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A new class of hybrid super-supertetrahedral cluster and its 
assembly into a five-fold interpenetrating network 

P. Vaqueiro,
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 S. Makin,
a
 Y. Tong

b
 and S. J. Ewing

b
 

We describe an entirely new type of tetrahedral cluster, 

representing a new level of structural hierarchy: a hybrid 

tetrahedron of supertetrahedra, formed by five T3 

supertetrahedral clusters connected by bipyridyl linkers. Covalent 

assembly of these 37 Å super-supertetrahedra with smaller (10 Å) 

T3 clusters results in the formation of a two-dimensional covalent 

network which contains pores in the mesoporous range. 

Supertetrahedral clusters, with their well-defined sizes and 

compositions, lie at the boundary between colloidal quantum 

dots and molecular species.1 They exhibit interesting electronic 

and optical properties, which can be tuned by varying the 

cluster size and composition, and hence allow the investigation 

of quantum confinement effects at the lower size limit of 

colloidal quantum dots.2,3 Supertetrahedral clusters are also 

excellent building blocks for inorganic open-framework 

chalcogenides in which porosity is integrated with 

semiconductivity, and the resulting multifunctional materials 

are attractive candidates for a wide range of applications, 

including photocatalysis,4 ion-exchange5,6 or fast-ion 

conductivity.
6,7 Linkage of supertetrahedral clusters with 

organic ligands, to form covalent hybrid networks, is also 

possible.8
,9,10 This potentially provides an unprecedented 

capacity to yield materials with novel properties, arising from 

the synergistic interactions between the organic and inorganic 

components. However, only a small number of 

supertetrahedra-based hybrid networks have been reported to 

date,
8,9,10

 as exemplified by the supertetrahedral-cluster 

imidazolate frameworks, which adopt a diamond topology, 

and exhibit two- or three-fold interpenetration depending on 

the size of the supertetrahedral cluster.
8
  

A variety of chalcogenide tetrahedral clusters, belonging to the 

supertetrahedral (Tn), penta-supertetrahedral (Pn), and 

capped supertetrahedral (Cn) series are known.11,12 These 

clusters can be entirely inorganic, or can also be hybrid 

clusters in which some or all of the chalcogenide anions at the 

surface of the cluster have been replaced by ligands (often 

chalcogenolates). For Group 13 elements, known hybrid 

tetrahedral clusters, which contain covalently-bonded amines 

at the vertices, are limited to the Tn series (where n is the 

number of metal layers in the cluster). These include T2 

[In4Te9(en)]
6-

,13 T3 [M10S16L4]
2-

 (M = Ga, In; L=amine),
8, 14 T4 

[In16Cd4S31L4]
6-

,15 and T5 [Cu5Ga30S52(SH)2L2]
11-

 clusters.16 

Herein, we describe a new class of hybrid super-

supertetrahedral cluster (Figure 1), formed by replacing each 

atom in a tetrahedron by a hybrid supertetrahedral cluster. 

The linkage of the new super-supertetrahedral clusters with T3 

clusters results in the formation of a five-fold interpenetrating 

network, which represents a completely new level of 

complexity in this remarkable family of materials. 

 
 
Figure 1. Polyhedral representation of the hybrid super-supertetrahedron, with 
the tetrahedral edges outlined in blue. 
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Figure 2. (a) Schematic view of one 2-dimensional covalent network of the title 
compound along [001]. (b) Single covalent network along [210]. Each T3 
supertetrahedral cluster is represented by a single tetrahedron. T3 clusters in the 
super-supertetrahedra are shown in pink, and linking T3 supertetrahedra in 
green. A super-supertetrahedron has been outlined in blue. 

This material was initially prepared by solvothermal reaction of 

gallium, sulfur, 1,3-benzodiazole and 4-methylpyridine at 

200°C for 5 days.17 The product of the reaction consisted of a 

small amount of yellow crystals of the title compound, 

numerous orange crystals of a previously reported phase 

containing the [Ga10S16(NC6H7)4]
2-

 cluster,18 and a small 

amount of gallium metal. Following extensive optimisation to 

increase the yield of yellow crystals, it was found that 1,3-

benzodiazole was not required to prepare the title 

compound.19 Powder X-ray diffraction data of the product of 

the optimised reaction (ESI) indicates that the title compound 

is the main product of the reaction, although some orange 

crystals are still present. 

