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Highlights 

 Parkinson’s patients with a falls history had poorer rhythmicity at all gait speeds 

 Improvements in walking speed do not necessarily imply improved postural stability 

 Combining gait retraining with other therapies may benefit high-risk Parkinson’s patients 



 

ABSTRACT 

Objective: This cross-sectional study sought to evaluate the effect of imposed faster and 

slower walking speeds on postural stability in people with Parkinson’s disease (PD). 

 

Design: Cross-sectional cohort study 

 

Setting: General community 

 

Participants: 84 PD patients (51 with a falls history; 33 without) and 82 age-matched 

controls were invited to participate via neurology clinics and pre-existing databases.  Of those 

contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; 

controls=9). Following screening, a further 10 patients were excluded; 5 had deep brain 

stimulation surgery and 5 could not accommodate to the treadmill. The remaining 30 patients 

completed all assessments and were sub-divided in PD fallers (n=10), PD Non-Fallers (n=10) 

and age-matched controls (n=10) based on falls history. 

 

Protocol: Symptom severity, balance confidence and medical history were established prior 

to participants walking on a treadmill at 70%, 100% and 130% of their preferred speed.  

 

Main Outcomes: Three-dimensional accelerometers assessed head and trunk accelerations 

and allowed calculation of harmonic ratios (HRs) and root mean square (RMS) accelerations 

to assess segment control and movement amplitude. 

 

Results: Head and trunk control was lower for PD Fallers than PD Non-Fallers and Older 

Adults. Significant interactions indicated head and trunk control increased with speed for PD 



 

Non-Fallers and Older Adults, but did not improve at faster speeds for PD Fallers. Vertical 

head and trunk accelerations increased with walking speed for PD Non-Fallers and Older 

Adults, while the PD Fallers demonstrated greater anteroposterior RMS accelerations 

compared with both other groups. 

 

Conclusion: The results suggest that improved gait dynamics do not necessarily represent 

improved walking stability and this must be respected when rehabilitating gait in PD patients. 

 

Keywords: Gait; Segmental Control; Harmonic Ratio; Parkinson Disease; Falls  



 

Parkinson’s disease (PD) is a debilitating neurodegenerative condition that is characterised by 

motor symptoms that include resting tremor1, slowness of movement2, muscle rigidity2, 

postural instability2, and gait disturbances (e.g. freezing of gait (FOG))1. Unfortunately, 

symptoms of postural instability and gait disability are only partially responsive to current 

pharmacological interventions3. In fact, research shows that, even when optimally-medicated, 

people with PD demonstrate more asymmetric movement patterns4, 5, walk more slowly6-9, take 

shorter strides6-9 and have less rhythmic acceleration profiles for the head10 and trunk11 

compared with age-matched controls. The changes in segmental rhythmicity appear to be 

related, at least in part, to deficits in neuromuscular control12 and seem to be more prominent 

in people with PD who prospectively report falls13, 14.  Given this apparent relationship 

between postural instability, gait disability and falls in people with PD and the obvious 

ineptitude of current pharmacological therapies, clinicians and scientists have sought to identify 

suitable alternatives to manage these symptoms. 

 

Treadmill-based gait retraining that incorporates auditory or visual cues has emerged as a 

common form of physical therapy and seeks to correct gait impairments in people with PD by 

increasing their stride length and, ultimately, their walking speed15. Importantly, the existing 

literature concerning gait retraining indicates that this form of therapy succeeds at this goal 

by helping patients to increase their stride length16-21, walking speed17-23 and walking 

distance22. Despite the established benefits of treadmill-based gait retraining for people with 

PD, the precise relationships between changes in walking speed and walking stability and/or 

falls risk are far less clear. For example, some prospective research has demonstrated that 

community-dwelling older adults who walk at slower (<0.6 m/s) or faster (≥1.3 m/s) speeds 

are at an increased risk of future falls24. Similar results were presented in a cross-sectional 

study involving healthy younger adults, which showed that slower and faster than preferred 



 

speeds led to sub-optimal walking stability25.  However, despite these findings, a series of 

studies adopting non-linear analyses have suggested that local dynamic stability is 

significantly improved at slower walking speeds for healthy younger adults26, 27, older 

adults28 and patients with significant peripheral neuropathy29, 30.  Given these conflicting 

results, it remains unclear whether the slower walking speeds adopted by people with PD 

serve to optimise their dynamic stability or contribute to their increased risk of falling. An 

improved understanding of this relationship would help clinicians to better appreciate how 

changes to a patient’s walking speed might influence their stability and overall risk of falls.  

 

During dynamic tasks, the maintenance of equilibrium relies upon one’s capacity to control 

the movements of the head and trunk, which represent almost 60% of the body’s mass31, 32. 

