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Abstract 

Perceiving the external spatial location of touch requires that tactile information about 

the stimulus location on the skin be integrated with proprioceptive information about 

the location of the body in external space, a process called tactile spatial remapping. 

Recent results have suggested that this process relies on a distorted representation of 

the hand. Here, I investigated whether similar distortions are also found on the forearm 

and how they are affected by the presence of the wrist joint, which forms a categorical, 

segmental boundary between the hand and the arm. Participants used a baton to judge 

the perceived location of touches applied to their left hand or forearm. Similar 

distortions were apparent on both body parts, with overestimation of distances in the 

medio-lateral axis compared to the proximo-distal axis. There was no perceptual 

expansion of distances that crossed the wrist boundary. However, there was increased 

overestimation of distances near the wrist in the medio-lateral orientation. These 

results replicate recent findings of a distorted representation of the hand underlying 

tactile spatial remapping, and show that this effect is not idiosyncratic to the hand, but 

also affects the forearm. These distortions may be a general characteristic of the mental 

representation of the arms. 
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Introduction 

Several classes of afferent signals provide information about the current postural 

configuration of the body, including receptors in joints, in muscle spindles, and in the 

skin signaling skin stretch (Burgess, Wei, Clark, & Simon, 1982; Proske & Gandevia, 

2009, 2012). Efferent copies of motor commands also provide information used to 

determine current lib position (Gandevia, Smith, Crawford, Proske, & Taylor, 2006; 

Walsh, Proske, Allen, & Gandevia, 2013). There is thus clear physiological evidence that 

perceived limb position is influenced by receptors in joints (e.g., Ferrell, Gandevia, & 

McCloskey, 1987; Macefield, Gandevia, & Burke, 1990), in muscle spindles (e.g., 

Goodwin, McCloskey, & Matthews, 1972; Matthews, 1972), and in the skin (e.g., Edin & 

Johansson, 1995; Collins, Refshauge, Todd, & Gandevia, 2005). There is, thus, a diverse 

set of afferent signals which shape the perception of limb position. 

Critically, however, each of these signals, however, provide information about 

the angles of joints, rather than their absolute location in space. Nevertheless, explicit 

judgments of body part location appear more precise than judgments of limb angles 

(Fuentes & Bastian, 2010). Similarly, neurons in somatosensory cortex (Prud’homme & 

Kalaska, 1994; Tillery, Soechting, & Ebner, 1996), posterior parietal cortex (Kalaska, 

Cohen, Prud’homme, & Hyde, 1990), and motor cortex (Graziano, Taylor, & Moore, 

2002) show selectivity for end-point positions, rather than individual joint angles. Thus, 

raw afferent information specifying joint angles is converted into a representation of 

absolute position in egocentric space. Calculating the absolute spatial location of part of 

the body requires that these signals specifying angular information be combined with 

information about the size and shape of the body segments between joints, information 

not specified by any afferent signal, or combination of signals. We therefore argued that 

position sense requires that immediate sensory signals be combined with a stored, 
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central representation of the metric properties of the body, which we called the body 

model (Longo, Azañón, & Haggard, 2010). 

 Longo and Haggard (2010) developed a procedure to isolate and measure this 

body model in the case of the hand. Participants placed their hand palm down on a table 

underneath an occluding board. They then used a long baton to judge the perceived 

location of the tip and knuckle of each finger. An overhead camera recorded the 

locations of judgments. By comparing the relative locations of judgments of each 

landmark, we constructed perceptual maps of hand structure underlying position sense. 

These maps were grossly distorted, featuring overall underestimation of finger length 

(i.e., the distance between the knuckle and tip), a radial-ulnar gradient with finger 

length underestimation increasing from the thumb to little finger, and overall 

overestimation of hand width (i.e., the distance between pairs of knuckles). Thus, 

position sense appears to rely on a highly distorted representation of body size and 

shape, with the hand represented as substantially wider than it actually is. Similar 

results have been found in several subsequent studies (Ferrè, Vagnoni, & Haggard, 

2013; Longo, 2014; Longo & Haggard, 2012a, 2012b; Longo, Long, & Haggard, 2012; 

Lopez, Schreyer, Preuss, & Mast, 2012; Saulton, Dodds, Bülthoff, & de la Rosa, 2014; 

Saulton, Longo, Wong, Bülthoff, & de la Rosa, 2016; Coelho, Zaninelli, & Gonzalez, in 

press). 

