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BACKGROUND AND PURPOSE
Hyperglycaemia increases glucose concentrations in airway surface liquid and increases the risk of pulmonary Pseudomonas
aeruginosa infection. We determined whether reduction of blood and airway glucose concentrations by the anti-diabetic drug
dapagliflozin could reduce P. aeruginosa growth/survival in the lungs of diabetic mice.

EXPERIMENTAL APPROACH
The effect of dapagliflozin on blood and airway glucose concentration, the inflammatory response and infection were
investigated in C57BL/6J (wild type, WT) or leptin receptor-deficient (db/db) mice, treated orally with dapagliflozin prior to
intranasal dosing with LPS or inoculation with P. aeruginosa. Pulmonary glucose transport and fluid absorption were investigated
in Wistar rats using the perfused fluid-filled lung technique.

KEY RESULTS
Fasting blood, airway glucose and lactate concentrations were elevated in the db/db mouse lung. LPS challenge increased
inflammatory cells in bronchoalveolar lavagefluid fromWTanddb/dbmicewith andwithout dapagliflozin treatment. P. aeruginosa
colony-forming units (CFU) were increased in db/db lungs. Pretreatment with dapagliflozin reduced blood and bronchoalve-
olar lavage glucose concentrations and P. aeruginosa CFU in db/db mice towards those seen in WT. Dapagliflozin had no
adverse effects on the inflammatory response in the mouse or pulmonary glucose transport or fluid absorption in the rat lung.

CONCLUSION AND IMPLICATIONS
Pharmacological lowering of blood glucose with dapagliflozin effectively reduced P. aeruginosa infection in the lungs of diabetic
mice and had no adverse pulmonary effects in the rat. Dapagliflozin has potential to reduce the use, or augment the effect, of
antimicrobials in the prevention or treatment of pulmonary infection.

Abbreviations
ASL, airway surface liquid; BALF, bronchoalveolar lavage fluid; CFU, colony forming units; CF, cystic fibrosis; COPD,
chronic obstructive pulmonary disease; db/db, leptin receptor deficient; SGLT, sodium coupled glucose transporter; WT,
wild type
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Introduction
People with diabetes mellitus are at increased risk of, and
have worse outcomes from, lower respiratory tract infections
compared to those without diabetes mellitus. This is a
particular problem in chronic lung disease, where diabetes is
a common comorbidity. In people with chronic obstructive
pulmonary disease (COPD), diabetes is associated with an
increased likelihood and frequency of exacerbations (Kinney
et al., 2014), and increased duration of hospital stay and
mortality from exacerbations (Gudmundsson et al., 2006;
Parappil et al., 2010). In those with cystic fibrosis (CF), diabe-
tes is an independent risk factor for pulmonary exacerbations
(Jarad and Giles, 2008; Sawicki et al., 2013) and for failure of
intravenous or oral antibiotic treatment (Briggs et al., 2012;
Parkins et al., 2012). In both COPD and CF, poor glycaemic
control is positively associated with exacerbation frequency
(Franzese et al., 2008; Kupeli et al., 2010).

An important mechanism whereby diabetes mellitus
drives respiratory infection is through disruption of airway
glucose homeostasis. In health, the glucose concentration
of fluid lining human airways (airway surface liquid, ASL) is
~0.4 mM, 12.5 times lower than blood glucose concentra-
tions (Baker et al., 2007). Hyperglycaemia increases ASL
glucose concentrations by threefold in healthy lungs and
10-fold in chronic lung disease (Baker et al., 2007). Increased
ASL glucose concentrations predispose to respiratory infec-
tion, both by promoting the growth of pathogenic organisms
that use glucose as a carbon source, particularly P. aeruginosa
and S. aureus, and by suppressing host immunity. In both cell
culture and animal lung models, elevation of blood glucose
concentrations increases ASL glucose concentrations, which
in turn drives respiratory infection (Garnett et al., 2013b; Gill
et al., 2016). For example, P. aeruginosa (PAO1 strain) bacterial
counts were higher in lung homogenates from leptin receptor
deficient (db/db) and leptin-deficient (ob/ob) diabetic mice,
streptozotocin-treated mice and alloxan-treated diabetic rats
than in non-diabetic controls 6 h after respiratory inoculation
(Pezzulo et al., 2011; Gill et al., 2016; Oliveira et al., 2016). In
humans, diabetes is associated with increased isolation of gram
negative organisms in sputum fromCOPDpatients and increased
risk of lung colonization with P. aeruginosa in patients with CF
(Loukides and Polyzogopoulos, 1996; Leclercq et al., 2014).

