
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Wu, Shaomin  (2018) Doubly geometric processes and applications.   Journal of the Operational
Research Society, 69  (1).   pp. 66-77.  ISSN 0160-5682.

DOI

https://doi.org/10.1057/s41274-017-0217-4

Link to record in KAR

http://kar.kent.ac.uk/60730/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/78918710?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Doubly geometric processes and applications1

Shaomin Wu∗

Kent Business School, University of Kent, Canterbury, Kent CT2 7PE, UK

2

Abstract3

The geometric process has attracted extensive research attention from authors in reliability4

mathematics since its introduction. However, it possesses some limitations, which include that:5

(1) it can merely model stochastically increasing or decreasing inter-arrival times of recurrent6

event processes, and (2) it cannot model recurrent event processes where the inter-arrival time7

distributions have varying shape parameters. Those limitations may prevent it from a wider8

application in the real world.9

In this paper, we extend the geometric process to a new process, the doubly geometric process,10

which overcomes the above two limitations. Probability properties are derived and two methods11

of parameter estimation are given. Application of the proposed model is presented: one is on12

fitting warranty claim data and the other is to compare the performance of the doubly geometric13

process with the performance of other widely used models in fitting real world datasets, based on14

the corrected Akaike information criterion.15

Keywords: failure process modelling, geometric processes, recurrent events, Poisson processes,16

maintenance.17

1 Introduction18

1.1 Motivation19

Since its introduction by Lam (1988), the geometric process (GP) has attracted extensive research20

attention. A considerable bulk of research on the GP, including more than 200 papers and one21

monograph (Lam, 2007), has been published. For example, the GP has been applied in system22

∗E-mail: s.m.wu@kent.ac.uk. This paper is accepted by Journal of the Operational Research Society and is in

press.
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reliability analysis (Yuan and Meng, 2011; Jain and Gupta, 2013), maintenance policy optimisation23

(Zhang, et.al, 2002; Liu and Huang, 2010; Wang, 2011; Zhang, et.al, 2013), warranty cost analysis24

(Chukova, et. al., 2005), modelling of the outbreak of an epidemic disease (Chan, et.al., 2006),25

and modelling of electricity prices (Chan, et al., 2014). In the meantime, some authors propose26

extended models to overcome the limitations of the GP (Finkelstein, 1993; Wang and Pham, 1996;27

Braun, et. al., 2005; Chan, et.al., 2006; Wu and Clements-Croome, 2006).28

The GP is a stochastic process that is defined as (Lam, 1988): a sequence of random variables29

{Xk, k = 1, 2, . . . } is a GP if the cdf (cumulative distribution function) of Xk is given by F (ak−1t)30

for k = 1, 2, . . . and a is a positive constant.31

As can be seen, the distinction between the GP and the renewal process lies in the fact that32

the inter-arrival times of the renewal process have the same distribution F (t) over k’s and the33

inter-arrival times of the GP have a cdf F (ak−1t), which changes over k’s. In some scenarios such34

as reliability mathematics, this distinction makes the GP more attractive in application as it can35

model the failure process of ageing or deteriorating systems, which may have decreasing working36

times between failures.37

While the GP is an important model and has been widely used in solving problems in various38

research areas, its scope is still limited and does not fit the purposes of various empirical studies.39

First, this model is not suitable for a stochastic process in which the inter-arrival times may need40

to be modelled by distributions with varying shape parameters. Second, it can merely describe41

stochastically increasing or decreasing stochastic processes. This paper aims to propose a new42

process that can overcome those two limitations and to study its probabilistic properties.43

1.2 The geometric process and related work44

This section introduces the GP and discusses its limitations in detail. We begin with an important45

definition on stochastic order.46

Definition 1 Stochastic order (p. 404 in Ross (1996)). Assume that X and Y are two random47

variables. If for every real number r, the inequality48

P (X ≥ r) ≥ P (Y ≥ r)

holds, then X is stochastically greater than or equal to Y , or X ≥st Y . Equivalently, Y is49

stochastically less than or equal to X, or Y ≤st X.50

From Definition 1, one can define the monotonicity of a stochastic process: Given a stochastic51

process {Xk, k = 1, 2, ...}, if Xk ≤st Xk+1 (Xk ≥st Xk+1) for k = 1, 2, ..., then {Xk, k = 1, 2, ...} is52
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said stochastically to be increasing (decreasing).53

Lemma 1 (p. 405 in Ross (1996)) Assume that X and Y are two random variables, then54

X ≥st Y if only if E[u(X)] ≥ E[u(Y )],

for all increasing functions u(.).55

Lam proposes the definition of the GP, as shown below (Lam, 1988).56

Definition 2 (Lam, 1988) Given a sequence of non-negative random variables {Xk, k = 1, 2, . . . },57

if they are independent and the cdf of Xk is given by F (ak−1x) for k = 1, 2, . . . , where a is a positive58

constant, then {Xk, k = 1, 2, · · · } is called a geometric process (GP).59

We refer to the random variable Xk as the kth inter-arrival time in what follows.60

Remark 1 From Definition 1 and Lemma 2, we have the following results.61

• If a > 1, then {Xk, k = 1, 2, · · · } is stochastically decreasing.62

• If a < 1, then {Xk, k = 1, 2, · · · } is stochastically increasing.63

• If a = 1, then {Xk, k = 1, 2, · · · } is a renewal process (RP).64

• If {Xk, k = 1, 2, . . . } is a GP and X1 follows the Weibull distribution, then the shape param-65

eter of Xk for k = 2, 3, . . . remains the same as that of X1. This observation is not specific66

to the Weibull distribution and holds for many other distributions with a scale and shape67

parameter such as the Gamma distribution.68

The GP offers an alternative process to model recurrent event processes. For example, in reliability69

mathematics, the renewal process (RP) and the non-homogeneous Poisson process (NHPP) are70

two widely used stochastic processes. The RP is normally used to model working times of a system71

if the system is renewed (or replaced with new and identical items upon failures) and the NHPP72

is used to model working times of a system where a repair restores the system to the status just73

before the failure happened, i.e., the repair is a minimal repair. Those assumptions of the RP and74

the NHPP may be too stringent in real applications. On the other hand, repairing a given item75

may have a limited number of methods, which implies that repair effect on the item is not random76

