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Abstract. Big Datasets are endemic, but are often notoriously difficult to
analyse because of their size, heterogeneity and quality. The purpose of this
paper is to open a discourse on the potential for modern decision theoretic
optimal experimental design methods, which by their very nature have tra-
ditionally been applied prospectively, to improve the analysis of Big Data
through retrospective designed sampling in order to answer particular ques-
tions of interest. By appealing to a range of examples, it is suggested that
this perspective on Big Data modelling and analysis has the potential for
wide generality and advantageous inferential and computational properties.
We highlight current hurdles and open research questions surrounding effi-
cient computational optimisation in using retrospective designs, and in part
this paper is a call to the optimisation and experimental design communities
to work together in the field of Big Data analysis.
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1. INTRODUCTION

In this “Big Data” age, massive volumes of data are
collected from a variety of sources at an accelerating
pace. Traditional measurements and observations are
now complemented by a wide range of digital data ob-
tained from images, audio recordings and other sen-
sors, and electronic data that are often available as
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real-time data streams. These are further informed by
domain-specific data sources such as multi-source time
series in finance, spatio-temporal monitors in the neu-
rosciences and geosciences, internet and social media
in marketing and human systems and “omic” informa-
tion in biological studies.

Many of these data sets have the potential to provide
solutions to important problems in health, science, so-
ciology, engineering, business, information technology
and government. However, the size, complexity and
quality of these data sets often makes them difficult
to process and analyse using standard statistical meth-
ods or equipment. It is computationally prohibitive to
store and manipulate these large data sets on a single
desktop computer and one may instead require par-
allel or distributed computing techniques that involve
the use of hundreds or thousands of processors. Simi-
larly, the analysis of these data often exceeds the capac-
ity of standard computational and statistical software
platforms, demanding new technological or method-
ological solutions. This motivates the development of
tailored statistical methods that not only address the
inferential question of interest, but also account for the
inherent characteristics of the data, address potential
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biases and data gaps and appropriately adjust for the
methods used to deal with the storage and analysis of
the data.

A number of break-through approaches have emer-
ged to address these challenges in managing, mod-
elling and analysing Big Data. With respect to data
management, the most popular current approaches em-
ploy a form of “divide-and-conquer” or “divide-and-
recombine” (e.g., Xi et al., 2010, Guhaa et al., 2012)
in which subsets of the data are analysed in parallel
by different processors and the results are then com-
bined. Similar approaches have also been promoted,
such as “consensus Monte Carlo” (Scott, Blocker and
Bonassi, 2013) and “bag of little bootstraps” (Kleiner
et al., 2014), while others have studied the properties of
Markov chain Monte Carlo (MCMC) subsampling al-
gorithms (Bardenet, Doucet and Holmes, 2014, 2015).

With respect to modelling, the focus has turned from
traditional statistical models to more scalable tech-
niques that can more successfully accommodate the
large sample sizes and high dimensionality. Some pop-
ular classes of scalable methods are based on dimen-
sion reduction such as principal components analy-
sis (PCA) and its variants (Kettaneha, Berglund and
Wold, 2005, Elgamal and Hefeeda, 2015), clustering
(Bouveyron and Brunet-Saumard, 2014), variable se-
lection via independence screening (Fan and Lv, 2008,
Fan, Feng and Rui Song, 2011) and least angle re-
gression (Efron et al., 2004). Other methods have been
developed for specific types of data, such as sequen-
tial updating for streaming data (Schifano et al., 2016)
or sketching (Liberty, 2013). Many popular statistical
software packages such as R are also starting to include
libraries of models for Big Data (Wang et al., 2015).
The development of these methods represents an active
point of intersection in both the statistical and machine
learning communities (Leskovec, Rajaraman and Ull-
man, 2014) under the umbrella of Data Science.

Finally, the library of computational algorithms for
the analysis of Big Data has also been multi-focused.
Because of the size of the data, traditional estimation
methods have been overshadowed by optimisation al-
gorithms such as gradient descent and stochastic ap-
proximations (Liang et al., 2013, Toulis, Airoldi and
Renni, 2014) and a wide variety of extensions and al-
ternatives (Fan, Han and Liu, 2014, Cichosz, 2015,
Suykens, Signoretto and Argyriou, 2015). Many algo-
rithms also exploit sparsity in high-dimensional data
to improve speed, efficiency and scalability of algo-
rithms; see, for example Hastie, Tibshirani and Fried-
man (2009).

Summaries of these technological, methodological
and computational approaches can be found in a num-
ber of excellent reviews (e.g., Fan, Han and Liu, 2014,
Wang et al., 2015). Reviews of discipline-specific
methods for analysing Big Data are also emerging
(e.g., Yoo, Ramirez and Juan Liuzzi, 2014, Gandomi
and Haider, 2015, Oswald and Putka, 2015). Despite
the highlighted advantages, almost all of these au-
thors concur that substantial challenges still remain.
For example, Fan, Han and Liu (2014) identify three
ongoing challenges: dealing adequately with accu-
mulation of errors (noise) and spurious patterns in
high-dimensional data; continuing to improve compu-
tational and algorithmic efficiency and stability; and
accommodating heterogeneity, experimental variations
and statistical biases associated with combining data
from different sources using different technologies. In-
deed, given the acceleration of size and diversity of
data, it could be argued that these will remain as stum-
bling blocks for the foreseeable future.

In this paper, we explore an alternative approach that
has the potential to circumvent or overcome many of
these issues. Our approach is targeted toward appli-
cations of regression models with large N number of
observations and small to moderate p predictors, so-
called “tall data” situations (see also Bardenet, Doucet
and Holmes, 2015 and Xi et al., 2010). We suggest that,
depending on the aim of the analysis, one could adopt
an optimal experimental design perspective whereby
instead of (or as well as) analysing all of the data, a
retrospective sample set is drawn in accordance with
a sampling plan or experimental design, based on an
identified statistical question and corresponding utility
function. The analyses and inferences are then based
on this designed sample. This allows the analyst to
consider an ideal experiment or sample to answer the
question of interest and then “lay” that experiment over
the data. Thus, the Big Data management challenge be-
comes one of being able to extract the required design
points; the modelling problem reduces to a designed
analysis with reduced noise and less potential for spu-
rious correlations and patterns relative to a randomly
selected sub-sample of the same size.

There are several Big Data inferential goals for
which this approach might be applicable. Goals for
which design principles and corresponding utility func-
tions are well established include estimation and test-
ing of parameters and distributions, prediction, iden-
tification of relationships between variables and vari-
able selection. Other aims include identification of sub-
groups and their characteristics, dimension reduction
and model testing.
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The suggested approach can also be considered as
a targeted way of undertaking sampling in divide-
and-conquer algorithms or for “sequential learning” in
which a given design is applied to incoming data or
new data sets until the question of interest is answered
with sufficient precision or a pre-determined criterion
is reached. It can also be used for evaluating the qual-
ity of the data, including potential biases and data gaps,
since these will become apparent if the required opti-
mal or near-optimal design points cannot be extracted
from the data.

