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ABSTRACT
The tremendous variation in brain size among vertebrates has long been thought to
be related to differences in species’ metabolic rates. It is thought that species with
higher metabolic rates can supply more energy to support the relatively high cost of
brain tissue. And yet, while body temperature is known to be a major determinant
of metabolic rate, the possible effects of temperature on brain size have scarcely
been explored. Thus, here we explore the effects of temperature on brain size among
diverse vertebrates (fishes, amphibians, reptiles, birds and mammals). We find that,
after controlling for body size, brain size increases exponentially with temperature
in much the same way as metabolic rate. These results suggest that temperature-
dependent changes in aerobic capacity, which have long been known to affect physi-
cal performance, similarly affect brain size. The observed temperature-dependence of
brain size may explain observed gradients in brain size among both ectotherms and
endotherms across broad spatial and temporal scales.
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INTRODUCTION
Trends toward increasing relative brain size within or across groups have been identified in

vertebrate evolution (Jerison, 1973), and many have argued that relatively large brains infer

some form of evolutionary benefit (Dunbar & Shultz, 2007; Sol & Price, 2008; Kotrschal

et al., 2013). However, the evolutionary benefit(s) is unclear since any direct link between

brain size and intelligence remains inconclusive (Roth & Dicke, 2005). Moreover, there may

be significant evolutionary costs that offset any such benefit, such as the relatively high

energetic cost of maintaining brain tissue (Aiello & Wheeler, 1995). Still one thing is clear-

the costs and benefits of larger brains have led to variation in vertebrate brain size that

spans several orders of magnitude (Striedter, 2005).

In attempting to explain variation in relative brain size among vertebrates, many studies

have suggested brain size is constrained by the energy made available through whole

organism metabolism (Jerison, 1973; Martin, 1981). Support for this hypothesis is based in

part on power law relationships of brain size with body size that are quite similar to those of

metabolic rate (Jerison, 1973; Martin, 1981), thereby implying a nearly linear relationship

between metabolic rate and brain size. But it remains unclear to what extent the similar

body mass-scaling of brain size and metabolic rate may reflect energetic constraints on
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brain size (Isler & van Schaik, 2006). To begin, similarity in the scaling relationships does

not take into account potential differences in the mass-specific energy use of brain tissue.

Some have argued that neuron density, and thus mass-specific energy use of brains, varies

with brain size (Macphail, 1982; Roth & Dicke, 2005). Secondly, such relationships do

not consider possible tradeoffs between brain size and the size or energy use of other

organs (Aiello & Wheeler, 1995). And finally, most studies linking brain size to metabolic

rate have focused on endotherms (Isler & van Schaik, 2006), and do not address differences

in brain size between ectotherms and endotherms (Jerison, 1973; Martin, 1981).

Much overlooked in this debate are the well-established effects of body temperature on

whole organism metabolic rate (Krogh, 1916; Gillooly et al., 2001), and how such effects

may influence brain size. If brain size is constrained by metabolic rate, then one might

expect brain size to increase exponentially with temperature in the same way as metabolic

rate. In principle, this is because higher temperature would increase energy supply by

increasing biochemical reaction rates and associated dynamics (e.g., heart rate), and

thus allow species to maintain more brain tissue. In the case of ectotherms, this would

imply that brain size would vary systematically across species living in different thermal

environments. While this would be surprising, changes in the mass of other organs with

environmental temperature have been documented (Hammond, Szewczak & Król, 2001).

Thus, here we explore whether relative brain size (RBm; % body mass) varies with

temperature after accounting for effects of body size. Specifically, we hypothesize that RBm

is proportional to mass-specific metabolic rate (B/M), and thus varies with body mass and

temperature in the same way such that:

RBm ∝ B/M ∝ M−1/4e−Ea/kT (1)

where M−1/4 describes the body-mass dependence of mass-specific metabolic

rate, and e−Ea/kT describes the temperature-dependence of metabolic rate. In the

Boltzmann–Arrhenius term (i.e., e−Ea/kT), Ea is the average activation energy of the

respiratory complex (−0.65 eV), k is Boltzmann’s constant (8.62 × 10−5 eV K−1) (Gillooly

et al., 2005), and T is absolute temperature in degrees Kelvin. We acknowledge that

that the mechanistic basis of this expression remains unclear (Price et al., 2012), and

that significant variation in the proposed size and temperature dependencies have been

shown (White, Phillips & Seymour, 2006). Nonetheless, this expression provides a useful

point of departure for examining the combined effects of body size and temperature on

relative brain size.

Equation (1) predicts that the natural logarithm of temperature-corrected relative brain

mass (i.e., ln(RBm × eEa/kT)) will scale linearly with the natural logarithm of body mass

with a slope of about −1/4. As mentioned, this has already been shown for groups such

as mammals (Jerison, 1973; Martin, 1981). More importantly, Eq. (1) also predicts that the

natural logarithm of body mass-corrected relative brain mass (i.e., ln(RBm ×M1/4)) will be

a linear function of inverse absolute temperature (i.e., 1/kT) with a slope of about −0.65.