Airway glucose homeostasis therefore represents a new
treatment target in the prevention and treatment of respira-
tory infection that has the potential to reduce the use, or

augment the effect, of antimicrobials. ASL glucose concentra-
tions could be reduced by lowering blood glucose, reducing
airway epithelial permeability to glucose or increasing glu-
cose uptake by airway epithelial cells (Garnett et al., 2012).
Acute (48 h) metformin treatment reduced epithelial perme-
ability to glucose by increasing expression of tight junction
proteins (Patkee et al., 2016) and decreased P. aeruginosa and
S. aureus growth in the lungs of diabetic mice, despite being
of insufficient duration to lower blood glucose (Garnett
et al., 2013a; Gill et al., 2016). Sodium-glucose co-transporter
isoform 2 (SGLT2) inhibitors are a relatively new class of anti-
diabetic drug that lower blood glucose by increasing renal
excretion of glucose and, unlike metformin, do not appear
to have off-target effects in the lung (Madaan et al., 2016).
The primary aim of our study was to determine whether re-
duction of blood glucose by treatment with the SGLT2 inhib-
itor dapagliflozin could reduce ASL glucose and P. aeruginosa
infection in the lungs of diabetic mice. Our secondary aims
were to determine the effects of dapagliflozin on inflamma-
tion in the mouse lung, glucose transport and fluid absorp-
tion in the rat lung, so as to assess the pulmonary effects of
this drug.

Methods

Animals
Male db/db mice, 14–15 weeks old (BKS.Cg-m+/+Leprdb/J
(db/db) C57BL/6J) (Charles River, Italy), average weight
49.7 ± 0.5 g and wild type (WT) C57BL/6J (24.0 ± 3.0 g) mice
were used in the study. WT and db/db mice were allocated
upon arrival into groups using restricted randomization so
that average body weights were similar between the groups.
Based on power calculations using data from similar studies
7–10 animals were used per group to detect meaningful
differences. Treatment groups were blinded during result
assessment and in some but not all data analyses. Results
from studies repeated using the same procedures were pooled
where possible. There was no significant loss of animals with
any treatment. However, there were occasional unexplained
losses of animals during the study which contributed to the
difference in numbers (n) given per group. Male Wistar rats
(Charles River Laboratories, Kent, UK), average weight
375.9 ± 19.4 g were randomly allocated to treatment groups
of four animals based on previous data. Animals were housed
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in pathogen-free facilities in cages with wooden chips,
shredded paper, gnaw sticks and plastic houses, which were
maintained at 21 ± 2°C with 55 ± 15% relative humidity
and 12 h light/dark cycle. Water and food (RM3 pellet from
Lantmännen, Sweden or RM1 expanded pellets from SDS,
UK) were available ad libitum. Body weights in fed state were
recorded during the course of the study to follow the
wellbeing of the animals. Experiments were terminated if
body weight decreased by 15% and/or if animals showed
signs of distress, such as decreased movement, abnormal
posture, dull eyes or piloerection.

