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1 Introduction

Optical manipulation is the use of light to control the motion of objects and sounds much like an

idea from science fiction. In 1970, pioneer work by Arthur Ashkin was of the first to experimentally

realize optical manipulation for various microparticles.1 With the development of laser technology

in the last 50 years,2 there has been considerable attention to researching optical manipulation.

Due to the variety of optical manipulation experiments, classification is necessary. This can be

done by organizing experiments based on resulting particle motion and optical forces as shown in

figure 1.

Figure 1: Optical Manipulation Classification

The particle motion may either be confining (zero average velocity, v̄ = 0) or transporting

(nonzero average velocity, v̄ 6= 0). The optical forces may either be attractive or repulsive (a full

treatment of optical forces will come later in this section). Experiments dealing with the optical

confinement of particles are notably called “optical trapping” and may utilize either attractive or

repulsive forces to trap particles. Experiments dealing with the optical transportation of particles

depend on the resulting optical forces, with repulsion from the light source called “optical pushing”

and attraction toward the light source called “optical pulling.”

There is an increasing need to characterize bioaerosols and particulate matter in the air. Optical

manipulation and characterization of single airborne particles is of significance for the analysis

related to air pollution, human health, and global climate change. Optical trapping has been very



well demonstrated for particles in air and proves to be a useful tool in particle analysis, however,

they are limited by the short range of their trapping regions. To overcome this limitation, an op-

tical trap could be combined with an optical transportation system to effectively place the particle

within the trapping region. Optical pulling could provide the transportation of particles to collec-

tion plates or optical traps, but optical pulling in air has not been realized. Optical pushing has been

demonstrated over meter-scale distances in air,3 however, this method faces many challenges for

the collection of particles for long ranges. This thesis focuses on the development of optical trans-

portation technology via optical pulling with application to the characterization of single airborne

particles. This section explains the optical forces involved with optical manipulation, provides a

brief history of optical manipulation development, and reveals the scope of study of this thesis.

1.1 Optical Forces

Because optical manipulation experiments are typically classified by the optical force they exploit,

for example “optical levitation by radiation pressure,” it is necessary to have some understanding

of the optical forces involved before reviewing the field. This section provides an explanation of

those optical forces.

One of the properties of light is that it can be treated as a particle, called a photon. Each photon

carries energy of h̄ω and momentum of h̄k, where h̄ is reduced Planck’s constant, ω is angular

frequency, and k is angular wave number.4 Absorption, reflection or refraction of photons in the

medium cause momentum change and produce radiation forces. Radiation forces can be classified

into two forces: scattering and gradient. Figure 2 provides an illustration of these radiation forces.
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Figure 2: Forces of radiation pressure. (a) shows the scattering force (b) shows the gradient force.

The scattering force is due to reflection and absorption of light and is a direct transfer of the

photon’s momentum to the particle, much like a collision of two ordinary objects. The gradient

force is the response to the change of momentum of the incident light due to refraction, light

taking the path of least resistance when entering a different medium. For absorbing particles, the

scattering force is significantly larger than the gradient force because most light energy is absorbed

by the particle. For transparent and biological media, the gradient force is significantly larger than

the scattering force as most light energy will transmit through in a bending direction.

When an object is illuminated, an increase in heat results from the energy transfer due to

absorption. This increase in heat also causes the increase in temperature of a particle, making

the particle hot. When suspended in a gas medium, the collisions of the surrounding gas with

the illuminated “hot” object may induce motion, namely photophoresis.5 There are two types of

photophoresis forces: first type and second type. The first type of photophoresis force, F∆T, is

due to an inhomogeneous temperature of the illuminated particle. Figure 3 illustrates the first type

photophoresis force. For particles with radius, a, larger than the wavelength of light, λ , the side of

the particle immediate to the incident light has a higher temperature than the “shadowed side.” This

hot side transfers more momentum to the surrounding gas than the cold side resulting in a positive

force, along the propagation axis of the light source. For particles with a radius much smaller than

the wavelength of light, the hot side will be on the shadowed side, thus producing a negative force,

3



against the propagation axis of the light source. If the particles partially absorb light, the particle

will serve as a spherical lens, focusing the illumination light to the shadowed side, making it hotter

than the front side, thus producing a negative force as well.

Figure 3: First type photophoresis force, F∆T.(a) positive F∆T (b) negative F∆T.

The second type of photophoresis force, F∆α , is due to a difference of accommodation coeffi-

cient, α , over the surface.5 The accommodation coefficient is the ratio of the change in temperature

of the gas molecule to the maximum allowable temperature exchange.6 The accommodation co-

efficient depends strongly on the shape and surface properties of a particle. Even if the particle

is heated evenly, as long as a particle has a temperature, Tw, different from the surrounding air

and a varying accommodation coefficient, there will still be a net momentum exchange between

the gas and particle. Figure 4 illustrates the second type photophoresis force. The gas molecules

with temperature, T0, hit on the side of higher accommodation coefficient and leave the surface

faster with higher temperature, T, than the molecules hitting on the side of lower accommodation

coefficient. This leads to a body-fixed force on the particle, pointing from the side of higher to

the side of lower accommodation coefficient. The second type of photophoresis force may exhibit

photophoresis in any direction.
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Figure 4: Second type photophoresis force, F∆α .

1.2 Brief History of Optical Manipulation Development

As mentioned earlier, this work is concerned with the development of optical transportation tech-

nology via optical pulling with application to the characterization of single airborne particles.