Finally, it is worth emphasising that this approach is
a first exploration into the potential for retrospective
experimental design for improved Big Data analysis.
Many open research questions and challenges exist, not
least of which is the need for new computational opti-
misation methods coupled to design criteria that can
deliver a targeted sample set in a time compatible with
that of a randomised sampling strategy.

2. BRIEF OVERVIEW OF EXPERIMENTAL DESIGN

In this section, we provide a brief introduction to the
principles of optimal experimental design that are rele-
vant to our approach, referring the interested reader to
Appendix A for a more extensive overview.

The design of experiments is an example of deci-
sion analysis where the decision is to select the opti-
mal experimental settings, d, under the control of the
investigator in some design space of options, d ∈ D.
This is to maximise the expected return as quantified
through a known utility function, U(d, θ,y), that de-
pends on some, possibly unknown, state of the world
θ ∈ � and on a potential future dataset y ∈ Y that may
be observed when design d is applied. For example, in
a regression analysis with continuous response Y , mea-
surement covariates X, and where the study objective
is to learn about the parameters θ of a mean regres-
sion function, E[Y ] = f (X; θ); then the design space
might be points in X with d ∈ D ⊆ X, and the utility
function might be based on the variance of an unbiased
estimator θ̂ = S(Y,X) that targets the true unknown θ .

Following the Savage axioms (Savage, 1972), the co-
herent way to proceed is to select the design that max-
imises the expected utility,

d∗ = arg max
d∈D

EY,�

{
U(d, θ,y)

}
(1)

= arg max
d∈D

∫
Y

∫
�

U(d, θ,y)p(y|d, θ)p(θ) dθ dy.

In classical experimental design, the utility is often a
scalar function of the Fisher information matrix, which

already considers the expectation with respect to the
future data y, and in this case we can write the utility as
U(d, θ) and the integral over y is no longer required.
Further, if the model parameter θ is assumed known
then the problem reduces to an optimization task over
the design space. When θ is unknown the expected util-
ity can be considered with respect to the distribution
of θ , p(θ), which is a probability measure that quanti-
fies the decision maker’s current state of uncertainty on
the unknown value of θ . This is often referred to as a
pseudo-Bayesian design, as the prior information p(θ)

is discarded upon the collection of the actual data.
In a fully Bayesian experimental design, the utility

function is often some functional of the posterior dis-
tribution, p(θ |y,d). For example, a common param-
eter estimation utility is U(d,y, θ) = logp(θ |y,d) −
logp(θ), which is the Shannon information gain.
Integrating with respect to θ produces the Kullback–
Leibler divergence (KLD) between the prior and the
posterior, U(d,y) = KLD(p(θ)||p(θ |y,d)). If the
KLD can be computed or approximated directly, the in-
tegral over θ is not required. In this case, the expected
utility is formed by integrating over the prior predictive
distribution, p(y|d). Integrals are typically approxi-
mated by Monte Carlo methods (see, e.g., Drovandi
and Tran, 2016).

Of relevance to what follows, in some experimental
design situations one may not be able to sample at spe-
cific design points or regions, so that D is restricted,
in which case “design windows” or “sampling win-
dows” may be required. These consist of a range of
near optimal designs and represent regions of planned
sub-optimality. Examples of the use of sampling win-
dows include the design of population pharmacoki-
netic studies (e.g., Ogungbenro and Aarons, 2007,
Duffull et al., 2012), which consisted of specific sam-
pling time intervals.

3. EXPERIMENTAL DESIGN IN THE CONTEXT OF
BIG DATA

As motivation, we consider a general regression set
up where the response data Y ∈ YN consists of N ob-
servations and the ith response Yi ∈ Y ⊆ R

m is the re-
alisation of an m dimensional random variable. Covari-
ate or predictor information is provided in the matrix
X ∈ XN where the ith row is Xi ∈ X ⊆ R

p where p

is the number of predictors. We assume that N is very
large and that p is small relative to N . Our objective
is to avoid the analysis of the Big Data of size N by
selecting a subset of the data of size nd using the prin-
ciples of optimal experimental design where the goal
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of the analysis is pre-defined. Below we outline a se-
quential design approach that can achieve this in a sub-
optimal but computationally feasible manner and then
point to some possible extensions.

3.1 The Algorithm

At a high level, the experimental design principles
described in Section 2 can be applied directly to a Big
Dataset in order to obtain a sub-sample. Here, we con-
sider a generic procedure inspired by sequential experi-
mental design in order to obtain a close-to-optimal sub-
sample of the data with respect to a pre-defined goal
of the analysis. This is shown in Algorithm 1. There
are two main motivations for our sequential approach:
(1) iteratively gain information so that in subsequent
iterations more informative data can be extracted, and
(2) an optimal design problem only needs to be solved
for a single observation at each iteration. In the algo-
rithm, d ∈ D ⊆ X represents some or all values of the
covariates for a hypothetical single observation. We
denote as x ∈ X values for the covariates for a single
observation that is actually present in the dataset. Let
xs ∈ D be the covariate values for a single observation
in the dataset that correspond to the same covariates
in d. We denote the observed response corresponding
to x as y, re-defining the notation y used in Section 2.

Algorithm 1 Proposed algorithm to subset Big Data
using experimental design methodology

1: Use a training sample of size nt to obtain θ̂ or to
form a prior distribution p(θ). Set nc = nt .

2: while nc ≤ nd (where nc is the current sample size,
and nd is the desired sample size) or when the goal
of the analysis is not met do

3: Solve the optimisation problem d∗ =
arg maxd∈D E{U(d, θ ,yd)}. Note that
U(d, θ,yd) may not depend on θ and/or
yd depending on the utility function selected.

4: Find x in the remaining dataset that has not al-
ready been sampled such that ‖xs − d∗‖ is min-
imised. Take the corresponding observation y.
This step may be performed multiple times to
sub-sample a batch of data of size m, {xi ,yi}mi=1.
Increase the size of the sub-sample, nc = nc +
m.

5: Add {xi ,yi}mi=1 into the data subset and re-

estimate θ̂ or update the prior p(θ) using all
available data in the subset. Remove the data
{xi ,yi}mi=1 from the original dataset.

6: end while

We now denote the potential future observation col-
lected at design d as yd.

The objective is to first solve a design optimisation
problem with the utility function incorporating the goal
of the analysis (e.g., parameter estimation), which pro-
duces an optimal d∗. It is important to note that this
design optimisation problem is informed by the data
currently in the sub-sample in the form of a point esti-
mate θ̂ or a “prior” distribution p(θ), which is a pos-
terior conditional on the data sampled thus far. Given
that d∗ is unlikely to be exactly present in the data, as
a pragmatic approach we propose to find the x in the
remaining dataset that has not been sampled that min-
imises the distance ‖xs − d∗‖ between the relevant co-
variate values of each observation and the optimal de-
sign d∗. Finally, take the corresponding y and update
the information we have about the parameter θ .