 In three recent studies (Longo, Mancini, & Haggard, 2015; Longo & Morcom, 

2016; Mattioni & Longo, 2014), we have extended this hand-mapping paradigm to 

investigate the integration of proprioceptive and tactile information involved in 

localizing touch in external space, a process known as tactile spatial remapping (Azañón 

& Soto-Faraco, 2008; Bremner, Mareschal, Lloyd-Fox, & Spence, 2008; Heed & Azañón, 

2014; Heed, Buchholz, Engel, & Röder, 2015; Yamamoto & Kitazawa, 2001). Mattioni 
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and Longo (2014) compared perceptual maps of hand structure obtained by localizing 

the knuckles and fingertips either by verbal instruction, as in the studies described in 

the previous paragraph, or by a tactile stimulus being applied to that location. Broadly 

similar patterns of distortion were apparent in both conditions, though with some 

differences in magnitude. Because tactile stimuli in this study were always applied to 

linguistically-labeled landmarks (i.e., the knuckles and fingertips), it is possible that 

rather than localizing the location of the touch in external space, participants merely 

took the touch as a cue for which landmark to localize. In a subsequent study, Longo, 

Mancini, and Haggard (2015) used a similar paradigm but applied touch to several non-

landmark locations on the hand dorsum, organized in a 3x3 grid. We compared the 

overestimation of distances between pairs of landmarks oriented in the proximo-distal 

hand axis with those oriented in the medio-lateral axis. There was modest 

overestimation of distances in the proximo-distal orientation (approximately 10-20% of 

actual distance), but substantially larger overestimation of distances in the medio-

lateral orientation (approximately 40-80% of actual distance). Longo and Morcom 

(2016) replicated this result using a 4x4 grid of points. These results suggest that tactile 

spatial remapping relies on a distorted representation of the hand, wider and squatter 

than its actual shape, a pattern broadly similar to the pattern found for position sense 

alone, described in the previous paragraph. 

 The exact mechanisms underlying these distortions remain uncertain. Several 

lines of evidence, however, suggest that the distortions have a central origin. For 

example, Longo and colleagues (2012) found highly similar maps in a woman born 

without a left arm but with periodic phantom experiences, both for her intact right hand 

and for her ‘phantom’ left hand. Similarly, Ganea and Longo (2017) found highly similar 

maps when participants judged the location of landmarks on their actual hand under 
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the board and when they merely imagined their hand being there. Further, some 

aspects of the distortions (e.g., the underestimation of finger length) appear when 

participants use visual memory to judge the remembered location of landmarks on a 

rubber hand (Longo, Mattioni, & Ganea, 2015; Saulton et al., 2016), or even non-body 

objects (Saulton et al. 2014). Studies using a wide-range of methods have suggested that 

the posterior parietal cortex is involved in combining inputs from different modalities 

to construct estimates of limb position (e.g., Azañón, Longo, Soto-Faraco, & Haggard, 

2010; Bolognini & Maravita, 2007; Lloyd, Shore, Spence, & Calvert, 2003; Fautrelle, 

Gueugnon, Barbieri, & Bonnetblanc, 2013; Graziano, Cooke, & Taylor, 2000; Sakata, 

Takaoka, Kawarasaki, & Shibutani, 1973), though some others implicate the premotor 

cortex (e.g., Graziano, 1999; Valenza et al., 2004). Integration of sensory signals with a 

stored body model may thus occur at these sites of multisensory integration in 

computing limb position. 

Several aspects of these distortions appear to parallel aspects of the organization of 

the somatosensory cortices. For example, the progressive decrease in the represented 

length of the fingers from the thumb to little fingers (Longo & Haggard, 2010) mirrors 

gradients in both cortical magnification (Duncan & Boynton, 2007) and acuity (Duncan 

& Boynton, 2007; Vega-Bermudez & Johnson, 2001) of the different fingers. Similarly, 

the overestimation of distances in the medio-lateral axis relative to the proximo-distal 

axis is mirrored by the fact that tactile acuity is higher in the medio-lateral axis of the 

limbs (e.g., Cody, Garside, Lloyd, & Poliakoff, 2008; Weber, 1834/1996) and that the 

perceived distance between two touches is increased in the medio-lateral axis (e.g., 

