
ABSTRACT

Back-Projective Priming: Toward Efficient 3d Model-based Object Recognition via Preemptive

Top-down Constraints

by Ryan Dellana

July, 2016

Director of Thesis: Dr. Ronnie W. Smith

Major Department: Computer Science

This thesis introduces back-projective priming, a computer vision technique that synergistically

fuses object recognition and pose estimation by augmenting 3D models with geometric constraints. It

also enables the use of image features too indistinct for use by other model fitting algorithms such as

geometric hashing. To efficiently accommodate features that do not provide a scale attribute, we've

developed a “match pair” finding heuristic called second-order similarity that reduces model fitting

time complexity from a worst case of O(N2) to O(N*Log(N)).

An object recognition problem that is simple, practical, and well explored by other researchers is

the problem of locating electrical outlets from the vantage point of a mobile robot. To demonstrate the

relative merits of back-projective priming, we use it to build a system capable of locating generic

electrical outlets in unmapped environments. Compared to our baseline algorithm, back-projective

priming is shown to provide superior sensitivity when dealing with the challenges of low contrast,

perspective distortion, partial occlusion, and decoys.

Back-Projective Priming: Toward Efficient 3d Model-based Object Recognition via Preemptive

Top-down Constraints

A Thesis

Presented to the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Computer Science

by

Ryan Dellana

July, 2016

©Copyright 2016
Ryan Dellana

Back-Projective Priming: Toward Efficient 3d Model-based Object Recognition via Preemptive

Top-down Constraints

by

Ryan Dellana

APPROVED BY:

DIRECTOR OF THESIS:__
Ronnie W. Smith, PhD

COMMITTEE MEMBER:___
M. H. Nassehzadeh Tabrizi, PhD

COMMITTEE MEMBER:___
Qin Ding, PhD

CHAIR OF THE DEPARTMENT OF COMPUTER SCIENCE:
__

Venkat N. Gudivada, PhD

DEAN OF THE GRADUATE SCHOOL:
__

Paul J. Gemperline, PhD

ACKNOWLEDGEMENTS

I’d like to thank my advisor, Dr. Ronnie Smith, the other members of my thesis

committee, and my parents for their support throughout this process.

TABLE OF CONTENTS

LIST OF TABLES …... vii

LIST OF FIGURES ….. viii

CHAPTER 1: INTRODUCTION ….. 1

CHAPTER 2: THE PROBLEM …... 3

2.1 Electrical Outlet Discovery …... 3

2.2 Other Self-Feeding Robots ….. 4

CHAPTER 3: TOOLS AND FORMALISMS …... 8

3.1 Coordinate Systems …... 8

3.2 Kinematic Tree ….. 10

3.3 Mapping Between 3D Space and 2D Images ….. 11

3.4 Oriented Edges ….. 12

CHAPTER 4: BACK-PROJECTIVE PRIMING ….. 13

4.1 Background …... 13

4.2 Prime …... 14

4.3 Sense …... 17

4.3.1 Feature Extraction …... 19

4.3.2 Feature Matching …... 20

4.3.3 Finding Match Pairs ….. 22

4.3.4 Generating Fits ….. 25

4.3.5 Evaluating Potential Fits ….. 25

4.3.6 Fit Clustering …... 26

4.3.7 Optional Post-Validation …... 26

CHAPTER 5: EXPERIMENTAL DESIGN ….. 27

5.1 Introduction …... 27

5.2 The Robot …... 27

5.3 Test Configurations …... 28

5.4 Data Collection ….. 30

5.5 Metrics …... 31

5.6 The Baseline Algorithm …...................…... 32

CHAPTER 6: RESULTS …... 34

CHAPTER 7: CONCLUSIONS AND FUTURE WORK …... 39

REFERENCES ….. 41

APPENDIX A: DRAWING FROM COGNITIVE SCIENCE ….. 43

LIST OF TABLES

1. Table 6.1: True-Positive Rate by Angle and Distance …... 34

2. Table 6.2: False-Positive Rate by Angle and Distance ….. 35

3. Table 6.3: True-Positive Rate by Scenario and Angle …... 35

4. Table 6.4: False-Positive Rate by Scenario and Angle ….. 36

5. Table 6.5: Translation Error by Scenario and Angle ….. 37

6. Table 6.6: Rotation Error by Scenario and Angle ….. 37

7. Table 6.7: Accuracy of Back-Projective Priming ….. 38

LIST OF FIGURES

1. Figure 3.1: Translation (a) and Rotation (b) ….. 9

2. Figure 3.2: Euler Angles ….. 9

3. Figure 3.3: Kinematic Tree ….. 10

4. Figure 3.4: solvePNP and projectPoints …... 11

5. Figure 3.5: Extracting Oriented Edges …... 12

6. Figure 4.1: Pose-Space Samples (right) and their Back-Projections (left) ….......................... 15

7. Figure 4.2: The Steps of Sense ….. 17

8. Figure 4.3: Feature Lists ….. 22

9. Figure 5.1: Mongo Robot (a), Range of Motion (b), Arm Camera View (c) …....................... 28

10. Figure 5.2: Testing Environment …... 29

11. Figure 5.3: Outlet Configurations ….. 30

12. Figure 5.4: Test Angles ….. 31

13. Figure 5.5: Baseline Algorithm ….. 33

14. Figure A.1: Kanizsa's Triangle (a) and Feedback Pathways (b) ….. 45

CHAPTER 1: INTRODUCTION

Robust object recognition is a central goal in the discipline of computer vision. Yet, as the

blind man illustrates, knowing what and where things are is a problem that goes beyond vision.

While the meta-problem of perception spans all the areas that comprise cognitive science, most

computer vision research is confined to computer science, addressing narrowly-defined

problems. Consistent with the software engineering best practice of creating modules with high

cohesion and low coupling, solutions to these problems typically focus on the intrinsic features

of objects, and rarely take advantage of context. In real-world scenarios, objects can appear

ambiguous due to the effects of lighting, perspective, and occlusion. In such situations, context

provides the only means of resolving this ambiguity. Taking general inspiration from gestalt

psychology, neuroanatomical findings, and the success of hierarchical pattern recognition

approaches, a novel framework has been developed for context-based object-recognition/pose-

estimation. High-level geometric constraints are used to guide fitting of a 3d model to a 2d image

through a process termed "back-projective priming" (bp-priming) [1].

BP-Priming enables the synergistic fusion of object recognition and pose estimation, plus

the use of image features too indistinct for use by other model fitting algorithms such as

geometric hashing. To efficiently accommodate features that do not provide a scale attribute,

we've developed a “match pair” finding heuristic called second-order similarity that reduces

model fitting time complexity from a worst case of O(N2) to O(N*Log(N)).

As a specific, well-studied, problem within mobile robotics, "electrical outlet discovery" is used

for benchmarking performance. An experimental setup, consisting of a mobile robot with a "plug arm"

and a collection of interchangeable prop-walls and outlets has been constructed for validation. The

results show that, in object recognition scenarios with known geometric constraints, bp-priming offers

improved sensitivity, efficiency, and robustness to visual obfuscators compared with a baseline system

using only bottom-up processing.

Chapter 2 details the constrained version of the electrical outlet discovery problem and examines

robots developed by other researchers that solve similar problems. Tools and formalisms foundational

to bp-priming and our baseline algorithm are introduced in chapter 3, with bp-priming explained in

chapter 4. Chapters 5 and 6 deal with the experimental design and results, with the baseline algorithm

that we use for comparison purposes described in section 5.6. In the final chapter, we discuss the

strengths and limitations of the current system and possible strategies for improving and expanding it.