It is interesting to note that when selecting a sub-
sample of size nd from the Big Data of size N , the
optimal search would involve a comparison across all
of the

(N
nd

)
potential designs, which is computation-

ally prohibitive. Hence, we propose to solve an ap-
proximate, but computable design problem, by first
searching over all designs d in D, and then subse-
quently searching in the Big Dataset for the best match-
ing collection of samples x minimising the distance to
the approximating design solution d∗. If at each step
of our sequential design process the utility function
U(d, θ,y) and model p(θ ,y,x) are “smooth” in the
design space d, meaning that for a small change in the
design we can expect a small change in the expected
utility, then for Big Data we can expect to lose little in-
formation from using this computable approximation.

3.2 Algorithm Discussion

For classical analysis problems, the training sample
is an important component of the algorithm, since it
affects the reliability of the parameter estimates. The
training sample size nt is likely to depend on the qual-
ity of the data available and the complexity of the data
analysis that is to be performed. In the context of a
Bayesian analysis, the training sample is used to form
a prior distribution. The more data used in the training
sample, the more precisely parameter estimates (clas-
sical) or parameters (Bayesian) can be determined,
which helps to facilitate more optimal choices of data
to take from the original dataset during subsequent it-
erations. However, the training sample is not optimally
extracted from the data and, therefore, one may want to
limit its size. We suggest that the training data can be
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selected on the basis of a design with generally “good”
properties, for example, balance, orthogonality, etc.

Line 3 of Algorithm 1 is the most challenging. If
the number of design variables (covariates) is small
enough, then a simple discrete grid search might suf-
fice to obtain a near-optimal design. For more complex
design spaces, it may be necessary to perform some
numerical optimisation procedure. Some approaches
that have been used in the design literature are the
exchange algorithm (e.g., Fedorov, 1972), numerical
quadrature (e.g., Long et al., 2013), MCMC simula-
tion (e.g., Müller, 1999), or sequential Monte Carlo
methods (e.g., Kück, de Freitas and Doucet, 2006,
Amzal et al., 2006). This step of the algorithm may be
computationally intensive and is currently the largest
stumbling block for the general applicability of our ap-
proach. However, we demonstrate in several case stud-
ies in Section 5 that our approach is applicable in a
number of nontrivial settings. Nonetheless, there is in-
terest in developing new approaches to accelerate this
step, which is an on-going research direction in the ex-
perimental design literature.

To reduce the number of design optimisations that
need to be performed, we may extract from the Big
Data a cluster of m data points where the xs is clos-
est to d∗ (Line 4 in Algorithm 1). The optimal value
of m is a trade-off between computational cost and
information loss, which we do not explore here. In
other applications using standard design criteria, such
as D-optimality, means that the optimal design may be
simple to determine (e.g., Pukelsheim, 1993, Tan and
Berger, 1999, Ryan, Drovandi and Pettitt, 2015).

In the examples we consider later, we find that the
Euclidean distance for the norm ‖xs − d∗‖ on stan-
dardised covariates works reasonably well. It should
be noted that the user is free to choose an appropriate
norm for their data.

To reduce the computational burden to implement
Line 4 in Algorithm 1, the data set may need to be split
up amongst multiple CPUs using a framework such as
Hadoop. The minimisation problem (Line 4) can be
performed on each of the CPUs, and then a minimi-
sation can be performed over the results of all of the
CPUs. This is similar to the “split-and-conquer” ap-
proach (e.g., Xi et al., 2010). Rather than finding an op-
timal design that consists of fixed points, as in Line 3 of
Algorithm 1, we could instead find sampling windows,
since the optimal design points d∗ may not be present
in the data set, and so we may require regions of near
optimal designs. Moreover, in Line 2, one could instead
run the algorithm until the utility function reached a

certain pre-specified value (e.g., a certain level of pre-
cision).

A similar design algorithm is considered in follow-
up studies, where only a small proportion of sub-
jects are measured on the second occasion to re-
duce costs (Karvanen, Kulathinal and Gasbarra, 2009,
Reinikainen, Karvanen and Tolonen, 2016). In these
studies, the objective is to determine the best n out of
N individuals to consider for the next follow-up. This
difficult computational problem is solved by Karvanen,
Kulathinal and Gasbarra (2009) and Reinikainen, Kar-
vanen and Tolonen (2016) in a greedy manner by se-
quentially adding participants for the next follow-up
that lead to the largest improvement in expected in-
formation gain until n subjects are selected. Our ap-
proach is different to this. First, it is not feasible in
our context to scan through the entire Big Data to
find the next observation that leads to the largest im-
provement in expected or observed utility. Instead, we
solve an optimal design problem first, and then we
simply need to find the design in the Big Data that
is close to this optimal design. Second, our design ap-
proach uses the information from each selected data
point to make better decisions about which design (and
observation) to include next. In contrast, the applica-
tions of Karvanen, Kulathinal and Gasbarra (2009) and
Reinikainen, Karvanen and Tolonen (2016) are static
design problems (parameter values are not updated)
that are solved in an approximate sequential manner.
Third, our approach allows for the detection of poten-
tial holes in the data. Finally, our framework is more
general as it is inclusive of both classical and Bayesian
frameworks, whereas Karvanen, Kulathinal and Gas-
barra (2009) and Reinikainen, Karvanen and Tolonen
(2016) only consider classical designs.

3.3 Computational Overheads

The key challenge in the practical application of our
approach is being able to implement algorithms, such
as Algorithm 1, in a computational time such that the
extra effort of obtaining design points does not out-
weigh the information benefits. That is, if nd is the
maximum sample size available through the designed
approach given the constraints in compute infrastruc-
ture and runtime, and ns is the corresponding sample
size from using random subset selection. For our ap-
proach to be worthwhile, we require that the expected
utility of the designed approach learned from nd sam-
ples to be higher than the expected utility using ns ran-
dom samples, where typically ns > nd . Clearly, this
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will be study dependent but, given the potential ben-
efits shown below, it also motivates the need for new
computational optimisation strategies targeted to gen-
eral design criteria for Big Data analysis.

4. SIMULATION STUDY

Here, we apply our methods to data that are sim-
ulated from a logistic regression model that contains
two covariates, x1 and x2. The following logistic model
is used to describe the binary response variable Yi ∼
Binary(πi) where logit(πi) = θ0 + θ1x1,i + θ2x2,i . We
assume that the true parameter values are (θ0, θ1, θ2) =
(−1,0.3,0.1) and that the sample size for the full data
set is N = 10,000. Although N is small for Big Data,
it will serve to illustrate and motivate the essential fea-
tures of our approach. We simulate the covariate values
of x1 and x2 for each observation from a multivariate
normal distribution with a mean vector of zeros and
three different options for the covariance matrix:

1.
[3 0

0 3
]
, no dependence between covariates;

2.
[ 3 1.5

1.5 3
]
, positive correlation between covariates;

3.
[ 3 −1.5
−1.5 3

]
, negative correlation between covariates.

Here, we are interested in finding the “best” nd =
1000 observations from the full data set to most pre-
cisely estimate the model parameters (θ0, θ1, θ2). We
demonstrate the use of both classical and Bayesian se-
quential design methods to subset the data.

