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The Truncated Moment Problem on N0

M. Infusino∗†, T. Kuna‡, J. L. Lebowitz§, ¶ and E. R. Speer§

Abstract

We find necessary and sufficient conditions for the existence of a
probability measure on N0, the nonnegative integers, whose first n mo-
ments are a given n-tuple of nonnegative real numbers. The results,
based on finding an optimal polynomial of degree n which is nonneg-
ative on N0 (and which depends on the moments), and requiring that
its expectation be nonnegative, generalize previous results known for
n = 1, n = 2 (the Percus-Yamada condition), and partially for n = 3.
The conditions for realizability are given explicitly for n ≤ 5 and in
a finitely computable form for n ≥ 6. We also find, for all n, explicit
bounds, in terms of the moments, whose satisfaction is enough to
guarantee realizability. Analogous results are given for the truncated
moment problem on an infinite discrete semi-bounded subset of R.

Keywords: truncated moment problem; discrete moment problem; realizability
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1 Introduction

In this paper we address the following question: given a positive integer
n and an n-tuple m = (m1,m2, . . . ,mn) of real numbers, does there exist a
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probability measure µ on N0, the set of nonnegative integers, with the mk’s as
moments: Eµ[Xk] = mk, where X is the identity random variable X(i) = i
on N0? When this is true we say that m is realizable on N0 or, when no
confusion can arise, simply realizable. Specifically, we wish to give necessary
and sufficient conditions on m for this realizability, in as simple a form as
possible. For j ≤ n we write m(j) := (m1, . . . ,mj); thus m may be written as
m(n) and we will use this notation when we want to emphasize the number
of moments to be realized. We write m0 = 1, so that Eµ[Xk] = mk for k = 0
as well as k = 1, . . . n.

This problem is a special case of the truncated (power) moment problem,
in which one asks whether or not k given numbers (or vectors, or functions)
can be realized as the first k moments of some random variable (or random
vector, or random process) X whose support lies in a specified set or space X .
We then speak of the given data as realizable on X (for more details and
references about this problem see e.g. [7], [16], [17, Chap. III] for the finite
dimensional case X ⊆ Rd and see e.g. [3], [13] for the infinite dimensional
one). The main challenge in this area is to identify relevant and practically
checkable conditions for realizability. Our results answer this question for the
case X = N0. This problem is very natural in many situations; for example,
X could count the number of atoms in a container or the number of snakes
in a pit.

We note here that in some cases one might, instead of specifying the nu-
merical values of the mj’s, specify some relations mj ≥ fj(m1, . . . ,mj−1), and
ask whether such relations are compatible with the realizability of m(j) on
N0. This occurs, for example, in a more general form in the classical theory
of fluids. There the pair correlation function is given by some approximation
schemes (Percus-Yevick, hyper-netted chain, etc.) as a function of the den-
sity, or the three-body correlation function is given as a function of the one
and the two particle correlations (e.g., in the superposition approximation).
Motivated by this, in the previous works [4, 12, 13] the truncated moment
problem for X a point process on a subset Λ of Zd or Rd was considered.
If, instead of the full point process X, one takes the random variable given
by the number of points in a fixed volume of Zd or Rd then the problem
reduces to the truncated moment problem on N0 considered in the current
work. The sufficiency bounds given in Section 7 may in this way be useful
for establishing realizability for point processes.

The case in which the support X is a discrete subset of R and X is the
identity random variable is often called the discrete moment problem. For
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finite X , e.g. X = {0, 1, . . . , N} ⊆ N0, the problem has been extensively
studied in connection with the problem of computing bounds for the prob-
ability that a certain number of events occurs in systems where only a few
moments are known (see e.g. [14, 15, 20, 21, 22]). When X is an infinite
discrete set the problem has been considered by Karlin and Studden [10,
Chapter VII]. In particular, they characterize the cone of all n-tuples realiz-
able on X = N0 ∪ {+∞} for the generalized moment problem (Tchebycheff
systems), using techniques from convex geometry which since have become
standard in moment theory (see also [9, 11]). The specific choice X = N0

is also considered in [10, Sect. 8, Chap. VII], but the technique used by
the authors characterizes the cone of all n-tuples realizable on N0 only up to
an unknown parameter and hence does not provide a collection of necessary
and sufficient conditions for realizability. To our knowledge the present paper
contains the first computable necessary and sufficient realizability conditions
for the truncated power moment problem, with arbitrary degree n, on N0.
These results are here extended also to any infinite discrete semi-bounded
subset of R.

For the related truncated Stieltjes moment problem, in which X = R+,
explicit necessary and sufficient conditions for realizability are known [5].
Earlier works (see e.g. [1], [9], [10, Chapter V], [11], [23, p. 28 ff.]) did
not provide such explicit conditions, due to the same technical restrictions
present, e.g., in the work of Karlin and Studden for the truncated moment
problem on N0. Let us reinterpret now the results of [5] in an inductive
form (obtained in Appendix A; see in particular Corollary A.4) which is
parallel to our treatment of the discrete case: for each j = 1, . . . , n we
state conditions which are necessary and sufficient for the realizability of
m(j) := (m1, . . . ,mj), given the realizability ofm(j−1) (which is in itself clearly
a necessary condition). At each stage we distinguish two types of realizability:
I-realizability, in which m(j) lies in the interior of the set of realizable moment
vectors, and B-realizability, in which m(j) lies on the boundary of this set. If
m(j−1) is B-realizable, then m(j) is realizable if and only if mj takes a certain
unique value, computable from m(j−1), and then must be B-realizable; m(j)

cannot be I-realizable. If m(j−1) is I-realizable, then realizability of m(j)

is determined by the Hankel matrix Cj, where Cj = A(k) if j = 2k and
Cj = B(k) if j = 2k+ 1; here for k ≥ 0 the (k+ 1)× (k+ 1) Hankel matrices
are

A(k) := (mi+j)
k
i,j=0, B(k) := (mi+j+1)

k
i,j=0. (1.1)
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Specifically, m(j) is I-realizable if Cj is positive definite (C > 0) and is B-
realizable if Cj is positive semidefinite (C ≥ 0) but not positive definite.

We note that it is easy to see the relevance of the Hankel matrix for the
Stieltjes problem, and in fact to see that realizability of m(n) requires that
Cj ≥ 0 for j = 1, . . . , n. For if 2k ≤ n, Xk = (1, X, . . . , Xk), and ν realizes
m(n) on R+, then for any Qk = (q0, q1, . . . , qk) ∈ Rk+1,

Eν [(Qk ·Xk)
2] = Eν

( k∑
i=0

qiX
i

)2
 = QT

kA(k)Qk = QT
kC2kQk (1.2)

and, if 2k + 1 ≤ n,

Eν [X(Qk ·Xk)
2] = QT

kB(k)Qk = QT
kC2k+1Qk, (1.3)

must both be nonnegative. Obtaining sufficient conditions [5] is considerably
more complicated. We remark that [5] gives explicitly computable necessary
and sufficient conditions for the existence of a unique representing measure
on R+; in this case the support of the measure is necessarily a finite set which
is also explicitly computable (c.f. Proposition A.2 in Appendix A). When
these conditions are satisfied the results of the current paper are not needed;
one may simply check whether or not this support is contained in N0.

The approach in [5] can be extended to give necessary and sufficient
conditions for the truncated moment problem on X ⊂ R where X is defined
by a finite number of polynomial inequalities, but the technique becomes
more complex as the number of polynomials defining X increases. Since
defining N0 in this way requires an infinite number of polynomial constraints,
it is not clear how to apply the method to this case; a non-trivial modification
seems to be necessary. In the present paper we introduce a new technique to
get realizability conditions for the case X = N0, based on an infinite family
of polynomials which are different from the squares of polynomials used in
[5] for the case X = R+ (see (1.2) and (1.3)).

On the other hand, in structure our approach to the X = N0 problem
is strictly parallel to our reinterpretation of the results about the truncated
Stieltjes moment problem given above. We use the same inductive procedure,
and introduce the same notion of I- and B-realizability on N0. Again, ifm(j−1)

is B-realizable then m(j) is B-realizable if and only mj takes a specific value,
and B-realizability is the only possibility. The new element enters when
m(j−1) is I-realizable. In this case we prove the existence of a polynomial
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P
(m)
j (x) =

∑j
i=0 pix

i, which we take to be monic (pj = 1), such that for any

µ that realizes m(n) on N0, Eµ[Pj(X)] is minimized over all monic polynomials

Pj(x) of degree j, nonnegative on N0, by Pj(x) = P
(m)
j (x). We then show

that m(j) is realizable if and only if

Eµ[P
(m)
j (X)] =

j∑
i=0

pimi ≥ 0, (1.4)

with strict inequality (respectively equality) in (1.4) corresponding to I-
realizability (respectively B-realizability). Condition (1.4) thus plays some-
what the role of positive semidefiniteness of the Hankel matrices in the Stielt-
jes theory.

The remaining problem is to find explicitly the polynomials P
(m)
n . Here

the n = 1 case is trivial and the solution for n = 2 goes back to the work of
Percus and Yamada [18, 19, 24] in statistical mechanics:

P
(m)
1 (x) := x,

P
(m)
2 (x) := (x− k)(x− (k + 1)), with k = bm1c.

The condition for realizability when n = 1 is thus m1 ≥ 0, and when n = 2
is

m2 −m2
1 ≥ θ(1− θ), θ = m1 − bm1c, (1.5)

which is known as the (Percus)-Yamada condition in the statistical mechanics
literature. The similar condition ((5.6) below) in the n = 3 case can be
derived from [15, 20]. The above conditions are necessary. In the current
work we additionally show that they are also sufficient for realizability on N0.

The construction of P
(m)
n is considerably more complicated for n ≥ 4. In

the current work we give explicit constructions in the cases n = 4 and n = 5,
and a reasonably efficient recursive procedure for larger values of n.

The remainder of the paper is organized as follows. In Section 2 we
establish necessary and sufficient conditions on m(n) for realizability on the
set NN = {0, 1, 2, . . . , N}; we are interested only in large N and always
assume that N ≥ n. The conditions will consist of the nonnegativity of a
certain set of O(Nn) affine functions of m. In Section 3 we give necessary and
sufficient conditions for realizability on N0; these are nonnegativity conditions
as for NN , but there are now an infinite number. In Section 4 we describe the
classification of realizable moment vectors as I- or B-realizable and introduce
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the key polynomials P
(m)
n . Sections 5 and 6 are devoted to obtaining these

polynomials: for n = 1, 2, and 3 in Section 5 and for n ≥ 4 in Section 6,
with a recursive procedure for general n described in Section 6.1 and the
explicit formulas for n = 4 and n = 5 in Section 6.2. In Section 7 we discuss
a sufficient condition for realizability on N0. In Section 8 we consider the
problem of realizing given moments on an arbitrary infinite discrete subset
of R+. Certain technical discussions are relegated to two appendices.

2 Realizability on NN

In this section we establish necessary and sufficient conditions for realizabil-
ity of a moment vector m(n) by a probability measure on NN = {0, 1, . . . , N},
where N ≥ n, using similar techniques to the ones in [10]. Note that such
techniques were used also in [19] for the realizability problem for point pro-
cesses in the case n = 2. We begin with a geometrical lemma.