For a broader discussion of the cognitive science concepts that motivate this work, see Appendix A.

2

CHAPTER 2: THE PROBLEM

2.1 Electrical Outlet Discovery

Suppose we have a mobile robot that needs to recharge itself. If it only operates in a single

building, a good solution might be to build a custom charging station with some kind of unique visual

marker to make it easy to find. However, a more adaptive robot should be able to use standard outlets

without being told where to find them or what exactly they look like, the problem of electrical outlet

discovery. Additionally, in order to actually plug in, the robot needs to know the position and

orientation of the outlet, the problem of pose estimation.

As we will see in the next section, specialized sensors like laser scanners or stereo-vision enable

simple foreground extraction, which makes object recognition much easier to solve. Yet, these

"shortcuts" distract from the broader perceptual problems, largely freeing the robot from having to

"understand" what it's looking at. In contrast, when tele-operating the robot with a view from a single

camera, a human can easily find an outlet and plug the robot into it. So, in an effort to keep the solution

"cognitive", we prohibit the use of depth sensors in our version of the problem, allowing the use of only

a single camera. However, we do allow the robot to use information about the position and movement

of its various degrees of freedom (i.e. proprioception).

The average human has thousands of hours of visual experience with indoor environments, and

so has a vast store of "common sense" to draw upon. In lieu of this, we'd like to supply the robot with

the subset of North American building code that outlines the valid structure and placement of walls,

electrical outlets, light switches, phone jacks, windows, doors, etc. Since codes across the country vary

slightly and are not always adhered to strictly, we can assume outlet placement will be consistent with

that of local residential structures. This would provide a general set of constraints without a detailed

map of the building or template of the outlet. To keep the scope of this thesis manageable, we will

focus only on the outlet cover, which is modeled as a 3" by 4.75" rectangle. Besides its simplicity,

another advantage of using the outlet cover is that its contours remain visible at extreme angles. Future

work will attempt to incorporate other building features and use a more detailed outlet model that

allows discrimination between outlets and cable jacks.

2.2 Other Self-Feeding Robots

Several notable electrical-outlet-seeking robots have been developed since 2000, the two most

recent by former technology incubator Willow Garage. They initially developed ROS, an open source

"Robot Operating System", used by many different robots including ours. In addition to providing a

common development and runtime framework to simplify collaboration between researchers, ROS

offers a large collection of useful modules for mapping, navigation, motion planning, computer vision,

visualization, and simulation, as well as drivers for common sensors and robotic hardware. Alongside

this software framework, Willow Garage developed the PR2 robotics platform, and by 2009 had

achieved continuous indoor operation using autonomous door opening and plugging in. Their initial

system is described in [2] (System 1), and a significant improvement in outlet recognition/pose-

estimation is explained in [3] (System 2). Both use a 2D occupancy grid map pre-annotated with outlet

positions in conjunction with the standard ROS navigation stack to initially get within the general

region (about 3m x 3m) of an outlet. While this means that neither is technically performing outlet

discovery, the map is 2D and only annotated approximately, so they still have to estimate outlet pose in

the image.

4

Both systems use the PR2 equipped with a six degree of freedom robotic arm featuring accurate

position control and force sensing. The pan-and-tilt head contains two pairs of cameras with each pair

providing stereo-vision for depth perception. There are also two laser scanners ("lidars"), one at ankle

height to provide obstacle detection around the base, and the other mounted on a tilting platform at

shoulder-height to give depth information within the robot's work envelope. Unlike cameras, which are

subject to the effects of lighting, laser scanners work by measuring the time-of-flight of laser pulses

reflected off a rapidly rotating mirror, giving robust depth information within a planar region. In the

head, System 1 contains an additional high-resolution 5 megapixel camera, while System 2 instead has

a wrist-camera to provide a view of what's directly in front of the gripper.

Both systems perform outlet recognition in two phases, far-field and near-field. In far-field, a

depth map obtained from stereo-vision is used to identify outlet candidates on the texture-less white

wall via an unspecified method. Candidates are removed if they are non-planar, or outside expected

bounds on size/height. Next, frontal views of the remaining candidates are generated through

perspective rectification using the wall pose obtained from the lidar in the base. The frontal views are

then compared against an outlet template to eliminate more false-positives. The robot drives to within

half a meter of the closest remaining candidate, and performs near-field recognition to get a more

accurate pose-estimation.

The near-field algorithm of System 1 requires an outlet to have a cluster of four sockets darker

than their surroundings, and it's also implied these sockets need to be orange. The centers of the

"socket-blobs" provide the four non-collinear points required to solve for outlet pose using the standard

PnP-solve (Perspective-n-Point) algorithm [4]. To insert the plug, visual differencing is used, a

technique that involves tracking the plug, and gradually moving it visually closer to the socket. Even

5

with visual-differencing, System 1 is only accurate to within one centimeter, which usually prevents it

from correctly lining up the plug on the first try. To deal with this, they use a trial-and-error approach

where the robot makes multiple plugging attempts in a spiraling pattern using force feedback to detect

success.

The near-field detection algorithm of System 2 is accurate to within less than a millimeter,

eliminating the need for visual differencing. It uses the wrist-camera for a closer view so it can reliably

detect sockets using just the holes, which are found by looking for small regions that are darker than

their surroundings. This use of socket holes enables it to detect most standard outlets rather than being

limited to four-socket outlets like System 1.

Despite its impressive accuracy, System 2 is still limited in terms of generalizability and

performance. It doesn't work when outlet holes are not visible such as for dark sockets or viewing

angles greater than 60 degrees. It also requires the wall pose obtained from the lidar to accurately

calculate outlet pose, while many robots are not equipped with laser scanners. Because there are a large

number of potential socket holes detected at different scales, the algorithm spends a lot of time trying to

find the best combination using geometric hashing [5].

Two older systems described in [6] and [7] are also worth noting, as both wander around without

a map and so perform actual outlet discovery. Mechanically [6] consists of a custom 2 degree-of-

freedom plug arm mounted atop a standard omni-directional mobile base, while [7] is unfinished. [7]

scans along walls with the aid of a lidar that is used in conjunction with a zoom camera to maintain a

consistent field-of-view. This enables it to use a single fixed-size socket template for matching. While a

unique approach, the use of a depth sensor and specialized camera places it outside of our problem

6

scenario, and the use of a template limits its robustness to perspective distortion and occlusion.

All things considered, the problem solved by [6] is the most similar to our own, in that it does

outlet discovery using only a single monocular camera. This is accomplished using a Viola Jones

cascade detector trained on a manually-labeled dataset of 846 positive and 1400 negative instances.

Cascade classifiers are an excellent example of boosting and have historically been popular for their

efficiency. Their disadvantages include the large amount of work required to create training sets, and

their inability to handle significant occlusion, variation in viewing angle, or deviation from the training-

set. They also don't provide any pose information, which makes it unclear how [6] accomplishes this.

All the systems we've looked at are custom tailored to detect standard outlets and have low

tolerance for occlusion and perspective distortion. They tend to use highly modular, strictly bottom-up

perceptual hierarchies, with pattern recognizers at each level set to high sensitivity producing many

false-positives which are filtered out after-the-fact at higher levels using context. The detection and

elimination of these false-positives is computationally costly, and even with sensitivity set fairly high,

many true-positives are missed due to noise and missing data. To overcome these limitations, our

approach is to use context proactively (a.k.a. priming) to selectively boost sensitivity to probable

patterns while reducing sensitivity to improbable ones. This gives higher true-positive rates while

avoiding the cost of filtering out false-positives.