In other words, after accounting for body mass, Eq. (1) predicts relative brain mass will
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increase about 2.5 fold for every 10 ◦C increase in temperature (i.e., Q10 of 2.5; Gillooly et

al., 2005). Implicit in these predictions is the assumption that mass-specific energy use in

brains is approximately independent of brain size.

We examine the body size and temperature dependence of relative brain size using a

dataset of 148 species from all major vertebrate groups (fishes, n = 31; amphibians, n = 11;

reptiles, n = 18; birds, n = 39; and mammals, n = 58) over a body temperature range of

about 40 ◦C. In the case of ectotherms, these body temperatures reflect the environmental

temperatures in which the species naturally occur (see methods). The results point to an as

yet unappreciated constraint on brain size in vertebrates—the effect of temperature.

METHODS
Data
Data were collected from each taxonomic group in an effort to broadly represent the

diversity in habitat, taxonomy, life history, body size and body temperature present in each

group (Appendix S1).

Body temperatures were estimated using the resting body temperatures of endotherms

(birds and mammals; Clarke & Rothery, 2008), and the average body or environmental

temperature of ectotherms (amphibians, reptiles, and fishes). Thus, average environmental

temperature was assumed to be equivalent to the average body temperature in ectotherms.

Any differences in species average body temperature due to differences in activity level

or other factors was therefore assumed to be small relative to the roughly 40 ◦C range

in temperature. Body mass and brain mass data were taken mainly from the classic

dataset of Crile & Quiring (1940). From this dataset, we included all species for which

temperatures were available except one that appears to be in error (Osmerus mordax).

We supplemented this dataset with additional sources if a particular species group

(e.g., amphibians) or temperature range was underrepresented in the dataset. For

amphibians, brain mass was estimated from brain volume assuming the density of water.

Analyses
We evaluate the body mass and temperature dependence of relative brain mass across

taxonomic groups. To partially account for possible effects of evolutionary relatedness

among species, we first performed type II nested ANOVAS (Harvey & Pagel, 1991). With

the nested ANOVAS, we examined the influence of taxonomic class, order within class,

and family within order, to determine the appropriate level of analysis. We found that

significant variation in all variables can be explained at the family level (p < 0.05), and thus

performed all further analyses using mean values at this level.

Next, we used weighted multiple linear regression to estimate the body mass and

temperature dependence of brain mass. Regressions were weighted depending on the

proportion of taxa within each family. Regressions were fit based on a model of the form:

lnRBm = alnM + b(1/kT) + c. Here a is a body-mass scaling exponent, b (Ea in eV)

characterizes the exponential temperature dependence, and c is a taxon-specific constant

that includes random error. The variables M (g) and T (in Kelvin) in this formulation

Gillooly and McCoy (2014), PeerJ, DOI 10.7717/peerj.301 3/8

https://peerj.com
http://dx.doi.org/10.7717/peerj.301/supp-2
http://dx.doi.org/10.7717/peerj.301/supp-2
http://dx.doi.org/10.7717/peerj.301


are mean values of body mass and temperature at the family level, and k is Boltzmann’s

constant as defined above.

Finally, to address the differences in intercepts among taxonomic groups in estimating

the overall relationship, we performed an ANOVA that allowed intercepts to vary across

groups. We present the statistics for the observed body mass and temperature dependence

of the overall relationship for both cases (i.e., fixed intercepts, intercepts allowed to vary).

To graphically represent the observed temperature-dependence of relative brain mass,

we divided relative brain mass by the observed mass dependence (i.e., ln(RBm/Ma)) based

on multiple regression, and then plotted this “body-mass-corrected” value against inverse

temperature (i.e., 1/kT). Similarly, to represent the observed body mass-dependence

of relative brain mass, we divided relative brain mass by the observed temperature

dependence (i.e., ln(RBm/e−Ea/kT)), and then plotted this “temperature-corrected”

value against the natural logarithm of body mass. In this plot, then, the slope of the line

represents Ea, or the average activation energy from Eq. (1). While we recognize that brain

mass does not have an activation energy per se, describing the temperature-dependence of

brain mass in this way facilitates comparison to the temperature dependence of metabolic

rate. Note too that body-mass corrected relative brain mass used here is roughly equivalent

to what is often described as the “encephalization quotient” (Jerison, 1973).

RESULTS
Across vertebrates, multiple regression analysis indicated relative brain mass is related to

body mass and temperature as: ln(RBm) = −0.26ln(M)−0.96(1/kT)+ ln(37.2). Together,

the two variables explained 75.5% of the variation in relative brain mass (RBm range:

0.007–5.8%) for data analyzed at the level of family (Table S1; F2,98 = 150.9,P < 10−15).