Green, 1982; Longo & Haggard, 2011). Each of these effects of orientation may be 

related to the fact that the receptive fields (RFs) of neurons in primary somatosensory 

cortex representing the limbs tend to be oval-shaped, rather than circular, with the long 
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axis of the oval running along the proximo-distal limb axis (e.g., Alloway, Rosenthal, & 

Burton, 1989; Brooks, Rudomin, & Slayman, 1961; Powell & Mountcastle, 1959). Given 

that the spacing between the RFs of adjacent neurons is a constant proportion of RF size 

(Sur, Merzenich, & Kaas, 1980), oval-shaped RFs should lead to denser spacing of RFs in 

the medio-lateral axis of limb. We recently suggested that individual RFs function as 

‘pixels’ in maps of the body, with distance determined by essentially counting the 

number of RFs between two locations (Longo & Haggard, 2011; Longo, 2017). Because 

RFs are smaller across the medio-lateral axis of the limbs, distances oriented with this 

axis will have more unstimulated ‘pixels’ than distances along the proximo-distal limb 

axis, and thus may be considered as farther apart. 

To date, studies using these paradigms have focused specifically on the hand. In this 

study, I extended this approach to the forearm. The motivation for this was twofold. 

First, I aimed to determine whether the distortions described above are idiosyncratic to 

the hand, or affect other body parts as well. Second, I aimed to see how the presence of 

the boundary between the two body parts, the wrist joint, affects the represented 

spatial layout of the body. Joints have been argued to be critical for providing spatial 

structure to the body, providing the “hinges” for segmenting the body into distinct parts 

(Bermúdez, 1998). Studies of tactile localization have found that joints function as 

reference points, with localization error being reduced near the shoulder, elbow, and 

wrist joints (Boring, 1942; Cholewiak & Collins, 2003; Weber, 1834/1996). Perhaps 

related to increased localization accuracy, other studies have shown heightened tactile 

spatial acuity in the immediate vicinity of the wrist than on the adjacent skin of the 

forearm and hand (Cody, Garside, Lloyd, & Poliakoff, 2008). Most pertinent in the 

present context, two recent studies have argued for categorical perception effects 

caused by the wrist boundary (de Vignemont, Majid, Jola, & Haggard, 2009; Le Cornu 
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Knight, Longo, & Bremner, 2014). de Vignemont and colleagues (2009) obtained verbal 

estimates of perceived tactile distance, finding that these were increased when the two 

touched locations fell on opposite sides of the wrist (i.e., one on the hand and one on the 

forearm) than when both stimuli were applied entirely on either body part. Le Cornu 

Knight and colleagues (2014) asked participants to make forced-choice judgments of 

which of two tactile distances felt larger, one oriented in the proximo-distal limb axis 

and the other in the medio-lateral axis. They found that the baseline bias for medio-

lateral distances to be perceived as larger than proximo-distal ones (Green, 1982; Longo 

& Haggard, 2011; Canzoneri et al., 2013; Miller, Longo, & Saygin, 2014) was reduced at 

the wrist, consistent with perceptual expansion of distances that crossed the wrist 

boundary. 

The procedures were similar to those used by Longo, Mancini, and Haggard (2015), 

but used an expanded set of stimulation locations. In the Tactile Task, a 4x2 grid of 

locations was made in ink on the participant’s left arm using a stencil, resulting in one 

2x2 grid entirely on the hand dorsum and another 2x2 grid entirely on the forearm. This 

allowed comparisons of overestimation of distances entirely on the hand, entirely on 

the dorsum, and crossing the joint boundary between the two body parts. For 

comparison, I also measured perceptual hand maps by verbally instructing participants 

to localize the knuckles and fingertips of each finger (Verbal Task). 

 

Methods 

Participants 

 Twelve individuals (8 female; mean age: 21.8 years; SD: 2.8 years) participated 

after giving informed consent. All participants were right-handed as assessed by the 

Edinburgh Inventory (Oldfield, 1971) (M: 77.97; range: 33.33 – 100). The study was 
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conducted in accordance with the principles of the Declaration of Helsinki with written 

informed consent from all participants. Procedures were approved by the Department 

of Psychological Sciences Research Ethics Committee at Birkbeck, University of London.  

 

Procedure 

Procedures were similar to those used in previous studies with this paradigm 

(Longo & Haggard, 2010, 2012a, 2012b). Participants sat with their left hand and 

forearm resting palm-down on a table. An occluding board (40 x 40 cm) was placed on 

four pillars (6 cm high) to occlude the hand. A webcam (Creative Live Cam Voice) was 

suspended from a tripod 27 cm above the table and captured photographs (1280 x 960 

pixels) under control of a custom Matlab (Mathworks, Natick, MA) script. Fisheye 

distortion in the photographs was corrected using the Panotools plug-in 

(http://www.panotools.org/) for Adobe Photoshop CS2. 

