
A novel particle filtering method 
for estimation of pulse pressure variation 
during spontaneous breathing
Sunghan Kim1* , Fouzia Noor1, Mateo Aboy2 and James McNames3

Background
Excessive blood loss due to severe medical conditions can result in insufficient tissue 
perfusion, which can lead to organ failure. Clinicians need to plan the course of fluid 
therapy carefully in order to maintain tissue perfusion [1–3]. However, individuals’ 
responsiveness to fluid therapy varies significantly and there are few clinical signs for 
clinicians to rely on to predict the fluid responsiveness.

Dynamic variables such as stroke volume variation (SVV), systolic pressure variation 
(SPV), and pulse pressure variation (PPV) have been proposed as reliable indicators to 
guide fluid therapy in mechanically ventilated patients [4]. Particularly, PPV is known as 
the most reliable predictor of fluid responsiveness due to its high sensitivity and specific-
ity [5, 6]. PPV attempts to quantify the degree of fluctuations in the difference between 
the systolic and diastolic arterial blood pressure (ABP). It can be calculated as follows,
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where PPmax and PPmin are the maximum and minimum differences between the sys-
tolic and diastolic ABP over a single respiratory cycle. Several medical systems such as 
PICCO, Nexfin, and FloTrac are commercially available, which can compute PPV under 
stable hemodynamic conditions [7]. The authors previously proposed a novel method 
that can compute PPV given ABP signals alone even under abruptly changing hemody-
namic conditions [8]. To the best of our knowledge, however, there is no automatic algo-
rithm for estimating PPV on spontaneously breathing subjects.

Heart-lung interactions differ substantially between spontaneous breathing and mechani-
cal ventilation. While mechanical inspiration decreases right ventricular filling and increases 
right ventricular afterload, spontaneous inspiration increases both right ventricular fill-
ing and afterload. Also, intrathoracic pressure oscilations during spontaneous breathing 
are insufficient and irregular and respiratory induced variables are not sensitive enough to 
evaluate the preload dependency [2, 9]. Due to this uncertainty of the usefulness of dynamic 
variables during spontaneous breathing, the clinical usage of dynamic variables is currently 
limited to predicting the fluid responsiveness of mechanically ventilated patients [10]. How-
ever, recent studies suggest that accurate prediction of the fluid responsiveness may have 
potential for those who are not under full mechanical ventilation support. For instance, 
Hong et al. [11] demonstrated that PPV is of use in predicting the fluid responsiveness during 
forced spontaneous breathing. Forced spontaneous breathing is a special breathing exercise, 
which involves deep inspiration and slow passive expiration. Another study proposed the use 
of Dynamic Arterial Elastance (Eadyn), which is the ratio between PPV and SVV during a 
single respiratory cycle, to predict the arterial blood pressure response to a fluid challenge 
during post-surgical recovery periods [12]. In one porcine study, pigs breathed spontane-
ously into the inspiratory and expiratory threshold resistors separately or combined under 
three volemic conditions: hypo-, hyper-, and normo-volemic [13]. The study result indicated 
that expiratory resistor could be used to predict the fluid responsiveness of spontaneously 
breathing subjects. Hoff et al. [10] investigated the ability of respiratory variations in PPV to 
reflect hypovolemia during noninvasive positive pressure ventilation (NPPV). They induced 
central hypovolemia with progressive lower body negative pressure. Their results clearly 
indicated that PPV is associated with volume status during NPPV.

The objectives of this paper are to introduce a new algorithm for automatic estimation 
of PPV given arterial blood pressure (ABP) signals alone during spontaneous breathing 
and to assess its performance on real ABP signals from the Massachusetts General Hos-
pital Waveform Database (MGHDB) [14] available on PhysioNet [15]. It should be noted 
that our previous work in [8] introduced an algorithm for automatic PPV estimation for 
mechanically ventilated patients as opposed to the present work which is for spontane-
ously breathing patients.

Methods: algorithm description
The subsequent sections explain a novel statistical signal model for ABP signals recorded 
from spontaneously breathing subjects and the PPV index tracking algorithm utilizing 
our recently developed sequential Monte Carlo estimation method.

