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Abstract

In this work, the mathematical models describing the dynamics of the gene regulatory

network of the lac operon are considered. The lac operon is one of the simplest biolog-

ical systems which involves the regulation network of three genes. The mathematical

models of the regulatory mechanisms of the lac system, developed in the literature

are based on deterministic or fully stochastic approach to the problem. The aim of

the thesis is the development of two stochastic models (reduced and full) based on

extension of existing deterministic models with noise terms. The two models reflect

different level of complexity of the regulatory processes. The advantage of this ap-

proach is based on the realistic description of protein concentrations, protein kinetics

and time delays.

Furthermore, a time delayed version of the stochastic model does not exist in the

literature for the lac operon. Time delays are important for biological systems as the

reaction to changes in the system are always with some delays. The full and reduced

models of the lac regulation, considered in this work, have three and two time delays

respectively.

The noise is another essential component of the lac model as it regulatory processes

are probabilistic. Adding noise to the determinstic model mimics the stochastic be-

haviour of the system.

The research considers first order stochastic delayed differential equations (SDDEs)

and their solutions. Stability properties of the stochastic models are investigated

by linearization of the systems of SDDEs. New sufficient conditions of mean square

xiii



1

stability are obtained analytically for these models using Lyapunov function. Addi-

tionally, the threshold values for SDDEs are derived. These conditions and threshold

values are applied to find analytical solutions of the two models of nonlinear SDDE.

Further, numerical solutions of these equations are obtained using Euler Maruyama

method. A detailed analysis of the stability regions of the models is performed, an-

alytically and numerically. A specific attention is given to the bistable region as it

reflects important biological features of the system linked to the positive regulatory

mechanism. It is concluded that the stochasticity can change the boundaries of the

bistable region which cannot be obtained in the case of the deterministic model of

the lac operon.

The issue of modifying the behaviour of the regulatory network is by controlling the

input to the system is another important problem considered in this work. First,

the variables of the system that are not directly measurable or the measurement

is very difficult or expensive, are estimated using the observer method. For the

reduced lac system, these variables are mRNA and β-galactosidase. In this context,

an observer is employed instead of using hardware solutions ( such as sensors) which

normally are used in the experiment. For the lac operon, the available measurement of

lactose and allolactose are used to provide an estimate of mRNA and β-galactosidase.

A feedback controller is designed to regulate the concentration of allolactose. The

main motivation for using an observer is because it is a cheaper alternative solution

compared to hardware solution.

This thesis provides a thorough investigation of the stochastic stability of two lac

operon models and demonstrates that the system behaviour is very sensitive to protein

concentrations. It also provides a novel way for estimating such concentrations.



Chapter 1

Introduction

Every cell in living organisms contains a set of genes. A gene network consists of

one or more input genes. Its components are genes and proteins and the interac-

tions between them, which, collectively, carry out some cellular functions. A genetic

regulatory network is an interaction between DeoxyriboNucleic (DNA), Ribonucleic

acid (RNA) and proteins. Gene regulatory network has been well studied in the bac-

terium Escherichia coli (E. coli) [3, 4]. E. coli lives in the human body and can

be represented as a sequence of genes (DNA) that metabolize lactose in its environ-

ment. The genes turned on to beak down lactose are regulatory genes, so called the

lactose operon (lac operon). lac operon was studied by Jacques Monod and Fracois

Jacob in 1959 [5]. E. coli also produces the aminoacid tryptophan (protein) and is

characterized by experiments that detect the behaviour of full molecular systems.

There is a long history of a mathematical modelling of gene regulatory networks.

In this work the mathematical models are considered that explain a gene regulatory

network constructed from chemical rate rules [6]. The set of chemical reactions

can lead to detailed deterministic (ordinary differential equations) and stochastic

differential equation models, describing the reaction kinetics of the constituent parts.

One goal of the development of mathematical models is to analyze the behaviour of

the systems in order to obtain experimentally testable predictions [7, 8].

The lac operon is a well-known gene regulatory network, and there are many models

2



CHAPTER 1. INTRODUCTION 3

focusing on different regulation mechanisms of the lac operon. The first model is by

Griffith [4]. However, model that describes the potential for bistability (two stable

steady states in a system) in the lac operon is by Babloyantz and Sanglier [9]. Some

recent works, such as the model of Ozbudak et al. [10], observed that bistability

has been experimentally observed on artificial genes but not on natural (lactose).

Yildirim and Mackey [11, 12] developed two deterministic models of the lac operon

represented by two systems of nonlinear delay differential equations, known as the

full and reduced models respectively. They found that both models are capable to

show bistable behaviour.

The stability of the lac operon model is an important feature to show the behaviour of

the model and to determine the fate of the model. This work investigates the stability

of the full and reduced model of the lac operon with stochastic perturbation.

More recently, deterministic differential equations with a noise term (stochastic differ-

ential equations) were subjected to a number of studies [13, 14, 15]. The noise term

could be presented as a random function and could induce many important effects on

the model. However, all reported in the literature studies the stochastic model of the

lac operon are without time delays and do not investigate the stochastic stability in

the bistable region.

A stochastic stability is introduced in this work by adding perturbations to the deter-

ministic models of Yildirim and Mackey [11, 12]. Thus, the stability behaviour for

the full and reduced stochastic delay differential equations models are investigated in

this research depending on the level of lactose. This allows to investigate very spe-

cific question, namely are what the differences between stochastic and deterministic

behaviour of the lac system.

The problem of modifying the behaviour of the regulatory network by controlling the

input to the system is also considered. For this, some of the essential variables of the

system are estimated first that are not accessible to measurement. In this context,

an observer design is employed. For the lac operon, the available measurements

of proteins is used to provide an estimate of unmeasurable proteins. the issue of

modifying the behaviour of the regulatory network is also considered by controlling



CHAPTER 1. INTRODUCTION 4

the input to the system.

As a case study, the lac operon model for gene regulatory networks with the existence

of a feedback loop has chosen. The lac operon is an interesting model and a well-

described example of a gene regulatory system with a good set of experimentally

measured parameters.

1.1 Research motivation

Stability plays a significant role in some of the basic processes of an organism. The

model of the lac operon can be investigated by focusing on the equilibria points and

investigating the stability of a system of delay differential equations. The stability

behaviour of the lac operon has been the subject of a number of studies [16, 17].

Bistability was observed by Novick [18], whereas Griffith [4] developed the inherent

positive feedback in the lac operon model that can cause bistability under certain

conditions. The recent models to match bistability data are from [11, 12, 19, 20].

The lac operon consists of three genes. A stochastic model is more appropriate for

the small system, such as the lac operon model in E.coli [21, 22]. The stochastic

behaviour can be considered by adding perturbations to the deterministic model and

understanding of the probabilities for a protein to be switched on or off [15, 6].

The investigations of bistability in deterministic and stochastic ordinary differential

equations models have been looked at separately. Thus, this study answers the need

to investigate the stability and bistability of the system by stochastic delay differential

equations.

The stochastic stability can be very useful for showing asymptotic behaviour corre-

sponding to a noise term. It shows the effect of stochasticity and different behaviour

of the model within and outside the bistable region.

Another key challenge of the research is the evaluation of difficult to measure proteins

of the lac operon system by using the measurement of the input and output proteins.
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The existing and the proposed models and solutions for the lac operon can be sum-

marized in two figures (Figure 1.1 and Figure 1.2).

Figure 1.1 is related to the full and reduced deterministic and stochastic delay dif-

ferential equations models corresponding to different regulation mechanisms. Figure

1.2 introduces the observer and controller design method for the reduced model.
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Figure 1.1: Modelling Framework: the grey and blue colours indicate work done in [11], [12] and
[46] respectively. Green colour indicates new contribution of this work.
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Figure 1.2: Modelling Framework: the blue colour indicates work done in [12]. Green colour
indicates new contribution of this work.
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1.2 Problem definition

To understand the functions of the gene regulatory network, a mathematical is needed

that can capture correctly the complexity of the interactions between the elements of

the networks. Ordinary differential equations (ODEs) are a tool known to model the

dynamics of gene regulatory networks. As the ODEs are nonlinear, analytical meth-

ods and advanced software is required. Stability analysis is an appropriate method

for investigating the nonlinear dynamic systems and both, analytical and numerical

simulations are used to study their behaviour.

The stochastic process of a continuous time variable used in a very precise context of

gene regulatory networks models is now widely applied to describe any phenomenon

where the presence of noise in a nonlinear system of ODEs provides an efficient

approximation of the behaviour of system under consideration at the particular sta-

tionary equilibrium point. However, most of the stochastic models currently proposed

for the lac operon do not investigate the stochastic behaviour within bistablility re-

gion of the lac operon with time delay. Thus, the stochastic stability of the full

and reduced models of the lac operon consisting of five and three delay differential

equations respectively, are investigated in the thesis, using Ito stochastic approach

involving mean square stability with Lyapunov function. Numerically the models are

investigated using dde23 and Euler Maruyama methods. Also, an observer design of

the dynamic of the lac operon model is employed that uses experimentally measured

input and output of the model, to estimate proteins that cannot be easily measured

experimentally. In addition, a control design is built to the model to amend the

behaviour of the model of the lac operon. Numerically the system is analysed using

simulink (Matlab) for both observer and control designs.

1.3 Objectives and aims

The aim of this thesis is to study the dynamics of genetic regulatory networks of

the lac operon and to contribute to the understanding of the mechanisms of genes
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interactions that organize such simple biological systems like the lac operon. Tow

positive feedback mechanism of lactose regulation in the lac operon are studied in

the thesis, described by stochastic. Extensions of previously developed deterministic

models.

The stochastic behaviour is described by adding noise term to the deterministic sys-

tems of ODEs with delays. The meaningful solutions that describe the system’s

behaviour are the stable solutions for the models of the lac operon at the particular

stationary equilibrium point. For regulatory networks, even in the case of simple

system the values of the parameters cannot always be measured accurately and, in

practice, the parameters have to be estimated numerically. The methods for evaluat-

ing the parameters that provide stable solutions are investigated, in this work.

The thesis has the following objectives:

• Provide an overview mathematical models of the gene regulatory network (GRN)

of the lac operon. Review the current state of the art for lac operon mathemat-

ical modelling techniques relating.

• Study an existing deterministic model of the lac operon with differential equa-

tions with time delay, and perform a stability analysis of the system.

• Study the need for stochastic corrections and introduce noise to the model.

• Investigate the effects of stochastic stability on the lac operon models of stochas-

tic differential equations with time delay.

• Analyse stochastic stability of the full and reduced models, of the lac operon.

• Investigate the stochastic stability within and around the bistable region.

• Investigate the available of experimental measurements of the inputs and out-

puts of the lac operon model in order to estimate the unmeasured proteins,

using observer design.

• Investigate a control design of the lac operon model to modify the behaviour of

the model and show the behaviour in a required time.
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1.4 Thesis contribution

As a result of the study, the following original contributions have been made:

1. A numerical solution for the full and reduced deterministic of the lac operon

models has been reproduced in order to study the behaviour of the deterministic

system (Chapter 4,5).

2. The stochastic stability of the reduced model of the lac operon has been formu-

lated and investigated. A full analysis has been carried out to study the effect

of noise (Chapter 6).

3. The stochastic stability of the full model of the lac operon has been formulated

and investigated (Chapter 7).

4. A numerical solution for the reduced stochastic model has been obtained and

investigation of the bistable region has been presented (Chapter 6).

5. A numerical solution for the full stochastic model has been obtained and inves-

tigation of the bistable region has been presented (Chapter 7).

6. A study of the behaviour of full and reduced stochastic models on the edges of

the bistable region has been made (Chapter 6,7).

7. An Investigation has been conducted into the unmeasured state of the reduced

model of the lac operon, using observer design (Chapter 8).

8. A control design of the reduced model of the lac operon has been presented

(Chapter 8).

1.5 Structure of the thesis

The thesis is organised in nine chapters. The background of mathematical biology

is given in Chapter 2. The chemical kinetic equations and the literature review of
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mathematical models that describe gene regulation of the lac operon is summarised

in Chapter 3. Chapter 4 contains an overview of a published in the literature math-

ematical model that describe the full model of the lac operon with deterministic

differential equations with time delays. A reduced deterministic model of the lac

operon regulation published in the literature with the numerical and analytical so-

lutions is given in Chapter 5. The stochastic stability is introduced and analysis

carried out to study the effect of perturbations around equilibrium points for the re-

duced model of the lac operon in Chapter 6. This includes results of the investigation

using computer simulations and investigation of the bistable region. The stochastic

stability of the full model is introduced and analysis carried out in Chapter 7. The

analytical and numerical solution are obtained and investigated in same chapter. A

nonlinear closed-loop observer is designed in Chapter 8 to provide estimates of vari-

ables that are not measured experimentally for the reduced model of the lac operon.

It includes a control design of the model and full investigation. Chapter 9 summarizes

the research undertaken and the results of the investigation and provides further rec-

ommendations for future work. The concepts of stability for the solution of nonlinear

ordinary differential equations (ODEs) and some methods used to prove the stability

of the dynamical system are described and some tools of the stability are reviewed in

Appendix A.



Chapter 2

Biological background

2.1 Biological concepts

For a long time biologists have scientifically investigated how parts of the cell work:

they have studied the biochemistry of molecules, such as the structures of DNA, RNA,

proteins, and function of membranes, they have developed theoretical concepts about

the interaction of elements in different types of genetic networks.

A system biology begins with the study of genes and proteins in an organism using

high throughput techniques to quantify the change in response to a given perturba-

tion. These techniques include microarrays to measure the changes in mRNAs, and

mass spectrometry, which is used to identify proteins, detect protein modifications,

and quantify protein levels. The development of a more methodical view of biological

processes is based on the revolution in experimental techniques and methodologies.

The biology of a living organism begins with the study of genes and protein. In this

section a review of the main biological concepts, relevant to this thesis, is given.

12
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2.1.1 Concept of the gene

System biology begins with the genes in an organism. Each cell in every living thing

on earth contains thousands of genes, which carry information that goes toward de-

termining the traits of the living organisms. These traits are described by the genetic

information carried by the DNA molecule. Each strand of DNA contains many genes.

Genes are coded information in every living organisms for making what is necessary,

especially making proteins. Proteins are chains of aminoacids and form the structure

of organisms.

DNA acid is the genetic material of a cell, it is a nucleic acid usually in the form

of a double helix joined by hydrogen bonds. It is two strands coiled round each other

and contains the genetic instructions. Each strand is a chain of chemical structures

(nucleotides). The four bases found in DNA are adenine (A), cytosine (C), guanine

(G) and thymine (T). These allowable base components of nucleic acids can be poly-

merized in any order, giving the molecules a high degree of uniqueness. Between the

two strands, each base can only pair with one single predetermined other base. The

double-stranded structure of DNA provides a simple mechanism for DNA replication.

The base on the old strand dictates which base will be on the new strand, and the

cell ends up with an extra copy of its DNA.

Transcription, translation, and replication are the essential mechanisms to produce a

complex group of proteins. Starting from DNA, the genetic information is transcribed

to messenger RNA, and then translated into proteins. There is a single copy of DNA

and there may be multiple copies of RNA.

The eukaryotic cells have a nucleus, the DNA is located in the nucleus, but prokary-

otic cells do not have a nucleus. DNA is not separated from the cytoplasm by a

nuclear envelop, so it is occupies any part of the cell. These two cells, eukaryotic

and prokaryotic, are important for determining which kinds of models are appro-

priate. Prokaryotic cell transcription occurs in the cytoplasm alongside translation,

eukaryotic transcriptional regulatory mechanisms are much more complicated than
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the prokaryotic ones. For instance, in eukaryotes, promoters may have large num-

bers of binding sites more or less clustered. Also, in eukaryotes, the genetic material

(DNA), and, therefore, transcription, is primarily localized to the nucleus, where it is

separated from the cytoplasm (where translation occurs) by the nuclear membrane.

DNA is also present in mitochondria; eukaryotes have three nuclear RNA polymerases

which transcribe ribosomal RNA (rRNA), messenger RNA (mRNA) and small nuclear

RNAs (snRNAs), transfer RNA (tRNA) and other small RNAs.

The translation of mRNA binds to a ribosome, whose function is to create proteins.

This process is in eukaryotic cells, where the transcription processes in the nucleus,

so mRNA is transported to the cytoplasm, where the translation processes occur and

mRNA binds to ribosomes which is move along the mRNA. A sequence of codons

in part of mRNA molecule. Each codon consists of three base nucleotides, usually

translated into a single amino acid. As the amino acids are linked into the growing

peptide chain, they begin folding into the polypeptide chains. This folding continues

until the nascent polypeptide chains are released from the ribosome as a mature

protein. In some cases, the new polypeptide chain requires additional processing to

make a mature protein. In prokaryotic cells, which have no nuclear compartment, the

process of transcription and translation may be linked together. Finally, replication

is carried out by a complex group of proteins, and using DNA polymerase and its

associated proteins, these copy or replicate the master template itself [19, 23].

2.1.2 Gene regulatory networks

A gene network is an image of gene interactions between DNA, RNA, proteins, and

small molecules. The investigation of genetic networks has been accelerated by the

development of microarray technology. For any organism, gene regulation (regulation

of gene expression) is the cellular control of the amount and timing of appearance

(induction) of the functional product of a gene.

The gene consists of a coding region and a regulatory region. The coding region is the

part of the gene that will be transcribed into messenger RNA (mRNA) and translated
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into protein. The regulatory region is the part of DNA that contributes to the control

of the gene.