The design variable for Line 3 of Algorithm 1 is
given by potential values for the two covariates for a
single observation, d = (x1, x2).

4.1 Classical Approach

For Line 1 of Algorithm 1, we select nt = 20 training
samples randomly from the full data and determine the
MLE of the parameter, θ̂ . We denote the data present in
the subset currently as Ds , which consists of response

and covariate values. The utility function we use for
Line 3 is given by

U(d) = ∣∣O(Ds, θ̂) + I(d, θ̂)
∣∣,

where O(Ds, θ̂) is the observed information matrix
based on data collected so far and I(d, θ̂) is the ex-
pected information matrix if we apply the design d for
the next observation. For the optimal design procedure
in Line 3 of Algorithm 1, we use a grid search over
the design region [−5,5] × [−5,5]. The grid consists
of evenly-spaced points that are separated by an incre-
ment of 0.1.

Once the optimal design d∗ is estimated from Line 3,
we use the Euclidean distance in Line 4 to determine
the next observation to take from the remaining Big
Data. Following this, the parameter estimate θ̂ is up-
dated using maximum likelihood in Line 5. Then the
process is repeated. Conditional on the training sam-
ple, the overall subsetting procedure is deterministic so
we only perform the procedure once and obtain a sin-
gle subset of size 1000. We denote the subsetted data
generated from our design procedure as Dd

s .
For comparison purposes, we generated 10,000 sub-

sets of size 1000 randomly, with each subset denoted
by Dri

s for r = 1, . . . ,10,000. The final estimates for
(θ0, θ1, θ2) based on Dd

s are given in Table 1. Table 1
also displays |O(Dd

s , θ̂)| where for notational simplic-
ity the MLE θ̂ is always based on the dataset present as
the first argument of the observed information matrix.
The largest observed information obtained out of the
10,000 randomly sampled data subsets is displayed in
the final column of Table 1. Each row of Table 1 corre-
sponds to the different correlation structures that were
investigated for the simulated covariate data. Table 2
contains the estimates for (θ0, θ1, θ2) (and their associ-
ated variance–covariance matrix) based on the full data
under each of the covariance structures for the covari-
ate data.

TABLE 1
Estimated θ values [where θ = (θ0, θ1, θ2)] and the observed information value for the sub-sample of size nd = 1000 obtained using the

principled design approach (|O(Dd
s , θ̂)|). The last two columns contain the median (IQR) and maximum utility function values

that were obtained from 10,000 randomly drawn sub-samples of data, each of size nd = 1000

Covariance structure θ̂ based on Dd
s |O(Dd

s , θ̂)| median (|O(Dri
s , θ̂ )|10,000

i=1 ) (IQR) max(|O(Dri
s , θ̂ )|10,000

i=1 )

No correlation (−1.03,0.34,0.11) 2.8 × 108 5.3(4.9,5.8) × 107 9.0 × 107

Positive correlation (−1.01,0.32,0.08) 1.4 × 108 3.9(3.6,4.2) × 107 6.0 × 107

Negative correlation (−0.94,0.41,0.17) 8.0 × 107 4.1(3.8,4.5) × 107 6.6 × 107



EXPERIMENTAL DESIGN FOR BIG DATA ANALYSIS 391

TABLE 2
Estimated θ values [where θ = (θ0, θ1, θ2)] and their covariance using the full data sets that were

simulated under different covariance structures of X

Covariance structure of X θ̂ Estimated covariance of θ̂

No correlation (−0.98,0.28,0.08)

⎡
⎢⎣

5.4 × 10−4 −6.5 × 10−5 −2.1 × 10−5

−6.5 × 10−5 1.9 × 10−4 8.5 × 10−6

−2.1 × 10−5 8.5 × 10−6 1.8 × 10−4

⎤
⎥⎦

Positive correlation (−1.02,0.30,0.08)

⎡
⎢⎣

5.6 × 10−4 −7.3 × 10−5 −1.9 × 10−5

−7.3 × 10−5 2.6 × 10−4 −1.2 × 10−4

−1.9 × 10−5 −1.2 × 10−4 2.4 × 10−4

⎤
⎥⎦

Negative correlation (−1.00,0.29,0.08)

⎡
⎢⎣

5.4 × 10−4 −6.4 × 10−5 −1.9 × 10−5

−6.4 × 10−5 2.4 × 10−4 1.1 × 10−4

−1.9 × 10−5 1.1 × 10−4 2.3 × 10−4

⎤
⎥⎦

From Table 1, it can be seen that the estimates of
(θ0, θ1, θ2) that were based on the subsets of data that
were obtained via the principled design approach are
quite close to the true parameter values, as well as the
values that were obtained using the full data set (dis-
played in Table 2). Only a small amount of precision
for the parameter estimates was lost by using the sub-
set of data rather than the full dataset (Tables 1 and 2).
This indicates that our method is fairly accurate in this
example for subsetting the data so that our model pa-
rameters can be estimated precisely. One run of the op-
timal design process had a similar computational time
to running 10,000 random subsets (approximately 40
seconds). However, the determinants of the observed
information from the subsets of data that were obtained
via our design approach were higher than the determi-
nant of the observed information obtained from 10,000
randomly selected data subsets of the same sample size
(Table 1). This highlights the potential of our designed
approach.

However, the extra time used to determine the de-
signed subset could be used to analyse a larger ran-
dom sample. We investigated different sample sizes
for the subsets that were selected randomly from the
full data set and ran 10,000 replicates for each sam-
ple size. The results are displayed in Figure 1. For the
simulation studies where the data were generated us-
ing a covariate structure with no correlation, or with
positive correlation, the randomly selected data subset
size had to be roughly doubled to obtain a higher util-
ity (overall) than for the designed approach. For the
simulation study where the data were generated using
negative correlation between the covariates, the subset

size of 1500 showed higher utility than the designed
approach. We provide more discussion on the negative
correlation case later.

Figure 2 shows the x values that minimise the Eu-
clidean distance to the optimal designs at each itera-
tion/time point based on the observed information thus
far (and were thus extracted into the subset) against the
optimal designs at that iteration. Ideally, these points
should be equal and would lie along the 45-degree line
in Figure 2. From Figure 2, it appears that there are
two support points for both x1 and x2, one at either end
of the design region. Since the covariates were drawn
from a normal distribution, there are not many design
values in the data that occur on the boundaries of the
design region, and so less than optimal values will have
to be chosen for the data subset and the data will be
less informative than if the full dataset contained more
values on the boundaries of the design region. When
the covariates are correlated with one another, there are
even less design values on the “corners” or boundaries
of the design region and so the full dataset will be gen-
erally less informative. We discuss this further in the
Bayesian section below.