From a functional perspective, the head is considered an important natural frame of reference, 

as it houses the organs responsible for the visual and vestibular information used in postural 

control and orientation33-35. The trunk is also believed to play a role in maintaining postural 

stability during locomotion, as it serves to attenuate movement-related forces that project 

upwards from the feet and threaten to destabilise the head36, 37. However, research reporting 

larger12-14 and less rhythmic10, 11 head and trunk movements for people with PD provides 

evidence to suggest that this population may have an impaired capacity to attenuate these 

forces. Support for this notion was recently provided in a study that demonstrated people with 

PD have an impaired capacity to attenuate accelerations from the pelvis and neck to the 

head38. This impairment is likely related to the increased axial rigidity that is evident in 

people with PD during standing39 and walking40, which is seemingly caused by differences in 

the activation patterns of the paraspinal muscles in this population12.  While it is widely 

recognised that the routine use of anti-parkinsonian medication can significantly improve 

some characteristics of gait41, 42, it is equally well-documented that the symptoms of axial 



 

rigidity that contribute to postural instability and falls in this population are not well managed 

with traditional therapies40, 43.  Given this situation, there appears to be a clear need for 

research aimed at elucidating whether increasing walking speed in people with PD can be 

achieved without inadvertently influencing postural stability. As such, it was the purpose of 

this study to determine whether walking at speeds faster or slower than preferred reduces 

postural stability for people with PD.  Given that slower and faster walking speeds have been 

linked with a greater risk of falls in older adults24, it was hypothesised that walking at speeds 

other than one’s preferred walking speed would reduce postural stability and that this 

relationship would be more pronounced for participants with a history of falling. 

 

METHODS 

Study Population 

Between August and November 2014, 84 people clinically-diagnosed with idiopathic PD 

based on the Parkinson’s United Kingdom Brain Bank Criteria44 were invited to participate 

via community support groups and neurology clinics.  Over the same period, 82 age-matched 

older adults (Controls) from the Brisbane metropolitan area were contacted via an existing 

database of individuals who had expressed interest in contributing to research of this nature. 

Of those contacted, 99 did not respond (PD=36; Controls=63) and 27 were not interested 

(PD=18; Controls=9). The remaining 30 people with PD and 10 controls were screened and 

excluded if they had; i) recently undergone surgery; ii) a recurrent history of musculoskeletal 

injury; iii) an inability to walk without assistance; iv) significant visual (Bailey-Lovie high 

contrast visual acuity >0.30 logMAR) or cognitive (Addenbrooke’s Cognitive Examination 

score <82 out of 10045) impairment; or v) received deep brain stimulation. Following 

screening, 5 patients were excluded as they had received deep brain stimulation and 5 were 

excluded as they were unable to accommodate to the treadmill.  The remaining participants 



 

reported the number of falls that they had experienced in the past year and these data were 

used to separate PD Fallers (n=10) from PD Non-Fallers (n=10) and Older Adults (n=10). In 

all cases, the PD Fallers attributed their falls directly to complications associated with the 

symptoms and/or treatment of their condition (e.g. freezing of gait; festination, retropulsion; 

postural instability), rather than to situations that might be considered typical for an otherwise 

healthy individual. Falls were assessed retrospectively and defined as any unintentional 

coming to the ground or some lower level not as a result of a major intrinsic event or 

overwhelming hazard46. 

 

An a-priori power calculation performed using data presented previously11 indicated that a 

sample size of 10 participants per group was sufficient to detect any significant changes in 

dynamic stability (diff = 0.05, SD = 0.04, Cohen’s d = 1.25, Power = 80%, p = 0.05). The 

experimental protocol was approved by the Human Research Ethics Committee at the 

Australian Catholic University and, in accordance with the Declaration of Helsinki, all 

participants gave written informed consent prior to participating in this research. 

 

INSERT TABLE 1 ABOUT HERE 

 

Clinical Assessment 

Prior to the gait assessment, details related to each participant’s falls history, medical history 

and current medications were collected via a brief health questionnaire, while balance 

confidence was assessed using the 6-item Activities-specific Balance Confidence scale47. 

Additionally, an experienced movement disorders researcher completed clinical assessments 

for the PD participants to establish each patient’s symptom severity and quality life. 