Both variables showed significant, independent effects on RBm (both P < 10−15). This

analysis showed that RBm decreased with increasing body mass as RBm ∝ M−0.26 (95%

CI = 0.05) in agreement with model predictions (i.e., −0.25). Figure 1 shows a plot of the

natural log of temperature-corrected relative brain size vs. the logarithm of body mass.

The multiple regression analysis also indicated a strong temperature dependence of

RBm after accounting for the effects of body mass. Figure 2 shows the natural logarithm of

mass-corrected RBm decreased with inverse temperature (1/kT) with a slope (−0.96; 95%

CI = ±0.13) that was significantly different from the predicted value of −0.65 (Table S1).

Analyses at the species level, rather than the family level, yielded nearly identical results

(Table S1).

Differences in intercept among taxonomic groups clearly affected the parameter

estimates obtained using multiple regression because within and among group variation

in body mass and temperature dependence were confounded. Across groups, intercepts

varied by about 2.5 natural log units, or approximately 12-fold. Reptiles and fishes showed

the lowest intercepts (17.52 and 17.75, respectively) fish were intermediate (18.85),

and birds and mammals showed the highest intercepts (19.54 and 20.06, respectively).

Allowing for differences in intercepts among groups thus provided different overall

estimates for the size and temperature dependence of relative brain size. Specifically,
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Figure 1 The natural logarithm of temperature-corrected relative brain size vs. the natural logarithm
of body mass in vertebrates. Relative brain size is expressed as a percentage of body mass, body mass
is expressed in grams, and temperature is in degrees Kelvin. The regression line shown is based on
weighted values for data averaged at the level of family. Values are temperature-corrected using the
Boltzmann–Arrhenius expression, as described in the methods. The equation for the fitted line is: ln
(temp-corrected relative brain size) = −0.26M + ln(37.2).

this analysis yielded a body mass scaling exponent of −0.34, and an activation energy

(temperature slope) of −0.47 (Table S1). In this case, the observed body mass dependence

was significantly different than predicted (−0.34, 95% CI = −0.38 to −0.30) but

the observed temperature dependence agreed with model predictions (−0.47, 95%

CI = −0.69 to −0.26). Both had significant, independent effects on relative brain mass

(see Table S1). The observed temperature dependence of −0.47 indicates that, on average,

there is an eight-fold increase in relative brain mass from 0 to 40 ◦C across vertebrates

after accounting for effects of body size. Within taxonomic groups, however, effects of

temperature were only visible among the ectothermic groups, which had more variation in

temperature (Fig. 2).

DISCUSSION
The results presented here provide support for the long-standing hypothesis that

metabolic rate, and thus energy supply, constrains brain size. While the observed body

mass-dependence within groups clearly varies, the overall dependence was similar to

mass-specific metabolic rate, as previously described (Jerison, 1973; Martin, 1981). More

surprisingly, relative brain size was shown to increase exponentially with temperature,

albeit somewhat differently than model predictions. This suggests that temperature-

dependent changes in aerobic capacity, which have long been known to affect physical

performance (Bennett & Ruben, 1979), may similarly affect brain size.
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Figure 2 The natural logarithm of body mass-corrected relative brain size vs. inverse tempera-
ture in vertebrates. Relative brain size is expressed as a percentage of body mass, body mass is ex-
pressed in grams, and temperature is in degrees Kelvin (T). Inverse temperature is expressed using the
Boltzmann–Arrhenius expression (1/kT), as described in the methods. The regression line shown is based
on weighted values for data averaged at the level of family. Values are body mass-corrected based on results
of multiple regression, as described in the methods. The equation for the fitted line is: ln (mass-corrected
relative brain size) = −0.96(1/kT) + ln(37.2).

Recognition of the temperature effects on brain size could provide insights into broad-

scale spatial and temporal patterns in brain size for both ectotherms and endotherms. This

is because environmental temperature affects not only the metabolic rate of ectotherms,

but also that of endotherms, albeit to a lesser extent (Anderson & Jetz, 2005). For example,

across space, one might expect gradients in brain size with elevation, latitude, or climate

depending on the degree of temperature change and the taxonomic group in question.

And across time, one might expect changes in brain size during the transition from

water to land or the evolution of endothermy as these events involved changes in species’

temperatures and aerobic capacity (Bennett & Ruben, 1979). One could also speculate on

the possibility of phenotypic plasticity in brain size with respect to temperature.

Still, even after accounting for differences in body size and temperature, there are large

differences in brain size within and among groups. This highlights the fact that many

factors combine to affect brain size and metabolism, not just body size and temperature.

For example, many have recently pointed to ecological and social factors that may be

important to brain size evolution (see Isler & van Schaik, 2006). Thus, these results may

provide insights that help move us a step closer toward better understanding differences in

vertebrate brain size.
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