(1)PPV (%) = 100×
PPmax − PPmin

(PPmax + PPmin)/2
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Notation

We have adopted the notation used in [16] with minor modifications. We use boldface 
to denote random processes, normal face for deterministic parameters and functions, 
upper case letters for matrices, lower case letters for vectors and scalars, superscripts in 
parenthesis for particle indices, upper-case superscripts for nonlinear/linear indication, 
and subscripts for time indices. For example, the nonlinear portion of the state vector 
for the ith state trajectory (i.e., particle) is denoted as xN,(i)

n  where n represents the dis-
crete time index and (i) denotes the ith particle. The unnormalized particle weights are 
denoted as w̃(i) and the normalized particle weights as w(i). The state trajectories before 
resampling are denoted as x̃(i)n  and as x(i)n  after resampling.

State‑space model

The proposed automatic PPV index estimator utilizes our recently developed sequential 
Monte Carlo estimation method which is based on the state-space model approach. The 
state-space model is a mathematical expression to describe the evolution of any physical 
system’s unobservable state xn and its relation to measurement yn, where the state xn is 
a vector of parameters representing the system’s condition. The state-space method is a 
technique to estimate the state xn as a function of measurement yn utilizing the state-
space model. The typical state-space model can be expressed as,

where (2) is a process model, (3) a measurement model, f (·) and h(·) functions of the state 
xn, and un and vn uncorrelated white noises with variances q and r. A designer needs to 
incorporate prior domain knowledge of a system into the state-space model and define 
the functions f (·) and h(·). The flexibility and versatility of the state-space method are 
attributable to two functions, which can be either linear or nonlinear.

Measurement model

The measurement model of the ABP signal is shown in (4–7), where γ n is the respira-
tory signal, µn the amplitude-modulated cardiac signal, ρk ,n the amplitude modulation 
factor of the kth cardiac harmonic partial, κk ,n the kth cardiac harmonic partial, θ rn the 
instantaneous respiratory angle, θcn the instantaneous cardiac angle, N r

h the number of 
respiratory partials, N c

h the number of cardiac partials, vn the white Gaussian measure-
ment noise with variance r, and r ·,k ,n,m·,k ,j,n, c·,k ,n the sinusoidal coefficients. This meas-
urement model was first introduced in [17].

(2)xn+1 = f (xn)+ un

(3)yn = h(xn)+ vn

(4)yn = γ n + µn + vn = γ n +

N c
h

∑

k=1

ρk ,nκk ,n + vn

(5)γ n =

N r
h

∑

k=1

r1,k ,n cos
(

kθ rn
)

+ r2,k ,n sin
(

kθ rn
)
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Process model

The process model describes the evolution of each element of the state xn. In our 
application, xn includes the instantaneous respiratory and cardiac angles θ rn and 
θcn , the instantaneous mean respiratory f̄

r
n and cardiac f̄

c
n frequency, the instan-

taneous respiratory f rn and cardiac f cn frequencies, and the sinusoidal coefficients 
{r1,k ,n, r2,k ,n, c1,k ,n, c2,k ,n,m1,k ,n,m2,k ,n}. The process model can be expressed as,

where f rn is the instantaneous respiratory frequency, f cn the instantaneous cardiac fre-
quency, Ts the sampling period, f̄ rn the instantaneous mean respiratory frequency, f̄ cn 
the instantaneous mean cardiac frequency, α the autoregressive coefficient, and ur,n, 
uc,n , and um,n the process noises with variances qr, qc, and qm. The clipping function g[·] 
limits the range of instantaneous mean frequencies, which can be written as,

The range of instantaneous mean frequencies, i.e., f̄ rn and f̄ cn, is assumed to be known as 
domain knowledge.