LPS challenge model
LPS challenge of 48 h versus no challenge (indicated as
time 0) was carried out in C57BL/6J and db/db mice, with
or with out dapagliflozin treatment (see below). LPS from
P. aeruginosa (Sigma-Aldrich, UK) was diluted in aqueous
solution to give 0.0875 μg·g�1 mouse in 50 μL (based on
the average weight of the group) and given by intranasal
dosing at time 0. Animals were anaesthetised with
isoflurane 4–5% (O2 1.2 L·min�1) prior to administration
of the LPS solution to one nostril, which was subsequently
inhaled naturally. Mice were then returned to their cages
when they had regained consciousness.

Infection model
Db/db and WT C57BL/6 J mice were anaesthetised with
isoflurane 4–5% (O2 1.2 L·min�1) prior to intranasal infec-
tion with vehicle or 105 colony forming units (CFU) of log
phase P. aeruginosa (PAO1) in 100 μL. Mice were then
returned to their cages when they had regained conscious-
ness. Bronchoalveolar lavage fluid (BALF) was obtained from
inoculated lungs 24 h later (see below). Lungs were then
removed and homogenized by passage through 100 μm cell
strainers. Bacterial CFU were determined in untreated BALF
and lung homogenate by serial dilution on Luria broth agar
(Sigma-Aldrich, UK).

Blood and BALF collections
Blood was collected from the vena saphena of conscious mice
for glucose evaluation after 4 h of fasting. Animals were killed
by an i.p. overdose of 0.2 mL pentobarbital (100 mg·mL�1).
The lungs of each animal were subjected to bronchoalveolar
lavage. In brief, the trachea was exposed and a catheter was
inserted and secured with a silk suture. Three volumes of
0.3 mL saline were instilled, gently aspirated, pooled and
weighed. There were occasions where BALF collection was
impaired and sufficient samples volumes could not be
obtained for analysis.

BALF glucose, lactate and cell analysis
The BALF was centrifuged at 314xg, 10 min, 4°C. The
supernatant was used to measure glucose and lactate concen-
tration on the ABX Pentra 400 (Horiba ABX Medical, Kyoto,
Japan) according to the manufacturer’s protocol. The pellet
was re-suspended in 0.25 mL of PBS, and the total and
differential cell count was performed using SYSMEX XT-
1800i Vet that uses fluorescent flow cytometry technology
to differentiate between cell types (SYSMEX, Kobe, Japan).
For the infection studies, BALF was treated with red blood cell
lysis buffer before centrifugation at 200xg for 5 min. Cells

were resuspended in RPMI medium with 10% FCS, and
viable cell numbers were determined by trypan blue exclu-
sion. For differential cell counts, 100 μL of cells from BALF
and the lung homogenate were centrifuged onto glass slides,
air dried and fixed in methanol before staining of with
haematoxylin and eosin. Cell count is expressed as the
number of cells mL�1 of recovered BALF. At termination,
blood from behind the eye was collected in EDTA tubes
and blood glucose was measured directly using Accu-check
(Roche, Bromma, Sweden). Plasma lactate was assayed using
the ABX Pentra 400.

Treatment with dapagliflozin
Treatment groups were given a daily oral dose of either vehi-
cle (sterile water) or dapagliflozin (1 mg·kg�1) for 4 (LPS
study) or 7 days (infection study) at a volume of 0.2 mL per
mouse. Dapagliflozin/vehicle was administered just prior to
the LPS challenge and 4 h before the P. aeruginosa infection.

Dapagliflozin concentrations in acetonitrile precipitated
plasma samples were determined by LC–MS/MS. A gradient
elution on a C18 column was used with acetonitrile/formic
acid as the mobile phase system. The mass spectrometer oper-
ated in a positive/negative switching mode. Dapagliflozin
plasma concentrations were 542 ± 83 nM, n = 10, which is
comparable to maximum plasma concentrations recorded
in people (100-150 ng mL�1) (Yang et al., 2013; Tirucherai
et al., 2016).