In prokaryotes, there are repressor and activator genes which bind to regions called

operators that are generally located near the promoter region which are both are

regulatory regions of DNA , where repressors impede RNA polymerase progress along

the strand, thus impeding the expression of the gene, and activators encourage the

expression of the gene and enhance the interaction between RNA polymerase and a

promoter. In eukaryotes, transcriptional regulation tends to involve combinatorial

interactions between several transcription factors. In particular, it contains binding

sites for transcription factors, which operate by binding to the DNA and affecting the

initiation of transcription. Figure 2.1 represents general transcription; P1,..., P4, are

promoters and G1,..., G4, are genes. Genes can be viewed as binds in such a network,

where TFs are proteins that bind with DNA at promoters. TFs are responsible for

regulating when a certain gene is expressed.

Figure 2.1: General transcription in gene network.

2.1.3 Operon

The operon consists of a group of genes preceded by an operator, a promoter and one

or more structural genes controlled to produce mRNA. Operon is one or more genes

transcribed on the same mRNA. The operon may also contain regulator genes, such
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as a repressor gene which codes for a protein that binds to the operator, shutting a

gene down (off) or turning it (on) and inhibits transcription. Operon regulation can

be either negative or positive.

The operon occurs in prokaryotes, the prokaryotic cells are parts encode multiple pro-

tein pathways that are grouped together and controlled by the same regulation. This

process is called an operon. In comparison, the eukaryotic parts contain information

from only one gene with one protein.

2.1.4 Operon regulation

In negative inducible operons, a regulatory repressor protein is normally bound to

the operator and it prevents the transcription of the genes on the operon.

In positive inducible operons, activator proteins are normally unable to bind to the

pertinent DNA. However, certain substrate molecules can bind to the activator pro-

teins and change their conformations so that they can bind to the DNA and enable

transcription to take place [19].

2.1.5 Operons in E.coli

There are three systems, the phage λ, trp operon and lac operon, in molecular biol-

ogy that are most studied in E.coli (a simple prokaryote) and that contain all the

information about the genes and their interaction.

• The phage λ is a paradigm for molecular switches; it is a virus that infects

the cells of the E.coli bacteria. The genes of phage λ constitute a single DNA

molecule, its chromosome wrapped in a protein coat. The coat is a structure

with a head and a tail, all encoded by the chromosome. A phage infects E.

coli by injecting its DNA into the host, the phage λ injects its genome inside

the bacterium and leaves the protein coat outside. The lambda’s DNA may

behave in a lytic cycle, where phages eventually cause lysis of the host cell, or

a lysogenic cycle, where DNA integrates into the host DNA [24].
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• The tryptophan operon (trp operon) is a paradigm for a repressible operon, and

it is an essential amino acid for the synthesis of all proteins composed of a DNA

sequence involved in the regulation of gene activity in response to tryptophan.

The trp operon contains five structural genes encoding tryptophan synthetase,

a promoter which binds to RNA polymerase, and an operator which blocks

transcription when bound to the protein synthesized by the repressor gene that

binds to the operator. This process is different in the lac operon. In the trp

operon, tryptophan binds to the repressor protein and enables it to repress gene

transcription products, mRNA then there is translation into five enzymes, that

constitutes trp operon [25].

• The lac operon is activated (turned on) when a high level of lactose available

and a low level of glucose; causing a positive feedback loop. The most recent

discoveries of the lac operon behaviour in the development of molecular and

systems biology are briefly reviewed. The lac operon is one of the best under-

stood organisms in E.coli and is a paradigm for inducible operons. The lac

operon, shown in Figure 2.2, is a genetic region of the E.coli consisting of three

adjacent structural genes, a promoter, a terminator, and an operator, required

for the metabolism of glucose. The three structural genes in the lac operon

are: lacZ, lacY, and lacA. lacZ encodes β -galactosidase, an intracellular en-

zyme that catalyzes the breakdown of lactose into glucose and galactose. Gene

lacY encodes β-galactoside permease, a membrane bound transport protein

that pumps lactose into the cell. lacA encodes β-galactoside transacetylase, an

enzyme that transfers an acetyl group to β-galactosides. Only lacZ and lacY

appear to be necessary for lactose metabolism. Transcription of lac structural

genes starts with the binding of the enzyme RNA polymerase (RNAP) to the

lac promoter. The three structural genes are transcribed into a single messenger

RNA (mRNA). The lacI gene encoding repressor lies near the lac operon and

is always expressed [19].
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Figure 2.2: Diagram of the lac operon, where lactose is not present, lacI always transcribed then
translated into repressor.

When E.coli cells are growing in the presence of lactose, some of the lactose

is converted to allolactose (a lactose metabolite) and binds to the repressor,

then the repressor is unable to bind to the operator, enabling RNAP from

transcription to the lacZYA (mRNA) (Figure 2.3). If lactose is absent from the

growth medium, the repressor binds to the operator region and prevents the

transcription of the lac genes Figure (2.4). Therefore, the regulation of mRNA

depends on the lac repressor, which is controlled by the presence and absence

of lactose.

Figure 2.3: Diagram of the lac operon with lactose present, inactive repressor, transcription of
lacZYA.
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Figure 2.4: Diagram of the lac operon with lactose absent, repressor active and no lacZYA tran-
scription.

In this thesis the case study of lac operon is chosen to illustrate the stochastic delay

differential equations used for the description of gene regulation of the lac network

model.



Chapter 3

An overview of the mathematical

models of the lac operon

3.1 Introduction

All living organisms involve proteins (enzymes), which act as remarkably efficient

catalysts. Substrates are enzymes that react selectively on definite compounds. To

understand the role of enzymes regulation in biology processes, one need to study

rate of reactions (enzyme kinetics). A more detailed level of explanation is used in

the chemical kinetics approach, in which the variables of significance are the concen-

trations of individual proteins within the cell, and the dynamics describe the rates of

production and decomposition of these proteins.

As most genetic regulatory networks of interest involve many components connected

through interlocking positive and negative feedback loops, an intuitive understanding

of their dynamics is hard to obtain. As a consequence, formal methods and computer

tools for the modeling and simulation of genetic regulatory networks will be indis-

pensable. Numerous levels of detail have conventionally been used in modelling gene

regulation, and the dynamics describe how groups of genes activate to change one

another is states over time.

Modeling gene regulation networks has, in some cases, enabled biologists to predict

20
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cellular behaviour long before such behavior can be experimentally validated. The

extent to which biologists can take advantage of the modelling techniques is limited

by the computational complexity of gene regulatory network simulation algorithms

and efficiency of the numerical methods utilised in the models.

The model of the lac operon was described by delay differential equations [11] which

are constructed from chemical rate rules. All cells have the same genomic data, but

proteins synthesized in each cell differ according to cell type, environmental and time

with network of interactions. This chapter reviews previous works of the lac operon

models. Next section will describe the mathematical description.

3.2 Mathematical description of regulation

Mathematics has played important roles in many fields of biology.

To study system biology one important step is to understand biochemical reactions

and networks of genes in cells. Chemical concentrations and variables are converted

to differential equations. Some approaches based on gene regulatory networks are

being developed by computational biologists, statisticians, mathematicians, computer

scientists, engineers and physicists are necessary to obtain experimentally testable

predictions. New computer simulations have started analyzing the simplest genetic

networks, which are found in bacteria demonstrated network behaviours, such as the

lac operon [26, 19].

3.2.1 Chemical kinetics

Chemical reactions are important in the description of biological systems. In the sim-

plest terms, a reaction requires reactants and products. Chemical reactions provide

unifying notation by which to express arbitrarily complex chemical processes, either

quantitatively or qualitatively. Chemical reactions can lead to different computa-

tional models (deterministic or stochastic models). The chemical equation definiens
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how the state of the system changes. For example, a generic chemical reaction is,

n1A+ n2B
k−→ m1C +m2D.

This means that the reactants between some molecules of types A and B are prod-

ucts formed by reaction and transformed to molecules of types C, D. The coefficients

n1, n2, m1 and m2 are called stoichiometric coefficients and are small integers. The

value k is a rate constant (change in concentration in time), which depends on tem-

perature, which is usually given by the Arrhenius equation [27]:

k = Ae−
Ea
RT ,

where Ea is the activation energy, R is the gas constant, T is the absolute temperature,

A is the frequency factor, the value for A and Ea being dependent on the reaction.

The state of a system is a snapshot and an important concept in dynamical systems

and contains enough information to predict the behaviour of the system for all future

times. Different models of gene regulation provide a depiction of the state. Those

different models have some similarities: each model predicts which state or states can

occur next, it gives just the current state.

3.2.2 Chemical reaction and Michaelis-Menten kinetics

The reaction rate (enzyme kinetics) for a reactant and product in a particular reaction

is defined as the amount of the molecule [6]. For a typical chemical reaction consider:

n1A+ n2B
k+−→
k
−←−
C +D.

where A,B,C and D are active masses, n1, n2 are the number of molecules for A and

B respectively, and k+, k− are affinity constant. The forward and backward reaction

rates w+, w− are

w+ = k+[A]
n1 [B]n2 , w− = k−[C][D],

here [] denotes concentration. If the chemical reaction is in equilibrium, the affinities

and reaction rates for forward and backward reaction rates are equal, then

K =
k+

k−
=

[C][D]

[A]n1 [B]n2
.
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where K is the reaction dissociation. This equation is known as the law of mass

action [19].

Michaelis-Menten kinetics describes the rate of enzyme reactions for many en-

zymes, involving a substrate S reacting with an enzyme E to form a complex SE,

which, in turn, is converted into a product P and the enzyme E.

S + E
k+−→
k
−←−
SE

k2−→ P + E. (3.2.1)

The first two arrows indicate that the reaction is reversible, while the single arrow

indicates that the reaction can go only one way. k+, k− and k2 are constant parameters

associated with the rates of reaction. The mechanism is: one molecule of S combines

with one molecule of E to form one of SE, which eventually produces one molecule

of P and one molecule of E again. Under certain assumptions, such as the enzyme

concentration being much less than the substrate concentration, the rate of velocity

of the enzymatic reaction is

d[P ]

dt
= k2[SE] = k2Et

S

S + km
= Vmax

S

S + km
,

where Vmax is the maximum velocity, Et is a Etotal where Et = [E] + [SE] and d[P ]
dt

is

the product rate of formation. When [S] substrate equals km,
S

S+km
equals 0.5, the

rate of product is half of the maximum velocity rate, but if S is larger than km,
S

S+km

approaches 1, then the rate of product is equal to k2[Et] [6, 19, 8].

The model for Michaelis-Menten kinetics takes the form of an equation describing the

rate of enzymatic reactions, by relating reaction rate d[P ]
dt

to S, the concentration of

a substrate S, given by
d[P ]

dt
= Vmax

S

S + km
.

3.2.3 System state

The state of a system at a given time should contain enough information to predict

the behaviour of the system for all times [8].
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A model is a plan, representation, or description designed to show the structure or

dynamic of a system. However, a model can also be abstract or conceptual, when

ordinary or technical languages are used to represent something in the real world.

The following types of models are used in literature to describe gene regulation net-

works: Boolean network models, differential equations models and stochastic models

are most widely used for the description of gene regulation [23, 8, 26].

• Boolean network models

Boolean models consider each gene to be in one of two states, as either expressed

(on/1) or not expressed (off/0) which are represented as activated and inhibited.

There are several ways in this model. From a given state for the system of genes,

the system moves deterministically to a next state (Boolean state), to express

this is to write out a truth table, which specifies what the next state is for each

current state. Boolean functions provide an alternative representation of truth

tables. Each variable is written as a function of the others. Truth table and

Boolean functions are equivalent in the sense that one can convert from one to

the other using standard techniques. Some authors have developed a technique

based on information theory that has been applied to biological systems. The

kinetic logic and the continuous logical networks are more complex and more

related to the detailed biology than are Boolean networks [23].

• Kinetic logic models

This formalism has greater predictive value and more granularity than Boolean

networks. It considers levels; for example, when there is no expression, this is

indicated by 0, low expression is indicated by 1, medium expression is indicated

by 2, and high expression is indicated by 3. However, different genes may have

a different granularity; one gene may only have states 0 and 1, while another

may have multiple intermediate levels. In order to determine which model is

suitable for the system, one must consider first two changes of state with two

constraints: continuity and asynchronicity. The meaning of continuity can be

explained by the following: if the current state of a gene is 0 and its desired next

state is 3, then its actual next state will be 1; that is, it takes one step at a time
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toward its final goal. In biological terms, this means a gene is not expressed.

One can see the difference between kinetic logic formalism and Boolean network

models, where all genes change their states at the same time; in addition, the

functions describing the changes of state are more complicated than in Boolean

networks, so more data is needed to find the function. The predictions of this

model are more tied to the biology than Boolean networks.

• Differential equation models

Differential equation models provide a general framework in which gene regula-

tion processes are considered. By making certain assumptions, one can trans-

form essentially any system of chemical reactions and physical constraints into

a system of ordinary differential equations. It has to be noted that not all

systems can be modelled with differential equations. The changes of state in

differential equations assume that the interactions in the system are continu-

ous or deterministic. Discontinuous transitions in deterministic systems can

be modelled with various hybrids between discrete and continuous dynamics,

including continuous time logic, special kinds of grammars, and discrete event

systems. Nondeterministic systems, where the same state can lead to different

possible outcomes, must generally be modelled in a different framework; one

example taken from physics is the Langevin approach (approximations, of the

stochastic model), which will be reviewed in the next part.

To solve a differential equation or a system of differential equations, one needs

the initial values condition. In most cases, equations of gene regulatory net-

works can be solved numerically and there are many tools to solve differential

equations.

• Langevin and Fokker-Planck approaches

The langevin approach is an approach for the mathematical modelling of the

dynamics of system biology and is a system of differential equations, where a

noise term is added to each equation. The noise term is the random function and

can induce many important effects on the dynamic systems [23]. The Langevin
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equation can be reformulated as a FokkerPlanck equation that regulates the

probability distribution of the random variable.

Fokker-Planck equations are approximations of the stochastic model. One starts

from a probabilistic framework and writes a full set of equations that describes

the change in probability distribution as a function of time, while the probability

distribution is a continuous function of concentration. This leads to a certain

partial differential equation of the probability distribution [23].

• Stochastic models

Stochastic models consider the individual molecules involved in gene regula-

tion, rather than using concentrations and making the continuity assumption

of differential equations. The state in stochastic models indicates how many

molecules of each type are present in the system. The state changes discretely,

but which change occurs and when it occurs is probabilistic, the rate constant

specify the probability per unit time of a discrete event happening. For example,

consider the simple chemical equation:

A
k−→ Ã

where the reactant A is the molecule transformed into the product Ã. The

probability of this event happening to a given molecule of A in a given time dt

is given by kdt. Hence, the probability of some molecule of A being transformed

in a small time is k{na}dt, where {na} indicates the number of molecules of A

present. For small systems, the list of the numbers of molecules is a config-

uration, the state is the probability distribution over all configurations; if the

number of configurations is small, then the numbers of probability is also small.

For reactions with more than one reactant, the probability per unit time is

given by the rate constant times the number of molecules of each reactant, this

is completely similar to the differential equations. The chemical equilibrium

in the stochastic framework is not possible to define, as any reaction that oc-

curs changes the number of molecules. Thus, in stochastic models, there is an

equilibrium probability distribution, a set of probabilities that the system has
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certain numbers of molecules [23].

Table 3.1 shows a comparison between different models. Hence, the deterministic

and stochastic models are appropriate for gene regulation network (GRN) of the lac

operon model.
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Table 3.1: Comparison between different models for gene regulatory networks.

The modeling
approaches

Suitability Advantages Weaknesses

Boolean mod-
els

Suitable for
describing large
GRN because
it is not re-
quired kinetic
parameters.

Are simple theoretical model
and is a simplest description
of a biological system. Eas-
ily to recognize the equilibrium
states.

The model Assuming
that all genes change
state at the same time.
Can not represent nec-
essary biological de-
tails.

Kinetic logic
models

Suitable for
describing large
GRN because
it is not re-
quired kinetic
parameters.

These models allow genes
change state at independent
rates and try adjusting the rate
at which the system goes from
one state to another. The pre-
diction of this model are more
closely to the biology.

Required more data
to find the function.
The description of the
state changes are more
complicated than in
Boolean networks.

Differential
equations
models

The model as-
suming that the
state changes are
continuous and
deterministic.

Provided a general frame-
work in which to consider the
processes of gene regulation.
Given the transition rates be-
tween all states. Many method
exist to solve and analyze sys-
tems of differential equations.

Can not model discon-
tinuous transitions in
deterministic systems.

Stochastic
models

Consider non-
deterministic
small systems
and making
the county
assumption
of differential
equations.

Stochastic model described by
either Langevin equation or by
Fokker-Planck equation, both
are give very good approxima-
tions. The difference between
approximation and exact solu-
tion is much smaller than the
variance of the approximation.
Many computational methods
exist to solve stochastic sys-
tems.

The solution is par-
ticulary difficult if
the number of states
is infinite and not
small (high number
of molecules and long
time steps).
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3.3 Overview of the Mathematical models of the

lac operon

The study of living organisms involves many mathematical ideas; the most basic of

these is the idea of a dynamics of genetic network. The biological systems are formed

by variables that describe the state of the system. Many models in biology (see Sec-

tion 3.2.3) have been prepared using deterministic or stochastic ordinary differential

equations with time delays.

