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Coronary heart disease is a leading cause of death in the United States, totaled mostly by 

deaths associated with myocardial infarction and fatal ventricular arrhythmias. The inability to 

predict the occurrence of these pathologies due to their sudden and transient etiologies has 

hindered successful translation of therapies to the clinic. Given the multi-billion-dollar economic 

burden that cardiovascular disease exerts, it would be beneficial to further our knowledge on 

ways to better treat acute coronary syndromes. The goal of this work is to determine how 

mitochondria impact cardiac ischemia/reperfusion (I/R) injury, and to identify potential 

mechanisms to therapeutically target. The studies within were conducted on treadmill-trained 

male rats, ex vivo heart preparations, isolated/cell cultures, and isolated mitochondria. Herein 

demonstrates a strong link between susceptibility to I/R injury and cardioprotection through the 

manipulation of mitochondrial thiol status. Hearts from exercised rats were better protected from 

ischemic insults, and this coincided with preserved thiol redox homeostasis and greater stability 

in mitochondrial bioenergetics. The maintenance of mitochondria thiol was demonstrated 

through preservation of glutathione, which is a key redox control point in cardiac bioenergetics. 

When the thiol pool becomes more oxidized following oxidative stress, loss of mitochondrial 

membrane potential and collapsed bioenergetics increase susceptibility to I/R injury. Glutathione 

reductase helps maintain cell redox homeostasis by maintaining glutathione in a reduced form, 

where it can be utilized in ROS scavenging and redox signaling. In cell models of 

hypoxia/reoxygenation, targeting glutathione reductase expression influences the cells 



  

sensitivity to mitochondrial dysfunction. Several hallmark features of the cardioprotective 

phenotype include reductions in myocardial infarction, resistance to arrhythmic stimuli, lower 

ROS accumulation, and preserved mitochondrial function. Taken together, data from the studies 

suggest that targeting mitochondrial function during I/R, and more specifically, targeting 

mitochondrial thiol homeostasis, may have beneficial effects on treating coronary heart disease 

symptoms. 
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Chapter 1: Introduction 

 

 

Prevalence and economic burden of cardiovascular disease 

Cardiovascular disease (CVD) remains one of the leading causes of death in North 

America, and although rates of death attributable to cardiovascular disease have declined in 

recent years, the burden of disease remains high (94). It is estimated that 85.6 million American 

adults have one or more types of cardiovascular disease, with coronary heart disease (CHD) 

making up more than half of all cardiovascular events in men and women <75 years of age 

(151). The indirect cost for all CVD is projected to increase from $202.5 billion to $308.2 billion 

between 2013 and 2030; a 52% increase in costs, and CHD is projected to account for ≈43% of 

the increase. Furthermore, CHD accounts for ≈50% of deaths that are attributed to CVD (Figure 

1). Given the high prevalence and economic burden of CHD in the American population, there is 

a need for improved therapeutic interventional strategies targeting acute coronary syndromes. 

Figure 1. Breakdown of deaths attributable to CVD in the United States (2013). 

46.20%  Coronary Heart Disease
16.10%  Stroke
8.10%  Heart Failure
9.00%  High Blood Pressure
3.20%  Diseases of the Arteries
17.40%  Other
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Acute coronary syndromes and ischemia/reperfusion (I/R) injury increases the risk of myocardial 

infarction and arrhythmia (152), and will be the main focus of this dissertation.  

Ischemia/Reperfusion injury in cardiac pathology 

The heart demands a constant supply of energy due to its high metabolic activity and 

contractile function. Cellular energetic homeostasis is critical for normal cardiac physiology and   

when the heart becomes ischemic due to temporary or permanent occlusion of coronary arteries 

the cells energy stores become depleted (e.g. adenosine triphosphate (ATP) levels fall). Upon 

the onset of ischemia, mitochondrial oxidative phosphorylation decreases with the fall of cellular 

oxygen tension, leading to an increase in anaerobic metabolism and decrease in cellular pH.  

After longer duration ischemia, the depletion of energy stores and accumulation of 

intracellular protons leads to altered ATP-dependent channel regulation. Sarcolemmal ATP-

sensitive potassium (KATP) channels conduct an inward rectifying potassium current and contain 

ATP regulatory subunits. When ATP levels fall, sarcolemmal KATP channel open probability 

increases, allowing potassium to move down its concentration gradient and leave the cell. The 

accumulation of potassium in the extracellular space coupled with accumulation of intracellular 

sodium and calcium leads to altered action potential duration, and reduced cellular excitability. 

The decrease in ATP and altered ion homeostasis sets the stage for subsequent reperfusion 

injury.  

In acute coronary syndromes the duration of ischemia is the most important variable as 

an independent predictor of infarct size (99). Therefore, prompt restoration of blood flow to the 

ischemic tissue is critical. This was emphasized in a recent meta analysis that found higher 

short-term mortality in ST-segment elevation myocardial infarction (STEMI) patients who 

presented off hours and had longer door-to-balloon times for percutaneous coronary 

intervention (PCI) (199).  
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 Paradoxically, subsequent reperfusion of previously ischemic tissue exacerbates 

cardiac injury and accelerates tissue necrosis (110). Although the etiology of reperfusion injury 

is multifactorial, the generation of ROS upon the restoration of oxygen has been identified as a 

central mediator of reperfusion injury 

(26, 70, 150, 237). Several lines of 

evidence implicate mitochondria as 

central hubs for the generation of ROS 

during reoxygenation, as well as targets 

that mediate the downstream injury 

response (5, 225). To this end, targeting   

mitochondria therapeutically has come to the forefront in cardioprotective paradigms reaching 

clinical trials, and a schematic of candidate mechanisms is provided in Figure 2.    

Mitochondria in health and disease 

Mitochondrial bioenergetics is critical in maintaining energy homeostasis in cardiac 

tissue. Carbon substrates and intermediary metabolism of nutrients consumed in the diet 

provides reducing equivalents in the form of nicotinamide adenine dinucleotide (NADH) and 

flavin adenine dinucledotide (FADH2). Oxidation of these reducing equivalents by the electron 

transport system (ETS) is coupled with proton pumping into the inter-membrane space, thereby 

generating an electro-chemical gradient across the inner-mitochondrial membrane. The electro-

chemical gradient is mostly comprised of the mitochondrial membrane potential (ΔΨm), and ATP 

synthase utilizes the release in free energy to replenish cellular ATP through oxidative 

phosphorylation under increasing energetic demand.  

Tight coupling of cardiac supply-demand matching allows for normal cardiac physiology. 

However, during metabolic stress, ROS production can induce oscillations in ΔΨm and collapse 

Figure 2. Mitochondrial therapies recently investigated in 
clinical studies to reduce myocardial infarction. 
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mitochondrial energetics (8, 161). When mitochondrial bioenergetics are compromised, cellular 

ATP levels fall, which can lead to sarcolemmal KATP channel opening and altered ion flux across 

the sarcolemmal membrane. As mentioned previously, sarcolemmal KATP channel opening leads 

potassium efflux and heterogeneity in cardiac action potential duration. Altered synchronicity of 

cardiac electrical activity is an arrhythmic substrate for the genesis of re-entrant ventricular 

arrhythmias (153, 161). Thus, oxidative stress and altered redox homeostasis is intimately 

linked with the stabilization of mitochondrial energetics. 

Targeting thiol redox stress in cardioprotection 

During I/R injury, ATP demand matching by the mitochondria falters, leading to adverse 

cardiac outcomes. However, cellular ATP hydrolysis is not the only system that operates in an 

“energetic” fashion. Thiol redox stress during metabolic insults, such as cellular 

hypoxia/reoxygenation (6), also requires energy as nicotinamide nucleotide transhydrogenase 

(NNT) utilizes ΔΨm for reduction of NADPH and oxidation of NADH. Reduced glutathione 

(GSH), thioredoxin (Trx), NADPH, and NADH provide ROS buffering through enzyme mediated 

oxidation and reduction reactions (11, 90). These buffering systems are important links that 

integrate mitochondrial energetics and redox homeostasis (121). In cardiac myocytes a ROS-

induced ROS release phenomenon has been described a mediator of mitochondrial 

permeability transition pore (PTP) opening (235). More recent studies demonstrate cross talk 

between mitochondrial thiol, ROS production, and mitochondrial membrane potential (ΔΨm) 

oscillations and depolarization (8, 198). The precise mechanism that links thiol redox stress with 

a collapse in mitochondrial energetics is not completely clear. However the two mitochondrial 

channels implicated in oxidative-stress induced mitochondrial dysfunction are the inner 

membrane anion channel (IMAC) and the mitochondrial permeability transition pore (PTP) 

(236). Both of which play prominent roles in mediating I/R injury. 
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Understanding exercise cardioprotection for therapeutic development 

 Exercise is a well-characterized cardioprotective model that is highlighted by enhanced 

antioxidant capacity. The cardioprotective mechanisms that trigger exercise-induced 

cardioprotection are thoroughly reviewed in Chapter 2. The adaptive phenotype ultimately 

reduces thiol stress during I/R, helping to preserve cardiac electrical synchrony as well as tissue 

necrosis (80). Redox biology in medicine has yet to reach its full potential as we have only 

reached the tip of the iceberg in our understanding of redox chemistry in a cellular context. 

Compartmentalization only increases the complexity of studying this phenomenon. And while 

the benefits to exercise are clear, the 2014 National Health Interview Survey data indicated only 

half of American adults met the current aerobic physical activity guideline, and that even this 

number is likely substantially overestimated according to self-reported physical activity studies 

(151). Therefore, a better understanding of cardioprotective models implicated in redox biology 

would be beneficial for the development of future therapies. 

Central Hypothesis 

The goal of this dissertation is to advance our understanding of cardiac mitochondria in 

I/R injury. The central hypothesis is that preservation of redox homeostasis during I/R injury 

minimizes the mitochondrial dysfunction and bioenergetic collapse mediated by ROS 

accumulation and thiol redox stress. Therapies aimed at preserving thiol redox homeostasis or 

stimulating enhanced redox control may prove beneficial in reducing acute coronary syndromes. 

This dissertation covers areas on how thiol redox homeostasis is linked to cardiac disease 

pathogenesis (Chapter 3), mechanisms involved in regulating redox homeostasis and 

mitochondrial function (Chapter 4), and how exercise-induced adaptations alter post-ischemic 

mitochondrial function (Chapter 5). 



 

 

Chapter 2: Why does exercise “trigger” adaptive protective responses in the heart? 

From Alleman RJ, Stewart LM, Tsang AM, Brown DA. Why does exercise “trigger” adaptive 

protective responses in the heart? Dose-Response, 2015; 13(1) (PMID 26674259). 

 

 

Introduction 

The beneficial effects of exercise on the cardiovascular system have been well 

characterized over the last several decades and it is now accepted that exercise can be used as 

primary prevention for cardiovascular disease (162). Manifestations of cardiovascular disease 

are blunted with exercise in experimental animal models, and epidemiological data in humans 

further support these findings (95, 217). Exercise-induced protection against acute coronary 

syndromes encompasses a reduction in myocardial infarction (35, 80, 129), arrhythmia (80, 81), 

and stunning (27, 131, 206, 207). While there is an abundance of literature on proposed 

mechanisms that seek to explain the protective effects of exercise (129, 202), a large portion of 

this research focuses on end points of protection as well as the downstream signaling events 

that protect the myocardium.  

During exercise, an increase in cardiac output is warranted so that the heart can meet 

the demands of exercising muscles. Aside from matching cardiac output with peripheral blood 

supply, exercise also induces preconditioning whereby the heart is more resistant to injury even 

long after the exercise has ceased. The proverbial “triggers” that induce cardioprotective 

signaling are clearly multi-factorial, and include neural, endocrine, and paracrine factors, as well 

as autocrine signaling and adaptations that arise from within the heart itself.  

Exercise can be thought of as eustress; positive stress that a cell responds to in a way 

that allows it to better cope with that stressor. The adaptive mechanisms associated with 
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exercise ultimately induce a cardioprotective phenotype, resulting in increased endogenous 

defenses against longer duration stressors (i.e. ischemia). Proposed triggers of exercise 

cardioprotection include: adenosine, opioids, adenosine monophosphate-activated protein 

kinase (AMPK), cytokines, mitochondrial and cytosolic derived reactive oxygen species (ROS), 

nitric oxide (NO), and adrenergic signaling. This review will focus on studies investigating 

cardioprotection induced by acute aerobic exercise regimens (i.e. days, weeks, and months of 

training) at moderate to high intensity. The windows of protection include an early window that 

occurs within the first hour after exercise, and a late window that typically lasts from 24 to 72 

hours (33, 227). Studies that utilize different exercise regimens or include protection outside of 

these time points will be described in detail. We will start by briefly discussing epidemiological 

findings in humans pertaining to exercise duration and disease risk prevention, and then shift 

the focus to the various biological compounds that are responsible for cardioprotection. The 

main objective herein is to provide a review of the literature addressing the adaptive response to 

exercise that triggers the phenotypic-cardioprotective switch with different doses of exercise, 

and to shed light on gaps in the literature that may be hindering our understanding of exercise 

cardioprotection.  The first half of our review will focus on circulating factors released during 

exercise that converge on the heart, and the latter portion of the review will focus on adaptations 

that occur within the heart during exercise.   

What dose of exercise is needed for cardioprotection? 

Although there are benefits of exercise across intensities, both epidemiological and 

animal studies suggest that moderate to high-intensity exercise is best for the heart.  The dose-

response aspect relating the quantity of exercise that results in a reduction in cardiovascular risk 

has been extensively investigated across a number of human epidemiological studies. In a 

longitudinal study Lee et al. tracked physical activity in 482 males (average 66 years of age) 

over a five year period and showed that energy expenditure was the key variable in reducing 
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coronary heart disease risk (128). They found shorter intervals of exercise at a higher intensity 

provides the same protective benefit as longer intervals of exercise at a lower intensity, as long 

as the overall energy expenditures were equal. The study also supports the idea that exercise 

intensity is an important determinant of cardioprotection following an acute exercise regimen 

(e.g. days to weeks), and that multiple small bouts of intense exercise may have the same net 

result as one extended bout of exercise. Mora et al. investigated differing levels of physical 

activity in a group of 27,055 healthy women, determined by kcal/wk expended (149). They 

showed a dose-dependent relationship with 200-599, 600-1499 and >1500 kcal/wk groups 

having a 27%, 32% and 41% reduction in cardiovascular disease risk respectively compared to 

the baseline group which expended less than 200 kcal/wk. Although the authors acknowledged 

more research was necessary to determine the exact biological mechanisms that resulted in this 

protection, they found that the reduction in risk seen with increasing levels of physical activity 

can be explained in large part by a reduction in inflammatory/hemostatic biomarkers. These 

findings provide evidence for systemic adaptations with chronic physical activity that contributes 

to reductions in cardiovascular mortality, which are multifactorial with extrinsic and intrinsic 

cardiac adaptations. 

In animal studies, cardioprotection from I/R injury has been shown to occur after only a 

single bout of exercise and is sustainable if the exercise continues for many months (reviewed 

in (79, 175)). The majority of our focus herein is on factors released during exercise itself. Long-

term chronic exercise is likely a combination of acute factors (reaping the benefits of each 

individual exercise session) and adaptations that include shifted autonomic nervous system 

activity, heightened levels of cardioprotective proteins (described below), and beneficial 

hypertrophy. In terms of acute exercise, cardioprotection (reductions in myocardial infarction) is 

observed after moderately high-intensity exercise (>70% VO2 max) (33, 84, 104, 178, 227), 

consistent with the notion that higher intensity appears to be the most beneficial for the heart. In 



 
   

9 

the following sections, we will describe the different factors released during exercise that initiate 

the protective phenotypic shift.   

Adenosine 

Adenosine is a purine nucleoside molecule that has been identified as a trigger of 

exercise-induced adaptations within the myocardium. Signaling occurs through four cell-surface 

receptors distributed heterogeneously throughout regions of the myocardium: adenosine A1, 

A2A. A2B, and A3 receptors (83). Adenosine receptor activation signals through G-protein coupled 

receptors (Gi, Gs, Go, and Gq) leading to the targeting of various downstream effectors and 

divergent regulation of cardiac function (44). During exercise, cardiac adenosine levels rise 

proportional to increasing heart rate (219). A potential interplay between heart rate and 

adenosine release in exercise cardioprotection was demonstrated in dogs where the infarct 

salvage observed following intermittent bouts of tachycardia was abolished with administration 

of an adenosine receptor blocker (66). Support for the cardioprotective effect of adenosine is 

also provided in non-exercise, non-I/R studies whereby treatment with adenosine leads to the 

activation of endogenous antioxidant defense systems, and the adenosine receptor antagonist 

theophylline abolishes this effect (107, 138). Similarly, adenosine receptor blockade during 

exercise exacerbates post-exercise oxidative stress biomarkers (107). Taken together, these 

findings indicate that the increase in heart rate during exercise leads to a transient oxidative 

stress which is blunted through adenosine-induced upregulation of the antioxidant defense 

system. However the intermediate signaling of adenosine that may be responsible for triggering 

exercise cardioprotection is less well defined. Non-exercise studies suggests that A1 receptor 

activation reduces infarct size by priming the opening of mitochondrial potassium adenosine 

triphosphate (mitoKATP) channels, presumably through a PKC mediated mechanism (187). One 

study demonstrated that opening of mitoKATP channels may play a role in the early phase of 

exercise cardioprotection, as the early window of protection was abolished with channel 
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blockade during exercise (65). However, exercise-induced mitoKATP channel activity has not 

been linked to adenosine signaling and merits further research before conclusions can be 

drawn. Therefore, these results suggest that transient increases in adenosine levels are 

important for ROS buffering during acute exercise, but whether or not this is due to opening of 

mitoKATP channels is not known. While cardiac adenosine signaling following exercise seems to 

be important for the activation of redox networks, adenosine has not been established as being 

solely responsible for the increase in antioxidant capacity. In addition it is also unknown if 

adenosine receptor blockade during consecutive exercise bouts would mitigate the upregulation 

in antioxidant defense systems.  