Maximum A‑posteriori marginalized PF

The proposed automated PPV index estimation method requires accurate estimates of 
the instantaneous respiratory frequency f rn, the instantaneous cardiac frequency f cn, 

(6)ρk ,n = 1+

N r
h

∑

j=1

m1,k ,j,n cos
(

jθ rn
)

+m2,k ,j,n sin
(

jθ rn
)

(7)κk ,n =

N c
h

∑

k=1

c1,k ,n cos
(

kθcn
)

+ c2,k ,n sin
(

kθcn
)

(8)θ rn+1 = θ rn + 2πTsf
r
n

(9)θcn+1 = θcn + 2πTsf
c
n

(10)f̄
r
n+1 = g

[

f̄
r
n + u

f̄
r
,n

]

(11)f̄
c
n+1 = g

[

f̄
c
n + u

f̄
c
,n

]

(12)f rn+1 = f̄
r
n + α

(

f rn − f̄
r
n

)

+ uf r,n

(13)f cn+1 = f̄
c
n + α

(

f cn − f̄
c
n

)

+ uf c,n

(14)r ·,k ,n+1 = r ·,k ,n + ur,n

(15)c·,k ,n+1 = c·,k ,n + uc,n

(16)m·,k ,n+1 =m·,k ,n + um,n

(17)g[f ] =







fmax − (f − fmax) if fmax < f
f if fmin < f ≤ fmax

fmin + (fmin − f ) if f ≤ fmin.
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and the morphology of an ABP signal. In order to obtain those estimates, we utilize our 
recently developed particle filter technique, which is called the maximum a-posteriori 
adaptive marginalized particle filter (MAM-PF). The MAM-PF is a hybrid version of the 
marginalized particle filter (MPF) and maximum a-posteriori particle filter (MAP-PF), 
which leverages the advantages of the MPF and MAP-PF. In [18] we described the recur-
sions for the MAM-PF in detail. We proposed two versions of the MAM-PF: optimal 
and fast MAM-PFs [18]. Within the state-space method framework, the Optimal MAM-
PF computes the “optimal” trajectory of the state xn. However, its computational burden 
is too demanding to be practically useful. The fast MAM-PF is an approximation of the 
optimal MAM-PF, which requires dramatically less computational burden. However, the 
fast MAM-PF performs as well as the optimal MAM-PF, which we demonstrated in [8]. 
Recently, we proposed an automatic (PPV) estimation technique in mechanically ven-
tilated patients by utilizing the fast MAM-PF as an ABP signal tracker [8]. Under full 
mechanical support, the respiratory rate of subjects is equal to the mechanical ventila-
tion rate, which is known and constant. Therefore, the fast MAM-PF has to track only 
the instantaneous cardiac frequency f cn along with the signal morphology.

All ABP signals included in this study were recorded from spontaneously breathing 
subjects. Therefore, the ABP signal tracker has to track both the instantaneous respir-
atory frequency f rn and the instantaneous cardiac frequency f cn along with the signal 
morphology. Although the fast MAM-PF based ABP signal tracker is capable of tracking 
multiple frequencies, there are two major issues in using the fast MAM-PF algorithm 
as the ABP signal tracker for ABP signals of spontaneously breathing subjects. The first 
issue is that the morphology of the signal, which is represented by the sinusoidal coeffi-
cients in (6, 7), does not belong to the linear state any more. Since the modulating signal 
ρk ,n is multiplied to the cardiac signal κk ,n, their sinusoidal coefficients c·,k ,n and m·,k ,j,n 
are nonlinear parameters of the measurement model in (4). The fast MAM-PF is applica-
ble only to state-space models whose state vector can be partitioned into the linear and 
nonlinear portions. The second issue is that as the dimension of the state, where particle 
filters are used, increases the number of necessary particles to cover the state increases 
exponentially. As a result, the computational burden of the fast MAM-PF increases 
exponentially. The portion of the state space where particle filters are used is called the 
particle space. Since the new ABP signal tracker has to estimate both the instantaneous 
respiratory frequency f rn and the instantaneous cardiac frequency f cn, the dimension of 
the particle state becomes 2, which results in a quadruple increase of computational bur-
den if the fast MAM-PF has to be used for the current application. In order to address 
these two major issues we propose a new ABP signal tracker, which is a modified version 
of the Fast MAM-PF. It is called, the Dual MAM-PF. The term “Dual” is borrowed from 
Dual Kalman filters, in which the state is divided into two portions and each portion 
is estimated separately assuming that the other portion is known and equal to the cur-
rently estimated value. While the fast MAM-PF treats a two-dimensional particle space 
as a whole, the dual MAM-PF partitions the two-dimensional particle space into two 
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one-dimensional particle spaces assuming independence between two particle space 
variables, which are the instantaneous respiratory frequency f rn and the instantaneous 
cardiac frequency f cn.