4.2 Bayesian Approach

For the Bayesian approach, we use an SMC algo-
rithm, similar to that used by Drovandi, McGree and
Pettitt (2013), to sequentially generate samples from
the posterior as more data are added into the sub-
sample. We place independent normal priors on the pa-
rameters each with a mean of 0 and a standard devia-
tion of 5; we do not use any training data in Line 1 of
Algorithm 1. For the utility function required in Line
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FIG. 1. Boxplots of the log utility (determinant of the observed
information matrix) for 10,000 randomly drawn data subsets of
various sample sizes (x-axis) to compare against the utility func-
tion value of the designed approach (for a data subset size of 1000;
displayed as a cross in each boxplot), for each of the correlation
structures of the covariates: (a) no correlation between x1 and x2,
(b) positive correlation between x1 and x2, (c) negative correlation
between x1 and x2.

3, we use

U(d, y) = − log det
(
cov(θ |d,Ds, y)

)
,

where Ds represents the data currently in the subset
and y ∈ {0,1} is a possible outcome for the next obser-

vation. The expected utility is given by

U(d) = ∑
y∈{0,1}

U(d, y)p(y|d,Ds).

The quantities inside the summation are estimated us-
ing the posterior samples maintained through SMC
and additional importance sampling to accommodate
the possible outcomes for the next observation (see
Drovandi, McGree and Pettitt, 2013 for more details).
The optimisation procedure used in Line 3 is the same
as that used for the classical approach above. For Line
4, we again use the Euclidean distance to obtain the
next observation to add to the subset in Line 5. This
process is repeated until 1000 observations are ob-
tained. The final posterior mean estimates from one run
of our sequential design approach for (θ0, θ1, θ2) are
given in Table 3, along with the estimates based on the
full data set.

For one run of our algorithm, the optimal designs and
the corresponding covariate values actually extracted
from the data are shown in Figure 3 for the three dif-
ferent correlation structures. Most of the optimal de-
sign values appear in the “corners” of the design search
space. When there is no correlation between the predic-
tors, it is easier to find covariate values that are close to
the optimal design values (top row of Figure 3). When
there is correlation (middle and bottom rows of Fig-
ure 3), the corners of the design space are not as well
covered by the data. We found that this was a particu-
lar issue when there was negative correlation. It can be
seen from the bottom row of Figure 3 that the optimal
design requested by the algorithm was often in the top
right corner but there was no data there to satisfy this
request. Thus, there is a chance that the actual data se-
lected may not have a relatively high utility value. In
this respect, below we demonstrate that the optimal de-
sign approach can perform worse than a simple random
sample. We plan to develop methods to address this is-
sue in future research. In the least, plots as in Figure 3
can be used as an exploratory tool to determine how
close the data sub-sample is to the ideal design for the
chosen research objectives.

The subset obtained from our method is affected by
the Monte Carlo variability of the SMC approximation
to the posteriors and also the Monte Carlo variabil-
ity from the importance sampling procedure to deter-
mine the optimal designs. Thus, we repeated our pro-
cess 1000 times independently. To determine how well
our data subsets perform, we compared it to randomly
selected datasets of size 1000 from the original dataset.
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FIG. 2. Chosen designs for x1 and x2 vs optimal designs for x1 and x2 where the correlation structures for the covariates are: (a) and (b)
no correlation between x1 and x2; (c) and (d) positive correlation between x1 and x2; (e) and (f) negative correlation between x1 and x2.
The 45-degree line indicates where the selected data points for the subset are equal to the optimal design.

We obtained 1000 such datasets. For each of these ran-
domly chosen datasets, we estimated the posterior dis-
tribution via SMC, which was then used to estimate
the utility function. The distribution of the utility val-
ues obtained from our designed subsets is compared
with that of the random datasets in Figure 4. It can be
seen that our data subset outperforms the randomly se-

lected designs as it generally produces a higher utility
value than the randomly chosen datasets, except for the
negative correlation structure (see earlier discussion).
One run of the optimal design process took approxi-
mately 22 seconds, whereas investigating 1000 random
subsets took approximately 25 minutes. Therefore, we
were generally able to obtain a data subset of a par-
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TABLE 3
Posterior estimates of θ [where θ = (θ0, θ1, θ2)] and the observed
utility using the data subset obtained via the designed approach
and using the full data sets that were simulated under different

covariance structures of X

Full or Covariance
subset structure Observed
data of X θ̂ utility

Subset No correlation (−1.11,0.33,0.11) 18.9
Full No correlation (−1.02,0.31,0.10) 24.7

Subset Positive correlation (−0.91,0.27,0.13) 19.3
Full Positive correlation (−1.00,0.31,0.10) 24.4

Subset Negative correlation (−1.04,0.31,0.15) 17.3
Full Negative correlation (−1.03,0.32,0.12) 24.6

ticular size that produced higher observed utility in a
shorter amount of time.

To determine the sample size savings for the de-
signed approach (compared to random subsets of data),
we varied the size of the subsets that were selected ran-
domly from the full data set and repeated this process
100 times. The results are displayed in Figure 5. It was
found that the random sample data subset would have
to be increased to a size of 1500–2000 to obtain an
overall higher utility than for the designed approach,
except for the negative correlation structure.

Overall, in this simulation study, analysing a larger
random subset would be more efficient than analysing
the smaller designed subset. However, this example
still demonstrates the potential of the designed ap-
proach.

5. CASE STUDIES

The two case studies described here showcase our
principled design approach applied to real data. Al-
gorithm 1 is used together with a number of compu-
tational algorithms. For the purposes of cohesion and
comparison, the first study employs a logistic regres-
sion model to predict risk of mortgage default, whereas
the second study employs a more challenging mixed
effects model. The cases differ with respect to the study
aims; variable selection and precise regression parame-
ter estimation. Comparisons are also made with results
obtained from analysing the full (Big) data.

To further illustrate our design approach to subset-
ting Big Data, two additional case studies are provided
in Appendices B and C, respectively. The case study
in Appendix B is similar in spirit to case study 1 and
involves the estimation of regression coefficients of

covariates that might influence on-time flight arrivals.
The case study in Appendix C highlights that exper-
imental design principles may be useful in some ap-
plications for subsetting Big Data without needing to
resort to optimal design methods such as those pre-
sented in Algorithm 1. This case study involves apply-
ing static experimental design principles for perform-
ing an ANOVA on a dataset of colorectal cancer pa-
tients in Queensland, Australia.

5.1 Case Study 1—Mortgage Default

In this case study, we consider the simulated mort-
gage defaults data set found here:

http://packages.revolutionanalytics.com/datasets/.

The scenario is that data have been collected every year
for 10 years on mortgage holders, and contains the fol-
lowing variables:

• default: a 0/1 binary variable indicating whether or
not the mortgage holder defaulted on the loan (re-
sponse variable);

• creditScore: a credit rating (x1);
• yearsEmploy: the number of years the mortgage

holder has been employed at their current job (x2);
• ccDebt: the amount of credit card debt (x3);
• houseAge: the age (in years) of the house (x4); and
• year: the year the data were collected.

The proposed model for the binary outcome is the
logistic regression model, with the above covariates as
main effects (credit rating, years employed, credit card
debt and house age) potentially significantly influenc-
ing the probability of defaulting. To determine which
covariates are useful for prediction, we focus on the de-
fault data for the year 2000 which contains 1,000,000
records. We initially allowed all covariates to appear in
the model, and obtained prior information about the pa-
rameters by extracting a random selection of nt = 5000
data/design points from the full dataset in an initial
learning phase.

