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ABSTRACT
This work presents a linear analytical calculation on the stability and evolution of a compress-
ible, viscous self-gravitating (SG) Keplerian disc with both horizontal thermal diffusion and
a constant cooling time-scale when an axisymmetric structure is present and freely evolving.
The calculation makes use of the shearing sheet model and is carried out for a range of cooling
times. Although the solutions to the inviscid problem with no cooling or diffusion are well
known, it is non-trivial to predict the effect caused by the introduction of cooling and of small
diffusivities; this work focuses on perturbations of intermediate wavelengths, therefore rep-
resenting an extension to the classical stability analysis on thermal and viscous instabilities.
For density wave modes, the analysis can be simplified by means of a regular perturbation
analysis; considering both shear and thermal diffusivities, the system is found to be overstable
for intermediate and long wavelengths for values of the Toomre parameter Q � 2; a non-SG
instability is also detected for wavelengths �18H, where H is the disc scale-height, as long
as γ � 1.305. The regular perturbation analysis does not, however, hold for the entropy and
potential vorticity slow modes as their ideal growth rates are degenerate. To understand their
evolution, equations for the axisymmetric structure’s amplitudes in these two quantities are
analytically derived and their instability regions obtained. The instability appears boosted by
increasing the value of the adiabatic index and of the Prandtl number, while it is quenched by
efficient cooling.
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1 IN T RO D U C T I O N

Accretion discs are subject to an assortment of instabilities; two
of the most widely studied instances are the classical thermal
and viscous instabilities (e.g. Pringle, Rees & Pacholczyk 1973;
Lightman & Eardley 1974; Shakura & Sunyaev 1976; Livio & Sha-
viv 1977; Pringle 1977; Piran 1978; Pringle 1981). Their existence
depends on assumptions about how the angular momentum trans-
port and dissipation are modelled, which distinguishes them from
more fundamental dynamical instabilities such as the magnetorota-
tional instability (MRI), the gravitational instability and the vertical
shear instability.

In a Keplerian disc of surface density � and angular frequency
�, which is in thermal equilibrium, the heating and cooling rates H
and C are equal and are given by

H = 9

4
ν��2 ∝ αTc�� (1)

C = 2σT 4
eff ∝ T 4

c

τ
, (2)
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where ν = αcisoH is the kinematic viscosity (with ciso ∝ T 1/2
c and

H = ciso/� being the isothermal sound speed and the disc scale-
height), σ is the Stefan–Boltzmann constant, τ (here assumed �1)
is the optical thickness and Tc and Teff are the central and effective
temperatures of the disc.

As both α and τ are potentially functions of Tc, the disc is ther-
mally unstable to perturbations in Tc if

∂ lnH
∂ ln Tc

∣∣∣∣
�

>
∂ ln C
∂ ln Tc

∣∣∣∣
�

, (3)

as it would lead to runaway heating (cooling) for an upward (down-
ward) temperature perturbation. In the above criterion, the surface
density � is held constant as changes in temperature happen on
a much shorter time-scale than changes in � due to the thermal
time-scale τ th being given by

τth �
(

H

R

)2

τvisc, (4)

with τ visc representing the viscous time-scale and H/R � 1 for a
thin disc.

The α model of accretion discs (Shakura & Sunyaev 1973) pre-
dicts the disc to be thermally unstable in the inner regions (where
the radiation pressure dominates), although it is uncertain whether
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the thermal instability predicted by the α model takes place in real
discs, with some observations seeming to have proven otherwise
(eg. Gierliński & Done 2004; Done, Gierliński & Kubota 2007); a
competing model exists (dubbed the β model) where the stress is
proportional to the gas pressure, rather than the total pressure as
in the α model. This produces a thermally stable disc (Sakimoto &
Coroniti 1981; Stella & Rosner 1984; Merloni 2003). Moreover, the
α model neglects other effects such as heating from MRI-induced
turbulence (eg. Hirose, Krolik & Blaes 2009) and heat transport
within the disc.

A disc is said to be viscously unstable if a perturbation δμ ap-
plied to the dynamic viscosity μ = ν� grows. Substituting this
perturbation into the equation of diffusive disc evolution

∂�

∂t
= 3

r

∂

∂r

[
r1/2 ∂

∂r

(
ν�r1/2

)]
, (5)

gives

∂

∂t
(δμ) = ∂μ

∂�

3

r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2δμ

)]
, (6)

with an instability being triggered if the diffusion coefficient is nega-
tive. This implies the viscous instability criterion to be (Lightman &
Eardley 1974)

∂(ν�)

∂�
< 0, (7)

with the derivative being taken at constant r, and under the assump-
tion of both thermal balance and hydrostatic equilibrium.

The classical approach does, however, have limitations, the most
notable of which being the consideration of long wavelength per-
turbations obeying H � λpert � R0 only, which in turn allows the
thermal and viscous instabilities to be distinct. A more general anal-
ysis can be conducted by considering perturbations of wavelength
λpert ∼ H; in this case, the previously existing structure in the density
also develops a significant perturbation in the azimuthal component
of the velocity, therefore becoming a zonal flow, which modifies
the shear rate from its Keplerian value. This more generic analysis
can be used to study the stability of the slow modes and establish
whether zonal flows grow or decay as a result of non-ideal effects
such as viscous interactions, cooling and heating, as well as the
coupling between the modes.