Suppose that the state vector x can be partitioned as follows,

where xPn represents the particle state and xKn  the Kalman state. The particle state is the 
portion of the state where particle filters are used as defined earlier while the Kalman 
state is the portion of the state where extended Kalman filters are used. The state variables 
whose posterior distributions are known to be multi-modal belong to the particle state 
while those whose posterior distributions are known to be Gaussian or uni-modal belong 
to the Kalman state. In [18] we demonstrated that the posterior distribution of the instan-
taneous frequency of a multi-harmonic signal is truly multi-modal. Given the state-space 
model in (4)–(7), instantaneous respiratory frequency f rn and the instantaneous cardiac 
frequency f cn are the particle state variables and the sinusoidal coefficients such as r ·,k ,n, 
c·,k ,n, and m·,k ,j,n are the Kalman state variables. Assuming that the particle state variables 
are independent of each other the particle state xPn can be partitioned further as,

where xP1n  and xP2n  represent the first and second particle state variables, respectively. 
This partitioning breaks down a two-dimensional particle space xPn into two one-dimen-
sional particle spaces. The total posterior distribution is given by,

Algorithm 1 provides a complete description of the dual MAM-PF algorithm, where NT 
represents the total number of signal samples, Np the number of particles for each one-
dimensional particle space, j the particle state variable index, and ij the particle index of 
the jth particle state variable. The total number of particle used in the dual MAM-PF 
algorithm is 2Np instead of N 2

p . At each time step n the dual MAM-PF searches for the 

(18)xn =

[

xPn
xKn

]

(19)xPn =

[

xP1n
x
P2
n

]

(20)x
P1
n+1 = f1,n

(

xP1n ,uP1
n

)

(21)x
P2
n+1 = f2,n

(

xP2n ,uP2
n

)

(22)p(x0:n|y0:n) = p(xK0:n|y0:n, x
P
0:n)p(x

P
0:n|y0:n)

(23)= p(xK0:n|y0:n, x
P
0:n)p(x

P1
0:n|y0:n)p(x

P2
0:n|y0:n).
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best trajectory of each particle ij from the previous trajectory. This searching step can be 
written as,

Given the best trajectory for each particle ij, corresponding Kalman state variables 
xPj ,(ij) , i.e. sinusoidal coefficients, are updated utilizing the extended Kalman filter. Then, 
the MAP estimate of xPin  is obtained based on the value of the coefficient α(ij)

j,n  as follows,

Since there are two groups of particles i1 and i2, we need to select the best estimate of the 
Kalman state vector xKn  among two potential estimates: x

K,(i∗1,n)
n  and x

K,(i∗2,n)
n . The actual 

estimate of the Kalman state vector xKn  can be selected as follows,

Then, the estimate of the entire state xn can be expressed as,

In order to appreciate the algorithm of the dual MAM-PF, it is essential to understand 
the generic particle filter along with other variants of particle filters such as the MPF, 
MAP-PF, and MAM-PF. We provided detail algorithms of those particle filters in [18].

(24)

k∗j = argmax
kj

α
(kj)

j,n−1p
(

yn|x
Pj ,(ij)
n , x̂

K,(kj)

n|0:n−1

)

· · ·

p
(

x
Pj ,(ij)
n |x

Pj ,(kj)

n−1

)

(25)

≈ argmax
kj

α
(kj)

j,n−1p
(

yn|x
Pj ,(ij)
n , x̂

K,(ij)

n|0:n−1

)

· · ·

p
(

x
Pj ,(ij)
n |x

Pj ,(kj)

n−1

)

(26)= argmax
kj

α
(kj)

j,n−1p
(

x
Pj ,(ij)
n |x

Pj ,(kj)

n−1

)

.