Deterministic models are based on the approximation of an infinitely large popula-

tion size. There are different ways of computational methods for modelling genetic

networks [23]. Differential equation models provide a general framework in which to

consider gene regulation processes. By making certain assumptions, one can describe

the reaction kinetics of the constituent parts that can transform into a system of differ-

ential equations, considering the transition rates between all microscopic states. The

concentrations of products are modelled by continuous functions of time, regulated

by differential equations. When the number of states becomes too large, the genetic

network can be described well as a continuous system and differential equations model

is a good approximation.

A number of models were developed to describe the lac system essentially using Jacob

Monod’s description [3] and several of deterministic models have been developed

with different goals. Farina [28] proposed the lac operon as a hybrid model of the

regulatory mechanism dependable on the action of lactose by the bacterium E.coli.

There are two different parts in this system: parts that are involved into the regulation

at the genetic level, and parts that take into account the metabolism of the cell,

involving the kinetics of enzymatic catalyse reactions. The model consists of two

linear equations establishing the dynamics of the RNA and of the enzymes. In any

hybrid system, the biological switches are modeled by instantaneous switches. This

set of variables offers several advantages: the equations can be solved formally, and

it allows an analytical analysis that makes possible a qualitative interpretation of the

curves obtained.
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Introduce the work of Almaas et al [29] is used Flux balance analysis (FBA is

a mathematical approach for analyzing the flow of metabolites through a metabolic

network). The authors implemented a FBA of the E.coli metabolism. Whereas, most

metabolic reactions have low fluxes, the overall activity of the metabolism is domi-

nated by several reactions with very high fluxes. E.coli responds to changes in growth

conditions by reorganizing the rates of selected fluxes predominately within this high

flux backbone. The interplay between the underlying of the metabolic network of

E.coli and its functional organization involves the global features of potentially able

to be achieved flux states. The cellular metabolism has been assumed in a steady

state and optimized for the maximal growth rate which offer experimentally verifiable

predictions on the flux states of the cell, FBA have been used to calculate the flux

for each reaction using linear optimization, which provides a measure of relative ac-

tivity of each reaction and provides successful in analyzing the capabilities of cellular

metabolism, the ability to calculate the relative flux values of metabolic reactions and

the properties of alternate optimal growth states in a wide range of simulated.

An important feature that was studied in gene regulatory network models is bista-

bility. The bistability of the lac operon was observed more then fifty years ago by

Novick and Weiner [18]. The positive feedback loop creates the potential for bista-

bility [4, 30] which means that for certain extracellular inducer concentrationsis that

two stable steady states exist for the lac operon in a different perspective, referred to

as induced and uninduced states for high and low induction respectively.

The model of Ozbudak et al. [10] describes a set of experiments that allowed them to

quantify the lac operon expression level in single bacteria. Their results confirmed the

existence of bistability in the lac operon. However, when Ozbudak et al. repeated

their experiments using lactose as a natural inducer, they found no evidence for

bistability. This provided new quantitative data that raised questions which were

answered in the papers of [19, 20, 31] and concluded that the bistability does not

disappear because of lactose metabolism. From the model of Jacob- Monod [3] for

the lac operon Nikolov et al. [32] have analyzed the dynamical role of time delays in

protein cross talk. They have considered the time delay as a bifurcation parameter.
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Yildirim and Mackey developed and analyzed, analytically and numerically, two sets

of models [11, 12], for the regulation of the lac operon in E.coli. The first model

is based on first order differential equation [11] that describes the positive feed-

back mechanism of the operon, consisting of two loops (Figure 4.1). The simplified

model [12], is based on the inner feedback loop only (Figure 5.1). The authors

assumed equilibration of internal and external lactose and there is a constant perme-

ase concentration. The justification for this assumptions is to know that the positive

feedback regulation of mRNA production by allolactose is sufficient to display bista-

bility which is important dynamic characteristics of the lac operon. Both models were

investigated analytically and numerically using published parameter values [1, 2] and

demonstrated that the steady state displays bistability depending on the lactose con-

centration and growth rate.

The continuation of this model, [17], develops a more detailed mathematical model

of the lactose operon which includes catabolite repression, inducer exclusion, lactose

hydrolysis to glucose and galactose, and synthesis and degradation of allolactose. For

catabolite repression two models have been tested: cAMP synthesis inversely cor-

related with the external glucose concentration, and synthesis inversely correlated

with the glucose transport rate. In addition, two models for the phosphorylation

of the glucose produced from lactose hydrolysis have been tested: phosphorylation

by intracellular hexokinase, and secretion of glucose and subsequent phosphorylation

upon transport back into the cell. The former two models resulted in no signifi-

cant differences between them being observed, the latter two models resulted in weak

catabolite repression when the glucose produced from lactose was transported out of

the cell, whereas the former model showed no catabolite repression during growth on

lactose. Parameter sensitivity analysis indicates the importance of key parameters to

lac operon expression and cell growth. The model equations are numerically solved

using Runge Kutta method to investigate the influence of glucose dependent regu-

latory mechanisms (catabolite repression and lactose uptake) on the system bistable

behaviour, there is good agreement between the simulation predictions and the exper-

imental data. The model is reliable enough to numerically analyze the system bistable
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behaviour and explore the individual effects of catabolite repression and inducer ex-

clusion. Furthermore, this model helps to understand the dynamic response via the

mechanisms of catabolite repression and inducer exclusion, of the lactose operon to

extracellular glucose, and provides quantitative predictions.

The stochastic model describes the probabilistic processes in finite size populations.

Namely, stochastic models transform reaction rates into probabilities and concen-

trations into numbers of molecules, allowing understanding how noise influences a

system. The probability that the next state consists of a certain number of molecules

given the current state, can be expressed in a straightforward way, so various compu-

tational methods have been developed to deal with this framework.

Deterministic differential equations with a stochastic noise term is a way of modelling

regulatory networks that has been used successfully for description of some biological

systems and has its origin in physical and chemical. It describes a continuous system,

given by a differential equation, with added stochastic noise term where the same

state can lead to different possible outcomes. This is known in the literature as

the Langevin approach [6]. A Langevin model is given by a system of differential

equations, where a noise term (random function) is added to each equation [7, 33].

The noise is another essential component of the lac model as it regulatory processes

are probabilistic. Adding noise to the determinstic model mimics the stochastic be-

haviour of the system. The stochastic model can be considered by adding pertur-

bations to the deterministic model based on reaction kinetics rules. In the paper of

Mettetal et al [34], a deterministic model is used to predict the measure of population

distributions of protein numbers as a function of time in the E.coli lactose uptake

network (lac operon), first they construct a deterministic model which is composed of

three equations. It is shown that the system can have either a monostable or bistable,

depending on the concentration of extracellular thiomethyl β-D-galactoside (TMG),

the numerical results are calculated using Euler method. The paper has introduced

a dynamic stochastic model which consists of this processes: mRNA production and

mRNA degradation, protein degradation, and global noise. The authors show that

prediction of dynamic distributions requires only a few noise parameters in addition
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to the rates that characterize a deterministic model. It is important to note that the

stochastic model predicts the experimental dynamics without any fit parameters.

Stochastic models allow understanding of the probabilities for a gene to be on or off

or in a process to be turned on, associated with time to extinction [15]. Within

this framework, Santillan et al. [19] developed a model of the lac operon for the

regulatory pathway in a system of three differential equations and they introduced

a stochastic term to account for the noise in the system due to extracellular glucose

and lactose concentrations. The model studies the origin of bistability and indicates

that bistability can help guarantee that E.coli consumes glucose and lactose in the

most efficient possible way. The model of Johan [35] discussed some analytical

studies of constitutive expression between theoretical description, focusing on gene

mRNA protein model (feedback analysis excluded) in the stochastic modelling of these

processes. The analysis in the paper of McAdams and Arkin [36] emphasizes the

mechanisms of protein production. Simulation of the process of gene expression shows

that proteins are produced from activated promoter in short bursts of proteins that

occur at random time intervals. The random expression can produce probabilistic

outcomes in switching mechanisms that select between alternative regulatory paths.

In the paper of Vilar et al [13] three different level of description the lac operon in

E.coli are used to illustrate that the current state, applicability, and limitation of

cellular processes: molecular, cellular, and that of cell population into a single model.

They model the dynamics of the induction process using four ordinary differential

equations, which can be solved numerically, and the results show some differences

between experimental and simulation results. In the simulations all the cells even-

tually become induced. In the experiments, the production of β-galactosidase for

suboptimal inducer concentrations, which is an indication of the coexistence of the

induced and uninduced cells, cause that the induced and uninduced cells grow at a

different rate. In addition, Vilar et al do not explain what makes the cell switch from

the uninduced to the induced state. Furthermore, how the intrinsic randomness of

molecular events affects the system, and how induction depends on the molecular

aspects of gene regulation.
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Recently, a number of studies of the lac operon have been developed with different

noise types. Experimentally, the work [22] have measured the amount of intrinsic

noise (generated by transcription and translation) and extrinsic noise (from the cell

cycle) of the lac repressible in different E.coli strains. On the other hand, a theoretical

framework was presented in [37] that can interpret the experimental measurements

[22] of stochasticity in gene expression and verified that the intrinsic and extrinsic

noise can often be of similar measurement.

Stochastic gene expression can cause switching between high and low inductions in a

bistable region. The study of the ODEs of the lac operon [38], induced by lactose

metabolism, showed a bistable switch shifted from inducer to low inducer, and vice

versa. Nevertheless, [39] concluded that the stochastic nature of gene expression in

the lac operon cannot avoid the inherent disadvantages of bistability and showed that

bistability is even more harmful in the stochastic then in deterministic system. The

same authors concluded [40] that in silico evolved lac operon exhibits bistability for

artificial inducers but not for lactose. However, the model [41] showed that the noise

enables switching from induced to uninduced state, and from uninduced to induced

state only when external lactose is either at the beginning or at the end of the bistable

region. Despite the differences between the kinetics of systems [41] and [10], the

author [42] has modelled both systems by adding small noise and found that the

behaviour of both models is qualitatively similar. The study [43] found that noise

in protein production is minimized in genes for which it is likely to be most harmful.

The authors [44] presented a comparative analysis of correspondent deterministic

and stochastic models for the lac operon system. The incorporation of biological

information into the models revealed the effect of biomolecular parameters in the

presence and absence of stochasticity. The stochastic system of the lac operon was

investigated in [45] with and without circuit design method under process molecular

noises for the improvement of robust stability and molecular noise filtering ability of

nonlinear gene network to attenuate molecular noises. The author is used linear ma-

trix inequalities (LMI) technique (that gives a procedure for determining the stability

bound) and fuzzy interpolation scheme.
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The stochastic models currently proposed for the lac operon do not investigate the

stochastic stability with mean square stability with time delay which is one of the

aims of this research. The basic theory of stochastic stability of dynamical systems

can be found in [46, 47, 48, 49].

Next two chapters 4 and 5 recalls the models of Yildirim and Mackey and confirm

the results obtained in [11, 12] to developed a stochastic version of it.

3.4 Summary

The purpose of the mathematical models is to simplify the network in an appropriate

way and provide solutions that can explain biological findings, a lot of methods exist

for this propose (Section 3.2.3). The dynamic of the biological systems studied may

only be known approximately. Thus, the notion of a stablility is a useful tool for

studying the dynamics of the systems, the stability of the dynamical system includes

that initial conditions for which the trajectory (the solution curve that get tracked

out in state space) would be balanced or equivalent. This chapter described a survey

of the lac operon model, contains a review of the current state of art for the lac

operon mathematical modelling technics and current results.



Chapter 4

The full deterministic model of the

lac operon

4.1 Introduction

As known in Chapter 3, many different mathematical models of gene regulatory have

been formulated depending on the mechanisms of a system’s dynamics. In this chapter

the mathematical model of the lac operon in E.coli ( [11]) is presented. This model is

based on five delay differential equations which are proposed and solved numerically

and analytically in [11] using published parameter values. The result are reviewed

here and numerical solutions within bistable region are shown.

4.2 Yildirim and Mackey model

The lac operon consists of a promoter, operator region and three larger structural

genes lacZ, lacY, and lacA. The a preceding regulatory operon is responsible for

producing a repressor R protein. In the absence of glucose available for cellular

metabolism, but in the presence of external lactose, Le, lactose is transported into the

cell by a permease, P . Intracellular lactose, L, is then broken down into allolactose, A,

first and then glucose and galactose by the enzyme β-galactosidase, B. The allolactose

36
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feeds back to bind with the lactose repressor and enables the transcription process to

proceed. One possible dynamics of this control mechanisms is illustrated in Figure

4.1. This section considers the dynamic models proposed by Yildirim and Mackey’s

model [11] and recalls the results of this works.

Figure 4.1: One possible mechanism for control of the lac operon

Development of the full model Yildirim and Mackey’s model [11] consists of

five delay ordinary differential equations (DDEs) given as follows:

dM

dt
= αM

1 +K1(e
−µτMAτM )n

K +K1(e−µτMAτM )n
− γ̃MM (4.2.1)

dB

dt
= αBe

−µτBMτB − γ̃BB (4.2.2)

dA

dt
= αAB

L

KL + L
− βAB

A

KA + A
− γ̃AA (4.2.3)

dL

dt
= αLP

Le

KLe
+ Le

− βL1
P

L

KL1
+ L
− βL2

B
L

KL2
+ L
− γ̃LL (4.2.4)

dP

dt
= αP e

−µτPMτP − γ̃PP . (4.2.5)

The equations represent the dynamics for all of mRNA, M , production, β- galactosi-

dase, allolactose, lactose, and the permease respectively. The delays, τM , τB, are due

to the transcription and translation process. Here AτM = M(t−τM), MτB = M(t−τB)
andMτP = M(t−τP ) are the value of variable A delayed with τM , the value of variable

M delayed with τB and the value of variableM delayed with τP respectively. Whereas,

γ̃i = (γi+µ), i = M,B,L,A, P are the rates of loss term and αi, i = M,B,L,A and P
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are the production terms required to produce M,B,A, L, P . In the equation above µ

is the growth rate dependent on allolactose dilution during the transcriptional period.

In this model, the total operator and repressor concentrations are assumed constant

and it is assumed that the amount of repressor bound to the operator region is small

compared to the total repressor concentration.

Yildirim and Mackey [11] showed that this system of five equations is capable of

bistable steady-state behaviour when the value of Le is between 27.5− 60 µM , and

this corresponds to a bifurcation in the model’s dynamics.

The system (4.2.1-4.2.5) have been numerically solved in [11] using published param-

eter values [1, 2], given in Table 4.1. The authors showed that the bistable steady

states behaviour depending on the extracellular lactose concentration.

Parameter Value Parameter Value
γM 0.411min−1 γB 8.33× 10−4min−1

γA 1.35× 10−2min−1 γL 1.6043min−1

γP 0.65min−1 αM 0.997µM
αB 1.66× 10−2min−1 αA 1.76× 104min−1

αL 2908.8min−1 αP 10min−1

K 7200 K1 2.52× 10−2µM

KA 1950µM KL 970µM
KL2

972µM KL1
1810µM

KLe
260µM βA 2.15× 104 min−1

βL1
2.65× 103min−1 βL2

7.614× 103min−1

µ 3.03× 10−2min−1 µmax 3.47× 10−2min−1

τM 0.1min τB 2 min

τP 2.38min n 2

Table 4.1: The parameters for the lac operon regulatory system from [1, 2]

4.3 Numerical simulation of the full model

The Numerical solution of (4.2.1- 4.2.5) was derived with Matlab using routine dde23.

It reproduces the numerical solution proposed by Yildirim and Mackey [11]. The

range of external lactose concentrations over which three steady states exist (bistable

region) is given in [11, Figure 2]. The numerical simulation of M,B,A, L and P
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with three time delays are shown in Figure 4.2. It represents the solution of the de-

terministic model with initial values taken from the steady state values. The steady

state (M⋆, B⋆, A⋆, L⋆, P⋆) point obtained by solving the system when the left hand

side of (4.2.1- 4.2.5) are zero, namely dM
dt

= dB
dt

= dA
dt

= dL
dt

= dP
dt

= 0. the

following steady states numerically obtained (M⋆ = .154µM,B⋆ = 0.104µM,A⋆ =

142µM,L⋆ = 139µM,P⋆ = 2.16µM) when Le = 30µM .
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Figure 4.2: Full deterministic model of the lac operon with time delays, M,B,A,L, P (µM) con-
centration versus time (min).

Next table (4.2) shows the level of external lactose concentrations of the lac operon.

external lactose 0-27 µM One steady state Stable
external lactose 27.46 µM Two steady states Two stable
external lactose 27.5- 62 µM Three steady states Two stable and one unstable
external lactose 62.4 µM Two steady states Two stable
external lactose 62.5-80 µM One steady state Stable

Table 4.2: External lactose level when there are one, two and three steady states solutions

Stable and unstable steady states Figure 4.3 illustrated the evolution with time

of the three steady states for allolactose when Le = 30µM (Table 4.2). A1, A2, A3

will be referred to as follows: The lower position of the state
−→
S= (M,B,A, L, P )
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containing the coordinate A1, is stable and uninduced (repressible), the middle po-

sition, containing A2 is unstable and the upper position including A3 is stable and

induced.