Perfused fluid filled rat lung
Rats were terminally anaesthetised with i.p. injections of
75 mg·kg�1 ketamine (100 mg·mL�1)/1 mg·kg�1 medeto-
midine (1 mg·mL�1). Tracheotomy was performed, the rats
ventilated with air (Harvard Rodent ventilator) and the
chest opened in the midline. The animal was then treated
with heparin (0.1 mL, 10 000 U mL�1), cannulated via the
pulmonary artery and left ventricle, and the lungs perfused
with a solution containing 3% BSA, 117 mM NaCl,
2.68 mM KCl, 1.25 mM MgSO4, 1.82 mM CaCl2, 20 mM
NaHCO3, 5.55 mM glucose and 12 mM HEPES. The time
of loss of circulation to the lung was ~10–20 s. The perfusate
(100mL) was maintained at 38°C, 95%O2/5%CO2 and circu-
lated with a perfusion pressure of 7–8mmHg and venous neg-
ative return pressure. Once perfusion was established,
ventilation was stopped and the lung lumen filled with per-
fusate solution (15 mL·kg�1 body weight) with the exclusion
of glucose. After a 40 min mixing period to degas the lung,
the BALF was sampled (150 μL) every 10 min and the
concentration of glucose was measured using an Analox
GM9D glucose analyser (Analox Instruments Ltd). At
80 min, dapagliflozin (100 nM) or the sodium glucose co-
transporter isoform 1 and 2 (SGLT1/2) inhibitor phlorizin
(100 μM) was added to the BALF, and further samples were
taken at 10 min intervals up to 150 min to determine the
specificity of dapagliflozin and/or any detrimental off-target
effects. Perfusion and venous pressures and perfusate flow
rates as well as osmolality of the perfusate were monitored
during the course of the experiment.

All experiments were performed under licence from the
United Kingdom Home Office in accordance with the
Animals (Scientific Procedures) Act 1986, amended 2012 or
were approved by the local Ethical committee in Gothenburg
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(184-2012). Animal studies are reported in compliance with
the ARRIVE guidelines (Kilkenny et al., 2010; McGrath and
Lilley, 2015).

Statistical analysis
Values are reported as the mean ± SEM. Statistical analysis
was performed using ANOVA tests followed by Bonferroni’s
multiple comparison post hoc tests (GraphPad Prism) or
Student’s t-test (only if F achieved P < 0.05 and there was
no significant variance in homogeneity). P values of <0.05
were considered statistically significant. The data and statisti-
cal analysis complywith the recommendationsonexperimen-
tal design and analysis in pharmacology (Curtis et al., 2015).

Results

Diabetic db/db mice display elevated BALF
glucose and lactate concentrations
Fasting blood glucose concentrations were higher in db/db
than C57BL/6J WT mice (20.36 ± 2.6, n = 10 compared to
7.20 ± 0.0.18 mM, P < 0.05, n = 10, Figure 1A) as were BALF

glucose concentrations (0.45 ± 0.08 compared to
0.05 ± 0.01 mM, P < 0.05, n = 10 respectively, Figure 1B).
Fasting lactate concentration was significantly higher in the
BALF from db/db mice than from WT (0.18 ± 0.02 compared
to 0.05 ± 0.01 mM, P < 0.05, n = 10 respectively, Figure 1C).

Dapagliflozin reduces both fasting blood
glucose and BALF glucose concentrations in
db/db mice
Treatment of db/db mice with dapagliflozin for 4 days had no
significant effect on body weight (n = 10, Figure 2A).
Dapagliflozin significantly reduced fasting blood glucose
concentration in db/db mice (from 21.61 ± 1.86 to
11.40 ± 0.69 mM, P < 0.05, n = 18 and n = 20 respectively,
Figure 2B). Dapagliflozin reduced the BALF glucose concen-
tration of db/db mice (from 0.28 ± 0.04 to 0.15 ± 0.01 mM,
P < 0.05, n = 20 respectively, Figure 2C). Dapagliflozin had
no effect on the lactate concentration in the BALF of db/db
mice (n = 10 respectively, Figure 2D). The positive relation-
ship between blood glucose and BALF glucose in db/db mice
was not altered by dapagliflozin. Lines of linear regression
were significantly different from 0 (r2 = 0.3, P < 0.05 and

Figure 1
Airway glucose and lactate concentrations are elevated in hyperglycaemic mice. (A) Blood glucose, (B) BALF glucose and (C) BALF lactate all
shown as mM and plotted for individual C57BL/6J WT or db/db mice (all n = 10). The horizontal lines indicate mean values ± SEM. Statistically
different from WT or db/db treated with saline, * P < 0.05.