(27)i∗j,n = argmax
ij

α
(ij)

j,n

(28)x̂Pin = x
Pi ,(i

∗
j,n)

n

(29)i∗MAP,n =

{

i∗1,n α
(i∗1,n)

1,n ≥ α
(i∗2,n)

2,n

i∗2,n α
(i∗1,n)

1,n < α
(i∗2,n)

2,n .

(30)x̂Kn = x
K,(i∗MAP,n)

n

(31)x̂n = {x̂
P1,(i

∗
1,n)

n , x̂
P2,(i

∗
2,n)

n , x̂
K,(i∗MAP,n)

n }
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ABP signal envelope estimation

Given the estimated signal parameters in (8–16), it is possible to estimate the upper 
envelope (eµ,n) and lower envelope (eℓ,n) of ABP signals by following steps below,
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where arg maxx f (x) and arg minx f (x) are operators to obtain the value of x for which 
f(x) attains its maximum and minimum values, respectively. The top plot in Fig. 1 shows 
a five respiratory cycle period of an ABP signal yn (thick red), its estimate ŷn (thin green), 
and its estimated envelopes eµ,n and eℓ,n (blue), which are described in (32) and (33).

Pulse pressure signal envelope estimation

The pulse pressure (PP) signal is the difference between the upper envelope eµ,n and 
lower envelope eℓ,n of the ABP signal. This PP signal oscillates roughly at the respira-
tory rate as shown in the bottom plot in Fig. 1. This oscillation is due to the respira-
tory effect on the variation of systemic ABP under full ventilation support [19]. Within 
each respiratory cycle PP reaches its maximum (PPmax) and minimum (PPmin) values, 
which are two critical parameters to compute the PPV index. Traditionally, the PPmax 
and PPmin values have been computed only once per each respiratory cycle. Given 

(32)

θcmax,n = arg max
θ

N c
h

∑

k=1

ρk ,n

[

c1,k ,n cos (kθ)+ c2,k ,n sin (kθ)
]

θcmin,n = arg min
θ

N c
h

∑

k=1

ρk ,n

[

c1,k ,n cos (kθ)+ c2,k ,n sin (kθ)
]

κmax,k ,n = c1,k ,n cos
(

kθcmax,n

)

+ c2,k ,n sin
(

kθcmax,n

)

κmin,k ,n = c1,k ,n cos
(

kθcmin,n

)

+ c2,k ,n sin
(

kθcmin,n

)

eµ,n = γ n +

N c
h

∑

k=1

ρk ,nκmax,k ,n

(33)eℓ,n = γ n +

N c
h

∑

k=1

ρk ,nκmin,k ,n
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the estimated signal parameters in (8–16), however, we can compute the continuous 
equivalents of PPmax and PPmin. They are the upper εµ,n and lower εℓ,n envelopes of 
the PP signal. The upper envelope εµ,n is the continuous estimate of PPmax and the 
lower envelope εℓ,n that of PPmin. The εµ,n and εℓ,n values can be estimated as described 
below,

where 1+ ̺k ,n is equal to ρk ,n and εµ,n and εℓ,n are the continuous estimates of the 
PPmax and PPmin, respectively. The blue lines in the bottom plot in Fig. 1 represent the 
upper εµ,n and lower εℓ,n envelopes of the PP signal, which are obtained by following 
the method described above.

Pulse pressure variation calculation

Given the εµ,n and lower εℓ,n values, it is straightforward to calculate the PPV index. It 
can be computed as follows,

This new PPV index is different from the traditional PPV index described in (1) because 
the new one is continuous in time while the traditional one can be obtained only once 
per each respiratory cycle.