The numerical solutions for the full model either converged to the lower or upper

coordinate for various initial conditions as shown in Figure 4.3. For this simulation,

two initial allolactose levels were chosen close to the coordinate A2 in middle posi-

tion (unstable) and all other variables M,B,L, P kept at their steady state values

(Table 4.3). Corresponding to the values on the coordinate A2 in middle position for

initial allolactose values are bigger or less then A⋆ (A2 ≷ A⋆), the simulated curve

converged to the value on the uninduced or to the value on induced curve (Figure

4.3) respectively. However, the boundary initial values on unstable curve separate the

behaviour where the states are attracted to the uninduced or induced steady state.
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Figure 4.3: Deterministic (full) model of the lac operon showing allolactose when Le = 30µM .
The initial values are given in the text.
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Below is a table of multiple steady states and their numerical values when Le = 30µM .

ON Interposition OFF
induced (induced or uninduced) uninduced
stable unstable stable

(upper branch) (middle branch) (lower branch)
(M3,B3,A3,L3,P3) (M2,B2,A2,L2,P2) (M1,B1,A1,L1,P1)

(.154, 0.104, 142, 139, 2.16)µM (0.0346, 0.0234, 64.3, 136, 0.438)µM (0.00214, 0.00144, 4.31, 101, 0.0298)µM

Table 4.3: Three steady states values when Le = 30µM .

4.4 Summary

The dynamic behaviour of the lactose regulation system of the E.coli bacteria [11]

is reviewed. The mathematical model of the E.coli bacteria of Yildirim and Mackey,

which consists of a system of five delay differential equations is recalled. The model

verified that this system is capable of bistable behaviour depending on the external

lactose. However, when there are three coexisting steady states, the simulated solu-

tions show that the unstable solution converged to either the induced or uninduced

coordinate depending on the initial values. Next chapter, studies a simplified model of

the lac operon, which ignores the feedback loop including the permease. This allows

a rigorous analytical solution that shows bistable solution without permease.



Chapter 5

The reduced deterministic model

of the lac operon

5.1 Introduction

Yildirim and Mackey simplified the model in Chapter 4 using the inner feedback loop

only on Figure 4.1. Thus, the dynamics of L and P is not considered which simplifies

the model to three differential equations with two time delays [12]. In this chapter,

the analytical and numerical results of this model are recalled and the stable and

unstable regions are specified.

5.2 Reduced model of Yildirim and Mackey

Yildirim and Mackey [12] proposed a model assuming a constant quantity of lactose

inside the cell (equilibrium of internal and external cellular lactose). The simpli-

fied model allows to understand better the functionality of M,B,A in the regulation

mechanism (Figure 5.1). This led to a reduced model based on a system of three dif-

ferential equations with two time delays. This model ignored the permease dynamics

and assumed a constant permease concentration.

42
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Figure 5.1: Reduced model of the lac operon

The system of two delay differential equations (DDEs) is:

dM

dt
= αM

1 +K1(e
−µτMAτM )n

K +K1(e−µτMAτM )n
− γ̃MM (5.2.1)

dB

dt
= αBe

−µτBMτB − γ̃BB (5.2.2)

dA

dt
= αAB

L

KL + L
− βAB

A

KA + A
− γ̃AA. (5.2.3)

where all parameters are the same as in the full model (see Chapter 4).

The reduced model of the lac operon was numerically solved by Yildirim and Mackey

in 2004 using published parameter values [1, 2] given in Table 4.1. It was shown that

the steady states behaviour for the reduced model is similar to the full model and the

model exhibits bistability, depending on the lactose concentration.

5.2.1 Analytical and numerical solution

Finding the equilibrium for nonlinear dynamical systems may help determine the

possible initial conditions that makes sense biologically. Then one can study the

properties of the dynamical system near the equilibria. The nonlinear system can be

understood by characterizing the behavior of the system linearized near equilibrium

points. This behavior is determined by the eigenvalues of the linearized system to

show whether the behaviour of the system is close to the equilibrium points [50].



CHAPTER 5. THE REDUCEDDETERMINISTICMODEL OF THE LACOPERON44

Steady state for the lac operon model The steady state point (M∗, B∗, A∗) for

the reduced model is defined as the point where,

dM

dt
= 0,

dB

dt
= 0,

dA

dt
= 0

Thus, we obtain a definition of the steady state as the state (M∗, B∗, A∗) by

f(A∗) = χ
A∗

[h(L)− βA

αA
g(A∗)]

, (5.2.4)

where the functions are defined as follows,

f(A∗) =
1 +K1(e

−µτMA∗τM )n

K +K1(e−µτMA∗τM )n
, h(L) =

L

KL + L
,

g(A∗) =
A∗

KA + A∗

, χ =
γ̃M γ̃Bγ̃Ae

µτB

αMαBαA

. (5.2.5)

The solution can be found graphically by plotting with Matlab the left and right hand

sides of Equation (5.2.4) and is given on Figure 5.2. The red curve represents the left

hand side (LHS), and the other three curves represent the right hand side (RHS) for

three different values of L. The intersection between the two curves RHS and LHS

gives the location of the steady state.

Figure 5.2: Steady states of the lac operon as function of allolactose A (µM) for different values
of intercellular lactose L (µM).
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Linearization for the lac operon model To check the stability one must linearize

the reduced model in the neighbourhood of a steady state by using the following

change of variables s1 = M −M∗, s2 = B − B∗, s3 = A − A∗. In the new variables,

following system is obtained,

ds1

dt
= αMf ′(A∗)− γ̃Ms1 (5.2.6)

ds2

dt
= α̃Bs1τB − γ̃Bs2 (5.2.7)

ds3

dt
= α̃As2 − β̃As3. (5.2.8)

where α̃A = αAh(L)− βAg(A∗), β̃A = βAB∗g
′(A∗) + γ̃A, α̃B = αBe

−µτB ,

and f ′(A∗) =
2(K−1)

(K+e−2µ̂τMA2)2
. The steady state coordinates are obtained as,

M∗ =
γ̃B

αB

B∗, B∗ =
β̃AA∗

α̃A

, A∗ = f(A∗)
α̃AαMαBαA

γ̃M γ̃Bγ̃M
.

This reduces the system around the steady state to

Y ′ = ZY,

where

Y ′ =




ds1
dt

ds2
dt

ds3
dt




Y =




M −M∗

B − B∗

A− A∗




Z =




−γ̃M 0 αMf ′(A∗)

αB −γ̃B 0

0 α̃A −β̃A


 .

The eigenvalues of Z are the roots of the characteristic polynomial of this matrix

given by det(λI − Z) = 0, where I is the unit matrix and

det(λI − Z) =




λ+ γ̃M 0 αMf ′(A∗)

αB −γ̃B 0

0 α̃A −β̃A


 .
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Solving the equation for eigenvalues gives

P (λ) +Q(λ)e−λτ = 0, τ = τM + τB, (5.2.9)

where P (λ) is a polynomial of the form,

P (λ) = λ3 + λ2(Υ2) + λ(Υ1) + Υ0, (5.2.10)

where Υ0 = γ̃M γ̃Bβ̃A, Υ1 = γ̃M γ̃B + γ̃Bβ̃A+ γ̃M β̃A ,Υ2 = γ̃M + γ̃B + β̃A. The function

Q(λ) is

Q (λ) = −Θ, (5.2.11)

where Θ = −αMαBα̃Af
′(A∗).

The system has unstable and stable steady states in the domain α̃A > 0. P (λ) has

the form given in Equation (5.2.10), where γ̃M > 0, γ̃B > 0, β̃A > 0 and f ′(A∗) is an

increasing function. If Θ > P (0) then all the roots of P (λ) − Θ < 0 have negative

real part. On the other hand, all the roots have positive real part when Θ < P (0),

P (λ)− Θ > 0. It is shown in [6] by the Routh- Hurwitz criteria that all roots have

negative real part if and only if:

γ̃M γ̃Bβ̃A > 0, γ̃M + γ̃B + β̃A > 0, γ̃M γ̃Bβ̃A < (γ̃M + γ̃B + β̃A)(γ̃M γ̃B + γ̃Bβ̃A + γ̃M β̃A).

5.3 Numerical simulation of the reduced model

Using routine dde23 in Matlab. Figure 5.3 shows the stable and unstable regions

(Section 5.2.1) in the lactose-allolactose space. The S-shaped curve on Figure 5.3

depicts the steady states, their number clearly depends on L. The notation (•)
indicates the location of the stable steady states. For example, there is one steady

state for L = 30µM , three steady states for L = 50µM and two steady states when

L = 38.5µM , positioned on the lower, middle and upper branch of the S-shaped curve,

henceforth referred to as lower (uninduced), middle and upper (induced) coordinates

of the steady state
−→
S= (M,B,A). The Table 5.1 shows the level of lactose as induced

in the lac operon.
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Figure 5.3: Stable and unstable regions for the deterministic reduced lac operon model. (•)
indicates steady states coordinates on the S-shape curve.

Lactose 0-38 µM One steady state Stable
Lactose 38.5 µM Two steady states Two stable
Lactose 39.1- 55.43 µM Three steady states Two stable and one unstable
Lactose 55.45 µM Two steady states Two stable
Lactose 55.55-60 µM One steady state Stable

Table 5.1: Lactose level when there are one, two and three steady states solutions

Stable and unstable steady states The evolution of the three steady states

for allolactose (Table 5.1) is illustrated on Figure 5.4. It is clear that upper state

coordinate A3 is stable and induced, the lower state coordinate A1, is stable and

uninduced (repressed) and the middle state coordinate A2 is unstable.

Depending whether the initial values of the coordinate of the middle steady state for

allolactose, A, is bigger or less then A⋆ (A2 ≷ A⋆), the simulated curve converged to

the coordinate of the upper steady state (induced) or the lower steady state (unin-

duced) respectively (Figure 5.4). The initial values are steady states (M⋆, B⋆, A⋆) for

L = 50µM .
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Figure 5.4: Deterministic (reduced) model of the lac operon showing allolactose when L = 50µM .
The initial values are given in the text.

Below is a table of multiple steady states and their numerical values when L = 50µM .

ON Interposition OFF
induced (induced or uninduced) uninduced
stable unstable stable

(upper branch) (middle branch) (lower branch)
(M3,B3,A3) (M2,B2,A2) (M1,B1,A1)

(0.032710, 0.01642, 64.68)µM (0.00139, 0.0007, 11.73)µM (0.00046, 0.00023, 4.21)µM

Table 5.2: Three steady states values when L = 50µM .

5.4 Summary

The dynamic behaviour of the lactose regulation system of the E.coli bacteria [11]

is reviewed. The mathematical model of Yildirim and Mackey, which consists of a

system of two delay differential equations is explained. The linearization of the model

around the steady states and the characteristic equation of the system is reviewed.

The stable and unstable solution regions of the system of the lac operon were found

depending on lactose concentration. Whereas, the reduced model consists of just the



CHAPTER 5. THE REDUCEDDETERMINISTICMODEL OF THE LACOPERON49

inner feedback loop the behaviour of the system is not significantly different from

those of the full model. Thus, the reduced model with the feedback by allolactose

can be used to show that the behaviour of the system and investigate the regulation

mechanisms and shows bistable behaviour.



Chapter 6

The reduced stochastic model of

the lac operon

6.1 Introduction

The deterministic model, in [12] assumed equilibrium of internal and external lactose,

and therefore, ignored the positive feedback loop involving permease. Thus, the

positive feedback for the mRNA, β-galactosidase and allolactose (reduced model) is

only by allolactose.

To describe the stochastic behaviour of the reduced system, the reduced deterministic

model of Chapter 5 is considered with a noise term. Studying, the stochastic stability

of the reduced model is to figure out whether the noise term can change the behaviour

in the bistable region due to the lactose concentration.

The stochastic stability framework is useful in understanding the relative stability of

equilibria point and allows to define more adequate description of the dynamics. In

this chapter, the stability properties of the stochastic model of the lac operon system

( [12]) are investigated by linearization of the system of stochastic delay differential

equations (SDDEs) and using Lyapunov functional. The sufficient conditions for

mean square stable state of the trivial solution of linearized stochastic system around

positive equilibrium are obtained. The trivial solution of an equation is the solution

50
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in which the value of every variable of the equations is equal to zero. For instance,

for the reduced model, M(t) = B(t) = A(t) = 0, is a solution of the system which

is called the trivial solution. The stochastic stability properties of the model are

investigated both analytically and numerically (by using Euler Maruyama method)

in order to obtain the solution of stochastic differential equations.

6.2 Stochastic stability of the reduced model

Consider the system of Equations (5.2.1-5.2.3) and include stochastic perturbations

of the variables M, B, A from the equilibrium M∗, B∗, A∗, respectively, gives the

following Ito problem.

dM = [αMf(AτM )− γ̃MM ]dt+ σ1(M −M∗)dw1(t), (6.2.1)

dB = [αBe
−µ̂τBMτB − γ̃BB]dt+ σ2(B − B∗)dw2(t), (6.2.2)

dA = [αABh(L)− βABg(A)− γ̃AA]dt+ σ3(A− A∗)dw3(t), . (6.2.3)

where

f(A) =
1 +K1(e

−µτMAτM )n

K +K1(e−µτMAτM )n
, g(A) =

A

KA + A
, h(L) =

L

KL + L

Here (w1(t), w2(t), w3(t)) be a three- dimensional standard Wiener process on the

probability space [Ω, ξ,P] with the filtration {ξt}0≤t<∞ and −→σ = (σ1, σ2, σ3) are

real constants. The initial values are M(0) = M∗, B(0) = B∗, A(0) = A∗. Note

that the equilibrium point (M∗, B∗, A∗) of the deterministic system from Chapter 5

(Equations 5.2.1-5.2.3) is being used.

The mean square stability of the trivial solution of the linearized system (Equations

(6.2.1-6.2.3) is investigated around equilibrium point by using the Lyapunov method

with two time delays τM , τB. There stability play an essential role on the behaviour

of the model of the lac operon. As a result, the following theorem is formulated:

Theorem 6.2.1. Let the model parameters in Equations (6.2.1-6.2.3) are such that

coordinate of the steady state A∗ ∈ (0, (KA −KL)) and h(L) < βA

αA
is satisfying,

τM∗ =
1

2µ
log[

ξ7αM

2β̃A − α̃A

], τB∗ =
1

2µ
log[

ξ5αB

2γ̃M − ξ4γ̃B
]. (6.2.4)
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Let the time delays τM∗ < τM , τB∗ < τB. Then for any constants σ1, σ2, σ3 satisfying

the conditions

σ2
1 < 2γ̃M − α̃Mξ4 − α̃Bξ5, σ2

2 < 2− γ̃B − α̃B − α̃Aξ6,

σ2
3 < 2β̃A − α̃A − α̃Mξ7, (6.2.5)

the trivial solution of the linearized system around equilibrium is exponentially mean

square stable.

Proof. Let s1 = M − M∗, s2 = B − B∗, s3 = A − A∗ be the change of variables

for the reduced model (6.2.1-6.2.3) and linearizing the system around the positive

equilibrium gives,

ds1 = [−γ̃Ms1 + α̃Ms3(t− τM)]dt+ σ1s1dw1 (6.2.6)

ds2 = [−γ̃Bs2 + α̃Bs1(t− τB)]dt+ σ2s2dw2 (6.2.7)

ds3 = [−β̃As3 − α̃As2]dt+ σ3s3dw3, (6.2.8)

where

α̃A = βAg(A∗)− αAh(L), β̃A = βAB∗g
′(A∗) + γ̃A, α̃B = αBe

−µ̂τB ,

α̃M = αMe−2µ̂τMf ′(A∗),

f ′(A∗) =
2(K − 1)

(K + e−2µ̂τMA2)2
.

Let,

ds(t) = [νs(t)− υs(t− τ)]dt, (6.2.9)

where ν = [ ∂f
∂sj

]s=0, υ = [ ∂f

∂sj(t−τ)
]s=0, j = 1, 2, 3 and

ν =




−γ̃M 0 0

0 −γ̃B 0

0 −α̃A −β̃A


 ,

υ =




0 0 α̃M

α̃B 0 0

0 0 0


 .
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Consider the Lyapunov functional:

V = V1 + V2. (6.2.10)

Where V1 chosen as follows

V1(s(t)) =
1

2
(ξ1s

2
1 + ξ2s

2
2 + ξ3s

2
3). (6.2.11)

The constants ξ1, ξ2, ξ3 > 0 and V2 will be chosen later.

For all t ≥ 0, the first and second derivatives with respect to s are continuous, and

the first derivative with respect to t is continuous and bound. Then, the definition of

the differential operator L associated with Equation (A.3.3) (see Appendix A) yields,

L =
∂

∂t
+

m∑

i=1

fi(t, s))
∂

∂si
+

1

2

m∑

k=1

Tr[gT (t, s)g(t, s)]k
∂2

∂s2i
.

For V ∈ C([0,∞)×Rm;R+),

L(V ) =
dV2

dt
+ fT (s, s(t− τ))

∂V1

∂s
+

1

2
Tr[gT (t, s)

∂2V1

∂s2
g(t, s)].

The operator L(V ) can be written as,

L(V ) =
dV2

dt
+ L(V1), (6.2.12)

where

L(V1) = −ξ1γ̃Ms21 + ξ1α̃Ms1s3(t− τM)− ξ2γ̃Bs
2
2 + ξ2α̃Bs2s1(t− τB)− ξ3α̃As2s3

−ξ3β̃As
2
3 +

1

2
Tr[gT (t, s)

∂2V1

∂s2
g(t, s)], (6.2.13)

and

∂2V1

∂s2
=




ξ1 0 0

0 ξ2 0

0 0 ξ3


 .