Zonal flows – axisymmetric shear flows consisting of parallel
bands – represent an equilibrium solution to the equations govern-
ing the evolution of an accretion disc’s flow, involving a geostrophic
balance between the Coriolis force and the pressure gradient. This
can, however, be unstable under certain conditions, in which case
the flow can undergo a Kelvin–Helmholtz (or Rossby wave) insta-
bility (Vanon & Ogilvie 2016). Zonal flows have been observed to
persist in certain conditions; one such example is 3D simulation
of magnetohydrodynamic (MHD)-turbulent discs modelled using
the shearing box approximation (Johansen, Youdin & Klahr 2009;
Simon, Beckwith & Armitage 2012; Kunz & Lesur 2013; Bai &
Stone 2014). In this scenario, zonal flows are seen to exhibit larger
amplitudes and longer lifetimes for larger boxes (Bai & Stone 2014),
although the correlation between lifetime and box size does not ap-
pear to hold for boxes of very small size (Johansen et al. 2009).
2D shearing sheet hydrodynamical simulations of accretion discs
have also encountered persistent zonal flows – albeit with a fi-
nite lifetime – that are found to be unstable to the formation of
long-lived vortices (Umurhan & Regev 2004; Johnson & Gam-
mie 2005; Lithwick 2007, 2009). This is regardless of the modest
Reynolds numbers achievable in simulations compared to those de-
scribing real discs. The emergence and survival of zonal flows in

both hydrodynamical and MHD simulations could be crucial in the
context of planetesimal growth within protoplanetary discs. Their
presence can in fact alter the coupling between the disc gas and the
planetesimals (Weidenschilling 1977), helping the latter to over-
come their inward migration due to gas drag (Klahr & Lin 2001;
Fromang & Nelson 2005; Kato et al. 2009) when planetesimals
reach the ‘metre-sized barrier’, while at the same time promoting
their growth.

A disc can also be viscously unstable to axisymmetric oscilla-
tions, as first described by Kato (1978). He found that if a disc’s
turbulent viscosity coefficient increases in compressive motions this
would generate a larger amount of thermal energy, therefore leading
to the growth of the axisymmetric oscillations, in a mechanism that
is comparable to the generation of nuclear energy driving stellar
pulsations. Furthermore, Kato (1978) found – by means of a local
stability analysis – that said oscillations can undergo an oversta-
bility if the viscosity coefficient increases sufficiently rapidly with
the surface density. Since the seminal work by Kato (1978), the
viscously overstable regime has been applied to the α-disc model
(Blumenthal, Yang & Lin 1984) – where the oscillations were found
to become viscously overstable if the value of α exceeds a criti-
cal value – and analysed in both linear and non-linear regimes in
planetary rings and gaseous disc contexts (eg. Kato & Fukue 1980;
Borderies, Goldreich & Tremaine 1985; Papaloizou & Stanley 1986;
Kato, Honma & Matsumoto 1988; Papaloizou & Lin 1988; Schmit
& Tscharnuter 1999; Latter & Ogilvie 2006). A fresh look is taken
at the topic of overstability in this analysis, also considering how
this is affected by self-gravity (SG).

This work presents an analytical calculation of the evolution and
stability of the solutions to a compressible, viscous SG Keplerian
disc with horizontal thermal diffusion when an axisymmetric struc-
ture is present. The disc, which is modelled using the 2D shearing
sheet approximation, also possesses a constant β cooling, with a
range of values used in the analysis. The work focuses on pertur-
bations of wavelengths λpert ∼ H, rather than H � λpert � R0 as in
the classical works dealing with thermal and viscous instabilities;
our work therefore represents an extension of the classical theory of
said instabilities. The paper is arranged as follows: Section 2 serves
as an introduction to the shearing sheet model, which is employed
in this analysis, as well as the full non-linear, viscous equations gov-
erning the system described. Section 3 introduces the axisymmetric
structure and the equations describing its temporal evolution; it also
analyses the evolution and stability of both density waves (DWs)
and slow modes. The work terminates in Section 4, where the con-
clusions drawn from the results are presented.

2 MO D EL

The work presented in this paper is based on the local unstratified
shearing sheet model, whose first use was by Goldreich & Lynden-
Bell (1965) in the context of galactic discs. This consists of drawing
a sheet of small dimensions compared to the disc size centred at
a fiducial radius R0 (i.e. Lx, Ly � R0, where Lx and Ly are the
radial and azimuthal dimensions of the chosen sheet). The frame
of reference of the sheet, which is of a Cartesian nature, corotates
with the disc at an angular frequency � = �ez, with ez being the
unit vector normal to the sheet; in the chosen frame of reference, the
continuity and Navier–Stokes equations for a viscous, compressible
fluid are given by

∂t� + ∇ · (�v) = 0, (8)
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∂tv + v · ∇v + 2� × v = −∇ − ∇d,m − 1

�
∇P + 1

�
∇ · T ,

(9)

where � is the surface density of the disc, v is the veloc-
ity of the flow,  = −q�2x2 is the effective tidal potential
(with q = −dln �/dln r representing the dimensionless shear
rate, its value being q = 3/2 for a Keplerian disc), d,m is the
disc potential evaluated at its mid-plane, P is the 2D pressure
and T = 2μs S + μb (∇ · v) I is the viscous stress tensor, with
S = 1

2

[∇v + (∇v)T
] − 1

3 (∇ · v)I being the traceless shear tensor,
μ = �ν the dynamic viscosity (μs and μb being the shear and bulk
dynamic viscosities, respectively), ν the kinematic viscosity and I
the unit tensor.

The quantity h = ln � + constant is introduced, which turns the
continuity equation into

∂t h + v · ∇h + ∇ · v = 0, (10)

while the disc potential can be readily evaluated at the disc’s mid-
plane in Fourier space by means of Poisson’s equation ∇2d =
4πG�δ(z), its form being described by

̃d,m = − 2πG�̃√
k2

x + k2
y

, (11)

where G is the gravitational constant and kx and ky are the radial
and azimuthal components of the wave vector k.