7

CHAPTER 3: TOOLS AND FORMALISMS

3.1 Coordinate Systems

To reason about the 3-dimensional world, a system called tf [8] is used. Tf is part of ROS and

can stand for either Transform, or the name of it's creator, Tully Foote. Tf treats the world as a 3-

dimensional Euclidean space represented using Cartesian coordinates. Various Cartesian frames of

reference are defined, usually bound to objects of interest, with the fixed frame being defined relative

to the task at hand. For example, during robot navigation, an odometry frame is typically defined as

fixed to the spot on the floor where the robot started. The location of the robot is thus given by the

position of the robot's base frame (centered between the drive wheels) relative to the odometry frame.

In other situations, such as when attempting to grasp an object, we are interested in the relative

positions of the gripper, camera, and target object frames. Tf is used both to spawn frames and query

for their relative positions across time.

The relative position between two frames is referred to as the transform between them. A

transform from a frame P to another frame Q, describes how you would translate and rotate P in order

to bring it to the position of Q. These translation and rotation vectors, taken together, define the pose of

Q relative to P. In tf, translation is measured in meters and represented using a three-tuple consisting of

(X, Y, Z), representing forward, left, and upward displacement (Figure 3.1a).

Figure 3.1 Translation (a) and Rotation (b)

There are many different methods of representing rotation in a Euclidean space including 3x3

matrix, quaternion, Euler angles, and axis-angle (a.k.a. Rodrigues). Tf uses quaternions natively, but

includes functions to convert to and from Euler. The computer vision framework, Opencv, uses the

axis-angle representation. We use Euler angles for their more intuitive nature, and handle conversions

in a custom Pose class. Euler rotation vectors are still more difficult to work with than translation

vectors, because, unlike the components of the translation vector, the order in which the components of

rotation are applied affects the outcome of the rotation. Euler angles have traditionally been used in

aviation which is why their three components are often referred to as yaw, pitch, and roll (Figure 3.1b).

More specifically, a Euler angle vector is a 3-tuple which describes a sequence of three "intrinsic

rotations" (in radians) that carry the coordinate frame with them. Because the coordinate frame rotates,

each intrinsic rotation changes the meaning of each subsequent rotation (Figure 3.2).

Figure 3.2 Euler Angles

9

3.2 Kinematic Tree

To model the form and motion of a robot, tf frames are arranged into a kinematic tree/chain

(Figure 3.3), where each child frame has one or more degrees of freedom relative to its parent frame.

Figure 3.3 shows the kinematic tree of our test robot, which will be described in detail in Section 5.2.

The “elevator” frame is the child of “base_link”, and has a single linear degree of freedom, thus

allowing it to raise/lower relative to base_link. The “arm” frame, in-turn, is the child of elevator, and

has a single rotational degree of freedom relative to it. The “camera” frame is fixed relative to the arm

frame. To represent the 3d position of a detected external object, a tf frame for the object is spawned

relative to the camera frame. Tf can then be queried for the pose of said object relative to other

important frames such as base_link. It can also be used to spawn "hypothetical frames" and

subsequently get their poses relative to the camera for use in back-projecting hypotheses (this will be

explained later).

Figure 3.3 Kinematic Tree

10

3.3 Mapping Between 3D Space and 2D Images

Projecting a model into an image at a particular pose (a.k.a. rendering) is the "back-projection"

in back-projective priming. When working in OpenCV, the model of an object consists of a set of 3D

points defined relative to the object center. For example, in the model of a standard-sized outlet cover,

these could correspond to the four corners. Model points are typically chosen to be easy to locate in a

2D-image using features such as texture points, corners, edges, contours, or color "blobs." Once three

or more correspondences have been found, the pose of the model relative to the camera can be

calculated. In OpenCV (cv2 library), this may be accomplished using the function

cv2.solvePNP(model_points, image_points, ...), which returns the rotational and translational

components of the pose as two separate vectors. When given the model and these vectors, the reverse

of solvePNP can be performed using cv2.projectPoints(model_points, rotation_vector,

translation_vector, ...), which gives the 2D image coordinates of the 3D model points when projected

into the image. Figure 3.4 was generated using color tracking to locate four corners of a bright green

outlet cover, followed by cv2.solvePNP to get the pose vectors, and then cv2.projectPoints to draw both

the outlet model and the axis.

Figure 3.4 solvePNP and projectPoints

11

3.4 Oriented Edges

Oriented edges (Figure 3.5) are also important to bp-priming. Extraction begins with Canny edge

detection (cv2.Canny) and dilation (cv2.dilate) with a 2x2 kernel to seal small edge gaps. The resulting

binary image undergoes contour extraction (cv2.findContours), and then polygon approximation of the

contours (cv2.approxPolyDP). These simplified contours are then broken up into individual edges

which are represented using midpoint, length, and orientation angle in radians. By explicitly providing

length and orientation, this representation makes it easier to meaningfully compare edges.

Figure 3.5 Extracting Oriented Edges

12

CHAPTER 4: BACK-PROJECTIVE PRIMING

4.1 Background

When asked to find an electrical outlet in a room, you probably start by locating a wall and then

scanning across the section of it about a foot above the floor. In general, by imagining what an object

might look like in the current context, you can prime your vision system. This is the basic idea behind

back-projective priming. While the mechanism for this in the human brain likely has more in-common

with neural net and stochastic approaches than with symbolic/rule-based ones, the use of explicit 3D-

models and constraints offers the benefits of transparency, and is feasible when looking at the problem

in its simple form.

It can be useful to view a building as a hierarchy of 3d models. At the top of the hierarchy is the

building as a whole, which can be decomposed into the floor, ceiling, and walls. Walls, in turn, may

contain other models such as doors, windows, baseboards, light switches, phone jacks, and electrical

outlets, which themselves can be broken down further. Some models, such as the outlet cover, are

easily defined using a static CAD model. Others, like walls, have some invariant attributes (ex: planar,

rectangular, span floor to ceiling), but do not have a fixed 3d structure, instead being defined by a set of

structural constraints yielding the space of possible 3d configurations. Perhaps this implies that

concepts like "wall" should be discarded in favor of a set of primitive static models. These sorts of

ontological problems are what you'd expect to encounter when using an explicit approach, and the

impetus for future work developing a more fluid non-symbolic one. For now we will look at an easily

defined subset of building features to demonstrate the general concept.

Given knowledge about the relative locations of some models, we can constrain the space of

possibilities in the search for others. Take, for instance, the constraint that any wall should have a pitch

angle exactly 90 degrees greater than that of the floor, and an outlet, in-turn, will have the exact same

rotational vector as the wall that it's in. Since a wall will always have a fixed roll value of 0, both the

pitch and roll values of any potential outlet are known a-priori. The z coordinate of the outlet is

expected to be 12 inches above the floor plane, so that, overall, there are only three variable

components of pose for any outlet, x, y, and yaw. If, however, we've already found a wall, then, relative

to the wall's coordinate frame, the outlet can only vary in terms of the y component of translation.

Finding a wall dramatically shrinks the space of possible outlet poses, and, contrariwise, finding an

outlet would automatically indicate the presence/pose of a wall. In this way, as models are identified,

they provide context (i.e. geometric constraints) which shrinks the pose-space of related models yet to

be detected.