One of the limitations in our understanding of adenosine as a trigger for exercise 

cardioprotection is the lack of knowledge pertaining to the specificity of adenosine receptor 

activation following exercise. As mentioned previously, there are four different adenosine 

receptors, and the specific subtypes activated following exercise has not been well 

characterized. For example, pharmacological blockade of adenosine receptors with theophylline 

is thought to inhibit signaling through A1 and A2A receptors (109). Theophylline is commonly 

used as an adenosine receptor blocker (66, 107), but the specificity of their action and the 

downstream signaling events has not been tested in exercise-preconditioning studies. The use 

of non-specific pharmacological compounds is problematic from a mechanistic standpoint 

because adenosine receptor activation elicits divergent effects depending on the subtype of 

receptors activated. Further, adenosine receptors possess the ability to dimerize with other 

subtypes (83), leading to greater complexity in the biological actions of adenosine. Nonetheless, 

adenosine appears to exert a substantial effect on cardiac physiology and pathophysiology, but 

more research is needed to solidify adenosine as a required trigger for exercise 

cardioprotection.  
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Opioids 

Opioids are another cell-surface signaling molecule that can trigger a protective 

phenotype. Endorphins, enkephalins, and dynorphins predominately signal through μ-, δ-, and 

κ-opioid receptors respectively, each with various subtypes distributed centrally and peripherally 

(211). Pharmacological activation of κ- and δ-opioid receptors reduces infarct size, with a 

‘second window of preconditioning’ similar to what is seen with exercise (85, 190). Opioid-

mediated signaling occurs throughout the nervous system, and there is evidence that striated 

muscle can produce preproenkephalin mRNA and peptide products (200, 221).  

Several studies have examined opioids following exercise.  A ten-fold increase in overall 

serum opioid activity immediately following exhaustive exercise has been observed in human 

(179, 191) and rodent models (60), with release of various endorphins being most prominent 

following high-intensity exercise (>90% VO2 max). These data are particularly interesting from a 

dose-response standpoint, as the opioid release occurred following near-maximal exercise, and 

many studies find benefit after a sub-maximal exercise regimen (32, 36, 41, 79, 171, 175, 208).  

Further support for the role of opioids in exercise-induced cardioprotection comes from 

studies examining blood-borne factors. Michelsen et al. recently observed infarct size reductions 

in isolated rabbit hearts that were perfused with human plasma dialysates conditioned by acute 

high-intensity exercise. Co-perfusion with a non-specific opioid antagonist reduced the infarct 

sparing effect (147), which is consistent with other studies where pre-exercise administration of 

the non-specific opioid antagonist naloxone/naltrexone abolished protection afforded by a 12-

week exercise regimen (63, 86). 

Like adenosine mediated protection, there is evidence that opioid signaling also acts 

through the mitoKATP channel. In non-exercise studies, protection observed following opioid 

receptor activation is abolished with the mitoKATP blocker 5-HD (Fryer et al. 1999). 
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Administration of 5-HD prior to I/R also abolishes the anti-arrhythmic effect of exercise, but 

opioid levels were not measured (178). However, unlike adenosine-mediated protection, opioid 

signaling may not exert its protective effects through the upregulation of antioxidant defense 

systems. Twenty-four hours after a five-day exercise regimen, mRNA levels of opioid precursors 

and receptors increased in unstressed hearts while there was no change in superoxide 

dismutase, HSPs, and catalase (63). Even though these specific antioxidant gene transcripts 

did not change, enhanced ROS buffering cannot be ruled out because antioxidant capacity was 

not comprehensively analyzed. Although we are still early in our understanding of how opioids 

are influencing exercise cardioprotection, these preliminary studies provide rationale for their 

release and biological activity following exercise.   

Cytokines 

Cytokine production during exercise is another putative triggering mechanism of 

exercise cardioprotection that has received less attention from the scientific community. During 

exercise contracting muscle acts as an endocrine organ by secreting various cytokines that can 

facilitate downstream biological actions (67). In non-exercise studies, early work demonstrated a 

cardioprotective role for cytokines in I/R injury that involved lower oxidative stress during the 

reperfusion period (37, 72). Subsequent studies by Yamashita et al. sought to determine how 

exercise-induced cytokine production influenced infarct salvage (227). They demonstrated that 

administration of TNF-α and IL-1 antibodies prior to a single exercise bout abolished the early- 

and late-windows of cardioprotection. However, aside from the cardioprotective effects that 

cytokines can exert on the myocardium, there are deleterious effects as well. The discrepant 

findings in the literature regarding adverse and cardioprotective actions of cytokines on I/R has 

been reviewed (185). The cardioprotective action of cytokines appears to occur at lower 

concentrations, whereas higher concentrations may exert harmful effects. Moving forward more 
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research is needed to uncover the divergent roles of cytokines on myocardial physiology before 

they can be implemented as therapeutic agents for I/R injury.  

Adrenergic Signaling 

The role of adrenergic receptor stimulation during exercise has become recognized as a 

part of exercise-induced cardioprotection. In response to systemic demand, β-adrenergic 

stimulation increases cardiac chronotropy, inotropy and lusitropy (reviewed in (203)). These 

effects are mainly attributed to the β1-adrenergic receptor which is the predominant isoform in 

the heart, but β3-adrenergic receptors appear to play a contradictory role, as stimulation leads to 

a negative inotropic response (156, 205). The negative inotropic effect is mediated through 

downstream activation of eNOS (89). However, the existence of a functional β3-adrenergic 

receptor in the human heart has recently been called into question due to the lack of selectivity 

of pharmacological tools used to study its function and expression (reviewed in (146)). 

Nonetheless, it has been postulated that β-adrenergic stimulation may trigger exercise 

cardioprotection by increasing NO bioavailability. β-adrenergic stimulation of cardiac tissue via 

the sympathetic nervous system has been shown to be important in triggering the protective 

phenotype, as ablation of the cardiac sympathetic nerve with topical application of phenol 

abolishes the infarct salvage afforded by seven days of exercise in mice (4). The authors 

attributed these effects to a decrease in eNOS activity because an increase in eNOS 

phosphorylation was not observed in mice with cardiac sympathetic nerve ablation, but was 

increased with exercise alone. Interestingly, the transient oxidative stress observed with 

exercise was also absent with cardiac sympathetic nerve ablation, indicating interplay between 

adrenergic stimulation, NO, and ROS in exercise cardioprotection. In another study Calvert et 

al. also demonstrated that adrenergic receptors play an important role in exercise 

cardioprotection via interaction with the NOS isoforms (42).  Plasma catecholamine and β3-

adrenergic receptor density increased following four weeks of voluntary wheel running, with no 
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changes in the β1 and β2 isoforms. The cardioprotection against myocardial infarction observed 

in the voluntary wheel running mice was abolished in β3-adrenergic receptor deficient mice. 

Similar to the previous study that linked adrenergic signaling to increased eNOS 

phosphorylation, eNOS phosphorylation as well as cardiac NO metabolites were depressed in 

β3-adrenergic receptor deficient mice exposed to voluntary wheel running. These findings 

implicate adrenergic signaling as a triggering mechanism during exercise. In this regard, Calvert 

et al. demonstrated that a single epinephrine bolus increased eNOS phosphorylation and heart 

NO metabolites. Importantly, infarct salvage following voluntary wheel running was lost when 

NO metabolites returned to normal levels after four weeks of exercise cessation. Taken 

together, there is strong evidence for a role of adrenergic signaling in the triggering phase of 

exercise cardioprotection and the subsequent upregulation of NO bioavailability. However, more 

research is needed to fully characterize the specific role of β3-adrenergic receptor stimulation in 

NOS activation, especially in light of the fact that β2-adrenergic receptor activation has also 

been shown to be cardioprotective and can increase eNOS activity and NO metabolites (18). 

Nitric Oxide 

NO was initially thought to act only through local mediation of vasodilation due to its 

short half-life and high reactivity with biological substrate (134), however more recent work 

implicates NO in downstream  mechanisms distant from the site of production (41, 49, 73), as 

well as in cardiac myocytes themselves (reviewed in (23)). During exercise, blood flow and 

vascular shear stress are elevated in tissue beds with high metabolic activity, which leads to the 

activation of endothelial nitric oxide synthase (eNOS) and heightened release of NO (17, 193, 

217, 231). NO metabolites such as nitrite, nitrate, and nitrosothiols were once thought of as 

inert, but are now widely accepted as storage forms of NO that undergo inter-conversion to 

exert biological effects (39, 41, 220, 238). In non-exercise studies, the molecular reduction of 

nitrite to NO and nitrosothiols during I/R is cardioprotective (38, 49, 220), which indicates that an 
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increase in NO bioavailability may be an important determinant of exercise-induced 

cardioprotection.  

Following exercise, there is an increase in eNOS activation and NO metabolites (4, 41), 

and when eNOS is genetically knocked out, the infarct sparing effects after seven days of 

exercise is abolished (4). The study also demonstrated that the upregulation of eNOS during 

exercise was necessary for the subsequent increased activity of inducible NOS (iNOS) and the 

downstream infarct sparing effect of exercise (4). Others have observed an increase in iNOS 

activity following an acute bout of exercise, and when an iNOS inhibitor was administered prior 

to I/R the antiarrhythmic effect of exercise was abolished (15). However, the role of iNOS in 

exercise cardioprotection has been called into question due to the interspecies variability in 

expression patterns and a lack of increase following various exercise regimens (41, 174). More 

recently Farah et al. demonstrated a role for eNOS in exercise cardioprotection in rats after five 

weeks of training (73). Following the exercise regimen phosphorylation of eNOS was increased 

in the exercise group, as well as s-nitrosylated proteins and nitrite. Perfusion with a global NOS 

inhibitor prior to and immediately after I/R abolished the infarct sparing and mechanical recovery 

observed with exercise.  They also demonstrated that eNOS uncoupling during the reperfusion 

period was required for the cardioprotection. However, not all groups demonstrate an essential 

role for NO in exercise cardioprotection. Taylor et al. administered a global NOS inhibitor prior to 

two days of exercise with the idea that cardioprotection would be lost. However, the beneficial 

effects of exercise on mechanical recovery and LDH release after I/R in rats were not different 

than with exercise alone (207). The main difference in these studies is the timing of NOS 

inhibition (before exercise vs before I/R), and the duration of the exercise regimen. The study by 

Taylor et al. provides evidence against a role for NO production during exercise as a triggering 

mechanism for cardioprotection. However, NO production during exercise may not be 

responsible for cardioprotection per se, rather the increase in NO bioavailability and increase in 
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eNOS activation (phosphorylation) seems to be more important in the cardioprotective 

phenotype. A mechanism whereby NO production can increase after exercise has been 

demonstrated. Following acute exercise, circulating bradykinin levels increase (21), stimulating 

the production of NO and NO metabolites (234). Furthermore, bradykinin has been 

demonstrated to mediate its anti-arrhythmic effects through liberation of NO during I/R (212). 

Given the discrepant findings, a few questions are left that need to be addressed moving 

forward. What is the locus of NO production that leads to an increase in NO metabolites 

(endothelium vs cardiac myocytes), what are the temporal characteristics of NO production 

during and/or following exercise, and when precisely does the cardioprotective phenotype 

become evident?  In response to the latter, most studies indicate that storage forms of NO 

precipitate their cardioprotective effects during reperfusion. Clearly more work is needed to 

definitely determine the role of NO production during/after exercise and how this affects NO 

metabolite accumulation en route to cardioprotection. 

Adenosine Monophosphate-Activated Protein Kinase 

Cardiac myocytes are densely packed with mitochondria in order to support cellular 

energetic requirements. In the healthy heart, the heightened rate of ATP hydrolysis during 

exercise increases mitochondrial respiration, ultimately allowing healthy myocytes to efficiently 

match ATP generation to cardiac workload. While cellular ATP:ADP ratios remain constant, 

AMP levels are thought to rise with increasing exercise intensity, leading to the activation of 

AMPK in cardiac muscle (55, 82). In this context, the activation of AMPK stimulates catabolic 

processes and down regulates anabolism allowing the cell to regulate metabolism for the 

production of ATP (55). AMPK has been deemed as one of the energy sensors of the cell and 

its activity increases by phosphorylation within 10 minutes of the onset of moderate and high 

intensity exercise (55). AMPK has also been shown to be important in post-ischemic cardiac 

injury, with exacerbated injury in transgenic mice expressing a dominant negative kinase dead α 
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subunit of AMPK (183). Canonical AMPK signaling increases glucose and lipid oxidation, which 

is essential for replenishing ATP following an ischemic period.  

In addition to increasing catabolism, AMPK has been shown to play a role in ischemic 

preconditioning by regulating sarcolemmal KATP channel trafficking and activity (204). These 

studies suggest an important role for AMPK activity following ischemia/reperfusion (I/R), but the 

extent to which AMPK influences exercise cardioprotection has received less attention. 

Although studies have consistently shown that exercise increases the phosphorylation of AMPK 

(55, 163), AMPK has not been shown to be crucial for exercise adaptations. Similar levels of 

exercise can be attained in transgenic mice expressing a cardiac-specific dominant-negative 

AMPKα2 subunit (155). Following 30 minutes of exercise, transgenic mice had similar cardiac 

glycogen and ATP levels as wild-type controls. A similar metabolic profile between the wild type 

and transgenic mice indicates that AMPK may not be crucial for enhanced cardiac metabolism, 

and that other overlapping pathways can help meet energy requirements during increased 

demand. Although AMPK is an attractive target for the cell to regulate its energy needs during 

metabolic stress, there is a gap in the literature linking exercise-induced AMPK activation with 

cardioprotection. More research is required to definitively determine if/how exercise influences 

AMPK activity in the heart, and whether or not these changes modify cardioprotection. 

Reactive Oxygen Species 

Cardiac ROS are another potential candidate involved in exercise cardioprotection, as 

well as other preconditioning stimuli such as ischemic and pharmacological preconditioning 

(88). A large body of literature suggests that exercise induces a transient oxidative stress that 

leads to upregulation in antioxidant defense systems; however the locus of ROS production and 

downstream effectors during exercise remains unclear. In this section we will focus on evidence 

for the role of mitochondrial ROS in exercise cardioprotection, and cytosolic ROS in the 

following section.  
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ROS have received considerable attention in the cardiac literature due to their role in 

pathologies like I/R injury, heart failure, and cardiomyopathies. However, a growing body of 

literature suggests that ROS exert hormesis, where transient bursts of ROS leads to favorable 

adaptive redox signaling. Cellular ROS can act as second messengers in downstream signaling 

by altering the activity of redox sensitive enzymes throughout the cytosol and/or mitochondria of 

cardiac myocytes (184). Similar mechanisms may occur when transient bursts of ROS are 

generated during exercise. (24, 59, 97). Following acute exercise there is an alteration in 

cellular redox status towards a more oxidized environment which may act as a signal to activate 

endogenous protective mechanisms (80, 157).  

There is general consensus that an increase in antioxidant enzymes is responsible for a 

large portion of exercise cardioprotection, and transient oxidative stress with exercise may play 

a role in this adaptation. Evidence for this has been provided by several groups who have 

observed increases in key antioxidant enzymes following exercise (61, 80, 81, 96, 129, 178, 

227). Studies in favor of this hypothesis have shown that administration of antioxidants prior to 

exercise abolishes infarct salvage (4, 227) and prevents exercise-induced improvements in 

cardiac performance (157). However, another study indicated that ROS generated during 

exercise were not required for functional recovery following I/R (208). The antioxidant frequently 

used in these studies was N-(2-mercaptopropionyl)glycine) (MPG), which was administered 

intraperitoneally 10-30 minutes prior to exercise. An important note to consider is that MPG has 

been shown to have higher specificity for hydroxyl radicals rather than hydrogen peroxide 

(H2O2) and superoxide (25), indicating that not all ROS signaling is abolished with treatment. In 

addition, MPG has a plasma half-life of approximately 7 minutes (103), making it difficult to 

interpret how effective the treatment was at scavenging ROS during hour-long exercise bouts. 

These methodological differences make it difficult to directly compare their results (i.e. 
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differences in species, duration of I/R, duration of exercise, measurement of injury, the timing of 

the administration of antioxidants, and in vivo versus ex vivo experiments).  

Mitochondrial ROS.  ROS signaling is a highly regulated and localized process, implying that the 

origin of ROS generated during exercise may be extremely important. Although mitochondrial 

ROS are thought to play a central role in ischemic preconditioning (16, 124, 166), there is a 

paucity of evidence suggesting a role in exercise preconditioning. Frasier et al. recently found 

that the locus of ROS production during exercise is not mitochondrial in origin (80). As shown in 

Figure 3, exercise cardioprotection was not lost when administering agents that reduce 

mitochondrial ROS prior to exercise (mito TEMPO and Bendavia). This indicates that 

extramitochondrial-derived ROS may be responsible for redox signaling following exercise.  