Another crucial equation in the setup described is that for the
temporal evolution of the specific internal energy e, which is given
by

∂t e + v · ∇e = −P

�
∇ · v + 2νs S2+νb(∇ · v)2+ 1

�
∇ · (νt�∇e)

− 1

τc
(e − eirr), (12)

where νb and νs are the bulk and shear kinematic viscosities, ν t the
(horizontal) thermal diffusion, τ c the (constant) cooling time-scale
and eirr the equilibrium specific internal energy to which the disc
would relax if it were not viscously heated. The Prandtl number is
defined as

Pr = νs

νt
. (13)

The analysis conducted in this paper will also make use of two
quantities, which are material invariants in ideal conditions (i.e. in
the absence of diffusivities and cooling): potential vorticity ζ (PV)
and the dimensionless specific entropy s, whose forms are given by

ζ = 2� + (∇ × v)z
�

, (14)

s = 1

γ
ln P − ln �, (15)

where γ represents the adiabatic index. The pressure P is given in
terms of the specific internal energy e by

P = (γ − 1)�e. (16)

This allows us to evaluate the pressure gradient term in the momen-
tum equation as

∇P

�
= (γ − 1) (∇e + e∇h) . (17)

The background state of the system is described by � = �0,
v0 = (0, −q�x, 0)T and by an internal energy per unit mass

e = e0 = c2
s /(γ (γ − 1)), where cs is the adiabatic sound speed; the

introduction of an internal energy induced by external irradiation
eirr acts as a buffer in the thermal balance of the system. Whereas in
its absence thermal balance can only be achieved with one combina-
tion of cooling time and shear viscosity, the assumption that eirr ≥ 0
allows us to explore multiple permutations of the two parameters
to gauge their effect on disc stability. The thermal balance of the
background state is given by

e0 = eirr + e0αs(γ − 1)q2�τc. (18)

It is possible to identify the quantity

fvisc = αs(γ − 1)q2�τc, (19)

which represents the fraction of viscously generated heat, with
eirr = 0 (ie. disc being entirely viscously heated) yielding the
maximum value of fvisc = 1. Equation (18), under the assumption
eirr ≥ 0, implies that

αsτc ≤ 1

q2�(γ − 1)
, (20)

where αs = νs

(
γ�

c2
s

)
is a dimensionless viscosity parameter, which

defines our ranges of shear viscosity and cooling time-scale ranges
for a specific dimensionless shear rate and adiabatic index.

The background state is then perturbed such that v = v0 + v′

[with v′ = (u′, v′, 0)T ], etc. This yields the following set of
linearized equations describing the temporal evolution of the dis-
turbance:

∂t h
′ = −∂xu

′, (21)

∂t u
′ − 2�v′ = −∂x

′
d,m − (γ − 1)

[
∂xe

′ + e0∂xh
′]

+
(

νb + 4

3
νs

)
∂2

xu
′, (22)

∂t v
′ + (2 − q)�u′ = νs∂

2
xv

′ − νsq�∂xh
′, (23)

∂t e
′ = −(γ − 1)e0∂xu

′ − 2νsq�∂xv
′ + νt∂

2
xe

′

− 1

τc
(e′ − eirr), (24)

with the analysis being based on the assumptions of τ c = const
and ν i = const. It is worth noting that the assumption of constant
diffusivities made can potentially affect the stability properties of
the model described.

As further explored in Section 3, the solutions to the above equa-
tions – which are either DWs or non-oscillating structures in the
entropy and PV – are deeply influenced by the viscosity and ther-
mal diffusivity values, as well as the effectiveness of the imposed
cooling. Depending on their combined effects, the solutions to the
problem can be either damped, exponentially growing or overstable
(i.e. growing oscillations).

3 EVO L U T I O N

The system admits axisymmetric, sinusoidal standing-wave solu-
tions of the form

h′(x, t) = Ah(t) cos(kx)

u′(x, t) = Au(t) sin(kx)

v′(x, t) = Av(t) sin(kx)

e′(x, t) = e0Ae(t) cos(kx), (25)
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λ

λ

Figure 1. Graphic illustration of the possible solutions to the ideal (inviscid
with no cooling; filled shapes) and full cases (empty shapes) in the real–
imaginary growth rate plane. In the inviscid case, all modes have Re(λ) = 0,
with the PV and entropy modes, both having zero frequency, being indis-
tinguishable (blue square). As viscous terms and cooling are introduced,
the modes acquire a non-zero real part to their growth rates; if Re(λ) < 0
viscosity acts to dampen disturbances, while if Re(λ) > 0 the entropy/PV
modes (white squares) exhibit exponential growth while the DW modes
(white circles) are subject to overstability.

where Ah, Au, Av and Ae represent the amplitudes in the respective
quantities and k > 0 is the wavenumber of the above structure.

It is possible to obtain a set of equations describing the tempo-
ral evolution of the axisymmetric structure by applying its form
outlined above into the linearized equations describing the system
(equations 21–24):

∂tAh = −kAu, (26)

∂tAu − 2�Av = −2πG�0Ah + c2
s k(Ae + Ah)

γ

−
(

γb + 4

3
γs

)
Au, (27)

∂tAv + (2 − q)�Au = −γsAv + γs

q�

k
Ah, (28)

∂tAe = −(γ − 1)kAu − γs

2q�

ke0
Av − γtAe, (29)

where γ b = νbk2, γ s = νsk2 and γ t = ν tk2 + 1/τ c are three damping
coefficients.