Dapagliflozin reduces P. aeruginosa infection BJP

British Journal of Pharmacology (2017) 174 836–847 839



r2 = 0.5, P < 0.05) respectively, but not different from each
other (Figure 3). It was noted however, that data from one
individual with a blood glucose of 19.90 mM and BALF
glucose of 0.22 mM may have skewed the data. If this point
was removed, the data analysis indicated that dapagliflozin
promotes a lower BALF glucose concentration for any
corresponding blood glucose than in untreated db/db mice
with the slope of the line and x intercept closer to that of
untreated WT mice (data not shown). This would infer that
dapagliflozin had a beneficial effect on ASL glucose homeo-
stasis additional to its action on blood glucose concentration.
However, we could not find any experimental justification to
remove this point. Dapagliflozin had no effect on body
weight, blood glucose or BALF glucose concentration in WT
mice (n = 10, data not shown).

Lowering blood glucose with dapagliflozin
reduces P. aeruginosa infection in db/db
mouse lung
There was a significant increase in P. aeruginosaCFU recovered
from the BALF of db/db mice compared to WT (1504 ± 172
and 736 ± 96 CFU mL�1, P < 0.05, n = 10 respectively,

Figure 2
Treatment with dapagliflozin reduces both blood and airway glucose. (A) Body weight (BW; n = 10), (B) fasting blood glucose (n = 18 and n = 20),
(C) BALF glucose (both n = 20) and (D) BALF lactate (n = 10). Body weight is shown as mean ± SEM at the start and end of the dapagliflozin treat-
ment protocol. All others are plotted as individual db/db mice treated with vehicle or dapagliflozin (dapa). The horizontal lines indicate mean
values ± SEM. Statistical difference between groups is indicated * P < 0.05.

Figure 3
Dapagliflozin does not adversely affect the relationship between
blood glucose and BALF glucose concentration. Values for blood
glucose and BALF glucose concentration plotted for individual
untreated (n = 20) or dapagliflozin pretreated db/db mice (n = 21).
Lines of linear regression were significantly different from 0
(r2 = 0.3, P < 0.05 and r2 = 0.5, P < 0.05) respectively (solid lines),
but not different from each other and a single line of regression
(broken line) could be plotted for all data (r2 = 0.5, P < 0.05, n = 41).
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Figure 4A). Pretreatment with dapagliflozin reduced bacteria
in BALF of db/db mice to that seen in WT (856 ± 92 CFU
mL�1, P< 0.05, n = 10, Figure 4A). Dapagliflozin had no effect
on CFU in WT (n = 10, data not shown) or survival in any
group (n = 10, data not shown). Dapagliflozin did not alter
the inflammatory response to P. aeruginosa infection. White
blood cells (WBC) were significantly increased in db/db and
dapagliflozin-treated db/db mice (P < 0.05, n = 10
respectively) compared to WT, and the elevation was pre-
dominantly due to an increase in neutrophils (Figure 4B,C).
Based on these observations, we suggest that dapagliflozin
reduced bacterial load through its action on blood and airway
glucose.