In the Verbal Task, the participant used a long baton (35 cm length; 2 mm 

diameter) to indicate the perceived location of landmarks on their left hand, underneath 

the occluding board. Ten landmarks were used: the tip of each finger (i.e., the most 

distal point) and the knuckle of each finger (i.e., the centre of the knuckle at the base of 

each finger). On each trial, participants were instructed verbally which landmark to 

localise. They were asked to be precise in their responses, to avoid ballistic movements, 

and to refrain from strategies such as tracing the outline of the hand. To ensure that 

responses were independent, participants moved the tip of the baton to the blue dot at 

the edge of the occluding board after each trial. When participants indicated that they 

were happy with their response, a photograph was captured showing their response 

and stored for offline coding. At the beginning and end of each block a photograph was 

taken without the occluding board to allow measurement of actual hand structure and 
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to ensure that the hand and arm had not moved during the block. A 10 cm ruler 

appeared on the table in the images without the occluding board, allowing conversion 

between distances in pixels and cm. To facilitate coding of the actual location of the 

knuckles, a small black mark was made with a pen on each knuckle at the start of the 

experiment by asking the participant to make a fist. 

 The Tactile Task was similar to our recent studies (Longo, Mancini, & Haggard, 

2015; Longo & Morcom, 2016), the participant was touched with a wooden stick at one 

of eight locations on their left hand or forearm and judged the perceived location of 

touch. The locations were arranged in a 4x2 grid, centered on the wrist, so that there 

was one 2x2 grid on the hand dorsum and another on the forearm. The distance 

between adjacent points was 3.5 cm. The locations were marked with a black pen using 

a flexible plastic stencil. The tactile stimulus was applied manually by an experimenter, 

who lifted up the occluding board to access the hand/arm, tilting the board towards the 

participant to prevent their seeing the location of the stimulus. The tactile stimulus was 

applied for approximately one second. 

 There were two experimental blocks of each task, in ABBA order, with the initial 

condition counterbalanced across participants. Within each block, there were three 

repetitions of each landmark (in the verbal task) or stimulus location (in the tactile 

task). The trials within a block were arranged in three sequential mini-blocks, each 

including one trial of each location, in random order. There were thus 30 trials per 

block in the verbal condition and 24 trials per block in the tactile condition. 

 

Analysis 

 Analysis methods were similar to our previous studies using this paradigm. The 

x-y pixel coordinates of the actual location of each landmark (in the verbal task) and 
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stimulus location (in the tactile task) were coded offline from the images without the 

occluding board. In addition, the pixel coordinates of each end of the ruler were coded, 

allowing us to convert distances from pixels to cm. Similarly, the judged location of each 

landmark or stimulus location was coded by the x-y pixel location of the tip of the baton. 

 For our statistical analysis, we calculated the distance between pairs of locations 

or judgments using the Pythagorean theorem and converted these to cm. We then 

calculated overestimation as a percentage of actual size using the following formula: 

Percentage Overestimation = 100 * (Judged Distance – Actual Distance) / Actual 

Distance. 

To graphically display perceptual maps, we used Procrustes alignment 

(Bookstein, 1991; Rholf & Slice, 1990), which scales, translates, and rotates 

configurations of homologous landmarks to superimpose them as much as is possible. 

Because the fingers are articulated and can move independently, differences in hand 

shape can be confounded by differences in hand posture (Adams, 1999). We therefore 

rotated the fingers of each hand to a common posture, defined for each finger as the 

angle formed by the intersection of the line running through the knuckles of the index 

and little fingers and the line running between the tip and knuckle of a particular finger. 

These angles were 39.6°, 64.4°, 76.5°, 87.1°, and 108.8°, for the thumb through little 

fingers, respectively. Because there were two experimental blocks of each condition, I 

first put the two maps of each type for a given participant into mutual Procrustes 

alignment and took the grand-average shape. These maps were then placed-into a 

second-level Procrustes alignment across participants, as shown in Figures 1 and 2. 