Monoamine oxidase-A (MAO-A) is another potential site for mitochondrial ROS 

production. MAO-A is located on the outer mitochondrial membrane and catalyzes the oxidative 

deamination of neurotransmitters such as norepinephrine and serotonin while generating H2O2 

Figure 3. Reductions in infarct size are abolished by inhibiting NADPH Oxidase (with pre-exericse treatment 
of apocynin or VAS2870) during exercise. Inhibition of mitochondrial ROS during exercise (with pre-exercise 
administration of TEMPO or the mitochondria-targeting peptide Bendavia) had no effects on exercise 
cardioprotection. Figure reproduced from Frasier et al., Cardiovascular Research 2013, with permission (pending). 
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as a byproduct in the reaction. A recent review highlights the importance of MAO-A in 

pathological states such as heart failure and I/R (116). Accumulation of serotonin released by 

platelets during I/R can lead to the production of H2O2 and subsequent apoptotic signaling 

cascades (19).  Recent findings indicate that exercise leads to down-regulation MAO-A (119), 

which may play a role in the attenuation of I/R damage associated with exercise 

cardioprotection. Moreover, these findings indicate that there is likely a reduction in 

mitochondrial ROS production with exercise, given the decrease in MAO-A expression and 

increases in the activity of key antioxidants such as MnSOD and glutathione reductase (GR) 

(80, 178). A decrease in cardiac mitochondrial MAO-A would theoretically dampen the oxidative 

burden imposed on the cell, not only during exercise, but also during thrombus formation and 

subsequent I/R injury. A mechanism for the decrease in MAO-A expression following exercise 

has not been investigated and therefore the triggering event for this adaptation is purely 

speculative. Perhaps acute increases in cardiac sympathetic nerve stimulation and increasing 

norepinephrine levels during exercise play a role in downstream silencing of MAO-A through 

non-canonical adrenergic pathways (215). Cardiac sympathetic stimulation increases 

contractility and myocardial stretch during exercise, which in and of itself may trigger a 

cardioprotective phenotype through elevated cytosolic ROS production (80, 218). Furthermore, 

cardiac sympathetic nerve ablation has been shown to abolish the infarct sparing effect of 

exercise, but this was not linked to silencing of MAO-A expression (4). A hypothetical 

adrenergic/MAO-A axis scenario opens up an exciting area of research to explore mechanisms 

controlling MAO-A expression in cardiac tissue during normal physiological as well as 

pathophysiological states. We will further expand on the topic of stretch-induced activation of 

cardioprotection in the next section.  

Cytosolic ROS.  Free-radical generating enzyme systems outside of the mitochondria have also 

received considerable interest in normal physiology as well as in pathological states such as I/R 
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injury (24, 144, 148) and heart failure (98, 210). Sources of extramitochondrial-derived ROS in 

cardiac myocytes include xanthine oxidase, NADPH oxidase, and uncoupled nitric oxide 

synthase. Of these, the NADPH oxidase (NOX2 in particular) complex generates ROS in a 

highly localized manner in the sarcolemmal and t-tubule membranes during physiological 

stretch (172, 186). Myocardial contraction and wall stress increases during exercise as a 

function of heart rate and adrenergic signaling. The increased inotropic and chronotropic state is 

an autoregulatory mechanism that allows for tight regulation of blood pressure and delivery of 

nutrients to metabolically active tissue. Recent work indicates that the sarcolemmal NOX2-

generated ROS system plays a central role in this phenomenon. NOX2-generated ROS 

imposes redox signaling through ryanodine receptors leading to increased calcium release and 

subsequent contractile activity (68, 186). Stretch induction through the microtubule network and 

NOX2 activation has been termed X-ROS signaling (172). X-ROS signaling describes the 

transfer of a mechanical to a chemical signal throughout the heart via the microtubule system, 

leading to assembly of the NOX2 ROS generating complex. Recently, several independent 

groups have established a role for NOX2 as a potential trigger for the cardioprotective 

phenotype associated with exercise (80, 186).  

As mentioned previously, a critical threshold of exercise intensity appears to be 

important for cardioprotection, and at higher exercise intensities myocardial contraction 

increases in conjunction. In line with the X-ROS signaling hypothesis, increased inotropy and 

myocardial stretch during exercise may lead to activation of NOX2 and perhaps downstream 

adaptations. We and others have demonstrated that inhibition of NOX2 prior to exercise 

abolishes the infarct salvage of early and late phases of exercise cardioprotection (80, 186). 

Furthermore, the upregulation of GR activity that is typically observed following exercise (81, 

115, 180, 213) is also abolished immediately and 24 hours after the exercise bout when NOX2 

is inhibited during exercise (80). GR is a central enzyme involved in cellular redox control by 
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utilizing NADPH to convert oxidized glutathione to the reduced form. Therefore, increasing GR 

activity allows the cell to maintain the glutathione pool in the reduced state, thus providing a 

greater buffering power during oxidative insults. During an exercise bout, mechanical stretch of 

the myocardium increases, leading to NOX2-generated ROS and activation of GR (80). ROS 

signaling through GR may be a mechanism where GR acts as a sensor during oxidative shifts of 

the redox environment, leading to upregulation of endogenous defense systems. Future studies 

examining the time frame of GR activation and sustainability of protection will shed light on 

signaling between NOX2 and GR during the cardioprotective window of exercise. Also, studies 

that determine the importance of GR compartmentalization, namely whether cytosolic and/or 

mitochondrial GR pools are involved in this adaptive signaling network (118). While it seems 

apparent that exercise upregulates redox buffering capacity, more research is needed to 

definitively determine if transient bursts of ROS during exercise act as a signal to trigger 

downstream cardioprotection. 

Conclusions  

We have described a number of circulating and intrinsic factors postulated to induce 

cardioprotective signaling with exercise. These factors converge on the myocardium, and result 

in downstream adaptations that characterize the protective phenotype. Subsequent 

investigation into these downstream effects using novel approaches will greatly advance the 

field. For example, ROS production during exercise is an intriguing factor that leads to both 

post-translational modifications to existing proteins in the short-term, as well as altered protein 

expression on a longer time-scale. Given that 21,000 to 42,000 thiols in the proteome can 

contribute to the integration of metabolic function through redox signaling (112), further 

exploration of the redox hypothesis in the context of exercise adaptations is warranted. The 

convergent effects of cellular ROS production and elevated levels of cell-signaling molecules 

such as adenosine, NO, cytokines, and catecholamines during elevated workloads transduce 
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the exercise stimulus that culminates into a hormetic cardiac response. Inhibition of any one of 

these putative triggers can dampen the cardioprotective phenotypic switch observed with 

exercise, but ultimately, these adaptations lead to tolerance to I/R injury characterized by lower 

arrhythmia and decreased myocardial infarction. Given that exercise is known to confer 

protection in humans, future studies that continue to advance our understanding of the intrinsic 

factors responsible for evoking this protective phenotype may ultimately pave the way for novel 

therapies to reduce the burden of acute coronary syndromes. 
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Introduction  

Cardiovascular disease remains a leading cause of death in the industrialized world (94, 

158). One manifestation of cardiovascular disease is sudden cardiac death, which has been 

estimated to account for approximately 1 death per 1000 in the general population (78). Several 

factors are known to influence the susceptibility to arrhythmia, including various genetic 

abnormalities, channelopathies, compromised autonomic function, left ventricular hypertrophy, 

and acute coronary syndromes (78, 159, 216). During acute coronary syndromes, the 

reperfusion of previously ischemic tissue leads to a burst in reactive oxygen species (ROS), a 

significant contributor to electromechanical dysfunction (3, 26, 141, 237).  

Exercise is known to protect against arrhythmia (81, 105, 178), as well as other post-

ischemic damage such as myocardial stunning (27, 132, 207) and infarction (32, 80, 176, 177). 

Despite the clear beneficial effect, the underlying cellular mechanisms are not completely 

understood. The high oxidative environment during reperfusion collapses mitochondrial 

energetics and alters cardiac action potential duration, which is known to be arrhythmogenic (3, 

8, 9, 31). Among their many functions, mitochondria are centrally involved in both ATP 

production and free radical detoxification through redox reactions, both of which ultimately rely 

on mitochondrial membrane potential (ΔΨm).  Collapses in ΔΨm are known to be associated with 
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the onset of arrhythmia, and pharmacological interventions that preserve ΔΨm have been shown 

to stabilize sinus rhythm (31, 198). Whether the preservation of ΔΨm is an endogenous 

adaptation involved in exercise-induced protection has never been determined.  

We recently observed that exercise delayed the onset of arrhythmia and decreased the 

incidence of ventricular fibrillation (VF) through better preservation of redox homeostasis (81). 

This was attributed to enhanced glutathione reductase (GR) activity, which was essential for 

cardioprotection (80). While exercise-induced cardioprotection has been repeatedly shown to 

augment endogenous myocardial antioxidant capacity (80, 81, 129, 178, 227), there is a lack of 

evidence demonstrating how these adaptations directly protect against reperfusion arrhythmia. 

Therefore, the objective of the present study was to determine if exercise decreases reperfusion 

arrhythmia by preserving mitochondrial bioenergetics. Using several different experimental 

models, we employed a vertically integrated approach to test the hypothesis that exercise 

protects against reperfusion arrhythmia via better maintenance of ΔΨm, lower mitochondrial 

ROS production, and preserved redox homeostasis. 
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Methods    

Animals    

Male Sprague Dawley rats (250-350 g) were housed on a 12-hour light/dark cycle with 

food and water provided ad libitum. All experiments were conducted in accordance with 

guidelines established by the NIH (2012 edition) and the AVMA (2013 

Edition:https://www.avma.org/KB/Policies/Documents/euthanasia.pdf), and approved by East 

Carolina University’s Animal Care and Use Committee. For all experiments rats were 

anesthetized using a ketamine/xylazine mixture (90mg/kg ketamine, 10mg/kg xylazine, i.p.), and 

hearts were excised via midline thoracotomy after animals reached a surgical plane of 

anesthesia. Hearts were placed briefly in 0.9% saline (4ºC) and used for isolated heart studies, 

myocyte isolations, or mitochondrial experiments.   

Exercise protocol    

Rats were randomly assigned to exercise (Ex) or sedentary (Sed) groups and exposed 

to daily exercise or control handling using established protocols (81). Briefly, rats were 

acclimated to the treadmill at 15 m/min over a 3-day period, increasing the time of exercise from 

5, 10, and 15 min each day. Ex rats underwent 10 days of consecutive treadmill running at 6% 

grade for 60 min per day, in intervals broken up to 15 m/min for 15 min, 30 m/min for 30 min, 

and 15 m/min for 15 min. Sed rats were placed on the non-moving treadmill for 5 min each day. 

This exercise protocol mimics a moderate- to high-intensity exercise regimen, characterized by 

training adaptations with little/no indication of systemic stress (34). All experiments were 

performed 24 hours after the last bout of exercise or handling. 

Isolated heart preparation and assessment of arrhythmia     

Excised hearts were rapidly cannulated by the aorta per our established methods (80, 

81) and retrograde-perfused on a modified Langendorff apparatus with gassed (95%O2, 
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5%CO2) Krebs Henseleit buffer (KHB) containing (mM): 118 NaCl, 24 NaHCO3, 4.8 KCl, 2 

CaCl2, 1.2 MgSO4, 1.2 KH2PO4, and 10 glucose (37ºC), at a constant pressure of 75 mmHg. 

Coronary flow was monitored throughout the protocol with a Transonic flow probe connected in 

series proximal to the cannula. All measurements were recorded on Lab Chart 7.0 software 

(A.D. Instruments) and stored on a personal computer for subsequent analysis. The definition of 

ventricular arrhythmia was used in accordance with the methods described by the Lambeth 

Convention (58).  

Two-photon microscopy whole heart imaging during ischemia/reperfusion     

Using slight modifications of our previous techniques (31), instrumented hearts (n=18) 

were imaged using two-photon microscopy (Olympus FV 1000 multiphoton microscope; 

Spectra-Physics Maitai Deepsee laser) with a 30X silicon objective lens (UPLSAPO, NA 1.05). 

Hearts were mounted in a 100mm glass-bottom dish (MatTek) maintained at 37ºC for imaging, 

with ECG obtained via volume-conductance recordings using electrodes placed in the bath. 

Hearts were enclosed by an on-board incubator maintained at 37ºC and imaged at a depth of 

800nm. 640x640 pixel resolution images were obtained each minute at 2μs/pixel with low laser 

power (6.5%) for the duration of the protocol. The left ventricle was imaged within 2mm of the 

left anterior descending coronary artery on the MatTek dish and stabilized by applying a glass 

coverslip over the heart to minimize artifacts induced from vibrations.  

 Isolated hearts were loaded with 100nM tetramethylrhodamine methyl ester (TMRM; 

Molecular Probes, Inc.) for 15 min to measure ∆Ψm per our established methods (31). Our 

preliminary experiments showed this concentration of TMRM to be optimal in order to observe 

collapses in ∆Ψm with the mitochondrial uncoupler carbonyl cyanide-4-(trifluoromethoxy)-

phenylhydrazone (FCCP). TMRM was excited at 800nm and emission collected at 495-540nm 

using a 2-channel filter cube (FV10-MRG/R). After TMRM loading hearts were perfused with 

KHB+blebbistatin (10μM) to inhibit contraction. Once the image stabilized, a baseline image 
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was captured and followed immediately by global, no-flow ischemia/reperfusion (40 min/10 min). 

To control for unequal fluorophore loading, TMRM fluorescence was normalized to baseline (F0; 

prior to ischemia). All images were analyzed using ImageJ, and mean TMRM fluorescence was 

calculated after thresholding to exclude background for areas not containing sheets of 

myocardial cells. Four hearts were excluded from the imaging analysis due to technical 

difficulties during image acquisition (Sed n=2 and Ex n=2).  

Glutathione levels in cardiac tissue following Langendorff ischemia/reperfusion  

 Reduced glutathione (GSH) and glutathione disulfide (GSSG) were measured using high 

performance liquid chromatography (HPLC) (74, 93, 117). Left ventricular cardiac tissue was 

snap frozen in liquid nitrogen after 20 min ischemia and 2 hours of reperfusion in a subset of 

rats. Left ventricular tissue was homogenized in a buffer containing 50mM Trizma base 

supplemented with 20mM boric acid, 20mM L-serine and 10mM N-ethylmaleimide (NEM).  NEM 

is an alkylating agent that will both conjugate GSH and inhibit GR, which is added to the 

homogenization buffer to limit auto-oxidation effects during sample preparation.  The tissue 

homogenate is then split into two derivatization pathways for the detection of GSH and GSSG.  

For GSH derivatization, 280μl of the homogenate was deproteinated with 1:10 (v/v) 15% 

trichloroacetic acid, and then centrifuged for 5 minutes at 20,000xg.  The supernatant was 

transferred to an autosampler vial for processing in the HPLC equipment.  GSH samples were 

run on freshly made mobile phase containing 91% of a 0.25% (v/v) glacial acetic acid mixed 

with 9% pure HPLC grade acetonitrile.  Samples were run using a Shimadzu Prominence HPLC 

system equipped with a Premier C18 column (4.6 x 150mm. 5μm, Shimadzu Part # 220-91199-

12) at flow rate of 1.0ml/min.  GSH-NEM conjugate was detected by UV chromatography at a 

wavelength of 265nM (Shimadzu SPD-20A) (93). Samples were quantified using standards 

prepared under identical conditions and normalized to the protein content measured in the 

muscle homogenate by BCA assay. 
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 For GSSG derivatization, 200μl of the homogenate was deproteinized in 200ul 15% 

perchloric acid, and then centrifuged for 5 minutes at 20,000xg.  The resulting supernatant 

(200μl) was next diluted in 1000μl of 0.1M NaOH twice to ensure proper pH (~12) is reached 

before reacting with 0.1% 0-phthaladehyde (OPA).  OPA will react with GSSG at high pH (~12) 

to form a fluorescent product detectable at excitation/emission wavelengths 350/420 (Shimadzu 

RF-20A xs) (117). GSSG samples were processed using a 25mM sodium phosphate buffer 

containing 15% HPLC grade methanol at pH of 6. Samples were run through a Shimadzu 

Prominence HPLC system equipped with a Purospher STAR RP-18 endcapped column (4.6 x 

150mm. 3μm, EMDmillipore) at flow rate of 0.5ml/min.  Samples were quantified using 

standards prepared under identical conditions and normalized to the protein content measured 

in the muscle homogenate by BCA assay. 

Cardiac myocyte cell isolation   

Cardiac ventricular myocytes were isolated using previously published methods with 

slight modifications (30). Hearts were digested enzymatically on a modified Langendorff 

apparatus using 1mg/ml collagenase (Type 2 Worthington) and 0.15 mg/ml protease (type XIV 

Sigma) dissolved in Tyrodes solution. After 8-12 min of digestion, hearts were cut down, minced 

in Tyrodes solution, and passed through a nylon mesh filter. Cells were allowed to gravity 

precipitate and resuspended in Tyrodes with increasing titrations of calcium up to a final 

concentration of 1.8 mM. Isolated myocytes were incubated (95% O2, 37°C) in DMEM and used 

for experiments within 8 hours of dispersion.  