Figure 2 illustrates an example of the automatically computed continuous PPV index 
(thick green) and the manually obtained discrete PPV index (thin red) of a real 10 min 

(34)

̺k ,n =

N r
h

∑

j=1

m1,k ,j,n cos
(

jθ
)

+m2,k ,j,n sin
(

jθ
)

θ rmax,n = arg max
θ

N c
h

∑

k=1

(

1+ ̺k ,n
)(

κmax,k ,n − κmin,k ,n

)

θ rmin,n = arg min
θ

N c
h

∑

k=1

(

1+ ̺k ,n
)(

κmax,k ,n − κmin,k ,n

)

̺max,k ,n =

N r
h

∑

j=1

m1,k ,j,n cos
(

jθ rmax,n

)

+m2,k ,j,n sin
(

jθ rmax,n

)

̺min,k ,n =

N r
h

∑

j=1

m1,k ,j,n cos
(

jθ rmin,n

)

+m2,k ,j,n sin
(

jθ rmin,n

)

εµ,n =

N c
h

∑

k=1

(

1+ ̺max,k ,n

)(

κmax,k ,n − κmin,k ,n

)

(35)εℓ,n =

N c
h

∑

k=1

(

1+ ̺min,k ,n

)(

κmax,k ,n − κmin,k ,n

)

(36)PPV (%) = 100×
εmax − εmin

(εmax + εmin)/2
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ABP signal. Each hollow white dot represents a “discrete” PPV index, which can be 
obtained once per each respiratory cycle.

The subsequent sections describe how to assess the accuracy of the proposed PPV 
index tracking algorithm.

Methods: algorithm assessment
Assessment data

The Massachusetts General Hospital waveform database (MGHDB) on PhysioNet is a 
comprehensive collection of electronic recordings of hemodynamic and electrocardio-
graphic waveforms patients in critical care units [14, 15]. It consists of recordings from 
250 patients representing a broad spectrum of physiologic and pathophysiologic states. 
The typical recording includes arterial blood pressure (ABP) signals in addition to seven 
other types of waveforms. By visually inspecting the spectrogram and time-series of 
ABP signals we identified 11 patients who breathed spontaneously. The first column in 
Table 2 lists the patients’ identification numbers (e.g. mgh000) as in MGHDB on Phys-
ionet. Figure 3 shows the spectrogram of one of the 11 ABP signals. Each ABP signal is 
10 min long and the total duration of the 11 ABP signals was 2 h. The original sample 
rate fs of the signals was 360 Hz, but they were downsampled by a factor of 9, so that the 
final sample rate fs was 40 Hz.

The number of cardiac components N c was 5 and that of respiratory components N r 
was 2. The total number of particles 2Np was 500. Table 1 lists the parameter values used 
for the PPV index estimator. Those parameter values were initialized and tuned based on 
the previously published work, where ABP signals were recorded during full mechanical 
ventilation [8].

Time (s)
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%
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Fig. 2 Automatic PPV index (green) and manual PPV index (red) over the entire ABP signal duration (10 min). 
One PPV index measurement is computed from each measurement window, which is a time period of five 
respiratory cycles
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Manual PPV annotations (current standard)

We manually annotated the peaks and troughs of the ABP signals and calculated the 
PPV indices (current standard) as defined in (1). They are referred to as manual PPV 
indices PPVmanu. PPVauto represents PPV indices obtained using the proposed PPV index 
tracking algorithm.

Statistical analysis

The statistical analysis used five PPV index measurements for each subject, and each 
measurement was separated by 2  min. Each PPV index measurement is an averaged 
value over 5 respiratory cycles. Figure 2 shows the 2 min apart measurement periods. 

Table 1 Summary of user-specified design parameters for the PPV index tracker

Name Symbol Value

No. particles 2Np 500

No. cardiac components Nc 10

No. respiratory components Nr 3

Minimum respiratory rate f rmin 6/60 Hz

Maximum respiratory rate f rmax 30/60 Hz

Minimum heart rate f cmin 50/60 Hz

Maximum heart rate f cmax 140/60 Hz

Measurement noise variance r var(y)/1e3

Respiratory frequency variance qf r 1e−6 Ts
Cardiac frequency variance qf c 1e−6 Ts
Respiratory amplitude variance qa , qb var(y)1e−6Ts
Modulation factor amplitude variance qc , qd var(y)1e−8Ts
Cardiac amplitude variance qe , qf var(y)1e−6Ts
Initial respiratory amplitude ua , ub std(y)/1e1

Initial modulation factor amplitude uc , ud std(y)/1e3

Initial cardiac amplitude ue , uf std(y)/1e1
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Fig. 3 Spectrogram of one of the 11 ABP signals recorded from spontaneously breathing subjects
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The proposed PPV index tracking algorithm was assessed by calculating the agreement 
(mean ± standard deviation) between PPVauto and PPVmanu measurements and using 
Bland–Altman analysis.