Specifically, symptom severity was assessed using the motor sub-scale of the Unified 



 

Parkinson’s Disease Rating Scale (UPDRS III)48, the Hoehn and Yahr stage score49 and the 

Schwab and England Activities of Daily Living (ADL) scale50.  Additionally, FOG and 

quality of life were assessed using the Revised Freezing of Gait questionnaire51 and the 8-

item Parkinson’s Disease Questionnaire52, respectively.  By calculating the sum of the scores 

for the items relating to rigidity on the UPDRS III, a global rigidity score was determined 

using previously-described methods53. All procedures were completed while the PD patients 

were receiving their usual anti-parkinsonian treatment, with 10 PD Fallers (100%) and 9 PD 

Non-Fallers (90%) being treated with levodopa and/or dopamine agonists (Table 1). 

 

Apparatus 

Two wireless 6g microelectromechanical systems (MEMS) tri-axial accelerometers (Noraxon 

Inc., USA) were positioned over the occipital protuberance of the skull and the spinous 

process of the 10th thoracic vertebra to measure head and trunk accelerations during treadmill 

walking.  The head accelerometer was attached to a firm-fitting headband, while the trunk 

accelerometer was firmly affixed to the skin using double-sided tape and Omnifix.  Head and 

trunk accelerations were sampled at 1500 Hz and telemetered wirelessly to a Telemyo DTS 

receiver connected to a laptop running the MyoResearch XP software (v1.08, Noraxon Inc., 

USA). Prior to attaching the equipment, a series of static trials were completed while each of 

the accelerometers’ axes were perpendicularly aligned with a horizontal surface to measure 

gravitational acceleration (1 gravitational unit or 1g) in the absence of movement54. 

 

The walking trials were completed on a Quasar motorised treadmill (HP Cosmos, DE) that 

had a moving surface size of 1.70 x 0.65 m (L x W) and an overhead safety frame fitted to 

facilitate anchoring of the participant safety harness. To ensure that participants were blind to 

their walking speed and to any changes that were made throughout the testing period, the user 



 

terminal was rotated such that the participants were unable to see the electronic display. Prior 

to data collection, the validity of the treadmill’s belt speed was assessed using a three-

dimensional motion analysis system (T-Series cameras with Nexus 1.7; Vicon, UK) and was 

found to be accurate under both loaded and unloaded conditions at speeds ranging from 0.6 to 

2.0 m/s (mean error = ±0.03 m/s). 

 

Data Collection 

To ensure that they could safely ambulate on the treadmill, each participant completed a 

familiarisation period while wearing their own comfortable walking shoes and a safety vest 

that was attached to the overhead safety frame.  Each participant’s preferred walking speed 

was then determined during three independent trials that were each separated by a rest break 

of no less than 60 seconds. During these trials, the treadmill’s speed was systematically 

increased or decreased in 0.1 m/s increments based on the participant’s instruction until they 

reported that they were walking at a comfortable speed. The average walking speed for these 

three trials was considered to be representative of the participant’s preferred walking speed 

(100%) and was used to calculate the slower (70%) and faster (130%) walking conditions26. 

Using this information, participants completed a graded walking task that involved walking 

on the treadmill for 60 seconds at intensities that were equal to 70%, 100% and 130% of their 

preferred walking speed. To ensure that the acceleration/deceleration phase of each trial did 

not influence the reported outcomes, each 60-second data collection period did not 

commence until the treadmill had reached the target velocity and the participants reported 

having achieved a steady walking pattern.  Given people with PD experience greater 

symptoms of gait impairment13, 14 and fear of falling55, the order of walking speeds (Intensity) 

was progressed from slowest to fastest. Furthermore, to limit the potential influence of 

fatigue, each walking trial was separated by a mandatory 1-minute rest break.  



 

 

Data Analysis 

Following data collection, the raw three-dimensional head and trunk accelerations were 

transformed to a horizontal-vertical orthogonal coordinate system using an extrapolation of 

simple trigonometry36.  In short, transformation of the accelerations was required to correct 

for tilt in the AP and ML directions, such that the accelerometer’s vertical axis was realigned 

with the gravity vector (i.e. global vertical axis)56. The transformation algorithm achieved this 

by assuming that the head and trunk accelerometers were rotated (i.e. r(theta1, theta2)) and 

that this angle was constant throughout the trial. This assumption was guided by previous 

research, which reported that the orientation of the upper body changes minimally during 

gait57, 58 and, hence would only influence gait-related accelerations to a small degree36, 59. 

During pilot testing, the performance of the transformation process was assessed by 

comparing the transformed accelerations from the Noraxon system with data simultaneously 

collected using XSens inertial measurement units (IMUs). Data from the IMUs were rotated 

using the device’s internal gyroscope and comparison of the anteroposterior (AP), 

mediolateral (ML) and vertical (VT) acceleration profiles from the two systems returned 

correlation coefficients of 0.8 or greater for all three axes.  Following transformation, the 

timing of individual foot contacts was identified via the recurring peaks in the vertical trunk 

acceleration profile11, 60, 61 and used to crop each trial to a length that included 10 left and 10 

right gait cycles (i.e. 20 gait cycles total). The cropped data were then low-pass filtered using 

a fourth-order Butterworth filter with a cut-off frequency of 30 Hz59, 62.  