(Kijima, 1989). Meanwhile, the reliability of the item may decrease over time. Considering those77

facts, time between failures may therefore become shorter and shorter. The GP can model time78

between failures of such items.79
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Meanwhile, some authors either proposed similar definitions to that of the GP (Finkelstein,80

1993; Wang and Pham, 1996) or made an attempt to extend the GP (Braun, et. al., 2005; Wu81

and Clements-Croome, 2006; Lam, 2007). Those different versions can be unified as: they replace82

ak−1 with g(k), where g(k) is a function of k and is defined differently by different authors, as83

discussed below.84

For a sequence of non-negative random variables {Xk, k = 1, 2, . . . }, different consideration85

has been laid on the distribution of Xk, as illustrated in the following (in chronological order).86

(i) Finkelstein (1993) proposes a process, named the general deteriorating renewal process, in87

which the distribution of Xk is Fk(x), where Fk+1(x) ≤ Fk(x). A more specific model is88

defined such that Fk(x) = F (akx) where 1 = a1 ≤ a2 ≤ a3 ≤ . . . and ak are parameters. In89

this model, g(k) = ak.90

(ii) Wang and Pham (1996) defines a quasi-renewal process, which assumes X1 = W1, X2 = aW2,91

X3 = a2W3, . . . , and the Wk are independently and identically distributed and a > 0 is92

constant. Here, g(k) = a1−k.93

(iii) Braun, et. al. (2005) proposes a variant, which assumes that the distribution of Xk is94

Fk(x) = F (k−ax), or g(k) = k−a. The authors proved that the expected number of event95

counts before a given time, or analogously, the Mean Cumulative Function (MCF) (or, the96

renewal function), tends to infinite for the decreasing GP. As such, they propose the process97

as a complement.98

(iv) Wu and Clements-Croome (2006) set g(k) = αak−1 + βbk−1, where α, β, a and b are param-99

eters. Their intention is to extend the GP to model more complicated failure patterns such100

as the bathtub shaped failure patterns.101

(v) Chan, et.al. (2006) extends the GP to the threshold GP: A stochastic process {Zn, n =102

1, 2, ...} is said to be a threshold geometric process (threshold GP), if there exists real numbers103

ai > 0, i = 1, 2, ..., and integers {1 = M1 < M2 < . . . } such that for each i = 1, 2, ...,104

{an−Mi
i Zn,Mi ≤ n < Mi+1} forms a renewal process.105

Apparently, the model proposed in Finkelstein (1993) has a limitation in common: there is a106

need to estimate a large number of parameters, which may be problematic in real applications as107

a large number of failure data are needed to estimate the parameters. It should be noted that it108

is notoriously difficult to collect a large number of failure data in practice.109
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1.3 Comments on the geometric process and its extensions110

While the GP is an important model and widely used, its scope is still limited and does not fit111

the purposes of various empirical studies due to the following two limitations.112

• Invariance of the shape parameter. Suppose the cdf Fk(x) of Xk in the GP have a scale113

parameter and a shape parameter. Then, all of the above discussed GP-like variants and114

extensions implicitly make an assumption: the processes merely change the scale parameter115

of Fk(x), but keep their shape parameter constant over k’s. In other words, none of the116

existing GP-like processes can model a recurrent event process whose shape parameter of117

Fk(x) changes over k. To elaborate, let us take the Weibull distribution as an example.118

Assume that the cdf of X1 is F (x) = 1− e
−( x

θ1
)θ2

. Then according to the GP-like processes,119

the cdf of Xk is F (g(k)x) = 1− exp{−( x
θ1g−1(k)

)θ2}. That is, the scale parameter θ1g
−1(k) is120

a function of k and it changes over k’s, but the shape parameter θ2 is independent of k and121

remains constant over different k’s. This assumption may be too stringent and should be122

relaxed for a wider application. To this end, one may assume a natural extension of the GP,123

in which Xk has a cdf F (g(k)xh(k)), where h(k) is a function of k and the parameters in h(k)124

are estimable. As a result, in the Weibull distribution case, for example, the inter-arrival125

times, Xk’s, may be fitted with cdf F (g(k)xh(k)) = 1− exp{−( x
(θ1g−1(k))1/h(k)

)θ2h(k)}.126

A similar description of the above paragraph is the invariance of the CV (coefficient of127

variation). Assume that {X1, X2, ...} follows the GP. Denote λ11 = E[X1] and λ21 = E[X2
1 ]−128

λ2
11. Then it is easy to obtain the expected value and the variance of Xk: E[Xk] = a(1−k)λ11129

and V[Xk] = a(2−2k)λ21, respectively. The coefficient of variation (CV) of Xk is therefore130

given by γk =

√
V[Xk]

E[Xk]
=

√
λ21/λ11, which suggests that the CVs are independent of k and131

keep constant over k’s.132

An example of such a process with varying shape parameters in Fk(x) can be found in Chan,133

et.al. (2006), in which Xk are the number of daily infected cases of an epidemic disease (i.e.,134

the severe acute respiratory syndrome) in Hong Kong in 2003 are assumed to be independent135

and follow the threshold geometric process, in which Fk(x) have different shape parameters136

for k = 1, 2, .....137

• Monotonicity of the GP. From Remark 1, the GP {Xk, k = 1, 2, . . . } change monotonously.138

That is, it can merely model the processes with increasing or decreasing inter-arrival times,139

or renewal processes. It is known, however, that the inter-arrival time processes of some140

real-world systems may exhibit non-monotonous failure patterns. For those systems, using141

the GP to model their failure processes is apparently inappropriate.142
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1.4 Contribution and importance of this work143

This paper proposes a new stochastic process, the doubly geometric process (DGP), which makes144

contribution to the literature in the following aspects.145

• First, the DGP can model recurrent event processes where Fk(x)’s have different shape146

parameters over k’s, which can be done by neither the GP-like models nor other repair147

models such as reduction of age models discussed in Doyen and Gaudoin (2004). One148

may note that the DGP differs from the research that treats the parameters in a lifetime149

distribution as functions of time (Zuo et al., 1999).150

• Second, the DGP can model not only monotonously increasing or decreasing stochastic151

processes, but also processes with complicated failure intensity functions such as the bathtub152

shaped curves and the upside-down bathtub shaped curves, as can be seen from examples153

shown in Fig. 1. Noteworthily, although the models proposed by Wu and Clements-Croome154

