̂ has a zero, which is equivalent to the desired result.

For statement 3, let x ∈ A and λ ∈ C. By the previous statement we see that

λI − x is not invertible if and only if

λ̂I − x = λ− x̂

has a zero. That is if and only if λ = x̂(h) for some h ∈ Σ(A), giving x̂(Σ) = σ(x).

We have a homomorphism ΓA : A → C(Σ). In fact, however, ΓA is onto.

Theorem 3.32. If A is a C∗-algebra, then ΓA(A) is dense in C(Σ).
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Note that this is a consequence of the Stone-Weierstrass Theorem.

The following theorem may be found in [8].

Theorem 3.33 (The Gelfand-Naimark Theorem). If A is a commutative unital C∗

algebra then the Gelfand Transform ΓA is an isometric ∗-isomorphism from A to

C(σ(A)).

The Gelfand-Naimark Theorem generalizes the result obtained in Proposition 3.7

for the special case of a self-adjoint operator.

In particular, consider any commutative C∗-algebra A ⊂ B(H) containing the

identity operator I. Then for each f ∈ C(Σ), we obtain an operator in A by taking

the inverse Gelfand-transform. Then following the same construction as in sections

3.2 and 3.3 we obtain the following generalization of the Spectral Theorem for Self-

Adjoint Operators.

Theorem 3.34 (Spectral Theorem). Let A be a commutative C∗-subalgebra of B(H)

containing I and let Σ = Σ(A) be its spectrum. Then there is a unique regular

projection valued measure P on Σ so that

A =

∫
Σ

Â dP

for all A ∈ A.

The spectral theorem for self-adjoint operators, or indeed for normal operators,

may be obtained as a corollary of Theorem 3.34 by considering the C∗ algebra A =

〈I, A〉 or A = 〈I, A,A∗〉 if A self-adjoint or normal, respectively. The connection to

our development is that in the case of A self adjoint, then Σ(A) may be identified

with σ(A). Indeed since A = 〈I, A〉 and for any h ∈ Σ we must have h(I) = 1, we

see that h is completely determined by h(A). Now it can be shown that A − λI is
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not invertible if and only if there exists some h ∈ Σ(A) so that

λ− h(A) = 0,

hence if and only if

h(A) = λ ∈ σ(A).

Therefore we identify Σ(A) with σ(A) via the bijective map

h 7→ h(A).

3.6 Example, The Shift Operator on l2(Z)

Let H = l2(Z). We illustrate the spectral theorem by computing the spectral measure

for the right shift operator R. By Example 2.55 R is unitary, hence normal. Thus

the spectral theorem guarantees the existence of a spectral measure P on σ(R) = T

where T is the unit circle in C. In order to calculate this, we need some basic results

of Fourier analysis summarized in the following theorem, see for example [7]. In order

to simplify notation we integrate with respect to the measure

dγ =
1

2π
dx

where dx is Lebesgue measure on [0, 2π]. Here we identify [0, 2π] with T in the usual

way,

x 7→ eix.
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Theorem 3.35. Let α ∈ l2(Z), then the function α̂ defined by

α̂(γ) =
∑
n∈Z

αnγ
n

is in L2(T). Further we have the inversion formula

αn =

∫
T
α̂(γ)γ−n dγ

and Parseval’s Theorem

〈α, β〉 = 〈α̂, β̂〉

for all α, β ∈ L2(T).

For the remainder of this section, we take α, β to be arbitrary elements of l2(Z).

We have

R̂α(γ) =
∑
n∈Z

(Rα)nγ
n

=
∑
n∈Z

αn−1γ
n

=
∑
n∈Z

αnγ
n+1

= γα̂(γ).

Therefore we have

〈Rα, β〉 = 〈R̂α, β̂〉

=

∫
T
R̂α(γ)β̂(γ) dγ

=

∫
T
γα̂(γ)β̂(γ) dγ
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and we see that the unique measure guaranteed by the Riesz Representation Theorem

is given by

dµα,β = α̂(γ)β̂(γ)dγ.

For any Borel set M ⊂ T we then have the projection valued measure P given by

〈P (M)α, β〉 =

∫
T
χM α̂(γ)β̂(γ) dγ.

Writing PM = P (M) we see that

〈P̂Mα, β̂〉 =

∫
T
χM α̂(γ)β̂(γ) dγ,

in particular P̂Mα(γ) = χM(γ)α̂(γ). Thus PM is the projection onto the set of all

α ∈ l2(Z) so that supp(α̂) ⊂ M . Therefore for each M ⊂ T, the inversion formula

gives

(PMα)n =

∫
T
χM(γ)α̂(γ)γ−ndγ

for each n ∈ Z.

Now R̂α(γ) = γα̂(γ) and

(Rα)n =

∫
γα̂(γ)γ−n dγ.

This defines the projection valued measure P on T so that

R =

∫
γ dP

as guaranteed by the spectral theorem for normal operators.

This example is a special case of a broader concept in harmonic analysis. Here Z
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is a group under addition and R generates the regular representation of Z on l2(Z).

That is for n ∈ Z we represent n as the operator

Rn = Rn

on l2(Z) defined by

(Rnα)k = αk−n

for each α ∈ l2(Z). Since Z is a locally compact abelian group, each irreducible

representation is 1-dimensional (see [8]). Further we can identify the spectrum of

the operator R with the dual group of Z, that is, with T. This approach depends on

viewing the spectrum as a set of multiplicative functionals as used in the development

of Gelfand theory. Here, in particular, we mean that any representation

p : Z→ T

has the form p(n) = γn for some γ ∈ T.

In general, the dual group of a locally compact abelian group G, denoted Ĝ, is

the set of all continuous homomorphisms of G into T (viewed as group under the

standard multiplication operation). In general, ξ ∈ Ĝ extends to a ∗-representation

of L1(G) on C, by setting

ξ(f) =

∫
ξ(g)f(g) dµ(g)

where dµ is Haar measure on G. With these identifications we have the following

result that depends on the spectral theorem and generalizes the example above. This

theorem may be found in [8]
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Theorem 3.36. Let G be a locally compact abelian group and let π be the regular

representation of G on L2(G). That is,

(
π(h)(f)

)
(g) = f(h−1g)

for all f ∈ L2(G) and h ∈ G. Then there exists a unique regular projection valued

measure P on Ĝ such that

π(g) =

∫
Ĝ

ξ(g) dP (ξ) for all g ∈ G

and

π(f) =

∫
Ĝ

ξ(f) dP (ξ) for all f ∈ L1(G).
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