Diabetic db/db mice exhibit increased airway
inflammation that is not modified by
dapagliflozin
Reduction of inflammation is a treatment target in diabetes.
We therefore explored whether dapagliflozin treatment could
modify underlying inflammation in db/db mice and/or the
acute response to an inflammatory stimulus (identified by
increased inflammatory cells and lactate concentration in
BALF) to ensure that it did not promote inflammation and

to see if it could reduce inflammation. To do this, we used
LPS from P. aeruginosa to mimic the bacterial insult. Without
LPS treatment, db/db mice had higher numbers of WBC in
the BALF than WT mice (0.17 ± 0.01 compared to
0.11 ± 0.01 × 106 cells mL�1 weight, P < 0.05, n = 32 and 24
respectively, Figure 5A). This was predominantly due to
increased macrophages (Figure 5B, n = 32).

Treatment of WT and db/db with intranasal LPS elicited
an increase in inflammatory cells in BALF (all n = 6, Figure 5).
The response to LPS in db/db mice was more robust than that
of WT mice and was characterized by increased numbers of
neutrophils, macrophages and eosinophils (Figure 5C,D).
These data indicate that db/db mice had more baseline
inflammatory cells in the lungs than WT mice and elicited a
more robust neutrophil inflammatory response to LPS
stimulation.

Pretreatment with dapagliflozin had no effect on inflam-
matory cells in the BALF of db/db (n = 10, Figure 6A–D).
Dapagliflozin also had no effect on the LPS-induced increase
in total WBC, neutrophils, macrophages or eosinophils
numbers in the BALFs of db/db mice, n = 10 respectively
(Figure 6A–D).

BALF lactate concentration was increased in LPS-treated
db/db mice (0.12 ± 0.01, n = 16 to 0.28 ± 0.02 mM, P < 0.05,

Figure 4
Dapagliflozin treatment reduces airway bacterial load. C57BL/6J WT or db/db mice pretreated for 7 days with vehicle or dapagliflozin were in-
fected intranasally with P. aeruginosa. (A) P. aeruginosa CFU, (B) total WBC, (C) neutrophils in BALF. Data are plotted for individual animals
24 h after infection (all n = 10). The horizontal lines indicate mean values ± SEM. Statistical difference between groups is indicated *P < 0.05.
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n = 17, Figure 7A). As expected, the number ofWBC positively
correlated with lactate concentration in the BALF of db/db
mice (r2 = 0.3, P<0.05, (Figure 7B). Dapagliflozinhadno effect
on the LPS-induced rise in lactate concentration in the BALF
and concentrations remained elevated at 0.24 ± 0.02 mM,
n = 10 (Figure 7C). Therefore, whilst dapagliflozin pretreat-
ment lowered blood and airway glucose, it had no effect on
the elevated inflammation seen in db/db animals. Treatment
of db/dbmicewith LPS had no effect on blood (n = 14) or BALF
glucose concentration (n = 12, Figure 7A,B).

SGLT2 inhibitor dapagliflozin has no
detrimental effect on lung glucose and fluid
absorption
To confirm the specificity of dapagliflozin as an inhibitor of
SGLT2, without effect on the function of SGLT1, we
measured BALF glucose in perfused, fluid-filled rat lungs, with
and without addition of dapagliflozin (SGLT2-specific inhib-
itor) or phlorizin (SGLT1/2 inhibitor) to the lung instillate.
There was no significant change in lung liquid glucose con-
centration in the presence of dapagliflozin (0.11 ± 0.02 mM

at the end of control sampling to 0.15 ± 0.07 nM at the end
of treatment sampling, n = 4) or lung liquid absorption rate
(control rate: �0.02 ± 0.00 mL·min�1·g�1 dry lung weight to
treatment rate: �0.02 ± 0.00 mL·min�1·g�1 dry lung weight,
n = 4). Phlorizin significantly increased lung liquid glucose
(0.05 ± 0.01 mM at the end of control sampling to
0.36 ± 0.05 mM at the end of treatment sampling; P < 0.05,
n = 6, Figure 8A) and significantly decreased lung liquid ab-
sorption rate (control rate: �0.02 ± 0.00 mL·min�1·g�1 dry
lung weight to treatment rate: �0.01 ± 0.00 mL·min�1·g�1

dry lung weight; P < 0.05, n = 6, Figure 8B). These data dem-
onstrate that SGLT1, but not SGLT2, mediates Na+/glucose
transport in the rat lung and that dapagliflozin has no effect
on this process.