From this initial learning phase, it is useful to de-
velop prior distributions about the model(s) appropri-
ate for data analysis and the corresponding parame-
ter values based on the extracted data. The primary
motivation for this is the avoidance of the compu-
tational burden associated with continually consider-
ing a potentially large dataset within a (full) Bayesian
analysis. To facilitate this, maximum likelihood es-
timates (MLEs) of parameters (and standard errors)
were found for all potential models. Prior information

http://packages.revolutionanalytics.com/datasets/
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FIG. 3. Left hand column shows the optimal designs (with slight jittering) selected for one run of Algorithm 1 for the Bayesian logistic
regression example. The right-hand column shows the corresponding covariate values that were actually selected from the data. Results are
shown for different covariance structures of X in the original (full) data: (top row) no correlation, (middle row) positive correlation and
(bottom row) negative correlation.

about the parameters was then constructed by assum-
ing all parameters follow a normal distribution with the
mean being the MLE and the standard deviation being
the standard error of the MLE.

The next step was to “value add” to the information
gained from the initial learning phase through our se-
quential design process. To do this, we implemented
the SMC algorithm of Drovandi, McGree and Pettitt
(2013) to approximate the sequence of target distribu-

tions which will be observed as data are extracted from
the full data set (see Section 4.2). For Line 3 of Al-
gorithm 1, we used a similar estimation utility to the
simulation study in Section 4.2 to select designs which
should yield precise estimates of the model parameters,
and this utility was approximated via importance sam-
pling. The optimisation procedure we apply in Line 3
is again a simple grid search by considering potential
design points based on all combinations of the follow-
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FIG. 4. Boxplots of the observed utility values obtained for 1000 runs of a random design and the optimal sequential design for the Bayesian
logistic regression example for the different covariance structures of X in the original (full) data.

ing covariate levels (formed by inspecting the full data
set—see Table 4).

This results in the consideration of 2205 potential
design points at each iteration of the sequential design
process. For Line 4, we find the data point in the re-
maining Big Data with a design closest to the optimal
design in terms of Euclidean distance.

As we are interested in determining which variables
are useful for prediction, each time the prior informa-
tion was updated to reflect the information gained from
a new data point, a 95% credible interval was formed
for all regression coefficients in the model. If any cred-
ible interval was contained within (−tol, tol), then this
parameter/variable was dropped from the model. The

FIG. 5. Boxplots of the observed utility values obtained for 100 runs of randomly drawn data subsets of various size (x-axis) and the
optimal sequential design for the simulation study for the different covariance structures of X in the original (full) data: (a) no correlation,
(b) positive correlation, and (c) negative correlation.
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TABLE 4
Scaled values of covariates in the mortgage case study (credit

score, years employed, credit card debit and house age)
considered when searching for Bayesian optimal designs

Covariate Scaled levels

creditscore −4,−3,−2,−1,0,1,2,3,4
yearsemploy −2,−1,0,1,2,3,4
ccDebt −2,−1,0,1,2,3,4
houseAge −2,−1,0,1,2

reduced model was then re-fit using SMC based on the
appropriate prior information on the parameters (from
the initial learning phase) and all sequentially extracted
data. This process iterated until 1000 data points had
been extracted in this sequential design process. To in-
vestigate this methodology, we considered four differ-
ent values for tol (0.25, 0.5, 0.75 and 1).

Table 5 shows the covariates that remained in the
model after an additional 1000 data points had been ob-
served for tol = 0.25,0.50,0.75 and 1.00. The results
suggest that if we are only interested in large effect
sizes (>1.0), then credit card debit appears to be the
only useful covariate. In contrast, if effects larger than
0.25 are deemed important then all variables remain
in the model. Most notably, these results agree with the
results from fitting the full main effects model based on
the full data set; see Table 6. This model was fitted with
a prior distribution based on 5000 randomly drawn data
points (as in the above described initial learning phase),
and sequentially updating these priors using a single
data point at a time until all data had been included.
The covariate information found here should be useful
to lenders, as it seems to indicate that individual in-
formation is more informative than property character-
istics for determining if someone will default on their
mortgage.

TABLE 5
The covariates in the mortgage case
study which were deemed useful for

prediction based on
tol = 0.25,0.50,0.75 and 1.00

tol Remaining covariates

0.25 x1, x2, x3, x4
0.50 x2, x3
0.75 x3
1.00 x3

TABLE 6
Summary of the posterior distribution of the parameters for the

full main effects model based on all mortgage default data for the
year 2000

Parameter Mean SD 2.5th Median 97.5th

β0 −11.40 0.13 −11.67 −11.40 −11.16
β1 −0.42 0.03 −0.48 −0.42 −0.36
β2 −0.63 0.03 −0.68 −0.63 −0.56
β3 3.03 0.05 2.94 3.03 3.13
β4 0.20 0.03 0.12 0.20 0.26

At each iteration of the sequential design process,
the Bayesian optimal design and the corresponding ex-
tracted design was recorded. A comparison of the two
is shown in Figure 6, by covariate (for tol = 0.25).
Ideally, one would like to observe a one-to-one rela-
tionship between the two designs. Unfortunately, this
was not observed in this study. For example, from Fig-
ure 6(c) which corresponds to credit card debt, values
of around $11,000 and $13,000 were found as opti-
mal, but the values extracted from the Big Data set
varied between $5,000 and $13,000. This suggests that
there is potentially a lack of mortgage default data
on those with large credit card debts. Intuitively, this
might make sense as such individuals may generally
not have their loan approved.

For each of the four different values of tol, it took
approximately 40 minutes to run the learning phase
and sequential design process. To explore the compu-
tational gains/losses involved in implementing this de-
signed approach, a comparison with randomly selected
subsets of the same size was undertaken. The com-
parison was conducted such that priors from the ini-
tial learning phase were formed in the same manner
as the designed approach but, for the sequential design
process, instead of searching for an optimal design, a
design was randomly selected from the data set. The
analysis of such subsetted data in general took approx-
imately 2 minutes, which means that around 20 ran-
domly selected data sets could be analysed in the time
it took to implement a designed approach. When these
20 random designs were run, only x1 was removed
from any model (across all values of tol). Indeed, this
only occurred when tol = 0.75 or 1. In these cases, x1
was removed from the model 1/20 and 20/20 times,
respectively. Such results show that no random design
provided more information about the parameter values
as that of the designed approach. Thus, despite the de-
signed approach having relatively high computational
requirements, the benefits are seen in analysing highly
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FIG. 6. Extracted versus optimal design points for the mortgage default case study for tol = 0.25 for (a) credit score, (b) years employed,
(c) credit card debit and (d) house age.

informative data, and thus efficiently addressing analy-
sis aims.

In summary, in this mortgage case study, through
analysing a small fraction of the full data set, we were
able to determine, with confidence, which covariates
appear important for prediction, and also identify po-
tential “holes” in the full data set in regards to our anal-
ysis aim.