 

To examine changes in the rhythmicity of AP, ML and VT head and trunk accelerations at 

the different walking speeds, the harmonic ratio (HR) was calculated by firstly dividing the 

continuous data series into individual gait cycles (i.e. 20 per trial). Data for each gait cycle 



 

were then converted to the frequency domain using the Fast Fourier Transformation, which 

allowed the harmonics of the signal’s fundamental frequency (i.e. stride frequency63) to be 

identified64.  As each gait cycle is comprised of two steps, the AP and VT acceleration 

profiles of a healthy individual are typically characterised by two comparable peaks25.  As 

these peaks repeat in multiples of two, the frequency spectra of AP and VT accelerations are 

dominated by the even harmonics (i.e. 2, 4), which represent the in-phase component of these 

signals. In contrast, ML accelerations are characterised by two opposing peaks; 1 

corresponding with a weight shift to the left leg and 1 corresponding with a weight shift to 

the right leg. This unique characteristic of the ML acceleration profile means that the odd 

harmonics (i.e. 1, 3) dominate this component and, hence represent the in-phase component 

of this signal. Using the first 20 harmonics for each gait cycle (i.e. 10 in-phase; 10 out-of-

phase), the AP, ML and VT harmonic ratios were calculated for the head and trunk by 

dividing the sum of the in-phase harmonics by the sum of the out-of-phase harmonics64. 

Given this calculation, larger HRs represent a greater proportion of in-phase accelerations 

relative to out-of-phase accelerations, which is indicative of greater movement rhythmicity 

and poorer segmental control64, 65. 

 

To provide insight into the amplitude of head and trunk accelerations during the walking task, 

the root mean square (RMS) amplitude of the time-series data for the AP, ML and VT 

accelerations was also calculated66.  In addition to the three-dimensional HRs and RMS 

accelerations, the timings of each individual foot contact were used to calculate a number of 

spatiotemporal characteristics. Specifically, cadence (steps/min) was assessed by determining 

the number of steps taken by each participant during the 60-second trial, while stride timing 

variability (ms) was derived by calculating the standard deviation of the time taken by the 

participant to complete each of the 20 gait cycles (i.e. stride time)67, 68.  Lastly, given that 



 

walking speed is a composite measure representing stride length (i.e. distance) divided by 

stride time, stride length was calculated by multiplying walking speed (m/s) by stride time. 

These outcome measures were selected as they have been extensively used to assess walking 

in people with PD11, 65, 69 and have been previously shown to discriminate retrospective fallers 

from non-fallers in this population10. All processing of the raw head and trunk accelerations 

was performed using a custom Matlab program (R2015b, The MathWorks, USA). 

 

Statistical Analysis 

A one-way analysis of variance (ANOVA) was used to compare the groups for differences in 

demographics, falls history, fear of falling, quality of life and symptom severity. When a 

significant main effect was identified, the Tukey’s Honestly Significant Difference (HSD) 

post-hoc test was used to determine where the statistically significant differences existed. 

When the assumptions of ANOVA were violated, the non-parametric Kruskal-Wallis Test 

was used to compare the groups, while the degree of association between categorical 

variables was assessed using the chi-square (χ2) test.  

 

To determine mean differences between the PD Fallers, PD Non-Fallers and Older Adults for 

the accelerometer-based measures of gait rhythmicity and segmental motion, linear mixed 

model (LMM) analyses with one repeated (Intensity, 3 levels) and one fixed (group, 3 levels) 

factor were used. As gait speed and stride time variability both influence segmental 

accelerations10, both were entered as covariates for the analysis of HRs and RMS 

accelerations.  Furthermore, to determine whether differences in disease duration, symptom 

severity and/or medication use accounted for any differences in HRs or RMS accelerations, a 

series of sub-analyses were conducted for the PD Fallers and Non-Fallers, with these clinical 

scores also entered as covariates. Where significant main effects or interactions were 



 

identified, Tukey’s Least Significant Difference post-hoc tests were used to conduct pairwise 

comparisons between the groups. All statistical procedures were conducted using SPSS v.22 

and the level of significance was set at p < 0.05. 