This gives,

gT
∂2V1

∂s2
g(t, st) =




ξ1σ
2
1s

2
1 0 0

0 ξ2σ
2
2s

2
2 0

0 0 ξ3σ
2
3s

2
3


 .
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Therefore,
1

2
Tr[gT

∂2g(t, st)

∂s2
g(t, st)] =

1

2
[ξ1σ

2
1s

2
1 + ξ2σ

2
2s

2
2 + ξ3σ

2
3s

2
3],

which implies that

L(V1) = −ξ1γ̃Ms21 + ξ1α̃Ms1s3(t− τM)− ξ2γ̃Bs
2
2 + ξ2α̃Bs2s1(t− τB)− ξ3α̃As2s3

−ξ3β̃As
2
3 +

1

2
ξ1σ

2
1s

2
1 +

1

2
ξ2σ

2
2s

2
2 +

1

2
ξ3σ

2
3s

2
3 . (6.2.14)

In Equation (6.2.14) the parameter ξ1 is chosen as ξ1 =
K
n
where K,n are constants,

normally determined from the experiment and in the case of the lac operon are given

in Table 4.1. It is known that f(A∗) is linear around the steady state which leads to

f ′(A∗) ⋍ 1, for all τM > 0 and A∗ ∈ (0, (KA −KL)). This gives α̃M = αMe−2µ̂τM .

By using standard inequalities,

|s2s1(t− τB)| ≤
1

2
(s22 + s21(t− τB)), |s2s3| ≤

1

2
(s22 + s23),

|s1s3(t− τM)| ≤ 1

2
(s21 + s23(t− τM)), |s1s3| ≤

1

2
(s21 + s23),

from Equation (6.2.14) is obtained,

L(V1) ≤ −[ξ1γ̃M −
1

2
α̃M −

1

2
ξ1σ

2
1]s

2
1 − [ξ2γ̃B −

1

2
ξ2α̃B − ξ3

1

2
α̃A −

1

2
σ2
2]s

2
2

−[−ξ3β̃A −
1

2
ξ3α̃A −

1

2
ξ1σ

2
3]s

2
3 +

1

2
α̃Ms23(t− τM)

+
1

2
ξ2α̃Bs

2
1(t− τB) . (6.2.15)

Now, let the function V2 is defined as

V2 =
1

2
α̃M

∫ t

t−τM

s23(ω)dω +
1

2
ξ2α̃B

∫ t

t−τB

s21(ω)dω .

Thus

dV2

dt
=

1

2
[α̃Ms23 + ξ2α̃Bs

2
1 − α̃Ms23(t− τM)− ξ2α̃Bs

2
1(t− τB)]. (6.2.16)
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From the generating operator (6.2.12) using (6.2.15, 6.2.16) and after some algebra,

it is obtained,

L(V ) ≤ −[ξ1γ̃M −
1

2
α̃M −

1

2
ξ2α̃B −

1

2
ξ1σ

2
1]s

2
1 − [ξ2γ̃B −

1

2
ξ2α̃B −

1

2
ξ3α̃A −

1

2
ξ2σ

2
2]s

2
2

−[ξ3β̃A −
1

2
ξ3α̃A −

1

2
α̃M −

1

2
ξ3σ

2
3]s

2
3 . (6.2.17)

Using the values of the parameters given in Table 4.1, ξ1 = K
n

and ξ2, ξ3 > 0, the

Equation (6.2.17) gives,

(2γ̃M − α̃Mξ4 − α̃Bξ5) > 0, (2γ̃B − α̃B − α̃Aξ6) > 0, (2β̃A − α̃A − α̃Mξ7) > 0,

where ξ4 =
1
ξ1
, ξ5 =

ξ2
ξ1
, ξ6 =

ξ3
ξ2
, ξ7 =

1
ξ3
.

Thus, σi i = 1, 2, 3, are positive real numbers if τM∗ < τM , τB∗ < τB .

This completes the proof of Theorem 6.2.1.

6.3 Numerical solution and investigation of the dy-

namic behaviour with stochastic noise

The Ito system (6.2.1-6.2.3) has been solved numerically by Euler Maruyama methods

[51, 48] with constant stepsize. According to the conditions given in Theorem 6.2.1,

the mean square stability of the positive steady state depends on σi, i = 1, 2, 3 and

time delays. Using conditions (6.2.4 , 6.2.5) of Theorem 6.2.1 and parameters from

Table 4.1, the system is exponentially mean square stable for:

σ1 < 0.028, σ2 < 0.013, σ3 < 0.038 and τM > 0.032, τB > 1.08. These are the

threshold values for the model. For convenance, in what follows one introduces noise

as −→σ = (σ1, σ2, σ3).

For the allolactose, A, the displacement from the equilibrium by the noise term,

depends on the initial conditions. Figure 6.1 illustrated the case when the initial

conditions are changed from the steady state by ∆ to the left and the right.

In Figure 6.1, one has to find a limit value for ∆ such that the variable close to it

must be in the region where steady state exits (S-shape curve) and this depends on
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Figure 6.1: Steady state displacement (S-shape curve) due to the distance between the initial value
and equilibrium point for allolactose (∆).

the value of L. Introducing σ

∆
, where ∆ is the distance between the initial values

and equilibrium points which assured that ∆ is small enough not affect the S-shape

curve. The values of σ

∆
are compered with the noise values which is obtained from

the theorem 6.2.1. There are different cases, no change in the S-shape curve (Figure

6.1) when σ

∆
≥ 1 (the value of ∆ is smaller or same the value of σ). Whereas, in the

case when the value of ∆ is larger than the value of σ, the S-shape curve changes

(displacement) within the steady states values when 1 < ∆ ≤ 8µM and concluded

that σ

∆
< 1.

6.3.1 Stable behaviour

The numerical simulation shows the behaviour of the system (6.2.1-6.2.3) around the

equilibrium subjected to the perturbation σ = (σ1, σ2, σ3). All three coordinates

change in a synchronized way and the system shows identical behaviour in the two

stable states. For instance, in this model of the lac operon if the coordinate A∗

belongs to uninduced state, M∗, B∗ will also belong to the same uninduced state.

This is shown in Figure 6.2 and Figure 6.3, for coordinates of an induced state at

L = 60 µM or uninduced state at L = 33 µM . Since the scale of allolactose is much

larger than mRNA and β− galoctosidase the behaviour is shown in two figures.
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Figure 6.2: M,B (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = 0.01, a) uninduced
state L = 33 µM b) induced state L = 60 µM .
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Figure 6.3: A (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = 0.01, a) uninduced state
L = 33 µM b) induced state L = 60 µM .
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6.3.2 Inside bistable region

The numerical simulation of mRNA, β− galoctosidase and allolactose with time de-

lays is shown in Figure 6.4 for three values of the noise term when L = 50µM ,

where there are an opportunity for multi-stable behaviour. The induced (upper) state

S= (M,B,A) is stable for coordinates
−→
S3= (M3, B3, A3), uninduced (lower) for coor-

dinates
−→
S1= (M1, B1, A1) and the middle state

−→
S2= (M2, B2, A2) is unstable. The

most significant changes are observed for the allolactose A, where the concentration

is significantly higher compared to B and M . This is expected as the values of A

is larger than the values of the other variables M and B. The figure illustrates two

cases of perturbation σ = (σ1, σ2, σ3), (a) equal noise terms σ1 = σ2 = σ3 = 0.005, (b)

different noise terms σ1 = 0.02, σ2 = 0.01, σ3 = 0.03. Time delays have been chosen

τM = 0.1 min, τB = 2 min as these two time delays are the maximal time delays

for the system as suggested in [12] (see Table 4.1) and also satisfy the conditions of

Theorem 6.2.1.

For very small perturbation reflected by the values of σ = (σ1, σ2, σ3), the unstable

state with a coordinate A2, is converges to the stable induced state with coordinate

A3, while with increased noise σ the solution converges to the lower uninduced state

with coordinate A1. Similar behaviour is observed for the concentrations M and B

versus time as shown in Figure 6.6 and Figure 6.5 respectively. The stochastic system

is bistable and the noise affects mainly the upper (induced) state for all concentrations

M,B,A, while the lower (uninduced) state for M and B are almost unchanged by

noise around the equilibrium. The initial values for Figures 6.4-6.6 are given in Table

5.2 (L = 50µM). The stochastic system is bistable and the noise affects mainly

the middle unstable solution for all concentrations M,B,A, while lower (uninduced)

and upper (induced) solutions for M,B are almost unchanged by noise around the

equilibrium.
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Figure 6.4: Stochastic model showing A(µM) concentration versus time (minutes) in bistable
region, L = 50 µM , A1, A2, A3 are the coordinates of the lower, middle and upper states of the
model. Time delays τM = 0.1, τB = 2, and the noise term is (a) σ1 = σ2 = σ3 = 0.005, (b)
σ1 = 0.02, σ2 = 0.01, σ3 = 0.03.
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Figure 6.5: Stochastic model showing B(µM) concentration versus time (minutes) in bistable
region, L = 50 µM , B1, B2, B3 are the coordinates of the lower, middle and upper states of the
model. Time delays τM = 0.1, τB = 2, and the noise term is (a) σ1 = σ2 = σ3 = 0.005, (b)
σ1 = 0.02, σ2 = 0.01, σ3 = 0.03.
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Figure 6.6: Stochastic model showing M(µM) concentration versus time (minutes) in bistable
region, L = 50 µM , M1,M2,M3 are the coordinates of the lower, middle and upper states of
the model. Time delays τM = 0.1, τB = 2, and the noise term is (a) σ1 = σ2 = σ3 = 0.005, (b)
σ1 = 0.02, σ2 = 0.01, σ3 = 0.03.
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6.3.3 Around the boundary of bistable region

The left and right boundary points depicted in the S-shape curve are shown in Fig-

ure 5.3. Here the stochastic behaviour is investigated at the left and right end of

the bistable region corresponding to L = 39.1 µM and L = 55.4 µM respectively.

The behaviour at the boundary points of the bistable region for different regulation

mechanisms of the reduced lac operon (with ordinary differential equations) without

time delays was studied in [41]. Figure 6.7 a), shows that when the system is at

the left boundary point, L = 39.1µM , the effect of noise is that allolactose in upper

state (induced) can switch to lower state (uninduced) after approximately 1000 min-

utes. However, when the system is at the right boundary point L = 55.4 µM , the

switch from lower (uninduced) to upper (induced) states appears after approximately

150 minutes and the system remains in the induced state (Figure 6.7 b). Similar

behaviour for all the coordinates M and B are shown in Figures 6.8 a) and b) ,6.9 a)

and b) respectively.

The following interesting features are observed in the reduced model: In the bistable

region close to the left boundary point L = 39.7 µM , the the upper state (induced)

switches to lower state (uninduced) (Figure 6.7 c). Close to the right boundary point,

L = 54 µM , the lower state switches to upper state even when the noise very small

(Figure 6.7 d). Similar behaviour is observed around the boundary points for M and

B and is shown in Figure 6.8 c) and d) and Figure 6.9 c) and d) respectively. The

Simulations in this thesis show that fluctuations can cause switching from uninduced

to induced solution, also observed the opposite around the left boundary point.
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Figure 6.7: A (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = 0.005, a) left boundary
point L = 39.1 µM , b) right boundary point L = 55.4 µM , c) around left boundary point L =
39.7 µM , d) around right boundary point L = 54 µM .
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Figure 6.8: M (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = 0.005, a) left boundary
point L = 39.1 µM , b) right boundary point L = 55.4 µM , c) around left boundary point L =
39.7 µM , d) around right boundary point L = 54 µM .
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Figure 6.9: B (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = 0.005, a) left boundary
point L = 39.1 µM , b) right boundary point L = 55.4 µM , c) around left boundary point L =
39.7 µM , d) around right boundary point L = 54 µM .

6.4 Stable and bistable behaviour due to pertur-

bation of allolactose

The analysis of the stochastic system represented by the equations (6.2.1-6.2.3) in-

dicates that the changes in allolactose, A, are more significant, compared to mRNA,

M , and β− galoctosidase, B. Here, the behaviour of the system is investigated nu-

merically when noise is added to the equation (6.2.3) for allolactose A, only.

If the system is at a single uninduced or induced state it oscillates around this state

S= (M,B,A) when noise is added. This is illustrated for A in Figure 6.10 a), when

L = 30 µM and Figure 6.10 b) when L = 60 µM . Note that when σ3 > 0.038 the

system is not mean square stable. In the bistable region, large noise (σ3 = 0.2) can

switch from uninduced to induced state and vice versa. This is illustrated for A in

Figure 6.11 when L = 50 µM and the system is initially in the induced state, the

system switches after approximately 700 minutes to coordinate of uninduced state.

Perturbing A leads to similar switching in M and B. However, when large noise
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is added to all three concentrations, switching inside bistable region has not been

observed.
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Figure 6.10: A (µM) concentration versus time (minutes). a) Initial values L = 30 µM , σ3 = 0.07.
b) Initial values L = 60 µM , σ3 = 0.2.
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Figure 6.11: A (µM)) concentration versus time (minutes). Initial values L = 50 µM , upper state,
σ3 = 0.2. As seen allolactose switches between two stable .
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6.5 Summary

The stability for the reduced stochastic model around equilibrium in the presence of

noise and time delays has been studied in this Chapter. The sufficient conditions of

exponential mean square stability have been derived giving threshold values for the

noise terms. The numerical solution of the Ito stochastic differential equations (6.2.1-

6.2.3) by the Euler Maruyama method has verified that the stability of the positive

equilibrium depends on the values of the noise terms, time delays and the parameters

of the system. If L lies in the bistable region the concentrations of allolactose, β-

galoctosidase and mRNA can co-exist in two steady states. When there is an unstable

steady state (for L = 50 µM M for example), it evolves to induced or uninduced

state for the small or larger noise respectively. The model has shown that changes

are most significant in allolactose when all three concentrations M,B and A were

perturbed with the same noise term. The behaviour has been investigated within the

bistable region. Near to equilibrium, when noise terms are below threshold values,

the numerical simulations confirm that if the system is in uninduced or induced state

it remains in such state in presence of perturbation. However, for values of lactose at

or around the right boundary point of the bistable region the system can switch from

uninduced to induced state even if the noise is small. Thorough investigation of the

stochastic stability of the reduced model of lac operon within and outside bistable

region with respect to lactose concentration and noise terms demonstrates that the

system behaviour is dependent on the lactose levels and perturbations. As such, it

has been demonstrated that the stochasticity can change the behaviour in the bistable

region, including switching due to the lactose concentration.



Chapter 7

The full stochastic model of the lac

operon

7.1 Introduction

The full stochastic model of the lac operon is considered in this chapter. The full

deterministic model of Yildirim and Mackey [12], considered in Chapter 4 studied the

lactose operon by including two positive feedback, namely positive feedback regulation

of mRNA production by allolactose and positive feedback lactose intake by permease

as shown in Figure 4.1. The system has three time delays. The steady states of the

full deterministic model display bistability depending on the lactose concentration.

Focusing on the important dynamical features of the lac operon model namely, bista-

bility. In chapter 6 the stochastic stability was studied for the reduced model and

it was found that the stochasticity can change the behaviour in the bistable region

due to lactose concentration. The study of stability of the full model of the lac

operon allows to figure out wether the noise term can change the dynamic behaviour

of the system and in particularly in the bistable region due to the external lactose

concentration.

To describe the stochastic behaviour of the full system, the full deterministic model

of Chapter 4 is considered with a noise term. In this chapter, the stability properties

67
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of the full stochastic model of the lac operon system are investigated by linearization

of the system of stochastic delay differential equations (SDDEs) and using Lyapunov

functional. The sufficient conditions for mean square stable state of the trivial solution

(M(t) = B(t) = A(t) = L(t) = P (t) = 0) of linearized stochastic system around

positive equilibrium are obtained.

The stochastic stability properties of the model are investigated both analytically and

numerically (by using Euler Maruyama method) in order to obtain the solution of

stochastic differential equations.

7.2 Stochastic stability of the full model

Consider the system of Equations (4.2.1-4.2.5) and include stochastic perturbations

of the variables M, B, A, L, P from the equilibrium M∗, B∗, A∗, L∗, P∗, respectively,

gives the following Ito problem.

dM = [αMf(AτM )− γ̃MM ]dt+ σ1(M −M∗)dw1(t), (7.2.1)

dB = [αBe
−µ̂τBMτB − γ̃BB]dt+ σ2(B − B∗)dw2(t), (7.2.2)

dA = [αABh(L)− βABg(A)− γ̃AA]dt+ σ3(A− A∗)dw3(t), (7.2.3)

dL = [αLPh(Le)− βL1
Ph1(L)− βL2

Bh2(L)− γ̃LL]dt

+σ4(L− L∗)dw4(t), (7.2.4)

dP = [αP e
−µτPMτP − γ̃PP ]dt+ σ5(P − P∗)dw5(t). (7.2.5)

where

h(L) =
L

KL + L
, h(Le) =

Le

KLe
+ Le

, h1(L) =
L

KL1
+ L

, h2(L) =
L

KL2
+ L

f(A) =
1 +K1(e

−µτMAτM )n

K +K1(e−µτMAτM )n
, g(A) =

A

KA + A
.

Here (w1(t), w2(t), w3(t), w4(t), w5(t)) be a five- dimensional standard Wiener process

on the probability space [Ω, ξ,P] with the filtration {ξt}0≤t<∞ and−→σ = (σ1, σ2, ....., σ5)

are real constants. The initial values areM(0) = M∗, B(0) = B∗, A(0) = A∗, L(0) =
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L∗, P (0) = P∗. Note that the equilibrium point (M∗, B∗, A∗, L∗, P∗) of the deter-

ministic system from Chapter 4 (Equations 4.2.1-4.2.5) is being used.