To keep the problem tractable while still demonstrating the benefits of priming, we’ve simplified

the scenario to one of searching for the outlet cover with only the pose of the floor and camera known.

For now, the constraints between the floor and outlet cover pose are hard-coded. In the future, a

constraint programming framework may be used to incorporate other features. Our outlet model is a

simple rectangle consisting of four points and four edges. Initially, no wall poses are known, which

produces a space of possible outlet poses based on different combinations of the unbound variables x,

y, and yaw.

4.2 Prime

Bp-priming assumes that we have a 3d model of a specific object that we wish to detect and

localize, as well as geometric constraints on the pose of the model relative to some reference frame. In

14

this case, our model is a rectangle representing an outlet cover, and our fixed frame of reference is the

floor in front of the camera, for which we use base_link (Figure 3.3). The two high-level operations are

priming and sensing, where prime() takes the geometric constraints and propagates them down into the

image plane so that sense(input_image) can use them to guide model fitting. The two operations are

somewhat disjoint in that a call to prime() needn’t be followed by sense(...), and sense(...) can be run

repeatedly after only a single call to prime(). Let us take a look at the basic steps these functions

perform.

Figure 4.1 Pose-Space Samples (right) and their Back-Projections (left)

15

The steps of prime():

1. Generate a list of sample poses that fall within the pose-space defined by our constraints. This

currently uses a hard-coded function that samples in uniform (x,y) increments in a circular area

surrounding a reference frame approximately three feet in front of the camera. The cross shaped

sample distribution shown in figure 4.1 is actually a circle. At each of these (x,y) positions, a

fixed number of yaw angles are sampled (five in figure 4.1).

2. Spawn tf frames for these poses relative to the base_link frame.

3. Query for the poses of the frames relative to the camera frame.

4. For each pose relative to the camera, render (back-project) the model.

5. Extract features from each render, binding them to their corresponding back-projection. Note

that “back-projection” refers to the combination of a model, pose, and the features extracted

from the render of said model at said pose.

The end product of prime() is a collection of feature objects each bound to a particular back-

projection. Figure 4.1 shows the sampled 3d poses in tf (right) and a composite image of their

corresponding 2d renders (left). Note that the number of samples in this example is kept small for

illustration purposes.

For this artificially narrow problem, the pose-space is simply the set of all possible outlet poses

where the pitch and roll are 0 degrees and height/z is 12 inches. In the current implementation, the set

of samples taken from this space consisted of 11 rotations at 10 different (x,y) positions for a total of

110 poses. As in Figure 4.1, the (x,y) sample region is a circle surrounding a reference frame about four

feet in front of the robot. This is, of course, just an engineering expedience. Pose-space in a fully-

developed implementation would be the space of object poses that do not violate the geometric

16

constraints currently at play. If, for example, the robot perceived a wall in front of it, the initially

circular pose-space would collapse to a line running along the wall at 12 inches above the floor. A long-

term goal of potential future research is to develop better ways to represent and optimally sample the

pose-space while constraints change in real-time.

4.3 Sense

Once the system is primed, we are ready to start capturing images from the camera to be

processed by sense(...). Let’s get an overview of the steps involved, before going into further detail for

each. Figure 4.2 (a) through (d) illustrate what happens in a call to sense() after having primed with the

poses of Figure 4.1.

Figure 4.2 The Steps of Sense

17

The steps of sense(input_image):

1. Extract features from the image; in this case, oriented edges (Figure 4.2b).

2. Find matches between the image features and back-projection features (bp-features). At the

conclusion of this step, each bp-feature will have a list of potential image-feature matches in

descending order of similarity.

3. For each back-projection, attempt to find a list of good “match pairs” that can be used as a basis

for fitting the model to the image. A match-pair is a set of two matches between image and bp-

features (Figure 4.2b).

4. For each back-projection, use each match pair to translate and scale the model 2-dimensionally

to generate a potential fit (Figure 4.2c). Note that each back-projection can generate multiple

fits (Figure 4.2c).

5. Evaluate each potential fit in a second wave of feature matching with tighter tolerances than the

first. If a fit is successful (i.e. is a correct guess), many features other than those in the match-

pair will also find close matches in the image.

6. It is typical for multiple fits to be generated that share common features in the image. These fit-

clusters must be collapsed to a single fit. Once the clusters are identified, choose the best fit in

each cluster and ignore the rest.

7. As an optional final step, the pose of each fit can be post-validated using tf to ensure that the

scaling and translation operations didn’t put them outside of the constrained pose-space (Figure

4.2d).

Figure 4.2 is also deliberately simplified for clarity. The ECU logo was added to demonstrate

how the system ignores features dissimilar from those that are primed. In addition to the image

features, subfigure (b) shows one of the evaluated match-pairs used in generating the right-most fit in

18

subfigure (c). Notice in (c) how a single back-projection can generate more than one fit, in addition to

how the 2d fitting transformations change both the position and scale of the back-projection.

To reiterate, a feature is either a bp-feature or image feature, with the former extracted from a

back-projection and the latter from an image. A match is a tuple consisting of one bp-feature and one

image-feature that are similar to each other. A match pair is a set of two matches, which provide two

pairs of points to estimate relative scale during model fitting. A fit is an attempt to superimpose a back-

projection over a particular part of the image. Now we will go into more detail about each step

involved in sense(...), starting with a more in-depth look at features and feature matching.

4.3.1 Feature Extraction (Step 1)

Features in bp-priming are patterns extracted from the raw image or the render of a back-

projection. They allow us to find similarities between different parts of the image (or between images).

Features are composed of attributes, and a feature of a given class will share the same attributes as

other members of that class. These attributes can be used to calculate the similarity or distance between

features during matching. All feature classes share some common attributes including (x,y) position in

the image, orientation, and scale. The attributes of an oriented edge feature include midpoint (position),

angle (orientation), and length (scale). In most applications, these three basic attributes are not used in

matching, but are rather viewed as a nuisance. Indeed, most features commonly used in computer

vision are designed to be invariant to position, rotation, and scale so that matching can work despite

changes in the pose of the target pattern (object) relative to the camera. However, in practice this is

hard to achieve, as rotation of a complex 3d object can drastically change it’s appearance. Most

standard features like SIFT (Scale Invariant Feature Transform) work very poorly on objects that either

lack a distinguishing visual “texture” or possess significant intra-class texture variation. Examples of

19

this include empty walls, transparent/translucent objects, and electrical outlets. In such cases, the only

way to reliably identify objects is via a combination of context and contour features, and in the case of

polyhedra, oriented edges. For an explanation of how oriented edges are extracted, refer to figure 3.5.

4.3.2 Feature Matching (Steps 2 & 5)

The similarity between two oriented-edges is one minus their average normalized attribute

distance, which is the sum of the normalized distances between each attribute divided by the number of

attributes. More formally, given two features of a class with n attributes, f1 and f2, their similarity is

given by:

The function normDistattr(...) gives the normalized distance between two values of a particular

attribute, attr. In the case of (x,y) position, this is the euclidean distance divided by the width of the

image. For angle, it’s the percentage of the maximum possible difference in angle which maps (0° ->

90°) to (0.0 -> 1.0). For length, a relative difference of 100% is considered maximal, and anything

above that is capped at 1.0. So, suppose we have an 800 pixel wide image in which oriented edge p is

20 pixels away from q, 50% longer than q, and 36 degrees different in angle, then the normalized

distances for each of these attributes would be 0.025, 0.5, and 0.4 respectively. The average normalized

distance would be 0.31, so the similarity would be 0.69.