Cardiac myocyte imaging during hypoxia/reoxygenation      

Myocytes were loaded on a perfusion chamber housed on the confocal microscope 

stage and enclosed in glass to minimize oxygen diffusion from room air. The chamber was 

connected to an in-line solution heater that delivers the superfusate via laboratory tubing with 

low oxygen permeability (Tygon F-4040-A), and equipped with heating filaments for 
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maintenance at 37°C. Pacing electrodes were utilized for field stimulation for the duration of the 

hypoxia/reoxygenation protocol (4-ms duration, 1-Hz frequency, 10-V amplitude). Myocytes 

were perfused with Tyrodes solution gassed with 100% O2 containing (in mM): 140 NaCl, 10 

HEPES, 5 KCl, 1 MgCl2, 1.8 CaCl2, and 10 glucose (pH 7.4, 37°C). For hypoxic Tyrodes 

solution, glucose was excluded, the solution was gassed with 100% argon continuously, and the 

pH was decreased to 6.5 in an attempt to mimic the in vivo cellular environment during 

ischemia. 

 Myocytes were incubated for 15 min with TMRM (10nM) and CellTracker Blue CMAC 

(1μM) (Molecular Probes, Inc.) for fluorescent imaging of ∆Ψm and cellular GSH, respectively. 

CellTracker Blue CMAC is a GSH sensitive dye that has been shown to have better cell 

retention than monochlorobimane in primary cardiac myocytes (122). Myocytes were incubated 

on a glass coverslip coated with poly-d-lysine and allowed 15 min to adhere, followed by 5 min 

of baseline perfusion. Only rod-shaped myocytes that responded to field stimulation were 

utilized in the experiments. Preliminary control experiments indicated that a low concentration of 

TMRM (5nM) in the Tyrodes solutions was required to maintain a stable fluorescent signal for 

the duration of the protocol. After 5 min of baseline perfusion, the solution was switched to the 

hypoxic Tyrodes solution. After 20 min of hypoxia the superperfusate was switched back to 

normoxic Tyrodes for reoxygenation (30 min or until cell death). At the end of each experimental 

protocol myocytes were perfused with the mitochondrial uncoupler FCCP (1μM) to verify 

mitochondrial TMRM specificity. A 60X water immersion objective lens was used to image 

myocytes every minute using 408nm and 559nm argon lasers, and emissions were collected 

using a 430-470 and 575-675 band pass filter, respectively. Images were analyzed with NIH 

ImageJ (http://imagej.nih.gov) in 8-bit following background subtraction (rolling ball radius 50) 

with regions of interest drawn around individual cells.  NIH “Fire” and “Blue” look-up tables 

(LUTs) were used for all ∆Ψm and GSH images respectively. 
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Mitochondria isolation    

 Cardiac mitochondria were isolated from Ex or Sed hearts twenty-four hours following 

the last exercise bout (or handling) using similar previously published methods (197). Briefly, 

hearts were excised and minced on ice and trypsin-digested in mitochondria isolation medium 

(MIM) containing (in mM): 300 sucrose, 10 sodium-HEPES, and 1 EGTA. After 2 min of 

digestion, 10 ml of MIM with BSA (1mg/ml), and trypsin inhibitor (100 mg/ml) was added and 

allowed to gravity pellet for 8 min. The digested tissue was then homogenized and centrifuged 

at 800xg for 10 min. Supernatant was collected and centrifuged at 12,000xg for 10 min to pellet 

mitochondria. The pellet was rinsed to remove debris and impurities, suspended in fresh MIM 

and centrifuged at 12,000xg for 10 min. The final pellet was re-suspended in MIM and kept on 

ice for experiments.  

Mitochondrial O2 consumption and H2O2 emission measurements   

 Rates of O2 consumption (JO2) and H2O2 emission (JH2O2) were measured 

simultaneously using the Oroboros high-resolution respirometry oxygraph-2k equipped with a 

custom-made stopper to accommodate a fiber-optic cable for fluorescence measurements 

(Fluoromax 3, HORIBA Jobin Yvon, Edison, NJ, USA). Mitochondria were energized using 

complex I and complex II substrates: glutamate (10mM), malate (2mM), pyruvate (2mM), and 

succinate (5mM), and assayed at 37°C in 2.5 ml of Buffer Z assay medium containing (mM): 

110 K-Mes, 35 KCl, 1 EGTA, 5 K2HPO2 , 3 MgCl2-6H2O, 0.5 mg/ml  BSA, and 25 creatine 

monohydrate. The rate of H2O2 emission was quantified using Amplex UltraRed (25μM) and 

horseradish peroxidase (4U/mL), added to the assay buffer. Exogenous superoxide dismutase 

(SOD, 30U/mL) was added in order to convert all generated superoxide to H2O2. The 

hexokinase/2-deoxyglucose  (2U/mL/5mM) “ADP clamp” was used to mimic in vivo conditions. 

These conditions keep mitochondria in a submaximal phosphorylating state at a fixed ∆Ψm by 

recycling ATP back to ADP (75μM) (229). Anoxia was “self-induced” for 25 min by allowing 
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mitochondria to consume all of the O2 in the chamber. Following anoxia, mitochondria were 

reoxygenated by injecting pure O2 into an air bubble above the solution in the chamber. The 

chamber was then sealed allowing for JO2 and JH2O2 to be measured during the reoxygenation 

phase.  

The contribution of thioredoxin reductase (TrxR) or GR to mitochondrial ROS production 

was ascertained in parallel experiments.  Mitochondria were energized with succinate (10mM) 

and treated with either 1μM auranofin (AF) or 100μM bis-chloroethylnitrosourea (BCNU) to 

inhibit the thioredoxin and glutathione redox buffering systems, respectively. Endogenous 

mitochondrial ROS production was monitored as described above.   

Statistics   

 Data are presented as mean ± standard error. Arrhythmia analysis was performed using 

a chi-square test. Mean fluorescence during reperfusion and respiratory control ratios were 

analyzed using unpaired Student’s t-test. Imaging data were analyzed with an ANOVA for 

reperfusion or reoxygenation using the least significant difference test for matched time 

comparisons between Ex and Sed. All JO2 and H2O2 data were analyzed using a two-way 

ANOVA with Tukey’s post-hoc test. Statistical significance was established when P<0.05. All 

data were analyzed and graphed using GraphPad Prism software. 
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Results   

Exercise decreases arrhythmia and preserves ΔΨm during ischemia/reperfusion 

Hearts from Ex rats experienced a significantly decreased incidence of ventricular 

arrhythmia, with 33% of Ex hearts vs 88% of Sed hearts transitioning to ventricular tachycardia 

(VT) and/or fibrillation (VF) during early reperfusion (P<0.05, n=8 per group, Figure 4A). In our 

two-photon studies, non-ischemic control hearts showed a stable TMRM fluorescent signal 30 

minutes following TMRM loading, indicating that TMRM washout was not a major contributor to 

declines in the TMRM signal (data not shown). There was no difference in TMRM signal during 

ischemia between groups (Figure 4B). However, Ex hearts better maintained ΔΨm than Sed 

Figure 4. Arrhythmia and simultaneous two-photon imaging of mitochondrial membrane potential (ΔΨm) 
in isolated hearts during ischemia/reperfusion. (A) The percentage of Ex and Sed hearts that transitioned to 
arrhythmia (VT/VF) following 40 min of ischemia. (B&C) Baseline TMRM fluorescence (ΔΨm) values were used to 
normalize all data (F/F0) during ischemia (B) and reperfusion (C). (D) Representative images of ΔΨm in the 
ventricular free-wall and simultaneous ECG recordings during reperfusion for Sed and Ex. Data are shown as % 
of population for arrhythmia and mean ± SEM for all other data, n=7-8 per group. * p<0.05 vs Sed; # p<0.05 vs 
Sed main effect. 
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hearts over the course of reperfusion, which coincided with a decrease in arrhythmia (P<0.05, 

Figure 4). The transition to arrhythmia in Sed hearts was often accompanied by loss of ΔΨm, 

which was better preserved in Ex hearts that did not transition to arrhythmia during the 

reperfusion period  (Figure 4D).  

Underscoring the importance of 

maintaining ΔΨm during reperfusion, pooled data 

for all hearts (regardless of Sed vs Ex group) 

corroborated the association between ΔΨm loss 

and electrical dysfunction, with maintenance of 

ΔΨm associated with protection against arrhythmia 

(Figure 5).   

Glutathione and ΔΨm dynamics 

  In cardiac myocytes exposed to in vitro 

hypoxia/reoxygenation (H/R) (20 min/30 min), 

myocytes from Ex hearts maintained higher 

levels of GSH during reoxygenation and 

showed an enhanced ability to replenish GSH 

levels compared to Sed (Figure 6A and B). In a 

more quantitative approach, GSH was 
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measured in whole hears exposed to ischemia/reperfusion injury (Figure 6C). GSH was 

significantly higher in Ex hearts (Figure 6C), further demonstrating adaptive maintenance of 

redox control following a hypoxic or ischemic insult. The attenuated GSH replenishment in Sed 

cardiac myocytes coincided with collapse of ΔΨm during reoxygenation, while the enhanced 

ability of Ex cardiac myocytes to replenish GSH translated into ΔΨm stability during 

reoxygenation (Figure 6 and 7). There was a slight decrease in ΔΨm during hypoxia as shown in 

Figure 7B, particularly during late hypoxia, but ΔΨm depolarization was more evident during 

reoxygenation, which is consistent with our observations in whole heart experiments. The time-

lapse images of ΔΨm in paced myocytes exposed to H/R were consistent with the whole heart 

two-photon data demonstrating more energetically stable mitochondrial networks in Ex hearts.  

 

Rates of mitochondrial O2 consumption and H2O2 emission during hypoxia/reoxygenation  

The quality of mitochondria was similar between the groups following isolation as 

assessed by the RCR (Sed 5.1± 0.4 vs Ex 5.2± 0.1). JO2 at a submaximal ADP (75μM) 
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concentration was not different between Ex and Sed mitochondria prior to anoxia when respiring 

on complex I and II substrate (Figure 8A). The decrement in JO2 immediately following anoxia 

was blunted in mitochondria from Ex animals (p<0.05, Figure 8B). Baseline state 3 JH2O2 was 

not different between Ex and Sed before the onset of anoxia (Figure 8C). JH2O2 was

significantly higher following A/R compared to pre-A/R values only for Sed mitochondria (p<0.05 

vs Sed baseline), while Ex attenuated this increase and was significantly lower than Sed 

following A/R (p<0.05 vs Sed reox, Figure 8C). Post-A/R JH2O2:JO2 was significantly higher 

than baseline only for Sed mitochondria following A/R (p<0.05 vs Sed baseline, Figure 8D), and 
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significantly higher than Ex mitochondria following A/R (p<0.05 vs Sed reox, Figure 8D). A 

representative trace for JH2O2 is shown in Figure 8E and demonstrates the lower ROS burst 

during reoxygenation observed in mitochondria from Ex hearts.  

In parallel experiments, the contributions of the thioredoxin and glutathione redox 

systems to ROS scavenging were investigated separately. Mitochondria generated H2O2 was 

measured under state 4 conditions with succinate, incubated with the TrxR inhibitor AF, or the 

GR inhibitor BCNU. Ex and Sed mitochondrial JH2O2 were similar after inhibition with BCNU, 

where as Ex JH2O2 was significantly lower than Sed only after inhibition with AF (p<0.05, Figure 

8F). 
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Discussion 

 The objective of the present study was to determine the effect of exercise-induced 

cardioprotection on mitochondrial bioenergetics and redox homeostasis during reperfusion-

induced arrhythmia. Our findings indicate that exercise decreases arrhythmia through 

mitochondria-dependent mechanisms, including better maintenance of ΔΨm and lower ROS 

production. Several aspects of the present study provide novel insight into mechanisms of 

exercise cardioprotection. First, the simultaneous recording of ΔΨm and ECG in the intact heart 

provides crucial confirmation that mitochondria from exercised hearts have a protective 

phenotype in situ.  We have directly demonstrated that this phenotype correlates with cardiac 

electrical stability.  Second, the continuous, simultaneous recording of mitochondrial O2 

consumption and ROS during in vitro hypoxia/reoxygenation allows us to determine the exact 

time and nature of bioenergetic dysfunction during the metabolic insult itself (as opposed to after 

the injury has occurred). The present study, and our previously published data indicate that the 

maintenance of redox homeostasis through GR is an exercise-induced adaptation that helps 

sustain energetic and electrical coupling in the heart (80, 81). Finally, our vertically integrated 

approach using intact hearts, isolated ventricular myocytes, and isolated mitochondria provides 

comprehensive insight into the endogenous changes that occur in exercised hearts, indicating 

that stabilization of mitochondrial energetics is centrally involved in the anti-arrhythmic effects of 

exercise.  

Maintenance of ΔΨm and lower reperfusion arrhythmia following exercise-induced 

cardioprotection   

 The maintenance of ΔΨm is an important determinant of ischemia-reperfusion injury, cell 

death, and arrhythmia (3, 31, 56, 123). Under conditions of metabolic stress, collapses of ΔΨm 

are known to induce oscillations in cardiac action potential duration due to transient increases in 

sarcolemmal ATP-sensitive K+ channel currents (3, 9, 161, 228). Lability in K+ current during the 
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repolarization phase of the cardiac cycle can alter the spatiotemporal organization of cardiac 

electrical activity and increase the susceptibility to abnormal cardiac rhythms (233).  

In the present study, exercise-induced cardioprotection led to better preservation of ΔΨm in the 

intact heart during early reperfusion with a concomitant decrease in arrhythmia. We also 

observed a more robust preservation of ΔΨm when hearts were pooled for those that 

transitioned to arrhythmia vs. no arrhythmia. Heterogeneous collapses in ΔΨm in intact hearts 

during ischemia/reperfusion have been previously observed using two-photon microscopy (143, 

198) or optical mapping (137). Studies that have looked at ischemia and reperfusion often see 

more robust collapses in ΔΨm at the onset of reoxygenation (143, 198), when ROS levels surge 

and ATP demands resume with the recovery of excitation-contraction coupling (ischemic tissue 

does not contract and thus has lower energy demands). Our findings here are in line with these 

observations as we saw the most robust decline in ΔΨm in cells and hearts at the onset of 

reoxygenation and reperfusion, respectively. While this represents the first direct demonstration 

of preserved ΔΨm in exercised hearts, our results are consistent with previous studies showing 

better maintenance of energetics (reviewed in (79)) and delayed opening of ATP-sensitive 

potassium channels (111) in exercise-conditioned hearts.  

 The overall reduction in oxidant stress with exercise and maintenance of ΔΨm that we 

observed are likely inter-related. In beating hearts, ΔΨm helps to sustain redox homeostasis 

through replenishing endogenous antioxidants via the nicotinamide nucleotide 

transhydrogenase. The cellular redox environment is then regulated by ROS detoxifying 

enzymes (e.g. GR and TrxR) whose activity and subcellular localization controls redox-sensitive 

protein networks. Through second-messenger signaling and post-translational modifications, 

redox chemistry has been implicated in cardiac hypertrophy, remodeling, apoptosis, autophagy, 

and cell death (1, 160, 182). In our study the overall stabilization of energetics contributes to 

improved cardiac function observed after exercise. The redox status of proteins following 
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exercise, such as eNOS (4) and GR (80), appear to play an important role in this protective 

phenotype. Consistent with our findings are other physiological observations following exercise, 

whereby redox modification to the ryanodine receptor enhances SR calcium release (186). 

Furthermore, enhanced redox control may also prevent aberrant SR calcium ATPase activity 

and calcium reuptake by decreasing the oxidation of regulatory thiol-containing residues (173). 

Preservation of cellular GSH and ΔΨm during ischemia/reperfusion with exercise   

 The GSH pool is an essential part of redox homeostasis and an intricate antioxidant 

system used in the scavenging of ROS (188). Recent work implicates the cellular redox state in 

mitochondrial physiology and susceptibility to arrhythmia (8, 31, 81). ΔΨm collapses have been 

observed when GSH levels become oxidized to a critical level, leading to ROS-induced ROS 

release that can scale to depolarize mitochondrial networks (8, 31, 235). Decreasing the cellular 

oxidative burden during an oxidative challenge with perfusion of scavengers or a GSH analog 

prevents the collapse of ΔΨm (87), attenuates shortening of the action potential duration (2), and 

preserves mitochondrial function when isolated from post-ischemic hearts (43).  

 Exercise cardioprotection against arrhythmia has been shown to be dependent on 

enhanced ROS scavenging through several different endogenous mechanisms acting in parallel 

(31, 97, 178). Antisense treatment against MnSOD has been shown to abolish the 

antiarrhythmic effect of exercise (97), corroborating a number of studies that implicate 

heightened MnSOD in exercise-induced cardioprotection (reviewed in (79)). Since the product 

of the dismutase reaction, H2O2, must be further processed to keep overall ROS levels low, 

detoxification by the GSH pool, the largest capacity thiol buffer in heart, is also involved.  Most 

studies find no basal differences in total GSH or the ratio of reduced/oxidized glutathione 

(GSH/GSSG) after exercise, (81, 108, 114, 130) and our work corroborate these findings 

(although there was a trend for myocytes from exercised hearts to have increased basal GSH, it 

did not reach statistical significance).   
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 Although basal GSH/GSSG changes are rarely observed after exercise, the ability to 

replenish the GSH pool during an oxidative insult does appear to be involved. In this study the 

recovery of GSH levels during early reoxygenation correlated with maintained ΔΨm in both heart 

cells and intact hearts. Myocardial GSH levels were also better preserved in hearts as assessed 

with HPLC (Figure 6C). The GSSG content was not significantly different in Ex versus Sed at 

the end of reperfusion, which we also saw in an earlier study (81).  This is likely due to 

heightened cell permeability of GSSG (209), ostensibly diffusing out of the tissue during the 

reoxygenation window. We previously showed that GR activity, which replenishes GSH, was 

enhanced after exercise (80, 81). As pharmacological inhibition of GR during 

ischemia/reperfusion abolished the anti-arrhythmic phenotype of exercise (80), the ability to 

replenish the cellular glutathione pool appears to be centrally involved in exercise 

cardioprotection. Our observation herein that isolated cardiac myocytes exposed to H/R 

displayed enhanced GSH replenishment is also consistent with previous studies in intact 

hearts/cells where Ex protected against injury after perfusion with the thiol-oxidizing agent 

diamide (81).  