 

RESULTS 

Demographics and Clinical Assessments 

PD Fallers, PD Non-Fallers and Older Adults did not differ significantly with respect to age, 

gender distribution, height or mass, but PD Fallers had increased rigidity, poorer quality of 

life and greater symptom severity than patients in the PD Non-Faller group. PD Fallers also 

tended to report poorer balance confidence than the other participants (p=0.08) and to be 

taking larger daily doses of levodopa than PD Non-Fallers (p=0.06); however, these trends 

did not achieve statistical significance. Similarly, the PD Faller and Non-Faller groups were 

not different with respect to disease duration or the proportion of patients prescribed 

dopamine agonists, catechol-o-methyl transferase (COMT) inhibitors, monoamine oxidase 

inhibitors (MAOIs) and/or benzodiazepines (Table 1). 

 

Walking Assessment 

PD Fallers walked significantly slower and took significantly shorter strides, but did not 

differ from the PD Non-Fallers or Older Adults with respect to cadence and stride time 

variability. Significant main effects for Intensity indicated that stride length and cadence 

systematically increased from the 70% to 100% to 130% conditions, while stride time 

variability systematically decreased as walking speed increased (Figure 1). With respect to 

head and trunk rhythmicity, significant main effects for Intensity indicated that harmonic 

ratios were significantly reduced (poorer) during the 70% trials compared with the 100% and 

130% conditions. Furthermore, ML head and trunk rhythmicity was significantly improved 



 

when participants walked at the 130% walking speed compared with their preferred walking 

speed (100%). Significant main effects for Group were reported for the ML and VT axes of 

head and the AP, ML and VT axes of the trunk. Post-hoc analyses revealed that PD Non-

Fallers recorded significantly lower head (ML, VT) and trunk (AP, ML, VT) rhythmicity than 

the Older Adults (Figure 2). Similarly, PD Fallers had significantly lower head (ML, VT) and 

trunk (AP, ML, VT) harmonic ratios than PD Non-Fallers and Older Adults and sub-analysis 

of the PD Fallers and Non-Fallers suggested that these findings were not attributable to 

differences in disease duration, symptom severity and/or daily levodopa equivalent dose.  

 

INSERT FIGURE 1 ABOUT HERE 

 

In addition to these main effects, significant Group*Intensity interactions were reported for 

AP and VT harmonic ratios for the head and AP, ML and VT harmonic ratios for the trunk. 

Further examination of these interactions showed that the speed-related changes in head and 

trunk rhythmicity for PD Fallers were significantly different to those observed for PD Non-

Fallers and Older Adults. Specifically, head AP and VT harmonic ratios for the PD Non-

Fallers and Older Adults significantly increased as walking speed increased. An improvement 

in AP and VT head rhythmicity between the 70% and 100% walking speeds was also evident 

for the PD Fallers, but AP head rhythmicity was unchanged between the 100% and 130% 

conditions, while VT head rhythmicity declined at the faster speed. Similarly, AP, ML and 

VT trunk harmonic ratios remained unchanged or improved as walking speed increased for 

the PD Non-Fallers and Older Adults, while both AP and VT trunk harmonic ratios were 

significant reduced for the PD Fallers during the 130% walking trial, compared with the 

100% condition (Table 2).  

 



 

INSERT FIGURES 2 AND 3 ABOUT HERE 

 

The RMS accelerations demonstrated that PD Fallers had significantly greater AP head 

accelerations than PD Non-Fallers and Older Adults, but were not dissimilar with respect to 

any other component of head or trunk acceleration. The sub-analyses conducted for the two 

PD groups indicated that the larger RMS head accelerations (AP) recorded for the PD Fallers 

were largely explained by differences in disease duration, symptom severity and/or levodopa 

daily equivalent doses. Significant main effects for Intensity suggested that AP and ML head 

accelerations and ML trunk accelerations were significantly greater during the 70% condition 

relative to the 100% and 130% walking trials (Figure 3). In contrast, VT RMS accelerations 

for the head and trunk were significantly greater during the 130% condition compared with 

the 70% and 100% conditions. Significant Group*Intensity interactions for VT head and 

trunk accelerations indicated that VT acceleration amplitudes were consistent for the PD 

Fallers across the walking speeds, but were significantly increased at the fastest speed for PD 

Non-Fallers and Older Adults. Furthermore, the significant Group*Intensity interaction for 

AP RMS accelerations indicated that PD fallers had significantly greater head accelerations at 

the slowest walking speed compared with the 100% and 130% conditions (Table 2). 

 

INSERT TABLE 2 ABOUT HERE. 