While the complete history of optical manipulation is definitely interesting, it is beyond necessary

to cover everything to understand the scope of this work. The methods and techniques of optical

manipulation are numerous with a variety of applications extending across the natural sciences. To

simplify the matter, I have selected the experimental development related to my categorization of

optical manipulation by particle motion and the exploited optical forces (refer to figure 1). Figure 5

provides a brief history of optical of this development as well as a few notable applications.
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Figure 5: Brief history of optical manipulation

The invention of the laser in 1960 has single-handedly made the investigation of optical ma-

nipulation possible.2 In 1970, Ashkin was the first to demonstrate optical trapping in liquid and

air for various microparticles using radiation pressure.1 This work serves as the foundation for the

entire field. Two crowning achievements from optical trapping were the development of optical

cooling technology in 1985 and the realization of Bose-Einstein condensation in 1995.7, 8 Nobel

prizes were later awarded in 1997 and 2001, respectively, to those responsible for optical cooling

and Bose-Einstein condensation. In 2002, Raman spectroscopy is combined with optical trapping

for the purpose of particle “fingerprinting.”9 Raman spectroscopy is the detection of the inelastic

scattering (energy loss) of light through a medium.10 In 2009, photophoretic trapping is demon-

strated for absorbing particles.11 In 2010, optical transportation of particles in air is demonstrated

on meter-scale distances using positive photophoresis, optical pushing.3

What has yet to be demonstrated is the optical transportation using negative photophoresis,

optical pulling. It has been decades ago reported that irregular dusts under starlight illumination

6



are lifted in atmosphere against gravity and undergo helicoidally motion around the illumination

direction.12 Recently, it has been reported that light-absorbing particles can be optically trapped

in air with a single focused Gaussian beam13, 14 and rotate around the laser propagation direction

due to the negative photophoretic force.15 Raman spectra of the trapped aerosols were measured

to characterize the absorbing particles.13, 16 If atmospheric particles can be attracted by lasers over

a long distance, they can be remotely collected for rapid identification.

1.3 Scope of Study

This thesis focuses on the development of optical transportation technology via optical pulling with

application to the characterization of single airborne particles. These experiments are designed

with the following questions of interest in mind:

1. Can negative photophoresis be the driving force of optical manipulation?

2. How can this be used to characterize single airborne particles?

3. What can be learned about light-particle interactions?

The optical pulling experiment is the backbone of this work with optical deflection and op-

tical trapping as corollary experiments extending the application of optical pulling. This section

provides the justification for these experiments.

1.3.1 Optical Pulling

Figure 6: Schematic of optical pulling
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Optical pulling is the attraction of objects back to the light source by the use of optically induced

“negative forces,” illustrated by figure 6. It is commonly expected that when illuminated by a col-

limated laser or gradientless light beam, an object will be accelerated along the light propagation

direction by radiation pressure.1 The idea of using optical beam to attract objects back to the light

source is counterintuitive and has long been attractive to scientists.17 Recent studies have proposed

that small objects can be pulled against the light stream by a variety of mechanisms.17–20 Optical

pulling can be achieved using optical gradient force or optical tractor beams that attracts the object

to the locations with higher light intensity.20–22 Optical pulling could also be achieved by optical

scattering force if the object can scatter incident light in a way that the forward momentum of

the incident beam is less than that of the emergent beam.18, 23, 24 The transportation of transparent

particles with optical gradient force or optical conveyer was successfully demonstrated in a short

range from a few to 10s micrometers in liquid media.20, 22 However, backward transportation of

light-absorbing particles in air with laser beams has not been observed yet and it is usually con-

sidered that the absorbing particles are expelled by the scattering force and positive photophoretic

force.17 Here, we demonstrate that micron-sized absorbing objects can be optically pulled and

manipulated over a meter-scale distance in air with a collimated laser beam based on negative

photophoretic force.

When micron-sized objects are suspended in air and illuminated by a laser beam, strong pho-

tophoretic forces can be induced due to the heating by light,5, 25, 26 which can be several orders of

magnitude larger than the radiation force and gravitation force.3 For high-absorbing microparti-

cles, there is more absorption on the illuminated side and, therefore, a positive photophoretic force

F∆T is usually induced,5 pushing the absorbing particles away from the high intensity region of

a laser beam. Optical pulling of high-absorbing particles is not allowed by the first type of pho-

tophoretic force F∆T. However, the second type of photophoretic force F∆α can be negative,5, 26

allowing the particle to move back to the light source. It remains unclear to what degree F∆α

and F∆T might contribute, but they can coexist for irregular particles. It was estimated that under

atmospheric pressure or below, practically F∆α force is dominant for micron-sized particles.5, 25, 26
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1.3.2 Optical Deflection

Figure 7: Schematic of optical deflection

Optical deflection is the change in the direction of motion due to the action of another light source,

illustrated by figure 7. Optical deflection has not been previously demonstrated, however, if optical

pulling can be achieved with a collimated light source, then the demonstration of optical deflection

should be observed when another light source of the same type intersects the original source. Here,

we demonstrate that micron-sized absorbing objects can be optically deflected over a meter-scale

distance in air with collimated laser beams based on negative photophoretic force.

1.3.3 Optical Trapping

Figure 8: Schematic of optical trapping
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Optical trapping is the confinement of a particle motion with optically induced forces. As stated

earlier, optical trapping is a useful tool for particle analysis. Optical trapping using negative pho-

tophoresis force has been previously demonstrated and on top of that been demonstrated using Ra-

man spectroscopy for single particle identification.13, 15 Here, we demonstrate that micron-sized

absorbing objects pulled along an optical pipeline can be optically deflected and trapped with a

focused laser beam based on negative photophoretic force, illustrated by figure 8.
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2 Experimental Setups and Operating Procedures

This section provides the experimental setups for optical pulling, optical deflection, and optical

trapping. There are many shared components across the three setups. Unless explicitly discussed,

the details of experimental components are found in Appendix A.

2.1 Optical Pulling

Figure 9: Experimental Setup for Optical Pulling.

The experimental setup for optical pulling is shown in figure 9. The continuous-wave laser provides

a collimated Gaussian beam at a wavelength of 532 nm. The combination of focusing lenses with

focal lengths, f1 and f2, reduce the incident beam diameter, d0, as shown in figure 10.



Figure 10: Beam reduction diagram.

The emerging beam diameter, d1, is determined by the equation

d1 = d0

(
f2

f1

)

The liquid crystal (LC) functions as a variable half-wave plate through the control of the liquid

crystal controller (LCC). The polarizing beam splitter (PBS) splits the laser beam depending on

the laser’s polarization state, illustrated by figure 11. The perpendicularly polarized beam was

blocked as it was not used in the experiments. The LC and PBS provide selective power control

independent of the laser beam’s power supply.