(2006) and Chan, et.al. (2006) can also model complicated failure intensity functions, they155

assume that Fk(x)’s have constant shape parameters over k’s and they need more parameters156

than the DGP (i.e., the DGP needs 2 parameters whereas the models proposed by Wu and157

Clements-Croome (2006) and Chan, et.al. (2006) need at least 3 parameters).158

• Third, as Braun, et. al. (2005) points out, the GP has a limitation that it only allows for159

logarithmic growth or explosive growth. The DGP can overcome this limitation.160

One may also notice that, in recent years, many authors have devoted considerable effort on161

developing novel methods to model repair processes, see Wu and Scarf (2015), for example. The162

current paper can of course be regarded as a new contribution to the literature of modelling repair163

processes.164

The paper has important managerial implications, as it provides a more flexible model for165

wider application than the GP. Although this paper uses cases from reliability engineering, its166

results and discussion can also be applied to analyse other recurrent events. Such applications167

can be found in scientific studies, medical research, marketing research, etc, just as the GP can168

be used to model recurrent events such as the outbreaks of diseases (Chan, et.al., 2006) and the169

electricity price (Chan, et al., 2014).170

1.5 Overview171

The rest of the paper is structured as follows. Section 2 introduces the DGP and discusses its172

probabilistic properties. Section 3 proposes methods of parameter estimation. Section 4 compares173
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the performance of the DGP with that of other models based on datasets collected from the174

real-world. We finish with a conclusion and future work in Section 5.175

2 A doubly geometric process and its probabilistic prop-176

erties177

In this section, we propose the following definition and then discuss its statistical properties.178

Definition 3 Given a sequence of non-negative random variables {Xk, k = 1, 2, . . . }, if they are179

independent and the cdf of Xk is given by F (ak−1xh(k)) for k = 1, 2, . . . , where a is a positive180

constant, h(k) is a function of k and the likelihood of the parameters in h(k) has a known closed181

form, and h(k) > 0 for k ∈ N, then {Xk, k = 1, 2, · · · } is called a doubly geometric process (DGP).182

183

In the above definition, for the sake of simplicity, we call the process as doubly geometric process184

since the process can include two geometric processes: {ak−1, k = 1, 2, . . . } is a geometric series185

and {h(k), k = 1, 2, . . . } can be a geometric series.186

We refer to ak−1 as the scale impact factor and h(k) as the shape impact factor. It should be187

noted that the cdf of X1 is F (x).188

Remark 2 Similar to the definition of the quasi-renewal process given by Wang and Pham (1996),189

one may give an alternative definition of Definition 3 as: assume X1 = W1, X2 = (a−1W2)
1/h(1),190

. . . , Xk = (a1−kW2)
1/h(k), . . . and the Wk are i.i.d., then the process {Xk, k = 1, 2, . . . } is called a191

doubly geometric process.192

Although the extension from the GP to the DGP seems quite natural, it may create difficul-193

ties in mathematical derivation. For example, deriving some probability properties of the DGP194

becomes much more complicating than that of the GP, it is difficult to derive a closed-form of the195

MCF for the DGP whereas an explicit iteration equation of the MCF for the GP can be derived.196

Remark 3 From Definition 3, it follows the results below.197

(i) If h(k) = 1, then {Xk, k = 1, 2, · · · } reduces to the geometric process.198

(ii) Denote λ1k = E[X
h−1(k)
1 ] =

∫

∞

0
xh−1(k)f(x)dx and λ2k = E[X

2h−1(k)
1 ] =

∫

∞

0
x2h−1(k)f(x)dx,199

where f(x) = ∂F (x)/∂x exists and h−1(k) = 1
h(k)

. Assume that E[X
h−1(k)
1 ] < ∞ and200

E[X
2h−2(k)
1 ] < ∞. Then it is easy to obtain the expected value and the variance of Xk:201

E[Xk] = a(1−k)h−1(k)λ1k and V[Xk] = a(2−2k)h−1(k)λ2k − λ2
1k for k = 1, 2, . . . .202
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(iii) If X1 follows the exponential distribution and203

(a) if {Xk, k = 1, 2, . . . } follows the GP, then Xk (for k = 2, 3, . . . ) follows the exponential204

distribution with different rate parameters from that of X1,205

(b) if {Xk, k = 1, 2, . . . } follows the DGP, then Xk (for k = 2, 3, . . . ) follows the Weibull206

distribution,207

(iv) If {Xk, k = 1, 2, . . . } follows the DGP and X1 follows the Weibull distribution, then Xk (for208

k > 1) follows the Weibull distribution with different shape and scale parameters from those209

of X1.210

If we assume that {X1, X2, ...} follows the DGP. Then from (ii) in Remark 3, the coefficient211

of variation (CV) of Xk is γk =

√
V[Xk]

E[Xk]
=

√
a(2−2k)h−1(k)λ2k−λ2

1k

a(1−k)h−1(k)λ1k
, which implies that the CVs change212

over k’s. Hence, we can make the following conclusion.213

Lemma 2 Suppose that {Xk, k = 1, 2, · · · } is a GP, then the coefficient of variation (CV) of Xk214

changes over k’s.215

Now a question arisen is the selection of the forms of h(k). In what follows, we investigate the216

DGP with the h(k) defined below:217

h(k) = (1 + log(k))b, (1)

where log is the logarithm with base 10 and b is a parameter.218

2.1 Probabilistic properties of the DGP with h(k) = (1 + log(k))b219

In this entire section, i.e., Section 2.1, we assume h(k) = (1 + log(k))b.220

The reason that we select h(k) = (1 + log(k))b is: we have fit the DGP with different h(k),221

which are bk−1, blog(k), and 1 + b log(k), on ten real-world datasets (see Section 4) and found that222

the DGP with h(k) = (1 + log(k))b outperforms the processes with the other three h(k)’s. In real223

applications, it is suggested that other form of h(k) may also be investigated and selected once a224

comparison on the performance of difference h(k) has been made.225

In selecting h(k), one may set some conditions, for example, h(1) = 1 and h(k) > 0 for226

k = 1, 2, . . . .227

Unlike the GP that can only be either stochastically increasing or stochastically decreasing,228

the DGP can model more flexible processes, as shown in the four examples in Figure 1.229
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(a) a = 0.97, b = −0.05, θ1 = 40 and
θ2 = 0.6.

(b) a = 1.1, b = 0.2, θ1 = 40 and θ2 =
0.6.

(c) a = 0.92, b = 0.4, θ1 = 40 and
θ2 = 0.6.