If we assume that these equations have solutions of the form ∝eλt,
a quartic equation for the complex growth rate λ can be determined,
and its solutions analysed. In the inviscid case with no cooling or
diffusion, these will be

λ0 = 0, 0, ± i ω0, (30)

where the zero subscript indicates the ideal case considered,
ω2

0 = κ2 − 2πG�0k + c2
s k

2 is the square of the DW frequency and
κ2 = 2(2 − q)�2 is the epicyclic frequency squared. The two
non-zero roots correspond to the DW modes, while the zero roots
correspond to the PV and entropy slow modes, as indicated in Fig. 1
by the filled shapes. The DWs are stable for all k values if Q > 1,
where Q is the Toomre parameter – which represents the strength of

SG within a disc, with Q � 1 causing the disc to be gravitationally
unstable – given by

Q ≡ csκ

πG�0
. (31)

Introducing the damping coefficients (assumed to be small, i.e.
γ i � �) back into the picture gives a non-zero real part to all the
modes’ growth rates, as shown in Fig. 1 by the empty shapes. If
the newly acquired real part is negative, the damping coefficients
have a stabilizing effect on the modes, while if Re(λ) > 0 the modes
exhibit exponential growth (entropy and PV modes) or viscous
overstability (DW modes). Understanding how the introduction of
the three diffusivities affects the values of the solutions is, however,
non-trivial. It is expected that a regular perturbation analysis can be
made for non-degenerate eigenvalues (i.e. for the DW modes with
λ0 = ±iω0), assuming the diffusivity values are small enough; in
this case, the solutions to the full equations are

λ = λ0 +
3∑

i=1

γi

(
∂λ

∂γi

)
+ O (

γ 2
i

)
, (32)

where γ i can represent a bulk, shear or thermal damping coefficient,
the latter also including effects due to cooling. In the degenerate case
(i.e. entropy/PV modes with λ0 = 0) it is, however, possible that a
singular perturbation is necessary, meaning the solutions would not
agree with the expression given by equation (32).

3.1 Density wave modes

The linearization assumption is found to hold for DW modes (i.e.
the non-zero roots in the inviscid case), and the independent contri-
butions to these modes from the damping coefficients are calculated
using the eigenvalue problem; these are(

∂λ

∂γb

)
= −1

2
,

(
∂λ

∂γt

)
= −k2c2

s (γ − 1)

2γω2
0

,

(
∂λ

∂γs

)
= [

(γ − 1) q2 + 2 (2 − γ ) q − 2
] �2

ω2
0

− 2

3
. (33)

While it is clear to see that the contribution from the bulk viscosity
is always negative, meaning it will always have a stabilizing effect
on the DW modes, the situation is more intricate in the case of the
shear viscosity and thermal diffusion. Should the contribution from
a specific diffusivity type happen to be positive, it would imply
that diffusivity type would act towards causing the DW modes to
be overstable. However, an overstability is only reached if the total

contribution
∑

i γi

(
∂λ
∂γi

)
is positive.

While the thermal diffusion also has a stabilizing contribution
when ω2

0 > 0 (where the flow is dynamically stable), for the shear
viscosity, the contribution is a more complicated expression that
depends on γ and q, as well as k and Q. However, it should be

noted that the expression enclosed within square brackets in
(

∂λ
∂γs

)
is positive for most realistic value combinations of q and γ . The
regions where overstability occurs when only shear viscosity is
taken into account are shown in Fig. 2 for a range of values of the
adiabatic index γ , assuming q = 3/2.

γ = 1 (blue, dotted region) and 7/5 (orange, dashed) produce an
overstable region in the kcs/�–Q plane that extends to arbitrarily
high Q for sufficiently large wavelengths (�9H and �16H, respec-
tively, where H = ciso/� is the scaleheight of the disc), as well as a
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Figure 2. Stability of the DW modes in the kcs/� – Q plane under the
influence of a shear viscosity alone, for various values of the adiabatic index
γ , assuming the shear rate to be q = 3/2. The shaded regions represent
the parameter combinations for which a viscous overstability would ensue.
While a viscous overstability can be triggered in a non-SG regime for γ = 1
(blue, dotted region) and 7/5 (orange, dashed), increasing the value of γ

further to γ = 5/3 (green, full) or 2 (red, dot–dashed) eliminates the high-
Q overstability region. Overstability in the latter two cases exists only for
Q � 2 for a broad range of wavenumbers, although the more unstable
value appears to be kcs/� ≈ 0.5. The hatched area represents the region
of the parameter space where ω2

0 < 0 and the flow is therefore dynamically
unstable.

low-Q region traversing the whole range of kcs/� considered, which
is consistent with the result of Latter & Ogilvie (2006). When the
value of γ is further increased, the high-Q region becomes stable,
leaving only the low-Q overstability region for γ = 5/3 (green, full)
and 2 (red, dot–dashed), which also appears to shrink with increas-
ing γ . The simplified 2D analysis by Latter & Ogilvie (2006) does
not present this γ dependence in the overstability condition caused
by the shear viscosity, which means their overstability region al-
ways extends to high Q if the wavelength considered is sufficiently
long. This discrepancy is believed to be due to their lack of a viscous
heat modulation in the Av equation.

Since the term enclosed within square brackets in
(

∂λ
∂γs

)
is usu-

ally positive, overstable conditions can be enhanced by minimizing
ω2

0 with respect to k; this is found to occur for

kmax = πG�0

c2
s

. (34)

This value can then be used to calculate the critical value of γ

needed for overstability as a function of both q and Q. The system
is found to be overstable if

γ <
2 − (2 − q)2 − 4

3 (2 − q)
(

1 − 1
Q2

)
q(2 − q)

, (35)

provided Q ≥ 1.

In the non-SG limit, the coefficient (1 − 1/Q2) → 1, reducing
the overstability condition to

γ <
16q − 3q2 − 14

3q(2 − q)
, (36)

with the critical value being γ crit ≈ 1.444 in the q = 3/2 case.
The next step is to combine the contributions from different diffu-

sivity types using equation (32) to find the regions of the kcs/�–Q
plane where overstability would occur. We take the instance in
which the bulk viscosity contribution is ignored; in this case, we
find that the system would develop an overstability if