Lemma 2.1 Let S be a finite subset of Rn which is not contained in any n−1
dimensional hyperplane. Then the convex hull of S has the form

⋂
H∈HH,

where H is the family of all closed half spaces H containing S whose bounding
hyperplane ∂H contains (at least) n points of S which do not belong to any n−
2 dimensional affine subset of Rn. Moreover, this representation is minimal:
no half space may be omitted from the intersection.

Proof: This is a consequence of Theorem 3.1.1 of [8]. �

Now let Pn denote the set of monic polynomials of degree n in a single
variable which have n distinct roots in and are nonnegative on N0, Pn,N
denote the set of monic polynomials of degree n which have n distinct roots
in and are nonnegative on NN , and Qn,N denote the set of polynomials of
degree n, with leading term −xn, which have n distinct roots in and are
nonnegative on NN . To describe these sets of polynomials more precisely we
let An denote the set of n-tuples α = (α1, . . . , αn) of nonnegative integers for
which α1 < α2 · · · < αn and in addition:

• If n is even then α2k = α2k−1 + 1 for k = 1, . . . , n/2;

• If n is odd then α1 = 0 and α2k+1 = α2k + 1 for k = 1, . . . , (n− 1)/2.
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For α ∈ An we define

Pα(x) = (x− α1)(x− α2) · · · (x− αn). (2.1)

Finally, let RN(x) = N−x. It follows immediately from these definitions that
the set Pn consists of all polynomials Pα with α ∈ An, that (using N ≥ n)
Pn,N consists of all polynomials Pα with α ∈ An and αn ≤ N , and that Qn,N
consists of all polynomials RNPα with α ∈ An−1 and αn−1 ≤ N − 1.

Now to any polynomial P (x) =
∑n

k=0 pkx
k of degree at most n we asso-

ciate the affine function LP on Rn defined by

LP (m) =
n∑
k=0

pkmk (2.2)

(LP is an affine rather than linear because m0 takes the fixed value 1). Clearly
(2.2) sets up a bijective correspondence between polynomials of degree n and
affine functions on Rn.

Theorem 2.2 Suppose that N ≥ n. Then the moment vector m = m(n) is
realizable on NN if and only if

LP (m) ≥ 0 and LQ(m) ≥ 0 for every P ∈ Pn,N and Q ∈ Qn,N . (2.3)

Moreover, none of the conditions in (2.3) may be omitted.

Proof: Since each P ∈ Pn,N and Q ∈ Qn,N is nonnegative on NN , (2.3) is
certainly necessary for realizability. Conversely, the set of probability mea-
sures on NN is the set of all convex combinations of the point masses δk,
k = 0, 1, . . . , N , so the set SN of all moment vectors realizable on NN is the
convex hull of the set S of all the corresponding vectors v(k), where v

(k)
j = kj

for j = 1, . . . , n and k = 0, 1, . . . , N . Note that for any n distinct positive in-
dices k1, . . . , kn the set of moment vectors v(ki) is linearly independent, since
the matrix

(
v
(ki)
j

)
i,j=1,...,n

is, up to a (nonzero) factor ki in row i, a Vander-

monde matrix with nonzero determinant. In particular, since N ≥ n, S is
not contained in any hyperplane of dimension n − 1 and SN may thus be
characterized by Lemma 2.1. With the correspondence noted above between
affine functions and polynomials, this characterization becomes

SN =
⋂
H∈H

H =
⋂
P∈R

{m | LP (m) ≥ 0}, (2.4)
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with R the set of polynomials of degree n, normalized to have leading coeffi-
cient ±1, which are nonnegative on NN and have n distinct zeros k1, . . . , kn
in NN (that the corresponding points v(ki) do not belong to any n−2 dimen-
sional affine subset follows from the linear independence pointed out above).
This yields (2.3). �

3 Realizability on N0

We now turn to necessary and sufficient conditions for realizability of m =
m(n) on N0. Since any P ∈ Pn is nonnegative on N0 the condition

LP (m) ≥ 0 for every P ∈ Pn (3.1)

is certainly necessary. By the results of [2], a moment vector m is realizable
on N0 if and only if it is realizable on NN for some N , so that m will be
realizable if and only if (3.1) holds and in addition there exists an N such
that LQ(m) ≥ 0 for every Q ∈ Qn,N . We want to replace the latter condition
by one which does not refer explicitly to N .

Consider then a polynomial P = Pα ∈ Pn−1 and an integer N with
N > αn−1, and let P̂ denote the polynomial P̂ (x) = xP (x). Both P and P̂
are nonnegative on N0 and thus realizability on N0 requires that

LP̂ (m) ≥ 0 and LP (m) ≥ 0 for every P ∈ Pn−1. (3.2)

(Note that the first condition here does not follow from (3.1), since P̂ = P̂α
belongs to Pn if and only if α1 > 0, which is possible only if n is odd.)
Let QN = RNP ∈ Qn,N ; since realizability on NN for some N implies such
realizability for all sufficiently large N , a necessary condition for realizability
on some NN is that for all P ∈ Pn−1 and all sufficiently large N , LQN (m) =
LRNP (m) ≥ 0, i.e.,

NLP (m) ≥ LP̂ (m). (3.3)

But (3.2), with (3.3), requires in turn that

LP (m) ≥ 0 and if LP (m) = 0 then LP̂ (m) = 0, P ∈ Pn−1. (3.4)

We can now state the main result of this section.

Theorem 3.1 The conditions (3.1) and (3.4) are necessary and (collec-
tively) sufficient for realizability of m on N0.
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Theorem 3.1 will follow easily from part (b) of Theorem 3.2, given imme-
diately below. Part (a) of that theorem will be used in Section 4. The proof
of Theorem 3.2 is rather lengthy and we defer it to Section 3.1.

Theorem 3.2 (a) If LP (m) > 0 for all P ∈ Pk, 1 ≤ k ≤ n − 2, then there

exists a polynomial P
(m)
n ∈ Pn such that for all P ∈ Pn,

L
P

(m)
n

(m) ≤ LP (m).

(b) If LP (m) ≥ 0 for all P ∈ Pn−1 then there exists a finite set P̃(m)
n−1 ⊂ Pn−1

such that for all P = Pα ∈ Pn−1 and all N > αn−1 there is a P̃ ∈ P̃(m)
n−1 such

that
LRN P̃ (m) ≤ LRNP (m).

Proof of Theorem 3.1: Necessity of (3.1) and (3.4) is established above,
so we must prove that these conditions imply the existence of some N (m) such
that LQ(m) ≥ 0 for every Q ∈ Qn,N(m) . Now by (3.4) and Theorem 3.2(b),

P̃(m)
n−1 is defined. For any P̃ ∈ P̃(m)

n−1, (3.4) further implies that there exists an

integer N ′ depending on P̃ such that LRN P̃ (m) = NLP̃ (m) − LxP̃ (m) ≥ 0

for N ≥ N ′, and since P̃(m)
n−1 is finite, there exists an integer N (m) such that

for any P̃ ∈ P̃(m)
n−1, LRN P̃ (m) ≥ 0 for N ≥ N (m). But this suffices, since if

Q ∈ Qn,N(m) then Q = RN(m)P for some P = Pα ∈ Pn−1 with αn−1 < N (m),

and then for P̃ as in Theorem 3.2(b), LQ(m) ≥ LR
N(m) P̃

(m) ≥ 0. �

We finally show that none the conditions (3.1) and (3.4) can be omitted.

Lemma 3.3 Fix n ≥ 2. Then:

(a) For any Pα ∈ Pn there exists a moment vector m(n) which is not realizable
but which satisfies all conditions (3.1) and (3.4), except that LPα(m) < 0;

(b) For any Pα ∈ Pn−1 there exists a moment vector m(n) which is not realiz-
able but which satisfies all conditions (3.1) and (3.4), except that LPα(m) < 0;

(c) For any Pα ∈ Pn−1 there exists a moment vector m(n) which is not realiz-
able but which satisfies all conditions (3.1) and (3.4), except that LPα(m) = 0
and LP̂α(m) > 0.

Proof: In the proof we will use the notation that if Pβ ∈ Pk for some k

then µβ is the probability measure µβ = k−1
∑k

j=1 δβj and vβ = v
(n)
β is the
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corresponding moment vector: vβ,i = Eµβ [X i], i = 0, . . . , n. Note that for
any polynomial Pγ ∈ Pl, Eµβ [Pγ(X)] = 0 if {γ1, . . . , γl} ⊇ {β1, . . . , βk} and
otherwise Eµβ [Pγ(X)] ≥ 1/k, since Pγ takes nonnegative integer values on
N0. Then:

(a) For Pα ∈ Pn define m(n) by m(n−1) = v
(n−1)
α and mn = vα,n − 1/(2n).

Then for Pγ ∈ Pn−1, LPγ (m) = Eµα [Pγ(X)] > 0, and for Pγ ∈ Pn with
γ 6= α, LPγ (m) = Eµα [Pγ(X)] − 1/(2n) ≥ 1/(2n). On the other hand,
LPα(m) = −1/(2n). Thus m(n) satisfies condition (a).

(b) For Pα ∈ Pn−1 define m(n) by m(n−2) = v
(n−2)
α , mn−1 = vα,n−1− 1/(2(n−

1)), and mn = vα,n. Then for Pγ ∈ Pn−1, LPγ (m) = Eµα [Pγ(X)]− 1/(2(n−
1)) ≥ 1/(2(n − 1)) for γ 6= α but LPα(m) = −1/(2(n − 1)). On the other
hand, for Pγ ∈ Pn,

LPγ (m) = Eµα [Pγ(X)] +
1

2(n− 1)

n∑
i=1

γi ≥ Eµα [Pγ(X)] ≥ 0. (3.5)

Thus m(n) satisfies condition (b).

(c) Finally, for Pα ∈ Pn−1 define m(n) by m(n−1) = v
(n−1)
α and mn = vα,n + c

for some c > 0. Then for Pγ ∈ Pn−1, LPγ (m) = Eµα [Pγ(X)] ≥ 0, and in
particular LPα(m) = 0, while for Pγ ∈ Pn, LPγ (m) = Eµα [Pγ(X)] + c > 0.
Thus m satisfies condition (c). But since LPα(m) = 0, if there is a measure ν
realizing m then it be supported on {α1, . . . , αn−1} and so, by the invertibility
of the Vandermonde matrix, must in fact be µα. But then Eν [X

n] = vα,n <
mn, a contradiction. �

Remark 3.4 In [6] R. E. Curto and L. A. Fialkow study the truncated
moment problem on subsets of Rd using conditions based on extensions of
moment sequences. The analogous condition in the case considered here
would be the following:

LP (m) ≥ 0 for all P ∈ Pn−1∪Pn, and there exists a real number
λ such that if m′ = (m1,m2, . . . ,mn, λ) then LQ(m′) ≥ 0 for all
Q ∈ Pn+1.