Figure 11: Power control through LC and PBS with polarization shown in blue. The linearly

polarized beam with power P1 passes through the LC only changing polarization state. The beam

then passes through the PBS and is split into two beams, one with parallel polarization and one

with perpendicular polarization. These beams have power P2 and P3 where P2+ P3 = P1.
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Highly reflective mirrors, M1, M2 and M3, provide the alignment for the laser beam to the entrance

window of the vacuum chamber. Figure 12 shows an actual picture of the vacuum chamber and

connected parts.

Figure 12: Vacuum Chamber Picture. The vacuum pump is tucked under the optics bench. Only a

portion of the plastic tube is pictured.

The pulsed laser provides a method of ablation for the sample. The mirrors M1 and M5 align the

pulsed laser ”pulses” coincident with the continuous-wave laser beam. A focusing lens with focal

length f3 focuses the laser pulses to ablate a small area of the sample. The X-Y stage provides a

method of moving the sample.
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Figure 13: Image of custom X-Y stage. It is made by modifying a mechanical micrometer with a

custom made metal piece to fit around the 4′′ metal hose. The custom X-Y stage takes advantage

of the flexibility of the metal hose.

The camera records video observations. The photo sensor records the scattering light signal from

the transported particle.
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Figure 14: Diagram of the photo sensor. The photo diode is reversed biased. The signal is received

by a data acquisition card (DAQ), which converts the signal from analog to digital. The digital

signal is then processed by a software routine written in Matlab, a computational software. The

Matlab interface can be found in Appendix B.
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Figure 15: Sample preparation. (a) The sample holder is a modified NW25 blank flange with hole

bored through the middle. The sample glass is attached to double-sided foam tape. This isolates

the outside glass seen in (i) from potential damage from the focusing of the pulsed laser. (b) A

small layer of alcohol is placed on the surface of the glass before the sample is placed. This allows

the sample to adhere to the surface when under vacuum conditions as well as smoothing of the

sample. (c) The sample after smoothing process using the air from a clean, empty pipette. (d)

Sample thickness should be just thick enough to be opaque.

The sample is prepared as shown in figure 15. The sample is attached to the custom X-Y stage

after the sample preparation. The pressure is reduced. The camera is mounted and positioned

above the transparent portion of the vacuum chamber. The photo sensor is placed underneath the

same portion. The pulling beam power is adjusted by the LCC depending on the sample and the

application. Power measurements are made at the entrance window of the vacuum chamber and

the voltage of the LCC is adjusted. The system at this point only requires input pulses from the

pulsed laser onto the sample to achieve pulling. Once the pulses are fired, some time (around 10

16



sec maximum) was allowed for the pulled particles to show inside the visible portion. The position

of the sample is adjusted such that pulling beam was aligned with the sample and the pulsed laser

process repeated.
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2.2 Optical Deflection

Figure 16: Experimental Setup for Optical Deflection.

The experimental setup for optical deflection is shown in figure 16. The setup is essentially the

optical pulling scheme with the addition of an intersecting ”deflection” beam. The half-wave plate,

λ

2 combined with the PBS1 provides a method of adjusting the beam splitting ratio. Focusing lenses

f1,f2 reduce incident beam size. Objective lens, f6, transforms the camera into a video microscope

for high-speed data. The X-Y-Z stage allows adjustments of the objective lens’ alignment position

and focal plane. The sample is attached to the custom X-Y stage after the sample preparation. The

LCC is set to allow full power transmission through PBS2. The half-wave plate is adjusted such

that the deflection beam and pulling beam have the power required at their respective entrance

windows to the vacuum chamber. The pulling beam is calibrated through the LCC depending

on sample and application. The camera is mounted above the transparent portion of the vacuum

chamber.
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Figure 17: Image of High-speed Video Setup

For high-speed video imaging, camera position and objective alignment was aided with the use

of Rhodamine B fluorescent dye solution as seen in figure 18.
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Figure 18: Image of Rhodamine B dye solution. The solution is diluted by distilled water to reduce

the intensity of the fluorescence.

The transparent portion of the vacuum chamber is removed for this calibration. The objective’s

focal plane adjusted to the cross-section in the middle of the intersection region of the deflection

and pulling beams. The transparent portion is reattached and pressure is reduced. The photo sensor

is positioned below the intersection region. The input pulses are fired from the pulsed laser. Once

the pulses are fired, some time (around 10 sec maximum) was allowed for the pulled particles to

show inside the visible portion. The sample X-Y stage is adjusted such that pulling beam is aligned

with the sample and the pulsed laser process repeated.
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2.3 Optical Trapping

Figure 19: Experimental Setup for Optical Trapping.

The experimental setup for optical trapping is shown in figure 19. This is essentially the optical

deflection scheme with the removal of beam reduction components and addition of a focusing lens.

The focusing lens, f3, provides the optical gradient required for a single-beam optical trap. The

X-Y-Z stage allows the position of f3 to be adjusted.

The sample is attached to the custom X-Y stage after the sample preparation. The LCC is

set to allow full power transmission through PBS2. The half-wave plate is adjusted such that the

trapping beam and pulling beam have the power required at their respective entrance windows to

the vacuum chamber. The pulling beam is calibrated through the LCC depending on sample and

application. The pressure is reduced. The camera is mounted and positioned above the transparent

portion of the vacuum chamber. The input pulses are fired from the pulsed laser. Once the pulses

are fired, some time (around 10 sec maximum) was allowed for the pulled particles to show inside

the visible portion. The sample X-Y stage is adjusted such that pulling beam is aligned with the
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sample and the pulsed laser process repeated.
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3 Results

3.1 Optical Pulling

Video demonstration of optical pulling can be found on the CD provided. The demonstration is of

a few carbon particles pulled over a meter scale distance with a collimated laser beam at constant

power. The laser beam was operated in TEM00 mode with linear polarization (y-direction) and

beam diameter of ∼1 mm.