In practice, the normalized distances are usually calculated relative to a tolerance which is set for

each attribute on a case-per-case basis. If, for example, we were to set the tolerance for position to 0.1,

the matcher would throw out any potential matches where position differs by more than 10% of the

image width. In such a case, if we were to measure their position similarity relative to the full image

width, we would never see similarity values less than 90% since all others would have been rejected

20

prior to comparison. This effectively reduces the relative influence of the position attribute in

calculating similarity. By instead using the tolerance value as the denominator, we once again have

similarity values ranging from 0% to 100%, thus increasing the relative weight of position. In general,

the tighter the tolerance on a particular attribute, the higher the sensitivity of the matcher in calculating

said attributes similarity, and thus the more small differences in said attribute influence the overall

similarity value. In the first wave of matching (step 2) the tolerance values for position, length, and

angle are set to 20%, 50%, and 10 degrees respectively. In this step we want to search a wide area for

plausible fits at various scales, so we can only afford to be picky about angle, hence its relatively tight

tolerance. In wave 2 (step 5), we want to make sure the features of a fit line up properly and are

roughly the same scale as their corresponding image features. To accomplish this we tighten the

tolerances for position and length to 0.8% and 8%.

Note that, in the actual implementation, the image width is considered 1.0, and all image

coordinates are normalized relative to this. So in our example with an 800 pixel image, a feature at an x

coordinate of 400 would be at position 0.5. The advantage of using normalized image coordinates is

that they’re independent of image resolution. In our previous similarity example, if (position, length,

angle) tolerances were set at (0.1, 0.8, 0.5), the normalized distances would come out as (0.25, 0.625,

0.8) giving a similarity of 0.44. To account for the tolerances, the similarity expression can be modified

as follows:

Unfortunately, Python is relatively slow, so we want to minimize the number of matches

evaluated. To help with this, OpenCV offers a heavily optimized matcher that can take two sets of

normalized feature vectors and for each feature in the first set, find the k-nearest-neighbors in the

21

second set according to the euclidean distance. It would be ideal to rely completely on this matcher

function, but there’s one major limitation to it. The angle attribute of an oriented edge is modular

(wraps back around) and there’s no way to tell the matcher to treat it as such, making it unable to

compare angles correctly. So, as a compromise, we use the matcher only on the position and length

attributes. This narrows down the set of possible matches to k candidates, which can then be evaluated

using the python-based similarity metric described above.

4.3.3 Finding Match Pairs (Step 3)

At the end of step 2, a given back-projection will have a list of matches for each of its features

(Figure 4.3). Now the challenge is to figure out which pairs of matches are “good pairs.” The first

problem is that, as the length of the match list for each feature grows, the number of possible pairs

grows by roughly n-squared where n is the number of items in each list. Specifically, if you have L lists

each with N items, the number of possible pairs of items between the lists is given by:

So, if a given back-projection had 10 matches for each of its 4 features, the number of pairs

would be 600. If this is average for all back-projections, then multiply this figure by the number of

back-projections. Supposing there were 30, this would result in the algorithm evaluating 18,000 pairs.

To cut down on this number, we use a heuristic dubbed “second-order similarity.” The basic

observation underlying this is that a cluster of image features that will produce a good fit, will all tend

to have very similar similarity values when paired with the features of the correct back-projection. The

second-order similarity algorithm for finding “good pairs” works as follows:

22

Figure 4.3 Feature Lists

Concatenate the match lists for all features in a given back-projection

all_matches = [], good_pairs = []

for each feature in back-projection:

for each match in feature:

all_matches.append(match)

Sort the concatenated list in descending order of similarity.

all_matches.sort()

Iterate over the list and examine each adjacent pair of matches.

If a given pair come from different parent lists, then add them to the “good pairs” list.

for i = 0 to all_matches.length - 2:

if all_matches[i].parent_list != all_matches[i+1].parent_list:

good_pairs.append((all_matches[i], all_matches[i+1]))

return good_pairs

23

When this finishes, we will have a list of match pairs with maximal second-order similarity. So

how many pairs does this produce relative to the number that are possible? The length of the

concatenated list is L*N, so the number of match pairs we examine is equal to L*N - 1, each of these

either producing a “good pair” or not. For a given model, L is a constant, and sorting is only

O((L*N)*log(L*N)), so the overall time complexity is O(N*log(N)) (much better than O(N2)).

However, to examine each “good pair” produced involves a relatively large time constant. As a result,

the algorithm initially appears to scale approximately O(N), or time linearly related to the number of

pairs examined. Going back to our example, this heuristic would yield up to 39 pairs per back-

projection giving a total of 1,170 possible pairs (approximately 15 times fewer). So, in scenarios where

the number of pairs is less than roughly 1000, approximately linear scaling means it's about 15 times

faster.

Of course, not all match pairs with high second-order similarity necessarily produce good fits.

All the metric tells us is if two matches are a similar distance from the back-projection, but they could

be a similar distance in opposite directions. So, before a given match pair is used to generate a

candidate fit, there are two additional tests that can be used to weed it out, angle similarity and scale

similarity. Suppose we have a given match pair (bp1, im1) and (bp2, im2), where bp1 is a back-

projection feature matched to image-feature im1. We simply compare the angle of the line between the

position of bp1 and im1 to the line between bp2 and im2, and if they’re beyond a certain tolerance (e.g.

10°) we discard the pair. Scale similarity works in much the same way, except we’re comparing the

ratio of the scale of bp1 and im1 to the ratio of the scale of bp2 to im2 (in the case of oriented edges,

scale = length). The remaining match pairs are used to generate fits.

24

Unfortunately, it’s also possible for a good match pair to be neglected by this heuristic. If a back-

projection differs significantly in scale from the correct fit, it causes the relative translation vectors of

the correct matches to be non-parallel. Non-parallel translation vectors result in differing second-order

similarity of the position attribute, lowering the chances that they’ll appear close to each other in the

sorted match list. In practice, this can be somewhat mitigated by increasing the density of the pose-

space sample, but at the cost of performance due to extra back-projections and match evaluations. A

modified version of the heuristic that adjusts for differences in scale might also be possible if a custom

feature matcher were to be developed.

4.3.4 Generating Fits (Step 4)

For each match pair of a given back-projection, we generate a potential fit by scaling and

translating the model points. What this does is superimpose the back-projection onto the image so that

the matching bp-features overlay their corresponding image-features (see Figure 4.2c).

4.3.5 Evaluating Potential Fits (Step 5)

The tolerances of the first matching wave were deliberately lax with the intent of generating lots

of potential fits. These fits are subsequently evaluated using a second wave of feature matching, with

feature similarity tolerances much tighter. Position and scale are expected to match almost perfectly,

while angle is a little more lenient. Many fits fail to match a minimum of two features and are

eliminated. For those that remain, strength is found using the average similarity of the top match for

each feature, which is given by:

25

4.3.6 Fit Clustering (Step 6)

It is often the case that several different back-projections will generate fits that bind to the same

image feature. If two fits are bound to at least one common image feature, then they are considered to

be in the same fit cluster. The relationship is also transitive, so that two fits, A and C, can share zero

features but still be in the same fit cluster because they both share a feature with another fit, B. Only the

strongest fit in each cluster is retained.