The mean square stability of the trivial solution of the linearized system is investigated

around equilibrium point by using Lyapunov method. The stochastic full model of

the lac operon, represented by Equations (7.2.1-7.2.5), is investigated with three time

delays τM , τB, τP . As a result, the following theorem is formulated.

Theorem 7.2.1. Let the model parameters in Equations (7.2.1-7.2.5) are such that

h(L∗) <
βA

αA
, h(Le) <

βL1

αL
and βL1

P∗h
′
1(L∗) < βL2

B∗h
′
2(L∗). The three time delays of

the system are satisfying

τM∗ =
1

2µ
log[

ε3αM

2β̃A − α̃A − α̃A1
)
], τB∗ =

1

2µ
log[

αB

2γ̃B − ε7α̃A − ε2βL2h2(L∗)
],

τP∗ =
1

2µ
log[

αP

2γ̃P − ε4α̃L

] , (7.2.6)

let τM∗ < τM , τB∗ < τB, τP∗ < τP . For any constants σ1, σ2, σ3, σ4, σ5 such that

σ2
1 < 2γ̃M − ε1α̃M − ε5αB, σ2

2 < 2γ̃B − α̃B − ε7α̃A − ε2βL2g1(L∗),

σ2
3 < 2β̃A − α̃A + α̃A1

− ε3α̃M , σ2
4 < 2β̃L1 − ξ3α̃A − βL2h2(L∗)− α̃L,

σ2
5 < 2γ̃P − ε4α̃L − α̃P , (7.2.7)

the trivial solution of the linearized system around equilibrium is mean square stable.

Proof. Let s1 = M −M∗, s2 = B −B∗, s3 = A−A∗, s4 = L− L∗, s5 = P − P∗ be the

change of variable for the full model of Equations (7.2.1-7.2.5). The linearized system

around the positive equilibrium becomes,

ds1 = [−γ̃Ms1 + α̃Ms3(t− τM)]dt+ σ1s1dw1

ds2 = [−γ̃Bs2 + α̃Bs1(t− τB)]dt+ σ2s2dw2

ds3 = [−α̃As2 − β̃As3 − α̃A1
s4]dt+ σ3s3dw3

ds4 = [−α̃Ls5 − βL2
h2(L∗)s2 − β̃L1

s4]dt+ σ4s4dw4

ds5 = [−γ̃P s5 + α̃P s1(t− τP )]dt+ σ5s5dw5. (7.2.8)

Here

α̃A1
= αAB∗h

′(L∗)h(L∗), α̃A = βAg(A∗)− αAh(L), α̃P = αP e
−µτ ,
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α̃B = αBe
−µ̂τB , α̃M = αMe−2µ̂τMf ′(A∗), f ′(A∗) =

2(K − 1)

(K + e−2µ̂τMA2)2
,

α̃L = βL1
h1(L∗)− αLh(Le), β̃L1

= γ̃A − βL1
P∗h

′
1(L∗) + βL2

B∗h
′
2(L∗),

h1(L∗) =
L∗

KL1
+ L∗

, h2(L∗) =
L∗

KL2
+ L∗

, h(Le) =
Le

KLe
+ Le

.

All other parameters are known in chapter 4. In general

ds(t) = [νs(t)− υs(t− τ)]dt,

where ν = [ ∂f
∂sj

]s=0, υ = [ ∂f

∂sj(t−τ)
]s=0, j = 1, 2, .., 5 and

ν =




−γ̃M 0 0 0 0

0 −γ̃B 0 0 0

0 −α̃A −β̃A −α̃A1
0

0 −βL2
h2(L∗) 0 −β̃L1

−α̃L

0 0 0 0 −γ̃P




υ =




0 0 α̃M 0 0

α̃B 0 0 0 0

0 0 0 0 0

0 0 0 0 0

α̃P 0 0 0 0




.

Consider the Lyapunov functional:

V = V1 + V2, (7.2.9)

where V1 is chosen as follows

V1(s(t)) =
1

2
(ξ1s

2
1 + ξ2s

2
2 + ξ3s

2
3 + s24 + ξ4s

2
5).

The constants ξ1, ξ2, ξ3, ξ4 > 0 and V2 will be chosen later.

For all t ≥ 0, the first and second derivatives with respect to s are continuous, and

the first derivative with respect to t is continuous and bound. Then, the definition of

the differential operator L associated with Equation A.3.3 (see Appendix A) yields,

L =
∂

∂t
+

m∑

i=1

fi(t, s))
∂

∂si
+

1

2

m∑

k=1

Tr[gT (t, s)g(t, s)]k
∂2

∂s2i
.
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For V ∈ C([0,∞)×Rm;R+),

L(V ) =
dV2

dt
+ fT (s, s(t− τ))

∂V1

∂s
+

1

2
Tr[gT (t, s)

∂2V1

∂s2
g(t, s)].

The operator L(V ) can be written as,

L(V ) =
dV2

dt
+ L(V1), (7.2.10)

where

L(V1) = −ξ1γ̃Ms21 + ξ1α̃Ms1s3(t− τ)− ξ2γ̃Bs
2
2 + ξ2α̃Bs2s1(t− τ)

−ξ3α̃As2s3 − ξ3β̃As
2
3 − ξ3α̃A1

s3s4 − βL2
h2(L∗)s2s4 − β̃L1

s24

−α̃Ls4s5 − ξ4γ̃P s
2
5 + ξ4α̃P s5s1(t− τ)

1

2
ξ1σ

2
1s

2
1 +

1

2
ξ2σ

2
2s

2
2

+
1

2
ξ3σ

2
3s

2
3 +

1

2
σ2
4s

2
4 +

1

2
ξ4σ

2
5s

2
5. (7.2.11)

Here,

1

2
ξ1σ

2
1s

2
1 +

1

2
ξ2σ

2
2s

2
2 +

1

2
ξ3σ

2
3s

2
3 +

1

2
σ2
4s

2
4 +

1

2
ξ4σ

2
5s

2
5 =

1

2
Tr[gT

∂2g(t, st)

∂s2
g(t, st)].

In Equation (7.2.11) one can choose ξ1 = K
n

where K,n are constants, normally

determined from the experiment and in the case of the lac operon are given in Table

4.1. It is known that f(A∗) is linear around the steady state which leads to f ′(A∗) ⋍ 1,

for all τM > 0 and A∗ ∈ (0, (KA − KL)). This leads to α̃M = αMe−2µ̂τM . By using

standard inequalities,

|s2s1(t− τ)| ≤ 1

2
(s22 + s21(t− τ))

|s1s3(t− τ)| ≤ 1

2
(s21 + s23(t− τ))

|s5s1(t− τ)| ≤ 1

2
(s22 + s21(t− τ))

|s1s3| ≤
1

2
(s21 + s23)

|s2s3| ≤
1

2
(s22 + s23)

|s4s5| ≤
1

2
(s24 + s25)
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|s2s4| ≤
1

2
(s22 + s24)

|s3s4| ≤
1

2
(s23 + s24),

from Equation (7.2.11) and after algebraic manipulation, it is obtained,

L(V1) ≤ −[ξ1γ̃M −
1

2
α̃M −

1

2
ξ1σ

2
1]s

2
1 − [ξ2γ̃B −

1

2
ξ2α̃B −

1

2
ξ3α̃A −

1

2
βL2g1(L∗)

−1

2
ξ2σ

2
2]s

2
2 − [ξ3β̃A −

1

2
ξ3α̃A −

1

2
ξ3α̃A1 −

1

2
ξ3σ

2
3]s

2
3 − [β̃L1 −

1

2
ξ3α̃A1

−1

2
βL2g1(L

∗)− 1

2
α̃L −

1

2
σ2
4]s

2
4 − [ξ4γ̃P −

1

2
α̃L −

1

2
ξ4α̃P −

1

2
ξ4σ

2
5]s

2
5

+
1

2
α̃Ms23(t− τ) + ξ2

1

2
α̃Bs

2
1(t− τ) +

1

2
ξ4α̃P s

2
1(t− τ) (7.2.12)

Now, define the function,

V2 =
1

2
α̃M

∫ t

t−τ

s23(Θ)dΘ+
1

2
ξ2α̃B

∫ t

t−τ

s21(Θ)dΘ+
1

2
ξ4α̃P

∫ t

t−τ

s21(Θ)dΘ,

where

dV2

dt
=

1

2
[α̃Ms23 + ξ4α̃Bs

2
1 + ξ4α̃P s

2
1 − α̃Ms23(t− τ)− α̃Bs

2
1(t− τ)

−ξ4α̃P s
2
1(t− τ)]. (7.2.13)

From the generating operator (7.2.10) using 7.2.12 and 7.2.13) and considering the

Lyapunov functional, V = V1 + V2, after some algebra, the following is obtained,

L(V ) ≤ −[ξ1γ̃M −
1

2
α̃M −

1

2
ξ2α̃B −

1

2
ξ4α̃P −

1

2
ξ1σ

2
1]s

2
1 − [ξ2γ̃B −

1

2
ξ2α̃B −

1

2
ξ4α̃A

−1

2
βL2h2(L∗)−

1

2
ξ2σ

2
2]s

2
2 − [ξ3β̃A −

1

2
ξ3α̃A −

1

2
ξ3α̃A1 −

1

2
α̃M −

1

2
ξ3σ

2
3]s

2
3

−[β̃L1 −
1

2
ξ3α̃A −

1

2
βL2h2(L

∗)− 1

2
αL −

1

2
σ2
4]s

2
4 − [ξ4γ̃P −

1

2
α̃L −

1

2
ξ4α̃P

−1

2
ξ4σ

2
5]s

2
5. (7.2.14)

Using the values of the parameters given in Table 4.1, ξ1 = K
n

and ξ2, ξ3, ξ4, ξ5 > 0,

the following is obtained from Equation (7.2.14),

2γ̃M − ε1α̃M − ε5αB > 0, 2γ̃B − α̃B − ε7α̃A − ε2βL2g1(L∗) > 0,

2β̃A − α̃A + α̃A1
− ε3α̃M > 0, 2β̃L1 − ξ3α̃A − βL2h2(L∗)− α̃L > 0,
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2γ̃P − ε4α̃L − α̃P > 0,

where ε1 =
1
ξ1
, ε2 =

1
ξ2
, ξ3 =

1
ε3
, ξ4 =

1
ε4
, ξ5 =

ξ2
ξ1
, ξ6 =

ξ4
ξ1
, ξ7 =

ξ4
ξ2
.

Thus, σi, i = 1, 2, 3, 4, 5, are positive real numbers if τM∗ < τM , τB∗ < τB, τP∗ < τP .

Therefore the function V satisfies all assumption of Theorem 7.2.1

7.3 Numerical solution and investigation of the dy-

namic behaviour with stochastic noise

The Ito system (7.2.1-7.2.5) is solved numerically by Euler Maruyama methods with

constant stepsize. According to the conditions given in Theorem 7.2.1, the mean

square stability of the positive steady state depends on σi, i = 1, 2, 3, 4, 5, and three

time delays. Using conditions 7.2.6 and 7.2.7 of Theorem 7.2.1 and the parameters

from Table 4.1, the system is exponentially mean square stable for σ1 < 0.0207, σ2 <

0.045, σ3 < 0.042, σ4 < 0.0403, σ5 < 0.05 and τM > 0.0522, τB > 0.975, τP >

1.21. These are the threshold values for the model. For convenience, in what follows

the notation for perturbation (noise), −→σ = (σ1, σ2, σ3, σ4, σ5). The results in this

sub-section will be illustrated in the case when σ1 = σ2 = σ3 = σ4 = σ5 = σ

Figure 7.1: Steady state (S-shape curve) displacement due to the distance between the initial value
and equilibrium point for allolactose (∆).
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For the allolactose, A, the displacement from the equilibrium by the noise term,

depends on the initial conditions. Figure 7.1 illustrated the case when the initial

conditions are changed from the steady state by ∆ to the left and the right.

In Figure 7.1, one has to find a limit value for ∆ such that the variable close to it

must be in the region where steady state exits (S-shape curve) and this depends on

the value of Le. Introducing σ

∆
, where ∆ is the distance between the initial values

and equilibrium points which assured that ∆ is small enough not affect the S-shape

curve. The values of σ

∆
are compered with the noise values which is obtained from

the theorem 7.2.1. There are different cases, no change in the S-shape curve (Figure

7.1) when σ

∆
≥ 1 (the value of ∆ is smaller or same the value of σ). Whereas, in the

case when the value of ∆ is larger than the value of σ, the S-shape curve changes

(displacement) within the steady states values when 1 < ∆ ≤ 15µM and concluded

that σ

∆
< 1.

7.3.1 Stable behaviour

The model can display bistability (Chapter 4) depending on the external lactose

concentration. Furthermore, the upper solution is stable and induced, the lower is

stable and uninduced and the middle solution is unstable are all of the state
−→
S=

(M,B,A, L, P ). The numerical simulation shows the behaviour of the system (7.2.1-

7.2.5) with the perturbation −→σ= (σ1, σ2, ..., σ5). All five coordinates change in a

synchronized way. For instance, in this model of the lac operon, if A∗ belongs to

lower state (uninduced) for Le = 20 µM , so will be M∗, B∗, L∗, P∗, as shown in

Figures 7.2-7.4 all the components of a state are induced or uninduced (Le = 70 µM)

in a synchronization behaviour, Since the scale of allolactose and lactose is much

larger than mRNA, β− galoctosidase and permease the behaviour is shown in three

figures.
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Figure 7.2: M,B (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a)
uninduced state for Le = 20 µM b) induced state for Le = 70 µM .
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Figure 7.3: A,L (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a)
uninduced state for Le = 20 µM b) induced state for Le = 70 µM .
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Figure 7.4: P (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a)
uninduced state for Le = 20 µM b) induced state for Le = 70 µM .
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7.3.2 Inside the bistable region

The numerical simulation of mRNA, β− galoctosidase, allolactose, lactose and per-

mease (system 7.2.1-7.2.5) with time delays is shown in Figure 7.5 for five values of

the noise term. For the case of three possible stable solutions and an opportunity

for multi-stable behaviour (Le = 30 µM). The deterministic full model (Chapter 4)

is bistable which is only possible when the loop is active by lactose (induced). The

stochastic stability framework is useful in understanding the stability of equilibria

point and allows to define more adequate description of the dynamics of induced and

uninduced states in the bistable region. The most significant changes are observed

for the allolactose A and lactose L (see [11, Figure 2]), where the concentrations are

significantly higher compared to B, M , L and P . This is expected as the values of

A and L are larger than the values of the other three variables M,B and P . Figure

7.5 illustrates the behaviour of the model when Le = 30µM (coexisting three steady

states) with perturbation σ = (σ1, σ2, σ3, σ4, σ5), (a) σ1 = σ2 = σ3 = σ4 = σ5 = 0.01,

(b) σ1 = 0.01, σ2 = 0.02, σ3 = 0.03, σ4 = 0.035, σ5 = 0.04. Time delays have been

chosen as τM = 0.1 min, τB = 2 min, τP = 2.38 min, as these three time delays are

the maximal time delays for the system as suggested in [11] (see Table 4.1) and also

satisfy the conditions of Theorem 7.2.1.

For very small perturbation, reflected by the values of σ = (σ1, σ2, σ3, σ4, σ5), the

unstable middle state with coordinate A2 converges to A3 coordinate, while with in-

creased noise σ this solution converges to the lower state with coordinate A1. Similar

behaviour is observed for M,B,L and P , where the concentrations versus time are

shown in Figures 7.7-7.9 respectively. The stochastic system is bistable and the noise

affects mainly the middle solution for all concentrations M,B,A, L, P , while lower

(uninduced) and upper (induced) solutions for M,B and P are almost unchanged by

noise around the equilibrium. The initial values were taken when Le = 30 µM and

are given in Table 4.3.
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Figure 7.5: Stochastic model showing A(µM) concentration versus time (minutes) in bistable
region, Le = 30 µM , A1, A2, A3 are the coordinates of the lower, middle and upper steady states
of the model. Time delays are τM = 0.1, τB = 2, , τP = 2.38 and the noise term is (a) σ1 = σ2 =
σ3 = σ4 = σ5 = 0.01, (b) σ1 = 0.01, σ2 = 0.02, σ3 = 0.03, σ4 = 0.035, σ5 = 0.04.
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Figure 7.6: Stochastic model showing B(µM) concentration versus time (minutes) in bistable
region, Le = 30 µM , B1, B2, B3 are the coordinates of the lower, middle, upper steady state of the
model. Time delays are τM = 0.1, τB = 2, , τP = 2.38 and the noise term is ((a) σ1 = σ2 = σ3 =
σ4 = σ5 = 0.01, (b) σ1 = 0.01, σ2 = 0.02, σ3 = 0.03, σ4 = 0.035, σ5 = 0.04.
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Figure 7.7: Stochastic model showing M(µM) concentration versus time (minutes) in bistable
region, Le = 30 µM , M1,M2,M3 are the coordinates of the lower, middle, upper steady state of
the model. Time delays are τM = 0.1, τB = 2, , τP = 2.38 and the noise term is (a) σ1 = σ2 = σ3 =
σ4 = σ5 = 0.01, (b) σ1 = 0.01, σ2 = 0.02, σ3 = 0.03, σ4 = 0.035, σ5 = 0.04.
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Figure 7.8: Stochastic model showing L(µM) concentration versus time (minutes) in bistable
region, Le = 30 µM , L1, L2, L3 are the coordinates of the lower, middle, upper steady state of the
model. Time delays are τM = 0.1, τB = 2, , τP = 2.38 and the noise term is (a) σ1 = σ2 = σ3 =
σ4 = σ5 = 0.01, (b) σ1 = 0.01, σ2 = 0.02, σ3 = 0.03, σ4 = 0.035, σ5 = 0.04.
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Figure 7.9: Stochastic model showing P (µM) concentration versus time (minutes) in bistable
region, Le = 30 µM , P1, P2, P3 are the coordinates of the lower, middle, upper steady state of the
model. Time delays are τM = 0.1, τB = 2, , τP = 2.38 and the noise term is (a) σ1 = σ2 = σ3 =
σ4 = σ5 = 0.01, (b) σ1 = 0.01, σ2 = 0.02, σ3 = 0.03, σ4 = 0.035, σ5 = 0.04.