3.1.1 Translational Motion Under Constant Pulling Power

Figure 20: (a) Evolution of a pulled particle over 5 selected frames. (b) Position-time graph for

three individual carbon particles pulled by a 150 mW pulling beam at 110 Torr.

The translational motion of the highly absorbing particles was analyzed when pulled by a constant

beam power. From the time-lapse video images, the position of the carbon particle was tracked in

a number of frames using Tracker, an open source software designed for motion analysis (version:

4.91). Figure 20.a shows the time evolution of carbon nano-cluster (∼ 10µm in size) as pulled

through the vacuum chamber. The positions are obtained for a number of frames and plotted as

shown in figure 20.b. The pulling speed of these particles were measured to be 6.8, 4.5, and

2.3 cm/s, respectively. It should be noted that the ejection of particles off the sample window is



due to the effect of laser induced forward transfer induced by the pulsed laser.27 The motion of the

particle against the continuous wave laser at a constant speed is the result of negative photophoresis

force induced by the continuous wave beam. When the continuous wave laser is blocked, the

translational velocity of the particle is quickly reduced by Stokes drag force and moves off the

beam axis due to gravitation force.

Figure 21: Position-time graph of four individual particles at 110 Torr that were pulled by a laser

with a constant power of 150 mW for Bermuda grass smut spores, 200 mW for iron filings, and

300 mW for Johnson Grass smut spores and CuO power.

Optical pulling was performed for other absorbing particles. Figure 21 provides the plot of

position versus time of these particles. It is clear from both of the position versus time plots that all

positions of the absorbing particles increase linearly while being pulled by a constant power laser

beam. Since the particles showed the same behavior in the position-time plots, it is reasonable to

suspect that all highly absorbing particles exhibit the same motion with differences only due to

particle properties.

3.1.2 Translational Motion Under Varied Pulling Power

The dependence of the translational speed of each individual particle on the laser intensity was

measured. This was done by changing the power of the pulling laser every 1.5 s during the particles
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motion through the LCC by an external voltage signal. Figure 22 displays the results of the data

extracted from video observation for carbon nano-clusters. Figures 22.a-22.c show the changes in

the pulling speed of five individual particles when the laser power was decreased from 150 to 30

mW at different gas pressures of 110, 30, and 8 Torr, respectively.

Figure 22: Speeds of five individual carbon particles with different laser powers at (a) 110 Torr;

(b) 30 Torr; (c) 8 Torr. (d) The fitting of the pulling speed v of a particle at 110 Torr with different

laser powers.

The results indicate that: (1) at a given pressure, when the laser power is decreased the pulling

speed decreases; (2) as the laser power exceeds a saturation power, the pulling speed reaches a

maximum value; and (3) as the gas pressure is decreased, the saturation laser power decreases.

Accordingly, lower laser power is required to pull the absorbing particles with the same speed at
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low pressure. However, the averaged maximum pulling speed over about ten individual particles

was nearly the same at different pressures. The average saturation laser power was found to be

115±19, 83±31, and 78±14 mW for the pressure of 110, 30, and 8 Torr, respectively, while the

average maximum speed was 6.0±2.1, 6.4±3.1, and 5.5±1.6 cm/s, respectively.

The translational speed of a pulled absorbing particle not only depends on particles properties

(e.g., particle size and shape), but also depends on laser power and the pressure of the gas medium.

For a given particle, when the gas pressure and laser power are changed, the speed of the particles

motion changes accordingly.

3.1.3 Rotational Motion Under Constant Pulling Power

Figure 23: (a) Position-time graph of a carbon nano-cluster pulled at a speed of 5.4 cm/s with a

constant power of 150 mW at 110 Torr. The inset is the profile of the scattered light signal as

detected by the photodiode. (b) The intensity of the scattered light in a small time-scale changes

periodically, indicating that the particle rotates with a frequency of 2.5 kHz.

The motion of absorbing particles in a optical pulling beam is conjectured to be a helical motion

toward the laser source5.12 The particle undergoes a rotation motion at a high speed while moving

toward the entrance window at a constant axial speed. To verify this, the scattered light of the

pulling laser beam from the particle was measured using a photodiode.15 When the particle was
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pulled and passed through the detection region of the photodiode, the intensity of the scattered

light from the particle in the perpendicular direction to the laser beam axis was collected, as shown

by the inset of figure 23.a. The variation in the signal intensity, as seen in figure 23.b, suggests

that the light scattering from the absorbing particle is highly directional due to particles rotation,

which may direct the scattered light to a rotating direction. This idea is supported by similar study

that measured the direct relation between the variation frequency in the scattered light intensity

and particles rotation frequency with a high-speed imaging technique.15 The particle shown in

figure 23 was pulled with an axial speed of 5.4 cm/s while rotating around the beam axis at a

frequency of 2.5 kHz. The rotation frequencies of different particles were found to varying from

0.2-10 kHz.

3.1.4 Imaging and Raman Scattering

Figure 24: (a) Remote manipulation using optical pipeline. Individual particles can be manipu-

lated in transverse direction and thus precisely positioned on different locations of the entrance

glass window by steering the direction of the pulling laser beam. Insets are images of three car-

bon particles that were positioned in a row along the x direction. (b) Micrograph of other pulled

particles.
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Steering the propagation direction of the pulling laser beam allows the manipulation of the pulled

particles in x-y directions and thus enables precise control of the location on which the parti-

cle adheres on the entrance glass window. As a result, individual particles can be positioned in

one-dimension or two-dimension patterns, as shown in figure 24.a. After the particles were po-

sitioned on the entrance glass window, they were measured with a micro-Raman spectroscopy

system equipped with an inverted microscope (IX81, Olympus), an excitation laser at 780 nm, an

imaging spectrograph, and a multichannel CCD detector.28 Insets in figure 24.a show the micro-

scopic images of three individual carbon particles that were positioned in a row with a positioning

accuracy of ∼ 20µm over the distance of ∼1 m. The particles had sizes of 5-20 µm with irregular

shapes. Figure 24.b shows the micrographs of the other absorbing particles.