4.3.7 Optional Post-Validation (Step 7)

As an optional final step, the pose of each fit can be post-validated using tf to ensure that the

scaling and translation operations didn’t put them outside of the constrained pose-space. In the case of

electrical outlets, roll and pitch must be 0 degrees plus or minus 5 degrees, and height above the ground

should fall within a range of 11 to 13 inches. This process is illustrated nicely by the baseline algorithm

(see section 5.6).

The more back-projections that are generated in priming, the more densely packed their features

are in the image plane, and so the tolerances during the first matching wave can be made tighter. This

limits the amount a given back-projection can be scaled and translated, which reduces the chances of

generating a fit that falls outside the constrained pose space. In such a scenario, post-validation may not

be necessary. On the other hand, this produces more potential matches, which take time to evaluate.

Future work will attempt to find the optimal balance between the costs of back-projection, wave one

matching, and post-validation.

26

CHAPTER 5: EXPERIMENTAL DESIGN

5.1 Introduction

The goal of our experimental design is to measure the performance of bp-priming on the

electrical outlet detection/pose-estimation example problem. A good design provides realism, variation,

ground-truth, repeatability, and a baseline system for comparison. Data collected from an actual robot

in a room provides the realism, with a reconfigurable prop wall for variation, and tracking points for

ground truth. Static datasets gathered from this test scenario enable repeatable offline testing so that the

effects of different algorithms and parameters can be fairly assessed. As we were unable to obtain

implementations of algorithms used by other researchers, we crafted our own baseline system that

works strictly bottom-up without any priming. We will now describe these elements in more detail.

5.2 The Robot

The robot (Mongo, Figure 5.1) uses a differential drive platform for mobility, elevator to adjust

the height of the plug, and pivoting arm to control the pitch angle of the plug. When eventually

completed, the arm will include a gripper assembly and provide general pick-and-place capabilities.

This is why it features the pitch control instead of just having the plug fixed horizontally. Its senses

include monocular vision and basic proprioception provided by a collection of encoders, limit switches,

and a potentiometer. The plug is directly mounted to the end of the arm, in view of the single arm-

mounted camera (Figure 5.1c). There are also plans to install a stereo vision pan-and-tilt "head" on top

of the elevator. Mongo has been successfully plugging in under remote control, demonstrating the

feasibility of the design.

Figure 5.1 Mongo Robot (a), Range of Motion (b), Arm Camera View (c)

5.3 Test Configurations

In the test setup, the robot is situated in an open room facing a small section of fake wall with an

outlet at its center (Figure 5.2). The wall is flat white with no discernible visual texture, and includes a

white base-board for realism. Illumination is provided by three overhead compact florescent bulbs and

is kept constant across different test scenarios. Affixed to the wall are four red ping-pong balls that

serve as tracking-points to provide ground-truth for outlet position. Each tracking-point is offset from

the center of the outlet by 0.20 meters in the Y and Z directions. To make a scenario more challenging,

the prop wall can be altered in three ways. First, the standard green outlet cover can be replaced with a

white cover that minimizes contrast with the wall, making it harder to detect edges. Second, the outlet

can be partially occluded by placing a large piece of white tape across it diagonally. Lastly, decoy

28

outlets (index cards with an outlet photo) can be placed at incorrect positions on the wall to encourage

false positives. These factors are combined to produce five distinct test configurations (Figure 5.3), one

with no alterations, three each with just one alteration, and one with all three combined.

Figure 5.2 Testing Environment

29

Figure 5.3 Outlet Configurations

5.4 Data Collection

To provide an ideal vantage point for gathering test data, the camera is kept fixed at 0.5 meters

above the ground with a downward tilt angle of 15 degrees. Note that, in practice, information from the

encoders can be used to handle variation in camera position. Once a wall configuration is set, the robot

uses the tracker-points to precisely position itself in a predetermined sequence. For each of three

viewing angles, 0, 45, and 85 degrees (Figure 5.4), the robot moves in a straight line towards the outlet

in increments of 0.25 meters, starting at 2.25 meters away and finishing at 1.5 meters for a total of 12

30

angle-distance combinations. Ten images are captured at each position, along with the corresponding

camera pose and ground-truth outlet-pose. The resulting 120 labeled images form a data-set used for

off-line evaluation of both the baseline algorithm and bp-priming algorithm. During this evaluation, the

algorithm under testing is re-initialized on each image, simulating how it would perform if the current

image had been the first captured.

Figure 5.4 Test Angles

5.5 Metrics

A given algorithm outputs a list of detections with pose data for each. Although the detection

aspect can be viewed as simple classification, the ability to detect multiple instances of the target model

within the same image makes traditional metrics (e.g. precision/recall) less useful in gauging accuracy.

Instead, we look at each detection separately, evaluating it as either a true-positive or false-positive. To

be labeled as a true-positive, the translational component of a detection must fall within an "acceptance

region" surrounding the ground truth frame. A detection counts as a true-positive if the 3d euclidean

31

distance between the detection and ground truth frames is less than 0.3 meters. If more than one

detection falls within this region, then the one closest to ground truth is kept while the others are

labeled as false-positives. For true-positives, we find pose estimation error by querying tf for the

transform between the detection frame and ground-truth frame. The translational and rotational

components of this transform constitute error values for the translational and rotational components of

the detected pose.

5.6 The Baseline Algorithm

With a bottom-up detector, the earlier processing stages are not primed using constraints from

later stages. With no pose constraints during feature matching, finding a potential outlet cover amounts

to finding a rectangle that may have undergone perspective distortion. For such a simple shape, texture-

based features like SIFT are of no use, leaving only basic geometric features like corners and oriented

edges. Since we’d also like our solution to be robust to partial occlusion, as few as two edges should be

sufficient to identify an outlet candidate. Unfortunately, this requirement makes a bottom-up detector

infeasible, as almost any two connected edges could be interpreted as an outlet cover in one of several

possible orientations. However, a less capable algorithm can be created with the concession that all four

edges must be visible (i.e. no occlusion). Contour analysis allows us to find quadrilaterals which are

each treated as candidate outlet covers. The four vertices of each quadrilateral are paired with the points

of the model in a left-to-right, top-down order. These correspondences are then fed into solvePnP to get

the pose of the candidate outlet cover. The last step is post-validation, in which each candidate is either

accepted or rejected based on pose constraints. To be accepted, roll and pitch must be 0 degrees plus or

minus 5 degrees, and height above the ground should fall within a range of 11 to 13 inches.

32

Figure 5.5 Baseline Algorithm

Figure 5.5 illustrates a case where we have one actual outlet and several index cards on the wall

and floor to attempt to confuse the detector. Candidate poses are overlaid on the original image (left)

and added as tf frames for validation (right). After first publishing the transforms relative to the camera

frame, they are queried relative to the base-link (floor) frame and evaluated based on the geometric

constraints. Those that passed post-validation are shown as green, while those that failed are red.

33

CHAPTER 6: RESULTS

True-Positive/False-positive rate is the proportion of images for which at least one outlet was

detected within/outside-of the valid region. Translation and rotation error are calculated using euclidean

distance and sum of pitch/roll/yaw difference in meters and radians respectively. The results are

summarized in the tables below. For each combination of scenario, distance, and angle, the results for

ten images are averaged. So, the total number of images = (scenarios * distances * angles * 10) = (5 * 4

* 3 * 10) = 600.