(d) a = 1.02, b = −0.3, θ1 = 40 and
θ2 = 0.6.

Figure 1: DGPs with different parameter settings.

Proposition 1 Given a DGP {Xk, k = 1, 2, . . . },230

(i) if 0 < a < 1, P (X1 > 1) = 1, and b < 0, then {Xk, k = 1, 2, . . . } is stochastically increasing.231

(ii) if a > 1, P (0 < X1 < 1) = 1, and b < 0, then {Xk, k = 1, 2, . . . } is stochastically decreasing.232

(iii) if 0 < a < 1, P (0 < X1 < 1) = 1, and 0 < b < 4.898226, then {Xk, k = 1, 2, . . . } is233

stochastically increasing.234

(iv) if a > 1, P (X1 > 1) = 1, and 0 < b < 4.898226, then {Xk, k = 1, 2, . . . } is stochastically235

decreasing.236

Proposition 2 Given a DGP {Xk, k = 1, 2, . . . } with h(k) = (1 + log(k))b, if (1 + log(k +237

1))−b(log(y)−k log(a))+(1+log(k))−b((k−1) log(a)− log(y)) varies between negative and positive238

values, then the DGP is not stochastically monotonous over k’s, where y represents all the possible239

values on Xk (for k = 1, 2, . . . ).240

Stochastic ageing properties are widely discussed in the reliability literature. For example,241

F (t) is IFR (Increasing Failure Rate) if f(t)

F̄ (t)
is increasing in t for all t ≥ 0, where f(t) = dF (t)

dt
242
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and F̄ (t) = 1 − F (t). With regard to the stochastic ageing properties of the DGP, we have the243

following proposition.244

Proposition 3 Suppose {Xk, k = 1, 2, . . . } follows the DGP. If b > 0 and F (t) is IFR, then the245

cdf Fk(t) of Xk is IFR.246

Suppose {Xk, k = 1, 2, . . . } follows the DGP, denote Sn ≡ ∑n
k=1 Xk with S0 ≡ 0. Then the247

distribution of Sn is248

P (Sn ≤ t) = P (Sn−1 +Xn ≤ t)

=

∫ t

0

F (n−1)(t− u)dFn(u)

=

∫ t

0

F (n−1)(t− u)
(

an−1(1 + log(n))bu(1+log(n))b−1f(an−1u(1+log(n))b)
)

du

=

∫ an−1t(1+log(n))b

0

F (n−1)(t− a(1−n)(1+log(n))−b

v(1+log(n))−b

)f(v)dv, (2)

where F (0)(t) = 1 and F (n)(t) ≡ P (Sn ≤ t). Let N(t) = max{n : Sn ≤ t}, then the MCF, m(t), is249

given by250

m(t) = E[N(t)] =
∞
∑

n=1

P (Sn ≤ t). (3)

Denote251

m1(t) =
∞
∑

n=1

P (
n
∑

k=1

Yk ≤ t), (4)

where {Yk : k ≥ 1} is a renewal process with Yk > 0 and the cdf of the inter-arrival times252

is F (x) (which has the same as the cdf of X1). Then, equivalently, m1(t) is the MCF of the253

ordinary renewal process {N1(t) : t ≥ 0} with N1(t) ≡ max{n :
∑n

k=1 Yk ≤ t}. For {Yk : k ≥ 1},254

m1(t) = F (t) +
∫ t

0
m1(t− y)dF (y), as can be seen in many textbooks of stochastic processes (for255

example, see Ross (1996)).256

Unlike the MCF, m1(t), for the ordinary renewal process where an iteration equation can be257

given, deriving an iteration equation for m(t) defined in Eq. (3) seems not an easy task. In real258

applications, numerical analysis may be sought. For example, on the four examples used in Figure259

1, we run the Monte Carlo simulation for 2000 times and estimate the values of the MCF for each260

example. Figure 2 shows the values of the MCF of the four examples with the parameter settings261

shown in Figure 1.262

Below, the lower bounds or the upper bounds are given for two scenarios.263

Proposition 4 (i) Given that m1(t) and m(t) are defined in Eq. (3) and Eq. (4), respectively,264
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Figure 2: The MCF, m(t), of the four examples shown in Figure 1.

if {Xk, k = 1, 2, . . . } is stochastically non-decreasing, then265

m(t) ≤ m1(t). (5)

(ii) Suppose that {Xk, k = 1, 2, . . . } follows the DGP and P (Xk < c) = 1 for k = 1, 2, . . . and266

c is a positive real number. Denote Λn =
∑n

k=1 E[Xk] and σ2 = 1
n

∑n
k=1 V[Xk]. Assume that267

{Xk, k = 1, 2, . . . } is stochastically non-increasing and t > limn→∞ Λn(< +∞), then268

m(t) ≥ max

{

m1(t),
∞
∑

n=1

[

1− exp

(

−nσ2

c2
H(

ct− cΛn

nσ2
)

)]

}

. (6)

The following proposition compares the MCFs of the GP and the DGP.269

Proposition 5 Suppose that {Xg
k , k = 1, 2, · · · } is a GP with Xg

k ∼ F (ak−1x) and {Xd
k , k =270

1, 2, · · · } is a DGP with Xd
k ∼ F (ak−1x(1+log(k))b). Denote mg(t) =

∑

∞

n=1 P (
∑n

k=1 X
g
k ≤ t) and271

md(t) =
∑

∞

n=1 P (
∑n

k=1 X
d
k ≤ t). Then,272

(i) mg(t) > md(t) if 0 < a < 1, b < 0 and P (X1 > 1) = 1, or if a > 1, b > 0 and P (0 < X1 <273

1) = 1.274

(ii) mg(t) < md(t) if 0 < a < 1, b > 0 and P (X1 > 1) = 1, or if a > 1, b < 0 and P (0 < X1 <275

1) = 1.276
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The following proposition compares the MCFs of two DGPs.277