γt

γs

<
2γ�2

[
(γ − 1)q2 + 2(2 − γ )q − 2 − 2

3 ω2
0/�2

]
k2c2

s (γ − 1)
, (37)

which, assuming q = 3/2 and γ = 5/3, simplifies to

γt

γs

< −5
[
4k

(
kc2

s − 2csκ/Q
) + �2

]
6k2c2

s

, (38)

where the ω2
0/�2 factor has been expanded to obtain a relationship

as a function of k. This highlights the stabilizing effect played
by thermal diffusion and cooling, with an overstability developing
only if the ratio γ t/γ s is below a critical value, which is dependent
on the values of k and Q (as well as q and γ ). The cooling in
particular plays a dominant role in the long-wavelength limit as its
contribution to γ t is independent of k, while both shear and thermal
diffusivities produce damping coefficients that are proportional to
k2. This hampers the triggering of overstability that, as seen in
Fig. 2, prefers the small k limit, particularly for the non-SG case.
An analysis of the k → 0 limit, also taking into account the coupling
between cooling time-scale and shear viscosity given by the thermal
balance (equation 20), yields the following expression for the real
part of the growth rate:

Re(λ) = γs

�2

6κ2

[−28 + 4(8 − 3γ )q + 6(γ − 1)q2

− 3(γ − 1)2q2 1

fvisc

]
. (39)

From the expression above, it is possible to infer that a non-SG
overstability is indeed possible as long as the adiabatic index obeys
γ � 1.305 (assuming q = 3/2 still), with the threshold value γ �
1.305 obtained when the disc is fully viscously heated (fvisc = 1).
This represents a stricter constraint than that obtained for shear
viscosity only (equation 36), again underlining the stabilizing effect
of γ t.

This is illustrated in Fig. 3, where the area obeying ω2
0 < 0 has

been ignored as any instability in that region would be of a dynam-
ical nature. A range of cooling times satisfying thermal balance is
explored, with the largest value chosen so that the flow is almost
entirely heated by viscous dissipation. The Prandtl number is set
to Pr = 5 with αs = 0.05, for both γ = 1.3 and 1.4. It is possible
to notice that as the cooling is made more efficient the overstable
area shrinks, confirming its stabilizing role, particularly in the long-
wavelength regime; indeed for γ = 1.4, the system is found to be
stable for all values of kcs/� and Q (for which ω2

0 > 0) for the
shortest cooling time explored (τ c = 5 �−1). The γ = 1.3 case, on
the other hand, presents overstability for all cooling times explored,
as predicted by equation (39); for non-SG or weak-SG conditions,
overstability is also observed for γ = 1.3 in the long-wavelength
limit for the two longest cooling times analysed: τ c = 20 (green, full
lines) and 29 �−1 (red, dot–dashed). Non-SG overstability, which
requires wavelengths longer than ∼18H for γ = 1.3, is on the other
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Figure 3. Overstability regions under the influence of shear viscosity, thermal diffusion and cooling for q = 3/2 and (a) γ = 1.3 and (b) γ = 1.4 (or γ = 7/5).
The analysis is carried out for a Prandtl number Pr = 5 (with αs = 0.05) and various cooling time-scales permitted by thermal balance. The γ = 1.3 case retains
a weak-SG/non-SG overstability at long wavelengths for the two longest cooling times: τ c = 20 (green, full lines) and 29 �−1 (red, dot–dashed). This is,
however, not the case for the plot with γ = 1.4, which only shows overstability for Q �2, as the value of γ used in this case is larger than the predicted threshold
value of γ � 1.305. In both plots, it is possible to see that cooling has a stabilizing effect on the system, with shorter time-scales progressively shrinking the
overstability region. The hatched portion of the plot represents the region where the DW frequency ω2

0 < 0 and the system is therefore gravitationally unstable
to axisymmetric disturbances.

hand suppressed for γ = 1.4, with overstable regions being con-
tained to Q � 2. This is in agreement with the analytical prediction
described above, which found that a weak-SG/non-SG overstability
in the k → 0 limit could only be achieved if the value of the adiabatic
index was below the threshold value γ � 1.305.

A general form for the largest overstable value of Q attainable
over all kcs/� in the absence of the bulk viscosity contribution can
be derived analytically and is found to be

1

Q2
max

=
[
4γ + 3(γ − 1)Pr−1

]
32(2 − q)γ

[
28 − 4(8 − 3γ )q − 6(γ − 1)q2

+ 3(γ − 1)2q2 1

fvisc

]
. (40)

Assuming the sum of the first three terms enclosed in square brackets
is positive (as otherwise the system might be overstable for any Q
and there would therefore not be a critical Q value), Qmax is found
to be an increasing function of fvisc and Pr. A particular example
of equation (40) is illustrated in Fig. 4; this shows the overstability
growth rates, maximized over k, as a function of the adiabatic index
γ and Toomre parameter Q for q = 3/2, τ c = 15 �−1, Pr = 5 and
α = 0.05. While γ values up to γ ≈ 1.6 are overstable at Q ∼ 1
for the given cooling time-scale, the maximum γ value needed
for overstability gradually decreases to γ � 1.25 as the Toomre
parameter reaches Q ∼ 5. This is in agreement with the predicted
maximum value of γ that allows weak-SG/non-SG overstability
(γ ≈ 1.305), which is indicated by means of a dotted vertical line

Figure 4. Overstability growth rates maximized over k as a function of the
adiabatic index γ and Toomre parameter Q for q = 3/2 and a cooling time
of τ c = 15 �−1. The values of the Prandtl number Pr = 5 and of the shear
viscosity αs = 0.05 match those employed in Fig. 3. The vertical dashed
line shows the largest value of γ allowed by thermal balance (γ ≈ 1.6), with
larger values not permitted. The dotted vertical line represents the predicted
threshold value of γ � 1.305 above which a non-SG overstability cannot
be achieved. As expected, a large range of adiabatic index values offers
unstable conditions when Q ∼ 1, but only values of γ � 1.25 are overstable
when Q ∼ 5.
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Figure 5. Contour plot for the growth rates of the PV and entropy modes as functions of both γ s and γ t, for kcs/� = 2, γ = 5/3 and Q = 1.2. Both modes
present non-linearities in their behaviour with an interference between the two modes observed for γ s � 0.03, where the modes’ growth rates are complex
conjugates of one another. Value combinations of γ t and γ s below the dashed line do not obey thermal balance.

in the plot. Moreover, a dashed vertical line at γ ≈ 1.6 represents
the largest value of γ allowed by thermal balance.