(3.6)

It is clear that conditions (3.1) and (3.4) are jointly equivalent to (3.6), since
both of these give necessary and sufficient conditions for realizability. It
would be interesting to see this equivalence directly. It is easy to see that
(3.6) implies (3.1) and (3.4); for details see Proposition B.3 in Appendix B.
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It is in general an open question whether or not the converse implication can
also be proven directly, but this result may be obtained from Theorem 3.2
when the hypotheses of that theorem, with n replaced by n+ 1, are fulfilled
(that is, when LP (m) > 0 for P ∈ Pk, 1 ≤ k ≤ n − 1). We omit details.
We finally point out that in (3.6) we require an extension of LP (m) to a
functional on polynomials of degree n+ 1, whereas [6] requires an extension
to degree n + 2. This is actually a direct consequence of the proof of [6,
Theorem 2.2], if one takes into account that we are restricting the support a
priori to be N0 and so a subset of R+.

3.1 Proof of Theorem 3.2

In this subsection we prove Theorem 3.2. For convenience we will in fact
prove part (b) of the theorem with n replaced by n+ 1, that is, we will prove

that if LP (m) ≥ 0 for all P ∈ Pn then there exists a finite set P̃(m)
n ⊂ Pn

such that for all P = Pα ∈ Pn and all N > αn there is a P̃ ∈ P̃(m)
n such

that LRN P̃ (m) ≤ LRNP (m). In particular, this means that in discussing
Theorem 3.2 (b), and similarly in discussing Lemma 3.6 (b), we will assume
that we are given a moment vector m = m(n+1) = (m1, . . . ,mn,mn+1), so
that LRNP (m) is defined for P ∈ Pn.

We begin by introducing some notation. Fix n, let q = bn/2c, and write
i0 = n − 2q; if n is even then i0 = 0 while if n is odd then i0 = 1, so
that αi0+1 is the smallest αi which is part of a pair (αi, αi+1) = (j, j + 1). If
J = (J1, J2, . . . , Jq) is a strictly increasing q-tuple of positive integers and l is
an integer satisfying 0 ≤ l ≤ q then we write Pn,l,J for the set of polynomials
Pα ∈ Pn such that

αi0+2l ≤ Jl, if l > 0, and Jl+1 < αi0+2l+2, if l < q. (3.7)

We will speak of α1, . . . , αi0+2l as the small roots and αi0+2l+1, . . . , αn as the
large roots at scale l, where the scale will not be mentioned if it is clear from
context. If l = 0 then there are no small roots if n is even and one small root
(α1 = 0) if n is odd; if l = q there are no large roots and Pn,l,J is in fact
finite. Finally, for 0 ≤ l < q and γ ∈ Ai0+2l, with γi0+2l ≤ Jl when l ≥ 1, we
define β = β(γ, l,J ) ∈ An by

βi = γi, i ≤ i0+2l; βi = Jl+1+i−(i0+2l)−1, i0+2l < i ≤ n. (3.8)
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Note that Pβ ∈ Pn,l,J and that, given that βi = γi for i = 1, . . . , i0 + 2l, the
values of βi for i0 + 2l < i ≤ n are the smallest possible values consistent
with this fact.

Proof of Theorem 3.2: The theorem is an immediate consequence of
Lemmas 3.5 and 3.6 below; we summarize the argument here. We first show,
in Lemma 3.5, that the sets Pn,l,J for 0 ≤ l ≤ q, which are clearly disjoint
by (3.7), in fact partition Pn. It then follows from Lemma 3.6 that for an
appropriate choice of J and for any N ∈ N the infima over P ∈ Pn of LP (m)
and LRNP (m), when taken over each Pn,l,J separately, are achieved on a finite
subset P∗n,l,J of Pn,l,J . For 0 < l < q this is

P∗n,l,J = {Pβ(γ,l,J ) | γ ∈ Ai0+2l, γi0+2l ≤ Jl} ⊂ Pn,l,J , (3.9)

for l = 0 we take P∗n,l,J = {Pβ(γ,l,J ) | γ ∈ Ai0+2l}, and for l = q we take
P∗n,l,J = Pn,q,J . Then part (b) of the theorem follows immediately, with

P̃(m)
n =

⋃q
l=0P∗n,l,J , and for part (a) we may simply take P

(m)
n to be a poly-

nomial on which inf
P∈P̃(m)

n
LP (m) is achieved. We note during the proof of

Lemma 3.6 that J , and so the sets P∗n,l,J , can be chosen uniformly for m in
bounded subsets of Rn. �

Lemma 3.5 Every Pα ∈ Pn belongs to Pn,l,J for some l, 0 ≤ l ≤ q.

Proof: Suppose that for some Pα we have Pα /∈ Pn,l,J for l = 0, . . . , q − 1.
Then we claim that αi0+2l ≤ Jl for l = 1, . . . , q, which implies that Pα ∈
Pn,q,J . The claim is proved by induction on l. For from Pα /∈ Pn,0,J it
follows that αi0+2 ≤ J1. Similarly, from αi0+2l ≤ Jl and Pα /∈ Pn,l+1,J it
follows that αi0+2(l+1) ≤ Jl+1. �

Lemma 3.6 Let B be a bounded subset of Rn. Then there exist J1, J2, . . . , Jq
as above such that for k = 0, . . . , q − 1:

(a) If m ∈ B and LP (m) > 0 for all P ∈
⋃n−2
j=0 Pj then for Pα ∈ Pn,k,J ,

LPα(m) ≥ LPβ(m), (3.10)

with β = β(α1, . . . , αi0+2k, k,J ) as given in (3.8).

(b) If LP (m) ≥ 0 for all P ∈ Pn then for Pα ∈ Pn,k,J and N > αn,

LRNPα(m) ≥ LRNPβ(m), (3.11)

with β = β(α1, . . . , αi0+2k, k,J ) given by (3.8).
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Proof: Note that Pn,k,J and the index β of (3.10)–(3.11) are well defined
once J1, . . . , Jk+1 have been specified. Thus we may proceed by induction,
assuming that J1, . . . , Jl have been constructed so that (a) and (b) are satis-
fied for k < l and proving the existence of Jl+1 so that they are satisfied for
k = l. The case l = 0 is similar to other cases and we treat all values of l
together.

Suppose now that we fix γ ∈ Ai0+2l with γi0+2l ≤ Jl. (More precisely,
this holds if l ≥ 1; if l = 0 then γ must be (0) if i0 = 1 and an empty 0-tuple
of indices if i0 = 0). We will show that there then exists a number J (γ) > Jl
such that if Jl+1 ≥ J (γ) then whenever Pα ∈ Pn,l,J has small roots (on scale l)
given by γ, i.e., αi = γi for 1 ≤ i ≤ i0 + 2l, and large roots such that for
some j with l < j ≤ q,

αi0+2j−1 > max{αi0+2j−2 + 1, βi0+2j−1(γ, l,J )}, (3.12)

then under the hypotheses of (a),

LPα(m) > LPα′ (m), (3.13)

and under the hypotheses of (b),

LRNPα(m) > LRNPα′ (m) if N > αn. (3.14)

Here Pα′ is obtained from Pα by decreasing by 1 the values of a pair of zeros;
specifically, α′i = αi− 1 if i ∈ {i0 + 2j − 1, i0 + 2j} and α′i = αi otherwise, so
that by (3.12), α′ ∈ An and Pα′ ∈ Pn,l,J .

Once the existence of J (γ) is established, the induction step follows easily.
For since there are only a finite number of γ ∈ Ai0+2l with γi0+2l ≤ Jl, we
may define Jl+1 = supγ J

(γ), so that (3.13) and (3.14) hold for all γ and all
Pα ∈ Pn,l,J , and from this obtain (3.10) and (3.11) by decreasing the large
values of α, one pair at a time, generating a sequence α→ α′ → α′′ → · · · →
α(M) with α(M) = β(α1, . . . , αi0+2l, l,J ).

We will separately find tentative values of J (γ) which lead to (3.13) under
the hypotheses of (a) and to (3.14) under the hypotheses of (b); the larger
of these two values is then the actual J (γ). In each case we write Pα ∈ Pn,l,J
as Pα(x) = Tα(x)Qγ(x), where Qγ contains the factors x − γi = x − αi for
small αi (if l = i0 = 0 then Qα(x) = 1) and Tα the corresponding factors for
large αi, and use

(x− α)(x− α− 1)− (x− α + 1)(x− α) = −2(x− α), (3.15)
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to simplify the difference of the two sides of (3.13) or (3.14).
In case (a), we have from (3.15) that

Tα(x)− Tα′(x) = −2
∏

i>i0+2l
i 6=i0+2j

(x− αi) =

2(q−l)−1∑
p=0

(−1)pBpx
p, (3.16)

where Bp is twice the (2(q−l)−p−1)th symmetric function of the large roots,
omitting αi0+2j. An easy computation shows that when 0 ≤ p ≤ 2(q− l)− 2
and all large roots satisfy αi ≥ J (γ),

Bp ≥ J (γ) p+ 1

2(q − l)− p− 1
Bp+1 ≥

J (γ)

2(q − l)− 1
Bp+1. (3.17)

Thus by choosing J (γ) appropriately we may ensure that, for Jl+1 ≥ J (γ) and
P ∈ Pn,l,J , all the ratios Bp/Bp+1 are as large as we wish. As Qα ∈

⋃n−2
i=0 Pi

we have by the hypothesis of (a) that LQα(m) > 0 and so the sum

L(Tα−Tα′ )Qα(m) =

2(q−l)−1∑
p=0

(−1)pBpLxpQα(m) (3.18)

will be dominated, for sufficiently large J (γ), by the summand for p = 0.
Hence, for such J (γ), (3.18) is positive, that is, (3.13) holds. How large one
must choose J (γ) depends only on the LxpQα(m) and hence J (γ) can be chosen
uniformly for m ∈ B.

To construct J (γ) in case (b) we proceed similarly. In parallel to (3.16)
we now have

RN(x)
[
Tα(x)− Tα′(x)

]
=

2(q−l)∑
p=0

(−1)pCpx
p, (3.19)

where, again using (3.15), we see that Cp is twice the (2(q−l)−p)th symmetric
function of the large roots, but with αi0+2j replaced by N . Hence by choosing
J (γ) appropriately and requiring that all large roots satisfy αi ≥ J (γ) and that
N ≥ J (γ) we may make all the ratios Cp/Cp+1 arbitrarily large. The analogue
of (3.18) is

LRN (Tα−Tα′ )Qα(m) =

2(q−l)∑
p=0

(−1)pCpLxpQα(m). (3.20)
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In this case we do not know that LQα(m) > 0, but certainly for sufficiently
large J (γ) this sum is dominated by the term corresponding to p = p0, where
p0 is the smallest index p such that LxpQα(m) 6= 0. But by Lemma 3.7 below,
(−1)p0Lxp0Qα(m) > 0, so that (3.20) is positive. As in case (a) the choice of
J (γ) is uniform for m ∈ B. �

Lemma 3.7 Suppose that LP (m) ≥ 0 for all P ∈ Pn, and that l and p0
satisfy 0 ≤ l < q and 0 ≤ p0 ≤ 2(q − l). If Q ∈ Pi0+2l satisfies LxpQ(m) = 0
for 0 ≤ p < p0 then (−1)p0Lxp0Q(m) ≥ 0.