Figure 25 shows the Raman spectra of three individual collected particles and the peaks at

∼1573 and ∼1310 cm−1 represent the G-band and D-band of carbon particles.13, 16 These results

confirmed that the carbon particles were pulled from the sampling region near the back window to

the entrance window over a meter along optical pulling pipeline.

Figure 25: Micro-Raman spectra of the three collected individual carbon particles seen in figure 24.

The laser intensity for the Raman excitation was 1 mW at 780 nm with an acquisition time of 50 s.

28



3.2 Optical Deflection

Video demonstration of optical deflection can be found on the CD provided. The demonstrations

record the deflection for carbon nano-clusters, bermuda spores, and iron filings. The carbon nano-

clusters were pulled at 75 mW with a 112 mW deflection beam. The bermuda spores were pulled

at 150 mW with a 150 mW deflection beam. The iron filings pulled at 190 mW with a 190 mW

deflection beam. The pressure was reduced to 110 Torr for all particles.

3.2.1 Deflection Efficiency

Figure 26: Deflection efficiency for carbon nanoclusters pulled at 75 mW at 110 Torr.

A graph of deflection efficiency for carbon nano-clusters pulled at 75 mW at 110 Torr is shown

in figure 26. The deflection efficiency is the ratio of the amount of particles that deflect into the

deflection beam from the pulling beam to the total amount of successfully pulled particles. A

successfully pulled particle was one that traveled more than 95% of the total pulling distance (ma-

jority of the counted particles traveled 100%). Also, a successful deflection required the particle
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Table 1: Deflection Efficiency Data for Carbon nano-clusters
Deflection Power (mW) Power Ratio Total Particles Total Deflected Percent (%) Error (±)

32 0.5 38 2 5.26 3.62
56 0.75 32 11 34.3 8.40
75 1 60 32 53.3 6.44
112 1.5 51 39 76.5 5.93
150 2 73 63 86.3 4.33

to be deflected via negative photophoresis force (a very small percentage of particles may be op-

tically ”pushed” by the deflection beam after being intially pulled). The data seen in figure 26

was obtained by a series of video observations. The values from observation are provided in ta-

ble 1. It is clear by figure 26 that the deflection efficiency increases when the power ratio increases,

approaching the limit of 100%.

3.2.2 Position and Velocity Measurements

Figure 27: Deflection data of a carbon particle. The blind spot is due to a joint seal in the vacuum

chamber tube.

The position and velocity data was obtained using Tracker (version: 4.91) for carbon nano-clusters.

The carbon nano-clusters were pulled at 75 mW at 110 Torr with a 112 mW deflection beam.
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Figure 27 shows the graphs of the position and velocity measurements for a single carbon particle.

Figure 27.a shows a linear increase in position along both the pulling axis (z-direction) and, after

deflection, the deflection axis (x-direction). Supporting the linearity, figure 27.b shows that the

average velocity along pulling and deflection axes is constant.

3.2.3 High-Speed Video Data

High-speed video is found in the provided CD. The video was zoomed and focused to the closest

distance that all regions - pulling, intersection and deflection - could still be discerned. The reso-

lution of the image frame was determined to be 24 µm/pix. To give a sense of size, the scattering

light from the first and third particle in the video measured 48 µm across as measured perpendic-

ular to the particle motion. The video was recorded at 1000 fps with a 2.5 OD (optical density)

neutral density filter in front of the camera. The image of the fluorescence was edited into the back-

ground to give a sense of location of the particles within the laser beam. There is some uncertainty

to the actual location of the beams when compared to the fluorescent background image.

Figure 28: Plot of trajectory of a carbon nano-cluster particle with assumed beam location.

31



The position data of a deflected carbon nano-cluster was obtained from Tracker. Figure 28

shows the plot of its trajectory. While solely in the pulling or deflection beam, the particle tends to

travel near the center of the beam. While in the intersection region, the particle follows a curved

path during the deflection.

Figure 29: Scattering data combined with position data. zc and xc are the coordinates of the center

of the intersection region.

The scattering light signal the for the same carbon nano-particle is plotted in figure 29. The

signal shows three distinct frequencies which correspond with the three regions: pulling, intersec-

tion, and deflection. The particle traveling along the pulling beam has a rotational period of T1.

When the particle enters the intersection, the rotational period decreases to Tint . When leaves the
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intersection into the deflection beam, the rotation period increases to a value T2 comparable to T1.

As a confirmation of the previous described behavior, figure 29 maps the scattering light signal

obtained from the photo sensor to the position data obtained from video observation.

3.3 Optical Trapping

A video demonstrating the successful capture of a single absorbing particle off an optical pulling

beam is found on the provided CD. Video settings were standard video settings with manual focus-

ing at 30 fps. The trapping beam was calibrated to have a power of 112 mW with a diameter that

matches that of the pulling beam at the intersection. The particle is being pulled at 75 mW at 110

Torr. Figure 30 provides select frames from the video to illustrate the manipulation of the particle

within the optical trap.

Figure 30: (a) Particle on approach in the pulling beam. (b) Particle arriving at the intersection of

the pulling beam and trapping beam. (c) Particle takes to the optical trap and is trapped near the

focus of the focusing lens. (d) The position of the focus was moved away from the pulling beam

to further demonstrate that the particle is solely trapped. (Note: the focus diagram is just a visual

aid and not scaled to actual beam size)
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4 Discussion

4.1 Optical Pulling

From the motion data obtained, a theoretical model can be adapted to describe the situation. When

a particle is pulled with a laser intensity I and moves with a constant speed v along negative z-

direction (beam axis), the resultant force is balanced,

∑F = F∆α +F∆T +FR +Fη +FG = 0 (1)

where the second type of photophoretic force F∆α has a negative z-component F∆α,z pointing to

the light source,15 the first type of photophoretic force F∆T and radiation pressure FR are along

the laser propagation direction, Stokes drag force Fη in air is against the motion direction, FG the

gravitation force along y direction,15 as illustrated in Figure 31.