Exercise causes intrinsic mitochondrial adaptations that preserve post-ischemic function  

 We used simultaneous acquisition of mitochondrial O2 consumption and H2O2 emission 

during A/R to determine the extent and time-course of endogenous mitochondrial dysfunction. 

Similar studies using electroparamagnetic spin trapping on isolated mitochondria have shown 

that A/R results in a significant rise in superoxide production during the reoxygenation phase 

with concomitant declines in respiratory function (70). Therefore, the A/R insult allows one to 

remove cytosolic and compartmentalized cellular defense systems, unmasking mitochondria-

specific adaptations. 

 Several studies have investigated the effect of A/R on mitochondrial function (70, 71, 

222), but only one following exercise training. Ascensao et al (14). exercised male Wistar rats 
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for 14 weeks at a similar intensity as our protocol, and exposed isolated mitochondria to A/R 24 

hours after the last exercise bout. The exercise group maintained higher post-A/R state 3 

respiratory rates compared to sedentary controls. However, they reported no difference in the 

magnitude of decline in respiration between the two groups (63% and 60% of baseline following 

A/R in Ex and Sed groups respectively). Our study demonstrates that Ex maintains 

mitochondrial energetics following a metabolic insult, assessed by higher percentage of JO2 

recovery following A/R (78% and 68% of baseline for Ex and Sed, respectively). Seeking to 

mimic the in vivo conditions, we used complex I- and II-linked substrates (glutamate, malate, 

pyruvate, and succinate) and physiologically clamped ADP levels (75μM), while Ascensao et al. 

used only complex I substrate and ~400μM ADP, which more closely approaches Vmax and may 

not be as physiologically relevant (53). Recent findings implicate post-ischemic succinate 

accumulation as a driver of mitochondrial ROS production through reverse electron transfer, or 

RET (50) in early reperfusion.  The inclusion of succinate in our mitochondrial buffers may also 

explain the differences observed in this study versus previous work (13).   

 Isolated mitochondria from the Ex group had lower JH2O2 emission following A/R 

compared to Sed, which was especially prominent in early reoxygenation. These findings are 

consistent with observations that exercise lowers cardiac ROS accumulation during 

ischemia/reperfusion (81), protecting against oxidative stress and subsequent collapses in 

mitochondrial bioenergetics. Furthermore, the JH2O2:JO2 ratio was ~2-fold higher in the Sed vs 

Ex group, implying that exercise induces endogenous mitochondrial adaptations that result in a 

lower oxidative burden relative to O2 consumption. 

 Direct demonstration that mitochondria from exercised animals experience lower levels 

of oxidative stress corroborates recent findings. Lee et al. reported that exercise significantly 

decreased the production of H2O2 in actively respiring mitochondria following ischemia-

reperfusion (129). However, Lee et al. isolated mitochondria from the myocardium after the 
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ischemia/reperfusion insult, and one cannot ascertain if better mitochondrial function was a 

cause or a consequence of exercise-induced protection.  

Exercise-induced adaptations enhances GSH replenishment through glutathione reductase  

 We determined if lower ROS bursts following A/R was due to improved scavenging by 

GR and/or TrxR. Inhibition of GR abolished the exercise-induced reduction in ROS, but the 

exercise effect still persisted when TrxR was pharmacologically blocked. These data are in line 

with our previously published data (80, 81) implicating mitochondrial GR in enhanced redox 

control and stabilization of mitochondrial energetics following exercise-induced cardioprotection. 

Although not many studies have examined TrxR in exercise cardioprotection, the lack of 

contribution for this scavenging mechanism we observed is consistent with previous studies 

(62).    

 Measurement of ROS in living systems often represents the net balance between 

mitochondrial production and scavenging.  Improved endogenous scavenging in the heart 

following exercise is clear (5, 79).  It is plausible that Ex mitochondria also produce less ROS.  

Mitochondrial ROS production occurs at several different sites along the Krebs Cycle and 

electron transport system (164).  Mitochondrial Complexes I, III, and supercomplexes can all 

promote formation of reactive intermediates, especially during pathological conditions (142, 

154).  Future studies will continue to advance our understanding of how Ex leads to both 

augmented scavenging, and perhaps lower ROS emission, in cardiac mitochondria.  

 Although exercise studies indicate a role for mitochondrial adaptations in the 

cardioprotective phenotype, there are clear areas that require further investigation. For example, 

the energy-sensing mitochondrial KATP channel has been implicated in exercise 

cardioprotection, and channel blockade abolishes the anti-arrhythmic effect of exercise (178). 

Determining if mitochondrial KATP channel function directly affects ΔΨm and/or cellular redox 

status represents an exciting area for future research. 
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Limitations  

 Although there are several limitations in our study, we tried to address these 

shortcomings with experiments at different levels of tissue organization. First, we used 

blebbistatin for the whole heart imaging experiments to limit motion artifacts. Blebbistatin inhibits 

actin-myosin interactions, but has no effect on calcium cycling and the cardiac action potential, 

which allows for electrical activity to be recorded (69). Still, the clear limitation is that ΔΨm is 

assessed in a model where the energetic demand of contraction is substantially blunted.  For 

this reason, we used field-stimulated cardiac myocytes as an additional measurement of 

mitochondrial function during metabolic insult. Two photon studies are also confounded by the 

limitation that global, no-flow ischemia provides consistent ventricular arrhythmia, but that the 

restoration of coronary flow at reperfusion induces movement artifact as the coronary bed is 

replenished with fluid. This prevents the continuous monitoring of the same section of 

ventricular muscle through ischemia and reperfusion, providing relative signal over time.  We 

also used a mixed population of mitochondria for our experiments, and acknowledge that the 

sub-sarcolemmal and intermyofibrillar mitochondria may have divergent responses to the 

ischemic insult (114, 120, 129). 

Conclusions   

 In summary, our findings demonstrate that exercise helps sustain post-ischemic 

mitochondrial bioenergetics and redox homeostasis, which is associated with preserved ∆Ψm 

and protection against reperfusion arrhythmia. This builds on a growing body of literature that 

indicates a close relationship between the redox environment and stability of ΔΨm. Future work 

aimed at determining the evolution of specific mitochondrial adaptations may assist in 

developing therapeutic targets that mimic the adaptive response to exercise-induced 

cardioprotection.



 

 

Chapter 4: Glutathione reductase and redox homeostasis modulates mitochondrial 

bioenergetics following metabolic stress 

 

 

Introduction  

Mitochondria are central hubs for the regulation of cellular redox- and energetic-

homeostasis and have been linked to mechanisms of exercise cardioprotection against 

reperfusion arrhythmia (6, 177, 178) and myocardial infarction (129, 170, 201, 227). Glutathione 

reductase is a key enzyme involved in mitigating oxidative stress by maintaining the glutathione 

pool in the reduced state, and our 10-day cardioprotective-exercise model in rats demonstrates 

enhancements in the heart’s capacity to replenish GSH (80, 81). The GSH pool also represents 

a major marker of cellular redox homeostasis and is involved in an intricate antioxidant system 

used in the scavenging of ROS (188). In Chapter 3 I have demonstrated that cell redox status 

plays a critical role in mitochondrial dynamics and susceptibility to reperfusion injury (8, 31, 81). 

Oxidative shifts in the redox environment during I/R leads to opening of inner mitochondrial ion 

channels and mitochondrial permeability transition (9, 10, 52, 235). Subsequent instability in 

mitochondrial membrane potential (ΔΨm) and a collapse in mitochondrial bioenergetics leads to 

ventricular arrhythmia and cell death, both of which are attenuated with exercise (80, 81).  

Modulation of oxidative stress and redox homeostasis through pharmacological and/or 

genetic manipulations has potential for therapeutically treating conditions of I/R (31, 80, 97), 

hypertension (64),  and heart failure (54, 195). Therefore, uncovering mechanisms to restore 

redox homeostasis remains a high priority in the development of treatments of cardiovascular 

disease. Using exercise as a model of cardioprotection we note significant enhancements in 

cardiac glutathione redox regulation, however the extent to which glutathione reductase (GR) 

contributes to preservation of mitochondrial energetics and cardioprotection is unknown. The 
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objective of this study was to utilize pharmacological and genetic modifications of GR to 

determine its impact on cellular bioenergetics under conditions of oxidative stress.
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Methods 

Cell Culture 

The H9c2 rat myocardial cell line was obtained from Sigma and cultured in DMEM with 

10% fetal bovine serum, 1% (v/v) penicillin/streptomycin and 0.25 μg/ml amphotericin B at 37ºC 

with 5% CO2. Cells below passage 20 were used experimentally in this study. To induce 

differentiation and myotube formation, cells were switched to 1% fetal bovine serum and 

supplemented daily with 10nM  all-trans-retinoic acid (Sigma) for 5 days unless otherwise 

stated.  

shRNA plasmid and adenovirus vector production 

Double-stranded 58-mer oligonucleotides encoding shRNAs targeting the glutathione 

reductase gene (Gsr) mRNA (Figure 9) were inserted in place of the 1.9 Kb stuffer region 

between Age I and Eco RI sites of the AddGene pLKO.1 TRC vector (Sigma), under the 

transcriptional control of the human U6 polymerase III promoter. Invitrogen's shRNA generation 

program was used to obtain target sequences for the Gsr shRNA (shgsr). A panel of the target 

sequences screened is shown in Table 1. For screening of shRNAs, H9c2 cells were grown to 

70% confluence and transfected in Opti-MEM with 3μg DNA using the Fugene (Promega) 

transfection reagent at a 3:1 ratio (Fugene/DNA). Cells were incubated in transfection media for 

24hr and then transfected again for another 24hr. Cells were harvested 48hr post transfection 

and GR protein content was determined using Western blots. After identification of positive 

targets, the insert and expression cassette from the pLKO.1 vector was PCR amplified using 

CloneAmp HiFi Premix for cloning into the pAdenoX adenoviral system. The purified PCR 

product was then cloned into a linearized pAdenoX vector using In-Fusion cloning. The In-

Fusion reaction mixture was used to transform Stellar competent E.coli cells, and positive 

colonies were screened using Terra PCR and observed on agarose gel. Positive clones were 
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cultured overnight and purified using the Nucleobond Xtra Plasmid kit. pAdenoX DNA was then 

digested with PacI to expose the inverted terminal repeats (ITRs) for adenoviral DNA 

replication. Adeno-X 293 cells were transfected with CalPhos Mammalian Transfection kit. Upon 

visual cytopathic effects, Adeno-X 293 cells were harvested and exposed to three freeze thaw 

cycles. The supernatant of freeze-thawed cells containing recombinant virus were then 

amplified one time and viral titer was estimated using CloneTech GoStix.  

Glutathione reductase overexpression and adenovirus vector production 

Sprague Dawley rat Gsr mRNA was PCR amplified from cardiac tissue using Tri reagent 

(Sigma). mRNA was converted into cDNA using the Invitrogen Super Script III First Strand 

Synthesis system and polyA enriched RNA was selected for cloning. Gsr primers were used to 

PCR amplify the cDNA using CloneAmp HiFi mix. PCR products were verified by ethidium-

bromide stained on agarose gel and visualized under UV light. The Gsr gene was cloned into 

the pCMV5 shuttle vector using restriction site cloning. Stellar competent cells were transformed 

and selected for positive colonies. The pCMV5 + gsr overexpression cassette was cloned into 

the pAdenoX vector to generate adenovirus (Gsr OE) using the same cloning strategies as 

above. An empty vector expressing GFP was also generated for a vector control (EV-GFP).  

Glutathione reductase shRNA knockdown and overexpression in H9c2 cells 

 H9c2 cells were grown overnight to 70% confluence and then switched to differentiation 

media supplemented with 6μg/mL of polybrene upon adenoviral infection. A multiplicity of 

infection (MOI) of 50 was used to infect H9c2 cells with the shRNA adenoviruses, and a MOI of 

100 was used for the Gsr overexpressing or empty vector adenoviruses. Following 12hr of virus 

exposure cells were switched back to differentiation media and cultured for 4 more days to allow 

changes in gene expression to occur. 
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Hypoxia /reoxygenation in H9c2 cells 

 H9c2 cells were seeded at 10,000 cells per well in 96-well Seahorse plates and 

switched to differentiation media 12 hours later. After 5 days of differentiation, cells were 

exposed to an established model of cellular hypoxia/reoxygenation (12). Cells were subjected to 

0% O2 and deprived of nutrients in Hank’s balanced salt solution (HBSS), and kept in an 

incubator at 5% CO2 for the duration of hypoxia.  

Measurement of respiration in H9c2 cells following hypoxia/reoxygenation  

Following hypoxia cells were returned back to growth media and allowed to recover for 

2hr, or immediately switched to Seahorse XF assay medium and immediately exposed to a 

mitochondrial stress test in a Seahorse XF96 using an injection strategy that included 

oligomycin A (1 μg/ml ), followed by FCCP (4μM), then antimycin A (2μM). Seahorse XF assay 

medium was supplemented with pyruvate (10mM), glucose (10mM), and glutamax (2mM). 

Mitochondrial bioenergetics following pharmacological inhibition of glutathione reductase  

The diothiocarbamate derivative 2-Acetylamino-3-[4-(2-acetylamino-2 

carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid hydrate (2-

AAPA) was used as a pharmacological model of thiol oxidative stress in H9c2 cells. 2-AAPA 

has previously been used in H9c2 cells to show potent inhibition of Gsr and thioredoxin 

reductase (TrxR) activity, in addition to oxidative shifts in the reduced GSH to oxidized 

glutathione ratio (GSH/GSSG) (226). H9c2 cells were exposed to 2-AAPA for 20min followed by 

bioenergetics analysis. H9c2 cells were seeded at a density of 20,000 cells per well in 96-well 

Seahorse plates 24 hours prior to 2-AAPA exposure. Following a 20 min exposure to 2-AAPA 

cells were washed with Seahorse XF Assay Medium and immediately exposed to a 

mitochondrial stress test in a Seahorse XF96 using the same injection strategy as above. 
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Measurement of mitochondrial membrane potential and cell viability following 2-AAPA exposure 

In parallel experiments mitochondrial membrane potential and cell viability were 

determined in H9c2 cells exposed to 2-AAPA. Cells were seeded at a density of 30,000 

cells/well in a 96-well plate and allowed to attach for 24hr. Cells were then treated in triplicate 

with DMSO, FCCP, or increasing concentrations of 2-AAPA (25μM, 50μM, or 100μM) and 

incubated at 37°C in 5% CO2 for 20 minutes. Mitochondrial membrane potential (∆Ψm) was 

assessed by tetramethylrhodamine, methyl ester (TMRM). TMRM is a membrane-permeant 

cationic fluorescent dye that equilibrates with Nernstian behavior and is sequestered by 

mitochondria. Cells were incubated for 20 minutes in XF Assay medium and 200nM TMRM. . 

Following TMRM loading, cells were washed with Hank’s balanced salt solution and 

fluorescence intensity was measured on a Cytation5 multi-mode microplate reader (BioTek) 

using excitation/emission wavelengths of 540/590nm. In separate experiments, viability was 

determined using PrestoBlue viability reagent (ThermoFisher Scientific) using the manufacturers 

recommended protocol in a Cytation5 multi-mode microplate reader (BioTek).  

Statistics 

 All data are presented as mean ± standard error. Seahorse adenovirus knockdown 

experiments were compared against vector controls using a student’s t-test.  Mean fluorescence 

during reperfusion and respiratory control ratios were analyzed using unpaired Student’s t-test. 

Seahorse 2-AAPA data were analyzed with an ANOVA followed by a Dunnett’s post-hoc test. 

Statistical significance was established when P<0.05. All data were analyzed and graphed using 

GraphPad Prism software. 
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Results 

Gsr knockdown and overexpression adenovirus 

Invitrogen's shRNA generation program was used to obtain candidate target sequences 

for Gsr mRNA transcripts. The target sequences from Table 1 were cloned into the AddGene 

pLKO.1 vector and further tested for knockdown of Gsr expression.	

	

 

 

 

 The optimal concentration of DNA for transfection was empirically determined (3μg), 

with shgsr target #3 as the best candidate for efficient knockdown (Figure 9A and B). The 

pAdeno-X system was used to generate 

four different adenoviruses using the 

expression cassettes depicted in Figure 

9C. The shRNA vectors were under 

control of a human U6 promoter (hU6), 

and the overexpression vectors were 

controlled by a CMV promoter. 

Differentiated H9c2 cells show high 

adenovirus expression 96hr post infection 

(Figure 9D), with time-matched changes 

in Gsr protein expression (Figure 9E).		