Proof: Let k = 2(q − l). Given Q ∈ Pi0+2l we choose T ∈ Pk so that its
zeros are all greater than the largest zero of Q and hence P = QT ∈ Pn.
Then

T (x) =
k∑
p=0

(−1)pApx
p, (3.21)

with Ap the (n− p)th symmetric function of the roots of T , and as in (3.17)
we may make all the ratios Ap/Ap+1 arbitrarily large by choosing the roots
of T large. Now we are given that

LTQ(m) =
k∑
p=0

(−1)pApLxpQ(m) ≥ 0; (3.22)

if LxpQ(m) = 0 for all p < p0 then the pth0 summand in (3.22) must be
nonnegative, that is (−1)p0Lxp0Q(m) ≥ 0. �

4 A finite set of realizability conditions

Theorem 3.1 gives a characterization of realizability in terms of the values
of infinitely many affine forms LP (m). The aim of this section is to give a
procedure for determining realizability which involves evaluating only a small
number of these forms. We begin with a definition which partitions the set
of realizable moment vectors into two disjoint subsets, termed I-realizable
and B-realizable. The terminology reflects the fact that I-realizable moment
vectors lie in the interior of the set of realizable moment vectors and B-
realizable ones on the boundary of that set (see Remark 4.5(b)).
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Definition 4.1 A moment vector m = m(n) which is realizable on N0 is I-
realizable if strict positivity holds in (3.1) and (3.4), that is, if LP (m) > 0 for
all P ∈ Pn ∪ Pn−1; otherwise, that is if LP (m) = 0 for some P ∈ Pn ∪ Pn−1,
it is B-realizable.

Lemma 4.2 Suppose that m = m(n) is such that m(n−1) is B-realizable, and
let P ∈ Pn−i, with i = 1 or i = 2, be such that LP (m) = 0. Then

(a) m(n−1) is realized by a unique measure whose support is contained in the
zeros of P , and

(b) m(n) is realizable if and only if LxiP (m) = 0, and the latter condition
uniquely determines mn.

Proof: Let µ be a measure on N0 realizing m(n−1), so that 0 = LP (m) =
Eµ[P (X)], where X : N0 → N0 is the identity. Since P is nonnegative on N0,
the support of µ must be a subset of the n−i distinct zeros α1, . . . , αn−i of P ,
so that µ =

∑n−i
j=1 cjδαj for some c1, . . . , cn−i, and mk = Eµ[Xk] =

∑
j cjα

k
j

for 0 ≤ k ≤ n − i. As the vectors (αj, α
2
j , . . . , α

n−i
j ), 1 ≤ j ≤ n − i,

are linearly independent, c1, . . . , cn−i and hence µ are uniquely determined
by m1, . . . ,mn−i, which proves (a). If m(n) is realizable then the realiz-
ing measure must be µ, so that LxiP (m) = Eµ[X iP (X)] = 0, and con-
versely if LxiP (m) = 0 then µ realizes m(n); this proves the first statement
of (b). The second statement of (b) follows from the fact that xiP (x) =
xn + lower order terms. �

Lemma 4.3 If m(n−1) is I-realizable then LQ(m) > 0 for all Q ∈
⋃n−1
k=1 Pk.

Proof: By definition, LQ(m) > 0 if Q ∈ Pn−2 ∪ Pn−1. Assume then that
for some k ∈ {1, . . . , n− 3} and Q ∈ Pk, LQ(m) = 0. As m(n−1) is realizable,
there exists a realizing measure µ on N0 and, as in the proof of Lemma 4.2,
the support of µ must be contained in the zero set of Q. If (n−1)−k is even,
respectively odd, choose a polynomial T from Pn−1−k, respectively Pn−2−k,
all the zeros of which are distinct from those of Q, so that TQ belongs to
Pn−1, respectively Pn−2. Because the support of µ is contained in the zero
set of TQ, LTQ(m) = 0, a contradiction. �

The next theorem gives an inductive procedure to determine whether a
given n-tuple m is realizable and, in addition, whether I-realizable or B-
realizable.
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Theorem 4.4 Suppose n ∈ N and m = m(n) = (m1, . . . ,mn) ∈ Rn. Then:

(a) If n = 1 then m = (m1) is I-realizable if m1 > 0, B-realizable if m1 = 0,
and not realizable if m1 < 0.

(b) If n ≥ 2 and m(n−1) is not realizable then m(n) is not realizable.

(c) If n ≥ 2 and m(n−1) is I-realizable then a minimizing polynomial P
(m)
n ,

as in Theorem 3.2(a), exists, and m(n) is realizable if and only if

L
P

(m)
n

(m) ≥ 0. (4.1)

In this case, m(n) is I-realizable if the inequality (4.1) is strict and B-realizable
if equality holds.

(d) If n ≥ 2 and m(n−1) is B-realizable, so that LP (m) = 0 for some P ∈ Pn−i
with i ∈ {1, 2}, then m(n) is realizable, and in particular B-realizable, if and
only if LxiP (m) = 0.

Proof: (a) and (b) are trivial. To verify (c) we note that because m(n−1) is

I-realizable, P
(m)
n ∈ Pn exists by Theorem 3.2(a) and Lemma 4.3, and for any

P ∈ Pn, LP (m) ≥ L
P

(m)
n

(m). The conclusion then follows immediately from

Definition 4.1 and Theorem 3.1. Finally, for (d), if m(n−1) is B-realizable
then Lemma 4.2 immediately gives the stated criterion for realizability, and
this must be B-realizability, since by definition LP (m) = 0 for some P ∈
Pn−1 ∪ Pn−2 and this, with Lemma 4.3, would contradict I-realizability of
m(n). �

Remark 4.5 (a) To make the inductive procedure of Theorem 4.4 effective

we must be able to determine explicitly the polynomials P
(m)
n for n ≥ 2. In

the next sections we do this explicitly for n = 2, . . . , 5 and give a recursive
construction for n ≥ 6.

(b) As remarked above, I-realizable moment vectors lie in the interior of
the set of all realizable moments, and B-realizable ones on the boundary.
The first statement follows from the fact that, as explained in the proof of
Theorem 3.2, the infimum of LP (m) over P ∈ Pn is in fact a minimum
over a finite set of polynomials, and this set can be chosen uniformly in m on
compact sets; thus if this minimum is strictly positive for m it will be positive
also for nearby moment vectors. On the other hand, if m is B-realizable then
LP (m) = 0 for some P ∈ Pn−i with i = 0 or 1, and decreasing mn−i by an
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arbitrarily small amount gives a moment vector m′ with LP (m′) < 0, so that
m′ is not realizable.

(c) If m = m(n) is B-realizable then there is a minimum index k such that
LQ(m) = 0 for some Q ∈ Pk, so that m(j) is I-realizable if j < k and B-
realizable if j ≥ k. Then following the ideas of the proof of Lemma 4.2
one sees immediately that the support of the unique measure realizing m is
contained in the set of zeros of Q. Moreover, this support cannot be a subset
of the zero set of any polynomial Q̃ ∈ Pj with j < k, by the minimality of k,
so that any realizing measure µ satisfies⌊

k + 1

2

⌋
≤ | suppµ| ≤ k. (4.2)

Any value for | suppµ| in the range (4.2) is possible. For example, the upper
bound is achieved if m(n) is the moment vector of a measure with support
Kk = {1, 2, . . . , k} if k is even or Kk = {0, 1, 2, . . . , k − 1} if k is odd, and
other values are achieved when m(n) is the moment vector of a measure with
support obtained from Kk by omitting an arbitrary set of odd integers.

(d) One may ask similarly about possible values of | suppµ| when the moment
vector m = m(n) is I-realizable and µ is a measure realizing m. In this case
the realizing measure is not uniquely determined by m, so it is natural to ask
for the minimum possible size of the support (which will of course depend
on m). A result of Carathéodory (see, for example, [8]) implies that there
is a measure µ realizing m supported on at most n + 1 points of N0; then
because the support of µ cannot be contained in the zero set of any Q ∈ Pj
with j ≤ n, since otherwise m would be B-realizable,⌊

n+ 2

2

⌋
≤ min

µ
| suppµ| ≤ n+ 1, (4.3)

where the minimum is over all the measures realizing m. In the opposite
direction one may show that there exists a set S ⊂ N0 with n+ 1 ≤ |S| <∞
such that there exists a measure realizing m with support S, and moreover
that for any such S and any S ′ ⊂ N0 with S ⊂ S ′ there exists also a realizing
measure with support S ′. In particular, one can find a measure with support
equal to N0. We do not have a general answer to how small |S| may be.

The restriction |S| ≥ n + 1 above arises as follows. Let us denote the
minimum in (4.3) by jm and the support of a corresponding realizing measure
by Sm; if jm = |Sm| = n+1 then certainly |S| ≥ n+1, so we may suppose that
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jm ≤ n. Note first that for any j with b(n+2)/2c ≤ j ≤ n the set of moment
vectors m̃ with jm̃ = j is a countable family of simplices of dimension j − 1
(and hence in particular has Lebesgue measure zero). Now Sm itself cannot
play the role of S above, for any S ′ ⊂ N0 with S ′ ⊃ Sm and |S ′| = n + 1
could not be the support of a realizing measure for m, since m would lie on
the boundary of the open simplex of moment vectors realized by measures
with support S ′. On the other hand, if jm ≤ n − 1 then generically there
will not exist a realizing measure with support S satisfying jm < |S| ≤ n,
since the set of moment vectors with such a realizing measure has Lebesgue
measure zero within the simplex of moment vectors which have a realizing
measure with support Sm.

(e) There may be several minimizing polynomials for m(n), i.e., polynomials
which satisfy the conclusion of Theorem 3.2(a), but the set of such poly-
nomials does not depend on mn. For if m̃ = (m1, . . . ,mn−1, m̃n) then
for Q ∈ Pn, LQ(m) − mn = LQ(m̃) − m̃n, from which it follows that
LP (m) = infQ∈Pn LQ(m) if and only if LP (m̃) = infQ∈Pn LQ(m̃).

(f) We will discuss the nonuniqueness of the minimizing polynomial for m(n)

when m(n−1) is I-realizable, the only case for which this polynomial is needed
in Theorem 4.4. Let m̃n ∈ R be defined by the condition L

P
(m)
n

(m̃) = 0,

where m̃(n) = (m1, . . . ,mn−1, m̃n) and P
(m)
n is some minimizing polynomial

for m(n); note that by (e) this condition is independent of the choice of P
(m)
n .

Then m̃(n) is B-realizable, so that by Lemma 4.2 there is a unique realizing
measure µ for m̃(n) with support in the zero set of P

(m)
n . When the support of

µ contains fewer than n points there will be several minimizing polynomials,
specifically, those polynomials in Pn whose zero set contains this support.

(g) Some of the results which have been obtained above by reference to a
realizing measure for m may also be obtained or strengthened by purely
algebraic means. See Appendix B.