A Bland-Altman plot is a statistical and visualization method that is often used in the 
assessment of PPV estimation algorithms in order to determine the agreement between 
two different PPV estimates. It has the difference �PPV between PPVauto and PPVmanu 
on the y-axis and the PPVmanu on the x-axis. It visualizes the overall accuracy of estima-
tion and estimation bias or trend versus PPVmanu. We used it to compare the current 
standard using manual annotations with our automatic estimation algorithm.

Results
Figure 4 depicts the Bland–Altman plot of the 11 subjects. There are 5 PPV measure-
ments available per each subject. All of PPVauto measurements were in agreement with 
PPVmanu measurements within ±3.5 % accuracy.

Table 2 lists the mean ± standard deviation of 5 PPVmanu and PPVauto measurements 
for each subject. The second column is for PPVmanu and the third column for PPVauto.

Discussion
Frequency clipping function

The clipping function g[·] in (17) could be defined as follows,

However, there is a major problem with the clipping function in (37) when it is incorpo-
rated into the particle filter framework. It tends to cause the boundary values, fmax and 

(37)g[f ] =







fmax if fmax < f
f if fmin < f ≤ fmax

fmin if f ≤ fmin.
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Fig. 4 Bland–Altman plot of the 11 subjects
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fmin, to be the pitfalls for the particles, xP1n  and xP2n , to be trapped in when the instantane-
ous frequency values associated with the particles become close to fmax or fmin. In other 
words, once any particle’s frequency value meets either of the boundary conditions, the 
particle tends to remain in the same state having the frequency value of either fmax or 
fmin. In order to address this issue, the clipping function is defined as shown in (17), 
which forces the frequency value to bounce back within the range, i.e., fmin < f ≤ fmax, 
once it reaches beyond fmax and fmin.

Algorithm’s advantages

The proposed algorithm is the first automatic method described in the literature espe-
cially designed to estimate and track the PPV index in situations involving spontaneous 
breathing. It is important to note that the proposed algorithm is a complete new design 
from our previously described algorithm [20] which only worked for mechanically ven-
tilated subjects. Our previous algorithm was made publicly available by the authors and 
due to its performance has been adopted by Philips Medical Systems. Currently, our pre-
viously published PPV algorithm is displayed in real-time on the Philips Intelliveu MP70 
monitors (Intellivue MP70, Philips Medical Systems) and has been used in numerous 
studies related to PPV and fluid responsiveness. Its ability to monitor fluid responsive-
ness in the operating room and its accuracy against the current standard obtained by 
manual annotations were assessed by Cannesson [21]. Previously it was not possible to 
conveniently monitor the PPV index in the operating room or in the intensive care unit 
because it had to be manually calculated. Thus, the automatic PPV has potential clinical 
application for fluid management optimization in the operating room.

A limitation of our previously described algorithm adopted by Philips in their Intel-
liveu MP70 monitors is that it may not work adequately in regions of abrupt hemody-
namic changes [20] and it is only accurate for mechanically ventilated subjects. In this 
paper, we provide a detailed description of a novel algorithm designed to be a robust 
PPV estimator during regions of abrupt hemodynamic changes and during spontaneous 
breathing.