Table 1: 58-mer oligonucleotide sequences tested for Gsr knockdown 

shgsr	 Construct	sequence	

#1 5’ CCCAAATTCTAAGGGCCTGAA-CTCGAG-TTCAGGCCCTTAGAATTTGGG 3’ 

#2 5’ GCTCCAAGACGTCTCTTATGA-CTCGAG-TCATAAGAGACGTCTTGGAGC 3’ 

#3 5’ GGATTCAGACTGATGACAAAG-CTCGAG-CTTTGTCATCAGTCTGAATCC 3’ 
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Figure 9. Gsr knockdown and overexpression in H9c2 
cells. (A) Western blot and densitometry after 48hr 
transfection with shRNA cloned into the pLKO.1 vector. (B) 
GFP and phase images 48hr post transfection. (C) Illustration 
of adenovirus expression cassettes of shgsr, shscram, Gsr 
overexpression (Gsr OE), and empty vector control (EV). (D) 
96hr post infection fluorescent images of differentiated H9c2 
cells, and (E) Western blot of glutathione reductase protein 
content. 
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Modulation of glutathione reductase sensitizes H9c2 cell to mitochondrial dysfunction 

 Mitochondrial 

bioenergetics were studied in 

differentiated H9c2 cells exposed 

to various durations of 

hypoxia/reoxygenation (H/R) 

using glutathione reductase gain- 

and loss-of-function studies. Non-

hypoxic control plates for each 

hypoxic time point were used to 

normalize the data as percent of 

non-hypoxic control (n=16-24 per 

group). Figure 10A and 10B show 

examples of the mitochondrial 

stress test raw data from an 

experiment for the 3hr/0hr H/R 

protocol. There was no difference 

in basal respiration following 3hr or 

18hr hypoxia across groups (Figure 

10C). State 4 leak respiration 

following inhibition of complex V 

with oligomycin was significantly higher in shgsr after 3hr/0hr H/R, but was significantly lower 

after 18hr H/R (p<0.05 vs shscram, Figure 10D). Maximal respiration was significantly lower in 

shgsr after 3hr hypoxia at both 0hr and 2hr reoxygenation, but this was not observed after 18hr 

H/R (p<0.05 vs shscram, Figure 10E). Interestingly Gsr OE had no rescue affect following short 

Figure 10. Mitochondrial bioenergetic analysis in H9c2 cells 
exposed to hypoxia/reoxygenation. (A) Seahorse trace of 
mitochondrial stress test protocol following a 20min 2-AAPA 
exposure. All data were transformed by subtracting out the antimycin 
A respiratory rate. (B) Basal respiration. (C) Maxmial uncoupled 
respiration with FCCP (E) ATP-dependent respiration (Basal 
respiration – State 4). Data in C-E are expressed as percent of Non-
H/R control for each time point. *p<0.05 vs vector control. 
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term 3hr H/R, but at 18hr H/R, maximal respiration and respiratory reserve were significantly 

higher than the EV-GFP control (p<0.05 vs EV-GFP, Figure 10F). In contrast, respiratory 

reserve in shgsr following 3hr H/R was significantly lower, and this effect was lost at 18hr H/R 

(p<0.05 vs shscram, Figure 10F). 

Pharmacological thiol redox stress and mitochondrial function 

To determine the relationship between acute thiol oxidative stress and mitochondrial 

function induced by glutathione reductase inhibition oxygen consumption rate (OCR) was 

measured in H9c2 cells following a 20min dose-response exposure to 2-AAPA (n=8-24 per 

group). OCR was measured using a mitochondrial stress test on the Seahorese XF96 and 

XF96e.  Traces of respiratory rates obtained from the mitochondrial stress test are shown in 

Figure 11A, and were transformed by subtracting the average antimycin A rate for each group. 

Basal respiratory rates were significantly higher than controls at the lower concentrations of 2-

AAPA, and this response was blunted at the higher concentrations (p<0.05 vs CTRL, Figure 
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Figure 11. Mitochondrial bioenergetic analysis in H9c2 cells following pharmacological induction of thiol 
redox stress. (A) Seahorse trace of mitochondrial stress test protocol following a 20min 2-AAPA exposure. All 
data were transformed by subtracting out the antimycin A respiratory rate. (B) Basal respiration. (C) Maximal 
uncoupled respiration with FCCP (E) ATP-dependent respiration (Basal respiration – State 4). (F) Mitochondrial 
membrane ∆Ψm with TMRM and (G) cell viability following 2-AAPA exposures. *p<0.05 vs CTRL (ANOVA followed 
by Dunnett’s post-hoc test). 
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11B). Proton leak under state 4 conditions increases in a dose-dependent fashion up to 75μM 

2-AAPA (p<0.05 vs CTRL, Figure 11C). Maximal respiratory rates increase when exposed to 

lower 2-AAPA concentrations, and this increase is blunted at higher doses (p<0.05 vs CTRL, 

Figure 11D). There was a significant decrease in ATP-dependent respiration at the higher 

concentrations of 2-AAPA exposure, which is opposite compared to the lower concentrations of 

2-AAPA where OCR was significantly higher than control (p<0.05 vs CTRL, Figure 11E). 

Interestingly, the energetic collapse is independent of decreases in ∆Ψm (Figure 11F) and cell 

viability (Figure 11E) with acute 2-AAPA exposures. In fact, cell viability actually increases at 

100μM 2-AAPA, which may be an experimental artifact. 
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Discussion 

The main findings from this study are that glutathione redox potential and thiol redox 

stress play a profound role in mitochondrial dysfunction in acute pathological states. Cellular 

redox homeostasis not only influences ROS scavenging, but also energetic homeostasis and 

cell survival (224). This is supported by a growing appreciation for post-translational redox 

modifications under physiological and pathological conditions (139), and the role of 

mitochondrial function in cardiac physiology. The principle findings from this work are that: 1) 

Gsr deficiency exacerbates mitochondrial dysfunction following a hypoxic insult; 2) Gsr 

overexpression mitigates mitochondrial dysfunction after more severe hypoxic insults; and 3) 

Thiol redox stress modulates mitochondrial function via increasing respiration at lower levels 

and collapsing energetics at higher levels of thiol redox stress.  

Essential to our ability to better treat cardiac I/R injury, is the fundamental role of 

oxidative stress on cellular energetics and mitochondrial dysfunction. In the myocardium 

transient shifts in the redox environment can lead to a perpetual cycle whereby ROS-induced 

ROS release and altered ion homeostasis during I/R increases the susceptibility to a collapse in 

∆Ψm, mitochondrial PTP opening, and cell death (9, 235). Improving our understanding on how 

altered redox homeostasis influences mitochondrial function and myocardial energetics will 

accelerate the development of therapeutics aimed at mitigating damage from ischemic heart 

disease. 

Glutathione reductase and mitochondrial dysfunction following hypoxia/reoxygenation 

Gsr gain- and loss-of-function experiments were employed to determine the impact of 

Gsr on mitochondrial dysfunction following simulation of I/R injury. Cellular GSH levels are 

important mediators of redox homeostasis and have been implicated in several disease models 

including I/R injury (198), insulin resistance (77), and Parkinson’s disease (135). In the present 

study impeding GSH replenishment through an shRNA targeting Gsr was shown to sensitize 
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mitochondria to metabolic insults such as H/R. Following a more sever hypoxic insult 

mitochondria function was partially restored by Gsr overexpression, as demonstrated by 

preserved respiratory capacity and heightened maximal respiration. This demonstrates that 

redox homeostasis is an important pivoting point between maintenance of mitochondrial 

bioenergetics and susceptibility to I/R injury.  

Early work on the role of ROS production in I/R injury implicates the importance of GSH 

in the cardioprotective phenotype, as GSH supplementation prevented myocardial dysfunction 

following short periods of ischemia in isolated Langendorff perfused hearts (22). Furthermore, 

cardiac GSH depletion exacerbates myocardial infarction and recovery of contractile function, 

while intravenous GSH infusion reverses these defects (196). These findings support the results 

herein by demonstrating that enhanced redox control leads to preservation of mitochondrial 

function and that the recovery of post-ischemic cardiac dysfunction is intimately related to the 

maintenance of GSH/GSSG redox potential (140). 

Pharmacological thiol redox stress leads to decompensated mitochondrial function 

In the present study the use of a dithiocarbamate derivative, 2-AAPA, was used to 

induce thiol redox stress in H9c2 cells to better understand the acute consequences of altered 

redox homeostasis on mitochondrial function. Upon low levels of acute thiol redox stress, basal 

and maximal respiratory rates increase above that of control levels. However, after more severe 

redox stress, respiratory function declines and mitochondria become uncoupled as shown by 

elevated leak respiration and significant reductions in ATP-dependent respiration. Interestingly, 

the energetic collapse was independent of detectable changes in ∆Ψm and viability, indicating 

that redox stress and subsequent mitochondrial dysfunction play a larger role upstream in the 

development of I/R injury. 
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2-AAPA is a potent inhibitor of GR and has been shown to be more specific than other 

GR inhibitors with an IC50 of 50µM (192). A 20min exposure to 2-AAPA in H9c2 cells leads to a 

significant reduction in GSH/GSSG, ranging from ≈40% reduction with 25µM 2-AAPA to ≈80% 

reduction with 100µM 2-AAPA (226).  The dose and exposure times of 2-AAPA used in their 

studies are consistent with the present study and demonstrate that mitochondria are extremely 

sensitive to acute alterations of the redox environment and that mitochondrial respiration is 

highly responsive to the thiol redox status of the cell.  

Directly altering the thiol redox status of the cell through the GSH/GSSG ratio allows one 

to isolate the response of oxidative phosphorylation machinery to redox stress. Although the 

mechanisms and physiological significance of altered protein thiol modifications are uncertain 

and remain an area of active investigation. The role of ROS in the damage associated with I/R 

injury has been well established. And while much of the early work focused on the antioxidant 

properties of GSH as a function of the redox environment, it has now become clear that redox 

reactions through GSH go far beyond the scavenging of ROS. But less clear are the consequent 

changes to the redox environment (i.e. GSH/GSSG) and alterations to protein thiol redox states.  

Mitochondrial proteins contain many cysteine thiols that act as redox switches involved 

in mitochondrial bioenergetics. Reactive protein thiol groups can undergo a number of redox 

modifications to either enhance or suppress enzymatic activity, including direct oxidation, thiol-

disulfide exchange with GSSG, and sulfenic acid intermediates among others (91). Redox-

glutathionylation modifications to complex I (46) and II (47) have been found to play protective 

roles in the post-ischemic myocardium by limiting ROS production and preserving enzymatic 

activity. The reversible formation of protein mixed disulfide via glutathionylation may serve to 

protect electron transfer in response to oxidative stress (45). In the present study, the increase 

in maximal mitochondrial respiration with lower concentrations of 2-AAPA (Figure 11) is 
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attributed to increased glutathionylation of Complex I, as 2-AAPA has been found to increase 

glutathionylation of proteins in a dose-dependent manner (226). Furthermore, in vitro studies 

using a different GR inhibitor, BCNU, have reported similar increases in mitochondrial 

respiratory capacity, which coincided with increased Complex I glutathionylation.  

Limitations  

 One of the limitations of this study is the absence of an energetic demand from 

excitation-contraction coupling, which when inhibited in the myocardium, alters the susceptibility 

to I/R injury (6). Important to this study is the role of oxidative stress on mitochondrial 

bioenergetics, however one cannot rule out the effect of calcium on alterations in mitochondrial 

respiration during oxidative stress. This is especially noted because in primary cardiomyocytes 

calcium homeostasis plays a significant role in cardiac I/R pathologies (236). Furthermore, 

several groups have established that calcium kinetics are intricately linked with mitochondrial 

bioenergetics and oxidative stress through regulatory thiol groups on the ryanodine receptor 

being susceptible to oxidation and increasing open probability of the channel (68, 173, 232).  

Conclusions  

In conclusion this study demonstrates that endogenous redox regulatory mechanisms 

can be targeted to influence the sensitivity of mitochondria to hypoxic insults. This provides 

insight into how an altered redox environment may affect mitochondrial function during the first 

few minutes of reperfusion when the production of ROS and cellular oxidative stress leads to 

myocardial injury. These studies implicate the targeting of GR as a potential therapeutic target 

for the treatment of I/R injury. 

 



 

 

Chapter 5: The effects of NADPH-oxidase generated ROS during exercise on post-

ischemic mitochondrial function 

 

 

Introduction  

 Cardiovascular disease remains one of the leading causes of death in North America, 

and although rates of death attributable to cardiovascular disease have declined in recent years, 

the burden of disease remains high (94). It has been estimated that 1,000,000 Americans suffer 

acute coronary syndromes annually (152), which increases ones risk for myocardial infarction 

and fatal ventricular arrhythmia in particular. The cardioprotective effect of exercise on 

decreasing severity of myocardial infarction and arrhythmia has been well documented (27, 32, 

80, 132, 176, 177, 207), however, cellular mechanisms are not fully understood. Exercise-

induced cardioprotection is most likely a result of increased cardiac antioxidant capacity (80, 81, 

97), decreased sensitivity to apoptotic stimuli (120, 176), and conservation of mitochondrial 

function (28, 125, 129). Recent clinical trials investigating mitochondrial-targeted therapeutics 

demonstrate that mitochondrial-medicine remains a high priority as a viable treatment for 

ischemia/reperfusion (I/R) injury (57, 92, 145, 169). Accordingly, identifying the underlying 

mechanisms responsible for exercise cardioprotection merits further investigation, as it may 

foster new treatments that evoke sustainable cardiac protection against acute coronary 

syndromes.  

 We previously demonstrated that NADPH-oxidase (NOX) generated ROS play a critical 

role in exercise cardioprotection (80). Activation of NOX-generated ROS during exercise was 

essential for the hormetic response, leading to an increase in glutathione reductase (GR) 

activity, and decreasing myocardial infarction following I/R. GR is an important component to the 



 
   

60 

oxidative stress defense system by maintaining the GSH pool and preserving redox 

homeostasis (6). Furthermore, oxidative stress from mitochondrial derived reactive oxygen 

species (ROS) have been linked to post-ischemic cardiac dysfunction and cell death (26, 80, 

214, 235). An overwhelming oxidative stress has a negative effect on mitochondrial energetics, 

and can also damage mitochondrial inner-membrane lipids. Mitochondrial membranes are rich 

in phospholipids and are susceptible to oxidative modifications that can alter the biophysical 

properties of the membrane, which can have a profound effect on protein activity and ultimately 

mitochondrial function (48, 194, 230). To date, studies have characterized how exercise 

attenuates defects of the mitochondrial electron transport system after ischemia/reperfusion (29, 

129), yet few studies have examined this in the context of altered redox homeostasis and 

subsequent changes to the mitochondrial membrane lipid environment. The objective of this 

study was to test the hypothesis that exercise cardioprotection through NOX-generated ROS 

leads to preserved fluidity of the inner mitochondrial membrane, enhanced supercomplex 

assembly, and better post-ischemic mitochondrial function.   
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Methods 

Animals 

Male Sprague Dawley rats (300-350g) were housed on a 12/12 hour light/dark cycle with 

food and water provided ad libitum.  Experiments were conducted in accordance with NIH 

guidelines and approved by East Carolina University’s Animal Care and Use Committee 

(Internal Animal Use Protocol #Q279a and #Q279b). Rats were anesthetized by injecting 

ketamine/xylazine i.p. (90mg/kg ketamine, 10mg/kg xylazine). Following absence of toe reflex, 

hearts were excised via midline thoracotomy, placed briefly in 0.9% saline (4ºC) and used for 

isolated heart studies. 

Exercise protocol and drug treatment  

Rats were injected 30 minutes prior to each exercise bout with the NADPH-oxidase 

inhibitor VAS2870 (2mg/kg) or DMSO as a vehicle control (Exercise+DMSO or Exercise+VAS). 

Rats were acclimated to the treadmill over three days, running at a speed of 15 m/min, and 

increasing the duration to 5, 10, and 15 min each day. Rats in the exercise group underwent 10 

days of consecutive treadmill running at 6% grade for 60 min per day, in intervals broken up to 

15 m/min for 15 min, 30 m/min for 30 min, and 15 m/min for 15 min. Sedentary rats were 

injected with DMSO or VAS2870 and placed on a non-moving treadmill for 5 min each day 

(Sedentary+DMSO or Sedentary+VAS). All hearts were used experimentally 24 hours after 

completion of the 10-day protocol or after the time-matched sedentary control. 

Whole heart Langendorff experiments 

Isolated hearts (n=4/group) were perfused in Langendorff mode with gassed (95%O2, 

5%CO2) Krebs Henseleit buffer at 37ºC containing (mM): 118 NaCl, 24 NaHCO3, 4.8 KCl, 2 

CaCl2, 1.2 MgSO4, 1.2 KH2PO4, and 10 glucose (37ºC). A Transonic flow probe was used to 

monitor coronary flow during the protocol. Cardiac function parameters including heart rate 
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(HR), left-ventricular developed pressure (LVDP), and the rate of pressure development over 

time (+/- dP/dT) were monitored and recorded. A latex balloon was inserted into the left ventricle 

for isovolumic LVDP recordings. Electrocardiogram (ECG) recordings were obtained via 

volume-conductance using electrodes placed in a water-jacketed bath maintained at 37ºC. All 

parameters were recorded and analyzed using Lab Chart 7.0 software (A.D. Instruments). After 

a 10 min baseline and stabilization period, hearts were exposed to 20 min of global no-flow 

ischemia, followed by 2 hours or reperfusion. Myocardial infarct size and arrhythmia was 

assessed following reperfusion as previously described (80). 