Table 6.1 True-Positive Rate by Angle and Distance

True-Positive Rate by Angle and Distance

0° 45° 85° All

1.5m Baseline 40% 44% 48% 44%

BP-Priming 78% 92% 54% 75%

1.75m Baseline 40% 52% 40% 44%

BP-Priming 70% 82% 32% 61%

2.0m Baseline 36% 40% 50% 42%

BP-Priming 58% 74% 10% 47%

2.25m Baseline 34% 44% 54% 44%

BP-Priming 58% 42% 4% 35%

All Baseline 38% 45% 48% 44%

BP-Priming 66% 73% 25% 55%

Table 6.2 False-Positive Rate by Angle and Distance

False-Positive Rate by Angle and Distance

0° 45° 85° All

1.5m Baseline 0.0% 0.0% 10.0% 3.3%

BP-Priming 2.0% 2.0% 0.0% 1.3%

1.75m Baseline 0.0% 0.0% 6.0% 2.0%

BP-Priming 4.0% 0.0% 0.0% 1.3%

2.0m Baseline 0.0% 0.0% 0.0% 0.0%

BP-Priming 2.0% 2.0% 2.0% 2.0%

2.25m Baseline 0.0% 0.0% 0.0% 0.0%

BP-Priming 2.0% 8.0% 2.0% 4.0%

All Baseline 0.0% 0.0% 4.0% 1.3%

BP-Priming 2.5% 3.0% 1.0% 2.2%

It can be seen here that BP-Priming does better than the Baseline for all but the greatest distance

and largest angle, with its relative performance being particularly poor at 85°. False-Positive rates do

not vary significantly, and at greater distances are typically the result of translation error placing the

outlet frame just outside the acceptance region.

Table 6.3 True-Positive Rate by Scenario and Angle

True-Positive Rate by Scenario and Angle

easy decoy low-contrast occlusion challenge

Baseline 0° 97.5% 82.5% 0.0% 7.5% 0.0%

Baseline 45° 100.0% 100.0% 0.0% 25.0% 0.0%

Baseline 85° 92.5% 90.0% 0.0% 55.0% 2.5%

BP-Priming 0° 100.0% 92.5% 55.0% 82.5% 0.0%

BP-Priming 45° 97.5% 90.0% 50.0% 85.0% 40.0%

BP-Priming 85° 45.0% 52.0% 12.5% 12.5% 2.5%

35

Table 6.4 False-Positive Rate by Scenario and Angle

False-Positive Rate by Scenario and Angle

easy decoy low-contrast occlusion challenge

Baseline 0° 0.0% 0.0% 0.0% 0.0% 0.0%

Baseline 45° 0.0% 0.0% 0.0% 0.0% 0.0%

Baseline 85° 2.5% 7.5% 7.5% 2.5% 0.0%

BP-Priming 0° 0.0% 5.0% 5.0% 2.5% 0.0%

BP-Priming 45° 2.5% 0.0% 2.5% 7.5% 2.5%

BP-Priming 85° 0.0% 0.0% 0.0% 2.5% 2.5%

As expected, the ability of BP-Priming to use as few as two oriented edges allows it to

significantly outperform the Baseline on the low-contrast, occlusion, and challenge scenarios. Once

again we see that the detection accuracy of BP-Priming is poor for 85 degrees, particularly for the three

scenarios where only two outlet edges are visible. This is likely due to the high selectivity of the second

wave fitting algorithm with regard to angle. The top and bottom oriented edges are so short at 85-

degrees that slight perturbations put the angle beyond tolerance, thus preventing a fit.

Surprisingly, the breakdown reveals that Priming was significantly outperformed by the Baseline

on the occlusion scenario at 85 degrees. This was unexpected since the Baseline requires all four edges

to be visible. However, a look at the annotated images shows that the steep angle nullifies the effect of

the occlusion tape, allowing the contour to frequently form a quadrilateral.

Another oddity is how Priming achieved a 40% detection rate for the challenge scenario, but

only at 45-degrees. This is apparently due to shadowing at that angle allowing the two unoccluded

edges to be reliably detected despite low contrast. Note that this performance is only 10% worse than

low-contrast at the same angle.

36

Table 6.5 Translation Error by Scenario and Angle

Average Translation Error by Scenario and Angle

easy decoy low-contrast occlusion challenge

Baseline 0° 0.034m 0.040m NA 0.057m NA

Baseline 45° 0.023m 0.016m NA 0.062m NA

Baseline 85° 0.020m 0.032m NA 0.021m 0.051m

BP-Priming 0° 0.026m 0.028m 0.081m 0.056m NA

BP-Priming 45° 0.038m 0.037m 0.064m 0.070m 0.079m

BP-Priming 85° 0.030m 0.030m 0.052m 0.010m 0.018m

Table 6.6 Rotation Error by Scenario and Angle

Average Rotation Error by Scenario and Angle

easy decoy low-contrast occlusion challenge

Baseline 0° 10.83° 10.31° NA 22.75° NA

Baseline 45° 5.67° 2.46° NA 13.92° NA

Baseline 85° 5.16° 5.04° NA 3.15° 15.99°

BP-Priming 0° 7.05° 5.73° 7.56° 10.87° NA

BP-Priming 45° 6.88° 7.56° 2.92° 6.59° 15.18°

BP-Priming 85° 3.21° 2.81° 1.49° 3.15° 13.64°

Both translation and rotation error statistics are difficult to interpret since scenario-angle

combinations with a poor false-positive rate use fewer samples to calculate their averages, thus making

it easier for outliers to skew results. However, it does seem clear that translation error is higher for the

low-contrast, occlusion, and challenge scenarios. This is likely the result of having fewer visible edges

to base the calculation on.

Rotation error for bp-priming is further influenced by the density of back-projections. For

example, if rotation angles were sampled at an interval of 10 degrees at each translational position, then

the rotation error would average 5 degrees due simply to the coarseness of sampling. The unusually

37

high rotation error rates for the baseline at 0 degrees can be attributed to its use of all visible points in a

quadrilateral contour. Bp-priming is immune to this problem because it ignores features that don’t fit

the model.

Table 6.7 Accuracy of Back-Projective Priming

TP and FP Rates by Scenario and Angle for BP-Priming

easy decoy low-contrast occlusion challenge

0° TP 100.0% 92.5% 55.0% 82.5% 0.0%

0° FP 0.0% 5.0% 5.0% 2.5% 0.0%

45° TP 97.5% 90.0% 50.0% 85.0% 40.0%

45° FP 2.5% 0.0% 2.5% 7.5% 2.5%

85° TP 45.0% 52.5% 12.5% 12.5% 2.5%

85° FP 0.0% 0.0% 0.0% 2.5% 2.5%

A side-by-side comparison of True and False Positives rates for each angle and scenario shows

perfect detection accuracy when viewing a high-contrast unoccluded outlet directly from the front,

which is fortunately also the most realistic real-world scenario.

38

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

This thesis demonstrates how constraints can be used to prime lower-level pattern matching

modules to enhance model-based object recognition, with the specific application of enabling a robot to

detect electrical outlets despite various forms of visual obfuscation that impede a purely bottom-up

approach. Our specific approach, Back-Projective Priming, enables the use of features traditionally

considered unsuitable for object recognition such as oriented edges. It is also capable of detecting and

estimating the pose of an electrical outlet with as few as two feature points, compared to the four

required by most other systems.