5.2 Case Study 2

To illustrate the method with a more complex sta-
tistical model, we consider an analysis performed on
accelerometer data (see, e.g., Trost et al., 2011). Here,
212 participants performed a series of 12 different ac-
tivities at four different time points, approximately one
year apart. The age range of the data was 5 to 18 years
old. The purpose of the analysis was to assess the per-
formance of 4 different so-called “cut-points”, which
are used to predict the type of activity performed based
on the output of the accelerometer. The response vari-
able is whether or not the cut-point correctly classi-
fies the activity. Each individual at each time point
performed all 12 activities and all 4 cut-points are
applied (observations with missing classification re-
sponses were discarded). There are roughly 35,000 ob-
servations in the dataset. Although this sample size is
not as large as in the previous case study, we show that
it is sufficient to demonstrate our proposed approach.

A logistic regression mixed effects model was fitted
to the data that included age as a continuous covariate
(linear in the logit of the probability of correct classi-
fication), and the type of activity (12 levels) and the

cut-point (4 levels) as factor variables. The model also
included all two-way interactions, which resulted in a
total of 63 fixed effects parameters. A normal random
intercept was included for each participant. For com-
pleteness, we assume that the observed classification
for the ith observation for subject t is Yti ∼ Binary(πti)

with

logit(πti)

= β0 + bt + βageaget i +
3∑

j=1

β
j
cutcutjti

+
11∑

j=1

β
j
trialtrialjti +

33∑
j=1

β
j
cut,trialcutjti × trialjti

+
3∑

j=1

β
j
age,cutagej

ti × cutjti

+
11∑

j=1

β
j
age,trialagej

ti × trialjti ,

where bt
i.i.d.∼ N (0, φ) for t = 1, . . . ,212 (with φ being

the between subject variance), i = 1, . . . , st where st
is the number of observations taken on subject t , aget i

is the age in years, cutjti is a dummy variable defining

which cut-point is applied, trialjti is a dummy variable
defining which trial is applied and the β parameters are
the fixed effects. The intercept parameter β0 relates to
an age of 0 years, cut-point 1 and trial 1.



EXPERIMENTAL DESIGN FOR BIG DATA ANALYSIS 399

Here, we assume that interest is in estimating the age
effect on correct classification (both main and interac-
tion effects, consisting of 15 fixed effects parameters).
Thus, for our utility in Line 3 of Algorithm 1 we con-
sidered the negative log of the determinant of the pos-
terior covariance matrix for these 15 parameters, and
aimed to maximise this utility. For Line 1, we took a
pilot dataset consisting of nt ≈ 500 observations where
a full replicate was taken from different individuals at
ages 6 to 18 years with an increment of two years.
Then we performed our sequential design strategy to
continually accrue data until at least 3000 observations
were obtained. Thus, we attempted to obtain a close-to-
optimal sub-sample of size nd ≈ 3000 to precisely esti-
mate the age related parameters. The optimisation pro-
cedure for Line 3 is a simple grid search over the age
covariate (between 6 and 18 with 2 year increments) to
guide the next selection of data. For Line 4, we took
all the data from the individual with the closest age (in
terms of Euclidean distance) to the optimal design se-
lected (48 observations when a full replicate is avail-
able). Note that we did not force data to be collected
from different individuals than what has already been
collected in the sub-sample. The optimal design was
near the boundaries of the age range, so that naturally
the sub-sampled data were usually taken from different
individuals. However, a different design strategy could
be adopted where data is taken from an individual who
is not already present in the sub-sample with the closest
age to the optimal design. Ryan, Drovandi and Pettitt
(2015) considered Bayesian design for mixed effects
models and found that it is not obvious whether to sam-
ple a few individuals heavily or sample many individ-
uals sparsely, highlighting the importance of optimal
Bayesian design in the context of mixed effects mod-
els. Furthermore, the amount of computation required
to analyse the extracted data may depend not only on
the size of the subset but on how many distinct individ-
uals are sampled. We have not factored this in to our
subsetting procedure, but it may be possible to do so.

We required a fast method to approximate the pos-
terior distribution, and hence the utility function. Here,
we used the integrated nested Laplace approximation
(INLA, Rue, Martino and Chopin, 2009) with the de-
fault priors in the R-INLA package (www.r-inla.org).
Note that high accuracy of the posterior distribution is
not required, it is only necessary that the method pro-
duces the appropriate ranking of potential designs. To
estimate the expected utility at some proposed age, we
took only a single sample from the current INLA poste-
rior distribution and simulated a full replicate for a new

individual at that age and estimated the new posterior
distribution based on all the data in the sub-sample so
far and the simulated data. This is performed for each
proposed age, and the age that produced the highest
utility was selected. We found that it was sufficient to
use a single simulation to obtain a close-to-optimal de-
sign. A more precise determination of the optimal de-
sign could be obtained by considering more posterior
predictions. The only stochastic part of the algorithm is
the fact that we only draw a single posterior simulation.
To investigate the variability in the observed utility of
the subsetted data determined from the optimal design,
we repeated our process 20 times.

Figure 7 shows the estimated utility for each pro-
posed age at different stages of the algorithm for 1 of
the 20 runs. It is evident that it is not difficult to esti-
mate the optimal age to select, even with a single poste-
rior simulation. We compared our sub-sample with two
other more standard designs. The first (design 1) takes
a completely random sample without replacement of
the data with the same size as our optimally designed
sub-sample. The second design (design 2) randomly
samples without replacement from the unique combi-
nations of individuals and age (with all the data taken
at that combination) until a sample size not less than
the size of the optimally designed sub-sample is taken.
Designs 1 and 2 are repeated 1000 times. The boxplots
of the estimated utilities for these two design schemes
together with that obtained from the optimal design
procedure are shown in Figure 8(a). It is evident that
the optimally designed sub-sample approach leads to
a much higher utility than those taken from designs
1 and 2. One run of the optimal design process took
roughly 1 hour while investigating 1000 random sub-
sets took roughly 3 hours.

The actual ages selected by the algorithm over the
iterations for one of the runs is shown in Figure 8(b). It
is evident that the optimal ages to sample are generally
at the age boundaries.

6. DISCUSSION

This paper has explored the concept of a designed
approach to analysing Big Data in order to answer spe-
cific aims. The proposed approach exploits established
ideas in statistical decision theory and experimental de-
sign. The decision-theoretic framework facilitates for-
mal articulation of the purpose of the analysis, desired
decisions and associated utility functions. This forms
the basis for designing an optimal or near-optimal sam-
ple of data that can be extracted from the Big Dataset

http://www.r-inla.org
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FIG. 7. Estimated utility values for each proposed design (age) at iteration 10 (a), 20 (b), 30 (c) and 40 (d) of the optimal design sub-sam-
pling algorithm for the cut-point dataset.

in order to make the required decisions. Under this
regime, there may be no need to analyse all of the
Big Data. This has potential benefits with respect to
data manipulation, modelling and computation. The

extracted sample of data can be analysed according to
the design, avoiding the need to accommodate complex
features of the Big Data such as variable data quality,
aggregated datasets with different collection methods
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FIG. 8. Results from the sub-sampling optimal design process for the cut-point dataset. (a) Comparison of observed utilities of sub-samples
obtained from designs 1 and 2 with the observed utilities of the sub-samples obtained from the optimal design process. (b) Ages selected from
the dataset during the optimal design sub-sampling process.

and so on. The model can be extended in a more delib-
erate and structured manner to accommodate remain-
ing biases such as nonrepresentativeness or measure-
ment error, and the design can be replicated to facilitate
critical evaluation of issues such as model robustness
and “concept drift”.