5 Realizability for n = 2, 3

Theorem 4.4 gives simple and explicit realizability conditions when n = 1.
In this section we obtain the polynomials P

(m)
n when n = 2 and 3 and thus

give simple conditions for these values of n. We first define

k1 := bm1c and θ1 := m1 − k1, (5.1)
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and, if m1 > 0,

k2 :=

⌊
m2

m1

⌋
and θ2 :=

m2

m1

− k2. (5.2)

Theorem 5.1 Suppose that n is 2 or 3 and that we are given the moment
vector m = m(n) ∈ Rn. Then

(a) If n = 2 and m(1) is I-realizable (that is, m1 > 0) then

P
(m)
2 (x) = (x− k1)(x− k1 − 1), (5.3)

and m(2) is realizable if and only if

m2 −m2
1 ≥ θ1(1− θ1). (5.4)

In particular, m(2) is I-realizable if the inequality in (5.4) is strict, and B-
realizable if equality holds there.

(b) If n = 3 and m(2) is I-realizable (that is, by (a), if m1 > 0 and m2−m2
1 >

θ1(1− θ1)) then

P
(m)
3 (x) = x(x− k2)(x− k2 − 1), (5.5)

and m(3) is realizable iff

m3

m1

−
(
m2

m1

)2

≥ θ2(1− θ2). (5.6)

In particular, m(3) is I-realizable if the inequality in (5.6) is strict, and B-
realizable otherwise.

Proof: (a) Recall that P2 is the set of all polynomials of the form Tk(x) =
(x − k)(x − k − 1) with k ∈ N0. But for any k ∈ N0 with k 6= k1, a simple
computation shows that

LTk(m)− LTk1 (m) = (k − k1)2
(

1 +
1− 2θ1
k − k1

)
≥ 0, (5.7)

where the inequality follows from |k− k1| ≥ 1 ≥ |1− 2θ1|. Thus, P
(m)
2 = Tk1 .

Moreover,

LTk1 (m) = m2 − (2k1 + 1)m1 + k1(k1 + 1) = m2 −m2
1 − θ1(1− θ1), (5.8)

and (5.4) follows from Theorem 4.4.
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(b) P3 is the set of all polynomials Sk(x) = x(x− k)(x− k − 1) with k ∈ N.
In parallel to (5.7) and (5.8), we have that for any k ≥ 1 with k 6= k2,

LSk(m)− LSk2 (m) = (k − k2)2
(

1 +
1− 2θ2
k − k2

)
m1 ≥ 0, (5.9)

and

LSk2 (m) = m3 − (2k2 + 1)m2 + k2(k2 + 1)m1

= m3 −
(
m2

2

m1

)
− θ2(1− θ2)m1. (5.10)

Thus P
(m)
3 = Sk2 and (5.10), with Theorem 4.4, yields (5.6). �

We note that (5.4) was given by Percus and Yamada [18, 19, 24] as a
necessary condition for realizability.

Remark 5.2 Theorem 5.1 covers, for n = 2 and 3, the determination of
realizability when m(n−1) is I-realizable. The method of making this de-
termination when m(n−1) is B-realizable is implicit in Theorem 4.4, but for
clarity we discuss this briefly here.

(a) When n = 2, m(1) = (m1) is B-realizable iff m1 = 0, that is, iff Lx(m) =
0. Then Theorem 4.4(d) tells us that m(2) = (m1,m2) is realizable (and
necessarily B-realizable) iff Lx2(m) = m2 = 0.

(b) When n = 3, m(2) = (m1,m2) is B-realizable if either (i) m1 = m2 = 0
(here we have used (a)) or (ii) m1 > 0 and L

P
(m)
2

(m) = 0, i.e., by Theo-

rem 5.1(a), m2 −m2
1 = θ1(1 − θ1). Theorem 4.4(d) tells us that in case (i),

m(3) = (m1,m2,m3) is realizable iff Lx3(m) = m3 = 0, and in case (ii), m(3)

is realizable iff L
xP

(m)
2

(m) = Lx(x−k1)(x−k1−1)(m) = 0, i.e., if

m3 = (2k1 + 1)m2 − k1(k1 + 1)m1. (5.11)

It can in fact be shown that in case (ii), k2 = k1 unless 0 < m1 < 1, when
k1 = 0, k2 = 1, θ1 = m1, and θ2 = 0; in any case (5.11) holds iff (5.6) holds
with equality.

6 Realizability for n ≥ 4

In this section we first obtain more detailed properties of the polynomials
P

(m)
n for general n, and then derive from these, in Section 6.1, an iterative
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procedure which reduces the computation of P
(m)
n to the solution of a mo-

ment problem of degree n − 2. In Section 6.2 we specialize to the cases
n = 4 and n = 5, in which we can give very explicit conditions for realiz-
ability. Throughout we assume that we are given a realizable moment vector
m(n−1) = (m1, . . . ,mn−1) (recall from Remark 4.5(e) that P

(m)
n does not de-

pend on mn). Theorem 3.2 implies that P
(m)
n is defined as long as m(n−2) is

I-realizable, but we will assume throughout this section that in fact m(n−1)

is I-realizable; this assumption, which simplifies the construction of P
(m)
n , is

justified by the fact that it is only this case which is needed for the inductive
scheme outlined in Theorem 4.4.

We first consider the well-understood Stieltjes problem, that is, the prob-
lem of realizing a moment vector on R+, and for this purpose recall from
Section 1 and Appendix A the definitions of I-realizability and B-realizability
for this problem, and of the Hankel matrices (see (1.1)). In particular, for

m̂n ∈ R we let Â(k), B̂(k), and Ĉn be the Hankel matrices formed from the
moment vector m̂(n) := (m1, . . . ,mn−1, m̂n).

Theorem 6.1 Suppose that m(n−1) is I-realizable for the Stieltjes problem
and that m̂n is the smallest value such that Ĉn ≥ 0. Then m̂(n) is realizable
for the Stieltjes problem by a unique measure ν; moreover, if n is even with
n = 2k then | supp ν| = k and 0 /∈ supp ν, while if n is odd with n = 2k + 1
then | supp ν| = k + 1 and 0 ∈ supp ν.

Proof: This is a fairly immediate consequence of the results in [5]; for
details see Proposition A.2(c). �

In the remainder of this section we will let m̂(n) and ν be as in Theorem 6.1.
We will write supp ν = {y1, . . . , yk} when n = 2k and supp ν = {0, y1, . . . , yk}
when n = 2k + 1, where y1 < y2 < · · · < yk and, if n is odd, 0 < y1. It is
important to note that supp ν can be computed explicitly as the set of roots
of a certain polynomial determined by m(n−1); see Remark A.3.

Our approach to the realization problem on N0 is quite parallel to the
above. Suppose that P

(m)
n (x) = Pα(x), with α = (α1, . . . , αn), and let

m̃n ∈ R be the unique number for which, with m̃(n) = (m1, . . . ,mn−1, m̃n),
L
P

(m)
n

(m̃) = 0. Then m̃n is the smallest value for which m̃(n) is realizable;

moreover (see Remark 4.5(f)), m̃(n) is B-realizable and by Lemma 4.2 there
is a unique realizing measure µ for m̃(n), with suppµ ⊂ {α1, . . . , αn}.
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Remark 6.2 (a) If supp ν ⊂ N0 then m̃n = m̂n and m(n) is realizable on
N0 if and only if it is realizable for the Stieltjes problem. We will therefore
typically assume below that supp ν 6⊂ N0.

(b) When supp ν 6⊂ N0 there must be a point t ∈ N0 with t ∈ suppµ and
t /∈ supp ν, since | suppµ| ≥ | supp ν| by Remark 4.5(c).

(c) If n is odd then the I-realizability of m(n−1), together with Remark 4.5(c),
implies that 0 ∈ suppµ.

Now one may easily check when n = 2, ν = δm1 , and when n = 3,
ν = (1−m2

1/m2)δ0 +(m1/m
2
2)δm1 , and one may determine the corresponding

values of α (where again P
(m)
n (x) = Pα(x)) from Theorem 5.1. This leads to:

n = 2 : supp ν = {m1}, α = (bm1c, bm1c+ 1);
n = 3 : supp ν = {0,m2/m1}, α = (0, bm2/m1c, bm2/m1c+ 1).

(6.1)

These two examples thus suggest a close connection between supp ν and the
values of α (which are the possible points of suppµ); one might hope, for
example, that when n = 4, α = {by1c, by1c+1, by2c, by2c+1}. Consideration
of explicit examples shows that this is not always the case, but, as we now
show, knowledge of supp ν does give some information about suppµ.

We first prove an interleaving property. Here and below we will use the
fact that if Q(x) is a polynomial of degree at most n − 1 then Eµ[Q(X)] =
Eν [Q(X)] = LQ(m). From this it follows that if Q(x) ≥ 0 either on supp ν or
on suppµ then LQ(m) ≥ 0, and if also Q(x0) > 0 at some point x0 of supp ν
or of suppµ then LQ(m) > 0. Similarly, if Q(x) = 0 on supp ν or on suppµ
then LQ(m) = 0.

Proposition 6.3 Suppose that supp ν 6⊂ N0. Then if n = 2k or n = 2k + 1
there exist points η0, , . . . , ηk in suppµ such that

η0 < y1 < η1 < y2 < · · · < yk < ηk. (6.2)

and if n is odd, 0 < η0. In particular, | suppµ| > | supp ν|.

Proof: For j = 1, . . . , k − 1 we choose points zj, z
′
j ∈ (yj, yj+1) such that

no point of suppµ lies any of the intervals (yj, zj] and [z′j, yj+1). Suppose
first that n is even, with n = 2k. To show that there must be an ηj with
ηj ∈ (yj, yj+1), j = 1, . . . , k− 1, we suppose not and consider the polynomial

Qj(x) =
k∏
l=1

(x− yl)
j−1∏
l=1

(x− zl)
k−1∏
l=j+1

(x− z′l). (6.3)
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Then Qj(x) = 0 for x ∈ supp ν, so LQj(m) = 0, but Qj(x) ≥ 0 on suppµ,
with Qj(t) > 0 for t ∈ suppµ \ supp ν (see Remark 6.2), so LQj(m) > 0, a
contradiction. For existence of η0 and ηk we argue similarly from

Q0(x) =
k∏
l=1

(x−yl)
k−1∏
l=1

(x−z′l) and Qk(x) = −
k∏
l=1

(x−yl)
k−1∏
l=1

(x−zl). (6.4)

For n = 2k + 1 we consider similarly Q̂j(x) = xQj(x), j = 0, . . . , k. �

The next result shows that knowledge of y1, . . . , yk tells us about at least
one of the pairs (αi, αi+1) = (αi, αi+ 1) in the fashion suggested by (6.1). To
state it we write Yj := byjc for j = 1, . . . , k.