Figure 31: Diagram of optical pulling forces.

The gravitational, scattering, and Stokes’ drag forces can be mathematically quantified as,

FG =
4
3

ρgπa3 (2)

FR = µ(πa2)
I
c

(3)

Fη = 6πηav (4)

where µ is the absorption coefficient of the particle, a is the Stokes radius of the particle, c is the



speed of light, and η is the medium viscosity, and ρ is the density of the particle. As a result, the

pulling speed in z-direction can be estimated by

F∆α,z−F∆T −FR−Fη = 0 (5)

v =
F∆α,z−F∆T −FR

6πηa
(6)

From a semi-empirical model,25, 26 the magnitude of photophoretic forces is given by

F∆α =
I(πa2)

12c
∆α

α

1
1+( p

pmax
)2 (7)

F∆T = 2Fmax
1

p
pmax

+ pmax
p

(8)

or F∆α = A(p)I and F∆T = B(p)I, where p is the gas pressure, Fmax is the maximum F∆T force

achievable at a pressure pmax, which is proportional to laser intensity, and A and B are the pressure-

dependent parameters. This gives that v = γI, where γ = (A−B− µπa2/c)/(6πga). This means

the pulling speed v of the particle is proportional to the laser intensity I at a given gas pressure.

The semi-empirical model for photophoretic forces assumed a linear light absorption of spher-

ical particles.25 To explain nonlinear dependence of the pulling speed on laser intensity observed

in our experiments, consider the saturation in light absorption by the tiny particle (∼ 10µm in size)

when the laser intensity is strong. Accordingly, both photophoretic forces and scattering force are

modified due to absorption saturation as

F∆α = A
I

1+ I
Isat

(9)

F∆T = B
I

1+ I
Isat

(10)

FR = µ(πa2)
I

[(1+ I
Isat

)c]
(11)
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where Isat is the saturation intensity. This leads to the pulling speed as v = γI/(1+ I/Isat). Fig-

ure 22.d shows the theoretical fitting of one of the individual particles in figure 22.a with saturation

intensity. Figure 22 shows that as the gas pressure decreases, the saturation intensity decreases.

This could be understood as follows: at a lower pressure, there are less gas molecules existing in

the chamber and thus less heat is removed from the absorbing particle via the collisions between

the gas molecules and the particle. As a result, less laser intensity is required to heat the particle to

the absorption saturation state.

It should be noted that the pulled particles move in helical motion. Its trajectory could be

approximately described by a linear motion in z-direction and a rotation motion in transverse di-

rection, such that

z(t) = z0 + vt (12)

x(t) = r0cos(ωt) (13)

y(t) = r0sin(ωt) (14)

where z0 is the initial axial position, r0 is the rotation radius, and ω is the rotation angular fre-

quency. For the particle in Fig. 3, ω = 2π×2.5 kHz and v = 5.4 cm/s. As described previously,15

F∆α force is body-fixed, its longitudinal component F∆α,z provides the backward pulling force and

one of its transverse components provides the centripetal force Fc for rotation motion, and its tan-

gential component Ft is balanced by the viscous drag force to maintain a stable rotation motion.15

The single collimated laser beam can be used to pull many different kinds of absorbing particles

over large distances. The chemical compositions of these particles can be characterized with micro-

Raman spectroscopy.

4.2 Optical Deflection

From the deflection efficiency data, the particle’s trajectory inside the intersection region is related

to the laser beam intensity. The motion data indicates that while a particle is inside a particular
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region the velocity and rotation are relatively constant. We can consider the motion of a particle in a

pulling beam as a translational motion along the negative beam propagation direction, in addition

with a rotational motion along the beam axis. Even though a trajectory inside the intersection

region is rather complex to describe, a simplified description can be made with the following

assumptions:

1. Velocity magnitude remains nearly constant.

2. Rotation frequency remains nearly constant.

3. Velocity direction of translational motion determined by the vector sum of the negative prop-

agation vectors of the pulling and deflection beams, weighting by their intensities at a posi-

tion after one cycle of rotation.

Suppose a particle enters the intersection region from the middle of the pulling beam with some

velocity v0 and rotation frequency ω0. The time interval of one rotation cycle is determined as

∆t =
1

ω0
(15)

and the position coordinates of the particle are

zi = zi−1− v0 cos(θi)∆t (16)

xi = xi−1− v0 sin(θi)∆t (17)

where, consistent with previous notation, the z-direction is along the same axis of the pulling beam

and the x-direction is along the same axis of the deflection beam and θ is the angle of velocity

direction. The new position is the old position plus the distance traveled during the time interval.

The minus sign in the equations makes the particle motion the same as seen in the high-speed

deflection video. Since the motion is against the laser propagation, the angle θ is determined from

the negative of the intensity field vectors at the current position. We can define the intensity vector
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of a Gaussian beam given by the equation

I(r) = I0e−2r2/w2
0 ê (18)

So,

Ipull(x,y) = I01e−2(x2+y2)/w2
0 êz (19)

Ide f l(y,z) = I02e−2(x2+y2)/w2
0 êx (20)

where I0 is the maximum intensity, r is the location from the beam center, w0 is the beam waist size

or radius, êz and êx are the unit vectors of the propagation directions of the pulling and deflection

beams, respectively. In general, a Gaussian beam is 3D having two spatial coordinates and a

propagation direction. However, since most particles have an orbital radius that is around the same

size of the particle, only the cross-section of the Gaussian beam need be considered. This reduces

the Gaussian beam to one spatial coordinate. Using w0 = 0.5 mm and assigning propagation

directions, the intensity vectors of the pulling and deflection beams at y = 0 plane are then

Ipull = I01e−8x2
ẑ (21)

Ide f l = I02e−8z2
x̂ (22)

The intersection region, combined of both beams, is thus,

Iint = Ipull + Ide f l (23)

Iint = I01e−8x2
ẑ+ I02e−8z2

x̂ (24)

The angle at any position can now be calculated as

θ = tan−1
(−Ide f l

−Ipull

)
(25)
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θi = tan−1
(I02

I01

e−8z2
i

e−8x2
i

)
(26)

θi = tan−1
(I02

I01
e−8[z2

i−x2
i ]
)

(27)

The trajectory coordinates were calculated using a Matlab routine. The Matlab routine is provided

in Appendix C. Figures 32.c and 32.d respectively show a deflection and passing through trajectory

calculated by the routine. Only the deflection beam power was changed to yield the two cases.