Consideration of the issue of model fit serves to illus-
trate the potential versatility of the designed approach
to Big Data analysis. A natural by-product of the anal-
ysis of Big Data is very little statistical uncertainty
for many models. However, this rarely reflects reality:
in practice, we know that the model can be wrong in
many ways. Through the designed approach, the aim
of assessing model robustness can be incorporated into
the design, in particular into the utility function, and
a corresponding optimal sample can be extracted that
will facilitate this investigation. For example, the ex-
perimental design can incorporate the intention to ap-
ply posterior predictive checks, or include a designed
hold-out sample set drawn from the Big Data to eval-
uate goodness-of-fit via a posterior predictive check.
Indeed, the utility function can be used as a vehicle
to express a very wide range of statistical ambitions.
There are implications for robustness in that the initial
design of the training data set is predicated on the sta-
tistical model, and all models are wrong. Our sugges-
tion here is to proceed in the spirit of Box (1980) in that

the analysis should take place as an iterative process of
criticism and estimation. The design subsetting proce-
dure takes place as if the model were true, but follow-
ing this model criticism should be used to help identify
artefacts and systematic discrepancies of model fit with
the aim to improve the robustness of inference. Such
model criticism may of course lead to the consideration
of more complex models in the design step. Unfortu-
nately, optimal design has typically been restricted to
low to moderate dimensional problems for linear mod-
els (Myers, Montgomery and Anderson-Cook, 2009),
GLMs (Woods et al., 2006) and nonlinear mixed ef-
fects models (Mentré, Mallet and Baccar, 1997). Thus,
in order for optimal design to adequately facilitate a
wide range of analyses across Big Data sets which
are invariably complicated, messy, heterogeneous, het-
eroscedastic with a large number of different types of
variables and fraught with missing data, it seems there
is a need for further developments in this area.

This designed approach may also be used not as a
substitute for the Big Data analysis but as a comple-
mentary evaluation. Thus, the question of interest can
be investigated in multiple ways and although the same
data are being used for both analyses, the insights and
inferences drawn from the two approaches can poten-
tially provide a deeper understanding of the problem;
see Appendix D for further discussion.
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We have presented throughout the paper various ad-
vantages to the designed approach for subset selection
that are not computational. An additional advantage is
that the design generated could be re-used or harnessed
for future/other datasets collected under similar condi-
tions.

There are many ways in which the approach de-
scribed above can be extended. In addition to ex-
pansions to accommodate more complex experimen-
tal aims, the designs and models can be extended to
accommodate features of the obtained data. We dis-
cuss three examples: adjustment for inadequacies in
the dataset from which the samples are extracted, ex-
tensions to allow for aggregation of information from
different sources and the inclusion of replication.

The mismatch between the Big Data and the tar-
get population is widely acknowledged as a concern
in many disciplines (Wang et al., 2015). Other widely
acknowledged inadequacies include measurement er-
ror in variables of interest and missing data. If charac-
teristics of these attributes are known in advance, they
can be included in the design. There is a large classical
literature on adjusting for non-coverage and selection
bias in sampling design, for example, through the use
of sampling weights (Kish and Hess, 1950, Lessler and
Kalsbeek, 1992, Levy and Lemeshow, 1999), design-
adjusted regression and its variants (Chambers, 1988)
and propensity scores (Dagostino, 1998, Austin, 2011).
Analogous weighting methods have been developed to
account for missing data and measurement error (Brick
and Montaquila, 2009). A growing literature is also
available for Bayesian approaches to weighting (Si,
Pillai and Gelman, 2015, Gelman, 2007, Oleson et al.,
2007). Further, although the experimental design ap-
proach described here mitigates the endemic problem
of data quality to some extent by extracting only those
observations corresponding (at least approximately) to
the design points and ignoring the remaining (possibly
poorer quality) data, issues such as bias, nonrepresen-
tativeness, missingness and so on may persist. In this
case, a variety of methods can be adopted for adjust-
ing the data (Chen et al., 2011), the likelihood (Wolpert
and Mengersen, 2004a), the model (Espiro-Hernandez,
Gustafson and Burstyn, 2011), the prior (Lehmann and
Goodman, 2000) or the utility (Fouskakis, Ntzoufras
and Draper, 2009), and the experimental design can be
modified accordingly.

An alternative to adjusting the design is to augment
the corresponding statistical model used to analyse the
extracted data. In a Bayesian framework, this can be

implemented through specification of informative pri-
ors in a Bayesian hierarchical or joint model (Wolpert
and Mengersen, 2004a, Richardson and Gilks, 1993,
Mason et al., 2012, Muff et al., 2015).

In a Big Data context, aggregation of data from dif-
ferent sources can be cumbersome due to the different
characteristics of the datasets and the very large preci-
sions of the obtained parameter estimates. A designed
approach can provide at least partial solutions to these
issues. For example, the experimental design can be
augmented to sample efficiently from each data source,
taking into account the characteristics associated with
the source and the overall aim of the analysis. The cor-
responding statistical model can then be extended hi-
erarchically to allow for the aggregation (McCarron
et al., 2011). One could also conceive this problem
as a meta-analysis, in which each data source is sam-
pled and analysed according to an independently de-
rived design and the results are combined via a random
effects model or similar (Pitchforth and Mengersen,
2012, Schmid and Mengersen, 2013).

The designed approach can also be augmented to al-
low for potential deficiencies in the statistical model.
For example, if the data are “big enough”, then repli-
cate samples can be extracted from the data using the
same design strategy. The methodology for replication
can be adapted in a straightforward manner from clas-
sical design principles (Nawarathna and Choudhary,
2015). These replicates can be employed for a vari-
ety of purposes, such as more accurate estimation and
analysis of sources of variation or heterogeneity in the
data, identification of potential unmodelled covariates
or confounders, assessment of random effects, or eval-
uation of the robustness of the model itself. They can
also be extracted according to a hyper-design to allow
for evaluation of issues such as concept drift, whereby
the response variable changes over time (or space) in
ways that are not accounted for in the statistical model;
see Gama et al. (2014) for a recent survey of this issue.

Finally, we stress once more that the benefits of the
designed approach must be weighed up against the
computational overheads and potentially reduced sam-
ple size in comparison to say a random sub-sampling
strategy. We see this as motivation for the study of
new computational optimisation methods that can ex-
ploit modern computer architectures to deliver de-
signed samples for Big Data analysis.
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