7.3.3 Around the boundary of bistable region

Here the stochastic behaviour at the left and right end of the bistable region is in-

vestigated, corresponding to Le = 27.5 µM and Le = 62 µM respectively. This is

the first attempt to investigate in details the behaviour in the bistable region for the

full stochastic model of the lac operon. Figure 7.10 a), shows that when the system

is at the left boundary point, Le = 27.5µM , the effect of noise is that allolactose in

upper state (induced) can switch to lower state (uninduced) after approximately 30

minutes. However, when the system is at the right boundary point Le = 62 µM ,

the switch from lower (uninduced) to upper (induced) states appears after approxi-

mately 40 minutes and the system remain in the induced (Figure 7.10 b). The same

behaviour for all coordinates of B,M,L and P are shown in Figures 7.11 a) and b)-

7.14 a) and b) respectively.

The following interesting features are observed: In bistable region close to the left

boundary point Le = 28 µM , the upper state (induced) switches to lower state (unin-

duced) (Figure 7.10 c). Close to the right boundary point, Le = 61 µM , the lower
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state switches to upper state even when the noise very small (Figure 7.10 d). Similar

behaviour is observed around the boundary points for B,M,L and P are shown in

Figures 7.11 c) and d)- 7.14 c) and d) respectively. The simulation result shows that

fluctuations can cause switching from uninduced to induced state and observed that

the opposite around the left boundary point.
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Figure 7.10: A (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a) left
boundary point Le = 27.5 µM , b) right boundary point Le = 62 µM , c) around left boundary point
Le = 28 µM , d) around right boundary point Le = 61 µM .



CHAPTER 7. THE FULL STOCHASTIC MODEL OF THE LAC OPERON 81

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
(a)

time (min)

Β
 (µ

 Μ
)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(b)

time (min)

Β
 (µ

 Μ
)

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
(c)

time (min)

Β
 (µ

 Μ
)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(d)

time (min)

Β
 (µ

 Μ
)

Figure 7.11: B (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a) left
boundary point Le = 27.5 µM , b) right boundary point Le = 62 µM , c) around left boundary point
Le = 28 µM , d) around right boundary point Le = 61 µM .
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Figure 7.12: M (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a)
left boundary point Le = 27.5 µM , b) right boundary point Le = 62 µM , c) around left boundary
point Le = 28 µM , d) around right boundary point Le = 61 µM .
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Figure 7.13: L (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a) left
boundary point Le = 27.5 µM , b) right boundary point Le = 62 µM , c) around left boundary point
Le = 28 µM , d) around right boundary point Le = 61 µM .

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(a)

time (min)

(µ
 Μ

)

P

0 50 100 150 200 250
0

5

10

15

20

25
(b)

time (min)

 (µ
 Μ

)

P

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
(c)

time (min)

(µ
 Μ

)

P

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20
(d)

time (min)

 (µ
 Μ

)

P

Figure 7.14: P (µM) concentration versus time (minutes) σ1 = σ2 = σ3 = σ4 = σ5 = 0.03, a) left
boundary point Le = 27.5 µM , b) right boundary point Le = 62 µM , c) around left boundary point
Le = 28 µM , d) around right boundary point Le = 61 µM .
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7.4 Stability behaviour due to perturbation of some

proteins

The behaviour of the system is investigated numerically when noise is added to the

equation (7.2.3) describing the allolactose, A, and equation (7.2.5) for the permease,

P . As shown in Chapter 4, the positive feedback regulations of the full model are

regulated by allolactose and permease.

In this case, the simulations show that if the system is at a single lower (uninduced)

or upper (induced) state it oscillates around this state when noise is added. This

is illustrated for P in Figure 7.15 a), when Le = 80 µM with large noise (σ3 =

σ5 = 0.4, σ1 = σ2 = σ4 = 0). In the bistable region, large noise (σ3 = σ5 =

0.4, σ1 = σ2 = σ4 = 0) can switch from lower to upper state and vice versa. This is

illustrated in Figure 7.15 b) when Le = 30 µM and the system is initially in the upper

state. However, when large noise is added to just allolactose or permease, switching

inside bistable region has not been observed, even when large noise added to all five

concentrations (M,B,A, L, P ).
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Figure 7.15: P (µM)) concentration versus time (minutes). a) Initial values Le = 80 µM , σ3 =
σ5 = 0.4. b) Initial values Le = 30 (µM), σ3 = σ5 = 0.4.
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7.5 Summary

The stability of the full stochastic model around equilibrium is studied in this chap-

ter in the presence of noise and time delays. The sufficient conditions of exponential

mean square stability derived giving threshold values for the noise terms. The nu-

merical solution of the Ito stochastic differential equations (7.2.1-7.2.5) by the Euler

Maruyama method verified that the stability of the positive equilibrium depends on

the values of the noise terms, time delays and the parameters of the system.

If Le lies in the bistable region the concentrations of mRNA, β- galoctosidase, allo-

lactose, lactose and permease can co-exist in two steady states. When there is an

unstable steady state (for Le = 30 µM , Figure 7.9 for example), it evolves to up-

per or lower state for the small or larger noise respectively. The model has shown

that changes are most significant in allolactose and lactose when all concentrations

M,B,A, L and P were perturbed with the same noise term. The behaviour was in-

vestigated within the bistable region, near to equilibrium is investigated when noise

terms are below threshold values. The numerical simulations confirmed that if the

system is in upper (induced) state or lower (uninduced) state it remains in such state

in presence of perturbation. However, for values of external lactose at or around the

right boundary point of the bistable region the system can switch from uninduced

to induced state even if the noise is small. Thorough investigation of the stochastic

stability of the full model of lac operon within and outside bistable region with re-

spect to external lactose concentration and noise terms demonstrates that the system

behaviour is dependent on the external lactose levels and perturbations. As such,

it is demonstrated that the stochasticity can change the behaviour in the bistable

region but it depends on the value of external lactose. Experimentally, bistablility as

a function of lactose levels has been observed for artificial sugars only ( [10]).



Chapter 8

The observer method for the lac

operon

8.1 Introduction

As explained in the previous chapters, the state space representation of the lac operon

model provides a suitable basis for stability analysis. In addition, from a control

theory point of view, it also provides a suitable and necessary basis for designing

feedback control laws. In the context of state feedback control design, the following

important issues need to be addressed:

1) first, one needs to identify the inputs and outputs (measured variables) of the

system. In the case of the lac operon, the inputs considered in this work, is the

lactose concentration, L, and the output is allolactose concentration, A.

2) next one needs to identify which variables are not measured (or accessible). This

is important because if the feedback laws depends on the state variables that are not

measured, then one cannot practically implement the control law. In the case of the

lac operon, the non-measured variables are the mRNA, M , and the β-galactosidase,

B, respectively.

It is also important to note that when some state variables are not measured one can

either use a sensor or an observer. However, sensors are quite expensive compared to
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observers. In effect, observers are basically software sensors. For this reasons they

are quite cheap with respect to analyzers used to measure concentrations.

To be more precise, an observer is a dynamical system that uses the measured in-

puts u(t) and outputs y(t) in order to provide an estimate x̃(t) of the non-measured

variables x(t) as shown in Figure 8.4. Finally, it is also important to note that it is

not always possible to design an observer or any arbitrary system; one has to ver-

ify whether the system is observable or not before proceeding to design an observer.

Similarly in control design one has to verify whether a system is controllable or not

before designing a controller.

Figure 8.1: Observer design.

There are many observer design methodologies for observer design; see for instance

[52, 53, 54, 55] just to mentioned a few.

In this chapter, an observer will be designed in order to estimate the concentration

of the mRNA M and the β-galactosidase B respectively. To the best of the author’s

knowledge, there is no works in the literature that deals with the estimation of the

mRNA and the β-galactosidase using observers. In this sense, such work may be seen

as a starting point for future development in this area.

As mentioned before, the input is the lactose L and output is the allolactose A shown

in Figure 8.2. As a control objective a controller will be designed so that allolactose

feeds back to bind with the repressor R and enables the mRNA M to proceed.

Before proceed to study the observer design for the lac operon a brief overview about

observer and control design method is given.
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Figure 8.2: Feedback loop for the lac operon model.

8.2 Observer design

Consider a dynamic system is described in state space form as

dx(t)

dt
= ẋ(t) = f(x(t), u(t)), (8.2.1)

where x is the state variable, x ∈ Rn, and u is the control variable, u ∈ Rm.

The measurement (output) vector y is given by

y = h(x(t)), (8.2.2)

where y ∈ Rp. Generally, p < n, which means that n− p variables are not measured.

In the case where p = n, an observer is not require because all the variables are being

measured by some sensors or other means.

An observer for the above system can be written as:

˙̂x = f(x̂, u) +K(y − h(x̂)), (8.2.3)

where K is the so-called observer gain vector which might depend on y, u and x̂ or

may be constant. One needs to design K such that the distance ‖x(t)− x̂(t)‖ tends
to 0 when t→ +∞.

In other words, setting e = x− x̂, the requirement is that the error dynamic,

ė = ẋ− ˙̂x = f(x, u)− f(x̂, u)−K(y − h(x̂))

to be stable.
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From the above expression, it can readily be seen that this is not an easy task. For

this one has to find the proper observer gain and a proper Lyapunov function in

order to prove the convergence of the error dynamics. Additionally, the observability

properties for nonlinear systems in general depends on the applied inputs. In other

words, there may be inputs for which the system is observable while it might not be

observable for other inputs. The inputs that makes a nonlinear system unobservable

are called ”singular inputs” [55].

However, in the case of linear observable systems the observability property hold for

all inputs. Also, the observer design theory is well established in such a case. In what

follows, the observer design methodology is recalled for linear systems. In effect, in

such a case, we have f(x(t), u(t)) = Ax(t) +Bu(t) and y(t) = Cx(t) where A, B and

C are square matrices of appropriate dimensions.

Here, the observer is given by:

˙̂x = Ax̂+Bu+K(y − Cx̂), (8.2.4)

and the error dynamics is given by:

ė = (A−KC)e.

In this case one has to choose the estimator gain K such that the eigenvalues of the

matrix A−KC lies in the left-half complex plane.

8.3 State feedback control design

Consider again the system:

dx(t)

dt
= f(x(t), u(t)) (8.3.1)

There are several control design strategies in the literature for the above systems

[56]. In general, the objective of a state feedback control design is to find a function

u(x) = α(x) such that the closed-loop system:

dx

dt
= f(x, α(x)) (8.3.2)
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Figure 8.3: Controller design.

is stable.

Figure 8.3 illustrates a typical state feedback control loop. As in the case of observer

design, nonlinear control design is not an easy matter. Generally, one has to find a

proper Lyapunov function V (x) such that dV (x(t))
dt

< 0 in order to prove asymptotic

stability. The systematic search for a candidate Lyapunov function for a general

nonlinear closed-loop system is still an open problem.

8.4 Observer-based estimation for the lac operon

In this section, the reduced model the lac operon given in Chapter 3 is considered. An

estimate of B and M will be provided by assuming that A is measured and that the

input signal is L. For simplicity, τM = τB = 0 is assumed in equations (5.2.1-5.2.3)

which gives:

dA

dt
= −γ̃AA+ [αAh(L)− βAg(A)]B (8.4.1)

dB

dt
= −γ̃BB + αBM (8.4.2)

dM

dt
= −γ̃MM + αMf(A), (8.4.3)

where

h(L) =
L

KL + L
, g(A) =

A

KA + A
, f(A) =

1 +K1A
n

K +K1An
.
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First, it will be shown that the above system can be written in a state-affine form:



dA
dt

dB
dt

dM
dt


 =




−γ̃A αAh(L)− βAg(A) 0

0 −γ̃B αB

0 0 −γ̃M







A

B

M


+




0

0

αMf(A)


 ,

which can be presented as

dX

dt
= F (u)X + φ(y),

y = A = CX, (8.4.4)

where u = L, C = (1, 0, 0) and

X =




A

B

M


 ,

F (u) =




0 αAh(L)− βAg(A) 0

0 0 αB

0 0 0


 .

Since the above system is in the state affine form, a typical observer for this kind of

system is given in [57]:

˙̂
Z = F (u)Ẑ + S−1CT (y − CẐ),

Ṡ = −θS + F T (u)S + SF (u) + CTC. (8.4.5)

where S(0) = I and S(t) is a symmetric positive definite matrix. Note that since the

observer gain S−1CT requires the inversion of a matrix, one can avoid this inversion

by witting the above observer as follows: Let R = S−1, that is SR = I and therefore

ṠR = −SṘ. This led to Ṙ = −RṠR. Replacing this last equality in:

Ṡ = −θS + F T (u)S + SF (u) + CTC

one obtains

−RṠR = −(−θRSR +RF T (u)SR +RSF (u)R +RCTCR)
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Hence,

Ẑ = (F (u)X̂ + φ(y)) +RCT (y − CẐ),

Ṙ = θR +RF T (u) +RF (u)−RCTCR,

R(0) = I. (8.4.6)

A simulation was carried out for the above observer. The results are shown in Figures

(8.4,8.5,8.6). It can be seen that the observer converges to the true state of the system

under arbitrary initial conditions.

8.5 Control design for the lac operon

In this section, a state feedback controller is designed for the lac operon. The main

objective here is to regulate A to a reference value Aref while maintaining all the

other variables bounded. Again the reduced model of the lac operon is employed for

this purpose. First, from the equations (8.4.1-8.4.1) u = h(L) is set then,

dA

dt
= −γ̃AA− BβAg(A) + BαAu (8.5.1)

dB

dt
= −γ̃BB + αBM (8.5.2)

dM

dt
= −γ̃MM + αMf(A), (8.5.3)

The objective is therefore, to design a controller u such that A(t) → Aref = r when

t→ +∞ and r being constant. In the steady state

0 =
dAref

dt
= −γ̃AAref − BβAg(Aref ) + BαAu (8.5.4)

0 = −γ̃BB + αBM (8.5.5)

0 = −γ̃MM + αMf(Aref ), (8.5.6)
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From equation (8.5.4),

γ̃AAref = −BβAg(Aref ) + BαAu (8.5.7)

γ̃BB = αBM (8.5.8)

γ̃MM = αMf(Aref ). (8.5.9)

This gives,

γ̃AAref = −BβAg(Aref ) + BαAu,

B(∞) =
αB

γ̃Bγ̃M
(αMf(Aref )).

Hence,

u =
γ̃Bγ̃MαA

αB(αMf(Aref ))
− (γ̃AAref +

αB

γ̃Bγ̃M
(αMf(ArefβAg(Aref )). (8.5.10)

However, since u = h(L) and h(L) = L
KL+L

, then from equation 8.5.10 follows,

L

KL + L
=

γ̃Bγ̃MαA

αB(αMf(Aref ))
− (γ̃AAref +

αB

γ̃Bγ̃M
(αMf(ArefβAg(Aref )).

(8.5.11)

In other words,

L =
uKL

(1− u)
.

On the other hand,

M(∞) =
αM

γ̃M
f(Aref ) (8.5.12)

B(∞) =
αB

γ̃B
M(∞). (8.5.13)

(8.5.14)

Thus from 8.5.12, one obtains,

M(∞) =
αM

γ̃M
f(Aref ), (8.5.15)

B(∞) =
αMαB

γ̃Bγ̃M
f(Aref ). (8.5.16)

Note, that one has to ensure that u is less than 1, otherwise the controller will escape

to infinity. This means that the controller is quite restrictive.
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8.6 Simulation results

The observer and control design from section 8.4 and 8.5 are Simulated with simulink

(Matlab).
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Figure 8.4: Observer design for mRNA M (µM) concentration.
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Figure 8.5: Observer design for β−galactosdase B (µM) concentration.
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Figure 8.6: Observer design for allolactose A (µM) concentration.
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Figure 8.7: Control design for mRNA, M (µM).
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Figure 8.8: Control design for β−galactosdase, B (µM).
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Figure 8.9: Control design for allolactose, A (µM).

8.7 Summary

In the final part of this thesis, an observer design methodology is proposed in order

to estimate the non-measured variables B and M of the lac operon by using the

measurement of A and by using L as an input. For this purpose, the reduced and

delay free model of the lac operon has been used. It is shown that this reduced model

can be written in a state affine form. As a result, observer design method was used in

the available literature for that purpose. Next, a controller was designed in order to

regulate the A to a specific reference value. However, the proposed controller is quite

restrictive. Nevertheless, as far as the author is aware, this is a first kind of work in

this topic and further investigation is required in this area.