 

Results 

Verbal Task 
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The left panel of Figure 1 shows the perceptual maps, placed into Procrustes 

alignment to allow calculation of a grand-average shape. In our previous studies using 

this paradigm we have found three specific patterns of distortion of these perceptual 

maps: (1) overall underestimation of finger length, (2) a radial-ulnar gradient with 

underestimation increasing from the thumb-side to the little finger-side of the hand, and 

(3) overestimation of hand width. All of these were replicated in the present study. 

First, collapsing across the five fingers, there was significant underestimation of finger 

length (M: -12.25%), t(11) = -2.85, p < 0.02, d = 0.824 (see Figure 2, centre panel). An 

analysis of variance (ANOVA) revealed that the magnitude of underestimation differed 

across the five fingers, F(4, 44) = 4.55, p < 0.005, ηp2 = 0.293. We quantified the change 

across the five fingers using least-squares regression, regressing percent 

overestimation on finger number (i.e., thumb=1 to little finger=5). There was a 

significant gradient, with underestimation increasing from the thumb towards the little 

finger (M: -5.50% per finger), t(11) = -2.82, p < 0.02, d = 0.815. Taking the distance 

between the knuckles of the index and little fingers as an overall measure of hand 

width, there was clear overestimation of hand width (M: 60.8%), t(11) = 3.52, p < 0.005, 

d = 1.015 (see Figure 2, right panel).  

 

Figure 1: Results from the verbal task. Left: Perceptual hand maps from individual participants 
(pale orange dots) in the verbal task placed in mutual Procrustes alignment with each other and 
with maps of actual hand shape (pale blue dots). The dark dots and lines show the grand average 
shape of perceptual maps (dark orange) and actual hand structure (dark blue). Centre: 
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Overestimation of finger length. Across fingers there was overall underestimation of finger 
length, which increased from the radial (thumb) side of the hand to the ulnar (little finger) side. 
Right: Overestimation of distance between pairs of knuckles. Hand width was substantially 
overestimated. Error bars are one standard error of the mean. 

 

Finally, as an overall measure of the aspect ratio of the hand, we calculated the 

shape index, which we adapted from Napier (1980). The shape index is defined as 100 * 

hand width/hand length. A large shape index thus indicates a wide, squat hand, and a 

small index a long, slender hand. As a measure of hand width we used the distance 

between the knuckles of the index and little fingers. As a measure of hand length we 

used the length of the middle finger. Shape indices were calculated both for the actual 

shape of participants’ hands and for the shape of perceptual maps. Shape indices were 

clearly larger in perceptual maps (M: 119.81) than actual hands (M: 61.44), t(11) = 4.25, 

p < 0.002, d = 1.23, again showing a clear bias for the hand to be represented as broader 

than its actual shape. 

 

Tactile Task 

 The left panel of Figure 2 shows perceptual maps in the tactile task placed into 

mutual Procrustes alignment across participants and for both judgments and actual 

stimulus locations. Figure 3 shows the same data separately for each participant. I 

calculated the distance between adjacent locations in either the proximo-distal or 

medio-lateral orientation. Overall, there was modest overestimation of distances in the 

proximo-distal orientation (M: 12.47%), t(11) = 2.16, p = 0.0537, d = 0.624 (the red bars 

in the bottom left panel of Figure 2), and substantial overestimation in the medio-lateral 

orientation (M: 115.11%), t(11) = 4.63, p < 0.001, d = 1.34 (the green bars in the bottom 

left panel of Figure 2). The magnitude of overestimation was significantly larger in the 

medio-lateral than in the proximo-distal orientation, both overall, t(11) = 4.72, p < 
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0.001, dz = 1.361, and considering stimuli on the dorsum (114.34% vs. 23.00%), t(11) = 

5.68, p < 0.0001, dz = 1.641, and on the forearm (115.88% vs. 2.42%), t(11) = 4.51, p < 

0.001, dz = 1.303, separately. An ANOVA on percent overestimation including 

orientation (medio-lateral vs. proximo-distal) and body part (dorsum vs. forearm) 

revealed a clear main effect of orientation, F(1, 11) = 29.53, p < 0.001, ηp2 = 0.729, but 

no effect of body part, F(1, 11) = 2.21, n.s., ηp2 = 0.168, nor an interaction, F(1, 11) = 

1.36, n.s., ηp2 = 0.110. Thus, these results show that that the distortions found for 

perceptual maps underlying tactile spatial remapping reported by Longo, Mancini, and 

Haggard (2015) are not idiosyncratic to the hand, but also affect the forearm. Moreover 

the distortions are of similar magnitude on the two body parts. 