Corollary 6.4 Suppose that supp ν 6⊂ N0. Then:

(a) If n = 2k then for some j, 1 ≤ j ≤ k:

α2j−1 = Yj, α2j = Yj + 1, and {α2j−1, α2j} ⊂ suppµ; (6.5)

(b) If n = 2k + 1 then for some j, 1 ≤ j ≤ k:

α2j = Yj, α2j+1 = Yj + 1, and {α2j, α2j+1} ⊂ suppµ. (6.6)

Proof: We treat the even case n = 2k, using the notation of Proposition 6.3;
the odd case is similar. Define

S =
{
j ∈ {1, 2, . . . , k}

∣∣α2j−1 ≤ ηj−1
}
. (6.7)

Certainly 1 ∈ S, since η0 ∈ suppµ ⊂ {α1, . . . , α2k}. Let j0 = maxS. If j0 =
k then necessarily α2k−1 = ηk−1 and α2k = ηk, so that, since α2k = α2k−1 + 1,
(6.5) holds with j = k. Suppose then that j0 < k. Because α2j0+1 > ηj0 we
must have α2j0−1 = ηj0−1, α2j0 = ηj0 , so that (6.5) holds with j = j0. �

6.1 General inductive procedure

We can now give a general procedure for the reduction of the truncated
moment problem of degree n, n ≥ 4, to several truncated moment problems
of degree n − 2. For the moment we suppose that supp ν 6⊂ N0 and fix l
with 1 ≤ l ≤ k = bn/2c. From n ≥ 4 and our assumption that m(n−1) is
I-realizable it follows that

m2 − (2Yl + 1)m1 + Yl(Yl + 1) > 0. (6.8)
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We may thus define cl(m) := (m2 − (2Yl + 1)m1 + Yl(Yl + 1))−1 and so the

new moment vector M
(n−2)
l (m) := (Ml,0(m), . . . ,Ml,n−2(m)) by

Ml,i(m) := cl(m)(mi+2 − (2Yl + 1)mi+1 + Yl(Yl + 1)mi), (6.9)

where the factor c(m) insures that Ml,0(m) = 1. For the moment we suppress
the dependence of M(m) on l. The definition is chosen so that for any
polynomial Q of degree at most n− 2,

LQ(M(m)) = c(m)L(x−Yl)(x−Yl−1)Q(m).

Lemma 6.5 (a) If the probability measure σ realizes m(n) on N0 then the
probability measure σ′ with dσ′(x) = c(m)(x − Yl)(x − Yl − 1)dσ(x) realizes
M (n−2)(m) on N0.

(b) M (n−3)(m) is I-realizable.

Proof: (a) This follows from Eσ′ [X
k] = c(m)Eσ[(X − Y1)(X − Y1 − 1)Xk].

(b) We use the characterization of I-realizability given in Remark 4.5(b). Let
U be a neighborhood of m(n−1) such that if m̄(n−1) ∈ U then m̄(n−1) is realiz-

able. Since the matrix
(
∂Mp/∂mq+2

)n−3
p,q=1

obtained from (6.9) is triangular,

with nonzero diagonal elements c(m), we may apply the inverse function the-
orem to the map (6.9), at fixed m1 and m2, to conclude that there is a neigh-
borhood V of M (n−3)(m) such that if M̄ (n−3) ∈ V then M̄ (n−3) = M (n−3)(m̄)
for some m̄ ∈ U . But then (a) implies that M̄ (n−3) is also realizable. �

Recall that m̃n is the minimal value for which m̃(n) = (m1, . . . ,mn−1, m̃n)
is realizable on N0 and that µ then denotes the unique probability measure
realizing m̃(n); note that then Lemma 6.5(a) implies that M (n−2)(m̃) is also
realizable. We define Nm

n := suppµ; Nm
n contains at most n points.

We give below a procedure to compute Nm
n by induction on n. This solves

the realizability problem, for knowledge of Nm
n determines realizability: one

must simply choose a polynomial P ∈ Pn whose zeros contain Nm
n (see

Remark 4.5(f)); then m(n) is I-realizable if and only if LP (m(n)) > 0, and is
B-realizable if and only if LP (m(n)) = 0.

Theorem 6.6 If l = j, where j has the property that {Yj, Yj+1} ⊂ suppµ,
then M (n−2)(m̃) is B-realizable by a unique probability measure µ′. The sup-
port of µ′ is disjoint from {Yj, Yj + 1} and suppµ = (suppµ′)∪ {Yj, Yj + 1}.
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Proof: Note that a j with {Yj, Yj+1} ⊂ suppµ exists by Corollary 6.4. By

Lemma 6.5(b) and Theorem 3.2 there exists a minimizing polynomial P
(M)
n−2

for M (n−2)(m). Let P
(m)
n be a minimizing polynomial for m(n); minimality of

m̃n implies that L
P

(m)
n

(m̃) = 0. By Corollary 6.4, P
(m)
n = (x − Yj)(x − Yj −

1)Q
(m)
n−2 for some Q

(m)
n−2 ∈ Pn−2. But then L

Q
(m)
n−2

(M(m̃)) = c(m)L
P

(m)
n

(m̃) = 0,

and as M (n−2)(m̃) is realizable it must be B-realizable and Q
(m)
n−2 must be a

minimizing polynomial for it. By Lemma 4.2, M (n−2)(m̃) is realized by a
unique probability measure µ′ which must be dµ′(x) = c(m)(x−Yj)(x−Yj−
1)dµ(x). The support properties of µ′ follow. �

We can now describe the inductive procedure for computing Nm
n . The

key difficulty is that we do not know a priori a “correct” index j arising from
Corollary 6.4, and must carry our the recursion for each possible index (see
step 4 below).

1. The base cases are n = 2 and n = 3. For these it follows from (6.1)
and the accompanying discussion that Nm

2 = {m1} if m1 ∈ N0 and
otherwise Nm

2 = {bm1c, bm1c + 1}. Similarly Nm
3 = {0,m2/m1} if

m2/m1 ∈ N0, and otherwise Nm
3 = {0, bm2/m1c, bm2/m1c+ 1}.

The induction for n > 2 proceeds as follows:

2. Determine supp ν, that is, {y1, . . . , yk} if n = 2k or {0, y1, . . . , yk} if
n = 2k + 1. The procedure is given in Remark A.3; in summary:

• If n = 2k then y1, . . . , yk are the roots of xk −
∑k−1

i=0 ϕix
i = 0, where

(ϕ0, . . . , ϕk−1) = (mk, . . . ,mn−1)A(k − 1)−1.

• If n = 2k+ 1 then 0, y1, . . . , yk are the roots of xk+1−
∑k

i=1 ϕix
i = 0,

where (ϕ1, . . . , ϕk) = (mk+1, . . . ,mn−1)B(k − 1)−1.

3. If supp ν ⊂ N0 then Nm
n = supp ν.

4. If supp ν 6⊂ N0 then for each l, l = 1, . . . , k, define Ml(m) by (6.9). By

Lemma 6.5(b), M
(n−3)
l (m) is I-realizable. Find recursively the corre-

sponding support NM(m)
l,n−2 . If NM(m)

l,n−2 ∩ {Yl, Yl + 1} 6= ∅ then reject this
value of l.

5. Choose for each l a polynomial Ql ∈ Pn whose set of roots contains
NM(m)
l,n−2 ∪ {Yl, Yl + 1}.
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6. Find i such that LQi(m) is minimal among all LQl(m), l = 1, . . . , k.
Then Qi is a minimizing polynomial for m(n). There is a unique re-
alizing measure for m(n−1) with support in the zero set of Qi (it is
also the unique realizing measure for m̃(n)) which may be calculated
by the procedure outlined in Lemma 4.2(a). Nm

n is the support of this
measure.

Theorem 6.7 The set Nm
n produced in step 1, 3, or 6 of the above algorithm

is the support of µ.

Proof: In the case in which Nm
n arises at step 1 or step 3 this follows from

Section 5 or Remark 6.2(a), respectively. Suppose then that Nm
n arises at

step 6. Theorem 6.6 implies that if l = j, with j as in Corollary 6.4, then
Ql is a minimizing polynomial for m(n); note that the procedure will not
terminate at step 4 in this case. Thus if i is as in step 6, LQi(m) ≤ LQj(m)
implies that Qi is also a minimizing polynomial. The characterization of Nm

n

then follows from Remark 4.5(f). �

Because there are k = bn/2c choices for l at step 4, the algorithm can
require bn/2c! stages. For moderate size of n this should not be a real
restriction. The time might be shortened by the fact that the procedure can
terminate at step 4, but we have no estimate for how often this may occur.

6.2 Explicit formulas for n = 4 and 5

We now specialize to the cases n = 4 and n = 5. Of course, the recursive
procedure of Section 6.1 could be used to reduce these to the n = 2 and
n = 3 cases of Section 5, but there is a simpler answer: we can obtain explicit
formulas for supp ν and hence for P

(m)
n . In stating the relevant theorems we

assume, by Remark 6.2(c), that supp ν 6⊂ N0. When n = 4 we define

t1 =
m3 − (2Y2 + 1)m2 + Y2(Y2 + 1)m1

m2 − (2Y2 + 1)m1 + Y2(Y2 + 1)m0

, T1 = bt1c; (6.10)

t2 =
m3 − (2Y1 + 1)m2 + Y1(Y1 + 1)m1

m2 − (2Y1 + 1)m1 + Y1(Y1 + 1)m0

, T2 = bt2c. (6.11)

Theorem 6.8 Suppose that n = 4, that ν and µ are as above and that
supp ν 6⊂ N0. Then suppµ ⊂ {T1, T1 + 1, T2, T2 + 1} with | suppµ| ≥ 3;
moreover, T2 ≥ T1 + 1, so that if T2 > T1 + 1 one may take

P
(m)
4 (x) = (x− T1)(x− T1 − 1)(x− T2)(x− T2 − 1), (6.12)
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and if T2 = T1 + 1 one may take for example

P
(m)
4 (x) = (x− T1)(x− T2)(x− T2 − 1)(x− T2 − 2). (6.13)

Proof: From Corollary 6.4 it follows that either {Y1, Y1 + 1} ⊂ suppµ
or {Y2, Y2 + 1} ⊂ suppµ. Consider the first case, in which suppµ is either
{Y1, Y1+1, k} or {Y1, Y1+1, k, k+1}, with k > Y1+1 an integer. Let Fτ (x) =
(x− Y1)(x− Y1− 1)(x− τ), so that the linear equation LFτ (m) = 0 has root
τ = t2. Now if suppµ = {Y1, Y1 + 1, k} then LFk(m) = 0 so that t2 = T2 = k,
while if suppµ = {Y1, Y1 + 1, k, k + 1} then LFk(m) > 0 and LFk+1

(m) < 0,
so that k < t2 < k + 1, k = T2 and suppµ = {Y1, Y1 + 1, T2, T2 + 1}. Note
that Proposition 6.3 implies that T2 + 1 > y2 > Y1 + 1, so that T2 ≥ Y2 and
T2 > Y1 + 1.

To complete the proof in the case under consideration we need only show
that T1 = Y1, i.e., that Y1 ≤ t1 < Y1 + 1. Let Gτ (x) = (x − τ)(x − Y2)(x −
Y2 − 1), so that the equation LGτ (m) = 0 has root τ = t1. Now GY1(x)
is nonnegative for x ∈ suppµ, so that LGY1 (m) ≥ 0. On the other hand,
Gy1(y1) = 0 and Gy1(y2) ≤ 0, since y1 < Y2 ≤ y2 < Y2 + 1, so that since ν,
which realizes m(3), has support {y1, y2}, LGy1 (m) = Eν [Gy1(X)] ≤ 0. Since
LGY1 (m) ≥ 0 and LGy1 (m) ≤ 0, Y1 ≤ t1 ≤ y1 < Y1 + 1. This completes the
proof when {Y1, Y1 + 1} ⊂ suppµ.