The introduction of the bulk viscosity in the analysis further
complicates the overstability analysis, with the full form of the
overstability criterion being

γb < −
[
6k2c2

s

]
γt + [

5
(
4ω2

0 − 3
)
�2

]
γs

15ω2
0

, (41)

where the assumptions of γ = 5/3 and q = 3/2 have been made.

3.2 Slow modes

The analysis of the slow PV and entropy modes, having coinciding
and degenerate solutions in the inviscid problem with no cooling or
diffusion, requires a somewhat different approach from the regular
perturbation method used for DW modes, as their solutions are
found to depend non-linearly with γ s and γ t; this is exemplified
in Fig. 5 for γ = 5/3, kcs/� = 2 and Q = 1.2. The real parts of
both modes’ growth rates present non-linearities in their behaviour;
interferences between the modes – where their growth rates form a
complex conjugate pair – can also be observed for γ s � 0.03. One
of the two modes is also seen to be unstable in a sizeable part of
the plot. Combinations of γ t and γ s values falling below the dashed
line do not satisfy thermal balance (equation 20).

In order to gain a better understanding on the stability of these two
modes, equations for the evolution of the structure in the specific
entropy and PV (i.e. ∂tAs and ∂tAζ ) of the form

∂tAs = c1As + c2Aζ , (42)

∂tAζ = c3As + c4Aζ , (43)

were analytically derived from equations (27)– (29), where As and
Aζ are the dimensionless amplitudes of the axisymmetric structure
in the respective quantities given by

As = 1

γ
(Ae + Ah) , (44)

Aζ = kAv

(2 − q)�
− Ah, (45)

and c1, c2, c3 and c4 are coefficients that are independent of Au, Av ,
Ah and Ae. The coefficients are found to be

c1 = γt

(
c2

s k
2(γ − 1) − γω2

0

) + γsqκ2γ (γ − 1)

γω2
0

, (46)

c2 =
κ2(γ − 1)

[
γt c

2
s

γ
+ γsq

k2

(
κ2 − ω2

0

)]
c2

s ω
2
0

, (47)

c3 = −4γsc
2
s k

2(q − 1)�2

κ2ω2
0

, (48)

c4 = −γs

(
ω2

0 + 4(q − 1)�2
)

ω2
0

. (49)

Assuming the solutions have an exponential form, a generic
quadratic equation for the growth rate λ for the system described in
equations (42)–(43) can be simply derived as

λ2 − (c1 + c4)λ + c1c4 − c2c3 = 0, (50)

with a generic solution being given by

λ = (c1 + c4)

2
±

√
(c1 − c4)2

4
+ c2c3. (51)

The regions of the kcs/� − Q space where the system is unsta-
ble to slow modes can be found by either looking for areas where
Re(λ) > 0 or by applying a relevant stability condition. This was
found in the Routh–Hurwitz stability criteria, which represent nec-
essary and sufficient stability conditions for a linear time-invariant
system with a polynomial characteristic equation. The required sta-
bility condition in the case of a generic second-order polynomial of
the form x2 + a1x + a0 = 0 is for all coefficients to satisfy ai > 0;
in the particular instance of equation (50), this can be written as

a1 = −(c1 + c4) > 0, (52a)

a0 = c1c4 − c2c3 > 0. (52b)

Stability is achieved only if both of these conditions are satisfied.
If the coupling coefficients c2 and c3 are negligible compared to

c1 and c4, entropy and PV evolve independently from each other,
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Figure 6. Instability regions in the parameter space given γ = 5/3 and looking at the cooling times τ c = 3 (blue, dashed boundary), 5 (orange, full), 10
(green, dot–dashed) and 12 �−1 (red, dotted). The shear viscosity used is αs = 0.05 and the Prandtl numbers (a) Pr = 3 and (b) Pr = 1. The instability features
prominent peaks at kcs/� ∼ 2.5 − 3 for Pr = 3, which are more noticeable for longer cooling times; these are quenched as the Prandtl number is decreased.
Decreasing Pr also reduces the non-monotonic behaviour in the instability regions. The hatched area shows the region of the plane where ω2

0 < 0 and the
system is therefore dynamically unstable to axisymmetric disturbances.

with c1 and c4 representing the two quantities’ respective growth
rates. Such is the case in both long-wavelength (i.e. kcs/� → 0) and
short-wavelength (i.e. kcs/� → ∞) limits, the former being stable
according to the classical approach. In these cases, the product of
c1 and c4 – both coefficients being negative – dominates over the
coupling product term c2c3; this means that both Routh–Hurwitz
stability criteria are satisfied and the system is stable. The analysis
presented in this paper focuses on the stability of the intermediate
kcs/� range, instead; this is somewhat more difficult to predict
analytically as c2 and c3 are no longer negligible, meaning PV and
entropy are coupled. This also implies that, should both c1 and c4

be negative under certain conditions, the system can nevertheless
still be unstable by violating the c1c4 − c2c3 > 0 condition.

It is worth pointing out that the properties of the model used
do affect the stability of the flow; should the +q�γ sk−1Ah term
in equation (28) – which arises from the dynamic viscosities be-
ing linear functions of � – be removed, the system would then
be unstable to secular gravitational instability (Willerding 1992;
Gammie 1996). This occurs in the limit kcs/� → 0 in systems that
are marginally stable according to equation (7). However in the case
analysed in this work, the system is stable to the onset of secular
gravitational instability.