 

DISCUSSION 

The results of this cross-sectional study only partially supported our hypothesis that walking 

at speeds slower and faster than preferred would correspond with poorer head and trunk 

rhythmicities. As hypothesised, poorer stability was observed for all participant groups at 

walking speeds that were slower than preferred, but as walking speed increased, head and 



 

trunk rhythmicity generally improved as well. These findings are in contrast to previous 

research involving healthy younger adults, which showed that pelvic and, to a lesser extent, 

head rhythmicities were optimal when participants walked at their preferred speed, but 

declined at faster and slower speeds25. Similarly, the results of a longitudinal study indicated 

that the risk of falling was significantly greater in older adults who walked slower (<0.6 m/s) 

or faster (≥1.3 m/s)24, suggesting that stability may be optimised at specific movement 

speeds. The disparity between the results of the current study and those presented in this 

earlier research may be explained by differences in the coordination and variability of 

segmental motion during treadmill and overground walking. For example, research shows 

that individuals exhibit reduced variability in their stride-to-stride gait patterns and joint 

kinematics during treadmill walking compared with overground gait70, 71.  Such differences 

are argued to be due to the relatively fewer task constraints imposed by overground walking, 

which ultimately gives individuals a greater number of performance options that are equally 

appropriate for achieving the desired outcome71, 72. Interestingly, the results of this study also 

showed that stride timing variability systematically decreased from the slowest to the fastest 

walking speed, while separate research examining overground walking in younger adults 

reported increased stride time variability at speeds slower and faster than preferred73. 

Considering that the harmonic ratio provides a measure of the in-phase to out-of-phase 

segmental accelerations, it is possible that the improved stability demonstrated by the 

participants at the faster speed was reflective of the less variable walking patterns recorded 

for these individuals during this condition. 

 

Despite the results tending to suggest that increased walking speeds lead to improved head 

and trunk stability in older adults and people with PD, the post-hoc analyses indicated that 

head and trunk accelerations either remained unchanged or decreased at the faster walking 



 

speed for PD Fallers.  Considering this finding with the overall deficits in head and trunk 

control and the increased AP head accelerations that were evident for the PD Fallers, it seems 

that these individuals may have a reduced capacity to control these larger segments, which 

would directly impact their postural stability. These results are in agreement with previous 

research showing that people with PD have significantly greater AP and ML head 

accelerations than healthy younger and older adults, which are likely to influence their 

capacity to recover from a perturbation74.  Collectively, these finding suggest that while some 

patients (e.g. PD Non-Fallers) may have the capacity to adapt to the changing demands of a 

task, patients who have a history of falls and typically walk at slower preferred speeds may 

not. A possible explanation as to why the PD Fallers demonstrated different patterns of head 

and trunk control at the faster walking speed might be found in the higher global rigidity 

scores reported for these patients at baseline. According to previous research, the rigidity of 

the axial system (e.g. trunk, pelvis, neck) significantly increases at faster walking speeds for 

people with PD40.  Given the axial skeleton essentially serves as a biological shock absorber 

to minimise the effects of movement-related forces on the visual and vestibular systems33-36, 

an increase in the rigidity of this system would likely influence its capacity to perform this 

role. As such, the higher prevalence of rigidity evident in the PD fallers may have made these 

individuals more susceptible to speed-related changes in axial rigidity and account for a 

plateau or decline in head and trunk stability during the faster walking trials. Nevertheless, 

the significant decline in some aspects of dynamic stability at the faster walking speed 

suggests that the assessment of gait during fast-paced walking may be more suitable for 

identifying people with PD who are at an increased risk of falling75.  Furthermore, it seems 

that if therapists are not monitoring changes in postural stability during gait retraining 

programs, it is possible that improvements in gait dynamics may come at the cost of an 

increased falls risk for some patients. 



 

 

Study Limitations 

There are a number of methodological factors that should be considered when reviewing our 

results, as they have the potential to limit our capacity to directly compare our findings with 

previous research.  First, we elected to conduct our assessments on a motorised treadmill to 

strictly control changes in walking speed and to ensure the safety of the participants. 

However, previous research has shown that treadmill walking is not a perfect analogue for 

overground walking, as it generally returns different values for some spatiotemporal 

characteristics76, 77, gait variability71, 77 and joint kinetics76, 78.  Second, the use of tri-axial 

accelerometers to assess head and trunk rhythmicity during the walking trials limited our 

capacity to objectively evaluate other factors that may potentially have influenced gait 

stability (e.g. arm swing, base of support). Although there is a growing body of evidence to 

suggest that the size of one’s base of support is not significantly influenced by their walking 

speed79-81, research has consistently reported a relationship between arm swing and walking 

speed in healthy younger82 and older adults83.  While it remains unclear whether arm swing 

directly influences walking stability84 or whether it serves to recover a stable walking pattern 

following a perturbation85, it is important to acknowledge that differences in arm swing 

between the groups may have potentially impacted the reported outcomes. Future research 

should seek to determine the specific role(s) of arm swing in stabilising the gait patterns of 

people with PD and evaluate whether imposed faster and slower walking speeds influence 

walking stability in a similar way during overground walking in this population. Despite the 

shortcomings of this methodological approach, our findings are likely to be of significant 

clinical relevance, as physical therapists are often restricted to using treadmills for gait 

retraining due to space limitations and the need to minimise patient risk in the clinical setting. 