Figure 32: The negative of the laser intensity field is shown for a pulling beam power of 75 mW

and deflection beam power of (a) 112.5 mW and (b) 32.5 mW. The beam radius of both beams is

w0 = 0.5 mm. The calculated trajectories for a particle with v0 = 60 mm/s and ω0 = 500 Hz pulled

at 75 mW. (c) The particle deflects when the deflection beam is at 112.5 mW. (d) The particle

passes through when the deflection beam is at 32.5 mW.
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5 Conclusion

As stated in the introduction, the goal of this thesis was the development of optical transporta-

tion technology via optical pulling with the application to the characterization of single airborne

particles. Shown here in this work is the demonstration for the first time of such technology that

accomplishes this goal through the schemes of optical pulling, optical deflection, and optical trap-

ping.

The optical pulling experiment demonstrates the transportation of single airborne particles on

meter scale distances for multiple types particles. The optical deflection experiment demonstrates

the deflection of optically pulled particles into another transporting pathway. This opens up a

method of optically sorting particles. The optical trapping demonstrates the trapping of optically

pulled particles. This provides a method of optically selecting particles from the transportation

pipeline. It is worthwhile to note the experiments all utilize negative photophoresis force driven by

a single Gaussian beam. Negative photophoresis is especially important because the direction of

the force is towards the light source, thus particles can be easily captured for analysis. Although the

data was only provided for the optical pulling experiment, all experiments can utilize microscopy

and Raman spectroscopy techniques for the characterization of bioaerosols and particulate matter

in air. Optical manipulation and characterization of single airborne particles are of significance for

the analysis related to air pollution, human health, and global climate change.

In addition to the technological development, the optical pulling and optical deflection exper-

iment yielded motion data to further the knowledge of optical manipulation. Both experiments

support the motion of transported particles as helical. A saturation limitation is revealed, which

consequently may lead to efficient optical transportation technology as well as understanding the

limitations of the optical pulling forces. The pulling and deflection models improve the under-

standing of particle behavior under the effect of negative photophoresis. Complete understanding

of photophoretic forces is essential to developing technology which have practical purposes outside

of the laboratory setting.

Currently the technology here has been shown useful in pressure environments near 110 Torr



and for high absorbing particles with irregular geometry. The irregular geometry is important be-

cause natural particles will have unknown or irregular geometries. However, the pressure environ-

ments near 110 Torr limits where the technology can be used. If optical manipulation technology

can be utilized at surface level pressures, the technology could be employed as an optical filter

for the capture and/or identification of air contaminants. This could be useful for the reduction of

smog particulates where smog pollution is prevalent or battlefields where identification of biologi-

cal agents could prevent deaths. If this technology can be utilized in exosphere pressures, it may be

possible to equip a low earth orbiting satellite with this technology to examine particulates in the

upper atmosphere. This can be of importance to atmospheric scientists to better understand climate

change as well as biologists if biological particles or systems are found to exist there. Future work

should be directed toward finding the limitations of this technology.

Experimentally there are plenty of unexplored avenues to consider such as particle, laser beam,

or environment properties for future work. Since theoretical models provided for photophoretic

forces in the literature5, 25, 26 contain quantities from almost every branch of classical physics, there

are many factors to consider when trying to determine the optimal or extrema conditions of optical

manipulation. Due to the helical motion of an optically pulled particle, there exists a restoring

force that must be adapted into trajectory models. This restorative force would vastly improve the

deflection model as well as give a limitation for pulled particles in environments with air flow. It

is suspected that the restorative force is proportional to the gradient of the laser intensity, however,

data is needed to quantify this proportionality. The temperature of an optically manipulated particle

is also of interest because photophoretic forces depend on temperature, yet again, data is needed.

In all, optical manipulation of single airborne particles via negative photophoresis has been re-

alized. This is the first time that it has been demonstrated using a single Gaussian beam over meter

scale distances. The development of this technology relies on the understanding of photophoretic

forces in which there are many avenues of exploration. Even though this technology is still in

infancy and emerging, there have been great strides and uses of other optical manipulation tech-

nology, namely, the nobel prizes in 1997 and 2001.7, 8 This goes to show the impact of developing
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this technology and why investing in future research in this field is still worthwhile.
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A Experiment Components

Table 2: List of Experiment Components

List of Components Specification

Continuous-Wave Laser Manufacturer: Coherent

Model #: Verdi V-6

Wavelength: 532 nm

Beam Diameter: 2.25±10% mm

Beam Divergence: < 0.5 mrad

Polarization: > 100:1, vertical, linear

Power Stability: ±1%

Pulsed Laser Manufacturer: Continuum

Model #: Minilite II

Wavelength: 532 nm

Beam Diameter: 3 mm

Max. Pulse Energy: 25 mJ

Vacuum Parts: (Quantity) NW25 Aluminum wing clamp: 10

NW25 SS/Viton Centering Ring: 10

NW16 Aluminum wing clamp: 1

NW16 SS/Viton Centering Ring: 1

NW25 20′′ Metal Hose: 1

NW25 8′′ Metal Hose: 1

NW25 4′′ Metal Hose: 1

NW25 Four Way Cross: 1

NW25 Manual Right Angle Valve: 2

NW25 Tee: 1



NW25 to 1
8
′′

Female NPT: 1

Plastic Tube Manufacturer: McMaster-Carr

Part #: 3161T31

Name: Impact-Resistant Polycarbonate 1′′

Square Tube

Length: 6′

Vacuum Pump Manufacturer: Agilent Technologies

Model #: DS 302

Pressure Monitor Manufacturer: Varian

Part #: P101658

Name: 531 Thermocouple Gauge Tube

Manufacturer: DigiVac

Model #: Model 200

Name: Vacuum Controller

Liquid Crystal Controller Manufacturer: ThorLabs

Model #: LCC25

Liquid Crystal Manufacturer: ThorLabs

Model #: LCR-1-VIS

Wavelength Range: 450-650 nm

Retardence Range: 30 nm - > λ

2

Mirrors Manufacturer: Newport

Model #: 5101

Name: VIS Dielectric Mirror

Camera Manufacturer: Casio
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Model #: EX-ZR200