Discussion
We found that reducing blood glucose by treatment with the
SGLT2 inhibitor dapagliflozin reduced both BALF glucose
concentrations and P. aeruginosa load in the lungs of leptin
receptor-deficient db/db diabetic mice. To our knowledge,

Figure 5
Hyperglycaemic animals have greater neutrophil response to LPS. (A) Total WBC, (B) macrophages, (C) neutrophils and (D) eosinophils all shown
as ×106 mL�1 and plotted for individual C57BL/6J WT or db/db mice treated (n = 24 and n = 32 respectively) with saline or LPS (both n = 6). The
horizontal lines indicate mean values ± SEM. Statistical differences between groups are indicated * P < 0.05.
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this is the first study to demonstrate that control of blood
glucose using an oral hypoglycaemic agent can prevent
pulmonary infection, potentially by limiting movement of
glucose into airway secretions.

We propose that dapagliflozin exerts its anti-infective
effect by restricting glucose availability for P. aeruginosa
growth/survival in the lung through a reduction in blood
and ASL glucose concentrations. In support of this, genetic
impairment of sugar transport pathways in P. aeruginosa and
S. aureus that limited sugar uptake had a similar effect on
bacterial growth/survival in the lung to that of dapagliflozin
(Pezzulo et al., 2011; Garnett et al., 2014; Gill et al., 2016).
Reduction of airway glucose in the distal mouse lung by
manipulation of glucose transport pathways also reduced
bacterial load (Oliveira et al., 2016). Furthermore, we previ-
ously showed that treatment with the biguanide metformin
reduced lung epithelial permeability and glucose flux into
the lung lumen without affecting blood glucose concen-
tration and inhibited the growth/survival of S. aureus and
P. aeruginosa in diabetic mice (Garnett et al., 2013a; Patkee
et al., 2016). Our new data indicate that lowering blood
glucose concentration and consequently the gradient for
glucose diffusion into the lung lumen has a similar effect
to reducing epithelial permeability and glucose flux,
resulting in restriction of bacterial growth/survival in the

lungs. As dapagliflozin and metformin have different
modes of action, it could be speculated that combined
therapy would further reduce ASL glucose and infection.
We have no evidence that insulin or insulin-sensitizing
effects of metformin and other type II diabetic drugs would
further modify ASL glucose, although other beneficial ef-
fects cannot be ruled out.

These findings have potentially important clinical rele-
vance and implications for human health. Diabetes
mellitus affects ~25% people with COPD (Wells and Baker,
2013) and ~50% adults with CF (Li et al., 2016), in whom
it is associated with increased exacerbation rate (Kinney
et al., 2014) and increased sputum colonization with gram
negatives/P. aeruginosa (Loukides and Polyzogopoulos, 1996;
Leclercq et al., 2014). Several very small studies in patients
with chronic lung disease indicate that treatment with oral
hypoglycaemics and/or insulin can reduce exacerbation rate
and alter sputum microbiology (Lanng et al., 1994; Rinne
et al., 2015). SGLT2 inhibitors have established application
in the treatment of type 2 diabetes in COPD (NICE, 2013)
and potential application as an insulin adjunct in the treat-
ment of the insulin-deficient diabetes seen in CF (Argento
and Nakamura, 2016). Further investigation of the effect of
dapagliflozin on chronic P. aeruginosa infection and the
safety and efficacy of treatment with this drug in co-morbid

Figure 6
Dapagliflozin treatment does not reduce airway inflammatory cells. (A) Total WBC, (B) macrophages, (C) neutrophils and D) eosinophils all shown
as ×106 mL�1 and plotted for individual vehicle-treated db/db mice or db/db mice pretreated with dapagliflozin (dapa) or LPS or dapa + LPS
(all n = 10). The horizontal lines indicate mean values ± SEM. Statistical differences between groups are indicated * P < 0.05
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diabetes and respiratory disease are now required. This to-
gether with progress to a clinical investigation will deter-
mine whether blood glucose control with dapagliflozin can
reduce P. aeruginosa load/colonization and/or exacerbation
rate in patients with chronic lung disease.