 
Figure 2: Left panel: Perceptual maps from individual participants (pale orange dots) in the 
tactile task placed in mutual Procrustes alignment with each other and with maps of actual hand 
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shape (pale blue dots). The dark dots and lines show the grand average shape of perceptual maps 
(dark orange) and actual hand structure (dark blue). Top right panel: Schematic of the eight 
points showing the distances that were calculated. In the proximo-distal orientation (red) 
distances were calculated between locations entirely on the dorsum, entirely on the forearm, or 
crossing the wrist. In each case, distances between pairs of locations in the left and right columns 
were averaged. In the medio-lateral orientation distances were calculated between locations fully 
on the dorsum or forearm (top and bottom rows) and locations near the wrist (middle two 
rows). Bottom right panel: Overestimation of distance as a percentage of actual distance for each 
type of distance. Distances in the proximo-distal orientation are shown in red, and those in the 
medio-lateral orientation in green. There was substantial overestimation of medio-lateral 
distances, but only modest overestimation of proximo-distal distances. 

 

 I next investigated the effects of the wrist on these distortions. As shown in the 

top left panel of Figure 2, I divided distances in the proximo-distal orientation into three 

categories, those entirely on the dorsum, those entirely on the forearm, and those 

crossing the wrist, shown in the red bars in the bottom left panel of Figure 2. An ANOVA 

on these data revealed no significant effect of location, F(1.26, 13.84) = 1.08, n.s., ηp2 = 

0.090. As can be seen in the figure, there was no hint of a perceptual expansion across 

the wrist boundary. 

 I similarly divided distances in the medio-lateral orientation into four categories, 

each associated with one row of the 4x2 grid, as seen in the top left panel of Figure 2. An 

ANOVA revealed a significant main effect of location, F(3, 33) = 4.04, p < 0.02, ηp2 = 

0.269. The two locations adjacent to the wrist showed more overestimation than the 

locations farther from the wrist. There were significant increases for the location near 

the wrist both on the dorsum (132.51% vs. 96.16%), t(11) = 2.23, p < 0.05, dz = 0.643, 

and on the forearm (134.15% vs. 97.61%), t(11) = 2.37, p < 0.05, dz = 0.684. Thus, in 

contrast to the lack of expansion across the wrist boundary, there was a clear increase 

of overestimation for stimuli near the wrist oriented parallel to the wrist. 
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Figure 3: Perceptual maps from individual participants in the tactile task (orange) placed into 
Procrustes alignment with maps of actual stimulus locations (blue), separately for each of the 12 
participants. 

 

Discussion 

These results replicate the finding of Longo, Mancini, and Haggard (2015) that 

tactile spatial remapping of stimuli on the hand relies on a distorted representation of 

body size and shape, with substantial overestimation of hand width compared to length. 

Further, they show that similar distortions appear on the arm, showing that this effect is 

not idiosyncratic to the hand. Thus, the localization of tactile stimuli applied to the both 

hand and the forearm relies on a similarly distorted representation of body size and 

shape. Interestingly, there was no expansion of distance across the wrist boundary, as 

might have been expected given recent studies reporting categorical perception of 
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tactile distance across this joint (de Vignemont et al., 2009; Le Cornu Knight et al., 

2014). There was evidence, however, for perceptual expansion for stimuli near the 

wrist oriented in the medio-lateral orientation (i.e., parallel to the wrist). 

The broadly similar distortions found on the hand and forearm suggest that both 

may be integrated into a more general representation of the arm as a whole. Studies of 

perceived tactile distance have found qualitatively similar anisotropies on both body 

parts (Green, 1982; Longo & Haggard, 2011; Miller et al., 2014), with pairs of tactile 

stimuli oriented with the medio-lateral limb axis being perceived as farther apart than 

pairs oriented with the proximo-distal axis. Thus, for both tactile spatial remapping and 

tactile distance perception there appears to be a general bias to perceived the limb as 

wider than it actually is, affecting both the forearm and hand, consistent with the idea 

that both rely on a common body model (Longo et al., 2010). Although, one recent study 

found no correlation across participants in the magnitude of biases in the two 

modalities (Longo & Morcom, 2016).  