Fig. 6 illustrates the regions in the kc2
s /�–Q plane where either

(or both) of the stability conditions is not satisfied and the system
is therefore unstable; the same instability regions are also obtained
when looking for parts of the plane where Re(λ) > 0, therefore
validating the instability criteria used. The analysis is carried out for
a range of cooling times satisfying thermal balance (where again the
largest value is such that eirr � 0) with q = 3/2 and γ = 5/3 and for

Pr = 3 (Fig. 6a) and Pr = 1 (Fig. 6b). The value of the shear viscosity
is kept at αs = 0.05 throughout. Non-monotonic behaviour in the
instability regions is observed thanks to a peak at kcs/� ∼ 2.5 − 3,
which is most prominent for Pr = 3 but is quenched as the Prandtl
number decreases to unity. The overall region of instability also
shrinks with decreasing Pr, highlighting the stabilizing effect of
the thermal diffusion. A short cooling time seems to lightly boost
instability at kcs/� ∼ 1, but at the same time it appears to dampen
the instability at kcs/� ∼ 2.5–3. All instability regions seem to
prefer intermediate kcs/� values, ensuring the instability is again
very relevant to the stability of zonal flows. The effect the value
of the cooling time-scale has on the stability of the system appears
to wane with decreasing Prandtl number, with the Pr = 1 case
presenting a reduced difference between the τ c = 3 and 12 �−1

cases.
Fig. 7 represents a similar analysis to Fig. 6, but this time with

the adiabatic index set to1 γ = 2. The increased value of γ causes
a boost in both peaks compared to the γ = 5/3 case, particu-
larly the one located at kcs/� ∼ 2.5–3. Once again, this latter
peak is suppressed as the Prandtl number is decreased with the
non-monotonic behaviour mostly suppressed for Pr = 1. Also, as
seen in Fig. 6, the use of an effective cooling has the effect of

1 Although the value γ = 2 bears questionable physical relevance, this has
regularly been adopted in works of SG accretion discs since the seminal
analysis by Gammie (2001). It is therefore useful in comparing our results
to the relevant literature.
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Figure 7. Similar analysis to Fig. 6 but with γ = 2 for a range of cooling times [τ c = 3 (blue, dashed boundary), 5 (orange, full), 7 (green, dot–dashed) and
8.5 �−1 (red, dotted)]. The value of the shear viscosity is again αs = 0.05 throughout with the Prandtl number being (a) Pr = 3 and (b) Pr = 1. The larger value
of γ causes the instability regions to be larger than in the γ = 5/3 case, particularly enhancing the peak at kcs/� ∼ 2.5–3, which for Pr = 3 and τ c = 8.5 �−1

extends as far as Q ≈ 2.7. This peak is, however, again quenched by decreasing the Prandtl number or by shortening the cooling time-scale. The hatched area
again shows the region of the plane where ω2

0 < 0.

boosting the first peak (the one at kcs/� ∼ 1), while quenching the
second one.

The nature of the instability region is explored in Fig. 8 with
γ = 2, τ c = 8.5 �−1 and Pr = 3 and 1 in Figs 8(a) and (b),
respectively. The total unstable area is divided into the regions
where each of the stability conditions given in equations (52a)–
(52b) is violated. The first peak, located at kcs/� ∼ 1, is due to the
−(c1 + c4) > 0 stability condition being violated and it therefore
represents, as suggested by equation (51), an oscillatory instability.
As c4 < 0 (assuming ω2

0 > 0), regardless of the values of Q or
kcs/�, the unstable contribution must come from c1, meaning that
region is caused by an instability in the entropy; this is therefore
a thermal instability. On the other hand, the second peak, found
at kcs/� ∼ 2.5–3, is triggered by the second condition not be-
ing fulfilled (i.e. we therefore have c1c4 − c2c3 < 0), implying
the instability here has a non-oscillatory behaviour; this peak is
therefore either due to the action of entropy or PV (orange, dashed
region; c1c4 < 0) or due to their coupling (green, dot–dashed re-
gion, −c2c3 < 0), as seen in equations (42)–(43). The comparison
between Figs 8(a) and (b) shows that decreasing the Prandtl num-
ber results in the quenching of the coupling’s destabilizing effect,
with said coupling mostly driving the instability at kcs/� ∼ 2.5–3
for Pr = 3 but it being largely suppressed in the Pr = 1 case. A
small boost of the entropy-driven instability is also observed upon
decreasing Pr.

Fig. 9 shows the growth rates of the instability region, which
have been maximized over k, as a function of αs and Q; these are
obtained for γ = 2, τ c = 8.5 �−1 and a fixed Prandtl number of
Pr = 3 (Fig. 9a) and = 1 (Fig. 9b). All values of αs used are allowed

by thermal balance for the given cooling time-scale, with small
αs values indicating the disc is predominantly heated by external
irradiation, while the maximum explored value of αs = 0.05 means
the disc is almost completely heated by viscous effects. The plot
shows that while the value of the Prandtl number is of importance for
the stability of the system, the value of αs – and therefore the source
of internal energy – also affects the maximum value of Q at which
the instability is observed. Indeed for Pr = 3 the system is unstable
up to Q ∼ 2.7 for αs = 0.05 (viscously heated disc), but only up to
Q ∼ 1.4 when αs � 0.02 (external irradiation contributing at least
as much as viscous effects). The Pr = 1 case, on the other hand,
presents little variation in Q over the diffusivity range, although a
similar qualitative behaviour is observed.

The dependence of the k-maximized growth rates on Q and the
cooling time τ c for αs = 0.05 and Pr = 3 is instead explored in
Fig. 10. This shows that while for most of the Q range shortening
the cooling time has a stabilizing effect on the system, due to the
peak at kcs/� ∼ 2.5–3 being quenched as seen in Figs 6 and 7,
the situation is reversed for Q � 1.25. This is caused by the peak
observed at kcs/� ∼ 1, which possesses a thermal nature as seen in
Fig. 8, being instead boosted by efficient cooling.