The major algorithm design difference of the proposed algorithm with respect to pre-
viously published algorithms [20, 22] is the fact that the proposed method is based on a 

Table 2 Summary of the mean and standard deviation of the PPVmanu and PPVauto meas-
urements

Subject PPVmanu (%) PPVauto (%)

1 (mgh003) 9.8 ± 1.0 8.9 ± 1.0

2 (mgh007) 32.9 ± 1.5 33.9 ± 2.3

3 (mgh011) 10.3 ± 1.0 10.6 ± 0.8

4 (mgh091) 4.6 ± 0.3 3.3 ± 0.3

5 (mgh092) 10.3 ± 1.1 9.2 ± 1.3

6 (mgh151) 12.9 ± 2.7 11.3 ± 2.0

7 (mgh152) 5.9 ± 0.5 6.1 ± 0.5

8 (mgh158) 12.5 ± 0.8 10.3 ± 1.5

9 (mgh164) 7.6 ± 1.0 6.7 ± 0.9

10 (mgh169) 4.8 ± 0.5 5.3 ± 1.3

11 (mgh183) 6.5 ± 0.8 6.5 ± 0.6
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statistical state-space capable of modeling spontaneous breathing, and estimation of the 
cardiovascular pressure signal based on this statistical model using optimal estimation 
methods. The state-space modeling stage results in an algorithm that is more robust to 
hemodynamic changes and artifacts. The statistical state-space signal model and asso-
ciated model parameter estimation algorithm automatically filter out noise and artifact 
that cannot be captured with the model. Since the statistical signal model is based on 
cardiovascular physiology and pathophysiology, signal features that are not physiologi-
cal in nature are automatically filtered out. Additionally, the model is general enough to 
accurately model both arterial blood pressure signals and plethysmogram signals. Con-
sequently, it can also be used to calculate the pleth variability index (PVI).

Figures  5 and 6 exemplify a case where signal features that are not physiological in 
nature are automatically filtered out resulting in more accurate PPV index estimation 
than manual annotation. The top plot in Fig.  5 illustrates 4 respiratory cycles of the 
ABP signal (red) and its estimate (green). It also shows the manually annotated signal 
envelopes (black) and the automated computed signal envelopes (light blue). The bot-
tom plot in Fig. 5 depicts the PPVmanu and PPVauto over the same period. Around 535 s , 
the PPVmanu value (red) abruptly increases up to 35% while the PPVauto value (green) 
remains at 8  %. Around 540  s, the PPVmanu value returns to 8  %. Figure  6 focuses on 
the time period marked with the black rectangular box in Fig. 5. The top plot in Fig. 6 
shows that the heart beat between 535 and 535.5  s is contaminated by noise and has 
an abnormal morphology. As a result, the corresponding PPmanu shown in the bottom 
plot reaches a large maximum value (PPmin,manu : 105mmHg) around at 535 s. However, 
the automatically computed maximum PP value (PPmin, auto) at the same time is as low 
as 83mmHg. This discrepancy between the manual annotation and the proposed auto-
matic method results from the capability of the MAM-PF algorithm, which estimates 
the ABP signal based on the state-space model. While the original heart beat between 
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535 and 535.5 s in Fig. 6 is abnormal in a physiological sense, the estimated heart beat 
over the same time period shows the physiologically expected morphology and location 
of the heart beat.

Study limitations

The algorithm’s assessment was based on only 11 subjects with pre-recorded ABP data. 
Additionally, for each subject five PPV estimates were used in the assessment study. 
This assessment was designed to be an engineering algorithm validation against cur-
rent standard manual annotations, and not a clinical validation study. Consequently, a 
clinical validation study assessing the ability of the proposed algorithm to monitor fluid 
responsiveness in the operating room in  situations involving spontaneously breathing 
subjects still needs to be conducted. This may require the proposed algorithm to be first 
adopted as part of a commercial system as was the case with our previous automatic 
PPV algorithm [20].

Conclusion
We have described the first automatic PPV tracking algorithm for spontaneously breath-
ing subjects. This novel algorithms is based on a statistical state-space model inspired 
in the underlying cardiovascular and respiratory physiology. This algorithm uses our 
recently developed SMCM (MAM-PF) for optimal parameter estimation. The assess-
ment results indicate good agreement against the current standard PPV. The algorithm 
was designed to work during regions of abrupt hemodynamic changes and spontaneous 
breathing. All of PPVauto measurements were in agreement with PPVmanu measurements 
within ±4 % accuracy.
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