Half-Wave Plate Manufacturer: ThorLabs

Part #: WPH05M-532

X-Y-Z Stage Manufacturer: ThorLabs

Part #: PT3

Optical Pulling

Polarizing Beam Splitter Manufacturer: ThorLabs

Model #: PBS251

Focusing Lenses Manufacturer: ThorLabs

f1 Part #: LB4282

Focal length: 200 mm

Diameter: 1′′

f2 Part #: LB4941

Focal length: 100 mm

Diameter: 1′′

f3 Part #: LB4915

Focal length: 50 mm

Diameter: 1
2
′′

Optical Deflection

Polarizing Beam Splitter Manufacturer: ThorLabs

PBS1 Model #: PBS121

PBS2 Model #: PBS251

Focusing Lenses Manufacturer: ThorLabs

f1, f3 Part #: LB4282

Focal length: 200 mm
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Diameter: 1′′

f2, f4 Part #: LB4941

Focal length: 100 mm

Diameter: 1′′

f5 Part #: LB4915

Focal length: 50 mm

Diameter: 1
2
′′

Objective Lens Manufacturer: Zeiss

f6 Working Distance: 12.5 mm

Aperture Diameter: 1
4
′′

Optical Trapping

Polarizing Beam Splitter Manufacturer: ThorLabs

PBS1 Model #: PBS121

PBS2 Model #: PBS251

Focusing Lenses Manufacturer: ThorLabs

f1 Part #: LB4282

Focal length: 200 mm

Diameter: 1′′

f2 Part #: LB4941

Focal length: 100 mm

Diameter: 1′′

f3 Part #: LB4941

Focal length: 50 mm
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Diameter: 1′′

f4 Part #: LB4915

Focal length: 50 mm

Diameter: 1
2
′′

Other Equipment

Power Meter Manufacturer: Coherent

Model #: FieldMax-TOP

Sensor Part #: 1097901

Name: PM10

Photodiode Manufacturer: ThorLabs

Part #: FDS1010

Size: 10 mm × 10 mm

Data Acquistion Card Manufacturer: Measurement Computing

Corporation

Model #: USB-1208HS-4AO

Name: High-Speed DAQ Device

Sample Manufacturer: Sigma-Aldrich

Name: Carbon

Size: < 50 nm

Manufacturer: Thermo Fisher Scientific, Inc.

Name: Bermuda Grass Smut Spores

Size: 6−8µm

Manufacturer: Thermo Fisher Scientific, Inc.
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Name: Johnson Grass Smut Spores

Size: 6−9µm

Manufacturer: Sigma-Aldrich

Name: Copper (II) Oxide

Item #: 450804

Manufacturer: Central Scientific

Name: Iron Filings

Item #: 78395B

Neutral Density Filter Manufacturer: Edmund Optics Inc.

Optical Density: 2.5

Transmission: 0.3%

Size: 50 mm square

Fluourescent Dye Manufacturer: Sigma-Aldrich Corp.

Name: Rhodamine B

λmax: 543 nm
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B Matlab Interface

Figure 33: Matlab Interface

The Matlab code interfaces the computer with the DAQ. The code takes advantage of the capability

of the DAQ as seen by the input settings of figure 33. A plot is displayed after data acquisition

which can help with photodiode position calibration and data quality. The data acquired can be

saved in a text file format for further processing in other software.



C Matlab Deflection Trajectory

function [x, y] = DeflectionTrajectory(v0,w0,Ip,Id)

%Deflection Trajectory

%This program determines the trajectory of a particle passing through

%intersecting gaussian beams with simple criteria. Assumption

%that v0 and w0 remain constant in the intersection. The new veloctiy

%vector is determined by the intensity field vectors ONLY after one cycle

%of rotation.

%v0 - initial velocity is entered in mm/s

%w0 - initial angular freq. is entered in Hz

%Ip - pulling beam power is entered in mW

%Id - deflecting beam power is entered in mW

%Beam Power in mW. Both beams have same size.

Idefl = Id;

Ipull = Ip;

%Determine the time step

dt = (w0)ˆ-1;

%Setup Placeholder Matrices

i=1;

n=200; %CHEAP TRICK, just a value that overshoots the amount of

%coordinates generated such that we guarantee the "while" condition

x = zeros(1,n);

y = zeros(1,n);

theta = zeros(1,n);

%Generate the coordinates with our criteria.



% 1) stop when particle moves out of intersection

while x(1,i) > -1 && y(1,i) > -.5 ;

% 2)new coordinates from the previous location

x(1,i+1) = x(1,i)- v0*dt*cos(theta(1,i));

y(1,i+1) = y(1,i)- v0*dt*sin(theta(1,i));

% 3)angle from gaussian intersection

theta(1,i+1) = atan((Idefl/Ipull)*(exp((-2*(x(1,i+1)+.5)ˆ2)/(.25)))/...

(exp((-2*(y(1,i+1))ˆ2)/(.25))));

i = i+1;

end

%Plot Commands

p = linspace(-1,0,10);

q = linspace(-.5,.5,10);

bx0 = 0*ones(1,10); %beam at x = 0

bx1 = -1*ones(1,10); %beam at x = .1

by0 = .5*ones(1,10); %beam at y = .05

by1 = -.5*ones(1,10); %beam at y = -.05

hold on

plot(x(1,:),y(1,:),'o',bx0,q,'--g',bx1,q,'--g',p,by0,'--g',p,by1,'--g',...

p,bx0,'--',by1,q,'--')

end
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