Proposition 6 Suppose that {Xd1
k , k = 1, 2, · · · } with Xd1

k ∼ F (ak−1
1 x(1+log(k))b1 ) is a DGP and278

{Xd2
k , k = 1, 2, · · · } with Xd2

k ∼ F (ak−1
2 x(1+log(k))b2 ) is a DGP. Denote md1(t)279

=
∑

∞

n=1 P (
∑n

k=1 X
d1
k ≤ t) and md2(t) =

∑

∞

n=1 P (
∑n

k=1 X
d2
k ≤ t).280

(i) If a1 = a2 and b1 > b2,281

• md1(t) < md2(t) if a > 1 and P (0 < X1 < 1) = 1,282

• md1(t) > md2(t) if 0 < a < 1 and P (X1 > 1) = 1.283

(ii) md1(t) < md2(t) if b1 = b2 and a1 > a2.284

(iii) md1(t) > md2(t) if a2 > a1 > 1, b1 > b2, and P (X1 > 1) = 1.285

(iv) md1(t) < md2(t) if 0 < a1 < a2 < 1, b1 > b2, and P (X1 < 1) = 1.286

Proposition 1 shows the monotonicity property of the DGP, but it has not shown the conver-287

gence of the DGP in probability. The following property addresses this issue.288

Proposition 7 Given a DGP {Xk, k = 1, 2, . . . },289

(i) if 0 < a < 1, then then Xk converges to infinity in probability as k → ∞,290

(ii) if a > 1, then Xk converges to zero in probability as k → ∞.291

2.2 Discussion292

We make the following discussion.293

• On the scale impact factor g(k) and the shape impact factor h(k). Although we only discussed294

the DGP in which the scale impact factor is set to g(k) = ak−1, g(k) may also be replaced with295

other forms of functions such as those proposed in Finkelstein (1993); Braun, et. al. (2005);296

Wu and Clements-Croome (2006); Chan, et.al. (2006). The function h(k) = (1 + log(k))b297

in Eq. (1) can be replaced with any other functions of k, for example, h(k) = bk−1, or298

h(k) = blog(k) etc. However, the propositions of DGPs with different g(k) and h(k) are299

discussed in the following bullet.300

• On the propositions. Among the propositions discussed in Section 2.1, Proportion 4 holds301

for any g(k) and h(k) > 0 as both g(k) and h(k) > 0 are not involved in the proof process302

of Proposition 4. But the other propositions are discussed for the case where g(k) = ak−1
303

and h(k) = (1 + log(k))b.304
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3 Estimation of the parameters in the DGP305

In this section, we discuss two methods of estimation of the parameters in the DGP.306

3.1 Least squares method307

For the geometric process, Lam (1992) develops a method, which is a least squares method, to308

estimate the parameters in the GP. With a similar method, we estimate the parameters in the309

DGP in this section.310

Suppose that a process {Xk, k = 1, 2, . . . } follows the DGP with Xk ∼ F (ak−1x(1+log(k))b). Let311

Zk = ak−1X
(1+log(k))b

k . (7)

Then {Zk, k = 1, 2, . . . } follows an ordinary renewal process. Given observations xk of Xk (for312

k = 1, 2, . . . ), from Eq. (7), we can have313

µ = ak−1x
(1+log(k))b

k + ek (8)

where µ = E[Zk] and ek are i.i.d. random variables each having mean 0 and a constant variance.314

When b 6= 0, it is not possible to linearise model (8) by means of a suitable transformation,315

that is, model (8) is intrinsically nonlinear.316

For given observations xk of Xk (with k = 1, 2, ..., N0), one can minimise the following sum of317

the squares of the errors to estimate the parameters a, b and µ.318

(µ̂, â, b̂) = argmin
µ,a,b

N0
∑

k=1

(

xk − (µa1−k)(1+log(k))−b
)2

. (9)

Obviously, there is no general closed-form solution for µ̂, â, and b̂, one needs therefore pursue319

nonlinear programming methods to solve the problem.320

The reader is referred to Theorem 2.1 in page 24 in the book by Seber and Wild (2003) for321

obtaining the asymptotic distributions of (µ̂, â, b̂).322

3.2 Maximum likelihood method323

Suppose that one observes N systems starting from time 0 until time T . Assume that system j324

(j = 1, 2, . . . , N) has failed for Nj times at time points sj,k with k = 0, 1, . . . , Nj. Let sj,0 = 0.325

Then the working times of system j are sj,1 − sj,0, sj,2 − sj,1, . . . , sj,Nj
− sj,Nj−1, and T − sj,Nj

,326
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respectively. Denote xj,i = sj,i − sj,i−1 for i = 1, 2, ..., Nj and xj,Nj+1 = T − sj,Nj
.327

Then, for the DGP with h(k) = (1 + log(k))b, the likelihood function is given by328

L(a, b,θ) =
N
∏

j=1







[

1− F (aNj(xj,Nj
)(1+log(Nj+1))b)

]

Nj
∏

k=1

fk(xj,i)







=
N
∏

j=1

{[

1− F (aNj(xj,Nj
)(1+log(Nj+1))b)

]

×
Nj
∏

k=1

[

ak−1(1 + log(k))b(xj,i)
(1+log(k))b−1f(ak−1(xj,i)

(1+log(k))b)
]







, (10)

where
∏Nj

k=1 • = 1 for Nj = 0, θ is the vector of the parameters of distribution F (x).329

Maximising the above likelihood function, we can obtain â, b̂, and θ̂, which are the estimates330

of the corresponding parameters, respectively. That is331

(â, b̂, θ̂) = argmax
a,b,θ

L(a, b,θ). (11)

Denote ϑ = (a, b,θ), where ϑ1 = a, ϑ2 = b. The Fisher information matrix IN0(â, b̂, θ̂) can332

then be calculated by IN0(â, b̂, θ̂) = −E

(

∂2 logL(a,b,θ)
∂ϑi∂ϑj

)

|
ϑ=(â,b̂,θ̂), which can be used to estimate the333

asymptotic variance-covariance matrix of (â, b̂, θ̂). In this paper, the Fisher information matrix334

will be used to calculate the standard deviations of the estimated parameters.335

Obviously, there is no general closed-form solution in Eq. (10) for the MLE of â, b̂, and θ̂.336

4 Applications of the DGP337

In Section 4.1 and Section 4.2, two case studies based on real-world datasets are conducted to338

compare the performance of the DGP with h(k) = (1 + log(k))b, in terms of the corrected Akaike339

information criterion, or AICc for short.340

• For the least squares method, model performance is measured by the root mean squared341

error (RMSE)=
√

1
N0

∑N0

k=1(xk − x̂k), where x̂k is the estimate of the xk.342

• For the maximum likelihood method, model performance is measured with the AICc value,343