This study has also generated important lung safety data.
Dapagliflozin had no effect on inflammatory cell numbers
and associated lactate concentration in the airways of mice
prior to, or after, an acute pro-inflammatory challenge. This
indicates that dapagliflozin did not impair the inflammatory
response required to clear infection. Inflammatory cells and
lactate were increased in the lungs of untreated db/db mice
and exposure to pro-inflammatory stimuli promoted a
characteristically neutrophilic response that was more robust
compared toWT animals (Lu et al., 2006; Vernooy et al., 2010;
Yano et al., 2012). This difference in inflammatory response
was not reported for hyperglycaemic GK+/� or
streptozotocin-treated mice (Hunt et al., 2014; Gill et al.,
2016) and indicates that lack of leptin receptor signalling
and/or insulin-resistance are more likely than glucose to
mediate this effect in db/db mice (Lu et al., 2006; Park et al.,
2009; Vernooy et al., 2010; Yano et al., 2012). Increased
inflammatory status is a hallmark of diabetic patients and
reduction of systemic inflammation has been proposed as a
treatment target (Maiorino et al., 2017). Although, there is

no data from human studies yet (Scheen et al., 2015), inhibi-
tion of SGLT1/2 was reported to improve systemic neutrophil
phagocytosis in db/db mice (Yano et al., 2012) and treatment
with the SGLT2 inhibitor empagliflozin for 8 weeks (com-
pared to 4 days used in this study), improved insulin sensitiv-
ity (Kern et al., 2016). Thus, whether a more prolonged
treatment with dapagliflozin would aid resolution of inflam-
mation or improve inflammatory cell function requires
further study.

In the well-characterized perfused, fluid-filled rat lung
model, we found that dapagliflozin had no adverse effects
on fluid absorption or lung glucose concentrations. The
SGLT1 isoform is expressed in alveolar epithelium, where it
contributes to sodium, glucose and fluid absorption (Bodega
et al., 2010). Phlorizin, an inhibitor of SGLT1/2, reduced lung
liquid and glucose absorption, increasing luminal glucose
concentrations with potential adverse effects of pulmonary
oedema and increased bacterial proliferation (Oliveira et al.,
2016). Dapagliflozin, which has ~200-fold selectivity for
SGLT2 over SGLT1 (Han et al., 2008) had no effect on lung
fluid or glucose absorption, providing further evidence for
pulmonary safety of this drug and no function of SGLT2 in
the lung.

We conclude that dapagliflozin reduces bacterial
growth/survival in the lung by reducing glucose availability

Figure 7
Dapagliflozin treatment does not change BALF lactate concentration. (A) Vehicle-treated db/db mice (n = 16) or db/db mice pretreated with
dapagliflozin (dapa) (n = 17) or LPS (n = 10) or dapa + LPS (n = 10). (B) Lactate concentration (mM) versus WBC plotted for individual vehicle-
treated (n = 10) or LPS-treated (n = 40) db/db mice. BALF glucose (C) and blood glucose (D) concentrations are also shown. The horizontal lines
indicate mean values ± SEM. Statistical differences between groups are indicated * P < 0.05.
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in the ASL. Dapagliflozin reduced blood and BALF glucose
without negatively impacting lung glucose transport, fluid
absorption or inflammatory responses in the lung. This is
the first study to show that a reduction of blood glucose in
hyperglycaemia has a direct beneficial effect on respiratory
infection in vivo. These findings are relevant to the manage-
ment and treatment of the diabetic exacerbation of respira-
tory disease, particularly in the light of increasing bacterial
resistance to antibiotic therapy.
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