Mitochondria isolation 

A subset of hearts were exposed to I/R and cardiac mitochondria were immediately 

isolated following the protocol to assess mitochondrial function. Following the protocol the left 

ventricle was dissected and minced on ice in mitochondrial isolation medium (MIM) + BSA 

containing (in mM): 300 sucrose, 10 sodium-HEPES, 1 EGTA, and 1mg/ml BSA. The minced 

heart was then homogenized followed by centrifugation at 800xg for 10 min. The supernatant 

was centrifuged at 12,000xg for 10 min to pellet mitochondria. The pellet was then resuspended 

in MIM and kept on ice until experimentation. 

Mitochondrial O2 consumption rate and H2O2 emission rate  

Mitochondrial function (n=4/group, run in duplicate) was measured polargraphically and 

fluorometrically using the Oroboros high-resolution respirometry oxygraph-2k (o2k) with the 

fluorescent module. Mitochondria were injected into the o2k in Buffer Z + Amplex UltraRed 

assay medium containing (in mM): 110 K-Mes, 35 KCl, 1 EGTA, 5 K2HPO2 , 3 MgCl2-6H2O, 

0.5 mg/ml  BSA, and 25 creatine monohydrate. The rate of H2O2 emission was quantified using 

Amplex UltraRed (25μM), horseradish peroxidase (4U/mL), and superoxide dismutase (SOD, 

30U/mL). First mitochondria were energized with glutamate (10mM), malate (2mM), and 
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pyruvate (5mM) to assess complex I-dependent respiration with maximal adenosine 

diphosphate (ADP) stimulation (4mM). Succinate (10mM) was then injected to assess complex I 

+ II respiration. Complex II-dependent respiration was measured by the addition of rotenone 

(1μM), which blocks complex I activity. To ensure equal amounts of mitochondrial protein 

loading across experiments, citrate synthase activity was measured by following TNB 

spectrophotometrically using previously published methods (127).  

Mitochondrial enzyme kinetics 

 Frozen mitochondria from I/R hearts were utilized for mitochondrial enzyme kinetic 

analysis using previously published methods with slight modifications (194). Activities were 

determined spectrophotemetrically in triplicate at 37°C in 1mL total reaction volume. Citrate 

synthase activity was determined in frozen mitochondria (10μg total protein) in hypotonic 

medium containing: 10mM Tris (pH 7.5), 0.31mM acetyl-CoA, 0.1mM 5,5’-dithiobis-(2-

nitrobenzoic acid) (DTNB), and 0.25% Triton X-100. The reaction was initiated with the addition 

of freshly prepared oxaloacetate (0.5mM), and the reduction of DTNB was monitored at 412nm 

for 3 min. Citrate synthase activity (n=4/group; run in triplicate) was calculated using an ε412 

14140 M-1cm-1. Averages of citrate synthase specific activities were used to normalize the 

specific activity of Complex I. 

 Complex I (NADH: decylubiquinone oxidoreductase) specific activity (n=4/group; run in 

triplicate)  was determined in frozen mitochondria that underwent two 30-sec freeze thaw cycles 

in hypotonic medium. Mitochondria (40μg total protein) were added to a working reagent 

containing: 50mM Tris (pH 8.0), 5mg/mL BSA, 240μM potassium cyanide (KCN), 4μM 

Antimycin A, and 100μM decylubiquinone, and the reaction was initiated with the addition of 

0.08mM NADH. The oxidation of NADH to NAD+ was followed at 340nm for 3 min and an ε340 of 

6220 M-1cm-1 was used to calculate activity of complex I. Separate experiments were carried out 
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in the presence of rotenone (4μM) to ensure that the rotenone-sensitive catalytic oxidation of 

NADH was being measured. 

Mitochondrial membrane phospholipid packing following ischemia/reperfusion 

Mitochondrial membrane lipid packing was assessed in mitochondria (n=4/group; run in 

duplicate) from post-ischemic hearts using Merocyanine 540 (MC540). Fluorescence spectra 

were recorded using a Jobin Yvon Fluorolog spectrofluorometer at 37ºC. Excitation was set at 

495nm, and emission spectra were obtained from 540-660nm using 5nm steps. MC540 

fluorescence measures the degree of phospholipid packing in model and biological membranes 

(126), with increasing fluorescence upon the gel to liquid phase transition. Isolated mitochondria 

(0.2mg/ml) were added to MIM + MC540 (75nM) and incubated for 10 minutes. Spectra 

recordings were made prior to the addition of mitochondria and were subtracted from the 

spectra after the addition of mitochondria. 

Respiratory supercomplex analysis following ischemia/reperfusion 

Mitochondria from post-ischemic hearts (n=4/group; run in duplicate) were isolated and 

supercomplexes were measured via Blue Native-Polyacrylamide Gel Electrophoresis (BN-

PAGE) using published protocols with slight modifications (189). Mitochondria were solubilized 

(4°C for 15min, digitonin:protein ratio of 8:1), and the lysate centrifuged for 30min at 16873 x g 

(4°C). Protein quantification (BCA assay) was performed on the supernatant, after which 36μg 

was loaded into a 3-12% gradient gel. Samples were run at 150V for 3 hours, after which the 

gels were fixed and then washed overnight at 4°C to remove background staining. 

Supercomplexes were quantified using densitometry using NIH image J software. 

Statistics 

 All data are presented as mean ± standard error. All data were compared to vehicle 

controls using a student’s t-test. Statistical significance was established when P<0.05. All data 
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were analyzed and graphed using GraphPad Prism software. 
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Results 

Exercise reduces ischemia/reperfusion injury through an NADPH-oxidase dependent 

mechanism 

 Hearts from rats (n=5 to 7 per group) in the Exercise+DMSO (ED) group experienced a 

reduced infarct size by 31% compared to Sedentary+DMSO (SD) (P<0.05, Figure 12A). The 

administration of VAS2870 prior to each exercise bout (EV) blunted exercise-induced 

cardioprotection against myocardial infarction and arrhythmia (Figure 12A and 12B). The anti-

arrhythmic effect of exercise was evident during early reperfusion (first 15 minutes) as shown by 

the significant reduction in arrhythmia score (ED, 1.6±0.4 vs SD, 3.1±0.6; P<0.05, Figure 12B), 

while exercised animals administered VAS2870 demonstrated only a modest non-significant 

reduction in arrhythmia compared to controls (EV, 2.3±0.6 vs SV, 3.0±0.4; P>0.05, Figure 12B). 

The time to ischemic contracture was also blunted in ED animals compared to SD (P<0.05, 

Figure 12C), and this effect was lost with VAS2870 administration. 
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Figure 12. Infarct size and arrhythmia in isolated hearts following ischemia/reperfusion. (A) Infarct size for 
isolated rat hearts following 20 minutes of ischemia and 2 hours of reperfusion. (B) Arrhythmia score following the 
first 15 minutes of reperfusion. (C) The time to contracture was determined by calculating the amount of time 
elapsed during ischemia leading to a 5mmHg increase in end-diastolic pressure (EDP). All data are mean ± SEM, 
n=5-7 per group. * P<0.05 vs SD. 
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Post-ischemia/reperfusion mitochondrial O2 consumption rate and H2O2 emission rate  

 Following I/R, a subset of hearts was used experimentally to isolate and study 

mitochondrial function (Figure 13). Rates of O2 consumption (JO2) and H2O2 emission (JH2O2) 

were measured simultaneously using the Oroboros high-resolution respirometry oxygraph-2k. 

There was no difference in JO2 under state 4, non-phosphorylating conditions with glutamate, 

malate, and pyruvate (GMP) (Figure 13A). JO2 with complex I substrate under saturating ADP 

conditions was lower in exercised rats compared to sedentary controls, however statistical 

significance was only reached in the EV group (P<0.05 vs SV, Figure 13B). Citrate synthase 

activity in isolated mitochondria was determined by monitoring the reduction of DTNB following 

the addition of oxaloacetate and was not different across groups following I/R (Figure 13C). 
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Figure 13. Mitochondrial function following ischemia/reperfusion injury. (A) O2 consumption rate (JO2) in 
isolated mitochondria under state 4 conditions (no ADP) with glutamate (10mM), malate (2mM), and pyruvate 
(5mM). (B) JO2 under state 3 conditions with saturating ADP (4mM). (C) Citrate synthase activity. (D) Relative 
specific activity of complex I normalized to the respective citrate synthase activity. (E) H2O2 emission rate (JH2O2) 
under state 4 conditions (same substrate as Figure 2A). (F) JH2O2 with saturating ADP. All data are mean ± SEM, 
n=4 per group, JO2 and JH2O2 assays were run in duplicate and kinetic assays were run in triplicate. * P<0.05 vs 
SD, # P<0.05 vs SV. 
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Relative specific activity of complex I was determined by following NADH oxidation to NAD+ 

after addition of the electron accepter, decylubiquinone. Complex I activity was significantly 

higher in ED vs SD and VAS2870 administration prior to exercise reversed this (P<0.05 vs SD, 

Figure 13D). JH2O2 was lower in ED vs SD under state 4 conditions, and this differences was 

lost with VAS2870 administration prior to exercise (P<0.05 vs SD, Figure 13E). Similarly, JH2O2 

was significantly lower only in ED vs SD under state-3 respiration (P<0.05 vs SD, Figure 13F). 

Exercise cardioprotection is independent of altered post-ischemic inner mitochondrial 

membrane lipid packing and supercomplex assembly  

Mitochondria were isolated following I/R and used in parallel experiments to study the 

biophysical properties of the inner mitochondrial membrane using MC540 and respiratory 

supercomplex assembly via BN-PAGE (Figure 14). Lipid packing of the mitochondrial 

membrane was observed by recording MC540 fluorescence spectra following 10 minutes of 

incubation at 37ºC. There was no difference in the MC540 spectra between groups (Figure 14A 

and 14B). Similarly, there was no difference in peak fluorescence between groups indicating a 

similar degree of lipid packing following I/R (Figure 14C). Mitochondrial supercomplex assembly 

(complexes I, III2, and IV) was determined using BN-PAGE and was not different between 

groups (Figure 14C and 14D)  
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Figure 14. Mitochondrial membrane lipid properties and respiratory supercomplex assembly. (A) 
Merocyanine 540 (MC540) fluorescent spectra before and after the addition of mitochondria. Note the peak 
fluorescence red shift of the spectra indicates a lipid phase (B) Relative shift in MC540 fluorescence following the 
addition of mitochondria (F-F0). C) Peak fluorescence intensity at 600nm. D) Representative image of 
supercomplex density via Blue-native PAGE; n=4 per group run in duplicate. The black box encloses 
supercomplex I, III2, IV and used for quantification. E) Quantification of densitometry from supercomplex gel, 
normalized to control. All data are mean ± SEM, n=4 per group. 
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Discussion 

 The objective of the present study was to determine the role of NOX in exercise 

cardioprotection and the resultant phenotype of post-ischemic mitochondria. The main findings 

are: 1) Exercise cardioprotection against myocardial infarction and arrhythmia are abolished 

when cardiac NOX enzymes are inhibited during exercise with VAS2870, 2) post-ischemic 

mitochondrial complex I activity was higher, and H2O2 production was lower in isolated 

mitochondria from exercised hearts, and 3) exercise-induced cardioprotection occurs through a 

mechanism that is independent of changes in mitochondrial membrane lipid packing and 

respiratory supercomplex assembly.  

 Based on our previous work, the heart’s adaptive response to exercise appears to be 

closely linked with improved maintenance of cellular redox homeostasis and preservation of 

mitochondrial membrane potential (ΔΨm) during ischemia/reperfusion injury (6, 80). These 

studies suggested that a stimulus ROS produced during exercise, and acute alterations to the 

redox environment, leads to an adaptive/protective phenotype with exercise training. However, 

the localization and compartmentalization of cellular redox biology increases the complexity of 

exercise-generated ROS in cardioprotective signaling. In an earlier study we injected rats with 

apocynin, a NOX-2 inhibitor, prior to exercise to demonstrate that NOX-generated ROS during 

exercise leads to protection against myocardial infarction. This adaptation was associated with 

the transient bouts of thiol stress experienced during exercise (80). However, apocynin has 

been questioned for its specificity and has been shown to act as a ROS scavenger in vascular 

systems (101). Also, several studies have demonstrated that VAS2870 is superior for its 

specificity of NOX inhibition (101, 181), and thus was chosen herein to further characterize the 

role of NOX-generated ROS in the mechanism of exercise cardioprotection. 
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Inhibition of NADPH-oxidase during exercise abolishes exercise cardioprotection 

 Administration of VAS2870 abolished the protective effect of exercise as measured by 

myocardial infarct size, arrhythmia, and time to contracture (Figure 12). The reduction in infarct 

size corroborates the loss of exercise-induced protection that we previously reported in 

exercised rats administered the NOX inhibitors (apocynin or VAS2870) prior to exercise (80), 

and builds on this by demonstrating that inhibition of NOX prevents the anti-arrhythmic 

phenotype observed with exercise. An increase in time to contracture during ischemia has 

previously been used as an indicator of preserved ATP homeostasis (113), and is consistent 

with the idea that exercise preserves cellular ATP and delays the onset of diastolic contracture . 

Furthermore, these findings support the hypothesis that mitochondria play a role in the 

protective phenotype, and that targeting mitochondrial function can influence the severity of 

pathology.  

Isolated mitochondrial function from the post-ischemic heart 

 Mitochondrial function and ROS production has been shown to be a major determinant 

of cardiac ischemia/reperfusion injury (7, 26). Given the importance of ROS signaling in 

mediating mitochondrial adaptations in various cardioprotective paradigms we determined how 

inhibiting NOX-generated ROS affected post-ischemic mitochondrial function. Contrary to our 

hypothesis, an interesting finding from the study was that isolated mitochondria from exercised 

hearts exposed to I/R had lower mitochondrial respiratory rates under state-3 conditions when 

respiring on complex-I substrate (Figure 13B). Although not statistically significant in the ED vs 

SD groups, there was a trend for lower respiration, and this was statistically significant in the EV 

vs SV groups. This is not the first time we have observed similar complex-I linked respiratory 

rates in isolated mitochondria from post-ischemic hearts of sedentary and exercised rats (Rick 

Alleman unpublished data). These findings contrast those of Lee et al. who observed 

significantly higher complex-I dependent respiration from isolated mitochondria of exercised 
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rats. However they used a 40 min ischemia and 45 min reperfusion protocol in a Langendorff 

working-heart model (129), which may explain the discrepant findings. Our findings demonstrate 

that cardioprotection can be achieved in the absence of higher mitochondrial respiratory rates 

by complex I. However, this is not unprecedented, as other studies have noted little to no 

difference in complex-I linked mitochondrial respiration with remote ischemic preconditioning 

(RIP), another well-established cardioprotective model (75).  

After observing lower complex-I linked respiratory rates in mitochondria from exercised 

rats we wanted to determine the activity of citrate synthase, as this has been used as a 

quantitative marker of intact mitochondria (102, 127). The activity of citrate synthase was not 

different across groups, confirming the loading of equal mitochondria in respiratory experiments. 

An interesting finding however, was that complex I activity was significantly higher only in the 

ED group (Figure 13D). While it is difficult to explain the discrepancy in complex I respiration vs 

complex I activity, one hypothesis is that mitochondria from exercised rats are more efficient 

and/or have lower demand by other energy consuming pathways such as the nicotinamide 

nucleotide transhydrogenase (NNT). Merit to this hypothesis comes from studies demonstrating 

that NNT can act as an “energy-consuming redox circuit” due to NADPH oxidation in redox 

reactions and subsequent reduction through NNT utilization of ΔΨm (136). In addition, several 

redox-sensitive sites on complex I have been shown to decrease enzyme activity under 

heightened redox stress (106). Therefore, it is plausible that heightened complex I activity in the 

ED group is a marker for mitochondrial reserve capacity to scavenge ROS and metabolic 

demand matching of the cell. This hypothesis is in line with our data showing lower post-

ischemic mitochondrial H2O2 emission in the ED group following I/R, and VAS2870 

administration abolished the lower H2O2 emission observed with exercise alone (Figure 13E and 

13F). Furthermore, the lower H2O2 emission observed in ED mirrored the reduction in infarction 

and protection against arrhythmia, both of which were abolished with VAS2870. Next, we 
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sought to determine if the lower H2O2 emission rates and heightened enzyme activity with 

exercise were due to a more fluid inner-mitochondrial membrane, and preserved assembly of 

supercomplexes. Both of which have been implicated in the cardioprotective mechanism of the 

mitochondrial targeting peptide, SS-31 (Unpublished data).  

Post-ischemic mitochondrial membrane lipid packing and supercomplex assembly following 

exercise cardioprotection 

 Following I/R injury, no differences in lipid packing in cardiac mitochondria were 

observed between groups using MC540 (Figure 14C). We hypothesized that lower H2O2 

production and preserved complex I activity in isolated mitochondria from exercised rats was 

due to a more fluid mitochondrial membrane and preserved respiratory supercomplex assembly. 

However, we also did not detect any differences in supercomplex assembly across groups 

(Figure 14D and 14E). A decrease in lipid packing was expected in the ED group, as this would 

indicate preservation of membrane polyunsaturated acyl chains and perhaps more abundant 

cardiolipin content. The structure, assembly, and composition of mitochondrial membrane 

phospholipids plays a significant role in mitochondrial bioenergetics under normal and 

pathological states (51). Altering the lipid composition of membranes can affect its biophysical 

properties, including membrane microviscosity as well as lateral diffusion and protein 

interaction.  