Chapter 9

Conclusion and Future Work

9.1 Conclusion

Two stochastic models (reduced and full) of the dynamics of gene regulation of the

lac operon were developed by extending the deterministic models [11, 12] with noise

terms.

The sufficient conditions of stochastic stability of the reduced and full models of the

lac operon were obtained using Lyapunov functionals. Threshold values for the noise

terms and delays were obtained. The numerical solution of the reduced and full

Ito stochastic differential equations (6.2.1-6.2.3) and (7.2.1-7.2.5) respectively by the

Euler Maruyama method have verified that the stability of the positive equilibrium

depends on the values of the noise terms, time delays and the parameters of the

system. Analytical and numerical solutions of the both models were obtained. An

existence of bistable region was identified for certain lactose concentrations and the

behaviour of the models investigated. The reduced and full deterministic models

of the lac operon were simulated using Matlab with routine dde23, the evolution

of the three steady states are illustrated in Chapter 4 and Chapter 5 Mostly, this

work reproduced the results in [41, 42], however the evolution of unstable state is

new. Finally, an estimate was made of the concentration of the mRNA (M) and

the β-galactosidase (B) for the reduced model of the lac operon using the observer

96
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method.

In Chapter 6 and 7, where the effect of the stochasticity on the dynamics of the re-

duced and full models of the lac operon were investigated respectively. The stochastic

stability framework is useful in understanding the relative stability of equilibria point

and allows to define more adequate description of the system. The stability around

equilibrium in the presence of noise and time delays was investigated. The sufficient

conditions of exponential mean square stability have been derived giving threshold

values for the noise terms.

In the reduced model, if L lies in the bistable region the concentrations of allolactose,

β- galoctosidase and mRNA can co-exist in two steady states. When there is an

unstable steady state (for L = 50 mu M, M for example), it evolves to induced or

uninduced state for the small or larger noise respectively. The model has shown that

changes are most significant in allolactose when all concentrations M and B were

perturbed with the same noise term. Similarly, in the full model, the concentrations

of allolactose, β- galoctosidase, mRNA, lactose and permease can co-exist in two

steady states if Le lie in the bistable region. When there is an unstable steady state

(for Le = 30 mu M, P for example), it evolves to induced or uninduced state for

the small or larger noise respectively. The model has shown that changes are most

significant in allolactose and lactose when all concentrations M,B,A, L and P were

perturbed with the same noise term.

The reduced model has shown that changes are most significant in allolactose when

all three concentrations M,B and A were perturbed with the same noise term. In

the full model, the changes of allolactose and lactose are most significant compared

to the changes of other concentrations M,B,A, L and P .

The behaviour of the reduced model within the bistable region was thoroughly in-

vestigated. Near to equilibrium, when noise terms are below threshold values, the

numerical simulations for values of L at or around the right boundary point of the

bistable region confirm that the system can switch from uninduced to induced state

even if the noise is small. Furthermore, numerical simulation shows that switching

from induced to uninduced state occurs only at or around the left boundary point
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for noise below threshold values, possibly due to low concentrations of lactose. When

only allolactose is perturbed, a switch from uninduced state to induced (and vice

versa) can occur within the bistable region when the perturbation is large (compared

to threshold values for the noise terms and delays). Outside the bistable region, the

concentrations oscillate around the stable state and for small concentrations of lactose

the system remains uninduced. This behaviour, however, has been experimentally ob-

served only for the artificial operon.

A very interesting result is that when only allolactose is perturbed, a switching from

uninduced state to induced (and vice versa) can occur within the bistable region

when the perturbation is large (compared to threshold values for the noise terms and

delays). Outside the bistable region, the concentrations oscillate around the stable

state and for small concentrations of lactose the system remains uninduced.

Similarly, numerical simulations for the full model were perform when values of Le

at or around the right and left boundary points of the bistable region, and confirm

that the system can switch from uninduced to induced state and from induced to

uninduced state respectively. However, when only allolactose is perturbed (large

noise), switching inside bistable region has not been observed which is different from

the reduced model. When allolactose and permease are perturbed, a switch from

uninduced state to induced (and vice versa) can occur within the bistable region when

the perturbation is large. Outside the bistable region, the concentrations oscillate

around the stable state and for small concentrations of external lactose the system

remains uninduced. The full model includes two positive feedbacks which are positive

feedback regulation of mRNA production by allolactose and positive feedback lactose

intake by permease as shown in Figure 4.1. Therefore, the reduced model is ignoring

the positive feedback loop involving permease (Figure 5.1).

Thorough investigation of the stochastic stability of the reduced model of lac operon

within and outside bistable region with respect to lactose concentration and noise

terms demonstrates that the system behaviour is dependent on the lactose levels

and perturbations. The noise has a strong effect for initial conditions close to the

boundaries of the bistable region, where even small fluctuations can cause switching
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between equilibrium states. Further, large perturbation of the allolactose may lead to

switching inside the bistable region. As such, it was demonstrated that the stochas-

ticity can change the behaviour in the bistable region, including switching due to the

lactose concentration. While in the full model, the system behaviour is dependent

on the external lactose levels and perturbations, large perturbation of the allolactose

and permease may lead to switching inside the bistable region. For example, it was

demonstrated that the stochasticity can change the behaviour in the bistable region,

including switching due to the external lactose concentration. This has only been

observed experimentally for artificial sugars.

The lac operon has the potential for bistability because of an inherent positive feed-

back loop. The bistability has been theoretically predicated by Yildirim and Mackey

[11, 12] for natural inducer (lactose). This, however, has been experimentally ob-

served only for artificial inducer [18] and the importance of noise investigated by the

some authors in [39, 10].

One of the main conclusions of the thesis is that the stochasticity can change the

boundaries of the bistable region in both models of the lac operon which cannot be

obtained in the case of the deterministic models of the lac operon.

Finally, a design of observer is presented for the reduced model without time delay

is designed to estimate the concentration of the mRNA M and the β-galactosidase

B by using the measurement of A and by using L as an input. As shown in figures

(Chapter 8) the observer converges to the true state of the system. Also, a state

feedback controller is designed for the lac operon which regulates allolactose to a

specific reference value while maintaining M,B are bounded. The observer method

is very promising way to estimate model parameters which are difficult to measure.

9.1.1 Contributions of the thesis

• The sufficient conditions of the mean square stability of the reduced and full

model of the lac operon were obtained using Lyapunov functional and Ito
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stochastic differential equations. Threshold values for the noise terms and de-

lays were obtained for both models. The results have verified that the stability

of the positive equilibrium depends on the values of the noise terms, time delays

and the parameters of the system.

• The coordinates of the state for both models move in a synchronized mode

and the system shows identical behaviour. All the coordinates of the state are

induced or uninduced in a synchronization behaviour.

• For low concentrations of lactose and external lactose for reduced and full model

respectively, numerical simulation shows that switching from induced to unin-

duced state occurs only at or around the left boundary point of the bistable

region.

• For large values of lactose and external lactose for reduced and full model respec-

tively, numerical simulation shows that switching from uninduced to induced

state, occurs only at or around the right boundary point of the bistable region.

• Numerical simulation for the reduced model when only allolactose was per-

turbed (the inner feedback loop), shows that for lactose values in the bistable

region switching occurs from uninduced state to induced (and vice versa).

Whereas, in the full model (two feedback loops by allolactose and permease), for

values of external lactose inside bistable region switching has not been observed

when only allolactose is perturbed. However, when allolactose and permease

are perturbed, a switch from uninduced state to induced (and vice versa) can

occur when the perturbation is large.

• The reduced model of the lac operon can be written in a state affine using

observer design. A controller was designed in order to regulate the allolactose

to a specific reference value.
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9.2 Future work

This thesis has presented a model of the lac operon written in a state-affine form, and

presented a new behaviour for the stochastic models of the lac operon. Promising

results have been obtained, however there are some suggestions for the future work

to improve the performance of the models.

• The behaviour of the lac operon model with and without time delays are shown

in Figure 9.1 a) the reduced model of the lac operon with two time delays and

same noise terms to all three equations (σ1 = σ2 = σ3 = 0.01), Figure 9.1 b)

the reduced model without time delays and with same noise terms to all three

equations (σ1 = σ2 = σ3 = 0.01).

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80
(a)

time (min)

Α
 (µ

 Μ
)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

Α
 (µ

 Μ
)

time(min)

(b)

A3

A1

A2

A3

A1

A2

Figure 9.1: Stochastic reduced model of the lac operon showing allolactose when L = 50µM . a)
with time delays and b) without time delay.

The figures show that the time delays play a significant role in the dynamics

and behaviour of the system. Therefore, an investigation between the delay

differential equation and stochastic delay differential equations are required for

the model to study how time delays affect the system’s behaviour.

• From the reduced model of the lac operon (system 5.2.1-5.2.3), one can assume

that τM = τB = 0 and the rate of loss (degradation) of mRNA is greater than

the corresponding loss rates for β- galactosidase and allolactose ( [58]), where
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γM > γB > γA. Therefore the approximate relationship for the dynamics of

mRNA is

M ≃ γMf(A). (9.2.1)

Then, the three equations of the model reduce to two equations:

dB = γB[γ1f(A)− B] (9.2.2)

dA = γA[f(B)− A]. (9.2.3)

When γB > γA and B ≃ A. The two equations (9.2.2,9.2.3) reduce to one

variable system (dimensional)

dB

dt
= γB[γMf(B)− B]. (9.2.4)

Alternatively, in the case when γA > γB then A ≃ B. The system (9.2.2,9.2.3)

reduces to a one variable (dimensional)

dA

dt
= γA[γMf(A)− A]. (9.2.5)

In Equation 9.2.4 and Equation 9.2.5, one can write both equations of the form

dy

dt
= γ[γMf(x)− x]. (9.2.6)

Where γ denotes protein B (γB), or protein A (γA).

The one dimensional stochastic differential equation of the form

dx(t) = ϕ(x)dt+ σ(x)dw(t). (9.2.7)

Where w is an one dimensional standard Wiener process (whose increment

is Gaussian process ∆w(t) = w(t + ∆t) − w(t) ∼
√
∆t) In Equation 9.2.6,

one can examine the situation in which fluctuations appear in γ. Assume the

fluctuations are Gaussian process with mean number of proteins degradation,

where the standard deviation of these number is approximation to
√
x. The

stochastic differential equation is

d(x) = γ[γ1f(x)− x] + σ
√
xdw. (9.2.8)
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The probability density function is a function that describes the proportional

probability for this random variable. The Fokker Planck equation

∂u

∂t
= −∂(ϕu)

∂x
+

1

2

∂2(σ2u)

∂x2
. (9.2.9)

One can study the stability of Ito stochastic differential equation (using 9.2.8)

corresponding to Fokker Planck equation (9.2.9) that regulates the probability

distribution of the random variable.

∂u

∂t
+

∂(γ[γMf(x)− x])u

∂x
=

σ2

2

∂2(xu)

∂x2
. (9.2.10)

The Equation 9.2.10 has a corresponding Fokker Planck equation for the evolution

of the ensemble density u, this equation of the lac operon describes the change in

probability distribution and leads to a certain partial differential equation of the

probability distribution. The solution of the Fokker Planck problem is a new challenge

and the next step leading to the stochastic model of the lac operon.
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Appendix A

Mathematical tools

A.1 Steady state

The notion of steady states (fixed points) is important for dynamic systems. Steady

states are determined by the fact that values of all state variables remain constant in

time, thus the behaviour after an adequately long time is often stationary. Although

the concept of stationary states is mathematical, it is important in kinetic models since

it points to typical behavioural modes of the system investigated and the respective

mathematical problems that are frequently easier to solve. Differential equations are

the description of the change of the state (see Section 3.2.3) of variables; for this the

modelling of biological systems is to characterize the dependence of certain properties

on time and space [8].

Klipp et al. [8] have explained the steady state for the system of first order of

nonlinear ordinary differential equations (ODEs) as follows,

ẋ = f(x).

Steady state points are obtained by solving f(x∗) = 0, or equivalently ẋ = 0 (the value

of x satisfy f(x∗) = 0). The disturbance about the steady state points is x = x∗+X,

then a linearization is given by Ẋ = J.X , where

J = (
∂fi

∂xj

)(i,j).
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Below are the definitions of stable and asymptotically stable solutions for the system

of first order ordinary differential equations:

Definition 1. [59], The steady state x∗ of the system ẋ = f(x) is said to be stable

if for every δ > 0, t0 ≥ 0, there exits a σ > 0 such that every solution x(t) having

initial conditions within ‖ x(t0)− x∗ ‖< σ ⇒ ‖ x(t)− x∗ ‖< δ , for all t ≥ t0.

Definition 2. [59], The steady state x∗ of the system ẋ = f(x) is said to be asymp-

totically stable if it is stable and there exists σ0 > 0 such that ‖ x(t0)−x∗ ‖< σ0, then

x(t) approaches x∗ as t tends to infinity.

The steady state is locally stable if the Jacobian J has eigenvalues with negative

real parts. The steady state is unstable if at least one eigenvalue has a positive real

part (Lyapunov’s first order). Thus, if the steady state is stable, the dynamic system

returns to this state; if unstable, the system leaves this state.

Thus, although solutions near a stable equilibrium may drift slightly farther away,

they must remain relatively close. In the case of asymptotic stability, they will even-

tually return to equilibrium ( [60, 61]). This is illustrated in Figure A.1.

Figure A.1: Schematic representations of stability and asymptotic stability with an equilibrium
point.

For a system of n differential equations, the characteristic of the stability is through

the eigenvalues λ, which are the roots of the characteristic polynomial,

λn + a1λ
n−1 + .....+ an−1λ+ an = 0, ai = 0, 1, 2, ..., n



APPENDIX A. MATHEMATICAL TOOLS 115

This is a polynomial of degree n. One method to understand the concept of stable

state and analyse the stability problem is using the Routh-Hurwitz conditions, which

are the necessary and sufficient conditions for λ to fulfil [6].

∆1 = a1 > 0

∆2 =

(
a1 a3

1 a2

)
> 0.

∆3 =




a1 a3 a5

1 a2 a4

0 a1 a3


 > 0, ...∆n > 0.

∆4 =




a1 a3 a5 . .

1 a2 a4 . .

. . . . .

0 0 . . ak




> 0, ...k = 1, ...n

A.2 Lyapunov function

The concept of a Lyapunov function is widely known, and one of the most important

methods in the analysis of dynamical systems. Lyapunov function proves the stability

of equilibria points in nonlinear systems. There are two approaches to study the

stability of continuous dynamical systems, known as Lyapunov’s first order (indirect

method) and the Lyapunov’s second order (direct method). The first method, as

mentioned in A.1, but is unsatisfactory when the linearized system has imaginary

eigenvalues. The second method enables one to prove the stability of an equilibrium

of a nonlinear system without integrating the differential equation and this is a great

advantage in this case of nonlinear systems. By using the direct method for any

differential equations, one is able to find Lyapunove function (V (x)) such that V (x) >

0, x 6= 0, along the trajectories d
dt
V (x(t)) is smaller than zero V (x) < 0, x 6= 0.

There are many different types for Lyapunov theorems; see for instance [62, 63].
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A.3 Stochastic stability

The stochastic behaviour is accounted for by adding a noise term to the deterministic

differential equations. Noise is usually present in any real life system, so it is possible

to study how random noise can change the behaviour in the dynamical models. The

noise term can be constructed using the Wiener process [64].

Consider the stochastic functional differential equations of the form,

xt = x0 +

∫ t

0

f(s, xs)ds+
n∑

j=1

∫ t

0

gj(s, xs)dwj(s), s ≥ 0

x0 = ϕ = {ϕ(θ) : θ ∈ J, J = [−τ, 0], τ ≥ 0}.
(A.3.1)

Here (w1(t), ...., wn(t)) be an n-dimensional standard Wiener process (whose incre-

ment is Gaussian process ∆wj(t) = wj(t+∆t)−wj(t) ∼
√
∆tN(0, 1)) on the proba-

bility space [Ω, ξ, {ξt}0≤t<∞, P ] with filtration {ξt, t ≥ 0}. Let C = C(J,Rm) indicates

the family of all continuous functions from J to Rm with the supremum norm ‖ϕ‖ =
supθ∈J |ϕ(θ)|, where f : R+×C →Rm, g : R+×C →Rm×n and xs = {x(s+ θ) : θ ∈ J}
is a C valuated random process and x0 ∈ ̥. Here ̥ is the space of ξ0-adapted

function ϕ ∈ C, such that the solution of (A.3.1) satisfies E|ϕ|2 <∞, where E is the

mathematical expectation [46, 47].

Theorem A.3.1. Assume there exist a continuous functional K(t, ϕ) ∈ C2,1 such

that for any solution of (A.3.1) the following inequalities hold

W1|ϕ|2 ≤ K(t, ϕ) ≤ W2|ϕ|2

LK(t, ϕ) ≤ −W3|ϕ|2.
(A.3.2)

Then the trivial solution is exponentially mean square stable.

Here C2,1 is the Banach space of all positive and continuous functions K(t, ϕ) for

t ≥ 0, W1,W2 and W3 are positive constants. The functions are twice continuously

differentiable with respect to x and have one bounded derivative with respect to t.

Then, the generating operator L for K of Equation A.3.1 is

LK(t, ϕ) =
∂K(t, ϕ)

∂t
+ fT (t, ϕ)

∂K(t, ϕ)

∂x
+

1

2
Trace[gT (t, ϕ)

∂2K(t, ϕ)

∂x2
g(t, ϕ)].