The case {Y2, Y2 + 1} ⊂ suppµ is handled similarly. Now suppµ is either
{k, Y2, Y2 + 1}, with k < Y2, or {k, k+ 1, Y2, Y2 + 1}, with k+ 1 < Y2, and in
either case k = T1. Thus T2 ≥ T1 + 1 in all cases. �

Remark 6.9 (a) We summarize here the procedure to determine realizabil-
ity for the case n = 4. If m(3) is I-realizable (see Theorem 5.1 for the condi-
tions to be checked) then:

• Find the solutions y1, y2 of the equation (A.4). If y1 and y2 are integers
then m is realizable if and only if detA(2) ≥ 0 and I-realizable if
detA(2) > 0.

• Otherwise, define Y1 := by1c and Y2 := by2c, and compute T1 and T2
from (6.10) and (6.11).

• If T2 > T1 + 1 then define P
(m)
4 by (6.12); otherwise, i.e. if T2 = T1 + 1,

define P
(m)
4 by (6.13). Then m(4) is realizable if and only if L

P
(m)
4

(m) ≥
0; it is I-realizable if the inequality is strict and B-realizable otherwise.
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(b) We may also relate Theorem 6.8 to the general inductive procedure in-
troduced in Section 6.1. The index j of Corollary 6.4 must be either 1 or 2.
If j = 1, so that {Y1, Y1 + 1} ⊂ suppµ, then step 4 of the procedure gives

M1,1(m) = t2, so that a recursive application of step 1 gives NM(m)
2,1 = {T2} if

t2 ∈ N0 and NM(m)
2,1 = {T2, T2 + 1} otherwise. By what appears to be a lucky

accident (which does not seem to generalize to n ≥ 6), however, (6.10) gives
a value of T1 which coincides with Y1. The analysis when j = 2 is similar, so
that (6.12) or (6.13) holds whatever the value of j.

The case n = 5 is similar to that of n = 4. Here we we define

t̃1 =
m4 − (2Y2 + 1)m3 + Y2(Y2 + 1)m2

m3 − (2Y2 + 1)m2 + Y2(Y2 + 1)m1

, T̃1 = bt̃1c; (6.14)

t̃2 =
m4 − (2Y1 + 1)m3 + Y1(Y1 + 1)m2

m3 − (2Y1 + 1)m2 + Y1(Y1 + 1)m1

, T̃2 = bt̃2c. (6.15)

Theorem 6.10 Suppose that n = 5, that ν and µ are as above and that
supp ν 6⊂ N0. Then suppµ ⊂ {0, T̃1, T̃1 + 1, T̃2, T̃2 + 1} with 0 ∈ suppµ and

| suppµ| ≥ 4; moreover, T̃2 ≥ T̃1 + 1, so that if T̃2 > T̃1 + 1 one may take

P
(m)
5 (x) = x(x− T̃1)(x− T̃1 − 1)(x− T̃2)(x− T̃2 − 1), (6.16)

and if T̃2 = T̃1 + 1 one may take for example

P
(m)
5 (x) = x(x− T̃1)(x− T̃2)(x− T̃2 − 1)(x− T̃2 − 2). (6.17)

Proof: The proof is completely parallel to that of Theorem 6.8, with the
replacement of the polynomials Fτ (x) and Gτ (x) by F̃τ (x) = xFτ (x) and

G̃τ (x) = xGτ (x), respectively. �

7 Sufficient condition for realizability on N0

In this section we obtain a sufficient condition for realizability, which will be
I-realizability, of a moment vector m(n) on N0. To do so we introduce a new
class of polynomials Wn: when n = 2k, Wn consists of all polynomials of
the form Wβ(x) = Vβ(x)Vβ(x− 1), where Vβ(x) = (x− β1) · · · (x− βk) with
β1, . . . , βk real numbers, and when n = 2k+1,Wn consists of all polynomials
of the form xWβ(x) with Wβ ∈ Wn−1. Note that Wn ⊃ Pn, so that by
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Theorem 3.1, m(n) is realizable if LW (m) > 0 for all W ∈ Wj, j = 1, . . . , n.
This is our sufficient condition; note that the strict positivity of all LW (m)
and hence of all LP (m), P ∈

⋃n
j=1Pj, implies that this is I-realizability.

To obtain this condition in a useful form we first consider j = 2k and note
that if Vβ(x) =

∑k
i=0 cix

i then Vβ(x− 1) =
∑k

i=0 bix
i where c = (c0, . . . , ck)

T

and b = (b0, . . . , bk)
T are related by b = H(k)c, with H(k) the (k+1)×(k+1)

matrix defined by

H(k)il =

0, if i > l,

(−1)l−i
(
l

i

)
, if i ≤ l.

(7.1)

If m(n) is realizable and µ is a realizing measure then

LWβ
(m) = Eµ[Wβ(X)] = cTA(k)H(k)c =

1

2
cT
(
H(k)TA(k) + A(k)H(k)

)
c.

(7.2)
Thus if the matrix Dj = D2k :=

(
H(k)TA(k) + A(k)H(k)

)
/2 is positive

definite then LW (m) > 0 for all W ∈ Wj. For j = 2k + 1 one argues
similarly that a sufficient condition for LW (m) > 0, W ∈ Wj, is that Dj

be positive definite, where Dj = D2k+1 :=
(
H(k)TB(k) + B(k)H(k)

)
/2. We

have proved:

Theorem 7.1 m(n) is realizable on N0, and in fact I-realizable, if all the
matrices Dj, j = 1, . . . , n, are positive definite.

The first few of the matrices Dj are

D1 =
(
m1

)
, D2 =

(
1 m1 − 1/2

m1 − 1/2 m2 −m1

)
,

D3 =

(
m1 m2 −m1/2

m2 −m1/2 m3 −m2

)
,

D4 =

 1 m1 − 1/2 m2 −m1 + 1/2
m1 − 1/2 m2 −m1 m3 − 3m2/2 +m1/2

m2 −m1 + 1/2 m3 − 3m2/2 +m1/2 m4 − 2m3 +m2

 .

The p, q entry of Dj, p, q = 0, . . . , bj/2c, is just the corresponding entry
of the Hankel matrix Cj, that is, mp+q, modified by the addition of a linear
combination of lower moments. Positive definiteness of all the Cj is necessary
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for I-realizability on R+ and hence also on N0 (see Lemma A.1(b)), so that we
have necessary conditions and sufficient conditions of a very similar structure.

For n = 1 the necessary condition of Lemma A.1(b), the sufficient con-
dition of Theorem 7.1, and the exact condition of Theorem 4.4 all coincide:
each is m1 > 0. For n = 2, when the exact condition is from Theorem 5.1,
they are respectively m2−m2

1 > 0, m2−m2
1 > 1/4, and m2−m2

1 > θ1(1−θ1),
where θ1 is the fractional part of m1; note that the necessary condition is
also sufficient when m1 is an integer and that the sufficient condition is also
necessary when it is a half integer. For n ≥ 2 the condition of Theorem 7.1 is
not necessary for I-realizability; for example, the vector m(2) = (1, 1/5, 1/4)
is realized by the measure (33δ0 + 6δ1 + δ2)/40 but does not satisfy D2 > 0
(or even D2 ≥ 0).

As noted in the introduction, Theorem 7.1 may be useful in establishing
realizability for conditions of the form mj ≥ fj(m1, . . . ,mi), i < j.

8 A more general realization problem

The truncated moment problem on an infinite discrete semi-bounded subset
of R can be solved in the same way, if we adapt our arguments. Specifically,
instead of N0 we consider a set M ⊂ R which is discrete and bounded be-
low; without loss of generality we may assume that 0 ∈ M ⊂ R+. All the
arguments presented previously apply if one uses, instead of byc and byc+ 1,
the largest element of M not greater than y, which we denote l(y), and the
smallest element of M larger than y, which we denote u(y).

In the case n = 2 one thus must replace the polynomial in (5.3) by

P
(m)
2 (x) = (x− l(m1))(x− u(m1)), (8.1)

and the corresponding condition (5.4) becomes

m2 −m2
1 ≥ (u(m1)−m1)(m1 − l(m1)). (8.2)

In the case n = 3 one must replace similarly the polynomial in (5.5) by

P
(m)
3 (x) = x(x− l(m2/m1))(x− u(m2/m1)), (8.3)

and the condition in (5.6) becomes

m3

m1

−
(
m2

m1

)2

≥ (u(m2/m1)−m2/m1)(m2/m1 − l(m2/m1)). (8.4)
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When n = 4, (6.10) and (6.11) must be modified to

t1 =
m3 − (l(y2) + u(y2))m2 + l(y2)u(y2)m1

m2 − (l(y2) + u(y2))m1 + l(y2)u(y2)m0

, (8.5)

t2 =
m3 − (l(y1) + u(y1))m2 + l(y1)u(y1)m1

m2 − (l(y1) + u(y1))m1 + l(y1)u(y1)m0

, (8.6)

and then in the analogue of Theorem 6.8 one obtains that

supp(µ) ⊂ {l(t1), u(t1), l(t2), u(t2)}

and that the analogue of the minimizing polynomial in (6.12) is

P
(m)
4 (x) = (x− l(t1))(x− u(t1))(x− l(t1))(x− u(t2)). (8.7)

The generalization for n = 5 of Theorem 6.10 is analogous. The iterative
procedure in Theorem 4.4 and Subsection 6.1 can be adapted easily.
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A The truncated Stieltjes moment problem

In this appendix we consider the solution of the truncated Stieltjes moment
problem given in [5], with the goal of re-expressing it in a form parallel to
that given in the current paper for the truncated moment problem on N0.
Thus in this appendix realizability always refers to realizability by a measure
supported on R+. We say that a realizable moment vector m(n) is I-realizable
if it lies in the interior of the set of realizable moment vectors, and B-realizable
if it lies on the boundary of this set.

Now we suppose that m(n) is a given moment vector and let Ci, 0 ≤ i ≤ n,
be the corresponding Hankel matrices (1.1).
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Lemma A.1 (a) If m(n) is realizable then for all j ≤ n, m(j) is realizable
and Cj ≥ 0.

(b) The following are equivalent:

(i) m(n) is I-realizable;

(ii) m(j) is I-realizable for all j ≤ n;

(iii) Cj > 0 for all j ≤ n.

Proof: (a) Realizability of m(n) trivially implies that for j ≤ n, m(j) is
realizable, and by Theorems 5.1 and 5.3 of [5] (or see Section 1, equations
(1.2) and (1.3), for a direct proof), the latter implies that Cj ≥ 0.