Furthermore, if we consider that those patients who are most likely to be referred to physical 



 

therapists for gait retraining are those who present with significant gait disability that limits 

their walking speed, then these findings have obvious implications for current practice. 

 

CONCLUSIONS 

While systematic evidence indicates that gait retraining can improve stride length16-21, 

walking speed17-23 and walking distance22 in people with PD, the results of this study suggest 

that these changes may lead to an increased risk of future falls for some patients if postural 

stability is not targeted. As such, we recommend that gait retraining should not be 

implemented as a stand-alone therapy for high-risk PD patients, but rather should be coupled 

with other physical therapy that seeks to address any underlying balance impairments that 

may be present for an individual.  
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FIGURE LEGENDS 

Fig. 1: Mean (+1 SD) walking speeds, stride lengths, cadences and stride time variability for 

the PD fallers, PD Non-Fallers and age-matched Older Adults while walking on the treadmill 

at 70%, 100% and 130% of their preferred walking speed. 

 

Fig. 2: Estimated Marginal Means (EMM) and standard errors (SE) for the head and trunk 

harmonic ratios (adjusted for walking speed and stride time variability) for the PD fallers, PD 

Non-Fallers and Older Adults while walking on the treadmill at 70%, 100% and 130% of 

their preferred walking speed. Note: Larger harmonic ratios depict a greater proportion of in-

phase relative to out-of-phase accelerations and, hence represent more stable gait patterns. 

 

Fig. 3: Estimated Marginal Means (EMM) and standard errors (SE) for head and trunk RMS 

accelerations (adjusted for walking speed and stride time variability) for the PD fallers, PD 

Non-Fallers and age-matched Older Adults while walking on the treadmill at 70%, 100% and 

130% of their preferred walking speed. 
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Table 1: Demographic data and disease-specific scores for the participants with PD Fallers, 

PD Non-Fallers and the age-matched Older Adults. Data represent the mean (standard error 

of the mean (SEM)) values or absolute numbers and percentages. Test 1 = one-way ANOVA; 

Test 2 = Kruskal-Wallis Test; Test 3 = χ2 test. 

ns: No significant differences between groups; a: PD Fallers significantly different to PD Non-Fallers; b: PD Fallers 

significantly different to Older Adults; c: PD Non-Fallers significantly different to Older Adults 

       PD Fallers PD Non-

Fallers 

Older 

Adults 

Test Sig 

Demographics      

Age (Years) 69.3 (2.2) 66.5 (2.5) 68.6 (2.8) 1 ns 

Gender (Male) 6 (60.0%) 6 (60.0%) 6 (60.0%) 3 ns 

Height (cm) 165.7 (3.5) 168.5 (3.8) 168.7 (2.7) 1 ns 

Ns 

ns 
Mass (kg) 65.9 (6.2) 67.9 (3.8) 65.9 (3.1) 1 ns 

      

Falls History and Fear of Falls      

Activities-Specific Balance Confidence 59.3 (8.9) 78.7 (4.7) 82.3 (7.0) 2 ns 

Previous Falls (12 months) 9.5 (4.8) 0.0 (0.0) 0.4 (0.2) 2 a, b 

      

Quality of Life      

8-item Parkinson’s Disease 

Questionnaire 

28.8 (4.9) 14.4 (2.1)  2 a 

      

Neurological Exam      

Disease Duration (years) 7.0 (1.7) 4.6 (0.6)  2 ns 

Levodopa (mg/day) 810.8 (147.8) 451.6 (102.9)  1 ns 

Dopamine Agonists 2 (20.0%) 2 (20.0%)  3 ns 

Catechol-O-Methyl Transferase 

Inhibitors 

2 (20.0%) 2 (20.0%)  3 ns 

Monoamine Oxidase Inhibitors 6 (60.0%) 3 (30.0%)  3 ns 

Benzodiazepine 0 (0.0%) 0 (0.0%)  3 ns 

No Medication 0 (0.0%) 1 (10.0%)  3 ns 

UPDRS III 22.6 (1.9) 13.1 (2.1)  1 a 

Hoehn & Yahr Stage Score 2.2 (0.2) 1.4 (0.2)  2 a 

Schwab & England ADL Scale 77.0 (2.4) 89.5 (2.0)  1 a 

Revised Freezing of Gait Score 10.8 (3.2) 2.1 (2.1)  2 a 

      
      



 

Table 2: Estimated Marginal Means (EMM) and standard errors (SE) for the head and trunk harmonic ratios and RMS accelerations (adjusted for walking speed 

and stride time variability) for the PD fallers, PD Non-Fallers and Older Adults while walking on the treadmill at 70%, 100% and 130% of their preferred walking 

speed. Note: Larger harmonic ratios depict a greater proportion of in-phase relative to out-of-phase accelerations and, hence represent more rhythmic gait patterns. 