N0 ln(L) + 2p + 2p(p+1)
n−p+1

, where p is the number of parameters in the model and L is the344

maximised likelihood. The reader is referred to Burnham and Anderson (2004) for more345
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discussion on the AICc. The value 2p + 2p(p+1)
n−p+1

in the AICc value is a penalty term that is346

proportional to the number p of parameters in a model.347

4.1 Estimating the number of warranty claims348

Table 1 shows warranty claim data that were collected from a networking card manufacturer.349

The manufacturer ships a certain number of items to its retailers on a month basis and then the350

warranty agency manages warranty claims. The exact number of the items sold in a shipment351

is unknown to the warranty agency. It includes the number of warranty claims in consecutive352

12 months on 20 shipments. For example, the underlined number 8 in month 2 and shipment 3353

means that 8 2-month-old items that were claimed were from shipment 3 (or they were shipped354

in month 3). The last column shows the CV of the warranty claims in each month.355

Figure 3 illustrates the coefficient of variation (CV) on the warranty claims over the 12 months.356

As can be seen, the CV values show an increasing trend. Following Lemma 2, it is more appropriate357

to use the DGP to fit the data than the GP.358

We fit the data with the nonparametric method by solving the problem for the DGP:359

(µ̂, â, b̂) = argmin
µ,a,b

20
∑

i=1

12
∑

k=1

(

xk,i − (µa1−k)(1+log(k))−b
)2

(12)

where xk,i is the number of warranty claims of k-month-old items that are shipped in month360

i. Similarly, the parameters of the GP are estimated. For the DGP model, µ̂ = 9.19(3.495),361

â = 1.00232(0.114) and b̂ = 0.250(0.739) (the values in the brackets are the estimate errors of362

the corresponding estimates). The AICc values are AICcDGP = 630.090 and AICcGP = 630.242,363

which suggests that the DGP outperforms the GP.364

Figure 3: Change of the CVs over 12 months.
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Table 1: Time between warranty claims of 22 identical items (unit: day).

a
a
a

a
a

a
a
aa

Months

Shipments
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 CV

1 10 8 13 7 8 16 9 6 7 15 11 9 13 7 9 6 13 10 9 5 0.323
2 7 4 8 6 9 6 1 8 8 9 11 10 10 9 7 8 1 3 9 12 0.417
3 11 7 15 3 4 3 3 13 9 13 6 4 3 5 5 6 3 2 8 5 0.607
4 8 3 12 6 7 6 11 9 9 7 10 7 8 11 6 5 8 5 6 17 0.385
5 4 3 4 2 8 6 7 15 7 9 10 5 2 6 4 14 3 7 10 13 0.559
6 11 8 5 10 4 5 7 8 1 6 11 1 3 4 3 9 4 5 16 13 0.599
7 7 7 22 3 5 14 12 5 4 7 9 4 4 6 17 4 13 3 6 5 0.658
8 11 8 4 5 4 12 6 10 3 4 8 3 5 12 9 10 3 11 4 4 0.486
8 4 3 16 7 1 8 3 6 1 5 6 4 4 12 5 2 4 5 5 6 0.660
10 2 5 9 4 3 10 11 8 1 12 8 6 10 7 2 3 9 10 6 9 0.497
11 5 4 8 4 7 12 1 9 5 8 4 7 3 2 3 5 13 8 7 6 0.513
12 4 5 2 6 1 7 6 10 4 3 12 2 2 17 4 13 6 1 9 5 0.724

4.2 Modelling time-between-failure data365

4.2.1 The datasets366

Two datasets published in Kumar and Klefsjö (1992); Ascher and Feingold (1984) are used in this367

section. Both datasets are collected from the real world and are time-between-failures. The names368

and the sample sizes of the datasets are shown in Table 2, where N0 is the sample size. Kumar and369

Klefsjö (1992) develop a power-law-based non-homogeneous Poisson process (PL-NHPP) model370

on dataset 1 and Lam (2007) develops geometric process models and PL-NHPP models on dataset371

2, which allow us to compare the performance of the DGP with their results.372

Table 2: The datasets, including TBF(Time between failures).

No. Dataset N0 References
1 Hydraulic system (LHD3) 25 Kumar and Klefsjö (1992)
2 Propulsion diesel engine failure data 71 Ascher and Feingold (1984)

In the following, we compare the performance of the models that are estimated with the least373

squares and the maximum likelihood estimation methods, respectively.374

4.2.2 Model comparison375

Definition 3 assumes that {Xk, k = 1, 2, . . . } in the DGP are independent. We therefore use the376

Box-Ljung test to check the hypothesis that a given series of data is independent (Ljung and377

Box, 1978). Applying the Box-Ljung test on datasets 1 and 2, the result fails to reject the null378

hypothesis that observations in datasets 1 and 2 are independent at the 5% level of significance.379
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On the two datasets listed in Table 2, we use both the least squares method and the maximum380

likelihood method to estimate the parameters and then compare the performance of the DGP381

with the GP.382

With the least squares method, both the DGP and the GP are estimated and their RMSE383

values are denoted by RMSEDGP and RMSEGP, respectively. The estimated parameters and their384

standard deviations (which are shown in brackets under the estimated parameters), and the RMSE385

values of both the DGP and the GP are shown in Table 3. As can been seen, the RMSE values386

of the DGP on each dataset is smaller than the RMSE values of the GP, based on which one can387

conclude the DGP outperforms the GP on both datasets.388

Table 3: Comparison of the performance of the GP and the DGP based on the least squares
method.

Parameters of the DGP Parameters of the GP

No. â b̂ µ̂ â µ̂ RMSEDGP RMSEGP

1 0.944 0.499 531.406 1.0382 209.841 111.729 144.431
(0.0559) (0.174) (109.390) (0.0315) (67.652)

2 0.909 0.488 147.624 0.972 56.702 65.670 69.810
(0.0607) (0.280) (62.664) (0.0181) (20.486)

Suppose F (t) = 1− e
−( t

θ1
)θ2

. With the maximum likelihood method, we use the DGP, the GP,389

the PL-NHPP to fit the two datasets, and denote their corresponding AICc values as AICcDGP,390

AICcGP, and AICcPL, respectively. The number of the parameters (i.e., a, b, θ1, θ2) in the DGP391

and the number of the parameters (i.e., a, θ1, θ2) in the GP are 4 and 3, respectively, i.e., p = 4 for392

the DGP and p = 3 for the GP. The number of the parameters in the PL-NHPP is 2 (i.e., p = 2).393