The inner-mitochondrial membrane is mostly composed of three different phospholipids: 

phosphatidylcholine, phosphatidylethanolamine, and cardiolipin (165). Of these phospholipids, 

cardiolipin imparts a unique characteristic to the lipid environment due to its bicyclic structure 

and acyl chain orientation (133). Furthermore, cardiolipin has been shown to be important for 

respiratory supercomplex assembly (168) and optimal mitochondrial respiratory function (20). 

During I/R injury total cardiolipin content appears to decrease, which mirrors decrements in 

complex I activity and increased H2O2 production (167). Paradies et al. 2004 found that fusion of 



 
   

74 

exogenous cardiolipin with mitochondria from post-I/R hearts restored complex I activity to 

control non-ischemic levels (167). These previous studies demonstrate the importance of 

cardiolipin in mitochondrial function, yet it is unknown how exercise affects cardiolipin content in 

the post-ischemic heart. 

Preserved mitochondrial membrane fluidity following I/R has been demonstrated using 

steady state fluorescence anisotropy of DPH in a cardioprotective remote ischemic 

preconditioning model (75). However as mentioned previously, this study also found no 

difference between RIP and I/R alone on state 3 mitochondrial respiration. In a more recent 

study by the same group, RIP once again preserved mitochondrial membrane fluidity following 

I/R using DPH (76). These studies support the idea of targeting the inner-membrane in acute 

coronary syndromes. 

Limitations 

In the present study non-I/R controls were not utilized for comparisons, however we 

have previously observed decrements in mitochondrial membrane fluidity, supercomplex 

breakdown, and perturbations in post-ischemic mitochondrial function (unpublished data). The 

MC540 probe was used this study because it has been extensively characterized in model 

membrane systems where it localizes to membranes and orients perpendicular to phospholipid 

chains (223, 230). However, one limitation of this technique is its localization to the membranes 

outer leaflet, and superficial positioning in relation to the inner membrane, where more 

exaggerated changes may occur. In addition, the interpretation of membrane properties must be 

done cautiously as changes in lipid packing with cardiolipin can induce divergent MC540 

fluorescent spectra in the presence of different mixtures of lipid species (230). While we did not 

detect any differences across groups using MC540, complimentary measurements of 

fluorescence anisotropy using diphenylhexatriene (DPH) and/or fluorescence resonance energy 

transfer (FRET) probes would help determine the extent to which exercise-induced 
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cardioprotection involves alterations in biophysical properties of the inner-mitochondrial 

membrane.  

Conclusions  

It is widely accepted that exercise helps sustain mitochondrial function and cellular ATP 

levels during I/R (28, 129, 178). In the present study exercise cardioprotection resulted in higher 

complex I activity and lower H2O2 production in isolated mitochondria from post I/R hearts and 

this cardioprotective phenotype is lost with VAS2870 administration. While it seemed plausible 

that supercomplex assembly would be preserved in exercise as well, we did not observe any 

differences in respiratory supercomplex assembly across groups following I/R. Although this is 

not surprising based on the analysis of the mitochondrial lipid environment. Given this, it seems 

more likely that exercise-induced cardioprotection is a result of preserved biochemical 

mitochondrial adaptations, rather than biophysical alterations. However more research is 

needed to definitively determine if lipid microdomains are influenced by exercise, and to what 

extent these changes have on the cardioprotective phenotype.



 

 

Chapter 6: Integrated discussion 

Major Findings 

The central hypothesis of this work is that exercise-induced cardioprotection is a result of 

stabilization of mitochondrial bioenergetics and preservation of cellular thiol redox status. The 

findings from this work establish that the interdependence of cellular redox control and 

mitochondrial function is an important mediator of exercise-induced cardioprotection. 

Furthermore, modulation of glutathione reductase has a profound effect on cellular response to 

metabolic insult, and targeting this system is an attractive therapeutic target. Together these 

studies provide unprecedented insight into the metabolic abnormalities mitigated through 

exercise cardioprotection.   

The work in this dissertation indicates that oxidative stress during I/R injury leads to 

mitochondrial dysfunction and a collapse in cellular energetics. In Chapter 3 it was shown that 

exercise prevents the collapse in energetics by decreasing the oxidative burden on the cell. 

Maintenance of GSH and lower production of ROS during early reperfusion was shown to be 

critical in stabilizing energetics and mediating the antiarrhythmic effect of exercise (Figure 3). 

The maintenance of GSH through enhanced redox buffering was linked to GR activity as it has 

previously been demonstrated that exercise increases cellular GR activity (80). In Chapter 4 the 

importance of GR on mitochondrial function was assessed through pharmacological inhibition or 

through adenovirus mediated alterations in Gsr expression. These studies provide 

unprecedented insight into the role of redox regulation on mitochondrial function during 

pathological oxidative stress conditions. Finally, in Chapter 5 we determined how inhibiting the 

cardioprotective ROS stimulus during exercise impacted post-ischemic mitochondria. We 

demonstrate that inhibition of NADPH oxidase (NOX) abolished exercise cardioprotection 

(Figure 12). However, the protective phenotype was not a result of alterations to the 

mitochondrial lipid environment, or preservation of supercomplex assembly. Rather, limiting the 
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production of ROS and maintenance of redox homeostasis through exercise-induced 

adaptations appeared to be more responsible for the protection against arrhythmia and infarct 

sparing observed with exercise.   

The finding that exercise-induced cardioprotection does not operate through stabilization 

of mitochondrial supercomplexes (Figure 14) demonstrates divergent strategies for the 

protection of myocardium during I/R injury, as recent studies with mitochondrial targeting 

peptides have been hypothesized to protect the myocardium by stabilizing supercomplex 

assembly and preserving mitochondrial energetics (unpublished data). The discovery of 

potential therapeutics for the treatment of acute coronary syndromes is important with very few 

drugs reaching primary endpoints in clinical trials, and even fewer translating into clinical 

practice (100). Therefore, furthering our understanding on how redox biology regulates 

mitochondrial function is a critical step in advancing our knowledge on the treatment of I/R 

injury. 

Future Directions 

The studies presented herein demonstrate how the redox environment alters 

mitochondrial function, and that enhanced redox control may be a key underlying factor in the 

cardioprotective effect of exercise. In Chapter 3 it was demonstrated that maintenance of GSH 

was strongly associated with the stabilization of energetics and protection against arrhythmia, 

however it would be interesting to determine the extent to which exogenous GSH administration 

affects the observed collapse in ∆Ψm during reperfusion.  

To address the role of the redox environment on mitochondrial energetics, in Chapter 4 

we engineered adenovirus constructs aimed at altering Gsr expression in order to better 

understand the consequences of oxidative stress on the cardioprotective phenotype. Our 

preliminary studies demonstrate promising results in regard to modulating endogenous redox 

control mechanisms for the treatment of I/R injury. While these studies were conducted in vitro, 
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it is critical to better understand how manipulation of redox control through this approach 

translates to in vivo cardioprotection. Given the importance of the redox environment and GSH 

homeostasis on modulating cellular energetics, it will be interesting to determine if modulation of 

Gsr expression in animals exposed to exercise training are still able to maintain the 

cardioprotective phenotype observed under normal conditions.  

Chapter 5 investigated how inhibiting NOX during exercise affected post-ischemic 

mitochondria, as we have previously observed a loss of exercise-induced cardioprotection with 

the NOX inhibitors apocynin and VAS2870 (80). This earlier study characterized how apocynin 

prevented the upregulation in GR activity observed with exercise, and did not fully characterize 

the affect of VAS2870 on GR activity. While VAS2870 has been shown to be a more specific 

inhibitor of NOX compared to apocynin (101, 181), it was assumed to have the same affect as 

apocynin on preventing the upregulation of GR activity following exercise. It is important to fully 

characterize the mechanism by which VAS2870 prevents the cardioprotective phenotype 

afforded by exercise. This may provide further insight into the “triggering” mechanisms of 

exercise cardioprotection, potentially leading to a new area of investigation. 

While these studies implicate redox control in cardioprotective models, it is imperative to 

further our knowledge on how redox biology affects mitochondrial function, and what 

mechanisms may be at play in mediating the protection afforded by preserved redox 

homeostasis. Chapter 3 sought to address the mechanistic link between preserved redox 

homeostasis and maintenance of electrical activity in the post-ischemic myocardium, however 

more research is needed to fully characterize how loss of ∆Ψm scales to affect electrical 

conductivity in the intact heart. It is presumed that maintenance of energetics preserves cellular 

ATP levels, where ATP-regulatory sites on energy sensitive ions channels then mediate the 

protective phenotype. However, these assumptions need to be substantiated in the intact 
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myocardium in order to push the field toward more targeted therapeutics in the treatment of 

cardiovascular disease. 
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Appendix B: Figure reproduction 

 

  
Figure 1. Breakdown of deaths attributable to CVD in the United States (2013). 

46.20%  Coronary Heart Disease
16.10%  Stroke
8.10%  Heart Failure
9.00%  High Blood Pressure
3.20%  Diseases of the Arteries
17.40%  Other
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Figure 2. Mitochondrial therapies recently investigated in clinical studies to reduce myocardial 
infarction. 
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Figure 3. Reductions in infarct size are abolished by inhibiting NADPH Oxidase (with pre-exericse treatment 

of apocynin or VAS2870) during exercise. Inhibition of mitochondrial ROS during exercise (with pre-exercise 

administration of TEMPO or the mitochondria-targeting peptide Bendavia) had no effects on exercise 
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Figure 4. Arrhythmia and simultaneous two-photon imaging of mitochondrial membrane potential (ΔΨm) 
in isolated hearts during ischemia/reperfusion. (A) The percentage of Ex and Sed hearts that transitioned to 
arrhythmia (VT/VF) following 40 min of ischemia. (B&C) Baseline TMRM fluorescence (ΔΨm) values were used to 
normalize all data (F/F0) during ischemia (B) and reperfusion (C). (D) Representative images of ΔΨm in the 
ventricular free-wall and simultaneous ECG recordings during reperfusion for Sed and Ex. Data are shown as % 
of population for arrhythmia and mean ± SEM for all other data, n=7-8 per group. * p<0.05 vs Sed; # p<0.05 vs 
Sed main effect. 
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Figure 5. Mitochondrial membrane potential (ΔΨm) in isolated hearts that transitioned to arrhythmia vs 
no arrhythmia during reperfusion. (A) ΔΨm was was better maintained in hearts that did not transition to 
arrhythmia. (B) Mean ΔΨm fluorescence values during reperfusion. Data are mean ± SEM * p<0.05 vs 
Arrhythmia; # p<0.05 vs Arrhythmia main effect. 
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Figure 6. Cardiac glutathione (GSH) during cellular hypoxia/reoxygenation or cardiac 
ischemia/reperfusion. (A) Representative primary cardiac myocyte fluorescent images for Sed and Ex during 
baseline, at the end of hypoxia, and 6 minutes into reoxygenation. (B) Quantification of glutathione levels as 
measured by CellTracker Blue fluorescence. (C) HPLC quantification of reduced (GSH) and oxidized (GSSG) 
glutathione in hearts following ischemia/reperfusion. Data are shown as mean ± SEM, * p<0.05 vs Sed; # p<0.05. 
vs Sed main effect. 
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Figure 7. Mitochondrial membrane potential (ΔΨm) during cardiac myocytes hypoxia/reoxygenation (H/R). 
(A) Representative images of Sed and Ex cardiac myocytes during H/R. Depolarized mitochondrial networks and 
collapses in ΔΨm are shown during reoxygenation as a transition in color from yellow to red and black. (B) 
Quantification of TMRM fluorescence during H/R. Data are shown as mean ± SEM. # p<0.05 vs Sed main effect. 
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Figure 8. Reactive oxygen species (ROS) and isolated mitochondrial energetics during 
anoxia/reoxygenation (A/R). Sed is gray and Ex is black in all graphs.  O2 consumption rate (JO2) and H2O2 
emission rate (JH2O2) was measured in isolated mitochondria from Sed and Ex hearts. (A) JO2 was similar at 
baseline between Ex and Sed isolated mitochondria respiring on glutamate + malate, pyruvate, and succinate, 
and ADP clamped at 75 μM (state 3). (B) Impairments in state 3 JO2 following A/R was determined by 
comparing relative decreases from baseline for Sed and Ex. (C) State-3 JH2O2 before and after A/R. (D) The 
JH2O2:JO2 ratio demonstrates impaired mitochondrial function in Sed mitochondria following A/R. (E) A 
representative experiment showing a trace of resorufin fluorescence used to calculate JH2O2 during A/R. For 
clarity, data were transformed by subtracting the anoxic fluorescent value recorded prior to reoxygenation. (F) 
JH2O2 in isolated mitochondria in the presence of either thioredoxin reductase inhibitor (AF) or glutathione 
reductase inhibitor (BCNU).  Data are shown as mean ± SEM. * p<0.05 vs Sed main effect ; # p<0.05 vs Sed 
baseline. 
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Figure 9. Gsr knockdown and overexpression in H9c2 cells. (A) Western blot and densitometry after 48hr 
transfection with shRNA cloned into the pLKO.1 vector. (B) GFP and phase images 48hr post transfection. (C) 
Illustration of adenovirus expression cassettes of shgsr, shscram, Gsr overexpression (Gsr OE), and empty 
vector control (EV). (D) 96hr post infection fluorescent images of differentiated H9c2 cells, and (E) Western blot of 
glutathione reductase protein content. 
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Figure 10. Mitochondrial bioenergetic analysis in H9c2 cells exposed to 
hypoxia/reoxygenation. (A) Seahorse trace of mitochondrial stress test protocol following a 20min 2-
AAPA exposure. All data were transformed by subtracting out the antimycin A respiratory rate. (B) 
Basal respiration. (C) Maxmial uncoupled respiration with FCCP (E) ATP-dependent respiration 
(Basal respiration – State 4). Data in C-E are expressed as percent of Non-H/R control for each time 
point. *p<0.05 vs vector control. 
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Figure 11. Mitochondrial bioenergetic analysis in H9c2 cells following pharamacological induction of thiol 
redox stress. (A) Seahorse trace of mitochondrial stress test protocol following a 20min 2-AAPA exposure. All 
data were transformed by subtracting out the antimycin A respiratory rate. (B) Basal respiration. (C) Maxmial 
uncoupled respiration with FCCP (E) ATP-dependent respiration (Basal respiration – State 4). (F) Mitochondrial 
membrane ∆Ψm with TMRM and (G) cell viability following 2-AAPA exposures.*p<0.05 vs CTRL (ANOVA followed 
by Dunnett’s post-hoc test). 
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Figure 12. Infarct size and arrhythmia in isolated hearts following ischemia/reperfusion. (A) Infarct size for 

isolated rat hearts following 20 minutes of ischemia and 2 hours of reperfusion. (B) Arrhythmia score following the 

first 15 minutes of reperfusion. (C) The time to contracture was determined by calculating the amount of time 

elapsed during ischemia leading to a 5mmHg increase in end-diastolic pressure (EDP). All data are mean ± SEM, 

n=5-7 per group. * p<0.05 vs SD. 
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Figure 13. Mitochondrial function following ischemia/reperfusion injury. (A) O2 consumption rate (JO2) in 
isolated mitochondria under state 4 conditions (no ADP) with glutamate (10mM), malate (2mM), and pyruvate 
(5mM). (B) JO2 under state 3 conditions with saturating ADP (4mM). (C) Citrate synthase activity. (D) Relative 
specific activity of complex I normalized to the respective citrate synthase activity. (E) H2O2 emission rate (JH2O2) 
under state 4 conditions (same substrate as Figure 2A). (F) JH2O2 with saturating ADP. All data are mean ± SEM, 
n=4 per group, JO2 and JH2O2 assays were run in duplicate and kinetic assays were run in triplicate. * P<0.05 vs 
SD, # p<0.05 vs SV. 



 
   

119 

 

 

 

 

 

 

 

A B C

54
0

56
0

58
0

60
0

62
0

64
0

66
0

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

Emission (λ)

M
C

54
0 

Fl
uo

re
sc

en
ce

 (A
.U

.) 

Sedentary+DMSO

Exercise+DMSO
Exercise+VAS2870

Sedentary+VAS2870

Background

0.0

0.5

1.0

1.5

P
os

t I
/R

 S
up

er
co

m
pl

ex
 

(D
en

si
to

m
et

ry
 F

ol
d 

S
ed

 C
on

tr
ol

)

Sedentary+DMSO
Sedentary+VAS2870

Exercise+DMSO
Exercise+VAS2870

54
0

56
0

58
0

60
0

62
0

64
0

66
0

-5.0×105

0.0

5.0×105

1.0×106

1.5×106

2.0×106

Emission (λ)
M

C
54

0 
A

.U
. (

F-
F 0)

0.0

5.0×105

1.0×106

1.5×106

2.0×106

M
C

54
0 

P
ea

k 
Fl

uo
re

sc
en

ce
 In

te
si

ty
 (F

 - 
F 0)

Supercomplex
(I,III2, IV)

SD
E

D SV ED EV

Figure 14. Mitochondrial membrane lipid properties and respiratory supercomplex assembly. (A) 
Merocyanine 540 (MC540) fluorescent spectra before and after the addition of mitochondria. Note the peak 
fluorescence red shift of the spectra indicates a lipid phase (B) Relative shift in MC540 fluorescence following the 
addition of mitochondria (F-F0). C) Peak fluorescence intensity at 600nm. D) Representative image of 
supercomplex density via Blue-native PAGE; n=4 per group run in duplicate. The black box encloses 
supercomplex I, III2, IV and used for quantification. E) Quantification of densitometry from supercomplex gel, 
normalized to control. All data are mean ± SEM, n=4 per group. 