(b) First, (i) implies (ii), since I-realizability of m(n) implies that for some
ε > 0 all m̄(n) with |m̄i−mi| < ε for 1 ≤ i ≤ n are realizable, and this implies
I-realizability of m(j), j ≤ n. Next, (ii) implies (iii), since if (ii) holds then
we may assume inductively that Cj > 0 for j < n and Theorem 5.1 or 5.3 of
[5] implies that Cn ≥ 0, so that we need only show that Cn is nonsingular.
But if detCn = 0 then, since detCn−2 > 0 and

detCn = mn detCn−2 + (terms independent of mn), (A.1)

any small perturbation mn → m̄n < mn would render the corresponding
Hankel matrix C̄n non-positive and hence, from (a), m̄(n) non-realizable,
contradicting the I-realizability of m(n). Finally, (iii) implies (i), for if (iii)
holds then also for some sufficiently small perturbation m̄(n) of m(n) the
corresponding Hankel matrices C̄j also satisfy C̄j > 0 for j ≤ n, and then
Theorems 5.1 and 5.3 of [5] imply that m̄(n) is realizable. �

Proposition A.2 (a) If the moment vector m(n) is realizable then either
(i) Ci > 0 for 0 ≤ i ≤ n or (ii) there exist an index j, 1 ≤ j ≤ n, and
constants ϕ0, . . . , ϕr−1, where r = b(j + 1)/2c, such that Ci > 0 for i < j,
Ci ≥ 0 with Ci singular for i ≥ j, and

mr+k =
r−1∑
i=0

ϕimk+i for k = 0, . . . , n− r. (A.2)

(b) Conversely, if either (i) or (ii) holds then m(n) is realizable.

(c) In case (ii) of (a) the realizing measure is uniquely determined by m(n)

and its support consists of r points; the support includes 0 if and only if j is
odd.
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Note that by Lemma A.1 the cases (i) and (ii) of (a) correspond respec-
tively to the I-realizability and B-realizability of m(n).
Proof: (a,c) Suppose that m(n) is realizable, with realizing measure ν, but
that (i) does not hold. By Lemma A.1(a), Ci ≥ 0 for 0 ≤ i ≤ n, and since
C0 = [1] > 0 there is an index j, 1 ≤ j ≤ n, with Ci > 0 for 0 ≤ i < j and
Cj ≥ 0 with Cj singular.

Case 1: j = 2r even. In this case Cj = A(r) is singular but Cj−2 = A(r−1)
is not, so that Cj has a null vector of the form Q = (−ϕ0, . . . ,−ϕr−1, 1)T . Let
g(x) = xr −

∑r−1
i=0 ϕix

i; then a computation as in (1.2) shows that QTCjQ =
Eν [g(X)2] = 0, so that the support of ν must be contained in the zero set of
g(x). Indeed, the support must be precisely this zero set and must consist
of r points, since otherwise there would be a polynomial g̃(x) with deg g̃ < r
vanishing on the support of ν, and from Eν [g̃(X)2] = 0 we could conclude,
again as in (1.2), that C2(deg g̃) was singular, a contradiction. Moreover, then

0 ∈ supp ν if and only if ϕ0 = 0, and then with Q̃ = (−ϕ1, . . . ,−ϕr−1, 1)T and

h(x) = xr−1−
∑r−1

i=1 ϕix
i−1 we would have Q̃TB(r− 1)Q̃ = Eν [Xh(X)2] = 0,

so that B(r − 1) = Cj−1 would be singular, again a contradiction. This
establishes (c). Next,

Eν [X
kg(X)] = mr+k −

r−1∑
i=0

ϕimk+i = 0 for 0 ≤ k ≤ n− r, (A.3)

which verifies (A.2). Finally, (A.2) implies that if for some i ≥ j, v0, . . . ,vbi/2c
are the columns of Ci, then vl =

∑r−1
q=0 ϕqvq for l ≥ r, so that Ci is singular.

Case 2: j = 2r − 1 odd. The proof is similar. Now Cj = B(r − 1) has a
null vector Q = (−ϕ1, . . . ,−ϕr−1, 1)T , and if h(x) = xr−1−

∑r−1
i=1 ϕix

i−1 then
QTCjQ = Eν [xh(X)2] = 0, so that the support of ν must be contained in the
zero set of g(x) = xh(x) = xr −

∑r−1
i=0 ϕix

i. As above, the support must be
precisely this zero set and must consist of r points, so that (c) holds. Now
(A.2) follows from Eν [X

kg(X)] = 0, and the argument that Ci is singular for
i ≥ j is the same.

(b) If (i) holds then m(n) is realizable by Lemma A.1. If (ii) holds, then
according to Theorems 5.1 and 5.3 of [5], realizability of m(n) requires positive
semidefiniteness of Cn and Cn−1 and that a certain vector v lie in the range
of Cn−1, where v = (ml+1, . . . ,m2l)

T if n = 2l and v = (ml+1, . . . ,m2l+1)
T

if n = 2l + 1; the latter condition follows immediately from (A.2) for k =
l + 1 − r, . . . , n − r, which expresses v as a linear combination of the last r
columns of Cn−1. �
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Remark A.3 Suppose that we are in the situation of Proposition A.2(a.ii).
If j = 2r is even, and we define Φ = (ϕ0, . . . , ϕr−1), M = (mr, . . . ,m2r−1),

then Φ = MA(r−1)−1. Similarly if j = 2r−1 is odd then Φ̃ = M̃B(r−2)−1,

where Φ̃ = (ϕ1, . . . , ϕr−1), M̃ = (mr, . . . ,m2r−2). These formulas permit the
computation of the ϕi, and hence of the polynomial g(x) whose zeros form
the support of ν, in terms of minors of Cj. For example, when j = 4 and
j = 5 the support of ν consists respectively of the roots of∣∣∣∣m0 m1

m1 m2

∣∣∣∣x2 − ∣∣∣∣m0 m1

m2 m3

∣∣∣∣x+

∣∣∣∣m1 m2

m2 m3

∣∣∣∣ = 0 (A.4)

and ∣∣∣∣m1 m2

m2 m3

∣∣∣∣x3 − ∣∣∣∣m1 m2

m3 m4

∣∣∣∣x2 +

∣∣∣∣m2 m3

m3 m4

∣∣∣∣x = 0. (A.5)

The specific consequence of Proposition A.2 needed in Section 1 is:

Corollary A.4 (a) If m(n−1) is B-realizable, then m(n) is realizable if and
only mn satisfies

mn =
r−1∑
i=0

ϕimn−r+i, (A.6)

that is, satisfies (A.2) with r + k = n, and then is B-realizable.

(b) If m(n−1) is I-realizable, then m(n) is realizable if and only if Cn ≥ 0:
I-realizable if Cn > 0, B-realizable if Cn is singular.

Proof: (a) If m(n−1) is B-realizable then we are in case (ii) of Proposition A.2
with j ≤ n−1; thus the ϕi are defined and Proposition A.2 implies that real-
izability of m(n) is equivalent to (A.6) together with positive semidefiniteness
and singularity of Cn. But singularity of Cn follows from (A.2) (for k+r < n)
and (A.6), since these show that the last column of Cn is a linear combination
of the previous r columns, and positive semidefiniteness of Cn follows from
(A.6) and Theorem 2.4 of [5] applied to γ = (m0, . . . ,m2l−2) if n = 2l and
to γ = (m1, . . . ,m2l−1) if n = 2l + 1 and m1 6= 0. Note that the theorem
assumes γ0 6= 0 and so does not apply if m1 = 0, but in that case r = 1,
ϕ0 = 0, and (A.6) becomes mn = 0, easily seen to be necessary and sufficient
for realizability.

(b) If m(n−1) is I-realizable then Ci > 0 for i = 1, . . . , n − 1 by Lemma A.1,
and by the same lemma, I-realizability of m(n) is then equivalent to Cn >



36

0. B-realizability of m(n) certainly implies that Cn be positive semidefinite
and singular, by Proposition A.2; conversely, the latter conditions imply
realizability of m(n), by Theorems 5.1 and 5.3 of [5], and this must be B-
realizability, by Proposition A.2. �

B Algebraic techniques

As noted in Remark 4.5(g), some of the results of Section 4 may be obtained
directly from the properties of the polynomials in Pn, without reference to a
realizing measure.

Lemma B.1 Let m = m(n) be a moment vector and suppose that LP (m) ≥ 0
for all P ∈ Pn. Then (i) LQ(m) ≥ 0 for all Q ∈ Pn−2, and (ii) if Q ∈ Pn−2
satisfies LQ(m) = 0, then LxQ(m) ≤ 0.

Proof: Suppose that Q ∈ Pn−2. If k is such that neither k nor k − 1 is a
zero of Q then (x− k)(x− k − 1)Q(x) ∈ Pn, so that

L(x−k)(x−k−1)Q(m) = Lx2Q(m)−(2k+1)LxQ(m)+k(k+1)LQ(m) ≥ 0. (B.1)

Then (i) and (ii) follow by letting k become very large in (B.1). �

Proposition B.2 Suppose that LP (m) ≥ 0 for all P ∈ Pn ∪ Pn−1. Then
LP (m) ≥ 0 for all P ∈

⋃n
k=1Pk, and if LQ(m) = 0 for Q ∈ Pk with k ≤ n−2

then LxiQ(m) = 0 for all i with 1 ≤ i ≤ n− 1− k .

Proof: The first statement follows from repeated application of Lemma B.1.
Suppose then that Q ∈ Pk, with k ≤ n− 2, satisfies LQ(m) = 0. If α is the
smallest nonnegative integer which is not a zero of Q then (x−α)Q ∈ Pk+1,
and hence L(x−α)Q(m) ≥ 0. On the other hand, from Lemma B.1,

L(x−α)Q(m) = LxQ(m)− αLQ(m) = LxQ(m) ≤ 0. (B.2)

We conclude that L(x−α)Q(m) = 0.
Thus we have constructed a linear polynomial T1 with T1Q ∈ Pk+1 and

LT1Q(m) = 0. By repeating the argument we can generate a sequence of
polynomials T1, . . . , Tn−k−1, with deg Tj = j, such that TjQ ∈ Pk+j and
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LTjQ(m) = 0. Because deg Tj = j it follows that LPQ(m) = 0 for all polyno-
mials P of degree less or equal to n−k−1. The conclusion follows by taking
P (x) = xi with 1 ≤ i ≤ n− 1− k. �

We see that Lemma 4.3 is an immediate consequence of Proposition B.2.
Moreover, we can now relax the hypotheses of Theorem 3.2(a), requiring only
that LP (m) > 0 for P ∈ Pn−2 and P ∈ Pn−3, rather than for all P ∈ Pk with
k ≤ n− 2.

Furthermore, thanks to Proposition B.2, we can prove that (3.6) implies
(3.1) and (3.4). For convenience let us restate here explicitly what we aim
to show.

Proposition B.3 Let m = m(n) ∈ Rn. If

LP (m) ≥ 0 for all P ∈ Pn−1∪Pn, and there exists a real number
λ such that if m′ = (m1,m2, . . . ,mn, λ) then LQ(m′) ≥ 0 for all
Q ∈ Pn+1.

(B.3)

then the following conditions both hold

LP (m) ≥ 0, ∀P ∈ Pn (B.4)

LP (m) ≥ 0, ∀P ∈ Pn−1 and if LP (m) = 0 then LxP (m) = 0. (B.5)

Proof: Suppose that (B.3) holds. Then clearly we have that (B.4) and the
first part of (B.5) hold. It remains to show that if P ∈ Pn−1 is such that
LP (m) = 0 then also LxP (m) = 0. But (B.3) ensures that the vector m′

fulfills the assumption of Proposition B.2 with n replaced by n + 1 and so
we get that: if LQ(m′) = 0 for Q ∈ Pk with k ≤ n− 1 then LxiQ(m′) = 0 for
all i with 1 ≤ i ≤ n − k. In particular, for k = n − 1 we obtain the desired
conclusion.

�
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