The results are shown in Table 4. The estimated parameters and their standard deviations (which394

are shown in brackets under the estimated parameters) of the DGP are also given in the table.395

On the rest comparison, the AICc values of the DGP are the smallest.396

In addition to the independence test conducted before, to test the assumption that the DGP397

can model datasets 1 and 2, we use the Cramér-von-Mises test to test the null hypotheses that398

{âk−1X
(1+log(k))b̂

k , k = 1, . . . , N0} on datasets 1 and 2 follow the Weibull distribution, respectively.399

We conduct the hypothesis testing with a R-package EWGoF (Krit, 2014). The results fail to400

reject the null hypotheses at the 5% level of significance.401

4.3 Comparison between different forms of h(k)402

In the preceding sections, we set h(k) = (1 + log(k))b in Definition 3. By setting other forms of403

h(k) such as h(k) = bk−1, h(k) = blog(k), or h(k) = 1 + b log(k), one can define other forms of404
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Table 4: Comparison of the performance of the GP and the DGP based on the maximum likelihood
method.

Estimated Parameters of the DGP Estimated Parameters of the GP

No. â b̂ θ̂1 θ̂2 â θ̂1 θ̂2 AICcDGP AICcGP AICcPL
1 0.884 0.638 449.165 0.789 1.0147 168.807 1.0287 301.376 304.182 311.851

(0.0938) (0.352) (337.92) (0.227) (0.0230) (58.139) (0.159)
2 0.899 0.502 147.636 0.964 0.983 73.070 1.295 318.030 319.445 323.094

(0.0714) (0.349) (103.569) (0.281) (0.0151) (19.461) (0.182)

the DGP. To differentiate them, we refer to the processes with h(k) = (1 + log(k))b, h(k) = bk−1,405

h(k) = blog(k) and h(k) = 1 + b log(k) as DGPlog1, DGPexp, DGPlog2, and DGPlog3, respectively.406

Similarly, one can estimate parameters a and b of the DGPexp, DGPlog2, and DGPlog3 with either407

the least squares or the maximum likelihood estimation method. We have compared the AICc408

values of the DGPlog1 with the AICc values of the rest three models on the ten datasets and found409

that the AICc value of the DGPlog on each dataset is smaller than those of the other three models,410

respectively, which implies that the DGP with h(k) = (1 + log(k))b outperforms. That is the411

reason that we investigated the GDP with h(k) = (1 + log(k))b in this paper.412

5 Conclusion and future work413

This paper proposed a new stochastic process, the doubly geometric process (DGP), which extends414

the geometric process (GP). The DGP can overcome three limitations inherent in the GP. The415

paper discussed probabilistic properties of the DGP with h(k) = (1 + log(k))b, compared the416

mean cumulative functions between the DGP and other processes, and then proposed methods of417

estimation of the parameters in the DGP.418

The paper also applied the DGP to fit two inter-arrival time datasets collected from the real419

world and then compared its performance with the performance of other models. It is found that420

the DGP outperforms the other models on those datasets. This has practical implications for421

lifecycle costing, for example.422

As the DGP is a new model, there are plenty of questions waiting for answers. Those questions423

include, for example, what are the differences between the DGP and the other models in terms424

of the application of the DGP in reliability mathematics? Before we fit a given dataset with the425

DGP, how can we test if the dataset agrees with the DGP? To answer those questions will be our426

future work.427
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Appendix430

Proof of Proposition 1.431

Let u(x) denote a non-decreasing function. With Lemma 1, Xk is stochastically increasing if432

E[u(Xk+1)]− E[u(Xk)] > 0 and let y = ak−1x(1+log(k))b , then we can obtain433

E[u(Xk+1)]− E[u(Xk)] =

∫ +∞

0

u(x)dF (akx(1+log(k+1))b)−
∫ +∞

0

u(x)dF (ak−1x(1+log(k))b)

=

∫ +∞

0

(

u(a−k(1+log(k+1))−b

y(1+log(k+1))−b

)

− u(a(1−k)(1+log(k))−b

y(1+log(k))−b

)
)

dF (y)

> 0. (13)

Let y represent all the possible values on Xk (for k = 1, 2, . . . ). Hence, E[u(Xk+1)]−E[u(Xk)] >434

0 if u(a−k(1+log(k+1))−b
y(1+log(k+1))−b

)−u(a(1−k)(1+log(k))−b
y(1+log(k))−b

) > 0. As u(.) is a non-decreasing435

function, u(a−k(1+log(k+1))−b
y(1+log(k+1))−b

)− u(a(1−k)(1+log(k))−b
y(1+log(k))−b

) > 0 iff436

a−k(1+log(k+1))−b
y(1+log(k+1))−b

a(1−k)(1+log(k))−by(1+log(k))−b = a−k(1+log(k+1))−b+(k−1)(1+log(k))−b

y(1+log(k+1))−b
−(1+log(k))−b

> 1.

(14)

From equality (14), we have437

• if b < 0, then −k(1 + log(k+1))−b + (k− 1)(1 + log(k))−b < 0 and (1 + log(k+1))−b − (1 +438

log(k))−b > 0. That implies,439

(i) if 0 < a < 1, P (X1 > 1) = 1, and b < 0, the inequality (14) holds. Then {Xk, k =440

2, 3, . . . } is stochastically increasing, and441

(ii) if a > 1, P (0 < X1 < 1) = 1, and b < 0, the greater-than sign in the inequality (14)442

should be changed to the smaller-than sign. Then {Xk, k = 2, 3, . . . } is stochastically443

decreasing.444

• On the other hand, if b > 0, (1 + log(k + 1))−b − (1 + log(k))−b < 0. But if b > 0,445

−k(1 + log(k + 1))−b + (k − 1)(1 + log(k))−b may be positive or negative, which can be446

19



equivalently expressed as447

k − 1

k
<

(

1 + log(k)

1 + log(k + 1)

)b

(15)

may hold and448

k − 1

k
>

(

1 + log(k)

1 + log(k + 1)

)b

(16)

may hold as well.449

If b is small (b = 1, for example), then inequality (15) holds. If b is large, then inequality450

(16) holds (this is because
(

1+log(k)
1+log(k+1)

)b

→ 0 for b → ∞). Since
(

1+log(k)
1+log(k+1)