One limitation of the current system is the unacceptably high false-positive rate. It is true that

most of these false-positives only occur in one of several consecutive frames and so could be ignored

by the system on the basis of their frequency alone. Two bottom-up methods of reducing false-positives

include the incorporation of additional feature types that allow modeling of the socket holes, or a neural

network to post-validate the region of interest around a candidate detection. The use of additional

feature types may require a more advanced rendering engine such as OpenGL to produce more realistic

back-projections. The top-down fix would be to acquire more constraints by detecting walls and other

important landmarks, thus shrinking the pose-space sufficiently to likely eliminate all false-positives

encountered so far. To this end, constraint programming may be useful in generating the pose-space

samples.

Another direction to go would be to improve the oriented-edge detector as it’s limitations

underlie the poor detection rate on the low-contrast and challenge scenarios. Indeed, the illusory

contours of Kanizsa's Triangle (Figure A.1) suggest that the line-detector itself should be able to take

top-down constraints to improve its sensitivity to the lines we’re looking for. To achieve sufficient

cohesion and learning ability will likely require moving towards a connectionist architecture, possibly

deep convolutional neural networks [9] with feedback.

A more feasible next step would be to see how well the system performs at detecting light

switches, as they have the same model but different constraints. To improve performance, rewriting key

sections of the algorithm in C++ could result in an order of magnitude speed-up. Multi-processing and

GPU acceleration are also possibilities.

40

REFERENCES

[1] Ryan Dellana. Back-Projective Priming: Toward Efficient 3d Model-based Object Recognition via

Preemptive Top-down Constraints. In MAICS, pages 91-96, 2015.

[2] Wim Meeussen, Melonee Wise, Stuart Glaser, Sachin Chitta, Conor McGann, Patrick Mihelich,

Eitan Marder-Eppstein et al. Autonomous door opening and plugging in with a personal robot. In IEEE

International Conference on Robotics and Automation (ICRA), pages 729-736, 2010.

[3] Victor Eruhimov, and Wim Meeussen. Outlet detection and pose estimation for robot continuous

operation. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2941-2946,

2011.

[4] Long Quan, and Zhongdan Lan. Linear n-point camera pose determination. IEEE Transactions on

pattern analysis and machine intelligence 21, no. 8, pages 774-780, 1999.

[5] Yehezkel Lamdan, and Haim J. Wolfson. Geometric Hashing: A General and Efficient Model-Based

Recognition Scheme. In Proceedings from Second International Conference on Computer Vision. Pages

238-249, 1988.

[6] Eduardo R. Torres-Jara, A self-feeding robot. PhD diss., Massachusetts Institute of Technology,

2002.

[7] Luis Bustamante, and Jason Gu. Localization of electrical outlet for a mobile robot using visual

servoing. In Canadian Conference on Electrical and Computer Engineering, pages 1211-1214, 2007.

[8] Foote, Tully. tf: The transform library. In IEEE International Conference on Technologies for

Practical Robot Applications (TePRA), pages 1-6, 2013.

[9] Charles F. Cadieu, Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon,

Najib J. Majaj, and James J. DiCarlo. Deep neural networks rival the representation of primate IT

cortex for core visual object recognition. In PLoS Computational Biology 10, no. 12, 2014.

[10] Micah M. Murray, Glenn R. Wylie, Beth A. Higgins, Daniel C. Javitt, Charles E. Schroeder, and

John J. Foxe. The spatiotemporal dynamics of illusory contour processing: combined high-density

electrical mapping, source analysis, and functional magnetic resonance imaging. In The Journal of

Neuroscience 22, no. 12, pages 5055-5073, 2002.

[11] Charles D. Gilbert, and Wu Li. Top-down influences on visual processing. In Nature Reviews

Neuroscience 14, no. 5, pages 350-363, 2013.

[12] Mark E. Auckland, Kyle R. Cave, and Nick Donnelly. Nontarget objects can influence perceptual

processes during object recognition. In Psychonomic bulletin & review 14.2, pages 332-337, 2007.

[13] Jeff Hawkins, and Sandra Blakeslee. On Intelligence. Macmillan, 2007.

42

APPENDIX A: DRAWING FROM COGNITIVE SCIENCE

Notions of "pattern" in Artificial Intelligence are closely related to the concept of "schema"

(plural schemata) from psychology. Schemata are described as patterns of thought or behavior that

organize categories of information and the relationships among them, used both in perception and the

consolidation of memory. For example, a person may have a schema for "chair", so that when they

encode a memory of an office, rather than storing a mental "photograph" of each chair, they store a

bunch of "pointers" to a single chair schema. A particular memory of being in said office, an episodic

memory trace, could use a network of nested schema, with "office" having references to "cubicle",

which may use "chair", and so on.

Perception takes limited sensory data and uses schemata to help remove noise and fill in the

blanks with what's probable given the context. We can describe this more formally as hierarchical

pattern recognition, a system where simple patterns are chunked into higher-level patterns in the

structure of a directed acyclic graph. In a hierarchy of pattern recognition modules, "bottom-up" is

where simple patterns in the raw data are found first and subsequently passed to higher-level modules

in an upward cascade, where the output from the modules in each layer becomes input for the modules

in the next. "Top-down" is a cascade proceeding through the same modules in the opposite direction,

where a pattern is generated rather than detected. Top-down has been implicated in psychological

phenomena including hallucination, imagination, recall, attention, and priming. One of the broader

ideas explored in this thesis is that perception can be achieved via the interaction of bottom-up and top-

down processes.

This concept is certainly not new, being especially prominent in the unified "whole is greater

than sum of parts" view of perception put forth in Gestalt psychology. Take for example illusory

contours such as in Kanizsa's Triangle (Figure A.1a). Since most would consider line detection to

necessarily precede triangle detection, illusory contours suggest that higher level pattern recognizers

exert top-down influence on lower level modules. [10] believe this effect is due to feedback modulation

of areas V2 and V1 from "higher-tier lateral-occipital areas, where illusory contour sensitivity first

occurs" (Figure A.1b). Indeed, there is a growing body of evidence and general consensus among

neuroscientists for the importance of top-down feedback connections in the human visual system [11].

There is also experimental evidence showing that people recognize objects with greater speed and

accuracy when they occur within the expected context [12]. There have even been machine learning

algorithms directly inspired by the wiring diagram of the cerebral cortex, for instance, Jeff Hawkins

Hierarchical Temporal Memory [13].

This thesis specifically concerns "priming", which can be understood as the use of constraints

from higher modules to bias lower modules before bottom-up processing takes place. These

"constraints" are the top-down "expectations" or "context." Depending on how our modules represent

information, when lower modules are biased by higher modules, either their sensitivity is altered or

their search space is explicitly constrained. In general, priming results in greater sensitivity to the

patterns primed for and lower sensitivity to non-primed or negatively-primed patterns. The benefits of

this can include resistance to noise, improved efficiency, and the ability to detect positively-primed

patterns despite missing data. However, priming can be counter-productive if higher-level modules are

wrong, resulting in false-positives for positively-primed patterns ("confirmation-bias/hallucinations")

and false-negatives for negatively-primed patterns ("distraction"). In the most general sense, this thesis

states that priming is useful in scenarios where context is plentiful and robust. In terms of object

44

recognition, if we know the structure of what we're looking for, and where it's likely to be given the

current context, we can make a reasonably accurate guess about the state of the world that produced the

image, even if the image is of low quality.

Figure A.1 Kanizsa's Triangle (a) and Feedback Pathways (b)

45