4 C O N C L U S I O N S

We carried out an analytical calculation on the evolution of a vis-
cous and compressible SG Keplerian disc having a constant cooling
time-scale and horizontal thermal diffusion with an axisymmetric
structure present in the analysed quantities. The analysis took into
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Figure 8. Analysis showing which of the two stability criteria is violated in the instability regions obtained in Fig. 7 for γ = 2, τ c = 8.5 �−1 and (a) Pr = 3
and (b) Pr = 1. Since c4 < 0 as long as ω2

0 > 0 the first peak (blue, full line) is caused by an instability in the entropy (c1), meaning it has a thermal nature. The
second peak is due to the second instability criterion being fulfilled, with it being split among its two components. In (a), this is predominantly driven by the
coupling term between entropy and PV (i.e. −c2c3 < 0, green dot–dashed); in (b), the decreased Prandtl number Pr quenches the coupling component almost
completely with the c1c4 < 0 (yellow, dashed) mostly causing the instability, meaning this is driven by either PV or entropy.

Figure 9. Instability growth rates maximized over k as a function of the shear diffusivity αs and Toomre parameter Q for q = 3/2, γ = 2, τ c = 8.5 �−1 and
a fixed Prandtl number of (a) Pr = 3 and (b) Pr = 1. Although the Prandtl number larger than unity remains a critical factor in boosting the instability, it is
clear that the value of αs is also of importance. For the smaller values of αs plotted here, the disc is heated predominantly by external irradiation, while for the
larger values of αs it is mostly heated by viscous dissipation. For Pr = 3 no instability is seen above Q ∼ 1.4 for αs � 0.02, although for larger values of αs the
instability spreads up to Q ∼ 2.7; this points to the instability being boosted by a disc being viscously heated. The largest unstable Q value is instead roughly
constant in the Pr = 1 case.
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Figure 10. Instability growth rates, maximized over k, as a function of Q
and τ c for q = 3/2, γ = 2, a Prandtl number of Pr = 3 and αs = 0.05. For
most of the Q range, making the cooling time-scale shorter has a stabilizing
effect on the system, as the peak at kcs/� ∼ 2.5–3 in Figs 6 and 7 is
quenched; for Q � 1.25, the trend however reverses for very short cooling
times, which is due to the peak at kcs/� ∼ 1, having a thermal nature, being
boosted.

account all solutions of the problem: both the DW modes and the
PV and entropy slow modes.

While the solutions to the system are well known in the invis-
cid case with no cooling or thermal diffusion, the introduction of
three types of diffusivity (bulk and shear viscosities and thermal
diffusion) and cooling created a non-trivial problem in pinpointing
whether they would have a stabilizing or destabilizing effect on
the system. A simplification can be made for the DW modes, as
their growth rates are found to be a linear function of each type
of diffusivity used (regular perturbation method); this allowed us to
individually derive the contribution from each diffusivity type to the
final growth rate. These contributions can then be summed together
to establish the actual growth rate of the modes. While the bulk and
thermal diffusivities were found to always have a stabilizing effect,
the situation was somewhat more complex for the shear viscosity.
Ignoring the contribution made by the bulk viscosity, the system
was found to be overstable for intermediate and long wavelengths
for Toomre parameter values of Q � 2, although a weak-SG/non-
SG overstability was also detected in the long-wavelength regime
for inefficient cooling as long as the adiabatic index γ � 1.305. In
the case of γ = 1.3, the system is overstable for non-SG conditions
for wavelengths longer than roughly 18H. These results appear con-
sistent with those by Latter & Ogilvie (2006) in the simplified 2D
version of their calculation, although their work did not present any
γ dependence due to the lack of thermal heating modulations in
the azimuthal velocity equation. The k-maximized growth rates for
overstability regions were plotted as a function of adiabatic index
and Q; while a sizeable range of γ values presented overstability
for Q ∼ 1, this gradually reduced as Q was increased. Only values
obeying γ � 1.25 were found to be overstable in weak SG condi-
tions for Q ∼ 5, which is in agreement with the predicted threshold
of γ � 1.305. Overstability criteria for shear and thermal diffusivi-
ties only and for all three diffusivity types were also derived, which
highlight the stabilizing effect of thermal diffusivity in the weak-SG
regime.

The situation was more complex for the entropy and PV slow
modes as their degenerate solutions in the inviscid case with no
cooling were found not to follow the regular perturbation method.
In order to obtain their growth rates, equations for the evolution
of the axisymmetric structure in these two quantities – which only
depended on the structure’s amplitude in the entropy and PV them-
selves – were derived. The Routh–Hurwitz stability criteria, repre-
senting the conditions for which a linear time-invariant system with
a polynomial characteristic equation is stable, were applied to the
generic solution to these equations. The long- and short-wavelength
limits, which are stable according to the classical stability analysis,
were likewise found to be stable. Nevertheless, the flow was found
to be unstable in the intermediate wavelength regime, in a clear
extension to the classical approach. This instability was found to be
aided by considering higher values of the adiabatic index and of the
Prandtl number and by decreasing the values of the Toomre param-
eter, although it was also of importance whether the disc was heated
by external irradiation or viscous effects. Efficient cooling, on the
other hand, was found to have an overall stabilizing effect on the
instability as long as Q � 1.25. It is believed that this kind of insta-
bility – due to its tendency to operate at intermediate wavelengths
– might result, in the appropriate conditions, in the formation of
zonal flows; these might themselves be unstable, potentially giving
rise to vortices in the flow. Further work is, however, required to
obtain a more detailed link between the instability and the potential
development of zonal flows.

AC K N OW L E D G E M E N T S

We would like to thank the reviewer for providing a constructive
set of comments. The research was conducted thanks to the funding
received by the Science and Technology Facilities Council (STFC).

R E F E R E N C E S

Bai X.-N., Stone J., 2014, ApJ, 796, 31
Blumenthal G., Yang L., Lin D., 1984, ApJ, 287, 774
Borderies N., Goldreich P., Tremaine S., 1985, Icarus, 63, 406
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