Analysis of single-crystal X-ray diffraction data20 for the title 

compound revealed the presence of 37 Å tetrahedral building 

blocks (Figure 1), formed by replacing each atom in a 

tetrahedron by a T3 supertetrahedral cluster. The five T3 

[Ga10S16L4]
2-

 clusters are linked by bipyridyl ligands into this 

large tetrahedral unit, which constitutes the first example of a 

hybrid super-supertetrahedron, and is an unparalleled building 

block in supertetrahedra-based hybrid networks. This hybrid 

super-supertetrahedron is markedly different to Tp,q clusters, 

which can be regarded as Tn clusters in which core central 

atoms have been removed,21,22 and where individual MS4 

tetrahedra are linked by sharing S
2-

 anions. It should be noted 

that the bipyridyl ligand is formed in situ during the 

solvothermal reaction. We have previously observed the in situ 

synthesis of 1,2,-di(4-pyridyl)ethane from similar reaction 

mixtures containing 4-methylpyridine,
18

 and it has also been 

reported that thermal degradation of pyridine derivatives can 

result in the formation of dipyridyl molecules.23 

In the crystal structure of the material reported here, each 

hybrid super-supertetrahedron is linked by its four corners, via 

additional bipyridyl linkers, to four T3 clusters, and each T3 

cluster is connected to two super-supertetrahedra. The 

remaining two vertexes of the two-connected T3 clusters are 

bonded to ethylamine, which is formed in situ via 

decomposition of the organic reagents under solvothermal 

conditions.
10

 The linkages between the super-supertetrahedra 

and the two-connected T3 clusters result in the formation of a 

two-dimensional covalent network (Figure 2), consisting of 

alternating two- and four-connected building units, and 

containing cross-shaped pores. Each arm of the cross-shaped 

pore has an aperture of approximately 50 Å. From a structural 

point of view, this covalent network presents multi-level 

hierarchy. Individual MS4 tetrahedra can be considered as the 

primary building units. There are three crystallographically 

distinct T3 clusters, which can be designated as the secondary 

building units, and the hybrid super-supertetrahedra, which 

are the tertiary building units, constitute the next level of 

structural hierarchy. The two-dimensional network described 

here constitutes the first example of a supertetrahedra-based 

hybrid network containing two types of building units, super-

supertetrahedra and T3 clusters. 
(a)         (b) 

 
Figure 3. (a) Schematic representation of one layer of the title compound, 
viewed along [001], showing the five interpenetrating networks. (b) Alternative 
polyhedral representation of one layer, illustrating the arrangement of super-
supertetrahedra. Each node represents a T3 supertetrahedral cluster, and each 
of the five interpenetrating networks is shown in a different colour.  

In the crystal structure reported here, layers, with an 

approximate thickness of 40 Å, are formed by interpenetration 

of five covalent two-dimensional networks, as illustrated in 

Figure 3. The five-fold interpenetration found here is unique in 

inorganic or hybrid supertetrahedra-based materials, although 

two- or even three-fold interpenetration is not unusual.
8,24 This 

high level of interpenetration is likely to be a consequence of 

the large size of the hybrid super-supertetrahedral clusters 

when compared to conventional Tn clusters. 

Successive layers are stacked along the c-axis in an ABAB… 

sequence. Despite the five-fold interpenetration, the porosity 

of the crystal structure, which was determined using 

PLATON,25 is approximately 42%, and appears to consist of 

large cavities and narrow channels of ca. 3 Å oriented along 

the a and b axes. Eight methylpyridinium moieties per formula 

unit were located within the pores, but charge balancing 

50 Å 

40 Å 
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would require the presence of additional protonated species, 

and significant residual electron density remained in the 

Fourier maps. Hence the proposed formula for this compound, 

taking into account the results of elemental analysis,26 is: 

[C6H8N]14[(Ga10S16)7(NC2H7)4(NC6H7)8(N2C12H12)8] (or 

[C6H8N]14[((Ga10S16)5(NC6H7)4(N2C12H12)6)((Ga10S16)(NC2H7)2 

(N2C12H12))2] when super-supertetrahedra and two-connected 

T3 clusters are expressed as individual components). FT-IR 

data (ESI) collected on ground single-crystals of this material is 

consistent with the presence of both aromatic rings and alkane 

groups. Thermogravimetric data (Figure 4), collected under an 

air atmosphere, indicates that weight loss occurs in multiple 

stages. The overall weight loss (53.6%) is consistent with 

decomposition to Ga2O3, for which a theoretical value of 53.8% 

would be expected. The first weight loss, which occurs up to 

approximately 250°C, can be assigned to the removal of the 14 

methylpyridinium countercations from the pore space 

(calculated weight loss of 10.8%). The weight at 600°C (57.8%) 

is reasonably consistent with the complete removal of all the 

organic components and the formation of an oxysulfide 

intermediate, Ga2O2S, which decomposes at approximately 

680°C into the final Ga2O3 oxide. 
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Figure 4. TGA data for the title compound.  
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Figure 5. UV-vis diffuse reflectance data for the title compound.  

UV-vis diffuse reflectance measurements (Figure 5) indicate 

that the optical band gap of this material is 3.17(7) eV, which is 

consistent with the observed yellow coloration. This value is 

comparable to those found for other gallium sulfides 

containing amine-functionalised T3 clusters.
9,10,27 Marked red 

shifts in the optical band gap of hybrid supertetrahedra-based 

materials can sometimes occur,
27

 and may be related to the 

presence of - interactions between aromatic rings and the 

formation of ion-pair charge-transfer salts. However, there is 

no evidence for - interactions between the countercations 

and the anionic layers in the crystal structure of the title 

compound, and this is also consistent with the absence of a 

charge transfer band in the diffuse reflectance data reported 

here (Figure 5). Preliminary photoluminescence measurements 

on a wide range of hybrid supertetrahedra-based materials 

prepared in our laboratory, suggests that the nature of the 

ligands, the countercations and the three-dimensional 

arrangement of the supertetrahedral clusters have a marked 

influence on the emission behaviour of this family of materials, 

and detailed studies are currently underway to gain a better 

understanding of their optical properties. 

In conclusion, we have presented here the first example of a 

new class of hybrid cluster, a hybrid super-supertetrahedron, 

formed by the linkage of five T3 clusters. Given that amine-

functionalised T4 and T5 clusters have already been 

described,
15,16

 we envisage that the synthesis of even larger 

hybrid super-supertetrahedra should be possible. The linkage 

of hybrid super-supertetrahedra with smaller T3 clusters found 

in the material described here represents a new level of 

structural hierarchy and complexity. The solvothermal 

synthesis of these hybrid materials is challenging, as it depends 

sensitively on the subtle interplay of a wide range of reaction 

variables, including the composition of reaction mixtures, pH, 

temperature and time of reaction. Exploration of alternative 

approaches, such as ionothermal synthesis, which has already 

resulted in the preparation of large inorganic 

chalcogenidometallate superspheres28 and amine-

functionalised T5 
 
clusters,

16
 may be required.  
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