      70% Preferred Walking Speed 100% Preferred Walking Speed 130% Preferred Walking Speed  

 PD Fallers PD Non-Fallers Older Adults PD Fallers PD Non-Fallers Older Adults PD Fallers PD Non-Fallers Older Adults Sig 

 EMM (SE) EMM (SE) EMM (SE) EMM (SE) EMM (SE) EMM (SE) EMM (SE) EMM (SE) EMM (SE)  

           

Harmonic Ratios           

 Anteroposterior 1.54 (0.08) 1.69 (0.06) 1.63 (0.06) 1.86 (0.06) 1.75 (0.05) 1.85 (0.06) 1.77 (0.05) 1.93 (0.06) 1.96 (0.07) ¥, §, † 

Head Mediolateral 1.74 (0.08) 2.27 (0.07) 2.84 (0.07) 1.94 (0.06) 2.46 (0.06) 2.95 (0.06) 2.15 (0.06) 2.61 (0.07) 3.15 (0.08) a, b, c, ¥, Ŧ, § 

 Vertical 2.22 (0.10) 2.54 (0.08) 2.75 (0.09) 2.52 (0.08) 2.73 (0.07) 3.19 (0.08) 2.34 (0.08) 2.89 (0.09) 3.40 (0.10) a, b, c, ¥, §, † 

           
 Anteroposterior 2.08 (0.09) 2.37 (0.08) 2.30 (0.08) 2.15 (0.07) 2.24 (0.07) 2.71 (0.08) 1.68 (0.07) 2.55 (0.08) 2.67 (0.09) a, b, c, ¥, † 

Trunk Mediolateral 1.96 (0.10) 2.14 (0.08) 2.26 (0.09) 2.14 (0.08) 2.24 (0.07) 2.68 (0.08) 2.24 (0.07) 2.56 (0.09) 3.07 (0.10) a, b, c, ¥, Ŧ, §, † 

 Vertical 2.46 (0.12) 2.94 (0.10) 3.02 (0.10) 2.82 (0.10) 3.01 (0.09) 3.53 (0.10) 2.50 (0.09) 3.12 (0.10) 3.77 (0.12) a, b, c, ¥, §, † 

           

RMS Acceleration (m/s2)          

 Anteroposterior 1.17 (0.10) 0.79 (0.10) 0.72 (0.10) 1.09 (0.10) 0.61 (0.10) 0.57 (0.10) 0.88 (0.10) 0.62 (0.10) 0.51 (0.10) a, b, ¥, § 

Head Mediolateral 1.33 (0.11) 0.90 (0.11) 1.02 (0.11) 1.11 (0.11) 0.76 (0.11) 0.83 (0.11) 0.98 (0.11) 0.77 (0.11) 0.78 (0.11) ¥, § 

 Vertical 1.85 (0.12) 1.51 (0.12) 1.41 (0.12) 1.79 (0.12) 1.47 (0.12) 1.52 (0.12) 1.80 (0.12) 1.76 (0.12) 1.78 (0.12) Ŧ, §, † 

           
 Anteroposterior 1.02 (0.07) 0.78 (0.07) 0.71 (0.07) 0.91 (0.07) 0.79 (0.07) 0.72 (0.07) 0.84 (0.07) 0.91 (0.07) 0.75 (0.07) † 

Trunk Mediolateral 1.66 (0.14) 1.24 (0.14) 1.18 (0.14) 1.39 (0.14) 0.99 (0.14) 0.95 (0.14) 1.16 (0.14) 1.00 (0.14) 0.92 (0.14) ¥, § 

 Vertical 2.05 (0.14) 1.46 (0.14) 1.46 (0.14) 2.03 (0.14) 1.53 (0.14) 1.62 (0.14) 2.04 (0.14) 1.93 (0.14) 1.89 (0.14) Ŧ, §, † 

           
ns: No significant differences between groups; a: PD Fallers significantly different to PD Non-Fallers; b: PD Fallers significantly different to Older Adults; c: PD Non-Fallers significantly 

different to Older Adults; ¥ 70% significantly different to 100%; Ŧ 100% significantly different to 130%; § 70% significantly different to 130%; † significant Group*Speed interaction. 
 

 

 