In the case of tactile distance perception, however, there is also evidence that 

this perceptual anisotropy is even bigger on the forearm than on the hand (Le Cornu 

Knight et al., 2014; Miller, Longo, & Saygin, 2016). The current study did not find any 

evidence for differences between these body parts, with quite similar distortions 

apparent in both cases. Another important difference between the current study and 

previous studies of tactile distance perception was the absence of perceptual expansion 

across the wrist boundary, which has been reported in two recent studies of tactile 

distance perception (de Vignemont et al., 2009; Le Cornu Knight et al., 2014). The exact 

meaning of these differences between tactile spatial remapping and tactile distance 

perception is not fully clear. One possibility is that the two abilities may rely on body 

representations which, though similarly distorted, are nevertheless distinct. There is 
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some existing evidence that this may be the case. For example, in both position sense 

(Longo & Haggard, 2012a) and tactile distance perception (Longo, Ghosh, & Yahya, 

2015; Longo & Haggard, 2011), distortions are smaller on the glabrous skin of the palm 

than on the hairy skin of the hand dorsum. But while the magnitude of distortion is 

strongly correlated on the two sides of the hand for position sense (Longo & Haggard, 

2012a), they are uncorrelated for tactile distance perception (Longo, Ghosh, et al., 

2015), which could indicate that tactile distance perception relies on a more fragmented 

representation of individual skin surfaces, while position sense relies on a more holistic, 

integrated representation of entire body parts (Longo, 2015a). If position sense relies 

on a more holistic representation of the entire arm than does tactile distance 

perception, this could account for why the wrist did not produce the same categorical 

perception effect in the current study as in previous studies of tactile distance 

perception (de Vignemont et al., 2009; Le Cornu Knight et al., 2014). 

 Another possible interpretation of the difference between the present results 

and those measuring tactile distance perception is that participants in this study made 

completely independent judgments of each stimulus location, whereas tactile distance 

judgments intrinsically involve a comparison of two distinct locations. That is, in the 

current study participants made a judgment on each trial about the absolute location in 

space of a single tactile stimulus. In contrast, in the studies of de Vignemont and 

colleagues (2009) and Le Cornu Knight and colleagues (2014), participants made 

judgments about the relative location of simultaneously presented tactile stimuli. It is 

possible that categorical perception effects will show up more strongly for comparative 

judgments of multiple stimuli (as in tactile distance judgments) than for absolute 

judgments of single stimuli (as in the current study). 
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 Another possible explanation for the absence of an effect of crossing the wrist in 

the present study could be that participants simply don’t recognize exactly where the 

wrist actually is. We have recently reported large misunderstandings about the location 

of other joints in the hand – the knuckles – which people appear to believe are 

substantially farther forward in the hand than they actually are (Longo, 2015b; Margolis 

& Longo, 2015). Indeed, we found that the magnitude of this bias was correlated across 

participants with the extent of underestimation of finger length in the hand mapping 

task (Longo, Mattioni, & Ganea, 2015). In the current study, were participants to 

misperceive the location of the wrist, it might be relatively unsurprising that no 

categorical perception effect was found. There are several reasons, however, to consider 

this interpretation unlikely. First, this issue would seem to pose equal complications for 

finding categorical perception effects in tactile distance perception, which have 

nevertheless been found in recent studies (de Vignemont et al., 2009; Le Cornu Knight 

et al., 2014). Second, in the current study the wrist did appear to affect performance, 

specifically leading to increased overestimation in the medio-lateral hand axis for 

stimuli presented near the wrist, suggesting that the location of the wrist had not been 

misperceived. Third, it seems likely that the misperception of knuckle location is at least 

partly related to the fact that the location of the knuckles is visually apparent only on 

the dorsal hand surface, but not on the palm. The wrist is very different in this sense, 

since it is visually apparent on both sides of the arm in terms of creases in the skin and 

an overall change in the shape of the limb. 

 In conclusion, the present results show that similar distortions of body structure 

characterize tactile spatial remapping on the hand and forearm. This suggests that 

rather than being an idiosyncrasy of the hand, these distortions may reflect the general 

organization of the mental representation of the limbs. Indeed, in the case of tactile 
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distance perception, similar biases appear on the legs as on the arms (Green, 1982). 

Moreover, there are cases in which the finger agnosia seen in the Gerstmann syndrome 

extends to the toes (Tucha, Steup, Smely, & Lange, 1997), suggesting a common 

representation of digits across all limbs. It would be interesting in future research to 

directly compare the upper and lower limbs, given their clear serial homology, yet 

vastly different functional roles in everyday behaviour.  
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