)b

is a decreasing451

function of b, we can find a value of b, denoted as b0, which satisfies: if 0 < b < b0, then452

inequality (15) always holds for any k. Taking the logarithm on both sides of inequality (15)453

and then dividing both sides by log(1 + log(k)) − log(1 + log(k + 1)), then inequality (15)454

becomes455

log(k − 1)− log(k)

log(1 + log(k))− log(1 + log(k + 1))
< b. (17)

Let b0 = min
k

{ log(k−1)−log(k)
log(1+log(k))−log(1+log(k+1))

, k = 2, 3, . . . }. One can obtain b0 = 4.898226. If456

0 < b < b0, then −k(1 + log(k + 1))−b + (k − 1)(1 + log(k))−b < 0 and (1 + log(k + 1))−b −457

(1 + log(k))−b < 0, the inequality (14) holds. That implies458

(iii) if 0 < a < 1, 0 < b < b0, and P (0 < X1 < 1) = 1, then {Xk, k = 2, 3, . . . } is459

stochastically increasing, and460

(iv) if a > 1, 0 < b < b0, and P (X1 > 1) = 1, then {Xk, k = 2, 3, . . . } is stochastically461

decreasing.462

This completes the proof. �463

Proof of Proposition 2. Denote464

U = a−k(1+log(k+1))−b+(k−1)(1+log(k))−b

y(1+log(k+1))−b
−(1+log(k))−b

. (18)

Similar to the proof of Proposition 1, if log(U) = (1 + log(k + 1))−b(log(y) − k log(a)) + (1 +465

log(k))−b((k − 1) log(a) − log(y)) varies between negative and positive values, the left hand side466

of Eq. (14) changes between (0, 1) and (1,+∞). That is, the process {Xk, k = 1, 2, . . . } is467

stochastically non-monotonous.468

This completes the proof. �469
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Proof of Proposition 3.470

fk(t) = ak−1(1 + log(k))bt(1+log(k))b−1f(ak−1t(1+log(k))b). (19)

Denote r(t) = f(t)

F̄ (t)
. We have,471

rk(t) =
fk(t)

F̄k(t)

=
ak−1(1 + log(k))bt(1+log(k))b−1f(ak−1t(1+log(k))b)

F̄ (ak−1t(1+log(k))b)

= ak−1(1 + log(k))bt(1+log(k))b−1r(ak−1t(1+log(k))b), (20)

If b > 0, then t(1+log(k))b is increasing in t. Since r(t) is an increasing function in t, rk(t) is increasing472

in t. �473

Proof of Proposition 4.474

If {Xk, k = 1, 2, . . . } is stochastically non-decreasing, for every real numbers r0 and r1, we have475

P (Xk > r0) ≥ P (X1 > r0), or P (Xk < r0) ≤ P (X1 < r0). Then we have P (
∑n

i=1 Xk < r1) ≤476

P (
∑n

i=1 Yi < r1), which implies that inequality m(t) ≤ m1(t) holds.477

Similarly, we can prove thatm(t) ≥ m1(t) if {Xk, k = 1, 2, . . . } is stochastically non-decreasing.478

According to Bennett’s inequality (Bennett, 1962) below,479

P

(

n
∑

k=1

(Xk − E[Xk]) > t

)

≤ exp

(

−nσ2

c2
H(

ct

nσ2
)

)

, (21)

where H(u) = (1 + u) ln(1 + u)− u, we can obtain480

P (Sn < t) ≥ 1− exp

(

−nσ2

c2
H(

ct− cΛn

nσ2
)

)

. (22)

Hence,481

m(t) ≥
∞
∑

n=1

[

1− exp

(

−nσ2

c2
H(

ct− cΛn

nσ2
)

)]

. (23)

This completes the proof. �482

Proof of Proposition 5.483

In the following, we prove (i).484

According to Definition 1, if Xg
k <st X

d
k , we have mg(t) > md(t). For a given non-decreasing485
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function u(x), with Lemma 1, Xg
k <st X

d
k if E[u(Xg

k)] < E[u(Xd
k )]. Since486

E[u(Xg
k)]− E[u(Xd

k )] =

∫ +∞

0

u(x)dF (ak−1x)−
∫ +∞

0

u(x)dF (ak−1x(1+log(k))b)

=

∫ +∞

0

(

u(a(1−k)y)− u(a(1−k)(1+log(k))−b

y(1+log(k))−b

)
)

dF (y), (24)

E[u(Xg
k)] < E[u(Xd

k )] if u(a
(1−k)y) < u(a(1−k)(1+log(k))−b

y(1+log(k))−b
). As u(.) is a non-decreasing487

function, u(a(1−k)y) < u(a(1−k)(1+log(k))−b
y(1+log(k))−b

) holds if488

a(1−k)y

a(1−k)(1+log(k))−by(1+log(k))−b = a(1−k)(1−(1+log(k))−b)y1−(1+log(k))−b

< 1. (25)

Inequality (25) holds if either of the following conditions is true,489

• if 0 < a < 1, b < 0 and P (X1 > 1) = 1,490

• if a > 1, b > 0 and P (0 < X1 < 1) = 1.491

Similarly, the other bullet (ii) can be established.492

This completes the proof. �493

Proof of Proposition 6.494

Similar to the proof for Proposition 5, Proposition 6 can be established. �495

Proof of Proposition 7.496

• For any given M > 0,497

lim
k→∞

P (|Xk| < M) = lim
k→∞

P (0 < Xk < M) = lim
k→∞

P (X1 < ak−1M (1+log(k))b). (26)

If 0 < a < 1, then lim
k→∞

ak−1M (1+log(k))b = 0. Since X1 is non-negative, lim
k→∞

P (X1 <498

ak−1M (1+log(k))b) = 0, or lim
k→∞

P (|Xk| < M) = 0. That is, Xk converges to infinity in499

probability as k → ∞.500

• For any given ε > 0,501

lim
k→∞

P (|Xk| > ε) = lim
k→∞

P (Xk > ε) = 1− lim
k→∞

P (X1 ≤ ε) = 1− lim
k→∞

P (Xk ≤ ak−1ε(1+log(k))b).

(27)

If a > 1, then lim
k→∞

ak−1ε(1+log(k))b = ∞. That implies lim
k→∞

P (X1 ≤ ak−1ε(1+log(k))b) = 1, or502

lim
k→∞

P (|Xk| > ε) = 0. That is, Xk converges to zero in probability as k → ∞.503

This completes the proof. �504
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